WorldWideScience

Sample records for excited state calculations

  1. Excited state electron affinity calculations for aluminum

    Science.gov (United States)

    Hussein, Adnan Yousif

    2017-08-01

    Excited states of negative aluminum ion are reviewed, and calculations of electron affinities of the states (3s^23p^2)^1D and (3s3p^3){^5}{S}° relative to the (3s^23p)^2P° and (3s3p^2)^4P respectively of the neutral aluminum atom are reported in the framework of nonrelativistic configuration interaction (CI) method. A priori selected CI (SCI) with truncation energy error (Bunge in J Chem Phys 125:014107, 2006) and CI by parts (Bunge and Carbó-Dorca in J Chem Phys 125:014108, 2006) are used to approximate the valence nonrelativistic energy. Systematic studies of convergence of electron affinity with respect to the CI excitation level are reported. The calculated value of the electron affinity for ^1D state is 78.675(3) meV. Detailed Calculations on the ^5S°c state reveals that is 1216.8166(3) meV below the ^4P state.

  2. Calculations on the electronic excited states of ureas and oligoureas.

    Science.gov (United States)

    Oakley, Mark T; Guichard, Gilles; Hirst, Jonathan D

    2007-03-29

    We report CASPT2 calculations on the electronic excited states of several ureas. For monoureas, we find an electric dipole forbidden n --> pi* transition between 180 and 210 nm, dependent on the geometry and substituents of the urea. We find two intense pinb --> pi* transitions between 150 and 210 nm, which account for the absorptions seen in the experimental spectra. The n' --> pi* and pib --> pi* transitions are at wavelengths below 125 nm, which is below the lower limit of the experimental spectra. Parameter sets modeling the charge densities of the electronic transitions have been derived and permit calculations on larger oligoureas, using the exciton matrix method. For glycouril, a urea dimer, both the CASPT2 method and the matrix method yield similar results. Calculations of the electronic circular dichroism spectrum of an oligourea containing eight urea groups indicate that the experimental spectrum cannot be reproduced without the inclusion of electronic excitations involving the side chains. These calculations are one of the first attempts to understand the relationship between the structure and excited states of this class of macromolecule.

  3. Accounting for highly excited states in detailed opacity calculations

    CERN Document Server

    Pain, Jean-Christophe

    2015-01-01

    In multiply-charged ion plasmas, a significant number of electrons may occupy high-energy orbitals. These "Rydberg" electrons, when they act as spectators, are responsible for a number of satellites of X-ray absorption or emission lines, yielding a broadening of the red wing of the resonance lines. The contribution of such satellite lines may be important, because of the high degeneracy of the relevant excited configurations which give these large Boltzmann weights. However, it is in general difficult to take these configurations into account since they are likely to give rise to a large number of lines. We propose to model the perturbation induced by the spectators in a way similar to the Partially-Resolved-Transition-Array approach recently published by C. Iglesias. It consists in a partial detailed-line-accounting calculation in which the effect of the Rydberg spectators is included through a shift and width, expressed in terms of the canonical partition functions, which are key-ingredients of the Super-Tr...

  4. Ab initio calculation of resonance Raman cross sections based on excited state geometry optimization.

    Science.gov (United States)

    Gaff, J F; Franzen, S; Delley, B

    2010-11-04

    A method for the calculation of resonance Raman cross sections is presented on the basis of calculation of structural differences between optimized ground and excited state geometries using density functional theory. A vibrational frequency calculation of the molecule is employed to obtain normal coordinate displacements for the modes of vibration. The excited state displacement relative to the ground state can be calculated in the normal coordinate basis by means of a linear transformation from a Cartesian basis to a normal coordinate one. The displacements in normal coordinates are then scaled by root-mean-square displacement of zero point motion to calculate dimensionless displacements for use in the two-time-correlator formalism for the calculation of resonance Raman spectra at an arbitrary temperature. The method is valid for Franck-Condon active modes within the harmonic approximation. The method was validated by calculation of resonance Raman cross sections and absorption spectra for chlorine dioxide, nitrate ion, trans-stilbene, 1,3,5-cycloheptatriene, and the aromatic amino acids. This method permits significant gains in the efficiency of calculating resonance Raman cross sections from first principles and, consequently, permits extension to large systems (>50 atoms).

  5. Excited states

    CERN Document Server

    Lim, Edward C

    1974-01-01

    Excited States, Volume I reviews radiationless transitions, phosphorescence microwave double resonance through optical spectra in molecular solids, dipole moments in excited states, luminescence of polar molecules, and the problem of interstate interaction in aromatic carbonyl compounds. The book discusses the molecular electronic radiationless transitions; the double resonance techniques and the relaxation mechanisms involving the lowest triplet state of aromatic compounds; as well as the optical spectra and relaxation in molecular solids. The text also describes dipole moments and polarizab

  6. Periodic calculations of excited state properties for solids using a semiempirical approach.

    Science.gov (United States)

    Gadaczek, Immanuel; Hintze, Kim Julia; Bredow, Thomas

    2012-01-14

    The semiempirical SCF MO method MSINDO (modified symmetrically orthogonalized intermediate neglect of differential overlap) [T. Bredow and K. Jug, Electronic Encyclopedia of Computational Chemistry, 2004] is extended to the calculation of excited state properties through implementation of the configuration interaction singles (CIS) approach. MSINDO allows the calculation of periodic systems via the cyclic cluster model (CCM) [T. Bredow et al., J. Comput. Chem., 2001, 22, 89] which is a direct-space approach and therefore can be in principle combined with all molecular quantum-chemical techniques. The CIS equations are solved for a cluster with periodic boundary conditions using the Davidson-Liu iterative block diagonalization approach. As a proof-of-principle, MSINDO-CCM-CIS is applied for the calculation of optical spectra of ZnO and TiO(2), oxygen-defective rutile, and F-centers in NaCl. The calculated spectra are compared to available experimental and theoretical literature data. After re-adjustment of the empirical parameters the quantitative agreement with experiment is satisfactory. The present approximate approach is one of the first examples of a quantum-chemical methodology for solids where excited states are correctly described as n-electron state functions. After careful benchmark testing it will allow calculation of photophysical and photochemical processes relevant to materials science and catalysis.

  7. Symmetry Constraints and Diffusion Monte Carlo Calculations of Excited State Properties

    Science.gov (United States)

    Foulkes, W. M. C.; Hood, Randolph Q.; Needs, R. J.

    1998-03-01

    It is now well established that the fixed--node diffusion Monte Carlo (DMC) method can be used to carry out very accurate calculations of the ground state electronic properties of solids and molecules. For a system containing N electrons in three dimensions, a trial N--electron wavefunction is used to fix a nodal surface (the 3N - 1 dimensional surface on which the trial wavefunction is zero), and the DMC algorithm then projects out the lowest energy variational wavefunction consistent with that imposed nodal surface. In attempts to use DMC to calculate excited--state information, it has often been assumed that the DMC energy must be greater than or equal to the energy of the lowest exact eigenfunction with the same symmetry as the trial function. We show by constructing an explicit example that this common assumption is wrong, and that only a weaker and much less useful variational principle applies.

  8. Fluorescence excitation and ultraviolet absorption spectra and theoretical calculations for benzocyclobutane: vibrations and structure of its excited S(1)(π,π(*)) electronic state.

    Science.gov (United States)

    Shin, Hee Won; Ocola, Esther J; Kim, Sunghwan; Laane, Jaan

    2014-01-21

    The fluorescence excitation spectra of jet-cooled benzocyclobutane have been recorded and together with its ultraviolet absorption spectra have been used to assign the vibrational frequencies for this molecule in its S1(π,π(*)) electronic excited state. Theoretical calculations at the CASSCF(6,6)/aug-cc-pVTZ level of theory were carried out to compute the structure of the molecule in its excited state. The calculated structure was compared to that of the molecule in its electronic ground state as well as to the structures of related molecules in their S0 and S1(π,π(*)) electronic states. In each case the decreased π bonding in the electronic excited states results in longer carbon-carbon bonds in the benzene ring. The skeletal vibrational frequencies in the electronic excited state were readily assigned and these were compared to the ground state and to the frequencies of five similar molecules. The vibrational levels in both S0 and S1(π,π(*)) states were remarkably harmonic in contrast to the other bicyclic molecules. The decreases in the frequencies of the out-of-plane skeletal modes reflect the increased floppiness of these bicyclic molecules in their S1(π,π(*)) excited state.

  9. Fluorescence excitation and ultraviolet absorption spectra and theoretical calculations for benzocyclobutane: Vibrations and structure of its excited S{sub 1}(π,π{sup *}) electronic state

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hee Won; Ocola, Esther J.; Laane, Jaan, E-mail: laane@mail.chem.tamu.edu [Department of Chemistry, Texas A and M University, College Station, Texas 77843-3255 (United States); Kim, Sunghwan [National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Department of Health and Human Services, 8600 Rockville Pike, Bethesda, Maryland 20894 (United States)

    2014-01-21

    The fluorescence excitation spectra of jet-cooled benzocyclobutane have been recorded and together with its ultraviolet absorption spectra have been used to assign the vibrational frequencies for this molecule in its S{sub 1}(π,π{sup *}) electronic excited state. Theoretical calculations at the CASSCF(6,6)/aug-cc-pVTZ level of theory were carried out to compute the structure of the molecule in its excited state. The calculated structure was compared to that of the molecule in its electronic ground state as well as to the structures of related molecules in their S{sub 0} and S{sub 1}(π,π{sup *}) electronic states. In each case the decreased π bonding in the electronic excited states results in longer carbon-carbon bonds in the benzene ring. The skeletal vibrational frequencies in the electronic excited state were readily assigned and these were compared to the ground state and to the frequencies of five similar molecules. The vibrational levels in both S{sub 0} and S{sub 1}(π,π{sup *}) states were remarkably harmonic in contrast to the other bicyclic molecules. The decreases in the frequencies of the out-of-plane skeletal modes reflect the increased floppiness of these bicyclic molecules in their S{sub 1}(π,π{sup *}) excited state.

  10. Fluorescence excitation and ultraviolet absorption spectra and theoretical calculations for benzocyclobutane: Vibrations and structure of its excited S1(π,π*) electronic state

    Science.gov (United States)

    Shin, Hee Won; Ocola, Esther J.; Kim, Sunghwan; Laane, Jaan

    2014-01-01

    The fluorescence excitation spectra of jet-cooled benzocyclobutane have been recorded and together with its ultraviolet absorption spectra have been used to assign the vibrational frequencies for this molecule in its S1(π,π*) electronic excited state. Theoretical calculations at the CASSCF(6,6)/aug-cc-pVTZ level of theory were carried out to compute the structure of the molecule in its excited state. The calculated structure was compared to that of the molecule in its electronic ground state as well as to the structures of related molecules in their S0 and S1(π,π*) electronic states. In each case the decreased π bonding in the electronic excited states results in longer carbon-carbon bonds in the benzene ring. The skeletal vibrational frequencies in the electronic excited state were readily assigned and these were compared to the ground state and to the frequencies of five similar molecules. The vibrational levels in both S0 and S1(π,π*) states were remarkably harmonic in contrast to the other bicyclic molecules. The decreases in the frequencies of the out-of-plane skeletal modes reflect the increased floppiness of these bicyclic molecules in their S1(π,π*) excited state. PMID:25669377

  11. Fluorescence excitation and ultraviolet absorption spectra and theoretical calculations for benzocyclobutane: Vibrations and structure of its excited S1(π,π*) electronic state

    Science.gov (United States)

    Shin, Hee Won; Ocola, Esther J.; Kim, Sunghwan; Laane, Jaan

    2014-01-01

    The fluorescence excitation spectra of jet-cooled benzocyclobutane have been recorded and together with its ultraviolet absorption spectra have been used to assign the vibrational frequencies for this molecule in its S1(π,π*) electronic excited state. Theoretical calculations at the CASSCF(6,6)/aug-cc-pVTZ level of theory were carried out to compute the structure of the molecule in its excited state. The calculated structure was compared to that of the molecule in its electronic ground state as well as to the structures of related molecules in their S0 and S1(π,π*) electronic states. In each case the decreased π bonding in the electronic excited states results in longer carbon-carbon bonds in the benzene ring. The skeletal vibrational frequencies in the electronic excited state were readily assigned and these were compared to the ground state and to the frequencies of five similar molecules. The vibrational levels in both S0 and S1(π,π*) states were remarkably harmonic in contrast to the other bicyclic molecules. The decreases in the frequencies of the out-of-plane skeletal modes reflect the increased floppiness of these bicyclic molecules in their S1(π,π*) excited state.

  12. Symmetry constraints and variational principles in diffusion quantum Monte Carlo calculations of excited-state energies

    Science.gov (United States)

    Foulkes, W. M. C.; Hood, Randolph Q.; Needs, R. J.

    1999-08-01

    Fixed-node diffusion Monte Carlo (DMC) is a stochastic algorithm for finding the lowest energy many-fermion wave function with the same nodal surface as a chosen trial function. It has proved itself among the most accurate methods available for calculating many-electron ground states, and is one of the few approaches that can be applied to systems large enough to act as realistic models of solids. In attempts to use fixed-node DMC for excited-state calculations, it has often been assumed that the DMC energy must be greater than or equal to the energy of the lowest exact eigenfunction with the same symmetry as the trial function. We show that this assumption is not justified unless the trial function transforms according to a one-dimensional irreducible representation of the symmetry group of the Hamiltonian. If the trial function transforms according to a multidimensional irreducible representation, corresponding to a degenerate energy level, the DMC energy may lie below the energy of the lowest eigenstate of that symmetry. Weaker variational bounds may then be obtained by choosing trial functions transforming according to one-dimensional irreducible representations of subgroups of the full symmetry group.

  13. Non-orthogonal configuration interaction for the calculation of multielectron excited states

    Energy Technology Data Exchange (ETDEWEB)

    Sundstrom, Eric J., E-mail: eric.jon.sundstrom@berkeley.edu; Head-Gordon, Martin [Department of Chemistry, University of California Berkeley, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2014-03-21

    We apply Non-orthogonal Configuration Interaction (NOCI) to molecular systems where multielectron excitations, in this case double excitations, play a substantial role: the linear polyenes and β-carotene. We demonstrate that NOCI when applied to systems with extended conjugation, provides a qualitatively correct wavefunction at a fraction of the cost of many other multireference treatments. We also present a new extension to this method allowing for purification of higher-order spin states by utilizing Generalized Hartree-Fock Slater determinants and the details for computing 〈S{sup 2}〉 for the ground and excited states.

  14. Relativistic and correlated calculations on the ground, excited, and ionized states of iodine

    NARCIS (Netherlands)

    de Jong, W.A.; Visscher, L; Nieuwpoort, W.C

    1997-01-01

    The electronic structure, spectroscopic, and bonding properties of the ground, excited, and ionized states of iodine are studied within a four-component relativistic framework using the MOLFDIR program package, The experimentally determined properties of the (1) Sigma(g)(+) ground state are well

  15. Calculation of Ground State Rotational Populations for Kinetic Gas Homonuclear Diatomic Molecules including Electron-Impact Excitation and Wall Collisions

    Energy Technology Data Exchange (ETDEWEB)

    David R. Farley

    2010-08-19

    A model has been developed to calculate the ground-state rotational populations of homonuclear diatomic molecules in kinetic gases, including the effects of electron-impact excitation, wall collisions, and gas feed rate. The equations are exact within the accuracy of the cross sections used and of the assumed equilibrating effect of wall collisions. It is found that the inflow of feed gas and equilibrating wall collisions can significantly affect the rotational distribution in competition with non-equilibrating electron-impact effects. The resulting steady-state rotational distributions are generally Boltzmann for N≥3, with a rotational temperature between the wall and feed gas temperatures. The N=0,1,2 rotational level populations depend sensitively on the relative rates of electron-impact excitation versus wall collision and gas feed rates.

  16. Hot-electron-mediated desorption rates calculated from excited-state potential energy surfaces

    DEFF Research Database (Denmark)

    Olsen, Thomas; Gavnholt, Jeppe; Schiøtz, Jakob

    2009-01-01

    We present a model for desorption induced by (multiple) electronic transitions [DIET (DIMET)] based on potential energy surfaces calculated with the delta self-consistent field extension of density-functional theory. We calculate potential energy surfaces of CO and NO molecules adsorbed on variou...

  17. On the truncation of the number of excited states in density functional theory sum-over-states calculations of indirect spin spin coupling constants

    DEFF Research Database (Denmark)

    Zarycz, M. Natalia C.; Provasi, Patricio F.; Sauer, Stephan P. A.

    2015-01-01

    It is investigated, whether the number of excited (pseudo)states can be truncated in the sum-over-states expression for indirect spin-spin coupling constants (SSCC), which is used in the Contributions from Localized Orbitals within the Polarization Propagator Approach and Inner Projections......-correlation functional and the specialized core-property basis set, aug-cc-pVTZ-J. We investigated both how the calculated coupling constants depend on the number of (pseudo)states included in the summation and whether the summation can be truncated in a systematic way at a smaller number of states and extrapolated...... to the total number of (pseudo)states for the given one-electron basis set. We find that this is possible and that for some of the couplings it is sufficient to include only about 30% of the excited (pseudo)states....

  18. A Multireference Density Functional Approach to the Calculation of the Excited States of Uranium Ions

    Science.gov (United States)

    2007-03-01

    relativistic, truncated calculation is smaller yet, with a Hamiltonian with dimension of the order of 1010 configurations, barely within reach of modern...exact exchange with density functional approximations,” Journal of Chemical Physics, 105 (22) (1996). 103. Perdew, John P. and Karla Schmidt. Density

  19. On the truncation of the number of excited states in density functional theory sum-over-states calculations of indirect spin spin coupling constants.

    Science.gov (United States)

    Zarycz, M Natalia C; Provasi, Patricio F; Sauer, Stephan P A

    2015-12-28

    It is investigated, whether the number of excited (pseudo)states can be truncated in the sum-over-states expression for indirect spin-spin coupling constants (SSCCs), which is used in the Contributions from Localized Orbitals within the Polarization Propagator Approach and Inner Projections of the Polarization Propagator (IPPP-CLOPPA) approach to analyzing SSCCs in terms of localized orbitals. As a test set we have studied the nine simple compounds, CH4, NH3, H2O, SiH4, PH3, SH2, C2H2, C2H4, and C2H6. The excited (pseudo)states were obtained from time-dependent density functional theory (TD-DFT) calculations with the B3LYP exchange-correlation functional and the specialized core-property basis set, aug-cc-pVTZ-J. We investigated both how the calculated coupling constants depend on the number of (pseudo)states included in the summation and whether the summation can be truncated in a systematic way at a smaller number of states and extrapolated to the total number of (pseudo)states for the given one-electron basis set. We find that this is possible and that for some of the couplings it is sufficient to include only about 30% of the excited (pseudo)states.

  20. On the truncation of the number of excited states in density functional theory sum-over-states calculations of indirect spin spin coupling constants

    Energy Technology Data Exchange (ETDEWEB)

    Zarycz, M. Natalia C., E-mail: mnzarycz@gmail.com; Provasi, Patricio F., E-mail: patricio@unne.edu.ar [Department of Physics, University of Northeastern - CONICET, Av. Libertad 5500, Corrientes W3404AAS (Argentina); Sauer, Stephan P. A., E-mail: sauer@kiku.dk [Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø (Denmark)

    2015-12-28

    It is investigated, whether the number of excited (pseudo)states can be truncated in the sum-over-states expression for indirect spin-spin coupling constants (SSCCs), which is used in the Contributions from Localized Orbitals within the Polarization Propagator Approach and Inner Projections of the Polarization Propagator (IPPP-CLOPPA) approach to analyzing SSCCs in terms of localized orbitals. As a test set we have studied the nine simple compounds, CH{sub 4}, NH{sub 3}, H{sub 2}O, SiH{sub 4}, PH{sub 3}, SH{sub 2}, C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, and C{sub 2}H{sub 6}. The excited (pseudo)states were obtained from time-dependent density functional theory (TD-DFT) calculations with the B3LYP exchange-correlation functional and the specialized core-property basis set, aug-cc-pVTZ-J. We investigated both how the calculated coupling constants depend on the number of (pseudo)states included in the summation and whether the summation can be truncated in a systematic way at a smaller number of states and extrapolated to the total number of (pseudo)states for the given one-electron basis set. We find that this is possible and that for some of the couplings it is sufficient to include only about 30% of the excited (pseudo)states.

  1. Excited states 2

    CERN Document Server

    Lim, Edward C

    2013-01-01

    Excited States, Volume 2 is a collection of papers that deals with molecules in the excited states. The book describes the geometries of molecules in the excited electronic states. One paper describes the geometries of a diatomic molecule and of polyatomic molecules; it also discusses the determination of the many excited state geometries of molecules with two, three, or four atoms by techniques similar to diatomic spectroscopy. Another paper introduces an ordered theory related to excitons in pure and mixed molecular crystals. This paper also presents some experimental data such as those invo

  2. Unrestricted density functional theory based on the fragment molecular orbital method for the ground and excited state calculations of large systems

    Energy Technology Data Exchange (ETDEWEB)

    Nakata, Hiroya, E-mail: nakata.h.ab@m.titech.ac.jp [Center for Biological Resources and Informatics, Tokyo Institute of Technology, B-62 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501 (Japan); RIKEN, Research Cluster for Innovation, Nakamura Lab, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Fedorov, Dmitri G. [NRI, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Yokojima, Satoshi [RIKEN, Research Cluster for Innovation, Nakamura Lab, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Tokyo University of Pharmacy and Life Sciences, 1423-1 Horinouchi, Hachioji-shi, Tokyo 192-0392 (Japan); Kitaura, Kazuo [Graduate School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501 (Japan); Sakurai, Minoru [Center for Biological Resources and Informatics, Tokyo Institute of Technology, B-62 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501 (Japan); Nakamura, Shinichiro [RIKEN, Research Cluster for Innovation, Nakamura Lab, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2014-04-14

    We extended the fragment molecular orbital (FMO) method interfaced with density functional theory (DFT) into spin unrestricted formalism (UDFT) and developed energy gradients for the ground state and single point excited state energies based on time-dependent DFT. The accuracy of FMO is evaluated in comparison to the full calculations without fragmentation. Electronic excitations in solvated organic radicals and in the blue copper protein, plastocyanin (PDB code: 1BXV), are reported. The contributions of solvent molecules to the electronic excitations are analyzed in terms of the fragment polarization and quantum effects such as interfragment charge transfer.

  3. Excited states 4

    CERN Document Server

    Lim, Edward C

    2013-01-01

    Excited States, Volume 4 is a collection of papers that deals with the excited states of molecular activity. One paper investigates the resonance Raman spectroscopy as the key to vibrational-electronic coupling. This paper reviews the basic theory of Raman scattering; it also explains the derivation of the Raman spectra, excitation profiles, and depolarization ratios for simple resonance systems. Another paper reviews the magnetic properties of triplet states, including the zero-field resonance techniques, the high-field experiments, and the spin Hamiltonian. This paper focuses on the magnetic

  4. Excited state Intramolecular Proton Transfer in Anthralin

    DEFF Research Database (Denmark)

    Møller, Søren; Andersen, Kristine B.; Spanget-Larsen, Jens

    1998-01-01

    Quantum chemical calculations performed on anthralin (1,8-dihydroxy-9(10H)-anthracenone) predict the possibility of an excited-state intramolecular proton transfer process. Fluorescence excitation and emission spectra of the compound dissolved in n-hexane at ambient temperature results in an unus......Quantum chemical calculations performed on anthralin (1,8-dihydroxy-9(10H)-anthracenone) predict the possibility of an excited-state intramolecular proton transfer process. Fluorescence excitation and emission spectra of the compound dissolved in n-hexane at ambient temperature results......, associated with an excited-state intramolecular proton transfer process....

  5. Combined quantum-mechanical molecular mechanics calculations with NWChem and AMBER: Excited state properties of green fluorescent protein chromophore analogue in aqueous solution.

    Science.gov (United States)

    Pirojsirikul, Teerapong; Götz, Andreas W; Weare, John; Walker, Ross C; Kowalski, Karol; Valiev, Marat

    2017-07-05

    Combined quantum mechanical molecular mechanics (QM/MM) calculations have become a popular methodology for efficient and accurate description of large molecular systems. In this work we introduce our development of a QM/MM framework based on two well-known codes-NWChem and AMBER. As an initial application area we are focused on excited state properties of small molecules in an aqueous phase using an analogue of the green fluorescent protein (GFP) chromophore as a particular test case. Our approach incorporates high level coupled cluster theory for the analysis of excited states providing a reliable theoretical analysis of effects of an aqueous solvation environment on the photochemical properties of the GFP chromophore. Using a systematic approach, which involves comparison of gas phase and aqueous phase results for different protonation states and conformations, we resolve existing uncertainties regarding the theoretical interpretation of experimental data. We observe that the impact of aqueous environment on charged states generally results in blue shifts of the absorption spectra, but the magnitude of the effect is sensitive to both protonation state and conformation and can be rationalized based on charge movement into the area of higher/lower external electrostatic potentials. At neutral pH levels the experimentally observed absorption signal is most likely coming from the phenol protonated form. Our results also show that the high level electron correlated method is essential for a proper description of excited states of GFP. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Electronically Excited States of Vitamin B12: Benchmark Calculations Including Time-Dependent Density Functional Theory and Correlated Ab Initio Methods

    CERN Document Server

    Kornobis, Karina; Wong, Bryan M; Lodowski, Piotr; Jaworska, Maria; Andruniów, Tadeusz; Rudd, Kenneth; Kozlowski, Pawel M; 10.1021/jp110914y

    2011-01-01

    Time-dependent density functional theory (TD-DFT) and correlated ab initio methods have been applied to the electronically excited states of vitamin B12 (cyanocobalamin or CNCbl). Different experimental techniques have been used to probe the excited states of CNCbl, revealing many issues that remain poorly understood from an electronic structure point of view. Due to its efficient scaling with size, TD-DFT emerges as one of the most practical tools that can be used to predict the electronic properties of these fairly complex molecules. However, the description of excited states is strongly dependent on the type of functional used in the calculations. In the present contribution, the choice of a proper functional for vitamin B12 was evaluated in terms of its agreement with both experimental results and correlated ab initio calculations. Three different functionals, i.e. B3LYP, BP86, and LC-BLYP, were tested. In addition, the effect of relative contributions of DFT and HF to the exchange-correlation functional ...

  7. Electronic structure and excited-state properties of Co2TiSn and Co2ZrSn from ab initio calculations

    Directory of Open Access Journals (Sweden)

    L.V.Bekenov

    2005-01-01

    Full Text Available The electronic structure, magnetism as well as the excited-state properties such as the optical and x-ray magnetic circular dichroism (XMCD spectra of the Heusler alloys Co2TiSn and Co2ZrSn were investigated theoretically from first principles using the fully relativistic Dirac LMTO band structure method. The origin of the XMCD spectra at the Co L2,3 edges in the compounds is examined. Densities of valence states, orbital and spin magnetic moments as well as optical spectra are analyzed and discussed. The calculated results are compared with the available experimental data.

  8. Interatomic potentials, electric properties and spectroscopy of the ground and excited states of the Rb2 molecule: ab initio calculations and effect of a non-resonant field*

    Science.gov (United States)

    Tomza, Michał; Skomorowski, Wojciech; Musiał, Monika; González-Férez, Rosario; Koch, Christiane P.; Moszynski, Robert

    2013-07-01

    We formulate the theory for a diatomic molecule in a spatially degenerate electronic state interacting with a non-resonant laser field and investigate its rovibrational structure in the presence of the field. We report on ab initio calculations employing the double electron attachment intermediate Hamiltonian Fock space coupled cluster method restricted to single and double excitations for all electronic states of the Rb2 molecule up to 5s+5d dissociation limit of about 26,000 cm-1. In order to correctly predict the spectroscopic behaviour of Rb2, we have also calculated the electric transition dipole moments, non-adiabatic coupling and spin-orbit coupling matrix elements, and static dipole polarisabilities, using the multireference configuration interaction method. When a molecule is exposed to strong non-resonant light, its rovibrational levels get hybridised. We study the spectroscopic signatures of this effect for transitions between the X1Σ+ g electronic ground state and the A1Σ+ u and b3Π u excited state manifold. The latter is characterised by strong perturbations due to the spin-orbit interaction. We find that for non-resonant field strengths of the order 109 W/cm2, the spin-orbit interaction and coupling to the non-resonant field become comparable. The non-resonant field can then be used to control the singlet-triplet character of a rovibrational level.

  9. Initial Design Calculations for a Detection System that will Observe Resonant Excitation of the 680 keV state in 238U

    Energy Technology Data Exchange (ETDEWEB)

    Pruet, J; Hagmann, C

    2007-01-26

    We present calculations and design considerations for a detection system that could be used to observe nuclear resonance fluorescence in {sup 238}U. This is intended as part of an experiment in which a nearly monochromatic beam of light incident on a thin foil of natural uranium resonantly populates the state at 680 keV in {sup 238}U. The beam of light is generated via Compton upscattering of laser light incident on a beam of relativistic electrons. This light source has excellent energy and angular resolution. In the current design study we suppose photons emitted following de-excitation of excited nuclei to be observed by a segmented array of BGO crystals. Monte Carlo calculations are used to inform estimates for the design and performance of this detector system. We find that each detector in this array should be shielded by about 2 cm of lead. The signal to background ratio for each of the BGO crystals is larger than ten. The probability that a single detector observes a resonant photon during a single pulse of the light source is near unity.

  10. Electronic states of thiophene/phenylene co-oligomers: Extreme-ultra violet excited photoelectron spectroscopy observations and density functional theory calculations

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, Yoshizo [Research Institute for Innovation in Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565 (Japan); Electronics and Photonics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Sasaki, Fumio; Mochizuki, Hiroyuki [Electronics and Photonics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Ishitsuka, Tomoaki; Tomie, Toshihisa [Research Institute of Instrumentation Frontier, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Ootsuka, Teruhisa [Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Watanabe, Shuji [Graduate School of Science and Engineering, Yamagata University, 1-4-12, Kojirakawa, Yamagata 990-8560 (Japan); Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Shimoi, Yukihiro [Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Yamao, Takeshi; Hotta, Shu [Department of Macromolecular Science and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan)

    2013-02-28

    We have investigated electronic states in the valence electron bands for the thin films of three thiophene/phenylene co-oligomer (TPCO) compounds, 2,5-bis(4-biphenylyl)thiophene (BP1T), 1,4-bis(5-phenylthiophen-2-yl)benzene (AC5), and 1,4-bis{l_brace}5-[4-(trifluoromethyl)phenyl]thiophen-2-yl{r_brace}benzene (AC5-CF{sub 3}), by using extreme-UV excited photoelectron spectroscopy (EUPS). By comparing both EUPS spectra and secondary electron spectra between AC5 and AC5-CF{sub 3}, we confirm that CF{sub 3} substitution to AC5 deepens valence states by 2 eV, and increases the ionization energy by 3 eV. From the cut-off positions of secondary electron spectra, the work functions of AC5, AC5-CF{sub 3}, and BP1T are evaluated to be 3.8 eV, 4.8 eV, and 4.0 eV, respectively. We calculate molecular orbital (MO) energy levels by the density functional theory and compare results of calculations with those of experiments. Densities of states obtained by broadening MO levels well explain the overall features of experimental EUPS spectra of three TPCOs.

  11. Exploring excited-state tunability in luminescent tris-cyclometalated platinum(IV) complexes: synthesis of heteroleptic derivatives and computational calculations.

    Science.gov (United States)

    Juliá, Fabio; Aullón, Gabriel; Bautista, Delia; González-Herrero, Pablo

    2014-12-22

    The synthesis, structure, electrochemistry, and photophysical properties of a series of heteroleptic tris- cyclometalated Pt(IV) complexes are reported. The complexes mer-[Pt(C^N)2 (C'^N')]OTf, with C^N=C-deprotonated 2-(2,4-difluorophenyl)pyridine (dfppy) or 2-phenylpyridine (ppy), and C'^N'=C-deprotonated 2-(2-thienyl)pyridine (thpy) or 1-phenylisoquinoline (piq), were obtained by reacting bis- cyclometalated precursors [Pt(C^N)2 Cl2] with AgOTf (2 equiv) and an excess of the N'^C'H pro-ligand. The complex mer-[Pt(dfppy)2 (ppy)]OTf was obtained analogously and photoisomerized to its fac counterpart. The new complexes display long-lived luminescence at room temperature in the blue to orange color range. The emitting states involve electronic transitions almost exclusively localized on the ligand with the lowest π-π* energy gap and have very little metal character. DFT and time-dependent DFT (TD-DFT) calculations on mer-[Pt(ppy)2 (C'^N')](+) (C'^N'=thpy, piq) and mer/fac-[Pt(ppy)3](+) support this assignment and provide a basis for the understanding of the luminescence of tris-cyclometalated Pt(IV) complexes. Excited states of LMCT character may become thermally accessible from the emitting state in the mer isomers containing dfppy or ppy as chromophoric ligands, leading to strong nonradiative deactivation. This effect does not operate in the fac isomers or the mer complexes containing thpy or piq, for which nonradiative deactivation originates mainly from vibrational coupling to the ground state. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Search for excited states in 25O

    Science.gov (United States)

    Jones, M. D.; Fossez, K.; Baumann, T.; DeYoung, P. A.; Finck, J. E.; Frank, N.; Kuchera, A. N.; Michel, N.; Nazarewicz, W.; Rotureau, J.; Smith, J. K.; Stephenson, S. L.; Stiefel, K.; Thoennessen, M.; Zegers, R. G. T.

    2017-11-01

    Background: Theoretical calculations suggest the presence of low-lying excited states in 25O. Previous experimental searches by means of proton knockout on 26F produced no evidence for such excitations. Purpose: We search for excited states in 25O using the 24O(d ,p ) 25O reaction. The theoretical analysis of excited states in unbound O,2725 is based on the configuration interaction approach that accounts for couplings to the scattering continuum. Method: We use invariant-mass spectroscopy to measure neutron-unbound states in 25O. For the theoretical approach, we use the complex-energy Gamow Shell Model and Density Matrix Renormalization Group method with a finite-range two-body interaction optimized to the bound states and resonances of O-2623, assuming a core of 22O. We predict energies, decay widths, and asymptotic normalization coefficients. Results: Our calculations in a large s p d f space predict several low-lying excited states in 25O of positive and negative parity, and we obtain an experimental limit on the relative cross section of a possible Jπ=1/2 + state with respect to the ground state of 25O at σ1 /2 +/σg .s .=0 .25-0.25+1.0 . We also discuss how the observation of negative parity states in 25O could guide the search for the low-lying negative parity states in 27O. Conclusion: Previous experiments based on the proton knockout of 26F suffered from the low cross sections for the population of excited states in 25O because of low spectroscopic factors. In this respect, neutron transfer reactions carry more promise.

  13. Combined quantum-mechanical molecular mechanics calculations with NWChem and AMBER: Excited state properties of green fluorescent protein chromophore analogue in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Pirojsirikul, Teerapong [Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive La Jolla California 92093; Götz, Andreas W. [San Diego Supercomputer Center, University of California San Diego, 9500 Gilman Drive La Jolla California 92093; Weare, John [Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive La Jolla California 92093; Walker, Ross C. [Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive La Jolla California 92093; GlaxoSmithKline, 1250 S. Collegeville Road Collegeville Pennsylvania 19426; Kowalski, Karol [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P. O. Box 999 Richland Washington 99352; Valiev, Marat [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P. O. Box 999 Richland Washington 99352

    2017-05-03

    Green Fluorescent Protein (GFP) is a widely used fluorescent biomarker for the study of biological systems. Our investigation is focused on providing a reliable theoretical description of the GFP chromophore, the photochemical properties of which can be influenced through both the surrounding protein environment and pH levels. In this work we are specifically addressing the effect of an aqueous solvation environment , where a number of experimental measurements have been performed. Our approach is based on a combined quantum mechanics molecular mechanics (QM/MM) methodology, which incorporates high level coupled cluster theory for the analysis of excited states. It also presents the first application of the newly developed NWChem/AMBER QM/MM interface. Using a systematic approach, which involves comparison of gas phase and aqueous results for different protonation states and conformations, we have resolved existing uncertainties regarding theoretical interpretation of the experimental data. We observe that the impact of aqueous environment on charged states generally results in blue shifts, but the magnitude of the effect is sensitive to charge state and conformation and can be rationalized based on charge movement into the area of higher/lower external electrostatic potentials. At neutral pH levels the experimentally observed absorption signal is most likely coming from the phenol protonated form. Our results also show that the high level coupled description is essential for proper description of excited states of GFP.

  14. Excited B states at LEP

    CERN Document Server

    Kluit, Peter M

    2005-01-01

    The first orbitally excited B states were discovered at LEP in 1995. In subsequent years evidence was put forward for the existence of several excited B hadron states. Now, ten years later it is time to review the situation. New analyses have been performed in DELPHI using the full LEP data set with improved and high performance analysis tools. Measurements for the production rate and masses of narrow and broad B/sub u, d//sup **/ mesons will be presented as well as results for the search for B/sub s//sup **/ mesons and Sigma /sub b//sup (*)/ baryons. The results will be compared to earlier measurements, predictions from HQET and measurements in the charm sector.

  15. Excited states of {sup 4}He droplets

    Energy Technology Data Exchange (ETDEWEB)

    Guardiola, R.; Navarro, J.; Portesi, M.

    2001-06-01

    We study low-lying excited states of {sup 4}He clusters up to a cluster size of 40 atoms in a variational framework. The ansatz wave function combines two- and three-body correlations, coming from a translationally invariant configuration interaction description, and Jastrow-type short-range correlation. We have previously used this scheme to determine the ground-state energies of {sup 4}He and {sup 3}He clusters. Here we present an extension of this ansatz wave function having a good quantum angular momentum L. The variational procedure is applied independently to the cases with L=0,2,4, and upper bounds for the corresponding energies are thus obtained. Moreover, centroid energies for L excitations are calculated through the use of sum rules. A comparison with previous calculations is also made.

  16. Quantum Monte Carlo Calculations of Excitations in Hydrogenated Germanium Clusters

    Science.gov (United States)

    Vincent, Jordan; Kim, Jeongnim; Martin, Richard

    2006-03-01

    Quantum Monte Carlo (QMC) calculations are presented for energies of ground and excited states of Ge atom and hydrogen passivated closed-shell molecules and clusters: GeH4, Ge2H6, Ge5H12, Ge10H16 and Ge29H36. We compare the results for excitations with previous QMC and time-dependant Density Functional Theory (TD- DFT) done for the corresponding Silicon clusters [1,2]; in particular; we find that preliminary results for lowest excitation enregy of Ge29H36 5.08[29]eV is lower than the gap 5.4eV reported for Si[2]. Core-valence partitioning for Ge is implemented by replacing the core-states with a Hartree-Fock pseudopotential plus a Core Polarization Potential (CPP)[3]. Core-valence correlation treated by the CPP is shown to be essential for accurate atomic energies and significant for the molecules, but smaller in the clusters. [1] Porter et. al., PRB 64, 035320 (2001). [2] Williamson et. al., PRL 89, 196803 (2002). [3] Shirley and Martin, PRB 47, 15413 (1993)

  17. On the calculation of Δ for electronic excitations in time-dependent density-functional theory

    Science.gov (United States)

    Myneni, Hemanadhan; Casida, Mark E.

    2017-04-01

    Excited states are often treated within the context of time-dependent (TD) density-functional theory (DFT), making it important to be able to assign the excited spin-state symmetry. While there is universal agreement on how Δ , the difference between for ground and excited states, should be calculated in a wave-function-like formalism such as the Tamm-Dancoff approximation (TDA), confusion persists as to how to determine the spin-state symmetry of excited states in TD-DFT. We try to clarify the origins of this confusion by examining various possibilities for the parameters (σ1 ,σ2) in the formula

  18. Direct conversion of graphite into diamond through electronic excited states

    CERN Document Server

    Nakayama, H

    2003-01-01

    An ab initio total energy calculation has been performed for electronic excited states in diamond and rhombohedral graphite by the full-potential linearized augmented plane wave method within the framework of the local density approximation (LDA). First, calculations for the core-excited state in diamond have been performed to show that the ab initio calculations based on the LDA describe the wavefunctions in the electronic excited states as well as in the ground state quite well. Fairly good coincidence with both experimental data and theoretical prediction has been obtained for the lattice relaxation of the core exciton state. The results of the core exciton state are compared with nitrogen-doped diamond. Next, the structural stability of rhombohedral graphite has been investigated to examine the possibility of the transition into the diamond structure through electronic excited states. While maintaining the rhombohedral symmetry, rhombohedral graphite can be spontaneously transformed to cubic diamond. Tota...

  19. Excited-state Wigner crystals

    Science.gov (United States)

    Rogers, Fergus J. M.; Loos, Pierre-François

    2017-01-01

    Wigner crystals (WCs) are electronic phases peculiar to low-density systems, particularly in the uniform electron gas. Since its introduction in the early twentieth century, this model has remained essential to many aspects of electronic structure theory and condensed-matter physics. Although the (lowest-energy) ground-state WC (GSWC) has been thoroughly studied, the properties of excited-state WCs (ESWCs) are basically unknown. To bridge this gap, we present a well-defined procedure to obtain an entire family of ESWCs in a one-dimensional electron gas using a symmetry-broken mean-field approach. While the GSWC is a commensurate crystal (i.e., the number of density maxima equals the number of electrons), these ESWCs are incommensurate crystals exhibiting more or less maxima. Interestingly, they are lower in energy than the (uniform) Fermi fluid state. For some of these ESWCs, we have found asymmetrical band gaps, which would lead to anisotropic conductivity. These properties are associated with unusual characteristics in their electronic structure.

  20. Excited States in Solution through Polarizable Embedding

    DEFF Research Database (Denmark)

    Olsen, Jógvan Magnus; Aidas, Kestutis; Kongsted, Jacob

    2010-01-01

    We present theory and implementation of an advanced quantum mechanics/molecular mechanics (QM/MM) approach using a fully self-consistent polarizable embedding (PE) scheme. It is a polarizable layered model designed for effective yet accurate inclusion of an anisotropic medium in a quantum...... mechanical calculation. The polarizable embedding potential is described by an atomistic representation including terms up to localized octupoles and anisotropic polarizabilities. It is generally applicable to any quantum chemical description but is here implemented for the case of Kohn−Sham density...... functional theory which we denote the PE-DFT method. It has been implemented in combination with time-dependent quantum mechanical linear and nonlinear response techniques, thus allowing for assessment of electronic excitation processes and dynamic ground- and excited-state molecular properties using...

  1. The mechanisms of Excited states in enzymes

    DEFF Research Database (Denmark)

    Petersen, Frederic Nicolas Rønne; Bohr, Henrik

    2010-01-01

    Enzyme catalysis is studied on the basis of excited state processes, which are of electronic, vibrational and thermal nature. The ways of achieving the excited state, such as photo-absorption and ligand binding, are discussed and exemplified by various cases of enzymes.......Enzyme catalysis is studied on the basis of excited state processes, which are of electronic, vibrational and thermal nature. The ways of achieving the excited state, such as photo-absorption and ligand binding, are discussed and exemplified by various cases of enzymes....

  2. Relative Stability of the La and Lb Excited States in Adenine and Guanine: Direct Evidence from TD-DFT Calculations of MCD Spectra.

    Science.gov (United States)

    Santoro, Fabrizio; Improta, Roberto; Fahleson, Tobias; Kauczor, Joanna; Norman, Patrick; Coriani, Sonia

    2014-06-05

    The relative position of La and Lb ππ* electronic states in purine nucleobases is a much debated topic, since it can strongly affect our understanding of their photoexcited dynamics. To assess this point, we calculated the absorption and magnetic circular dichroism (MCD) spectra of adenine, guanine, and their nucleosides in gas-phase and aqueous solution, exploiting recent developments in MCD computational technology within time-dependent density functional theory. MCD spectroscopy allows us to resolve the intense S0→ La transition from the weak S0→ Lb transition. The spectra obtained in water solution, by using B3LYP and CAM-B3LYP functionals and describing solvent effect by cluster models and by the polarizable continuum model (PCM), are in very good agreement with the experimental counterparts, thus providing direct and unambiguous evidence that the energy ordering predicted by TD-DFT, La < Lb, is the correct one.

  3. Semiclassical quantization of highly excited scar states

    Science.gov (United States)

    Vergini, Eduardo G.

    2017-04-01

    The semiclassical quantization of Hamiltonian systems with classically chaotic dynamics is restricted to low excited states, close to the ground state, because the number of required periodic orbits grows exponentially with energy. Nevertheless, here we demonstrate that it is possible to find eigenenergies of highly excited states scarred by a short periodic orbit. Specifically, by using 18146 homoclinic orbits (HO)s of the shortest periodic orbit of the hyperbola billiard, we find eigenenergies of the strongest scars over a range which includes 630 even eigenfunctions. The analysis of data reveals that the used semiclassical formula presents two regimes. First, when all HOs with excursion time smaller than the Heisenberg time t H are included, the error is around 3.3% of the mean level spacing. Second, in the energy region defined by \\tilde{t}/ tH > 0.13 , where \\tilde{t} is the maximum excursion time included in the calculation, the error is around 15% of the mean level spacing.

  4. On the mechanism of non-radiative decay of blue fluorescent protein chromophore: New insight from the excited-state molecular dynamics simulations and potential energy calculations

    Science.gov (United States)

    Zhao, Li; Liu, Jian-Yong; Zhou, Pan-Wang

    2017-11-01

    A detailed theoretical investigation based on the ab initio on-the-fly surface hopping dynamics simulations and potential energy surfaces calculations has been performed to unveil the mechanism of the photoinduced non-adiabatic relaxation process of the isolated blue fluorescent protein (BFP) chromophore in gas phase. The data analysis presents that the dominant reaction coordinate of the BFP chromophore is driven by a rotation motion around the CC double bridging bond, which is in remarkable difference with a previous result which supports a Hula-Twist rotation pattern. Such behavior is consistent with the double bond rotation pattern of the GFP neutral chromophore. In addition, the dynamics simulations give an estimated decay time of 1.1 ps for the S1 state, which is agrees well with the experimental values measured in proteins. The present work offers a straightforward understanding for the decay mechanism of the BFP chromophore and suggestions of the photochemical properties of analogous protein chromophores. We hope the current work would be helpful for further exploration of the BFP photochemical and photophysical properties in various environments, and can provide guidance and prediction for rational design of the fluorescent proteins catering for different demands.

  5. A treatment of excited states in nucleosynthesis

    Science.gov (United States)

    Gupta, Sanjib Shankar

    2002-10-01

    Many isotopes of importance to nucleosynthesis have metastable states whose decay to the ground state is strongly inhibited by a high angular momentum difference. Traditionally, excited states of a nucleus have been treated by assuming attainment of thermal equilibrium; a Hauser-Feshbach calculation is then performed on the whole nucleus to determine nuclear reaction rates. A description of the nucleus when it is not in equilibrium, and a method for computing reaction rates that does not presume thermalization are presented in this work. In nucleosynthesis calculations, we may characterize the internal electromagnetic transitions of a nucleus as a Markov process. This allows us to decompose the interaction of radiation with nucleons into effective interactions between ensembles. Rather than consider a single isotope, we construct the canonical ensembles which are the true nuclear species of interest. We are then in a position to specify nonequilibrium occupations of the ensembles by discretizing the Nuclear Level Density function. The generality of the stochastic process identified at the outset now permits the description of nucleosynthesis as Markov flows in networks of suitably populated ensembles. This allows us to use as many excited states as we wish in nucleosyn thesis while tracking their nonequilibrium evolution as substochastic processes. A website utilizing these principles is discussed in some detail. It accesses the theoretical NLD database from the Brussels Intitute of Astrophysics to supplement adopted experimental data from the ENSDF database (maintained by Brookhaven National Laboratories). The composite is processed by a CGI (Common Gateway Interface) application to dynamically obtain plots and tables of rates on a specified temperature grid. Beta-decay rates are discussed for an isotope important to nuclear astrophysics ( 180TA) as a test-bed for the techniques implemented.

  6. Calculation of vibrational excitation cross-sections in resonant ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 119; Issue 5. Calculation of vibrational excitation cross-sections in resonant electron-molecule scattering using the time-dependent wave packet (TDWP) approach with application to the 2 CO- shape resonance. Raman Kumar Singh Manabendra Sarma Ankit Jain ...

  7. Excited-State Deactivation of Branched Phthalocyanine Compounds.

    Science.gov (United States)

    Zhu, Huaning; Li, Yang; Chen, Jun; Zhou, Meng; Niu, Yingli; Zhang, Xinxing; Guo, Qianjin; Wang, Shuangqing; Yang, Guoqiang; Xia, Andong

    2015-12-21

    The excited-state relaxation dynamics and chromophore interactions in two phthalocyanine compounds (bis- and trisphthalocyanines) are studied by using steady-state and femtosecond transient absorption spectral measurements, where the excited-state energy-transfer mechanism is explored. By exciting phthalocyanine compounds to their second electronically excited states and probing the subsequent relaxation dynamics, a multitude of deactivation pathways are identified. The transient absorption spectra show the relaxation pathway from the exciton state to excimer state and then back to the ground state in bisphthalocyanine (bis-Pc). In trisphthalocyanine (tris-Pc), the monomeric and dimeric subunits are excited and the excitation energy transfers from the monomeric vibrationally hot S1 state to the exciton state of a pre-associated dimer, with subsequent relaxation to the ground state through the excimer state. The theoretical calculations and steady-state spectra also show a face-to-face conformation in bis-Pc, whereas in tris-Pc, two of the three phthalocyanine branches form a pre-associated face-to-face dimeric conformation with the third one acting as a monomeric unit; this is consistent with the results of the transient absorption experiments from the perspective of molecular structure. The detailed structure-property relationships in phthalocyanine compounds is useful for exploring the function of molecular aggregates in energy migration of natural photosynthesis systems. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Neutral excitations in the Gaffnian state

    Science.gov (United States)

    Kang, Byungmin; Moore, Joel E.

    2017-06-01

    We study a model fractional quantum Hall (FQH) wave function called the Gaffnian state, which is believed to represent a gapless, strongly correlated state that is very different from conventional metals. To understand this exotic gapless state better, we provide a representation based on work of Halperin in which the pairing structure of the Gaffnian state becomes more explicit. We employ the single-mode approximation introduced by Girvin, MacDonald, and Platzman, here extended to three-body interactions, in order to treat a neutral collective excitation mode in order to clarify the physical origin of the gaplessness of the Gaffnian state. We discuss approaches to extract systematically the relevant physics in the long-distance, large-electron-number limit of FQH states using numerical calculations with relatively few electrons. In Appendices, we provide second-quantized expressions for many-body Haldane pseudopotentials in various geometries including the plane, sphere, cylinder, and torus based on the proper definition of the relative angular momentum.

  9. Two-Photon Excitation of Conjugated Molecules in Solution: Spectroscopy and Excited-State Dynamics

    Science.gov (United States)

    Elles, Christopher G.; Houk, Amanda L.; de Wergifosse, Marc; Krylov, Anna

    2017-06-01

    We examine the two-photon absorption (2PA) spectroscopy and ultrafast excited-state dynamics of several conjugated molecules in solution. By controlling the relative wavelength and polarization of the two photons, the 2PA measurements provide a more sensitive means of probing the electronic structure of a molecule compared with traditional linear absorption spectra. We compare experimental spectra of trans-stilbene, cis-stilbene, and phenanthrene in solution with the calculated spectra of the isolated molecules using EOM-EE-CCSD. The calculated spectra show good agreement with the low-energy region of the experimental spectra (below 6 eV) after suppressing transitions with strong Rydberg character and accounting for solvent and method-dependent shifts of the valence transitions. We also monitor the excited state dynamics following two-photon excitation to high-lying valence states of trans-stilbene up to 6.5 eV. The initially excited states rapidly relax to the lowest singlet excited state and then follow the same reaction path as observed following direct one-photon excitation to the lowest absorption band at 4.0 eV.

  10. Cyclopropyl Group: An Excited-State Aromaticity Indicator?

    Science.gov (United States)

    Ayub, Rabia; Papadakis, Raffaello; Jorner, Kjell; Zietz, Burkhard; Ottosson, Henrik

    2017-10-04

    The cyclopropyl (cPr) group, which is a well-known probe for detecting radical character at atoms to which it is connected, is tested as an indicator for aromaticity in the first ππ* triplet and singlet excited states (T 1 and S 1 ). Baird's rule says that the π-electron counts for aromaticity and antiaromaticity in the T 1 and S 1 states are opposite to Hückel's rule in the ground state (S 0 ). Our hypothesis is that the cPr group, as a result of Baird's rule, will remain closed when attached to an excited-state aromatic ring, enabling it to be used as an indicator to distinguish excited-state aromatic rings from excited-state antiaromatic and nonaromatic rings. Quantum chemical calculations and photoreactivity experiments support our hypothesis; calculated aromaticity indices reveal that openings of cPr substituents on [4n]annulenes ruin the excited-state aromaticity in energetically unfavorable processes. Yet, polycyclic compounds influenced by excited-state aromaticity (e.g., biphenylene), as well as 4nπ-electron heterocycles with two or more heteroatoms represent limitations. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Photoionization of excited states of neon-like Mg III

    Indian Academy of Sciences (India)

    The close coupling -matrix method is used to calculate cross-sections for photoionization of Mg III from its first three excited states. Configuration interaction wave functions are used to represent two target states of Mg III retained in the -matrix expansion. The positions and effective quantum numbers for the Rydberg ...

  12. Rearrangements in ground and excited states

    CERN Document Server

    de Mayo, Paul

    1980-01-01

    Rearrangements in Ground and Excited States, Volume 3 presents essays on the chemical generation of excited states; the cis-trans isomerization of olefins; and the photochemical rearrangements in trienes. The book also includes essays on the zimmerman rearrangements; the photochemical rearrangements of enones; the photochemical rearrangements of conjugated cyclic dienones; and the rearrangements of the benzene ring. Essays on the photo rearrangements via biradicals of simple carbonyl compounds; the photochemical rearrangements involving three-membered rings or five-membered ring heterocycles;

  13. Accurate Excited State Geometries within Reduced Subspace TDDFT/TDA.

    Science.gov (United States)

    Robinson, David

    2014-12-09

    A method for the calculation of TDDFT/TDA excited state geometries within a reduced subspace of Kohn-Sham orbitals has been implemented and tested. Accurate geometries are found for all of the fluorophore-like molecules tested, with at most all valence occupied orbitals and half of the virtual orbitals included but for some molecules even fewer orbitals. Efficiency gains of between 15 and 30% are found for essentially the same level of accuracy as a standard TDDFT/TDA excited state geometry optimization calculation.

  14. Optimized resonating valence bond state in square lattice: correlations & excitations

    Directory of Open Access Journals (Sweden)

    Z Nourbakhsh

    2009-09-01

    Full Text Available We consider RVB state as a variational estimate for the ground state of Heisenberg antiferromagnet in square lattice. We present numerical calculation of energy, spin-spin correlation function and spin excitation spectrum. We show, that the quantum flactuations reduce of magnetization respect to Neel order. Our results are in good agreement with other methods such as spin-wave calculation and series expansions.

  15. Charmonium excited state spectrum in lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Jozef Dudek; Robert Edwards; Nilmani Mathur; David Richards

    2008-02-01

    Working with a large basis of covariant derivative-based meson interpolating fields we demonstrate the feasibility of reliably extracting multiple excited states using a variational method. The study is performed on quenched anisotropic lattices with clover quarks at the charm mass. We demonstrate how a knowledge of the continuum limit of a lattice interpolating field can give additional spin-assignment information, even at a single lattice spacing, via the overlap factors of interpolating field and state. Excited state masses are systematically high with respect to quark potential model predictions and, where they exist, experimental states. We conclude that this is most likely a result of the quenched approximation.

  16. The excited state antiaromatic benzene ring: a molecular Mr Hyde?

    Science.gov (United States)

    Papadakis, Raffaello; Ottosson, Henrik

    2015-09-21

    The antiaromatic character of benzene in its first ππ* excited triplet state (T1) was deduced more than four decades ago by Baird using perturbation molecular orbital (PMO) theory [J. Am. Chem. Soc. 1972, 94, 4941], and since then it has been confirmed through a range of high-level quantum chemical calculations. With focus on benzene we now first review theoretical and computational studies that examine and confirm Baird's rule on reversal in the electron count for aromaticity and antiaromaticity of annulenes in their lowest triplet states as compared to Hückel's rule for the ground state (S0). We also note that the rule according to quantum chemical calculations can be extended to the lowest singlet excited state (S1) of benzene. Importantly, Baird, as well as Aihara [Bull. Chem. Soc. Jpn. 1978, 51, 1788], early put forth that the destabilization and excited state antiaromaticity of the benzene ring should be reflected in its photochemical reactivity, yet, today these conclusions are often overlooked. Thus, in the second part of the article we review photochemical reactions of a series of benzene derivatives that to various extents should stem from the excited state antiaromatic character of the benzene ring. We argue that benzene can be viewed as a molecular "Dr Jekyll and Mr Hyde" with its largely unknown excited state antiaromaticity representing its "Mr Hyde" character. The recognition of the "Jekyll and Hyde" split personality feature of the benzene ring can likely be useful in a range of different areas.

  17. Investigation of the Electronic Excited States of Small Gold Clusters in Rare Gas Matrices: Spin-Orbit Time-Dependent Density Functional Theory Calculation.

    Science.gov (United States)

    Jamshidi, Zahra; Kaveei, Elham; Mohammadpour, Mozhdeh

    2015-08-13

    The effects of the weak interactions of rare gas atoms on the UV-visible absorption spectra of gold dimer and tetramer clusters are investigated. The time-dependent density functional theory based on the two-component relativistic zeroth-order regular approximation that considered spin-orbit coupling is performed to estimate the absorption spectra of Au2,4-Rgn (Rg = Ne-Xe, and n = 1-6) complexes. Using spin-orbit, including the appropriate functional, shows a close correlation between experiment and our calculations. It is also demonstrated that the weak interactions between rare gas atoms and gold clusters affect the UV-vis spectra of Au2,4 clusters by shifting the electronic transition toward the blue. Moreover, we find that the order of change in peak position, Δν̃, is proportional to the strength of interactions: Δν̃Au2,4-Xe > Δν̃Au2,4-Kr > Δν̃Au2,4-Ar > Δν̃Au2,4-Ne. In addition, comparing the UV-visible spectra of Au2,4-Rgn complexes with those of isolated Au2 and Au4 clusters shows that for Au2,4-Rg2,4,6 complexes in which Rg atoms interacted symmetrically with gold clusters no additional peaks are observed compared to isolated clusters; however, for Au2,4-Rg1,3,5 complexes, extra peaks appear because of the decrease in symmetry.

  18. Excitation function calculations for α + {sup 93}Nb nuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Yiğit, M., E-mail: mustafayigit@aksaray.edu.tr [Aksaray University, Physics Dept., Aksaray (Turkey); Tel, E. [Osmaniye Korkut Ata University, Physics Dept., Osmaniye (Turkey); Sarpün, İ.H. [Afyon Kocatepe University, Physics Dept., Afyonkarahisar (Turkey)

    2016-10-15

    In this study, the excitation functions of alpha-induced reactions on the {sup 93}Nb target nucleus were calculated by using ALICE-ASH code. The hybrid model, Weisskopf-Ewing model and geometry dependent hybrid model in this code were used to understand the alpha-niobium interaction. The contribution on the nuclear interaction of compound and pre-compound processes, with variation of the incident alpha particle energy, was presented. Furthermore, the reaction cross sections were calculated by using different level density models such as Superfluid nuclear model, Fermi gas model and Kataria-Ramamurthy Fermi gas model. Obtaining a good agreement between the calculated and the measured cross sections, the exciton numbers and the nuclear level density models were varied. Finally, the proper choice of the exciton numbers and the nuclear level density models was found to be quite important in order to obtain the more realistic cross section values.

  19. Can $\\beta$-decay probe excited state halos?

    CERN Multimedia

    2002-01-01

    In the first experiment at the newly constructed ISOLDE Facility the first-forbidden $\\beta$-decay of $^{17}$Ne into the first excited state of $^{17}$F has been measured. It is a factor two faster than the corresponding mirror decay and thus gives one of the largest recorded asymmetries for $\\beta$-decays feeding bound final states. Shell-model calculations can only reproduce the asymmetry if the halo structure of the $^{17}$F state is taken into account.

  20. First Principles Calculations of Electronic Excitations in 2D Materials

    DEFF Research Database (Denmark)

    Rasmussen, Filip Anselm

    -thin electronics and high efficiency solar cells. Contrary to many other nano-materials, methods for large scale fabrication and patterning have already been demonstrated and the first real technological applications have already be showcased. Still the technology is very young and the number of well-studied 2D...... mechanics methods. One of these methods, Density Functional Theory (DFT), has been very successful at determining structural properties of 2D materials. It is however well-known that it less accurate when it comes to predicting the energy levels of excited states that are important in order to determine...... electronic transport, optical and chemical properties. On the other hand it has shown to be a great starting point for a systematic pertubation theory approach to obtain the so-called quasiparticle spectrum. In the GW approximation one considers the considers the potential from a charged excitation...

  1. Entanglement entropy in excited states of the quantum Lifshitz model

    Science.gov (United States)

    Parker, Daniel E.; Vasseur, Romain; Moore, Joel E.

    2017-06-01

    We investigate the entanglement properties of an infinite class of excited states in the quantum Lifshitz model (QLM). The presence of a conformal quantum critical point in the QLM makes it unusually tractable for a model above one spatial dimension, enabling the ground state entanglement entropy for an arbitrary domain to be expressed in terms of geometrical and topological quantities. Here we extend this result to excited states and find that the entanglement can be naturally written in terms of quantities which we dub ‘entanglement propagator amplitudes’ (EPAs). EPAs are geometrical probabilities that we explicitly calculate and interpret. A comparison of lattice and continuum results demonstrates that EPAs are universal. This work shows that the QLM is an example of a 2  +  1d field theory where the universal behavior of excited-state entanglement may be computed analytically.

  2. Computing correct truncated excited state wavefunctions

    Science.gov (United States)

    Bacalis, N. C.; Xiong, Z.; Zang, J.; Karaoulanis, D.

    2016-12-01

    We demonstrate that, if a wave function's truncated expansion is small, then the standard excited states computational method, of optimizing one "root" of a secular equation, may lead to an incorrect wave function - despite the correct energy according to the theorem of Hylleraas, Undheim and McDonald - whereas our proposed method [J. Comput. Meth. Sci. Eng. 8, 277 (2008)] (independent of orthogonality to lower lying approximants) leads to correct reliable small truncated wave functions. The demonstration is done in He excited states, using truncated series expansions in Hylleraas coordinates, as well as standard configuration-interaction truncated expansions.

  3. Excited states of muonium in atomic hydrogen

    Indian Academy of Sciences (India)

    Muonium formation in excited states in muon-hydrogen charge-exchange collision is investigated using a method developed in a previous paper. Differential cross-section results are found to resemble positronium formation cross-section results of positron-hydrogen charge-exchange problem. Forward differential and ...

  4. Calculations for electron-impact excitation and ionization of beryllium

    CERN Document Server

    Zatsarinny, Oleg; Fursa, Dmitry V; Bray, Igor

    2016-01-01

    The B-spline R-matrix and the convergent close-coupling methods are used to study electron collisions with neutral beryllium over an energy range from threshold to 100 eV. Coupling to the target continuum significantly affects the results for transitions from the ground state, but to a lesser extent the strong transitions between excited states. Cross sections are presented for selected transitions between low-lying physical bound states of beryllium, as well as for elastic scattering, momentum transfer, and ionization. The present cross sections for transitions from the ground state from the two methods are in excellent agreement with each other, and also with other available results based on nonperturbative convergent pseudo-state and time-dependent close-coupling models. The elastic cross section at low energies is dominated by a prominent shape resonance. The ionization from the $(2s2p)^3P$ and $(2s2p)^1P$ states strongly depends on the respective term. The current predictions represent an extensive set o...

  5. Electronic excited states at ultrathin dielectric-metal interfaces

    Science.gov (United States)

    Sementa, L.; Marini, A.; Barcaro, G.; Negreiros, F. R.; Fortunelli, A.

    2013-09-01

    Electronic excited states at a bcc(110) lithium surface, both bare and covered by ionic ultrathin (1-2 monolayers) LiF epitaxial films, are investigated via many-body perturbation theory calculations achieving an atomistic level of detail. The full self-consistent solution of the GW equations is used to account for correlation effects and to properly describe the screened potential in the vacuum. In addition to the correct prediction of image-potential states, we find that the mixing between resonances and image states and the charge compression due to the dielectric ultrathin overlayer give rise to excitations with a hybrid localized but low-lying character whose accurate description cannot intrinsically be achieved via simple models or low-level calculations, but which are expected to play a crucial role in determining the electronic response and transport properties of these systems.

  6. Three-photon Gaussian–Gaussian–Laguerre–Gaussian excitation of a localized atom to a highly excited Rydberg state

    Science.gov (United States)

    Mashhadi, L.

    2017-12-01

    Optical vortices are currently one of the most intensively studied topics in light–matter interaction. In this work, a three-step axial Doppler- and recoil-free Gaussian–Gaussian-Laguerre–Gaussian (GGLG) excitation of a localized atom to the highly excited Rydberg state is presented. By assuming a large detuning for intermediate states, an effective quadrupole excitation related to the Laguerre–Gaussian (LG) excitation to the highly excited Rydberg state is obtained. This special excitation system radially confines the single highly excited Rydberg atom independently of the trapping system into a sharp potential landscape into the so-called ‘far-off-resonance optical dipole-quadrupole trap’ (FORDQT). The key parameters of the Rydberg excitation to the highly excited state, namely the effective Rabi frequency and the effective detuning including a position-dependent AC Stark shift, are calculated in terms of the basic parameters of the LG beam and of the polarization of the excitation lasers. It is shown that the obtained parameters can be tuned to have a precise excitation of a single atom to the desired Rydberg state as well. The features of transferring the optical orbital and spin angular momentum of the polarized LG beam to the atom via quadrupole Rydberg excitation offer a long-lived and controllable qudit quantum memory. In addition, in contrast to the Gaussian laser beam, the doughnut-shaped LG beam makes it possible to use a high intensity laser beam to increase the signal-to-noise ratio in quadrupole excitation with minimized perturbations coming from stray light broadening in the last Rydberg excitation process.

  7. Controlling excited-state contamination in nucleon matrix elements

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Boram; Gupta, Rajan; Bhattacharya, Tanmoy; Engelhardt, Michael; Green, Jeremy; Joó, Bálint; Lin, Huey-Wen; Negele, John; Orginos, Kostas; Pochinsky, Andrew; Richards, David; Syritsyn, Sergey; Winter, Frank

    2016-06-01

    We present a detailed analysis of methods to reduce statistical errors and excited-state contamination in the calculation of matrix elements of quark bilinear operators in nucleon states. All the calculations were done on a 2+1 flavor ensemble with lattices of size $32^3 \\times 64$ generated using the rational hybrid Monte Carlo algorithm at $a=0.081$~fm and with $M_\\pi=312$~MeV. The statistical precision of the data is improved using the all-mode-averaging method. We compare two methods for reducing excited-state contamination: a variational analysis and a two-state fit to data at multiple values of the source-sink separation $t_{\\rm sep}$. We show that both methods can be tuned to significantly reduce excited-state contamination and discuss their relative advantages and cost-effectiveness. A detailed analysis of the size of source smearing used in the calculation of quark propagators and the range of values of $t_{\\rm sep}$ needed to demonstrate convergence of the isovector charges of the nucleon to the $t_{\\rm sep} \\to \\infty $ estimates is presented.

  8. Calculated low-energy electron-impact vibrational excitation cross sections for CO2 molecule

    CERN Document Server

    Laporta, V; Celiberto, R

    2016-01-01

    Vibrational-excitation cross sections of ground electronic state of carbon dioxide molecule by electron-impact through the CO2-(2\\Pi) shape resonance is considered in the separation of the normal modes approximation. Resonance curves and widths are computed for each vibrational mode. The calculations assume decoupling between normal modes and employ the local complex potential model for the treatment of the nuclear dynamics, usually adopted for the electron-scattering involving diatomic molecules. Results are presented for excitation up to 10 vibrational levels in each mode and comparison with data present in the literature is discussed.

  9. Excited S-symmetry states of positronic lithium and beryllium.

    Science.gov (United States)

    Strasburger, Krzysztof

    2016-04-14

    The possibility of the existence of excited S-symmetry states of positronic lithium and beryllium, resulting from the positron attachment to high-spin P parent atomic states, is examined and confirmed with variational calculations in the basis of explicitly correlated Gaussian functions. The unexpectedly different order of the energies of the S and P states is explained by the formation of the positronium cluster structure and associated disappearance of the destabilizing centrifugal force. The annihilation properties of newly discovered states are discussed in the context of prospective experimental detection.

  10. Rearrangements in ground and excited states

    CERN Document Server

    de Mayo, Paul

    1980-01-01

    Rearrangements in Ground and Excited States, Volume 2 covers essays on the theoretical approach of rearrangements; the rearrangements involving boron; and the molecular rearrangements of organosilicon compounds. The book also includes essays on the polytopal rearrangement at phosphorus; the rearrangement in coordination complexes; and the reversible thermal intramolecular rearrangements of metal carbonyls. Chemists and people involved in the study of rearrangements will find the book invaluable.

  11. Lattice QCD determination of patterns of excited baryon states

    CERN Document Server

    Basak, Subhasish; Fleming, G T; Juge, K J; Lichtl, A; Morningstar, C; Richards, D G; Sato, I; Wallace, S J

    2007-01-01

    Energies for excited isospin I=1/2 and I=3/2 states that include the nucleon and Delta families of baryons are computed using quenched, anisotropic lattices. Baryon interpolating field operators that are used include nonlocal operators that provide G_2 irreducible representations of the octahedral group. The decomposition of spin 5/2 or higher spin states is realized for the first time in a lattice QCD calculation. We observe patterns of degenerate energies in the irreducible representations of the octahedral group that correspond to the subduction of the continuum spin 5/2 or higher. The overall pattern of low-lying excited states corresponds well to the pattern of physical states subduced to the irreducible representations of the octahedral group.

  12. Excited states of muonium in atomic hydrogen

    Indian Academy of Sciences (India)

    Differential cross-section results are found to resemble positronium formation cross-section results of positron–hydrogen charge-exchange problem. Forward ... using velocity scaling are compared with the results of the present calculation. .... to carry out calculations for e− capture by muon into n = 2 and n = 3 states.

  13. Influence of 2'-deoxy sugar moiety on excited-state protonation equilibrium of adenine and adenosine with acridine inside SDS micelles: a time-resolved study with quantum chemical calculations.

    Science.gov (United States)

    Sarangi, Manas Kumar; Bhattacharyya, Dhananjay; Basu, Samita

    2012-02-01

    The protonation dynamics of the DNA base adenine (Ade) and its nucleoside 2'-deoxyadenosine (d-Ade) are investigated by monitoring the deprotonation kinetics of an N-heterocyclic DNA intercalator, acridine (Acr), in the confined environment of sodium dodecyl sulfate (SDS) micelles. Protonation of acridine (AcrH(+)) occurs at the hydrophilic interface and this species remains in dynamic equilibrium with its deprotonated counterpart (Acr) inside the hydrophobic core of SDS micelles. Quenching of the fluorescence of AcrH(+)* at 478 nm is observed after addition of Ade and d-Ade with Stern-Volmer constant (K(SV)) 298 and 75 M(-1), respectively, with a concomitant increment in Acr* at 425 nm. Time-resolved fluorescence studies reveal quenching in the lifetime of AcrH(+)*. The relative amplitude of AcrH(+)* decreases from 0.97 to 0.51 and 0.97 to 0.89 with equimolar addition of Ade and d-Ade, respectively. These observations are explained by excited-state proton transfer (ESPT) from AcrH(+)* to the bases. The reduced K(SV) value and negligible change in the relative amplitudes of AcrH(+)* with d-Ade infer that ESPT is hindered substantially by the presence of a 2'-deoxy sugar unit. Transient time-resolved absorption spectra of Acr reflect that Ade reduces the absorbance of (3)AcrH(+)*; however, d-Ade keeps it unaltered for more than a time delay of 2 μs. The optimized geometries calculated by quantum chemical methods reflect deprotonation of AcrH(+)* with protonation at the N1 position of Ade, while it remains protonated with d-Ade. The hindered ESPT between AcrH(+)* and d-Ade singles out the significance of the 2'-deoxy sugar moiety in controlling the deprotonation kinetics. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Excited state kinetics of anthracene-bridge-aniline intramolecular exciplexes

    DEFF Research Database (Denmark)

    Thyrhaug, Erling; Hammershøj, Peter; Kjær, Kasper Skov

    2014-01-01

    excited anthracene state (LE) and an excited state complex (exciplex, EP) in non-polar solvents. The kinetics of the excited state processes were established in decalin from the time-resolved emission, and was shown to be strongly influenced by an electron-transfer state (ET). For quantitative studies...

  15. Restricted second random phase approximations and Tamm-Dancoff approximations for electronic excitation energy calculations

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Degao; Yang, Yang; Zhang, Peng [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States); Yang, Weitao, E-mail: weitao.yang@duke.edu [Department of Chemistry and Department of Physics, Duke University, Durham, North Carolina 27708 (United States)

    2014-12-07

    In this article, we develop systematically second random phase approximations (RPA) and Tamm-Dancoff approximations (TDA) of particle-hole and particle-particle channels for calculating molecular excitation energies. The second particle-hole RPA/TDA can capture double excitations missed by the particle-hole RPA/TDA and time-dependent density-functional theory (TDDFT), while the second particle-particle RPA/TDA recovers non-highest-occupied-molecular-orbital excitations missed by the particle-particle RPA/TDA. With proper orbital restrictions, these restricted second RPAs and TDAs have a formal scaling of only O(N{sup 4}). The restricted versions of second RPAs and TDAs are tested with various small molecules to show some positive results. Data suggest that the restricted second particle-hole TDA (r2ph-TDA) has the best overall performance with a correlation coefficient similar to TDDFT, but with a larger negative bias. The negative bias of the r2ph-TDA may be induced by the unaccounted ground state correlation energy to be investigated further. Overall, the r2ph-TDA is recommended to study systems with both single and some low-lying double excitations with a moderate accuracy. Some expressions on excited state property evaluations, such as 〈S{sup ^2}〉 are also developed and tested.

  16. Restricted second random phase approximations and Tamm-Dancoff approximations for electronic excitation energy calculations

    Science.gov (United States)

    Peng, Degao; Yang, Yang; Zhang, Peng; Yang, Weitao

    2014-12-01

    In this article, we develop systematically second random phase approximations (RPA) and Tamm-Dancoff approximations (TDA) of particle-hole and particle-particle channels for calculating molecular excitation energies. The second particle-hole RPA/TDA can capture double excitations missed by the particle-hole RPA/TDA and time-dependent density-functional theory (TDDFT), while the second particle-particle RPA/TDA recovers non-highest-occupied-molecular-orbital excitations missed by the particle-particle RPA/TDA. With proper orbital restrictions, these restricted second RPAs and TDAs have a formal scaling of only O(N4). The restricted versions of second RPAs and TDAs are tested with various small molecules to show some positive results. Data suggest that the restricted second particle-hole TDA (r2ph-TDA) has the best overall performance with a correlation coefficient similar to TDDFT, but with a larger negative bias. The negative bias of the r2ph-TDA may be induced by the unaccounted ground state correlation energy to be investigated further. Overall, the r2ph-TDA is recommended to study systems with both single and some low-lying double excitations with a moderate accuracy. Some expressions on excited state property evaluations, such as < hat{S}2rangle are also developed and tested.

  17. Holographic construction of excited CFT states

    Energy Technology Data Exchange (ETDEWEB)

    Christodoulou, Ariana; Skenderis, Kostas [STAG Research Centre and Mathematical Sciences, University of Southampton,High-field, Southampton SO17 1BJ (United Kingdom)

    2016-04-15

    We present a systematic construction of bulk solutions that are dual to CFT excited states. The bulk solution is constructed perturbatively in bulk fields. The linearised solution is universal and depends only on the conformal dimension of the primary operator that is associated with the state via the operator-state correspondence, while higher order terms depend on detailed properties of the operator, such as its OPE with itself and generally involve many bulk fields. We illustrate the discussion with the holographic construction of the universal part of the solution for states of two dimensional CFTs, either on R×S{sup 1} or on R{sup 1,1}. We compute the 1-point function both in the CFT and in the bulk, finding exact agreement. We comment on the relation with other reconstruction approaches.

  18. Identification of excited states in conjugated polymers

    CERN Document Server

    Hartwell, L J

    2003-01-01

    This thesis reports quasi steady state photoinduced absorption measurements from three conjugated polymers: polypyridine (PPy), polyfluorene (PFO) and the emeraldine base (EB) form of polyaniline. The aim of these experiments was to determine the nature of the photoexcited states existing in these materials in the millisecond time domain, as this has important consequences for the operation of real devices manufactured using these materials. The results from the photoinduced absorption experiments are closely compared with published results from pulse radiolysis experiments. In all cases there is very good correspondence between the two data sets, which has enabled the photoexcited states to be assigned with a high degree of confidence. Quasi steady-state photoinduced absorption involves the measurement of the change in absorption of a material in response to optical excitation with a laser beam. The changes in absorption are small, so a instrument was developed and optimised for each different sample. Lock-i...

  19. First 3- excited state of Fe56

    Science.gov (United States)

    Fotiades, N.; Nelson, R. O.; Devlin, M.

    2010-03-01

    There is no reliable evidence for the existence of the 3.076 MeV (3-) level adopted in the ENSDF evaluation for Fe56 although it has been reported in a few experiments. Previous reports of the observation of this level appear to be based on an incorrect assignment in early (e,e') work. Recent neutron inelastic scattering measurements by Demidov [Phys. At. Nucl. 67, 1884, (2004)] show that the assigned γ-ray decay of this state does not occur at a level consistent with known properties of inelastic scattering. In the present work the Fe56(n,n'γ) reaction was used to populate excited states in Fe56. Neutrons in the energy range from 1 to 250 MeV were provided by the pulsed neutron source of the Los Alamos Neutron Science Center’s WNR facility. Deexciting γ rays were detected with the GEANIE spectrometer, a Compton suppressed array of 26 Ge detectors. The γ-γ data obtained with GEANIE were used to establish coincidence relations between transitions. All previously reported levels up to Ex=3.6 MeV excitation energy were observed except for the 3.076 MeV (3-) level. The 991- and 2229-keV transitions, previously reported to deexcite this level, were not observed in the γ-γ coincidence data obtained in the present experiment. The present work supports the assignment of the 4509.6 keV level as the first 3- excited state in Fe56 by observation of two previously known transitions deexciting this state.

  20. Excited state dynamics of DNA bases

    Czech Academy of Sciences Publication Activity Database

    Kleinermanns, K.; Nachtigallová, Dana; de Vries, M. S.

    2013-01-01

    Roč. 32, č. 2 (2013), s. 308-342 ISSN 0144-235X R&D Projects: GA ČR GAP208/12/1318 Grant - others:National Science Foundation(US) CHE-0911564; NASA(US) NNX12AG77G; Deutsche Forschungsgemeinschaft(DE) SFB 663; Deutsche Forschungsgemeinschaft(DE) KI 531-29 Institutional support: RVO:61388963 Keywords : DNA bases * nucleobases * excited state * dynamics * computations * gas phase * conical intersections Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.920, year: 2013

  1. Modular Hamiltonian for Excited States in Conformal Field Theory.

    Science.gov (United States)

    Lashkari, Nima

    2016-07-22

    We present a novel replica trick that computes the relative entropy of two arbitrary states in conformal field theory. Our replica trick is based on the analytic continuation of partition functions that break the Z_{n} replica symmetry. It provides a method for computing arbitrary matrix elements of the modular Hamiltonian corresponding to excited states in terms of correlation functions. We show that the quantum Fisher information in vacuum can be expressed in terms of two-point functions on the replica geometry. We perform sample calculations in two-dimensional conformal field theories.

  2. Radiative and Excited State Charmonium Physics

    Energy Technology Data Exchange (ETDEWEB)

    Jozef Dudek

    2007-07-30

    Renewed interest in the spectroscopy of charmonium has arisen from recent unexpected observations at $e^+e^-$ colliders. Here we report on a series of works from the previous two years examining the radiative physics of charmonium states as well as the mass spectrum of states of higher spin and internal excitation. Using new techniques applied to Domain-Wall and Clover quark actions on quenched isotropic and anisotropic lattices, radiative transitions and two-photon decays are considered for the first time. Comparisons are made with experimental results and with model approaches. Forthcoming application to the light-quark sector of relevance to experiments like Jefferson Lab's GlueX is discussed.

  3. Ultrafast excited state dynamics in 9,9'-bifluorenylidene.

    Science.gov (United States)

    Conyard, Jamie; Heisler, Ismael A; Browne, Wesley R; Feringa, Ben L; Amirjalayer, Saeed; Buma, Wybren Jan; Woutersen, Sander; Meech, Stephen R

    2014-08-07

    9,9'-Bifluorenylidene has been proposed as an alternative and flexible electron acceptor in organic photovoltaic cells. Here we characterize its excited state properties and photokinetics, combining ultrafast fluorescence and transient IR measurements with quantum chemical calculations. The fluorescence decay is ultrafast (sub-100 fs) and remarkably independent of viscosity. This suggests that large scale structure change is not the primary relaxation mode. The ultrafast decay populates a dark state characterized by distinct vibrational and electronic spectra. This state decays with a 6 ps time constant to a hot ground state that ultimately populates the initial state with a 20 ps time constant; these times are also insensitive to solvent viscosity. No metastable intermediate structures are resolved in the photocycle after population of the dark state. The implications of these results for the operation of 9,9'-bifluorenylidene as an electron acceptor and as a potential molecular switch are discussed.

  4. Electron affinity and excited states of methylglyoxal

    Science.gov (United States)

    Dauletyarov, Yerbolat; Dixon, Andrew R.; Wallace, Adam A.; Sanov, Andrei

    2017-07-01

    Using photoelectron imaging spectroscopy, we characterized the anion of methylglyoxal (X2A″ electronic state) and three lowest electronic states of the neutral methylglyoxal molecule: the closed-shell singlet ground state (X1A'), the lowest triplet state (a3A″), and the open-shell singlet state (A1A″). The adiabatic electron affinity (EA) of the ground state, EA(X1A') = 0.87(1) eV, spectroscopically determined for the first time, compares to 1.10(2) eV for unsubstituted glyoxal. The EAs (adiabatic attachment energies) of two excited states of methylglyoxal were also determined: EA(a3A″) = 3.27(2) eV and EA(A1A″) = 3.614(9) eV. The photodetachment of the anion to each of these two states produces the neutral species near the respective structural equilibria; hence, the a3A″ ← X2A″ and A1A″ ← X2A″ photodetachment transitions are dominated by intense peaks at their respective origins. The lowest-energy photodetachment transition, on the other hand, involves significant geometry relaxation in the X1A' state, which corresponds to a 60° internal rotation of the methyl group, compared to the anion structure. Accordingly, the X1A' ← X2A″ transition is characterized as a broad, congested band, whose vertical detachment energy, VDE = 1.20(4) eV, significantly exceeds the adiabatic EA. The experimental results are in excellent agreement with the ab initio predictions using several equation-of-motion methodologies, combined with coupled-cluster theory.

  5. TDDFT study on the excited-state proton transfer of 8-hydroxyquinoline: key role of the excited-state hydrogen-bond strengthening.

    Science.gov (United States)

    Lan, Sheng-Cheng; Liu, Yu-Hui

    2015-03-15

    Density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations have been employed to study the excited-state intramolecular proton transfer (ESIPT) reaction of 8-hydroxyquinoline (8HQ). Infrared spectra of 8HQ in both the ground and the lowest singlet excited states have been calculated, revealing a red-shift of the hydroxyl group (-OH) stretching band in the excited state. Hence, the intramolecular hydrogen bond (O-H···N) in 8HQ would be significantly strengthened upon photo-excitation to the S1 state. As the intramolecular proton-transfer reaction occurs through hydrogen bonding, the ESIPT reaction of 8HQ is effectively facilitated by strengthening of the electronic excited-state hydrogen bond (O-H···N). As a result, the intramolecular proton-transfer reaction would occur on an ultrafast timescale with a negligible barrier in the calculated potential energy curve for the ESIPT reaction. Therefore, although the intramolecular proton-transfer reaction is not favorable in the ground state, the ESIPT process is feasible in the excited state. Finally, we have identified that radiationless deactivation via internal conversion (IC) becomes the main dissipative channel for 8HQ by analyzing the energy gaps between the S1 and S0 states for the enol and keto forms. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Signature of nonadiabatic coupling in excited-state vibrational modes.

    Science.gov (United States)

    Soler, Miguel A; Nelson, Tammie; Roitberg, Adrian E; Tretiak, Sergei; Fernandez-Alberti, Sebastian

    2014-11-13

    Using analytical excited-state gradients, vibrational normal modes have been calculated at the minimum of the electronic excited-state potential energy surfaces for a set of extended conjugated molecules with different coupling between them. Molecular model systems composed of units of polyphenylene ethynylene (PPE), polyphenylenevinylene (PPV), and naphthacene/pentacene (NP) have been considered. In all cases except the NP model, the influence of the nonadiabatic coupling on the excited-state equilibrium normal modes is revealed as a unique highest frequency adiabatic vibrational mode that overlaps with the coupling vector. This feature is removed by using a locally diabatic representation in which the effect of NA interaction is removed. Comparison of the original adiabatic modes with a set of vibrational modes computed in the locally diabatic representation demonstrates that the effect of nonadiabaticity is confined to only a few modes. This suggests that the nonadiabatic character of a molecular system may be detected spectroscopically by identifying these unique state-specific high frequency vibrational modes.

  7. Excited state mass spectra of doubly heavy Ξ baryons

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Zalak; Rai, Ajay Kumar [Sardar Vallabhbhai National Institute of Technology, Department of Applied Physics, Surat, Gujarat (India)

    2017-02-15

    In this paper, the mass spectra are obtained for doubly heavy Ξ baryons, namely, Ξ{sub cc}{sup +}, Ξ{sub cc}{sup ++}, Ξ{sub bb}{sup -}, Ξ{sub bb}{sup 0}, Ξ{sub bc}{sup 0} and Ξ{sub bc}{sup +}. These baryons consist of two heavy quarks (cc, bb, and bc) with a light (d or u) quark. The ground, radial, and orbital states are calculated in the framework of the hypercentral constituent quark model with Coulomb plus linear potential. Our results are also compared with other predictions, thus, the average possible range of excited states masses of these Ξ baryons can be determined. The study of the Regge trajectories is performed in (n, M{sup 2}) and (J, M{sup 2}) planes and their slopes and intercepts are also determined. Lastly, the ground state magnetic moments of these doubly heavy baryons are also calculated. (orig.)

  8. Search for excited $B_c^{+}$ states

    CERN Document Server

    Aaij, Roel; LHCb Collaboration; Adinolfi, Marco; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Alfonso Albero, Alejandro; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Andreassi, Guido; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Archilli, Flavio; d'Argent, Philippe; Arnau Romeu, Joan; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Atzeni, Michele; Auriemma, Giulio; Baalouch, Marouen; Babuschkin, Igor; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baker, Sophie; Balagura, Vladislav; Baldini, Wander; Baranov, Alexander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Baryshnikov, Fedor; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Beiter, Andrew; Bel, Lennaert; Beliy, Nikita; Bellee, Violaine; Belloli, Nicoletta; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Beranek, Sarah; Berezhnoy, Alexander; Bernet, Roland; Berninghoff, Daniel; Bertholet, Emilie; Bertolin, Alessandro; Betancourt, Christopher; Betti, Federico; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bezshyiko, Iaroslava; Bifani, Simone; Billoir, Pierre; Birnkraut, Alex; Bizzeti, Andrea; Bjørn, Mikkel; Blake, Thomas; Blanc, Frederic; Blusk, Steven; Bocci, Valerio; Boettcher, Thomas; Bondar, Alexander; Bondar, Nikolay; Bordyuzhin, Igor; Borghi, Silvia; Borisyak, Maxim; Borsato, Martino; Bossu, Francesco; Boubdir, Meriem; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Braun, Svende; Brodzicka, Jolanta; Brundu, Davide; Buchanan, Emma; Burr, Christopher; Bursche, Albert; Buytaert, Jan; Byczynski, Wiktor; Cadeddu, Sandro; Cai, Hao; Calabrese, Roberto; Calladine, Ryan; Calvi, Marta; Calvo Gomez, Miriam; Camboni, Alessandro; Campana, Pierluigi; Campora Perez, Daniel Hugo; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carniti, Paolo; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Cattaneo, Marco; Cavallero, Giovanni; Cenci, Riccardo; Chamont, David; Chapman, Matthew George; Charles, Matthew; Charpentier, Philippe; Chatzikonstantinidis, Georgios; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu Faye; Chitic, Stefan-Gabriel; Chobanova, Veronika; Chrzaszcz, Marcin; Chubykin, Alexsei; Ciambrone, Paolo; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collins, Paula; Colombo, Tommaso; Comerma-Montells, Albert; Contu, Andrea; Coombs, George; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Costa Sobral, Cayo Mar; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Currie, Robert; D'Ambrosio, Carmelo; Da Cunha Marinho, Franciole; Da Silva, Cesar Luiz; Dall'Occo, Elena; Dalseno, Jeremy; Davis, Adam; De Aguiar Francisco, Oscar; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Serio, Marilisa; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Del Buono, Luigi; Dembinski, Hans Peter; Demmer, Moritz; Dendek, Adam; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Dey, Biplab; Di Canto, Angelo; Di Nezza, Pasquale; Dijkstra, Hans; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Douglas, Lauren; Dovbnya, Anatoliy; Dreimanis, Karlis; Dufour, Laurent; Dujany, Giulio; Durante, Paolo; Durham, John Matthew; Dutta, Deepanwita; Dzhelyadin, Rustem; Dziewiecki, Michal; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Ebert, Marcus; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Farley, Nathanael; Farry, Stephen; Fazzini, Davide; Federici, Luca; Ferguson, Dianne; Fernandez, Gerard; Fernandez Declara, Placido; Fernandez Prieto, Antonio; Ferrari, Fabio; Ferreira Lopes, Lino; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fini, Rosa Anna; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fleuret, Frederic; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Franco Lima, Vinicius; Frank, Markus; Frei, Christoph; Fu, Jinlin; Funk, Wolfgang; Furfaro, Emiliano; Färber, Christian; Gabriel, Emmy; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; Garcia Martin, Luis Miguel; García Pardiñas, Julián; Garra Tico, Jordi; Garrido, Lluis; Garsed, Philip John; Gascon, David; Gaspar, Clara; Gavardi, Laura; Gazzoni, Giulio; Gerick, David; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianì, Sebastiana; Gibson, Valerie; Girard, Olivier Göran; Giubega, Lavinia-Helena; Gizdov, Konstantin; Gligorov, Vladimir; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gorelov, Igor Vladimirovich; Gotti, Claudio; Govorkova, Ekaterina; Grabowski, Jascha Peter; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Greim, Roman; Griffith, Peter; Grillo, Lucia; Gruber, Lukas; Gruberg Cazon, Barak Raimond; Grünberg, Oliver; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Göbel, Carla; Hadavizadeh, Thomas; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hamilton, Brian; Han, Xiaoxue; Hancock, Thomas Henry; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Hasse, Christoph; Hatch, Mark; He, Jibo; Hecker, Malte; Heinicke, Kevin; Heister, Arno; Hennessy, Karol; Henrard, Pierre; Henry, Louis; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hopchev, Plamen Hristov; Hu, Wenhua; Huang, Wenqian; Huard, Zachary; Hulsbergen, Wouter; Humair, Thibaud; Hushchyn, Mikhail; Hutchcroft, David; Ibis, Philipp; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jalocha, Pawel; Jans, Eddy; Jawahery, Abolhassan; Jiang, Feng; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Karacson, Matthias; Kariuki, James Mwangi; Karodia, Sarah; Kazeev, Nikita; Kecke, Matthieu; Keizer, Floris; Kelsey, Matthew; Kenzie, Matthew; Ketel, Tjeerd; Khairullin, Egor; Khanji, Basem; Khurewathanakul, Chitsanu; Kirn, Thomas; Klaver, Suzanne; Klimaszewski, Konrad; Klimkovich, Tatsiana; Koliiev, Serhii; Kolpin, Michael; Kopecna, Renata; Koppenburg, Patrick; Kosmyntseva, Alena; Kotriakhova, Sofia; Kozeiha, Mohamad; Kravchuk, Leonid; Kreps, Michal; Kress, Felix Johannes; Krokovny, Pavel; Krzemien, Wojciech; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kuonen, Axel Kevin; Kvaratskheliya, Tengiz; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lanfranchi, Gaia; Langenbruch, Christoph; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; Leflat, Alexander; Lefrançois, Jacques; Lefèvre, Regis; Lemaitre, Florian; Lemos Cid, Edgar; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Pei-Rong; Li, Tenglin; Li, Yiming; Li, Zhuoming; Liang, Xixin; Likhomanenko, Tatiana; Lindner, Rolf; Lionetto, Federica; Lisovskyi, Vitalii; Liu, Xuesong; Loh, David; Loi, Angelo; Longstaff, Iain; Lopes, Jose; Lucchesi, Donatella; Lucio Martinez, Miriam; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Lusiani, Alberto; Lyu, Xiao-Rui; Machefert, Frederic; Maciuc, Florin; Macko, Vladimir; Mackowiak, Patrick; Maddrell-Mander, Samuel; Maev, Oleg; Maguire, Kevin; Maisuzenko, Dmitrii; Majewski, Maciej Witold; Malde, Sneha; Malecki, Bartosz; Malinin, Alexander; Maltsev, Timofei; Manca, Giulia; Mancinelli, Giampiero; Marangotto, Daniele; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marinangeli, Matthieu; Marino, Pietro; Marks, Jörg; Martellotti, Giuseppe; Martin, Morgan; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Massafferri, André; Matev, Rosen; Mathad, Abhijit; Mathe, Zoltan; Matteuzzi, Clara; Mauri, Andrea; Maurice, Emilie; Maurin, Brice; Mazurov, Alexander; McCann, Michael; McNab, Andrew; McNulty, Ronan; Mead, James Vincent; Meadows, Brian; Meaux, Cedric; Meier, Frank; Meinert, Nis; Melnychuk, Dmytro; Merk, Marcel; Merli, Andrea; Michielin, Emanuele; Milanes, Diego Alejandro; Millard, Edward James; Minard, Marie-Noelle; Minzoni, Luca; Mitzel, Dominik Stefan; Mogini, Andrea; Molina Rodriguez, Josue; Mombächer, Titus; Monroy, Igancio Alberto; Monteil, Stephane; Morandin, Mauro; Morello, Michael Joseph; Morgunova, Olga; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Mulder, Mick; Müller, Dominik; Müller, Janine; Müller, Katharina; Müller, Vanessa; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nandi, Anita; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Thi Dung; Nguyen-Mau, Chung; Nieswand, Simon; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Nogay, Alla; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Ogilvy, Stephen; Oldeman, Rudolf; Onderwater, Gerco; Ossowska, Anna; Otalora Goicochea, Juan Martin; Owen, Patrick; Oyanguren, Maria Aranzazu; Pais, Preema Rennee; Palano, Antimo; Palutan, Matteo; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Parker, William; Parkes, Christopher; Passaleva, Giovanni; Pastore, Alessandra; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Pereima, Dmitrii; Perret, Pascal; Pescatore, Luca; Petridis, Konstantinos; Petrolini, Alessandro; Petrov, Aleksandr; Petruzzo, Marco; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pietrzyk, Guillaume; Pikies, Malgorzata; Pinci, Davide; Pisani, Flavio; Pistone, Alessandro; Piucci, Alessio; Placinta, Vlad-Mihai; Playfer, Stephen; Plo Casasus, Maximo; Polci, Francesco; Poli Lener, Marco; Poluektov, Anton; Polyakov, Ivan; Polycarpo, Erica; Pomery, Gabriela Johanna; Ponce, Sebastien; Popov, Alexander; Popov, Dmitry; Poslavskii, Stanislav; Potterat, Cédric; Price, Eugenia; Prisciandaro, Jessica; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Pullen, Hannah Louise; Punzi, Giovanni; Qian, Wenbin; Qin, Jia-Jia; Quagliani, Renato; Quintana, Boris; Rachwal, Bartlomiej; Rademacker, Jonas; Rama, Matteo; Ramos Pernas, Miguel; Rangel, Murilo; Raniuk, Iurii; Ratnikov, Fedor; Raven, Gerhard; Ravonel Salzgeber, Melody; Reboud, Meril; Redi, Federico; Reichert, Stefanie; dos Reis, Alberto; Remon Alepuz, Clara; Renaudin, Victor; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Robbe, Patrick; Robert, Arnaud; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Lopez, Jairo Alexis; Rogozhnikov, Alexey; Roiser, Stefan; Rollings, Alexandra Paige; Romanovskiy, Vladimir; Romero Vidal, Antonio; Rotondo, Marcello; Rudolph, Matthew Scott; Ruf, Thomas; Ruiz Valls, Pablo; Ruiz Vidal, Joan; Saborido Silva, Juan Jose; Sadykhov, Elnur; Sagidova, Naylya; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santimaria, Marco; Santovetti, Emanuele; Sarpis, Gediminas; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schael, Stefan; Schellenberg, Margarete; Schiller, Manuel; Schindler, Heinrich; Schmelling, Michael; Schmelzer, Timon; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schreiner, HF; Schubiger, Maxime; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Sepulveda, Eduardo Enrique; Sergi, Antonino; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Siddi, Benedetto Gianluca; Silva Coutinho, Rafael; Silva de Oliveira, Luiz Gustavo; Simi, Gabriele; Simone, Saverio; Sirendi, Marek; Skidmore, Nicola; Skwarnicki, Tomasz; Smith, Iwan Thomas; Smith, Jackson; Smith, Mark; Soares Lavra, Lais; Sokoloff, Michael; Soler, Paul; Souza De Paula, Bruno; Spaan, Bernhard; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Stefko, Pavol; Stefkova, Slavomira; Steinkamp, Olaf; Stemmle, Simon; Stenyakin, Oleg; Stepanova, Margarita; Stevens, Holger; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Stramaglia, Maria Elena; Straticiuc, Mihai; Straumann, Ulrich; Sun, Jiayin; Sun, Liang; Swientek, Krzysztof; Syropoulos, Vasileios; Szumlak, Tomasz; Szymanski, Maciej Pawel; T'Jampens, Stephane; Tayduganov, Andrey; Tekampe, Tobias; Tellarini, Giulia; Teubert, Frederic; Thomas, Eric; van Tilburg, Jeroen; Tilley, Matthew James; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Tourinho Jadallah Aoude, Rafael; Tournefier, Edwige; Traill, Murdo; Tran, Minh Tâm; Tresch, Marco; Trisovic, Ana; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tully, Alison; Tuning, Niels; Ukleja, Artur; Usachov, Andrii; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagner, Alexander; Vagnoni, Vincenzo; Valassi, Andrea; Valat, Sebastien; Valenti, Giovanni; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vecchi, Stefania; van Veghel, Maarten; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Venkateswaran, Aravindhan; Verlage, Tobias Anton; Vernet, Maxime; Vesterinen, Mika; Viana Barbosa, Joao Vitor; Vieira, Daniel; Vieites Diaz, Maria; Viemann, Harald; Vilasis-Cardona, Xavier; Vitti, Marcela; Volkov, Vladimir; Vollhardt, Achim; Voneki, Balazs; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Vázquez Sierra, Carlos; Waldi, Roland; Walsh, John; Wang, Jianchun; Wang, Yilong; Ward, David; Wark, Heather Mckenzie; Watson, Nigel; Websdale, David; Weiden, Andreas; Weisser, Constantin; Whitehead, Mark; Wicht, Jean; Wilkinson, Guy; Wilkinson, Michael; Williams, Mark Richard James; Williams, Mike; Williams, Timothy; Wilson, Fergus; Wimberley, Jack; Winn, Michael Andreas; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wyllie, Kenneth; Xie, Yuehong; Xu, Menglin; Xu, Qingnian; Xu, Zehua; Xu, Zhirui; Yang, Zhenwei; Yang, Zishuo; Yao, Yuezhe; Yin, Hang; Yu, Jiesheng; Yuan, Xuhao; Yushchenko, Oleg; Zarebski, Kristian Alexander; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Yanxi; Zhelezov, Alexey; Zheng, Yangheng; Zhu, Xianglei; Zhukov, Valery; Zonneveld, Jennifer Brigitta; Zucchelli, Stefano

    2017-01-01

    A search is performed in the invariant mass spectrum of the $B_c^{+}\\pi^{+}\\pi^{-}$ system for the excited $B_c^{+}$ states $B_c(2^{1}S_{0})^+$ and $B_c(2^{3}S_{1})^+$ using a data sample of $pp$ collisions collected by the LHCb experiment at the centre-of-mass energy of $\\sqrt{s} = 8 \\,{\\mathrm{TeV}}$, corresponding to an integrated luminosity of $2 \\,{\\mathrm{fb^{-1}}}$. No evidence is seen for either state. Upper limits on the ratios of the production cross-sections of the $B_c(2^{1}S_{0})^+$ and $B_c(2^{3}S_{1})^+$ states times the branching fractions of ${B_c(2^{1}S_{0})^+} \\to {B_c^{+}\\pi^{+}\\pi^{-}}$ and ${B_c(2^{3}S_{1})^+} \\to {B_c^{*+}\\pi^{+}\\pi^{-}}$ over the production cross-section of the $B_c^{+}$ state are given as a function of their masses. They are found to be between 0.02 and 0.14 at $95\\%$ confidence level for $B_c(2^{1}S_{0})^+$ and $B_c(2^{3}S_{1})^+$ in the mass ranges $[6830, 6890] \\,{\\mathrm{MeV}}/c^{2}$ and $[6795,6890] \\,{\\mathrm{MeV}}/c^{2}$, respectively.

  9. Quantum marginals from pure doubly excited states

    Science.gov (United States)

    Maciążek, Tomasz; Tsanov, Valdemar

    2017-11-01

    The possible spectra of one-particle reduced density matrices that are compatible with a pure multipartite quantum system of finite dimension form a convex polytope. We introduce a new construction of inner- and outer-bounding polytopes that constrain the polytope for the entire quantum system. The outer bound is sharp. The inner polytope stems only from doubly excited states. We find all quantum systems, where the bounds coincide giving the entire polytope. We show, that those systems are: (i) any system of two particles (ii) L qubits, (iii) three fermions on N≤slant 7 levels, (iv) any number of bosons on any number of levels and (v) fermionic Fock space on N≤slant 5 levels. The methods we use come from symplectic geometry and representation theory of compact Lie groups. In particular, we study the images of proper momentum maps, where our method describes momentum images for all representations that are spherical.

  10. Excited states in {sup 155}Yb and

    Energy Technology Data Exchange (ETDEWEB)

    Ding, K. Y.; Cizewski, J. A.; Seweryniak, D.; Amro, H.; Carpenter, M. P.; Davids, C. N.; Fotiades, N.; Janssens, R. V. F.; Lauritsen, T.; Lister, C. J. (and others)

    2001-09-01

    The 270-MeV {sup 58}Ni+{sup 102}Pd reaction was used for the first recoil-decay tagging measurement with Gammasphere coupled to the Fragment Mass Analyzer at Argonne National Laboratory. Level structures of {sup 155}Yb, {sup 156}Lu, and {sup 157}Lu, as well as the excited states associated with the 25/2{sup -} isomer in {sup 155}Lu, are identified for the first time. The systematical behavior of the energy levels is compared with that of neighboring isotones and isotopes. The attractive interaction between h{sub 11/2} protons and h{sub 9/2} neutrons plays an important role in the structure of {sup 155}Yb and {sup 155,156}Lu.

  11. Excited states using semistochastic heat-bath configuration interaction

    Science.gov (United States)

    Holmes, Adam A.; Umrigar, C. J.; Sharma, Sandeep

    2017-10-01

    We extend our recently developed heat-bath configuration interaction (HCI) algorithm, and our semistochastic algorithm for performing multireference perturbation theory, to calculate excited-state wavefunctions and energies. We employ time-reversal symmetry, which reduces the memory requirements by more than a factor of two. An extrapolation technique is introduced to reliably extrapolate HCI energies to the full CI limit. The resulting algorithm is used to compute fourteen low-lying potential energy surfaces of the carbon dimer using the cc-pV5Z basis set, with an estimated error in energy of 30-50 μHa compared to full CI. The excitation energies obtained using our algorithm have a mean absolute deviation of 0.02 eV compared to experimental values.

  12. Triaxiality near the 110Ru ground state from Coulomb excitation

    Directory of Open Access Journals (Sweden)

    D.T. Doherty

    2017-03-01

    Full Text Available A multi-step Coulomb excitation measurement with the GRETINA and CHICO2 detector arrays was carried out with a 430-MeV beam of the neutron-rich 110Ru (t1/2=12 s isotope produced at the CARIBU facility. This represents the first successful measurement following the post-acceleration of an unstable isotope of a refractory element. The reduced transition probabilities obtained for levels near the ground state provide strong evidence for a triaxial shape; a conclusion confirmed by comparisons with the results of beyond-mean-field and triaxial rotor model calculations.

  13. Excited State Properties of Hybrid Perovskites.

    Science.gov (United States)

    Saba, Michele; Quochi, Francesco; Mura, Andrea; Bongiovanni, Giovanni

    2016-01-19

    Metal halide perovskites have come to the attention of the scientific community for the progress achieved in solar light conversion. Energy sustainability is one of the priorities of our society, and materials advancements resulting in low-cost but efficient solar cells and large-area lighting devices represent a major goal for applied research. From a basic point of view, perovskites are an exotic class of hybrid materials combining some merits of organic and inorganic semiconductors: large optical absorption, large mobilities, and tunable band gap together with the possibility to be processed in solution. When a novel class of promising semiconductors comes into the limelight, lively discussions ensue on the photophysics of band-edge excitations, because just the states close to the band edge are entailed in energy/charge transport and light emission. This was the case several decades ago for III-V semiconductors, it has been up to 10 years ago for organics, and it is currently the case for perovskites. Our aim in this Account is to rationalize the body of experimental evidence on perovskite photophysics in a coherent theoretical framework, borrowing from the knowledge acquired over the years in materials optoelectronics. A crucial question is whether photon absorption leads to a population of unbound, conductive free charges or instead excitons, neutral and insulating bound states created by Coulomb interaction just below the energy of the band gap. We first focus on the experimental estimates of the exciton binding energy (Eb): at room temperature, Eb is comparable to the thermal energy kBT in MAPbI3 and increases up to values 2-3kBT in wide band gap MAPbBr3 and MAPbCl3. Statistical considerations predict that these values, even though comparable to or larger than thermal energy, let free carriers prevail over bound excitons for all levels of excitation densities relevant for devices. The analysis of photophysics evidence confirms that all hybrid halide

  14. Excited State Spectra and Dynamics of Phenyl-Substituted Butadienes

    DEFF Research Database (Denmark)

    Wallace-Williams, Stacie E.; Schwartz, Benjamin J.; Møller, Søren

    1994-01-01

    A combination of steady-state and dynamic spectral measurements are used to provide new insights into the nature of the excited-state processes of all-trans-1,4-diphenyl-1,3-butadiene and several analogs: 1,4-diphenyl- 1,3-cyclopentadiene, 1,1,4,4-tetraphenylbutadiene, 1,2,3,4-tetraphenyl-1,3-cyc...... indicate that phenyl torsional motion is not important to the excited-state dynamics and reveal alternative excited-state reaction pathways. The results demonstrate how molecular systems that are structually similar can exhibit different electronic properties and excited-state dynamics....

  15. Chemical modulation of electronic structure at the excited state

    Science.gov (United States)

    Li, F.; Song, C.; Gu, Y. D.; Saleem, M. S.; Pan, F.

    2017-12-01

    Spin-polarized electronic structures are the cornerstone of spintronics, and have thus attracted a significant amount of interest; in particular, researchers are looking into how to modulate the electronic structure to enable multifunctional spintronics applications, especially in half-metallic systems. However, the control of the spin polarization has only been predicted in limited two-dimensional systems with spin-polarized Dirac structures and is difficult to achieve experimentally. Here, we report the modulation of the electronic structure in the light-induced excited state in a typical half-metal, L a1 /2S r1 /2Mn O3 -δ . According to the spin-transport measurements, there appears a light-induced increase in magnetoresistance due to the enhanced spin scattering, which is closely associated with the excited spin polarization. Strikingly, the light-induced variation can be enhanced via alcohol processing and reduced by oxygen annealing. X-ray photoelectron spectroscopy measurements show that in the chemical process, a redox reaction occurs with a change in the valence of Mn. Furthermore, first-principles calculations reveal that the change in the valence of Mn alters the electronic structure and consequently modulates the spin polarization in the excited state. Our findings thus report a chemically tunable electronic structure, demonstrating interesting physics and the potential for multifunctional applications and ultrafast spintronics.

  16. Thermodynamical analysis of spin-state transitions in LaCo O3 : Negative energy of mixing to assist thermal excitation to the high-spin excited state

    Science.gov (United States)

    Kyômen, Tôru; Asaka, Yoshinori; Itoh, Mitsuru

    2005-01-01

    Magnetic susceptibility and heat capacity due to the spin-state transition in LaCoO3 were calculated by a molecular-field model in which the energy-level diagram of high-spin state reported by Ropka and Radwanski [Phys. Rev. B 67, 172401 (2003)] is assumed for the excited state, and the energy and entropy of mixing of high-spin Co ions and low-spin Co ions are introduced phenomenologically. The experimental data below 300K were well reproduced by this model, which proposes that the high-spin excited state can be populated even if the energy of high-spin state is much larger than that of low-spin state, because the negatively large energy of mixing reduces the net excitation energy. The stability of each spin state including the intermediate-spin state is discussed based on the present results and other reports.

  17. Vibronic coupling in the excited-states of carotenoids

    Energy Technology Data Exchange (ETDEWEB)

    Miki, Takeshi [Physikalisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; D-69120 Heidelberg, Germany; Buckup, Tiago [Physikalisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; D-69120 Heidelberg, Germany; Krause, Marie S. [Physikalisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; D-69120 Heidelberg, Germany; Southall, June [College of Medical; Veterinary, and Life Science; University of Glasgow; G12 8QQ Glasgow, UK; Cogdell, Richard J. [College of Medical; Veterinary, and Life Science; University of Glasgow; G12 8QQ Glasgow, UK; Motzkus, Marcus [Physikalisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; D-69120 Heidelberg, Germany

    2016-01-01

    The ultrafast femtochemistry of carotenoids is governed by the interaction between electronic excited states, which has been explained by the relaxation dynamics within a few hundred femtoseconds from the lowest optically allowed excited state S2to the optically dark state S1.

  18. Excited-State Effective Masses in Lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    George Fleming, Saul Cohen, Huey-Wen Lin

    2009-10-01

    We apply black-box methods, i.e. where the performance of the method does not depend upon initial guesses, to extract excited-state energies from Euclidean-time hadron correlation functions. In particular, we extend the widely used effective-mass method to incorporate multiple correlation functions and produce effective mass estimates for multiple excited states. In general, these excited-state effective masses will be determined by finding the roots of some polynomial. We demonstrate the method using sample lattice data to determine excited-state energies of the nucleon and compare the results to other energy-level finding techniques.

  19. R-matrix calculations of electron impact electronic excitation of BeH

    Science.gov (United States)

    Darby-Lewis, Daniel; Mašín, Zdeněk; Tennyson, Jonathan

    2017-09-01

    The R-matrix method is used to perform high-level calculations of electron collisions with beryllium mono-hydride at its equilibrium geometry with a particular emphasis on electron impact electronic excitation. Several target and scattering models are considered. The calculations were performed using (1) the UKRMol suite which relies on the use of Gaussian type orbitals (GTOs) to represent the continuum and (2) using the new UKRMol+ suite which allows the inclusion of B-spline type orbitals in the basis for the continuum. The final close-coupling scattering models used the UKRMol+ code and a frozen core, valence full configuration interaction, method based on a diffuse GTO atomic basis set. The calculated electronic properties of the molecule are in very good agreement with state-of-the-art electronic structure calculations. The use of the UKRMol+ suite proved critical since it allowed the use of a large R-matrix sphere (35 Bohr), necessary to contain the diffuse electronic states of the molecule. The corresponding calculations using UKRMol are not possible due to numerical problems associated with the combination of GTO-only continuum and a large R-matrix sphere. This work provides the first demonstration of the utility and numerical stability of the new UKRMol+ code. The inelastic cross sections obtained here present a significant improvement over the results of earlier studies on BeH.

  20. Ab Initio Geometry and Bright Excitation of Carotenoids: Quantum Monte Carlo and Many Body Green's Function Theory Calculations on Peridinin.

    Science.gov (United States)

    Coccia, Emanuele; Varsano, Daniele; Guidoni, Leonardo

    2014-02-11

    In this letter, we report the singlet ground state structure of the full carotenoid peridinin by means of variational Monte Carlo (VMC) calculations. The VMC relaxed geometry has an average bond length alternation of 0.1165(10) Å, larger than the values obtained by DFT (PBE, B3LYP, and CAM-B3LYP) and shorter than that calculated at the Hartree-Fock (HF) level. TDDFT and EOM-CCSD calculations on a reduced peridinin model confirm the HOMO-LUMO major contribution of the Bu(+)-like (S2) bright excited state. Many Body Green's Function Theory (MBGFT) calculations of the vertical excitation energy of the Bu(+)-like state for the VMC structure (VMC/MBGFT) provide an excitation energy of 2.62 eV, in agreement with experimental results in n-hexane (2.72 eV). The dependence of the excitation energy on the bond length alternation in the MBGFT and TDDFT calculations with different functionals is discussed.

  1. Excited state mass spectra of singly charmed baryons

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Zalak; Kumar Rai, Ajay [Sardar Vallabhbhai National Institute of Technology, Department of Applied Physics, Surat, Gujarat (India); Thakkar, Kaushal [GIDC Degree Engineering College, Department of Applied Sciences and Humanities, Abrama (India); Vinodkumar, P.C. [Sardar Patel University, Department of Physics, V.V. Nagar (India)

    2016-10-15

    Mass spectra of excited states of the singly charmed baryons are calculated using the hypercentral description of the three-body system. The baryons consist of a charm quark and light quarks (u, d and s) are studied in the framework of QCD motivated constituent quark model. The form of the confinement potential is hyper-Coloumb plus power potential with potential index ν, varying from 0.5 to 2.0. The first-order correction to the confinement potential is also incorporated in this approach. The radial as well as orbital excited state masses of Σ{sub c}{sup ++}, Σ{sub c}{sup +}, Σ{sub c}{sup 0}, Ξ{sub c}{sup +}, Ξ{sub c}{sup 0}, Λ{sub c}{sup +}, Ω{sub c}{sup 0} baryons, are reported in this paper. We have incorporated spin-spin, spin-orbit and tensor interactions perturbatively in the present study. The semi-electronic decay of Ω{sub c} and Ξ{sub c} are also calculated using the spectroscopic parameters of these baryons. The computed results are compared with other theoretical predictions as well as with the available experimental observations. We also construct the Regge trajectory in (n{sub r},M{sup 2}) and (J,M{sup 2}) planes for these baryons. (orig.)

  2. Transport properties of local thermodynamic equilibrium hydrogen plasmas including electronically excited states.

    Science.gov (United States)

    Capitelli, M; Celiberto, R; Gorse, C; Laricchiuta, A; Pagano, D; Traversa, P

    2004-02-01

    A study of the dependence of transport coefficients (thermal conductivity, viscosity, electrical conductivity) of local thermodynamic equilibrium H2 plasmas on the presence of electronically atomic excited states, H(n), is reported. The results show that excited states with their "abnormal" cross sections strongly affect the transport coefficients especially at high pressure. Large relative errors are found when comparing the different quantities with the corresponding values obtained by using ground-state transport cross sections. The accuracy of the present calculation is finally discussed in the light of the selection of transport cross sections and in dependence of the considered number of excited states.

  3. Vibrationally excited state stectroscopy of radicals in a supersonic plasma

    NARCIS (Netherlands)

    G. Bazalgette Courreges-Lacoste, J. Bulthuis, S. Stolte, T. Motylewski; Linnartz, H.V.J.

    2001-01-01

    A plasma source based on a multilayer discharge geometry in combination with a time-of-flight REMPI experiment is used to study rotationally cold spectra of highly excited vibrational states of mass selected radicals. The rovibrational state distributions upon discharge excitation are characterised

  4. Unbound excited states in $^{19}$,$^{17}$C

    CERN Document Server

    Satou, Y; Fukuda, N; Sugimoto, T; Kondo, Y; Matsui, N; Hashimoto, Y; Nakabayashi, T; Okumura, T; Shinohara, M; Motobayashi, T; Yanagisawa, Y; Aoi, N; Takeuchi, S; Gomi, T; Togano, Y; Kawai, S; Sakuraï, H; Ong, H J; Onishi, T K; Shimoura, S; Tamaki, M; Kobayashi, T; Otsu, H; Matsuda, Y; Endo, N; Kitayama, M; Ishihara, M

    2008-01-01

    The neutron-rich carbon isotopes 19,17C have been investigated via proton inelastic scattering on a liquid hydrogen target at 70 MeV/nucleon. The invariant mass method in inverse kinematics was employed to reconstruct the energy spectrum, in which fast neutrons and charged fragments were detected in coincidence using a neutron hodoscope and a dipole magnet system. A peak has been observed with an excitation energy of 1.46(10) MeV in 19C, while three peaks with energies of 2.20(3), 3.05(3), and 6.13(9) MeV have been observed in 17C. Deduced cross sections are compared with microscopic DWBA calculations based on p-sd shell model wave functions and modern nucleon-nucleus optical potentials. Jpi assignments are made for the four observed states as well as the ground states of both nuclei.

  5. Ultrafast Excited State Relaxation of a Metalloporphyrin Revealed by Femtosecond X-ray Absorption Spectroscopy

    DEFF Research Database (Denmark)

    Shelby, Megan L.; Lestrange, Patrick J.; Jackson, Nicholas E.

    2016-01-01

    and nuclear structure for critical excited electronic states in the relaxation pathway characterize the dependence of the complex's geometry on the electron occupation of the 3d orbitals. Calculated XANES transitions for these excited states assign a short-lived transient signal to the spectroscopic signature...... of the Ni(I) species, resulting from intramolecular charge transfer on a time scale that has eluded previous synchrotron studies. These combined results enable us to examine the excited state structural dynamics of NiTMP prior to thermal relaxation and to capture intermediates of potential photocatalytic...

  6. Charge-displacement analysis for excited states

    Energy Technology Data Exchange (ETDEWEB)

    Ronca, Enrico, E-mail: enrico@thch.unipg.it; Tarantelli, Francesco, E-mail: francesco.tarantelli@unipg.it [Istituto CNR di Scienze e Tecnologie Molecolari, via Elce di Sotto 8, I-06123 Perugia (Italy); Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, via Elce di Sotto 8, I-06123 Perugia (Italy); Pastore, Mariachiara, E-mail: chiara@thch.unipg.it; Belpassi, Leonardo; De Angelis, Filippo [Istituto CNR di Scienze e Tecnologie Molecolari, via Elce di Sotto 8, I-06123 Perugia (Italy); Angeli, Celestino; Cimiraglia, Renzo [Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Ferrara, via Borsari 46, I-44100 Ferrara (Italy)

    2014-02-07

    We extend the Charge-Displacement (CD) analysis, already successfully employed to describe the nature of intermolecular interactions [L. Belpassi et al., J. Am. Chem. Soc. 132, 13046 (2010)] and various types of controversial chemical bonds [L. Belpassi et al., J. Am. Chem. Soc. 130, 1048 (2008); N. Salvi et al., Chem. Eur. J. 16, 7231 (2010)], to study the charge fluxes accompanying electron excitations, and in particular the all-important charge-transfer (CT) phenomena. We demonstrate the usefulness of the new approach through applications to exemplary excitations in a series of molecules, encompassing various typical situations from valence, to Rydberg, to CT excitations. The CD functions defined along various spatial directions provide a detailed and insightful quantitative picture of the electron displacements taking place.

  7. Excited States of Dicyanovinyl-Substituted Oligothiophenes from Many-Body Green's Functions Theory.

    Science.gov (United States)

    Baumeier, Björn; Andrienko, Denis; Ma, Yuchen; Rohlfing, Michael

    2012-03-13

    Excited states of dicyanovinyl-substituted oligothiophenes are studied using many-body Green's functions theory within the GW approximation and the Bethe-Salpeter equation. By varying the number of oligomer repeat units, we investigate the effects of resonant-antiresonant transition coupling, dynamical screening, and molecular conformations on calculated excitations. We find that the full dynamically screened Bethe-Salpeter equation yields absorption and emission energies in good agreement with experimental data. The effect of resonant-antiresonant coupling on the first singlet π → π* excitation monotonically decreases with increasing size of the molecule, while dynamical screening effects uniformly lower the excitation energies.

  8. Influence of excited states on the energy loss of fast ions in a hydrogen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kaercher, B. (Max-Planck-Institut fuer Quantenoptik, D-8046 Garching, Germany (DE)); Peter, T. (Max-Planck-Institut fuer Chemie, D-6500 Mainz, Germany (DE))

    1991-04-01

    Stopping power calculations of fast ions penetrating a hydrogen plasma target in local thermodynamic equilibrium at arbitrary temperatures are performed. Excited state contributions to the energy loss are included in the framework of the Bethe formalism. Average ionization potentials for the excited ions are given in a quasiclassical approximation. It is shown that the net effect is an enhancement of the stopping power compared to the energy loss when assuming all atoms to be in their ground state.

  9. Dual fluorescent polyaniline model compounds: steric and temperature effects on excited state charge separation.

    Science.gov (United States)

    Kapelle, Sabine; Rettig, Wolfgang; Lapouyade, René

    2002-07-01

    Low temperature dual fluorescence of several derivatives of 4-aminodiphenylamine is investigated quantitatively. A strong thermochromic and solvatochromic redshift is indicative of the high dipole moment of the CT state emitting at long wavelength. The combination of steady state and time-resolved data allowed the calculation of the excited-state equilibrium. The absence of CT-risetimes in diethyl ether and their presence in butyronitrile points to the complication by additional ground state conformational equilibria. Both ground and excited state equilibria depend on solvent polarity and temperature. High solvent polarity favours one of the ground state conformers.

  10. A semi-classical approach to the calculation of highly excited rotational energies for asymmetric-top molecules.

    Science.gov (United States)

    Schmiedt, Hanno; Schlemmer, Stephan; Yurchenko, Sergey N; Yachmenev, Andrey; Jensen, Per

    2017-01-18

    We report a new semi-classical method to compute highly excited rotational energy levels of an asymmetric-top molecule. The method forgoes the idea of a full quantum mechanical treatment of the ro-vibrational motion of the molecule. Instead, it employs a semi-classical Green's function approach to describe the rotational motion, while retaining a quantum mechanical description of the vibrations. Similar approaches have existed for some time, but the method proposed here has two novel features. First, inspired by the path integral method, periodic orbits in the phase space and tunneling paths are naturally obtained by means of molecular symmetry analysis. Second, the rigorous variational method is employed for the first time to describe the molecular vibrations. In addition, we present a new robust approach to generating rotational energy surfaces for vibrationally excited states; this is done in a fully quantum-mechanical, variational manner. The semi-classical approach of the present work is applied to calculating the energies of very highly excited rotational states and it reduces dramatically the computing time as well as the storage and memory requirements when compared to the fullly quantum-mechanical variational approach. Test calculations for excited states of SO2 yield semi-classical energies in very good agreement with the available experimental data and the results of fully quantum-mechanical calculations.

  11. On excited states in real-time AdS/CFT

    Energy Technology Data Exchange (ETDEWEB)

    Botta-Cantcheff, Marcelo; Martínez, Pedro J.; Silva, Guillermo A. [Instituto de Física de La Plata - CONICET & Departamento de Física - UNLP,C.C. 67, 1900 La Plata (Argentina)

    2016-02-25

    The Skenderis-van Rees prescription, which allows the calculation of time-ordered correlation functions of local operators in CFT’s using holographic methods is studied and applied for excited states. Calculation of correlators and matrix elements of local CFT operators between generic in/out states are carried out in global Lorentzian AdS. We find the precise form of such states, obtain an holographic formula to compute the inner product between them, and using the consistency with other known prescriptions, we argue that the in/out excited states built according to the Skenderis-Van Rees prescription correspond to coherent states in the (large-N) AdS-Hilbert space. This is confirmed by explicit holographic computations. The outcome of this study has remarkable implications on generalizing the Hartle-Hawking construction for wave functionals of excited states in AdS quantum gravity.

  12. Correlated natural transition orbital framework for low-scaling excitation energy calculations (CorNFLEx)

    Science.gov (United States)

    Baudin, Pablo; Kristensen, Kasper

    2017-06-01

    We present a new framework for calculating coupled cluster (CC) excitation energies at a reduced computational cost. It relies on correlated natural transition orbitals (NTOs), denoted CIS(D')-NTOs, which are obtained by diagonalizing generalized hole and particle density matrices determined from configuration interaction singles (CIS) information and additional terms that represent correlation effects. A transition-specific reduced orbital space is determined based on the eigenvalues of the CIS(D')-NTOs, and a standard CC excitation energy calculation is then performed in that reduced orbital space. The new method is denoted CorNFLEx (Correlated Natural transition orbital Framework for Low-scaling Excitation energy calculations). We calculate second-order approximate CC singles and doubles (CC2) excitation energies for a test set of organic molecules and demonstrate that CorNFLEx yields excitation energies of CC2 quality at a significantly reduced computational cost, even for relatively small systems and delocalized electronic transitions. In order to illustrate the potential of the method for large molecules, we also apply CorNFLEx to calculate CC2 excitation energies for a series of solvated formamide clusters (up to 4836 basis functions).

  13. Quantum Entanglement and Shannon Information Entropy for the Doubly Excited Resonance State in Positronium Negative Ion

    Directory of Open Access Journals (Sweden)

    Chien-Hao Lin

    2015-09-01

    Full Text Available In the present work, we report an investigation on quantum entanglement in the doubly excited 2s2 1Se resonance state of the positronium negative ion by using highly correlated Hylleraas type wave functions, determined by calculation of the density of resonance states with the stabilization method. Once the resonance wave function is obtained, the spatial (electron-electron orbital entanglement entropies (von Neumann and linear can be quantified using the Schmidt decomposition method. Furthermore, Shannon entropy in position space, a measure for localization (or delocalization for such a doubly excited state, is also calculated.

  14. Excited state mass spectra and Regge trajectories of bottom baryons

    Science.gov (United States)

    Thakkar, Kaushal; Shah, Zalak; Rai, Ajay Kumar; C. Vinodkumar, P.

    2017-09-01

    We present the mass spectra of radial and orbital excited states of singly heavy bottom baryons; Σb+, Σb-, Ξb-, Ξb0, Λb0 and Ωb-. The QCD motivated hypercentral quark model is employed for the three body description of baryons and the form of confinement potential is hyper Coulomb plus linear. The first order correction to the confinement potential is also incorporated in this work. The semi-electronic decay of Ωb and Ξb are calculated using the spectroscopic parameters of the baryons. The computed results are compared with other theoretical predictions as well as with the available experimental observations. The Regge trajectories are plotted in (n ,M2) plane.

  15. Sunlight-Initiated Photochemistry: Excited Vibrational States of Atmospheric Chromophores

    Directory of Open Access Journals (Sweden)

    Veronica Vaida

    2008-01-01

    Full Text Available Atmospheric chemical reactions are often initiated by ultraviolet (UV solar radiation since absorption in that wavelength range coincides to typical chemical bond energies. In this review, we present an alternative process by which chemical reactions occur with the excitation of vibrational levels in the ground electronic state by red solar photons. We focus on the O–H vibrational manifold which can be an atmospheric chromophore for driving vibrationally mediated overtone-induced chemical reactions. Experimental and theoretical O–H intensities of several carboxylic acids, alcohols, and peroxides are presented. The importance of combination bands in spectra at chemically relevant energies is examined in the context of atmospheric photochemistry. Candidate systems for overtone-initiated chemistry are provided, and their lowest energy barrier for reaction and the minimum quanta of O–H stretch required for reaction are calculated. We conclude with a discussion of the major pathways available for overtone-induced reactions in the atmosphere.

  16. A Simple Hubbard Model for the Excited States of Dibenzoterrylene

    CERN Document Server

    Sadeq, Z S

    2016-01-01

    We use a simple Hubbard model to characterize the electronic excited states of the dibenzoterrylene (DBT) molecule; we compute the excited state transition energies and oscillator strengths from the ground state to several singlet excited states. We consider the lowest singlet and triplet states of the molecule, examine their wavefunctions, and compute the density correlation functions that describe these states. We find that the DBT ground state is mostly a closed shell singlet with very slight radical character. We predict a relatively small singlet-triplet splitting of 0.75 eV, which is less than the mid-sized -acenes but larger than literature predictions for this state; this is because the Hubbard interaction makes a very small correction to the singlet and triplet states.

  17. Coherent excitation of a single atom to a Rydberg state

    DEFF Research Database (Denmark)

    Miroshnychenko, Yevhen; Gaëtan, Alpha; Evellin, Charles

    2010-01-01

    We present the coherent excitation of a single Rubidium atom to the Rydberg state 58d3/2 using a two-photon transition. The experimental setup is described in detail, as are experimental techniques and procedures. The coherence of the excitation is revealed by observing Rabi oscillations between...

  18. Electronically excited states of tryptamine and its microhydrated complex

    NARCIS (Netherlands)

    Schmitt, M.; Brause, R.; Marian, C.M.; Salzmann, S.; Meerts, W.L.

    2006-01-01

    The lowest electronically excited singlet states of tryptamine and the tryptamine (H2O)(1) cluster have been studied, using time dependent density functional theory for determination of the geometries and multireference configuration interaction for the vertical and adiabatic excitation energies,

  19. Excited state of {sup 7}He and its unique structure

    Energy Technology Data Exchange (ETDEWEB)

    Korsheninnikov, A.A.; Golovkov, M.S.; Ozawa, A.; Yoshida, K.; Tanihata, I.; Fulop, Z.; Kusaka, K.; Morimoto, K.; Otsu, H.; Petrascu, H.; Tokanai, F. [Institute of Physical and Chemical Research, Wako, Saitama (Japan); Kuzmin, E.A.; Nikolskii, E.Yu.; Novatskii, B.G.; Ogloblin, A.A. [Russian Research Centre Kurchatov Inst., Moscow (Russian Federation)

    2000-07-01

    The transfer reaction p({sup 8}He,d){sup 7}He with the exotic {sup 8}He-beam has been studied by correlational measurements, and an excited state of {sup 7}He was observed. Most likely, it has a structure with a neutron in an excited state coupled to the {sup 6}He-core which itself is in the excited 2{sup +}-state. The transfer reaction p({sup 8}He,{sup 2}He){sup 7}H was also studied, and manifestation on the possible existence of the resonance {sup 7}H was obtained. (orig.)

  20. Excited State Dynamics of DNA and RNA bases

    Science.gov (United States)

    Hudock, Hanneli; Levine, Benjamin; Martinez, Todd

    2007-03-01

    Recent ultrafast spectroscopic experiments have reported excited state lifetimes for DNA and RNA bases and assigned these lifetimes to various electronic states. We have used theoretical and simulation methods to describe the excited state dynamics of these bases in an effort to provide a mechanistic explanation for the observed lifetimes. Our simulations are based on ab initio molecular dynamics, where the electronic and nuclear Schrodinger equations are solved simultaneously. The results are further verified by comparison to high-level ab initio electronic structure methods, including dynamic electron correlation effects through multireference perturbation theory, at important points along the dynamical pathways. Our results provide an explanation of the photochemical mechanism leading to nonradiative decay of the electronic excited states and some suggestions as to the origin of the different lifetimes. Comparisons between pyrimidines illustrate how chemical differences impact excited state dynamics and may play a role in explaining the propensity for dimer formation in thymine.

  1. Negative Binomial States of the Radiation Field and their Excitations are Nonlinear Coherent States

    OpenAIRE

    Wang, Xiao-Guang; Fu, Hong-Chen

    1999-01-01

    We show that the well-known negative binomial states of the radiation field and their excitations are nonlinear coherent states. Excited nonlinear coherent state are still nonlinear coherent states with different nonlinear functions. We finally give exponential form of the nonlinear coherent states and remark that the binomial states are not nonlinear coherent states.

  2. Ab initio excited states from the in-medium similarity renormalization group

    Science.gov (United States)

    Parzuchowski, N. M.; Morris, T. D.; Bogner, S. K.

    2017-04-01

    We present two new methods for performing ab initio calculations of excited states for closed-shell systems within the in-medium similarity renormalization group (IMSRG) framework. Both are based on combining the IMSRG with simple many-body methods commonly used to target excited states, such as the Tamm-Dancoff approximation (TDA) and equations-of-motion (EOM) techniques. In the first approach, a two-step sequential IMSRG transformation is used to drive the Hamiltonian to a form where a simple TDA calculation (i.e., diagonalization in the space of 1 p 1 h excitations) becomes exact for a subset of eigenvalues. In the second approach, EOM techniques are applied to the IMSRG ground-state-decoupled Hamiltonian to access excited states. We perform proof-of-principle calculations for parabolic quantum dots in two dimensions and the closed-shell nuclei 16O and 22O. We find that the TDA-IMSRG approach gives better accuracy than the EOM-IMSRG when calculations converge, but it is otherwise lacking the versatility and numerical stability of the latter. Our calculated spectra are in reasonable agreement with analogous EOM-coupled-cluster calculations. This work paves the way for more interesting applications of the EOM-IMSRG approach to calculations of consistently evolved observables such as electromagnetic strength functions and nuclear matrix elements, and extensions to nuclei within one or two nucleons of a closed shell by generalizing the EOM ladder operator to include particle-number nonconserving terms.

  3. Electron impact excitation of the D states of Mg, Ca and Sr atoms ...

    Indian Academy of Sciences (India)

    We have used non-relativistic and relativistic distorted wave approximation methods to study the excitation of the 1 states of magnesium ( = 3), calcium ( = 4) and strontium ( = 5) from the ground 1 state. Calculations have been performed for the complete set of parameters ( , L ~ ⊥ + , L ~ ⊥ − , ~ + , ~ − ) .

  4. Excited state dynamics of liquid water near the surface

    Directory of Open Access Journals (Sweden)

    Schultz Thomas

    2013-03-01

    Full Text Available Time resolved photoelectron spectroscopy explores the excited state dynamics of liquid water in presence of cations close to the surface. A transient hydrated electroncation complex is observed.

  5. Histidine in Continuum Electrostatics Protonation State Calculations

    Science.gov (United States)

    Couch, Vernon; Stuchebruckhov, Alexei

    2014-01-01

    A modification to the standard continuum electrostatics approach to calculate protein pKas which allows for the decoupling of histidine tautomers within a two state model is presented. Histidine with four intrinsically coupled protonation states cannot be easily incorporated into a two state formalism because the interaction between the two protonatable sites of the imidazole ring is not purely electrostatic. The presented treatment, based on a single approximation of the interrelation between histidine’s charge states, allows for a natural separation of the two protonatable sites associated with the imidazole ring as well as the inclusion of all protonation states within the calculation. PMID:22072521

  6. Size effect of water cluster on the excited-state proton transfer in aqueous solvent

    Science.gov (United States)

    Liu, Yu-Hui; Chu, Tian-Shu

    2011-03-01

    Time-dependent density functional theory (TDDFT) was used to investigate the excited-state proton transfer (ESPT) dynamics of 6-hydroxyquinolinium (6HQc) in aqueous solvent, resulting in the excited zwitterionic form (6HQz). The optimized excited-state energy profiles of 6HQc:(H 2O) n complexes have been calculated along the phenolic O sbnd H bond to simulate the minimum energy pathway (MEP) in the excited state. The results suggested that the threshold of the size of the water cluster is 3 for the excited-state proton transfer of 6HQc in aqueous solvent, since the conformation of the stable hydrated proton requires proton transferring to the second or deeper shell of water solvent. Moreover, the stability of the hydrated proton can be improved significantly by adding one more H 2O molecule to form an Eigen cation in the excited-state 6HQz:H 9O 4+. The effect of the size of water cluster on the proton transfer is investigated theoretically in the excited state for the first time.

  7. Vibrational kinetics of electronically excited states in H2 discharges

    Science.gov (United States)

    Colonna, Gianpiero; Pietanza, Lucia D.; D'Ammando, Giuliano; Celiberto, Roberto; Capitelli, Mario; Laricchiuta, Annarita

    2017-11-01

    The evolution of atmospheric pressure hydrogen plasma under the action of repetitively ns electrical pulse has been investigated using a 0D state-to-state kinetic model that self-consistently couples the master equation of heavy particles and the Boltzmann equation for free electrons. The kinetic model includes, together with atomic hydrogen states and the vibrational kinetics of H2 ground state, vibrational levels of singlet states, accounting for the collisional quenching, having a relevant role because of the high pressure. The mechanisms of excitations, radiative decay and collisional quenching involving the excited H2 states and the corresponding cross sections, integrated over the non-equilibrium electron energy distribution function (EEDF) to obtain kinetic rates, are discussed in the light of the kinetic simulation results, i.e. the time evolution during the pulse of the plasma composition, of the EEDF and of the vibrational distributions of ground and singlet excited states.

  8. Description of ground and excited electronic states by ensemble density functional method with extended active space

    Science.gov (United States)

    Filatov, Michael; Martínez, Todd J.; Kim, Kwang S.

    2017-08-01

    An extended variant of the spin-restricted ensemble-referenced Kohn-Sham (REKS) method, the REKS(4,4) method, designed to describe the ground electronic states of strongly multireference systems is modified to enable calculation of excited states within the time-independent variational formalism. The new method, the state-interaction state-averaged REKS(4,4), i.e., SI-SA-REKS(4,4), is capable of describing several excited states of a molecule involving double bond cleavage, polyradical character, or multiple chromophoric units. We demonstrate that the new method correctly describes the ground and the lowest singlet excited states of a molecule (ethylene) undergoing double bond cleavage. The applicability of the new method for excitonic states is illustrated with π stacked ethylene and tetracene dimers. We conclude that the new method can describe a wide range of multireference phenomena.

  9. Relaxation dynamics in the excited states of a ketocyanine dye ...

    Indian Academy of Sciences (India)

    WINTEC

    Pramanik et al proposed the twisted intramolecular charge transfer (TICT) process in the S1 state, which .... trile clearly suggests that a photon of 400 nm light excites the molecule to its S2 state, the higher energy emission .... 400 nm photon as well as the dynamics of the re- laxation processes taking place in the S1 state. At.

  10. Metastable states of highly excited heavy ions

    Science.gov (United States)

    Pegg, D. J.; Griffin, P. M.; Sellin, I. A.; Smith, W. W.; Donnally, B.

    1973-01-01

    Description of the method used and results obtained in an experimental study of the metastable states of highly stripped heavy ions, aimed at determining the lifetimes of such states by the rates of autoionization and radiation. The significance and limitations of the results presented are discussed.

  11. Ultrafast Excited State Relaxation of a Metalloporphyrin Revealed by Femtosecond X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Shelby, Megan L. [Chemical; Department; Lestrange, Patrick J. [Department; Jackson, Nicholas E. [Department; Haldrup, Kristoffer [Physics; Mara, Michael W. [Chemical; Department; Stickrath, Andrew B. [Chemical; Zhu, Diling [LCLS, SLAC National Laboratory, Menlo Park, California 94025, United States; Lemke, Henrik T. [LCLS, SLAC National Laboratory, Menlo Park, California 94025, United States; Chollet, Matthieu [LCLS, SLAC National Laboratory, Menlo Park, California 94025, United States; Hoffman, Brian M. [Department; Li, Xiaosong [Department; Chen, Lin X. [Chemical; Department

    2016-07-06

    Photoexcited Nickel(II) tetramesitylporphyrin (NiTMP), like many open-shell metalloporphyrins, relaxes rapidly through multiple electronic states following an initial porphyrin-based excitation, some involving metal centered electronic configuration changes that could be harnessed catalytically before excited state relaxation. While a NiTMP excited state present at 100 ps was previously identified by X-ray transient absorption (XTA) spectroscopy at a synchrotron source as a relaxed (d,d) state, the lowest energy excited state (J. Am. Chem. Soc., 2007, 129, 9616 and Chem. Sci., 2010, 1, 642), structural dynamics before thermalization were not resolved due to the similar to 100 ps duration of the available X-ray probe pulse. Using the femtosecond (fs) X-ray pulses of the Linac Coherent Light Source (LCLS), the Ni center electronic configuration from the initial excited state to the relaxed (d,d) state has been obtained via ultrafast Ni K-edge XANES (X-ray absorption near edge structure) on a time scale from hundreds of femtoseconds to 100 ps. This enabled the identification of a short-lived Ni(I) species aided by time-dependent density functional theory (TDDFT) methods. Computed electronic and nuclear structure for critical excited electronic states in the relaxation pathway characterize the dependence of the complex's geometry on the electron occupation of the 3d orbitals. Calculated XANES transitions for these excited states assign a short-lived transient signal to the spectroscopic signature of the Ni(I) species, resulting from intramolecular charge transfer on a time scale that has eluded previous synchrotron studies. These combined results enable us to examine the excited state structural dynamics of NiTMP prior to thermal relaxation and to capture intermediates of potential photocatalytic significance.

  12. Direct observation of photoinduced bent nitrosyl excited-state complexes

    Energy Technology Data Exchange (ETDEWEB)

    Sawyer, Karma R.; Steele, Ryan P.; Glascoe, Elizabeth A.; Cahoon, James F.; Schlegel, Jacob P.; Head-Gordon, Martin; Harris, Charles B.

    2008-06-28

    Ground state structures with side-on nitrosyl ({eta}{sup 2}-NO) and isonitrosyl (ON) ligands have been observed in a variety of transition-metal complexes. In contrast, excited state structures with bent-NO ligands have been proposed for years but never directly observed. Here we use picosecond time-resolved infrared spectroscopy and density functional theory (DFT) modeling to study the photochemistry of Co(CO){sub 3}(NO), a model transition-metal-NO compound. Surprisingly, we have observed no evidence for ON and {eta}{sup 2}-NO structural isomers, but have observed two bent-NO complexes. DFT modeling of the ground and excited state potentials indicates that the bent-NO complexes correspond to triplet excited states. Photolysis of Co(CO){sub 3}(NO) with a 400-nm pump pulse leads to population of a manifold of excited states which decay to form an excited state triplet bent-NO complex within 1 ps. This structure relaxes to the ground triplet state in ca. 350 ps to form a second bent-NO structure.

  13. Doppler- and recoil-free laser excitation of Rydberg states via three-photon transitions

    OpenAIRE

    Ryabtsev, I. I.; Beterov, I. I.; Tretyakov, D. B.; Entin, V. M.; Yakshina, E. A.

    2011-01-01

    Three-photon laser excitation of Rydberg states by three different laser beams can be arranged in a star-like geometry that simultaneously eliminates the recoil effect and Doppler broadening. Our analytical and numerical calculations for a particular laser excitation scheme 5S_{1/2}->5P_{3/2}->6S_{1/2}->nP in Rb atoms have shown that compared to the one- and two-photon laser excitation this approach provides much narrower line width and longer coherence time for both cold atom samples and hot...

  14. a Semi-Classical Approach to the Calculation of Highly Excited Rotational Energies for Asymmetric-Top Molecules

    Science.gov (United States)

    Schmiedt, Hanno; Schlemmer, Stephan; Yurchenko, Sergei N.; Yachmenev, Andrey; Jensen, Per

    2017-06-01

    We report a new semi-classical method to compute highly excited rotational energy levels of an asymmetric-top molecule. The method forgoes the idea of a full quantum mechanical treatment of the ro-vibrational motion of the molecule. Instead, it employs a semi-classical Green's function approach to describe the rotational motion, while retaining a quantum mechanical description of the vibrations. Similar approaches have existed for some time, but the method proposed here has two novel features. First, inspired by the path integral method, periodic orbits in the phase space and tunneling paths are naturally obtained by means of molecular symmetry analysis. Second, the rigorous variational method is employed for the first time to describe the molecular vibrations. In addition, we present a new robust approach to generating rotational energy surfaces for vibrationally excited states; this is done in a fully quantum-mechanical, variational manner. The semi-classical approach of the present work is applied to calculating the energies of very highly excited rotational states and it reduces dramatically the computing time as well as the storage and memory requirements when compared to the fully quantum-mechanical variational approach. Test calculations for excited states of SO_2 yield semi-classical energies in very good agreement with the available experimental data and the results of fully quantum-mechanical calculations. We hope to be able to present at the meeting also semi-classical calculations of transition intensities. See also the open-access paper Phys. Chem. Chem. Phys. 19, 1847-1856 (2017). DOI: 10.1039/C6CP05589C

  15. Quantitative first-principles calculations of valence and core excitation spectra of solid C60

    Science.gov (United States)

    Fossard, F.; Hug, G.; Gilmore, K.; Kas, J. J.; Rehr, J. J.; Vila, F. D.; Shirley, E. L.

    2017-03-01

    We present calculated valence and C 1 s near-edge excitation spectra of solid C60 and experimental results measured with high-resolution electron energy-loss spectroscopy. The near-edge calculations are carried out using three different methods: solution of the Bethe-Salpeter equation (BSE) as implemented in the ocean suite (Obtaining Core Excitations with Ab Initio methods and the NIST BSE solver), the excited-electron core-hole approach, and the constrained-occupancy method using the Stockholm-Berlin core excitation code, StoBe. The three methods give similar results and are in good agreement with experiment, though the BSE results are the most accurate. The BSE formalism is also used to carry out valence level calculations using the NIST BSE solver. Theoretical results include self-energy corrections to the band gap and bandwidths, lifetime-damping effects, and Debye-Waller effects in the core excitation case. A comparison of spectral features to those observed experimentally illustrates the sensitivity of certain features to computational details, such as self-energy corrections to the band structure and core-hole screening.

  16. CC2 oscillator strengths within the local framework for calculating excitation energies (LoFEx)

    Science.gov (United States)

    Baudin, Pablo; Kjærgaard, Thomas; Kristensen, Kasper

    2017-04-01

    In a recent work [P. Baudin and K. Kristensen, J. Chem. Phys. 144, 224106 (2016)], we introduced a local framework for calculating excitation energies (LoFEx), based on second-order approximated coupled cluster (CC2) linear-response theory. LoFEx is a black-box method in which a reduced excitation orbital space (XOS) is optimized to provide coupled cluster (CC) excitation energies at a reduced computational cost. In this article, we present an extension of the LoFEx algorithm to the calculation of CC2 oscillator strengths. Two different strategies are suggested, in which the size of the XOS is determined based on the excitation energy or the oscillator strength of the targeted transitions. The two strategies are applied to a set of medium-sized organic molecules in order to assess both the accuracy and the computational cost of the methods. The results show that CC2 excitation energies and oscillator strengths can be calculated at a reduced computational cost, provided that the targeted transitions are local compared to the size of the molecule. To illustrate the potential of LoFEx for large molecules, both strategies have been successfully applied to the lowest transition of the bivalirudin molecule (4255 basis functions) and compared with time-dependent density functional theory.

  17. Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Svendsen, Niels Bruun

    1992-01-01

    A method for simulation of pulsed pressure fields from arbitrarily shaped, apodized and excited ultrasound transducers is suggested. It relies on the Tupholme-Stepanishen method for calculating pulsed pressure fields, and can also handle the continuous wave and pulse-echo case. The field...... is calculated by dividing the surface into small rectangles and then Summing their response. A fast calculation is obtained by using the far-field approximation. Examples of the accuracy of the approach and actual calculation times are given...

  18. Acute excited states and sudden death

    National Research Council Canada - National Science Library

    Farnham, Frank R; Kennedy, Henry G

    1997-01-01

    ... mortality. 2 Such deaths, often in police custody or other highly charged situations, commonly give rise to high profile coroner's hearings and inquiries. 3 In the era before neuroleptics death in such agitated states was attributed to exhaustion, though neuroleptic malignant syndrome and the cardiac effects of neuroleptics now often enter into considerat...

  19. Two-neutron decay of excited states of 11Li

    Science.gov (United States)

    Smith, Jenna; MoNA Collaboration

    2013-10-01

    One prominent example of a Borromean nucleus is the two-neutron halo nucleus, 11Li. All excited states of this nucleus are unbound to two-neutron decay. Many theories propose that the two valence neutrons exhibit dineutron behavior in the ground state, but it is unclear what effect such a structure would have on the decay of the excited states. We have recently completed an experiment designed to study the decay of one of these excited states. Unbound 11Li was populated via a two-proton knockout from 13B. The two emitted neutrons were detected with the Modular Neutron Array (MoNA) and the Large-area multi-Institutional Scintillator Array (LISA) in coincidence with the daughter fragment, 9Li. Preliminary results will be discussed.

  20. Calculation of excitation functions of the 54, 56, 57, 58 Fe (p, n ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 83; Issue 4. Calculation of ... The excitation functions have been compared with experimental nuclear data. ... Proton-induced reaction cross-sections provide clues to understand the nuclear structure and offers a good testing ground for ideas about nuclear forces.

  1. Excited state conformational dynamics in carotenoids: dark intermediates and excitation energy transfer.

    Science.gov (United States)

    Beck, Warren F; Bishop, Michael M; Roscioli, Jerome D; Ghosh, Soumen; Frank, Harry A

    2015-04-15

    A consideration of the excited state potential energy surfaces of carotenoids develops a new hypothesis for the nature of the conformational motions that follow optical preparation of the S2 (1(1)Bu(+)) state. After an initial displacement from the Franck-Condon geometry along bond length alternation coordinates, it is suggested that carotenoids pass over a transition-state barrier leading to twisted conformations. This hypothesis leads to assignments for several dark intermediate states encountered in femtosecond spectroscopic studies. The Sx state is assigned to the structure reached upon the onset of torsional motions near the transition state barrier that divides planar and twisted structures on the S2 state potential energy surface. The X state, detected recently in two-dimensional electronic spectra, corresponds to a twisted structure well past the barrier and approaching the S2 state torsional minimum. Lastly, the S(∗) state is assigned to a low lying S1 state structure with intramolecular charge transfer character (ICT) and a pyramidal conformation. It follows that the bent and twisted structures of carotenoids that are found in photosynthetic light-harvesting proteins yield excited-state structures that favor the development of an ICT character and optimized energy transfer yields to (bacterio)chlorophyll acceptors. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. State-averaged Monte Carlo configuration interaction applied to electronically excited states

    CERN Document Server

    Coe, J P

    2014-01-01

    We introduce state-averaging into the method of Monte Carlo configuration interaction (SA-MCCI) to allow the stable and efficient calculation of excited states. We show that excited potential curves for H$_{3}$, including a crossing with the ground state, can be accurately reproduced using a small fraction of the FCI space. A recently introduced error measure for potential curves [J. P. Coe and M. J. Paterson, J. Chem. Phys., 137, 204108 (2012)] is shown to also be a fair approach when considering potential curves for multiple states. We demonstrate that potential curves for LiF using SA-MCCI agree well with the FCI results and the avoided crossing occurs correctly. The seam of conical intersections for CH$_{2}$ found by Yarkony [J. Chem. Phys., 104, 2932 (1996)] is used as a test for SA-MCCI and we compare potential curves from SA-MCCI with FCI results for this system for the first three triplet states. We then demonstrate the improvement from using SA-MCCI on the dipole of the $2$ $^{1}A_{1}$ state of carbo...

  3. Fragment transition density method to calculate electronic coupling for excitation energy transfer

    Energy Technology Data Exchange (ETDEWEB)

    Voityuk, Alexander A., E-mail: alexander.voityuk@icrea.cat [Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain and Institut de Química Computacional i Catàlisi (IQCC), Universitat de Girona 17071 Girona (Spain)

    2014-06-28

    A general approach, the Fragment Transition Density (FTD) scheme, is introduced to estimate electronic coupling for excitation energy transfer in a molecular system. Within this method, the excitation energies and transition densities of the system are used to derive the coupling matrix element. The scheme allows one to treat systems where exciton donor and acceptor are close together and their exchange interaction and orbital overlap are significant. The FTD method can be applied in combination with any quantum mechanical approach to treat excited states of general nature including single-, double-, and higher excitations. Using FTD approach, we derive excitonic couplings for several systems computed with the CIS, TD DFT and MS-CASPT2 methods. In particular, it is shown that the estimated coupling values in DNA π-stacks are strongly affected by the short-range electronic interaction of adjacent nucleobases.

  4. Thermally excited multiplet states in macerals separated from bituminous coal

    Science.gov (United States)

    Wieckowski; Pilawa; Swiatkowska; Wojtowicz; Slowik; Lewandowski

    2000-07-01

    Electron paramagnetic resonance searches of thermally excited multiplet states in macerals, exinite, vitrinite, and inertinite of Polish medium-rank coal (85.6 wt% C), were performed. Numerical analysis of lineshape indicates a multicomponent structure of the EPR spectra of macerals heated at 300 degrees and 650 degrees C. EPR spectra of exinite and vitrinite are a superposition of broad Gauss, broad Lorentz (Lorentz 1), and narrow Lorentz (Lorentz 3) lines. Two narrow Lorentz (Lorentz 2 and Lorentz 3) lines were observed in the resonance absorption curves of inertinite. The influence of the measuring temperature (100-300 K) on the EPR lines of the macerals was also studied. The experimentally obtained temperature dependence of the EPR line intensities were fitted by the theoretical functions characteristic for paramagnetic centers with ground doublet state (S = 12) and paramagnetic centers with thermally excited triplet (S = 1) and quadruplet (S = 32) states. Thermally excited multiplet states were found in exinite and vitrinite. Both paramagnetic centers with doublet ground state (S = 12) and paramagnetic centers with thermally excited states, probably quadruplet states (S = 32), exist in the group of paramagnetic centers of exinite and vitrinite with the broad Lorentz 1 lines. Intensities (I) of the broad Gauss and the narrow Lorentz 3 lines of exinite and vitrinite changes with temperature according to the Curie law (I = C/T). The existence of thermally excited multiplet states was not stated for inertinite. The two groups of paramagnetic centers of inertinite with Lorentz 2 and Lorentz 3 lines obey the Curie law. Copyright 2000 Academic Press.

  5. Excited state evolution towards ligand loss and ligand chelation at group 6 metal carbonyl centres.

    Science.gov (United States)

    Manton, Jennifer C; Amirjalayer, Saeed; Coleman, Anthony C; McMahon, Suzanne; Harvey, Emma C; Greetham, Gregory M; Clark, Ian P; Buma, Wybren Jan; Woutersen, Sander; Pryce, Mary T; Long, Conor

    2014-12-21

    The photochemistry and photophysics of three model "half-sandwich" complexes (η(6)-benzophenone)Cr(CO)3, (η(6)-styrene)Cr(CO)3, and (η(6)-allylbenzene)Cr(CO)3 were investigated using pico-second time-resolved infrared spectroscopy and time-dependent density functional theory methods. The (η(6)-benzophenone)Cr(CO)3 complex was studied using two excitation wavelengths (470 and 320 nm) while the remaining complexes were irradiated using 400 nm light. Two independent excited states were detected spectroscopically for each complex, one an unreactive excited state of metal-to-arene charge-transfer character and the other with metal-to-carbonyl charge transfer character. This second excited state leads to an arrested release of CO on the pico-second time-scale. Low-energy excitation (470 nm) of (η(6)-benzophenone)Cr(CO)3 populated only the unreactive excited state which simply relaxes to the parent complex. Higher energy irradiation (320 nm) induced CO-loss. Irradiation of (η(6)-styrene)Cr(CO)3, or (η(6)-allylbenzene)Cr(CO)3 at 400 nm provided evidence for the simultaneous population of both the reactive and unreactive excited states. The efficiency at which the unreactive excited state is populated depends on the degree of conjugation of the substituent with the arene π-system and this affects the efficiency of the CO-loss process. The quantum yield of CO-loss is 0.50 for (η(6)-allylbenzene)Cr(CO)3 and 0.43 for (η(6)-styrene)Cr(CO)3. These studies provide evidence for the existence of two photophysical routes to CO loss, a minor ultrafast route and an arrested mechanism involving the intermediate population of a reactive excited state. This reactive excited state either relaxes to reform the parent species or eject CO. Thus the quantum yield of the CO-loss is strongly dependent on the excitation wavelength. Time-dependent density functional theory calculations confirm that the state responsible for ultrafast CO-loss has significant metal-centred character while

  6. Conformational analysis of acetamide in the ground and lowest excited electronic states

    Science.gov (United States)

    Tukachev, N. V.; Bataev, V. A.; Godunov, I. A.

    2017-05-01

    For acetamide molecule (CH3CONH2) in the ground (S0) and lowest excited singlet (S1) and triplet (T1) electronic states calculations of equilibrium geometry parameters, harmonic vibrational frequencies and barriers to conformational transitions (also conformer energy differences in excited states) using following ab initio methods: MP2, CCSD(T), CASSCF, CASPT2 and MRCI were performed. One-, two- and three-dimensional potential energy surface (PES) sections by different large amplitude motions (LAM) coordinates were calculated by means of MP2/aug-cc-pVTZ (S0) and CASPT2/cc-pVTZ (S1, T1). As a result of electronic excitation, both CCON and CNH2 fragments become pyramidal. On 2D PES sections by torsion (CN) and inversion coordinates there are six minima forming three pairs of enantiomers. Using PES sections different anharmonic vibrational problems were solved and the frequencies of large amplitude vibrations were estimated.

  7. Excited electronic states from a variational approach based on symmetry-projected Hartree--Fock configurations

    CERN Document Server

    Jiménez-Hoyos, Carlos A; Scuseria, Gustavo E

    2013-01-01

    Recent work from our research group has demonstrated that symmetry-projected Hartree--Fock (HF) methods provide a compact representation of molecular ground state wavefunctions based on a superposition of non-orthogonal Slater determinants. The symmetry-projected ansatz can account for static correlations in a computationally efficient way. Here we present a variational extension of this methodology applicable to excited states of the same symmetry as the ground state. Benchmark calculations on the C$_2$ dimer with a modest basis set, which allows comparison with full configuration interaction results, indicate that this extension provides a high quality description of the low-lying spectrum for the entire dissociation profile. We apply the same methodology to obtain the full low-lying vertical excitation spectrum of formaldehyde, in good agreement with available theoretical and experimental data, as well as to a challenging model $C_{2v}$ insertion pathway for BeH$_2$. The variational excited state methodolo...

  8. The MRSDCI/CIS study of excited electronic states of the SF 2 radical

    Science.gov (United States)

    Liu, Y.-J.; Huang, M.-B.; Zhou, X.; Yu, S.

    2001-09-01

    The vertical ( Tv) and adiabatic ( T0) excitation energies for singlet electronic excited states of the SF 2 radical have been calculated by using the multireference single and double excitation configuration interaction (MRSDCI) method and aug-cc-pVTZ basis sets augmented by Rydberg functions. The MRSDCI Tv calculations indicate that the X1A1, 1 1A2, 1 1B1, 2 1B1, 2 1A2, 2 1A1, 3 1B1, 4 1B1, 3 1A1, and 1 1B2 states are the 10 lowest-lying singlet states. Based on the MRSDCI//CIS T0 calculations (using CIS optimized geometries for excited states), the A, B, C, E, F, G, H, and I states of SF 2 are assigned to 1 1B1, 2 1B1, 3 1B1, 2 1A2, 2 1A1, 3 1A1, 4 1B1, and 1 1B2, respectively.

  9. Benchmarks for electronically excited states: Time-dependent density functional theory and density functional theory based multireference configuration interaction

    DEFF Research Database (Denmark)

    Silva-Junior, Mario R.; Schreiber, Marko; Sauer, Stephan P. A.

    2008-01-01

    Time-dependent density functional theory (TD-DFT) and DFT-based multireference configuration interaction (DFT/MRCI) calculations are reported for a recently proposed benchmark set of 28 medium-sized organic molecules. Vertical excitation energies, oscillator strengths, and excited-state dipole...

  10. Excited state carbene formation from UV irradiated diazomethane.

    Science.gov (United States)

    Lee, Hosik; Miyamoto, Yoshiyuki; Tateyama, Yoshitaka

    2009-01-16

    The laser flash photolysis process of diazomethane has been studied by using a real time propagation time-dependent density functional theory (RTP-TDDFT) combined with molecular dynamics. The activation energy barrier for disintegrating diazomethane into nitrogen (N(2)) and carbene (CH(2)) molecules significantly decreases in the electronic excited S(1) state compared to that in the S(0) ground state. Furthermore, the produced carbene molecule can be in the electronic excited state of (1)CH(2) ((1)B(1)) instead of the lowest state among singlet states (1)CH(2) ((1)A(1)), which is evident in the wave function characteristics of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) throughout the disintegration. This is regarded as the initial stage of the rearrangement in the excited state (RIES), the evidence of which has been given by experiments in the past decade. In the RIES mechanism scheme, we suggest that the photoreaction in the S(1) state contributes considerably to the photochemistry of carbene formation. The passing near the S(1)/S(0) conical intersection, which allows the transition to ground state diazomethane producing the lowest singlet state carbene molecule, is considered a rare event from our molecular dynamics, although this has been regarded as the dominant mechanism in previous theoretical studies.

  11. Dual fluorescence of ellipticine: excited state proton transfer from solvent versus solvent mediated intramolecular proton transfer.

    Science.gov (United States)

    Banerjee, Sanghamitra; Pabbathi, Ashok; Sekhar, M Chandra; Samanta, Anunay

    2011-08-25

    Photophysical properties of a natural plant alkaloid, ellipticine (5,11-dimethyl-6H-pyrido[4,3-b]carbazole), which comprises both proton donating and accepting sites, have been studied in different solvents using steady state and time-resolved fluorescence techniques primarily to understand the origin of dual fluorescence that this molecule exhibits in some specific alcoholic solvents. Ground and excited state calculations based on density functional theory have also been carried out to help interpretation of the experimental data. It is shown that the long-wavelength emission of the molecule is dependent on the hydrogen bond donating ability of the solvent, and in methanol, this emission band arises solely from an excited state reaction. However, in ethylene glycol, both ground and excited state reactions contribute to the long wavelength emission. The time-resolved fluorescence data of the system in methanol and ethylene glycol indicates the presence of two different hydrogen bonded species of ellipticine of which only one participates in the excited state reaction. The rate constant of the excited state reaction in these solvents is estimated to be around 4.2-8.0 × 10(8) s(-1). It appears that the present results are better understood in terms of solvent-mediated excited state intramolecular proton transfer reaction from the pyrrole nitrogen to the pyridine nitrogen leading to the formation of the tautomeric form of the molecule rather than excited state proton transfer from the solvents leading to the formation of the protonated form of ellipticine. © 2011 American Chemical Society

  12. Numerical method for calculating sound radiation characteristics of plate structure excited by turbulent boundary layer

    Directory of Open Access Journals (Sweden)

    LI Zuhui

    2017-08-01

    Full Text Available As the turbulent boundary layer (TBL is one of the most important sources of vibration and noise in underwater vehicles, there is an important significance in studying the numerical method for the calculation of flow-induced noise. In this paper, the methods of Principal Component Analysis (PCA and Vibro-Acoustic Transfer Vectors (VATV based on LMS Virtual Lab software are used to calculate the sound characteristics of a plate structure excited by TBL. The Corcos model of the wave number-frequency spectrum of the wall pressure field beneath the TBL is used to describe random excitation. By comparing the calculating time and sound pressure auto power spectra curves of the two methods, the following conclusions are obtained: both the VATV method and PCA method can be used effectively for the calculation of the flow-induced noise of structures excited by the TBL, and the results of the two methods match; the VATV method can quickly forecast the structure of flow-induced noise and takes up fewer computing resources than the PCA method; the PCA method can also obtain the structure vibration response in comparison with the VATV method. The current work can serve as a reference for the rapid prediction of the flow-induced noise of underwater structures.

  13. Photoionization of excited states of neon-like Mg III

    Indian Academy of Sciences (India)

    . In the present work we have used the close coupling R-matrix method [8,11] to ob- tain accurate photoionization cross-section from the first three excited 1s22s22p53s 3 1P0,. 1s22s22p53p 3Se states of Mg III, allowing for the residual ion to ...

  14. Excited electronic state decomposition mechanisms of clusters of ...

    Indian Academy of Sciences (India)

    In this report, electronically non-adiabatic decomposition pathways of clusters of dimethylnitramine and aluminum (DMNA-Al and DMNA-Al2) are discussed in comparison to isolated dimethylnitramine (DMNA). Electronically excited state processes of DMNA-Al and DMNA-Al2 are explored using the complete active space ...

  15. Size dependent deactivation of the excited state of DHICA

    DEFF Research Database (Denmark)

    Gauden, Magdalena; Pezzella, Alessandro; Panzella, Lucia

    2008-01-01

    Melanin is a natural pigment mainly responsible for the protection of skin and eyes from UV damage. 5,6- dihydroxyindole- 2 carboxylic acid (DHICA) is a key melanin building block. We have investigated the excited state dynamics of DHICA as well as its derivatives and oligomeric units using...

  16. Excited state intramolecular charge transfer reaction in 4-(1 ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Excited state intramolecular charge transfer reaction of 4-(1-azetidinyl) benzonitrile (P4C) in deuterated and normal methanol, ethanol and acetonitrile has been studied in order to investigate the solvent isotope effects on reaction rates and yields. These quantities (reaction rates and yields) along with several.

  17. Excited state intramolecular charge transfer reaction in 4-(1 ...

    Indian Academy of Sciences (India)

    Excited state intramolecular charge transfer reaction of 4-(1-azetidinyl) benzonitrile (P4C) in deuterated and normal methanol, ethanol and acetonitrile has been studied in order to investigate the solvent isotope effects on reaction rates and yields. These quantities (reaction rates and yields) along with several other ...

  18. Excited state potential energy surfaces of bistridentate RuII complexes - A TD-DFT study

    Science.gov (United States)

    Österman, Tomas; Persson, Petter

    2012-10-01

    Time-dependent density functional theory (TD-DFT) calculations have been used to investigate low-energy singlet and triplet excited state potential energy surfaces (PES) of two prototype RuII-bistridentate complexes: [RuII(tpy)2]2+ (tpy is 2,2':6',2''-terpyridine) and [RuII(dqp)2]2+ (dqp is 2,6-di(quinolin-8-yl)pyridine). Solvent effects were considered using a self-consistent reaction field scheme. The calculations provide information about the excited state manifold along pathways for activated decay of metal-to-ligand charge-transfer (MLCT) excited states via metal-centered (MC) states for the two complexes. Significant differences in the energy profiles of the investigated PESs are explained through characterization of the electronic properties of the involved states calculated by the TD-DFT calculations. Finally, implications of the computational results for the design of octahedral metal complexes utilizing ligand field splitting (LFS) strategies for efficient light-harvesting in photochemical applications such as artificial photosynthesis are discussed.

  19. Sub-50 fs excited state dynamics of 6-chloroguanine upon deep ultraviolet excitation.

    Science.gov (United States)

    Mondal, Sayan; Puranik, Mrinalini

    2016-05-18

    The photophysical properties of natural nucleobases and their respective nucleotides are ascribed to the sub-picosecond lifetime of their first singlet states in the UV-B region (260-350 nm). Electronic transitions of the ππ* type, which are stronger than those in the UV-B region, lie at the red edge of the UV-C range (100-260 nm) in all isolated nucleobases. The lowest energetic excited states in the UV-B region of nucleobases have been investigated using a plethora of experimental and theoretical methods in gas and solution phases. The sub-picosecond lifetime of these molecules is not a general attribute of all nucleobases but specific to the five primary nucleobases and a few xanthine and methylated derivatives. To determine the overall UV photostability, we aim to understand the effect of more energetic photons lying in the UV-C region on nucleobases. To determine the UV-C initiated photophysics of a nucleobase system, we chose a halogen substituted purine, 6-chloroguanine (6-ClG), that we had investigated previously using resonance Raman spectroscopy. We have performed quantitative measurements of the resonance Raman cross-section across the Bb absorption band (210-230 nm) and constructed the Raman excitation profiles. We modeled the excitation profiles using Lee and Heller's time-dependent theory of resonance Raman intensities to extract the initial excited state dynamics of 6-ClG within 30-50 fs after photoexcitation. We found that imidazole and pyrimidine rings of 6-ClG undergo expansion and contraction, respectively, following photoexcitation to the Bb state. The amount of distortions of the excited state structure from that of the ground state structure is reflected by the total internal reorganization energy that is determined at 112 cm(-1). The contribution of the inertial component of the solvent response towards the total reorganization energy was obtained at 1220 cm(-1). In addition, our simulation also yields an instantaneous response of the first

  20. High-energy excited states in {sup 98}Cd

    Energy Technology Data Exchange (ETDEWEB)

    Blazhev, A; Braun, N; Jolie, J [Universitaet zu Koeln, Cologne (Germany); Grawe, H; Boutachkov, P; Gorska, M; Pietri, S; Domingo-Pardo, C; Kojouharov, I; Caceres, L; Engert, T; Farinon, F; Gerl, J; Goel, N [GSI, Darmstadt (Germany); Singh, B S Nara; Brock, T; Wadsworth, R [University of York, York (United Kingdom); Liu, Zh [University of Edinburgh, Edinburgh (United Kingdom); Nowacki, F [IPHC, Strasbourg (France); Grebosz, J, E-mail: a.blazhev@ikp.uni-koeln.d [IFJ PAN, Krakow (Poland)

    2010-01-01

    In {sup 98}Cd a new high-energy isomeric {gamma}-ray transition was identified, which confirms previous spin-parity assignments and enables for the first time the measurement of the E2 and E4 strength for the two decay branches of the isomer. Preliminary results on the {sup 98}Cd high-excitation level scheme are presented. A comparison to shell-model calculations as well as implications for the nuclear structure around {sup 100}Sn are discussed.

  1. Thermality and excited state Rényi entropy in two-dimensional CFT

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Feng-Li [Department of Physics, National Taiwan Normal University,Taipei 11677, Taiwan (China); Wang, Huajia [Department of Physics, University of Illinois,Urbana-Champaign, IL 61801 (United States); Zhang, Jia-ju [Dipartimento di Fisica, Università degli Studi di Milano-Bicocca,Piazza della Scienza 3, I-20126 Milano (Italy); Theoretical Physics Division, Institute of High Energy Physics, Chinese Academy of Sciences,19B Yuquan Rd, Beijing 100049 (China); Theoretical Physics Center for Science Facilities, Chinese Academy of Sciences,19B Yuquan Rd, Beijing 100049 (China)

    2016-11-21

    We evaluate one-interval Rényi entropy and entanglement entropy for the excited states of two-dimensional conformal field theory (CFT) on a cylinder, and examine their differences from the ones for the thermal state. We assume the interval to be short so that we can use operator product expansion (OPE) of twist operators to calculate Rényi entropy in terms of sum of one-point functions of OPE blocks. We find that the entanglement entropy for highly excited state and thermal state behave the same way after appropriate identification of the conformal weight of the state with the temperature. However, there exists no such universal identification for the Rényi entropy in the short-interval expansion. Therefore, the highly excited state does not look thermal when comparing its Rényi entropy to the thermal state one. As the Rényi entropy captures the higher moments of the reduced density matrix but the entanglement entropy only the average, our results imply that the emergence of thermality depends on how refined we look into the entanglement structure of the underlying pure excited state.

  2. ARTICLE Volume-conserved Twist Excited-state of π-Conjugated Molecules

    Science.gov (United States)

    Sun, Qin-chao; Liu, Jian-yong; Hao, Yan; Yang, Xi-chuan

    2010-12-01

    The excited state characters of HY103 have been studied by means of time-resolved photon emission (time-correlated single photon counting) and time dependent density functional theory calculations. The experimental and theoretical results demonstrate that HY103 dyes undergo an efficient one-bond-flip motion after photoexicitation at room temperature, which leads to a very short lifetime of the normal fluorescence state, and a weak fluorescence emission around 670 nm. However, when HY103 are excited in amorphous glasses at 77 K, the normal fluorescence emission is prolonged to nanoseconds time scale about 2 ns, and the fluorescence emission is enhanced. Furthermore, a new emission state is produced, which is characterized as a volume-conserved twisted (VCT) state. This is the first observation of a VCT state. The experiment indicates that the VCT motion of excited state of π-conjugated molecules in restricted environment can form a stable emission state, and the excited state character of π-conjugated molecules in restricted environment is complex.

  3. The structure of low-lying states in ${}^{140}$Sm studied by Coulomb excitation

    CERN Document Server

    Klintefjord, M.; Görgen, A.; Bauer, C.; Bello Garrote, F.L.; Bönig, S.; Bounthong, B.; Damyanova, A.; Delaroche, J.P.; Fedosseev, V.; Fink, D.A.; Giacoppo, F.; Girod, M.; Hoff, P.; Imai, N.; Korten, W.; Larsen, A.C.; Libert, J.; Lutter, R.; Marsh, B.A.; Molkanov, P.L.; Naïdja, H.; Napiorkowski, P.; Nowacki, F.; Pakarinen, J.; Rapisarda, E.; Reiter, P.; Renstrøm, T.; Rothe, S.; Seliverstov, M.D.; Siebeck, B.; Siem, S.; Srebrny, J.; Stora, T.; Thöle, P.; Tornyi, T.G.; Tveten, G.M.; Van Duppen, P.; Vermeulen, M.J.; Voulot, D.; Warr, N.; Wenander, F.; De Witte, H.; Zielińska, M.

    2016-05-02

    The electromagnetic structure of $^{140}$Sm was studied in a low-energy Coulomb excitation experiment with a radioactive ion beam from the REX-ISOLDE facility at CERN. The $2^+$ and $4^+$ states of the ground-state band and a second $2^+$ state were populated by multi-step excitation. The analysis of the differential Coulomb excitation cross sections yielded reduced transition probabilities between all observed states and the spectroscopic quadrupole moment for the $2_1^+$ state. The experimental results are compared to large-scale shell model calculations and beyond-mean-field calculations based on the Gogny D1S interaction with a five-dimensional collective Hamiltonian formalism. Simpler geometric and algebraic models are also employed to interpret the experimental data. The results indicate that $^{140}$Sm shows considerable $\\gamma$ softness, but in contrast to earlier speculation no signs of shape coexistence at low excitation energy. This work sheds more light on the onset of deformation and collectivit...

  4. Extended Eckart Theorem and New Variation Method for Excited States of Atoms

    CERN Document Server

    Xiong, Zhuang; Bacalis, N C; Zhou, Qin

    2016-01-01

    We extend the Eckart theorem, from the ground state to excited statew, which introduces an energy augmentation to the variation criterion for excited states. It is shown that the energy of a very good excited state trial function can be slightly lower than the exact eigenvalue. Further, the energy calculated by the trial excited state wave function, which is the closest to the exact eigenstate through Gram-Schmidt orthonormalization to a ground state approximant, is lower than the exact eigenvalue as well. In order to avoid the variation restrictions inherent in the upper bound variation theory based on Hylleraas, Undheim, and McDonald [HUM] and Eckart Theorem, we have proposed a new variation functional Omega-n and proved that it has a local minimum at the eigenstates, which allows approaching the eigenstate unlimitedly by variation of the trial wave function. As an example, we calculated the energy and the radial expectation values of Triplet-S(even) Helium atom by the new variation functional, and by HUM a...

  5. Monte Carlo calculation of collisions of directionally-incident electrons on highly excited hydrogen atoms

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Kazuki; Fujimoto, Takasi [Kyoto Univ., Graduate School of Engineering, Kyoto (Japan)

    2001-10-01

    We treat classically the n-, l- and m{sub r}-changing transitions and ionization. Excitation cross sections against the final state energy continue smoothly to the 'ionization cross sections'. The steady state populations determined by elastic collisions among the degenerate states in the same n level show higher populations in the m{sub 1}=0 states, suggesting positive polarizations of Lyman lines emitted from plasmas having directional electrons. For ionization, the two outgoing electrons have large relative angles, suggesting reduced three body recombination rates for these plasmas. (author)

  6. Electronic excitation spectra of molecules in solution calculated using the symmetry-adapted cluster-configuration interaction method in the polarizable continuum model with perturbative approach

    Science.gov (United States)

    Fukuda, Ryoichi; Ehara, Masahiro; Cammi, Roberto

    2014-02-01

    A perturbative approximation of the state specific polarizable continuum model (PCM) symmetry-adapted cluster-configuration interaction (SAC-CI) method is proposed for efficient calculations of the electronic excitations and absorption spectra of molecules in solutions. This first-order PCM SAC-CI method considers the solvent effects on the energies of excited states up to the first-order with using the zeroth-order wavefunctions. This method can avoid the costly iterative procedure of the self-consistent reaction field calculations. The first-order PCM SAC-CI calculations well reproduce the results obtained by the iterative method for various types of excitations of molecules in polar and nonpolar solvents. The first-order contribution is significant for the excitation energies. The results obtained by the zeroth-order PCM SAC-CI, which considers the fixed ground-state reaction field for the excited-state calculations, are deviated from the results by the iterative method about 0.1 eV, and the zeroth-order PCM SAC-CI cannot predict even the direction of solvent shifts in n-hexane for many cases. The first-order PCM SAC-CI is applied to studying the solvatochromisms of (2,2'-bipyridine)tetracarbonyltungsten [W(CO)4(bpy), bpy = 2,2'-bipyridine] and bis(pentacarbonyltungsten)pyrazine [(OC)5W(pyz)W(CO)5, pyz = pyrazine]. The SAC-CI calculations reveal the detailed character of the excited states and the mechanisms of solvent shifts. The energies of metal to ligand charge transfer states are significantly sensitive to solvents. The first-order PCM SAC-CI well reproduces the observed absorption spectra of the tungsten carbonyl complexes in several solvents.

  7. Super-atom molecular orbital excited states of fullerenes.

    Science.gov (United States)

    Johansson, J Olof; Bohl, Elvira; Campbell, Eleanor E B

    2016-09-13

    Super-atom molecular orbitals are orbitals that form diffuse hydrogenic excited electronic states of fullerenes with their electron density centred at the centre of the hollow carbon cage and a significant electron density inside the cage. This is a consequence of the high symmetry and hollow structure of the molecules and distinguishes them from typical low-lying molecular Rydberg states. This review summarizes the current experimental and theoretical studies related to these exotic excited electronic states with emphasis on femtosecond photoelectron spectroscopy experiments on gas-phase fullerenes.This article is part of the themed issue 'Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene'. © 2016 The Author(s).

  8. Structure and conformational dynamics of molecules in the excited electronic states: theory and experiment

    Science.gov (United States)

    Godunov, I. A.; Bataev, V. A.; Maslov, D. V.; Yakovlev, N. N.

    2017-01-01

    The structure of conformational non-rigid molecules in the excited electronic states are investigated by joint theoretical and experimental methods. The theoretical part of work consist of two stages. In first stage the ab initio quantum-chemical calculations are carried out using high level methods. In second stage the vibrational problems of the various dimensions are solved by variational method for vibrations of large amplitude. In experimental part of work the vibronic spectra are investigated: gas-phase absorption and also, fluorescence excitation spectra of jet-cooled molecules. Some examples are considered.

  9. Electronic, structural and optical properties of hydrogenated silicon nanocrystals: the role of the excited states

    Energy Technology Data Exchange (ETDEWEB)

    Cantele, G.; Ninno, D.; Iadonisi, G. [Coherentia-INFM and Universita di Napoli ' ' Federico II' ' - Dipartimento di Scienze Fisiche, Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Napoli (Italy); Degoli, Elena; Bisi, O.; Ossicini, Stefano [INFM-S' ' 3 and Dipartimento di Scienze e Metodi dell' Ingegneria, Universita di Modena e Reggio Emilia, via Fogliani, 42100 Reggio Emilia (Italy); Luppi, Eleonora; Magri, Rita [INFM-S' ' 3 and Dipartimento di Fisica, Universita di Modena e Reggio Emilia, via Campi 213/A, 41100 Modena (Italy)

    2005-06-01

    In this paper we report on a first-principle calculation of the electronic and structural properties of hydrogenated silicon nanocrystals both in the ground- and in an excited-state configuration. The presence of an electron-hole pair created under excitation is taken into account and its effects on both the electronic spectrum and the cluster geometry are pointed out. The interpretation of the results is done within a four-level model, which also allows the explanation of the experimentally observed Stokes shift. Size-related aspects are also analysed and discussed. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Depopulation of lowly excited ns-states of Rb colliding with the He atom

    Energy Technology Data Exchange (ETDEWEB)

    Verma, S.K. [Jagdam College, Chapra (India). Dept. of Physics; Khan, A.A. [ZAI College, Siwan (India). Dept. of Physics; Kumar, V. [Rajendra College, Chapra (India). Dept. of Physics; Kumar, A. [JP University, Chapra (India). Dept. of Physics

    1996-03-28

    A semiclassical impact-parameter method has been used to study the total depopulation of lowly excited ns-states of the Rb atom colliding with ground-state He in the thermal energy region. A fairly large basis set of STO has been used to generate MO states and then a 14-state calculation has been carried out to evaluate the total as well as individual cross sections for quenching. A comparative study with the previously investigated Li-He and Na-He pairs is also presented. (Author).

  11. Electronic excitation of molecules in solution calculated using the symmetry-adapted cluster–configuration interaction method in the polarizable continuum model

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Ryoichi, E-mail: fukuda@ims.ac.jp; Ehara, Masahiro [Institute for Molecular Science and Research Center for Computational Science, 38 Nishigo-naka, Myodaiji, Okazaki, 444-8585 (Japan); Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University Katsura, Kyoto 615-8520 (Japan)

    2015-12-31

    The effects from solvent environment are specific to the electronic states; therefore, a computational scheme for solvent effects consistent with the electronic states is necessary to discuss electronic excitation of molecules in solution. The PCM (polarizable continuum model) SAC (symmetry-adapted cluster) and SAC-CI (configuration interaction) methods are developed for such purposes. The PCM SAC-CI adopts the state-specific (SS) solvation scheme where solvent effects are self-consistently considered for every ground and excited states. For efficient computations of many excited states, we develop a perturbative approximation for the PCM SAC-CI method, which is called corrected linear response (cLR) scheme. Our test calculations show that the cLR PCM SAC-CI is a very good approximation of the SS PCM SAC-CI method for polar and nonpolar solvents.

  12. Minimal-excitation states for electron quantum optics using levitons.

    Science.gov (United States)

    Dubois, J; Jullien, T; Portier, F; Roche, P; Cavanna, A; Jin, Y; Wegscheider, W; Roulleau, P; Glattli, D C

    2013-10-31

    The on-demand generation of pure quantum excitations is important for the operation of quantum systems, but it is particularly difficult for a system of fermions. This is because any perturbation affects all states below the Fermi energy, resulting in a complex superposition of particle and hole excitations. However, it was predicted nearly 20 years ago that a Lorentzian time-dependent potential with quantized flux generates a minimal excitation with only one particle and no hole. Here we report that such quasiparticles (hereafter termed levitons) can be generated on demand in a conductor by applying voltage pulses to a contact. Partitioning the excitations with an electronic beam splitter generates a current noise that we use to measure their number. Minimal-excitation states are observed for Lorentzian pulses, whereas for other pulse shapes there are significant contributions from holes. Further identification of levitons is provided in the energy domain with shot-noise spectroscopy, and in the time domain with electronic Hong-Ou-Mandel noise correlations. The latter, obtained by colliding synchronized levitons on a beam splitter, exemplifies the potential use of levitons for quantum information: using linear electron quantum optics in ballistic conductors, it is possible to imagine flying-qubit operation in which the Fermi statistics are exploited to entangle synchronized electrons emitted by distinct sources. Compared with electron sources based on quantum dots, the generation of levitons does not require delicate nanolithography, considerably simplifying the circuitry for scalability. Levitons are not limited to carrying a single charge, and so in a broader context n-particle levitons could find application in the study of full electron counting statistics. But they can also carry a fraction of charge if they are implemented in Luttinger liquids or in fractional quantum Hall edge channels; this allows the study of Abelian and non-Abelian quasiparticles in the

  13. Quantum mechanical modeling of excited electronic states and their relationship to cathodoluminescence of BaZrO3

    OpenAIRE

    Moreira, Mario L.; Andrés Bort, Juan; Gracia Edo, Lourdes; Beltrán Flors, Armando; Montoro, Luciano A.; Varela, José A.; Longo, E.

    2013-01-01

    First-principles calculations set the comprehension over performance of novel cathodoluminescence (CL) properties of BaZrO3 prepared through microwave-assisted hydrothermal. Ground (singlet, s*) and excited (singlet s** and triplet t** ) electronic states were built from zirconium displacement of 0.2 Å in {001} direction. Each ground and excited states were characterized by the correlation of their corresponding geometry with electronic structures and Raman vibrational frequencies which were ...

  14. Sunlight-Initiated Photochemistry: Excited Vibrational States of Atmospheric Chromophores

    OpenAIRE

    Veronica Vaida; Karl J. Feierabend; Nabilah Rontu; Kaito Takahashi

    2008-01-01

    Atmospheric chemical reactions are often initiated by ultraviolet (UV) solar radiation since absorption in that wavelength range coincides to typical chemical bond energies. In this review, we present an alternative process by which chemical reactions occur with the excitation of vibrational levels in the ground electronic state by red solar photons. We focus on the O–H vibrational manifold which can be an atmospheric chromophore for driving vibrationally mediated overtone-induced chemical re...

  15. Probing excited electronic states and ionisation mechanisms of fullerenes

    OpenAIRE

    Johansson, Olof; Campbell, Eleanor E. B.

    2013-01-01

    Fullerenes are interesting model systems for probing the complex, fundamental electron dynamics and ionisation mechanisms of large molecules and nanoparticles. In this Tutorial Review we explain how recent experimental and theoretical advances are providing insight into the interesting phenomenon of thermal electron emission from molecular systems and the properties of hydrogenic, diffuse, excited electronic states, known as superatom molecular orbitals, which are responsible for relatively s...

  16. Lifetimes of excited states in neutron-rich Xe isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Ilieva, Stoyanka; Kroell, Thorsten [Institut fuer Kernphysik, TU Darmstadt (Germany); Collaboration: EXILL-FATIMA-Collaboration

    2016-07-01

    The EXILL and FATIMA campaign at ILL, Grenoble is the first prompt-fission γ-ray spectroscopy experiment performed with a mixed array of Ge detectors (EXILL) and fast LaBr{sub 3}(Ce) scintillators (FATIMA). The lifetimes of excited states, populated by neutron-induced fission of {sup 235}U and {sup 241}Pu targets, were directly measured. The high-resolution EXILL detector gives us the possibility to identify the nuclides of interest among the large amount of produced fission fragments. Using the generalized centroid difference method to analyse the data from FATIMA we could measure lifetimes down to ∼ 10 ps. The lifetime of an excited state is a direct measure for the strength (collectivity) of a transition. The properties of the excited states in even-even nuclei can be largely described by quadrupole and octupole degrees of freedom. This contribution will present the current status of the analysis for the neutron-rich even-even {sup 138,140,142}Xe isotopes which lie in the vicinity of the double shell closure Z=50 and N=82. Through the direct lifetime measurement we aim to study the evolution of quadrupole and octupole collectivity above {sup 132}Sn.

  17. Efficient enhancement of below-threshold harmonic generation by laser-driven excited states of Cs atom

    Science.gov (United States)

    Guo, Qiao-Ling; Li, Peng-Cheng; Zhou, Xiao-Xin; Chu, Shih-I.

    2018-03-01

    We propose an efficient method for the enhancement of below-threshold harmonic generation (BTHG) by mid-infrared laser-driven excited states of a Cs atom. The BTHG is calculated by solving three-dimensional time-dependent Schrödinger equation accurately and efficiently using the time-dependent generalized pseudospectral method. We adopt an excited state as the initial state of a Cs atom. As a result, the BTHG is significantly enhanced by two orders of magnitude compared with the case of the initial ground state. Furthermore, we find that a single vacuum-ultraviolet pulse can be generated by mid-infrared laser-driven excited states by superposing several below-threshold harmonics of a Cs atom. Our finding suggests that the generation of below-threshold harmonics by laser-driven excited states of an atom can provide a powerful methodology for the production of intense vacuum-ultraviolet pulses.

  18. Low-rank spectral expansions of two electron excitations for the acceleration of quantum chemistry calculations.

    Science.gov (United States)

    Schwerdtfeger, Christine A; Mazziotti, David A

    2012-12-28

    Treatment of two-electron excitations is a fundamental but computationally expensive part of ab initio calculations of many-electron correlation. In this paper we develop a low-rank spectral expansion of two-electron excitations for accelerated electronic-structure calculations. The spectral expansion differs from previous approaches by relying upon both (i) a sum of three expansions to increase the rank reduction of the tensor and (ii) a factorization of the tensor into geminal (rank-two) tensors rather than orbital (rank-one) tensors. We combine three spectral expansions from the three distinct forms of the two-electron reduced density matrix (2-RDM), (i) the two-particle (2)D, (ii) the two-hole (2)Q, and the (iii) particle-hole (2)G matrices, to produce a single spectral expansion with significantly accelerated convergence. While the resulting expansion is applicable to any quantum-chemistry calculation with two-particle excitation amplitudes, it is employed here in the parametric 2-RDM method [D. A. Mazziotti, Phys. Rev. Lett. 101, 253002 (2008)]. The low-rank parametric 2-RDM method scales quartically with the basis-set size, but like its full-rank version it can capture multi-reference correlation effects that are difficult to treat efficiently by traditional single-reference wavefunction methods. Applications are made to computing potential energy curves of HF and triplet OH(+), equilibrium bond distances and frequencies, the HCN-HNC isomerization, and the energies of hydrocarbon chains. Computed 2-RDMs nearly satisfy necessary N-representability conditions. The low-rank spectral expansion has the potential to expand the applicability of the parametric 2-RDM method as well as other ab initio methods to large-scale molecular systems that are often only treatable by mean-field or density functional theories.

  19. Rotational Spectra in 29 Vibrationally Excited States of Interstellar Aminoacetonitrile

    Energy Technology Data Exchange (ETDEWEB)

    Kolesniková, L.; Alonso, E. R.; Mata, S.; Alonso, J. L. [Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Área de Química-Física, Laboratorios de Espectroscopia y Bioespectroscopia, Parque Científico UVa, Unidad Asociada CSIC, Universidad de Valladolid, E-47011 Valladolid (Spain)

    2017-04-01

    We report a detailed spectroscopic investigation of the interstellar aminoacetonitrile, a possible precursor molecule of glycine. Using a combination of Stark and frequency-modulation microwave and millimeter wave spectroscopies, we observed and analyzed the room-temperature rotational spectra of 29 excited states with energies up to 1000 cm{sup −1}. We also observed the {sup 13}C isotopologues in the ground vibrational state in natural abundance (1.1%). The extensive data set of more than 2000 new rotational transitions will support further identifications of aminoacetonitrile in the interstellar medium.

  20. Beyond Time-Dependent Density Functional Theory Using Only Single Excitations: Methods for Computational Studies of Excited States in Complex Systems.

    Science.gov (United States)

    Herbert, John M; Zhang, Xing; Morrison, Adrian F; Liu, Jie

    2016-05-17

    Franck-Condon region, but we describe a "spin-complete" version of the theory in which proper spin eigenstates are obtained by construction. For systems of coupled chromophores, we have developed an ab initio version of the Frenkel-Davydov exciton model in which collective excitations of the system are expanded in a basis of excited states computed for individual chromophores. The monomer calculations are trivially parallelizable, as is computation of the coupling matrix elements needed to construct the exciton Hamiltonian, and systems containing hundreds of chromophores can be tackled on commodity hardware. This enables calculations on organic semiconductors, where even small model systems exhibit a semicontinuum of excited states that renders traditional TDDFT computationally challenging. Despite including only single excitations on each monomer, the exciton model can describe entangled spins on two or more monomers, an effect that is responsible for excitation energy transfer between chromophores, for example, in singlet fission. Excitonic approximations can also be applied to the TDDFT equations themselves, and a particularly promising application is to describe the effects of environment on an excitation that is localized on a single chromophore. This "local excitation approximation" to TDDFT allows an essentially arbitrary number of solvent molecules to be included in the calculation in a highly parallelizable way such that the time-to-solution increases only very slowly as additional solvent molecules are added. It is therefore possible to converge the calculation with respect to describing an ever-larger portion of the environment at a quantum-mechanical level.

  1. Excited State Atom-Ion Charge-Exchange

    Science.gov (United States)

    Li, Ming; Makrides, Constantinos; Petrov, Alexander; Kotochigova, Svetlana

    2017-04-01

    We theoretically investigate the exothermic charge-exchange reaction between an excited atom and a ground-state positive ion. In particular, we focus on MOT-excited Ca*(4s4p 1P) atoms colliding with ground-state Yb+ ions, which are under active study by the experimental group of E. Hudson at UCLA. Collisions between an excited atom and an ion are guided by two major contributions to the long-range interaction potentials, the induction C4 /R4 and charge-quadrupole C3 /R3 potentials, and their coupling by the electron-exchange interaction. Our model of these forces leads to close-coupling equations for multiple reaction channels. We find several avoided crossings between the potentials that couple to the nearby asymptotic limits of Yb*+Ca+, some of which can possibly provide large charge exchange rate coefficients above 10-10 cm3 / s. We acknowledge support from the US Army Research Office, MURI Grants W911NF-14-1-0378 and the US National Science Foundation, Grant PHY-1619788.

  2. Excited state non-adiabatic dynamics of N-methylpyrrole: A time-resolved photoelectron spectroscopy and quantum dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Guorong [National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023 (China); Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Neville, Simon P. [Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5 (Canada); Schalk, Oliver [National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Department of Physics, AlbaNova University Center, Stockholm University, Roslagstullsbacken 21, 106 91 Stockholm (Sweden); Sekikawa, Taro [Department of Applied Physics, Hokkaido University, Kita-13 Nishi-8, Kita-ku, Sapporo 060-8628 (Japan); Ashfold, Michael N. R. [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Worth, Graham A. [School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Stolow, Albert, E-mail: astolow@uottawa.ca [National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5 (Canada); Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5 (Canada)

    2016-01-07

    The dynamics of N-methylpyrrole following excitation at wavelengths in the range 241.5-217.0 nm were studied using a combination of time-resolved photoelectron spectroscopy (TRPES), ab initio quantum dynamics calculations using the multi-layer multi-configurational time-dependent Hartree method, as well as high-level photoionization cross section calculations. Excitation at 241.5 and 236.2 nm results in population of the A{sub 2}(πσ{sup ∗}) state, in agreement with previous studies. Excitation at 217.0 nm prepares the previously neglected B{sub 1}(π3p{sub y}) Rydberg state, followed by prompt internal conversion to the A{sub 2}(πσ{sup ∗}) state. In contrast with the photoinduced dynamics of pyrrole, the lifetime of the wavepacket in the A{sub 2}(πσ{sup ∗}) state was found to vary with excitation wavelength, decreasing by one order of magnitude upon tuning from 241.5 nm to 236.2 nm and by more than three orders of magnitude when excited at 217.0 nm. The order of magnitude difference in lifetimes measured at the longer excitation wavelengths is attributed to vibrational excitation in the A{sub 2}(πσ{sup ∗}) state, facilitating wavepacket motion around the potential barrier in the N–CH{sub 3} dissociation coordinate.

  3. LoFEx — A local framework for calculating excitation energies: Illustrations using RI-CC2 linear response theory

    Science.gov (United States)

    Baudin, Pablo; Kristensen, Kasper

    2016-06-01

    We present a local framework for the calculation of coupled cluster excitation energies of large molecules (LoFEx). The method utilizes time-dependent Hartree-Fock information about the transitions of interest through the concept of natural transition orbitals (NTOs). The NTOs are used in combination with localized occupied and virtual Hartree-Fock orbitals to generate a reduced excitation orbital space (XOS) specific to each transition where a standard coupled cluster calculation is carried out. Each XOS is optimized to ensure that the excitation energies are determined to a predefined precision. We apply LoFEx in combination with the RI-CC2 model to calculate the lowest excitation energies of a set of medium-sized organic molecules. The results demonstrate the black-box nature of the LoFEx approach and show that significant computational savings can be gained without affecting the accuracy of CC2 excitation energies.

  4. Acceleration of a ground-state reaction by selective femtosecond-infrared-laser-pulse excitation

    Science.gov (United States)

    Stensitzki, Till; Yang, Yang; Kozich, Valeri; Ahmed, Ashour A.; Kössl, Florian; Kühn, Oliver; Heyne, Karsten

    2018-02-01

    Infrared (IR) excitation of vibrations that participate in the reaction coordinate of an otherwise thermally driven chemical reaction are believed to lead to its acceleration. Attempts at the practical realization of this concept have been hampered so far by competing processes leading to sample heating. Here we demonstrate, using femtosecond IR-pump IR-probe experiments, the acceleration of urethane and polyurethane formation due to vibrational excitation of the reactants for 1:1 mixtures of phenylisocyanate and cyclohexanol, and toluene-2,4-diisocyanate and 2,2,2-trichloroethane-1,1-diol, respectively. We measured reaction rate changes upon selective vibrational excitation with negligible heating of the sample and observed an increase of the reaction rate up to 24%. The observation is rationalized using reactant and transition-state structures obtained from quantum chemical calculations. We subsequently used IR-driven reaction acceleration to write a polyurethane square on sample windows using a femtosecond IR pulse.

  5. Doppler- and recoil-free laser excitation of Rydberg states via three-photon transitions

    Energy Technology Data Exchange (ETDEWEB)

    Ryabtsev, I. I.; Beterov, I. I.; Tretyakov, D. B.; Entin, V. M.; Yakshina, E. A. [A. V. Rzhanov Institute of Semiconductor Physics SB RAS, Prospekt Lavrentyeva 13, 630090 Novosibirsk (Russian Federation)

    2011-11-15

    Three-photon laser excitation of Rydberg states by three different laser beams can be arranged in a starlike geometry that simultaneously eliminates the recoil effect and Doppler broadening. Our analytical and numerical calculations for a particular laser excitation scheme 5S{sub 1/2}{yields}5P{sub 3/2}{yields}6S{sub 1/2}{yields}nP in Rb atoms have shown that, compared to the one- and two-photon laser excitation, this approach provides much narrower linewidth and longer coherence time for both cold atom samples and hot vapors, if the intermediate one-photon resonances of the three-photon transition are detuned by more than respective single-photon Doppler widths. This method can be used to improve fidelity of Rydberg quantum gates and precision of spectroscopic measurements in Rydberg atoms.

  6. A New Method To Evaluate Excited States Lifetimes Based on Green's Function: Application to Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Sulzer, David; Iuchi, Satoru; Yasuda, Koji

    2016-07-12

    Dye-sensitized solar cell (DSSCs) are the promising device for electricity generation. However, the initial stage in which an electron is injected from a dye to the semiconductor has not been precisely understood. Standard quantum chemistry methods cannot handle infinite number of orbitals coming from the band structure of the semiconductor, whereas solid state calculations cannot handle many excited states at a reasonable computational cost. In this regard, we propose a new method to evaluate lifetimes of many excited states of a molecule on a semi-infinite surface. On the basis of the theory of resonance state, the effect of the semi-infinite semiconductor is encoded into the complex self-energy from surface Green's function. The lifetimes of excited states are evaluated through the imaginary part of the self-energy, and the self-energy correction is included into excitation energies obtained from time-dependent density functional theory calculations. This new method is applied to a DSSC system composed of black dye attached to the TiO2 semiconductor, and the computed lifetimes are linked to the natures of excited states and to the surface properties. The present method provides the firm ground for analysis of interplay between many excited states of the dye and band structure of the semiconductor.

  7. Comparison of calculated and experimentally resolved rate constants for excitation energy transfer in C-phycocyanin. 1. Monomers

    Energy Technology Data Exchange (ETDEWEB)

    Debreczeny, M.P.; Sauer, K. [Lawrence Berkeley Lab., CA (United States); Zhou, J.; Bryant, D.A. [Pennsylvania State Univ., University Park, PA (United States)

    1995-05-18

    Rate constants for excitation energy transfer in light-harvesting protein, C-phycocyanin (PC), in the monomeric aggregation state, isolated from the cyanobacterium cynechococcus sp. PCC 7002, are calculated, using Foerster theory and compared with the results of time-resolved fluorescence measurements. The assignments of the energy-transfer rate constants in PC monomers are confirmed here by time-resolved fluorescence anisotropy measurements of the PC monomers isolated from both the wild-type and a mutant strain (cpcB/C155S) whose PC is missing the {beta}{sub 155} chromophore. It is concluded that the Foerster model of resonant energy transfer in the weak coupling limit successfully describes the dominant energy-transfer processes in this protein in the monomeric state. 31 refs., 3 figs., 4 tabs.

  8. Application of spectroscopy and super-resolution microscopy: Excited state

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Ujjal [Iowa State Univ., Ames, IA (United States)

    2016-02-19

    Photophysics of inorganic materials and organic molecules in complex systems have been extensively studied with absorption and emission spectroscopy.1-4 Steady-state and time-resolved fluorescence studies are commonly carried out to characterize excited-state properties of fluorophores. Although steady-state fluorescence measurements are widely used for analytical applications, time-resolved fluorescence measurements provide more detailed information about excited-state properties and the environment in the vicinity of the fluorophore. Many photophysical processes, such as photoinduced electron transfer (PET), rotational reorientation, solvent relaxation, and energy transfer, occur on a nanosecond (10-9 s) timescale, thus affecting the lifetime of the fluorophores. Moreover, time-resolved microscopy methods, such as lifetimeimaging, combine the benefits of the microscopic measurement and information-rich, timeresolved data. Thus, time-resolved fluorescence spectroscopy combined with microscopy can be used to quantify these processes and to obtain a deeper understanding of the chemical surroundings of the fluorophore in a small area under investigation. This thesis discusses various photophysical and super-resolution microscopic studies of organic and inorganic materials, which have been outlined below.

  9. Coherence, energy and charge transfers in de-excitation pathways of electronic excited state of biomolecules in photosynthesis

    DEFF Research Database (Denmark)

    Bohr, Henrik; Malik, F. Bary

    2013-01-01

    The observed multiple de-excitation pathways of photo-absorbed electronic excited state in the peridinin–chlorophyll complex, involving both energy and charge transfers among its constituents, are analyzed using the bio-Auger (B-A) theory. It is also shown that the usually used F¨orster–Dexter th...

  10. Excited-State N2 Dissociation Pathway on Fe-Functionalized Au.

    Science.gov (United States)

    Martirez, John Mark P; Carter, Emily A

    2017-03-29

    Localized surface plasmon resonances (LSPRs) offer the possibility of light-activated chemical catalysis on surfaces of strongly plasmonic metal nanoparticles. This technology relies on lower-barrier bond formation and/or dissociation routes made available through energy transfer following the eventual decay of LSPRs. The coupling between these decay processes and a chemical trajectory (nuclear motion, charge-transfer, intersystem crossing, etc.) dictates the availability of these alternative (possibly lower barrier) excited-state channels. The Haber-Bosch method of NH3 synthesis from N2 and H2 is notoriously energy intensive. This is due to the difficulty of N2 dissociation despite the overall reaction being thermodynamically favorable at ambient temperatures and pressures. LSPRs may provide means to improve the kinetics of N2 dissociation via induced resonance electronic excitation. In this work, we calculate, via embedded n-electron valence second-order perturbation theory within the density functional embedding theory, the excited-state potential energy surfaces for dissociation of N2 on an Fe-doped Au(111) surface. This metal alloy may take advantage simultaneously of the strong LSPR of Au and the catalytic activity of Fe toward N2 dissociation. We find the ground-state dissociation activation energy to be 4.74 eV/N2, with Fe as the active site on the surface. Consecutive resonance energy transfers (RETs) may be accessed due to the availability of many electronically excited states with intermediate energies arising from the metal surface that may couple to states induced by the Fe-dopant and the adsorbate molecule, and crossing between excited states may effectively lower the dissociation barrier to 1.33 eV. Our work illustrates that large energetic barriers, prohibitive toward chemical reaction, may be overcome through multiple RETs facilitating an otherwise difficult chemical process.

  11. Laguerre polynomial excited coherent state: generation and nonclassical properties

    Science.gov (United States)

    Ye, Wei; Zhou, Weidong; Zhang, Haoliang; Liu, Cunjin; Huang, Jiehui; Hu, Liyun

    2017-11-01

    We propose a theoretical protocol to generate a kind of non-Gaussian state—a Laguerre polynomial excited coherent state (LPECS) by exploiting a two-mode squeezing transformation and a conditional measurement with a coherent state input. Then we investigate the nonclassical features of the LPECS according to the Glauber-Sudarshan P(α ) function, photon number distribution, Mandel’s Q parameter, second-order correlation function, and squeezing properties as well as negative Wigner distribution. Our results show that the generated output state presents obvious nonclassical properties which can be modulated by a coherent amplitude, a squeezing parameter and a conditional measurement. In particular, the squeezing and negative Wigner function are clear.

  12. Excited-State Dynamics of Oxyluciferin in Firefly Luciferase.

    Science.gov (United States)

    Snellenburg, Joris J; Laptenok, Sergey P; DeSa, Richard J; Naumov, Panče; Solntsev, Kyril M

    2016-12-21

    The color variations of light emitted by some natural and mutant luciferases are normally attributed to collective factors referred to as microenvironment effects; however, the exact nature of these interactions between the emitting molecule (oxyluciferin) and the active site remains elusive. Although model studies of noncomplexed oxyluciferin and its variants have greatly advanced the understanding of its photochemistry, extrapolation of the conclusions to the real system requires assumptions about the polarity and proticity of the active site. To decipher the intricate excited-state dynamics, global and target analysis is performed here for the first time on the steady-state and time-resolved spectra of firefly oxyluciferin complexed with luciferase from the Japanese firefly (Luciola cruciata). The experimental steady-state and time-resolved luminescence spectra of the oxyluciferin/luciferase complex in solution are compared with the broadband time-resolved firefly bioluminescence recorded in vivo. The results demonstrate that de-excitation of the luminophore results in a complex cascade of photoinduced proton transfer processes and can be interpreted by the pH dependence of the emitted light. It is confirmed that proton transfer is the central event in the spectrochemistry of this system for which any assignment of the pH-dependent emission to a single chemical species would be an oversimplification.

  13. Excited-State Dynamics of Oxyluciferin in Firefly Luciferase

    KAUST Repository

    Snellenburg, Joris J.

    2016-11-23

    The color variations of light emitted by some natural and mutant luciferases are normally attributed to collective factors referred to as microenvironment effects; however, the exact nature of these interactions between the emitting molecule (oxyluciferin) and the active site remains elusive. Although model studies of noncomplexed oxyluciferin and its variants have greatly advanced the understanding of its photochemistry, extrapolation of the conclusions to the real system requires assumptions about the polarity and proticity of the active site. To decipher the intricate excited-state dynamics, global and target analysis is performed here for the first time on the steady-state and time-resolved spectra of firefly oxyluciferin complexed with luciferase from the Japanese firefly (Luciola cruciata). The experimental steady-state and time resolved luminescence spectra of the oxyluciferin/luciferase complex in solution are compared with the broadband time-resolved firefly bioluminescence recorded in vivo. The results demonstrate that de-excitation of the luminophore results in a complex cascade of photoinduced proton transfer processes and can be interpreted by the pH dependence of the emitted light. It is confirmed that proton transfer is the central event in the spectrochemistry of this system for which any assignment of the pH dependent emission to a single chemical species would be an oversimplification.

  14. Probing excited electronic states and ionisation mechanisms of fullerenes.

    Science.gov (United States)

    Johansson, J Olof; Campbell, Eleanor E B

    2013-07-07

    Fullerenes are interesting model systems for probing the complex, fundamental electron dynamics and ionisation mechanisms of large molecules and nanoparticles. In this Tutorial Review we explain how recent experimental and theoretical advances are providing insight into the interesting phenomenon of thermal electron emission from molecular systems and the properties of hydrogenic, diffuse, excited electronic states, known as superatom molecular orbitals, which are responsible for relatively simple, well-resolved structure in fs laser photoelectron spectra of fullerenes. We focus on the application of velocity map imaging combined with fs laser photoionisation to study angular-resolved photoelectron emission.

  15. Role of excited state solvent fluctuations on time-dependent fluorescence Stokes shift

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tanping, E-mail: tanping@lsu.edu, E-mail: revatik@lsu.edu; Kumar, Revati, E-mail: tanping@lsu.edu, E-mail: revatik@lsu.edu [Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803 (United States)

    2015-11-07

    We explore the connection between the solvation dynamics of a chromophore upon photon excitation and equilibrium fluctuations of the solvent. Using molecular dynamics simulations, fluorescence Stokes shift for the tryptophan in Staphylococcus nuclease was examined using both nonequilibrium calculations and linear response theory. When the perturbed and unperturbed surfaces exhibit different solvent equilibrium fluctuations, the linear response approach on the former surface shows agreement with the nonequilibrium process. This agreement is excellent when the perturbed surface exhibits Gaussian statistics and qualitative in the case of an isomerization induced non-Gaussian statistics. However, the linear response theory on the unperturbed surface breaks down even in the presence of Gaussian fluctuations. Experiments also provide evidence of the connection between the excited state solvent fluctuations and the total fluorescence shift. These observations indicate that the equilibrium statistics on the excited state surface characterize the relaxation dynamics of the fluorescence Stokes shift. Our studies specifically analyze the Gaussian fluctuations of the solvent in the complex protein environment and further confirm the role of solvent fluctuations on the excited state surface. The results are consistent with previous investigations, found in the literature, of solutes dissolved in liquids.

  16. Observation of excited state charge transfer with fs/ps-CARS

    Energy Technology Data Exchange (ETDEWEB)

    Blom, Alex Jason [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Excited state charge transfer processes are studied using the fs/ps-CARS probe technique. This probe allows for multiplexed detection of Raman active vibrational modes. Systems studied include Michler's Ketone, Coumarin 120, 4-dimethylamino-4'-nitrostilbene, and several others. The vibrational spectrum of the para di-substituted benzophenone Michler's Ketone in the first excited singlet state is studied for the first time. It is found that there are several vibrational modes indicative of structural changes of the excited molecule. A combined experimental and theoretical approach is used to study the simplest 7-amino-4-methylcoumarin, Coumarin 120. Vibrations observed in FTIR and spontaneous Raman spectra are assigned using density functional calculations and a continuum solvation model is used to predict how observed modes are affected upon inclusion of a solvent. The low frequency modes of the excited state charge transfer species 4-dimethylamino-4{prime}-nitrostilbene are studied in acetonitrile. Results are compared to previous work on this molecule in the fingerprint region. Finally, several partially completed projects and their implications are discussed. These include the two photon absorption of Coumarin 120, nanoconfinement in cyclodextrin cavities and sensitization of titania nanoparticles.

  17. Observation of interference effects via four photon excitation of highly excited Rydberg states in thermal cesium vapor

    CERN Document Server

    Kondo, Jorge M; Guttridge, Alex; Wade, Christopher G; De Melo, Natalia R; Adams, Charles S; Weatherill, Kevin J

    2015-01-01

    We report on the observation of Electromagnetically Induced Transparency (EIT) and Absorption (EIA) of highly-excited Rydberg states in thermal Cs vapor using a 4-step excitation scheme. The advantage of this 4-step scheme is that the final transition to the Rydberg state has a large dipole moment and one can achieve similar Rabi frequencies to 2 or 3 step excitation schemes using two orders of magnitude less laser power. Consequently each step is driven by a relatively low power infra-red diode laser opening up the prospect for new applications. The observed lineshapes are in good agreement with simulations based on multilevel optical Bloch equations.

  18. A benchmark study of electronic excitation energies, transition moments, and excited-state energy gradients on the nicotine molecule

    Energy Technology Data Exchange (ETDEWEB)

    Egidi, Franco, E-mail: franco.egidi@sns.it; Segado, Mireia; Barone, Vincenzo, E-mail: vincenzo.barone@sns.it [Scuola Normale Superiore, Piazza dei Cavalieri, 7 I-56126 Pisa (Italy); Koch, Henrik [Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim (Norway); Cappelli, Chiara [Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via G. Moruzzi, 3 I-56124 Pisa (Italy)

    2014-12-14

    In this work, we report a comparative study of computed excitation energies, oscillator strengths, and excited-state energy gradients of (S)-nicotine, chosen as a test case, using multireference methods, coupled cluster singles and doubles, and methods based on time-dependent density functional theory. This system was chosen because its apparent simplicity hides a complex electronic structure, as several different types of valence excitations are possible, including n-π{sup *}, π-π{sup *}, and charge-transfer states, and in order to simulate its spectrum it is necessary to describe all of them consistently well by the chosen method.

  19. Electronic structures and population dynamics of excited states of xanthione and its derivatives

    Science.gov (United States)

    Fedunov, Roman G.; Rogozina, Marina V.; Khokhlova, Svetlana S.; Ivanov, Anatoly I.; Tikhomirov, Sergei A.; Bondarev, Stanislav L.; Raichenok, Tamara F.; Buganov, Oleg V.; Olkhovik, Vyacheslav K.; Vasilevskii, Dmitrii A.

    2017-09-01

    A new compound, 1,3-dimethoxy xanthione (DXT), has been synthesized and its absorption (stationary and transient) and luminescence spectra have been measured in n-hexane and compared with xanthione (XT) spectra. The pronounced broadening of xanthione vibronic absorption band related to the electronic transition to the second singlet excited state has been observed. Distinctions between the spectra of xanthione and its methoxy derivatives are discussed. Quantum chemical calculations of these compounds in the ground and excited electronic states have been accomplished to clarify the nature of electronic spectra changes due to modification of xanthione by methoxy groups. Appearance of a new absorption band of DXT caused by symmetry changes has been discussed. Calculations of the second excited state structure of xanthione and its methoxy derivatives confirm noticeable charge transfer (about 0.1 of the charge of an electron) from the methoxy group to thiocarbonyl group. Fitting of the transient spectra of XT and DXT has been fulfilled and the time constants of internal conversion S2 →S1 and intersystem crossing S1 →T1 have been determined. A considerable difference between the time constants of internal conversion S2 →S1 in XT and DXT is uncovered.

  20. The Astrophysical Weeds: Rotational Transitions in Excited Vibrational States

    Science.gov (United States)

    Alonso, José L.; Kolesniková, Lucie; Alonso, Elena R.; Mata, Santiago

    2017-06-01

    The number of unidentified lines in the millimeter and submillimeter wave surveys of the interstellar medium has grown rapidly. The major contributions are due to rotational transitions in excited vibrational states of a relatively few molecules that are called the astrophysical weeds. necessary data to deal with spectral lines from astrophysical weeds species can be obtained from detailed laboratory rotational measurements in the microwave and millimeter wave region. A general procedure is being used at Valladolid combining different time and/or frequency domain spectroscopic tools of varying importance for providing the precise set of spectroscopic constants that could be used to search for this species in the ISM. This is illustrated in the present contribution through its application to several significant examples. Fortman, S. M., Medvedev, I. R., Neese, C.F., & De Lucia, F.C. 2010, ApJ,725, 1682 Rotational Spectra in 29 Vibrationally Excited States of Interstellar Aminoacetonitrile, L. Kolesniková, E. R. Alonso, S. Mata, and J. L. Alonso, The Astrophysical Journal Supplement Series 2017, (in press).

  1. Probing the Locality of Excited States with Linear Algebra.

    Science.gov (United States)

    Etienne, Thibaud

    2015-04-14

    This article reports a novel theoretical approach related to the analysis of molecular excited states. The strategy introduced here involves gathering two pieces of physical information, coming from Hilbert and direct space operations, into a general, unique quantum mechanical descriptor of electronic transitions' locality. Moreover, the projection of Hilbert and direct space-derived indices in an Argand plane delivers a straightforward way to visually probe the ability of a dye to undergo a long- or short-range charge-transfer. This information can be applied, for instance, to the analysis of the electronic response of families of dyes to light absorption by unveiling the trend of a given push-pull chromophore to increase the electronic cloud polarization magnitude of its main transition with respect to the size extension of its conjugated spacer. We finally demonstrate that all the quantities reported in this article can be reliably approximated by a linear algebraic derivation, based on the contraction of detachment/attachment density matrices from canonical to atomic space. This alternative derivation has the remarkable advantage of a very low computational cost with respect to the previously used numerical integrations, making fast and accurate characterization of large molecular systems' excited states easily affordable.

  2. Connected triple excitations in coupled-cluster calculations of hyperpolarizabilities: Neon

    Science.gov (United States)

    Rice, Julia E.; Scuseria, Gustavo E.; Lee, Timothy J.; Taylor, Peter R.; Almloef, Jan

    1992-01-01

    We have calculated the second hyperpolarizability gamma of neon using the CCSD(T) method. The accuracy of the CCSD(T) approach has been established by explicit comparison with the single, double and triple excitation coupled-cluster (CCSDT) method using extended basis sets that are known to be adequate for the description of gamma. Our best estimate for gamma(sub 0) of 110 +/- 3 a.u. is in good agreement with other recent theoretical values and with Shelton's recent experimental estimate of 108 +/- 2 a.u. Comparison of the MP2 and CCSD(T) hyperpolarizability values indicates that MP2 gives a very good description of the electron correlation contribution to gamma(sub 0). We have combined MP2 frequency-dependent corrections with the CCSD(T) gamma(sub 0) to yield values of gamma(-2 omega;omega,omega,0) and gamma(exp K)(-omega;omega,0,0).

  3. On large amplitude motions of simplest amides in the ground and excited electronic states

    Science.gov (United States)

    Tukachev, N. V.; Bataev, V. A.; Godunov, I. A.

    2017-01-01

    For the formamide, acetamide, N-methylformamide and N-methylacetamide molecules in the ground (S0) and lowest excited singlet (S1) and triplet (T1) electronic states equilibrium geometry parameters, harmonic vibrational frequencies, barriers to conformational transitions and conformer energy differences were estimated by means of MP2, CCSD(T), CASSCF, CASPT2 and MRCI ab initio methods. One-, two- and three-dimensional potential energy surface (PES) sections corresponding to different large amplitude motions (LAM) were calculated by means of MP2/aug-cc-pVTZ (S0) and CASPT2/cc-pVTZ (S1,T1). For these molecules, in each excited electronic state six minima were found on 2D PES sections. Using PES sections, different anharmonic vibrational problems were solved and the frequencies of large amplitude vibrations were determined.

  4. On large amplitude motions of simplest amides in the ground and excited electronic states

    Directory of Open Access Journals (Sweden)

    Tukachev N.V.

    2017-01-01

    Full Text Available For the formamide, acetamide, N-methylformamide and N-methylacetamide molecules in the ground (S0 and lowest excited singlet (S1 and triplet (T1 electronic states equilibrium geometry parameters, harmonic vibrational frequencies, barriers to conformational transitions and conformer energy differences were estimated by means of MP2, CCSD(T, CASSCF, CASPT2 and MRCI ab initio methods. One-, two- and three-dimensional potential energy surface (PES sections corresponding to different large amplitude motions (LAM were calculated by means of MP2/aug-cc-pVTZ (S0 and CASPT2/cc-pVTZ (S1,T1. For these molecules, in each excited electronic state six minima were found on 2D PES sections. Using PES sections, different anharmonic vibrational problems were solved and the frequencies of large amplitude vibrations were determined.

  5. Trapped electronic states in YAG crystal excited by femtosecond radiation

    Energy Technology Data Exchange (ETDEWEB)

    Zavedeev, E.V.; Kononenko, V.V.; Konov, V.I. [General Physics Institute of RAS, Moscow (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation)

    2017-07-15

    The excitation of an electronic subsystem of an yttrium aluminum garnet by 800 nm femtosecond radiation was studied theoretically and experimentally. The spatio-temporal dynamics of the refractive index (n) inside the beam waist was explored by means of the pump-probe interferometric technique with a submicron resolution. The observed increase in n indicated the formation of bound electronic states relaxed for ∝ 150 ps. We showed that the experimental data agreed with the computational simulation based on the numerical solution of the nonlinear Schroedinger equation only if these transient states were considered to arise from a direct light-induced process but not from the decay of radiatively generated free-electron-hole pairs. (orig.)

  6. Electron impact excitation cross sections and rates from the ground state of atomic calcium

    CERN Document Server

    Samson, A M

    2001-01-01

    New R-matrix calculations are presented for electron excitation of atomic calcium. The target state expansion includes 22 states: 4s sup 2 sup 1 S; 4snl sup 1 sup , sup 3 L, where nl is 3d, 4p, 5s, 5p, 4d and 4f; 3d4p sup 1 sup , sup 3 P,D,F; and 4p sup 2 sup 3 P, sup 1 D, sup 1 S terms. The calculation is in LS coupling, and configuration interaction involving 3p subshell correlation is included. Electron impact excitation cross sections from the 4s sup 2 ground state to the next 10 states are tabulated for low energies, and thermally averaged effective collision strengths are tabulated over a range of electron temperatures from 1000 to 10,000 K. Comparisons are made with previous cross sections calculations for the 4s sup 2 -4s4p sup 3 P deg. transition; excellent agreement is found with experimentally derived rates for 4s sup 2 -4s4p sup 1 P deg

  7. Phonon-like excitations in the two-state Bose-Hubbard model

    Directory of Open Access Journals (Sweden)

    I.V. Stasyuk

    2015-12-01

    Full Text Available The spectrum of phonon-like collective excitations in the system of Bose-atoms in optical lattice (more generally, in the system of quantum particles described by the Bose-Hubbard model is investigated. Such excitations appear due to displacements of particles with respect to their local equilibrium positions. The two-level model taking into account the transitions of bosons between the ground state and the first excited state in potential wells, as well as interaction between them, is used. Calculations are performed within the random phase approximation in the hard-core boson limit. It is shown that excitation spectrum in normal phase consists of the one exciton-like band, while in the phase with BE condensate an additional band appears. The positions, spectral weights and widths of bands strongly depend on chemical potential of bosons and temperature. The conditions of stability of a system with respect to the lowering of symmetry and displacement modulation are discussed.

  8. Excited-state properties from ground-state DFT descriptors: A QSPR approach for dyes.

    Science.gov (United States)

    Fayet, Guillaume; Jacquemin, Denis; Wathelet, Valérie; Perpète, Eric A; Rotureau, Patricia; Adamo, Carlo

    2010-02-26

    This work presents a quantitative structure-property relationship (QSPR)-based approach allowing an accurate prediction of the excited-state properties of organic dyes (anthraquinones and azobenzenes) from ground-state molecular descriptors, obtained within the (conceptual) density functional theory (DFT) framework. The ab initio computation of the descriptors was achieved at several levels of theory, so that the influence of the basis set size as well as of the modeling of environmental effects could be statistically quantified. It turns out that, for the entire data set, a statistically-robust four-variable multiple linear regression based on PCM-PBE0/6-31G calculations delivers a R(adj)(2) of 0.93 associated to predictive errors allowing for rapid and efficient dye design. All the selected descriptors are independent of the dye's family, an advantage over previously designed QSPR schemes. On top of that, the obtained accuracy is comparable to the one of the today's reference methods while exceeding the one of hardness-based fittings. QSPR relationships specific to both families of dyes have also been built up. This work paves the way towards reliable and computationally affordable color design for organic dyes. Copyright 2009 Elsevier Inc. All rights reserved.

  9. Theoretical Studies of Possible Synthetic Routes for the High Energy Density Material Td N4: Excited Electronic States

    Science.gov (United States)

    Lee, Timothy J.; Dateo, Christopher E.

    2001-01-01

    Vertical electronic excitation energies for single states have been computed for the high energy density material (HEDM) Td N4 in order to assess possible synthetic routes that originate from excited electronic states of N2 molecules. Several ab initio theoretical approaches have been used, including complete active space self-consistent field (CASSCF), state averaged CASSCF (SA-CASSCF), singles configuration interaction (CIS), CIS with second-order and third-order correlation corrections [CIS(D)) and CIS(3)], and linear response singles and doubles coupled-cluster (LRCCSD), which is the highest level of theory employed. Standard double zeta polarized (DZP) and triple zeta double polarized (TZ2P) one-particle basis sets were used. The CASSCF calculations are found to overestimate the excitation energies, while the SA-CASSCF approach rectifies this error to some extent, but not completely. The accuracy of the CIS calculations varied depending on the particular state, while the CIS(D), CIS(3), and LRCCSD results are in generally good agreement. Based on the LRCCSD calculations, the lowest six excited singlet states are 9.35(l(sup)T1), 10.01(l(sup)T2), 10.04(1(sup)A2), 10.07(1(sup)E), 10.12(2(sup)T1), and 10.42(2(sup)T2) eV above the ground state, respectively. Comparison of these excited state energies with the energies of possible excited states of N2+N2 fragments, leads us to propose that the most likely synthetic route for Td N4 involving this mechanism arises from combination of two bound quintet states of N2.

  10. An accurate density functional theory calculation for electronic excitation energies: the least-squares support vector machine.

    Science.gov (United States)

    Gao, Ting; Sun, Shi-Ling; Shi, Li-Li; Li, Hui; Li, Hong-Zhi; Su, Zhong-Min; Lu, Ying-Hua

    2009-05-14

    Support vector machines (SVMs), as a novel type of learning machine, has been very successful in pattern recognition and function estimation problems. In this paper we introduce least-squares (LS) SVMs to improve the calculation accuracy of density functional theory. As a demonstration, this combined quantum mechanical calculation with LS-SVM correction approach has been applied to evaluate the electronic excitation energies of 160 organic molecules. The newly introduced LS-SVM approach reduces the root-mean-square deviation of the calculated electronic excitation energies of 160 organic molecules from 0.32 to 0.11 eV for the B3LYP/6-31G(d) calculation. Thus, the LS-SVM correction on top of B3LYP/6-31G(d) is a better method to correct electronic excitation energies and can be used as the approximation of experimental results which are impossible to obtain experimentally.

  11. Unbound Excited States of the N = 16 Closed Shell Nucleus 24O

    Science.gov (United States)

    Rogers, W. F.; MoNA Collaboration

    2015-10-01

    The energies of two low-lying neutron-unbound excited states of 24O, which were populated by proton-knockout reactions on 26F, have been measured using the MoNA and LISA arrays in combination with the Sweeper Magnet at the Coupled Cyclotron Facility at the NSCL using invariant mass spectroscopy. The current measurement confirms for the first time the separate identity of 2+ and (1+) neutron-unbound excited states in 24O with decay energies 0.51(5) MeV state and 1.20(7) MeV, respectively, to the 23O ground state. These measured decay energies are consistent with two previous lower resolution measurements to within 2 σ. The level energies for the two states are computed using the decay energies and the 1-neutron separation energy for 24O, resulting in 4.70(15) MeV for the 2+ state and 5.39(16) MeV for the (1+) state. Errors in the level energies are dominated by uncertainty in the 24O neutron separation energy, underscoring the need for a higher resolution 24O ground state mass measurement. Results will be compared with 3 phenomenological and 2 ab initio model calculations. Work Supported by NSF Grants PHY-0922335, PHY-0922409, PHY-0922446, PHY-0922462, PHY-0922473, PHY-0922537, PHY-0922559, PHY-0922622, PHY-0922794, PHY-0969173, PHY-1101745, PHY-1205357, PHY- 1205537.

  12. Oscillator strengths for high-excitation Ti II from laboratory measurements and calculations

    Science.gov (United States)

    Lundberg, H.; Hartman, H.; Engström, L.; Nilsson, H.; Persson, A.; Palmeri, P.; Quinet, P.; Fivet, V.; Malcheva, G.; Blagoev, K.

    2016-07-01

    This work reports new experimental radiative lifetimes of six 3d2(3F)5s levels in singly ionized titanium, with an energy around 63 000 cm-1 and four 3d2(3F)4p odd parity levels where we confirm previous investigations. Combining the new 5s lifetimes with branching fractions measured previously by Pickering et al., we report 57 experimental log gf values for transitions from the 5s levels. The lifetime measurements are performed using time-resolved laser-induced fluorescence on ions produced by laser ablation. One- and two-step photon excitation is employed to reach the 4p and 5s levels, respectively. Theoretical calculations of the radiative lifetimes of the measured levels as well as of oscillator strengths for 3336 transitions from these levels are reported. The calculations are carried out by a pseudo-relativistic Hartree-Fock method taking into account core-polarization effects. The theoretical results are in a good agreement with the experiments and are needed for accurate abundance determinations in astronomical objects.

  13. Renormalized energy of ground and first excited state of Fröhlich polaron in the range of weak coupling

    Directory of Open Access Journals (Sweden)

    M.V. Tkach

    2015-09-01

    Full Text Available The partial summing of infinite range of diagrams for the two-phonon mass operator of polaron described by Frohlich Hamiltonian is performed using the Feynman-Pines diagram technique. The renormalized spectral parameters of ground and first excited (phonon repeat polaron state are accurately calculated for the weak electron-phonon coupling at T=0 K. It is shown that the stronger electron-phonon interaction shifts the energy of both states into low-energy region of the spectra. The ground state stays stationary and the excited one - decays at bigger coupling constant.

  14. Excited-state Raman spectroscopy with and without actinic excitation: S{sub 1} Raman spectra of trans-azobenzene

    Energy Technology Data Exchange (ETDEWEB)

    Dobryakov, A. L.; Quick, M.; Ioffe, I. N.; Granovsky, A. A.; Ernsting, N. P.; Kovalenko, S. A. [Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, D-12489 Berlin (Germany)

    2014-05-14

    We show that femtosecond stimulated Raman spectroscopy can record excited-state spectra in the absence of actinic excitation, if the Raman pump is in resonance with an electronic transition. The approach is illustrated by recording S{sub 1} and S{sub 0} spectra of trans-azobenzene in n-hexane. The S{sub 1} spectra were also measured conventionally, upon nπ* (S{sub 0} → S{sub 1}) actinic excitation. The results are discussed and compared to earlier reports.

  15. The energy structure and decay channels of the 4p6-shell excited states in Sr

    Science.gov (United States)

    Kupliauskienė, A.; Kerevičius, G.; Borovik, V.; Shafranyosh, I.; Borovik, A.

    2017-11-01

    The ejected-electron spectra arising from the decay of the 4p{}5{{nln}}{\\prime }{l}{\\prime }{n}{\\prime\\prime }{l}{\\prime\\prime } autoionizing states in Sr atoms have been studied precisely at the incident-electron energies close to excitation and ionization thresholds of the 4{{{p}}}6 subshell. The excitation behaviors for 58 lines observed between 12 and 21 eV ejected-electron kinetic energy have been investigated. Also, the ab initio calculations of excitation energies, autoionization probabilities and electron-impact excitation cross sections of the states 4p{}5{{nln}}{\\prime }{l}{\\prime }{n}{\\prime\\prime }{l}{\\prime\\prime } (nl = 4d, 5s, 5p; {n}{\\prime }{l}{\\prime } = 4d, 5s, 5p; {n}{\\prime\\prime }{l}{\\prime\\prime } = 5s, 6s, 7s, 8s, 9s, 5p, 6p, 5d, 6d, 7d, 8d, 4f, 5g) have been performed by employing the large-scale configuration-interaction method in the basis of the solutions of Dirac–Fock–Slater equations. The obtained experimental and theoretical data have been used for the accurate identification of the 60 lines in ejected-electron spectra and the 68 lines observed earlier in photoabsorption spectra. The excitation and decay processes for 105 classified states in the 4p55s{}2{nl}, 4p54d{}2{nl} and 4p55s{{nln}}{\\prime }{l}{\\prime } configurations have been considered in detail. In particular, most of the states lying below the ionization threshold of the 4p6 subshell at 26.92 eV possess up to four decay channels with formation of Sr+ in 5s{}1/2, 4d{}3/{2,5/2} and 5p{}1/{2,3/2} states. Two-step autoionization and two-electron Auger transitions with formation of Sr2+ in the 4p6 {}1{{{S}}}0 ground state are the main decay paths for high-lying autoionizing states. The excitation threshold of the 4{{{p}}}6 subshell in Sr has been established at 20.98 ± 0.05 eV.

  16. Coherent secondary emission from resonantly excited two-exciton states

    DEFF Research Database (Denmark)

    Birkedal, Dan

    2000-01-01

    The coherent interaction of light and the electronic states of semiconductors near the fundamental bandgap has been a very active topic of research since the advent of ultrafast lasers. While many of the ultrafast nonlinear properties of semiconductors have been well explained within mean field...... to the nonlinear susceptibility. The method exploits that emission from two-exciton coherences can occur in non-specular directions, with the recoil momentum taken up by an exciton left behind in the sample. Using ultrafast spectral interferometry we demonstrate the presence of this new coherent component...... of the secondary emission from quantum wells following ultrafast resonant excitation and find that it provides information on not only the bound biexcitons but also the biexciton continuum. Due to the heterodyne nature of the experimental technique we obtain both amplitude and phase of the coherent emission...

  17. Relativistic R -matrix calculations for the electron-impact excitation of neutral molybdenum

    Science.gov (United States)

    Smyth, R. T.; Johnson, C. A.; Ennis, D. A.; Loch, S. D.; Ramsbottom, C. A.; Ballance, C. P.

    2017-10-01

    A recent PISCES-B Mod experiment [Nishijima et al., J. Phys. B 43, 225701 (2010), 10.1088/0953-4075/43/22/225701] has revealed up to a factor of 5 discrepancy between measurement and the two existing theoretical models [Badnell et al., J. Phys. B 29, 3683 (1996), 10.1088/0953-4075/29/16/014; Bartschat et al., J. Phys. B 35, 2899 (2002), 10.1088/0953-4075/35/13/305], providing important diagnostics for Mo i. In the following paper we address this issue by employing a relativistic atomic structure and R -matrix scattering calculations to improve upon the available models for future applications and benchmark results against a recent Compact Toroidal Hybrid experiment [Hartwell et al., Fusion Sci. Technol. 72, 76 (2017), 10.1080/15361055.2017.1291046]. We determine the atomic structure of Mo i using grasp0, which implements the multiconfigurational Dirac-Fock method. Fine structure energies and radiative transition rates are presented and compared to existing experimental and theoretical values. The electron-impact excitation of Mo i is investigated using the relativistic R -matrix method and the parallel versions of the Dirac atomic R -matrix codes. Electron-impact excitation cross sections are presented and compared to the few available theoretical cross sections. Throughout, our emphasis is on improving the results for the z 1,2,3o5P →a S52,z 2,3,4o7P → a S73 and y 2,3,4o7P → a S73 electric dipole transitions of particular relevance for diagnostic work.

  18. Using Diffusion Monte Carlo to Probe Rotational Excited States

    Science.gov (United States)

    Petit, Andrew S.; McCoy, Anne B.

    2009-06-01

    Since its inception in 1975 by Anderson, has been successfully applied to a wide range of electronic and vibrational problems. In the latter case, it has been shown to be a powerful method for studying highly fluxional systems exhibiting large amplitude vibrational motions. We report here our recent work developing a new DMC algorithm capable of treating rotational excited states. We first develop the appropriate coordinates, nodal structures, and re-crossing corrections for this problem. Then, using H_3O^+ and D_3O^+ as model systems, we show that our method can successfully describe a range of rotational states from mid0,0,0> to {1}/{√{2}} (mid10,10,0 > + mid 10,-10,0 >). In particular, we examine the combined effects of rotational and zero-point vibrational motion on the geometric structure of the molecules. Finally, we find the mid 10,0,0 > state to be somewhat problematic but show that the problem is straightforward to identify and has a well-defined solution. J. B. Anderson, J. Chem. Phys., 63, 1499 (1975). X. Huang, S. Carter, and J. Bowman, J. Chem. Phys., 118, 5431 (2003).

  19. Enhanced negative ion formation via electron attachment to electronically-excited states

    Energy Technology Data Exchange (ETDEWEB)

    Pinnaduwage, L.A. [Oak Ridge National Lab., TN (United States). Health Sciences Research Div.]|[Univ. of Tennessee, Knoxville, TN (United States). Dept. of Physics

    1995-12-31

    Recent basic studies on electron attachment to laser-excited molecules show that electron attachment to electronically-excited states can have orders of magnitude larger cross sections compared to the respective ground electronic states. Even though systematic studies have not been conducted, there are indications that electronically-excited states may play a significant role in negative ion formation in gas discharges. The high-lying Rydberg states could be of particular significance since, (i) their production efficiencies are high, and (ii) they have comparatively long lifetimes. Such states could be populated in discharge sources via direct electron impact or via excitation transfer from metastable states of inert gases.

  20. Excited-State Interaction of Semiconducting Single-Walled Carbon Nanotubes with Their Wrapping Polymers.

    Science.gov (United States)

    Kahmann, Simon; Salazar Rios, Jorge M; Zink, Matthias; Allard, Sybille; Scherf, Ullrich; Dos Santos, Maria C; Brabec, Christoph J; Loi, Maria A

    2017-11-16

    We employ photoluminescence and pump-probe spectroscopy on films of semiconducting single-walled carbon nanotubes (CNTs) of different chirality wrapped with either a wide band gap polyfluorene derivative (PF12) or a polythiophene with narrower gap (P3DDT) to elucidate the excited states' interplay between the two materials. Excitation above the polymer band gap gives way to an ultrafast electron transfer from both polymers toward the CNTs. By monitoring the hole polaron on the polymer via its mid infrared signature, we show that also illumination below the polymer band gap leads to the formation of this fingerprint and infer that holes are also transferred toward the polymer. As this contradicts the standard way of discussing the involved energy levels, we propose that polymer-wrapped CNTs should be considered as a single hybrid system, exhibiting states shared between the two components. This proposition is validated through quantum chemical calculations that show hybridization of the first excited states, especially for the thiophene-CNT sample.

  1. Proton-hole and core-excited states in the semi-magic nucleus 131In82

    Energy Technology Data Exchange (ETDEWEB)

    Taprogge, J.; Jungclaus, A.; Grawe, H.; Borzov, I. N.; Nishimura, S.; Doornenbal, P.; Lorusso, G.; Simpson, G. S.; Söderström, P. -A.; Sumikama, T.; Xu, Z. Y.; Baba, H.; Browne, F.; Fukuda, N.; Gernhäuser, R.; Gey, G.; Inabe, N.; Isobe, T.; Jung, H. S.; Kameda, D.; Kim, G. D.; Kim, Y. -K.; Kojouharov, I.; Kubo, T.; Kurz, N.; Kwon, Y. K.; Li, Z.; Sakurai, H.; Schaffner, H.; Shimizu, Y.; Steiger, K.; Suzuki, H.; Takeda, H.; Vajta, Zs.; Watanabe, H.; Wu, J.; Yagi, A.; Yoshinaga, K.; Benzoni, G.; Bönig, S.; Chae, K. Y.; Coraggio, L.; Daugas, J. -M.; Drouet, F.; Gadea, A.; Gargano, A.; Ilieva, S.; Itaco, N.; Kondev, F. G.; Kröll, T.; Lane, G. J.; Montaner-Pizá, A.; Moschner, K.; Mücher, D.; Naqvi, F.; Niikura, M.; Nishibata, H.; Odahara, A.; Orlandi, R.; Patel, Z.; Podolyák, Zs.; Wendt, A.

    2016-11-01

    The decay of the N = 83 nucleus Cd-131 has been studied at the RIBF facility at the RIKEN Nishina Center. The main purpose of the study was to identify the position of the and proton-hole states and the energies of core-excited configurations in the semi-magic nucleus In-131. From the radiation emitted following the decay, a level scheme of In-131 was established and the feeding to each excited state determined. Similarities between the single-particle transitions observed in the decays of the N = 83 isotones In-132 and Cd-131 are discussed. Finally the excitation energies of several core-excited configurations in In-131 are compared to QRPA and shell-model calculations.

  2. Proton-hole and core-excited states in the semi-magic nucleus {sup 131}In{sub 82}

    Energy Technology Data Exchange (ETDEWEB)

    Taprogge, J. [Instituto de Estructura de la Materia, CSIC, Madrid (Spain); Universidad Autonoma de Madrid, Departamento de Fisica Teorica, Madrid (Spain); RIKEN Nishina Center, RIKEN, Saitama (Japan); Jungclaus, A. [Instituto de Estructura de la Materia, CSIC, Madrid (Spain); Grawe, H. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Borzov, I.N. [Kurchatov Institute, Moscow (Russian Federation); Joint Institute for Nuclear Research, Dubna (Russian Federation); Nishimura, S.; Doornenbal, P.; Soederstroem, P.A.; Baba, H.; Fukuda, N.; Inabe, N.; Isobe, T.; Kameda, D.; Kubo, T.; Shimizu, Y.; Suzuki, H.; Takeda, H.; Watanabe, H. [RIKEN Nishina Center, RIKEN, Saitama (Japan); Lorusso, G. [RIKEN Nishina Center, RIKEN, Saitama (Japan); National Physical Laboratory, NPL, Teddington, Middlesex (United Kingdom); University of Surrey, Department of Physics, Guildford (United Kingdom); Simpson, G.S.; Drouet, F. [LPSC, Universite Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut National Polytechnique de Grenoble, Grenoble Cedex (France); Sumikama, T. [Tohoku University, Department of Physics, Sendai, Miyagi (Japan); Xu, Z.Y.; Niikura, M. [University of Tokyo, Department of Physics, Tokyo (Japan); Browne, F. [RIKEN Nishina Center, RIKEN, Saitama (Japan); University of Brighton, School of Computing, Engineering and Mathematics, Brighton (United Kingdom); Gernhaeuser, R.; Steiger, K.; Muecher, D. [Technische Universitaet Muenchen, Physik Department E12, Garching (Germany); Gey, G. [RIKEN Nishina Center, RIKEN, Saitama (Japan); LPSC, Universite Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut National Polytechnique de Grenoble, Grenoble Cedex (France); Institut Laue-Langevin, B.P. 156, Grenoble Cedex 9 (France); Jung, H.S. [Chung-Ang University, Department of Physics, Seoul (Korea, Republic of); Kim, G.D.; Kwon, Y.K. [Institute for Basic Science, Rare Isotope Science Project, Daejeon (Korea, Republic of); Kim, Y.K. [Institute for Basic Science, Rare Isotope Science Project, Daejeon (Korea, Republic of); Hanyang University, Department of Nuclear Engineering, Seoul (Korea, Republic of); Kojouharov, I.; Kurz, N.; Schaffner, H. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Li, Z. [Peking University, School of Physics and State key Laboratory of Nuclear Physics and Technology, Beijing (China); Sakurai, H. [RIKEN Nishina Center, RIKEN, Saitama (Japan); University of Tokyo, Department of Physics, Tokyo (Japan); Vajta, Zs. [RIKEN Nishina Center, RIKEN, Saitama (Japan); MTA Atomki, P.O. Box 51, Debrecen (Hungary); Wu, J. [RIKEN Nishina Center, RIKEN, Saitama (Japan); Peking University, School of Physics and State key Laboratory of Nuclear Physics and Technology, Beijing (China); Yagi, A.; Nishibata, H.; Odahara, A. [Osaka University, Department of Physics, Toyonaka (Japan); Yoshinaga, K. [Tokyo University of Science, Department of Physics, Faculty of Science and Technology, Noda, Chiba (Japan); Benzoni, G. [INFN, Sezione di Milano, Milano (Italy); Boenig, S.; Ilieva, S.; Kroell, T. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); Chae, K.Y. [Sungkyunkwan University, Department of Physics, Suwon (Korea, Republic of); Coraggio, L.; Gargano, A. [Complesso Universitario di Monte S. Angelo, Istituto Nazionale di Fisica Nucleare, Napoli (Italy); Daugas, J.M. [CEA, DAM, DIF, Arpajon cedex (France); Gadea, A.; Montaner-Piza, A. [CSIC-Univ. of Valencia, Instituto de Fisica Corpuscular, Paterna (Spain); Itaco, N. [Seconda Universita di Napoli, Dipartimento di Matematica e Fisica, Caserta (Italy); Kondev, F.G. [Argonne National Laboratory, Nuclear Engineering Division, Argonne, IL (United States); Lane, G.J. [Australian National University, Department of Nuclear Physics, Research School of Physical Sciences and Engineering, Canberra (Australia); Moschner, K.; Wendt, A. [University of Cologne, IKP, Cologne (Germany); Naqvi, F. [Yale University, Wright Nuclear Structure Laboratory, New Haven, CT (United States); Orlandi, R. [K.U. Leuven, Instituut voor Kern- en StralingsFysica, Heverlee (Belgium); Japan Atomic Energy Agency, Advanced Science Research Center, Tokai, Ibaraki (Japan); Patel, Z.; Podolyak, Zs. [University of Surrey, Department of Physics, Guildford (United Kingdom)

    2016-11-15

    The β decay of the N = 83 nucleus {sup 131}Cd has been studied at the RIBF facility at the RIKEN Nishina Center. The main purpose of the study was to identify the position of the 1p{sub 3/2} and 0f{sub 5/2} proton-hole states and the energies of core-excited configurations in the semi-magic nucleus {sup 131}In. From the radiation emitted following the β decay, a level scheme of {sup 131}In was established and the β feeding to each excited state determined. Similarities between the single-particle transitions observed in the β decays of the N = 83 isotones {sup 132}In and {sup 131}Cd are discussed. Finally the excitation energies of several core-excited configurations in {sup 131}In are compared to QRPA and shell-model calculations. (orig.)

  3. Excitation Energies from Spin-Restricted Ensemble-Referenced Kohn-Sham Method : A State-Average Approach

    NARCIS (Netherlands)

    Kazaryan, Andranik; Heuver, Jeroen; Filatov, Michael

    2008-01-01

    A time-independent density functional approach to the calculation of excitation energies from the ground states of molecules typified by the strong nondynamic electron correlation is suggested. The new method is based on the use of the spin-restricted ensemble-referenced Kohn-Sham formalism

  4. Resonant coherent excitation of hydrogen-like ions planar channeled in a crystal; Transition into the first excited state

    Science.gov (United States)

    Babaev, A.; Pivovarov, Yu. L.

    2012-03-01

    The presented program is designed to simulate the characteristics of resonant coherent excitation of hydrogen-like ions planar-channeled in a crystal. The program realizes the numerical algorithm to solve the Schrödinger equation for the ion-bound electron at a special resonance excitation condition. The calculated wave function of the bound electron defines probabilities for the ion to be in the either ground or first excited state, or to be ionized. Finally, in the outgoing beam the fractions of ions in the ground state, in the first excited state, and ionized by collisions with target electrons, are defined. The program code is written on C++ and is designed for multiprocessing systems (clusters). The output data are presented in the table. Program summaryProgram title: RCE_H-like_1 Catalogue identifier: AEKX_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKX_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 2813 No. of bytes in distributed program, including test data, etc.: 34 667 Distribution format: tar.gz Programming language: C++ (g++, icc compilers) Computer: Multiprocessor systems (clusters) Operating system: Any OS based on LINUX; program was tested under Novell SLES 10 Has the code been vectorized or parallelized?: Yes. Contains MPI directives RAM: C++, Intel C++ compilers Nature of problem: When relativistic hydrogen-like ion moves in the crystal in the planar channeling regime, in the ion rest frame the time-periodic electric field acts on the bound electron. If the frequency of this field matches the transition frequency between electronic energy levels, the resonant coherent excitation can take place. Therefore, ions in the different states may be observed in the outgoing beam behind the crystal. To get the probabilities for the ion to be

  5. On the ground and excited state of glycine-glutaric acid: A new organic material

    Science.gov (United States)

    Shkir, Mohd.; Abbas, Haider

    In current work, the experimental and theoretical investigation on glycine-glutaric acid (GGA) has been reported. Single crystals of GGA were grown by slow evaporation solution technique in an aqueous solution. Crystal structure and lattice parameters of GGA were confirmed by powder X-ray diffraction analysis. The ground and excited state properties of GGA were obtained within the framework of density functional theory. The calculated infrared spectrum and the S0 → S1 transition energy were compared with the earlier reported experimental results and found in good agreement. HOMO-LUMO energy gap was calculated by using RHF/6-31G(d,p) and B3LYP/6-31G(d,p) level of theoretical calculations. Dipole moment of GGA obtained by RHF and B3LYP was found 11.84 and 10.87 D respectively.

  6. Simulations of fluorescence solvatochromism in substituted PPV oligomers from excited state molecular dynamics with implicit solvent

    Science.gov (United States)

    Bjorgaard, J. A.; Nelson, T.; Kalinin, K.; Kuzmenko, V.; Velizhanin, K. A.; Tretiak, S.

    2015-07-01

    An efficient method of treating solvent effects in excited state molecular dynamics (ESMD) is implemented and tested by exploring the solvatochromic effects in substituted p-phenylene vinylene oligomers. A continuum solvent model is used which has very little computational overhead. This allows simulations of ESMD with solvent effects on the scale of hundreds of picoseconds for systems of up to hundreds of atoms. At these time scales, solvatochromic shifts in fluoresence spectra can be described. Solvatochromic shifts in absorption and fluorescence spectra from ESMD are compared with time-dependent density functional theory calculations and experiments.

  7. Electron impact excitation and assignment of the low-lying electronic states of CO2

    Science.gov (United States)

    Hall, R. I.; Trajmar, S.

    1973-01-01

    Electron scattering spectra of CO2 are reported in the 7 to 10 eV energy-loss range, at energies of 0.2, 0.35, 0.6, 0.7, and 7.0 eV above threshold, and at a scattering angle of 90 deg. Several new distinct overlapping continua with weak, diffuse bands superimposed are observed to lie in this energy-loss range. The experimental spectra are discussed in the light of recent ab initio configuration-interaction calculations of the vertical transition energies of CO2. The experimental spectra are shown to be consistent with the excitation states of CO2.

  8. New numerical method for fission half-lives of heavy and superheavy nuclei at ground and excited states

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Jie; Bao, Xiaojun; Zhang, Haifei [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Li, Junqing [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000 (China); Zhang, Hongfei, E-mail: zhanghongfei@lzu.edu.cn [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China)

    2014-09-15

    The spontaneous fission half-lives for heavy and superheavy nuclei between U and Hs isotopes are calculated in framework of the generalized liquid drop model by applying a new method of numerically solving Schrödinger equation compared with the semi-empirical WKB approximation. The calculated half-lives are in very good agreement with the experimental data, indicating the reliability of the new approach. The second part of this work is to estimate the fission half-lives of {sup 238}Np{sup ⁎} at excited state of 7.3 MeV and {sup 239}U{sup ⁎} at excited states of 7.081, 8.078, 8.387 and 8.989 MeV with the numerical method. The estimated results compared with the experimental values and with the results by WKB approximation show the numerical method is applicable to both the spontaneous fission and excited fission.

  9. Exciting hot carrier to a high energy state by impact excitation in low density nanocrystalline Si films

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Wei, E-mail: yuwei_hbu@126.com [College of Physics Science and Technology, Hebei University, Baoding 071002 (China); Wang, Xinzhan; Dai, Wanlei; Liu, Yumei; Xu, Yanmei; Lu, Wanbing; Fu, Guangsheng [College of Physics Science and Technology, Hebei University, Baoding 071002 (China)

    2013-02-15

    The carrier recombination processes in low density nanocrystalline (nc-) Si films have been studied by steady and time-resolved photoluminescence (PL) spectra, and the hot carriers have been excited to a high energy state by impact excitation. A yellow-green PL band locating at 580 nm appears when the studied film is excited by two optical beams. The yellow-green PL band results from band-to-band transition in Si nanocrystals with double-bonded oxygen atoms, which is caused by impact excitation among the carriers in the nc-Si film. The decay time of the yellow-green PL band is 230 ns, which is much longer than the hot carrier cooling. The results indicate that the lost energy in the solar cell may be collected from the new recombination center in the further structural design.

  10. Multidimensional supersymmetric quantum mechanics: a scalar Hamiltonian approach to excited states by the imaginary time propagation method.

    Science.gov (United States)

    Chou, Chia-Chun; Kouri, Donald J

    2013-04-25

    Supersymmetric quantum mechanics (SUSY-QM) is shown to provide a novel approach to the construction of the initial states for the imaginary time propagation method to determine the first and second excited state energies and wave functions for a two-dimensional system. In addition, we show that all calculations are carried out in sector one and none are performed with the tensor sector two Hamiltonian. Through our tensorial approach to multidimensional supersymmetric quantum mechanics, we utilize the correspondence between the eigenstates of the sector one and two Hamiltonians to construct appropriate initial sector one states from sector two states for the imaginary time propagation method. The imaginary time version of the time-dependent Schrödinger equation is integrated to obtain the first and second excited state energies and wave functions using the split operator method for a two-dimensional anharmonic oscillator system and a two-dimensional double well potential. The computational results indicate that we can obtain the first two excited state energies and wave functions even when a quantum system does not exhibit any symmetry. Moreover, instead of dealing with the increasing computational complexity resulting from computations in the tensor sector two Hamiltonian, this study presents a new supersymmetric approach to calculations of accurate excited state energies and wave functions by directly using the scalar sector one Hamiltonian.

  11. Manipulating charge transfer excited state relaxation and spin crossover in iron coordination complexes with ligand substitution

    DEFF Research Database (Denmark)

    Zhang, Wenkai; Kjær, Kasper Skov; Alonso-Mori, Roberto

    2017-01-01

    state lifetime of iron based complexes due to spin crossover-the extremely fast intersystem crossing and internal conversion to high spin metal-centered excited states. We revitalize a 30 year old synthetic strategy for extending the MLCT excited state lifetimes of iron complexes by making mixed ligand...... iron complexes with four cyanide (CN-;) ligands and one 2,2′-bipyridine (bpy) ligand. This enables MLCT excited state and metal-centered excited state energies to be manipulated with partial independence and provides a path to suppressing spin crossover. We have combined X-ray Free-Electron Laser (XFEL......) Kβ hard X-ray fluorescence spectroscopy with femtosecond time-resolved UV-visible absorption spectroscopy to characterize the electronic excited state dynamics initiated by MLCT excitation of [Fe(CN)4(bpy)]2-. The two experimental techniques are highly complementary; the time-resolved UV...

  12. Highly-sensitive Eu3+ ratiometric thermometers based on excited state absorption with predictable calibration

    Science.gov (United States)

    Souza, Adelmo S.; Nunes, Luiz A. O.; Silva, Ivan G. N.; Oliveira, Fernando A. M.; da Luz, Leonis L.; Brito, Hermi F.; Felinto, Maria C. F. C.; Ferreira, Rute A. S.; Júnior, Severino A.; Carlos, Luís D.; Malta, Oscar L.

    2016-02-01

    Temperature measurements ranging from a few degrees to a few hundreds of Kelvin are of great interest in the fields of nanomedicine and nanotechnology. Here, we report a new ratiometric luminescent thermometer using thermally excited state absorption of the Eu3+ ion. The thermometer is based on the simple Eu3+ energy level structure and can operate between 180 and 323 K with a relative sensitivity ranging from 0.7 to 1.7% K-1. The thermometric parameter is defined as the ratio between the emission intensities of the 5D0 --> 7F4 transition when the 5D0 emitting level is excited through the 7F2 (physiological range) or 7F1 (down to 180 K) level. Nano and microcrystals of Y2O3:Eu3+ were chosen as a proof of concept of the operational principles in which both excitation and detection are within the first biological transparent window. A novel and of paramount importance aspect is that the calibration factor can be calculated from the Eu3+ emission spectrum avoiding the need for new calibration procedures whenever the thermometer operates in different media.Temperature measurements ranging from a few degrees to a few hundreds of Kelvin are of great interest in the fields of nanomedicine and nanotechnology. Here, we report a new ratiometric luminescent thermometer using thermally excited state absorption of the Eu3+ ion. The thermometer is based on the simple Eu3+ energy level structure and can operate between 180 and 323 K with a relative sensitivity ranging from 0.7 to 1.7% K-1. The thermometric parameter is defined as the ratio between the emission intensities of the 5D0 --> 7F4 transition when the 5D0 emitting level is excited through the 7F2 (physiological range) or 7F1 (down to 180 K) level. Nano and microcrystals of Y2O3:Eu3+ were chosen as a proof of concept of the operational principles in which both excitation and detection are within the first biological transparent window. A novel and of paramount importance aspect is that the calibration factor can be

  13. Excitations

    Energy Technology Data Exchange (ETDEWEB)

    Dorner, B. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1996-12-31

    A short introduction to instrumental resolution is followed by a discussion of visibilities of phonon modes due to their eigenvectors. High precision phonon dispersion curves in GaAs are presented together with `ab initio` calculations. Al{sub 2}O{sub 3} is taken as an example of selected visibility due to group theory. By careful determination of phonon intensities eigenvectors can be determined, such as in Silicon and Diamond. The investigation of magnon modes is shown for the garnet Fe{sub 2}Ca{sub 3}(GeO{sub 4}){sub 3}, where also a quantum gap due to zero point spin fluctuations was observed. The study of the splitting of excitons in CsFeCl{sub 3} in an applied magnetic field demonstrates the possibilities of neutron polarisation analysis, which made it possible to observe a mode crossing. An outlook to inelastic X-ray scattering with very high energy resolution of synchrotron radiation is given with the examples of phonons in Beryllium and in water. (author) 19 figs., 36 refs.

  14. Vibrationally Excited c-C_3H_2 Re-Visited New Laboratory Measurements and Theoretical Calculations

    Science.gov (United States)

    Gupta, Harshal; Westerfield, J. H.; Baraban, Joshua H.; Changala, Bryan; Thorwirth, Sven; Stanton, John F.; Martin-Drumel, Marie-Aline; Pirali, Olivier; Gottlieb, Carl A.; McCarthy, Michael C.

    2017-06-01

    Cyclopropenylidene, c-C_3H_2, is one of the more abundant organic molecules in the interstellar medium, as evidenced from astronomical detection of its single ^{13}C and both its singly- and doubly-deuterated isotopic species. For this reason, vibrational satellites are of considerable astronomical interest, and were the primary motivation for the earlier laboratory work by Mollaaghababa and co-workers [1]. The recent detection of intense unidentified lines near 18 GHz in a hydrocarbon discharge by FT microwave spectroscopy has spurred a renewed search for the vibrational satellite transitions of c-C_3H_2. Several strong lines have been definitively assigned to the v_6 progression on the basis of follow-up measurements at 3 mm, double resonance and millimeter-wave absorption spectroscopy, and new theoretical calculations using a rovibrational VMP2 method [2] and a high-quality ab initio potential energy surface. The treatment was applied to several excited states as well as the ground state, and included deperturbation of Coriolis interactions. [1] R. Mollaaghababa, C.A. Gottlieb, J. M. Vrtilek, and P. Thaddeus, J. Chem. Phys., 99, 890-896 (1992). [2] P. B. Changala and J. H. Baraban. J. Chem. Phys., 145, 174106 (2016).

  15. Studies of photoionization processes from ground-state and excited-state atoms and molecules

    Energy Technology Data Exchange (ETDEWEB)

    Ederer, D.L.; Parr, A.C.; West, J.B.

    1982-01-01

    Recent triply-differential photoelectron spectroscopy experiments designed for the study of correlation effects in atoms and molecules are described. Final-state symmetry of the n=2 state of helium has been determined. The non-Franck-Condon behavior of vibrational branching ratios and large variations of the angular asymmetry parameter has been observed for shape resonances and autoionizing resonances in CO and other molecules. Recent observations of the photoionization of excited sodium atoms are also described.

  16. A Simple Hubbard Model for the Excited States of $\\pi$ Conjugated -acene Molecules

    CERN Document Server

    Sadeq, Z S

    2015-01-01

    In this paper we present a model that elucidates in a simple way the electronic excited states of $\\pi$ conjugated -acene molecules such as tetracene, pentacene, and hexacene. We use a tight-binding and truncated Hubbard model written in the electron-hole basis to describe the low lying excitations with reasonable quantitative accuracy. We are able to produce semi-analytic wavefunctions for the electronic states of the system, which allows us to compute the density correlation functions for various states such as the ground state, the first two singly excited states, and the lowest lying doubly excited state. We show that in this lowest lying doubly excited state, a state which has been speculated as to being involved in the singlet fission process, the electrons and holes behave in a triplet like manner.

  17. Interference through the resonant Auger process via multiple core-excited states

    Science.gov (United States)

    Chatterjee, Souvik; Nakajima, Takashi

    2017-12-01

    We theoretically investigate the resonant Auger process via multiple core-excited states. The presence of multiple core-excited states sets off interference into the common final continuum, and we show that the degree of interference depends on the various parameters such as the intensity of the employed x-ray pulse and the lifetimes of the core-excited states. For the specific examples we employ the double (1 s-13 p and 1 s-14 p ) core-excited states of Ne atom and numerically solve the time-dependent Schrödinger equation to demonstrate that the energy-resolved electron spectra clearly exhibit the signature of interference.

  18. Dielectronic recombination rate coefficients to excited states of Be-like oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Izumi; Safronova, Ulyana I.; Kato, Takako

    2001-05-01

    We have calculated energy levels, radiative transition probabilities, and autoionization rates for Be-like oxygen (O{sup 4+}) including ls{sup 2}2lnl' (n=2 - 8, l {<=} n - 1) and 1s{sup 2}3l'nl (n=3 - 6, l {<=} n - l) states by multi-configurational Hartree-Fock method (Cowan code) and perturbation theory Z-expansion method (MZ code). The state selective dielectronic recombination rate coefficients to excited states of Be-like O ions are obtained. Configuration mixing plays an important role for the principal quantum number n distribution of the dielectronic recombination rate coefficients for 2snl (n {<=} 5) levels at low electron temperature. The orbital angular momentum quantum number l distribution of the rate coefficients shows a peak at l = 4. The total dielectronic recombination rate coefficient is derived as a function of electron temperature. (author)

  19. Structural Influence on Excited State Dynamics in Simple Amines

    DEFF Research Database (Denmark)

    Klein, Liv Bærenholdt

    experiments with calculations, provides new insight into the nature of the internal conversion processes that mediate the dynamical evolution between Rydberg states, and how structural variations in simple amine system have a large impact on the non-adiabatic processes. The experimental method of choice......Simple amines are basic model system of nitrogen-containing chromophores that appear widely in nature. They are also ideal systems for detailed investigation of nonadiabatic dynamical processes and ultrafast temporal evolution of electronic states of the Rydberg type. This investigation, combining...... and sensitive collection of photoelectron spectra. In particular, the angleresolved data available from the VMI approach provides highly detailed mechanistic insight about the relaxation pathways. One striking novel nding is that for tertiary amines, the critical factor driving the non-adiabatic dynamics...

  20. An experimental and theoretical investigation into the excited electronic states of phenol

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D. B.; Chiari, L. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Silva, G. B. da [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Universidade Federal de Mato Grosso, Barra do Garças, Mato Grosso (Brazil); Neves, R. F. C. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Departamento de Física, UFJF, Juiz de Fora, MG (Brazil); Instituto Federal do Sul de Minas Gerais, Campus Poços de Caldas, Minas Gerais (Brazil); Duque, H. V. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Departamento de Física, UFJF, Juiz de Fora, MG (Brazil); Oliveira, E. M. de; Lima, M. A. P. [Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, 13083-859 Campinas, São Paulo (Brazil); Lopes, M. C. A. [Departamento de Física, UFJF, Juiz de Fora, MG (Brazil); Costa, R. F. da [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-580 Santo André, São Paulo (Brazil); Varella, M. T. do N. [Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970 São Paulo (Brazil); Bettega, M. H. F. [Departamento de Física, Universidade Federal do Paraná, CP 19044, 81531-990 Curitiba, Paraná (Brazil); and others

    2014-08-21

    We present experimental electron-energy loss spectra (EELS) that were measured at impact energies of 20 and 30 eV and at angles of 90° and 10°, respectively, with energy resolution ∼70 meV. EELS for 250 eV incident electron energy over a range of angles between 3° and 50° have also been measured at a moderate energy resolution (∼0.9 eV). The latter spectra were used to derive differential cross sections and generalised oscillator strengths (GOS) for the dipole-allowed electronic transitions, through normalization to data for elastic electron scattering from benzene. Theoretical calculations were performed using time-dependent density functional theory and single-excitation configuration interaction methods. These calculations were used to assign the experimentally measured spectra. Calculated optical oscillator strengths were also compared to those derived from the GOS data. This provides the first investigation of all singlet and triplet excited electronic states of phenol up to the first ionization potential.

  1. Contribution of the excited 1+ states of 100Tc to the 2ν2β-amplitude of 100Mo

    Science.gov (United States)

    Semenov, S. V.

    2017-11-01

    The total and differential intensities of the two-neutrino double beta transition in 100Mo are calculated by taking into account experimental data on the charge-exchange reactions on 100Mo. It is shown that excited 1+ states should be considered in addition to the ground state of the intermediate nucleus 100Tc, which leads to the generalization of the SSD mechanism for the two-neutrino process.

  2. Probing an Excited-State Atomic Transition Using Hyperfine Quantum Beat Spectroscopy

    CERN Document Server

    Wade, Christopher G; Keaveney, James; Adams, Charles S; Weatherill, Kevin J

    2014-01-01

    We describe a method to observe the dynamics of an excited-state transition in a room temperature atomic vapor using hyperfine quantum beats. Our experiment using cesium atoms consists of a pulsed excitation of the D2 transition, and continuous-wave driving of an excited-state transition from the 6P$_{3/2}$ state to the 7S$_{1/2}$ state. We observe quantum beats in the fluorescence from the 6P$_{3/2}$ state which are modified by the driving of the excited-state transition. The Fourier spectrum of the beat signal yields evidence of Autler-Townes splitting of the 6P$_{3/2}$, F = 5 hyperfine level and Rabi oscillations on the excited-state transition. A detailed model provides qualitative agreement with the data, giving insight to the physical processes involved.

  3. Interplay between singlet and triplet excited states in a conformationally locked donor–acceptor dyad

    KAUST Repository

    Filatov, Mikhail A.

    2015-10-13

    The synthesis and photophysical characterization of a palladium(II) porphyrin – anthracene dyad bridged via short and conformationally rigid bicyclo[2.2.2]octadiene spacer were achieved. A spectroscopic investigation of the prepared molecule in solution has been undertaken to study electronic energy transfer in excited singlet and triplet states between the anthracene and porphyrin units. By using steady-state and time-resolved photoluminescence spectroscopy it was shown that excitation of the singlet excited state of the anthracene leads to energy transfer to the lower-lying singlet state of porphyrin. Alternatively, excitation of the porphyrin followed by intersystem crossing to the triplet state leads to very fast energy transfer to the triplet state of anthracene. The rate of this energy transfer has been determined by transient absorption spectroscopy. Comparative studies of the dynamics of triplet excited states of the dyad and reference palladium octaethylporphyrin (PdOEP) have been performed.

  4. Electronic states and nature of bonding in the molecule MoC by all electron ab initio calculations

    DEFF Research Database (Denmark)

    Shim, Irene; Gingerich, Karl A.

    1997-01-01

    by solving the Schrodinger equation for the nuclear motion numerically. Based on the results of the CASSCF calculations the (3) Sigma(-) ground state of MoC is separated from the excited states (3) Delta, (5) Sigma-, (1) Sigma, (1) Delta, (5) Pi, (1) Sigma(+), and (3) Pi by transition energies of 4500, 6178...... Darwin contact term and the relativistic mass-velocity correction have been determined in perturbation calculations. The electronic ground state is predicted as (3) Sigma(-). The spectroscopic constants for the (3) Sigma(-) electronic ground state and eight low-lying excited states have been derived......, 7207, 9312, 10 228, 11 639, and 16 864 cm(-1), respectively. The transition energy between the (3) Sigma(-) ground state and the (3) Pi state as derived in the MRCI calculations is 15 484 cm(-1). For the (3) Sigma(-) ground state the equilibrium distance has been determined as 1.688 Angstrom...

  5. Core-excited states and core-polarization effects in sup 2 sup 1 sup 0 At and sup 2 sup 1 sup 1 At

    CERN Document Server

    Bayer, S; Dracoulis, G D; Baxter, A M; Kibedi, T; Kondev, F G

    2001-01-01

    Excited states in the nuclei sup 2 sup 1 sup 0 At and sup 2 sup 1 sup 1 At have been studied using sup 2 sup 0 sup 8 Pb( sup 7 Li,xn) reactions. Detailed spectroscopy of levels up to 30 Planck constant has been achieved. New isomeric levels arising from core-excited states were observed, with the highest-lying isomers attributed to a coupling of the pi[h sub 9 sub / sub 2 sup 2 i sub 1 sub 3 sub / sub 2] configuration to double neutron-particle-hole excitations. Clear relationships between the states observed in sup 2 sup 1 sup 0 At and sup 2 sup 1 sup 1 At were identified. Semiempirical shell-model calculations reproduce very well the yrast states in both nuclei. Uncertainty in the modeling of core-polarization was seen as a limiting factor in the calculation of accurate level energies for core-excited states.

  6. Analysis of excited-state Faraday anomalous dispersion optical filter at 1529 nm.

    Science.gov (United States)

    Xiong, Junyu; Yin, Longfei; Luo, Bin; Guo, Hong

    2016-06-27

    In this work, a detailed theoretical analysis of 1529 nm ES-FADOF (excited state Faraday anomalous dispersion optical filter) based on rubidium atoms pumped by 780 nm laser is introduced, where Zeeman splitting, Doppler broadening, and relaxation processes are considered. Experimental results are carefully compared with the derivation. The results prove that the optimal pumping frequency is affected by the working magnetic field. The population distribution among all hyperfine Zeeman sublevels under the optimal pumping frequency has also been obtained, which shows that 85Rb atoms are the main contribution to the population. The peak transmittance above 90% is obtained, which is in accordance with the experiment. The calculation also shows that the asymmetric spectra observed in the experiment are caused by the unbalanced population distribution among Zeeman sublevels. This theoretical model can be used for all kinds of calculations for FADOF.

  7. Long-range interactions of hydrogen atoms in excited states. III. n S -1 S interactions for n ≥3

    Science.gov (United States)

    Adhikari, C. M.; Debierre, V.; Jentschura, U. D.

    2017-09-01

    The long-range interaction of excited neutral atoms has a number of interesting and surprising properties such as the prevalence of long-range oscillatory tails and the emergence of numerically large van der Waals C6 coefficients. Furthermore, the energetically quasidegenerate n P states require special attention and lead to mathematical subtleties. Here we analyze the interaction of excited hydrogen atoms in n S states (3 ≤n ≤12 ) with ground-state hydrogen atoms and find that the C6 coefficients roughly grow with the fourth power of the principal quantum number and can reach values in excess of 240 000 (in atomic units) for states with n =12 . The nonretarded van der Waals result is relevant to the distance range R ≪a0/α , where a0 is the Bohr radius and α is the fine-structure constant. The Casimir-Polder range encompasses the interatomic distance range a0/α ≪R ≪ℏ c /L , where L is the Lamb shift energy. In this range, the contribution of quasidegenerate excited n P states remains nonretarded and competes with the 1 /R2 and 1 /R4 tails of the pole terms, which are generated by lower-lying m P states with 2 ≤m ≤n -1 , due to virtual resonant emission. The dominant pole terms are also analyzed in the Lamb shift range R ≫ℏ c /L . The familiar 1 /R7 asymptotics from the usual Casimir-Polder theory is found to be completely irrelevant for the analysis of excited-state interactions. The calculations are carried out to high precision using computer algebra in order to handle a large number of terms in intermediate steps of the calculation for highly excited states.

  8. Toward enabling large-scale open-shell equation-of-motion coupled cluster calculations: triplet states of β-carotene

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Hanshi; Bhaskaran-Nair, Kiran; Apra, Edoardo; Govind, Niranjan; Kowalski, Karol

    2014-10-02

    In this paper we discuss the application of novel parallel implementation of the coupled cluster (CC) and equation-of-motion coupled cluster methods (EOMCC) in calculations of excitation energies of triplet states in beta-carotene. Calculated excitation energies are compared with experimental data, where available. We also provide a detailed description of the new parallel algorithms for iterative CC and EOMCC models involving single and doubles excitations.

  9. Radiative Decay Widths of Ground and Excited States of Vector Charmonium and Bottomonium

    Directory of Open Access Journals (Sweden)

    Hluf Negash

    2017-01-01

    Full Text Available We study the radiative decay widths of vector quarkonia for the process of J/ψ(nS→ηc(nSγ and Υ(nS→ηb(nSγ (for principal quantum numbers n=1,2,3 in the framework of Bethe-Salpeter equation under the covariant instantaneous ansatz using a 4×4 form of BSE. The parameters of the framework were determined by a fit to the mass spectrum of ground states of pseudoscalar and vector quarkonia, such as ηc, ηb, J/ψ, and Υ. These input parameters so fixed were found to give good agreements with data on mass spectra of ground and excited states of pseudoscalar and vector quarkonia, leptonic decay constants of pseudoscalar and vector quarkonia, two-photon decays, and two-gluon decays of pseudoscalar quarkonia in our recent paper. With these input parameters so fixed, the radiative decay widths of ground (1S and excited (2S,3S states of heavy vector quarkonia (J/Ψ and Υ are calculated and found to be in reasonable agreement with data.

  10. Equation-of-motion coupled cluster method for the description of the high spin excited states

    Energy Technology Data Exchange (ETDEWEB)

    Musiał, Monika, E-mail: musial@ich.us.edu.pl; Lupa, Łukasz; Kucharski, Stanisław A. [Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice (Poland)

    2016-04-21

    The equation-of-motion (EOM) coupled cluster (CC) approach in the version applicable for the excitation energy (EE) calculations has been formulated for high spin components. The EE-EOM-CC scheme based on the restricted Hartree-Fock reference and standard amplitude equations as used in the Davidson diagonalization procedure yields the singlet states. The triplet and higher spin components require separate amplitude equations. In the case of quintets, the relevant equations are much simpler and easier to solve. Out of 26 diagrammatic terms contributing to the R{sub 1} and R{sub 2} singlet equations in the case of quintets, only R{sub 2} operator survives with 5 diagrammatic terms present. In addition all terms engaging three body elements of the similarity transformed Hamiltonian disappear. This indicates a substantial simplification of the theory. The implemented method has been applied to the pilot study of the excited states of the C{sub 2} molecule and quintet states of C and Si atoms.

  11. Cluster decay of Ba isotopes from ground state and as an excited ...

    Indian Academy of Sciences (India)

    122 is studied by modifying the Coulomb and proximity potential model for both the ground and excited state decays ... 20 and they arise as multiple clusters and are accompanied by multiple light particles. (Z ≤ 2). ... all aspects of α and cluster decay from these isotopes from both ground and excited states beginning with ...

  12. Energy cascades, excited state dynamics, and photochemistry in cob(III)alamins and ferric porphyrins.

    Science.gov (United States)

    Rury, Aaron S; Wiley, Theodore E; Sension, Roseanne J

    2015-03-17

    Porphyrins and the related chlorins and corrins contain a cyclic tetrapyrrole with the ability to coordinate an active metal center and to perform a variety of functions exploiting the oxidation state, reactivity, and axial ligation of the metal center. These compounds are used in optically activated applications ranging from light harvesting and energy conversion to medical therapeutics and photodynamic therapy to molecular electronics, spintronics, optoelectronic thin films, and optomagnetics. Cobalt containing corrin rings extend the range of applications through photolytic cleavage of a unique axial carbon-cobalt bond, permitting spatiotemporal control of drug delivery. The photochemistry and photophysics of cyclic tetrapyrroles are controlled by electronic relaxation dynamics including internal conversion and intersystem crossing. Typically the electronic excitation cascades through ring centered ππ* states, ligand to metal charge transfer (LMCT) states, metal to ligand charge transfer (MLCT) states, and metal centered states. Ultrafast transient absorption spectroscopy provides a powerful tool for the investigation of the electronic state dynamics in metal containing tetrapyrroles. The UV-visible spectrum is sensitive to the oxidation state, electronic configuration, spin state, and axial ligation of the central metal atom. Ultrashort broadband white light probes spanning the range from 270 to 800 nm, combined with tunable excitation pulses, permit the detailed unravelling of the time scales involved in the electronic energy cascade. State-of-the-art theoretical calculations provide additional insight required for precise assignment of the states. In this Account, we focus on recent ultrafast transient absorption studies of ferric porphyrins and corrin containing cob(III)alamins elucidating the electronic states responsible for ultrafast energy cascades, excited state dynamics, and the resulting photoreactivity or photostability of these compounds. Iron

  13. Shape coexistence at the proton drip-line: First identification of excited states in 180Pb

    CERN Document Server

    Rahkila, P; Pakarinen, J; Gray-Jones, C; Greenlees, P T; Jakobsson, U; Jones, P; Julin, R; Juutinen, S; Ketelhut, S; Koivisto, H; Leino, M; Nieminen, P; Nyman, M; Papadakis, P; Paschalis, S; Petri, M; Peura, P; Roberts, O J; Ropponen, T; Ruotsalainen, P; Saren, J; Scholey, C; Sorri, J; Tuff, A G; Uusitalo, J; Wadsworth, R; Bender, M; Heenen, P -H

    2010-01-01

    Excited states in the extremely neutron-deficient nucleus, 180Pb, have been identified for the first time using the JUROGAM II array in conjunction with the RITU recoil separator at the Accelerator Laboratory of the University of Jyvaskyla. This study lies at the limit of what is presently achievable with in-beam spectroscopy, with an estimated cross-section of only 10 nb for the 92Mo(90Zr,2n)180Pb reaction. A continuation of the trend observed in 182Pb and 184Pb is seen, where the prolate minimum continues to rise beyond the N=104 mid-shell with respect to the spherical ground state. Beyond mean-field calculations are in reasonable correspondence with the trends deduced from experiment.

  14. Temperature effects on excited state of strong-coupling polaron in an asymmetric RbCl quantum dot

    Science.gov (United States)

    Feng, Li-Qin; Li, Jing-Qi; Xiao, Jing-Lin

    2015-01-01

    On the condition of strong electron-LO phonon coupling in an asymmetric RbCl quantum dot (QD), the first excited state energy (FESE), the excitation energy (EE), and the transition frequency (TF) between the first excited ground states (FEGS) of the polaron are calculated by using the linear combination operator and the unitary transformation methods. The variation of the FESE, the EE and the TF with the temperature, the transverse and longitudinal confinement strengths (TLCS) of the QD are studied in detail. We find that the FESE, the EE and the TF decreases (increases) with increasing temperature when the temperature is in lower (higher) temperature regime. They are increasing functions of the TLCS. We find three ways to tune the FESE, the EE and the TF via controlling the temperature and the TLCS.

  15. The origin of radiationless conversion of the excited state in the kindling fluorescent protein (KFP): femtosecond studies and quantum modeling

    Science.gov (United States)

    Shelaev, I.; Mironov, V.; Rusanov, A.; Gostev, F.; Bochenkova, A.; Sarkisov, O.; Nemukhin, A.; Savitsky, A.

    2011-06-01

    The Ala143Gly variant of the chromoprotein asCP from the sea anemony Anemonia sulcata, called the kindling fluorescent protein (KFP), is a promising candidate for the development of novel subdiffraction method of fluorescent microscopy. The pump-probe method with the delay times between the pump and probe pulses up to 5 ps was applied to study dynamics of the primary processes upon excitation of KFP. The differential absorption spectra at 80 fs delay showed the absorption peak in the range 450-510 nm with the maximum wavelength at 490 nm, which diminished almost twice by intensity by 400 fs and practically disappeared by 1.5 ps. The quantum calculations showed that upon photo-excitation of KFP to the first excited state S1, the fast radiationless relaxation occurred to the ground state S0 due to rotation of the phenolic fragment of the chromophore.

  16. Development and implementation of theoretical methods for the description of electronically core-excited states

    Energy Technology Data Exchange (ETDEWEB)

    Wenzel, Jan

    2016-03-23

    My PhD project mainly consists of two important parts. One was to enhance and develop variants of the core-valence-separation-algebraic-diagrammatic-construction (CVS-ADC) method and implement all approaches efficiently in the adcman program, which is part of the Q-chem program package. Secondly, I benchmarked these implementations and simulated X-ray absorption spectra of small- and medium-sized molecules from different fields. In this thesis, I present my implementations, as well as the results and applications obtained with the CVS-ADC methods and give a general introduction into quantum chemical methods. At first, I implemented the CVS-ADC approach up to the extended second in an efficient way. The program is able to deal with systems up to 500 basis functions in an adequate computational time, which allows for accurate calculations of medium-sized closed-shell molecules, e.g. acenaphthenequinone (ANQ). Afterwards, the CVS-ADC implementation was extended for the first time to deal with open-shell systems, i.e. ions and radicals, which implies a treatment of unrestricted wave functions and spin-orbitals. The resulting method is denoted as CVS-UADC(2)-x. For the first time, I applied the CVS approximation to the the third order ADC scheme, derived the working equations, and implemented the CVS-ADC(3) method in adcman. As the last step, I applied the CVS formalism for the first time to the ISR approach to enable calculations of core-excited state properties and densities. To benchmark all restricted and unrestricted CVS-ADC/CVS-ISR methods up to third order in perturbation theory, I chose a set of small molecules, e.g. carbon monoxide (CO). The calculated values of core-excitation energies, transition moments and static dipole moments are compared with experimental data or other approaches, thereby estimating complete basis set (CBS) limits. Furthermore, a comprehensive study of different basis sets is performed. In combination with the CBS limit of the aug

  17. E2 transitions between excited single-phonon states: Role of ground-state correlations

    Energy Technology Data Exchange (ETDEWEB)

    Kamerdzhiev, S. P. [National Research Centre Kurchatov Institute (Russian Federation); Voitenkov, D. A., E-mail: dvoytenkov@ippe.ru [Institute for Physics and Power Engineering (Russian Federation)

    2016-11-15

    The probabilities for E2 transitions between low-lying excited 3{sup −} and 5{sup −} single-phonon states in the {sup 208}Pb and {sup 132}Sn magic nuclei are estimated on the basis of the theory of finite Fermi systems. The approach used involves a new type of ground-state correlations, that which originates from integration of three (rather than two, as in the random-phase approximation) single-particle Green’s functions. These correlations are shown to make a significant contribution to the probabilities for the aforementioned transitions.

  18. Emergence of nontrivial magnetic excitations in a spin-liquid state of kagomé volborthite

    Science.gov (United States)

    Watanabe, Daiki; Sugii, Kaori; Shimozawa, Masaaki; Suzuki, Yoshitaka; Yajima, Takeshi; Ishikawa, Hajime; Hiroi, Zenji; Shibauchi, Takasada; Matsuda, Yuji; Yamashita, Minoru

    2016-01-01

    When quantum fluctuations destroy underlying long-range ordered states, novel quantum states emerge. Spin-liquid (SL) states of frustrated quantum antiferromagnets, in which highly correlated spins fluctuate down to very low temperatures, are prominent examples of such quantum states. SL states often exhibit exotic physical properties, but the precise nature of the elementary excitations behind such phenomena remains entirely elusive. Here, we use thermal Hall measurements that can capture the unexplored property of the elementary excitations in SL states, and report the observation of anomalous excitations that may unveil the unique features of the SL state. Our principal finding is a negative thermal Hall conductivity κxy which the charge-neutral spin excitations in a gapless SL state of the 2D kagomé insulator volborthite Cu3V2O7(OH)2⋅2H2O exhibit, in much the same way in which charged electrons show the conventional electric Hall effect. We find that κxy is absent in the high-temperature paramagnetic state and develops upon entering the SL state in accordance with the growth of the short-range spin correlations, demonstrating that κxy is a key signature of the elementary excitation formed in the SL state. These results suggest the emergence of nontrivial elementary excitations in the gapless SL state which feel the presence of fictitious magnetic flux, whose effective Lorentz force is found to be less than 1/100 of the force experienced by free electrons. PMID:27439874

  19. Ground and excited states for exotic three-body atomic systems

    Directory of Open Access Journals (Sweden)

    Gasaneo G.

    2010-04-01

    Full Text Available An Angular Correlated Configuration Interaction method is extended and applied to exotic threebody atomic systems with general masses. A recently proposed angularly correlated basis set is used to construct, simultaneously and with a single diagonalization, ground and excited states wave functions which: (i satisfy exactly Kato cusp conditions at the two-body coalescence points; (ii have only linear parameters; (iii show a fast convergency rate for the energy; (iv form an orthogonal set. The efficiency of the construction is illustrated by the study a variety of three-body atomic systems [m1− m2− m3z3+ ] with two negatively charged light particles, with 123 diverse masses m1− and m2−, and a heavy positively charged nucleus m3z3+. The calculated ground 11S and several excited n1,3S state energies are compared with those given in the literature, when available. We also present a short discussion on the critical charge necessary to get a stable three-body system supporting two electrons, an electron and a muon, or two muons.

  20. Structures of Annulenes and Model Annulene Systems in the Ground and Lowest Excited States

    Directory of Open Access Journals (Sweden)

    Pier Remigio Salvi

    2010-11-01

    Full Text Available The paper introduces general considerations on structural properties of aromatic, antiaromatic and non-aromatic conjugated systems in terms of potential energy along bond length alternation and distortion coordinates, taking as examples benzene, cyclobutadiene and cyclooctatetraene. Pentalene, formally derived from cyclooctatetraene by cross linking, is also considered as a typical antiaromatic system. The main interest is concerned with [n]annulenes and model [n]annulene molecular systems, n ranging from 10 to 18. The rich variety of conformational and  configurational isomers and of dynamical processes among them is described. Specific attention is devoted to bridged [10]- and [14]annulenes in the ground and lowest excited states as well as to s-indacene and biphenylene. Experimental data obtained from vibrational and electronic spectroscopies are discussed and compared with ab initio calculation results. Finally, porphyrin, tetraoxaporphyrin dication and diprotonated porphyrin are presented as annulene structures adopting planar/non-planar geometries depending on the steric hindrance in the inner macrocycle ring. Radiative and non-radiative relaxation processes from excited state levels have been observed by means of time-resolved fluorescence and femtosecond transient absorption spectroscopy. A short account is also given of porphycene, the structural isomer of porphyrin, and of porphycene properties.

  1. Reaction of H2with O2in Excited Electronic States: Reaction Pathways and Rate Constants.

    Science.gov (United States)

    Pelevkin, Alexey V; Loukhovitski, Boris I; Sharipov, Alexander S

    2017-12-21

    Comprehensive quantum chemical analysis with the use of the multireference state-averaged complete active space self-consistent field approach was carried out to study the reactions of H 2 with O 2 in a 1 Δ g , b 1 Σ g + , c 1 Σ u - , and A' 3 Δ u electronically excited states. The energetically favorable reaction pathways and possible intersystem crossings have been revealed. The energy barriers were refined employing the extended multiconfiguration quasi-degenerate second-order perturbation theory. It has been shown that the interaction of O 2 (a 1 Δ g ) and O 2 (A' 3 Δ u ) with H 2 occurs through the H-abstraction process with relatively low activation barriers that resulted in the formation of the HO 2 molecule in A″ and A' electronic states, respectively. Meanwhile, molecular oxygen in singlet sigma states (b 1 Σ g + and c 1 Σ u - ) was proved to be nonreactive with respect to the molecular hydrogen. Appropriate rate constants for revealed reaction and quenching channels have been estimated using variational transition-state theory including corrections for the tunneling effect, possible nonadiabatic transitions, and anharmonicity of vibrations for transition states and reactants. It was demonstrated that the calculated reaction rate constant for the H 2 + O 2 (a 1 Δ g ) process is in reasonable agreement with known experimental data. The Arrhenius approximations for these processes have been proposed for the temperature range T = 300-3000 K.

  2. Excited singlet (S1)-state interactions of Nile red with aromatic amines.

    Science.gov (United States)

    Mohanty, J; Pal, H; Sapre, A V

    2003-08-01

    Both steady-state (SS) and time-resolved (TR) studies show that the fluorescence of the dye Nile red (NR) is quenched by various aromatic amines (ArA). Bimolecular quenching constants (kq) from both SS and TR measurements are observed to match well, indicating that the interaction is dynamic in nature. The quenching interaction in the present systems has been attributed to electron transfer (ET) from ArA to excited NR, based on the variations in the kq values with the oxidation potentials of the amines. The kq values calculated within the framework of Marcus' outer-sphere ET theory at different free-energy changes (deltaG0) of the ET reactions match well with the experimental ones, supporting the ET mechanism in the systems studied. The reorganization energy (lambda) estimated from the correlation of the experimental and the calculated kq values is quite similar to the solvent reorganization energy (lambda(s)), calculated on the basis of the solvent dielectric continuum model along with the assumption that the reactants are the effective spheres. Although a modest error is involved in this lambda(s) calculation, the similarity in lambda and lambda(s) values suggests that the solvent reorganization plays a dominant role in governing the ET dynamics in the present systems.

  3. Femtosecond photoelectron imaging of transient electronic states and Rydberg atom emission from electronically excited he droplets.

    Science.gov (United States)

    Kornilov, Oleg; Bünermann, Oliver; Haxton, Daniel J; Leone, Stephen R; Neumark, Daniel M; Gessner, Oliver

    2011-07-14

    Ultrafast relaxation of electronically excited pure He droplets is investigated by femtosecond time-resolved photoelectron imaging. Droplets are excited by extreme ultraviolet (EUV) pulses with photon energies below 24 eV. Excited states and relaxation products are probed by ionization with an infrared (IR) pulse with 1.6 eV photon energy. An initially excited droplet state decays on a time scale of 220 fs, leading predominantly to the emission of unaligned 1s3d Rydberg atoms. In a second relaxation channel, electronically aligned 1s4p Rydberg atoms are emitted from the droplet within less than 120 fs. The experimental results are described within a model that approximates electronically excited droplet states by localized, atomic Rydberg states perturbed by the local droplet environment in which the atom is embedded. The model suggests that, below 24 eV, EUV excitation preferentially leads to states that are localized in the surface region of the droplet. Electronically aligned 1s4p Rydberg atoms are expected to originate from excitations in the outermost surface regions, while nonaligned 1s3d Rydberg atoms emerge from a deeper surface region with higher local densities. The model is used to simulate the He droplet EUV absorption spectrum in good agreement with previously reported fluorescence excitation measurements.

  4. Stepwise vs concerted excited state tautomerization of 2-hydroxypyridine: Ammonia dimer wire mediated hydrogen/proton transfer

    Energy Technology Data Exchange (ETDEWEB)

    Esboui, Mounir, E-mail: mounir.esboui@fst.rnu.tn [Laboratoire de Spectroscopie Atomique, Moléculaire et Applications, Département de Physique, Faculté des Sciences de Tunis, 2092 Tunis (Tunisia); Technical and Vocational Training Corporation, Hail College of Technology, P.O. Box 1960, Hail 81441 (Saudi Arabia)

    2015-07-21

    The stepwise and concerted excited state intermolecular proton transfer (PT) and hydrogen transfer (HT) reactions in 2-hydroxypyridine-(NH{sub 3}){sub 2} complex in the gas phase under Cs symmetry constraint and without any symmetry constraints were performed using quantum chemical calculations. It shows that upon excitation, the hydrogen bonded in 2HP-(NH{sub 3}){sub 2} cluster facilitates the releasing of both hydrogen and proton transfer reactions along ammonia wire leading to the formation of the 2-pyridone tautomer. For the stepwise mechanism, it has been found that the proton and the hydrogen may transfer consecutively. These processes are distinguished from each other through charge translocation analysis and the coupling between the motion of the proton and the electron density distribution along ammonia wire. For the complex under Cs symmetry, the excited state HT occurs on the A″({sup 1}πσ{sup ∗}) and A′({sup 1}nσ{sup ∗}) states over two accessible energy barriers along reaction coordinates, and excited state PT proceeds mainly through the A′({sup 1}ππ{sup ∗}) and A″({sup 1}nπ{sup ∗}) potential energy surfaces. For the unconstrained complex, potential energy profiles show two {sup 1}ππ{sup ∗}-{sup 1}πσ{sup ∗} conical intersections along enol → keto reaction path indicating that proton and H atom are localized, respectively, on the first and second ammonia of the wire. Moreover, the concerted excited state PT is competitive to take place with the stepwise process, because it proceeds over low barriers of 0.14 eV and 0.11 eV with respect to the Franck-Condon excitation of enol tautomer, respectively, under Cs symmetry and without any symmetry constraints. These barriers can be probably overcome through tunneling effect.

  5. Excited-state dynamics of hybrid multichromophoric systems: toward an excitation wavelength control of the charge separation pathways.

    Science.gov (United States)

    Banerji, Natalie; Duvanel, Guillaume; Perez-Velasco, Alejandro; Maity, Santanu; Sakai, Naomi; Matile, Stefan; Vauthey, Eric

    2009-07-23

    The photophysical properties of two hybrid multichromophoric systems consisting of an oligophenylethynyl (OPE) scaffold decorated by 10 red or blue naphthalene diimides (NDIs) have been investigated using femtosecond spectroscopy. Ultrafast charge separation was observed with both red and blue systems. However, the nature of the charge-separated state and its lifetime were found to differ substantially. For the red system, electron transfer occurs from the OPE scaffold to an NDI unit, independently of whether the OPE or an NDI is initially excited. However, charge separation upon OPE excitation is about 10 times faster, and takes place with a 100 fs time constant. The average lifetime of the ensuing charge-separated state amounts to about 650 ps. Charge separation in the blue system depends on which of the OPE scaffold or an NDI is excited. In the first case, an electron is transferred from the OPE to an NDI and the hole subsequently shifts to another NDI unit, whereas in the second case symmetry-breaking charge separation between two NDI units occurs. Although the charges are located on two NDIs in both cases, different recombination dynamics are observed. This is explained by the location of the ionic NDI moieties that depends on the charge separation pathway, hence on the excitation wavelength. The very different dynamics observed with red and blue systems can be accounted for by the oxidation potentials of the respective NDIs that are higher and lower than that of the OPE scaffold. Because of this, the relative energies of the two charge-separated states (hole on the OPE or an NDI) are inverted.

  6. Excited state dynamics in photosynthetic reaction center and light harvesting complex 1

    Science.gov (United States)

    Strümpfer, Johan; Schulten, Klaus

    2012-08-01

    Key to efficient harvesting of sunlight in photosynthesis is the first energy conversion process in which electronic excitation establishes a trans-membrane charge gradient. This conversion is accomplished by the photosynthetic reaction center (RC) that is, in case of the purple photosynthetic bacterium Rhodobacter sphaeroides studied here, surrounded by light harvesting complex 1 (LH1). The RC employs six pigment molecules to initiate the conversion: four bacteriochlorophylls and two bacteriopheophytins. The excited states of these pigments interact very strongly and are simultaneously influenced by the surrounding thermal protein environment. Likewise, LH1 employs 32 bacteriochlorophylls influenced in their excited state dynamics by strong interaction between the pigments and by interaction with the protein environment. Modeling the excited state dynamics in the RC as well as in LH1 requires theoretical methods, which account for both pigment-pigment interaction and pigment-environment interaction. In the present study we describe the excitation dynamics within a RC and excitation transfer between light harvesting complex 1 (LH1) and RC, employing the hierarchical equation of motion method. For this purpose a set of model parameters that reproduce RC as well as LH1 spectra and observed oscillatory excitation dynamics in the RC is suggested. We find that the environment has a significant effect on LH1-RC excitation transfer and that excitation transfers incoherently between LH1 and RC.

  7. Resonance-Enhanced Excited-State Raman Spectroscopy of Conjugated Thiophene Derivatives: Combining Experiment with Theory

    Science.gov (United States)

    Barclay, Matthew S.; Quincy, Timothy J.; Caricato, Marco; Elles, Christopher G.

    2017-06-01

    Resonance-enhanced Femtosecond Stimulated Raman Spectroscopy (FSRS) is an ultrafast experimental method that allows for the study of excited-state structural behaviors, as well as the characterization of higher electronically excited states accessible through the resonant conditions of the observed vibrations. However, interpretation of the experiment is difficult without an accurate vibrational assignment of the resonance-enhanced spectra. We therefore utilize simulations of off-resonant excited-state Raman spectra, in which we employ a numerical derivative of the analytical excited-state polarizabilities along the normal mode displacements, in order to identify and interpret the resonance-enhanced vibrations observed in experiment. We present results for a benchmark series of conjugated organic thiophene derivatives, wherein we have computed the off-resonant excited-state Raman spectra for each molecule and matched it with its resonance-enhanced experimental spectrum. This comparison allows us to successfully identify the vibrational displacements of the observed FSRS bands, as well as validate the accuracy of the theoretical results through an experimental benchmark. The agreement between the experimental and computed results demonstrates that we are able to predict qualitatively accurate excited-state Raman spectra for these conjugated thiophenes, allowing for a more thorough interpretation of excited-state Raman signals at relatively low computational cost.

  8. Topological honeycomb magnon Hall effect: A calculation of thermal Hall conductivity of magnetic spin excitations

    Energy Technology Data Exchange (ETDEWEB)

    Owerre, S. A., E-mail: solomon@aims.ac.za [African Institute for Mathematical Sciences, 6 Melrose Road, Muizenberg, Cape Town 7945, South Africa and Perimeter Institute for Theoretical Physics, 31 Caroline St. N., Waterloo, Ontario N2L 2Y5 (Canada)

    2016-07-28

    Quite recently, the magnon Hall effect of spin excitations has been observed experimentally on the kagome and pyrochlore lattices. The thermal Hall conductivity κ{sup xy} changes sign as a function of magnetic field or temperature on the kagome lattice, and κ{sup xy} changes sign upon reversing the sign of the magnetic field on the pyrochlore lattice. Motivated by these recent exciting experimental observations, we theoretically propose a simple realization of the magnon Hall effect in a two-band model on the honeycomb lattice. The magnon Hall effect of spin excitations arises in the usual way via the breaking of inversion symmetry of the lattice, however, by a next-nearest-neighbour Dzyaloshinsky-Moriya interaction. We find that κ{sup xy} has a fixed sign for all parameter regimes considered. These results are in contrast to the Lieb, kagome, and pyrochlore lattices. We further show that the low-temperature dependence on the magnon Hall conductivity follows a T{sup 2} law, as opposed to the kagome and pyrochlore lattices. These results suggest an experimental procedure to measure thermal Hall conductivity within a class of 2D honeycomb quantum magnets and ultracold atoms trapped in a honeycomb optical lattice.

  9. Theoretical study on the excited-state intramolecular proton-transfer reaction of 10-hydroxybenzo[h]quinoline in methanol and cyclohexane

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Meng [Department of Chemistry, Liaoning University, Shenyang 110036 (China); State Key Lab of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Zhao, Jinfeng [Department of Physics, Liaoning University, Shenyang 110036 (China); State Key Lab of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Cui, Yanling; Wang, Qianyu [Department of Physics, Liaoning University, Shenyang 110036 (China); Dai, Yumei [Normal College, Shenyang University, Shenyang 110044 (China); Song, Peng, E-mail: songpeng@lnu.edu.cn [Department of Physics, Liaoning University, Shenyang 110036 (China); Xia, Lixin, E-mail: lixinxia@lnu.edu.cn [Department of Chemistry, Liaoning University, Shenyang 110036 (China)

    2015-05-15

    The dynamics of the excited-state intramolecular proton-transfer (ESIPT) reaction of 10-hydroxybenzoquinoline (HBQ) in different solvents, have been investigated based on the time-dependent density functional theory (TD-DFT) in detail. Upon excitation, the intramolecular hydrogen bond between the hydroxyl and phenanthrene functionality is significantly strengthened in the S{sub 1} state, which can be used as a reasonable tendency for facilitating the ESIPT process. In addition, the calculated vertical excitation energies in the S{sub 0} state and S{sub 1} state reproduce the experimental UV–vis absorbance and fluorescence emission spectra well. Through calculating the fluorescence spectra of the HBQ chromophore, two outcomes for this chromophore were found in the S{sub 1} state, which demonstrates that the ESIPT process occurs. The potential energy curves have been calculated to account for the mechanism of the proton-transfer process in the excited-state. As a result, the barrierless ESIPT process can occur in the S{sub 1} state with proton transfer from the O atom to the N atom. And maybe the ESIPT process is easier in methanol solvent due to the higher potential energy difference. - Highlights: • The hydrogen bond between the hydroxyl and phenanthrene is strengthened. • The hydrogen bond facilitates the proton transfer from the hydroxyl group to the N atom. • The spontaneous excited-state intramolecular proton transfer reaction can be observed.

  10. Effects of solvent on the electronic absorption and fluorescence spectra of quinazolines, and determination of their ground and excited singlet-state dipole moments

    Science.gov (United States)

    Aaron, J. J.; Tine, A.; Gaye, M. D.; Parkanyi, C.; Boniface, C.; Bieze, T. W. N.

    The electronic absorption, and fluorescence excitation and emission spectra of 11 quinazolines have been measured at room temperature (298 K) in several solvents of different polarities (cyclohexane, dioxane, ethylether, chloroform, ethylacetate, 1-butanol, 2-propanol, ethanol, methanol, acetonitrile, dimethylformamide and dimethyl sulfoxide). The effects of the solvent upon the spectral properties are discussed. Experimental ground-state dipole moments were measured for quinazolines and were used in combination with the spectral results to evaluate their first excited singlet-state dipole moments by means of the solvatochromic shift method. The theoretical ground and excited singlet-state dipole moments for selected quinazolines were calculated as a vector sum of the π-component (obtained by the PPP method) and the σ-component (obtained from σ-bond moments). A reasonable agreement was observed between the experimental and the theoretical values. Excited singlet-state dipole moments are higher than the ground-state values for most quinazolines.

  11. Excited states properties of organic molecules: from density functional theory to the GW and Bethe-Salpeter Green's function formalisms.

    Science.gov (United States)

    Faber, C; Boulanger, P; Attaccalite, C; Duchemin, I; Blase, X

    2014-03-13

    Many-body Green's function perturbation theories, such as the GW and Bethe-Salpeter formalisms, are starting to be routinely applied to study charged and neutral electronic excitations in molecular organic systems relevant to applications in photovoltaics, photochemistry or biology. In parallel, density functional theory and its time-dependent extensions significantly progressed along the line of range-separated hybrid functionals within the generalized Kohn-Sham formalism designed to provide correct excitation energies. We give an overview and compare these approaches with examples drawn from the study of gas phase organic systems such as fullerenes, porphyrins, bacteriochlorophylls or nucleobases molecules. The perspectives and challenges that many-body perturbation theory is facing, such as the role of self-consistency, the calculation of forces and potential energy surfaces in the excited states, or the development of embedding techniques specific to the GW and Bethe-Salpeter equation formalisms, are outlined.

  12. Numerical calculation of the ground state of Helium atom using ...

    African Journals Online (AJOL)

    Hylleraas did the calculation of the ground state in 1926 using the variational parameter a. In this paper we trace Hylleraas historic calculation, the use of computer enables us to improve the approximation found by Hylleraas . The program was written in FORTRAN language, designed in such away that for a particular value ...

  13. Bilayer Graphene: Interaction-Induced Quantum Hall States and Unusual Excitations

    Science.gov (United States)

    Sondhi, Shivaji; Abanin, D. A.; Parameswaran, S. A.

    2010-03-01

    Recently, new interaction-induced quantum Hall (QH) states were observedfootnotetextB. Feldman et al., Nature Physics, doi:10.1038/nphys1406 (2009); Y. Zhao et al., arXiv:0910.0217 (2009). in bilayer graphene (BG). In this talk we address the nature of these QH states, as well as their propertiesfootnotetextD. Abanin et al., Phys. Rev. Lett. 103, 076802 (2009), and to be published.. We focus on the ferromagnetic (FM) states at even filling factors, which, in the leading approximation, result from the spontaneous breaking of valley/spin SU(4) symmetry. Calculating microscopic anisotropies of the QHFM, we find the order in which Landau level (LL) degeneracies are lifted. Furthermore, we discuss the phase diagram of the system as a function of perpendicular electric field and parallel magnetic field, and find that they can be used to drive transitions between different QH states. We show that, as a result of unusual LL structure of BG, some of the QHFM states support new type of excitations -- spin/valley textures (skyrmions) that carry charge two, which provides a unique example of pairing of charges in a system with purely repulsive interactions. We propose several experiments to test our findings.

  14. Excited-state entanglement and thermal mutual information in random spin chains

    Science.gov (United States)

    Huang, Yichen; Moore, Joel E.

    2014-12-01

    Entanglement properties of excited eigenstates (or of thermal mixed states) are difficult to study with conventional analytical methods. We approach this problem for random spin chains using a recently developed real-space renormalization group technique for excited states ("RSRG-X"). For the random XX and quantum Ising chains, which have logarithmic divergences in the entanglement entropy of their (infinite-randomness) critical ground states, we show that the entanglement entropy of excited eigenstates retains a logarithmic divergence while the mutual information of thermal mixed states does not. However, in the XX case the coefficient of the logarithmic divergence extends from the universal ground-state value to a universal interval due to the degeneracy of excited eigenstates. These models are noninteracting in the sense of having free-fermion representations, allowing strong numerical checks of our analytical predictions.

  15. Evidence for excited spin-orbit state reaction dynamics in F+H2: theory and experiment.

    Science.gov (United States)

    Lique, François; Alexander, Millard H; Li, Guoliang; Werner, Hans-Joachim; Nizkorodov, Sergey A; Harper, Warren W; Nesbitt, David J

    2008-02-28

    We describe fully quantum, time-independent scattering calculations of the F+H2-->HF+H reaction, concentrating on the HF product rotational distributions in v'=3. The calculations involved two new sets of ab initio potential energy surfaces, based on large basis set, multireference configuration-interaction calculations, which are further scaled to reproduce the experimental exoergicity of the reaction. In addition, the spin-orbit, Coriolis, and electrostatic couplings between the three quasidiabatic F+H2 electronic states are included. The calculated integral cross sections are compared with the results of molecular beam experiments. At low collision energies, a significant fraction of the reaction is due to Born-Oppenheimer forbidden, but energetically allowed reaction of F in its excited (2P 1/2) spin-orbit state. As the collision energy increases, the Born-Oppenheimer allowed reaction of F in its ground (2P 3/2) spin-orbit state rapidly dominates. Overall, the calculations agree reasonably well with the experiment, although there remains some disagreement with respect to the degree of rotational excitation of the HF(v'=3) products as well as with the energy dependence of the reactive cross sections at the lowest collision energies.

  16. A QM/MM Approach Using the AMOEBA Polarizable Embedding: From Ground State Energies to Electronic Excitations.

    Science.gov (United States)

    Loco, Daniele; Polack, Étienne; Caprasecca, Stefano; Lagardère, Louis; Lipparini, Filippo; Piquemal, Jean-Philip; Mennucci, Benedetta

    2016-08-09

    A fully polarizable implementation of the hybrid quantum mechanics/molecular mechanics approach is presented, where the classical environment is described through the AMOEBA polarizable force field. A variational formalism, offering a self-consistent relaxation of both the MM induced dipoles and the QM electronic density, is used for ground state energies and extended to electronic excitations in the framework of time-dependent density functional theory combined with a state specific response of the classical part. An application to the calculation of the solvatochromism of the pyridinium N-phenolate betaine dye used to define the solvent ET(30) scale is presented. The results show that the QM/AMOEBA model not only properly describes specific and bulk effects in the ground state but it also correctly responds to the large change in the solute electronic charge distribution upon excitation.

  17. Effect of xanthophyll composition on the chlorophyll excited state lifetime in plant leaves and isolated LHCII

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Matthew P.; Zia, Ahmad [School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Horton, Peter [Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN (United Kingdom); Ruban, Alexander V., E-mail: a.ruban@qmul.ac.uk [School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom)

    2010-07-19

    Xanthophyll excited states have been implicated by transient absorption and two-photon excitation studies in playing a key role in the regulation of photosynthetic light harvesting via photoprotective energy dissipation. For any proposed quenching mechanism to be effective it must reduce the chlorophyll excited state lifetime from 2 ns to {approx}0.5-0.4 ns. In the presented study the effect of xanthophyll composition on the chlorophyll excited state lifetime in Arabidopsis leaves in the light harvesting (F{sub m}) and photoprotective (NPQ) states was determined. The data was compared to the chlorophyll excited state lifetime of native isolated LHCII and CP26 in detergent micelles with varying xanthophyll composition. It was found that although the differences in xanthophyll composition between LHC complexes from various Arabidopsis mutants were sufficient to explain the varying F{sub m} lifetime (and varying PSII efficiency), they were not of a sufficient scale to fully explain the observed differences in the NPQ lifetimes. Only when the LHC complexes were exposed to a low detergent/low pH media, a condition known to mimic the conformational state of LHCII associated with NPQ in vivo, were variations in excited state lifetime large enough to explain the differences observed in leaves. Furthermore, the data reveal that the replacement of lutein by either zeaxanthin or violaxanthin in the internal xanthophyll binding sites of LHCII and CP26 reduces the efficiency of energy dissipation in the photoprotective state in leaves and isolated complexes.

  18. Effects of crossed states on photoluminescence excitation spectroscopy of InAs quantum dots

    Directory of Open Access Journals (Sweden)

    Lin Chien-Hung

    2011-01-01

    Full Text Available Abstract In this report, the influence of the intrinsic transitions between bound-to-delocalized states (crossed states or quasicontinuous density of electron-hole states on photoluminescence excitation (PLE spectra of InAs quantum dots (QDs was investigated. The InAs QDs were different in size, shape, and number of bound states. Results from the PLE spectroscopy at low temperature and under a high magnetic field (up to 14 T were compared. Our findings show that the profile of the PLE resonances associated with the bound transitions disintegrated and broadened. This was attributed to the coupling of the localized QD excited states to the crossed states and scattering of longitudinal acoustical (LA phonons. The degree of spectral linewidth broadening was larger for the excited state in smaller QDs because of the higher crossed joint density of states and scattering rate.

  19. Hartree-Fock study on the lower excited states of a Cu+ impurity in NaF using large embedded clusters

    NARCIS (Netherlands)

    Linker, G.J.; Broer, R.; Nieuwpoort, W.C.

    1996-01-01

    We report spin-restricted and symmetry-restricted Hartree-Fock cluster calculations on the lower excited states of a Cu+ impurity in NaF in order to investigate their dependence on cluster size. In contrast to previous work on smaller clusters, we found all states arising from the configurations

  20. Spin-state transition in LaCoO3: direct neutron spectroscopic evidence of excited magnetic states.

    Science.gov (United States)

    Podlesnyak, A; Streule, S; Mesot, J; Medarde, M; Pomjakushina, E; Conder, K; Tanaka, A; Haverkort, M W; Khomskii, D I

    2006-12-15

    A gradual spin-state transition occurs in LaCoO3 around T approximately 80-120 K, whose detailed nature remains controversial. We studied this transition by means of inelastic neutron scattering and found that with increasing temperature an excitation at approximately 0.6 meV appears, whose intensity increases with temperature, following the bulk magnetization. Within a model including crystal-field interaction and spin-orbit coupling, we interpret this excitation as originating from a transition between thermally excited states located about 120 K above the ground state. We further discuss the nature of the magnetic excited state in terms of intermediate-spin (t(2g)(5)e(g)(1), S=1) versus high-spin (t(2g)(4)e(g)(2), S=2) states. Since the g factor obtained from the field dependence of the inelastic neutron scattering is g approximately 3, the second interpretation is definitely favored.

  1. Interception of excited vibrational quantum states by O2 in atmospheric association reactions.

    Science.gov (United States)

    Glowacki, David R; Lockhart, James; Blitz, Mark A; Klippenstein, Stephen J; Pilling, Michael J; Robertson, Struan H; Seakins, Paul W

    2012-08-31

    Bimolecular reactions in Earth's atmosphere are generally assumed to proceed between reactants whose internal quantum states are fully thermally relaxed. Here, we highlight a dramatic role for vibrationally excited bimolecular reactants in the oxidation of acetylene. The reaction proceeds by preliminary adduct formation between the alkyne and OH radical, with subsequent O(2) addition. Using a detailed theoretical model, we show that the product-branching ratio is determined by the excited vibrational quantum-state distribution of the adduct at the moment it reacts with O(2). Experimentally, we found that under the simulated atmospheric conditions O(2) intercepts ~25% of the excited adducts before their vibrational quantum states have fully relaxed. Analogous interception of excited-state radicals by O(2) is likely common to a range of atmospheric reactions that proceed through peroxy complexes.

  2. Tracking the Excited-State Time Evolution of the Visual Pigment with Multiconfigurational Quantum Chemistry

    National Research Council Canada - National Science Library

    Luis Manuel Frutos; Tadeusz Andruniów; Fabrizio Santoro; Nicolas Ferré; Massimo Olivucci

    2007-01-01

    ...). Here, we use a scaled quantum mechanics/molecular mechanics potential that reproduces the isomerization path determined with multiconfigurational perturbation theory to follow the excited-state evolution of bovine Rh...

  3. Calculations of Excitation Functions of Some Structural Fusion Materials for ( n, t) Reactions up to 50 MeV Energy

    Science.gov (United States)

    Tel, E.; Durgu, C.; Aktı, N. N.; Okuducu, Ş.

    2010-06-01

    Fusion serves an inexhaustible energy for humankind. Although there have been significant research and development studies on the inertial and magnetic fusion reactor technology, there is still a long way to go to penetrate commercial fusion reactors to the energy market. Tritium self-sufficiency must be maintained for a commercial power plant. For self-sustaining (D-T) fusion driver tritium breeding ratio should be greater than 1.05. So, the working out the systematics of ( n, t) reaction cross sections is of great importance for the definition of the excitation function character for the given reaction taking place on various nuclei at different energies. In this study, ( n, t) reactions for some structural fusion materials such as 27Al, 51V, 52Cr, 55Mn, and 56Fe have been investigated. The new calculations on the excitation functions of 27Al( n, t)25Mg, 51V( n, t)49Ti, 52Cr( n, t)50V, 55Mn( n, t)53Cr and 56Fe( n, t)54Mn reactions have been carried out up to 50 MeV incident neutron energy. In these calculations, the pre-equilibrium and equilibrium effects have been investigated. The pre-equilibrium calculations involve the new evaluated the geometry dependent hybrid model, hybrid model and the cascade exciton model. Equilibrium effects are calculated according to the Weisskopf-Ewing model. Also in the present work, we have calculated ( n, t) reaction cross-sections by using new evaluated semi-empirical formulas developed by Tel et al. at 14-15 MeV energy. The calculated results are discussed and compared with the experimental data taken from the literature.

  4. New excited states in sd-shell nucleus {sup 33}P

    Energy Technology Data Exchange (ETDEWEB)

    Fu, B.; Reiter, P.; Arnswald, K.; Hess, H.; Hirsch, R.; Lewandowski, L.; Schneiders, D.; Seidlitz, M.; Siebeck, B.; Steinbach, T.; Vogt, A.; Wendt, A.; Wolf, K. [Institut fuer Kernphysik, Universitaet zu Koeln (Germany)

    2015-07-01

    Isospin-symmetry breaking in nuclear physics is mainly described by Mirror-Energy Differences (MED) for mirror nuclei or Triplet-Energy Differences (TED) for isobaric triplets. Modified USD-calculations successfully reproduce MED for T=1,3/2,2 sd-shell nuclei. Refined tests of theory are given by lifetime measurements in order to deduce transition-strength values. In order to study the mirror pair {sup 33}Ar and {sup 33}P, the fusion-evaporation reaction {sup 13}C+{sup 26}Mg at 46 MeV was measured at the Cologne tandem accelerator and the HORUS spectrometer employing the Doppler-Shift-Attenuation-Method (DSAM). First results yielded new γ-ray transitions in {sup 33}P and {sup 33}S. The level scheme of {sup 33}P was extended up to excitation energies of 10 MeV. Spins and parities of the new levels were determined exploiting γγ-angular correlations. Together with values from the proton-rich T{sub z} = - 3/2 partner, the levels are compared to shell model calculations, describing excitation energies of sd -shell mirror pairs. The understanding of isospin symmetry and isospin-symmetry breaking is a fundamental question in nuclear physics. Isospin-symmetry breaking is mainly described by Mirror-Energy Differences (MED) for mirror nuclei or Triplet-Energy Differences (TED) for isobaric triplets. Modified USD{sup m}{sub 1,2,3}-calculations successfully reproduced MED for the mirror nuclei {sup 33}Ar and {sup 33}P. Both {sup 33}P and {sup 33}S were produced at the Cologne FN tandem accelerator employing the fusion-evaporation reaction {sup 13}C+{sup 26}Mg at 46 MeV and spectroscopically investigated using 14 HPGe detectors. Several new energy states (in {sup 33}P) and γ-ray transitions (in {sup 33}P and {sup 33}S) were detected. Spins and parities of the new levels in {sup 33}P were determined exploiting γγ-angular correlations. The level scheme of {sup 33}P was extended up to excitation energies of 10 MeV.

  5. Metastable states in parametrically excited multimode Hamiltonian systems

    CERN Document Server

    Kirr, E

    2003-01-01

    Consider a linear autonomous Hamiltonian system with time periodic bound state solutions. In this paper we study their dynamics under time almost periodic perturbations which are small, localized and Hamiltonian. The analysis proceeds through a reduction of the original infinite dimensional dynamical system to the dynamics of two coupled subsystems: a dominant m-dimensional system of ordinary differential equations (normal form), governing the projections onto the bound states and an infinite dimensional dispersive wave equation. The present work generalizes previous work of the authors, where the case of a single bound state is considered. Here, the interaction picture is considerably more complicated and requires deeper analysis, due to a multiplicity of bound states and the very general nature of the perturbation's time dependence. Parametric forcing induces coupling of bound states to continuum radiation modes, bound states directly to bound states, as well as coupling among bound states, which is mediate...

  6. Nonaxial shapes of even–even lantanide and actinide nuclei in excited collective states

    Energy Technology Data Exchange (ETDEWEB)

    Nadirbekov, M. S., E-mail: nodirbekov@inp.uz; Bozarov, O. A. [Uzbek Academy of Sciences, Institute of Nuclear Physics (Uzbekistan)

    2016-07-15

    Quadrupole-type excited states of even–even nuclei are studied on the basis of arbitrary-triaxiality model. It is shown that the inclusion of high-order terms in the expansion of the rotational-energy operator in the variable γ improves substantially agreement between our theoretical results and respective experimental data. The proposed model makes it possible to explain the intricate character of the spectrum of excited states of even–even lanthanide and actinide nuclei.

  7. OPTIMIZATION OF A BOXCAR INTEGRATOR AVERAGER SYSTEM FOR EXCITED-STATE LIFETIME MEASUREMENTS

    OpenAIRE

    NOVO, JBM; PESSINE, FBT

    1992-01-01

    The instrumental distortions due to adjustable parameters of the SR250 boxcar integrator/averager system and a pulsed-laser luminescence spectrometer on the excited-state lifetime decay waveforms were investigated. A theoretical model which takes into account the exponential moving average for this instrument and also RC distortion on the time-dependent luminescence signal is presented. An analytical expression relating the sample's excited-state lifetime and the adjustable instrumental param...

  8. Sum rule analysis of vector and axial-vector spectral functions with excited states in vacuum

    OpenAIRE

    Hohler, Paul M.; Rapp, Ralf

    2012-01-01

    We simultaneously analyze vector and axial-vector spectral functions in vacuum using hadronic models constrained by experimental data and the requirement that Weinberg-type sum rules are satisfied. Upon explicit inclusion of an excited vector state, viz. rho', and the requirement that the perturbative continua are degenerate in vector and axial-vector channels, we deduce the existence of an excited axial-vector resonance state, a1', in order that the Weinberg sum rules are satisfied. The resu...

  9. Ultrafast fluorescence study of the effect of carboxylic and carboxylate substituents on the excited state properties of anthracene

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Córdoba, William [Escuela de Física, Universidad Nacional de Colombia Sede Medellín, A.A. 3840, Medellín (Colombia); Noria-Moreno, Raquel; Navarro, Pedro [Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, 04510 México, DF (Mexico); Peon, Jorge, E-mail: jpeon@unam.mx [Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, 04510 México, DF (Mexico)

    2014-01-15

    With the objective of understanding the interaction between carboxylic substituents and aromatic systems in electronically excited states, we have studied the photophysics of anthracene-9-carboxylic acid and its conjugate base through spectroscopic and computational approaches. We measured the emission spectrum evolution with femtosecond resolution observing that the formation of the relaxed fluorescent state of the acid corresponds to a red shifting of the emission which takes place within the first picosecond after excitation, a time-scale defined by the solvent response (acetone). For the case of the anthracene-9-carboxylate system, the spectral evolution is practically absent, indicating a lack of relaxation of the substituent orientation in the S{sub 1} state. Computational work at the time-dependent density functional theory level, considering the novel state-specific formalism, indicates that for anthracene-9-carboxylic acid, the first electronically excited state evolves from a structure with a nearly 60° dihedral angle between the carboxylic and aromatic systems, to a relaxed structure with a nearly 30° angle. On the other hand, the calculations show that for the salt, the carboxylate group remains decoupled from the aromatic system both in the ground and fluorescent state, remaining in both states at nearly 90°. Our results elucidate that the emission spectra of the acid and conjugate base are defined by the degree of interaction between the carboxylic (or carboxylate) group and the aromatic system. Such interactions are drastically different from the formal charge present in the carboxylate ion. -- Highlights: • Understanding of the interaction between carboxylic substituents and aromatic systems in electronically excited states. • Elucidation of the excited state dynamics of 9-ACA and its conjugated base in acetone solutions. • The spectral evolution time-scale of the aromatic acid and its salt depends on the solvation dynamics. • The

  10. Vibronic energy map and excited state vibrational characteristics of magnesium myoglobin determined by energy-selective fluorescence.

    OpenAIRE

    Kaposi, A D; Vanderkooi, J. M.

    1992-01-01

    The vibrational frequencies of the singlet excited state of Mg-substituted myoglobin and relative absorption probabilities were determined by fluorescence line-narrowing spectroscopy. These spectra contain information on the structure of the excited state species, and the availability of vibrationally resolved spectra from excited state biomolecules should aid in elucidating their structure and reactivity.

  11. Proton and deuteron induced reactions on natGa: Experimental and calculated excitation functions

    Science.gov (United States)

    Hermanne, A.; Adam-Rebeles, R.; Tárkányi, F.; Takács, S.; Ditrói, F.

    2015-09-01

    Cross-sections for reactions on natGa, induced by protons (up to 65 MeV) and deuterons (up to 50 MeV), producing γ-emitting radionuclides with half-lives longer than 1 h were measured in a stacked-foil irradiation using thin Ga-Ni alloy (70-30%) targets electroplated on Cu or Au backings. Excitation functions for generation of 68,69Ge, 66,67,68,72Ga and 65,69mZn on natGa are discussed, relative to the monitor reactions natAl(d,x)24,22Na, natAl(p,x)24,22Na, natCu(p,x)62Zn and natNi(p,x)57Ni. The results are compared to our earlier measurements, the scarce literature values and to the results of the code TALYS 1.6 (online database TENDL-2014).

  12. Excited state non-adiabatic dynamics of pyrrole: A time-resolved photoelectron spectroscopy and quantum dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Guorong [National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Neville, Simon P.; Worth, Graham A., E-mail: g.a.worth@bham.ac.uk [School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Schalk, Oliver [National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Department of Physics, AlbaNova University Center, Stockholm University, Roslagstullsbacken 21, 109 61 Stockholm (Sweden); Sekikawa, Taro [National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Department of Applied Physics, Hokkaido University, Kita-13 Nishi-8, Kita-ku, Sapporo 060-8628 (Japan); Ashfold, Michael N. R. [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Stolow, Albert, E-mail: astolow@uottawa.ca [National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Departments of Chemistry and Physics, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5 (Canada)

    2015-02-21

    The dynamics of pyrrole excited at wavelengths in the range 242-217 nm are studied using a combination of time-resolved photoelectron spectroscopy and wavepacket propagations performed using the multi-configurational time-dependent Hartree method. Excitation close to the origin of pyrrole’s electronic spectrum, at 242 and 236 nm, is found to result in an ultrafast decay of the system from the ionization window on a single timescale of less than 20 fs. This behaviour is explained fully by assuming the system to be excited to the A{sub 2}(πσ{sup ∗}) state, in accord with previous experimental and theoretical studies. Excitation at shorter wavelengths has previously been assumed to result predominantly in population of the bright A{sub 1}(ππ{sup ∗}) and B{sub 2}(ππ{sup ∗}) states. We here present time-resolved photoelectron spectra at a pump wavelength of 217 nm alongside detailed quantum dynamics calculations that, together with a recent reinterpretation of pyrrole’s electronic spectrum [S. P. Neville and G. A. Worth, J. Chem. Phys. 140, 034317 (2014)], suggest that population of the B{sub 1}(πσ{sup ∗}) state (hitherto assumed to be optically dark) may occur directly when pyrrole is excited at energies in the near UV part of its electronic spectrum. The B{sub 1}(πσ{sup ∗}) state is found to decay on a timescale of less than 20 fs by both N-H dissociation and internal conversion to the A{sub 2}(πσ{sup ∗}) state.

  13. Dark excited states of carotenoid in light harvesting complex probing with femtosecond stimulated Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Sakai S.

    2013-03-01

    Full Text Available Vibrational dynamics of dark excited states in carotenoids have been investigated using tunable Raman pump pulses. The S1 state has same vibrational dynamics in light-harvesting complex (LH1 and solution. The S* state in LH1 has similar vibrational modes with the triplet state of carotenoid. However, the so-called S* state in solution does not have the modes and is concluded to be different from the S* state in LH1.

  14. Photochemistry of excited-state species in natural waters: a role for particulate organic matter.

    Science.gov (United States)

    Cottrell, Barbara A; Timko, Stephen A; Devera, Lianne; Robinson, Alice K; Gonsior, Michael; Vizenor, Ashley E; Simpson, André J; Cooper, William J

    2013-09-15

    Laser flash photolysis (LFP) was used to characterize a triplet excited state species isolated from Black River and San Joaquin wetlands particulate organic matter (POM). The solubilized organic matter, isolated from POM by pH-independent diffusion in distilled water, was named PdOM. UV-visible absorption spectroscopy, excitation-emission matrix spectroscopy (EEMs), and (1)H NMR were used to characterize the PdOM. While LFP of dissolved organic matter (DOM) is known to generate the solvated electron, LFP of the PdOM transient in argon-, air-, and nitrous oxide-saturated solutions indicated that this was a triplet excited state species ((3)PdOM*). The lifetime and the reactivity of (3)PdOM* with sorbic acid, a triplet state quencher, were compared with that of the triplet excited state of benzophenone, a DOM proxy. A second excited state species (designated DOM*), with a longer lifetime, was reported in a number of previous studies but not characterized. The lifetime of DOM*, measured for seventeen organic matter isolates, lignin, tannic acid, and three wetlands plant extracts, was shown to differentiate allochthonous from autochthonous DOM. (3)POM* and DOM* were also observed in lake water and a constructed wetlands' water. Aqueous extracts of fresh and aged plant material from the same wetland were shown to be one source of these excited state species. This study provides evidence of a role for POM in the photochemistry of natural and constructed wetland waters. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Quantum mechanical calculations of state-to-state cross sections and rate constants for the F + DCl → Cl + DF reaction.

    Science.gov (United States)

    Bulut, Niyazi; Kłos, Jacek; Roncero, Octavio

    2015-06-07

    We present accurate state-to-state quantum wave packet calculations of integral cross sections and rate constants for the title reaction. Calculations are carried out on the best available ground 1(2)A' global adiabatic potential energy surface of Deskevich et al. [J. Chem. Phys. 124, 224303 (2006)]. Converged state-to-state reaction cross sections have been calculated for collision energies up to 0.5 eV and different initial rotational and vibrational excitations, DCl(v = 0, j = 0 - 1; v = 1, j = 0). Also, initial-state resolved rate constants of the title reaction have been calculated in a temperature range of 100-400 K. It is found that the initial rotational excitation of the DCl molecule does not enhance reactivity, in contract to the reaction with the isotopologue HCl in which initial rotational excitation produces an important enhancement. These differences between the isotopologue reactions are analyzed in detail and attributed to the presence of resonances for HCl(v = 0, j), absent in the case of DCl(v = 0, j). For vibrational excited DCl(v = 1, j), however, the reaction cross section increases noticeably, what is also explained by another resonance.

  16. High-energy excited states in {sup 98}Cd

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Norbert; Blazhev, Andrey; Jolie, Jan [Institut fuer Kernphysik, Universitaet Koeln (Germany); Boutachkov, Plamen; Gorska, Magda; Grawe, Hubert; Pietri, Stephane [GSI, Darmstadt (Germany); Brock, Tim; Nara Singh, B.S.; Wadsworth, Robert [Department of Physics, University of York, York (United Kingdom); Liu, Zhong [University of Edinburgh, Edinburgh (United Kingdom)

    2009-07-01

    Studies of isomerism in the proton-rich N {approx_equal}Z nuclei around {sup 100}Sn give important insights into the role of proton-neutron pairing and also serve as testing grounds for nuclear models. In summer 2008, an experiment on {sup 96,97,98}Cd was performed using the FRS fragment separator and the RISING germanium array at GSI. These exotic nuclei of interest were produced using fragmentation of a 850 MeV/u {sup 124}Xe beam on a 4 g/cm{sup 2} {sup 9}Be target and finally implanted into an active stopper consisting of 9 double-sided silicon strip detectors. In {sup 98}Cd, a new high-energy isomeric transition was identified. Preliminary results on {sup 98}Cd are presented and their implications for the high-excitation level scheme are discussed.

  17. Steady-state photoluminescent excitation characterization of semiconductor carrier recombination

    Energy Technology Data Exchange (ETDEWEB)

    Bhosale, J. S. [Intel Corporation, Hillsboro, Oregon 97124 (United States); Department of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Moore, J. E.; Wang, X.; Bermel, P.; Lundstrom, M. S. [Department of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

    2016-01-15

    Photoluminescence excitation spectroscopy is a contactless characterization technique that can provide valuable information about the surface and bulk recombination parameters of a semiconductor device, distinct from other sorts of photoluminescent measurements. For this technique, a temperature-tuned light emitting diode (LED) has several advantages over other light sources. The large radiation density offered by LEDs from near-infrared to ultraviolet region at a low cost enables efficient and fast photoluminescence measurements. A simple and inexpensive LED-based setup facilitates measurement of surface recombination velocity and bulk Shockley-Read-Hall lifetime, which are key parameters to assess device performance. Under the right conditions, this technique can also provide a contactless way to measure the external quantum efficiency of a solar cell.

  18. Extracting three-body breakup observables from continuum-discretized coupled-channels calculations with core excitations

    Science.gov (United States)

    de Diego, R.; Crespo, R.; Moro, A. M.

    2017-04-01

    Background: Core-excitation effects in the scattering of two-body halo nuclei have been investigated in previous works. In particular, these effects have been found to affect in a significant way the breakup cross sections of neutron-halo nuclei with a deformed core. To account for these effects, appropriate extensions of the continuum-discretized coupled-channels (CDCC) method have been recently proposed. Purpose: We aim to extend these studies to the case of breakup reactions measured under complete kinematics or semi-inclusive reactions in which only the angular or energy distribution of one of the outgoing fragments is measured. Method: We use the standard CDCC method as well as its extended version with core excitations, assuming a pseudostate basis for describing the projectile states. Two- and three-body observables are computed by projecting the discrete two-body breakup amplitudes, obtained within these reaction frameworks, onto two-body scattering states with definite relative momentum of the outgoing fragments and a definite state of the core nucleus. Results: Our working example is the one-neutron halo 11Be. Breakup reactions on protons and 64Zn targets are studied at 63.7 MeV/nucleon and 28.7 MeV, respectively. These energies, for which experimental data exist, and the targets provide two different scenarios where the angular and energy distributions of the fragments are computed. The importance of core dynamical effects is also compared for both cases. Conclusions: The presented method provides a tool to compute double and triple differential cross sections for outgoing fragments following the breakup of a two-body projectile and might be useful to analyze breakup reactions with other deformed weakly bound nuclei, for which core excitations are expected to play a role. We have found that, while dynamical core excitations are important for the proton target at intermediate energies, they are very small for the Zn target at energies around the Coulomb

  19. Excited state properties of the chromophore of the asFP595 chromoprotein: 2D and 3D theoretical analyses

    Science.gov (United States)

    Sun, Mengtao

    The ground and excited state properties (e.g., the intramolecular charge and energy transfer, and electron-hole coherence) of the chromophore of the asFP595 chromoprotein from Anemonia sulcata in the neutral and anionic forms are theoretically studied with quantum chemistry methods. The ground-state properties of the asFP595 in the neutral and anionic forms, such as the alternations of the bond lengths and the Mulliken charge distributions, are compared. The calculated transition energies of the asFP595 in the neutral and anionic form are consistent with the experimental results. To study the excited state properties of the asFP595 chromophore, the energies and densities of highest occupied molecular orbitals (HOMOs) and lowest unoccupied molecular orbitals (LUMOs), as well as the CI main coefficients, are compared between the two forms. The intramolecular charge and energy transfer in the neutral and anionic forms are investigated and compared with the three-dimensional (3D) real-space analysis methods, including the strength and orientation of the transition dipoles with transition density, and the orientation and result of the intramolecular charge transfer with charge difference density. The electron-hole coherence and delocalization on the excitation are studied with the 2D real-space analysis method of the transition density matrix. In all, the calculated results are remain in good agreement with the experimental data, and the theoretical analysis results supported the proposed models in the experiment.

  20. Solvent effects on excitation energies obtained using the state-specific TD-DFT method with a polarizable continuum model based on constrained equilibrium thermodynamics.

    Science.gov (United States)

    Bi, Ting-Jun; Xu, Long-Kun; Wang, Fan; Ming, Mei-Jun; Li, Xiang-Yuan

    2017-12-13

    Nonequilibrium solvation effects need to be treated properly in the study of electronic absorption processes of solutes since solvent polarization is not in equilibrium with the excited-state charge density of the solute. In this work, we developed a state specific (SS) method based on the novel nonequilibrium solvation model with constrained equilibrium manipulation to account for solvation effects in electronic absorption processes. Time-dependent density functional theory (TD-DFT) is adopted to calculate electronic excitation energies and a polarizable continuum model is employed in the treatment of bulk solvent effects on both the ground and excited electronic states. The equations based on this novel nonequilibrium solvation model in the framework of TDDFT to calculate vertical excitation energy are presented and implemented in the Q-Chem package. The implementation is validated by comparing reorganization energies for charge transfer excitations between two atoms obtained from Q-Chem and those obtained using a two-sphere model. Solvent effects on electronic transitions of coumarin 153 (C153), acetone, pyridine, (2E)-3-(3,4-dimethoxyphenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one (DMHP), and uracil in different solvents are investigated using the newly developed code. Our results show that the obtained vertical excitation energies as well as spectral shifts generally agree better with the available experimental values than those obtained using the traditional nonequlibrium solvation model. This new model is thus appropriate to study nonequilibrium excitation processes in solution.

  1. Vibrational Spectrum of an Excited State and Huang-Rhys Factors by Coherent Wave Packets in Time-Resolved Fluorescence Spectroscopy.

    Science.gov (United States)

    Lee, Gyeongjin; Kim, Junwoo; Kim, So Young; Kim, Dong Eon; Joo, Taiha

    2017-03-17

    Coherent nuclear wave packet motions in an electronic excited state of a molecule are measured directly by time-resolved spontaneous fluorescence spectroscopy with an unprecedented time resolution by using two-photon absorption excitation and fluorescence upconversion by noncollinear sum frequency generation. With an estimated time resolution of approximately 25 fs, wave packet motions of vibrational modes up to 1600 cm(-1) are recorded for coumarin 153 in ethanol. Two-color transient absorption at 13 fs time resolution are measured to confirm the result. Vibrational displacements between the ground and excited states and Huang-Rhys factors (HRFs) are calculated by quantum mechanical methods and are compared with the experimental results. HRFs calculated by density functional theory (DFT) and time-dependent DFT reproduce the experiment adequately. This fluorescence-based method provides a unique and direct way to obtain the vibrational spectrum of a molecule in an electronic excited state and the HRFs, as well as the dynamics of excited states, and it might provide information on the structure of an excited state through the HRFs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Excited-State Dynamics of Carotenoids Studied by Femtosecond Transient Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ingu; Pang, Yoonsoo [Department of Physics and Photon Science, Gwangju (Korea, Republic of); Lee, Sebok [Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of)

    2014-03-15

    Carotenoids, natural antenna pigments in photosynthesis share a symmetric backbone of conjugated polyenes. Contrary to the symmetric and almost planar geometries of carotenoids, excited state structure and dynamics of carotenoids are exceedingly complex. In this paper, recent infrared and visible transient absorption measurements and excitation dependent dynamics of 8'-apo-β-caroten-8'-al and 7',7'-dicyano-7'-apo-β-carotene will be reviewed. The recent visible transient absorption measurements of 8'-apo-β-caroten-8'-al in polar and nonpolar solvents will also be introduced to emphasize the complex excited-state dynamics and unsolved problems in the S{sub 2} and S{sub 1} excited states.

  3. First-order derivative couplings between excited states from adiabatic TDDFT response theory.

    Science.gov (United States)

    Ou, Qi; Bellchambers, Gregory D; Furche, Filipp; Subotnik, Joseph E

    2015-02-14

    We present a complete derivation of derivative couplings between excited states in the framework of adiabatic time-dependent density functional response theory. Explicit working equations are given and the resulting derivative couplings are compared with derivative couplings from a pseudo-wavefunction ansatz. For degenerate excited states, i.e., close to a conical intersection (CI), the two approaches are identical apart from an antisymmetric overlap term. However, if the difference between two excitation energies equals another excitation energy, the couplings from response theory exhibit an unphysical divergence. This spurious behavior is a result of the adiabatic or static kernel approximation of time-dependent density functional theory leading to an incorrect analytical structure of the quadratic response function. Numerical examples for couplings close to a CI and for well-separated electronic states are given.

  4. R-matrix calculations for few-quark bound states

    Energy Technology Data Exchange (ETDEWEB)

    Shalchi, M.A. [Instituto de Fisica Teorica, UNESP, Sao Paulo, SP (Brazil); Hadizadeh, M.R. [Ohio University, Institute of Nuclear and Particle Physics and Department of Physics and Astronomy, Athens, OH (United States); Central State University, College of Science and Engineering, Wilberforce, OH (United States)

    2016-10-15

    The R-matrix method is implemented to study the heavy charm and bottom diquark, triquark, tetraquark, and pentaquarks in configuration space, as the bound states of quark-antiquark, diquark-quark, diquark-antidiquark, and diquark-antitriquark systems, respectively. The mass spectrum and the size of these systems are calculated for different partial wave channels. The calculated masses are compared with recent theoretical results obtained by other methods in momentum and configuration spaces and also by available experimental data. (orig.)

  5. New yrast excited states of the N=84 nucleus {sup 142}Ce observed in deep inelastic reactions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Z.; Zhang, Y.H.; Zhou, X.H.; Liu, M.L.; Luo, W.J.; Pan, Q.Y.; Gan, Z.G. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou (China); Hayakawa, T.; Oshima, M.; Toh, Y.; Shizima, T.; Hatsukawa, Y.; Osa, A.; Ishii, T. [Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan); Sugawara, M. [Chiba Institute of Technology, Narashino, Chiba (Japan)

    2002-03-01

    Excited states of {sup 142}Ce, populated in deep inelastic reactions of {sup 82}Se projectiles bombarding {sup 139}La target, have been studied up to medium spins using in-beam {gamma} spectroscopy techniques. Three new levels have been identified at 2625, 2995, 3834 keV, and assigned as 8{sup +}, 9{sup (-)} and 11{sup (-)}, respectively. These new yrast states follow closely the level systematics of the even mass N=84 isotones. Their structures have been discussed with the help of empirical shell model calculations. (orig.)

  6. Excitation of the lowest CO2 vibrational states by electrons in hypersonic boundary layers

    Science.gov (United States)

    Armenise, I.

    2017-07-01

    The state-to-state vibrational kinetics of a CO2/O2/CO/C/O/e- mixture in a hypersonic boundary layer under conditions compatible with the Mars re-entry is studied. The model adopted treats three CO2 modes (the two degenerated bending modes are approximated as a unique one) as not independent ones. Vibrational-translational transitions in the bending mode, inter-mode exchanges within CO2 molecule and between molecules of different chemical species as well as dissociation-recombination reactions are considered. Attention is paid to the electron-CO2 collisions that cause transitions from the ground vibrational state, CO2(0,0,0), to the first excited ones, CO2(1,0,0), CO2(0,1,0) and CO2(0,0,1). The corresponding processes rate coefficients are obtained starting from the electron energy distribution function, calculated either as an equilibrium Boltzmann distribution at the local temperature or by solving the Boltzmann equation. Results obtained either neglecting or including in the kinetic scheme the electron-CO2 collisions are compared and explained by analysing the rate coefficients of the electron-CO2 collisions.

  7. Evolution of the N=82 shell gap below {sup 132}Sn inferred from core excited states in {sup 131}In

    Energy Technology Data Exchange (ETDEWEB)

    Gorska, M. [Gesellschaft fuer Schwerionenforschung (GSI), D-64291 Darmstadt (Germany)], E-mail: m.gorska@gsi.de; Caceres, L. [Gesellschaft fuer Schwerionenforschung (GSI), D-64291 Darmstadt (Germany); Departamento de Fisica Teorica, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Grawe, H. [Gesellschaft fuer Schwerionenforschung (GSI), D-64291 Darmstadt (Germany); Pfuetzner, M. [IEP, University of Warsaw, PL-00681 Warsaw (Poland); Jungclaus, A. [Departamento de Fisica Teorica, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Instituto de Estructuras de la Materia, CSIC, Serrano113bis, E-28006 Madrid (Spain); Pietri, S. [Department of Physics, University of Surrey, Guildford, GU2 7XH (United Kingdom); Werner-Malento, E. [IEP, University of Warsaw, PL-00681 Warsaw (Poland); Podolyak, Z.; Regan, P.H. [Department of Physics, University of Surrey, Guildford, GU2 7XH (United Kingdom); Rudolph, D. [Department of Physics, Lund University, S-22100 Lund (Sweden); Detistov, P. [Faculty of Physics, University of Sofia, BG-1164 Sofia (Bulgaria); Lalkovski, S. [Faculty of Physics, University of Sofia, BG-1164 Sofia (Bulgaria); School of Enviroment and Technology, University of Brighton, Brighton, BN2 4GJ (United Kingdom); Modamio, V.; Walker, J. [Departamento de Fisica Teorica, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Beck, T. [Gesellschaft fuer Schwerionenforschung (GSI), D-64291 Darmstadt (Germany); Bednarczyk, P. [Gesellschaft fuer Schwerionenforschung (GSI), D-64291 Darmstadt (Germany); Henryk Niewodniczanski Institute of Nuclear Physics, PAN, PL-31342 Krakow (Poland); Doornenbal, P. [Gesellschaft fuer Schwerionenforschung (GSI), D-64291 Darmstadt (Germany); Institut fuer Kernphysik, Universitaet zu Koeln, D-50937 Koeln (Germany); Geissel, H.; Gerl, J. [Gesellschaft fuer Schwerionenforschung (GSI), D-64291 Darmstadt (Germany)] (and others)

    2009-03-02

    The {gamma}-ray decay of an excited state in {sup 131}In, the one proton hole neighbor of the doubly magic {sup 132}Sn has been measured. A high-spin, core-excited isomer with T{sub 1/2}=630(60) ns was identified following production by both relativistic fragmentation of a {sup 136}Xe beam and fission of a {sup 238}U beam. This state deexcites by a single {gamma}-ray branch of 3782(2) keV from which direct evidence for the size of the N=82 shell gap is inferred. The results are discussed in comparison to a shell-model calculation including configurations across the closed shells at N=82 and Z=50.

  8. Excited state intramolecular charge transfer reaction of 4 ...

    Indian Academy of Sciences (India)

    Administrator

    We will use the twisted intramolecular charge transfer (TICT) model to explain the photo-induced charge transfer ..... full width at half maxima (Γ) are expressed in 103 cm–1. –ΔGr are in kJ mol–1 units. PFH: per- ..... incorrect values of thermodynamic and kinetic parameters calculated using these reaction times, leading to ...

  9. Proton and deuteron induced reactions on {sup nat}Ga: Experimental and calculated excitation functions

    Energy Technology Data Exchange (ETDEWEB)

    Hermanne, A., E-mail: aherman@vub.ac.be [Cyclotron Laboratory, Vrije Universiteit Brussel (VUB), Brussels (Belgium); Adam-Rebeles, R. [Cyclotron Laboratory, Vrije Universiteit Brussel (VUB), Brussels (Belgium); Tárkányi, F.; Takács, S.; Ditrói, F. [Institute of Nuclear Research of the Hungarian Academy of Sciences (Atomki), Debrecen (Hungary)

    2015-09-15

    Cross-sections for reactions on {sup nat}Ga, induced by protons (up to 65 MeV) and deuterons (up to 50 MeV), producing γ-emitting radionuclides with half-lives longer than 1 h were measured in a stacked-foil irradiation using thin Ga–Ni alloy (70–30%) targets electroplated on Cu or Au backings. Excitation functions for generation of {sup 68,69}Ge, {sup 66,67,68,72}Ga and {sup 65,69m}Zn on {sup nat}Ga are discussed, relative to the monitor reactions {sup nat}Al(d,x){sup 24,22}Na, {sup nat}Al(p,x){sup 24,22}Na, {sup nat}Cu(p,x){sup 62}Zn and {sup nat}Ni(p,x){sup 57}Ni. The results are compared to our earlier measurements, the scarce literature values and to the results of the code TALYS 1.6 (online database TENDL-2014)

  10. Permanent Magnet Synchronous Condenser with Solid State Excitation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, P.; Muljadi, E.; Wu, Z.; Gao, W.

    2015-04-07

    A typical synchronous condenser (SC) consists of a free-spinning, wound-field synchronous generator and a field excitation controller. In this paper, we propose an SC that employs a permanent magnet synchronous generator (PMSG) instead of a wound-field machine. PMSGs have the advantages of higher efficiency and reliability. In the proposed configuration, the reactive power control is achieved by a voltage converter controller connected in series to the PMSG. The controller varies the phase voltage of the PMSG and creates the same effect on the reactive power flow as that of an over- or underexcited wound-field machine. The controller’s output voltage magnitude controls the amount of the reactive power produced by the SC. The phase of the controller’s output is kept within a small variation from the grid voltage phase. This small phase variation is introduced so that a small amount of power can be drawn from the grid into the controller to maintain its DC bus voltage. Because the output voltage of the controller is only a fraction of the line voltage, its VA rating is only a fraction of the rating of the PMSG. The proposed scheme is shown to be effective by computer simulations.

  11. Multi-referenced excited states and intermolecular forces from the anti-Hermitian contracted Schrodinger equation

    Science.gov (United States)

    Sturm, Erica J.

    Strong correlation due to multi-referenced electronic states of quantum chemical systems are crucial for a proper understanding of important phenomena including excited states, bond breakage and formation, singlet fission and biological transport. By solving for the 2-electron reduced density matrix (2-RDM) directly via the anti-Hermitian contracted Schrodinger equation (ACSE) we provide a balanced treatment of single and multi-referenced correlation effects without utilizing the N-electron wave function. This significantly reduces the computational expense while still maintaining near full configuration interaction accuracy when available. When provided with an initial 2-RDM guess from an active-space multi-configuration self consistent field wave function the ACSE scales as [special characters omitted] where ra is the number of active molecular orbitals (MOs) and ra is the number of external MOs. This work demonstrates the energetic accuracy of ACSE calculations with several small multi-referenced systems and presents a novel approach for investigating intermolecular interactions, using a simple dimer test case. In this monomer-optimized basis set approach we compute each monomer's properties in isolation and obtain a set of natural orbitals that best describe the monomer. We then remove or truncate orbitals deemed excessive as a function of occupation number, defining a monomer molecular orbital basis uniquely suited to that monomer. Combining two such monomers yields a super-system expressed in the monomer basis which we then rotate to a dimer basis at a desired geometry before creating a new initial 2-RDM for the final optimization by an ACSE calculation. It is found that the intermolecular properties calculated in this fashion from larger atomic basis sets maintain their high accuracy but at a fraction of the computational cost. Furthermore this basis set optimization is free of basis set superposition error, circumventing the need for an expensive

  12. Calculation of the characteristics of a periodic waveguide-rod array excited by TM-waves

    Science.gov (United States)

    Skobelev, S. P.; Mukhamedov, L. L.

    1992-07-01

    The paper examines TM-wave diffraction by a periodic array of planar waveguides with dielectric inserts and jutting-out dielectric rods of arbitrary shape with a smooth boundary. An algorithm for solving this diffraction problem is proposed which is based on a combination of the method of auxiliary sources with the integral-equation method relative to the field in the waveguide aperture. Calculation results on the radiation characteristics and array matching are presented.

  13. Relaxation dynamics in the excited states of a ketocyanine dye ...

    Indian Academy of Sciences (India)

    propdienylaniline)-cyclopentanone (MPAC), a ketocyanine dye, have been investigated using steady-state absorption and emission as well as femtosecond time-resolved absorption spectroscopic techniques. Following photoexcitation using 400 ...

  14. Existence of excited states for a nonlinear Dirac equation

    Energy Technology Data Exchange (ETDEWEB)

    Balabane, M.; Cazenave, T.; Douady, A.; Merle, F.

    1988-01-21

    We prove the existence of infinitely many stationary states for the nonlinear Dirac equation. Seeking eigenfunctions splitted in spherical coordinates leads to analyse a nonautonomous dynamical system in R/sup 2/. The number of eigenfunctions is given by the number of intersections of the stable manifold of the origin with the curve of admissible data. This proves the existence of infinitely many stationary states ordered by the number of nodes of the components

  15. Electronic excitation of furfural as probed by high-resolution vacuum ultraviolet spectroscopy, electron energy loss spectroscopy, and ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira da Silva, F.; Lange, E. [Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Limão-Vieira, P., E-mail: plimaovieira@fct.unl.pt, E-mail: michael.brunger@flinders.edu.au, E-mail: maplima@ifi.unicamp.br [Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Jones, N. C.; Hoffmann, S. V. [ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Århus C (Denmark); Hubin-Franskin, M.-J.; Delwiche, J. [Départment de Chimie, Institut de Chimie-Bât. B6C, Université de Liège, B-4000 Liège 1 (Belgium); Brunger, M. J., E-mail: plimaovieira@fct.unl.pt, E-mail: michael.brunger@flinders.edu.au, E-mail: maplima@ifi.unicamp.br [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia); and others

    2015-10-14

    The electronic spectroscopy of isolated furfural (2-furaldehyde) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 3.5–10.8 eV energy-range, with absolute cross section measurements derived. Electron energy loss spectra are also measured over a range of kinematical conditions. Those energy loss spectra are used to derive differential cross sections and in turn generalised oscillator strengths. These experiments are supported by ab initio calculations in order to assign the excited states of the neutral molecule. The good agreement between the theoretical results and the measurements allows us to provide the first quantitative assignment of the electronic state spectroscopy of furfural over an extended energy range.

  16. Effects of excited state mixing on transient absorption spectra in dimers Application to photosynthetic light-harvesting complex II

    CERN Document Server

    Valkunas, L; Trinkunas, G; Müller, M G; Holzwarth, A R

    1999-01-01

    The excited state mixing effect is taken into account considering the difference spectra of dimers. Both the degenerate (homo) dimer as well as the nondegenerate (hetero) dimer are considered. Due to the higher excited state mixing with the two-exciton states in the homodimer, the excited state absorption (or the difference spectrum) can be strongly affected in comparison with the results obtained in the Heitler-London approximation. The difference spectrum of the heterodimer is influenced by two resonance effects (i) mixing of the ground state optical transitions of both monomers in the dimer and (ii) mixing of the excited state absorption of the excited monomer with the ground state optical transition in the nonexcited monomer. These effects have been tested by simulating the difference absorption spectra of the light-harvesting complex of photosystem II (LHC II) experimentally obtained with the 60 fs excitation pulses at zero delay times and various excitation wavelengths. The pairs of coupled chlorophylls...

  17. Optical spectroscopy of excited exciton states in MoS2 monolayers in van der Waals heterostructures

    Science.gov (United States)

    Robert, C.; Semina, M. A.; Cadiz, F.; Manca, M.; Courtade, E.; Taniguchi, T.; Watanabe, K.; Cai, H.; Tongay, S.; Lassagne, B.; Renucci, P.; Amand, T.; Marie, X.; Glazov, M. M.; Urbaszek, B.

    2018-01-01

    The optical properties of MoS2 monolayers are dominated by excitons, but for spectrally broad optical transitions in monolayers exfoliated directly onto SiO2 substrates detailed information on excited exciton states is inaccessible. Encapsulation in hexagonal boron nitride (hBN) allows approaching the homogenous exciton linewidth, but interferences in the van der Waals heterostructures make direct comparison between transitions in optical spectra with different oscillator strength more challenging. Here we reveal in reflectivity and in photoluminescence excitation spectroscopy the presence of excited states of the A exciton in MoS2 monolayers encapsulated in hBN layers of calibrated thickness, allowing us to extrapolate an exciton binding energy of ≈220 meV. We theoretically reproduce the energy separations and oscillator strengths measured in reflectivity by combining the exciton resonances calculated for a screened two-dimensional Coulomb potential with transfer matrix calculations of the reflectivity for the van der Waals structure. Our analysis shows a very different evolution of the exciton oscillator strength with principal quantum number for the screened Coulomb potential as compared to the ideal two-dimensional hydrogen model.

  18. High-resolution spectroscopy of jet-cooled 1,1'-diphenylethylene: electronically excited and ionic states of a prototypical cross-conjugated system.

    Science.gov (United States)

    Smolarek, Szymon; Vdovin, Alexander; Rijs, Anouk; van Walree, Cornelis A; Zgierski, Marek Z; Buma, Wybren J

    2011-09-01

    The photophysics of a prototypical cross-conjugated π-system, 1,1'-diphenylethylene, have been studied using high-resolution resonance enhanced multiphoton ionization excitation spectroscopy and zero kinetic energy photoelectron spectroscopy, in combination with advanced ab initio calculations. We find that the excitation spectrum of S(1) displays extensive vibrational progressions that we identify to arise from large changes in the torsional angles of the phenyl rings upon electronic excitation. The extensive activity of the antisymmetric inter-ring torsional vibration provides conclusive evidence for a loss of symmetry upon excitation, leading to an inequivalence of the two phenyl rings. Nonresonant zero kinetic energy photoelectron spectroscopy from the ground state of the neutral molecule to the ground state of the radical cation, on the other hand, demonstrates that upon ionization symmetry is retained, and that the geometry changes are considerably smaller. Apart from elucidating how removal of an electron affects the structure of the molecule, these measurements provide an accurate value for the adiabatic ionization energy (65274 ± 1 cm(-1) (8.093 eV)). Zero kinetic energy photoelectron spectra obtained after excitation of vibronic levels in S(1) confirm these conclusions and provide us with an extensive atlas of ionic vibronic energy levels. For higher excitation energies the excitation spectrum of S(1) becomes quite congested and shows unexpected large intensities. Ab initio calculations strongly suggest that this is caused by a conical intersection between S(1) and S(2). © 2011 American Chemical Society

  19. Excited-State Dynamics of Melamine and Its Lysine Derivative Investigated by Femtosecond Transient Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Yuyuan Zhang

    2016-11-01

    Full Text Available Melamine may have been an important prebiotic information carrier, but its excited-state dynamics, which determine its stability under UV radiation, have never been characterized. The ability of melamine to withstand the strong UV radiation present on the surface of the early Earth is likely to have affected its abundance in the primordial soup. Here, we studied the excited-state dynamics of melamine (a proto-nucleobase and its lysine derivative (a proto-nucleoside using the transient absorption technique with a UV pump, and UV and infrared probe pulses. For melamine, the excited-state population decays by internal conversion with a lifetime of 13 ps without coupling significantly to any photochemical channels. The excited-state lifetime of the lysine derivative is slightly longer (18 ps, but the dominant deactivation pathway is otherwise the same as for melamine. In both cases, the vast majority of excited molecules return to the electronic ground state on the aforementioned time scales, but a minor population is trapped in a long-lived triplet state.

  20. Dynamics of charge-transfer excited states relevant to photochemical energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Lim, E.C.

    1991-11-01

    The primary objective of the research program is to gain a fundamental understanding of the factors governing the efficiency of excited-state charge transfer CT interactions between two chromophores that are brought together in close proximity, either by a very short covalent linkage or by ground-state complex formation. CT and van der Walls (vdW), interactions in covalently bonded bichromophoric compounds in condensed phase, as well as those in vdW complexes in supersonic jets, are being investigated using laser-based techniques under a variety of experimental conditions. This progress report is divided into three parts, according to the class of molecular systems and the phase (liquid vs. gas) in which the excited-state interactions are probed. The first is concerned with the excited states of bridged diaryl compounds in the condensed phase. The second involves the excited states of vdW complexes in supersonic jets. Finally, the third, is concerned with the excited states of electron donor-acceptor (EDA) systems in both the condensed phase and supersonic jets. In each of these studies, we are concerned with the interchromophore interactions ranging from weak vdW forces to strong CT forces, and the factors determining whether the interaction forces are weak or strong in related molecules.

  1. Calculation of the spectrum of quasiparticle electron excitations in organic molecular semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Tikhonov, E. V., E-mail: tikhonov@mig.phys.msu.ru [Moscow State University (Russian Federation); Uspenskii, Yu. A. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Khokhlov, D. R. [Moscow State University (Russian Federation)

    2015-06-15

    A quasiparticle electronic spectrum belongs to the characteristics of nanoobjects that are most important for applications. The following methods of calculating the electronic spectrum are analyzed: the Kohn-Sham equations of the density functional theory (DFT), the hybrid functional method, the GW approximation, and the Lehmann approximation used in the spectral representation of one-electron Green’s function. The results of these approaches are compared with the data of photoemission measurements of benzene, PTCDA, and phthalocyanine (CuPc, H{sub 2}Pc, FePc, PtPc) molecules, which are typical representatives of organic molecular semiconductors (OMS). This comparison demonstrates that the Kohn-Sham equations of DFT incorrectly reproduce the electronic spectrum of OMS. The hybrid functional method correctly describes the spectrum of the valence and conduction bands; however, the HOMO-LUMO gap width is significantly underestimated. The correct gap width is obtained in both the GW approximation and the Lehmann approach, and the total energy in this approach can be calculated in the local density approximation of DFT.

  2. Rotationally resolved IR-diode laser studies of ground-state CO2 excited by collisions with vibrationally excited pyridine.

    Science.gov (United States)

    Johnson, Jeremy A; Kim, Kilyoung; Mayhew, Maurine; Mitchell, Deborah G; Sevy, Eric T

    2008-03-27

    Relaxation of highly vibrationally excited pyridine (C5NH5) by collisions with carbon dioxide has been investigated using diode laser transient absorption spectroscopy. Vibrationally hot pyridine (E' = 40,660 cm(-1)) was prepared by 248 nm excimer laser excitation followed by rapid radiationless relaxation to the ground electronic state. Pyridine then collides with CO2, populating the high rotational CO2 states with large amounts of translational energy. The CO2 nascent rotational population distribution of the high-J (J = 58-80) tail of the 00(0)0 state was probed at short times following the excimer laser pulse to measure rate constants and probabilities for collisions populating these CO2 rotational states. Doppler spectroscopy was used to measure the CO2 recoil velocity distribution for J = 58-80 of the 00(0)0 state. The energy-transfer distribution function, P(E,E'), from E' - E approximately 1300-7000 cm(-1) was obtained by re-sorting the state-indexed energy-transfer probabilities as a function of DeltaE. P(E,E') is fit to an exponential or biexponential function to determine the average energy transferred in a single collision between pyridine and CO2. Also obtained are fit parameters that can be compared to previously studied systems (pyrazine, C6F6, methylpyrazine, and pyrimidine/CO2). Although the rotational and translational temperatures that describe pyridine/CO2 energy transfer are similar to previous systems, the energy-transfer probabilities are much smaller. P(E,E') fit parameters for pyridine/CO2 and the four previously studied systems are compared to various donor molecular properties. Finally, P(E,E') is analyzed in the context of two models, one indicating that P(E,E') shape is primarily determined by the low-frequency out-of-plane donor vibrational modes, and the other that indicates that P(E,E') shape can be determined from how the donor molecule final density of states changes with DeltaE.

  3. The convolution method for calculations of local densities of states

    Energy Technology Data Exchange (ETDEWEB)

    Losev, A [Bulgarian Academy of Sciences, Institute of General and Inorganic Chemistry, 11 G Bonchev street, Sofia (Bulgaria)

    2003-02-19

    The convolution method for the calculation of local densities of states is presented more thoroughly along with its expression in terms of Green functions. This constructive approach allows us to produce results for a higher dimensionality from lower-dimensional parts. Its applications and different aspects are discussed for some simple cases.

  4. Discrimination of nuclear spin isomers exploiting the excited state dynamics of a quinodimethane derivative

    Energy Technology Data Exchange (ETDEWEB)

    Obaid, Rana [Institut für Theoretische Chemie, Universität Wien, Währinger Str. 17, 1090 Wien (Austria); Faculty of Pharmacy, Al-Quds University, Abu Dis, Palestine (Country Unknown); Kinzel, Daniel; Oppel, Markus, E-mail: markus.oppel@univie.ac.at; González, Leticia [Institut für Theoretische Chemie, Universität Wien, Währinger Str. 17, 1090 Wien (Austria)

    2014-10-28

    Despite the concept of nuclear spin isomers (NSIs) exists since the early days of quantum mechanics, only few approaches have been suggested to separate different NSIs. Here, a method is proposed to discriminate different NSIs of a quinodimethane derivative using its electronic excited state dynamics. After electronic excitation by a laser field with femtosecond time duration, a difference in the behavior of several quantum mechanical operators can be observed. A pump-probe experimental approach for separating these different NSIs is then proposed.

  5. Excited-state annihilation reduces power dependence of single-molecule FRET experiments.

    Science.gov (United States)

    Nettels, Daniel; Haenni, Dominik; Maillot, Sacha; Gueye, Moussa; Barth, Anders; Hirschfeld, Verena; Hübner, Christian G; Léonard, Jérémie; Schuler, Benjamin

    2015-12-28

    Single-molecule Förster resonance energy transfer (FRET) experiments are an important method for probing biomolecular structure and dynamics. The results from such experiments appear to be surprisingly independent of the excitation power used, in contradiction to the simple photophysical mechanism usually invoked for FRET. Here we show that excited-state annihilation processes are an essential cause of this behavior. Singlet-singlet annihilation (SSA) is a mechanism of fluorescence quenching induced by Förster-type energy transfer between two fluorophores while they are both in their first excited singlet states (S1S1), which is usually neglected in the interpretation of FRET experiments. However, this approximation is only justified in the limit of low excitation rates. We demonstrate that SSA is evident in fluorescence correlation measurements for the commonly used FRET pair Alexa 488/Alexa 594, with a rate comparable to the rate of energy transfer between the donor excited state and the acceptor ground state (S1S0) that is exploited in FRET experiments. Transient absorption spectroscopy shows that SSA occurs exclusively via energy transfer from Alexa 488 to Alexa 594. Excitation-power dependent microsecond correlation experiments support the conclusion based on previously reported absorption spectra of triplet states that singlet-triplet annihilation (STA) analogously mediates energy transfer if the acceptor is in the triplet state. The results indicate that both SSA and STA have a pronounced effect on the overall FRET process and reduce the power dependence of the observed FRET efficiencies. The existence of annihilation processes thus seems to be essential for using FRET as a reliable spectroscopic ruler at the high excitation rates commonly employed in single-molecule spectroscopy.

  6. Tracking excited-state charge and spin dynamics in iron coordination complexes

    DEFF Research Database (Denmark)

    Zhang, Wenkai; Alonso-Mori, Roberto; Bergmann, Uwe

    2014-01-01

    Crucial to many light-driven processes in transition metal complexes is the absorption and dissipation of energy by 3d electrons(1-4). But a detailed understanding of such non-equilibrium excited-state dynamics and their interplay with structural changes is challenging: a multitude of excited...... states and possible transitions result in phenomena too complex to unravel when faced with the indirect sensitivity of optical spectroscopy to spin dynamics(5) and the flux limitations of ultrafast X-ray sources(6,7). Such a situation exists for archetypal poly-pyridyl iron complexes, such as [Fe(2......,2'-bipyridine)(3)](2+), where the excited-state charge and spin dynamics involved in the transition from a low-to a high-spin state (spin crossover) have long been a source of interest and controversy(6-15). Here we demonstrate that femtosecond resolution X-ray fluorescence spectroscopy, with its sensitivity...

  7. Vibronic resonances sustain excited state coherence in light harvesting proteins at room temperature

    CERN Document Server

    Novelli, Fabio; Roozbeh, Ashkan; Wilk, Krystyna E; Curmi, Paul M G; Davis, Jeffrey A

    2015-01-01

    Until recently it was believed that photosynthesis, a fundamental process for life on earth, could be fully understood with semi-classical models. However, puzzling quantum phenomena have been observed in several photosynthetic pigment-protein complexes, prompting questions regarding the nature and role of these effects. Recent attention has focused on discrete vibrational modes that are resonant or quasi-resonant with excitonic energy splittings and strongly coupled to these excitonic states. Here we report a series of experiments that unambiguously identify excited state coherent superpositions that dephase on the timescale of the excited state lifetime. Low energy (56 cm-1) oscillations on the signal intensity provide direct experimental evidence for the role of vibrational modes resonant with excitonic splittings in sustaining coherences involving different excited excitonic states at physiological temperature.

  8. Shannon information entropy in position space for doubly excited states of helium with finite confinements

    Science.gov (United States)

    Ou, Jen-Hao; Ho, Yew Kam

    2017-12-01

    Quantifying electron localization in quantum confined systems remains challenging, especially for excited states. A quantum dot (QD) is represented by a helium atom in a finite oscillator potential. The effect of dot width variation on the electron localization in QD is systematically examined via Shannon entropy for low-lying doubly excited states (2s21Se, 2p21Se, 2s3s 1Se) obtained using highly correlated Hylleraas functions. In particular, the most effective dot width where the electron density is the most localized is determined successfully and justified by the electron density plot for all three states.

  9. Electronic spectra of azaindole and its excited state mixing: A symmetry-adapted cluster configuration interaction study

    Energy Technology Data Exchange (ETDEWEB)

    Arulmozhiraja, Sundaram, E-mail: raja@cat.hokudai.ac.jp; Coote, Michelle L. [ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, The Australian National University, Canberra, 2601 ACT (Australia); Hasegawa, Jun-ya [Institute for Catalysis, Hokkaido University, Kita 21, Nishi 10, Kita-Ku, Sapporo 001-0021 (Japan)

    2015-11-28

    Electronic structures of azaindole were studied using symmetry-adapted cluster configuration interaction theory utilizing Dunning’s cc-pVTZ basis set augmented with appropriate Rydberg spd functions on carbon and nitrogen atoms. The results obtained in the present study show good agreement with the available experimental values. Importantly, and contrary to previous theoretical studies, the excitation energy calculated for the important n–π{sup ∗} state agrees well with the experimental value. A recent study by Pratt and co-workers concluded that significant mixing of π-π{sup ∗} and n-π{sup ∗} states leads to major change in the magnitude and direction of the dipole moment of the upper state vibrational level in the 0,0 + 280 cm{sup −1} band in the S{sub 1}←S{sub 0} transition when compared to that of the zero-point level of the S{sub 1} state. The present study, however, shows that all the four lowest lying excited states, {sup 1}L{sub b} π-π{sup ∗}, {sup 1}L{sub a} π-π{sup ∗}, n-π{sup ∗}, and π-σ{sup ∗}, cross each other in one way or another, and hence, significant state mixing between them is likely. The upper state vibrational level in the 0,0 + 280 cm{sup −1} band in the S{sub 1}←S{sub 0} transition benefits from this four-state mixing and this can explain the change in magnitude and direction of the dipole moment of the S{sub 1} excited vibrational level. This multistate mixing, and especially the involvement of π-σ{sup ∗} state in mixing, could also provide a route for hydrogen atom detachment reactions. The electronic spectra of benzimidazole, a closely related system, were also investigated in the present study.

  10. Switching of the triplet excited state of rhodamine-C60 dyads.

    Science.gov (United States)

    Wang, Fen; Cui, Xiaoneng; Lou, Zhangrong; Zhao, Jianzhang; Bao, Ming; Li, Xingwei

    2014-12-21

    Acid-switching of the triplet excited state in rhodamine-C60 dyads was achieved. The rhodamine moiety acts as an acid-activated visible light-harvesting antenna and C60 as the singlet energy acceptor and the spin converter, and production of the triplet state was enhanced in the presence of acid.

  11. Visible-Light-Mediated Excited State Relaxation in Semi-Synthetic Genetic Alphabet: d5SICS and dNaM.

    Science.gov (United States)

    Bhattacharyya, Kalishankar; Datta, Ayan

    2017-08-25

    The excited state dynamics of an unnatural base pair (UBP) d5SICS/dNaM were investigated by accurate ab-initio calculations. Time-dependent density functional and high-level multireference calculations (MS-CASPT2) were performed to elucidate the excitation of this UBP and its excited state relaxation mechanism. After excitation to the bright state S2 (ππ*), it decays to the S1 state and then undergoes efficient intersystem crossing to the triplet manifold. The presence of sulfur atom in d5SICS leads to strong spin-orbit coupling (SOC) and a small energy gap that facilitates intersystem crossing from S1 (ns π*) to T2 (ππ*) followed by internal conversion to T1 state. Similarly in dNaM, the deactivation pathway follows analogous trends. CASPT2 calculations suggest that the S1 (ππ*) state is a dark state below the accessible S2 (ππ*) bright state. During the ultrafast deactivation, it exhibits bond length inversion. From S1 state, significant SOC leads the population transfer to T3 due to a smaller energy gap. Henceforth, fast internal conversion occurs from T3 to T2 followed by T1 . From time-dependent trajectory surface hopping dynamics, it is found that excited state relaxation occurs on a sub-picosecond timescale in d5SICS and dNaM. Our findings strongly suggest that there is enough energy available in triplet state of UBP to generate reactive oxygen species and induce phototoxicity with respect to cellular DNA. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Investigations into photo-excited state dynamics in colloidal quantum dots

    Science.gov (United States)

    Singh, Gaurav

    Colloidal Quantum dots (QDs) have garnered considerable scientific and technological interest as a promising material for next generation solar cells, photo-detectors, lasers, bright light-emitting diodes (LEDs), and reliable biomarkers. However, for practical realization of these applications, it is crucial to understand the complex photo-physics of QDs that are very sensitive to surface chemistry and chemical surroundings. Depending on the excitation density, QDs can support single or multiple excitations. The first part of this talk addresses evolution of QD excited state dynamics in the regime of low excitation intensity. We use temperature-resolved time-resolved fluorescence spectroscopy to study exciton dynamics from picoseconds to microseconds and use kinetic modeling based on classical electron transfer to show the effect of surface trap states on dynamics of ground-state exciton manifold in core-shell CdSe/CdS QDs. We show that the thickness of CdS shell plays an important role in interaction of CdSe core exciton states with nanocrystal environment, and find that a thicker shell can minimize the mixing of QD exciton states with surface trap states. I will then present an investigation into the dynamics of multiply-excited states in QDs. One of the key challenges in QD spectroscopy is to reliably distinguish multi- from single-excited states that have similar lifetime components and spectroscopic signatures. I will describe the development of a novel multi-pulse fluorescence technique to selectively probe multi-excited states in ensemble QD samples and determine the nature of the multi-excited state contributing to the total fluorescence even in the limit of low fluorescent yields. We find that in our sample of CdSe/CdS core/shell QDs the multi-excited emission is dominated by emissive trion states rather than biexcitons. Next, I will discuss the application of this technique to probe exciton-plasmon coupling in layered hybrid films of QD/gold nanoparticles

  13. Electronic excited states responsible for dimer formation upon UV absorption directly by thymine strands: joint experimental and theoretical study.

    Science.gov (United States)

    Banyasz, Akos; Douki, Thierry; Improta, Roberto; Gustavsson, Thomas; Onidas, Delphine; Vayá, Ignacio; Perron, Marion; Markovitsi, Dimitra

    2012-09-12

    The study addresses interconnected issues related to two major types of cycloadditions between adjacent thymines in DNA leading to cyclobutane dimers (TTs) and (6-4) adducts. Experimental results are obtained for the single strand (dT)(20) by steady-state and time-resolved optical spectroscopy, as well as by HPLC coupled to mass spectrometry. Calculations are carried out for the dinucleoside monophosphate in water using the TD-M052X method and including the polarizable continuum model; the reliability of TD-M052X is checked against CASPT2 calculations regarding the behavior of two stacked thymines in the gas phase. It is shown that irradiation at the main absorption band leads to cyclobutane dimers (TTs) and (6-4) adducts via different electronic excited states. TTs are formed via (1)ππ* excitons; [2 + 2] dimerization proceeds along a barrierless path, in line with the constant quantum yield (0.05) with the irradiation wavelength, the contribution of the (3)ππ* state to this reaction being less than 10%. The formation of oxetane, the reaction intermediate leading to (6-4) adducts, occurs via charge transfer excited states involving two stacked thymines, whose fingerprint is detected in the fluorescence spectra; it involves an energy barrier explaining the important decrease in the quantum yield of (6-4) adducts with the irradiation wavelength.

  14. Excited-state dynamics of mononucleotides and DNA strands in a deep eutectic solvent.

    Science.gov (United States)

    Zhang, Yuyuan; de La Harpe, Kimberly; Hariharan, Mahesh; Kohler, Bern

    2018-01-31

    The photophysics of several mono- and oligonucleotides were investigated in a deep eutectic solvent for the first time. The solvent glyceline, prepared as a 1 : 2 mole ratio mixture of choline chloride and glycerol, was used to study excited-state deactivation in a non-aqueous solvent by the use of steady-state and time-resolved spectroscopy. DNA strands in glyceline retain the secondary structures that are present in aqueous solution to some degree, thus enabling a study of the effects of solvent properties on the excited states of stacked bases and stacked base pairs. The excited-state lifetime of the mononucleotide 5'-AMP in glyceline is 630 fs, or twice as long as in aqueous solution. Even slower relaxation is seen for 5'-TMP in glyceline, and a possible triplet state with a lifetime greater than 3 ns is observed. Circular dichroism spectra show that the single strand (dA)18 and the duplex d(AT)9·d(AT)9 adopt similar structures in glyceline and in aqueous solution. Despite having similar conformations in both solvents, femtosecond transient absorption experiments reveal striking changes in the dynamics. Excited-state decay and vibrational cooling generally take place more slowly in glyceline than in water. Additionally, the fraction of long-lived excited states in both oligonucleotide systems is lower in glyceline than in aqueous solution. For a DNA duplex, water is suggested to favor decay pathways involving intrastrand charge separation, while the deep eutectic solvent favors interstrand deactivation channels involving neutral species. Slower solvation dynamics in the viscous deep eutectic solvent may also play a role. These results demonstrate that the dynamics of excitations in stacked bases and stacked base pairs depend not only on conformation, but are also highly sensitive to the solvent.

  15. Precision measurements and test of molecular theory in highly-excited vibrational states of H$_2$ $(v=11)$

    CERN Document Server

    Trivikram, T Madhu; Wcisło, P; Ubachs, W; Salumbides, E J

    2016-01-01

    Accurate $EF{}^1\\Sigma^+_g-X{}^1\\Sigma^+_g$ transition energies in molecular hydrogen were determined for transitions originating from levels with highly-excited vibrational quantum number, $v=11$, in the ground electronic state. Doppler-free two-photon spectroscopy was applied on vibrationally excited H$_2^*$, produced via the photodissociation of H$_2$S, yielding transition frequencies with accuracies of $45$ MHz or $0.0015$ cm$^{-1}$. An important improvement is the enhanced detection efficiency by resonant excitation to autoionizing $7p\\pi$ electronic Rydberg states, resulting in narrow transitions due to reduced ac-Stark effects. Using known $EF$ level energies, the level energies of $X(v=11, J=1,3-5)$ states are derived with accuracies of typically 0.002 cm$^{-1}$. These experimental values are in excellent agreement with, and are more accurate than the results obtained from the most advanced ab initio molecular theory calculations including relativistic and QED contributions.

  16. Production of excited beauty states in Z decays

    CERN Document Server

    Buskulic, Damir; De Bonis, I; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Odier, P; Pietrzyk, B; Ariztizabal, F; Chmeissani, M; Crespo, J M; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Gaitan, V; Garrido, L; Martínez, M; Orteu, S; Pacheco, A; Padilla, C; Palla, Fabrizio; Pascual, A; Perlas, J A; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Farilla, A; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Natali, S; Nuzzo, S; Ranieri, A; Raso, G; Romano, F; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Bonvicini, G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Engelhardt, A; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Jacobsen, R; Janot, P; Jost, B; Knobloch, J; Lehraus, Ivan; Markou, C; Martin, E B; Mato, P; Meinhard, H; Minten, Adolf G; Miquel, R; Oest, T; Palazzi, P; Pater, J R; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wiedenmann, W; Wildish, T; Witzeling, W; Wotschack, J; Ajaltouni, Ziad J; Bardadin-Otwinowska, Maria; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rossignol, J M; Saadi, F; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Kyriakis, A; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Passalacqua, L; Rougé, A; Rumpf, M; Tanaka, R; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Delfino, M C; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Pepé-Altarelli, M; Dorris, S J; Halley, A W; ten Have, I; Knowles, I G; Lynch, J G; Morton, W T; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Smith, M G; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Braun, O; Geweniger, C; Graefe, G; Hanke, P; Hepp, V; Kluge, E E; Putzer, A; Rensch, B; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Colling, D J; Dornan, Peter J; Konstantinidis, N P; Moneta, L; Moutoussi, A; Nash, J; San Martin, G; Sedgbeer, J K; Stacey, A M; Dissertori, G; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Bowdery, C K; Brodbeck, T J; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Whelan, E P; Williams, M I; Galla, A; Greene, A M; Kleinknecht, K; Quast, G; Raab, J; Renk, B; Sander, H G; Wanke, R; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Thulasidas, M; Nicod, D; Payre, P; Rousseau, D; Talby, M; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Brown, D; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Stierlin, U; Saint-Denis, R; Wolf, G; Alemany, R; Boucrot, J; Callot, O; Cordier, A; Courault, F; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Musolino, G; Nikolic, I A; Park, H J; Park, I C; Schune, M H; Simion, S; Veillet, J J; Videau, I; Abbaneo, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Triggiani, G; Vannini, C; Verdini, P G; Walsh, J; Betteridge, A P; Blair, G A; Bryant, L M; Cerutti, F; Gao, Y; Green, M G; Johnson, D L; Medcalf, T; Mir, L M; Perrodo, P; Strong, J A; Bertin, V; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Edwards, M; Maley, P; Norton, P R; Thompson, J C; Bloch-Devaux, B; Colas, P; Duarte, H; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Rossowsky, A; Roussarie, A; Schuller, J P; Schwindling, J; Si Mohand, D; Trabelsi, A; Vallage, B; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Beddall, A; Booth, C N; Boswell, R; Cartwright, S L; Combley, F; Dawson, I; Köksal, A; Letho, M; Newton, W M; Rankin, C; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Feigl, E; Grupen, Claus; Lutters, G; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Van Gemmeren, P; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Ragusa, F; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Bellantoni, L; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Harton, J L; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Schmitt, M; Scott, I J; Sharma, V; Turk, J; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G

    1996-01-01

    A data sample of about 3.0 million hadronic Z decays collected by the ALEPH experiment at LEP in the years 1991 through 1994, is used to make an inclusive selection of B~hadron events. In this event sample 4227 \\pm 140 \\pm 252 B^* mesons in the decay B^* \\to B \\gamma and 1944 \\pm 108 \\pm 161 B^{**} mesons decaying into a B~meson and a charged pion are reconstructed. For the well established B^* meson the following quantities areobtained: \\Delta M = M_{B^*} - M_{B} = (45.30\\pm 0.35\\pm 0.87)~\\mathrm{MeV}/c^2 and N_{B^*}/(N_B+N_{B^*}) = (77.1 \\pm 2.6 \\pm 7.0)\\%. The angular distribution of the photons in the B^* rest frame is used to measure the relative contribution of longitudinal B^* polarization states to be \\sigma_L/(\\sigma_L + \\sigma_T)= (33 \\pm 6 \\pm 5)\\%. \\\\ Resonance structure in the M(B\\pi)-M(B) mass difference is observed at (424 \\pm 4 \\pm 10)~\\mathrm{MeV}/c^2. Its shape and position is in agreement with the expectation for B^{**}_{u,d} states decaying into B_{u,d}^{(*)} \\pi^\\pm. The signal is therefo...

  17. Transient Development of Excited State Densities in Atomic Helium Plasmas

    Science.gov (United States)

    1976-03-01

    n s t i t u e n t s caus ing a t . ransfer to bound e l e c t r o n s b e t w e e n the l o w - l y i n g s t a t e s and u p p e r s t a t...r y and t h e s e a r e d i s c u s s e d in de ta i l . 4.1 ENERGY LEVELS The h e l i u m e n e r g y l e v e l s u s e d in th i s s...e t h e n d e t e r m i n e d f r o m t h e s e v a l u e s . 4] AEDC-TR-76-5 Table 1. Helium Energy Lwel$ State g E (i/cm) State g E (i

  18. The aniline-water and aniline-methanol complexes in the S{sub 1} excited state

    Energy Technology Data Exchange (ETDEWEB)

    Piani, G. [LENS, via N. Carrara 1, Polo Scientifico Universita di Firenze, 50019 Sesto Fiorentino (Italy); Pasquini, M. [LENS, via N. Carrara 1, Polo Scientifico Universita di Firenze, 50019 Sesto Fiorentino (Finland) (Italy); Dipartimento di Chimica, Universita di Firenze, Firenze (Italy); Lopez-Tocon, I. [LENS, via N. Carrara 1, Polo Scientifico Universita di Firenze, 50019 Sesto Fiorentino (Italy); Departamento de Quimica-Fisica, Universidad de Malaga (Spain); Pietraperzia, G. [LENS, via N. Carrara 1, Polo Scientifico Universita di Firenze, 50019 Sesto Fiorentino (Italy); Dipartimento di Chimica, Universita di Firenze, Firenze (Italy); Becucci, M. [LENS, via N. Carrara 1, Polo Scientifico Universita di Firenze, 50019 Sesto Fiorentino (Italy); Dipartimento di Chimica, Universita di Firenze, Firenze (Italy)], E-mail: maurizio.becucci@unifi.it; Castellucci, E. [LENS, via N. Carrara 1, Polo Scientifico Universita di Firenze, 50019 Sesto Fiorentino (Italy); Dipartimento di Chimica, Universita di Firenze, Firenze (Italy)

    2006-11-08

    We report an experimental and theoretical study on the properties of the aniline-water and aniline-methanol jet cooled complexes. In both complexes the ligand (H{sub 2}O or CH{sub 3}OH) is hydrogen bonded to aniline, the interaction taking place at the lone pair of the nitrogen, in the amino group. The S{sub 1} <- S{sub 0} electronic excitation spectrum in both cases exhibits a very broad and weak band, blue shifted with respect to the origin band of aniline by {approx}700 cm{sup -1}. Ab initio calculations, at different levels of theory with the cc-pvdz electronic basis set, were performed on aniline-water and predict a strong binding energy decrease in the excited state and a large change in geometry, in agreement with experimental results.

  19. First excited states in doubly-odd {sup 110}Sb: Smooth band termination in the A {approx} 110 region

    Energy Technology Data Exchange (ETDEWEB)

    Lane, G.J.; Fossan, D.B.; Thorslund, I. [State Univ. of New York, Stony Brook, NY (United States). Dept. of Physics] [and others

    1996-11-01

    Excited states have been identified for the first time in {sup 110}Sb in a comprehensive series of {gamma}-spectroscopy experiments, including recoil-mass and neutron-field measurements. Three high-spin decoupled bands with configurations based on 2p-2h excitations across the Z = 50 shell gap, are observed to show the features of smooth band termination, the first such observation in an odd-odd nucleus. The yrast intruder band has been connected to the low spin levels and is tentatively identified up to its predicred termination at I{sup {pi}} = (45{sup +}). Detailed configuration assignments are made through comparison with configuration-dependent cranked Nilsson-Strutinsky calculations; excellent agreement with experiment is obtained. The systematic occurrence of smoothly terminating bands in the neighboring isotopes is discussed.

  20. Energy-Looping Nanoparticles: Harnessing Excited-State Absorption for Deep-Tissue Imaging.

    Science.gov (United States)

    Levy, Elizabeth S; Tajon, Cheryl A; Bischof, Thomas S; Iafrati, Jillian; Fernandez-Bravo, Angel; Garfield, David J; Chamanzar, Maysamreza; Maharbiz, Michel M; Sohal, Vikaas S; Schuck, P James; Cohen, Bruce E; Chan, Emory M

    2016-09-27

    Near infrared (NIR) microscopy enables noninvasive imaging in tissue, particularly in the NIR-II spectral range (1000-1400 nm) where attenuation due to tissue scattering and absorption is minimized. Lanthanide-doped upconverting nanocrystals are promising deep-tissue imaging probes due to their photostable emission in the visible and NIR, but these materials are not efficiently excited at NIR-II wavelengths due to the dearth of lanthanide ground-state absorption transitions in this window. Here, we develop a class of lanthanide-doped imaging probes that harness an energy-looping mechanism that facilitates excitation at NIR-II wavelengths, such as 1064 nm, that are resonant with excited-state absorption transitions but not ground-state absorption. Using computational methods and combinatorial screening, we have identified Tm(3+)-doped NaYF4 nanoparticles as efficient looping systems that emit at 800 nm under continuous-wave excitation at 1064 nm. Using this benign excitation with standard confocal microscopy, energy-looping nanoparticles (ELNPs) are imaged in cultured mammalian cells and through brain tissue without autofluorescence. The 1 mm imaging depths and 2 μm feature sizes are comparable to those demonstrated by state-of-the-art multiphoton techniques, illustrating that ELNPs are a promising class of NIR probes for high-fidelity visualization in cells and tissue.

  1. Structural Monitoring of the Onset of Excited-State Aromaticity in a Liquid Crystal Phase.

    Science.gov (United States)

    Hada, Masaki; Saito, Shohei; Tanaka, Sei'ichi; Sato, Ryuma; Yoshimura, Masahiko; Mouri, Kazuhiro; Matsuo, Kyohei; Yamaguchi, Shigehiro; Hara, Mitsuo; Hayashi, Yasuhiko; Röhricht, Fynn; Herges, Rainer; Shigeta, Yasuteru; Onda, Ken; Miller, R J Dwayne

    2017-11-08

    Aromaticity of photoexcited molecules is an important concept in organic chemistry. Its theory, Baird's rule for triplet aromaticity since 1972 gives the rationale of photoinduced conformational changes and photochemical reactivities of cyclic π-conjugated systems. However, it is still challenging to monitor the dynamic structural change induced by the excited-state aromaticity, particularly in condensed materials. Here we report direct structural observation of a molecular motion and a subsequent packing deformation accompanied by the excited-state aromaticity. Photoactive liquid crystal (LC) molecules featuring a π-expanded cyclooctatetraene core unit are orientationally ordered but loosely packed in a columnar LC phase, and therefore a photoinduced conformational planarization by the excited-state aromaticity has been successfully observed by time-resolved electron diffractometry and vibrational spectroscopy. The structural change took place in the vicinity of excited molecules, producing a twisted stacking structure. A nanoscale torque driven by the excited-state aromaticity can be used as the working mechanism of new photoresponsive materials.

  2. Investigation of two-photon absorption induced excited state absorption in a fluorenyl-based chromophore.

    Science.gov (United States)

    Li, Changwei; Yang, Kun; Feng, Yan; Su, Xinyan; Yang, Junyi; Jin, Xiao; Shui, Min; Wang, Yuxiao; Zhang, Xueru; Song, Yinglin; Xu, Hongyao

    2009-12-03

    Two-photon absorption induced excited state absorption in the solution of a new fluorenyl-based chromophore is investigated by a time-resolved pump-probe technique using femtosecond pulses. With the help of an additional femtosecond open-aperture Z-scan technique, numerical simulations based on a three-energy level model are used to interpret the experimental results, and we determine the nonlinear optical parameters of this new chromophore uniquely. Large two-photon absorption cross section and excited state absorption cross section for singlet excited state are obtained, indicating a good candidate for optical limiting devices. Moreover, the influence of two-beam coupling induced energy transfer in neat N,N'-dimethylformamide solvent is also considered, although this effect is strongly restrained by the instantaneous two-photon absorption.

  3. Determination and Comparison of Carbonyl Stretching Frequency of a Ketone in Its Ground State and the First Electronic Excited State

    Science.gov (United States)

    Bandyopadhyay, Subhajit; Roy, Saswata

    2014-01-01

    This paper describes an inexpensive experiment to determine the carbonyl stretching frequency of an organic keto compound in its ground state and first electronic excited state. The experiment is simple to execute, clarifies some of the fundamental concepts of spectroscopy, and is appropriate for a basic spectroscopy laboratory course. The…

  4. Dirac $R$-matrix and Breit-Pauli distorted wave calculations of the electron-impact excitation of W$^{44+}$

    CERN Document Server

    Bluteau, M M; Badnell, N R

    2015-01-01

    With construction of ITER progressing and existing tokamaks carrying out ITER-relevant experiments, accurate fundamental and derived atomic data for numerous ionization stages of tungsten (W) is required to assess the potential effect of this species upon fusion plasmas. The results of fully relativistic, partially radiation damped, Dirac $R$-matrix electron-impact excitation calculations for the W$^{44+}$ ion are presented. These calculations use a configuration interaction and close-coupling expansion that opens-up the 3d-subshell, which does not appear to have been considered before in a collision calculation. As a result, it is possible to investigate the arrays, [3d$^{10}$4s$^2-$3d$^9$4s$^2$4f] and [3d$^{10}$4s$^2-$3d$^9$4s4p4d], which are predicted to contain transitions of diagnostic importance for the soft x-ray region. Our $R$-matrix collision data are compared with previous $R$-matrix results by Ballance and Griffin as well as our own relativistically corrected, Breit-Pauli distorted wave and plane-...

  5. Electronic states and nature of bonding of the molecule PdGe by all electron ab initio HF–CI calculations and mass spectrometric equilibrium experiments

    DEFF Research Database (Denmark)

    Shim, Irene; Kingcade, Joseph E. , Jr.; Gingerich, Karl A.

    1986-01-01

    In the present work we present all-electron ab initio Hartree–Fock (HF) and configuration interaction (CI) calculations of six electronic states of the PdGe molecule. The molecule is predicted to have a 3Pi ground state and two low-lying excited states 3Sigma− and 1Sigma+. The electronic structure...

  6. First-principles calculations and model analysis of plasmon excitations in graphene and graphene/hBN heterostructure

    Science.gov (United States)

    Li, Pengfei; Ren, Xinguo; He, Lixin

    2017-10-01

    Plasmon excitations in free-standing graphene and graphene/hexagonal boron nitride (hBN) heterostructure are studied using linear-response time-dependent density functional theory within the random phase approximation. Within a single theoretical framework, we examine both the plasmon dispersion behavior and lifetime (linewidth) of Dirac and π plasmons on an equal footing. Particular attention is paid to the influence of the hBN substrate and the anisotropic effect. Furthermore, a model-based analysis indicates that the correct dispersion behavior of π plasmons should be ωπ(q ) =√{Eg2+β ql} for small q 's, where Eg is the band gap at the M point in the Brillouin zone, and β is a fitting parameter. This model is radically different from previous proposals, but in good agreement with our calculated results from first principles.

  7. Static diode pumped alkali lasers: Model calculations of the effects of heating, ionization, high electronic excitation and chemical reactions

    Science.gov (United States)

    Barmashenko, B. D.; Rosenwaks, S.; Heaven, M. C.

    2013-04-01

    The effects of heating, ionization, high electronic excitation and chemical reactions on the operation of diode pumped alkali lasers (DPALs) with a static, non-flowing gain medium are calculated using a semi-analytical model. Unlike other models, assuming a three-level scheme of the laser and neglecting influence of the temperature on the lasing power, it takes into account the temperature rise and losses of neutral alkali atoms due to ionization and chemical reactions, resulting in decrease of the pump absorption and slope efficiency. Good agreement with measurements in a static DPAL [B.V. Zhdanov, J. Sell, R.J. Knize, Electron. Lett. 44 (2008) 582] is obtained. It is found that the ionization processes have a small effect on the laser operation, whereas the chemical reactions of alkali atoms with hydrocarbons strongly affect the lasing power.

  8. Electron capture into excited projectile states in 6-100 keV Ne/sup 4 +/-Ne collisions

    Energy Technology Data Exchange (ETDEWEB)

    Nikulin, V.K.; Gordeev, Yu.S.; Samoylov, A.V. (AN SSSR, Leningrad. Fiziko-Tekhnicheskij Inst.); Dijkkamp, D.; Heer, F.J. de (FOM-Instituut voor Atoom-en Molecuulfysica, Amsterdam (Netherlands))

    1984-11-14

    The collision system Ne/sup 4 +/-Ne has been studied both theoretically and experimentally. The cross section for one-electron capture into Ne/sup 3 +/(3s,3p) subshells has been determined in the velocity range 0.1-0.5 au by measuring the VUV photons emitted by these excited states. The cross sections for one- and two-electron capture into 3s, 3p subshells were calculated using a multichannel Landau-Zener model. Good agreement exists between experimental and theoretical results for one-electron capture.

  9. Theoretical study of the low-lying excited states of {beta}-carotene isomers by a multireference configuration interaction method

    Energy Technology Data Exchange (ETDEWEB)

    Ceron-Carrasco, Jose P., E-mail: jpceron@um.es [Departamento de Quimica Fisica, Universidad de Murcia, Campus de Espinardo, 30100 Murcia (Spain); Requena, Alberto, E-mail: rqna@um.es [Departamento de Quimica Fisica, Universidad de Murcia, Campus de Espinardo, 30100 Murcia (Spain); Marian, Christel M., E-mail: Christel.Marian@uni-duesseldorf.de [Institute of Theoretical and Computational Chemistry, Heinrich-Heine-University, Duesseldorf, Universitaetsstr. 1, D-40225 Duesseldorf (Germany)

    2010-07-19

    Graphical abstract: Quantum chemical calculations reveal a linear correlation between the intensity of the cis-band and the shape of {beta}-carotene isomers. - Abstract: The combined density functional theory and multireference configuration interaction method (DFT/MRCI) has been employed to explore the ground and low-lying electronically excited states of various {beta}-carotene monocis and dicis isomers. Although the excitation energies are generally somewhat underestimated by DFT/MRCI, the experimental trends are well reproduced and allow an interpretation of the main bands of the UV-Vis spectra. The optically bright signal is correctly assigned to S{sub 0}{yields}S{sub 2}, corresponding to the HOMO {yields} LUMO transition, whereas the so-called cis-band originates mainly from the S{sub 0}{yields}S{sub 4} transition and arises from HOMO-1 {yields} LUMO and HOMO {yields} LUMO+1 excitations. The calculations reveal a correlation between the oscillator strengths of these transitions and the C6-C6' distance thus explaining the effect of the molecular configuration on the shape of the UV-Vis spectra.

  10. Excited states behavior of nucleobases in solution: insights from computational studies.

    Science.gov (United States)

    Improta, Roberto; Barone, Vincenzo

    2015-01-01

    We review the most significant results obtained in the study of isolated nucleobases in solution by quantum mechanical methods, trying to highlight also the most relevant open issues. We concisely discuss some methodological issues relevant to the study of molecular electronic excited molecular states in condensed phases, focussing on the methods most commonly applied to the study of nucleobases, i.e. continuum models as the Polarizable Continuum Model and explicit solvation models. We analyse how the solvent changes the relative energy of the lowest energy excited states in the Franck-Condon region, their minima and the Conical Intersections among the different states, interpreting the experimental optical spectra, both steady state and time-resolved. Several methods are available for accurately including solvent effects in the Franck-Condon region, and for most of the nucleobases the solvent shift on the different excited states can be considered assessed. The study of the excited state decay, both radiative and non-radiative, in solution still poses instead significant theoretical challenges.

  11. Surface-catalyzed recombination into excited electronic, vibrational, rotational, and kinetic energy states: A review

    Science.gov (United States)

    Kofsky, I. L.; Barrett, J. L.

    1985-01-01

    Laboratory experiments in which recombined CO, CO2, D2O, OH, N2, H2, and O2 molecules desorb from surfaces in excited internal and translational states are briefly reviewed. Unequilibrated distributions predominate from the principally catalytic metal substrates so far investigated. Mean kinetic energies have been observed up to approx. 3x, and in some cases less than, wall-thermal; the velocity distributions generally vary with emission angle, with non-Lambertian particle fluxes. The excitation state populations are found to depend on surface impurities, in an as yet unexplained way.

  12. Ultrafast Excited State Relaxation of a Metalloporphyrin Revealed by Femtosecond X-ray Absorption Spectroscopy

    DEFF Research Database (Denmark)

    Shelby, Megan L.; Lestrange, Patrick J.; Jackson, Nicholas E.

    2016-01-01

    Photoexcited Nickel(II) tetramesitylporphyrin (NiTMP), like many open-shell metalloporphyrins, relaxes rapidly through multiple electronic states following an initial porphyrin-based excitation, some involving metal centered electronic configuration changes that could be harnessed catalytically......), structural dynamics before thermalization were not resolved due to the similar to 100 ps duration of the available X-ray probe pulse. Using the femtosecond (fs) X-ray pulses of the Linac Coherent Light Source (LCLS), the Ni center electronic configuration from the initial excited state to the relaxed (d...

  13. Pulsed radiation studies of carotenoid radicals and excited states

    Energy Technology Data Exchange (ETDEWEB)

    Burke, M

    2001-04-01

    The one-electron reduction potentials of the radical cations of five dietary carotenoids, in aqueous micellar environments, have been obtained from a pulse radiolysis study of electron transfer between the carotenoids and tryptophan radical cations as a function of pH, and lie in the range 980 to 1060 mV. The decays of the carotenoid radical cations suggest a distribution of exponential lifetimes. The radicals persist for up to about one second, depending on the medium and may re-orientate within a biological environment to react with other biomolecules, such as tyrosine, cysteine or ascorbic acid, which was indeed confirmed. Spectral information of carotenoid pigmented liposomes has been collected, subsequently pulse radiolysis was used to generate the radical cations of {beta}-carotene, zeaxanthin and lutein, in unilamellar vesicles of dipalmitoyl phosphatidyl choline. The rate constants for the 'repair' of these carotenoid radical cations by water-soluble vitamin C were found to be similar ({approx}1 x 10{sup 7} M{sup -1}s{sup -1}) for {beta}-carotene and zeaxanthin and somewhat lower ({approx}0.5 x 10{sup 7} M{sup -1}s{sup -1}) for lutein. The results are discussed in terms of the microenvironment of the carotenoids and suggest that for {beta}-carotene, a hydrocarbon carotenoid, the radical cation is able to interact with a water-soluble species even though the parent hydrocarbon carotenoid is probably entirely in the non-polar region of the liposome. Studies investigating the ability of ingested lycopene to protect human lymphoid cells against singlet oxygen and nitrogen dioxide radical mediated cell damage have shown that a high lycopene diet is beneficial in protecting human cells against reactive oxygen species. Triplet states of carotenoids were produced in benzene solvent and their triplet lifetimes were found to depend on the concentration of the parent molecule. The rate constants obtained for ground state quenching correlate with the number

  14. Excited-State Dynamics of the Thiopurine Prodrug 6-Thioguanine: Can N9-Glycosylation Affect Its Phototoxic Activity?

    Directory of Open Access Journals (Sweden)

    Brennan Ashwood

    2017-02-01

    Full Text Available 6-Thioguanine, an immunosuppressant and anticancer prodrug, has been shown to induce DNA damage and cell death following exposure to UVA radiation. Its metabolite, 6-thioguanosine, plays a major role in the prodrug’s overall photoreactivity. However, 6-thioguanine itself has proven to be cytotoxic following UVA irradiation, warranting further investigation into its excited-state dynamics. In this contribution, the excited-state dynamics and photochemical properties of 6-thioguanine are studied in aqueous solution following UVA excitation at 345 nm in order to provide mechanistic insight regarding its photochemical reactivity and to scrutinize whether N9-glycosylation modulates its phototoxicity in solution. The experimental results are complemented with time-dependent density functional calculations that include solvent dielectric effects by means of a reaction-field solvation model. UVA excitation results in the initial population of the S2(ππ* state, which is followed by ultrafast internal conversion to the S1(nπ* state and then intersystem crossing to the triplet manifold within 560 ± 60 fs. A small fraction (ca. 25% of the population that reaches the S1(nπ* state repopulates the ground state. The T1(ππ* state decays to the ground state in 1.4 ± 0.2 μs under N2-purged conditions, using a 0.2 mM concentration of 6-thioguanine, or it can sensitize singlet oxygen in 0.21 ± 0.02 and 0.23 ± 0.02 yields in air- and O2-saturated solution, respectively. This demonstrates the efficacy of 6-thioguanine to act as a Type II photosensitizer. N9-glycosylation increases the rate of intersystem crossing from the singlet to triplet manifold, as well as from the T1(ππ* state to the ground state, which lead to a ca. 40% decrease in the singlet oxygen yield under air-saturated conditions. Enhanced vibronic coupling between the singlet and triplet manifolds due to a higher density of vibrational states is proposed to be responsible for the observed

  15. Variation of excited-state dynamics in trifluoromethyl functionalized C60 fullerenes.

    Science.gov (United States)

    Park, Jaehong; Ramirez, Jessica J; Clikeman, Tyler T; Larson, Bryon W; Boltalina, Olga V; Strauss, Steven H; Rumbles, Garry

    2016-08-17

    We report on electronically excited-state dynamics of three different trifluoromethyl C60 fullerenes (TMFs, C60(CF3)n: C60/4-1, C60/6-2, and C60/10-1, featuring four, six, and ten trifluoromethyl groups, respectively) using steady-state and time-resolved optical spectroscopy as well as ultrafast pump/probe transient absorption spectroscopy. C60/4-1 and C60/6-2 dissolved in toluene solvent show near-unity S1 → T1 intersystem crossing quantum yield (ΦISC), ca. 1 ns S1-state lifetimes, and microsecond-timescale T1-state lifetimes, which are typical of the fullerene class. On the other hand, C60/10-1 exhibits a dominant sub-nanosecond nonradiative S1 → S0 relaxation mechanism and negligible ΦISC, therefore decreasing the average excited-state lifetime (τavg) by about 5 orders of magnitude compared to that of C60/4-1 and C60/6-2 (τavg ≈ 17 μs and 54 μs for C60/4-1 and C60/6-2, respectively, whereas τavg ≈ 100 ps for C60/10-1). These excited-state characteristics of C60/4-1 and C60/6-2 are preserved in polymer matrix, suggesting that fullerene/polymer interactions do not modulate intrinsic photophysics of trifluoromethyl-substituted fullerenes. The contrasting excited-state study results of C60/4-1 and C60/6-2 to that of C60/10-1 infer that intrinsic optical properties and excited-state dynamics can be affected by the substitution on the fullerene.

  16. Variation of excited-state dynamics in trifluoromethyl functionalized C 60 fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jaehong; Ramirez, Jessica J.; Clikeman, Tyler T.; Larson, Bryon W.; Boltalina, Olga V.; Strauss, Steven H.; Rumbles, Garry

    2016-01-01

    We report on electronically excited-state dynamics of three different trifluoromethyl C60 fullerenes (TMFs, C60(CF3)n: C60/4-1, C60/6-2, and C60/10-1, featuring four, six, and ten trifluoromethyl groups, respectively) using steady-state and time-resolved optical spectroscopy as well as ultrafast pump/probe transient absorption spectroscopy. C60/4-1 and C60/6-2 dissolved in toluene solvent show near-unity S1--T1 intersystem crossing quantum yield (..phi..ISC), ca. 1 ns S1-state lifetimes, and microsecond-timescale T1-state lifetimes, which are typical of the fullerene class. On the other hand, C60/10-1 exhibits a dominant sub-nanosecond nonradiative S1--S0 relaxation mechanism and negligible ..phi..ISC, therefore decreasing the average excited-state lifetime (..tau..avg) by about 5 orders of magnitude compared to that of C60/4-1 and C60/6-2 (..tau..avg approx. 17 us and 54 us for C60/4-1 and C60/6-2, respectively, whereas ..tau..avg approx. 100 ps for C60/10-1). These excited-state characteristics of C60/4-1 and C60/6-2 are preserved in polymer matrix, suggesting that fullerene/polymer interactions do not modulate intrinsic photophysics of trifluoromethyl-substituted fullerenes. The contrasting excited- state study results of C60/4-1 and C60/6-2 to that of C60/10-1 infer that intrinsic optical properties and excited-state dynamics can be affected by the substitution on the fullerene.

  17. Tracking the charge and spin dynamics of electronic excited states in inorganic complexes

    Science.gov (United States)

    Gaffney, Kelly

    2015-03-01

    Inorganic complexes have many advantageous properties for solar energy applications, including strong visible absorption and photocatalytic activity. Whether used as a photocatalyst or a photosensitizer, the lifetime of electronic excited states and the earth abundance of the molecular components represent a key property for solar energy applications. These dual needs have undermined the usefulness of many coordination compounds. Isoelectronic iron and ruthenium based complexes represent a clear example. Ru-polypyridal based molecules have been the workhorse of solar energy related research and dye sensitized solar cells for decades, but the replacement of low abundance Ru with Fe leads to million-fold reductions in metal to ligand charge transfer (MLCT) excited state lifetimes. Understanding the origin of this million-fold reduction in lifetime and how to control excited state relaxation in 3d-metal complexes motivates the work I will discuss. We have used the spin sensitivity of hard x-ray fluorescence spectroscopy and the intense femtosecond duration pulses generated by the LCLS x-ray laser to probe the spin dynamics in a series of electronically excited [Fe(CN)6-2N(2,2'-bipyridine)N]2 N - 4 complexes, with N = 1-3. These femtosecond resolution measurements demonstrate that modification of the solvent and ligand environment can lengthen the MLCT excited state lifetime by more than two orders of magnitude. They also verify the role of triplet ligand field excited states in the spin crossover dynamics from singlet to quintet spin configurations. Work supported by the AMOS program within the Chemical Sciences, Geosciences, and Biosciences Division of the Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy.

  18. Effect of NaCl Salts on the Activation Energy of Excited-State Proton Transfer Reaction of Coumarin 183.

    Science.gov (United States)

    Joung, Joonyoung F; Kim, Sangin; Park, Sungnam

    2015-12-17

    Coumarin 183 (C183) was used as a photoacid to study excited-state proton transfer (ESPT) reactions. Here, we studied the effect of ions on the ESPT of C183 in aqueous NaCl solutions using a steady-state fluorescence spectroscopy and time-correlated single photon counting (TCSPC) method. The acid dissociation equilibrium of excited-state C183 and the activation energy for the ESPT of C183 were determined as a function of NaCl concentration. The change in the equilibrium constant was found to be correlated with the solvation energy of deprotonated C183. Frequency-resolved TCSPC signals measured at several temperatures were analyzed by using a global fitting analysis method which enabled us to extract all the rate constants involving the ESPT reaction and the spectra of individual species. The activation energy for the ESPT reaction of C183 was highly dependent on NaCl concentration. Quantum chemical calculations were used to calculate the local hydrogen-bond (H-bond) configurations around C183 in aqueous NaCl solutions. It was found that the activation energy for the ESPT was determined by the local H-bond configurations around C183 which were significantly influenced by the dissolved ions.

  19. Probing the excited state dynamics of a new family of Cu(I)-complexes with an enhanced light absorption capacity: excitation-wavelength dependent population of states through branching.

    Science.gov (United States)

    Papanikolaou, Panagiotis A; Tkachenko, Nikolai V

    2013-08-21

    The ultrafast dynamics of six homoleptic Cu(I)-complexes and their respective ligands was examined through time-resolved electronic absorption spectroscopy in the subpicosecond time domain, in a variety of solvents, and at different excitation wavelengths. Results indicate that after excitation of the complexes in the blue part of the spectrum, the initially formed intraligand (IL) singlet excited state decays via two pathways yielding simultaneously both the lower-lying MLCT excited state and the ligand locally excited triplet state. The latter is also observed in the case of the free ligands and relaxes back to the ground state in a timescale of 40 ps. Excitation in the red part results in the formation of the MLCT excited state of the complexes which decays to the ground state through the same intraligand triplet excited state. The solvent viscosity does not affect the overall relaxation kinetics. The short time constant observed for the intersystem crossing of the MLCT singlet excited state is discussed in terms of the contribution of the d-orbitals of copper to the wavefunction of these states.

  20. Excited State Structural Dynamics of Carotenoids and ChargeTransfer Systems

    Energy Technology Data Exchange (ETDEWEB)

    Van Tassle, Aaron Justin [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    This dissertation describes the development andimplementation of a visible/near infrared pump/mid-infrared probeapparatus. Chapter 1 describes the background and motivation ofinvestigating optically induced structural dynamics, paying specificattention to solvation and the excitation selection rules of highlysymmetric molecules such as carotenoids. Chapter 2 describes thedevelopment and construction of the experimental apparatus usedthroughout the remainder of this dissertation. Chapter 3 will discuss theinvestigation of DCM, a laser dye with a fluorescence signal resultingfrom a charge transfer state. By studying the dynamics of DCM and of itsmethyl deuterated isotopomer (an otherwise identical molecule), we areable to investigate the origins of the charge transfer state and provideevidence that it is of the controversial twisted intramolecular (TICT)type. Chapter 4 introduces the use of two-photon excitation to the S1state, combined with one-photon excitation to the S2 state of thecarotenoid beta-apo-8'-carotenal. These 2 investigations show evidencefor the formation of solitons, previously unobserved in molecular systemsand found only in conducting polymers Chapter 5 presents an investigationof the excited state dynamics of peridinin, the carotenoid responsiblefor the light harvesting of dinoflagellates. This investigation allowsfor a more detailed understanding of the importance of structuraldynamics of carotenoids in light harvesting.

  1. Calculation of excitation functions of proton, alpha and deuteron induced reactions for production of medical radioisotopes {sup 122–125}I

    Energy Technology Data Exchange (ETDEWEB)

    Artun, Ozan, E-mail: ozanartun@yahoo.com; Aytekin, Hüseyin, E-mail: huseyinaytekin@gmail.com

    2015-02-15

    In this work, the excitation functions for production of medical radioisotopes {sup 122–125}I with proton, alpha, and deuteron induced reactions were calculated by two different level density models. For the nuclear model calculations, the Talys 1.6 code were used, which is the latest version of Talys code series. Calculations of excitation functions for production of the {sup 122–125}I isotopes were carried out by using the generalized superfluid model (GSM) and Fermi-gas model (FGM). The results have shown that generalized superfluid model is more successful than Fermi-gas model in explaining the experimental results.

  2. DETERMINATION OF THE ABSOLUTE EXCITED-STATE DENSITY OF A SODIUM TARGET BY MEANS OF BEAM DEFLECTION MEASUREMENTS

    NARCIS (Netherlands)

    WIERSEMA, WP; SCHLATMANN, AR; MORGENSTERN, R

    1994-01-01

    The average deflection of a laser excited, divergent sodium beam with a broad velocity distribution is measured by means of a Langmuir-Taylor detector and exploited for determining the absolute density of the excited state in the interaction area. Simulations of the excitation and deflection process

  3. Photostability of a fluorescent marker under pulsed excited-state depletion through stimulated emission.

    Science.gov (United States)

    Dyba, Marcus; Hell, Stefan W

    2003-09-01

    Saturated stimulated-emission depletion (STED) of a fluorescent marker has been shown to break the diffraction barrier in far-field fluorescence microscopy and to facilitate spatial resolution down to a few tens of nanometers. Here we investigate the photostability of a fluorophore that, in this concept, is repeatedly excited and depleted by synchronized laser pulses. Our study of bacteria labeled with RH-414, a membrane marker, reveals that increasing the duration of the STED pulse from approximately 10 to 160 ps fundamentally improves the photostability of the dye. At the same time the STED efficiency is maintained. The observed photobleaching of RH-414 is due primarily to multiphoton absorption from its ground state. One can counteract photobleaching by employing STED pulses that range from 150 ps to approximately half of the lifetime of the excited state. The results also have implications for multiphoton excitation microscopy.

  4. First experimental evidence of 2He decay from 18Ne excited states

    CERN Document Server

    Rapisarda, E; Cardella, G; De Napoli, M; Raciti, G; Sfienti, C

    2010-01-01

    Two-proton decay from 18Ne excited states has been studied by complete kinematical detection of the decay products. The 18Ne nucleus has been produced as a radioactive beam by 20Ne projectile fragmentation at 45 AMeV on a 9Be target, using the FRIBs in-flight facility of the LNS. The 18Ne at 33 AMeV incident energy has been excited via Coulomb excitation on a natPb target. The correlated 2p emission has been disentangled from the uncorrelated 2p emission using a high granularity particle detector setup allowing the reconstruction of momentum and angle correlations of the two emitted protons. The obtained results unambiguously show that the 6.15 MeV 18Ne state two-proton decay proceeds through 2He emission (31%) and democratic or virtual sequential decay (69%).

  5. Selective two-photon excitation of a vibronic state by correlated photons.

    Science.gov (United States)

    Oka, Hisaki

    2011-03-28

    We theoretically investigate the two-photon excitation of a molecular vibronic state by correlated photons with energy anticorrelation. A Morse oscillator having three sets of vibronic states is used, as an example, to evaluate the selectivity and efficiency of two-photon excitation. We show that a vibrational mode can be selectively excited with high efficiency by the correlated photons, without phase manipulation or pulse-shaping techniques. This can be achieved by controlling the quantum correlation so that the photon pair concurrently has two pulse widths, namely, a temporally narrow width and a spectrally narrow width. Though this concurrence is seemingly contradictory, we can create such a photon pair by tailoring the quantum correlation between two photons.

  6. Unusual emission properties of the selected organosilicon compounds containing a styryl-carbazole chromophore: inversion of the singlet excited states.

    Science.gov (United States)

    Rachuta, K; Bayda, M; Majchrzak, M; Koput, J; Marciniak, B

    2017-05-10

    The spectroscopic and photophysical properties of silicon-containing styryl-carbazole were investigated in various solvents, and the results were analyzed with reference to its carbon derivatives. In n-hexane, both the silicon- and the carbon-containing compounds had very similar emission properties. In acetonitrile, the emission properties remained the same for the C-compound but changed significantly for the Si-compounds. In particular, the fluorescence spectra of the latter were red-shifted, and their radiative rate constants were even 7 times larger than in n-hexane, which suggested that the emissive states of the silicon-containing compounds were different in these two solvents. DFT calculations using the CAM-B3LYP functional showed that the emissive state of the C-compound involves the LUMO+1 orbital regardless of the medium. In contrast, for the Si-compound, changing the medium from n-hexane to acetonitrile resulted in the inversion of the emissive states from an excited state involving the LUMO+1 orbital (the dipole moment μ = 4.2 D) to an excited state involving the LUMO orbital (μ = 8.9 D).

  7. Charge-transfer excited states in aqueous DNA: Insights from many-body Green's function theory.

    Science.gov (United States)

    Yin, Huabing; Ma, Yuchen; Mu, Jinglin; Liu, Chengbu; Rohlfing, Michael

    2014-06-06

    Charge-transfer (CT) excited states play an important role in the excited-state dynamics of DNA in aqueous solution. However, there is still much controversy on their energies. By ab initio many-body Green's function theory, together with classical molecular dynamics simulations, we confirm the existence of CT states at the lower energy side of the optical absorption maximum in aqueous DNA as observed in experiments. We find that the hydration shell can exert strong effects (∼1  eV) on both the electronic structure and CT states of DNA molecules through dipole electric fields. In this case, the solvent cannot be simply regarded as a macroscopic screening medium as usual. The influence of base stacking and base pairing on the CT states is also discussed.

  8. Stark-induced adiabatic Raman ladder for preparing highly vibrationally excited quantum states of molecular hydrogen

    Science.gov (United States)

    Mukherjee, Nandini; Perreault, William E.; Zare, Richard N.

    2017-07-01

    We present a multi-color ladder excitation scheme that exploits Stark-induced adiabatic Raman passage to selectively populate a highly excited vibrational level of a molecule. We suggest that this multi-color coherent ladder excitation provides a practical way of accessing levels near the vibrational dissociation limit as well as the dissociative continuum, which would allow the generation of an entangled pair of fragments with near-zero relative kinetic energy. Specifically, we consider four- and six-photon coherent excitation of molecular hydrogen to high vibrational levels via intermediate vibrational levels, which are pairwise coupled by two-photon resonant interaction. Using a sequence of three partially overlapping, single-mode, nanosecond laser pulses we show that the sixth vibrational level of H2, which is too weakly coupled to be easily accessed by direct two-photon Raman excitation from the ground vibrational level, can be efficiently populated without leaving any population stranded in the intermediate level. Furthermore, we show that the fourteenth vibrational level of H2, which is the highest vibrational level in the ground electronic state with a binding energy of 22 meV, can be efficiently and selectively populated using a sequence of four pulses. The present technique offers the unique possibility of preparing entangled quantum states of H atoms without resorting to an ultracold system.

  9. Tetracarboxy-phthalocyanines: From excited state dynamics to photodynamic inactivation against Bovine herpesvirus type 1.

    Science.gov (United States)

    Cocca, Leandro H Z; Oliveira, Taise M A; Gotardo, Fernando; Teles, Amanda V; Menegatti, Ricardo; Siqueira, Jonathas P; Mendonça, Cleber R; Bataus, Luiz A M; Ribeiro, Anderson O; Souza, Thalita F M; Souza, Guilherme R L; Gonçalves, Pablo J; De Boni, Leonardo

    2017-10-01

    Herein we present the excited state dynamic of zinc and aluminum tetracarboxy-phthalocyanines (ZnPc and AlPc) and its application in the photodynamic inactivation (PDI) of Bovine herpesvirus type 1 (BoHV-1) in vitro. The excited state dynamic provides valuable data to describe the excited state properties of potential optical limiters and/or photosensitizers (PSs), such as: the excited state cross-sections, fluorescence lifetime and triplet state quantum yield. The excited state characterization was performed using three different Z-scan techniques: Single Pulse, White Light Continuum and Pulse Train. Considering the photodynamic inactivation of BoHV-1, an initial viral suspension containing 10 5.75 TCID 50 /mL was incubated with the PSs for 1h at 37°C under agitation and protected from light. The samples were placed in microtiter plates and irradiated (180mW/cm 2 ). During irradiation, a sample was taken every 15min and the viability of the virus was evaluated. The results show that both phthalocyanines were efficient against viruses. However, a higher photodynamic efficiency was observed by ZnPc, which can be attributed to its higher triplet and singlet quantum yields. The results presented here are important for animal health (treatment of BoHV-1) and also open up a field of studies to use AlPc and ZnPc as potential agents against a wide range of microorganisms of veterinary interest. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Role of final-state interactions in the calculation of the hadronic tensor of nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Celenza, L.S.; Shakin, C.M.; Wang, H. (Department of Physics and Center for Nuclear Theory, Brooklyn College of the City University of New York, Brooklyn, New York (USA))

    1991-10-01

    We develop methods for the calculation of the hadronic tensor that describes the response of nuclear matter to an electromagnetic probe and study the role of final-state interactions, making use of the theory of Horikawa, Lenz, and Mukhopadhyay. Recently, extensive calculations of such final-state interaction effects in quasielastic ({ital e},{ital e}{prime}) reactions have been performed by Chinn, Picklesimer, and Van Orden for finite nuclei. Our nuclear matter calculations reproduce the qualitative features found by those authors, including a significant quenching'' of the longitudinal response, if one uses a relativistic description of the process. While we are able to achieve an improved fit to a body of experimental data for the longitudinal response using this formalism, definitive conclusions cannot be drawn without performing a gauge-invariant calculation. We also find quenching of the transverse response in the region of the quasielastic peak; however, it is unclear as to whether that creates a problem for the theory, since the transverse response is known to have contributions from the excitation of the delta resonance and various multinucleon processes. As part of our study, we provide a spectral representation of the Green's function of a nucleon propagating in relativistic nuclear matter.

  11. Before there was light : Excited state dynamics in luminescent (nano)materials

    NARCIS (Netherlands)

    Rabouw, F.T.|info:eu-repo/dai/nl/413318036

    2015-01-01

    In this thesis we examine two types of luminescent materials: colloidal semiconductor nanocrystals (also known as quantum dots), and crystals doped with lanthanide ions. These materials convert one color of light to another. By investigating the dynamics of the excited state, we gain new insights

  12. Excited states populated via nucleon transfer in the reaction [sup 32]S+[sup 208]Pb

    Energy Technology Data Exchange (ETDEWEB)

    Corradi, L.; Petrache, C.M.; Ackermann, D.; De Angelis, G.; Moreno, H.; Napoli, D.R.; Spolaore, P.; Stefanini, A.M. (INFN, Lab. Nazionali di Legnaro (Italy)); Beghini, S.; Montagnoli, G.; Scarlassara, F.; Segato, G.F.; Signorini, C. (Padua Univ. (Italy). Dipt. di Fisica INFN, Padua (Italy)); Pollarolo, G. (Turin Univ. (Italy). Dipt. di Fisica INFN, Turin (Italy))

    1993-01-01

    The population strengths of excited states in nuclei produced via transfer reactions in the 185 MeV[sup 32]S+[sup 208]Pb reaction have been investigated by heavy-ion-[gamma] coincidence techniques. The cross sections extracted from the [gamma] spectra, have been analyzed in the framework of the Complex WKB approximation theory. (orig.).

  13. Discrete excitation of mode pulses using a diode-pumped solid-state digital laser

    CSIR Research Space (South Africa)

    Ngcobo, Sandile

    2016-02-01

    Full Text Available In this paper, we experimentally demonstrate novel method of generating discrete excitation of on-demand Lagaurre-Gaussian (LG) mode pulses, in a diode pumped solid-state digital laser. The digital laser comprises of an intra-cavity spatial light...

  14. Supporting Information for the article entitled, “Excited State Charge ...

    Indian Academy of Sciences (India)

    Supporting Information for the article entitled, “Excited State Charge Transfer Reaction in (Mixed Solvent + Electrolyte) Systems: Role of Reactant-Solvent and ... S2: Composition dependence of the reaction time (, upper panels) and long time ( , lower panels) constants obtained from bi-exponential fit of the collected LE ...

  15. Temperature dependent excited state relaxation of a red emitting DNA-templated silver nanocluster

    DEFF Research Database (Denmark)

    Cerretani, Cecilia; Carro-Temboury, Miguel R.; Krause, Stefan

    2017-01-01

    The nanosecond excited state temporal and spectral relaxation of a purified, red-emitting DNA-templated silver nanocluster (DNA–AgNC) was characterized as a function of temperature. The findings are explained by introducing a phenomenological electronic structure diagram. The reproducibility...

  16. Ponderomotive dressing of doubly-excited states with intensity-controlled laser light

    Directory of Open Access Journals (Sweden)

    Ding Thomas

    2013-03-01

    Full Text Available We laser-dress several doubly-excited states in helium. Tuning the coupling-laser intensity from perturbative to the strong-coupling regime, we are able to measure phases imprinted on the two-electron wavefunctions, and observe a new continuum coupling mechanism.

  17. Symmetry-breaking intramolecular charge transfer in the excited state of meso-linked BODIPY dyads

    KAUST Repository

    Whited, Matthew T.

    2012-01-01

    We report the synthesis and characterization of symmetric BODIPY dyads where the chromophores are attached at the meso position, using either a phenylene bridge or direct linkage. Both molecules undergo symmetry-breaking intramolecular charge transfer in the excited state, and the directly linked dyad serves as a visible-light-absorbing analogue of 9,9′-bianthryl.

  18. Fractionalized excitations in the spin-liquid state of a kagome-lattice antiferromagnet.

    Science.gov (United States)

    Han, Tian-Heng; Helton, Joel S; Chu, Shaoyan; Nocera, Daniel G; Rodriguez-Rivera, Jose A; Broholm, Collin; Lee, Young S

    2012-12-20

    The experimental realization of quantum spin liquids is a long-sought goal in physics, as they represent new states of matter. Quantum spin liquids cannot be described by the broken symmetries associated with conventional ground states. In fact, the interacting magnetic moments in these systems do not order, but are highly entangled with one another over long ranges. Spin liquids have a prominent role in theories describing high-transition-temperature superconductors, and the topological properties of these states may have applications in quantum information. A key feature of spin liquids is that they support exotic spin excitations carrying fractional quantum numbers. However, detailed measurements of these 'fractionalized excitations' have been lacking. Here we report neutron scattering measurements on single-crystal samples of the spin-1/2 kagome-lattice antiferromagnet ZnCu(3)(OD)(6)Cl(2) (also called herbertsmithite), which provide striking evidence for this characteristic feature of spin liquids. At low temperatures, we find that the spin excitations form a continuum, in contrast to the conventional spin waves expected in ordered antiferromagnets. The observation of such a continuum is noteworthy because, so far, this signature of fractional spin excitations has been observed only in one-dimensional systems. The results also serve as a hallmark of the quantum spin-liquid state in herbertsmithite.

  19. Polarization of the excited states of twisted ethylene in a non-symmetrical environment

    NARCIS (Netherlands)

    Zijlstra, R.W J; van Duijnen, P.T.; de Vries, Alex

    1996-01-01

    The polarization behavior of the low lying excited states in the vicinity of the perpendicularly twisted (D-2d) ethylene has been investigated in a quantum mechanical CISD approach, in which the quantum system was embedded in a polarized dielectric continuum modeling a non-symmetrical distribution

  20. Excited states dynamics of polydiacetylenes: An ab initio and femtosecond spectroscopic investigation of the change from the acetylenic to the butatrienic structure

    Science.gov (United States)

    Turki, Mohamed; Barisien, Thierry; Bigot, Jean-Yves; Daniel, Chantal

    2000-06-01

    The configuration change from the acetylenic form =(RC-C≡C-CR'=)x (x=1,2,3.5) to the butatrienic form -(RC=C=C=CR'-)x (x=1,2,3), considered as model systems for the two alternative structures of polydiacetylene chains, has been investigated through complete active space self-consistent field and second-order perturbation approach CASSCF/CASPT2 calculations. The character and energetics of the low-lying excited states of both structures are reported. The excited states properties of the oligomers are compared to those of the three-membered ring forms -(C≡C-CH=CH-)3 and -(CH=C=C=CH-)3. A qualitative interpretation of the femtosecond time-resolved molecular dynamics of the polydiacetylene backbone is proposed on the basis of wave packet propagations on associated potential energy curves connecting the electronic ground and excited states of the two structures in the cyclic form.

  1. Photoionization of He in the 3lnl' doubly-excited state energy region: angular distribution of the fluorescence from the residual ion He{sup +}(2p){sup 2}P

    Energy Technology Data Exchange (ETDEWEB)

    Harries, James R [Photon Factory, IMSS, KEK, 1-1 Oho, Tsukuba 305-0081 (Japan); Sullivan, James P [Atomic and Molecular Physics Laboratories, Research School of Physical Sciences and Engineering, Australian National University, Canberra, ACT (Australia); Hammond, Peter [School of Physics, CAMSP, University of Western Australia, Nedlands, Perth (Australia); Azuma, Yoshiro [Photon Factory, IMSS, KEK, 1-1 Oho, Tsukuba 305-0081 (Japan)

    2006-12-14

    We present experimental observations of the photoexcitation of 3lnl' doubly-excited states of helium decaying by autoionization into the (2p){sup 2}P excited ion final-state channel. By determining the angular distribution of the fluorescence from the final ion state, the alignment of the ion and hence the partial 2pks and 2pkd cross-sections are determined and compared to recent theoretical calculations.

  2. Excited-state spectroscopy of singly, doubly and triply-charmed baryons from lattice QCD

    CERN Document Server

    Padmanath, M; Mathur, Nilmani; Peardon, Michael

    2013-01-01

    We present the ground and excited state spectra of singly, doubly and triply-charmed baryons by using dynamical lattice QCD. A large set of baryonic operators that respect the symmetries of the lattice and are obtained after subduction from their continuum analogues are utilized. These operators transform as irreducible representations of SU(3)$_F$ symmetry for flavour, SU(4) symmetry for Dirac spins of quarks and O(3) symmetry for orbital angular momenta. Using novel computational techniques correlation functions of these operators are generated and the variational method is exploited to extract excited states. The lattice spectra that we obtain have baryonic states with well-defined total spins up to 7/2 and the low lying states remarkably resemble the expectations of quantum numbers from SU(6)$\\otimes$O(3) symmetry.

  3. Excited-state spectroscopy of singly, doubly and triply-charmed baryons from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Padmanath, M. [Tata Institute; Edwards, Robert G. [JLAB; Mathur, Nilmani [Tata Institute; Peardon, Michael [Trinity College

    2014-07-01

    We present the ground and excited state spectra of singly, doubly and triply-charmed baryons by using dynamical lattice QCD. A large set of baryonic operators that respect the symmetries of the lattice and are obtained after subduction from their continuum analogues are utilized. These operators transform as irreducible representations of SU(3)F symmetry for flavour, SU(4) symmetry for Dirac spins of quarks and O(3) symmetry for orbital angular momenta. Using novel computational techniques correlation functions of these operators are generated and the variational method is exploited to extract excited states. The lattice spectra that we obtain have baryonic states with well-defined total spins up to 7/2 and the low lying states remarkably resemble the expectations of quantum numbers from SU(6)ⓍO(3) symmetry.

  4. Inelastic p{sup 9}Be scattering and halo-structure of excited states of {sup 9}Be

    Energy Technology Data Exchange (ETDEWEB)

    Ibraeva, E.T., E-mail: ibraeva.elena@gmail.com [Institute of Nuclear Physics RK, 050032, str. Ibragimova 1, Almaty (Kazakhstan); Zhusupov, M.A. [Al-Farabi Kazakh National University, 050040, av. Al-Farabi 71, Almaty (Kazakhstan); Dzhazairov-Kakhramanov, A.V., E-mail: albert-j@yandex.ru [Institute of Nuclear Physics RK, 050032, str. Ibragimova 1, Almaty (Kazakhstan); V.G. Fessenkov Astrophysical Institute “NCSRT” NSA RK, 050020, Observatory 23, Kamenskoe plato, Almaty (Kazakhstan); Krassovitskiy, P.M. [Institute of Nuclear Physics RK, 050032, str. Ibragimova 1, Almaty (Kazakhstan)

    2015-01-15

    The calculation of the differential cross-section of inelastic p{sup 9}Be scattering (to the levels J{sup π}=1/2{sup +}, 3/2{sup +}) was made in the framework of the Glauber diffraction theory. We have used the wave function of {sup 9}Be in the ground and excited states in the three-body 2αn model. Expansion in series by gaussoids of the wave function of {sup 9}Be and presentation of the Glauber's operator Ω in the form, conjugated with three-body wave function make it possible for us to analytically calculate the matrix elements of inelastic scattering, taking into account all of the multiplicities of scattering and rescattering on clusters and nucleons, which are components of {sup 9}Be. The drawn-up profiles of probability densities of excited state functions allow us to form conclusions on their extended neutron distribution. The differential cross-section with the wave function in model 1 (with the αα-Ali–Bodmer potential) is in good agreement with available experimental data at E=180 MeV.

  5. Triplet excited state properties in variable gap π-conjugated donor–acceptor–donor chromophores

    KAUST Repository

    Cekli, Seda

    2016-02-12

    A series of variable band-gap donor–acceptor–donor (DAD) chromophores capped with platinum(II) acetylide units has been synthesized and fully characterized by electrochemical and photophysical methods, with particular emphasis placed on probing triplet excited state properties. A counter-intuitive trend of increasing fluorescence quantum efficiency and lifetime with decreasing excited state energy (optical gap) is observed across the series of DAD chromophores. Careful study of the excited state dynamics, including triplet yields (as inferred from singlet oxygen sensitization), reveals that the underlying origin of the unusual trend in the fluorescence parameters is that the singlet–triplet intersystem crossing rate and yield decrease with decreasing optical gap. It is concluded that the rate of intersystem crossing decreases as the LUMO is increasingly localized on the acceptor unit in the DAD chromophore, and this result is interpreted as arising because the extent of spin–orbit coupling induced by the platinum heavy metal centers decreases as the LUMO is more localized on the acceptor. In addition to the trend in intersystem crossing, the results show that the triplet decay rates follow the Energy Gap Law correlation over a 1.8 eV range of triplet energy and 1000-fold range of triplet decay rates. Finally, femtosecond transient absorption studies for the DAD chromophores reveals a strong absorption in the near-infrared region which is attributed to the singlet excited state. This spectral band appears to be general for DAD chromophores, and may be a signature of the charge transfer (CT) singlet excited state.

  6. Structure of excited states in nuclei near doubly magic {sup 100}SN

    Energy Technology Data Exchange (ETDEWEB)

    Gorska, M.

    1998-11-01

    The three neutron-deficient nuclei {sup 94}Pd, {sup 98}Cd and {sup 104}Sn in the vicinity of {sup 100}Sn were investigated by means of in-beam {gamma}-ray spectroscopy of excited states. The isomeric decays in {sup 94}Pd and {sup 98}Cd were studied for the first time with an exclusive experimental setup for delayed {gamma}-ray detection with complete exit channel identification based on information from neutron and charged-particle filter detectors. The structure of excited states of {sup 94}Pd showed the first indication of increasing proton-neutron interaction towards the N=Z line in this region of nuclei, that in turn might be related to increased proton-neutron pairing correlations predicted in T{sub z}=0 nuclei. The closest neighbours of {sup 100}Sn with two active particles, {sup 98}Cd and {sup 102}Sn, are now known with their lowest excited states. The measured reduced transition probabilities for the decay of the isomeric 8{sup +} and 6{sup +} states in {sup 98}Cd and {sup 102}Sn, respectively, allowed to extract an effective quadrupole charge for neutron and proton in this region of nuclei based on the high configurational purity of the states. While the neutron effective charge appeared to be large and in agreement with expectation, the proton effective charge value is very small (e{sub {pi}}{<=}1). This controversial result, which would indicate that {sup 100}Sn is a very good closed shell nucleus with respect to quadrupole excitation, is not understood. An experimental reason for this result, related to existence of a core excited isomer, observed in the experiment by means of its half life but not {gamma}-rays, which may have escaped observation, can not be definitely excluded and is left as possible explanation. (orig.)

  7. Picosecond spectral relaxation of curcumin excited state in toluene–alcohol mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Saini, R.K.; Das, K., E-mail: kaustuv@rrcat.gov.in

    2013-12-15

    Excited state photophysics of Curcumin in a binary solvent mixture of toluene and five different alcohols (Methanol, Ethanol, 1-Propanol, 1-Butanol and 1-Octanol) are compared with an instrument time resolution of ∼40 ps. As the alcohol mole-fraction is varied from zero to unity, the observed trends in the fluorescence quantum yield and lifetime of the pigment in toluene–alcohol mixtures changes significantly in going from Methanol to 1-Octanol. This is attributed to the different degree of modulation of the non-radiative rates associated with the excited state intermolecular H bonding between the pigment and the alcohol. Fluorescence decays taken at the red edge of the emission spectrum started to show measurable rise times (200–30 ps) the magnitude of which decreased gradually with increasing alcohol mole-fraction. As a consequence the solvation times in the binary mixture were observed to slow down considerably at certain solvent compositions compared to that in neat alcohol. However, in toluene-1-Octanol mixture, the rise times and corresponding solvation times did not show a dependence on the 1-Octanol mole-fraction. The observed results suggest that viscosity, polarity and hydrogen bonding property of the alcohol solvent plays an important role in the excited state processes of the pigment in toluene–alcohol mixture. -- Highlights: • Excited state photophysics of Curcumin in a binary solvent mixture of toluene and five different alcohols were studied. • The observed trends in the fluorescence properties are attributed to intermolecular H bonding between the pigment and the alcohol. • Except 1-Octanol, the average solvation times of the pigment were observed to depend upon alcohol mole-fraction. • Viscosity, polarity and hydrogen bonding play an important role in the excited state processes of the pigment.

  8. Electron impact excitation of the D states of Mg, Ca and Sr atoms ...

    Indian Academy of Sciences (India)

    decay of the atom from D → P and then P → S) is required [3,7–9]. ... for the excitation of helium from its ground 1S state to the 3 1D state at 40 eV. We ..... Further, we use for the projectile electron distorted wave function. FDW i(f) the following relativistic form of partial wave expansion: F± ch,µch (kch, r) = 1. (2π)3/2 ∑ κm.

  9. Neutron correlations in the decay of the first excited state of {sup 11}Li

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.K., E-mail: jsmith@triumf.ca [National Superconducting Cyclotron Laboratory, East Lansing, MI 48824 (United States); Department of Physics, Michigan State University, East Lansing, MI 48824 (United States); Baumann, T.; Bazin, D. [National Superconducting Cyclotron Laboratory, East Lansing, MI 48824 (United States); Brown, J. [Department of Physics, Wabash College, Crawfordsville, IN 47933 (United States); DeYoung, P.A. [Department of Physics, Hope College, Holland, MI 49422 (United States); Frank, N. [Department of Physics and Astronomy, Augustana College, Rock Island, IL 61201 (United States); Jones, M.D. [National Superconducting Cyclotron Laboratory, East Lansing, MI 48824 (United States); Department of Physics, Michigan State University, East Lansing, MI 48824 (United States); Kohley, Z. [National Superconducting Cyclotron Laboratory, East Lansing, MI 48824 (United States); Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Luther, B. [Department of Physics, Concordia College, Moorhead, MN 56562 (United States); Marks, B. [Department of Physics, Hope College, Holland, MI 49422 (United States); Spyrou, A. [National Superconducting Cyclotron Laboratory, East Lansing, MI 48824 (United States); Department of Physics, Michigan State University, East Lansing, MI 48824 (United States); Stephenson, S.L. [Department of Physics, Gettysburg College, Gettysburg, PA 17325 (United States); Thoennessen, M. [National Superconducting Cyclotron Laboratory, East Lansing, MI 48824 (United States); Department of Physics, Michigan State University, East Lansing, MI 48824 (United States); Volya, A. [Department of Physics, Florida State University, Tallahassee, FL 32306 (United States)

    2016-11-15

    The decay of unbound excited {sup 11}Li was measured after being populated by a two-proton removal from a {sup 13}B beam at 71 MeV/nucleon. Decay energy spectra and Jacobi plots were obtained from measurements of the momentum vectors of the {sup 9}Li fragment and neutrons. A resonance at an excitation energy of ∼1.2 MeV was observed. The kinematics of the decay are equally well fit by a simple dineutron-like model or a phase-space model that includes final state interactions. A sequential decay model can be excluded.

  10. Fermionic Basis in Conformal Field Theory and Thermodynamic Bethe Ansatz for Excited States

    Directory of Open Access Journals (Sweden)

    Hermann Boos

    2011-01-01

    Full Text Available We generalize the results of [Comm. Math. Phys. 299 (2010, 825-866] (hidden Grassmann structure IV to the case of excited states of the transfer matrix of the six-vertex model acting in the so-called Matsubara direction. We establish an equivalence between a scaling limit of the partition function of the six-vertex model on a cylinder with quasi-local operators inserted and special boundary conditions, corresponding to particle-hole excitations, on the one hand, and certain three-point correlation functions of conformal field theory (CFT on the other hand. As in hidden Grassmann structure IV, the fermionic basis developed in previous papers and its conformal limit are used for a description of the quasi-local operators. In paper IV we claimed that in the conformal limit the fermionic creation operators generate a basis equivalent to the basis of the descendant states in the conformal field theory modulo integrals of motion suggested by A. Zamolodchikov (1987. Here we argue that, in order to completely determine the transformation between the above fermionic basis and the basis of descendants in the CFT, we need to involve excitations. On the side of the lattice model we use the excited-state TBA approach. We consider in detail the case of the descendant at level 8.

  11. A study of the valence shell electronic states of s-triazine by photoabsorption spectroscopy and ab initio calculations

    DEFF Research Database (Denmark)

    Holland, D.M.P.; Shaw, D.A.; Stener, Mauro

    2016-01-01

    absorption bands due to excitation from the 1e00 or 6e0 orbitals. The interpretation of the experimental spectrum has been guided by transition energies and oscillator strengths, for Rydberg and valence states, calculated with the time-dependent version of density functional theory and with the coupled...... cluster linear response approach. The theoretical studies indicate that Rydberg/Rydberg and Rydberg/valence mixing is important....

  12. Excitation energy and spins of the Yrast superdeformed states in {sup 193}Tl; Energie d`excitation et spins des etats superdeformes Yrast de {sup 193}Tl

    Energy Technology Data Exchange (ETDEWEB)

    Bouneau, S.; Duprat, J.; Azaiez, F. [Experimental Research Division, Inst. de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France)] [and others

    1999-11-01

    Discrete {gamma}-rays of high energy connecting states of the two Yrast superdeformed bands in {sup 193}Tl to the normal deformed states have been identified. Thus, for the first time, in an odd SD nucleus, it has been possible to propose an excitation energy and spins of the two lowest bands. (authors) 3 refs., 2 figs.

  13. Time-resolved study of excited states of N2 near its first ionization threshold

    Science.gov (United States)

    Moise, Angelica; Prince, Kevin C.; Richter, Robert

    2011-03-01

    Two-photon, two-color double-resonance ionization spectroscopy combining synchrotron vacuum ultraviolet radiation with a tunable near-infrared (NIR) laser has been used to investigate gerade symmetry states of the nitrogen molecule. The rotationally resolved spectrum of an autoionizing 1Σg- state has been excited via the intermediate c4 (v = 0) 1Πu Rydberg state. We present the analysis of the band located at Tv = 10 800.7 ± 2 cm-1 with respect to the intermediate state, 126 366 ± 11 cm-1 with respect to the ground state, approximately 700 cm-1 above the first ionization threshold. From the analysis a rotational constant of Bv = 1.700 ± 0.005 cm-1 has been determined for this band. Making use of the pulsed structure of the two radiation beams, lifetimes of several rotational levels of the intermediate state have been measured. We also report rotationally-averaged fluorescence lifetimes (300 K) of several excited electronic states accessible from the ground state by absorption of one photon in the range of 13.85-14.9 eV. The averaged lifetimes of the c4 (0) and c5 (0) states are 5.6 and 4.4 ns, respectively, while the b' (12), c'4 (4, 5, 6), and c'5 (0) states all have lifetimes in the range of hundreds of picoseconds.

  14. Role of the electronically excited-state hydrogen bonding and water clusters in the luminescent metal-organic framework.

    Science.gov (United States)

    Sui, Xiao; Ji, Min; Lan, Xin; Mi, Weihong; Hao, Ce; Qiu, Jieshan

    2013-05-20

    The electronically excited state and luminescence property of metal-organic framework Zn(3-tzba)(2,2'-bipy)(H2O)·nH2O have been investigated using the density functional theory (DFT) and time-dependent DFT (TDDFT). The calculated geometry and infrared spectra in the ground state are consistent with the experimental results. The frontier molecular orbitals and electronic configuration indicated that the origin of luminescence is attributed to a ligand-to-ligand charge transfer (LLCT). We theoretically demonstrated that the hydrogen bond H47···O5═C is weakened in the excited state S1; the weakening of the excited-state hydrogen bonding should be beneficial to the luminescence. To explore the effect of the water clusters on the luminescence, we studied four complexes Zn(3-tzba)(2,2'-bipy)(H2O)·3H2O, Zn(3-tzba)(2,2'-bipy)(H2O)·2H2O, Zn(3-tzba)(2,2'-bipy)(H2O)·H2O, and Zn(3-tzba)(2,2'-bipy)(H2O). The results reveal that the presence of water should play an important role in the emission characteristics of the MOF. Also, the UV-vis absorption and emission spectra of Zn(3-tzba)(2,2'-bipy)(H2O)·3H2O are in good agreement with the experimental results.

  15. Quantum-state-resolved reactivity of overtone excited CH4 on Ni(111): Comparing experiment and theory.

    Science.gov (United States)

    Hundt, P Morten; van Reijzen, Maarten E; Beck, Rainer D; Guo, Han; Jackson, Bret

    2017-02-07

    Quantum state resolved reactivity measurements probe the role of vibrational symmetry on the vibrational activation of the dissociative chemisorption of CH4 on Ni(111). IR-IR double resonance excitation in a molecular beam was used to prepare CH4 in three different vibrational symmetry components, A1, E, and F2, of the 2ν3 antisymmetric stretch overtone vibration as well as in the ν1+ν3 symmetric plus antisymmetric C-H stretch combination band of F2 symmetry. The quantum state specific dissociation probability S0 (sticking coefficient) was measured for each of the four vibrational states by detecting chemisorbed carbon on Ni(111) as the product of CH4 dissociation by Auger electron spectroscopy. We observe strong mode specificity, where S0 for the most reactive state ν1+ν3 is an order of magnitude higher than for the least reactive, more energetic 2ν3-E state. Our first principles quantum scattering calculations show that as molecules in the ν1 state approach the surface, the vibrational amplitude becomes localized on the reacting C-H bond, making them very reactive. This behavior results from the weakening of the reacting C-H bond as the molecule approaches the surface, decoupling its motion from the three non-reacting C-H stretches. Similarly, we find that overtone normal mode states with more ν1 character are more reactive: S0(2ν1) > S0(ν1 + ν3) > S0(2ν3). The 2ν3 eigenstates excited in the experiment can be written as linear combinations of these normal mode states. The highly reactive 2ν1 and ν1 + ν3 normal modes, being of A1 and F2 symmetry, can contribute to the 2ν3-A1 and 2ν3-F2 eigenstates, respectively, boosting their reactivity over the E component, which contains no ν1 character due to symmetry.

  16. Base sequence and higher-order structure induce the complex excited-state dynamics in DNA.

    Science.gov (United States)

    Schwalb, Nina K; Temps, Friedrich

    2008-10-10

    The high photostability of DNA is commonly attributed to efficient radiationless electronic relaxation processes. We used femtosecond time-resolved fluorescence spectroscopy to reveal that the ensuing dynamics are strongly dependent on base sequence and are also affected by higher-order structure. Excited electronic state lifetimes in dG-doped d(A)20 single-stranded DNA and dG.dC-doped d(A)20.d(T)20 double-stranded DNA decrease sharply with the substitution of only a few bases. In duplexes containing d(AGA).d(TCT) or d(AG).d(TC) repeats, deactivation of the fluorescing states occurs on the subpicosecond time scale, but the excited-state lifetimes increase again in extended d(G) runs. The results point at more complex and molecule-specific photodynamics in native DNA than may be evident in simpler model systems.

  17. Construction of Vibronic Diabatic Hamiltonian for Excited-State Electron and Energy Transfer Processes.

    Science.gov (United States)

    Xie, Yu; Jiang, Shengshi; Zheng, Jie; Lan, Zhenggang

    2017-12-21

    Photoinduced excited-state electron and energy transfer processes are crucial in biological photoharvesting systems and organic photovoltaic devices. We discuss the construction of a diabatic vibronic Hamiltonian for the proper treatment of these processes involving the projection approach acting on both electronic wave functions and vibrational modes. In the electronic part, the wave function projection approach is used to construct the diabatic Hamiltonian in which both local excited states and charge-transfer states are included on the same footing. For the vibrational degrees of freedom, the vibronic couplings in the diabatic Hamiltonian are obtained in the basis of the pseudonormal modes localized on each monomer site by applying delocalized-to-localized mode projection. This systematic approach allows us to construct the vibronic diabatic Hamiltonian in molecular aggregates.

  18. Measurement of the excited-state transverse hyperfine coupling in NV centers via dynamic nuclear polarization

    Science.gov (United States)

    Poggiali, F.; Cappellaro, P.; Fabbri, N.

    2017-05-01

    Precise knowledge of a quantum system's Hamiltonian is a critical pre-requisite for its use in many quantum information technologies. Here, we report a method for the precise characterization of the nonsecular part of the excited-state Hamiltonian of an electronic-nuclear spin system in diamond. The method relies on the investigation of the dynamic nuclear polarization mediated by the electronic spin, which is currently exploited as a primary tool for initializing nuclear qubits and performing enhanced nuclear magnetic resonance. By measuring the temporal evolution of the population of the ground-state hyperfine levels of a nitrogen-vacancy center, we obtain the first direct estimation of the excited-state transverse hyperfine coupling between its electronic and nitrogen nuclear spin. Our method could also be applied to other electron-nuclear spin systems, such as those related to defects in silicon carbide.

  19. Dynamics of charge-transfer excited states relevant to photochemical energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Lim, E.C.

    1993-01-01

    A systematic study of intramolecular photoassociation and photoinduced charge transfer (CT) was initiated in bichromophoric systems of M-X-M, where two identical aromatic hydrocarbons M are joined by X=CH[sub 2], O, NH, etc. Dinaphthylamines, dinaphthylethers, and dinaphthylmethanes in nonpolar solvents form triplet excimers, following inter system crossing of singlets to the triplet manifold; in polar solvents, the molecule forms an intramolecular CT state. The interchromophore interaction study was extended to N-phenyl-2-naphthylamine. The lowest excited singlet states of the dinaphthylamines were studied by semiempirical quantum chemical methods. Exciplex formation was studied in excited states of jet-cooled van der Waals complexes, such as fluorene/substituted benzenes and 1-cyanonaphthalene-aliphatic amines.

  20. Calculating constants of the rates of the reactions of excitation, ionization, and atomic exchange: A model of a shock oscillator with a change of the Hamiltonian of the system

    Science.gov (United States)

    Tsyganov, D. L.

    2017-11-01

    A new model for calculating the rates of reactions of excitation, ionization, and atomic exchange is proposed. Diatomic molecule AB is an unstructured particle M upon the exchange of elastic-vibrational (VT) energy, i.e., a model of a shock forceful oscillator with a change in Hamiltonian (SFOH). The SFOH model is based on the quantum theory of strong perturbations. The SFOH model allows generalization in simulating the rates of the reactions of excitation, ionization, and atomic exchange in the vibrational-vibrational (VV) energy exchange of diatomic molecules, and the exchange of VV- and VT-energy of polyatomic molecules. The rate constants of the excitation of metastables A 3Σ u +, B 3Π g , W 3Δ u , B'3Σ u -, a'3Σ u -, and the ionization of a nitrogen molecules from ground state X2Σ g + upon a collision with a heavy structureless particle (a nitrogen molecule), are found as examples.

  1. Switching of the triplet excited state of rhodamine/naphthaleneimide dyads: an experimental and theoretical study.

    Science.gov (United States)

    Cui, Xiaoneng; Zhao, Jianzhang; Lou, Zhangrong; Li, Shujing; Wu, Huijian; Han, Ke-Li

    2015-01-02

    Rhodamine-bromonaphthaleneimide (RB-NI) and rhodamine-bromonaphthalenediimide (RB-NDI) dyads were prepared for switching of the triplet excited states. Bromo-NI or bromo-NDI parts in the dyads are the spin converters, i.e., the triplet state producing modules, whereas the RB unit is the acid-activatable electron donor/energy acceptor. NI and NDI absorb at 359 and 541 nm, and the T1 state energy levels are 2.25 and 1.64 eV, respectively. RB undertakes the reversible spirolactam (RB-c) ↔ opened amide (RB-o) transformation. RB-c shows no visible light absorption, and the triplet-state energy level is ET1 = 3.36 eV. Conversely RB-o shows strong absorption at 557 nm, and ET1 is 1.73 eV. Thus, the acid-activated fluorescence-resonance-energy-transfer (FRET) competes with the ISC of NI or NDI. No triplet state was observed for the dyads with nanosecond time-resolved transient absorption spectroscopy. Upon addition of acid, strong fluorescence and long-living triplet excited states were observed. Thus, the producing of triplet state is acid-activatable. The triplet state of RB-NI is localized on RB-o part, whereas in RB-NDI the triplet state is delocalized on both the NDI and RB-o units. The ISC of spin converter was not outcompeted by RET. These studies are useful for switching of triplet excited state.

  2. Radius of {sup 12}C in the excited 2{sub 2} {sup +} Hoyle state

    Energy Technology Data Exchange (ETDEWEB)

    Ogloblin, A.A.; Danilov, A.N.; Demyanova, A.S. [RRC Kurchatov Institute, Moscow (Russian Federation); Belyaeva, T.L. [Universidad Autonoma del Estado de Mexico, C.P. 50000, Toluca (Mexico); Goncharov, S.A. [Lomonosov Moscow State University, Moscow (Russian Federation)

    2013-04-15

    The differential cross sections of the inelastic {alpha} + {sup 12}C scattering leading to the excitation of the short-lived 2{sub 2} {sup +} (E{sub x} = 9.84 or 9.6 MeV) state in {sup 12}C have been analysed within a modified diffraction model. We determined the diffraction radii of {sup 12}C in this excited state at E{sub {alpha}} = 386 and 240 MeV and compared them with the diffraction radius for the 0{sub 2} {sup +} (E{sub x} = 7.65 MeV) Hoyle state. We found that the rms radii for the 2{sub 2} {sup +} state is left angle R(2{sub 2} {sup +}) right angle = 3.07 {+-} 0.13fm, which agrees well with the rms radius of the 0{sub 2} {sup +}, 7.65 MeV Hoyle state and is a factor of 1.3 larger than the rms radius for the ground state of {sup 12}C. The similarity between the rms radii of the 0{sub 2} {sup +} and 2{sub 2} {sup +} states provides a strong argument in favor of a hypothesis that the 2{sub 2} {sup +} state is the first member of a rotational band based on the 0{sub 2} {sup +} Hoyle state. (orig.)

  3. Characterising excited states in and around the semi-magic nucleus $^{68}$ Ni using Coulomb excitation and one-neutron transfer

    CERN Multimedia

    It is proposed to investigate the structure of excited states in $^{68, 70}$Ni(Z =28, N=40, 42) via the measurement of electromagnetic matrix elements in a Coulomb excitation experiment in order to study the N = 40 harmonic-oscillator shell and the Z = 28 proton shell closures. The measured B(E2) values connecting low-lying 0$^{+}$ and 2$^{+}$ can be compared to shell-model predictions. It is also proposed to perform the one-neutron transfer reaction ${d}$($^{68}$Ni,$^{69}$Ni)${p}$, with the aim of populating excited states in $^{69}$Ni. Comparisons with the states populated in the recently performed ${d}$($^{66}$Ni,$^{67}$Ni)${p}$ reaction will be useful in determining the role of the neutron $d_{5/2}$ orbital in the semi-magic properties of $^{68}$Ni.

  4. Quantum Monte Carlo Characterization of Excited States and Energy-Level Alignment at Oligomer/Quantum-Dot Interfaces

    Science.gov (United States)

    Kanai, Yosuke; Dubois, Jonathan L.; Lee, Donghwa

    2012-02-01

    Charge separation of excitons in materials is one of the most important physical processes that need to take place in excitonic solar cells and in photocatalytic devices. Heterogeneous interfaces with the so-called type-II character are often employed for inducing the exciton dissociation through interfacial charge transfer. As the simplest criterion for designing such an interface, the energy alignment of the quasi-particle states is often discussed in literature, together with the exciton binding energy of electron-donating materials. Therefore, accurate characterization of the interfacial energy-level alignment and the exciton binding energy using first principles calculations is important for making systematic progresses in designing better materials for solar energy conversion. However, Density Functional Theory calculations need to be employed with caution in this context. First principles calculations such as Many-Body Perturbation Theory and Quantum Monte Carlo are promising alternatives for accurate characterization, but much more work is needed in this area to assess how well these methods perform in practice. In this talk, we will discuss our preliminary results using diffusion Quantum Monte Carlo on calculating the excited states and energy-level alignment of popular Oligomer/Quantum-Dot interfaces.

  5. Influence of base stacking geometry on the nature of excited states in G-quadruplexes: a time-dependent DFT study.

    Science.gov (United States)

    Lech, Christopher J; Phan, Anh Tuân; Michel-Beyerle, Maria-Elisabeth; Voityuk, Alexander A

    2015-03-05

    G-quadruplexes are four-stranded structures of nucleic acids that are formed from the association of guanine nucleobases into cyclical arrangements known as tetrads. G-quadruplexes are involved in a host of biological processes and are of interest in nanomaterial applications. However, not much is known about their electronic properties. In this paper, we analyze electronic excited states of G-quadruplexes using a combination of time-dependent DFT calculations and molecular dynamics simulations. We systematically consider experimentally observed arrangements of stacked guanine tetrads. The effects of structural features on exciton delocalization and photoinduced charge separation are explored using a quantitative analysis of the transition electron density. It is shown that collective coherent excitations shared between two guanine nucleobases dominate in the absorption spectrum of stacked G-tetrads. These excitations may also include a significant contribution of charge transfer states. Large variation in exciton localization is also observed between different structures with a general propensity toward localization between two bases. We reveal large differences in how charge separation occurs within different nucleobase arrangements, with some geometries favoring separation within a single tetrad and others favoring separation between tetrads. We also investigate the effects of the coordinating K(+) ion located in the central cavity of G-quadruplexes on the relative excited state properties of such systems. Our results demonstrate how the nature of excited states in G-quadruplexes depends on the nucleobase stacking geometry resulting from the mutual arrangement of guanine tetrads.

  6. Resonance Raman Intensities Demonstrate that C5 Substituents Affect the Initial Excited-State Structural Dynamics of Uracil More than C6 Substituents.

    Science.gov (United States)

    Teimoory, Faranak; Loppnow, Glen R

    2016-05-04

    Resonance Raman derived initial excited-state structural dynamics provide insight into the photochemical mechanisms of pyrimidine nucleobases, in which the photochemistry appears to be dictated by the C5 and C6 substituents. The absorption and resonance Raman spectra and excitation profiles of 5,6-dideuterouracil were measured to further test this photochemical dependence on the C5 and C6 substituents. The resulting set of excited-state reorganization energies of the observed internal coordinates were calculated and compared to those of other 5- and 6-substituted uracils. The results show that the initial excited-state dynamics along the C5C6 stretch responds to changes in mass at C5 and C6 in the same manner but that the in-plane bends at C5 and C6 are more sensitive to substituents at the C5 position than at the C6 position. In addition, the presence of two deuterium substituents at C5 and C6 decreases the initial excited-state structural dynamics along these in-plane bends, in contrast to what is observed in the presence of two CH3 groups on C5 and C6. The results are discussed in the context of DNA nucleobase photochemistry. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Multi-photon ionization and fragmentation of uracil: Neutral excited-state ring opening and hydration effects

    Energy Technology Data Exchange (ETDEWEB)

    Barc, B.; Ryszka, M.; Spurrell, J.; Dampc, M.; Limão-Vieira, P.; Parajuli, R.; Mason, N. J.; Eden, S. [Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom)

    2013-12-28

    Multi-photon ionization (MPI) of the RNA base uracil has been studied in the wavelength range 220–270 nm, coinciding with excitation to the S{sub 2}(ππ*) state. A fragment ion at m/z = 84 was produced by 2-photon absorption at wavelengths ≤232 nm and assigned to C{sub 3}H{sub 4}N{sub 2}O{sup +} following CO abstraction. This ion has not been observed in alternative dissociative ionization processes (notably electron impact) and its threshold is close to recent calculations of the minimum activation energy for a ring opening conical intersection to a σ(n-π)π* closed shell state. Moreover, the predicted ring opening transition leaves a CO group at one end of the isomer, apparently vulnerable to abstraction. An MPI mass spectrum of uracil-water clusters is presented for the first time and compared with an equivalent dry measurement. Hydration enhances certain fragment ion pathways (particularly C{sub 3}H{sub 3}NO{sup +}) but represses C{sub 3}H{sub 4}N{sub 2}O{sup +} production. This indicates that hydrogen bonding to water stabilizes uracil with respect to neutral excited-state ring opening.

  8. Electron correlation in the 3 (1)Sigma(g)+ and 2 (1)Sigma(u)+ excited state lithium molecule.

    Science.gov (United States)

    Wang, Jian; Zhang, Lei; Wang, Yu; Ugalde, Jesus M

    2006-12-21

    Electron correlation effects in the two excited states of Li(2), 3 (1)Sigma(g) (+) and 2 (1)Sigma(u) (+), one with a shelf shape and another with double minima in their potential energy curves, have been studied with the aid of the calculated electron pair density distribution as a function of the internuclear distance and the analysis of the natural orbitals. Both states show increased electron pair densities at intermediate interelectronic distances around the second minimum of their potential energy curves. Since the bond breaks homolitically this observation runs contrary to regular expectations. Analysis of the electron pair density distributions and the natural orbitals provides mechanisms to account for this abnormal behavior.

  9. Ground State and Excited State Tuning in Ferric Dipyrrin Complexes Promoted by Ancillary Ligand Exchange

    Energy Technology Data Exchange (ETDEWEB)

    Kleinlein, Claudia; Zheng, Shao-Liang; Betley, Theodore A.

    2017-04-24

    Three ferric dipyrromethene complexes featuring different ancillary ligands were synthesized by one electron oxidation of ferrous precursors. Four-coordinate iron complexes of the type (ArL)FeX2 [ArL = 1,9-(2,4,6-Ph3C6H2)2-5-mesityldipyrromethene] with X = Cl or tBuO were prepared and found to be high-spin (S = 5/2), as determined by superconducting quantum interference device magnetometry, electron paramagnetic resonance, and 57Fe Mössbauer spectroscopy. The ancillary ligand substitution was found to affect both ground state and excited properties of the ferric complexes examined. While each ferric complex displays reversible reduction and oxidation events, each alkoxide for chloride substitution results in a nearly 600 mV cathodic shift of the FeIII/II couple. The oxidation event remains largely unaffected by the ancillary ligand substitution and is likely dipyrrin-centered. While the alkoxide substituted ferric species largely retain the color of their ferrous precursors, characteristic of dipyrrin-based ligand-to-ligand charge transfer (LLCT), the dichloride ferric complex loses the prominent dipyrrin chromophore, taking on a deep green color. Time-dependent density functional theory analyses indicate the weaker-field chloride ligands allow substantial configuration mixing of ligand-to-metal charge transfer into the LLCT bands, giving rise to the color changes observed. Furthermore, the higher degree of covalency between the alkoxide ferric centers is manifest in the observed reactivity. Delocalization of spin density onto the tert-butoxide ligand in (ArL)FeCl(OtBu) is evidenced by hydrogen atom abstraction to yield (ArL)FeCl and HOtBu in the presence of substrates containing weak C–H bonds, whereas the chloride (ArL)FeCl2 analogue does not react under these conditions.

  10. Probing ground and low-lying excited states for HIO{sub 2} isomers

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Gabriel L. C. de [Departamento de Química, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso 78060-900 (Brazil); Instituto de Ciências Exatas e Tecnologia, Universidade Federal do Amazonas, Itacoatiara, Amazonas 69100-000 (Brazil); Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2 (Canada); Brown, Alex, E-mail: alex.brown@ualberta.ca [Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2 (Canada)

    2014-12-21

    We present a computational study on HIO{sub 2} molecules. Ground state properties such as equilibrium structures, relative energetics, vibrational frequencies, and infrared intensities were obtained for all the isomers at the coupled-cluster with single and double excitations as well as perturbative inclusion of triples (CCSD(T)) level of theory with the aug-cc-pVTZ-PP basis set and ECP-28-PP effective core potential for iodine and the aug-cc-pVTZ basis set for hydrogen and oxygen atoms. The HOIO structure is confirmed as the lowest energy isomer. The relative energies are shown to be HOIO < HOOI < HI(O)O. The HO(O)I isomer is only stable at the density functional theory (DFT) level of theory. The transition states determined show interconversion of the isomers is possible. In order to facilitate future experimental identification, vibrational frequencies are also determined for all corresponding deuterated species. Vertical excitation energies for the three lowest-lying singlet and triplet excited states were determined using the configuration interaction singles, time-dependent density functional theory (TD-DFT)/B3LYP, TD-DFT/G96PW91, and equation of motion-CCSD approaches with the LANL2DZ basis set plus effective core potential for iodine and the aug-cc-pVTZ basis set for hydrogen and oxygen atoms. It is shown that HOIO and HOOI isomers have excited states accessible at solar wavelengths (<4.0 eV) but these states have very small oscillator strengths (<2 × 10{sup −3})

  11. Pulsed excitation of Rydberg-atom-pair states in an ultracold Cs gas

    CERN Document Server

    Saßmannshausen, Heiner; Deiglmayr, Johannes

    2015-01-01

    Pulsed laser excitation of a dense ultracold Cs vapor has been used to study the pairwise interactions between Cs atoms excited to $n$p$_{3/2}$ Rydberg states of principal quantum numbers in the range $n=22-36$. Molecular resonances were observed that correspond to excitation of Rydberg-atom-pair states correlated not only to the $n$p$_{3/2}+n$p$_{3/2}$ dissociation asymptotes, but also to $n$s$_{1/2}+(n+1)$s$_{1/2}$, $n$s$_{1/2}+n'$f$_{j}$, and $(n-4)$f$_{j}+(n-3)$f$_{j}$ $(j=5/2,7/2)$ dissociation asymptotes. These pair resonances are interpreted as arising from dipole-dipole, and higher long-range-interaction terms between the Rydberg atoms on the basis of i) their spectral positions, ii) their response to static and pulsed electric fields, and iii) millimeter-wave spectra between pair states correlated to different pair-dissociation asymptotes. The Rydberg-atom--pair states were found to spontaneously decay by Penning ionization and the dynamics of the ionization process were investigated during the first...

  12. Reactions of excited states of phenoxazin-3-one dyes with amino acids.

    Science.gov (United States)

    Villegas, M L; Bertolotti, S G; Previtali, C M; Encinas, M V

    2005-01-01

    The interaction with amino acids of the excited states of the N-oxide resazurin and its deoxygenation product resorufin, has been studied in aqueous solution at pH 7.5. Steady-state and time-resolved studies show that the fluorescence is quenched by amino acids. Complexation of the dyes in the ground state with aromatic amino acids was also observed. The singlet quenching is attributed to electron transfer from the amino acids to the excited dye based on the dependence of the bimolecular rate constants with the ionization potential of quenchers. Flash photolysis experiments allowed determination of the quenching rate constants for the triplet deactivation of dyes by several amino acids, as well as the characterization of the transients formed in the process. These data show that the triplet is also deactivated by an electron transfer process. However, the deactivation of the N-oxide dye by tryptophan can be described by a hydrogen atom transfer. The protolytic dissociation constants of the dye radical ions are reported. The irradiation of rezasurin in the presence of amino acids leads to deoxygenation of the dye to give resorufin. This process involves the triplet excited state of resazurin and is efficient only in the presence of amino acids containing the -SH group.

  13. Proton and hydride affinities in excited states: magnitude reversals in proton and hydride affinities between the lowest singlet and triplet states of annulenyl and benzannulenyl anions and cations

    DEFF Research Database (Denmark)

    Rosenberg, Martin; Ottosson, Henrik; Kilså, Kristine

    2010-01-01

    Aromaticity has importance for proton and hydride affinities in the singlet ground state (S(0)) of annulenyl anions and cations so that, e.g., cyclopentadiene is an acidic hydrocarbon. For the lowest pipi* excited triplet state (T(1)), Baird's rule concludes that annulenes with 4n pi......-electrons are aromatic and those with 4n+2 pi-electrons are antiaromatic, opposite to Huckel's rule for aromaticity in S(0). Our hypothesis is now that the relative magnitudes of proton and hydride affinities of annulenyl anions and cations reverts systematically as one goes from S(0) to T(1) as a result of the opposite...... electron counting rules for aromaticity in the two states. Using quantum chemical calculations at the G3(MP2)//(U)B3LYP/6-311+G(d,p) level we have examined the validity of this hypothesis for eight proton and eight hydride addition reactions of anions and cations, respectively, of annulenyl...

  14. Selective excitation of a vibrational level within the electronic ground state of a polyatomic molecule with ultra pulses

    CSIR Research Space (South Africa)

    de Clercq, L

    2010-09-01

    Full Text Available Coherent control of the upper vibrational level populations in the electronic ground state of a polyatomic molecule was simulated. Results indicate that selective excitation of a specific upper state level is possible...

  15. Selective excitation of a vibrational level within the electronic ground state of a polyatomic molecule with ultra short pulses

    CSIR Research Space (South Africa)

    De Clercq, L

    2010-09-01

    Full Text Available Coherent control of the upper vibrational level populations in the electronic ground state of a polyatomic molecule was simulated. Results indicate that selective excitation of a specific upper state level is possible....

  16. Electronically excited states of vitamin B12 and methylcobalamin: theoretical analysis of absorption, CD, and MCD data.

    Science.gov (United States)

    Solheim, Harald; Kornobis, Karina; Ruud, Kenneth; Kozlowski, Pawel M

    2011-02-03

    Linear and quadratic response time-dependent density functional theory (TD-DFT) has been applied to investigate absorption (Abs), circular dichroism (CD), and magnetic CD (MCD) spectra of cyanocobalamin (CNCbl) and methylcobalamin (MeCbl). Although electronically excited states of both cobalamins have been probed by applying different experimental techniques, their exact nature remains poorly understood from an electronic structure point of view. Recent theoretical studies have revealed a lot of relevant information about their properties but also left some unresolved issues related to the nature of individual transitions. In this contribution, not only Abs but also CD and MCD spectra of both cobalamins were computed for direct comparison with experiment. The results were evaluated with respect to the choice of exchange-correlation functional, basis set, and the environment (gas phase or solvent) used in the calculation. Taking into account the complexity of the CNCbl and MeCbl systems, reliable agreement between theory and experiment was achieved based on calculations employing the BP86 functional, particularly for the low-energy α/β bands. This spectral range has been traditionally interpreted as a vibrational progression associated with a single electronic excitation, but according to the present analysis for both cobalamins, these bands are best interpreted as consisting of multiple electronic transitions.

  17. Excited State Chemistry in the Free Stream of the NASA IHF Arc Jet Facility Observed by Emission Spectroscopy

    Science.gov (United States)

    Winter, Michael W.; Prabhu, Dinesh K.

    2011-01-01

    Spectroscopic measurements of non-equilibrium emission were made in the free stream of the 60 megawatts Interaction Heating Facility at NASA Ames Research Center. In the visible near infrared wavelength region, the most prominent emission was from molecular N2, and in the ultra violet region, the spectra were dominated by emission from molecular NO. The only atomic lines observed were those of copper (an erosion product of the electrodes). The bands of the 1st Positive system of N2 (if B is true then A is true) differed significantly from spectra computed spectra assuming only thermal excitation, suggesting overpopulation of the high vibrational states of the B state of N2. Populations of these high vibrational levels (peaking at v (sub upper) equals 13) of the N2 B state were determined by scaling simulated spectra; calculations were performed for each upper vibrational state separately. The experimental-theoretical procedure was repeated for several radial positions away from the nozzle axis to obtain spatial distributions of the upper state populations; rotational symmetry of the flow was assumed in simulations. The overpopulation of the high vibrational levels has been interpreted as the effect of inverse pre-dissociation of neutral atoms in the N2 A state, which populates the N2 B state through a level crossing process at v (sub upper) is greater than 10.

  18. Relaxation of vibrationally excited states in solid "nitrate-nitrite" binary systems

    Science.gov (United States)

    Aliev, A. R.; Akhmedov, I. R.; Kakagasanov, M. G.; Aliev, Z. A.; Gafurov, M. M.; Rabadanov, K. Sh.; Amirov, A. M.

    2017-10-01

    The processes of molecular relaxation in the solid NaNO3-NaNO2 and KNO3-KNO2 "nitrate-nitrite" binary systems have been investigated by Raman spectroscopy. The relaxation time of the vibration ν1(A) of an NO- 3 anion in the binary system is found to be shorter than that in individual nitrate. The increase in the relaxation rate is explained by the existence of an additional mechanism of relaxation of vibrationally excited states of the nitrate ion in the system. This mechanism is related to the excitation of vibration of another anion (NO- 2) and generation of a lattice phonon. It has been established that this relaxation mechanism is implemented provided that the difference between the frequencies of the aforementioned vibrations correspond to the range of sufficiently high density of states in the phonon spectrum.

  19. Importance of local exact exchange potential in hybrid functionals for accurate excited states

    CERN Document Server

    Kim, Jaewook; Hwang, Sang-Yeon; Ryu, Seongok; Choi, Sunghwan; Kim, Woo Youn

    2016-01-01

    Density functional theory has been an essential analysis tool for both theoretical and experimental chemists since accurate hybrid functionals were developed. Here we propose a local hybrid method derived from the optimized effective potential (OEP) method and compare its distinct features with conventional nonlocal ones from the Hartree-Fock (HF) exchange operator. Both are formally exact for ground states and thus show similar accuracy for atomization energies and reaction barrier heights. For excited states, the local version yields virtual orbitals with N-electron character, while those of the nonlocal version have mixed characters between N- and (N+1)-electron orbitals. As a result, the orbital energy gaps from the former well approximate excitation energies with a small mean absolute error (MAE = 0.40 eV) for the Caricato benchmark set. The correction from time-dependent density functional theory with a simple local density approximation kernel further improves its accuracy by incorporating multi-config...

  20. Heat capacity for systems with excited-state quantum phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Cejnar, Pavel; Stránský, Pavel, E-mail: stransky@ipnp.troja.mff.cuni.cz

    2017-03-18

    Heat capacities of model systems with finite numbers of effective degrees of freedom are evaluated using canonical and microcanonical thermodynamics. Discrepancies between both approaches, which are observed even in the infinite-size limit, are particularly large in systems that exhibit an excited-state quantum phase transition. The corresponding irregularity of the spectrum generates a singularity in the microcanonical heat capacity and affects smoothly the canonical heat capacity. - Highlights: • Thermodynamics of systems with excited-state quantum phase transitions • ESQPT-generated singularities of the microcanonical heat capacity • Non-monotonous dependences of the canonical heat capacity • Discord between canonical and microcanonical pictures in the infinite-size limit.

  1. Ground- and excited-state scattering potentials for the stopping of protons in an electron gas

    Science.gov (United States)

    Matias, F.; Fadanelli, R. C.; Grande, P. L.; Koval, N. E.; Díez Muiño, R.; Borisov, A. G.; Arista, N. R.; Schiwietz, G.

    2017-09-01

    The self-consistent electron-ion potential V(r) is calculated for H+ ions in an electron gas system as a function of the projectile energy to model the electronic stopping power for conduction-band electrons. The results show different self-consistent potentials at low projectile-energies, related to different degrees of excitation of the electron cloud surrounding the intruder ion. This behavior can explain the abrupt change of velocity dependent screening-length of the potential found by the use of the extended Friedel sum rule and the possible breakdown of the standard free electron gas model for the electronic stopping at low projectile energies. A dynamical interpolation of V(r) is proposed and used to calculate the stopping power for H+ interacting with the valence electrons of Al. The results are in good agreement with the TDDFT benchmark calculations as well as with experimental data.

  2. Coherent wave packet dynamics in photo-excited Nal

    OpenAIRE

    Leitner, Torsten; Buchner, Franziska; Rouzee, Arnaud; Rading, Linea; Johnsson, Per; Odelius, Michael; Karlsson, Hans O; Vrakking, Marc; Wernet, Philippe

    2013-01-01

    Time and energy resolved photoelectron distributions of photo-excited Nal are presented. A splitting in the photo-excited state suggested by calculations of the intramolecular potential energy surfaces could be confirmed experimentally for the first time.

  3. Two-neutrino double β decay of 96Zr to excited 2+ state of 96Mo

    Indian Academy of Sciences (India)

    pp. 517–522. Two-neutrino double β decay of 96Zr to excited. 2+ state of 96Mo. J SINGH1, R CHANDRA1, P K RAINA2 and P K RATH1. 1Department of Physics, University of Lucknow, Lucknow 226 007, India. 2Department of Physics, Indian Institute of Technology, Kharagpur 721 302, India. E-mail: pkrath lu@yahoo.co.in.

  4. Formation of H-atom in 2s excited state of proton-lithium and proton ...

    Indian Academy of Sciences (India)

    Abstract. The differential and total cross-sections have been investigated in the forma- tion of H-atom in the 2s excited state of proton-lithium and proton-sodium scattering by using the Coulomb projected Born (CPB) approximation in the energy range from 50 to. 10,000 keV. The results thus obtained are compared with the ...

  5. Determination of the Excited State Density Distribution within a Nonequilibrium, Freely Expanding Argon Arcjet Plume

    Science.gov (United States)

    1977-03-01

    transport problem for the radially dependent number densi- ties is required. The details of this inversion technique, based upon an " onion peel... chat of the arcJeC. The reference signal from the chopper and the preampllfled photomultlpller cube output signal were input to a PAR ® synchronous...condition for equilibrium with the free electron density and thus shows Chat the four lowest excited states are demonstrably nonequllibrium and lie

  6. The Microwave Spectroscopy of HCOO^{13}CH_3 in the Second Torsional Excited State

    Science.gov (United States)

    Kobayashi, Kaori; Kuwahara, Takuro; Urata, Yuki; Ohashi, Nobukimi; Fujitake, Masaharu

    2017-06-01

    Methyl formate (HCOOCH_3) is an abundant interstellar molecule, found almost everywhere in the star-forming region. The interstellar abundance of the ^{13}C is about 1/50 of ^{12}C. The ^{13}C substituted methyl formate in the ground and first excited states were already found toward massive star-forming regions including Orion KL. With the aid of the state-of-the-art telescope like ALMA, the pure rotational transitions in the second torsional excited may be identified in the near future and laboratory data are necessary. We recorded the spectra of HCOOCH_3 below 340 GHz by using conventional source-modulation microwave spectrometer. The assignment of the pure rotational spectra in the second torsional excited state and the analysis by using pseudo-PAM Hamiltonian, which was effective to analyze the normal species, will be reported. C. Favre, M. Carvajal, D. Field, J. K. Jørgensen, S. E. Bisschop, N. Brouillet, D. Despois, A. Baudry, I. Kleiner, E. A. Bergin, N. R. Crockett, J. L. Neill, L. Marguès, T. R. Huet, and J. Demaison, Astrophys. J. Suppl. Ser. 215, 25 (2014).

  7. Photoluminescence and excited states dynamics in PbWO4:Pr3+ crystals

    CERN Document Server

    Auffray, E; Shalapska, T; Zazubovich, S

    2014-01-01

    Luminescence and photo-thermally stimulated defects creation processes are studied for a Pr3+-doped PbWO4 crystal at 4.2-400 K under excitation in the band-to-band, exciton, and charge-transfer transitions regions, as well as in the Pr3+-related absorption bands. Emission spectra of Pr3+ centers depend on the excitation energy, indicating the presence of Pr3+ centers of two types. The origin of these centers is discussed. The 2.03-2.06 eV emission, arising from the D-1(2) -> H-3(4) transitions of Pr3+ ions, is found to be effectively excited in a broad intense absorption band peaking at 4.2 K at 3.92 eV. By analogy with some other Pe(3+)-doped compounds, this band is suggested to arise from an electron transfer from an impurity Pr3+ ion to the crystal lattice W6+ or Pb2+ ions. The dynamics of the Pr3+-related excited states is clarified. In the PbWO4:Pr crystal studied, the concentration of single oxygen and lead vacancies as traps for electrons and holes is found to be negligible.

  8. Differential cross sections for intermediate-energy electron scattering from α-tetrahydrofurfuryl alcohol: Excitation of electronic-states

    Energy Technology Data Exchange (ETDEWEB)

    Chiari, L.; Jones, D. B.; Thorn, P. A.; Pettifer, Z. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Duque, H. V. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Departamento de Física, Universidade Federal de Juiz de Fora, Juiz de Fora, MG (Brazil); Silva, G. B. da [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Universidade Federal de Mato Grosso, Barra do Garças, Mato Grosso (Brazil); Limão-Vieira, P. [Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Duflot, D. [Laboratoire de Physique des Lasers, Atomes et Molécules, UMR CNRS 8523, Université Lille, F-59655 Villeneuve d’Ascq Cedex (France); Hubin-Franskin, M.-J.; Delwiche, J. [Départment de Chimie, Université de Liège, Institut de Chimie-Bât. B6C, B-4000 Liège 1 (Belgium); Blanco, F. [Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, Madrid E-28040 (Spain); García, G. [Instituto de Física Fundamental, CSIC, Madrid E-28006 (Spain); and others

    2014-07-14

    We report on measurements of differential cross sections (DCSs) for electron impact excitation of a series of Rydberg electronic-states in α-tetrahydrofurfuryl alcohol (THFA). The energy range of these experiments was 20–50 eV, while the scattered electron was detected in the 10°–90° angular range. There are currently no other experimental data or theoretical computations against which we can directly compare the present measured results. Nonetheless, we are able to compare our THFA DCSs with earlier cross section measurements for Rydberg-state electronic excitation for tetrahydrofuran, a similar cyclic ether, from Do et al. [J. Chem. Phys. 134, 144302 (2011)]. In addition, “rotationally averaged” elastic DCSs, calculated using our independent atom model with screened additivity rule correction approach are also reported. Those latter results give integral cross sections consistent with the optical theorem, and supercede those from the only previous study of Milosavljević et al. [Eur. Phys. J. D 40, 107 (2006)].

  9. Charge-Transfer Dynamics in the Lowest Excited State of a Pentacene–Fullerene Complex: Implications for Organic Solar Cells

    KAUST Repository

    Joseph, Saju

    2017-10-02

    We characterize the dynamic nature of the lowest excited state in a pentacene/C60 complex on the femtosecond time scale, via a combination of ab initio molecular dynamics and time-dependent density functional theory. We analyze the correlations between the molecular vibrations of the complex and the oscillations in the electron-transfer character of its lowest excited state, which point to vibration-induced coherences between the (pentacene-based) local-excitation (LE) state and the complex charge-transfer (CT) state. We discuss the implications of our results on this model system for the exciton-dissociation process in organic solar cells.

  10. An experimental and theoretical investigation into the electronically excited states of para-benzoquinone

    Science.gov (United States)

    Jones, D. B.; Limão-Vieira, P.; Mendes, M.; Jones, N. C.; Hoffmann, S. V.; da Costa, R. F.; Varella, M. T. do N.; Bettega, M. H. F.; Blanco, F.; García, G.; Ingólfsson, O.; Lima, M. A. P.; Brunger, M. J.

    2017-05-01

    We report on a combination of experimental and theoretical investigations into the structure of electronically excited para-benzoquinone (pBQ). Here synchrotron photoabsorption measurements are reported over the 4.0-10.8 eV range. The higher resolution obtained reveals previously unresolved pBQ spectral features. Time-dependent density functional theory calculations are used to interpret the spectrum and resolve discrepancies relating to the interpretation of the Rydberg progressions. Electron-impact energy loss experiments are also reported. These are combined with elastic electron scattering cross section calculations performed within the framework of the independent atom model-screening corrected additivity rule plus interference (IAM-SCAR + I) method to derive differential cross sections for electronic excitation of key spectral bands. A generalized oscillator strength analysis is also performed, with the obtained results demonstrating that a cohesive and reliable quantum chemical structure and cross section framework has been established. Within this context, we also discuss some issues associated with the development of a minimal orbital basis for the single configuration interaction strategy to be used for our high-level low-energy electron scattering calculations that will be carried out as a subsequent step in this joint experimental and theoretical investigation.

  11. Theoretical Insights Into the Excited State Double Proton Transfer Mechanism of Deep Red Pigment Alkannin.

    Science.gov (United States)

    Zhao, Jinfeng; Dong, Hao; Zheng, Yujun

    2018-01-24

    As the most important component of deep red pigments, alkannin is investigated theoretically in detail based on time-dependent density functional theory (TDDFT) method. Exploring the dual intramolecular hydrogen bonds (O1-H2···O3 and O4-H5···O6) of alkannin, we confirm the O1-H2···O3 may play a more important role in the first excited state than the O4-H5···O6 one. Infrared (IR) vibrational analyses and subsequent charge redistribution also support this viewpoint. Via constructing the S1-state potential energy surface (PES) and searching transition state (TS) structures, we illuminate the excited state double proton transfer (ESDPT) mechanism of alkannin is the stepwise process that can be first launched by the O1-H2···O3 hydrogen bond wire in gas state, acetonitrile (CH3CN) and cyclohexane (CYH) solvents. We present a novel mechanism that polar aprotic solvents can contribute to the first-step proton transfer (PT) process in the S1 state, and nonpolar solvents play important roles in lowering the potential energy barrier of the second-step PT reaction.

  12. Dynamical mean-field theory and path integral renormalisation group calculations of strongly correlated electronic states

    Energy Technology Data Exchange (ETDEWEB)

    Heilmann, D.B.

    2007-02-15

    The two-plane HUBBARD model, which is a model for some electronic properties of undoped YBCO superconductors as well as displays a MOTT metal-to-insulator transition and a metal-to-band insulator transition, is studied within Dynamical Mean-Field Theory using HIRSCH-FYE Monte Carlo. In order to find the different transitions and distinguish the types of insulator, we calculate the single-particle spectral densities, the self-energies and the optical conductivities. We conclude that there is a continuous transition from MOTT to band insulator. In the second part, ground state properties of a diagonally disordered HUBBARD model is studied using a generalisation of Path Integral Renormalisation Group, a variational method which can also determine low-lying excitations. In particular, the distribution of antiferromagnetic properties is investigated. We conclude that antiferromagnetism breaks down in a percolation-type transition at a critical disorder, which is not changed appreciably by the inclusion of correlation effects, when compared to earlier studies. Electronic and excitation properties at the system sizes considered turn out to primarily depend on the geometry. (orig.)

  13. Quantitative treatment of the solvent effects on the electronic absorption and fluorescence spectra of acridines and phenazines. The ground and first excited singlet-state dipole moments

    Science.gov (United States)

    Aaron, Jean Jacques; Maafi, Mounir; Párkányi, Cyril; Boniface, Christian

    1995-04-01

    Electronic absorption and fluorescence excitation and emission spectra of four acridines (acridine, Acridine Yellow, 9-aminoacridine and proflavine) and three phenazines (phenazine, neutral Red and safranine) are determined at room temperature (298 K) in several solvents of various polarities (dioxane, chloroform, ethyl ether, ethyl acetate, 1-butanol, 2-propanol, ethanol, methanol, dimethylformamide, acetonitrile and dimethyl sulfoxide). The effect of the solvent upon the spectral characteristics of the above compounds, is studied. In combination with the ground-state dipole moments of these compounds, the spectral data are used to evaluate their first excited singlet-state dipole moments by means of the solvatochromic shift method (Bakhshiev's and Kawski-Chamma-Viallet's correlations). The theoretical ground and excited singlet-state dipole moments for acridines and phenazines are also calculated as a vector sum of the π-component (obtained by the PPP method) and the σ-component (obtained from σ-bond moments). For most acridines and phenazines under study, the experimental excited singlet-state dipole moments are found to be higher than their ground state counterpart. The application of the Kamlet-Abboud-Taft solvatochromic parameters to the solvent effect on spectral properties of acridine and phenazine derivatives is discussed.

  14. Equation of Motion Theory for Excited States in Variational Monte Carlo and the Jastrow Antisymmetric Geminal Power in Hilbert Space.

    Science.gov (United States)

    Zhao, Luning; Neuscamman, Eric

    2016-08-09

    An equation of motion formalism for excited states in variational Monte Carlo is derived, and a pilot implementation for the Jastrow-modified antisymmetric geminal power is tested. In single excitations across a range of small molecules, this combination is shown to be intermediate in accuracy between configuration interaction singles and equation of motion coupled cluster with singles and doubles. For double excitations, energy errors are found to be similar to those for coupled cluster.

  15. Deactivation processes of the lowest excited state of [UO2(H2O)5]2+ in aqueous solution.

    Science.gov (United States)

    Formosinho, Sebastião J; Burrows, Hugh D; da Graça Miguel, Maria; Azenha, M Emília D G; Saraiva, Isabel M; Ribeiro, A Catarina D N; Khudyakov, Igor V; Gasanov, Rashid G; Bolte, Michèle; Sarakha, Mohamed

    2003-05-01

    A detailed analysis of the photophysical behaviour of uranyl ion in aqueous solutions at room temperature is given using literature data, together with results of new experimental and theoretical studies to see whether the decay mechanism of the lowest excited state involves physical deactivation by energy transfer or a chemical process through hydrogen atom abstraction. Comparison of the radiative lifetimes determined from quantum yield and lifetime data with that obtained from the Einstein relationship strongly suggests that the emitting state is identical to that observed in the lowest energy absorption band. From study of the experimental rate and that calculated theoretically, from deuterium isotope effects and the activation energy for decay support is given to a deactivation mechanism of hydrogen abstraction involving water clusters to give uranium(v) and hydroxyl radicals. Support for hydroxyl radical formation comes from electron spin resonance spectra observed in the presence of the spin traps 5,5-dimethyl-1-pyrroline N-oxide and tert-butyl-N-phenylnitrone and from literature results on photoinduced uranyl oxygen exchange and photoconductivity. It has previously been suggested that the uranyl emission above pH 1.5 may involve an exciplex between excited uranyl ion and uranium(v). Evidence against this mechanism is given on the basis of quenching of uranyl luminescence by uranium(v), together with other kinetic reasoning. No overall photochemical reaction is observed on excitation of aqueous uranyl solutions, and it is suggested that this is mainly due to reoxidation of UO2+ by hydroxyl radicals in a radical pair. An alternative process involving oxidation by molecular oxygen is analysed experimentally and theoretically, and is suggested to be too slow to be a major reoxidation pathway.

  16. Excitation of the 3p states in electron-sodium scattering at intermediate energies

    Science.gov (United States)

    Kamali, M. Z. M.; Wong, B. R.; Chin, J. H.; Ratnavelu, K.

    2014-03-01

    A coupled-channel-optical method (CCOM), to investigate the excitation of the 3p states for e--Na scattering at intermediate energies, is reported. Nine atomic states( Na(3s), Na(3p), Na(4s), Na(3d), Na(4p), Na(5s), Na(4d), Na(5p), Na(5d) ) together with three optical potentials are used in this work. The inelastic differential cross sections (DCS) as well as the reduced Stokes parameters are compared with latest theoretical data and experimental measurements.

  17. Relative entropy of excited states in conformal field theories of arbitrary dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Sárosi, Gábor [Theoretische Natuurkunde, Vrije Universiteit Brussels and International Solvay Institutes,Pleinlaan 2, Brussels, B-1050 (Belgium); David Rittenhouse Laboratory, University of Pennsylvania,Philadelphia, PA 19104 (United States); Ugajin, Tomonori [Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106 (United States)

    2017-02-10

    Extending our previous work, we study the relative entropy between the reduced density matrices obtained from globally excited states in conformal field theories of arbitrary dimensions. We find a general formula in the small subsystem size limit. When one of the states is the vacuum of the CFT, our result matches with the holographic entanglement entropy computations in the corresponding bulk geometries, including AdS black branes. We also discuss the first asymmetric part of the relative entropy and comment on some implications of the results on the distinguishability of black hole microstates in AdS/CFT.

  18. The Total Gaussian Class of Quasiprobabilities and its Relation to Squeezed-State Excitations

    Science.gov (United States)

    Wuensche, Alfred

    1996-01-01

    The class of quasiprobabilities obtainable from the Wigner quasiprobability by convolutions with the general class of Gaussian functions is investigated. It can be described by a three-dimensional, in general, complex vector parameter with the property of additivity when composing convolutions. The diagonal representation of this class of quasiprobabilities is connected with a generalization of the displaced Fock states in direction of squeezing. The subclass with real vector parameter is considered more in detail. It is related to the most important kinds of boson operator ordering. The properties of a specific set of discrete excitations of squeezed coherent states are given.

  19. Excited state mass spectra of doubly heavy baryons Ω{sub cc}, Ω{sub bb} and Ω{sub bc}

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Zalak; Rai, Ajay Kumar [Sardar Vallabhbhai National Institute of Technology, Department of Applied Physics, Surat, Gujarat (India); Thakkar, Kaushal [GIDC Degree Engineering college, Department of Applied Sciences and Humanities, Abrama, Navsari (India)

    2016-10-15

    We discuss the mass spectrum of Ω baryon with two heavy quarks and one light quark (ccs, bbs, and bcs). The main goal of the paper is to calculate the ground state masses and after that, the positive and negative parity excited states masses are also obtained within a hypercentral constituent quark model, using Coulomb plus linear potential framework. We also added a first order correction to the potential. The mass spectra up to 5S for radial excited states and 1P-5P, 1D-4D, and 1F-2F states for orbital excited states are computed for Ω{sub cc}, Ω{sub bb} and Ω{sub bc} baryons. Our obtained results are compared with other theoretical predictions, which could be a useful complementary tool for the interpretation of experimentally unknown heavy baryon spectra. The Regge trajectory is constructed in both the (n{sub r}, M{sup 2}) and the (J, M{sup 2}) planes for Ω{sub cc}, Ω{sub bb} and Ω{sub bc} baryons and their slopes and intercepts are also determined. Magnetic moments of doubly heavy Ω{sup '}s are also calculated. (orig.) 8.

  20. Non-typical fluorescence studies of excited and ground state proton and hydrogen transfer

    Science.gov (United States)

    Gil, Michał; Kijak, Michał; Piwoński, Hubert; Herbich, Jerzy; Waluk, Jacek

    2017-03-01

    Fluorescence studies of tautomerization have been carried out for various systems that exhibit single and double proton or hydrogen translocation in various environments, such as liquid and solid condensed phases, ultracold supersonic jets, and finally, polymer matrices with single emitters. We focus on less explored areas of application of fluorescence for tautomerization studies, using porphycene, a porphyrin isomer, as an example. Fluorescence anisotropy techniques allow investigations of self-exchange reactions, where the reactant and product are formally identical. Excitation with polarized light makes it possible to monitor tautomerization in single molecules and to detect their three-dimensional orientation. Analysis of fluorescence from single vibronic levels of jet-isolated porphycene not only demonstrates coherent tunneling of two internal protons, but also indicates that the process is vibrational mode-specific. Next, we present bifunctional proton donor-acceptor systems, molecules that are able, depending on the environment, to undergo excited state single intramolecular or double intermolecular proton transfer. For molecules that have donor and acceptor groups located in separate moieties linked by a single bond, excited state tautomerization can be coupled to mutual twisting of the two subunits.

  1. Non-typical fluorescence studies of excited and ground state proton and hydrogen transfer

    KAUST Repository

    Gil, Michał

    2017-02-03

    Fluorescence studies of tautomerization have been carried out for various systems that exhibit single and double proton or hydrogen translocation in various environments, such as liquid and solid condensed phases, ultracold supersonic jets, and finally, polymer matrices with single emitters.We focus on less explored areas of application of fluorescence for tautomerization studies, using porphycene, a porphyrin isomer, as an example. Fluorescence anisotropy techniques allow investigations of self-exchange reactions, where the reactant and product are formally identical. Excitation with polarized light makes it possible to monitor tautomerization in single molecules and to detect their three-dimensional orientation. Analysis of fluorescence from single vibronic levels of jet-isolated porphycene not only demonstrates coherent tunneling of two internal protons, but also indicates that the process is vibrational mode-specific. Next, we present bifunctional proton donoracceptor systems, molecules that are able, depending on the environment, to undergo excited state single intramolecular or double intermolecular proton transfer. For molecules that have donor and acceptor groups located in separate moieties linked by a single bond, excited state tautomerization can be coupled to mutual twisting of the two subunits.

  2. Approximate inclusion of triple excitations in combined coupled cluster/molecular mechanics: Calculations of electronic excitation energies in solution for acrolein, water, formamide, and n-methylacetamide

    DEFF Research Database (Denmark)

    Sneskov, Kristian; Gras, Eduard Matito; Kongsted, Jacob

    2010-01-01

    Electronic excitation energies are often significantly affected by perturbing surroundings such as, for example, solvent molecules. Correspondingly, for an accurate comparison between theory and experiment, the inclusion of solvent effects in high-level theoretical predictions is important. Here,...... as liquid water, demonstrating how a systematic inclusion of many different effects leads to good agreement with experimental values. In doing so we also illustrate the theoretical challenges involved when investigating UV properties of solvated molecules....... and a solvent described by polarizable MM methods. The CCSDR(3)/MM includes triples effects in a computational tractable noniterative fashion. The resulting approach allows for both high-accuracy inclusion of triples effects and inclusion of solute−solvent interactions with polarization effects, as well...

  3. Preconditioning and excitability of the human orbicularis oculi reflex as a function of state.

    Science.gov (United States)

    Silverstein, L D; Graham, F K; Calloway, J M

    1980-04-01

    Reflex excitability and unstimulated activity of orbicularis oculi were found to vary as a function of state but the effects of weak conditioning stimuli, preceding reflex stimulation by 30--210 msec, were independent of state. Electromyographic activity was recorded from 23 young adults: 12 subjects with eyes closed during quiet wakefulness, 3 subjects during all-night sleep, 8 subjects during an afternoon nap. Stimulation with a 50 msec, 105 dB(A) white noise burst elicited a reflex response in 92% of waking trials and 87% of trials during REM sleep, but responses occurred in only 54% of trials during NREM sleep. Further, response latency was longer and magnitude less during the NREM state. Despite the differences in reflex excitability associated with state, state did not affect the modifications of reflex activity produced by a 20 msec, 70 dB(A) conditioning tone. At all lead intervals, reflex magnitude was reduced by the weak prestimulation even though, at the shortest interval, reflex activity was initiated more rapidly. The discordant changes in reflex size and latency have been seen in previous waking studies and appear to be mediated by different mechanisms. The persistence of both effects during sleep suggests that neither effect depends on high-level central processes.

  4. Excited-state dynamics in fac-[Re(CO)3(Me4phen)(L)]+.

    Science.gov (United States)

    Patrocinio, Antonio Otavio T; Brennaman, M Kyle; Meyer, Thomas J; Murakami Iha, Neyde Y

    2010-11-25

    Excited-state dynamics in fac-[Re(CO)(3)(Me(4)phen)(cis-L)](+) (Me(4)phen = 3,4,7,8-tetramethyl-1,10-phenanthroline, L = 4-styrylpyridine (stpy) or 1,2-bis(4-pyridyl)ethylene (bpe)) were investigated by steady-state and time-resolved techniques. A complex equilibrium among three closely lying excited states, (3)IL(cis-L), (3)MLCT(Re→Me(4)phen), and (3)IL(Me(4)phen), has been established. Under UV irradiation, cis-to-trans isomerization of coordinated cis-L is observed with a quantum yield of 0.15 in acetonitrile solutions. This photoreaction competes with radiative decay from (3)MLCT(Re→Me(4)phen) and (3)IL(Me(4)phen) excited states, leading to a decrease in the emission quantum yield relative to the nonisomerizable complex fac-[Re(CO)(3)(Me(4)phen)(bpa)](+) (bpa = 1,2-bis(4-pyridyl)ethane). From temperature-dependent time-resolved emission measurements in solution and in poly(methyl methacrylate) (PMMA) films, energy barriers (ΔE(a)) for interconversion between (3)MLCT(Re→Me(4)phen) and (3)IL(Me(4)phen) emitting states were determined. For L = cis-stpy, ΔE(a) = 11 (920 cm(-1)) and 15 kJ mol(-1) (1254 cm(-1)) in 5:4 propionitrile/butyronitrile and PMMA, respectively. For L = cis-bpe, ΔE(a) = 13 kJ mol(-1) (1087 cm(-1)) in 5:4 propionitrile/butyronitrile. These energy barriers are sufficient to decrease the rate constant for internal conversion from higher-lying (3)IL(Me(4)phen) state to (3)MLCT(Re→Me(4)phen), k(i) ≅ 10(6) s(-1). The decrease in rate allows for the observation of intraligand phosphorescence, even in fluid medium at room temperature. Our results provide additional insight into the role of energy gap and excited-state dynamics on the photochemical and photophysical properties of Re(I) polypyridyl complexes.

  5. Characterization of excited-state reactions with instant spectra of fluorescence kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Tomin, Vladimir I., E-mail: tomin@apsl.edu.pl; Ushakou, Dzmitryi V.

    2015-10-15

    Comprehensible knowledge of the excited-state proton transfer processes in organic compounds is overwhelmingly important not only for physics, but also chemistry and Life Sciences, since they play a key role in main processes of photosynthesis and functioning of biological organisms. Moreover compounds with Excited-State Intramolecular Proton Transfer (ESIPT) are in the focus of the interest of scientists throughout the world, because dual fluorescence spectra of such objects corresponding to two forms of molecular structure (normal and photoproduct) are very sensitive to characteristics of molecular microenvironment. This property allows to use such substances as fluorescent probes for diverse applications in chemistry and Life Sciences. But at the same time studying of proton transfer processes is not simple, because this process is characterized by extremely fast times (on picoseconds time scale and less order) and very often contribution of reverse reactions is essentially complicates an interpretation of observed properties of dual fluorescence. Hence, understanding of a role of reversible reactions is crucial for a comprehensive description of all processes accompanying excited state reactions. We discuss new approach for treatment ESIPT reaction on the basis of experimentally measured instant spectra of dual fluorescence and temporal behavior of ratiometric signal of normal to tautomer form intensities. Simple analytical expressions show in transparent way how to distinguish a degree of reverse reaction contribution to ratiometric signal. A validation of the approach under consideration is fulfilled with two different flavonols – 3-hydroxyflavone and 4′-(Dimethylamino)-3-hydroxyflavone – representing two extreme cases in affecting reversible reaction on dual emission. A comparing of new approach and traditional method when we analyze kinetics of separate the N* and T* fluorescence bands decays, has been carried out. - Highlights: • The excited-state

  6. Theoretical study of the low-lying excited states of ABCO, DABCO and homologous cage amines

    Science.gov (United States)

    Galasso, V.

    1997-02-01

    The electronic spectra of 1-azabicyclo[2.2.2]octane (ABCO), 1,4-diazabicyclo[2.2.2]octane (DABCO), and their [1.1.1] and [3.3.3] congeners have been studied at the ab initio level using the symmetry adapted cluster configuration interaction method. A comprehensive theoretical prediction of the discrete excitation spectra, up to the HOMO → 5s transition, is presented. All the low-lying singlet and triplet electronic states of these symmetric cage amines are found to have essentially Rydberg nature and originate from excitations out of the n-type molecular orbitals. The theoretical results correlate with the available spectroscopic data satisfactorily and provide quantitative support to a number of experimental assignments based on REMPI and MCD measurements.

  7. Dynamics of Excited State Proton Transfer in Nitro Substituted 10-Hydroxybenzo[h]quinolines

    DEFF Research Database (Denmark)

    Marciak, H; Hristova, S.; Deneva, V

    2017-01-01

    of the ground state enol–keto tautomeric equilibrium (ΔG values of 1.03 and 0.62 kcal mol−1 respectively for 2 and 3). The fluorescence stems from the keto form even if the enol form is optically excited as proven by the shape of the excitation spectra indicating that ESIPT takes place. The Stokes shift...... of the substituted compounds is substantially lower compared to HBQ, which follows from the fact that the substitution occurs in the formal cyclohexa-2,4-dienone moiety and leads to a decrease of the HOMO level of the keto tautomer. The pump–probe experiments show that in the nitro substituted HBQs 2 and 3 ESIPT...

  8. Detailed Characterization of a Nanosecond-Lived Excited State: X-ray and Theoretical Investigation of the Quintet State in Photoexcited [Fe(terpy)2](2.)

    Science.gov (United States)

    Vankó, György; Bordage, Amélie; Pápai, Mátyás; Haldrup, Kristoffer; Glatzel, Pieter; March, Anne Marie; Doumy, Gilles; Britz, Alexander; Galler, Andreas; Assefa, Tadesse; Cabaret, Delphine; Juhin, Amélie; van Driel, Tim B; Kjær, Kasper S; Dohn, Asmus; Møller, Klaus B; Lemke, Henrik T; Gallo, Erik; Rovezzi, Mauro; Németh, Zoltán; Rozsályi, Emese; Rozgonyi, Tamás; Uhlig, Jens; Sundström, Villy; Nielsen, Martin M; Young, Linda; Southworth, Stephen H; Bressler, Christian; Gawelda, Wojciech

    2015-03-19

    Theoretical predictions show that depending on the populations of the Fe 3d xy , 3d xz , and 3d yz orbitals two possible quintet states can exist for the high-spin state of the photoswitchable model system [Fe(terpy)2](2+). The differences in the structure and molecular properties of these (5)B2 and (5)E quintets are very small and pose a substantial challenge for experiments to resolve them. Yet for a better understanding of the physics of this system, which can lead to the design of novel molecules with enhanced photoswitching performance, it is vital to determine which high-spin state is reached in the transitions that follow the light excitation. The quintet state can be prepared with a short laser pulse and can be studied with cutting-edge time-resolved X-ray techniques. Here we report on the application of an extended set of X-ray spectroscopy and scattering techniques applied to investigate the quintet state of [Fe(terpy)2](2+) 80 ps after light excitation. High-quality X-ray absorption, nonresonant emission, and resonant emission spectra as well as X-ray diffuse scattering data clearly reflect the formation of the high-spin state of the [Fe(terpy)2](2+) molecule; moreover, extended X-ray absorption fine structure spectroscopy resolves the Fe-ligand bond-length variations with unprecedented bond-length accuracy in time-resolved experiments. With ab initio calculations we determine why, in contrast to most related systems, one configurational mode is insufficient for the description of the low-spin (LS)-high-spin (HS) transition. We identify the electronic structure origin of the differences between the two possible quintet modes, and finally, we unambiguously identify the formed quintet state as (5)E, in agreement with our theoretical expectations.

  9. Time-Resolved XAFS of a Molecular Excited State and Glass-Capillary Concentration of X-Rays

    Science.gov (United States)

    Thiel, Daniel Joseph

    Two x-ray techniques are presented. One is a new spectroscopic method to study changes in molecular structure upon laser excitation. X-ray absorption fine structure (XAFS) has been combined with rapid-flow laser spectroscopy to achieve new insight into the structure of the lowest triplet state of tetrakis(pyrophosphito) diplatinate(II), rm Pt_2(P_2O _5H_2)_sp{4}{4-}. The phosphorous planes are found to contract along the Pt-Pt axis by 0.52 +/- 0.16 A in response to the laser excitation. This experiment, which is the first musec-resolved XAFS measurement, has given unprecedented structural detail of a molecule excited to a short-lived electronic state. The other technique is a new method to concentrate, or "focus", a collimated x-ray beam. Unlike standard x -ray focusing methods, this method consists of using the inner wall of a tapered glass capillary to guide the x rays down the bore of the capillary by multiple total external reflections at the air/glass interface. The x-ray beam emerging from the capillary is compressed to a size given by the size of the bore at the tip of the capillary. A variety of tapered capillaries have been fabricated with exit bore sizes ranging from 0.1 μm to 100 mum. The methods used in fabricating and characterizing the concentrators are presented along with the measured x-ray intensity enhancements due to the devices. In addition, the results of various applications of these x-ray concentrators are reported including an XAFS measurement, an imaging experiment, and a beam-steering technique. The most significant part of this research has been the generation of submicron diameter x-ray beams with intensity enhancements greater than 100. This method is the only method presently available to produce such x-ray beams. Finally, a ray-tracing program has been developed which calculates the paths of the meridional rays passing through the two-dimensional profile of any channel including the irregular figures of the tapered glass capillaries

  10. Positron excitation of neon

    Science.gov (United States)

    Parcell, L. A.; Mceachran, R. P.; Stauffer, A. D.

    1990-01-01

    The differential and total cross section for the excitation of the 3s1P10 and 3p1P1 states of neon by positron impact were calculated using a distorted-wave approximation. The results agree well with experimental conclusions.

  11. A novel chalcone-analogue as an optical sensor based on ground and excited states intramolecular charge transfer: A combined experimental and theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Fayed, Tarek A. [Chemistry Department, Faculty of Science, Tanta University, 31527-Tanta (Egypt)], E-mail: tfayed2003@yahoo.co.uk

    2006-05-31

    Steady-state absorption and emission spectroscopic techniques as well as semiempirical quantum calculations at the AM1 and ZINDO/S levels have been used to investigate the intramolecular charge transfer (ICT) behaviour of a novel chalcone namely; 1-(2-pyridyl)-5-(4-dimethylaminophenyl)-penta-2,4-diene-1-one, DMAC. The ground state DMAC has a significant ICT character and a great sensitivity to the hydrogen bond donating ability of the medium as reflected from the change of the absorption spectra in pure and mixed organic solvents. On the other hand, its excited singlet state exhibits high ICT characters as manifested by the drastic solvatochromic effects. These results are consistent with the data of charge density calculations in both the ground and excited state, which indicates enhancement of the charge transfer from the dimethyl-amino group to the carbonyl oxygen upon excitation. Also, the dipole moment calculations indicates a highly dipolar excited singlet state ({delta}{mu} {sub eg} = 15.5 D). The solvent dependence of the fluorescence quantum yield of DMAC was interpreted on the basis of positive and negative solvatokinetic as well as the hydrogen bonding effects. Incorporation of the 2-pyridyl group in the chemical structure of the present DMAC led to design of a potential optical sensor for probing acidity of the medium and metal cations such as Zn{sup 2+}, Cd{sup 2+} and Hg{sup 2+}. This was concluded from the high acidochromic and metallochromic behaviour of DMAC on adding such cations to its acetonitrile solutions.

  12. Spectroscopic and excited-state properties of tri-9-anthrylborane I: Solvent polarity effects.

    Science.gov (United States)

    Kitamura, Noboru; Sakuda, Eri

    2005-08-25

    Spectroscopic and excited-state properties of tri-9-anthrylborane (TAB), showing unique absorption and fluorescence characteristics originating from p(boron)-pi(anthryl group) orbital interactions, were studied in 12 solvents. Although the absorption maximum energy (nu(a)) of TAB which appeared at around 21 x 10(3) cm(-1) (band I) was almost independent of the solvent polarity parameter, f(X) (f(X) = (D(s) - 1)/(2D(s) + 1) - (n(2) - 1)/(2n(2) + 1) where D(s) and n represent the static dielectric constant and the refractive index of a solvent, respectively), the fluorescence maximum energy (nu(f)) showed a linear correlation with f(X). The f(X) dependence of the value of nu(a) - nu(f) demonstrated that the change in the dipole moment of TAB upon light excitation was approximately 8.0 D, indicating that absorption band I was ascribed to an intramolecular charge-transfer transition in nature. The excited electron of TAB was thus concluded to localize primarily on the p orbital of the boron atom. Furthermore, it was shown that the fluorescence lifetime and quantum yield of TAB varied from 11.8 to 1.1 ns and from 0.41 to 0.02, respectively, with an increase in f(X). The present results indicated that the nonradiative decay rate constant (k(nr)) of TAB was influenced significantly by f(X). Excited-state decay of TAB was understood by intramolecular back-electron (charge) transfer from the p orbital of the boron atom to the pi orbital of the anthryl group, which was discussed in terms of the energy gap dependence of k(nr). Specific solvent interactions of TAB revealed by the present spectroscopic and photophysical studies are also discussed.

  13. Momentum-resolved spin dynamics of bulk and surface excited States in the topological insulator Bi(2)Se(3).

    Science.gov (United States)

    Cacho, C; Crepaldi, A; Battiato, M; Braun, J; Cilento, F; Zacchigna, M; Richter, M C; Heckmann, O; Springate, E; Liu, Y; Dhesi, S S; Berger, H; Bugnon, Ph; Held, K; Grioni, M; Ebert, H; Hricovini, K; Minár, J; Parmigiani, F

    2015-03-06

    The prospect of optically inducing and controlling a spin-polarized current in spintronic devices has generated wide interest in the out-of-equilibrium electronic and spin structure of topological insulators. In this Letter we show that only measuring the spin intensity signal over several orders of magnitude by spin-, time-, and angle-resolved photoemission spectroscopy can provide a comprehensive description of the optically excited electronic states in Bi_{2}Se_{3}. Our experiments reveal the existence of a surface resonance state in the second bulk band gap that is benchmarked by fully relativistic ab initio spin-resolved photoemission calculations. We propose that the newly reported state plays a major role in the ultrafast dynamics of the system, acting as a bottleneck for the interaction between the topologically protected surface state and the bulk conduction band. In fact, the spin-polarization dynamics in momentum space show that these states display macroscopically different temperatures and, more importantly, different cooling rates over several picoseconds.

  14. Momentum-Resolved Spin Dynamics of Bulk and Surface Excited States in the Topological Insulator Bi2Se3

    Science.gov (United States)

    Cacho, C.; Crepaldi, A.; Battiato, M.; Braun, J.; Cilento, F.; Zacchigna, M.; Richter, M. C.; Heckmann, O.; Springate, E.; Liu, Y.; Dhesi, S. S.; Berger, H.; Bugnon, Ph.; Held, K.; Grioni, M.; Ebert, H.; Hricovini, K.; Minár, J.; Parmigiani, F.

    2015-03-01

    The prospect of optically inducing and controlling a spin-polarized current in spintronic devices has generated wide interest in the out-of-equilibrium electronic and spin structure of topological insulators. In this Letter we show that only measuring the spin intensity signal over several orders of magnitude by spin-, time-, and angle-resolved photoemission spectroscopy can provide a comprehensive description of the optically excited electronic states in Bi2Se3. Our experiments reveal the existence of a surface resonance state in the second bulk band gap that is benchmarked by fully relativistic ab initio spin-resolved photoemission calculations. We propose that the newly reported state plays a major role in the ultrafast dynamics of the system, acting as a bottleneck for the interaction between the topologically protected surface state and the bulk conduction band. In fact, the spin-polarization dynamics in momentum space show that these states display macroscopically different temperatures and, more importantly, different cooling rates over several picoseconds.

  15. Assignment of the Charge-Transfer Excited States of Bis(N-Heterocyclic) Complexes of Copper(I)

    Science.gov (United States)

    1989-03-21

    Excited States of Bis (N-Heterocyclic) Complexes of Copper ( I) 12 PERSONAL AUTHOR(S( W. L. Parker and G. A. Crosby 3a 7YPE OF REPORT i b ’!ME COVERED ~ aDATE...Assignment of the Charge-Transfer Excited States of Bis (N-Heterocyclic) Complexes of Copper (I) by W. L. Parker and G. A. Crosby Prepared for Publication in...IHmited. Assignment of the Charge-Transfer Excited States of Bis (N-Heterocycl ic) Complexes of Copper (I) W. L. Parker and G. A. Crosby* Chemical

  16. UV excitation of single DNA and RNA strands produces high yields of exciplex states between two stacked bases

    OpenAIRE

    Takaya, Tomohisa; Su, Charlene; de La Harpe, Kimberly; Crespo-Hernández, Carlos E.; Kohler, Bern

    2008-01-01

    Excited electronic states created by UV excitation of the diribonucleoside monophosphates ApA, ApG, ApC, ApU, and CpG were studied by the femtosecond transient-absorption technique. Bleach recovery signals recorded at 252 nm show that long-lived excited states are formed in all five dinucleosides. The lifetimes of these states exceed those measured in equimolar mixtures of the constituent mononucleotides by one to two orders of magnitude, indicating that electronic coupling between proximal n...

  17. Excited state absorption measurement in the 900-1250 nm wavelength range for bismuth-doped silicate fibers.

    Science.gov (United States)

    Yoo, Seongwoo; Kalita, Mridu P; Nilsson, Johan; Sahu, Jayanta

    2009-02-15

    The feasibility of direct laser diode pumping of Bi-doped fiber lasers at the wavelengths of 915 and 975 nm was examined by measuring excited state absorption in Bi-doped silicate fibers for the wavelength range of 900-1250 nm. When the Bi-doped fibers were pumped at 1047 nm a strong excited state absorption was found at 915 and 975 nm, whereas no significant excited state absorption was observed in the 1080 nm pumping band nor in the emission band, approximately 1160 nm, of Bi-doped fiber lasers.

  18. Photophysical Model of 10-Hydroxybenzo[h]quinoline: Internal Conversion and Excited State Intramolecular Proton Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Junghwa; Joo, Taiha [Pohang Univ. of Science and Technology, Pohang (Korea, Republic of)

    2014-03-15

    Photophysics of 10-hydroxybenzo[h]quinoline (HBQ) has been in controversy, in particular, on the nature of the electronic states before and after the excited state intramolecular proton transfer (ESIPT), even though the dynamics and mechanism of the ESIPT have been well established. We report highly time resolved fluorescence spectra over the full emission frequency regions of the enol and keto isomers and the anisotropy in time domain to determine the accurate rates of the population decay, spectral relaxation and anisotropy decay of the keto isomer. We have shown that the ∼300 fs component observed frequently in ESIPT dynamics arises from the S{sub 2}→S{sub 1} internal conversion in the reaction product keto isomer and that the ESIPT occurs from the enol isomer in S{sub 1} state to the keto isomer in S{sub 2} state.

  19. Vibrational dynamics of aniline (N2)1 clusters in their first excited singlet state

    Science.gov (United States)

    Hineman, M. F.; Kim, S. K.; Bernstein, E. R.; Kelley, D. F.

    1992-04-01

    The first excited singlet state S1 vibrational dynamics of aniline(N2)1 clusters are studied and compared to previous results on aniline(CH4)1 and aniline(Ar)1. Intramolecular vibrational energy redistribution (IVR) and vibrational predissociation (VP) rates fall between the two extremes of the CH4 (fast IVR, slow VP) and Ar (slow IVR, fast VP) cluster results as is predicted by a serial IVR/VP model using Fermi's golden rule to describe IVR processes and a restricted Rice-Ramsperger-Kassel-Marcus (RRKM) theory to describe unimolecular VP rates. The density of states is the most important factor determining the rates. Two product states, 00 and 10b1, of bare aniline and one intermediate state ˜(00) in the overall IVR/VP process are observed and time resolved measurements are obtained for the 000 and ˜(000) transitions. The results are modeled with the serial mechanism described above.

  20. Comparison of calculated and experimentally resolved rate constants for excitation energy transfer in C-phycocyanin. 2. Trimers

    Energy Technology Data Exchange (ETDEWEB)

    Debreczeny, M.F.; Sauer, K. [Lawrence Berkeley Lab., CA (United States); Zhou, J.; Bryant, D.A. [Pennsylvania State Univ., University Park, PA (United States)

    1995-05-18

    Resolution of the absorption spectrum of the {beta}{sub 155} chromophore in C-phycocyanin (PC) trimers is achieved by comparison of the steady state absorption spectra of ({alpha}{sup PC}{beta}{sup PC}){sub 3} and ({alpha}{sup PC}{beta}{sup *}){sub 3}. Comparison of the anisotropy decays of ({alpha}{sup PC}{beta}{sup PC}){sub 3} and ({alpha}{sup PC}{beta}{sup *}){sub 3} also greatly aids in the assignment of the dominant kinetic processes in PC trimers. A comparison is made of calculated Foerster rate constants for energy transfer with those rate constants resolved experimentally in the PC trimers. 35 refs.., 10 figs., 2 tabs.

  1. An ALMA Imaging Study of Methyl Formate (HCOOCH3) in Torsionally Excited States toward Orion KL

    Science.gov (United States)

    Sakai, Yusuke; Kobayashi, Kaori; Hirota, Tomoya

    2015-04-01

    We recently reported the first identification of rotational transitions of methyl formate (HCOOCH3) in the second torsionally excited state toward Orion Kleinmann-Low (KL), observed with the Nobeyama 45 m telescope. In combination with the identified transitions of methyl formate in the ground state and the first torsional excited state, it was found that there is a difference in rotational temperature and vibrational temperature, where the latter is higher. In this study, high spatial resolution analysis by using Atacama Large Millimeter/Submillimeter Array (ALMA) science verification data was carried out to verify and understand this difference. Toward the Compact Ridge, two different velocity components at 7.3 and 9.1 km s-1 were confirmed, while a single component at 7.3 km s-1 was identified toward the Hot Core. The intensity maps in the ground, first, and second torsional excited states have quite similar distributions. Using extensive ALMA data, we determined the rotational and vibrational temperatures for the Compact Ridge and Hot Core by the conventional rotation diagram method. The rotational temperature and vibrational temperatures agree for the Hot Core and for one component of the Compact Ridge. At the 7.3 km s-1 velocity component for the Compact Ridge, the rotational temperature was found to be higher than the vibrational temperature. This is different from what we obtained from the results by using the single-dish observation. The difference might be explained by the beam dilution effect of the single-dish data and/or the smaller number of observed transitions within the limited range of energy levels (≤30 K) of Eu in the previous study.

  2. Alternative definition of excitation amplitudes in multi-reference state-specific coupled cluster

    Science.gov (United States)

    Garniron, Yann; Giner, Emmanuel; Malrieu, Jean-Paul; Scemama, Anthony

    2017-04-01

    A central difficulty of state-specific Multi-Reference Coupled Cluster (MR-CC) in the multi-exponential Jeziorski-Monkhorst formalism concerns the definition of the amplitudes of the single and double excitation operators appearing in the exponential wave operators. If the reference space is a complete active space (CAS), the number of these amplitudes is larger than the number of singly and doubly excited determinants on which one may project the eigenequation, and one must impose additional conditions. The present work first defines a state-specific reference-independent operator T˜ ^ m which acting on the CAS component of the wave function |Ψ0m⟩ maximizes the overlap between (1 +T˜ ^ m ) |Ψ0m⟩ and the eigenvector of the CAS-SD (Singles and Doubles) Configuration Interaction (CI) matrix |ΨCAS-SDm⟩ . This operator may be used to generate approximate coefficients of the triples and quadruples, and a dressing of the CAS-SD CI matrix, according to the intermediate Hamiltonian formalism. The process may be iterated to convergence. As a refinement towards a strict coupled cluster formalism, one may exploit reference-independent amplitudes provided by (1 +T˜ ^ m ) |Ψ0m⟩ to define a reference-dependent operator T^ m by fitting the eigenvector of the (dressed) CAS-SD CI matrix. The two variants, which are internally uncontracted, give rather similar results. The new MR-CC version has been tested on the ground state potential energy curves of 6 molecules (up to triple-bond breaking) and two excited states. The non-parallelism error with respect to the full-CI curves is of the order of 1 mEh.

  3. Mean excitation energies for molecular ions

    DEFF Research Database (Denmark)

    Jensen, Phillip W. K.; Sauer, Stephan P. A.; Oddershede, Jens

    2017-01-01

    The essential material constant that determines the bulk of the stopping power of high energy projectiles, the mean excitation energy, is calculated for a range of smaller molecular ions using the RPA method. It is demonstrated that the mean excitation energy of both molecules and atoms increase...... with ionic charge. However, while the mean excitation energies of atoms also increase with atomic number, the opposite is the case for mean excitation energies for molecules and molecular ions. The origin of these effects is explained by considering the spectral representation of the excited state...... contributing to the mean excitation energy....

  4. Mean excitation energies for molecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Phillip W.K.; Sauer, Stephan P.A. [Department of Chemistry, University of Copenhagen, Copenhagen (Denmark); Oddershede, Jens [Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense (Denmark); Quantum Theory Project, Departments of Physics and Chemistry, University of Florida, Gainesville, FL (United States); Sabin, John R., E-mail: sabin@qtp.ufl.edu [Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense (Denmark); Quantum Theory Project, Departments of Physics and Chemistry, University of Florida, Gainesville, FL (United States)

    2017-03-01

    The essential material constant that determines the bulk of the stopping power of high energy projectiles, the mean excitation energy, is calculated for a range of smaller molecular ions using the RPA method. It is demonstrated that the mean excitation energy of both molecules and atoms increase with ionic charge. However, while the mean excitation energies of atoms also increase with atomic number, the opposite is the case for mean excitation energies for molecules and molecular ions. The origin of these effects is explained by considering the spectral representation of the excited state contributing to the mean excitation energy.

  5. Hybrid lead halide perovskites for light energy conversion: Excited state properties and photovoltaic applications

    Science.gov (United States)

    Manser, Joseph S.

    The burgeoning class of metal halide perovskites constitutes a paradigm shift in the study and application of solution-processed semiconductors. Advancements in thin film processing and our understanding of the underlying structural, photophysical, and electronic properties of these materials over the past five years have led to development of perovskite solar cells with power conversion efficiencies that rival much more mature first and second-generation commercial technologies. It seems only a matter of time before the real-world impact of these compounds is put to the test. Like oxide perovskites, metal halide perovskites have ABX3 stoichiometry, where typically A is a monovalent cation, B a bivalent post-transition metal, and X a halide anion. Characterizing the behavior of photogenerated charges in metal halide perovskites is integral for understanding the operating principles and fundamental limitations of perovskite optoelectronics. The majority of studies outlined in this dissertation involve fundamental study of the prototypical organic-inorganic compound methylammonium lead iodide (CH3NH3PbI 3). Time-resolved pump-probe spectroscopy serves as a principle tool in these investigations. Excitation of a semiconductor can lead to formation of a number different excited state species and electronic complexes. Through analysis of excited state decay kinetics and optical nonlinearities in perovskite thin films, we identify spontaneous formation of a large fraction of free electrons and holes, whose presence is requisite for efficient photovoltaic operation. Following photogeneration of charge carriers in a semiconductor absorber, these species must travel large distances across the thickness of the material to realize large external quantum efficiencies and efficient carrier extraction. Using a powerful technique known as transient absorption microscopy, we directly image long-range carrier diffusion in a CH3NH3PbI 3 thin film. Charges are unambiguously shown to

  6. Full Dimensional Rovibrational Variational Calculations of the S_1 State of C_2H_2

    Science.gov (United States)

    Changala, Bryan; Baraban, Joshua H.; Stanton, John F.

    2015-06-01

    Rovibrational variational calculations on global potential energy surfaces are often essential for investigating large amplitude vibrational motion and isomerization between multiple stable conformers, as well as for understanding the spectroscopic signatures of such dynamics. The efficient and accurate representation of high dimensional potential energy surfaces and the diagonalization of large rovibrational Hamiltonians make these calculations a technically non-trivial task. The first excited singlet electronic state of acetylene (C_2H_2) is an ideal model isomerizing system. The S_1 state supports both a trans conformer and a higher energy cis conformer (Tecis-Tetrans ≈ 2700 wn), separated by a planar near-half-linear transition state (TeTS-Tetrans ≈ 5000 wn). The low-energy structure of the trans well is complicated by strong Coriolis and Darling-Dennison interactions between the near-resonant torsion and asymmetric bending modes. The resulting polyad patterns are eventually broken as the internal vibrational energy approaches that of the barrier to isomerization. In this region, qualitatively new spectroscopic patterns emerge, such as rotational K-staggering and vibrational effective frequency dips. We examine these effects with an efficient ab initio variational treatment. Our global potential energy surface is constructed as a hybrid of a high-level reduced dimension surface, which excludes the two rCH bond lengths, and a lower-level full dimensional surface incorporating the effects of rtext{CH} displacement. Diagonalization of the large, sparse Hamiltonian, which contains an exact internal coordinate rovibrational kinetic energy operator, is achieved with an efficient restarted Lanczos algorithm that generates variational energies and wavefunctions. We discuss how our results elucidate the S_1 state's rich variety of spectroscopic features and the insights they provide into the isomerization process.

  7. Electron-{{He}}_{2}^{+} scattering calculation using the R-matrix method: resonant and bound states of He2

    Science.gov (United States)

    Epée Epée, M. D.; Motapon, O.; Darby-Lewis, D.; Tennyson, J.

    2017-06-01

    The UK molecular R-matrix codes are used to study electron collisions with the {{He}}2+ molecular ion. Full configuration interaction calculations are performed to obtain the potential energy curves of the ground X {}2{{{Σ }}}u+ and the first excited A {}2{{{Σ }}}g+ electronic states of {{He}}2+. Resonances, effective quantum numbers, and resonance widths as a function of the internuclear separation are determined for the lowest singlet {}1{{{Σ }}}g+,{}1{{{Σ }}}u+,{}1{{{\\Pi }}}g and {}1{{{\\Pi }}}u and triplet {}3{{{Σ }}}g+,{}3{{{Σ }}}u+,{}3{{{\\Pi }}}g,{}3{{{\\Pi }}}u and {}3{{{Δ }}}u states, which are relevant for the study of the reactive collision of {{He}}2+ with low-energy electrons. In addition, bound states are also calculated for each symmetry of {{He}}2 at several geometries.

  8. Magnetism of an Excited Self-Conjugate Nucleus: Precise Measurement of the g Factor of the 21+ State in Mg24

    CERN Document Server

    Kusoglu, A; Georgiev, G; Brown, B  A; Goasduff, A; Atanasova, L; Balabanski, D  L; Bostan, M; Danchev, M; Detistov, P; Gladnishki, K  A; Ljungvall, J; Matea, I; Radeck, D; Sotty, C; Stefan, I; Verney, D; Yordanov, D  T

    2015-01-01

    A precise measurement of the g factor of the first-excited state in the self-conjugate (N=Z) nucleus Mg24 is performed by a new time-differential recoil-in-vacuum method based on the hyperfine field of hydrogenlike ions. Theory predicts that the g factors of such states, in which protons and neutrons occupy the same orbits, should depart from 0.5 by a few percent due to configuration mixing and meson-exchange effects. The experimental result, g=0.538±0.013, is in excellent agreement with recent shell-model calculations and shows a departure from 0.5 by almost 3 standard deviations, thus achieving, for the first time, the precision and accuracy needed to test theory. Proof of the new method opens the way for wide applications including measurements of the magnetism of excited states of exotic nuclei produced as radioactive beams.

  9. Magnetism of an excited self-conjugate nucleus: precise measurement of the g factor of the 2(1)(+) state in (24)Mg.

    Science.gov (United States)

    Kusoglu, A; Stuchbery, A E; Georgiev, G; Brown, B A; Goasduff, A; Atanasova, L; Balabanski, D L; Bostan, M; Danchev, M; Detistov, P; Gladnishki, K A; Ljungvall, J; Matea, I; Radeck, D; Sotty, C; Stefan, I; Verney, D; Yordanov, D T

    2015-02-13

    A precise measurement of the g factor of the first-excited state in the self-conjugate (N=Z) nucleus (24)Mg is performed by a new time-differential recoil-in-vacuum method based on the hyperfine field of hydrogenlike ions. Theory predicts that the g factors of such states, in which protons and neutrons occupy the same orbits, should depart from 0.5 by a few percent due to configuration mixing and meson-exchange effects. The experimental result, g=0.538±0.013, is in excellent agreement with recent shell-model calculations and shows a departure from 0.5 by almost 3 standard deviations, thus achieving, for the first time, the precision and accuracy needed to test theory. Proof of the new method opens the way for wide applications including measurements of the magnetism of excited states of exotic nuclei produced as radioactive beams.

  10. Contribution of the 4f-core-excited states in determination of atomic properties in the promethium isoelectronic sequence

    Science.gov (United States)

    Safronova, U. I.; Safronova, A. S.; Beiersdorfer, P.

    2013-09-01

    The atomic properties of Pm-like ions were comprehensively studied using relativistic atomic codes. Excitation energies of the 4f14nl (with nl=5s, 6s, 5p, 6p, 5d, 6d, and 5f) states in Pm-like ions with nuclear charge Z ranging from 74 to 100 are evaluated within the framework of relativistic many-body theory (RMBPT). First- and second-order Coulomb energies and first- and second-order Breit corrections to the energies are calculated. Two alternative treatments of the Breit interaction are investigated. In the first approach we omit Breit contributions to the Dirac-Fock potential and evaluate Coulomb and Breit-Coulomb corrections through second order perturbatively. In the second approach were included both Coulomb and Breit contributions on the same footing via the Breit-Dirac-Fock potential and then treat the residual Breit and Coulomb interactions perturbatively. The results obtained from the two approaches are compared and discussed. The important question of what is the ground state in Pm-like ions was answered. Properties of the 4f-core-excited states are evaluated using the multiconfiguration relativistic Hebrew University Lawrence Livermore atomic code (hullac code) and the Hartree-Fock-relativistic method (cowan code). We evaluate excitation energies and transition rates in Pm-like ions with nuclear charge Z ranging from 74 to 92. Our large scale calculations include the following set of configurations: 4f145s, 4f145p, 4f135s2, 4f135p2, 4f135s5p, 4f125s25p, 4f125s5p2, and 4f125p3. Trends of excitation energies as function of Z are shown graphically for selected states. Excitation energies, transition rates, and lifetimes in Pm-like tungsten are evaluated with additional inclusion of the 4f115s25p2, 4f115s5p3, 4f105s25p3, and 4f105s5p4 configurations. This represents an unusual example of an atomic system where the even-parity complex [4f145s+4f135s5p+4f125s5p2+4f115s5p3+4f105s5p4] and the odd-parity complex [4f145p+4f135s2+4f125s25p+4f115s25p2+4f105s25p3

  11. An analytical description of balanced steady-state free precession with finite radio-frequency excitation.

    Science.gov (United States)

    Bieri, Oliver

    2011-02-01

    Conceptually, the only flaw in the standard steady-state free precession theory is the assumption of quasi-instantaneous radio-frequency pulses, and 10-20% signal deviations from theory are observed for common balanced steady-state free precession protocols. This discrepancy in the steady-state signal can be resolved by a simple T(2) substitution taking into account reduced transverse relaxation effects during finite radio-frequency excitation. However, finite radio-frequency effects may also affect the transient phase of balanced steady-state free precession, its contrast or its spin-echo nature and thereby have an adverse effect on common steady-state free precession magnetization preparation methods. As a result, an in-depth understanding of finite radio-frequency effects is not only of fundamental theoretical interest but also has direct practical implications. In this article, an analytical solution for balanced steady-state free precession with finite radio-frequency pulses is derived for the transient phase (under ideal conditions) and in the steady state demonstrating that balanced steady-state free precession key features are preserved but revealing an unexpected dependency of finite radio-frequency effects on relaxation times for the transient decay. Finally, the mathematical framework reveals that finite radio-frequency theory can be understood as a generalization of alternating repetition time and fluctuating equilibrium steady-state free precession sequence schemes. Copyright © 2010 Wiley-Liss, Inc.

  12. Photocycloaddition of the T1 excited state of thioinosine to uridine and adenosine.

    Science.gov (United States)

    Wenska, Grazyna; Filipiak, Piotr; Burdziński, Gotard; Pedzinski, Tomasz; Hug, Gordon L; Gdaniec, Zofia

    2009-10-01

    Novel photoadducts were obtained by irradiation of thioinosine (6-thiopurine riboside, TI) in deaerated aqueous solution without and in the presence of uridine and adenosine. Excitation (lambda > 300 nm) of TI to its excited S2 state yields a single bimolecular photoproduct. It is a purine-pyrimidine diriboside in which the purine ring is attached to the amide nitrogen of 6-amino-4-thioxo-5-formamidopyrimidine. When TI was irradiated in the presence of an excess of adenosine, two photoproducts were isolated: diribosides of N-(4,6-diaminopirymidin-5-yl)-N-formyl-6-aminopurine and N-(4-amino-6-formylamino-pyrimidin-5-yl)-6-aminopurine, both containing a purine and a formylaminopyrimidine (Fapy) fragment. The photoreaction of TI with uridine gave two regioisomeric photoproducts identified as diribosides containing either 5- or 6-(purin-6-yl)uracil as aglycones. A multistep mechanism leading to the stable photoproducts is proposed. In the first step of the mechanism, the C=S group of the excited TI undergoes a [2 + 2] cycloaddition regioselectively to the N(7)=C(8) bond of the purine ring or adds in a non-regioselective manner to the C(5)=C(6) bond of uracil. The unstable photoproducts thus formed undergo a series of dark reactions at room temperature. The photocycloaddition reactions originate from the excited T1 state of TI. This conclusion is supported by a combination of evidence from reaction quenching studies using both steady-state quantum yield determinations and kinetics results from nanosecond laser flash photolysis. The T1 state of TI is quenched by other TI molecules in their S0 state (self-quenching) and also by uridine and adenosine, all with large rate constants (0.8-5) x 10(9) M(-1) s(-1). The quantum yields of the reactions are in general very low (phi(R) < or = 8 x 10(-3)). The sources of the inefficiency in the photocycloaddition of TI to uridine and adenosine are discussed. The photoproducts containing the Fapy residue undergo deformylation and

  13. Supersymmetric quantum mechanics, excited state energies and wave functions, and the Rayleigh-Ritz variational principle: a proof of principle study.

    Science.gov (United States)

    Kouri, Donald J; Markovich, Thomas; Maxwell, Nicholas; Bittner, Eric R

    2009-12-31

    In addition to ground state wave functions and energies, excited states and their energies are also obtained in a standard Rayleigh-Ritz variational calculation. However, their accuracy is generally much lower. Using the super-symmetric (SUSY) form of quantum mechanics, we show that better accuracy and more rapid convergence can be obtained by taking advantage of calculations of the ground states of higher sector SUSY Hamiltonians, followed by application of the SUSY "charge operators". Our proof of principle study uses a general family of one-dimensional anharmonic oscillator models. We first obtain the exact, analytic ground states for a general family of anharmonic systems. We give the general, factorized form of the Hamiltonian for the hierarchy that arises in SUSY theory. The "charge" operators can then be used to convert states among the sectors. We illustrate the approach with two specific anharmonic oscillator models. Using the ground state of the second sector Hamiltonian, we show that the corresponding excited state energies and wave functions of the first sector are accurately obtained by applying the charge operators, using significantly smaller basis sets than are required in a standard variational approach applied to the original Schrodinger equation. This is a consequence of the higher accuracy of the Rayleigh-Ritz variational method when applied for ground states.

  14. EOMCC over excited state Hartree-Fock solutions (ESHF-EOMCC: An efficient approach for the entire ground state potential energy curves of higher-order bonds

    Directory of Open Access Journals (Sweden)

    Y. Sajeev

    2015-08-01

    Full Text Available The equation-of-motion coupled cluster (EOMCC method based on the excited state Hartree-Fock (ESHF solutions is shown to be appropriate for computing the entire ground state potential energy curves of strongly correlated higher-order bonds. The new approach is best illustrated for the homolytic dissociation of higher-order bonds in molecules. The required multireference character of the true ground state wavefunction is introduced through the linear excitation operator of the EOMCC method. Even at the singles and doubles level of cluster excitation truncation, the nonparallelity error of the ground state potential energy curve from the ESHF based EOMCC method is small.

  15. Coupled cluster calculations of mean excitation energies of the noble gas atoms He, Ne and Ar and of the H2 molecule

    Science.gov (United States)

    Sauer, Stephan P. A.; Haq, Inam Ul; Sabin, John R.; Oddershede, Jens; Christiansen, Ove; Coriani, Sonia

    2014-03-01

    Using an asymmetric Lanczos chain algorithm for the calculation of the coupled cluster linear response functions at the coupled cluster singles and doubles (CCSD) and coupled cluster singles and approximate iterative doubles (CC2) levels of approximation, we have calculated the mean excitation energies of the noble gases He, Ne and Ar, and of the hydrogen molecule (H2). Convergence with respect to the one-electron basis set was investigated in detail for families of correlation-consistent basis sets including both augmentation and core-valence functions. We find that the electron correlation effects at the CCSD level change the mean excitation energies obtained at the uncorrelated Hartree-Fock level by about 1%. For the two-electron systems He and H2, our CCSD results (for a Lanczos chain length equal to the full excitation space), I0 = 42.28 eV (helium) and I0 = 19.62 eV (H2), correspond to full configuration interaction results and are therefore the exact, non-relativistic theoretical values for the mean excitation energy of these two systems within the Bethe theory for the chosen basis set and, in the case of H2, at the experimental equilibrium geometry.

  16. Photoelectron spectroscopy of hexachloroplatinate-nucleobase complexes: Nucleobase excited state decay observed via delayed electron emission

    Science.gov (United States)

    Sen, Ananya; Matthews, Edward M.; Hou, Gao-Lei; Wang, Xue-Bin; Dessent, Caroline E. H.

    2015-11-01

    We report low-temperature photoelectron spectra of isolated gas-phase complexes of the hexachloroplatinate dianion bound to the nucleobases uracil, thymine, cytosine, and adenine. The spectra display well-resolved, distinct peaks that are consistent with complexes where the hexachloroplatinate dianion is largely intact. Adiabatic electron detachment energies for the hexachloroplatinate-nucleobase complexes are measured as 2.26-2.36 eV. The magnitudes of the repulsive Coulomb barriers (RCBs) of the complexes are all ˜1.7 eV, values that are lower than the RCB of the uncomplexed PtCl62- dianion as a result of charge solvation by the nucleobases. In addition to the resolved spectral features, broad featureless bands indicative of delayed electron detachment are observed in the 193 nm photoelectron spectra of the four clusters. The 266 nm spectra of the PtCl62- ṡ thymine and PtCl62- ṡ adenine complexes also display very prominent delayed electron emission bands. These results mirror recent results on the related Pt(CN)42- ṡ nucleobase complexes [A. Sen et al., J. Phys. Chem. B 119, 11626 (2015)]. The observation of delayed electron emission bands in the PtCl62- ṡ nucleobase spectra obtained in this work, as for the previously studied Pt(CN)42- ṡ nucleobase complexes, is attributed to one-photon excitation of nucleobase-centred excited states that can effectively couple to the electron detachment continuum, producing strong electron detachment. Moreover, the selective, strong excitation of the delayed emission bands in the 266 nm spectra is linked to fundamental differences in the individual nucleobase photophysics at this excitation energy. This strongly supports our previous suggestion that the dianion within these clusters can be viewed as a "dynamic tag" which has the propensity to emit electrons when the attached nucleobase decays over a time scale long enough to allow autodetachment.

  17. Ultrafast excited state dynamics of tris-(2,2'-bipyridine) Ruthenium (II)

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Alvin T.W. [Univ. of California, Berkeley, CA (United States)

    2000-03-01

    Time resolved anisotropy measurements and time dependent transient absorption measurements are used to study the evolution of the photoexcited Franck-Condon state to the formation of the long-lived triplet metal-to-ligand charge-transfer (3MLCT) state in tris-(2,2’-bipyridine) ruthenium. [Ru(bpy)3]2+ represents a large class of inorganic compounds with interesting and potentially applicable photophysical properties. These compounds have generated much interest in the inorganic chemistry community because their photophysical properties are easily manipulated by synthetic chemistry methods. However, little remains known about the processes which govern the evolution horn initial photoexcitation to the formation of the long-lived excited state.

  18. Reactions of excited triplet states of metal substituted myoglobin with dioxygen and quinone.

    Science.gov (United States)

    Papp, S; Vanderkooi, J M; Owen, C S; Holtom, G R; Phillips, C M

    1990-01-01

    The triplet state absorption and phosphorescence of Zn and Pd derivatives of myoglobin were compared. Both metal derivatives exhibit long triplet state lifetimes at room temperature, but whereas the Pd derivative showed exponential decay and an isosbestic point in the transient absorption spectra, the decay of the Zn derivative was nonsingle exponential and the transient absorption spectra showed evidence of more than one excited state species. No difference was seen in triplet quenching by oxygen for either derivative, indicating that differences in the polypeptide chain between the two derivatives are not large enough to affect oxygen penetrability. Quenching was also observed by anthraquinone sulfonate. In this case, the possibility of long-range transfer by an exchange mechanism is considered. PMID:2383630

  19. Ground- and excited-state structural orientation of 2-(2`-hydroxyphenyl)benzazoles in cyclodextrins

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, E.L.; Dey, J.; Warner, I.M. [Louisiana State Univ., Baton Rouge, LA (United States)

    1996-12-12

    The effects of {alpha}-, {beta}-, {gamma}-, and 2,6-di-O-methyl-{beta}-cyclodextrins (CDs) on the ground- and excited-state properties of 2-(2`-hydroxyphenyl)benzoxazole, 2-(2`-hydroxyphenyl)benzothiazole, and 2-(2`-hydroxyphenyl)benzimidazole in aqueous media are investigated. Steady-state fluorescence measurements are used to characterize the interaction of CDs with these azoles. Absorbance measurements indicate increased solubility of the azoles in aqueous solutions of CDs. Measurements of acidity constants (pK{sub a}) and data from induced circular dichroism indicate increased ground- and excited-state acidities of the phenolic protons of the molecules in the presence of CDs and axial orientation of the molecules within the CD cavity, respectively. The data further suggest a planar structure for HBO and a twisted confirmation for both HBT and HBI. The association constants of the inclusion complexes have also been estimated. These studies are further supplemented by comparative spectroscopic studies of 2-(2`-methoxyphenyl)benzothiazole in aqueous solutions of CDs. On the basis of the spectral data acquired, it is believed that the HBA molecules exist as zwitterionic tautomers in the presence of CDs. 35 refs., 6 figs., 2 tabs.

  20. Peroxidase-promoted aerobic oxidation of 2-nitropropane: mechanism of excited state formation.

    Science.gov (United States)

    Indig, G L; Cilento, G

    1987-03-19

    Using sensitized emission, the horseradish peroxidase-catalyzed aerobic oxidation of the toxic pollutant 2-nitropropane to nitrite and acetone is shown to produce the latter in the electronically excited triplet state. In turn, this chemiexcitation implies a hydroperoxide precursor. Taking into account the stoichiometry of the reaction and available isotopic data it is inferred that the hydroperoxide reacts with a second molecule of the substrate (aci form). While triplet acetone formed from isobutanal (enol form) is generated within the enzyme, in the present case triplet acetone is formed in the bulk solution.

  1. First identification of excited states in sup 5 sup 9 Zn

    CERN Document Server

    Andreoiu, C; Fahlander, C; Mineva, M N; Rudolph, D; Axiotis, M; Angelis, G D; Farnea, E; Gadea, A; Kröll, T; Martínez, T; Lenzi, S M; Rossi-Alvarez, C; Marginean, N; Ur, C A

    2002-01-01

    Excited states in sup 5 sup 9 Zn were observed for the first time following the fusion-evaporation reaction sup 2 sup 4 Mg+ sup 4 sup 0 Ca at a beam energy of 60 MeV. The GASP array in conjunction with the ISIS Silicon ball and the NeutronRing allowed for the detection of gamma-rays in coincidence with evaporated light particles. The mirror symmetry of sup 5 sup 9 Zn and sup 5 sup 9 Cu is discussed. (orig.)

  2. The H$_2^+$ ion in a strong magnetic field. Lowest excited states

    OpenAIRE

    Turbiner, A. V.; Vieyra, J. C. Lopez

    2003-01-01

    As a continuation of our previous work ({\\it Phys. Rev. A68, 012504 (2003)}) an accurate study of the lowest $1\\si_g$ and the low-lying excited $1\\si_u$, $2\\si_g$, $1\\pi_{u,g}$, $1\\de_{g,u}$ electronic states of the molecular ion $H_2^+$ is made. Since the parallel configuration where the molecular axis coincides with the magnetic field direction is optimal, this is the only configuration which is considered. The variational method is applied and the {\\it same} trial function is used for diff...

  3. Ab Initio Potential Energy Surfaces for Both the Ground (X̃1A′ and Excited (A∼1A′′ Electronic States of HSiBr and the Absorption and Emission Spectra of HSiBr/DSiBr

    Directory of Open Access Journals (Sweden)

    Anyang Li

    2012-01-01

    Full Text Available Ab initio potential energy surfaces for the ground (X̃1A′ and excited (A˜A′′1 electronic states of HSiBr were obtained by using the single and double excitation coupled-cluster theory with a noniterative perturbation treatment of triple excitations and the multireference configuration interaction with Davidson correction, respectively, employing an augmented correlation-consistent polarized valence quadruple zeta basis set. The calculated vibrational energy levels of HSiBr and DSiBr of the ground and excited electronic states are in excellent agreement with the available experimental band origins. In addition, the absorption and emission spectra of HSiBr and DSiBr were calculated using an efficient single Lanczos propagation method and are in good agreement with the available experimental observations.

  4. Theoretical study of excited-state proton transfer of 2,7-diazaindole·(H2O)2 cluster via hydrogen bonding dynamics

    Science.gov (United States)

    Liu, Yuan; Tang, Zhe; Wang, Yi; Tian, Jing; Fei, Xu; Cao, Fang; Li, GuangYue

    2017-12-01

    A new chromophore, 2,7-diazaindole (2,7-DAI), has been designed to surpass the limitation of 7-azaindole (7AI). It exhibits remarkable water catalyzed proton-transfer properties. Excited-state proton transfer (ESPT) has been investigated based on the time-dependent density functional theory method. The calculated vertical excitation energies in the S0 and S1 states agree well with the experimental values. Proton transfer couples with hydrogen-bonding dynamics between the 2,7-diazaindole and the surrounding water molecules. Hydrogen bond strengthening has been testified in the S1 state based on a comparison of primary bond lengths and hydrogen bond energy that is involved in the intermolecular hydrogen bond between the S0 and S1 states. Frontier molecular further suggest that the electron density changes between the ground and excited states serve as basic driving forces for proton transfer. We determined the potential-energy curves of the S0 and S1 states to characterize the ESPT process. This work explains that the ESPT process for 2,7-DAI·(H2O)2 clusters at the molecular level, and highlights the importance of hydrogen bonding in ESPT.

  5. Coupled cluster calculations of mean excitation energies of the noble gas atoms He, Ne and Ar and of the H2 molecule

    DEFF Research Database (Denmark)

    Sauer, Stephan P. A.; Ul Haq, Inam; Sabin, John R.

    2014-01-01

    Using an asymmetric-Lanczos-chain algorithm for the calculation of the coupled cluster linear response functions at the CCSD and CC2 levels of approximation, we have calculated the mean excitation energies of the noble gases He, Ne and Ar, and of the hydrogen molecule H2. Convergence with respect...... by about 1%. For the two-electron systems He and H2, our CCSD results (for a Lanczos chain length equal to the full excitation space), I0 = 42:28 eV (Helium) and I0 = 19:62 eV (H2), correspond to full conguration interaction results and are therefore the exact, non-relativistic theoretical values...

  6. A semi-empirical formula for calculation of absolute cross sections for ionization and excitation of atoms by electrons

    NARCIS (Netherlands)

    Vriens, L.

    A simple analytical expression for the absolute ionization and (optically allowed) excitation cross sections, as a function of the electron energy, is “derived”. In this expression there are two parameters. The first one is proportional to the optical oscillator strength and the second one is

  7. New measurements of the lifetimes of excited states of Mn55 below 2.7 MeV

    Science.gov (United States)

    Caggiano, J. A.; Hasty, R. D.; Korbly, S. E.; Park, W. H.; Warren, G. A.

    2009-09-01

    The lifetimes of the excited states of Mn55 between 1.5 and 2.7 MeV were measured using nuclear resonance fluorescence. The absolute lifetimes of the excited levels were determined from simultaneous measurements of manganese and aluminum. In this approach, the precisely known aluminum state serves as a means to normalize the results. Our findings differ from the evaluated level lifetimes in the Evaluated Nuclear Structure Data File (ENSDF), but agree with earlier nuclear resonance fluorescence measurements.

  8. Excited-State Dynamics of the Thiopurine Prodrug 6-Thioguanine: Can N9-Glycosylation Affect Its Phototoxic Activity?

    OpenAIRE

    Brennan Ashwood; Steffen Jockusch; Carlos E. Crespo-Hernández

    2017-01-01

    6-Thioguanine, an immunosuppressant and anticancer prodrug, has been shown to induce DNA damage and cell death following exposure to UVA radiation. Its metabolite, 6-thioguanosine, plays a major role in the prodrug’s overall photoreactivity. However, 6-thioguanine itself has proven to be cytotoxic following UVA irradiation, warranting further investigation into its excited-state dynamics. In this contribution, the excited-state dynamics and photochemical properties of 6-thioguanine are studie...

  9. Observation of an Excited B± Meson State with the ATLAS Detector

    DEFF Research Database (Denmark)

    Aad, G.; Abbott, B.; Abdallah, J.

    2014-01-01

    A search for excited states of the B±c meson is performed using 4.9  fb−1 of 7 TeV and 19.2  fb−1 of 8 TeV pp collision data collected by the ATLAS experiment at the LHC. A new state is observed through its hadronic transition to the ground state, with the latter detected in the decay B......±c→J/ψπ±. The state appears in the m(B±cπ+π−)−m(B±c)−2m(π±) mass difference distribution with a significance of 5.2 standard deviations. The mass of the observed state is 6842±4±5  MeV, where the first error is statistical and the second is systematic. The mass and decay of this state are consistent with expectations...... for the second S-wave state of the B±c meson, B±c(2S)....

  10. Generation of excited coherent states for a charged particle in a uniform magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Mojaveri, B., E-mail: bmojaveri@azaruniv.ac.ir [Department of Physics, Azarbaijan Shahid Madani University, P.O. Box 51745-406, Tabriz (Iran, Islamic Republic of); Dehghani, A., E-mail: a-dehghani@tabrizu.ac.ir, E-mail: alireza.dehghani@gmail.com [Department of Physics, Payame Noor University, P.O. Box 19395-3697, Tehran (Iran, Islamic Republic of)

    2015-04-15

    We introduce excited coherent states, |β,α;nгЂ‰≔a{sup †n}|β,αгЂ‰, where n is an integer and states |β,αгЂ‰ denote the coherent states of a charged particle in a uniform magnetic field. States |β,αгЂ‰ minimize the Schrödinger-Robertson uncertainty relation while having the nonclassical properties. It has been shown that the resolution of identity condition is realized with respect to an appropriate measure on the complex plane. Some of the nonclassical features such as sub-Poissonian statistics and quadrature squeezing of these states are investigated. Our results are compared with similar Agarwal’s type photon added coherent states (PACSs) and it is shown that, while photon-counting statistics of |β,α,nгЂ‰ are the same as PACSs, their squeezing properties are different. It is also shown that for large values of |β|, while they are squeezed, they minimize the uncertainty condition. Additionally, it has been demonstrated that by changing the magnitude of the external magnetic field, B{sub ext}, the squeezing effect is transferred from one component to another. Finally, a new scheme is proposed to generate states |β,α;nгЂ‰ in cavities. .

  11. Observation of an excited Bc(±) meson state with the ATLAS detector.

    Science.gov (United States)

    Aad, G; Abbott, B; Abdallah, J; Abdel Khalek, S; Abdinov, O; Aben, R; Abi, B; Abolins, M; AbouZeid, O S; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Adelman, J; Adomeit, S; Adye, T; Agatonovic-Jovin, T; Aguilar-Saavedra, J A; Agustoni, M; Ahlen, S P; Ahmadov, F; Aielli, G; Akerstedt, H; Åkesson, T P A; Akimoto, G; Akimov, A V; Alberghi, G L; Albert, J; Albrand, S; Alconada Verzini, M J; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexandre, G; Alexopoulos, T; Alhroob, M; Alimonti, G; Alio, L; Alison, J; Allbrooke, B M M; Allison, L J; Allport, P P; Almond, J; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Altheimer, A; Alvarez Gonzalez, B; Alviggi, M G; Amako, K; Amaral Coutinho, Y; Amelung, C; Amidei, D; Amor Dos Santos, S P; Amorim, A; Amoroso, S; Amram, N; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anderson, K J; Andreazza, A; Andrei, V; Anduaga, X S; Angelidakis, S; Angelozzi, I; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antonaki, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoki, M; Aperio Bella, L; Apolle, R; Arabidze, G; Aracena, I; Arai, Y; Araque, J P; Arce, A T H; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Arnaez, O; Arnal, V; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Asai, S; Asbah, N; Ashkenazi, A; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Auerbach, B; Augsten, K; Aurousseau, M; Avolio, G; Azuelos, G; Azuma, Y; Baak, M A; Baas, A; Bacci, C; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Backus Mayes, J; Badescu, E; Bagiacchi, P; Bagnaia, P; Bai, Y; Bain, T; Baines, J T; Baker, O K; Balek, P; Balli, F; Banas, E; Banerjee, Sw; Bannoura, A A E; Bansal, V; Bansil, H S; Barak, L; Baranov, S P; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnett, B M; Barnett, R M; Barnovska, Z; Baroncelli, A; Barone, G; Barr, A J; Barreiro, F; Barreiro Guimarães da Costa, J; Bartoldus, R; Barton, A E; Bartos, P; Bartsch, V; Bassalat, A; Basye, A; Bates, R L; Batkova, L; Batley, J R; Battaglia, M; Battistin, M; Bauer, F; Bawa, H S; Beau, T; Beauchemin, P H; Beccherle, R; Bechtle, P; Beck, H P; Becker, K; Becker, S; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bedikian, S; Bednyakov, V A; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, K; Belanger-Champagne, C; Bell, P J; Bell, W H; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Benary, O; Benchekroun, D; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez Garcia, J A; Benjamin, D P; Bensinger, J R; Benslama, K; Bentvelsen, S; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Beringer, J; Bernard, C; Bernat, P; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertsche, D; Besana, M I; Besjes, G J; Bessidskaia, O; Bessner, M; Besson, N; Betancourt, C; Bethke, S; Bhimji, W; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Bieniek, S P; Bierwagen, K; Biesiada, J; Biglietti, M; Bilbao De Mendizabal, J; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blanchard, J-B; Blazek, T; Bloch, I; Blocker, C; Blum, W; Blumenschein, U; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boddy, C R; Boehler, M; Boek, T T; Bogaerts, J A; Bogdanchikov, A G; Bogouch, A; Bohm, C; Bohm, J; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A S; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Borri, M; Borroni, S; Bortfeldt, J; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Boterenbrood, H; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Bousson, N; Boutouil, S; Boveia, A; Boyd, J; Boyko, I R; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brazzale, S F; Brelier, B; Brendlinger, K; Brennan, A J; Brenner, R; Bressler, S; Bristow, K; Bristow, T M; Britton, D; Brochu, F M; Brock, I; Brock, R; Bromberg, C; Bronner, J; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Brown, J; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Brunet, S; Bruni, A; Bruni, G; Bruschi, M; Bryngemark, L; Buanes, T; Buat, Q; Bucci, F; Buchholz, P; Buckingham, R M; Buckley, A G; Buda, S I; Budagov, I A; Buehrer, F; Bugge, L; Bugge, M K; Bulekov, O; Bundock, A C; Burckhart, H; Burdin, S; Burghgrave, B; Burke, S; Burmeister, I; Busato, E; Büscher, D; Büscher, V; Bussey, P; Buszello, C P; Butler, B; Butler, J M; Butt, A I; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Byszewski, M; Cabrera Urbán, S; Caforio, D; Cakir, O; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Calkins, R; Caloba, L P; Calvet, D; Calvet, S; Camacho Toro, R; Camarda, S; Cameron, D; Caminada, L M; Caminal Armadans, R; Campana, S; Campanelli, M; Campoverde, A; Canale, V; Canepa, A; Cano Bret, M; Cantero, J; Cantrill, R; Cao, T; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capua, M; Caputo, R; Cardarelli, R; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Castaneda-Miranda, E; Castelli, A; Castillo Gimenez, V; Castro, N F; Catastini, P; Catinaccio, A; Catmore, J R; Cattai, A; Cattani, G; Caughron, S; Cavaliere, V; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerio, B; Cerny, K; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cerv, M; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chalupkova, I; Chang, P; Chapleau, B; Chapman, J D; Charfeddine, D; Charlton, D G; Chau, C C; Chavez Barajas, C A; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, K; Chen, L; Chen, S; Chen, X; Chen, Y; Cheng, H C; Cheng, Y; Cheplakov, A; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Chiefari, G; Childers, J T; Chilingarov, A; Chiodini, G; Chisholm, A S; Chislett, R T; Chitan, A; Chizhov, M V; Chouridou, S; Chow, B K B; Chromek-Burckhart, D; Chu, M L; Chudoba, J; Chwastowski, J J; Chytka, L; Ciapetti, G; Ciftci, A K; Ciftci, R; Cinca, D; Cindro, V; Ciocio, A; Cirkovic, P; Citron, Z H; Citterio, M; Ciubancan, M; Clark, A; Clark, P J; Clarke, R N; Cleland, W; Clemens, J C; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coffey, L; Cogan, J G; Coggeshall, J; Cole, B; Cole, S; Colijn, A P; Collot, J; Colombo, T; Colon, G; Compostella, G; Conde Muiño, P; Coniavitis, E; Conidi, M C; Connell, S H; Connelly, I A; Consonni, S M; Consorti, V; Constantinescu, S; Conta, C; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cooper-Smith, N J; Copic, K; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Côté, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Crispin Ortuzar, M; Cristinziani, M; Croft, V; Crosetti, G; Cuciuc, C-M; Cuhadar Donszelmann, T; Cummings, J; Curatolo, M; Cuthbert, C; Czirr, H; Czodrowski, P; Czyczula, Z; D'Auria, S; D'Onofrio, M; Da Cunha Sargedas De Sousa, M J; Da Via, C; Dabrowski, W; Dafinca, A; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Daniells, A C; Dano Hoffmann, M; Dao, V; Darbo, G; Darmora, S; Dassoulas, J A; Dattagupta, A; Davey, W; David, C; Davidek, T; Davies, E; Davies, M; Davignon, O; Davison, A R; Davison, P; Davygora, Y; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Nooij, L; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; Dearnaley, W J; Debbe, R; Debenedetti, C; Dechenaux, B; Dedovich, D V; Deigaard, I; Del Peso, J; Del Prete, T; Deliot, F; Delitzsch, C M; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Domenico, A; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Mattia, A; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Di Valentino, D; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Dietzsch, T A; Diglio, S; Dimitrievska, A; Dingfelder, J; Dionisi, C; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; do Vale, M A B; Do Valle Wemans, A; Doan, T K O; Dobos, D; Doglioni, C; Doherty, T; Dohmae, T; Dolejsi, J; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Dris, M; Dubbert, J; Dube, S; Dubreuil, E; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Dudziak, F; Duflot, L; Duguid, L; Dührssen, M; Dunford, M; Duran Yildiz, H; Düren, M; Durglishvili, A; Dwuznik, M; Dyndal, M; Ebke, J; Edson, W; Edwards, N C; Ehrenfeld, W; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Endo, M; Engelmann, R; Erdmann, J; Ereditato, A; Eriksson, D; Ernis, G; Ernst, J; Ernst, M; Ernwein, J; Errede, D; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Esposito, B; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Favareto, A; Fayard, L; Federic, P; Fedin, O L; Fedorko, W; Fehling-Kaschek, M; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Fernandez Perez, S; Ferrag, S; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; Ferreira de Lima, D E; Ferrer, A; Ferrere, D; Ferretti, C; Ferretto Parodi, A; Fiascaris, M; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, A; Fischer, J; Fisher, W C; Fitzgerald, E A; Flechl, M; Fleck, I; Fleischmann, P; Fleischmann, S; Fletcher, G T; Fletcher, G; Flick, T; Floderus, A; Flores Castillo, L R; Florez Bustos, A C; Flowerdew, M J; Formica, A; Forti, A; Fortin, D; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Franchino, S; Francis, D; Franklin, M; Franz, S; Fraternali, M; French, S T; Friedrich, C; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fulsom, B G; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gadatsch, S; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallo, V; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Gandrajula, R P; Gao, J; Gao, Y S; Garay Walls, F M; Garberson, F; García, C; García Navarro, J E; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Gatti, C; Gaudio, G; Gaur, B; Gauthier, L; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Ge, P; Gecse, Z; Gee, C N P; Geerts, D A A; Geich-Gimbel, Ch; Gellerstedt, K; Gemme, C; Gemmell, A; Genest, M H; Gentile, S; George, M; George, S; Gerbaudo, D; Gershon, A; Ghazlane, H; Ghodbane, N; Giacobbe, B; Giagu, S; Giangiobbe, V; Giannetti, P; Gianotti, F; Gibbard, B; Gibson, S M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giordano, R; Giorgi, F M; Giorgi, F M; Giraud, P F; Giugni, D; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Glonti, G L; Goblirsch-Kolb, M; Goddard, J R; Godfrey, J; Godlewski, J; Goeringer, C; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gomez Fajardo, L S; Gonçalo, R; Goncalves Pinto Firmino Da Costa, J; Gonella, L; González de la Hoz, S; Gonzalez Parra, G; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Gouighri, M; Goujdami, D; Goulette, M P; Goussiou, A G; Goy, C; Gozpinar, S; Grabas, H M X; Graber, L; Grabowska-Bold, I; Grafström, P; Grahn, K-J; Gramling, J; Gramstad, E; Grancagnolo, S; Grassi, V; Gratchev, V; Gray, H M; Graziani, E; Grebenyuk, O G; Greenwood, Z D; Gregersen, K; Gregor, I M; Grenier, P; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grishkevich, Y V; Grivaz, J-F; Grohs, J P; Grohsjean, A; Gross, E; Grosse-Knetter, J; Grossi, G C; Groth-Jensen, J; Grout, Z J; Guan, L; Guescini, F; Guest, D; Gueta, O; Guicheney, C; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Gunther, J; Guo, J; Gupta, S; Gutierrez, P; Gutierrez Ortiz, N G; Gutschow, C; Guttman, N; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haddad, N; Haefner, P; Hageböck, S; Hajduk, Z; Hakobyan, H; Haleem, M; Hall, D; Halladjian, G; Hamacher, K; Hamal, P; Hamano, K; Hamer, M; Hamilton, A; Hamilton, S; Hamnett, P G; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Hanke, P; Hanna, R; Hansen, J B; Hansen, J D; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harper, D; Harrington, R D; Harris, O M; Harrison, P F; Hartjes, F; Hasegawa, S; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauschild, M; Hauser, R; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hayashi, T; Hayden, D; Hays, C P; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heim, T; Heinemann, B; Heinrich, L; Hejbal, J; Helary, L; Heller, C; Heller, M; Hellman, S; Hellmich, D; Helsens, C; Henderson, J; Henderson, R C W; Heng, Y; Hengler, C; Henrichs, A; Henriques Correia, A M; Henrot-Versille, S; Hensel, C; Herbert, G H; Hernández Jiménez, Y; Herrberg-Schubert, R; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hickling, R; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillert, S; Hillier, S J; Hinchliffe, I; Hines, E; Hirose, M; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoffman, J; Hoffmann, D; Hofmann, J I; Hohlfeld, M; Holmes, T R; Hong, T M; Hooft van Huysduynen, L; Hostachy, J-Y; Hou, S; Hoummada, A; Howard, J; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hsu, C; Hsu, P J; Hsu, S-C; Hu, D; Hu, X; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hülsing, T A; Hurwitz, M; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Ideal, E; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikematsu, K; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Inamaru, Y; Ince, T; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Irles Quiles, A; Isaksson, C; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Iturbe Ponce, J M; Iuppa, R; Ivarsson, J; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jackson, B; Jackson, M; Jackson, P; Jaekel, M R; Jain, V; Jakobs, K; Jakobsen, S; Jakoubek, T; Jakubek, J; Jamin, D O; Jana, D K; Jansen, E; Jansen, H; Janssen, J; Janus, M; Jarlskog, G; Javadov, N; Javůrek, T; Jeanty, L; Jejelava, J; Jeng, G-Y; Jennens, D; Jenni, P; Jentzsch, J; Jeske, C; Jézéquel, S; Ji, H; Ji, W; Jia, J; Jiang, Y; Jimenez Belenguer, M; Jin, S; Jinaru, A; Jinnouchi, O; Joergensen, M D; Johansson, K E; Johansson, P; Johns, K A; Jon-And, K; Jones, G; Jones, R W L; Jones, T J; Jongmanns, J; Jorge, P M; Joshi, K D; Jovicevic, J; Ju, X; Jung, C A; Jungst, R M; Jussel, P; Juste Rozas, A; Kaci, M; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kajomovitz, E; Kalderon, C W; Kama, S; Kamenshchikov, A; Kanaya, N; Kaneda, M; Kaneti, S; Kantserov, V A; Kanzaki, J; Kaplan, B; Kapliy, A; Kar, D; Karakostas, K; Karastathis, N; Karnevskiy, M; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kashif, L; Kasieczka, G; Kass, R D; Kastanas, A; Kataoka, Y; Katre, A; Katzy, J; Kaushik, V; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazama, S; Kazanin, V F; Kazarinov, M Y; Keeler, R; Kehoe, R; Keil, M; Keller, J S; Kempster, J J; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Kessoku, K; Keung, J; Khalil-zada, F; Khandanyan, H; Khanov, A; Khodinov, A; Khomich, A; Khoo, T J; Khoriauli, G; Khoroshilov, A; Khovanskiy, V; Khramov, E; Khubua, J; Kim, H Y; Kim, H; Kim, S H; Kimura, N; Kind, O; King, B T; King, M; King, R S B; King, S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kiss, F; Kittelmann, T; Kiuchi, K; Kladiva, E; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klioutchnikova, T; Klok, P F; Kluge, E-E; Kluit, P; Kluth, S; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koevesarki, P; Koffas, T; Koffeman, E; Kogan, L A; Kohlmann, S; Kohout, Z; Kohriki, T; Koi, T; Kolanoski, H; Koletsou, I; Koll, J; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; König, S; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Korotkov, V A; Kortner, O; Kortner, S; Kostyukhin, V V; Kotov, V M; Kotwal, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kral, V; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Kraus, J K; Kravchenko, A; Kreiss, S; Kretz, M; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Kruker, T; Krumnack, N; Krumshteyn, Z V; Kruse, A; Kruse, M C; Kruskal, M; Kubota, T; Kuday, S; Kuehn, S; Kugel, A; Kuhl, A; Kuhl, T; Kukhtin, V; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunkle, J; Kupco, A; Kurashige, H; Kurochkin, Y A; Kurumida, R; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; La Rosa, A; La Rotonda, L; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Laier, H; Lambourne, L; Lammers, S; Lampen, C L; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lang, V S; Lankford, A J; Lanni, F; Lantzsch, K; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Le, B T; Le Dortz, O; Le Guirriec, E; Le Menedeu, E; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, H; Lee, J S H; Lee, S C; Lee, L; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Lehmacher, M; Lehmann Miotto, G; Lei, X; Leight, W A; Leisos, A; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzen, G; Lenzi, B; Leone, R; Leone, S; Leonhardt, K; Leonidopoulos, C; Leontsinis, S; Leroy, C; Lester, C G; Lester, C M; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Lewis, A; Lewis, G H; Leyko, A M; Leyton, M; Li, B; Li, B; Li, H; Li, H L; Li, L; Li, L; Li, S; Li, Y; Liang, Z; Liao, H; Liberti, B; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limbach, C; Limosani, A; Lin, S C; Lin, T H; Linde, F; Lindquist, B E; Linnemann, J T; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, M; Liu, Y; Livan, M; Livermore, S S A; Lleres, A; Llorente Merino, J; Lloyd, S L; Lo Sterzo, F; Lobodzinska, E; Loch, P; Lockman, W S; Loddenkoetter, T; Loebinger, F K; Loevschall-Jensen, A E; Loginov, A; Loh, C W; Lohse, T; Lohwasser, K; Lokajicek, M; Lombardo, V P; Long, B A; Long, J D; Long, R E; Lopes, L; Lopez Mateos, D; Lopez Paredes, B; Lopez Paz, I; Lorenz, J; Lorenzo Martinez, N; Losada, M; Loscutoff, P; Lou, X; Lounis, A; Love, J; Love, P A; Lowe, A J; Lu, F; Lubatti, H J; Luci, C; Lucotte, A; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Lungwitz, M; Lynn, D; Lysak, R; Lytken, E; Ma, H; Ma, L L; Maccarrone, G; Macchiolo, A; Machado Miguens, J; Macina, D; Madaffari, D; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeno, M; Maeno, T; Magradze, E; Mahboubi, K; Mahlstedt, J; Mahmoud, S; Maiani, C; Maidantchik, C; Maier, A A; Maio, A; Majewski, S; Makida, Y; Makovec, N; Mal, P; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyshev, V M; Malyukov, S; Mamuzic, J; Mandelli, B; Mandelli, L; Mandić, I; Mandrysch, R; Maneira, J; Manfredini, A; Manhaes de Andrade Filho, L; Manjarres Ramos, J A; Mann, A; Manning, P M; Manousakis-Katsikakis, A; Mansoulie, B; Mantifel, R; Mapelli, L; March, L; Marchand, J F; Marchiori, G; Marcisovsky, M; Marino, C P; Marjanovic, M; Marques, C N; Marroquim, F; Marsden, S P; Marshall, Z; Marti, L F; Marti-Garcia, S; Martin, B; Martin, B; Martin, T A; Martin, V J; Martin dit Latour, B; Martinez, H; Martinez, M; Martin-Haugh, S; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massol, N; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Mattmann, J; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazzaferro, L; Mc Goldrick, G; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McCubbin, N A; McFarlane, K W; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McPherson, R A; Meade, A; Mechnich, J; Medinnis, M; Meehan, S; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Melachrinos, C; Mellado Garcia, B R; Meloni, F; Mengarelli, A; Menke, S; Meoni, E; Mercurio, K M; Mergelmeyer, S; Meric, N; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Merritt, H; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Middleton, R P; Migas, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Milstein, D; Minaenko, A A; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mirabelli, G; Mitani, T; Mitrevski, J; Mitsou, V A; Mitsui, S; Miucci, A; Miyagawa, P S; Mjörnmark, J U; Moa, T; Mochizuki, K; Mohapatra, S; Mohr, W; Molander, S; Moles-Valls, R; Mönig, K; Monini, C; Monk, J; Monnier, E; Montejo Berlingen, J; Monticelli, F; Monzani, S; Moore, R W; Moraes, A; Morange, N; Moreno, D; Moreno Llácer, M; Morettini, P; Morgenstern, M; Morii, M; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Morvaj, L; Moser, H G; Mosidze, M; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, K; Mueller, T; Mueller, T; Muenstermann, D; Munwes, Y; Murillo Quijada, J A; Murray, W J; Musheghyan, H; Musto, E; Myagkov, A G; Myska, M; Nackenhorst, O; Nadal, J; Nagai, K; Nagai, R; Nagai, Y; Nagano, K; Nagarkar, A; Nagasaka, Y; Nagel, M; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Nanava, G; Narayan, R; Nattermann, T; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Nef, P D; Negri, A; Negri, G; Negrini, M; Nektarijevic, S; Nelson, A; Nelson, T K; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neves, R M; Nevski, P; Newman, P R; Nguyen, D H; Nickerson, R B; Nicolaidou, R; Nicquevert, B; Nielsen, J; Nikiforou, N; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolics, K; Nikolopoulos, K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nodulman, L; Nomachi, M; Nomidis, I; Norberg, S; Nordberg, M; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Nunes Hanninger, G; Nunnemann, T; Nurse, E; Nuti, F; O'Brien, B J; O'grady, F; O'Neil, D C; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, M I; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Ohshima, T; Okamura, W; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Olchevski, A G; Olivares Pino, S A; Oliveira Damazio, D; Oliver Garcia, E; Olszewski, A; Olszowska, J; Onofre, A; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Oropeza Barrera, C; Orr, R S; Osculati, B; Ospanov, R; Otero y Garzon, G; Otono, H; Ouchrif, M; Ouellette, E A; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Ovcharova, A; Owen, M; Ozcan, V E; Ozturk, N; Pachal, K; Pacheco Pages, A; Padilla Aranda, C; Pagáčová, M; Pagan Griso, S; Paganis, E; Pahl, C; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palestini, S; Palka, M; Pallin, D; Palma, A; Palmer, J D; Pan, Y B; Panagiotopoulou, E; Panduro Vazquez, J G; Pani, P; Panikashvili, N; Panitkin, S; Pantea, D; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Paredes Hernandez, D; Parker, M A; Parodi, F; Parsons, J A; Parzefall, U; Pasqualucci, E; Passaggio, S; Passeri, A; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N D; Pater, J R; Patricelli, S; Pauly, T; Pearce, J; Pedersen, M; Pedraza Lopez, S; Pedro, R; Peleganchuk, S V; Pelikan, D; Peng, H; Penning, B; Penwell, J; Perepelitsa, D V; Perez Codina, E; Pérez García-Estañ, M T; Perez Reale, V; Perini, L; Pernegger, H; Perrino, R; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petrolo, E; Petrucci, F; Pettersson, N E; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Piegaia, R; Pignotti, D T; Pilcher, J E; Pilkington, A D; Pina, J; Pinamonti, M; Pinder, A; Pinfold, J L; Pingel, A; Pinto, B; Pires, S; Pitt, M; Pizio, C; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Poddar, S; Podlyski, F; Poettgen, R; Poggioli, L; Pohl, D; Pohl, M; Polesello, G; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Portell Bueso, X; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Pralavorio, P; Pranko, A; Prasad, S; Pravahan, R; Prell, S; Price, D; Price, J; Price, L E; Prieur, D; Primavera, M; Proissl, M; Prokofiev, K; Prokoshin, F; Protopapadaki, E; Protopopescu, S; Proudfoot, J; Przybycien, M; Przysiezniak, H; Ptacek, E; Puddu, D; Pueschel, E; Puldon, D; Purohit, M; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Quarrie, D R; Quayle, W B; Queitsch-Maitland, M; Quilty, D; Qureshi, A; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Rajagopalan, S; Rammensee, M; Randle-Conde, A S; Rangel-Smith, C; Rao, K; Rauscher, F; Rave, T C; Ravenscroft, T; Raymond, M; Read, A L; Readioff, N P; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Rehnisch, L; Reisin, H; Relich, M; Rembser, C; Ren, H; Ren, Z L; Renaud, A; Rescigno, M; Resconi, S; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Ridel, M; Rieck, P; Rieger, J; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Roda, C; Rodrigues, L; Roe, S; Røhne, O; Rolli, S; Romaniouk, A; Romano, M; Romero Adam, E; Rompotis, N; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, M; Rosendahl, P L; Rosenthal, O; Rossetti, V; Rossi, E; Rossi, L P; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rubinskiy, I; Rud, V I; Rudolph, C; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryder, N C; Saavedra, A F; Sacerdoti, S; Saddique, A; Sadeh, I; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Saleem, M; Salek, D; Sales De Bruin, P H; Salihagic, D; Salnikov, A; Salt, J; Salvachua Ferrando, B M; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sampsonidis, D; Sanchez, A; Sánchez, J; Sanchez Martinez, V; Sandaker, H; Sandbach, R L; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, T; Sandoval, C; Sandstroem, R; Sankey, D P C; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Santoyo Castillo, I; Sapp, K; Sapronov, A; Saraiva, J G; Sarrazin, B; Sartisohn, G; Sasaki, O; Sasaki, Y; Sauvage, G; Sauvan, E; Savard, P; Savu, D O; Sawyer, C; Sawyer, L; Saxon, D H; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schaefer, D; Schaefer, R; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Scherzer, M I; Schiavi, C; Schieck, J; Schillo, C; Schioppa, M; Schlenker, S; Schmidt, E; Schmieden, K; Schmitt, C; Schmitt, S; Schneider, B; Schnellbach, Y J; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schorlemmer, A L S; Schott, M; Schouten, D; Schovancova, J; Schramm, S; Schreyer, M; Schroeder, C; Schuh, N; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schwegler, Ph; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Schwoerer, M; Sciacca, F G; Scifo, E; Sciolla, G; Scott, W G; Scuri, F; Scutti, F; Searcy, J; Sedov, G; Sedykh, E; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekula, S J; Selbach, K E; Seliverstov, D M; Sellers, G; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Serre, T; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shamim, M; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shehu, C Y; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shiyakova, M; Shmeleva, A; Shochet, M J; Short, D; Shrestha, S; Shulga, E; Shupe, M A; Shushkevich, S; Sicho, P; Sidiropoulou, O; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silver, Y; Silverstein, D; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simoniello, R; Simonyan, M; Sinervo, P; Sinev, N B; Sipica, V; Siragusa, G; Sircar, A; Sisakyan, A N; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skottowe, H P; Skovpen, K Yu; Skubic, P; Slater, M; Slavicek, T; Sliwa, K; Smakhtin, V; Smart, B H; Smestad, L; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, K M; Smizanska, M; Smolek, K; Snesarev, A A; Snidero, G; Snyder, S; Sobie, R; Socher, F; Soffer, A; Soh, D A; Solans, C A; Solar, M; Solc, J; Soldatov, E Yu; Soldevila, U; Solfaroli Camillocci, E; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Song, H Y; Soni, N; Sood, A; Sopczak, A; Sopko, B; Sopko, V; Sorin, V; Sosebee, M; Soualah, R; Soueid, P; Soukharev, A M; South, D; Spagnolo, S; Spanò, F; Spearman, W R; Spettel, F; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; Spreitzer, T; Spurlock, B; St Denis, R D; Staerz, S; Stahlman, J; Stamen, R; Stanecka, E; Stanek, R W; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Staszewski, R; Stavina, P; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stern, S; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, E; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Subramania, Hs; Subramaniam, R; Succurro, A; Sugaya, Y; Suhr, C; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, Y; Svatos, M; Swedish, S; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Taccini, C; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takahashi, Y; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tam, J Y C; Tan, K G; Tanaka, J; Tanaka, R; Tanaka, S; Tanaka, S; Tanasijczuk, A J; Tannenwald, B B; Tannoury, N; Tapprogge, S; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Tavares Delgado, A; Tayalati, Y; Taylor, F E; Taylor, G N; Taylor, W; Teischinger, F A; Teixeira Dias Castanheira, M; Teixeira-Dias, P; Temming, K K; Ten Kate, H; Teng, P K; Teoh, J J; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Therhaag, J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, E N; Thompson, P D; Thompson, P D; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Thong, W M; Thun, R P; Tian, F; Tibbetts, M J; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tiouchichine, E; Tipton, P; Tisserant, S; Todorov, T; Todorova-Nova, S; Toggerson, B; Tojo, J; Tokár, S; Tokushuku, K; Tollefson, K; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Topilin, N D; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Tran, H L; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Triplett, N; Trischuk, W; Trocmé, B; Troncon, C; Trottier-McDonald, M; Trovatelli, M; True, P; Trzebinski, M; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tudorache, A; Tudorache, V; Tuna, A N; Tupputi, S A; Turchikhin, S; Turecek, D; Turk Cakir, I; Turra, R; Tuts, P M; Tykhonov, A; Tylmad, M; Tyndel, M; Uchida, K; Ueda, I; Ueno, R; Ughetto, M; Ugland, M; Uhlenbrock, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urbaniec, D; Urquijo, P; Usai, G; Usanova, A; Vacavant, L; Vacek, V; Vachon, B; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Valladolid Gallego, E; Vallecorsa, S; Valls Ferrer, J A; Van Den Wollenberg, W; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; Van Der Leeuw, R; van der Ster, D; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vanguri, R; Vaniachine, A; Vankov, P; Vannucci, F; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vazeille, F; Vazquez Schroeder, T; Veatch, J; Veloso, F; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Vigne, R; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinogradov, V B; Virzi, J; Vivarelli, I; Vives Vaque, F; Vlachos, S; Vladoiu, D; Vlasak, M; Vogel, A; Vogel, M; Vokac, P; Volpi, G; Volpi, M; von der Schmitt, H; von Radziewski, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vu Anh, T; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, P; Wagner, W; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wall, R; Waller, P; Walsh, B; Wang, C; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, X; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Warsinsky, M; Washbrook, A; Wasicki, C; Watkins, P M; Watson, A T;