WorldWideScience

Sample records for excited molecules controlling

  1. Can Internal Conversion BE Controlled by Mode-Specific Vibrational Excitation in Polyatomic Molecules

    Science.gov (United States)

    Portnov, Alexander; Epshtein, Michael; Bar, Ilana

    2017-06-01

    Nonadiabatic processes, dominated by dynamic passage of reactive fluxes through conical intersections (CIs) are considered to be appealing means for manipulating reaction paths. One approach that is considered to be effective in controlling the course of dissociation processes is the selective excitation of vibrational modes containing a considerable component of motion. Here, we have chosen to study the predissociation of the model test molecule, methylamine and its deuterated isotopologues, excited to well-characterized quantum states on the first excited electronic state, S_{1}, by following the N-H(D) bond fission dynamics through sensitive H(D) photofragment probing. The branching ratios between slow and fast H(D) photofragments, the internal energies of their counter radical photofragments and the anisotropy parameters for fast H photofragments, confirm correlated anomalies for predissociation initiated from specific rovibronic states, reflecting the existence of a dynamic resonance in each molecule. This resonance strongly depends on the energy of the initially excited rovibronic states, the evolving vibrational mode on the repulsive S_{1} part during N-H(D) bond elongation, and the manipulated passage through the CI that leads to radicals excited with C-N-H(D) bending and preferential perpendicular bond breaking, relative to the photolyzing laser polarization, in molecules containing the NH_{2} group. The indicated resonance plays an important role in the bifurcation dynamics at the CI and can be foreseen to exist in other photoinitiated processes and to control their outcome.

  2. Electron-excited molecule interactions

    Energy Technology Data Exchange (ETDEWEB)

    Christophorou, L.G. (Oak Ridge National Lab., TN (USA) Tennessee Univ., Knoxville, TN (USA). Dept. of Physics)

    1991-01-01

    In this paper the limited but significant knowledge to date on electron scattering from vibrationally/rotationally excited molecules and electron scattering from and electron impact ionization of electronically excited molecules is briefly summarized and discussed. The profound effects of the internal energy content of a molecule on its electron attachment properties are highlighted focusing in particular on electron attachment to vibrationally/rotationally and to electronically excited molecules. The limited knowledge to date on electron-excited molecule interactions clearly shows that the cross sections for certain electron-molecule collision processes can be very different from those involving ground state molecules. For example, optically enhanced electron attachment studies have shown that electron attachment to electronically excited molecules can occur with cross sections 10{sup 6} to 10{sup 7} times larger compared to ground state molecules. The study of electron-excited molecule interactions offers many experimental and theoretical challenges and opportunities and is both of fundamental and technological significance. 54 refs., 15 figs.

  3. Non-adiabatic rotational excitation of dipolar molecule under the ...

    Indian Academy of Sciences (India)

    adiabatically by half cycle pulse. (HCP) is controlled using the second ultrashort HCP. ... excited to create a rotational quantum wave packet, a .... Non-adiabatic rotational excitation of dipolar molecule under the influence of delayed pulses. 1215.

  4. The photodissociation and reaction dynamics of vibrationally excited molecules

    Energy Technology Data Exchange (ETDEWEB)

    Crim, F.F. [Univ. of Wisconsin, Madison (United States)

    1993-12-01

    This research determines the nature of highly vibrationally excited molecules, their unimolecular reactions, and their photodissociation dynamics. The goal is to characterize vibrationally excited molecules and to exploit that understanding to discover and control their chemical pathways. Most recently the author has used a combination of vibrational overtone excitation and laser induced fluorescence both to characterize vibrationally excited molecules and to study their photodissociation dynamics. The author has also begun laser induced grating spectroscopy experiments designed to obtain the electronic absorption spectra of highly vibrationally excited molecules.

  5. Exciting H2 Molecules for Graphene Functionalization

    DEFF Research Database (Denmark)

    Kyhl, Line; Bisson, Regis; Balog, Richard

    2018-01-01

    Hydrogen functionalization of graphene by exposure to vibrationally excited H2 molecules is investigated by combined scanning tunneling microscopy, high resolution electron energy loss spectroscopy, x-ray photoemission spectroscopy measurements and density functional theory calculations. The meas......Hydrogen functionalization of graphene by exposure to vibrationally excited H2 molecules is investigated by combined scanning tunneling microscopy, high resolution electron energy loss spectroscopy, x-ray photoemission spectroscopy measurements and density functional theory calculations....... The measurements reveal that vibrationally excited H2 molecules dissociatively adsorb on graphene on Ir(111) resulting in nano-patterned hydrogen functionalization structures. Calculations demonstrate that the presence of the Ir surface below the graphene lowers the H2 dissociative adsorption barrier and allows...... for the adsorption reaction at energies well below the dissociation threshold of the H-H bond. The first reacting H2 molecule must contain considerable vibrational energy to overcome the dissociative adsorption barrier. However, this initial adsorption further activates the surface resulting in reduced barriers...

  6. Electron Excitation of High Dipole Moment Molecules

    Science.gov (United States)

    Goldsmith, Paul; Kauffmann, Jens

    2018-01-01

    Emission from high-dipole moment molecules such as HCN allows determination of the density in molecular clouds, and is often considered to trace the “dense” gas available for star formation. We assess the importance of electron excitation in various environments. The ratio of the rate coefficients for electrons and H2 molecules, ~10^5 for HCN, yields the requirements for electron excitation to be of practical importance if n(H2) 10^{-5}, where the numerical factors reflect critical values n_c(H2) and X^*(e-). This indicates that in regions where a large fraction of carbon is ionized, X(e-) will be large enough to make electron excitation significant. The situation is in general similar for other “high density tracers”, including HCO+, CN, and CS. But there are significant differences in the critical electron fractional abundance, X^*(e-), defined by the value required for equal effect from collisions with H2 and e-. Electron excitation is, for example, unimportant for CO and C+. Electron excitation may be responsible for the surprisingly large spatial extent of the emission from dense gas tracers in some molecular clouds (Pety et al. 2017, Kauffmann, Goldsmith et al. 2017, A&A, submitted). The enhanced estimates for HCN abundances and HCN/CO and HCN/HCO+ ratios observed in the nuclear regions of luminous galaxies may be in part a result of electron excitation of high dipole moment tracers. The importance of electron excitation will depend on detailed models of the chemistry, which may well be non-steady state and non--static.

  7. Two-Photon Excitation of Conjugated Molecules in Solution: Spectroscopy and Excited-State Dynamics

    Science.gov (United States)

    Elles, Christopher G.; Houk, Amanda L.; de Wergifosse, Marc; Krylov, Anna

    2017-06-01

    We examine the two-photon absorption (2PA) spectroscopy and ultrafast excited-state dynamics of several conjugated molecules in solution. By controlling the relative wavelength and polarization of the two photons, the 2PA measurements provide a more sensitive means of probing the electronic structure of a molecule compared with traditional linear absorption spectra. We compare experimental spectra of trans-stilbene, cis-stilbene, and phenanthrene in solution with the calculated spectra of the isolated molecules using EOM-EE-CCSD. The calculated spectra show good agreement with the low-energy region of the experimental spectra (below 6 eV) after suppressing transitions with strong Rydberg character and accounting for solvent and method-dependent shifts of the valence transitions. We also monitor the excited state dynamics following two-photon excitation to high-lying valence states of trans-stilbene up to 6.5 eV. The initially excited states rapidly relax to the lowest singlet excited state and then follow the same reaction path as observed following direct one-photon excitation to the lowest absorption band at 4.0 eV.

  8. Electron Impact Excitation-Ionization of Molecules

    Science.gov (United States)

    Ali, Esam Abobakr A.

    In the last few decades, the study of atomic collisions by electron-impact has made significant advances. The most difficult case to study is electron impact ionization of molecules for which many approximations have to be made and the validity of these approximations can only be checked by comparing with experiment. In this thesis, I have examined the Molecular three-body distorted wave (M3DW) or Molecular four-body distorted wave (M4DW) approximations for electron-impact ionization. These models use a fully quantum mechanical approach where all particles are treated quantum mechanically and the post collision interaction (PCI) is treated to all orders of perturbation. These electron impact ionization collisions play central roles in the physics and chemistry of upper atmosphere, biofuel, the operation of discharges and lasers, radiation induced damage in biological material like damage to DNA by secondary electrons, and plasma etching processes. For the M3DW model, I will present results for electron impact single ionization of small molecules such as Water, Ethane, and Carbon Dioxide and the much larger molecules Tetrahydrofuran, phenol, furfural, 1-4 Benzoquinone. I will also present results for the four-body problem in which there are two target electrons involved in the collision. M4DW results will be presented for dissociative excitation-ionization of orientated D2. I will show that M4DW calculations using a variational wave function for the ground state that included s- and p- orbital states give better agreement to the experimental measurements than a ground state approximated as a product of two 1s-type Dyson orbitals.

  9. Catalytic synthesis of ammonia using vibrationally excited nitrogen molecules

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Henriksen, Niels Engholm; Billing, Gert D.

    1992-01-01

    are vibrationally excited to states with quantum numbers 3-10. The rate and equilibrium constants for the process using vibrationally excited nitrogen molecules are calculated and expressions for the reaction rates are derived. A comparison with the ordinary process, where the nitrogen molecules...

  10. Control of population of excited nitrogen molecules by mixing hydrogen in low pressure discharge; Chisso jun`antei reiki bunshi mitsudo no quenching ni yoru seigyo no kento

    Energy Technology Data Exchange (ETDEWEB)

    Uematsu, K.; Yumoto, M.; Sakai, T. [Musashi Institute of Technology, Tokyo (Japan)

    1998-06-01

    The authors have studied on surface treatment of PTFE by a low pressure discharge. It is deduced that excited nitrogen molecules contribute to introduce polar components on the surface. To confirm the speculation, we tried to change population of metastable nitrogen N2 (A{sup 3}{Sigma}u{sup +}) by quenching precursor N2 (B{sup 3}{pi}g), with hydrogen molecule. The decrease of relaxation time which indicates a change of excited molecule and measured by emission spectroscopy using a time after glow method was obtained. As a result, the relaxation times of N2 (B{sup 3}{pi}g) and N2 (A{sup 3}{Sigma}u{sup +}) decreased to 55% and 20% respectively, when mixing ratio of hydrogen was 3%. It was also deduced that hydrogen atom may take a part in a quenching process of N2 (A{sup 3}{Sigma}u{sup +}). 14 refs., 11 figs., 1 tab.

  11. Spectroscopy and reactions of vibrationally excited transient molecules

    Energy Technology Data Exchange (ETDEWEB)

    Dai, H.L. [Univ. of Pennsylvania, Philadelphia (United States)

    1993-12-01

    Spectroscopy, energy transfer and reactions of vibrationally excited transient molecules are studied through a combination of laser-based excitation techniques and efficient detection of emission from the energized molecules with frequency and time resolution. Specifically, a Time-resolved Fourier Transform Emission Spectroscopy technique has been developed for detecting dispersed laser-induced fluorescence in the IR, visible and UV regions. The structure and spectroscopy of the excited vibrational levels in the electronic ground state, as well as energy relaxation and reactions induced by specific vibronic excitations of a transient molecule can be characterized from time-resolved dispersed fluorescence in the visible and UV region. IR emissions from highly vibrational excited levels, on the other hand, reveal the pathways and rates of collision induced vibrational energy transfer.

  12. Excitation energy transfer from dye molecules to doped graphene

    Indian Academy of Sciences (India)

    Recently, we have reported theoretical studies on the rate of energy transfer from an electronically excited molecule to graphene. It was found that graphene is a very efficient quencher of the electronically excited states and that the rate -4. The process was found to be effective up to 30 which is well beyond the ...

  13. Spectroscopic probes of vibrationally excited molecules at chemically significant energies

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, T.R. [Univ. of Rochester, NY (United States)

    1993-12-01

    This project involves the application of multiple-resonance spectroscopic techniques for investigating energy transfer and dissociation dynamics of highly vibrationally excited molecules. Two major goals of this work are: (1) to provide information on potential energy surfaces of combustion related molecules at chemically significant energies, and (2) to test theoretical modes of unimolecular dissociation rates critically via quantum-state resolved measurements.

  14. a simple a simple excitation control excitation control excitation

    African Journals Online (AJOL)

    eobe

    synchronous generator from no-load to full load while maintaining the rated terminal voltage on the stator terminals. The d-q rotor reference frame equations were used for the calculations and it is shown that values of the field voltages determined follow a simple quadratic relationship that offer a very simple control scheme, ...

  15. Reaction dynamics of electronically excited alkali atoms with simple molecules

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, P.S.; Mestdagh, J.; Schmidt, H.; Vernon, M.F. Covinsky, M.H.; Balko, B.A.; Lee, Y.T.

    1985-09-01

    The reactions of electronically excited sodium atoms with simple molecules have been studied in crossed molecular beams experiments. Electronically excited Na(3/sup 2/P/sub 3/2/,4/sup 2/D/sub 5/2/, and 5/sup 2/S/sub 1/2) were produced by optical pumping using single frequency dye lasers. The effects of the symmetry, and the orientation and alignment of the excited orbital on the chemical reactivity, and detailed information on the reaction dynamics were derived from measurements of the product angular and velocity distributions.

  16. Reaction dynamics of electronically excited alkali atoms with simpler molecules

    Science.gov (United States)

    Weiss, P. S.; Mestdagh, J. M.; Schmidt, H.; Vernon, M. F.; Covinsky, M. H.; Balko, B. A.; Lee, Y. T.

    1985-05-01

    The reactions of electronically excited sodium atoms with simple molecules have been studied in crossed molecular beams experiments. Electronically excited Na(3(2)P(sub 3/2), 4(2)D(sub 5/2), and 5(2)S(sub 1/2) were produced by optical pumping using single frequency dye lasers. The effects of the symmetry, and the orientation and alignment of the excited orbital on the chemical reactivity, and detailed information on the reaction dynamics were derived from measurements of the product angular and velocity distributions.

  17. Alternating-laser excitation : single-molecule FRET and beyond

    NARCIS (Netherlands)

    Hohlbein, Johannes; Craggs, Timothy D.; Cordes, Thorben

    2014-01-01

    The alternating-laser excitation (ALEX) scheme continues to expand the possibilities of fluorescence-based assays to study biological entities and interactions. Especially the combination of ALEX and single-molecule Forster Resonance Energy Transfer (smFRET) has been very successful as ALEX enables

  18. Alternating-laser excitation: single-molecule FRET and beyond

    NARCIS (Netherlands)

    Hohlbein, J.C.; Craggs, T.D.; Cordes, T.

    2014-01-01

    The alternating-laser excitation (ALEX) scheme continues to expand the possibilities of fluorescence-based assays to study biological entities and interactions. Especially the combination of ALEX and single-molecule Förster Resonance Energy Transfer (smFRET) has been very successful as ALEX enables

  19. Excitation energy transfer from dye molecules to doped graphene

    Indian Academy of Sciences (India)

    Excitation energy transfer from dye molecules to doped graphene. #. R S SWATHIa and K L SEBASTIANb,∗. aSchool of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695 016, India. bDepartment of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, ...

  20. The reaction dynamics of alkali dimer molecules and electronically excited alkali atoms with simple molecules

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Hongtao [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1995-12-01

    This dissertation presents the results from the crossed molecular beam studies on the dynamics of bimolecular collisions in the gas phase. The primary subjects include the interactions of alkali dimer molecules with simple molecules, and the inelastic scattering of electronically excited alkali atoms with O2. The reaction of the sodium dimers with oxygen molecules is described in Chapter 2. Two reaction pathways were observed for this four-center molecule-molecule reaction, i.e. the formations of NaO2 + Na and NaO + NaO. NaO2 products exhibit a very anisotropic angular distribution, indicating a direct spectator stripping mechanism for this reaction channel. The NaO formation follows the bond breaking of O2, which is likely a result of a charge transfer from Na2 to the excited state orbital of O2-. The scattering of sodium dimers from ammonium and methanol produced novel molecules, NaNH3 and Na(CH3OH), respectively. These experimental observations, as well as the discussions on the reaction dynamics and the chemical bonding within these molecules, will be presented in Chapter 3. The lower limits for the bond dissociation energies of these molecules are also obtained. Finally, Chapter 4 describes the energy transfer between oxygen molecules and electronically excited sodium atoms.

  1. Nanoscale control of phonon excitations in graphene

    Science.gov (United States)

    Kim, Hyo Won; Ko, Wonhee; Ku, Jiyeon; Ryu, Seunghwa; Hwang, Sung Woo

    Phonons, which are collective excitations in a lattice of atoms or molecules, play a major role in determining various physical properties of condensed matter, such as thermal and electrical conductivities. In particular, phonons in graphene interact strongly with electrons; however, unlike in usual metals, these interactions between phonons and massless Dirac fermions appear to mirror the rather complicated physics of those between light and relativistic electrons. Therefore, a fundamental understanding of the underlying physics through systematic studies of phonon interactions and excitations in graphene is crucial for realizing graphene-based devices. In this study, we demonstrate that the local phonon properties of graphene can be controlled at the nanoscale by tuning the interaction strength between graphene and an underlying Pt substrate. Using scanning probe methods, we determine that the reduced interaction due to embedded Ar atoms facilitates electron-phonon excitations, further influencing phonon-assisted inelastic electron tunneling.

  2. Laser Control of Atoms and Molecules

    CERN Document Server

    Letkhov, V S

    2007-01-01

    This text treats laser light as a universal tool to control matter at the atomic and molecular level, one of the most exciting applications of lasers. Lasers can heat matter, cool atoms to ultra-low temperatures where they show quantum collective behaviour, and can act selectively on specific atoms and molecules for their detection and separation.

  3. Selective excitation of a vibrational level within the electronic ground state of a polyatomic molecule with ultra pulses

    CSIR Research Space (South Africa)

    de Clercq, L

    2010-09-01

    Full Text Available Coherent control of the upper vibrational level populations in the electronic ground state of a polyatomic molecule was simulated. Results indicate that selective excitation of a specific upper state level is possible...

  4. Selective excitation of a vibrational level within the electronic ground state of a polyatomic molecule with ultra short pulses

    CSIR Research Space (South Africa)

    De Clercq, L

    2010-09-01

    Full Text Available Coherent control of the upper vibrational level populations in the electronic ground state of a polyatomic molecule was simulated. Results indicate that selective excitation of a specific upper state level is possible....

  5. Inner-shell excitation and ionic fragmentation of molecules

    Energy Technology Data Exchange (ETDEWEB)

    Hitchcock, A.P.; Tyliszczak, T. [McMaster Univ., Hamilton, Ontario (Canada); Cavell, R.G. [Univ. of Alberta, Edmonton (Canada)] [and others

    1997-04-01

    Inner-shell excitation and associated decay spectroscopies are site specific probes of electronic and geometrical structure and photoionization dynamics. X-ray absorption probes the geometric and electronic structure, while time-of-flight mass spectrometry with multi-coincidence detection provides information on the photofragmentation dynamics of the initially produced inner-shell state. Auger decay of inner-shell excited and ionised states is an efficient source of multiply charged ions. The charge separation and fragmentation of these species, studied by photoelectron-photoion-photoion coincidence (also called charge separation mass spectrometry) gives insights into bonding and electronic structure. In molecules, the dependence of the fragmentation process on the X-ray energy can reveal cases of site and/or state selective fragmentation. At the ALS the authors have examined the soft X-ray spectroscopy and ionic fragmentation of a number of molecules, including carboranes, silylenes, phosphorus halides, SF{sub 6} and CO{sub 2}. Their work is illustrated using results from the carborane and PF{sub 3} studies.

  6. Reactive scattering of electronically excited alkali atoms with molecules

    Energy Technology Data Exchange (ETDEWEB)

    Mestdagh, J.M.; Balko, B.A.; Covinsky, M.H.; Weiss, P.S.; Vernon, M.F.; Schmidt, H.; Lee, Y.T.

    1987-06-01

    Representative families of excited alkali atom reactions have been studied using a crossed beam apparatus. For those alkali-molecule systems in which reactions are also known for ground state alkali and involve an early electron transfer step, no large differences are observed in the reactivity as Na is excited. More interesting are the reactions with hydrogen halides (HCl): it was found that adding electronic energy into Na changes the reaction mechanism. Early electron transfer is responsible of Na(5S, 4D) reactions, but not of Na(3P) reactions. Moreover, the NaCl product scattering is dominated by the HCl/sup -/ repulsion in Na(5S, 4D) reactions, and by the NaCl-H repulsion in the case of Na(3P). The reaction of Na with O/sub 2/ is of particular interest since it was found to be state specific. Only Na(4D) reacts, and the reaction requires restrictive constraints on the impact parameter and the reactants' relative orientation. The reaction with NO/sub 2/ is even more complex since Na(4D) leads to the formation of NaO by two different pathways. It must be mentioned however, that the identification of NaO as product in these reactions has yet to be confirmed.

  7. Synaptic control of motoneuronal excitability

    DEFF Research Database (Denmark)

    Rekling, J C; Funk, G D; Bayliss, D A

    2000-01-01

    Movement, the fundamental component of behavior and the principal extrinsic action of the brain, is produced when skeletal muscles contract and relax in response to patterns of action potentials generated by motoneurons. The processes that determine the firing behavior of motoneurons are therefore...... important in understanding the transformation of neural activity to motor behavior. Here, we review recent studies on the control of motoneuronal excitability, focusing on synaptic and cellular properties. We first present a background description of motoneurons: their development, anatomical organization...... current, hyperpolarization-activated inward current, Ca(2+) channels, or presynaptic release processes. Together, these numerous inputs mediate and modify incoming motor commands, ultimately generating the coordinated firing patterns that underlie muscle contractions during motor behavior....

  8. Versatile single-molecule multi-color excitation and detection fluorescence setup for studying biomolecular dynamics

    KAUST Repository

    Sobhy, M. A.

    2011-11-07

    Single-molecule fluorescence imaging is at the forefront of tools applied to study biomolecular dynamics both in vitro and in vivo. The ability of the single-molecule fluorescence microscope to conduct simultaneous multi-color excitation and detection is a key experimental feature that is under continuous development. In this paper, we describe in detail the design and the construction of a sophisticated and versatile multi-color excitation and emission fluorescence instrument for studying biomolecular dynamics at the single-molecule level. The setup is novel, economical and compact, where two inverted microscopes share a laser combiner module with six individual laser sources that extend from 400 to 640 nm. Nonetheless, each microscope can independently and in a flexible manner select the combinations, sequences, and intensities of the excitation wavelengths. This high flexibility is achieved by the replacement of conventional mechanical shutters with acousto-optic tunable filter (AOTF). The use of AOTF provides major advancement by controlling the intensities, duration, and selection of up to eight different wavelengths with microsecond alternation time in a transparent and easy manner for the end user. To our knowledge this is the first time AOTF is applied to wide-field total internal reflection fluorescence (TIRF) microscopy even though it has been commonly used in multi-wavelength confocal microscopy. The laser outputs from the combiner module are coupled to the microscopes by two sets of four single-mode optic fibers in order to allow for the optimization of the TIRF angle for each wavelength independently. The emission is split into two or four spectral channels to allow for the simultaneous detection of up to four different fluorophores of wide selection and using many possible excitation and photoactivation schemes. We demonstrate the performance of this new setup by conducting two-color alternating excitation single-molecule fluorescence resonance energy

  9. Versatile single-molecule multi-color excitation and detection fluorescence setup for studying biomolecular dynamics

    Science.gov (United States)

    Sobhy, M. A.; Elshenawy, M. M.; Takahashi, M.; Whitman, B. H.; Walter, N. G.; Hamdan, S. M.

    2011-11-01

    Single-molecule fluorescence imaging is at the forefront of tools applied to study biomolecular dynamics both in vitro and in vivo. The ability of the single-molecule fluorescence microscope to conduct simultaneous multi-color excitation and detection is a key experimental feature that is under continuous development. In this paper, we describe in detail the design and the construction of a sophisticated and versatile multi-color excitation and emission fluorescence instrument for studying biomolecular dynamics at the single-molecule level. The setup is novel, economical and compact, where two inverted microscopes share a laser combiner module with six individual laser sources that extend from 400 to 640 nm. Nonetheless, each microscope can independently and in a flexible manner select the combinations, sequences, and intensities of the excitation wavelengths. This high flexibility is achieved by the replacement of conventional mechanical shutters with acousto-optic tunable filter (AOTF). The use of AOTF provides major advancement by controlling the intensities, duration, and selection of up to eight different wavelengths with microsecond alternation time in a transparent and easy manner for the end user. To our knowledge this is the first time AOTF is applied to wide-field total internal reflection fluorescence (TIRF) microscopy even though it has been commonly used in multi-wavelength confocal microscopy. The laser outputs from the combiner module are coupled to the microscopes by two sets of four single-mode optic fibers in order to allow for the optimization of the TIRF angle for each wavelength independently. The emission is split into two or four spectral channels to allow for the simultaneous detection of up to four different fluorophores of wide selection and using many possible excitation and photoactivation schemes. We demonstrate the performance of this new setup by conducting two-color alternating excitation single-molecule fluorescence resonance energy

  10. Chemical reactions of water molecules on Ru(0001) induced by selective excitation of vibrational modes

    Energy Technology Data Exchange (ETDEWEB)

    Mugarza, Aitor; Shimizu, Tomoko K.; Ogletree, D. Frank; Salmeron, Miquel

    2009-05-07

    Tunneling electrons in a scanning tunneling microscope were used to excite specific vibrational quantum states of adsorbed water and hydroxyl molecules on a Ru(0 0 0 1) surface. The excited molecules relaxed by transfer of energy to lower energy modes, resulting in diffusion, dissociation, desorption, and surface-tip transfer processes. Diffusion of H{sub 2}O molecules could be induced by excitation of the O-H stretch vibration mode at 445 meV. Isolated molecules required excitation of one single quantum while molecules bonded to a C atom required at least two quanta. Dissociation of single H{sub 2}O molecules into H and OH required electron energies of 1 eV or higher while dissociation of OH required at least 2 eV electrons. In contrast, water molecules forming part of a cluster could be dissociated with electron energies of 0.5 eV.

  11. Quantum control of vibrational excitations in a heteronuclear ...

    Indian Academy of Sciences (India)

    WINTEC

    Quantum control of vibrational excitations in a heteronuclear diatomic molecule. SITANSH SHARMA, PURSHOTAM SHARMA and HARJINDER SINGH* ... electric field is calculated and used for the subsequent quantum dynamics, within the dipole approxima- tion. ... properties of interference of dynamical paths to regulate ...

  12. Quantum control of vibrational excitations in a heteronuclear ...

    Indian Academy of Sciences (India)

    Optimal control theory is applied to obtain infrared laser pulses for selective vibrational excitation in a heteronuclear diatomic molecule. The problem of finding the optimized field is phrased as a maximization of a cost functional which depends on the laser field. A time dependent Gaussian factor is introduced in the field ...

  13. Time Resolved Energy Transfer and Photodissociation of Vibrationally Excited Molecules

    National Research Council Canada - National Science Library

    Crim, F. F

    2007-01-01

    ...) in solution and in the gas phase. This second experiment is one of the few direct comparisons of intramolecular vibrational energy flow in a solvated molecule with that in the same molecule isolated in a gas...

  14. Renormalization of Optical Excitations in Molecules near a Metal Surface

    DEFF Research Database (Denmark)

    García Lastra, Juan Maria; Thygesen, Kristian Sommer

    2011-01-01

    The lowest electronic excitations of benzene and a set of donor-acceptor molecular complexes are calculated for the gas phase and on the Al(111) surface using the many-body Bethe-Salpeter equation. The energy of the charge-transfer excitations obtained for the gas phase complexes are found to be ...

  15. selective excitation of vibrational modes of polyatomic molecule

    Indian Academy of Sciences (India)

    Abstract. Mode-selective dynamics of triatomic molecule in the electronic ground state under continuous wave laser pulse is investigated for the discrete vibrational bound states. A non-perturbative approach has been used to analyse the vibrational couplings and dynamics of the molecule. Keywords. Polyatomic molecule ...

  16. Surface chemical reactions induced by molecules electronically-excited in the gas

    DEFF Research Database (Denmark)

    Petrunin, Victor V.

    2011-01-01

    We present a model suggesting high chemical activity of electronically-excited molecules colliding with an isolator surface. Initial photochemical event is accounted for as the result of molecular evolution on the electronically-excited potential energy surface (PES), where acceleration and align...... beams inducing the reaction can be used to distinguish the new process we try to investigate from chemical reactions induced by photoexcitation within adsorbed molecules and/or gas phase photolysis....

  17. Polarized Fluorescence from Nitrogen Molecules Excited by Polarized Electron Impact

    Science.gov (United States)

    Maseberg, J. W.; Furst, J. E.; Gay, T. J.

    2005-05-01

    We have measured the optical excitation function and relative Stokes parameters for 388±5 nm fluorescence from spin-polarized electron impact excitation of molecular N2. Specifically, the circular polarization fraction normalized to the incident electron spin, P3/Pe, was found to be +1(5)% at an electron energy of 30eV. This result, even though it contains contributions from 6 different triplet spectral lines, is consistent with the data of the Münster group [1] who measured the N2 337 nm C3πu - B3πg (ν'=0, ν=0) transition and found P3 Mette et al., Verhandl. DPG (VI) 29, 462 (1994). [2] A.S. Green et al., Phys. Rev. Lett. 92, 093201 (2004).

  18. Half-Collision Studies of Excited Metal Atom - Molecule Interactions

    Science.gov (United States)

    Kleiber, P. D.; Chen, J.; Wong, T. H.

    1998-05-01

    We report on state-resolved studies of excited state molecular dynamics, including both reactive and nonreactive (energy transfer) processes using half-collision techniques. Scattering state spectroscopy is used to investigate electronic orbital alignment effects on the reactive quenching of excited p-state alkali and alkaline earth metal atoms in collisions with hydrogen and methane. These experiments give information about the shape of the Born-Oppenheimer potential energy surfaces for the collision complex, and about the nonadiabatic interactions that couple the surfaces. Experimental results indicate two distinct reaction mechanisms are operative in the alkali metal-hydrogen quenching system. In complementary experiments, the spectroscopy and dissociation dynamics of weakly bound metal ion-hydrocarbon bimolecular complexes are studied using photofragmentation spectroscopic techniques in a tandem time-of- flight mass spectrometer. Results suggest that the quenching mechanism involves metal ion activation of the hydrocarbon bonds througha bond- stretch insertion process.

  19. Controlling nonlinear waves in excitable media

    Energy Technology Data Exchange (ETDEWEB)

    Puebla, Hector [Departamento de Energia, Universidad Autonoma Metropolitana, Av. San Pablo No. 180, Reynosa-Tamaulipas, Azcapotzalco 02200, DF, Mexico (Mexico)], E-mail: hpuebla@correo.azc.uam.mx; Martin, Roland [Laboratoire de Modelisation et d' Imagerie en Geosciences, CNRS UMR and INRIA Futurs Magique-3D, Universite de Pau (France); Alvarez-Ramirez, Jose [Division de Ciencias Basicas e Ingenieria, Universidad Autonoma Metropolitana-Iztapalapa (Mexico); Aguilar-Lopez, Ricardo [Departamento de Biotecnologia y Bioingenieria, CINVESTAV-IPN (Mexico)

    2009-01-30

    A new feedback control method is proposed to control the spatio-temporal dynamics in excitable media. Applying suitable external forcing to the system's slow variable, successful suppression and control of propagating pulses as well as spiral waves can be obtained. The proposed controller is composed by an observer to infer uncertain terms such as diffusive transport and kinetic rates, and an inverse-dynamics feedback function. Numerical simulations shown the effectiveness of the proposed feedback control approach.

  20. Investigation of Multiconfigurational Short-Range Density Functional Theory for Electronic Excitations in Organic Molecules

    DEFF Research Database (Denmark)

    Hubert, Mickaël; Hedegård, Erik D.; Jensen, Hans Jørgen Aa

    2016-01-01

    -srDFT for a selected benchmark set of electronic excitations of organic molecules, covering the most common types of organic chromophores. This investigation confirms the expectation that the MC-srDFT method is accurate for a broad range of excitations and comparable to accurate wave function methods such as CASPT2......Computational methods that can accurately and effectively predict all types of electronic excitations for any molecular system are missing in the toolbox of the computational chemist. Although various Kohn-Sham density-functional methods (KS-DFT) fulfill this aim in some cases, they become...... and double excitations have been promising, it is nevertheless important that the accuracy of MC-srDFT is at least comparable to the best KS-DFT methods also for organic molecules that are typically of single-reference character. In this paper we therefore systematically investigate the performance of MC...

  1. Calculated low-energy electron-impact vibrational excitation cross sections for CO2 molecule

    CERN Document Server

    Laporta, V; Celiberto, R

    2016-01-01

    Vibrational-excitation cross sections of ground electronic state of carbon dioxide molecule by electron-impact through the CO2-(2\\Pi) shape resonance is considered in the separation of the normal modes approximation. Resonance curves and widths are computed for each vibrational mode. The calculations assume decoupling between normal modes and employ the local complex potential model for the treatment of the nuclear dynamics, usually adopted for the electron-scattering involving diatomic molecules. Results are presented for excitation up to 10 vibrational levels in each mode and comparison with data present in the literature is discussed.

  2. Structure and conformational dynamics of molecules in the excited electronic states: theory and experiment

    Science.gov (United States)

    Godunov, I. A.; Bataev, V. A.; Maslov, D. V.; Yakovlev, N. N.

    2017-01-01

    The structure of conformational non-rigid molecules in the excited electronic states are investigated by joint theoretical and experimental methods. The theoretical part of work consist of two stages. In first stage the ab initio quantum-chemical calculations are carried out using high level methods. In second stage the vibrational problems of the various dimensions are solved by variational method for vibrations of large amplitude. In experimental part of work the vibronic spectra are investigated: gas-phase absorption and also, fluorescence excitation spectra of jet-cooled molecules. Some examples are considered.

  3. A Simple Hubbard Model for the Excited States of $\\pi$ Conjugated -acene Molecules

    CERN Document Server

    Sadeq, Z S

    2015-01-01

    In this paper we present a model that elucidates in a simple way the electronic excited states of $\\pi$ conjugated -acene molecules such as tetracene, pentacene, and hexacene. We use a tight-binding and truncated Hubbard model written in the electron-hole basis to describe the low lying excitations with reasonable quantitative accuracy. We are able to produce semi-analytic wavefunctions for the electronic states of the system, which allows us to compute the density correlation functions for various states such as the ground state, the first two singly excited states, and the lowest lying doubly excited state. We show that in this lowest lying doubly excited state, a state which has been speculated as to being involved in the singlet fission process, the electrons and holes behave in a triplet like manner.

  4. Studies of photoionization processes from ground-state and excited-state atoms and molecules

    Energy Technology Data Exchange (ETDEWEB)

    Ederer, D.L.; Parr, A.C.; West, J.B.

    1982-01-01

    Recent triply-differential photoelectron spectroscopy experiments designed for the study of correlation effects in atoms and molecules are described. Final-state symmetry of the n=2 state of helium has been determined. The non-Franck-Condon behavior of vibrational branching ratios and large variations of the angular asymmetry parameter has been observed for shape resonances and autoionizing resonances in CO and other molecules. Recent observations of the photoionization of excited sodium atoms are also described.

  5. Simultaneous Multicolor Single-Molecule Tracking with Single-Laser Excitation via Spectral Imaging.

    Science.gov (United States)

    Huang, Tao; Phelps, Carey; Wang, Jing; Lin, Li-Jung; Bittel, Amy; Scott, Zubenelgenubi; Jacques, Steven; Gibbs, Summer L; Gray, Joe W; Nan, Xiaolin

    2018-01-23

    Single-molecule tracking (SMT) offers rich information on the dynamics of underlying biological processes, but multicolor SMT has been challenging due to spectral cross talk and a need for multiple laser excitations. Here, we describe a single-molecule spectral imaging approach for live-cell tracking of multiple fluorescent species at once using a single-laser excitation. Fluorescence signals from all the molecules in the field of view are collected using a single objective and split between positional and spectral channels. Images of the same molecule in the two channels are then combined to determine both the location and the identity of the molecule. The single-objective configuration of our approach allows for flexible sample geometry and the use of a live-cell incubation chamber required for live-cell SMT. Despite a lower photon yield, we achieve excellent spatial (20-40 nm) and spectral (10-15 nm) resolutions comparable to those obtained with dual-objective, spectrally resolved Stochastic Optical Reconstruction Microscopy. Furthermore, motions of the fluorescent molecules did not cause loss of spectral resolution owing to the dual-channel spectral calibration. We demonstrate SMT in three (and potentially more) colors using spectrally proximal fluorophores and single-laser excitation, and show that trajectories of each species can be reliably extracted with minimal cross talk. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. The generation of stationary π-electron rotations in chiral aromatic ring molecules possessing non-degenerate excited states.

    Science.gov (United States)

    Yamaki, Masahiro; Teranishi, Yoshiaki; Nakamura, Hiroki; Lin, Sheng Hsien; Fujimura, Yuichi

    2016-01-21

    The electron angular momentum is a fundamental quantity of high-symmetry aromatic ring molecules and finds many applications in chemistry such as molecular spectroscopy. The stationary angular momentum or unidirectional rotation of π electrons is generated by the excitation of a degenerated electronic excited state by a circularly-polarized photon. For low-symmetry aromatic ring molecules having non-degenerate states, such as chiral aromatic ring molecules, on the other hand, whether stationary angular momentum can be generated or not is uncertain and has not been clarified so far. We have found by both theoretical treatments and quantum optimal control (QOC) simulations that a stationary angular momentum can be generated even from a low-symmetry aromatic ring molecule. The generation mechanism can be explained in terms of the creation of a dressed-state, and the maximum angular momentum is generated by the dressed state with an equal contribution from the relevant two excited states in a simple three-electronic state model. The dressed state is formed by inducing selective nonresonant transitions between the ground and each excited state by two lasers with the same frequency but having different polarization directions. The selective excitation can be carried out by arranging each photon-polarization vector orthogonal to the electronic transition moment of the other transition. We have successfully analyzed the results of the QOC simulations of (P)-2,2'-biphenol of axial chirality in terms of the analytically determined optimal laser fields. The present findings may open up new types of chemical dynamics and spectroscopy by utilizing strong stationary ring currents and current-induced magnetic fields, which are created at a local site of large compounds such as biomolecules.

  7. Bibliography on electron collisions with molecules: rotational and vibrational excitations, 1980-2000

    Energy Technology Data Exchange (ETDEWEB)

    Itikawa, Yukikazu [Institute of Space and Astronautical Science, Sagamihara, Kanagawa (Japan)

    2001-04-01

    A list of papers reporting cross sections for electron-impact excitations of rotational and vibrational states of molecules is presented. The list includes both the theoretical and the experimental papers published in 1980-2000. An index by molecular species is provided at the end of the bibliography. (author)

  8. Vibrational excitation of hydrogen molecules by two-photon absorption and third-harmonic generation

    Science.gov (United States)

    Miyamoto, Yuki; Hara, Hideaki; Hiraki, Takahiro; Masuda, Takahiko; Sasao, Noboru; Uetake, Satoshi; Yoshimi, Akihiro; Yoshimura, Koji; Yoshimura, Motohiko

    2018-01-01

    We report the coherent excitation of the vibrational state of hydrogen molecules by two-photon absorption and the resultant third-harmonic generation (THG). Parahydrogen molecules cooled by liquid nitrogen are irradiated by mid-infrared nanosecond pulses at 4.8 μm with a nearly Fourier-transform-limited linewidth. The first excited vibrational state of parahydrogen is populated by two-photon absorption of the mid-infrared photons. Because of the narrow linewidth of the mid-infrared pulses, coherence between the ground and excited states is sufficient to induce higher-order processes. Near-infrared photons from the THG are observed at 1.6 μm. The dependence of the intensity of the near-infrared radiation on mid-infrared pulse energy, target pressure, and cell length is determined. We used a simple formula for THG with consideration of realistic experimental conditions to explain the observed results.

  9. Vibronic excitation of single molecules: a new technique for studying low-temperature dynamics.

    Science.gov (United States)

    Kiraz, Alper; Ehrl, Moritz; Hellriegel, Christian; Bräuchle, Christoph; Zumbusch, Andreas

    2005-05-01

    Herein, we present vibronic excitation and detection of purely electronic zero-phonon lines (ZPL) of single molecules as a new tool for investigating dynamics at cryogenic temperatures. Applications of this technique to study crystalline and amorphous matrix materials are presented. In the crystalline environment, spectrally stable ZPLs are observed at moderate excitation powers. By contrast, investigations at higher excitation intensities reveal the opening of local degrees of freedom and spectral jumps, which we interpret as the observation of elementary steps in the melting of a crystal. We compare these results to spectral single-molecule trajectories recorded in a polymer. The way in which much more complicated spectral features can be analysed is shown. Surprisingly, pronounced spectral shifts on a previously not accessible large energy scale are observed, which are hard to reconcile with the standard two-level model system used to describe low-temperature dynamics in disordered systems.

  10. Laser control of molecular excitations in stochastic dissipative media.

    Science.gov (United States)

    Tremblay, Jean Christophe

    2011-05-07

    In the present work, ideas for controlling photochemical reactions in dissipative environments using shaped laser pulses are presented. New time-local control algorithms for the stochastic Schrödinger equation are introduced and compared to their reduced density matrix analog. The numerical schemes rely on time-dependent targets for guiding the reaction along a preferred path. The methods are tested on the vibrational control of adsorbates at metallic surfaces and on the ultrafast electron dynamics in a strong dissipative medium. The selective excitation of the specific states is achieved with improved yield when using the new algorithms. Both methods exhibit similar convergence behavior and results compare well with those obtained using local optimal control for the reduced density matrix. The favorable scaling of the methods allows to tackle larger systems and to control photochemical reactions in dissipative media of molecules with many more degrees of freedom.

  11. Coherent control of single molecules at room temperature.

    Science.gov (United States)

    Brinks, Daan; Hildner, Richard; Stefani, Fernando D; van Hulst, Niek F

    2011-01-01

    The detection of individual molecules allows to unwrap the inhomogeneously broadened ensemble and reveal the spatial disorder and temporal dynamics of single entities. During 20 years of increasing sophistication this approach has provided valuable insights into biomolecular interactions, cellular processes, polymer dynamics, etc. Unfortunately the detection of fluorescence, i.e. incoherent spontaneous emission, has essentially kept the time resolution of the single molecule approach out of the range of ultrafast coherent processes. In parallel coherent control of quantum interferences has developed as a powerful method to study and actively steer ultrafast molecular interactions and energy conversion processes. However the degree of coherent control that can be reached in ensembles is restricted, due to the intrinsic inhomogeneity of the synchronized subset. Clearly the only way to overcome spatio-temporal disorder and achieve key control is by addressing individual units: coherent control of single molecules. Here we report the observation and manipulation of vibrational wave-packet interference in individual molecules at ambient conditions. We show that adapting the time and phase distribution of the optical excitation field to the dynamics of each molecule results in a superior degree of control compared to the ensemble approach. Phase reversal does invert the molecular response, confirming the control of quantum coherence. Time-phase maps show a rich diversity in excited state dynamics between different, yet chemically identical, molecules. The presented approach is promising for single-unit coherent control in multichromophoric systems. Especially the role of coherence in the energy transfer of single antenna complexes under physiological conditions is subject of great attention. Now the role of energy disorder and variation in coupling strength can be explored, beyond the inhomogeneously broadened ensemble.

  12. Resonant electron-impact excitation of vibrational modes in polyatomic molecules

    Science.gov (United States)

    Cartwright, David C.; Trajmar, Sandor

    1996-04-01

    Measured differential cross sections (DCSs) for electron-impact excitation of bending vibrational modes involving an odd number of vibrational quanta in 0953-4075/29/8/018/img5 by 4 eV incident energy electrons display a strong trend to zero for forward and backward scattering which is characteristic of `symmetry-forbidden' transitions. This DCS behaviour is postulated here to be produced by a Feshbach resonant mechanism involving a low-lying bent excited state of 0953-4075/29/8/018/img5. The model described here identifies three additional low-lying bent excited states of 0953-4075/29/8/018/img5 which could also be parent states for core-excited Feshbach resonances, one of which may play a role in dissociative attachment in this 3.5 - 5.0 eV energy region. The resonant vibrational excitation mechanism proposed here is also believed to be operative in other polyatomic molecules and could be investigated by performing selected electron energy-loss measurements within the lowest energy resonance regions of the molecules 0953-4075/29/8/018/img8 and 0953-4075/29/8/018/img9.

  13. Excited-state annihilation reduces power dependence of single-molecule FRET experiments.

    Science.gov (United States)

    Nettels, Daniel; Haenni, Dominik; Maillot, Sacha; Gueye, Moussa; Barth, Anders; Hirschfeld, Verena; Hübner, Christian G; Léonard, Jérémie; Schuler, Benjamin

    2015-12-28

    Single-molecule Förster resonance energy transfer (FRET) experiments are an important method for probing biomolecular structure and dynamics. The results from such experiments appear to be surprisingly independent of the excitation power used, in contradiction to the simple photophysical mechanism usually invoked for FRET. Here we show that excited-state annihilation processes are an essential cause of this behavior. Singlet-singlet annihilation (SSA) is a mechanism of fluorescence quenching induced by Förster-type energy transfer between two fluorophores while they are both in their first excited singlet states (S1S1), which is usually neglected in the interpretation of FRET experiments. However, this approximation is only justified in the limit of low excitation rates. We demonstrate that SSA is evident in fluorescence correlation measurements for the commonly used FRET pair Alexa 488/Alexa 594, with a rate comparable to the rate of energy transfer between the donor excited state and the acceptor ground state (S1S0) that is exploited in FRET experiments. Transient absorption spectroscopy shows that SSA occurs exclusively via energy transfer from Alexa 488 to Alexa 594. Excitation-power dependent microsecond correlation experiments support the conclusion based on previously reported absorption spectra of triplet states that singlet-triplet annihilation (STA) analogously mediates energy transfer if the acceptor is in the triplet state. The results indicate that both SSA and STA have a pronounced effect on the overall FRET process and reduce the power dependence of the observed FRET efficiencies. The existence of annihilation processes thus seems to be essential for using FRET as a reliable spectroscopic ruler at the high excitation rates commonly employed in single-molecule spectroscopy.

  14. Delta self-consistent field method to obtain potential energy surfaces of excited molecules on surfaces

    DEFF Research Database (Denmark)

    Gavnholt, Jeppe; Olsen, Thomas; Engelund, Mads

    2008-01-01

    We present a modification of the Delta self-consistent field (Delta SCF) method of calculating energies of excited states in order to make it applicable to resonance calculations of molecules adsorbed on metal surfaces, where the molecular orbitals are highly hybridized. The Delta SCF approximation...... is a density-functional method closely resembling standard density-functional theory (DFT), the only difference being that in Delta SCF one or more electrons are placed in higher lying Kohn-Sham orbitals instead of placing all electrons in the lowest possible orbitals as one does when calculating the ground......-state energy within standard DFT. We extend the Delta SCF method by allowing excited electrons to occupy orbitals which are linear combinations of Kohn-Sham orbitals. With this extra freedom it is possible to place charge locally on adsorbed molecules in the calculations, such that resonance energies can...

  15. Elastic peak of K shell excited HCl molecule: Comparison HCl-DCl-Experiment and theory

    Energy Technology Data Exchange (ETDEWEB)

    Simon, M. [Laboratoire de Chimie Physique-Matiere et Rayonnement, UMR 7614, 11 Rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France)], E-mail: marc.simon@ccr.jussieu.fr; Journel, L.; Guillemin, R. [Laboratoire de Chimie Physique-Matiere et Rayonnement, UMR 7614, 11 Rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); Stolte, W.C. [Department of Chemistry, University of Nevada, Las Vegas, NV (United States); Minkov, I.; Gel' mukhanov, F.; Salek, P.; Agren, H. [Theoretical Chemistry, Roslagstullsbacken 15, Royal Institute of Technology, S-106 91 Stockholm (Sweden); Carniato, S.; Taieb, R. [Laboratoire de Chimie Physique-Matiere et Rayonnement, UMR 7614, 11 Rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); Hudson, A.C.; Lindle, D.W. [Department of Chemistry, University of Nevada, Las Vegas, NV (United States)

    2007-03-15

    Femtosecond dynamics has been recently observed by resonant X-ray Raman scattering (RXRS) after excitation along the dissociative Cl 1s{yields}6{sigma}* resonance of gas phase HCl. In this paper, we show a method to take into account and correct for self-absorption of the elastic peak, in order to allow for quantitative comparison with theory. We have performed measurements on the DCl molecule exhibiting ultrafast nuclear motion. A comparison between HCl and DCl is presented.

  16. ARTICLE Volume-conserved Twist Excited-state of π-Conjugated Molecules

    Science.gov (United States)

    Sun, Qin-chao; Liu, Jian-yong; Hao, Yan; Yang, Xi-chuan

    2010-12-01

    The excited state characters of HY103 have been studied by means of time-resolved photon emission (time-correlated single photon counting) and time dependent density functional theory calculations. The experimental and theoretical results demonstrate that HY103 dyes undergo an efficient one-bond-flip motion after photoexicitation at room temperature, which leads to a very short lifetime of the normal fluorescence state, and a weak fluorescence emission around 670 nm. However, when HY103 are excited in amorphous glasses at 77 K, the normal fluorescence emission is prolonged to nanoseconds time scale about 2 ns, and the fluorescence emission is enhanced. Furthermore, a new emission state is produced, which is characterized as a volume-conserved twisted (VCT) state. This is the first observation of a VCT state. The experiment indicates that the VCT motion of excited state of π-conjugated molecules in restricted environment can form a stable emission state, and the excited state character of π-conjugated molecules in restricted environment is complex.

  17. Collision dynamics of methyl radicals and highly vibrationally excited molecules using crossed molecular beams

    Energy Technology Data Exchange (ETDEWEB)

    Chu, P.M.Y.

    1991-10-01

    The vibrational to translational (V{yields}T) energy transfer in collisions between large highly vibrationally excited polyatomics and rare gases was investigated by time-of-flight techniques. Two different methods, UV excitation followed by intemal conversion and infrared multiphoton excitation (IRMPE), were used to form vibrationally excited molecular beams of hexafluorobenzene and sulfur hexafluoride, respectively. The product translational energy was found to be independent of the vibrational excitation. These results indicate that the probability distribution function for V{yields}T energy transfer is peaked at zero. The collisional relaxation of large polyatomic molecules with rare gases most likely occurs through a rotationally mediated process. Photodissociation of nitrobenzene in a molecular beam was studied at 266 nm. Two primary dissociation channels were identified including simple bond rupture to produce nitrogen dioxide and phenyl radical and isomerization to form nitric oxide and phenoxy radical. The time-of-flight spectra indicate that simple bond rupture and isomerization occurs via two different mechanisms. Secondary dissociation of the phenoxy radicals to carbon monoxide and cyclopentadienyl radicals was observed as well as secondary photodissociation of phenyl radical to give H atom and benzyne. A supersonic methyl radical beam source is developed. The beam source configuration and conditions were optimized for CH{sub 3} production from the thermal decomposition of azomethane. Elastic scattering of methyl radical and neon was used to differentiate between the methyl radicals and the residual azomethane in the molecular beam.

  18. Collision dynamics of methyl radicals and highly vibrationally excited molecules using crossed molecular beams

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Pamela Mei-Ying [Univ. of California, Berkeley, CA (United States)

    1991-10-01

    The vibrational to translational (V→T) energy transfer in collisions between large highly vibrationally excited polyatomics and rare gases was investigated by time-of-flight techniques. Two different methods, UV excitation followed by intemal conversion and infrared multiphoton excitation (IRMPE), were used to form vibrationally excited molecular beams of hexafluorobenzene and sulfur hexafluoride, respectively. The product translational energy was found to be independent of the vibrational excitation. These results indicate that the probability distribution function for V→T energy transfer is peaked at zero. The collisional relaxation of large polyatomic molecules with rare gases most likely occurs through a rotationally mediated process. Photodissociation of nitrobenzene in a molecular beam was studied at 266 nm. Two primary dissociation channels were identified including simple bond rupture to produce nitrogen dioxide and phenyl radical and isomerization to form nitric oxide and phenoxy radical. The time-of-flight spectra indicate that simple bond rupture and isomerization occurs via two different mechanisms. Secondary dissociation of the phenoxy radicals to carbon monoxide and cyclopentadienyl radicals was observed as well as secondary photodissociation of phenyl radical to give H atom and benzyne. A supersonic methyl radical beam source is developed. The beam source configuration and conditions were optimized for CH3 production from the thermal decomposition of azomethane. Elastic scattering of methyl radical and neon was used to differentiate between the methyl radicals and the residual azomethane in the molecular beam.

  19. Adaptive Dynamic Surface Control for Generator Excitation Control System

    Directory of Open Access Journals (Sweden)

    Zhang Xiu-yu

    2014-01-01

    Full Text Available For the generator excitation control system which is equipped with static var compensator (SVC and unknown parameters, a novel adaptive dynamic surface control scheme is proposed based on neural network and tracking error transformed function with the following features: (1 the transformation of the excitation generator model to the linear systems is omitted; (2 the prespecified performance of the tracking error can be guaranteed by combining with the tracking error transformed function; (3 the computational burden is greatly reduced by estimating the norm of the weighted vector of neural network instead of the weighted vector itself; therefore, it is more suitable for the real time control; and (4 the explosion of complicity problem inherent in the backstepping control can be eliminated. It is proved that the new scheme can make the system semiglobally uniformly ultimately bounded. Simulation results show the effectiveness of this control scheme.

  20. High mass-resolution electron-ion-ion coincidence measurements on core-excited organic molecules

    CERN Document Server

    Tokushima, T; Senba, Y; Yoshida, H; Hiraya, A

    2001-01-01

    Total electron-ion-ion coincidence measurements on core excited organic molecules have been carried out with high mass resolution by using multimode (reflectron/linear) time-of-flight mass analyzer. From the ion correlation spectra of core excited CH sub 3 OH and CD sub 3 OH, the reaction pathway to form H sub 3 sup + (D sub 3 sup +) is identified as the elimination of three H (D) atoms from the methyl group, not as the inter-group (-CH sub 3 and -OH) interactions. In a PEPIPICO spectrum of acetylacetone (CH sub 3 COCH sub 2 COCH sub 3) measured by using a reflectron TOF, correlations between ions up to mass number 70 with one-mass resolution was recorded.

  1. Off-resonant vibrational excitation: Orientational dependence and spatial control of photofragments

    DEFF Research Database (Denmark)

    Machholm, Mette; Henriksen, Niels Engholm

    2000-01-01

    -dependent response to the IR fields is due to the anharmonicity of the potential. A subsequent ultraviolet laser pulse in resonance at the outer turning point of the vibrational motion can then dissociate the oscillating molecules, all with the same orientation, leading to spatial control of the photofragment......Off-resonant and resonant vibrational excitation with short intense infrared (IR) laser pulses creates localized oscillating wave packets, but differs by the efficiency of the excitation and surprisingly by the orientational dependence. Orientational selectivity of the vibrational excitation...

  2. Mode coupling and multiquantum vibrational excitations in Feshbach-resonant positron annihilation in molecules

    Science.gov (United States)

    Gribakin, G. F.; Stanton, J. F.; Danielson, J. R.; Natisin, M. R.; Surko, C. M.

    2017-12-01

    The dominant mechanism of low-energy positron annihilation in polyatomic molecules is through positron capture in vibrational Feshbach resonances (VFR). In this paper, we investigate theoretically the effect of anharmonic terms in the vibrational Hamiltonian on positron annihilation rates. Such interactions enable positron capture in VFRs associated with multiquantum vibrational excitations, leading to enhanced annihilation. Mode coupling can also lead to faster depopulation of VFRs, thereby reducing their contribution to the annihilation rates. To analyze this complex picture, we use coupled-cluster methods to calculate the anharmonic vibrational spectra and dipole transition amplitudes for chloroform, chloroform-d1, 1,1-dichloroethylene, and methanol, and use these data to compute positron resonant annihilation rates for these molecules. Theoretical predictions are compared with the annihilation rates measured as a function of incident positron energy. The results demonstrate the importance of mode coupling in both enhancement and suppression of the VFR. There is also experimental evidence for the direct excitation of multimode VFR. Their contribution is analyzed using a statistical approach, with an outlook towards more accurate treatment of this phenomenon.

  3. A model for energy transfer in collisions of atoms with highly excited molecules.

    Science.gov (United States)

    Houston, Paul L; Conte, Riccardo; Bowman, Joel M

    2015-05-21

    A model for energy transfer in the collision between an atom and a highly excited target molecule has been developed on the basis of classical mechanics and turning point analysis. The predictions of the model have been tested against the results of trajectory calculations for collisions of five different target molecules with argon or helium under a variety of temperatures, collision energies, and initial rotational levels. The model predicts selected moments of the joint probability distribution, P(Jf,ΔE) with an R(2) ≈ 0.90. The calculation is efficient, in most cases taking less than one CPU-hour. The model provides several insights into the energy transfer process. The joint probability distribution is strongly dependent on rotational energy transfer and conservation laws and less dependent on vibrational energy transfer. There are two mechanisms for rotational excitation, one due to motion normal to the intermolecular potential and one due to motion tangential to it and perpendicular to the line of centers. Energy transfer is found to depend strongly on the intermolecular potential and only weakly on the intramolecular potential. Highly efficient collisions are a natural consequence of the energy transfer and arise due to collisions at "sweet spots" in the space of impact parameter and molecular orientation.

  4. Near threshold vibrational excitation of molecules by positron impact: A projection operator approach

    Energy Technology Data Exchange (ETDEWEB)

    Varella, Marcio T. do N [Instituto de Fisica, Universidade de Sao Paulo, 05315-970 Sao Paulo, SP (Brazil)], E-mail: mvarella@if.usp.br; Oliveira, Eliane M. de; Lima, Marco A.P. [Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas, 13083-970 Campinas, SP (Brazil)

    2008-02-15

    We report vibrational excitation ({nu}{sub i}=0{yields}{nu}{sub f}=1) cross-sections for positron scattering by H{sub 2} and model calculations for the ({nu}{sub i}=0{yields}{nu}{sub f}=1) excitation of the C-C symmetric stretch mode of C{sub 2}H{sub 2}. The Feshbach projection operator formalism was employed to vibrationally resolve the fixed-nuclei phase shifts obtained with the Schwinger multichannel method. The near threshold behavior of H{sub 2} and C{sub 2}H{sub 2} significantly differ in the sense that no low lying singularity (either virtual or bound state) was found for the former, while a e{sup +}-acetylene virtual state was found at the equilibrium geometry (this virtual state becomes a bound state upon stretching the molecule). For C{sub 2}H{sub 2}, we also performed model calculations comparing excitation cross-sections arising from virtual (-i{kappa}{sub 0}) and bound (+i{kappa}{sub 0}) states symmetrically located around the origin of the complex momentum plane (i.e. having the same {kappa}{sub 0}). The virtual state is seen to significantly couple to vibrations, and similar cross-sections were obtained for shallow bound and virtual states.

  5. Controlled transport through a single molecule

    NARCIS (Netherlands)

    Kumar, Avijit; Heimbuch, Rene; Poelsema, Bene; Zandvliet, Henricus J.W.

    2012-01-01

    We demonstrate how an electrode–molecule–electrode junction can be controllably opened and closed by careful tuning of the contacts' interspace and voltage. The molecule, an octanethiol, flips to bridge a ~1 nm interspace between substrate and scanning tunnelling microscope tip when an electric

  6. Analysis of Excitation and Ionization of Atoms and Molecules by Electron Impact

    CERN Document Server

    Chaudhry, Afzal

    2011-01-01

    Analysis of Excitation and Ionization of Atoms and Molecules by Electron Impact, by Afzal Chaudhry and Hans Kleinpoppen, describes in detail the measurements of the partial and total doubly differential cross sections for the multiple-ionization of rare gas atoms by electron impact. These measurements show, among other trends, the role of Auger transitions in the production of multiply ionized atoms in the region where the incident electron energy is sufficient to produce inner shell ionization. Other processes like Coster-Kronig transitions and shake off also contribute towards increasing the charge of the ions. As discussed in the book, an incident electron having energy of 6 keV, for example, in a collision with xenon atom can remove up to nine electrons! The measurements of doubly differential cross sections for the dissociative and non-dissociative ionization of hydrogen, sulfur dioxide and sulfur hexa fluoride molecular gases are also explored. The results of the measurements for the sulfur dioxide mole...

  7. A benchmark study of electronic excitation energies, transition moments, and excited-state energy gradients on the nicotine molecule

    Energy Technology Data Exchange (ETDEWEB)

    Egidi, Franco, E-mail: franco.egidi@sns.it; Segado, Mireia; Barone, Vincenzo, E-mail: vincenzo.barone@sns.it [Scuola Normale Superiore, Piazza dei Cavalieri, 7 I-56126 Pisa (Italy); Koch, Henrik [Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim (Norway); Cappelli, Chiara [Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via G. Moruzzi, 3 I-56124 Pisa (Italy)

    2014-12-14

    In this work, we report a comparative study of computed excitation energies, oscillator strengths, and excited-state energy gradients of (S)-nicotine, chosen as a test case, using multireference methods, coupled cluster singles and doubles, and methods based on time-dependent density functional theory. This system was chosen because its apparent simplicity hides a complex electronic structure, as several different types of valence excitations are possible, including n-π{sup *}, π-π{sup *}, and charge-transfer states, and in order to simulate its spectrum it is necessary to describe all of them consistently well by the chosen method.

  8. Ozone kinetics in low-pressure discharges: vibrationally excited ozone and molecule formation on surfaces

    Science.gov (United States)

    Marinov, Daniil; Guerra, Vasco; Guaitella, Olivier; Booth, Jean-Paul; Rousseau, Antoine

    2013-10-01

    A combined experimental and modeling investigation of the ozone kinetics in the afterglow of pulsed direct current discharges in oxygen is carried out. The discharge is generated in a cylindrical silica tube of radius 1 cm, with short pulse durations between 0.5 and 2 ms, pressures in the range 1-5 Torr and discharge currents ˜40-120 mA. Time-resolved absolute concentrations of ground-state atoms and ozone molecules were measured simultaneously in situ, by two-photon absorption laser-induced fluorescence and ultraviolet absorption, respectively. The experiments were complemented by a self-consistent model developed to interpret the results and, in particular, to evaluate the roles of vibrationally excited ozone and of ozone formation on surfaces. It is found that vibrationally excited ozone, O_3^{*} , plays an important role in the ozone kinetics, leading to a decrease in the ozone concentration and an increase in its formation time. In turn, the kinetics of O_3^{*} is strongly coupled with those of atomic oxygen and O2(a 1Δg) metastables. Ozone formation at the wall does not contribute significantly to the total ozone production under the present conditions. Upper limits for the effective heterogeneous recombination probability of O atoms into ozone are established.

  9. Assessment of oscillator strengths with multiconfigurational short-range density functional theory for electronic excitations in organic molecules

    DEFF Research Database (Denmark)

    Hedegård, Erik Donovan

    2017-01-01

    considered the large collection of organic molecules whose excited states were investigated with a range of electronic structure methods by Thiel et al. As a by-product of our calculations of oscillator strengths, we also obtain electronic excitation energies, which enable us to compare the performance......We have in a series of recent papers investigated electronic excited states with a hybrid between a complete active space self-consistent field (CASSCF) wave function and density functional theory (DFT). This method has been dubbed the CAS short-range DFT method (CAS–srDFT). The previous papers...

  10. Partially dark optical molecule via phase control

    Science.gov (United States)

    Wang, Z. H.; Xu, Xun-Wei; Li, Yong

    2017-01-01

    We study the tunable photonic distribution in an optical molecule consisting of two linearly coupled single-mode cavities. With the intercavity coupling and two driving fields, the energy levels of the optical-molecule system form a closed cyclic energy-level diagram, and the phase difference between the driving fields serves as a sensitive controller on the dynamics of the system. Due to the quantum interference effect, we can realize a partially dark optical molecule, where the steady-state mean photon number in one of the cavities achieves zero even under the external driving. And the dark cavity can be changed from one of the cavities to the other by only adjusting the phase difference. We also show that our proposal is robust to the noise at zero temperature. Furthermore, we show that when one of the cavities couples with an atomic ensemble, it will be dark under the same condition as that in the case without atoms, but the condition for the other cavity to be dark is modified.

  11. Electronic excitation and deexcitation of atoms and molecules in nonequilibrium plasmas; Hiheiko plasma chu no denshi reiki ryushi hanno katei

    Energy Technology Data Exchange (ETDEWEB)

    Shimamori, H. [Fukui University of Technology, Fukui (Japan)

    1997-05-20

    Regarding excitation and deexcitation due to collision of electrons and deexcitation due to collision of baryons in nonequilibrium plasma, explanation is made about the general characteristics of the elementary processes involving their formation and disappearance and about the prediction of their sectional areas and velocity constants. As for the process of the formation of excited atoms and molecules by collision of electrons, it may be divided into the direct excitation in the ground state, excitation and light emission toward the resonance state, reexcitation and transformation of excited particles, recombination of electrons and positive atomic ions, and dissociation and recombination of electrons and positive molecular ions. As for the process of the disappearance of excited particles, there exist various courses it may follow, and it is quite complicated because it is dependent on the types of particles involved and the conditions the process proceeds under. Although the skeleton has been built of the theory of derivation of the sectional area of excitation due to collision of electrons and atoms/molecules, yet it is accurate enough only when applied to simple atomic/molecular systems, is far from satisfying in general, and is to be augmented by data from future experiments. 22 refs., 3 figs., 1 tab.

  12. Quantum control spectroscopy of vibrational modes: Comparison of control scenarios for ground and excited states in {beta}-carotene

    Energy Technology Data Exchange (ETDEWEB)

    Hauer, Juergen; Buckup, Tiago [Fachbereich Chemie, Physikalische Chemie, Philipps-Universitaet Marburg, Hans-Meerwein-Strasse, D-35043 Marburg (Germany); Motzkus, Marcus [Fachbereich Chemie, Physikalische Chemie, Philipps-Universitaet Marburg, Hans-Meerwein-Strasse, D-35043 Marburg (Germany)], E-mail: motzkus@staff.uni-marburg.de

    2008-06-23

    Quantum control spectroscopy (QCS) is used as a tool to study, address selectively and enhance vibrational wavepacket motion in large solvated molecules. By contrasting the application of Fourier-limited and phase-modulated excitation on different electronic states, the interplay between the controllability of vibrational coherence and electronic resonance is revealed. We contrast control on electronic ground and excited state by introducing an additional pump beam prior to a DFWM-sequence (Pump-DFWM). Via phase modulation of this initial pump pulse, coherent control is extended to structural evolution on the vibrationally hot ground state (hot-S{sub 0}) and lowest lying excited state (S{sub 1}) of {beta}-carotene. In an open loop setup, the control scenarios for these different electronic states are compared in their effectiveness and mechanism.

  13. Group excitation control of generators in state regional electric power plant transformer station automatic control systems

    Energy Technology Data Exchange (ETDEWEB)

    Gumin, M.I.; Rosman, L.V.; Tarnavskii, V.M.

    1983-01-01

    Group excitation control of electric generators according to standard methods is essential for the management of power plant conditions according to voltage and reactive power. A system is described that provides coordinated changes in the automatic excitation controller set point for generators that operate on common buses. The advantages of the excitation control system are discussed.

  14. Developing Sensitive and Selective Nanosensors: A Single Molecule - Multiple Excitation Source Approach. Altairnano Lithium Ion Nano-scaled Titanate Oxide Cell and Module Abuse Testing

    Science.gov (United States)

    2012-03-13

    REPORT FINAL REPORT - contract No. W911NF-09-C-0135 Part I. Developing Sensitive and Selective Nanosensors: A Single Molecule - Multiple Excitation...W911NF-09-C-0135 Part I. Developing Sensitive and Selective Nanosensors: A Single Molecule - Multiple Excitation Source Approach Part II. Altairnano...Nanosensors" A Single Molecule – Multiple Excitation Source Approach. The partnership of Altairnano, Inc. and Western Michigan University produced one

  15. Pressure effects on the relaxation of an excited nitromethane molecule in an argon bath

    Energy Technology Data Exchange (ETDEWEB)

    Rivera-Rivera, Luis A.; Sewell, Thomas D.; Thompson, Donald L. [Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211-7600 (United States); Wagner, Albert F. [Argonne National Laboratory, Chemical Sciences and Engineering Division, Argonne, Illinois 60439 (United States)

    2015-01-07

    Classical molecular dynamics simulations were performed to study the relaxation of nitromethane in an Ar bath (of 1000 atoms) at 300 K and pressures 10, 50, 75, 100, 125, 150, 300, and 400 atm. The molecule was instantaneously excited by statistically distributing 50 kcal/mol among the internal degrees of freedom. At each pressure, 1000 trajectories were integrated for 1000 ps, except for 10 atm, for which the integration time was 5000 ps. The computed ensemble-averaged rotational energy decay is ∼100 times faster than the vibrational energy decay. Both rotational and vibrational decay curves can be satisfactorily fit with the Lendvay-Schatz function, which involves two parameters: one for the initial rate and one for the curvature of the decay curve. The decay curves for all pressures exhibit positive curvature implying the rate slows as the molecule loses energy. The initial rotational relaxation rate is directly proportional to density over the interval of simulated densities, but the initial vibrational relaxation rate decreases with increasing density relative to the extrapolation of the limiting low-pressure proportionality to density. The initial vibrational relaxation rate and curvature are fit as functions of density. For the initial vibrational relaxation rate, the functional form of the fit arises from a combinatorial model for the frequency of nitromethane “simultaneously” colliding with multiple Ar atoms. Roll-off of the initial rate from its low-density extrapolation occurs because the cross section for collision events with L Ar atoms increases with L more slowly than L times the cross section for collision events with one Ar atom. The resulting density-dependent functions of the initial rate and curvature represent, reasonably well, all the vibrational decay curves except at the lowest density for which the functions overestimate the rate of decay. The decay over all gas phase densities is predicted by extrapolating the fits to condensed

  16. Pressure Effects on the Relaxation of an Excited Nitromethane Molecule in Argon Bath

    Energy Technology Data Exchange (ETDEWEB)

    Rivera-Rivera, Luis A.; Wagner, Albert F.; Sewell, Thomas D.; Thompson, Donald L.

    2015-01-07

    Classical molecular dynamics simulations were performed to study the relaxation of nitromethane in an Ar bath (of 1000 atoms) at 300 K and pressures 10, 50, 75, 100, 125, 150, 300, and 400 atm. The molecule was instantaneously excited by statistically distributing 50 kcal/mol among the internal degrees of freedom. At each pressure, 1000 trajectories were integrated for 1000 ps, except for 10 atm, for which the integration time was 5000 ps. The computed ensemble-averaged rotational energy decay is similar to 100 times faster than the vibrational energy decay. Both rotational and vibrational decay curves can be satisfactorily fit with the Lendvay-Schatz function, which involves two parameters: one for the initial rate and one for the curvature of the decay curve. The decay curves for all pressures exhibit positive curvature implying the rate slows as the molecule loses energy. The initial rotational relaxation rate is directly proportional to density over the interval of simulated densities, but the initial vibrational relaxation rate decreases with increasing density relative to the extrapolation of the limiting low-pressure proportionality to density. The initial vibrational relaxation rate and curvature are fit as functions of density. For the initial vibrational relaxation rate, the functional form of the fit arises from a combinatorial model for the frequency of nitromethane "simultaneously" colliding with multiple Ar atoms. Roll-off of the initial rate from its low-density extrapolation occurs because the cross section for collision events with L Ar atoms increases with L more slowly than L times the cross section for collision events with one Ar atom. The resulting density-dependent functions of the initial rate and curvature represent, reasonably well, all the vibrational decay curves except at the lowest density for which the functions overestimate the rate of decay. The decay over all gas phase densities is predicted by extrapolating the fits to condensed

  17. Optimal Excitation Controller Design for Wind Turbine Generator

    Directory of Open Access Journals (Sweden)

    A. K. Boglou

    2011-01-01

    Full Text Available An optimal excitation controller design based on multirate-output controllers (MROCs having a multirate sampling mechanismwith different sampling period in each measured output of the system is presented. The proposed H∞ -control techniqueis applied to the discrete linear open-loop system model which represents a wind turbine generator supplying an infinite busthrough a transmission line.

  18. The reactions of ground and excited state sodium atoms with hydrogen halide molecules

    Science.gov (United States)

    Weiss, P. S.; Mestdagh, J. M.; Covinsky, M. H.; Balko, B. A.; Lee, Y. T.

    1988-10-01

    The reactions of ground and excited state Na atoms with hydrogen halide (HX) molecules have been studied using the crossed molecular beams method. With both increasing translational and increasing electronic energy, the reactive cross sections increase in the reactions of HCl and HBr. From product angular and velocity distributions detailed center-of-mass information is derived. For the reactions of Na (3 2S 1/2, 3 2P 1/2, 4 2D 5/2, 5 2S 1/2) with HCl, the product NaCl is back-scattered with respect to the incoming Na atom in the center-of-mass frame of reference. The reaction of each Na state studied with HCl is direct and proceeds via collinear and near-collinear Na-Cl-H approach geometries. For the Na (3 2P 3/2) and Na (4 2D 5/2) reactions with HCl the predominant transition state symmetry is 2Σ in a collinear (C ∞ν) Na-Cl-H geometry. This is consistent with the reaction proceeding via electron transfer from the Na atom to the halide atom. Absolute reactive cross sections for each state of Na studied with HCl were determined by comparison with both small and large angle elastic scattering. We were unable to observe Na atoms with over 4 eV of electronic energy react with HF up to collision energies of 13 kcal/mole.

  19. Active control of tensegrity structures under random excitation

    Science.gov (United States)

    Ganesh Raja, M.; Narayanan, S.

    2007-06-01

    In this paper we consider vibration control of tensegrity structures under stationary and nonstationary random excitations. These excitations may be representative of many physical loading conditions, such as earthquake, wind, aerodynamic and acoustic excitations. The optimal control theory based on H2 and \\mathrm {H}_{\\infty } controller with full state and limited state feedback is used for the control. The response of the tensegrity structure is represented by the zero lag covariance matrix and the same is obtained by solving the matrix Lyapunov equation. The force generated by the electro-mechanical coupling of the piezoelectric actuator is used in the formulation. A tensegrity structure of class-1 comprising of two modules, with 24 pretension cables and six struts with piezoelectric actuators, is considered.

  20. Holonomic Quantum Control by Coherent Optical Excitation in Diamond

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Brian B.; Jerger, Paul C.; Shkolnikov, V. O.; Heremans, F. Joseph; Burkard, Guido; Awschalom, David D.

    2017-10-01

    Although geometric phases in quantum evolution are historically overlooked, their active control now stimulates strategies for constructing robust quantum technologies. Here, we demonstrate arbitrary singlequbit holonomic gates from a single cycle of nonadiabatic evolution, eliminating the need to concatenate two separate cycles. Our method varies the amplitude, phase, and detuning of a two-tone optical field to control the non-Abelian geometric phase acquired by a nitrogen-vacancy center in diamond over a coherent excitation cycle. We demonstrate the enhanced robustness of detuned gates to excited-state decoherence and provide insights for optimizing fast holonomic control in dissipative quantum systems.

  1. Holonomic Quantum Control by Coherent Optical Excitation in Diamond

    Science.gov (United States)

    Zhou, Brian B.; Jerger, Paul C.; Shkolnikov, V. O.; Heremans, F. Joseph; Burkard, Guido; Awschalom, David D.

    2017-10-01

    Although geometric phases in quantum evolution are historically overlooked, their active control now stimulates strategies for constructing robust quantum technologies. Here, we demonstrate arbitrary single-qubit holonomic gates from a single cycle of nonadiabatic evolution, eliminating the need to concatenate two separate cycles. Our method varies the amplitude, phase, and detuning of a two-tone optical field to control the non-Abelian geometric phase acquired by a nitrogen-vacancy center in diamond over a coherent excitation cycle. We demonstrate the enhanced robustness of detuned gates to excited-state decoherence and provide insights for optimizing fast holonomic control in dissipative quantum systems.

  2. Controlled contact to a C-60 molecule

    DEFF Research Database (Denmark)

    Neel, N.; Kröger, J.; Limot, L.

    2007-01-01

    The tip of a low-temperature scanning tunneling microscope is approached towards a C-60 molecule adsorbed at a pentagon-hexagon bond on Cu(100) to form a tip-molecule contact. The conductance rapidly increases to approximate to 0.25 conductance quanta in the transition region from tunneling...... the tip-molecule distance....

  3. Resonant excitation of ethylene molecules in the combustion flame CVD of diamond using a wavelength tunable CO2 laser

    Science.gov (United States)

    Xie, Z. Q.; Park, J. B.; He, X. N.; Gao, Y.; Zhou, Y. S.; Lu, Y. F.

    2010-02-01

    CO2 laser resonant excitations of precursor molecules were applied in combustion flame synthesis of diamond films. The combustion flame was produced from a mixture of ethylene (C2H4), acetylene (C2H2) and oxygen (O2). A wavelength-tunable CO2 laser with wavelength range from 9.2 to 10.9 μm was used for wavelength-matched excitation of the ethylene molecules. By irradiating the flame using CO2 laser at 10.532 μm, the ethylene molecules were resonantly excited through the CH2 wagging vibrational mode (ν7, 949.3 cm-1). Irradiation of the flame using the common CO2 laser wavelength at 10.591 μm was also carried out for comparison. It was found that diamond synthesis was more obviously enhanced by the CO2 laser resonant excitation at 10.532 μm as compared to that at 10.591 μm. Firstly, the flame was shortened by 50%, indicating a promoted reaction in the process. Secondly, the diamond grain sizes as well as the diamond film thicknesses were increased by 200~300% and 160% respectively, indicating a higher growth rate of diamond films. Finally, Raman spectra of the diamond sample showed a sharp diamond peak at 1334 cm-1 and a suppressed G-band, indicating higher diamond quality.

  4. Analysis and control of excitation, field weakening and stability in direct torque controlled electrically excited synchronous motor drives

    Energy Technology Data Exchange (ETDEWEB)

    Pyrhoenen, O.

    1998-12-31

    Direct torque control (DTC) is a new control method for rotating field electrical machines. DTC controls directly the motor stator flux linkage with the stator voltage, and no stator current controllers are used. With the DTC method very good torque dynamics can be achieved. Until now, DTC has been applied to asynchronous motor drives. The purpose of this work is to analyse the applicability of DTC to electrically excited synchronous motor drives. Compared with asynchronous motor drives, electrically excited synchronous motor drives require an additional control for the rotor field current. The field current control is called excitation control in this study. The dependence of the static and dynamic performance of DTC synchronous motor drives on the excitation control has been analysed and a straightforward excitation control method has been developed and tested. In the field weakening range the stator flux linkage modulus must be reduced in order to keep the electro motive force of the synchronous motor smaller than the stator voltage and in order to maintain a sufficient voltage reserve. The dynamic performance of the DTC synchronous motor drive depends on the stator flux linkage modulus. Another important factor for the dynamic performance in the field weakening range is the excitation control. The field weakening analysis considers both dependencies. A modified excitation control method, which maximises the dynamic performance in the field weakening range, has been developed. In synchronous motor drives the load angle must be kept in a stabile working area in order to avoid loss of synchronism. The traditional vector control methods allow to adjust the load angle of the synchronous motor directly by the stator current control. In the DTC synchronous motor drive the load angle is not a directly controllable variable, but it is formed freely according to the motor`s electromagnetic state and load. The load angle can be limited indirectly by limiting the torque

  5. Photophysical aspects of single-molecule detection by two-photon excitation with consideration of sequential pulsed illumination.

    Science.gov (United States)

    Niesner, R; Roth, W; Gericke, Karl-Heinz

    2004-05-17

    An important goal in single molecule fluorescence correlation spectroscopy is the theoretical simulation of the fluorescence signal stemming from individual molecules and its autocorrelation function. The simulation approaches developed up to now are based exclusively on continuous-wave (cw) illumination and consequently on cw-excitation. However, this approximation is no longer valid in the case of two-photon excitation, for which pulsed illumination is usually employed. We present a novel theoretical model for the simulation of the fluorescence signal of single molecules and its autocorrelation function with consideration of the time dependence of the excitation flux and thus of all illumination-dependent photoprocesses: two-photon excitation, induced emission and photobleaching. Further important characteristics of our approach are the consideration of the dependence of the photobleaching rate on illumination and the low intersystem-crossing rates of the studied coumarins. Moreover, using our approach, we can predict quantitatively the effect of the laser pulse width on the fluorescence signal of a molecule, that is, the contributions of the photobleaching and saturation effects, and thus we can calculate the optimal laser pulse width. The theoretical autocorrelation functions were fitted to the experimental data, and we could ascertain a good agreement between the resulting and the expected parameters. The most important parameter is the photobleaching constant sigma, the cross section of the transition Sn<--S1, which characterises the photostability of the molecules independent of the experimental conditions. Its value is 1.7 x 10(-23) cm2 for coumarin 153 and 5 x 10(-23) cm2 for coumarin 314.

  6. Programmable logic controller based synchronous motor excitation system

    Directory of Open Access Journals (Sweden)

    Janda Žarko

    2011-01-01

    Full Text Available This paper presents a 3.5 MW synchronous motor excitation system reconstruction. In the proposed solution programmable logic controller is used to control motor, which drives the turbo compressor. Comparing to some other solutions that are used in similar situations, the proposed solution is superior due to its flexibility and usage of mass-production hardware. Moreover, the implementation of PLC enables easy integration of the excitation system with the other technological processes in the plant as well as in the voltage regulation of 'smart grid' system. Also, implementation of various optimization algorithms can be done comfortably and it does not require additional investment in hardware. Some experimental results that depict excitation current during motor start-up, as well as, measured static characteristics of the motor, were presented.

  7. Polarization-controlled asymmetric excitation of surface plasmons

    KAUST Repository

    Xu, Quan

    2017-08-28

    Free-space light can be coupled into propagating surface waves at a metal–dielectric interface, known as surface plasmons (SPs). This process has traditionally faced challenges in preserving the incident polarization information and controlling the directionality of the excited SPs. The recently reported polarization-controlled asymmetric excitation of SPs in metasurfaces has attracted much attention for its promise in developing innovative plasmonic devices. However, the unit elements in these works were purposely designed in certain orthogonal polarizations, i.e., linear or circular polarizations, resulting in limited two-level polarization controllability. Here, we introduce a coupled-mode theory to overcome this limit. We demonstrated theoretically and experimentally that, by utilizing the coupling effect between a pair of split-ring-shaped slit resonators, exotic asymmetric excitation of SPs can be obtained under the x-, y-, left-handed circular, and right-handed circular polarization incidences, while the polarization information of the incident light can be preserved in the excited SPs. The versatility of the presented design scheme would offer opportunities for polarization sensing and polarization-controlled plasmonic devices.

  8. Excited states properties of organic molecules: from density functional theory to the GW and Bethe-Salpeter Green's function formalisms.

    Science.gov (United States)

    Faber, C; Boulanger, P; Attaccalite, C; Duchemin, I; Blase, X

    2014-03-13

    Many-body Green's function perturbation theories, such as the GW and Bethe-Salpeter formalisms, are starting to be routinely applied to study charged and neutral electronic excitations in molecular organic systems relevant to applications in photovoltaics, photochemistry or biology. In parallel, density functional theory and its time-dependent extensions significantly progressed along the line of range-separated hybrid functionals within the generalized Kohn-Sham formalism designed to provide correct excitation energies. We give an overview and compare these approaches with examples drawn from the study of gas phase organic systems such as fullerenes, porphyrins, bacteriochlorophylls or nucleobases molecules. The perspectives and challenges that many-body perturbation theory is facing, such as the role of self-consistency, the calculation of forces and potential energy surfaces in the excited states, or the development of embedding techniques specific to the GW and Bethe-Salpeter equation formalisms, are outlined.

  9. Excitation and Control of Plasma Wakefields by Multiple Laser Pulses

    Science.gov (United States)

    Cowley, J.; Thornton, C.; Arran, C.; Shalloo, R. J.; Corner, L.; Cheung, G.; Gregory, C. D.; Mangles, S. P. D.; Matlis, N. H.; Symes, D. R.; Walczak, R.; Hooker, S. M.

    2017-07-01

    We demonstrate experimentally the resonant excitation of plasma waves by trains of laser pulses. We also take an important first step to achieving an energy recovery plasma accelerator by showing that a plasma wave can be damped by an out-of-resonance trailing laser pulse. The measured laser wakefields are found to be in excellent agreement with analytical and numerical models of wakefield excitation in the linear regime. Our results indicate a promising direction for achieving highly controlled, GeV-scale laser-plasma accelerators operating at multikilohertz repetition rates.

  10. Photodissociation of ultracold diatomic strontium molecules with quantum state control.

    Science.gov (United States)

    McDonald, M; McGuyer, B H; Apfelbeck, F; Lee, C-H; Majewska, I; Moszynski, R; Zelevinsky, T

    2016-07-07

    Chemical reactions at ultracold temperatures are expected to be dominated by quantum mechanical effects. Although progress towards ultracold chemistry has been made through atomic photoassociation, Feshbach resonances and bimolecular collisions, these approaches have been limited by imperfect quantum state selectivity. In particular, attaining complete control of the ground or excited continuum quantum states has remained a challenge. Here we achieve this control using photodissociation, an approach that encodes a wealth of information in the angular distribution of outgoing fragments. By photodissociating ultracold (88)Sr2 molecules with full control of the low-energy continuum, we access the quantum regime of ultracold chemistry, observing resonant and nonresonant barrier tunnelling, matter-wave interference of reaction products and forbidden reaction pathways. Our results illustrate the failure of the traditional quasiclassical model of photodissociation and instead are accurately described by a quantum mechanical model. The experimental ability to produce well-defined quantum continuum states at low energies will enable high-precision studies of long-range molecular potentials for which accurate quantum chemistry models are unavailable, and may serve as a source of entangled states and coherent matter waves for a wide range of experiments in quantum optics.

  11. A semi-classical approach to the calculation of highly excited rotational energies for asymmetric-top molecules.

    Science.gov (United States)

    Schmiedt, Hanno; Schlemmer, Stephan; Yurchenko, Sergey N; Yachmenev, Andrey; Jensen, Per

    2017-01-18

    We report a new semi-classical method to compute highly excited rotational energy levels of an asymmetric-top molecule. The method forgoes the idea of a full quantum mechanical treatment of the ro-vibrational motion of the molecule. Instead, it employs a semi-classical Green's function approach to describe the rotational motion, while retaining a quantum mechanical description of the vibrations. Similar approaches have existed for some time, but the method proposed here has two novel features. First, inspired by the path integral method, periodic orbits in the phase space and tunneling paths are naturally obtained by means of molecular symmetry analysis. Second, the rigorous variational method is employed for the first time to describe the molecular vibrations. In addition, we present a new robust approach to generating rotational energy surfaces for vibrationally excited states; this is done in a fully quantum-mechanical, variational manner. The semi-classical approach of the present work is applied to calculating the energies of very highly excited rotational states and it reduces dramatically the computing time as well as the storage and memory requirements when compared to the fullly quantum-mechanical variational approach. Test calculations for excited states of SO2 yield semi-classical energies in very good agreement with the available experimental data and the results of fully quantum-mechanical calculations.

  12. Atomic-Scale Control of Electron Transport through Single Molecules

    DEFF Research Database (Denmark)

    Wang, Y. F.; Kroger, J.; Berndt, R.

    2010-01-01

    Tin-phthalocyanine molecules adsorbed on Ag(111) were contacted with the tip of a cryogenic scanning tunneling microscope. Orders-of-magnitude variations of the single-molecule junction conductance were achieved by controllably dehydrogenating the molecule and by modifying the atomic structure...

  13. Fluorescence anisotropy of indole molecules under two-photon excitation in the spectral range of 485-510 nm

    Science.gov (United States)

    Sasin, M. E.; Tushkanov, V. I.; Smolin, A. G.; Vasyutinskii, O. S.

    2017-10-01

    Decay of polarized fluorescence in indole dissolved in propylene glycol under two-photon excitation by femtosecond laser pulses in the wavelength range of 485-510 nm has been studied. It is shown that under the experimental conditions used the fluorescence decay signal can be well described by a single excited state lifetime τf and a single rotation diffusion time τrot. By processing the data obtained, the times τf and τrot as well as anisotropy parameter r 0 characterizing the symmetry of two-photon excitation of indole molecules have been determined. Decreasing of the anisotropy parameter r0 down to zero under two-photon excitation energy higher than 5.1 eV has been observed. Interpretation of the obtained results have been done on the basis of ab initio quantum-mechanical computations. A model of energy relaxation under the condition of twophoton excitation of indole in a polar solvent has been discussed.

  14. Matrix photochemistry of small molecules: Influencing reaction dynamics on electronically excited hypersurfaces

    Energy Technology Data Exchange (ETDEWEB)

    Laursen, S.L.

    1990-01-01

    Investigations of chemical reactions on electronically excited reaction surfaces are presented. The role of excited-surface multiplicity is of particular interest, as are chemical reactivity and energy transfer in systems in which photochemistry is initiated through a metal atom sensitizer.'' Two approaches are employed: A heavy-atom matrix affords access to forbidden triplet reaction surfaces, eliminating the need for a potentially reactive sensitizer. Later, the role of the metal atom in the photosensitization process is examined directly.

  15. Flux-weakening control methods for hybrid excitation synchronous motor

    Directory of Open Access Journals (Sweden)

    Mingming Huang

    2015-09-01

    Full Text Available The hybrid excitation synchronous motor (HESM, which aim at combining the advantages of permanent magnet motor and wound excitation motor, have the characteristics of low-speed high-torque hill climbing and wide speed range. Firstly, a new kind of HESM is presented in the paper, and its structure and mathematical model are illustrated. Then, based on a space voltage vector control, a novel flux-weakening method for speed adjustment in the high speed region is presented. The unique feature of the proposed control method is that the HESM driving system keeps the q-axis back-EMF components invariable during the flux-weakening operation process. Moreover, a copper loss minimization algorithm is adopted to reduce the copper loss of the HESM in the high speed region. Lastly, the proposed method is validated by the simulation and the experimental results.

  16. Interatomic potentials, electric properties and spectroscopy of the ground and excited states of the Rb2 molecule: ab initio calculations and effect of a non-resonant field*

    Science.gov (United States)

    Tomza, Michał; Skomorowski, Wojciech; Musiał, Monika; González-Férez, Rosario; Koch, Christiane P.; Moszynski, Robert

    2013-07-01

    We formulate the theory for a diatomic molecule in a spatially degenerate electronic state interacting with a non-resonant laser field and investigate its rovibrational structure in the presence of the field. We report on ab initio calculations employing the double electron attachment intermediate Hamiltonian Fock space coupled cluster method restricted to single and double excitations for all electronic states of the Rb2 molecule up to 5s+5d dissociation limit of about 26,000 cm-1. In order to correctly predict the spectroscopic behaviour of Rb2, we have also calculated the electric transition dipole moments, non-adiabatic coupling and spin-orbit coupling matrix elements, and static dipole polarisabilities, using the multireference configuration interaction method. When a molecule is exposed to strong non-resonant light, its rovibrational levels get hybridised. We study the spectroscopic signatures of this effect for transitions between the X1Σ+ g electronic ground state and the A1Σ+ u and b3Π u excited state manifold. The latter is characterised by strong perturbations due to the spin-orbit interaction. We find that for non-resonant field strengths of the order 109 W/cm2, the spin-orbit interaction and coupling to the non-resonant field become comparable. The non-resonant field can then be used to control the singlet-triplet character of a rovibrational level.

  17. Electric field controlled magnetic anisotropy in a single molecule.

    Science.gov (United States)

    Zyazin, Alexander S; van den Berg, Johan W G; Osorio, Edgar A; van der Zant, Herre S J; Konstantinidis, Nikolaos P; Leijnse, Martin; Wegewijs, Maarten R; May, Falk; Hofstetter, Walter; Danieli, Chiara; Cornia, Andrea

    2010-09-08

    We have measured quantum transport through an individual Fe(4) single-molecule magnet embedded in a three-terminal device geometry. The characteristic zero-field splittings of adjacent charge states and their magnetic field evolution are observed in inelastic tunneling spectroscopy. We demonstrate that the molecule retains its magnetic properties and, moreover, that the magnetic anisotropy is significantly enhanced by reversible electron addition/subtraction controlled with the gate voltage. Single-molecule magnetism can thus be electrically controlled.

  18. Vibrationally mediated control of single-electron transmission in weakly coupled molecule-metal junctions

    DEFF Research Database (Denmark)

    Olsen, Thomas; Schiøtz, Jakob

    2010-01-01

    We propose a mechanism which allows one to control the transmission of single electrons through a molecular junction. The principle utilizes the emergence of transmission sidebands when molecular vibrational modes are coupled to the electronic state mediating the transmission. We will show that i....... As an example we perform a density-functional theory analysis of a benzene molecule between two Au(111) contacts and show that exciting a particular vibrational mode can give rise to transmission of a single electron....

  19. Laser-induced photochemical gas-phase reactions of vibrationally excited triplet molecules

    Science.gov (United States)

    Zalesskaya, G. A.; Yakovlev, D. L.; Sambor, E. G.

    2002-05-01

    Mechanisms and rates of laser-induced gas-phase reactions of vibrationally excited triplet ketones were studied after adding electron and hydrogen donors using time-resolved delayed fluorescence. The influence of various bimolecular competing processes on DF quenching was analyzed.

  20. Calculation of Ground State Rotational Populations for Kinetic Gas Homonuclear Diatomic Molecules including Electron-Impact Excitation and Wall Collisions

    Energy Technology Data Exchange (ETDEWEB)

    David R. Farley

    2010-08-19

    A model has been developed to calculate the ground-state rotational populations of homonuclear diatomic molecules in kinetic gases, including the effects of electron-impact excitation, wall collisions, and gas feed rate. The equations are exact within the accuracy of the cross sections used and of the assumed equilibrating effect of wall collisions. It is found that the inflow of feed gas and equilibrating wall collisions can significantly affect the rotational distribution in competition with non-equilibrating electron-impact effects. The resulting steady-state rotational distributions are generally Boltzmann for N≥3, with a rotational temperature between the wall and feed gas temperatures. The N=0,1,2 rotational level populations depend sensitively on the relative rates of electron-impact excitation versus wall collision and gas feed rates.

  1. Do vibrationally excited OH molecules affect middle and upper atmospheric chemistry?

    Directory of Open Access Journals (Sweden)

    T. von Clarmann

    2010-10-01

    Full Text Available Except for a few reactions involving electronically excited molecular or atomic oxygen or nitrogen, atmospheric chemistry modelling usually assumes that the temperature dependence of reaction rates is characterized by Arrhenius' law involving kinetic temperatures. It is known, however, that in the upper atmosphere the vibrational temperatures may exceed the kinetic temperatures by several hundreds of Kelvins. This excess energy has an impact on the reaction rates. We have used upper atmospheric OH populations and reaction rate coefficients for OH(v=0...9+O3 and OH(v=0...9+O to estimate the effective (i.e. population weighted reaction rates for various atmospheric conditions. We have found that the effective rate coefficient for OH(v=0...9+O3 can be larger by a factor of up to 1470 than that involving OH in its vibrational ground state only. At altitudes where vibrationally excited states of OH are highly populated, the OH reaction is a minor sink of Ox and O3 compared to other reactions involving, e.g., atomic oxygen. Thus the impact of vibrationally excited OH on the ozone or Ox sink remains small. Among quiescent atmospheres under investigation, the largest while still small (less than 0.1% effect was found for the polar winter upper stratosphere and mesosphere. The contribution of the reaction of vibrationally excited OH with ozone to the OH sink is largest in the upper polar winter stratosphere (up to 4%, while its effect on the HO2 source is larger in the lower thermosphere (up to 1.5% for polar winter and 2.5% for midlatitude night conditions. For OH(v=0...9+O the effective rate coefficients are lower by up to 11% than those involving OH in its vibrational ground state. The effects on the odd oxygen sink are negative and can reach −3% (midlatitudinal nighttime lowermost thermosphere, i.e. neglecting vibrational excitation overestimates the odd

  2. a Semi-Classical Approach to the Calculation of Highly Excited Rotational Energies for Asymmetric-Top Molecules

    Science.gov (United States)

    Schmiedt, Hanno; Schlemmer, Stephan; Yurchenko, Sergei N.; Yachmenev, Andrey; Jensen, Per

    2017-06-01

    We report a new semi-classical method to compute highly excited rotational energy levels of an asymmetric-top molecule. The method forgoes the idea of a full quantum mechanical treatment of the ro-vibrational motion of the molecule. Instead, it employs a semi-classical Green's function approach to describe the rotational motion, while retaining a quantum mechanical description of the vibrations. Similar approaches have existed for some time, but the method proposed here has two novel features. First, inspired by the path integral method, periodic orbits in the phase space and tunneling paths are naturally obtained by means of molecular symmetry analysis. Second, the rigorous variational method is employed for the first time to describe the molecular vibrations. In addition, we present a new robust approach to generating rotational energy surfaces for vibrationally excited states; this is done in a fully quantum-mechanical, variational manner. The semi-classical approach of the present work is applied to calculating the energies of very highly excited rotational states and it reduces dramatically the computing time as well as the storage and memory requirements when compared to the fully quantum-mechanical variational approach. Test calculations for excited states of SO_2 yield semi-classical energies in very good agreement with the available experimental data and the results of fully quantum-mechanical calculations. We hope to be able to present at the meeting also semi-classical calculations of transition intensities. See also the open-access paper Phys. Chem. Chem. Phys. 19, 1847-1856 (2017). DOI: 10.1039/C6CP05589C

  3. Quantum dynamics study on the binding of a positron to vibrationally excited states of hydrogen cyanide molecule

    Science.gov (United States)

    Takayanagi, Toshiyuki; Suzuki, Kento; Yoshida, Takahiko; Kita, Yukiumi; Tachikawa, Masanori

    2017-05-01

    We present computational results of vibrationally enhanced positron annihilation in the e+ + HCN/DCN collisions within a local complex potential model. Vibrationally elastic and inelastic cross sections and effective annihilation rates were calculated by solving a time-dependent complex-potential Schrödinger equation under the ab initio potential energy surface for the positron attached HCN molecule, [HCN; e+], with multi-component configuration interaction level (Kita and Tachikawa, 2014). We discuss the effect of vibrational excitation on the positron affinities from the obtained vibrational resonance features.

  4. Cross Sections and Rate Coefficients for Vibrational Excitation of HeH+ Molecule by Electron Impact

    Directory of Open Access Journals (Sweden)

    Mehdi Ayouz

    2016-12-01

    Full Text Available Cross sections and thermally-averaged rate coefficients for vibration (de-excitation of HeH + by an electron impact are computed using a theoretical approach that combines the multi-channel quantum defect theory and the UK R-matrix code. Fitting formulas with a few numerical parameters are derived for the obtained rate coefficients. The interval of applicability of the formulas is from 40 to 10,000 K.

  5. Nonequilibrium Green function theory for excitation and transport in atoms and molecules

    NARCIS (Netherlands)

    Dahlen, Nils Erik; Stan, Adrian

    2006-01-01

    In this work we discuss the application of nonequilibrium Green functions theory to atomic and molecular systems with the aim to study charge and energy transport in these systems. We apply the Kadanoff-Baym equations to atoms and diatomic molecules initially in the ground state. The results

  6. Controlling single-molecule junction conductance by molecular interactions

    Science.gov (United States)

    Kitaguchi, Y.; Habuka, S.; Okuyama, H.; Hatta, S.; Aruga, T.; Frederiksen, T.; Paulsson, M.; Ueba, H.

    2015-01-01

    For the rational design of single-molecular electronic devices, it is essential to understand environmental effects on the electronic properties of a working molecule. Here we investigate the impact of molecular interactions on the single-molecule conductance by accurately positioning individual molecules on the electrode. To achieve reproducible and precise conductivity measurements, we utilize relatively weak π-bonding between a phenoxy molecule and a STM-tip to form and cleave one contact to the molecule. The anchoring to the other electrode is kept stable using a chalcogen atom with strong bonding to a Cu(110) substrate. These non-destructive measurements permit us to investigate the variation in single-molecule conductance under different but controlled environmental conditions. Combined with density functional theory calculations, we clarify the role of the electrostatic field in the environmental effect that influences the molecular level alignment. PMID:26135251

  7. Aerodynamic Flow Control by Thermoacoustic Excitation from the Constituent Nanomaterials on the Platform Surface

    Science.gov (United States)

    2016-02-01

    ARL-TR-7598 ● FEB 2016 US Army Research Laboratory Aerodynamic Flow Control by Thermoacoustic Excitation from the Constituent...Research Laboratory Aerodynamic Flow Control by Thermoacoustic Excitation from the Constituent Nanomaterials on the Platform Surface by Bryan Glaz...3. DATES COVERED (From - To) October 2012–October 2015 4. TITLE AND SUBTITLE Aerodynamic Flow Control by Thermoacoustic Excitation from the

  8. Interference effects in the plasmon fields excited by a diatomic molecule

    Energy Technology Data Exchange (ETDEWEB)

    Segui, S. [Centro Atómico Bariloche (Comisión Nacional de Energía Atómica), Av. Bustillo 9500, 8400 San Carlos de Bariloche, Río Negro (Argentina); Gervasoni, J.L. [Centro Atómico Bariloche (Comisión Nacional de Energía Atómica), Av. Bustillo 9500, 8400 San Carlos de Bariloche, Río Negro (Argentina); Instituto Balseiro (Universidad Nacional de Cuyo and Comisión Nacional de Energía Atómica) (Argentina)

    2015-07-01

    We study the fluctuations of the plasmon field associated to the wake potential generated by a dimer formed by two identical charged particles (such as two nuclei of the ionized hydrogen molecule) traveling through a semiinfinite dielectric medium. We use coherent states to describe bulk and surface plasmons as wave packets that raise fluctuations in the electronic density of the material. We analyze different configurations of interest, taking into account various trajectories and orientations of the dimer.

  9. Coherent control of atoms and diatomic molecules with shaped ultrashort pulses; Manipulation coherente d'atomes et de molecules diatomiques avec des impulsions mises en forme

    Energy Technology Data Exchange (ETDEWEB)

    Degert, J

    2002-12-15

    This thesis deals with the theoretical and experimental study of coherent control of atomic and molecular systems with shaped pulses. At first, we present several experiments of control of coherent transients in rubidium. These transients appear when a two-level system is excited by a perturbative chirped pulse, and are characterized by oscillations in the excited state population. For a strong chirp, we show that a phase step in the spectrum modifies the phase of the oscillations. Then, by direct analogy with Fresnel zone lens, we conceive a chirped pulse with a highly modulated amplitude, allowing to suppress destructive contributions to the population transfer. In a second set of experiments, we focus on quantum path interferences in two-photon transitions excited by linearly chirped pulses. Owing to the broad bandwidth of ultrashort pulses, sequential and direct excitation paths contribute to the excited state population. Oscillations resulting from interferences between these two paths are observed in atomic sodium. Moreover, we show that they are observable whatever the sign of chirp. Theoretically, we study the control of the predissociation of a benchmark diatomic molecule: NaI. Predissociation leads to matter wave interferences in the fragments distribution. First, we show that a suitably chosen probe pulse allows the observation of theses interferences. Next, using a sequence of control pulse inducing electronic transition, we demonstrate the possibility to manipulate fragment energy distribution. (author)

  10. Investigations of the potential functions of weakly bound diatomic molecules and laser-assisted excitive Penning ionization

    Energy Technology Data Exchange (ETDEWEB)

    Goble, J.H. Jr.

    1982-05-01

    Three variations on the Dunham series expansion function of the potential of a diatomic molecule are compared. The differences among these expansions lie in the choice of the expansion variable, lambda. The functional form of these variables are lambda/sub s/ = l-r/sub e//r for the Simon-Parr-Finlan version, lambda/sub T/ - 1-(r/sub e//r)/sup p/ for that of Thakkar, and lambda/sub H/ = 1-exp(-rho(r/r/sub e/-1) for that of Huffaker. A wide selection of molecular systems are examined. It is found that, for potentials in excess of thirty kcal/mole, the Huffaker expansion provides the best description of the three, extrapolating at large internuclear separation to a value within 10% of the true dissociation energy. For potentials that result from the interaction of excited states, all series expansions show poor behavior away from the equilibrium internuclear separation of the molecule. The series representation of the potentials of weakly bound molecules are examined in more detail. The ground states of BeAr/sup +/, HeNe/sup +/, NaAr, and Ar/sub 2/ and the excited states of HeNe+, NaNe, and NaAr are best described by the Thakkar expansion. Finally, the observation of laser-assisted excitive Penning ionization in a flowing afterglow is reported. The reaction Ar(/sup 3/P/sub 2/) + Ca + h nu ..-->.. Ar + Ca/sup +/(5p /sup 2/P/sub J/) + e/sup -/ occurs when the photon energy, h nu, is approximately equal to the energy difference between the metastable argon and one of the fine structure levels of the ion's doublet. By monitoring the cascade fluorescence of the above reaction and comparing it to the flourescence from the field-free process Ar(/sup 3/P/sub 2/) + Ca ..-->.. Ar + Ca/sup +/(4p /sup 2/P/sub J/) + e/sup -/ a surprisingly large cross section of 6.7 x 10/sup 3/ A/sup 2/ is estimated.

  11. Microglia Control Neuronal Network Excitability via BDNF Signalling

    Directory of Open Access Journals (Sweden)

    Francesco Ferrini

    2013-01-01

    Full Text Available Microglia-neuron interactions play a crucial role in several neurological disorders characterized by altered neural network excitability, such as epilepsy and neuropathic pain. While a series of potential messengers have been postulated as substrates of the communication between microglia and neurons, including cytokines, purines, prostaglandins, and nitric oxide, the specific links between messengers, microglia, neuronal networks, and diseases have remained elusive. Brain-derived neurotrophic factor (BDNF released by microglia emerges as an exception in this riddle. Here, we review the current knowledge on the role played by microglial BDNF in controlling neuronal excitability by causing disinhibition. The efforts made by different laboratories during the last decade have collectively provided a robust mechanistic paradigm which elucidates the mechanisms involved in the synthesis and release of BDNF from microglia, the downstream TrkB-mediated signals in neurons, and the biophysical mechanism by which disinhibition occurs, via the downregulation of the K+-Cl− cotransporter KCC2, dysrupting Cl−homeostasis, and hence the strength of GABAA- and glycine receptor-mediated inhibition. The resulting altered network activity appears to explain several features of the associated pathologies. Targeting the molecular players involved in this canonical signaling pathway may lead to novel therapeutic approach for ameliorating a wide array of neural dysfunctions.

  12. Minimum in the high-order harmonic generation spectrum from molecules: role of excited states

    DEFF Research Database (Denmark)

    Han, Yong-Chang; Madsen, Lars Bojer

    2010-01-01

    that the coherent laser coupling induced between the 2Σ+g(1sσg) ground state and the first excited 2Σ+u(2pσu) state leads to two dominating amplitudes for the high-order harmonic generation that may interfere: amplitudes describing recombination back into the σg and σu states, respectively. These two amplitudes may......We model the process of high-order harmonic generation by solving the time-dependent Schrödinger equation for H+2 in the fixed nuclei approximation including full 3D electron motion for nonvanishing angles between the nuclear axis and the linear polarization of the driving pulse. We show...... interfere destructively or constructively. The effect of a destructive interference is very clear through the occurrence of a minimum in the high-order harmonic spectrum. We show cases where such a minimum in the spectrum is approximately at the position predicted by the simple two-centre interference...

  13. Excitation energies and properties of open-shell singlet molecules applications to a new class of molecules for nonlinear optics and singlet fission

    CERN Document Server

    Nakano, Masayoshi

    2014-01-01

    This brief investigates the diradical character, which is one of the ground-state chemical indices for 'bond weakness' or 'electron correlation' and which allows researchers to explore the origins of the electron-correlation-driven physico-chemical phenomena concerned with electronic, optical and magnetic properties as well as to control them in the broad fields of physics and chemistry. It then provides the theoretical fundamentals of ground and excited electronic structures of symmetric and asymmetric open-shell molecular systems by using model molecular systems. Moreover, it presents the th

  14. Sustained propagation and control of topological excitations in polariton superfluid

    Science.gov (United States)

    Pigeon, Simon; Bramati, Alberto

    2017-09-01

    We present a simple method to compensate for losses in a polariton superfluid. Based on a weak support field, it allows for the extended propagation of a resonantly driven polariton superfluid with minimal energetic cost. Moreover, this setup is based on optical bistability and leads to the significant release of the phase constraint imposed by resonant driving. This release, together with macroscopic polariton propagation, offers a unique opportunity to study the hydrodynamics of the topological excitations of polariton superfluids such as quantized vortices and dark solitons. We numerically study how the coherent field supporting the superfluid flow interacts with the vortices and how it can be used to control them. Interestingly, we show that standard hydrodynamics does not apply for this driven-dissipative fluid and new types of behaviour are identified.

  15. Vibrational energy transfer in selectively excited diatomic molecules. [Relaxation rates, self-relaxation, upper limits

    Energy Technology Data Exchange (ETDEWEB)

    Dasch, C.J.

    1978-09-01

    Single rovibrational states of HCl(v=2), HBr(v=2), DCl(v=2), and CO(v=2) were excited with a pulsed optical parametric oscillator (OPO). Total vibrational relaxation rates near - resonance quenchers were measured at 295/sup 0/K using time resolved infrared fluorescence. These rates are attributed primarily to V - V energy transfer, and they generally conform to a simple energy gap law. A small deviation was found for the CO(v) + DCl(v') relaxation rates. Upper limits for the self relaxation by V - R,T of HCl(v=2) and HBr(v=2) and for the two quantum exchange between HCl and HBr were determined. The HF dimer was detected at 295/sup 0/K and 30 torr HF pressure with an optoacoustic spectrometer using the OPO. Pulsed and chopped, resonant and non-resonant spectrophones are analyzed in detail. From experiments and first order perturbation theory, these V - V exchange rates appear to behave as a first order perturbation in the vibrational coordinates. The rotational dynamics are known to be complicated however, and the coupled rotational - vibrational dynamics were investigated theoreticaly in infinite order by the Dillon and Stephenson and the first Magnus approximations. Large ..delta..J transitions appear to be important, but these calculations differ by orders of magnitude on specific rovibrational transition rates. Integration of the time dependent semiclassical equations by a modified Gordon method and a rotationally distorted wave approximation are discussed as methods which would treat the rotational motion more accurately. 225 references.

  16. A Digital Self Excited Loop for Accelerating Cavity Field Control

    Energy Technology Data Exchange (ETDEWEB)

    Curt Hovater; Trent Allison; Jean Delayen; John Musson; Tomasz Plawski

    2007-06-22

    We have developed a digital process that emulates an analog oscillator and ultimately a self excited loop (SEL) for field control. The SEL, in its analog form, has been used for many years for accelerating cavity field control. In essence the SEL uses the cavity as a resonant circuit -- much like a resonant (tank) circuit is used to build an oscillator. An oscillating resonant circuit can be forced to oscillate at different, but close, frequencies to resonance by applying a phase shift in the feedback path. This allows the circuit to be phased-locked to a master reference, which is crucial for multiple cavity accelerators. For phase and amplitude control the SEL must be forced to the master reference frequency, and feedback provided for in both dimensions. The novelty of this design is in the way digital signal processing (DSP) is structured to emulate an analog system. While the digital signal processing elements are not new, to our knowledge this is the first time that the digital SEL concept has been designed and demonstrated. This paper reports on the progress of the design and implementation of the digital SEL for field control of superconducting accelerating cavities.

  17. Laser-induced resonant excitation of ethylene molecules in C2H4/C2H2/O2 reactions to enhance diamond deposition

    Science.gov (United States)

    Ling, H.; Sun, J.; Han, Y. X.; Gebre, T.; Xie, Z. Q.; Zhao, M.; Lu, Y. F.

    2009-01-01

    Vibrational resonant excitation of ethylene (C2H4) molecules using a carbon dioxide laser was employed to promote reactions in precursors of ethylene, acetylene (C2H2), and oxygen to enhance diamond deposition. One of the vibrational modes (CH2 wag mode, v7) of the C2H4 molecules was selected to achieve the resonant excitation in the reactions. Optical emission spectroscopy was used to study the effects of laser resonant excitation on the reactions for diamond deposition. The optical emissions of CH and C2 species were enhanced with the laser excitation, indicating that there are more active species generated in the reactions. Thicknesses and grain sizes of the deposited films were increased correspondingly. Temperature calculations from the line set in the R-branch of CH emission spectra indicated that a nonthermal process is involved in the enhanced diamond deposition.

  18. Controlling the branching ratio of photodissociation using aligned molecules

    DEFF Research Database (Denmark)

    Larsen, J.J.; Wendt-Larsen, I.; Stapelfeldt, H.

    1999-01-01

    Using a sample of iodine molecules, aligned by a strong, linearly polarized laser pulse, we control the branching ratio of the I+I and I+I* photodissociation channels by a factor of 26. The control relies on selective photoexcitation of two potential curves that each correlate adiabatically...

  19. The response of a (3)He Fermi liquid droplet to vibronic excitation of an embedded glyoxal molecule.

    Science.gov (United States)

    Benedek, Giorgio; Hizhnyakov, Vladimir; Toennies, J Peter

    2014-08-21

    The zero-phonon line (ZPL) and the sideband in the vibronic spectrum of a single glyoxal molecule inside a (3)He droplet are analyzed within the framework of the Lax formalism. The new theory takes full account of the coupling of the molecule to the single particle-hole (PH) and collective excitations of the doped Fermionic droplet. The effect on the coupling of the wavevector dependence of the effective (3)He mass and the large local density of the first (3)He shell, resulting from the interaction with the chromophore, are also included in the theory. By fitting of a coupling parameter and the phase factor between the PH and collective response functions, the shape and relative intensity of the observed ZPL and its slowly decreasing multiexcitation sideband are well-reproduced. The new theory is consistent with the previous explanation of the surprisingly sharp phonon line superimposed on the sideband in terms of the dense first (3)He shell, which acts as a Helmholtz resonator for the zero sound of the droplet.

  20. Optical oscillator strengths of the valence-shell excitations of atoms and molecules determined by the dipole ( γ,γ) method

    Science.gov (United States)

    Xu, Long-Quan; Liu, Ya-Wei; Xu, Xin; Ni, Dong-Dong; Yang, Ke; Zhu, Lin-Fan

    2017-07-01

    The dipole (γ,γ) method, which is the inelastic X-ray scattering operated at a negligibly small momentum transfer, has been developed to determine the absolute optical oscillator strengths of the valence-shell excitations of atoms and molecules. This new method is free from the line saturation effect, and its Bethe-Born conversion factor varies much more slowly with the excitation energy than that of the dipole (e, e) method. Thus the dipole (γ,γ) method provides a reliable approach to obtain the benchmark optical oscillator strengths of the valence-shell excitations for gaseous atoms and molecules. In this paper, we give a review of the dipole (γ,γ) method and some recent measurements of absolute optical oscillator strengths of gaseous atoms and molecules. Contribution to the Topical Issue "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, Grzegorz Karwasz.

  1. On the biphoton excitation of the fluorescence of the bacteriochlorophyll molecules of purple photosynthetic bacteria by powerful near IR femto-picosecond pulses

    Energy Technology Data Exchange (ETDEWEB)

    Borisov, A. Yu., E-mail: borissov@belozersky.msu.ru [Moscow State University, Belozersky Institute of Physicochemical Biology (Russian Federation)

    2011-11-15

    The authors of a number of experimental works detected nonresonance biphoton excitation of bacteriochlorophyll molecules, which represent the main pigment in the light-absorbing natural 'antenna' complexes of photosynthesizing purple bacteria, by femtosecond IR pulses (1250-1500 nm). They believe that IR quanta excite hypothetic forbidden levels of the pigments of these bacteria in the double frequency range 625-750 nm. We propose and ground an alternative triplet mechanism to describe this phenomenon. According to our hypothesis, the mechanism of biphoton excitation of molecules by IR quanta can manifest itself specifically, through high triplet levels of molecules in the high fields induced by femtosecond-picosecond laser pulses.

  2. Rotationally inelastic collisions of excited NaK and NaCs molecules with noble gas and alkali atom perturbers

    Science.gov (United States)

    Jones, J.; Richter, K.; Price, T. J.; Ross, A. J.; Crozet, P.; Faust, C.; Malenda, R. F.; Carlus, S.; Hickman, A. P.; Huennekens, J.

    2017-10-01

    We report measurements of rate coefficients at T ≈ 600 K for rotationally inelastic collisions of NaK molecules in the 2(A)1Σ+ electronic state with helium, argon, and potassium atom perturbers. Several initial rotational levels J between 14 and 44 were investigated. Collisions involving molecules in low-lying vibrational levels (v = 0, 1, and 2) of the 2(A)1Σ+ state were studied using Fourier-transform spectroscopy. Collisions involving molecules in a higher vibrational level, v = 16, were studied using pump/probe, optical-optical double resonance spectroscopy. In addition, polarization spectroscopy measurements were carried out to study the transfer of orientation in these collisions. Many, but not all, of the measurements were carried out in the "single-collision regime" where more than one collision is unlikely to occur within the lifetime of the excited molecule. The analysis of the experimental data, which is described in detail, includes an estimate of effects of multiple collisions on the reported rate coefficients. The most significant result of these experiments is the observation of a strong propensity for ΔJ = even transitions in collisions involving either helium or argon atoms; the propensity is much stronger for helium than for argon. For the initial rotational levels studied experimentally, almost all initial orientation is preserved in collisions of NaK 2(A)1Σ+ molecules with helium. Roughly between 1/3 and 2/3 of the orientation is preserved in collisions with argon, and almost all orientation is destroyed in collisions with potassium atoms. Complementary measurements on rotationally inelastic collisions of NaCs 2(A)1Σ+ with argon do not show a ΔJ = even propensity. The experimental results are compared with new theoretical calculations of collisions of NaK 2(A)1Σ+ with helium and argon. The calculations are in good agreement with the absolute magnitudes of the experimentally determined rate coefficients and accurately reproduce the very

  3. Small-molecule control of protein function through Staudinger reduction

    Science.gov (United States)

    Luo, Ji; Liu, Qingyang; Morihiro, Kunihiko; Deiters, Alexander

    2016-11-01

    Using small molecules to control the function of proteins in live cells with complete specificity is highly desirable, but challenging. Here we report a small-molecule switch that can be used to control protein activity. The approach uses a phosphine-mediated Staudinger reduction to activate protein function. Genetic encoding of an ortho-azidobenzyloxycarbonyl amino acid using a pyrrolysyl transfer RNA synthetase/tRNACUA pair in mammalian cells enables the site-specific introduction of a small-molecule-removable protecting group into the protein of interest. Strategic placement of this group renders the protein inactive until deprotection through a bioorthogonal Staudinger reduction delivers the active wild-type protein. This developed methodology was applied to the conditional control of several cellular processes, including bioluminescence (luciferase), fluorescence (enhanced green fluorescent protein), protein translocation (nuclear localization sequence), DNA recombination (Cre) and gene editing (Cas9).

  4. Formation of cold molecules through the photo-association of cold atoms of Cesium. Existence of long range forces between between cold excited atoms of Cesium; Formation de molecules froides par photoassociation d'atomes froids de cesium. Mise en evidence de forces a longue portee entre atomes froids excites de cesium

    Energy Technology Data Exchange (ETDEWEB)

    Comparat, D

    1999-09-01

    This thesis deals with the experimental study and the theoretical interpretation of the processes involved in photo-association and the formation of cold caesium molecules. It also presents a study of the dipolar forces between a pair of cold excited caesium atoms. We present here the first photo-association experiment on cold caesium atoms: two cold atoms absorb a photon to form an excited electronically excited molecules in a rotation-vibration level. The first production of cold molecules which was realised experimentally, after the spontaneous deexcitation of the photo-associated molecules, is described, stressing the role of the potential well of the molecular states O{sub g}{sup -}(6s+6p{sub 3/2}) or 1{sub u} (6s+6p{sub 3/2}) of caesium. The detection of the formed caesium molecules is based on a two-photons resonant ionisation that creates Cs{sub 2}{sup +} ions, afterwards selectively detected. Temperatures around 20-200 {mu}K have been measured. The photo-associative spectroscopy is described on the theoretical point of view: a detailed theoretical study allows to calculate precisely the asymptotic parts of the potential curves. On the experimental point of view, we present the spectroscopy of the extern potential well of the caesium state O{sub g}{sup -}(6s+6p{sub 3/2}) and the construction of an effective potential curve of the RKR type. A unified theory of photo-association in weak field, considered as a collision assisted by laser, is developed. The cold atoms experiments allow to study and control the collision between two atoms whose mutual interaction is of the dipole-dipole type. Two different physical systems are studied: a sample of Rydberg atoms, and the photo-association process which is a laser-assisted collision. A modification of the motion of one pair of atoms makes it possible to control the bipolar forces and to choose the atoms relative speeds. (author)

  5. X-ray absorption spectroscopy of the chiral molecules fenchone, α-pinene, limonene and carvone in the C1s excitation region

    Energy Technology Data Exchange (ETDEWEB)

    Ozga, Christian, E-mail: ozga@physik.uni-kassel.de [Institute for Physics and CINSaT, University of Kassel, Heinrich-Plett Str. 40, 34132 Kassel (Germany); Jänkälä, Kari [Centre for Molecular Materials Research, University of Oulu, PO Box 3000, 90014 Oulu (Finland); Schmidt, Philipp; Hans, Andreas; Reiß, Philipp; Ehresmann, Arno; Knie, André [Institute for Physics and CINSaT, University of Kassel, Heinrich-Plett Str. 40, 34132 Kassel (Germany)

    2016-02-15

    Highlights: • Determination of the X-ray absorption spectra for two terpenoids and two terpenes. • Allocation of predominant or even site-selective excitation of stereocenters. • Fragment fluorescence spectra of the prototype molecules are identical. • Presented data can be used for future fluorescence circular dichroism experiments. - Abstract: Relative ionization cross sections and fluorescence intensities as functions of the exciting-photon energy were recorded for the chiral molecules carvone, α-pinene, limonene and fenchone after excitation by monochromatized synchrotron radiation with energies of the exciting-photons between 284 eV and 289 eV. At selected exciting-photon energies dispersed fragment fluorescence spectra in the wavelength range between 365 nm and 505 nm were obtained. Time dependent density functional theory (TD-DFT) computations were performed to analyze the experimentally observed resonance-structures. Comparison of the computed and recorded spectra demonstrates the possibility of a predominant or even specific excitation of one particular stereocenter site in a molecule with more than one stereocenter.

  6. Plasmon assisted control of photo-induced excitation energy transfer in a molecular chain

    Science.gov (United States)

    Wang, Luxia; May, Volkhard

    2017-08-01

    The strong and ultrafast laser pulse excitation of a molecular chain in close vicinity to a spherical metal nano-particle (MNP) is studied theoretically. Due to local-field enhancement around the MNP, pronounced excited-state formation has to be expected for the part of the chain which is in proximity to the MNP. Here, the description of this phenomenon will be based on a uniform quantum theory of the MNP-molecule system. It accounts for local-field effects due to direct consideration of the strong excitation energy transfer coupling between the MNP and the various molecules. The molecule-MNP distances are chosen in such a way as to achieve a correct description of the MNP via dipole-plasmon excitations. Short plasmon life-times are incorporated in the framework of a density matrix approach. By extending earlier work the present description allows for multi-exciton formation and multiple dipole-plasmon excitation. The region of less intense and not-too-short optical excitation is identified as being best suited for excitation energy localization in the chain.

  7. Controlled excitation of a cold turbulent swirling free jet

    Science.gov (United States)

    Taghavi, R.; Rice, E. J.; Farokhi, S.

    1988-01-01

    Experimental results from acoustic excitation of a cold free turbulent jet with and without swirl are presented. A flow with a swirl number of 0.35 (i.e., moderate swirl) is excited internally by plane acoustic waves at a constant sound pressure level and at various frequencies. It is observed that the cold swirling jet is excitable by plane waves, and that the instability waves grow about 50 percent less in peak rms amplitude, and saturate further upstream compared to corresponding waves in a jet without swirl having the same axial mass flux. The preferred Strouhal number based on the mass-averaged axial velocity and nozzle exit diameter for both swirling and nonswirling flows is 0.4. So far no change in the mean velocity components of the swirling jet is observed as a result of excitation.

  8. Attosecond-recollision-controlled selective fragmentation of polyatomic molecules.

    Science.gov (United States)

    Xie, Xinhua; Doblhoff-Dier, Katharina; Roither, Stefan; Schöffler, Markus S; Kartashov, Daniil; Xu, Huailiang; Rathje, Tim; Paulus, Gerhard G; Baltuška, Andrius; Gräfe, Stefanie; Kitzler, Markus

    2012-12-14

    Control over various fragmentation reactions of a series of polyatomic molecules (acetylene, ethylene, 1,3-butadiene) by the optical waveform of intense few-cycle laser pulses is demonstrated experimentally. We show both experimentally and theoretically that the responsible mechanism is inelastic ionization from inner-valence molecular orbitals by recolliding electron wave packets, whose recollision energy in few-cycle ionizing laser pulses strongly depends on the optical waveform. Our work demonstrates an efficient and selective way of predetermining fragmentation and isomerization reactions in polyatomic molecules on subfemtosecond time scales.

  9. Molecular-dynamics study of the dynamical excitations in commensurate monolayer films of nitrogen molecules on graphite: A test of the corrugation in the nitrogen-graphite potential

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Bruch, Ludwig Walter

    1995-01-01

    The dynamical excitations in a commensurate monolayer solid of N2 molecules adsorbed on graphite have been studied using molecular-dynamics simulations. Velocity and rotational correlation functions as well as coherent intermediate scattering functions and dynamical structure factors have been ca...

  10. Neural Excitability and Joint Laxity in Chronic Ankle Instability, Coper, and Control Groups

    National Research Council Canada - National Science Library

    Bowker, Samantha; Terada, Masafumi; Thomas, Abbey C; Pietrosimone, Brian G; Hiller, Claire E; Gribble, Phillip A

    2016-01-01

    ... ankle sprain, and a healthy control group. To determine if differences exist in spinal reflex excitability and ankle laxity among participants with CAI, copers, and healthy controls. Case-control study...

  11. Non trivial effect of strong high-frequency excitation on a nonlinear controlled system

    DEFF Research Database (Denmark)

    Fidlin, A.; Thomsen, Jon Juel

    2004-01-01

    due to control is usually high compared to uncontrolled systems. A standard optimal controller for a standard nonlinear system (a movable cart used to balance a pendulum vertically) is shown to exhibit pronounced bias error in presence of HF-excitation. The bias increases with increased excitation...

  12. Enhanced chemical vapor deposition of diamond by wavelength-matched vibrational excitations of ethylene molecules using tunable CO2 laser irradiation

    Science.gov (United States)

    Ling, H.; Xie, Z. Q.; Gao, Y.; Gebre, T.; Shen, X. K.; Lu, Y. F.

    2009-03-01

    Wavelength-matched vibrational excitations of ethylene (C2H4) molecules using a tunable carbon dioxide (CO2) laser were employed to significantly enhance the chemical vapor deposition (CVD) of diamond in open air using a precursor gas mixture of C2H4, acetylene (C2H2), and oxygen (O2). The CH2-wag vibration mode (ν7) of the C2H4 molecules was selected to achieve the resonant excitation in the CVD process. Both laser wavelengths of 10.591 and 10.532 μm were applied to the CVD processes to compare the C2H4 excitations and diamond depositions. Compared with 10.591 μm produced by common CO2 lasers, the laser wavelength of 10.532 μm is much more effective to excite the C2H4 molecules through the CH2-wag mode. Under the laser irradiation with a power of 800 W and a wavelength of 10.532 μm, the grain size in the deposited diamond films was increased by 400% and the film thickness was increased by 300%. The quality of the diamond crystals was also significantly enhanced.

  13. Molecule Matters

    Indian Academy of Sciences (India)

    Fluorescence usually originates from the lowest excited electronic state (singlet) irrespective of the excitation and hence, the fluorescence spectrum of a molecule is characterized by a single band. However, what makes DMABN a very special molecule is that it exhibits dual fluorescence (i.e. emission of. Molecule Matters.

  14. A method for controlling the excitation of a synchronous machine

    Energy Technology Data Exchange (ETDEWEB)

    Blokhin, V.F.; Rosman, L.V.

    1983-01-01

    The method lies in the fact that in the operational process the transfer functions of the automatic excitation regulation are changed. In order to increase the quality of regulation, the status of the current limiter is identified and the transfer functions are changed based on this.

  15. Investigation of excitation control for wind-turbine generator stability

    Science.gov (United States)

    Gebben, V. D.

    1977-01-01

    High speed horizontal axis wind turbine generators with blades on the downwind side of the support tower require special design considerations to handle disturbances introduced by the flow wake behind the tower. Experiments and analytical analyses were made to determine benefits that might be obtained by using the generator exciter to provide system damping for reducing power fluctuations.

  16. Power generation and control of a self excited squirrel cage ...

    African Journals Online (AJOL)

    Nigerian Journal of Technology ... The wind turbine is to be tied mechanically to the rotor of a squirrel cage induction which is fed with grid powerthat the generator supplies. ... Keywords: Wind Power systems, Self-excited squirrel cage induction generator, squirrel cage induction motor, backto- back converter, simulation ...

  17. Astrocytes Control Neuronal Excitability in the Nucleus Accumbens

    Directory of Open Access Journals (Sweden)

    Tommaso Fellin

    2007-01-01

    Full Text Available Though accumulating evidence shows that the metabotropic glutamate receptor 5 (mGluR5 mediates some of the actions of extracellular glutamate after cocaine use, the cellular events underlying this action are poorly understood. In this review, we will discuss recent results showing that mGluR5 receptors are key regulators of astrocyte activity. Synaptic release of glutamate activates mGluR5 expressed in perisynaptic astrocytes and generates intense Ca2+ signaling in these cells. Ca2+ oscillations, in turn, trigger the release from astrocytes of the gliotransmitter glutamate, which modulates neuronal excitability by activating NMDA receptors. By integrating these results with the most recent evidence demonstrating the importance of astrocytes in the regulation of neuronal excitability, we propose that astrocytes are involved in mediating some of the mGluR5-dependent drug-induced behaviors.

  18. Hilar mossy cell circuitry controlling dentate granule cell excitability

    Directory of Open Access Journals (Sweden)

    Seiichiro eJinde

    2013-02-01

    Full Text Available Glutamatergic hilar mossy cells of the dentate gyrus can either excite or inhibit distant granule cells, depending on whether their direct excitatory projections to granule cells or their projections to local inhibitory interneurons dominate. However, it remains controversial whether the net effect of mossy cell loss is granule cell excitation or inhibition. Clarifying this controversy has particular relevance to temporal lobe epilepsy, which is marked by dentate granule cell hyperexcitability and extensive loss of dentate hilar mossy cells. Two diametrically opposed hypotheses have been advanced to explain this granule cell hyperexcitability – the dormant basket cell and the irritable mossy cell hypotheses. The dormant basket cell hypothesis proposes that mossy cells normally exert a net inhibitory effect on granule cells and therefore their loss causes dentate granule cell hyperexcitability. The irritable mossy cell hypothesis takes the opposite view that mossy cells normally excite granule cells and that the surviving mossy cells in epilepsy increase their activity, causing granule cell excitation. The inability to eliminate mossy cells selectively has made it difficult to test these two opposing hypotheses. To this end, we developed a transgenic toxin-mediated, mossy cell-ablation mouse line. Using these mutants, we demonstrated that the extensive elimination of hilar mossy cells causes granule cell hyperexcitability, although the mossy cell loss observed appeared insufficient to cause clinical epilepsy. In this review, we focus on this topic and also suggest that different interneuron populations may mediate mossy cell-induced translamellar lateral inhibition and intralamellar recurrent inhibition. These unique local circuits in the dentate hilar region may be centrally involved in the functional organization of the dentate gyrus.

  19. Controlling excited-state contamination in nucleon matrix elements

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Boram; Gupta, Rajan; Bhattacharya, Tanmoy; Engelhardt, Michael; Green, Jeremy; Joó, Bálint; Lin, Huey-Wen; Negele, John; Orginos, Kostas; Pochinsky, Andrew; Richards, David; Syritsyn, Sergey; Winter, Frank

    2016-06-01

    We present a detailed analysis of methods to reduce statistical errors and excited-state contamination in the calculation of matrix elements of quark bilinear operators in nucleon states. All the calculations were done on a 2+1 flavor ensemble with lattices of size $32^3 \\times 64$ generated using the rational hybrid Monte Carlo algorithm at $a=0.081$~fm and with $M_\\pi=312$~MeV. The statistical precision of the data is improved using the all-mode-averaging method. We compare two methods for reducing excited-state contamination: a variational analysis and a two-state fit to data at multiple values of the source-sink separation $t_{\\rm sep}$. We show that both methods can be tuned to significantly reduce excited-state contamination and discuss their relative advantages and cost-effectiveness. A detailed analysis of the size of source smearing used in the calculation of quark propagators and the range of values of $t_{\\rm sep}$ needed to demonstrate convergence of the isovector charges of the nucleon to the $t_{\\rm sep} \\to \\infty $ estimates is presented.

  20. MD 2485: Active halo control using narrowband and colored noise excitations

    CERN Document Server

    Garcia Morales, Hector; Kotzian, Gerd; Maclean, Ewen Hamish; Redaelli, Stefano; Valuch, Daniel; Wagner, Joschka; CERN. Geneva. ATS Department

    2018-01-01

    This MD note summarizes the actions carried out during the MD 2485 on Active halo control using narrowband and colored noise excitations. The goal of the MD was to repeat some promising cases already tested in the past and introduce a new excitation type based on applying a colored noise. Although we were able to repeat some cases using a narrowband excitation, due to a problem with the waveform generator, the colored noise excitation could not be accomplished as expected. In any case, we provide some results that may be useful for future MDs.

  1. Excited-State Dynamics of Biological Molecules in Solution: Photoinduced Charge Transfer in Oxidatively Damaged DNA and Deactivation of Violacein in Viscous Solvents

    Science.gov (United States)

    Beckstead, Ashley Ann

    results to similar observations of viscosity-dependent excited-state decay rates in other molecules. I also consider the relevance of violacein's excited-state properties to the hypothesized sunscreening role of violacein. Overall, the studies presented in this dissertation illustrate how ultrafast spectroscopic techniques can be used to unravel complex biomolecular excited-state dynamics in solution.

  2. Metastable Electronically Excited Atoms and Molecules: Excitation Transfer in Slow Collisions, Probed by Means of a Counter-Rotating Supersonic Jet

    Science.gov (United States)

    2012-08-15

    Acetylene S1 State,’’ J. Phys. Chem. A (feature article) 115, 11921-11943 (2011). 5. S. H. Lipoff and D. R. Herschbach, “Low-Energy Limit for...triplet states) and how these mechanisms may be experimentally characterized. Throughout this project, the spin-orbit interaction of the acetylene S1...Laser Excited Metastables (SEELEM) experiments, largely because we have accumulated an unprecedentedly complete description of the vibrational levels

  3. LASER PHYSICS: Formation of XeCl excimer molecules as a result of mixing of gas streams excited by a continuous discharge

    Science.gov (United States)

    Mikhkel'soo, V. T.; Treshchalov, A. B.; Peét, V. É.; Yalviste, É. Kh; Belokon', A. A.; Braĭnin, B. I.; Khritov, K. M.

    1987-07-01

    A longitudinal continuous discharge in two independent supersonic gas streams, which were subsequently mixed, was used for nonequilibrium electronic excitation of components undergoing reactions and emitting chemiluminescence. Formation of XeCl excimer molecules as a result of mixing of excited He:Xe = 95:5 and He:HCl(Cl2) = 99:1 streams was deduced from the XeCl* fluorescence spectra (B→X and C→A bands). The steady-state concentration of the XeCl molecules in B and C states determined in the mixing region was ~1010 cm-3 when the pump power was 50 W, so that the efficiency of conversion of the input electrical energy into the excimer fluorescence was ~1%.

  4. MCSCF wave functions for excited states of polar molecules - Application to BeO. [Multi-Configuration Self-Consistent Field

    Science.gov (United States)

    Bauschlicher, C. W., Jr.; Yarkony, D. R.

    1980-01-01

    A previously reported multi-configuration self-consistent field (MCSCF) algorithm based on the generalized Brillouin theorem is extended in order to treat the excited states of polar molecules. In particular, the algorithm takes into account the proper treatment of nonorthogonality in the space of single excitations and invokes, when necessary, a constrained optimization procedure to prevent the variational collapse of excited states. In addition, a configuration selection scheme (suitable for use in conjunction with extended configuration interaction methods) is proposed for the MCSCF procedure. The algorithm is used to study the low-lying singlet states of BeO, a system which has not previously been studied using an MCSCF procedure. MCSCF wave functions are obtained for three 1 Sigma + and two 1 Pi states. The 1 Sigma + results are juxtaposed with comparable results for MgO in order to assess the generality of the description presented here.

  5. Electronic excitation of molecules in solution calculated using the symmetry-adapted cluster–configuration interaction method in the polarizable continuum model

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Ryoichi, E-mail: fukuda@ims.ac.jp; Ehara, Masahiro [Institute for Molecular Science and Research Center for Computational Science, 38 Nishigo-naka, Myodaiji, Okazaki, 444-8585 (Japan); Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University Katsura, Kyoto 615-8520 (Japan)

    2015-12-31

    The effects from solvent environment are specific to the electronic states; therefore, a computational scheme for solvent effects consistent with the electronic states is necessary to discuss electronic excitation of molecules in solution. The PCM (polarizable continuum model) SAC (symmetry-adapted cluster) and SAC-CI (configuration interaction) methods are developed for such purposes. The PCM SAC-CI adopts the state-specific (SS) solvation scheme where solvent effects are self-consistently considered for every ground and excited states. For efficient computations of many excited states, we develop a perturbative approximation for the PCM SAC-CI method, which is called corrected linear response (cLR) scheme. Our test calculations show that the cLR PCM SAC-CI is a very good approximation of the SS PCM SAC-CI method for polar and nonpolar solvents.

  6. Electronic excitation spectra of molecules in solution calculated using the symmetry-adapted cluster-configuration interaction method in the polarizable continuum model with perturbative approach

    Science.gov (United States)

    Fukuda, Ryoichi; Ehara, Masahiro; Cammi, Roberto

    2014-02-01

    A perturbative approximation of the state specific polarizable continuum model (PCM) symmetry-adapted cluster-configuration interaction (SAC-CI) method is proposed for efficient calculations of the electronic excitations and absorption spectra of molecules in solutions. This first-order PCM SAC-CI method considers the solvent effects on the energies of excited states up to the first-order with using the zeroth-order wavefunctions. This method can avoid the costly iterative procedure of the self-consistent reaction field calculations. The first-order PCM SAC-CI calculations well reproduce the results obtained by the iterative method for various types of excitations of molecules in polar and nonpolar solvents. The first-order contribution is significant for the excitation energies. The results obtained by the zeroth-order PCM SAC-CI, which considers the fixed ground-state reaction field for the excited-state calculations, are deviated from the results by the iterative method about 0.1 eV, and the zeroth-order PCM SAC-CI cannot predict even the direction of solvent shifts in n-hexane for many cases. The first-order PCM SAC-CI is applied to studying the solvatochromisms of (2,2'-bipyridine)tetracarbonyltungsten [W(CO)4(bpy), bpy = 2,2'-bipyridine] and bis(pentacarbonyltungsten)pyrazine [(OC)5W(pyz)W(CO)5, pyz = pyrazine]. The SAC-CI calculations reveal the detailed character of the excited states and the mechanisms of solvent shifts. The energies of metal to ligand charge transfer states are significantly sensitive to solvents. The first-order PCM SAC-CI well reproduces the observed absorption spectra of the tungsten carbonyl complexes in several solvents.

  7. Rate coefficients for dissociative attachment and resonant electron-impact dissociation involving vibrationally excited O{sub 2} molecules

    Energy Technology Data Exchange (ETDEWEB)

    Laporta, V. [Istituto di Metodologie Inorganiche e dei Plasmi, CNR, Bari, Italy and Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom); Celiberto, R. [Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica, Politecnico di Bari, Italy and Istituto di Metodologie Inorganiche e dei Plasmi, CNR, Bari (Italy); Tennyson, J. [Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom)

    2014-12-09

    Rate coefficients for dissociative electron attachment and electron-impact dissociation processes, involving vibrationally excited molecular oxygen, are presented. Analytical fits of the calculated numerical data, useful in the applications, are also provided.

  8. Active halo control through narrow-band excitation with the ADT at injection

    CERN Document Server

    Wagner, Joschka; Garcia Morales, Hector; Redaelli, Stefano; Valentino, Gianluca; Valuch, Daniel; CERN. Geneva. ATS Department

    2016-01-01

    During this MD (MD1388), the capabilities of an active halo control for beam tail depletion in the LHC were tested. The studied method relies on using the Transverse Damper (ADT) to perform a narrow-band excitation.

  9. The Application of Parameter Space Design Method for Generator Excitation Control

    Science.gov (United States)

    Iki, Hiroyuki; Yoshimura, Shyuta; Uriu, Yosihisa

    Recently, control engineering changes from classical control theory to modern control theory, and analogue to digital. However, as a matter of fact, the sensitivity adjustment of the parameters using Bode diagram require many time and works. In this paper, the tool of Matlab/Simulink that adjusted the AVR control parameter of the PI control type brushless and Thyristor excitation method by using the technique for based on the parameter space planning method by QE was made. Moreover, the adjustment of the sensitivity parameter of the excitation control method intended for the dynamic stability level area in Single Machine Infinite Bus is examined with the tool.

  10. Quantum optimal control theory applied to transitions in diatomic molecules

    Science.gov (United States)

    Lysebo, Marius; Veseth, Leif

    2014-12-01

    Quantum optimal control theory is applied to control electric dipole transitions in a real multilevel system. The specific system studied in the present work is comprised of a multitude of hyperfine levels in the electronic ground state of the OH molecule. Spectroscopic constants are used to obtain accurate energy eigenstates and electric dipole matrix elements. The goal is to calculate the optimal time-dependent electric field that yields a maximum of the transition probability for a specified initial and final state. A further important objective was to study the detailed quantum processes that take place during such a prescribed transition in a multilevel system. Two specific transitions are studied in detail. The computed optimal electric fields as well as the paths taken through the multitude of levels reveal quite interesting quantum phenomena.

  11. A new treatment of the v4 = 2 excited state of the symmetric top molecule PF3 around 693 cm-1

    Science.gov (United States)

    Najib, Hamid

    2013-07-01

    All experimental data of the 2ν40 parallel and 2ν4-2 perpendicular components of the pyramidal molecule PF3 have been refined using five equivalent D-, Q-, QD-, L-, LD-reduction forms of the effective rovibrational Hamiltonian recently developed for the vt(E) = 2 vibrational state of a C3v symmetric top molecule. The v4 = 2 excited level of the PF3 molecule has been treated with models taking into account ℓ- and k-intravibrational resonances. The body of data comprised 1171 IR lines of the 2ν40 component, 249 energies of the v4 = 2-2 substate deduced from the 2ν4-2-ν4-1 hot band and 5 reported MW data. The standard deviations of the fits are practically similar for the reductions applied and close to the quality of measurements. The unitary equivalence of the tested relations between the derived parameters was satisfactorily fulfilled.

  12. Impact Assessment of Various Methods for Control of Synchronous Generator Excitation on Quality of Transient Processes

    Directory of Open Access Journals (Sweden)

    Y. D. Filipchik

    2011-01-01

    Full Text Available The paper considers an impact of various methods for control of an exciting current pertaining to a synchronous generator on the nature of transient processes. A control algorithm for the exciting current in relation to changes in sliding and acceleration of a generator rotor has been proposed in the paper. The algorithm makes it possible to improve quality of the transient processes due to reduction of oscillation range concerning as an active power so a δ-angle as well.

  13. Dissociative electron attachment to vibrationally excited H{sub 2} molecules involving the {sup 2}{Sigma}{sub g}{sup +} resonant Rydberg electronic state

    Energy Technology Data Exchange (ETDEWEB)

    Celiberto, R., E-mail: r.celiberto@poliba.it [Department of Water Engineering and Chemistry, Polytechnic of Bari, 70125 Bari (Italy); Institute of Inorganic Methodologies and Plasmas, CNR, 70125 Bari (Italy); Janev, R.K., E-mail: r.janev@fz-juelich.de [Macedonian Academy of Sciences and Arts, P.O.B 428, 1000 Skopje (Macedonia, The Former Yugoslav Republic of); Institute of Energy and Climate Research - Plasma Physics, Forschungszentrum Juelich GmbH Association EURATOM-FZJ, Partner in Trilateral Euregio Cluster, 52425 Juelich (Germany); Wadehra, J.M., E-mail: wadehra@wayne.edu [Physics Department, Wayne State University, Detroit, MI 48202 (United States); Tennyson, J., E-mail: j.tennyson@ucl.ac.uk [Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom)

    2012-04-04

    Graphical abstract: Dissociative electron attachment cross sections as a function of the incident electron energy and for the initial vibration levels v{sub i} = 0-5, 10 of the H{sub 2} molecule. Highlights: Black-Right-Pointing-Pointer We calculated electron-hydrogen dissociative attachment cross sections and rates coefficients. Black-Right-Pointing-Pointer Collision processes occurring through a resonant Rydberg state are considered. Black-Right-Pointing-Pointer Cross sections and rates were obtained for vibrationally excited hydrogen molecules. Black-Right-Pointing-Pointer The cross sections exhibit pronounced oscillatory structures. Black-Right-Pointing-Pointer A comparison with the process involving the electron-hydrogen resonant ground state is discussed. - Abstract: Dissociative electron attachment cross sections (DEA) on vibrationally excited H{sub 2} molecule taking place via the {sup 2}{Sigma}{sub g}{sup +} Rydberg-excited resonant state are studied using the local complex potential (LCP) model for resonant collisions. The cross sections are calculated for all initial vibrational levels (v{sub i} = 0-14) of the neutral molecule. In contrast to the previously noted dramatic increase in the DEA cross sections with increasing v{sub i}, when the process proceeds via the X {sup 2}{Sigma}{sub u}{sup +} shape resonance of H{sub 2}, for the {sup 2}{Sigma}{sub g}{sup +} Rydberg resonance the cross sections increase only gradually up to v{sub i} = 3 and then decrease. Moreover, the cross sections for v{sub i} Greater-Than-Or-Slanted-Equal-To 6 exhibit pronounced oscillatory structures. A discussion of the origin of the observed behavior of calculated cross sections is given. The DEA rate coefficients for all v{sub i} levels are also calculated in the 0.5-1000 eV temperature range.

  14. Excitation and ionic fragmentation of the carvone molecule (C{sub 10}H{sub 14}O) around the O 1s edge

    Energy Technology Data Exchange (ETDEWEB)

    Castilho, R.B. de, E-mail: bobcast@gmail.com [Departamento de Química, Instituto de Ciências Exatas, Universidade Federal do Amazonas (UFAM), Campus Universitário, Coroado, 69077-000 Manaus, AM (Brazil); Nunez, C.V. [Coordenação de Pesquisas em Produtos Naturais, Instituto Nacional de Pesquisas da Amazônia, INPA, 69060-001 Manaus, AM (Brazil); Lago, A.F. [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), 09210-170 Santo André, SP (Brazil); Santos, A.C.F.; Coutinho, L.H. [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, 21941-972 Rio de Janeiro, RJ (Brazil); Lucas, C.A. [Instituto de Química, Universidade Federal Fluminense (UFF), 24020150 Rio de Janeiro (Brazil); Pilling, S. [Instituto de Pesquisa e Desenvolvimento (IP and D), Universidade do Vale do Paraíba (UNIVAP), 12244-000 São José dos Campos, SP (Brazil); Silva-Moraes, M.O. [Departamento de Química, Instituto de Ciências Exatas, Universidade Federal do Amazonas (UFAM), Campus Universitário, Coroado, 69077-000 Manaus, AM (Brazil); Souza, G.G.B. de [Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária, Ilha do Fundão, 21949-900 Rio de Janeiro, RJ (Brazil)

    2014-01-01

    Highlights: • Interaction of the carvone molecule with high energy photons results in an extensive fragmentation of the molecular skeleton. • The occurrence of a site selective mechanism is suggested based on a production of atomic oxygen single and doubly charged, notably around the O 1s edge. • The photoabsorption spectra around O 1s edge present four resonances and the cross section estimation shows a maximum on the first one. - Abstract: The electronic excitation and associated ionic dissociation of the carvone molecule have been studied around the oxygen 1s edge, using synchrotron radiation and time-of-flight techniques. Photoabsorption spectrum (total ion yield) and mass spectra have been obtained in the range between 520 and 545 eV. For the sake of comparison, carvone mass spectra have also been obtained following valence (21.21 eV) and core (carbon 1s) ionization. Fragmentation of the molecule is seen to be greatly enhanced following core excitation. Around the oxygen 1s edge, we observe an extensive fragmentation of the molecular skeleton, as exemplified by the appearance of several previously unreported ions: H{sup +}, H{sub 2}{sup +}, CH{sup +}, CH{sub 2}{sup +} and CH{sub 3}{sup +}, which are not formed at low energies. A maximum is observed at 536 eV photon energy in the relative intensity of the oxygen-containing ions O{sup +}, O{sup 2+} and OH{sup +}, as an evidence for the existence of site-selective fragmentation of the carvone molecule excited around the O 1s edge. Absolute values for the photoionization and photodissociation cross sections were estimated using the molecular additive rule.

  15. Protonation and strong H-bonding as the factors controlling structural changes in excited azaaromatics

    Energy Technology Data Exchange (ETDEWEB)

    Grabowska, A. (Polska Akademia Nauk, Warsaw. Inst. Chemii Fizycznej)

    1981-11-01

    The relationship between the structure of a molecule and electron density distribution in excited states of protonated N-heteroaromatics has been discussed, basing on (1) Walsh rules (2) dihydroflavines as model compounds. Two selected examples of inter- and intramolecular proton transfer have been quoted, namely the net charge distribution in 7-azaindole and proton transfer kinetics in 2(2'-hydroxyphenyl)benzoxazole.

  16. Semi-active control of a cable-stayed bridge under multiple-support excitations.

    Science.gov (United States)

    Dai, Ze-Bing; Huang, Jin-Zhi; Wang, Hong-Xia

    2004-03-01

    This paper presents a semi-active strategy for seismic protection of a benchmark cable-stayed bridge with consideration of multiple-support excitations. In this control strategy, Magnetorheological (MR) dampers are proposed as control devices, a LQG-clipped-optimal control algorithm is employed. An active control strategy, shown in previous researches to perform well at controlling the benchmark bridge when uniform earthquake motion was assumed, is also used in this study to control this benchmark bridge with consideration of multiple-support excitations. The performance of active control system is compared to that of the presented semi-active control strategy. Because the MR fluid damper is a controllable energy- dissipation device that cannot add mechanical energy to the structural system, the proposed control strategy is fail-safe in that bounded-input, bounded-output stability of the controlled structure is guaranteed. The numerical results demonstrated that the performance of the presented control design is nearly the same as that of the active control system; and that the MR dampers can effectively be used to control seismically excited cable-stayed bridges with multiple-support excitations.

  17. Neural Excitability and Joint Laxity in Chronic Ankle Instability, Coper, and Control Groups.

    Science.gov (United States)

    Bowker, Samantha; Terada, Masafumi; Thomas, Abbey C; Pietrosimone, Brian G; Hiller, Claire E; Gribble, Phillip A

    2016-04-01

    Neuromuscular and mechanical deficiencies are commonly studied in participants with chronic ankle instability (CAI). Few investigators have attempted to comprehensively consider sensorimotor and mechanical differences among people with CAI, copers who did not present with prolonged dysfunctions after an initial ankle sprain, and a healthy control group. To determine if differences exist in spinal reflex excitability and ankle laxity among participants with CAI, copers, and healthy controls. Case-control study. Research laboratory. Thirty-seven participants with CAI, 30 participants categorized as copers, and 26 healthy control participants. We assessed spinal reflex excitability of the soleus using the Hoffmann reflex protocol. Participants' ankle laxity was measured with an instrumented ankle arthrometer. The maximum Hoffmann reflex : maximal muscle response ratio was calculated. Ankle laxity was measured as the total displacement in the anterior-posterior directions (mm) and total rotation in the inversion and eversion directions (°). Spinal reflex excitability was diminished in participants with CAI compared with copers and control participants (P = .01). No differences were observed among any of the groups for ankle laxity. Changes in the spinal reflex excitability of the soleus that likely affect ankle stability were seen only in the CAI group, yet no mechanical differences were noted across the groups. These findings support the importance of finding effective ways to increase spinal reflex excitability for the purpose of treating neural excitability dysfunction in patients with CAI.

  18. Quenching of electronically excited N2 molecules and Tb3+ /Eu3+ ions by polyatomic sulfur-containing gases upon triboluminescence of inorganic lanthanide salts.

    Science.gov (United States)

    Sharipov, G L; Tukhbatullin, A A; Bagautdinova, A R

    2017-08-01

    The triboluminescence of Eu2 (SO4 )3 ·8H2 O and Tb2 (SO4 )3 ·8H2 O crystals in an atmosphere of sulfur dioxide (SO2 ) or sulfur hexafluoride (SF6 ) was studied. Quenching of the gaseous (emitter N2 ) and solid-state (emitter Ln3+ ) components of the triboluminescence (TL) emission spectrum was seen when compared with the TL spectra of the crystals in air. One reason for the quenching is a reduction in the effective charge both on the crystal surface and in micro-cracks under an SO2 or SF6 atmosphere, leading to a decrease in the probability of electrical breakdown and a reduction in electric field strength responsible for the electroluminescence excitation of lanthanide ions in TL. In an SO2 atmosphere, there is an additional mode of quenching, as confirmed by quenching of the crystal photoluminescence (emitter Ln3+ ). It is supposed that this quenching is due to an exchange of energy on electronic excitation of the lanthanide ions to the vibrational sublevels of the SO2 molecules adsorbed on the crystal surface. Another additional channel of TL quenching originates from non-radiative transfer of excitation energy during collisions between the *N2 and SO2 molecules in the gaseous phase. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Plasmonic band structure controls single-molecule fluorescence.

    Science.gov (United States)

    Langguth, Lutz; Punj, Deep; Wenger, Jérôme; Koenderink, A Femius

    2013-10-22

    Plasmonics and photonic crystals are two complementary approaches to tailor single-emitter fluorescence, using strong local field enhancements near metals on one hand and spatially extended photonic band structure effects on the other hand. Here, we explore the emergence of spontaneous emission control by finite-sized hexagonal arrays of nanoapertures milled in gold film. We demonstrate that already small lattices enable highly directional and enhanced emission from single fluorescent molecules in the central aperture. Even for clusters just four unit cells across, the directionality is set by the plasmonic crystal band structure, as confirmed by full-wave numerical simulations. This realization of plasmonic phase array antennas driven by single quantum emitters opens a flexible toolbox to engineer fluorescence and its detection.

  20. Controlled excitation of resonance self-oscillations in one-dimensional distributed systems

    Science.gov (United States)

    Izrailovich, M. Ya.

    2004-03-01

    On the basis of the method of equivalent linearization combined with the method of moments, laws of self-oscillation excitation are obtained that provide the modes with maximum intensity of resonance (or quasi-resonance) oscillations in one-dimensional systems with distributed parameters. A restriction of a general type is imposed on the law of excitation. In the particular case of an integral quadratic restriction, the law of excitation leads to the generation of purely harmonic self-oscillations. The use of an extended (multiplicatively stabilizing) control provides the uniqueness and stability of the quasi-optimal mode of self-oscillation.

  1. Coupled cluster calculations of mean excitation energies of the noble gas atoms He, Ne and Ar and of the H2 molecule

    Science.gov (United States)

    Sauer, Stephan P. A.; Haq, Inam Ul; Sabin, John R.; Oddershede, Jens; Christiansen, Ove; Coriani, Sonia

    2014-03-01

    Using an asymmetric Lanczos chain algorithm for the calculation of the coupled cluster linear response functions at the coupled cluster singles and doubles (CCSD) and coupled cluster singles and approximate iterative doubles (CC2) levels of approximation, we have calculated the mean excitation energies of the noble gases He, Ne and Ar, and of the hydrogen molecule (H2). Convergence with respect to the one-electron basis set was investigated in detail for families of correlation-consistent basis sets including both augmentation and core-valence functions. We find that the electron correlation effects at the CCSD level change the mean excitation energies obtained at the uncorrelated Hartree-Fock level by about 1%. For the two-electron systems He and H2, our CCSD results (for a Lanczos chain length equal to the full excitation space), I0 = 42.28 eV (helium) and I0 = 19.62 eV (H2), correspond to full configuration interaction results and are therefore the exact, non-relativistic theoretical values for the mean excitation energy of these two systems within the Bethe theory for the chosen basis set and, in the case of H2, at the experimental equilibrium geometry.

  2. small signal analysis of load angle governing and excitation control

    African Journals Online (AJOL)

    Dr Obe

    ABSTRACT. A method of obtaining direct pictorial information on the behaviour of synchronous machines under different conditions of control using a single variable related to its load angle is presented. The technique employs a simple control scheme to the linearized model of synchronous machine equations.

  3. Recent advances in experimental techniques to probe fast excited-state dynamics in biological molecules in the gas phase: dynamics in nucleotides, amino acids and beyond

    Science.gov (United States)

    Staniforth, Michael; Stavros, Vasilios G.

    2013-01-01

    In many chemical reactions, an activation barrier must be overcome before a chemical transformation can occur. As such, understanding the behaviour of molecules in energetically excited states is critical to understanding the chemical changes that these molecules undergo. Among the most prominent reactions for mankind to understand are chemical changes that occur in our own biological molecules. A notable example is the focus towards understanding the interaction of DNA with ultraviolet radiation and the subsequent chemical changes. However, the interaction of radiation with large biological structures is highly complex, and thus the photochemistry of these systems as a whole is poorly understood. Studying the gas-phase spectroscopy and ultrafast dynamics of the building blocks of these more complex biomolecules offers the tantalizing prospect of providing a scientifically intuitive bottom-up approach, beginning with the study of the subunits of large polymeric biomolecules and monitoring the evolution in photochemistry as the complexity of the molecules is increased. While highly attractive, one of the main challenges of this approach is in transferring large, and in many cases, thermally labile molecules into vacuum. This review discusses the recent advances in cutting-edge experimental methodologies, emerging as excellent candidates for progressing this bottom-up approach. PMID:24204191

  4. Coupled cluster calculations of mean excitation energies of the noble gas atoms He, Ne and Ar and of the H2 molecule

    DEFF Research Database (Denmark)

    Sauer, Stephan P. A.; Ul Haq, Inam; Sabin, John R.

    2014-01-01

    Using an asymmetric-Lanczos-chain algorithm for the calculation of the coupled cluster linear response functions at the CCSD and CC2 levels of approximation, we have calculated the mean excitation energies of the noble gases He, Ne and Ar, and of the hydrogen molecule H2. Convergence with respect...... by about 1%. For the two-electron systems He and H2, our CCSD results (for a Lanczos chain length equal to the full excitation space), I0 = 42:28 eV (Helium) and I0 = 19:62 eV (H2), correspond to full conguration interaction results and are therefore the exact, non-relativistic theoretical values...

  5. Analysis and Control of Parametrically Excited Dynamical Systems

    National Research Council Canada - National Science Library

    Sinha, Subhash

    1998-01-01

    The primary objective of this research is to develop new tools of analysis and control strategies for mechanical systems which can be modeled as a set of differential equations with time-periodic coefficients...

  6. Joint excitation and reactive power control in thermal power plant

    Directory of Open Access Journals (Sweden)

    Dragosavac Jasna

    2013-01-01

    Full Text Available The coordinated voltage and reactive power controller, designed for the thermal power plant, is presented in the paper. A brief explanation of the need for such device is given and justification for commissioning of such equipment is outlined. After short description of the theoretical background of the proposed control design, the achieved features of the commissioned equipment are fully given. Achieved performances are illustrated by recorded reactive power and bus voltage responses after commissioning of the described equipment into the largest thermal power plant in Serbia. As it can be seen in presented records, all design targets are met.

  7. Response control for the externally excited van der Pol oscillator with non-local feedback

    Science.gov (United States)

    Maccari, Attilio

    2012-02-01

    A non-local control force is introduced in such a way to obtain a third-order nonlinear differential equation (jerk dynamics) and to control nonlinear vibrations in an externally excited van der Pol oscillator. Two first-order nonlinear ordinary differential equations governing the modulation of the amplitude and the phase of solutions are derived and subsequently the performance of the control strategy is investigated. Excitation amplitude-response and frequency-response curves are shown. In certain cases when the excitation amplitude is very low an approximate analytic solution corresponding to a modulated two-period quasi-periodic motion can be obtained for the uncontrolled system. Uncontrolled and controlled systems are compared and the appropriate choices for the feedback gains are found in order to reduce the amplitude peak of the response and to exclude the possibility of quasi-periodic motion. Numerical simulation confirms the validity of the new method.

  8. power generation and control of a self excited squirrel cage ...

    African Journals Online (AJOL)

    HOD

    Its major drawbacks, however, are poor voltage and frequency regulation under variable load conditions. The aim of this paper is to investigate a feedback control strategy that takes a fraction of the output power and applies it to the prime mover as torque. The wind turbine is to be tied mechanically to the rotor of a squirrel ...

  9. Coherent phase control of excitation of atoms by bichromatic laser radiation in an electric field

    NARCIS (Netherlands)

    Astapenko, VA

    A new method for coherent phase control of excitation of atoms in a discrete spectrum under the action of bichromatic laser radiation with the frequency ratio 1 : 2 is analysed. An important feature of this control method is the presence of a electrostatic field, which removes the parity selection

  10. Optimal Control of Airfoil Flow Separation using Fluidic Excitation

    Science.gov (United States)

    Shahrabi, Arireza F.

    This thesis deals with the control of flow separation around a symmetric airfoils with the aid of multiple synthetic jet actuators (SJAs). CFD simulation methods have been implemented to uncover the flow separation regimes and associated properties such as frequencies and momentum ratio. In the first part of the study, the SJA was studied thoroughly. Large Eddy Simulations (LES) were performed for one individual cavity; the time history of SJA of the outlet velocity profile and the net momentum imparted to the flow were analyzed. The studied SJA is asymmetrical and operates with the aid of a piezoelectric (PZT) ceramic circular plate actuator. A three-dimensional mesh for the computational domain of the SJA and the surrounding volume was developed and was used to evaluate the details of the airflow conditions inside the SJA as well as at the outlet. The vibration of the PZT ceramic actuator was used as a boundary condition in the computational model to drive the SJA. Particular attention was given to developing a predictive model of the SJA outlet velocity. Results showed that the SJA velocity output is correlated to the PZT ceramic plate vibration, especially for the first frequency mode. SJAs are a particular class of zero net mass flux (ZNMF) fluidic devices with net imparted momentum to the flow. The net momentum imparted to the flow in the separated region is such that positive enhancement during AFC operations is achieved. Flows around the NACA 0015 airfoil were simulated for a range of operating conditions. Attention was given to the active open and closed loop control solutions for an airfoil with SJA at different angles of attack and flap angles. A large number of simulations using RANS & LES models were performed to study the effects of the momentum ratio (Cμ) in the range of 0 to 11% and of the non-dimensional frequency, F+, in the range of 0 to 2 for the control of flow separation at a practical angle of attack and flap angle. The optimum value of C

  11. Orientation control of dye molecules in a liquid crystal.

    Science.gov (United States)

    Urisu, T; Kajiyama, K; Mizushima, Y

    1978-08-01

    Laser dye molecules (coumarin 6) were dissolved in a nematic liquid crystal MBBA + BBCA. Great changes in polarization and fluorescence vs applied voltage were found as well as a change in dielectric constant. Molecular orientation of the liquid crystal under the electric field and association of the dye molecules are identified as having the greatest effect on the fluorescence intensity.

  12. Molecular-dynamics simulations of the dynamical excitations in commensurate submonolayer films of nitrogen molecules on graphite

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Bruch, Ludwig Walter; Taub, H.

    1996-01-01

    The dynamics of commensurate submonolayer solids of N-2 molecules adsorbed on the basal planes of graphite have been studied using molecular-dynamics simulations. The calculations yielded the temperature dependence of the Brillouin-zone-center gap in the acoustic-phonon branches, for comparison...

  13. Excited states

    CERN Document Server

    Lim, Edward C

    1974-01-01

    Excited States, Volume I reviews radiationless transitions, phosphorescence microwave double resonance through optical spectra in molecular solids, dipole moments in excited states, luminescence of polar molecules, and the problem of interstate interaction in aromatic carbonyl compounds. The book discusses the molecular electronic radiationless transitions; the double resonance techniques and the relaxation mechanisms involving the lowest triplet state of aromatic compounds; as well as the optical spectra and relaxation in molecular solids. The text also describes dipole moments and polarizab

  14. A Fuzzy Predictive PID Control Scheme for the Excitation System of Synchronous Generator

    Directory of Open Access Journals (Sweden)

    Zheng Yang

    2016-01-01

    Full Text Available With the rapid development of the process control theories in the electrical engineering, new control strategies which lead to better performances are urgently demanded for the excitation control of synchronous generators. For the sake of improving the convergence rate of the terminal voltage and covering the weakness in the adaptability of operational conditions of conventional controls in disturbances, a fuzzy predictive PID excitation control method is proposed in this paper. This control scheme can be divided into three steps in every sample interval: PID parameter adaptation, rolling state prediction and real-time control movement integration. Numerical simulations have been conducted under different operational conditions with the proposed method as well as the conventional ones, respectively. Experimental comparisons indicate the superiority in voltage regulation performance of the proposed method.

  15. Active-flux based motion sensorless vector control of biaxial excitation generator/motor for automobiles (BEGA)

    DEFF Research Database (Denmark)

    Coroban-Schramel, Vasile; Boldea, Ion; Andreescu, Gheorghe-Daniel

    2009-01-01

    This paper proposes a novel, active-flux based, motion-sensorless vector control structure for biaxial excitation generator for automobiles (BEGA) for wide speed range operation. BEGA is a hybrid excited synchronous machine having permanent magnets on q-axis and a dc excitation on daxis. Using...

  16. Excitable systems with noise and delay, with applications to control: renewal theory approach.

    Science.gov (United States)

    Pototsky, Andrey; Janson, Natalia

    2008-03-01

    We present an approach for the analytical treatment of excitable systems with noise-induced dynamics in the presence of time delay. An excitable system is modeled as a bistable system with a time delay, while another delay enters as a control term taken after Pyragas [K. Pyragas, Phys. Lett. A 170, 421 (1992)] as a difference between the current system state and its state tau time units before. This approach combines the elements of renewal theory to estimate the essential features of the resulting stochastic process as functions of the parameters of the controlling term.

  17. Excitable systems with noise and delay, with applications to control: Renewal theory approach

    Science.gov (United States)

    Pototsky, Andrey; Janson, Natalia

    2008-03-01

    We present an approach for the analytical treatment of excitable systems with noise-induced dynamics in the presence of time delay. An excitable system is modeled as a bistable system with a time delay, while another delay enters as a control term taken after Pyragas [K. Pyragas, Phys. Lett. A 170, 421 (1992)] as a difference between the current system state and its state τ time units before. This approach combines the elements of renewal theory to estimate the essential features of the resulting stochastic process as functions of the parameters of the controlling term.

  18. Control of coherent excitation of neon in the extreme ultraviolet regime.

    Science.gov (United States)

    Plenge, Jürgen; Wirsing, Andreas; Raschpichler, Christopher; Wassermann, Bernhard; Rühl, Eckart

    2011-01-01

    Coherent excitation of a superposition of Rydberg states in neon by the 13th harmonic of an intense 804 nm pulse and the formation of a wave packet is reported. Pump-probe experiments are performed, where the 3d-manifold of the 2p6-->2p5 (2P3/2) 3d [1/2]1- and 2p6-->2p5 (2P3/2) 3d [3/2]1-transitions are excited by an extreme ultraviolet (XUV) radiation pulse, which is centered at 20.05 eV photon energy. The temporal evolution of the excited state population is probed by ionization with a time-delayed 804 nm pulse. Control of coherent transient excitation and wave packet dynamics in the XUV-regime is demonstrated, where the spectral phase of the 13th harmonic is used as a control parameter. Modulation of the phase is achieved by propagation of the XUV-pulse through neon of variable gas density. The experimental results indicate that phase-shaped high-order harmonics can be used to control fundamental coherent excitation processes in the XUV-regime.

  19. Active Vibration Control of a Nonlinear Beam with Self- and External Excitations

    Directory of Open Access Journals (Sweden)

    J. Warminski

    2013-01-01

    Full Text Available An application of the nonlinear saturation control (NSC algorithm for a self-excited strongly nonlinear beam structure driven by an external force is presented in the paper. The mathematical model accounts for an Euler-Bernoulli beam with nonlinear curvature, reduced to first mode oscillations. It is assumed that the beam vibrates in the presence of a harmonic excitation close to the first natural frequency of the beam, and additionally the beam is self-excited by fluid flow, which is modelled by a nonlinear Rayleigh term for self-excitation. The self- and externally excited vibrations have been reduced by the application of an active, saturation-based controller. The approximate analytical solutions for a full structure have been found by the multiple time scales method, up to the first-order approximation. The analytical solutions have been compared with numerical results obtained from direct integration of the ordinary differential equations of motion. Finally, the influence of a negative damping term and the controller's parameters for effective vibrations suppression are presented.

  20. Excited states 2

    CERN Document Server

    Lim, Edward C

    2013-01-01

    Excited States, Volume 2 is a collection of papers that deals with molecules in the excited states. The book describes the geometries of molecules in the excited electronic states. One paper describes the geometries of a diatomic molecule and of polyatomic molecules; it also discusses the determination of the many excited state geometries of molecules with two, three, or four atoms by techniques similar to diatomic spectroscopy. Another paper introduces an ordered theory related to excitons in pure and mixed molecular crystals. This paper also presents some experimental data such as those invo

  1. Controlling spin flips of molecules in an electromagnetic trap

    Science.gov (United States)

    Reens, David; Wu, Hao; Langen, Tim; Ye, Jun

    2017-12-01

    Doubly dipolar molecules exhibit complex internal spin dynamics when electric and magnetic fields are both applied. Near magnetic trap minima, these spin dynamics lead to enhancements in Majorana spin-flip transitions by many orders of magnitude relative to atoms and are thus an important obstacle for progress in molecule trapping and cooling. We conclusively demonstrate and address this with OH molecules in a trap geometry where spin-flip losses can be tuned from over 200 s-1 to below our 2 s-1 vacuum-limited loss rate with only a simple external bias coil and with minimal impact on trap depth and gradient.

  2. Charge Migration in Eyring, Walter and Kimball's 1944 Model of the Electronically Excited Hydrogen-Molecule Ion.

    Science.gov (United States)

    Diestler, Dennis J; Hermann, Gunter; Manz, Jörn

    2017-07-20

    In an elementary variational treatment of the electronic structure of H2(+), Eyring, Walter, and Kimball (EWK) serendipitously discovered charge migration (CM) in 1944. Using an analytic expression for the electronic probability density (EPD), they found that if the electron is initially localized on one of the protons (by taking the initial state to be a superposition of the ground and first excited electronic energy eigenstates), then it oscillates adiabatically between fixed protons with a period T inversely proportional to the energy gap between the eigenstates. At the equilibrium internuclear separation, T = 550.9 as. As shown here, the EWK model also yields an analytic formula for the electronic flux density (EFD). While the EPD indicates where the electron is at any instant, the EFD reveals the pathways the electron follows during its migration. Thus, the EFD complements the EPD, providing valuable new insight into the mechanism of CM. The formula for the EFD is a simple product of a time factor and a spatial factor. This factoring exposes a plethora of spatial-temporal symmetry relations which imply novel and surprising properties. An especially significant finding is that, in contrast to multielectron systems, where electron correlation may play a role in CM, in the EWK model of H2(+), CM is due strictly to quantum interference between the ground and first excited electronic states.

  3. Controlling the Radiation Parameters of a Resonant Medium Excited by a Sequence of Ultrashort Superluminal Pulses

    Science.gov (United States)

    Arkhipov, R. M.; Arkhipov, M. V.; Belov, P. A.; Babushkin, I.; Tolmachev, Yu. A.

    2016-03-01

    We investigate the possibility of controlling the radiation parameters of a spatially periodic one-dimensional medium consisting of classical harmonic oscillators by means of a sequence of ultrashort pulses that propagate through the medium with a superluminal velocity. We show that, in the spectrum of the transient process, in addition to the radiation at a resonant frequency of oscillators, new frequencies arise that depend on the period of the spatial distribution of the oscillator density, the excitation velocity, and the angle of observation. We have examined in detail the case of excitation of the medium by a periodic sequence of ultrashort pulses that travel with a superluminal velocity. We show that it is possible to excite oscillations of complex shapes and to control the radiation parameters of the resonant medium by changing the relationship between the pulse repetition rate, the medium resonant frequency, and the new frequency.

  4. From nanofabrication to self-fabrication--tailored chemistry for control of single molecule electronic devices

    DEFF Research Database (Denmark)

    Moth-Poulsen, Kasper; Bjørnholm, Thomas

    2010-01-01

    Single molecule electronics is a field of research focused on the use of single molecules as electronics components. During the past 15 years the field has concentrated on development of test beds for measurements on single molecules. Bottom-up approaches to single molecule devices are emerging...... the electronic properties of a single molecule by chemical design....... as alternatives to the dominant top-down nanofabrication techniques. One example is solution-based self-assembly of a molecule enclosed by two gold nanorod electrodes. This article will discuss recent attempts to control the self-assembly process by the use of supramolecular chemistry and how to tailor...

  5. Electron correlation in the 3 (1)Sigma(g)+ and 2 (1)Sigma(u)+ excited state lithium molecule.

    Science.gov (United States)

    Wang, Jian; Zhang, Lei; Wang, Yu; Ugalde, Jesus M

    2006-12-21

    Electron correlation effects in the two excited states of Li(2), 3 (1)Sigma(g) (+) and 2 (1)Sigma(u) (+), one with a shelf shape and another with double minima in their potential energy curves, have been studied with the aid of the calculated electron pair density distribution as a function of the internuclear distance and the analysis of the natural orbitals. Both states show increased electron pair densities at intermediate interelectronic distances around the second minimum of their potential energy curves. Since the bond breaks homolitically this observation runs contrary to regular expectations. Analysis of the electron pair density distributions and the natural orbitals provides mechanisms to account for this abnormal behavior.

  6. Modeling And Control Of Excitation And Governor Based On PSO For MHPP

    Directory of Open Access Journals (Sweden)

    Adi Soeprijanto

    2013-07-01

    Full Text Available This paper presents the modeling and control of the excitation system via the automatic voltage regulator (AVR and governor system through the automatic generation control (AGC or frequency load control (FLC to improve stability on a micro hydro power plant (MHPP. Three main parts of the generation system are synchronous generator, AVR/excitation, AGC modelled linearly. Generator is modelled by a single machine connected to infinite bus (SMIB which is equipped by AVR and excitation linear model. Excitation control system made ??by optimizing the gain of the AVR (KA and the governor with the gain of the AGC (Ki. Optimization is done using the method improved particle swam optimization (IPSO. The main purpose of setting the gain of the AVR-AGC is to stabilize the oscillation frequency of the MHPP is connected to an infinite bus. Simulations are conducted by inputting step function with 5% load fluctuations as a representation of dynamic load. The simulation results show that the proposed method effectively raises the level  of electromechanical damping oscillations the SMIB by generating the comprehensive damping index (CDI is minimum.

  7. Spin excitations in the molecule Mn19 with a record ground-state spin S = 83/2

    Science.gov (United States)

    Burger, B.; Waldmann, O.; Ako, A. M.; Powell, A. K.; Mutka, H.; Unruh, T.

    2008-03-01

    In the magnetic molecule Mn19, 12 Mn(III) and 7 Mn(II) ions are ferromagnetically coupled such as to yield a S = 83/2 ground state. We recorded Q-band EPR and inelastic neutron scattering (INS) spectra on powder samples of Mn19. The EPR data is well interpreted by the model of an isolated S = 83/2 spin with uniaxial magnetic anisotropy, H = DSz^2 + gμBS.B. We find D = 0.004 cm-1, hence Mn19 is not a single-molecule magnet. The INS spectra show a broad feature I at ca. 0.25 meV, which exhibits an uncommon temperature dependence, and two peaks II and III at ca. 3.0 and 5.7 meV. The analysis of the INS data is complicated by the huge Hilbert space of Mn19 of 6.8 10^13 states. Peaks II and III are assigned to discrete ferromagnetic spin waves. Understanding feature I is more difficult because it consists of many transitions which combine such as to yield a complex temperature dependence. Hence, its behavior cannot be described in a single-spin picture, but requires an inherent many-body description.

  8. Small-molecule pheromones and hormones controlling nematode development.

    Science.gov (United States)

    Butcher, Rebecca A

    2017-05-17

    The existence of small-molecule signals that influence development in Caenorhabditis elegans has been known for several decades, but only in recent years have the chemical structures of several of these signals been established. The identification of these signals has enabled connections to be made between these small molecules and fundamental signaling pathways in C. elegans that influence not only development but also metabolism, fertility, and lifespan. Spurred by these important discoveries and aided by recent advances in comparative metabolomics and NMR spectroscopy, the field of nematode chemistry has the potential to expand dramatically in the coming years. This Perspective will focus on small-molecule pheromones and hormones that influence developmental events in the nematode life cycle (ascarosides, dafachronic acids, and nemamides), will cover more recent work regarding the biosynthesis of these signals, and will explore how the discovery of these signals is transforming our understanding of nematode development and physiology.

  9. Delayed feedback control for a parametrically excited van der Pol oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Maccari, Attilio [Via Alfredo Casella 3, 00013 Mentana (Italy)

    2007-11-15

    Periodic solutions for a parametrically excited van der Pol system with nonlinear stiffness and under state feedback control with a time delay are investigated. Two slow flow equations for the amplitude and phase of the parametric resonance response are derived. It is well known that their fixed points correspond to phase-locked periodic solutions for the starting system. In the system without control, periodic solutions exist only for fixed values of amplitude and phase and depend on the system parameters and excitation amplitude. The stable condition for steady-state response is given by the Routh-Hurwitz criterion, but in many cases the amplitudes of periodic solutions do not correspond to the technical requirements. On the contrary, it is demonstrated that, if the vibration control terms are added, stable periodic solutions with arbitrarily chosen amplitude and phase can be accomplished. An effective vibration control is then possible if appropriate time delay and feedback gains are chosen.

  10. A light-induced photochromic nanoswitch capable of non-destructive readout via fluorescence emission: cluster vs. single-molecule excitation of dihydroindolizines.

    Science.gov (United States)

    Hartmann, Thomas; Shrestha, Tej B; Bossmann, Stefan H; Hübner, Christian; Renn, Alois; Dürr, Heinz

    2009-08-01

    We have synthesized a prototype of a photochromic styrylquinolyl-dihydroindolizine (DHI), which forms a highly coloured and fluorescent betaine upon irradiation with lambda<400 nm. Embedding this photochromic DHI in a thin polymethyl methacrylate (PMMA) film permits the non-destructive readout via fluorescence at low temperature (77 K). Thus, either a non-destructive photoswitch or an information recording system becomes available. Both possibilities have been explored: image recording and read-out, as well as information storage (at 77 K) have been demonstrated. Cluster- and single molecule-fluorescence upon laser excitation (lambda=355 nm) of the styrylquinolyl-dihydroindolizine in a PMMA matrix, and the effect of fluorescence blinking has been observed.

  11. Input-dependent regulation of excitability controls dendritic maturation in somatosensory thalamocortical neurons.

    Science.gov (United States)

    Frangeul, Laura; Kehayas, Vassilis; Sanchez-Mut, Jose V; Fièvre, Sabine; Krishna-K, K; Pouchelon, Gabrielle; Telley, Ludovic; Bellone, Camilla; Holtmaat, Anthony; Gräff, Johannes; Macklis, Jeffrey D; Jabaudon, Denis

    2017-12-08

    Input from the sensory organs is required to pattern neurons into topographical maps during development. Dendritic complexity critically determines this patterning process; yet, how signals from the periphery act to control dendritic maturation is unclear. Here, using genetic and surgical manipulations of sensory input in mouse somatosensory thalamocortical neurons, we show that membrane excitability is a critical component of dendritic development. Using a combination of genetic approaches, we find that ablation of N-methyl-D-aspartate (NMDA) receptors during postnatal development leads to epigenetic repression of Kv1.1-type potassium channels, increased excitability, and impaired dendritic maturation. Lesions to whisker input pathways had similar effects. Overexpression of Kv1.1 was sufficient to enable dendritic maturation in the absence of sensory input. Thus, Kv1.1 acts to tune neuronal excitability and maintain it within a physiological range, allowing dendritic maturation to proceed. Together, these results reveal an input-dependent control over neuronal excitability and dendritic complexity in the development and plasticity of sensory pathways.

  12. Research on excitation controller and relay protection of the real-time hybrid simulation platform

    Energy Technology Data Exchange (ETDEWEB)

    San, L.C.; Pei, Z.; Zhigang, H. [Macau Univ., Macau (China). Dept. of Electrical and Electronics Engineering

    2007-07-01

    This paper presented details of a power system hybrid simulation platform designed to perform real-time hybrid simulations of electromechanical transient software and the physical devices used in large-scale power systems. The system used a communication program as an interface between the software simulation and other physical devices such as excitation controllers and relay protectors. Devices were simulated by using analog circuits. A PI controller was used to complete the closed-loop simulation. The simulation program was used to calculate electromechanical transients in a 36-node power system model, an excitation controller, and a relay protector. A 3-phase short circuit fault was applied to the program. Results of the experiments demonstrated that static errors of less than 3 per cent were achieved using the hybrid system. It was concluded that the platform's communication time ranged between 1 to 2 milliseconds. 6 refs., 1 tab., 7 figs.

  13. Study on Seismic Control of Power Transmission Tower-Line Coupled System under Multicomponent Excitations

    Directory of Open Access Journals (Sweden)

    Li Tian

    2013-01-01

    Full Text Available The seismic control of power transmission tower-line coupled system subjected to multicomponent excitations is studied in this paper. The schematic of tuned mass damper is introduced, and equations of motion of a system with tuned mass damper under multi-component excitations are proposed. Three-dimensional finite tower-line system models are created based on practical engineering in studying the response of this system without and with control. The time domain analysis takes into account geometric nonlinearity due to finite deformation. The optimal design of the transmission tower-line system with tuned mass damper is obtained according to different mass ratio. The effects of wave travel, coherency loss, and different site conditions on the system without and with control are investigated, respectively.

  14. Coherent control of the motion of complex molecules and the coupling to internal state dynamics.

    Science.gov (United States)

    Venn, Paul; Ulbricht, Hendrik

    2011-01-01

    We discuss coherent control of the centre of mass motion of complex molecules by de Broglie interferometry. We describe an experiment to couple the dynamics of internal state population of complex molecules to their centre of mass motion. We discuss how this can be used to probe state population and transition, especially the photo-switching of flourinated di-azobenzene molecules between their cis- and trans-configuration. We propose an experiment to photo-isomerise complex di-azobenzene molecules in the gas-phase, including the selective detection of molecules in different conformations. In addition we discuss possible ways of optimising the conformation detection through cooling, and optical techiques.

  15. Passive control of flow-excited acoustic resonance in rectangular cavities using upstream mounted blocks

    Science.gov (United States)

    Shaaban, Mahmoud; Mohany, Atef

    2015-04-01

    A passive method for controlling the flow-excited acoustic resonance resulting from subsonic flows over rectangular cavities in channels is investigated. A cavity with length to depth ratio of is tested in air flow of Mach number up to 0.45. When the acoustic resonance is excited, the sound pressure level in the cavity reaches 162 dB. Square blocks are attached to the surface of the channel and centred upstream of the cavity leading edge to suppress the flow-excited acoustic resonance in the cavity. Six blocks of different widths are tested at three different upstream distances. The results show that significant attenuation of up to 30 dB of the excited sound pressure level is achieved using a block with a width to height ratio of 3, while blocks that fill the whole width of the channel amplify the pressure of the excited acoustic resonance. Moreover, it is found that placing the block upstream of the cavity causes the onset of the acoustic resonance to occur at higher flow velocities. In order to investigate the nature of the interactions that lead to suppression of the acoustic resonance and to identify the changes in flow patterns due to the placement of the block, 2D measurements of turbulence intensity in the shear layer and the block wake region are performed. The location of the flow reattachment point downstream of the block relative to the shear layer separation point has a major influence on the suppression level of the excited acoustic resonance. Furthermore, higher attenuation of noise is related to lower span-wise correlation of the shear-layer perturbation.

  16. Quantum analysis in the transition process to excited state of an oxygen molecule induced by electron collisions; Denshi shototsu ni tomonau sanso bunshi ni okeru reiki jotai sen`i no ryoshironteki kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Ishimaru, K. [Gifu National College of Technology, Gifu (Japan); Okazaki, K. [Tokyo Inst. of Technology, Tokyo (Japan)

    1996-06-25

    For understanding of fundamental chemical reactions under a highly non equilibrium condition which is quite often used in plasma processing, the relevant atomic and molecular processes must be clarified. In this study, an analysis of the transition process to the excited state of an oxygen molecule induced by electron collisions in the oxygen plasma has been carried out. First, the electron density distribution in an oxygen molecule has been calculated using the extended Huckel molecular orbital method. Then, the electron potential energy distribution in the transition process to the excited state has been estimated. The electron behavior has been calculated using the estimated unidimensional electron potential energy distribution and unsteady quantum mechanics. As a result, the transition process to the excited state of an oxygen molecule induced by electron collisions and its conditions have been clarified qualitatively. 9 refs., 9 figs.

  17. Side force control on slender body by self-excited oscillation flag

    Directory of Open Access Journals (Sweden)

    Jian Zhai

    2016-09-01

    Full Text Available Strong asymmetrical vortices appear on the leeward of slender body at high angles of attack, which has very unfavorable effect on the stability and control of the aircraft. A method is developed to control the side force of slender body at high angles of attack, and is verified in wind tunnel. A thin-film triangular self-excited oscillation flag is fixed at the tip of the slender body model whose semi-apex angle is 10°. Side force is approximately linearly proportional to roll-setting angle of self-excited oscillation flag at high angles of attack, and the slop of fitting straight line obtained by the least square method is −0.158. The linear relationship between side force and roll-setting angle provides convenience for developing side force control law of slender body at high angles of attack. Experimental data shows that the side force coefficients vary linearly with roll-setting angles when a specific plastic self-excited oscillation flag is used as the control flag. The range of side force coefficient and roll-setting angle are, respectively, −3.2 to 3.0 and −20° to 20°. The device is simple, effective, and is of great potential in engineering application.

  18. Synthesis, structural, and photophysical studies of π-fused acenaphtho[1,2-d]imidazole-based excited-state intramolecular proton transfer molecules

    Science.gov (United States)

    Somasundaram, Sivaraman; Kamaraj, Eswaran; Hwang, Su Jin; Jung, Sooyoung; Choi, Moon Gun; Park, Sanghyuk

    2017-06-01

    Orange-red fluorescent molecules are promising materials for use in a new generation of displays, light sources, and chemosensors because conventional red-emitters have lower fluorescence quantum efficiencies. In this work, a set of orange-emitting fused imidazole series 2-(7-(4-fluorophenyl)-7H-acenaphtho[1,2-d]imidazol-8-yl)phenol (AHPI-F), 2-(7-(4-chlorophenyl)-7H-acenaphtho[1,2-d]imidazol-8-yl)phenol (AHPI-Cl), and 2-(7-(4-bromophenyl)-7H-acenaphtho[1,2-d]imidazol-8-yl)phenol (AHPI-Br) have been synthesized via multicomponent reaction method with high yield. Synthesized molecules were fully characterized by 1H NMR, 13C NMR, GC-Mass, UV-vis. absorption, PL, and TGA-DSC. The compounds AHPI-F, AHPI-Cl, AHPI-Br showed large Stokes' shifted emission due to excited-state intramolecular proton transfer (ESIPT) process, and they effectively formed large single crystals. The crystal structure of each compound was identified by X-ray crystallographic analysis. To elucidate the photophysical properties of the molecule, theoretical calculation were performed by density functional theory (DFT) with B3LYP 6-31G(d,p) basis sets using the identified molecular conformations from X-ray analysis. Calculated electronic properties including HOMO-LUMO levels were compared with the experimental results. As a result of ESIPT process, extended conjugation length through acenaphto[1,2-d]imidazole, and charge transfer characteristics by the introduction of halogen atoms, all of the materials showed orange ESIPT emission with no spatial overlap between absorption (λmax,abs = 325 nm) and emission (λmax,ems = 578 nm).

  19. Quantum Control of Graphene Plasmon Excitation and Propagation at Heaviside Potential Steps.

    Science.gov (United States)

    Wang, Dongli; Fan, Xiaodong; Li, Xiaoguang; Dai, Siyuan; Wei, Laiming; Qin, Wei; Wu, Fei; Zhang, Huayang; Qi, Zeming; Zeng, Changgan; Zhang, Zhenyu; Hou, Jianguo

    2018-01-19

    Quantum mechanical effects of single particles can affect the collective plasmon behaviors substantially. In this work, the quantum control of plasmon excitation and propagation in graphene is demonstrated by adopting the variable quantum transmission of carriers at Heaviside potential steps as a tuning knob. First, the plasmon reflection is revealed to be tunable within a broad range by varying the ratio γ between the carrier energy and potential height, which originates from the quantum mechanical effect of carrier propagation at potential steps. Moreover, the plasmon excitation by free-space photos can be regulated from fully suppressed to fully launched in graphene potential wells also through adjusting γ, which defines the degrees of the carrier confinement in the potential wells. These discovered quantum plasmon effects offer a unified quantum-mechanical solution toward ultimate control of both plasmon launching and propagating, which are indispensable processes in building plasmon circuitry.

  20. Excitation of propagating spin waves in ferromagnetic nanowires by microwave voltage-controlled magnetic anisotropy

    Science.gov (United States)

    Verba, Roman; Carpentieri, Mario; Finocchio, Giovanni; Tiberkevich, Vasil; Slavin, Andrei

    2016-01-01

    The voltage-controlled magnetic anisotropy (VCMA) effect, which manifests itself as variation of anisotropy of a thin layer of a conductive ferromagnet on a dielectric substrate under the influence of an external electric voltage, can be used for the development of novel information storage and signal processing devices with low power consumption. Here it is demonstrated by micromagnetic simulations that the application of a microwave voltage to a nanosized VCMA gate in an ultrathin ferromagnetic nanowire results in the parametric excitation of a propagating spin wave, which could serve as a carrier of information. The frequency of the excited spin wave is twice smaller than the frequency of the applied voltage while its amplitude is limited by 2 mechanisms: (i) the so-called “phase mechanism” described by the Zakharov-L’vov-Starobinets “S-theory” and (ii) the saturation mechanism associated with the nonlinear frequency shift of the excited spin wave. The developed extension of the “S-theory”, which takes into account the second limitation mechanism, allowed us to estimate theoretically the efficiency of the parametric excitation of spin waves by the VCMA effect. PMID:27113392

  1. Effects of molecule anchoring and dispersion on nanoscopic friction under electrochemical control

    Science.gov (United States)

    de Wijn, A. S.; Fasolino, A.; Filippov, A. E.; Urbakh, M.

    2016-03-01

    The application of electric fields is a promising strategy for in situ control of friction. While there have recently been many experimental studies on friction under the influence of electric fields, theoretical understanding is very limited. Recently, we introduced a simple theoretical model for friction under electrochemical conditions that focused on the interaction of a force microscope tip with adsorbed molecules whose orientation was dependent on the applied electric field. Here we focus on the effects of anchoring of the molecules on friction. We show that anchoring affects the intensity and width of the peak in the friction that occurs near a reorientation transition of adsorbed molecules, and explain this by comparing the strength of molecule-molecule and molecule-tip interactions. We derive a dispersion relation for phonons in the layer of adsorbed molecules and demonstrate that it can be used to understand important features of the frictional response.

  2. Effects of molecule anchoring and dispersion on nanoscopic friction under electrochemical control.

    Science.gov (United States)

    de Wijn, A S; Fasolino, A; Filippov, A E; Urbakh, M

    2016-03-16

    The application of electric fields is a promising strategy for in situ control of friction. While there have recently been many experimental studies on friction under the influence of electric fields, theoretical understanding is very limited. Recently, we introduced a simple theoretical model for friction under electrochemical conditions that focused on the interaction of a force microscope tip with adsorbed molecules whose orientation was dependent on the applied electric field. Here we focus on the effects of anchoring of the molecules on friction. We show that anchoring affects the intensity and width of the peak in the friction that occurs near a reorientation transition of adsorbed molecules, and explain this by comparing the strength of molecule-molecule and molecule-tip interactions. We derive a dispersion relation for phonons in the layer of adsorbed molecules and demonstrate that it can be used to understand important features of the frictional response.

  3. Mechanistic pathway for controlled extraction of guest molecule bound to herring sperm DNA using α-cyclodextrin

    Science.gov (United States)

    Jaffer, S. Syed; Ghosh, Prasun; Purkayastha, Pradipta

    2011-05-01

    trans-2-[4-(Dimethylamino)styryl]benzothiazole (DMASBT) is known to have dual emitting states where the locally excited (LE) state is responsible for fluorescence in less polar environment and in polar milieu fluorescence is from the twisted intramolecular charge transfer (TICT) state. This compound also undergoes minor groove binding to herring sperm DNA (hsDNA) evidenced by the absorption spectra before and after the binding process and an effect on DMASBT fluorescence by an anionic quencher. The binding occurs efficiently in a 1:1 manner, i.e. one guest molecule binds to one site on the hsDNA. Instead of following the DNA twist, the aromatic part seems to project outward. Thus, the bound molecule can be successfully extracted out from the DNA in a controlled way by the hydrophobic cavity of α-cyclodextrin (α-CD). The extraction starts even with a low concentration of α-CD and increases as the concentration is increased. Absorption, steady-state and time resolved fluorescence spectroscopic methods have been employed to explore the mechanistic pathway of binding of DMASBT to hsDNA. The mechanistic approach toward controlled extraction of the guest molecules from hsDNA by α-CD is reported and is expected to serve a significant purpose in treatment of drug overdose.

  4. Excited-state dynamics of hybrid multichromophoric systems: toward an excitation wavelength control of the charge separation pathways.

    Science.gov (United States)

    Banerji, Natalie; Duvanel, Guillaume; Perez-Velasco, Alejandro; Maity, Santanu; Sakai, Naomi; Matile, Stefan; Vauthey, Eric

    2009-07-23

    The photophysical properties of two hybrid multichromophoric systems consisting of an oligophenylethynyl (OPE) scaffold decorated by 10 red or blue naphthalene diimides (NDIs) have been investigated using femtosecond spectroscopy. Ultrafast charge separation was observed with both red and blue systems. However, the nature of the charge-separated state and its lifetime were found to differ substantially. For the red system, electron transfer occurs from the OPE scaffold to an NDI unit, independently of whether the OPE or an NDI is initially excited. However, charge separation upon OPE excitation is about 10 times faster, and takes place with a 100 fs time constant. The average lifetime of the ensuing charge-separated state amounts to about 650 ps. Charge separation in the blue system depends on which of the OPE scaffold or an NDI is excited. In the first case, an electron is transferred from the OPE to an NDI and the hole subsequently shifts to another NDI unit, whereas in the second case symmetry-breaking charge separation between two NDI units occurs. Although the charges are located on two NDIs in both cases, different recombination dynamics are observed. This is explained by the location of the ionic NDI moieties that depends on the charge separation pathway, hence on the excitation wavelength. The very different dynamics observed with red and blue systems can be accounted for by the oxidation potentials of the respective NDIs that are higher and lower than that of the OPE scaffold. Because of this, the relative energies of the two charge-separated states (hole on the OPE or an NDI) are inverted.

  5. Controlling Photon Echo in a Quantum-Dot Semiconductor Optical Amplifier Using Shaped Excitation

    Science.gov (United States)

    Mishra, A. K.; Karni, O.; Khanonkin, I.; Eisenstein, G.

    2017-05-01

    Two-pulse photon-echo-based quantum-memory applications require a precise control over the echo strength and appearance time. We describe a numerical investigation of observation and control of photon echo in a room-temperature InAs /InP -based quantum-dot (QD) semiconductor optical amplifier (SOA). We address an important case where the spectral excitation is narrower than the inhomogeneous broadening of the SOA. It is revealed that, in such a QD SOA, the amplitude of the echo pulse depends not only on the excitation-to-rephasing pulse temporal separation but also on the interference among the rephrasing pulse and the echo pulses generated during the propagation along the amplifier. More importantly, the appearance time and amplitude of the echo pulse can be precisely controlled by shaping the first (excitation) pulse. We also assert that deviations in the echo pulse stemming from the SOA gain inhomogeneity can be compensated for so as to be utilized in quantum coherent information processing.

  6. Motor excitability measurements: the influence of gender, body mass index, age and temperature in healthy controls.

    Science.gov (United States)

    Casanova, I; Diaz, A; Pinto, S; de Carvalho, M

    2014-04-01

    The technique of threshold tracking to test axonal excitability gives information about nodal and internodal ion channel function. We aimed to investigate variability of the motor excitability measurements in healthy controls, taking into account age, gender, body mass index (BMI) and small changes in skin temperature. We examined the left median nerve of 47 healthy controls using the automated threshold-tacking program, QTRAC. Statistical multiple regression analysis was applied to test relationship between nerve excitability measurements and subject variables. Comparisons between genders did not find any significant difference (P>0.2 for all comparisons). Multiple regression analysis showed that motor amplitude decreases with age and temperature, stimulus-response slope decreases with age and BMI, and that accommodation half-time decrease with age and temperature. The changes related to demographic features on TRONDE protocol parameters are small and less important than in conventional nerve conduction studies. Nonetheless, our results underscore the relevance of careful temperature control, and indicate that interpretation of stimulus-response slope and accommodation half-time should take into account age and BMI. In contrast, gender is not of major relevance to axonal threshold findings in motor nerves. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  7. Using strain to control molecule chemisorption on silicene

    Science.gov (United States)

    Marjaoui, Adil; Stephan, Régis; Hanf, Marie-Christine; Diani, Mustapha; Sonnet, Philippe

    2017-07-01

    The strain dependence of benzene chemisorption on a silicene freestanding layer has been studied by means of density functional theory calculations. It appears that the molecule, which is adsorbed via a [4+2] pseudo-cycloaddition on the substrate, is more stable when adsorbed on strained than on unstrained silicene since the adsorption energy increases (in absolute value) with tensile or compressive strain. These results, which were not easily predictable, are interpreted in terms of strain-induced reinforcement of the Si-C bonds, formation of a pz-like atomic orbital at the silicene atoms, which augments the silicene reactivity and, for compressive or large tensile strains, increasing of the sp3 character of the Si-Si bonds.

  8. Immersion and Invariance-Based Coordinated Generator Excitation and SVC Control for Power Systems

    Directory of Open Access Journals (Sweden)

    Adirak Kanchanaharuthai

    2014-01-01

    Full Text Available A nonlinear coordinated control of excitation and SVC of an electrical power system is proposed for transient stability, and voltage regulation enhancement after the occurrence of a large disturbance and a small perturbation. Using the concept of Immersion and Invariance (I&I design methodology, the proposed nonlinear controller is used to not only achieve power angle stability, frequency and voltage regulation but also ensure that the closed-loop system is transiently and asymptotically stable. In order to show the effectiveness of the proposed controller design, the simulation results illustrate that, in spite of the case where a large perturbation occurs on the transmission line or there is a small perturbation to mechanical power inputs, the proposed controller can not only keep the system transiently stable but also simultaneously accomplish better dynamic properties of the system as compared to operation with the existing controllers designed through a coordinated passivation technique controller and a feedback linearization scheme, respectively.

  9. Negative Curvature Boundaries as Wave Emitting Sites for the Control of Biological Excitable Media

    Science.gov (United States)

    Bittihn, Philip; Hörning, Marcel; Luther, Stefan

    2012-09-01

    Understanding the interaction of electric fields with the complex anatomy of biological excitable media is key to optimizing control strategies for spatiotemporal dynamics in those systems. On the basis of a bidomain description, we provide a unified theory for the electric-field-induced depolarization of the substrate near curved boundaries of generalized shapes, resulting in the localized recruitment of control sites. Our findings are confirmed in experiments on cardiomyocyte cell cultures and supported by two-dimensional numerical simulations on a cross section of a rabbit ventricle.

  10. Controlling the Orbital Sequence in Individual Cu-Phthalocyanine Molecules

    NARCIS (Netherlands)

    Uhlmann, C.; Swart, I.|info:eu-repo/dai/nl/304837652; Repp, J.

    2013-01-01

    We report on the controlled change of the energetic ordering of molecular orbitals. Negatively charged copper(II)phthalocyanine on NaCl/Cu(100) undergoes a Jahn–Teller distortion that lifts the degeneracy of two frontier orbitals. The energetic order of the levels can be controlled by Au and Ag

  11. Structural control and health monitoring of building structures with unknown ground excitations: Experimental investigation

    Science.gov (United States)

    He, Jia; Xu, You-Lin; Zhan, Sheng; Huang, Qin

    2017-03-01

    When health monitoring system and vibration control system both are required for a building structure, it will be beneficial and cost-effective to integrate these two systems together for creating a smart building structure. Recently, on the basis of extended Kalman filter (EKF), a time-domain integrated approach was proposed for the identification of structural parameters of the controlled buildings with unknown ground excitations. The identified physical parameters and structural state vectors were then utilized to determine the control force for vibration suppression. In this paper, the possibility of establishing such a smart building structure with the function of simultaneous damage detection and vibration suppression was explored experimentally. A five-story shear building structure equipped with three magneto-rheological (MR) dampers was built. Four additional columns were added to the building model, and several damage scenarios were then simulated by symmetrically cutting off these columns in certain stories. Two sets of earthquakes, i.e. Kobe earthquake and Northridge earthquake, were considered as seismic input and assumed to be unknown during the tests. The structural parameters and the unknown ground excitations were identified during the tests by using the proposed identification method with the measured control forces. Based on the identified structural parameters and system states, a switching control law was employed to adjust the current applied to the MR dampers for the purpose of vibration attenuation. The experimental results show that the presented approach is capable of satisfactorily identifying structural damages and unknown excitations on one hand and significantly mitigating the structural vibration on the other hand.

  12. Single temperature sensor based evaporator filling control using excitation signal harmonics

    DEFF Research Database (Denmark)

    Vinther, Kasper; Rasmussen, Henrik; Izadi-Zamanabadi, Roozbeh

    2012-01-01

    An important aspect of efficient and safe operation of refrigeration and air conditioning systems is superheat control for evaporators. This is conventionally controlled with a pressure sensor, a temperature sensor, an expansion valve and Proportional-Integral (PI) controllers or more advanced...... model based control. In this paper we show that superheat can be controlled without a pressure sensor and without a model of the system. This is achieved by continuous excitation of the system and by applying Fourier analysis, which gives an error signal that can be used together with standard PI...... a large operating range with only one sensor. It is believed that the method in general is applicable to a wide variety of nonlinear systems for which the desired operating points are close to points of zero mean curvature of system nonlinearities....

  13. Coordinated Switching Control of the Excitation and Steam Valve System Based on State and Input Constraints

    Directory of Open Access Journals (Sweden)

    Nan Jiang

    2015-01-01

    Full Text Available A single unit infinite system of the excitation and steam valve control was proposed based on Barrier Lyapunov theory of restrictive log type. The input amplitude constraint of the steam valve control was considered, and the coordinated nonlinear backstepping controller was designed by switching mechanism. At the same time, the generator rotor effect was considered to be an external unknown large disturbance on the output system, and the conservativeness of the simple estimates for the upper and lower bounds and scaling disturbance was reduced by Minimax. The Minimax method also ensured that the output of the controller and the power angle were within the prescribed range and inhibited the system output effect of disturbance as much as possible. Finally, simulation results of the generator disturbance of mechanical power in the single unit infinite system show that the control scheme effectively improves the transient stability of the dynamic processes of power systems.

  14. Tunable Holstein model with cold polar molecules

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, Felipe; Krems, Roman V. [Department of Chemistry, University of British Columbia, Vancouver, British Columbia, V6T 1Z1 (Canada)

    2011-11-15

    We show that an ensemble of polar molecules trapped in an optical lattice can be considered as a controllable open quantum system. The coupling between collective rotational excitations and the motion of the molecules in the lattice potential can be controlled by varying the strength and orientation of an external dc electric field as well as the intensity of the trapping laser. The system can be described by a generalized Holstein Hamiltonian with tunable parameters and can be used as a quantum simulator of excitation energy transfer and polaron phenomena. We show that the character of excitation energy transfer can be modified by tuning experimental parameters.

  15. An experimental setup for studying the core-excited atoms and molecules by electron impact using energy analysed electron-ion coincidence technique

    Science.gov (United States)

    Kumar, S.; Prajapati, S.; Singh, B.; Singh, B. K.; Shanker, R.

    2017-07-01

    Operation and performance of an apparatus for studying the decay dynamics relevant to core-hole decay processes in atoms and molecules excited by energetic electrons using an energy analysed electron-ion coincidence technique are described in some detail. The setup consists of a time- and position sensitive double-field linear TOF mass spectrometer coupled with a dual MCP detector and a single-pass CMA to select the energy of detected electrons. Details of different components involved in the setup are presented and discussed. To demonstrate the performance and capability of the apparatus, we present some typical results extracted from the TOF argon ion-mass spectra observed in coincidence with 18-energy selected electrons emitted from interaction of a continuous beam of 3.5 keV electrons with a dilute gaseous target of argon atoms. Specifically, the variation of relative correlation probability for the final ion-charge states Ar1+ to Ar4+ produced in the considered collision reactions as a function of energy of emitted electrons is determined and discussed.

  16. Time-dependent formulation of the two-dimensional model of resonant electron collisions with diatomic molecules and interpretation of the vibrational excitation cross sections

    Science.gov (United States)

    VáÅa, Martin; Houfek, Karel

    2017-02-01

    A two-dimensional model of the resonant electron-molecule collision processes with one nuclear and one electronic degree of freedom introduced by K. Houfek, T. N. Rescigno, and C. W. McCurdy [Phys. Rev. A 73, 032721 (2006), 10.1103/PhysRevA.73.032721] is reformulated within the time-dependent framework and solved numerically using the finite-element method with the discrete variable representation basis, the exterior complex scaling method, and the generalized Crank-Nicolson method. On this model we illustrate how the time-dependent calculations can provide deep insight into the origin of oscillatory structures in the vibrational excitation cross sections if one evaluates the cross sections not only at sufficiently large time to obtain the final cross sections, but also at several characteristic times which are given by the evolution of the system. It is shown that all details of these structures, especially asymmetrical peaks, can be understood as quantum interference of several experimentally indistinguishable processes separated in time due to a resonant capture of the electron and the subsequent vibrational motion of the negative molecular ion. Numerical results are presented for the N2-like, NO-like, and F2-like models and compared with ones obtained within the time-independent approach and within the local complex potential approximation.

  17. Causal feedforward control of a stochastically excited fuselage structure with active sidewall panel.

    Science.gov (United States)

    Misol, Malte; Haase, Thomas; Monner, Hans Peter; Sinapius, Michael

    2014-10-01

    This paper provides experimental results of an aircraft-relevant double panel structure mounted in a sound transmission loss facility. The primary structure of the double panel system is excited either by a stochastic point force or by a diffuse sound field synthesized in the reverberation room of the transmission loss facility. The secondary structure, which is connected to the frames of the primary structure, is augmented by actuators and sensors implementing an active feedforward control system. Special emphasis is placed on the causality of the active feedforward control system and its implications on the disturbance rejection at the error sensors. The coherence of the sensor signals is analyzed for the two different disturbance excitations. Experimental results are presented regarding the causality, coherence, and disturbance rejection of the active feedforward control system. Furthermore, the sound transmission loss of the double panel system is evaluated for different configurations of the active system. A principal result of this work is the evidence that it is possible to strongly influence the transmission of stochastic disturbance sources through double panel configurations by means of an active feedforward control system.

  18. Vibration control for the parametrically excited van der Pol oscillator by nonlocal feedback

    Energy Technology Data Exchange (ETDEWEB)

    Maccari, Attilio [Via Alfredo Casella 3, 00013 Mentana, Rome (Italy)

    2011-07-01

    A nonlocal feedback is used for the control of nonlinear vibrations in a parametrically excited van der Pol oscillator. A nonlocal control force is introduced in order to obtain a third-order nonlinear differential equation (jerk dynamics). Using the asymptotic perturbation method, two slow flow equations on the amplitude and phase of the response are obtained, and subsequently the performance of the control strategy is investigated. Parametric excitation-response and frequency-response curves are shown. Uncontrolled and controlled systems are compared, and the appropriate choices of the feedback gains for reducing the amplitude peak of the response are found. Energy considerations are used in order to study the existence and characteristics of limit cycles of the slow flow equations. A limit cycle corresponds to a two-period modulated motion for the van der Pol oscillator. To exclude the possibility of quasi-periodic motion and to reduce the amplitude peak of the parametric resonance, appropriate choices of the feedback gains are found. Numerical simulation confirms the validity of the new method.

  19. Speed Control of Separately Excited D.C. Motor using Self-Tuned Parameters of PID Controller

    Directory of Open Access Journals (Sweden)

    A. K. Mansoor

    2013-05-01

    Full Text Available This paper presents a simulation and hardware implementation of a closed loop control of a separately excited D.C. motor using a self-tuning PID controller. The PID controller design is based on using the Field Programmable Analog Array (FPAA technology. Parameters tuning of the PID controller is achieved by using the genetic algorithm (GA. The FPAA controller based technology gives the advantage of low power, no quantization noise, high bandwidth and high speed response. The practical results show that a self-tuning controller can outperform a hand-tuned solution and demonstrate adaptability to plant drift; also it gives very acceptable results in the reduction of overshoot, stability time and the steady-state transient response of the controlled plant.

  20. Nonlinear Dynamic Characteristics and Optimal Control of SMA Composite Wings Subjected to Stochastic Excitation

    Directory of Open Access Journals (Sweden)

    Zhi-Wen Zhu

    2015-01-01

    Full Text Available A kind of high-aspect-ratio shape memory alloy (SMA composite wing is proposed to reduce the wing’s fluttering. The nonlinear dynamic characteristics and optimal control of the SMA composite wings subjected to in-plane stochastic excitation are investigated where the great bending under the flight loads is considered. The stochastic stability of the system is analyzed, and the system’s response is obtained. The conditions of stochastic Hopf bifurcation are determined, and the probability density of the first-passage time is obtained. Finally, the optimal control strategy is proposed. Numerical simulation shows that the stability of the system varies with bifurcation parameters, and stochastic Hopf bifurcation appears in the process; the reliability of the system is improved through optimal control, and the first-passage time is delayed. Finally, the effects of the control strategy are proved by experiments. The results of this paper are helpful for engineering applications of SMA.

  1. Modulation and Control of Charge Transport Through Single-Molecule Junctions.

    Science.gov (United States)

    Wang, Kun; Xu, Bingqian

    2017-02-01

    The ability to modulate and control charge transport though single-molecule junction devices is crucial to achieving the ultimate goal of molecular electronics: constructing real-world-applicable electronic components from single molecules. This review aims to highlight the progress made in single-molecule electronics, emphasizing the development of molecular junction electronics in recent years. Among many techniques that attempt to wire a molecule to metallic electrodes, the single-molecule break junction (SMBJ) technique is one of the most reliable and tunable experimental platforms for achieving metal-molecule-metal configurations. It also provides great freedom to tune charge transport through the junction. Soon after the SMBJ technique was introduced, it was extensively used to measure the conductances of individual molecules; however, different conductances were obtained for the same molecule, and it proved difficult to interpret this wide distribution of experimental data. This phenomenon was later found to be mainly due to a lack of precise experimental control and advanced data analysis methods. In recent years, researchers have directed considerable effort into advancing the SMBJ technique by gaining a deeper physical understanding of charge transport through single molecules and thus enhancing its potential applicability in functional molecular-scale electronic devices, such as molecular diodes and molecular transistors. In parallel with that research, novel data analysis methods and approaches that enable the discovery of hidden yet important features in the data are being developed. This review discusses various aspects of molecular junction electronics, from the initial goal of molecular electronics, the development of experimental techniques for creating single-molecule junctions and determining single-molecule conductance, to the characterization of functional current-voltage features and the investigation of physical properties other than charge

  2. Regulation of protein activity with small-molecule-controlled inteins

    Science.gov (United States)

    Skretas, Georgios; Wood, David W.

    2005-01-01

    Inteins are the protein analogs of self-splicing RNA introns, as they post-translationally excise themselves from a variety of protein hosts. Intein insertion abolishes, in general, the activity of its host protein, which is subsequently restored upon intein excision. These protein elements therefore have the potential to be used as general molecular “switches” for the control of arbitrary target proteins. Based on rational design, an intein-based protein switch has been constructed whose splicing activity is conditionally triggered in vivo by the presence of thyroid hormone or synthetic analogs. This modified intein was used in Escherichia coli to demonstrate that a number of different proteins can be inactivated by intein insertion and then reactivated by the addition of thyroid hormone via ligand-induced splicing. This conditional activation was also found to occur in a dose-dependent manner. Rational protein engineering was then combined with genetic selection to evolve an additional intein whose activity is controlled by the presence of synthetic estrogen ligands. The ability to regulate protein function post-translationally through the use of ligand-controlled intein splicing will most likely find applications in metabolic engineering, drug discovery and delivery, biosensing, molecular computation, as well as many additional areas of biotechnology. PMID:15632292

  3. Ultrafast Control of the electronic phase of a manganite viamode-selective vibrational excitation

    Energy Technology Data Exchange (ETDEWEB)

    Rini, Matteo; Tobey, Ra' anan I.; Dean, Nicky; Tokura, Yoshinori; Schoenlein, Robert W.; Cavalleri, Andrea

    2007-05-01

    Controlling a phase of matter by coherently manipulatingspecific vibrational modes has long been an attractive (yet elusive) goalfor ultrafast science. Solids with strongly correlated electrons, inwhich even subtle crystallographic distortions can result in colossalchanges of the electronic and magnetic properties, could be directedbetween competing phases by such selective vibrational excitation. Inthis way, the dynamics of the electronic ground state of the systembecome accessible, and new insight into the underlying physics might begained. Here we report the ultrafast switching of the electronic phase ofa magnetoresistive manganite via direct excitation of a phonon mode at 71meV (17 THz). A prompt, five-order-of-magnitude drop in resistivity isobserved, associated with a non-equilibrium transition from the stableinsulating phase to a metastable metallic phase. In contrast withlight-induced, and current-driven phase transitions, the vibrationallydriven bandgap collapse observed here is not related to hot-carrierinjection and is uniquely attributed to a large-amplitude Mn-Odistortion. This corresponds to a perturbation of theperovskite-structure tolerance factor, which in turn controls theelectronic bandwidth via inter-site orbital overlap. Phase control bycoherent manipulation of selected metal--oxygen phonons should findextensive application in other complex solids--notably in copper oxidesuperconductors, in which the role of Cu-O vibrations on the electronicproperties is currently controversial.

  4. Controlled Rephasing of Single Collective Spin Excitations in a Cold Atomic Quantum Memory.

    Science.gov (United States)

    Albrecht, Boris; Farrera, Pau; Heinze, Georg; Cristiani, Matteo; de Riedmatten, Hugues

    2015-10-16

    We demonstrate active control of inhomogeneous dephasing and rephasing for single collective atomic spin excitations (spin waves) created by spontaneous Raman scattering in a quantum memory based on cold 87Rb atoms. The control is provided by a reversible external magnetic field gradient inducing an inhomogeneous broadening of the atomic hyperfine levels. We demonstrate experimentally that active rephasing preserves the single photon nature of the retrieved photons. Finally, we show that the control of the inhomogeneous dephasing enables the creation of time-separated spin waves in a single ensemble followed by a selective read-out in time. This is an important step towards the implementation of a functional temporally multiplexed quantum repeater node.

  5. Control of base-excited dynamical systems through piezoelectric energy harvesting absorber

    Science.gov (United States)

    Abdelmoula, H.; Dai, H. L.; Abdelkefi, A.; Wang, L.

    2017-09-01

    The spring-mass absorber usually offers a good control to dynamical systems under direct base excitations for a specific value of the excitation frequency. As the vibrational energy of a primary dynamical system is transferred to the absorber, it gets dissipated. In this study, this energy is no longer dissipated but converted to available electrical power by designing efficient energy harvesters. A novel design of a piezoelectric beam installed inside an elastically-mounted dynamical system undergoing base excitations is considered. A design is carried out in order to determine the properties and dimensions of the energy harvester with the constraint of simultaneously decreasing the oscillating amplitudes of the primary dynamical system and increasing the harvested power of the energy harvesting absorber. An analytical model for the coupled system is constructed using Euler-Lagrange principle and Galerkin discretization. Different strategies for controlling the primary structure displacement and enhancing the harvested power as functions of the electrical load resistance and thickness of the beam substrate are performed. The linear polynomial approximation of the system’s key parameters as a function of the beam’s substrate thickness is first carried out. Then, the gradient method is applied to determine the adequate values of the electrical load resistance and thickness of the substrate under the constraints of minimizing the amplitudes of the primary structure or maximizing the levels of the harvested power. After that, an iterative strategy is considered in order to simultaneously minimize the amplitudes of the primary structure and maximize the levels of the harvested power as functions of the thickness of the substrate and electrical load resistance. In addition to harmonic excitations, the coupled system subjected to a white noise is explored. Through this analysis, the load resistance and thickness of the substrate of the piezoelectric energy harvester

  6. External field control of spin-dependent rotational decoherence of ultracold polar molecules

    CERN Document Server

    Petrov, Alexander; Kotochigova, Svetlana

    2013-01-01

    We determine trapping conditions for ultracold polar molecules, where pairs of internal states experience identical trapping potentials. Such conditions could ensure that detrimental effects of inevitable inhomogeneities across an ultracold sample are significantly reduced. In particular, we investigate the internal rovibronic and hyperfine quantum states of ultracold fermionic ground-state $^{40}$K$^{87}$Rb polar molecules, when static magnetic, static electric, and trapping laser fields are simultaneously applied. Understanding the effect of changing the relative orientation or polarization of these three fields is of crucial importance for creation of decoherence-free subspaces built from two or more rovibronic states. Moreover, we evaluate the induced dipole moment of the molecule in the presence of these fields, which will allow control of interactions between molecules in different sites of an optical lattice and study the influence of the interaction anisotropy on the ability to entangle polar molecule...

  7. Research on Operation Principle and Control of Novel Hybrid Excitation Bearingless Permanent Magnet Generator

    Directory of Open Access Journals (Sweden)

    Huangqiu Zhu

    2016-08-01

    Full Text Available Under the condition of load changing, the magnetic field of traditional permanent magnet generators (PMG is hard to be adjusted, and the mechanical bearings are significantly worn. To overcome the drawbacks above, a novel hybrid excitation bearingless permanent magnet generator (HEBPMG is proposed in this paper, which has integrated the merits of hybrid excitation permanent magnet generators and magnetic bearings. Firstly, the structure and winding configuration of the HEBPMG are introduced, and then the principles of radial suspension and power generation are presented. The suspension principle as well as power generation principle is analyzed in this paper. Then, the flux linkage and induced voltage equations are derived, and the accurate mathematical model of radial suspension force is built based on the Maxwell tensor method. Subsequently, by means of the finite element analysis software-ANSYS Maxwell, the corresponding electromagnetic characteristics are analyzed to verify the correctness of the mentioned models. In addition, a compensation control strategy based on flux-linkage observation is proposed to solve the problems of unstable suspension force and generating voltage under variable load condition in this paper. Meanwhile, the corresponding control system is constructed and its feasibility is validated by simulation results. Finally, an experimental prototype of a 2.2 kW HEBPMG is tested. Experimental researches show that the HEBPMG can operate steadily under variable load condition and possess good suspension performance and power generation quality.

  8. Quantum state selection of polar molecules: Alignment, orientation and conformational control

    Science.gov (United States)

    Stapelfeldt, Henrik

    2009-05-01

    Building on ideas that go back to Stern in the 1920s we use an inhomogeneous static electric field to deflect a cold beam of polar molecules. The deflection spatially disperses the rotational quantum states of the molecules. We show that the molecules residing in the lowest-lying rotational states can be selected and used as targets for further experiments. In particular, the quantum-state-selected molecules enable unprecedented strong alignment, induced by a moderately intense laser pulse, as well as strong orientation induced by a mixed laser and static electric field. Here, alignment refers to confinement of one or more molecule-fixed axes along laboratory-fixed axes, and orientation refers to the molecular dipole moments pointing in a specific direction. Also, it is shown that the deflection enables separation of the different conformers of a single molecule. We discuss new opportunities offered by the enhanced degree of orientational control, made possibly by quantum state selection, including time resolved studies of torsion, and eventually enantiomeric conversion, of axially chiral molecules. Collaborators: J. Küpper, G. Meijer, L. B. Madsen. [4pt] [1] Laser-Induced Alignment and Orientation of Quantum-State-Selected Large Molecules, L. Holmegaard, J. H. Nielsen, I. Nevo, H. Stapelfeldt, F. Filsinger, J. Küpper, and G. Meijer, Phys. Rev. Lett. 102. 023001 (2009).

  9. An assessment of low-lying excitation energies and triplet instabilities of organic molecules with an ab initio Bethe-Salpeter equation approach and the Tamm-Dancoff approximation

    Science.gov (United States)

    Rangel, Tonatiuh; Hamed, Samia M.; Bruneval, Fabien; Neaton, Jeffrey B.

    2017-05-01

    The accurate prediction of singlet and triplet excitation energies is an area of intense research of significant fundamental interest and critical for many applications. Most calculations of singlet and triplet energies use time-dependent density functional theory (TDDFT) in conjunction with an approximate exchange-correlation functional. In this work, we examine and critically assess an alternative method for predicting low-lying neutral excitations with similar computational cost, the ab initio Bethe-Salpeter equation (BSE) approach, and compare results against high-accuracy wavefunction-based methods. We consider singlet and triplet excitations of 27 prototypical organic molecules, including members of Thiel's set, the acene series, and several aromatic hydrocarbons exhibiting charge-transfer-like excitations. Analogous to its impact in TDDFT, we find that the Tamm-Dancoff approximation (TDA) overcomes triplet instabilities in the BSE approach, improving both triplet and singlet energetics relative to higher level theories. Finally, we find that BSE-TDA calculations built on effective DFT starting points, such as those utilizing optimally tuned range-separated hybrid functionals, can yield accurate singlet and triplet excitation energies for gas-phase organic molecules.

  10. Metal-Controlled Magnetoresistance at Room Temperature in Single-Molecule Devices.

    Science.gov (United States)

    Aragonès, Albert C; Aravena, Daniel; Valverde-Muñoz, Francisco J; Real, José Antonio; Sanz, Fausto; Díez-Pérez, Ismael; Ruiz, Eliseo

    2017-04-26

    The appropriate choice of the transition metal complex and metal surface electronic structure opens the possibility to control the spin of the charge carriers through the resulting hybrid molecule/metal spinterface in a single-molecule electrical contact at room temperature. The single-molecule conductance of a Au/molecule/Ni junction can be switched by flipping the magnetization direction of the ferromagnetic electrode. The requirements of the molecule include not just the presence of unpaired electrons: the electronic configuration of the metal center has to provide occupied or empty orbitals that strongly interact with the junction metal electrodes and that are close in energy to their Fermi levels for one of the electronic spins only. The key ingredient for the metal surface is to provide an efficient spin texture induced by the spin-orbit coupling in the topological surface states that results in an efficient spin-dependent interaction with the orbitals of the molecule. The strong magnetoresistance effect found in this kind of single-molecule wire opens a new approach for the design of room-temperature nanoscale devices based on spin-polarized currents controlled at molecular level.

  11. Nanoscale Molecules Under Thermodynamic Control:" Digestive Ripening" or " Nanomachining"

    Energy Technology Data Exchange (ETDEWEB)

    Klabunde, Kenneth J. [Kansas State Univ., Manhattan, KS (United States)

    2015-06-04

    Overall Research Goals and Specific Objectives: Nanoscale materials are becoming ubiquitous in science and engineering, and are found widely in nature. However, their formation processes and uniquely high chemical reactivities are not understood well, indeed are often mysterious. Over recent years, a number of research teams have described nanoparticle synthesis, and aging, thermal treatment, or etching times have been mentioned. We have used the terms “digestive ripening” and “nanomachining” and have suggested that thermodynamics plays an important part in the size adjustment to monodisperse arrays being formed. Since there is scant theoretical understanding of digestive ripening, the overall goal in our research is to learn what experimental parameters (ligand used, temperature, solvent, time) are most important, how to control nanoparticle size and shape after initial crude nanoparticles have been synthesized, and gain better understanding of the chemical mechanism details. Specific objectives for the past twentynine months since the grant began have been to (1) Secure and train personnel;as of 2011, a postdoc Deepa Jose, female from the Indian Institute of Science in Bangalore, India; Yijun Sun, a second year graduate student, female from China; and Jessica Changstrom, female from the USA, GK12 fellow (program for enhancing teaching ability) are actively carrying out research. (2) Find out what happens to sulfur bound hydrogen of thiol when it interacts with gold nanoparticles. Our findings are discussed in detail later. (3) Determine the effect of particle size, shape, and temperature on dodecyl thiol assited digestive ripening of gold nanoparticles. See our discussions later. (4) To understand in detail the ligand interaction in molecular clusters and nanoparticles (5) Determine the effect of chain length of amines on Au nanoparticle size under digestive ripening conditions (carbon chain length varied from 4-18). (6) Determine the catalytic activity

  12. Control Application of Piezoelectric Materials to Aeroelastic Self-Excited Vibrations

    Directory of Open Access Journals (Sweden)

    Mohammad Amin Rashidifar

    2014-01-01

    Full Text Available A method for application of piezoelectric materials to aeroelasticity of turbomachinery blades is presented. The governing differential equations of an overhung beam are established. The induced voltage in attached piezoelectric sensors due to the strain of the beam is calculated. In aeroelastic self-excited vibrations, the aerodynamic generalized force of a specified mode can be described as a linear function of the generalized coordinate and its derivatives. This simplifies the closed loop system designed for vibration control of the corresponding structure. On the other hand, there is an industrial interest in measurement of displacement, velocity, acceleration, or a contribution of them for machinery condition monitoring. Considering this criterion in quadratic optimal control systems, a special style of performance index is configured. Utilizing the current relations in an aeroelastic case with proper attachment of piezoelectric elements can provide higher margin of instability and lead to lower vibration magnitude.

  13. Study on antilock brake system with elastic membrane vibration generated by controlled solenoid excitation

    Science.gov (United States)

    Wibowo, Zakaria, Lambang, Lullus; Triyono, Muhayat, Nurul

    2016-03-01

    The most effective chassis control system for improving vehicle safety during severe braking is anti-lock braking system (ABS). Antilock effect can be gained by vibrate the pad brake at 7 to 20 cycle per second. The aim of this study is to design a new method of antilock braking system with membrane elastic vibrated by solenoid. The influence of the pressure fluctuations of brake fluid is investigated. Vibration data is collected using a small portable accelerometer-slam stick. The experiment results that the vibration of brake pad caused by controlled solenoid excitation at 10 Hz is obtained by our new method. The result of measurements can be altered by varying brake fluid pressure.

  14. Employing static excitation control and tie line reactance to stabilize wind turbine generators

    Science.gov (United States)

    Hwang, H. H.; Mozeico, H. V.; Guo, T.

    1978-01-01

    An analytical representation of a wind turbine generator is presented which employs blade pitch angle feedback control. A mathematical model was formulated. With the functioning MOD-0 wind turbine serving as a practical case study, results of computer simulations of the model as applied to the problem of dynamic stability at rated load are also presented. The effect of the tower shadow was included in the input to the system. Different configurations of the drive train, and optimal values of the tie line reactance were used in the simulations. Computer results revealed that a static excitation control system coupled with optimal values of the tie line reactance would effectively reduce oscillations of the power output, without the use of a slip clutch.

  15. Study on antilock brake system with elastic membrane vibration generated by controlled solenoid excitation

    Energy Technology Data Exchange (ETDEWEB)

    Wibowo,, E-mail: wibowo-uns@yahoo.com; Zakaria,, E-mail: zakaaria27@gmail.com; Lambang, Lullus, E-mail: lulus-l@yahoo.com; Triyono,, E-mail: tyon-bila@yahoo.co.id; Muhayat, Nurul, E-mail: nurulmuhayat@ymail.com [Mechanical Engineering Department, Sebelas Maret University, Surakarta 57128 (Indonesia)

    2016-03-29

    The most effective chassis control system for improving vehicle safety during severe braking is anti-lock braking system (ABS). Antilock effect can be gained by vibrate the pad brake at 7 to 20 cycle per second. The aim of this study is to design a new method of antilock braking system with membrane elastic vibrated by solenoid. The influence of the pressure fluctuations of brake fluid is investigated. Vibration data is collected using a small portable accelerometer-slam stick. The experiment results that the vibration of brake pad caused by controlled solenoid excitation at 10 Hz is obtained by our new method. The result of measurements can be altered by varying brake fluid pressure.

  16. Controllable parametric excitation effect on linear and nonlinear vibrational resonances in the dynamics of a buckled beam

    Science.gov (United States)

    Djomo Mbong, T. L. M.; Siewe Siewe, M.; Tchawoua, C.

    2018-01-01

    In this study, the effect of a controllable parametric excitation on both linear and nonlinear vibrational resonances on the dynamic of a buckled beam excited by a combination of uncontrollable low- and high-frequency periodic forces are investigated. First of all, the beam dynamic is assumed to be constrained by two periodic and independent ambient solicitations, such as wind and earthquake. An axial load of the beam represented by a periodic and parametric excitation is used to control the vibrational resonance phenomenon, induced by the presence of the two external excitations. Approximate analytical expressions for the linear response and the high-frequency force amplitude at which linear vibrational resonance occurs are obtained. An analytical expression of the amplitude of the nonlinear response at the superharmonic equal to the double of the low-frequency, is obtained. For all these expressions, we show the effect of the parametric excitation. We compare all the obtained results with the ones of the case where, the parametric force is absent. It is shown that, the presence of the parametric excitation permit the suppression of both linear and nonlinear vibrational resonances. Moreover, the vibration amplitudes of the buckled beam are significantly reduced, around certain threshold values for the amplitude and the frequency of the parametric excitation.

  17. Fuzzy logic control of self excited doubly-fed induction generator

    Energy Technology Data Exchange (ETDEWEB)

    Radaideh, S.M.; Alwash, S.R.; Albatran, S.A. [Jordan Univ. of Science and Technology, Irbid (Jordan)

    2010-03-09

    A doubly-fed induction generator (DFIG) is the preferred solution for limited variable speed systems, particularly in wind energy systems. This paper considered DFIG for use with flywheel energy systems, stand alone diesel systems, pumped storage power plants, small hydro energy systems, and for wind turbines. Three fuzzy logic controllers which were used to enhance the performance of the self excited doubly-fed induction generator (SEDFIG) were presented along with a mathematical model of SEDFIG. The study considered the terminal voltage; the generated power; and the DC voltage. The study considered 3 fuzzy logic controllers, notably a fuzzy PI controller of the terminal voltage, a fuzzy PD controller of the generated power and a fuzzy PD controller of the DC voltage with integral controller as feedback. A static var compensator was used as a reactive power source which regulated the terminal voltage. According to simulation results, the SEDFIG system was stable and could restore to its normal operation following an electrical fault. 17 refs., 3 tabs., 13 figs., 1 appendix.

  18. Parametrically excited oscillation of stay cable and its control in cable-stayed bridges.

    Science.gov (United States)

    Sun, Bing-nan; Wang, Zhi-gang; Ko, J M; Ni, Y Q

    2003-01-01

    This paper presents a nonlinear dynamic model for simulation and analysis of a kind of parametrically excited vibration of stay cable caused by support motion in cable-stayed bridges. The sag, inclination angle of the stay cable are considered in the model, based on which, the oscillation mechanism and dynamic response characteristics of this kind of vibration are analyzed through numerical calculation. It is noted that parametrically excited oscillation of a stay cable with certain sag, inclination angle and initial static tension force may occur in cable-stayed bridges due to deck vibration under the condition that the natural frequency of a cable approaches to about half of the first model frequency of the bridge deck system. A new vibration control system installed on the cable anchorage is proposed as a possible damping system to suppress the cable parametric oscillation. The numerical calculation results showed that with the use of this damping system, the cable oscillation due to the vibration of the deck and/or towers will be considerably reduced.

  19. Hybrid Vibration Control under Broadband Excitation and Variable Temperature Using Viscoelastic Neutralizer and Adaptive Feedforward Approach

    Directory of Open Access Journals (Sweden)

    João C. O. Marra

    2016-01-01

    Full Text Available Vibratory phenomena have always surrounded human life. The need for more knowledge and domain of such phenomena increases more and more, especially in the modern society where the human-machine integration becomes closer day after day. In that context, this work deals with the development and practical implementation of a hybrid (passive-active/adaptive vibration control system over a metallic beam excited by a broadband signal and under variable temperature, between 5 and 35°C. Since temperature variations affect directly and considerably the performance of the passive control system, composed of a viscoelastic dynamic vibration neutralizer (also called a viscoelastic dynamic vibration absorber, the associative strategy of using an active-adaptive vibration control system (based on a feedforward approach with the use of the FXLMS algorithm working together with the passive one has shown to be a good option to compensate the neutralizer loss of performance and generally maintain the extended overall level of vibration control. As an additional gain, the association of both vibration control systems (passive and active-adaptive has improved the attenuation of vibration levels. Some key steps matured over years of research on this experimental setup are presented in this paper.

  20. Single-Molecule Monitoring of the Structural Switching Dynamics of Nucleic Acids through Controlling Fluorescence Blinking.

    Science.gov (United States)

    Kawai, Kiyohiko; Miyata, Takafumi; Shimada, Naohiko; Ito, Syoji; Miyasaka, Hiroshi; Maruyama, Atsushi

    2017-11-27

    Single-molecule fluorescence resonance energy transfer (smFRET) is a powerful tool to investigate the dynamics of biomolecular events in real time. However, it requires two fluorophores and can be applied only to dynamics that accompany large changes in distance between the molecules. Herein, we introduce a method for kinetic analysis based on control of fluorescence blinking (KACB), a general approach to investigate the dynamics of biomolecules by using a single fluorophore. By controlling the kinetics of the redox reaction the blinking kinetics or pattern can be controlled to be affected by microenvironmental changes around a fluorophore (rKACB), thereby enabling real-time single-molecule measurement of the structure-changing dynamics of nucleic acids. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  1. Single‐Molecule Monitoring of the Structural Switching Dynamics of Nucleic Acids through Controlling Fluorescence Blinking

    Science.gov (United States)

    Miyata, Takafumi; Shimada, Naohiko; Ito, Syoji; Miyasaka, Hiroshi

    2017-01-01

    Abstract Single‐molecule fluorescence resonance energy transfer (smFRET) is a powerful tool to investigate the dynamics of biomolecular events in real time. However, it requires two fluorophores and can be applied only to dynamics that accompany large changes in distance between the molecules. Herein, we introduce a method for kinetic analysis based on control of fluorescence blinking (KACB), a general approach to investigate the dynamics of biomolecules by using a single fluorophore. By controlling the kinetics of the redox reaction the blinking kinetics or pattern can be controlled to be affected by microenvironmental changes around a fluorophore (rKACB), thereby enabling real‐time single‐molecule measurement of the structure‐changing dynamics of nucleic acids. PMID:28990725

  2. Generation of a pair of photons through the three-body dissociation of a multiply excited water molecule around the double ionization potential

    Energy Technology Data Exchange (ETDEWEB)

    Odagiri, Takeshi; Nakano, Motoyoshi; Tanabe, Takehiko; Kumagai, Yoshiaki [Department of Chemistry, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551 (Japan); Suzuki, Isao H; Kouchi, Noriyuki, E-mail: joe@chem.titech.ac.j [Photon Factory, IMSS, KEK, Tsukuba, Ibaraki 305-0801 (Japan)

    2009-11-01

    The cross sections for the generation of a photon-pair from excited fragments in photoexcitation of H{sub 2}O have been measured as a function of incident photon energy. The multiply excited states of H{sub 2}O have been observed even above the adiabatic double ionization potential.

  3. Competitive excitation and osmotic-pressure-mediated control of lasing modes in cholesteric liquid crystal microshells

    Science.gov (United States)

    Lin, Ya-Li; Gong, Ling-Li; Che, Kai-Jun; Li, Sen-Sen; Chu, Cheng-Xu; Cai, Zhi-Ping; Yang, Chaoyong James; Chen, Lu-Jian

    2017-05-01

    We examined the end-pumped lasing behaviors of dye doped cholesteric liquid crystal (DDCLC) microshells which were fabricated by glass capillary microfluidics. Several kinds of mode resonances, including distributed feedback, Fabry-Pérot (FP), and whispering gallery (WG) modes, can be robustly constructed in each individual DDCLC microshell by varying the beam diameter, namely, tuning the DDCLC gain area. The FP and WG modes were further confirmed experimentally, and the corresponding lasing mechanisms are clearly revealed from the unique material characteristics of DDCLC and the geometrical structure of the microshell. Additionally, we demonstrated that the osmotic pressure can be used to shrink/expand the microshell, productively tuning the excitation of lasing modes in a controlled manner. We wish our findings can provide a new insight into the design of DDCLC microlasers with tunable optical properties.

  4. [From endoplasmic reticulum to Golgi apparatus: a secretory pathway controlled by signal molecules].

    Science.gov (United States)

    Wang, Jiasheng; Luo, Jianhong; Zhang, Xiaomin

    2013-07-01

    Protein transport from endoplasmic reticulum (ER) to Golgi apparatus has long been known to be a central process for protein quality control and sorting. Recent studies have revealed that a large number of signal molecules are involved in regulation of membrane trafficking through ER, ER-Golgi intermediate compartment and Golgi apparatus. These molecules can significantly change the transport rate of proteins by regulating vesicle budding and fusion. Protein transport from ER to Golgi apparatus is not only controlled by signal pathways triggered from outside the cell, it is also regulated by feedback signals from the transport pathway.

  5. Control of neuronal excitability by NMDA-type glutamate receptors in early developing binaural auditory neurons.

    Science.gov (United States)

    Sanchez, Jason Tait; Seidl, Armin H; Rubel, Edwin W; Barria, Andres

    2012-10-01

    Precise control of neuronal excitability in the auditory brainstem is fundamental for processing timing cues used for sound localization and signal discrimination in complex acoustic environments. In mature nucleus laminaris (NL), the first nucleus responsible for binaural processing in chickens, neuronal excitability is governed primarily by voltage-activated potassium conductances (K(VA)). High levels of K(VA) expression in NL neurons result in one or two initial action potentials (APs) in response to high-frequency synaptic activity or sustained depolarization. Here we show that during a period of synaptogenesis and circuit refinement, before hearing onset, K(VA) conductances are relatively small, in particular low-voltage-activated K(+) conductances (K(LVA)). In spite of this, neuronal output is filtered and repetitive synaptic activity generates only one or two initial APs during a train of stimuli. During this early developmental time period, synaptic NMDA-type glutamate receptors (NMDA-Rs) contain primarily the GluN2B subunit. We show that the slow decay kinetics of GluN2B-containing NMDA-Rs allows synaptic responses to summate, filtering the output of NL neurons before intrinsic properties are fully developed. Weaker Mg(2+) blockade of NMDA-Rs and ambient glutamate early in development generate a tonic NMDA-R-mediated current that sets the membrane potential at more depolarized values. Small KLVA conductances, localized in dendrites, prevent excessive depolarization caused by tonic activation of NMDA-Rs. Thus, before intrinsic properties are fully developed, NMDA-Rs control the output of NL neurons during evoked synaptic transmission.

  6. An Experimental Validated Control Strategy of Maglev Vehicle-Bridge Self-Excited Vibration

    Directory of Open Access Journals (Sweden)

    Lianchun Wang

    2017-01-01

    Full Text Available This study discusses an experimentally validated control strategy of maglev vehicle-bridge vibration, which degrades the stability of the suspension control, deteriorates the ride comfort, and limits the cost of the magnetic levitation system. First, a comparison between the current-loop and magnetic flux feedback is carried out and a minimum model including flexible bridge and electromagnetic levitation system is proposed. Then, advantages and disadvantages of the traditional feedback architecture with the displacement feedback of electromagnet yE and bridge yB in pairs are explored. The results indicate that removing the feedback of the bridge’s displacement yB from the pairs (yE − yB measured by the eddy-current sensor is beneficial for the passivity of the levitation system and the control of the self-excited vibration. In this situation, the signal acquisition of the electromagnet’s displacement yE is discussed for the engineering application. Finally, to validate the effectiveness of the aforementioned control strategy, numerical validations are carried out and the experimental data are provided and analyzed.

  7. Composite microsphere-functionalized scaffold for the controlled release of small molecules in tissue engineering

    Directory of Open Access Journals (Sweden)

    Laura Pandolfi

    2016-01-01

    Full Text Available Current tissue engineering strategies focus on restoring damaged tissue architectures using biologically active scaffolds. The ideal scaffold would mimic the extracellular matrix of any tissue of interest, promoting cell proliferation and de novo extracellular matrix deposition. A plethora of techniques have been evaluated to engineer scaffolds for the controlled and targeted release of bioactive molecules to provide a functional structure for tissue growth and remodeling, as well as enhance recruitment and proliferation of autologous cells within the implant. Recently, novel approaches using small molecules, instead of growth factors, have been exploited to regulate tissue regeneration. The use of small synthetic molecules could be very advantageous because of their stability, tunability, and low cost. Herein, we propose a chitosan–gelatin scaffold functionalized with composite microspheres consisting of mesoporous silicon microparticles and poly(dl-lactic-co-glycolic acid for the controlled release of sphingosine-1-phospate, a small molecule of interest. We characterized the platform with scanning electron microscopy, Fourier transform infrared spectroscopy, and confocal microscopy. Finally, the biocompatibility of this multiscale system was analyzed by culturing human mesenchymal stem cells onto the scaffold. The presented strategy establishes the basis of a versatile scaffold for the controlled release of small molecules and for culturing mesenchymal stem cells for regenerative medicine applications.

  8. Growth of Low-Density Vertical Quantum Dot Molecules with Control in Energy Emission

    Directory of Open Access Journals (Sweden)

    Fuster D

    2010-01-01

    Full Text Available Abstract In this work, we present results on the formation of vertical molecule structures formed by two vertically aligned InAs quantum dots (QD in which a deliberate control of energy emission is achieved. The emission energy of the first layer of QD forming the molecule can be tuned by the deposition of controlled amounts of InAs at a nanohole template formed by GaAs droplet epitaxy. The QD of the second layer are formed directly on top of the buried ones by a strain-driven process. In this way, either symmetric or asymmetric vertically coupled structures can be obtained. As a characteristic when using a droplet epitaxy patterning process, the density of quantum dot molecules finally obtained is low enough (2 × 108 cm−2 to permit their integration as active elements in advanced photonic devices where spectroscopic studies at the single nanostructure level are required.

  9. Dual electron transfer pathways from 4,4'-dimethoxybenzophenone ketyl radical in the excited state to parent molecule in the ground state.

    Science.gov (United States)

    Sakamoto, Masanori; Cai, Xichen; Fujitsuka, Mamoru; Majima, Tetsuro

    2005-08-11

    Dual intermolecular electron transfer (ELT) pathways from 4,4'-dimethoxybenzophenone (1) ketyl radical (1H*) in the excited state [1H*(D1)] to the ground-state 4,4'-dimethoxybenzophenone [1(S0)] were found in 2-methyltetrahydrofuran (MTHF) by observing bis(4-methoxyphenyl)methanol cation (1H+) and 4,4'-dimethoxybenzophenone radical anion (1*-) during nanosecond-picosecond two-color two-laser flash photolysis. ELT pathway I involved the two-photon ionization of 1H* following the injection of electron to the solvent. The solvated electron was quickly trapped by 1(S0) to produce 1*-. ELT pathway II was a self-quenching-like ELT from 1H*(D1) to 1(S0) to give 1H+ and 1*-. From the fluorescence quenching of 1H*(D1), the ELT rate constant was determined to be 1.0 x 10(10) M(-1) s(-1), which is close to the diffusion-controlled rate constant of MTHF. The self-quenching-like ELT mechanism was discussed on the basis of Marcus' ELT theory.

  10. Controlling plasma properties under differing degrees of electronegativity using odd harmonic dual frequency excitation

    Science.gov (United States)

    Gibson, Andrew R.; Gans, Timo

    2017-11-01

    The charged particle dynamics in low-pressure oxygen plasmas excited by odd harmonic dual frequency waveforms (low frequency of 13.56 MHz and high frequency of 40.68 MHz) are investigated using a one-dimensional numerical simulation in regimes of both low and high electronegativity. In the low electronegativity regime, the time and space averaged electron and negative ion densities are approximately equal and plasma sustainment is dominated by ionisation at the sheath expansion for all combinations of low and high frequency and the phase shift between them. In the high electronegativity regime, the negative ion density is a factor of 15–20 greater than the low electronegativity cases. In these cases, plasma sustainment is dominated by ionisation inside the bulk plasma and at the collapsing sheath edge when the contribution of the high frequency to the overall voltage waveform is low. As the high frequency component contribution to the waveform increases, sheath expansion ionisation begins to dominate. It is found that the control of the average voltage drop across the plasma sheath and the average ion flux to the powered electrode are similar in both regimes of electronegativity, despite the differing electron dynamics using the considered dual frequency approach. This offers potential for similar control of ion dynamics under a range of process conditions, independent of the electronegativity. This is in contrast to ion control offered by electrically asymmetric waveforms where the relationship between the ion flux and ion bombardment energy is dependent upon the electronegativity.

  11. Directional quantum-controlled chemistry: Generating aligned ultracold molecules via photoassociation

    Science.gov (United States)

    Kallush, S.; Carini, J. L.; Gould, P. L.; Kosloff, R.

    2017-11-01

    Photoassociation of ultracold atoms with pulsed laser light is shown to lead to alignment of the product molecules along the excitation laser polarization axis. We theoretically investigate pulsed two-photon photoassociation of 87Rb atoms into a specific weakly bound level of the a 3Σu+ metastable electronic state and find both stationary and time-dependent field-free alignment. Although a transform-limited pulse yields significant alignment, a frequency-chirped pulse dramatically enhances the ultracold molecular formation rate at the cost of a slight decrease in the alignment. Employing multiple pulses synchronized with the vibrational and rotational periods leads to coherent enhancement of both population and alignment of the target state. Inclusion of the rotational degree of freedom in the model gives rise to processes with multiple quantum paths, which lead to quantum effects such as interference and coherence revivals.

  12. Remote control of therapeutic T cells through a small molecule-gated chimeric receptor.

    Science.gov (United States)

    Wu, Chia-Yung; Roybal, Kole T; Puchner, Elias M; Onuffer, James; Lim, Wendell A

    2015-10-16

    There is growing interest in using engineered cells as therapeutic agents. For example, synthetic chimeric antigen receptors (CARs) can redirect T cells to recognize and eliminate tumor cells expressing specific antigens. Despite promising clinical results, these engineered T cells can exhibit excessive activity that is difficult to control and can cause severe toxicity. We designed "ON-switch" CARs that enable small-molecule control over T cell therapeutic functions while still retaining antigen specificity. In these split receptors, antigen-binding and intracellular signaling components assemble only in the presence of a heterodimerizing small molecule. This titratable pharmacologic regulation could allow physicians to precisely control the timing, location, and dosage of T cell activity, thereby mitigating toxicity. This work illustrates the potential of combining cellular engineering with orthogonal chemical tools to yield safer therapeutic cells that tightly integrate cell-autonomous recognition and user control. Copyright © 2015, American Association for the Advancement of Science.

  13. A combined experimental and theoretical study on realizing and using laser controlled torsion of molecules

    DEFF Research Database (Denmark)

    Madsen, Christian Bruun; Madsen, Lars Bojer; Viftrup, Simon

    2009-01-01

    It is demonstrated that strong laser pulses can introduce torsional motion in the axially chiral molecule 3,5-difluoro-3',5'-dibromobiphenyl. A nanosecond laser pulse spatially aligns the stereogenic carbon-carbon (C–C) bond axis allowing a perpendicularly polarized, intense femtosecond pulse...... to initiate torsional motion accompanied by a rotation about the fixed axis. We monitor the induced motion by femtosecond time-resolved Coulomb explosion imaging. Our theoretical analysis corroborates the experimental findings and on the basis of these results we discuss future applications of laser......-induced torsion, viz., time-resolved studies of deracemization and laser controlled molecular junctions based on molecules with torsion....

  14. Sub-thermal to super-thermal light statistics from a disordered lattice via deterministic control of excitation symmetry

    CERN Document Server

    Kondakci, H E; Abouraddy, A F; Christodoulides, D N; Saleh, B E A

    2016-01-01

    Monochromatic coherent light traversing a disordered photonic medium evolves into a random field whose statistics are dictated by the disorder level. Here we demonstrate experimentally that light statistics can be deterministically tuned in certain disordered lattices, even when the disorder level is held fixed, by controllably breaking the excitation symmetry of the lattice modes. We exploit a lattice endowed with disorder-immune chiral symmetry in which the eigenmodes come in skew-symmetric pairs. If a single lattice site is excited, a "photonic thermalization gap" emerges: the realm of sub-thermal light statistics is inaccessible regardless of the disorder level. However, by exciting two sites with a variable relative phase, as in a traditional two-path interferometer, the chiral symmetry is judiciously broken and interferometric control over the light statistics is exercised, spanning sub-thermal and super-thermal regimes. These results may help develop novel incoherent lighting sources from coherent lase...

  15. Control of synchronization and spiking regularity by heterogenous aperiodic high-frequency signal in coupled excitable systems

    Science.gov (United States)

    Qin, Ying-Mei; Wang, Jiang; Men, Cong; Chan, Wai-Lok; Wei, Xi-Le; Deng, Bin

    2013-10-01

    This paper investigates the synchronization and spiking regularity induced by heterogenous aperiodic (HA) signal in coupled excitable FitzHugh-Nagumo systems. We found new nontrivial effects of couplings and HA signals on the firing regularity and synchronization in coupled excitable systems without a periodic external driving. The phenomenon is similar to array enhanced coherence resonance (AECR), and it is shown that AECR-type behavior is not limited to systems driven by noises. It implies that the HA signal may be beneficial for the brain function, which is similar to the role of noise. Furthermore, it is also found that the mean frequencies, the amplitudes and the heterogeneity of HA stimuli can serve as control parameters in modulating spiking regularity and synchronization in coupled excitable systems. These results may be significant for the control of the synchronized firing of the brain in neural diseases like epilepsy.

  16. Controlling the Rotational and Hyperfine State of Ultracold $^{87}$Rb$^{133}$Cs Molecules

    CERN Document Server

    Gregory, Philip D; Hutson, Jeremy M; Cornish, Simon L

    2016-01-01

    We demonstrate coherent control of both the rotational and hyperfine state of ultracold, chemically stable $^{87}$Rb$^{133}$Cs molecules with external microwave ?fields. We create a sample of ~2000 molecules in the lowest hyperfine level of the rovibronic ground state N = 0. We measure the transition frequencies to 8 different hyperfine levels of the N = 1 state at two magnetic fields ~23 G apart. We determine accurate values of rotational and hyperfine coupling constants that agree well with previous calculations. We observe Rabi oscillations on each transition, allowing complete population transfer to a selected hyperfine level of N = 1. Subsequent application of a second microwave pulse allows transfer of molecules back to a different hyperfine level of N = 0.

  17. Single molecule dynamics at a mechanically controllable break junction in solution at room temperature.

    Science.gov (United States)

    Konishi, Tatsuya; Kiguchi, Manabu; Takase, Mai; Nagasawa, Fumika; Nabika, Hideki; Ikeda, Katsuyoshi; Uosaki, Kohei; Ueno, Kosei; Misawa, Hiroaki; Murakoshi, Kei

    2013-01-23

    The in situ observation of geometrical and electronic structural dynamics of a single molecule junction is critically important in order to further progress in molecular electronics. Observations of single molecular junctions are difficult, however, because of sensitivity limits. Here, we report surface-enhanced Raman scattering (SERS) of a single 4,4'-bipyridine molecule under conditions of in situ current flow in a nanogap, by using nano-fabricated, mechanically controllable break junction (MCBJ) electrodes. When adsorbed at room temperature on metal nanoelectrodes in solution to form a single molecule junction, statistical analysis showed that nontotally symmetric b(1) and b(2) modes of 4,4'-bipyridine were strongly enhanced relative to observations of the same modes in solid or aqueous solutions. Significant changes in SERS intensity, energy (wavenumber), and selectivity of Raman vibrational bands that are coincident with current fluctuations provide information on distinct states of electronic and geometrical structure of the single molecule junction, even under large thermal fluctuations occurring at room temperature. We observed the dynamics of 4,4'-bipyridine motion between vertical and tilting configurations in the Au nanogap via b(1) and b(2) mode switching. A slight increase in the tilting angle of the molecule was also observed by noting the increase in the energies of Raman modes and the decrease in conductance of the molecular junction.

  18. Study of different herbicide molecules for the control of durum wheat weed

    Directory of Open Access Journals (Sweden)

    Michele Perniola

    Full Text Available In order to enhance the chances to rotate the herbicide molecules, the effectiveness of a new molecule, pinoxaden, was tested, comparing it with other herbicides used in wheat weed control. The trial was carried out comparing the following herbicide mixtures: 1 no weed control treatment; 2 Tribenuron Methyl (TM; 3 Clodinafop (C; 4 Tribenuron Methyl + Clodinafop (TM+C; 5 Pinoxaden + clodinafop + propargile (PCP; 6 Pinoxaden + clodinafop + propargile + Triasulfuron (PCP+T; 7 Pinoxaden + clodinafop + propargile + absolute Ioxinil and Mecoprop (PCP+IM. The new PCP+T herbicides mixture didn’t differ statistically from the traditional TMC treatment in terms of effectiveness, but the agronomic result of the new mixture was totally satisfactory, even taking into account that the marketing of this mixture is not aimed to compete with other existing herbicides but to widen the chance to rotate active principles in time and space, in order to control the onset of resistance phenomena.

  19. Control of HOD photodissociation dynamics via bond-selective infrared multiphoton excitation and a femtosecond ultraviolet laser pulse

    DEFF Research Database (Denmark)

    Amstrup, Bjarne; Henriksen, Niels Engholm

    1992-01-01

    A scheme for controlling the outcome of a photodissociation process is studied. It involves two lasers—one intense laser in the infrared region which is supposed to excite a particular bond in the electronic ground state, and a second short laser pulse in the ultraviolet region which, at the righ...

  20. Control of Green and Red Upconversion in NaYF4:Yb3+,Er3+ Nanoparticles by Excitation Modulation

    OpenAIRE

    Gainer, Christian F.; Joshua, Gihan S.; De Silva, Channa R.; Romanowski, Marek

    2011-01-01

    Control of the two strongest upconversion emission lines in NaYF4:Yb3+, Er3+ nanoparticles is demonstrated by varying the excitation repetition rate. This technique may enable new multiplexed sensing modalities based on multicolor luminescent nanoparticles, currently contemplated for biomedical imaging and diagnostics.

  1. Improvement of low speed induction generator performances and reducing the power of excitation and voltage control system

    Energy Technology Data Exchange (ETDEWEB)

    Budisan, N. [Politechnica Univ. of Timisoara (Romania); Hentea, T.; Mahil, S. [Purdue Univ. Calumet, Hammond, IN (United States); Madescu, G. [Romanian Academy, Timisoara (Romania)

    1996-12-31

    In this paper we present the results of our investigations concerning the utilization of induction generators at very low speed. It is shown that, by proper design, it is possible to obtain high efficiency and high power factor values. The optimized induction generators require lower reactive power resulting in lower size and price of the excitation control system. 4 refs., 2 figs.

  2. Persistent sodium currents in mesencephalic v neurons participate in burst generation and control of membrane excitability.

    Science.gov (United States)

    Wu, Nanping; Enomoto, Akifumi; Tanaka, Susumu; Hsiao, Chie-Fang; Nykamp, Duane Q; Izhikevich, Eugene; Chandler, Scott H

    2005-05-01

    The functional and biophysical properties of a persistent sodium current (I(NaP)) previously proposed to participate in the generation of subthreshold oscillations and burst discharge in mesencephalic trigeminal sensory neurons (Mes V) were investigated in brain stem slices (rats, p7-p12) using whole cell patch-clamp methods. I(NaP) activated around -76 mV and peaked at -48 mV, with V1/2 of -58.7 mV. Ramp voltage-clamp protocols showed that I(NaP) undergoes time- as well as voltage-dependent inactivation and recovery from inactivation in the range of several seconds (tau(onset) = 2.04 s, tau(recov) = 2.21 s). Riluzole (model was constructed using Hodgkin-Huxley parameters obtained experimentally for Na+ and K+ currents that simulated the experimentally observed membrane resonance, subthreshold oscillations, bursting, and PIR. Alterations in the model g(NaP) parameters indicate that I(NaP) is critical for control of subthreshold and suprathreshold Mes V neuron membrane excitability and burst generation.

  3. Control of Biofilms with the Fatty Acid Signaling Molecule cis-2-Decenoic Acid

    Directory of Open Access Journals (Sweden)

    Cláudia N. H. Marques

    2015-11-01

    Full Text Available Biofilms are complex communities of microorganisms in organized structures attached to surfaces. Importantly, biofilms are a major cause of bacterial infections in humans, and remain one of the most significant challenges to modern medical practice. Unfortunately, conventional therapies have shown to be inadequate in the treatment of most chronic biofilm infections based on the extraordinary innate tolerance of biofilms to antibiotics. Antagonists of quorum sensing signaling molecules have been used as means to control biofilms. QS and other cell-cell communication molecules are able to revert biofilm tolerance, prevent biofilm formation and disrupt fully developed biofilms, albeit with restricted effectiveness. Recently however, it has been demonstrated that Pseudomonas aeruginosa produces a small messenger molecule cis-2-decenoic acid (cis-DA that shows significant promise as an effective adjunctive to antimicrobial treatment of biofilms. This molecule is responsible for induction of the native biofilm dispersion response in a range of Gram-negative and Gram-positive bacteria and in yeast, and has been shown to reverse persistence, increase microbial metabolic activity and significantly enhance the cidal effects of conventional antimicrobial agents. In this manuscript, the use of cis-2-decenoic acid as a novel agent for biofilm control is discussed. Stimulating the biofilm dispersion response as a novel antimicrobial strategy holds significant promise for enhanced treatment of infections and in the prevention of biofilm formation.

  4. Virtual reality visual feedback for hand-controlled scanning probe microscopy manipulation of single molecules.

    Science.gov (United States)

    Leinen, Philipp; Green, Matthew F B; Esat, Taner; Wagner, Christian; Tautz, F Stefan; Temirov, Ruslan

    2015-01-01

    Controlled manipulation of single molecules is an important step towards the fabrication of single molecule devices and nanoscale molecular machines. Currently, scanning probe microscopy (SPM) is the only technique that facilitates direct imaging and manipulations of nanometer-sized molecular compounds on surfaces. The technique of hand-controlled manipulation (HCM) introduced recently in Beilstein J. Nanotechnol. 2014, 5, 1926-1932 simplifies the identification of successful manipulation protocols in situations when the interaction pattern of the manipulated molecule with its environment is not fully known. Here we present a further technical development that substantially improves the effectiveness of HCM. By adding Oculus Rift virtual reality goggles to our HCM set-up we provide the experimentalist with 3D visual feedback that displays the currently executed trajectory and the position of the SPM tip during manipulation in real time, while simultaneously plotting the experimentally measured frequency shift (Δf) of the non-contact atomic force microscope (NC-AFM) tuning fork sensor as well as the magnitude of the electric current (I) flowing between the tip and the surface. The advantages of the set-up are demonstrated by applying it to the model problem of the extraction of an individual PTCDA molecule from its hydrogen-bonded monolayer grown on Ag(111) surface.

  5. Virtual reality visual feedback for hand-controlled scanning probe microscopy manipulation of single molecules

    Directory of Open Access Journals (Sweden)

    Philipp Leinen

    2015-11-01

    Full Text Available Controlled manipulation of single molecules is an important step towards the fabrication of single molecule devices and nanoscale molecular machines. Currently, scanning probe microscopy (SPM is the only technique that facilitates direct imaging and manipulations of nanometer-sized molecular compounds on surfaces. The technique of hand-controlled manipulation (HCM introduced recently in Beilstein J. Nanotechnol. 2014, 5, 1926–1932 simplifies the identification of successful manipulation protocols in situations when the interaction pattern of the manipulated molecule with its environment is not fully known. Here we present a further technical development that substantially improves the effectiveness of HCM. By adding Oculus Rift virtual reality goggles to our HCM set-up we provide the experimentalist with 3D visual feedback that displays the currently executed trajectory and the position of the SPM tip during manipulation in real time, while simultaneously plotting the experimentally measured frequency shift (Δf of the non-contact atomic force microscope (NC-AFM tuning fork sensor as well as the magnitude of the electric current (I flowing between the tip and the surface. The advantages of the set-up are demonstrated by applying it to the model problem of the extraction of an individual PTCDA molecule from its hydrogen-bonded monolayer grown on Ag(111 surface.

  6. Electronic Transport in Single Molecule Junctions: Control of the Molecule-Electrode Coupling Through Intramolecular Tunneling Barriers

    DEFF Research Database (Denmark)

    Danilov, Andrey; Kubatkin, Sergey; Kafanov, Sergey

    2008-01-01

    We report on single molecule electron transport measurements of two oligophenylenevinylene (OPV3) derivatives placed in a nanogap between gold (Au) or lead (Pb) electrodes in a field effect transistor device. Both derivatives contain thiol end groups that allow chemical binding to the electrodes...

  7. NMDA receptors control vagal afferent excitability in the nucleus of the solitary tract.

    Science.gov (United States)

    Vance, Katie M; Rogers, Richard C; Hermann, Gerlinda E

    2015-01-21

    Previous behavioral studies have demonstrated that presynaptic N-methyl-d-aspartate (NMDA) receptors expressed on vagal afferent terminals are involved in food intake and satiety. Therefore, using in vitro live cell calcium imaging of prelabeled rat hindbrain slices, we characterized which NMDA receptor GluN2 subunits may regulate vagal afferent activity. The nonselective NMDA receptor antagonist d,l-2-amino-5-phosphonopentanoic acid (d,l-AP5) significantly inhibited vagal terminal calcium influx, while the excitatory amino acid reuptake inhibitor d,l-threo-β-benzyloxyaspartic acid (TBOA), significantly increased terminal calcium levels following pharmacological stimulation with ATP. Subunit-specific NMDA receptor antagonists and potentiators were used to identify which GluN2 subunits mediate the NMDA receptor response on the vagal afferent terminals. The GluN2B-selective antagonist, ifenprodil, selectively reduced vagal calcium influx with stimulation compared to the time control. The GluN2A-selective antagonist, 3-chloro-4-fluoro-N-[4-[[2-(phenylcarbonyl)hydrazino]carbonyl] benzyl]benzenesulfonamide (TCN 201) produced smaller but not statistically significant effects. Furthermore, the GluN2A/B-selective potentiator (pregnenolone sulfate) and the GluN2C/D-selective potentiator [(3-chlorophenyl)(6,7-dimethoxy-1-((4-methoxyphenoxy)methyl)-3,4-dihydroisoquinolin-2(1H)-yl)methanone; (CIQ)] enhanced vagal afferent calcium influx during stimulation. These data suggest that presynaptic NMDA receptors with GluN2B, GluN2C, and GluN2D subunits may predominantly control vagal afferent excitability in the nucleus of the solitary tract. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Excitation of Intra-bunch Vertical Motion in the SPS - Implications for Feedback Control of Ecloud and TMCI Instabilities

    CERN Document Server

    Cesaratto, John; Pivi, M T; Rivetta, C H; Turgut, O; Uemura, S; Hofle, W; Wehrle, U

    2012-01-01

    Electron cloud (ecloud) and transverse mode coupledbunch instabilities (TMCI) limit the bunch intensity in the CERN SPS. This paper presents experimental measurements in the SPS of single-bunch motion driven by a GHz bandwidth vertical excitation system [1]. The nal goal is to quantify the change in internal bunch dynamics as instability thresholds are approached, and quantify the frequencies of internal modes as ecloud effects become signicant. Initially, we have been able to drive the beam and view its motion. We show the excitation of barycentric, head-tail and higher vertical modes at different bunch intensities. The beam motion is analyzed in the time domain, via animated presentations of the sampled vertical signals, and in the frequency domain, via spectrograms showing the modal frequencies vs. time. The demonstration of the excitation of selected internal modes is a signicant step in the development of the feedback control techniques.

  9. Torque control of a separate excitation DC motor for a dynamometer

    OpenAIRE

    Derges, Jonathan R.

    2010-01-01

    Approved for public release; distribution is unlimited In this thesis, the theory behind a separate-winding excitation direct current (DC) motor and profile of the motor's torque versus rotor speed is studied. The torque versus rotor speed profile results are predictably linear at a given armature voltage. Output torque of a separate-winding excitation DC motor is proportional to the armature current. From this theory, a program was written in Simulink with Xilinx embedded software to enab...

  10. Brain State-Dependent Transcranial Magnetic Closed-Loop Stimulation Controlled by Sensorimotor Desynchronization Induces Robust Increase of Corticospinal Excitability.

    Science.gov (United States)

    Kraus, Dominic; Naros, Georgios; Bauer, Robert; Khademi, Fatemeh; Leão, Maria Teresa; Ziemann, Ulf; Gharabaghi, Alireza

    2016-01-01

    Desynchronization of sensorimotor rhythmic activity increases instantaneous corticospinal excitability, as indexed by amplitudes of motor-evoked potentials (MEP) elicited by transcranial magnetic stimulation (TMS). The accumulative effect of cortical stimulation in conjunction with sensorimotor desynchronization is, however, unclear. The aim of this study was to investigate the effects of repetitive pairing event-related desynchronization (ERD) with TMS of the precentral gyrus on corticospinal excitability. Closed-loop single-pulse TMS was controlled by beta-band (16-22 Hz) ERD during motor-imagery of finger extension and applied within a brain-computer interface environment in eleven healthy subjects. The same number and pattern of stimuli were applied in a control group of eleven subjects during rest, i.e. independent of ERD. To probe for plasticity resistant to depotentiation, stimulation protocols were followed by a depotentiation task. Brain state-dependent application of approximately 300 TMS pulses during beta-ERD resulted in a significant increase of corticospinal excitability. By contrast, the identical stimulation pattern applied independent of beta-ERD in the control experiment resulted in a decrease of corticospinal excitability. These effects persisted beyond the period of stimulation and the depotentiation task. These results could be instrumental in developing new therapeutic approaches such as the application of closed-loop stimulation in the context of neurorehabilitation. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Control Strategy for Small Molecule Impurities in Antibody-Drug Conjugates.

    Science.gov (United States)

    Gong, Hai H; Ihle, Nathan; Jones, Michael T; Kelly, Kathleen; Kott, Laila; Raglione, Thomas; Whitlock, Scott; Zhang, Qunying; Zheng, Jie

    2018-01-04

    Antibody-drug conjugates (ADCs) are an emerging class of biopharmaceuticals. As such, there are no specific guidelines addressing impurity limits and qualification requirements. The current ICH guidelines on impurities, Q3A (Impurities in New Drug Substances), Q3B (Impurities in New Drug Products), and Q6B (Specifications: Test Procedures and Acceptance Criteria for Biotechnological/Biological Products) do not adequately address how to assess small molecule impurities in ADCs. The International Consortium for Innovation and Quality in Pharmaceutical Development (IQ) formed an impurities working group (IWG) to discuss this issue. This white paper presents a strategy for evaluating the impact of small molecule impurities in ADCs. This strategy suggests a science-based approach that can be applied to the design of control systems for ADC therapeutics. The key principles that form the basis for this strategy include the significant difference in molecular weights between small molecule impurities and the ADC, the conjugation potential of the small molecule impurities, and the typical dosing concentrations and dosing schedule. The result is that exposure to small impurities in ADCs is so low as to often pose little or no significant safety risk.

  12. A dual small-molecule rheostat for precise control of protein concentration in Mammalian cells.

    Science.gov (United States)

    Lin, Yu Hsuan; Pratt, Matthew R

    2014-04-14

    One of the most successful strategies for controlling protein concentrations in living cells relies on protein destabilization domains (DD). Under normal conditions, a DD will be rapidly degraded by the proteasome. However, the same DD can be stabilized or "shielded" in a stoichiometric complex with a small molecule, enabling dose-dependent control of its concentration. This process has been exploited by several labs to post-translationally control the expression levels of proteins in vitro as well as in vivo, although the previous technologies resulted in permanent fusion of the protein of interest to the DD, which can affect biological activity and complicate results. We previously reported a complementary strategy, termed traceless shielding (TShld), in which the protein of interest is released in its native form. Here, we describe an optimized protein concentration control system, TTShld, which retains the traceless features of TShld but utilizes two tiers of small molecule control to set protein concentrations in living cells. These experiments provide the first protein concentration control system that results in both a wide range of protein concentrations and proteins free from engineered fusion constructs. The TTShld system has a greatly improved dynamic range compared to our previously reported system, and the traceless feature is attractive for elucidation of the consequences of protein concentration in cell biology. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Single-Molecule X-Ray Interferometry: Controlling Coupled Electron-Nuclear Quantum Dynamics and Imaging Molecular Potentials by Ultrahigh-Resolution Resonant Photoemission and Ab Initio Calculations

    Directory of Open Access Journals (Sweden)

    V. Kimberg

    2013-03-01

    Full Text Available This paper reports an advanced study of the excited ionic states of the gas-phase nitrogen molecule in the binding-energy region of 22–34 eV, combining ultrahigh-resolution resonant photoemission (RPE and ab initio configuration-interaction calculations. The RPE spectra are recorded for nine photon energies within the N 1s→π^{*} absorption resonance of N_{2} by using a photon bandwidth that is considerably smaller than lifetime broadening, and the dependence on excitation energy of the decay spectra is analyzed and used for the first assignment of 12 highly overlapped molecular states. The effect on the RPE profile of avoided curve crossings between the final N_{2}^{+} ionic states is discussed, based on theoretical simulations that account for vibronic coupling, and compared with the experimental data. By use of synchrotron radiation with high spectral brightness, it is possible to selectively promote the molecule to highly excited vibrational sublevels of a core-excited electronic state, thereby controlling the spatial distribution of the vibrational wave packets, and to accurately image the ionic molecular potentials. In addition, the mapping of the vibrational wave functions of the core-excited states using the bound final states with far-from-equilibrium bond lengths has been achieved experimentally for the first time. Theoretical analysis has revealed the rich femtosecond nuclear dynamics underlying the mapping phenomenon.

  14. Controllable double tunneling induced transparency and solitons formation in a quantum dot molecule.

    Science.gov (United States)

    She, Yanchao; Zheng, Xuejun; Wang, Denglong; Zhang, Weixi

    2013-07-15

    We consider the coupling effect between interdot tunneling coupling and external optical control field to study the linear optical property and the formation of temporal optical solitons in a quantum dot molecules system, analytically. The results show that the double tunneling induced transparency (TIT) windows are appeared in the absorption curve of probe field because of the formation of dynamic Stark splitting and quantum destructive interference effect from the two upper levels. Interestingly, the width of the TIT window becomes wider with the increasing intensity of the optical control field. We also find that the Kerr nonlinear effect of the probe field can be modulated effectively through coherent control both the control field and the interdot tunneling coupling in this system. Meanwhile, we demonstrate that the formation of dark or bright solitons can be practical regulated by varying the intensity of the optical control field.

  15. Physics of lateral triple quantum-dot molecules with controlled electron numbers.

    Science.gov (United States)

    Hsieh, Chang-Yu; Shim, Yun-Pil; Korkusinski, Marek; Hawrylak, Pawel

    2012-11-01

    We review the recent progress in theory and experiments with lateral triple quantum dots with controlled electron numbers down to one electron in each dot. The theory covers electronic and spin properties as a function of topology, number of electrons, gate voltage and external magnetic field. The orbital Hund's rules and Nagaoka ferromagnetism, magnetic frustration and chirality, interplay of quantum interference and electron-electron interactions and geometrical phases are described and related to charging and transport spectroscopy. Fabrication techniques and recent experiments are covered, as well as potential applications of triple quantum-dot molecule in coherent control, spin manipulation and quantum computation.

  16. Biomimetic Nanoarchitectures for the Study of T Cell Activation with Single-Molecule Control

    Science.gov (United States)

    Cai, Haogang

    Physical factors in the environment of a cell affect its function and behavior in a variety of ways. There is increasing evidence that, among these factors, the geometric arrangement of receptor ligands plays an important role in setting the conditions for critical cellular processes. The goal of this thesis is to develop new techniques for probing the role of extracellular ligand geometry, with a focus on T cell activation. In this work, top-down molecular-scale nanofabrication and bottom-up selective self-assembly were combined in order to present functional nanomaterials (primarily biomolecules) on a surface with precise spatial control and single-molecule resolution. Such biomolecule nanoarrays are becoming an increasingly important tool in surface-based in vitro assays for biosensing, molecular and cellular studies. The nanoarrays consist of metallic nanodots patterned on glass coverslips using electron beam and nanoimprint lithography, combined with self-aligned pattern transfer. The nanodots were then used as anchors for the immobilization of biological ligands, and backfilled with a protein-repellent passivation layer of polyethylene glycol. The passivation efficiency was improved to minimize nonspecific adsorption. In order to ensure true single-molecule control, we developed an on-chip protocol to measure the molecular occupancy of nanodot arrays based on fluorescence photobleaching, while accounting for quenching effects by plasmonic absorption. We found that the molecular occupancy can be interpreted as a packing problem, with the solution depending on the nanodot size and the concentration of self-assembly reagents, where the latter can be easily adjusted to control the molecular occupancy according to the dot size. The optimized nanoarrays were used as biomimetic architectures for the study of T cell activation with single-molecule control. T cell activation involves an elaborate arrangement of signaling, adhesion, and costimulatory molecules

  17. S1←S0 vibronic spectra and structure of cyclopropanecarboxaldehyde molecule in the S1 lowest excited singlet electronic state

    Science.gov (United States)

    Godunov, I. A.; Yakovlev, N. N.; Terentiev, R. V.; Maslov, D. V.; Bataev, V. A.; Abramenkov, A. V.

    2016-11-01

    The S1←S0 vibronic spectra of gas-phase absorption at room temperature and fluorescence excitation of jet-cooled cyclopropanecarboxaldehyde (CPCA, c-C3H5CHO)were obtained and analyzed. In addition, the quantum chemical calculation (CASPT2/cc-pVTZ)was carried out for CPCA in the ground (S0) and lowest excited singlet (S1) electronic states. As a result, it was proved that the S1←S0 electronic excitation of the CPCA conformers (syn and anti) causes (after geometrical relaxation) significant structural changes, namely, the carbonyl fragments become non-planar and the cyclopropyl groups rotate around the central C-C bond. As a consequence, the potential energy surface of CPCA in the S1 state has six minima, 1ab, 2ab, and 3ab, corresponding to three pairs of mirror symmetry conformers: a and b. It was shown that vibronic bands of experimental spectra can be assigned to the 2(S1)←syn(S0) electronic transition with the origin at 30,481 cm-1. A number of fundamental vibrational frequencies for the 2 conformer of CPCA were assigned. In addition, several inversional energy levels for the 2 conformer were found and the 2a↔2b potential function of inversion was determined. The experimental barrier to inversion and the equilibrium angle between the CH bond and the CCO plane were calculated as 570 cm-1 and 28°, respectively.

  18. Self-assembly patterning of organic molecules on a surface

    Science.gov (United States)

    Pan, Minghu; Fuentes-Cabrera, Miguel; Maksymovych, Petro; Sumpter, Bobby G.; Li, Qing

    2017-04-04

    The embodiments disclosed herein include all-electron control over a chemical attachment and the subsequent self-assembly of an organic molecule into a well-ordered three-dimensional monolayer on a metal surface. The ordering or assembly of the organic molecule may be through electron excitation. Hot-electron and hot-hole excitation enables tethering of the organic molecule to a metal substrate, such as an alkyne group to a gold surface. All-electron reactions may allow a direct control over the size and shape of the self-assembly, defect structures and the reverse process of molecular disassembly from single molecular level to mesoscopic scale.

  19. Controlled molecules for X-ray diffraction experiments at free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Stern, Stephan

    2013-12-15

    performed on a gas-phase ensemble of the prototypical molecule 2,5-diiodobenzonitrile (C{sub 7}H{sub 3}I{sub 2}N, DIBN) at the X-ray free-electron laser LCLS. The target molecules were laser-aligned along a common axis in the laboratory frame by a Nd:YAG laser. Reaching a strong degree of molecular alignment, was an important step in this experiment. Therefore, a significant part of the work was dedicated to gaining control of the molecular degrees of freedom. In order to reach a high degree of alignment, the target molecules were prepared in low rotational quantum states by means of efficient cooling in a supersonic expansion from a pulsed valve followed by spatial quantum-state selection in an electrostatic deflector. Utilization of the deflector significantly improved alignment of the DIBN molecules. Further applications of the deection technique such as, e.g., the spatial separation of several species of molecular complexes/clusters are presented in this thesis as well. The quantum-state selected and strongly laser-aligned samples were probed by the X-ray pulses of LCLS and the obtained diffraction patterns show a significant difference when comparing diffraction from aligned and isotropically-distributed DIBN which agrees well with theory. The results represent an important step in the effort of pushing diffractive imaging of non-crystalline samples at XFELs towards the single-molecule limit. Concepts and experimental requirements for future experiments of this kind are discussed, involving, e.g., the step towards imaging of laser-aligned large (bio)macromolecules or imaging of ultrafast fragmentation dynamics in femtosecond pump-probe experiments at XFELs.

  20. The HIFI spectral survey of AFGL2591 (CHESS) : I. Highly excited linear rotor molecules in the high-mass protostellar envelope

    NARCIS (Netherlands)

    van der Wiel, M. H. D.; Pagani, L.; van der Tak, F. F. S.; Kazmierczak, M.; Ceccarelli, C.

    Context. Linear rotor molecules such as CO, HCO+ and HCN are important probes of star-forming gas. For these species, temperatures of less than or similar to 50K are sufficient to produce emission lines that are observable from the ground at (sub)millimeter wavelengths. Molecular gas in the

  1. Sub-nanometre control of the coherent interaction between a single molecule and a plasmonic nanocavity

    Science.gov (United States)

    Zhang, Yao; Meng, Qiu-Shi; Zhang, Li; Luo, Yang; Yu, Yun-Jie; Yang, Ben; Zhang, Yang; Esteban, Ruben; Aizpurua, Javier; Luo, Yi; Yang, Jin-Long; Dong, Zhen-Chao; Hou, J. G.

    2017-05-01

    The coherent interaction between quantum emitters and photonic modes in cavities underlies many of the current strategies aiming at generating and controlling photonic quantum states. A plasmonic nanocavity provides a powerful solution for reducing the effective mode volumes down to nanometre scale, but spatial control at the atomic scale of the coupling with a single molecular emitter is challenging. Here we demonstrate sub-nanometre spatial control over the coherent coupling between a single molecule and a plasmonic nanocavity in close proximity by monitoring the evolution of Fano lineshapes and photonic Lamb shifts in tunnelling electron-induced luminescence spectra. The evolution of the Fano dips allows the determination of the effective interaction distance of ~1 nm, coupling strengths reaching ~15 meV and a giant self-interaction induced photonic Lamb shift of up to ~3 meV. These results open new pathways to control quantum interference and field-matter interaction at the nanoscale.

  2. Neural-net based coordinated stabilizing control for the exciter and governor loops of low head hydropower plants

    Energy Technology Data Exchange (ETDEWEB)

    Djukanovic, M.; Novicevic, M.; Dobrijevic, D.; Babic, B. [Electrical Engineering Inst. Nikola Tesla, Belgrade (Yugoslavia); Sobajic, D.J. [Electric Power Research Inst., Palo Alto, CA (United States); Pao, Y.H. [Case Western Reserve Univ., Cleveland, OH (United States)]|[AI WARE, Inc., Cleveland, OH (United States)

    1995-12-01

    This paper presents a design technique of a new adaptive optimal controller of the low head hydropower plant using artificial neural networks (ANN). The adaptive controller is to operate in real time to improve the generating unit transients through the exciter input, the guide vane position and the runner blade position. The new design procedure is based on self-organization and the predictive estimation capabilities of neural-nets implemented through the cluster-wise segmented associative memory scheme. The developed neural-net based controller (NNC) whose control signals are adjusted using the on-line measurements, can offer better damping effects for generator oscillations over a wide range of operating conditions than conventional controllers. Digital simulations of hydropower plant equipped with low head Kaplan turbine are performed and the comparisons of conventional excitation-governor control, state-space optimal control and neural-net based control are presented. Results obtained on the non-linear mathematical model demonstrate that the effects of the NNC closely agree with those obtained using the state-space multivariable discrete-time optimal controllers.

  3. Ponderomotive dressing of doubly-excited states with intensity-controlled laser light

    Directory of Open Access Journals (Sweden)

    Ding Thomas

    2013-03-01

    Full Text Available We laser-dress several doubly-excited states in helium. Tuning the coupling-laser intensity from perturbative to the strong-coupling regime, we are able to measure phases imprinted on the two-electron wavefunctions, and observe a new continuum coupling mechanism.

  4. Caffeine Controls Glutamatergic Synaptic Transmission and Pyramidal Neuron Excitability in Human Neocortex

    Science.gov (United States)

    Kerkhofs, Amber; Xavier, Ana C.; da Silva, Beatriz S.; Canas, Paula M.; Idema, Sander; Baayen, Johannes C.; Ferreira, Samira G.; Cunha, Rodrigo A.; Mansvelder, Huibert D.

    2018-01-01

    Caffeine is the most widely used psychoactive drug, bolstering attention and normalizing mood and cognition, all functions involving cerebral cortical circuits. Whereas studies in rodents showed that caffeine acts through the antagonism of inhibitory A1 adenosine receptors (A1R), neither the role of A1R nor the impact of caffeine on human cortical neurons is known. We here provide the first characterization of the impact of realistic concentrations of caffeine experienced by moderate coffee drinkers (50 μM) on excitability of pyramidal neurons and excitatory synaptic transmission in the human temporal cortex. Moderate concentrations of caffeine disinhibited several of the inhibitory A1R-mediated effects of adenosine, similar to previous observations in the rodent brain. Thus, caffeine restored the adenosine-induced decrease of both intrinsic membrane excitability and excitatory synaptic transmission in the human pyramidal neurons through antagonism of post-synaptic A1R. Indeed, the A1R-mediated effects of endogenous adenosine were more efficient to inhibit synaptic transmission than neuronal excitability. This was associated with a distinct affinity of caffeine for synaptic versus extra-synaptic human cortical A1R, probably resulting from a different molecular organization of A1R in human cortical synapses. These findings constitute the first neurophysiological description of the impact of caffeine on pyramidal neuron excitability and excitatory synaptic transmission in the human temporal cortex, providing adequate ground for the effects of caffeine on cognition in humans. PMID:29354052

  5. Caffeine Controls Glutamatergic Synaptic Transmission and Pyramidal Neuron Excitability in Human Neocortex

    Directory of Open Access Journals (Sweden)

    Amber Kerkhofs

    2018-01-01

    Full Text Available Caffeine is the most widely used psychoactive drug, bolstering attention and normalizing mood and cognition, all functions involving cerebral cortical circuits. Whereas studies in rodents showed that caffeine acts through the antagonism of inhibitory A1 adenosine receptors (A1R, neither the role of A1R nor the impact of caffeine on human cortical neurons is known. We here provide the first characterization of the impact of realistic concentrations of caffeine experienced by moderate coffee drinkers (50 μM on excitability of pyramidal neurons and excitatory synaptic transmission in the human temporal cortex. Moderate concentrations of caffeine disinhibited several of the inhibitory A1R-mediated effects of adenosine, similar to previous observations in the rodent brain. Thus, caffeine restored the adenosine-induced decrease of both intrinsic membrane excitability and excitatory synaptic transmission in the human pyramidal neurons through antagonism of post-synaptic A1R. Indeed, the A1R-mediated effects of endogenous adenosine were more efficient to inhibit synaptic transmission than neuronal excitability. This was associated with a distinct affinity of caffeine for synaptic versus extra-synaptic human cortical A1R, probably resulting from a different molecular organization of A1R in human cortical synapses. These findings constitute the first neurophysiological description of the impact of caffeine on pyramidal neuron excitability and excitatory synaptic transmission in the human temporal cortex, providing adequate ground for the effects of caffeine on cognition in humans.

  6. Optimal Bounded Control for Stationary Response of Strongly Nonlinear Oscillators under Combined Harmonic and Wide-Band Noise Excitations

    Directory of Open Access Journals (Sweden)

    Yongjun Wu

    2011-01-01

    Full Text Available We study the stochastic optimal bounded control for minimizing the stationary response of strongly nonlinear oscillators under combined harmonic and wide-band noise excitations. The stochastic averaging method and the dynamical programming principle are combined to obtain the fully averaged Itô stochastic differential equations which describe the original controlled strongly nonlinear system approximately. The stationary joint probability density of the amplitude and phase difference of the optimally controlled systems is obtained from solving the corresponding reduced Fokker-Planck-Kolmogorov (FPK equation. An example is given to illustrate the proposed procedure, and the theoretical results are verified by Monte Carlo simulation.

  7. Analysis and control of the effects of over excitation limiters on the stability of the Itaipu HVAC transmission system

    Energy Technology Data Exchange (ETDEWEB)

    Jardim, J.L.; Macedo, N.J.; Santo, S.E.; Praca, A.S. [FURNAS Centrais Eletricas S.A., Rio de Janeiro, RJ (Brazil)

    1994-12-31

    The effect of over excitation limiters on power system voltage stability is presented in this paper. A linear analysis based on system eigenvalues for various operating conditions shows that voltage collapse is essentially a dynamic phenomenon. Time simulations using digital tools and real-time simulator were performed to verify lin ear results and study large disturbances. A control system designed to keep system in secure region is proposed. (author) 3 refs., 9 figs.

  8. Modelling Feedback Excitation, Pacemaker Properties and Sensory Switching of Electrically Coupled Brainstem Neurons Controlling Rhythmic Activity.

    Science.gov (United States)

    Hull, Michael J; Soffe, Stephen R; Willshaw, David J; Roberts, Alan

    2016-01-01

    What cellular and network properties allow reliable neuronal rhythm generation or firing that can be started and stopped by brief synaptic inputs? We investigate rhythmic activity in an electrically-coupled population of brainstem neurons driving swimming locomotion in young frog tadpoles, and how activity is switched on and off by brief sensory stimulation. We build a computational model of 30 electrically-coupled conditional pacemaker neurons on one side of the tadpole hindbrain and spinal cord. Based on experimental estimates for neuron properties, population sizes, synapse strengths and connections, we show that: long-lasting, mutual, glutamatergic excitation between the neurons allows the network to sustain rhythmic pacemaker firing at swimming frequencies following brief synaptic excitation; activity persists but rhythm breaks down without electrical coupling; NMDA voltage-dependency doubles the range of synaptic feedback strengths generating sustained rhythm. The network can be switched on and off at short latency by brief synaptic excitation and inhibition. We demonstrate that a population of generic Hodgkin-Huxley type neurons coupled by glutamatergic excitatory feedback can generate sustained asynchronous firing switched on and off synaptically. We conclude that networks of neurons with NMDAR mediated feedback excitation can generate self-sustained activity following brief synaptic excitation. The frequency of activity is limited by the kinetics of the neuron membrane channels and can be stopped by brief inhibitory input. Network activity can be rhythmic at lower frequencies if the neurons are electrically coupled. Our key finding is that excitatory synaptic feedback within a population of neurons can produce switchable, stable, sustained firing without synaptic inhibition.

  9. Negative- and positive-ion fragmentation of core-excited formic-acid molecules studied with three- and four-ion coincidence spectroscopy

    Science.gov (United States)

    Strâhlman, Christian; Kivimäki, Antti; Richter, Robert; Sankari, Rami

    2017-08-01

    The negative-ion fragmentation of formic acid (HCOOH) is studied with negative- and positive-ion coincidence spectroscopy. We report four-body ionic fragmentation where up to three positive ions are collected in coincidence with one negative ion. We report yields for 21 three-body channels and five four-body channels. More than 80% of all negative-ion fragmentation involves production of O-, and it is dominated by complete dissociation of all molecular bonds. Negative-ion creation is most abundant at high-Rydberg resonances and just above the molecule's core-ionization potentials. The existence of four-body fragmentation channels evidences a strong charge redistribution in the molecule.

  10. Enhancing the upconversion luminescence and photothermal conversion properties of ∼800nm excitable core/shell nanoparticles by dye molecule sensitization.

    Science.gov (United States)

    Shao, Qiyue; Li, Xiaosong; Hua, Peiyi; Zhang, Gongtuo; Dong, Yan; Jiang, Jianqing

    2017-01-15

    Upconversion nanoparticles capable of strongly absorbing photons in a wide spectral range are highly desired for practical applications. In this work, IR-806 dye was used to increase the light absorptivity of Nd3+/Yb3+/Er3+ tri-doped core/shell nanoparticles and then to enhance their upconversion luminescence under ∼800nm excitation. The IR-806 dye exhibited more efficient energy transfer to Nd3+ ions than to Yb3+ ions for subsequent upconversion emission due to the increased spectral overlap between the dye emission and Nd3+ absorption. The influence of the Nd3+ concentration in the shell and the dye/nanoparticle ratio on the dye-sensitization effect was also investigated. A maximum 28-fold overall enhancement in the emission intensity was achieved for NaYF4:Yb3+/Er3+@NaYF4:Yb3+/Nd3+ core/shell nanoparticles using dye sensitization. The dye-sensitized NaYF4:Yb3+/Er3+@NaYF4:Yb3+/Nd3+ core/shell nanoparticles also exhibited increased photothermal conversion capabilities and excellent temperature sensing properties, enabling their potential application in photothermal nanoheaters with real-time temperature monitoring under 808nm single beam excitation. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. The splicing regulator Rbfox1 (A2BP1) controls neuronal excitation in the mammalian brain.

    Science.gov (United States)

    Gehman, Lauren T; Stoilov, Peter; Maguire, Jamie; Damianov, Andrey; Lin, Chia-Ho; Shiue, Lily; Ares, Manuel; Mody, Istvan; Black, Douglas L

    2011-05-29

    The Rbfox family of RNA binding proteins regulates alternative splicing of many important neuronal transcripts, but its role in neuronal physiology is not clear. We show here that central nervous system-specific deletion of the gene encoding Rbfox1 results in heightened susceptibility to spontaneous and kainic acid-induced seizures. Electrophysiological recording revealed a corresponding increase in neuronal excitability in the dentate gyrus of the knockout mice. Whole-transcriptome analyses identified multiple splicing changes in the Rbfox1(-/-) brain with few changes in overall transcript abundance. These splicing changes alter proteins that mediate synaptic transmission and membrane excitation. Thus, Rbfox1 directs a genetic program required in the prevention of neuronal hyperexcitation and seizures. The Rbfox1 knockout mice provide a new model to study the post-transcriptional regulation of synaptic function.

  12. The splicing regulator Rbfox1 (A2BP1) controls neuronal excitation in the mammalian brain

    OpenAIRE

    Gehman, Lauren T; Stoilov, Peter; Maguire, Jamie; Damianov, Andrey; Lin, Chia-Ho; Shiue, Lily; Ares, Manuel; Mody, Istvan; Black, Douglas L.

    2011-01-01

    The Rbfox family of RNA binding proteins regulates alternative splicing of many important neuronal transcripts but their role in neuronal physiology is not clear 1 . We show here that central nervous system (CNS)-specific deletion of the Rbfox1 gene results in heightened susceptibility to spontaneous and kainic acid-induced seizures. Electrophysiological recording reveals a corresponding increase in neuronal excitability in the dentate gyrus of the knockout mice. Whole transcriptome analyses ...

  13. Energy transfer in anisotropic systems: A. Excitation migration in substitutionally disordered one-dimensional solids. B. The spectroscopy of molecules adsorbed on metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Zwemer, D.A.

    1978-11-01

    The energy and dynamics of excited states in a variety of anisotropic environments, including isotopically and chemically mixed crystals and molecular overlayers adsorbed on a nickel (111) surface, are investigated. The relationship between local and long-range structure and spectroscopic properties is explored. A theory for energy transfer in substitutionally disordered solids is presented. Explicit expressions for the ''diffusion'' coefficients and the energy partitioning ratios in binary systems are derived. Energy transfer between localized states is found to be facilitated by concurrent tunnelling and thermal promotion. Experimental results for triplet energy partitioning between mobile and stationary trap states as a function of mobile trap concentration in the ternary d/sub 2/-1,2,4,5-tetrachlorobenzene--h/sub 2/-1,2,4,5-tetrachlorobenzene--pyrazine system are analyzed. It is shown that both tunnelling and thermal detrapping contribute to triplet exciton mobility below 4.2 K. Singlet exciton migration makes an important contribution to trap equilibration before intersystem crossing to the triplet manifold. Spin coherence experiments are used to determine the energy level structure, physical geometry, and exciton dynamics of a series of impurity-induced traps in 1,2,4,5-tetrachlorobenzene. The uv spectra of pyrazine, pyridine, and naphthalene adsorbed on a nickel single crystal (111) surface are measured by spectroscopic ellipsometry at low temperatures. The excited electronic and vibronic energy levels measured are similar to bulk molecular crystal values, but pyrazine and pyridine show small, but significant deviations. The ordering of molecular overlays is observed spectroscopically and information about overlayer crystal structure is deduced. 148 references, 48 figures, 5 tables.

  14. Controlling Protein Conformations to Explore Unprecedented Material Properties by Single-Molecule Surgery

    Science.gov (United States)

    2012-08-17

    Molecule Protein Conformational Dynamics in Enzymatic Reactions,” Single-Molecule Biophysics Meeting, Aspen , CO, Jan. 4-10, 2009. H. P. Lu, “Single...Donor-Acceptor: Cy3-Cy5) pair labeled HPPK molecule tethered between a glass cover-slip surface and a handle (biotin group plus streptavidin), and a...5, 2008. H. P. Lu, “Probing Single-Molecule Protein Conformational Dynamics in Enzymatic Reactions,” Single-Molecule Biophysics Meeting, Aspen

  15. The controllable assembly of nanorods, nanowires and microwires of a perylenediimide molecule with photoswitching property

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ying, E-mail: yingma@imr.ac.cn [School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168 (China); Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science (China); An, Boxing; Wang, Meng; Shi, Fangxiao; Wang, Qing; Gu, Yaxin; Niu, Wanyang; Fan, Zhaorong [School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168 (China); Shang, Yanli [College of Chemistry and Environmental Science, Hebei University, Baoding 071002 (China); Wang, Dan; Zhao, Cong [School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168 (China)

    2015-07-15

    By using an electron donor–acceptor molecule that consists of a perylenediimide (PDI) core bonded with two ferrocene (Fc) units, well-defined nanorods, nanowires and microwires of PDI-Fc were formed through simply adjusting the initial concentration of PDI-Fc in dichloromethane or CH{sub 2}Cl{sub 2}. Moreover, the two-ended devices based on individual microwire were fabricated. Highly reproducible and sensitive photo response characteristics were demonstrated in the microwire through controlling the white light on and off with different light intensities. The assembly strategy via complementary donors and acceptors is of significance for constructing photoconductive systems and developing novel functional devices. - Graphical abstract: The two-ended devices based on individual microwire were fabricated. Highly reproducible and sensitive photo response characteristics were observed by controlling the white light on and off with different light intensities. - Highlights: • An electron donor–acceptor molecule (PDI-Fc) was synthesized. • Well-defined nanorods, nanowires and microwires of PDI-Fc were formed. • The two-ended devices based on individual microwire were fabricated. • Highly reproducible and sensitive photo response characteristics were observed.

  16. Quantum dot molecules

    CERN Document Server

    Wu, Jiang

    2014-01-01

    This book reviews recent advances in the exciting and rapidly growing field of quantum dot molecules (QDMs). It offers state-of-the-art coverage of novel techniques and connects fundamental physical properties with device design.

  17. Controlled release of small molecules from silica xerogel with limited nanoporosity.

    Science.gov (United States)

    Chen, Rong; Qu, Haibo; Agrawal, Ashwin; Guo, Shaoyun; Ducheyne, Paul

    2013-01-01

    Conventional sol-gel processing requires several distinct steps involving hydrolysis, condensation and drying to obtain a highly porous, glassy solid material. With the goal of achieving controlled release of small molecules, herein we focus on the acceleration of the condensation and drying steps by casting the hydrolyzed sol on a large open surface to achieve a denser 100 % silica xerogel structure. Thus, cast xerogel with a more limited porosity was prepared. The effect of synthesis parameters during sol-gel synthesis on the release kinetics of bupivacaine, vancomycin and cephalexin was investigated. The release kinetics fitted well with the Higuchi model, suggesting a diffusional release mechanism. Combining the release and nanostructure data, the formation mechanism of cast xerogel is described. Without introducing additional precursors or additives into sol-gel systems, sol-gel casting is an easy technique that further expands the applicability of sol-gel materials as excellent carriers for the controlled release of a variety of drugs.

  18. Surface-induced vibrational excitation of metastable nitrogen molecules traversing a micro-slit copper grating: a probe of surface profiles

    Energy Technology Data Exchange (ETDEWEB)

    Karam, J-C [Laboratoire de Physique des Lasers (UMR-CNRS 7538), Universite Paris 13, Avenue J B Clement, 93430-Villetaneuse (France); Grucker, J [Laboratoire de Physique des Lasers (UMR-CNRS 7538), Universite Paris 13, Avenue J B Clement, 93430-Villetaneuse (France); Boustimi, M [Laboratoire de Physique des Lasers (UMR-CNRS 7538), Universite Paris 13, Avenue J B Clement, 93430-Villetaneuse (France); Vassilev, G [Laboratoire de Physique des Lasers (UMR-CNRS 7538), Universite Paris 13, Avenue J B Clement, 93430-Villetaneuse (France); Reinhardt, J [Laboratoire de Physique des Lasers (UMR-CNRS 7538), Universite Paris 13, Avenue J B Clement, 93430-Villetaneuse (France); Mainos, C [Laboratoire de Physique des Lasers (UMR-CNRS 7538), Universite Paris 13, Avenue J B Clement, 93430-Villetaneuse (France); Bocvarski, V [Institute of Physics, Pregrevica, 11000-Zemun, Belgrade (Serbia and Montenegro); Robert, J [Laboratoire Aime Cotton, Bat. 505, Universite Paris-Sud, 91405-Orsay Cedex (France); Baudon, J [Laboratoire de Physique des Lasers (UMR-CNRS 7538), Universite Paris 13, Avenue J B Clement, 93430-Villetaneuse (France); Perales, F [Laboratoire de Physique des Lasers (UMR-CNRS 7538), Universite Paris 13, Avenue J B Clement, 93430-Villetaneuse (France)

    2006-04-28

    The interaction at mean distance (a few tens up to a few hundreds of a{sub 0}), i.e. in the van der Waals interaction range, between metastable nitrogen molecules, N{sub 2}* (A{sup 3}{sigma}{sub u}{sup +}), and the slit edges of a micro-slit copper grating depends on both the molecular orientation and the internuclear distance in the molecule. Such an interaction is able to induce rotational and vibrational transitions. Endo-energetic transitions (v {yields} v + 1, v ranging from 5 to 10) are observed by means of a time-of-flight technique combined with an angular distribution measurement. By setting the grating plane at an angle with respect to the incident direction, different from that imposed by ideally planar slit walls, it is shown that the angular distribution of the inelastic process reveals a departure of the surface from an ideal plane. Assuming a regular evolution of the tangent plane along the surface profile, a mean wall profile can be derived from this distribution.

  19. Active Power and Flux Control of a Self-Excited Induction Generator for a Variable-Speed Wind Turbine Generation

    Energy Technology Data Exchange (ETDEWEB)

    Na, Woonki; Muljadi, Eduard; Leighty, Bill; Kim, Jonghoon

    2017-05-11

    A Self-Excited Induction Generation (SEIG) for a variable speed wind turbine generation(VS-WG) is normally considered to be a good candidate for implementation in stand-alone applications such as battery charging, hydrogenation, water pumping, water purification, water desalination, and etc. In this study, we have examined a study on active power and flux control strategies for a SEIG for a variable speed wind turbine generation. The control analysis for the proposed system is carried out by using PSCAD software. In the process, we can optimize the control design of the system, thereby enhancing and expediting the control design procedure for this application. With this study, this control design for a SEIG for VS-WG can become the industry standard for analysis and development in terms of SEIG.

  20. The excited-state intramolecular proton transfer in Nsbnd H-type dye molecules with a seven-membered-ring intramolecular hydrogen bond: A theoretical insight

    Science.gov (United States)

    Yuan, Huijuan; Feng, Songyan; Wen, Keke; Guo, Xugeng; Zhang, Jinglai

    2018-02-01

    Excited-state intramolecular proton transfer (ESIPT) reactions of a series of N(R)sbnd H ⋯ N-type seven-membered-ring hydrogen-bonding compounds were explored by employing density functional theory/time-dependent density functional theory calculations with the PBE0 functional. Our results indicate that the absorption and emission spectra predicted theoretically match very well the experimental findings. Additionally, as the electron-withdrawing strength of R increases, the intramolecular H-bond of the Nsbnd S1 form gradually enhances, and the forward energy barrier along the ESIPT reaction gradually decreases. For compound 4, its ESIPT reaction is found to be a barrierless process due to the involvement of a strong electron-withdrawing COCF3 group. It is therefore a reasonable presumption that the ESIPT efficiency of these N(R)sbnd H ⋯ N-type seven-membered-ring H-bonding systems can be improved when a strong electron-withdrawing group in R is introduced.

  1. Comparative experimental and theoretical study of the rotational excitation of CO by collision with ortho- and para-D2 molecules.

    Science.gov (United States)

    Stoecklin, T; Faure, A; Jankowski, P; Chefdeville, S; Bergeat, A; Naulin, C; Morales, S B; Costes, M

    2016-12-21

    A joint crossed beam and quantum mechanical investigation of the rotationally inelastic collisions of CO with ortho- and para-D2 molecules is reported. A new 4D potential energy surface (PES) averaged over the ground vibrational states of D2 and CO is used to calculate the rovibrational bound states of the ortho-D2-CO complexes. Close coupling calculations are then performed in the rigid rotor approximation for ortho- and para-D2 colliding with CO for the experimentally investigated transition of CO (j = 0 → 1) and for collision energies ranging from 0.1 to 25 cm-1. The agreement between theory and experiment is found to be very good for both the bound state energies of the ortho-D2-CO complexes and for the inelastic scattering cross-sections showing that the free rotation of two rigid rotors is a very good model of the D2-CO system in this low collision energy domain.

  2. Functional testing of space flight induced changes in tonic motor control by using limb-attached excitation and load devices

    Science.gov (United States)

    Gallasch, Eugen; Kozlovskaya, Inessa

    2007-02-01

    Long term space flights induce atrophy and contractile changes on postural muscles such effecting tonic motor control. Functional testing of tonic motor control structures is a challenge because of the difficulties to deliver appropriate test forces on crew members. In this paper we propose two approaches for functional testing by using limb attached loading devices. The first approach is based on a frequency and amplitude controllable moving magnet exciter to deliver sinusoidal test forces during limb postures. The responding limb deflection is recorded by an embedded accelerometer to obtain limb impedance. The second approach is based on elastic limb loading to evoke self-excited oscillations during arm extensions. Here the contraction force at the oscillation onset provides information about limb stiffness. The rationale for both testing approaches is based on Feldman's λ-model. An arm expander based on the second approach was probed in a 6-month MIR space flight. The results obtained from the load oscillations, confirmed that this device is well suited to capture space flight induced neuromuscular changes.

  3. Controlling the alignment of neutral molecules by a strong laser field

    DEFF Research Database (Denmark)

    Sakai, H.; Hilligsøe, Karen Marie; Hald, K.

    1999-01-01

    A strong nonresonant nanosecond laser pulse is used to align neutral iodine molecules. The technique, applicable to both polar and nonpolar molecules, relies on the interaction between the strong laser field and the induced dipole moment of the molecules. The degree of alignment is enhanced...... is 〈cos2 θ〉 = 0.81...... by lowering the initial rotational energy of the molecules or by increasing the laser intensity. The alignment is measured by photodissociating the molecules with a femtosecond laser pulse and detecting the direction of the photofragments by imaging techniques. The strongest degree of alignment observed...

  4. Manipulation of metabolic pathways controlled by signaling molecules, inducers of antibiotic production, for genome mining in Streptomyces spp.

    Science.gov (United States)

    Arakawa, Kenji

    2018-02-23

    Streptomyces is well characterized by an ability to produce a wide variety of secondary metabolites including antibiotics, whose expression is strictly controlled by small diffusible signaling molecules at nano-molar concentrations. The signaling molecules identified to date are classified into three skeletons; γ-butyrolactones, furans, and γ-butenolides. Accumulated data suggest the structural diversity of the signaling molecules in Streptomyces species and their potential in activating cryptic secondary metabolite biosynthetic pathways. Several genome mining approaches to activate silent biosynthetic gene clusters have been reported for natural product discovery. This review updates recent examples on genetic manipulation including blockage of metabolic pathways together with inactivation of transcriptional repressor genes.

  5. Mean excitation energies for molecular ions

    DEFF Research Database (Denmark)

    Jensen, Phillip W. K.; Sauer, Stephan P. A.; Oddershede, Jens

    2017-01-01

    The essential material constant that determines the bulk of the stopping power of high energy projectiles, the mean excitation energy, is calculated for a range of smaller molecular ions using the RPA method. It is demonstrated that the mean excitation energy of both molecules and atoms increase...... with ionic charge. However, while the mean excitation energies of atoms also increase with atomic number, the opposite is the case for mean excitation energies for molecules and molecular ions. The origin of these effects is explained by considering the spectral representation of the excited state...... contributing to the mean excitation energy....

  6. Mean excitation energies for molecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Phillip W.K.; Sauer, Stephan P.A. [Department of Chemistry, University of Copenhagen, Copenhagen (Denmark); Oddershede, Jens [Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense (Denmark); Quantum Theory Project, Departments of Physics and Chemistry, University of Florida, Gainesville, FL (United States); Sabin, John R., E-mail: sabin@qtp.ufl.edu [Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense (Denmark); Quantum Theory Project, Departments of Physics and Chemistry, University of Florida, Gainesville, FL (United States)

    2017-03-01

    The essential material constant that determines the bulk of the stopping power of high energy projectiles, the mean excitation energy, is calculated for a range of smaller molecular ions using the RPA method. It is demonstrated that the mean excitation energy of both molecules and atoms increase with ionic charge. However, while the mean excitation energies of atoms also increase with atomic number, the opposite is the case for mean excitation energies for molecules and molecular ions. The origin of these effects is explained by considering the spectral representation of the excited state contributing to the mean excitation energy.

  7. Ultrafast Excited-State Dynamics of Diketopyrrolopyrrole (DPP)-Based Materials: Static versus Diffusion-Controlled Electron Transfer Process

    KAUST Repository

    Alsulami, Qana

    2015-06-25

    Singlet-to-triplet intersystem crossing (ISC) and photoinduced electron transfer (PET) of platinum(II) containing diketopyrrolopyrrole (DPP) oligomer in the absence and presence of strong electron-acceptor tetracyanoethylene (TCNE) were investigated using femtosecond and nanosecond transient absorption spectroscopy with broadband capabilities. The role of platinum(II) incorporation in those photophysical properties was evaluated by comparing the excited-state dynamics of DPP with and without the metal centers. The steady-state measurements reveal that platinum(II) incorporation facilitates dramatically the interactions between DPP-Pt(acac) and TCNE, resulting in charge transfer (CT) complex formation. The transient absorption spectra in the absence of TCNE reveal ultrafast ISC of DPP-Pt(acac) followed by their long-lived triplet state. In the presence of TCNE, PET from the excited DPP-Pt(acac) and DPP to TCNE, forming the radical ion pairs. The ultrafast PET which occurs statically from DPP-Pt(acac) to TCNE in picosecond regime, is much faster than that from DPP to TCNE (nanosecond time scale) which is diffusion-controlled process, providing clear evidence that PET rate is eventually controlled by the platinum(II) incorporation.

  8. Weak competing interactions control assembly of strongly bonded TCNQ ionic acceptor molecules on silver surfaces

    Science.gov (United States)

    Park, Changwon; Rojas, Geoffrey A.; Jeon, Seokmin; Kelly, Simon J.; Smith, Sean C.; Sumpter, Bobby G.; Yoon, Mina; Maksymovych, Petro

    2014-09-01

    The energy scales of interactions that control molecular adsorption and assembly on surfaces can vary by several orders of magnitude, yet the importance of each contributing interaction is not apparent a priori. Tetracyanoquinodimethane (TCNQ) is an archetypal electron acceptor molecule and it is a key component of organic metals. On metal surfaces, this molecule also acts as an electron acceptor, producing negatively charged adsorbates. It is therefore rather intriguing to observe attractive molecular interactions in this system that were reported previously for copper and silver surfaces. Our experiments compared TCNQ adsorption on noble metal surfaces of Ag(100) and Ag(111). In both cases we found net attractive interactions down to the lowest coverage. However, the morphology of the assemblies was strikingly different, with two-dimensional islands on Ag(100) and one-dimensional chains on Ag(111) surfaces. This observation suggests that the registry effect governed by the molecular interaction with the underlying lattice potential is critical in determining the dimensionality of the molecular assembly. Using first-principles density functional calculations with a van der Waals correction scheme, we revealed that the strengths of major interactions (i.e., lattice potential corrugation, intermolecular attraction, and charge-transfer-induced repulsion) are all similar in energy. The van der Waals interactions, in particular, almost double the strength of attractive interactions, making the intermolecular potential comparable in strength to the diffusion potential and promoting self-assembly. However, it is the anisotropy of local intermolecular interactions that is primarily responsible for the difference in the topology of the molecular islands on Ag(100) and Ag(111) surfaces. We anticipate that the intermolecular potential will become more attractive and dominant over the diffusion potential with increasing molecular size, providing new design strategies for the

  9. Vibration Excitation and Control of a Pedestrian Walkway by Individuals and Crowds

    Directory of Open Access Journals (Sweden)

    James Mark William Brownjohn

    2005-01-01

    Full Text Available As part of a continuing study on effects of humans on loading and dynamic response of footbridges, a steel frame walkway has been the subject of studies on the effects of multiple pedestrians with respect to loading and response mitigation. Following finite element modeling and experimental modal analysis to identify the low frequency vibration modes likely to be excited by normal walking, the variation of response with pedestrian density and of system damping and natural frequency with occupancy by stationary pedestrians were both studied. The potentially mitigating effect of stationary occupants is still not well understood and the study included direct measurement of damping forces and absorbed energy using a force plate. The various tests showed that energy dissipation measured directly was consistent with the observed change in damping, that vertical and lateral response both varied approximately with square root of number of pedestrians, and that the simple model of a human as a single mass-spring-damper system may need to be refined to fit observed changes in modal parameters with a crowd of humans present. Modal parameter changes with moving pedestrians were small compared to those with stationary pedestrians indicating that within limits, modal parameters for the empty structure could be used in analysis.

  10. Single-Molecule Diodes with High On/Off Ratios Through Environmental Control

    Science.gov (United States)

    Capozzi, Brian; Xia, Jianlong; Dell, Emma; Adak, Olgun; Liu, Zhen-Fei; Neaton, Jeffrey; Campos, Luis; Venkataraman, Latha

    2015-03-01

    Single-Molecule diodes were first proposed with an asymmetric molecule comprising a donor-bridge-acceptor architecture to mimic a semiconductor p-n junction. Progress in molecular electronics has led to the realization of several single-molecule diodes; these have relied on asymmetric molecular backbones, asymmetric molecule-electrode linkers, or asymmetric electrode materials. Despite these advances, molecular diodes have had limited potential for functional applications due to several pitfalls, including low rectification ratios (``on''/``off'' current ratios environment instead of an asymmetric molecule, we reproducibly achieve high rectification ratios at low operating voltages for molecular junctions based on a family of symmetric small-gap molecules. This technique serves as an unconventional approach for developing functional molecular-scale devices and probing their charge transport characteristics. Furthermore, this technique should be applicable to other nanoscale devices, providing a general route for tuning device properties.

  11. Robust excitation control design using sliding-mode technique for multimachine power systems

    Energy Technology Data Exchange (ETDEWEB)

    Colbia-Vega, A.; de Leon-Morales, J.; Salas-Pena, O.; Mata-Jimenez, M.T. [Mechanical and Electrical Engineering Faculty, Autonomous University of Nuevo Leon, Cd. Universitaria, 66450 San Nicolas de los Garza, N.L. (Mexico); Fridman, L. [Department of Control, Division of Electrical Engineering Faculty, National Autonomous University of Mexico, Cd. Universitaria, 04510 Mexico, D.F. (Mexico)

    2008-09-15

    An output feedback controller is proposed to enhance the transient stability of nonlinear multimachine power systems considered as a classical model with flux decay dynamics. Combining high-order sliding-mode techniques with a robust high-order sliding-mode differentiator, a robust decentralized controller is obtained. Numerical results are presented to illustrate the performance of the proposed control scheme and its robustness properties. (author)

  12. Improving ultrasound gene transfection efficiency by controlling ultrasound excitation of microbubbles.

    Science.gov (United States)

    Fan, Z; Chen, D; Deng, C X

    2013-09-28

    Ultrasound application in the presence of microbubbles has shown great potential for non-viral gene transfection via transient disruption of cell membrane (sonoporation). However, improvement of its efficiency has largely relied on empirical approaches without consistent and translatable results. The goal of this study is to develop a rational strategy based on new results obtained using novel experimental techniques and analysis to improve sonoporation gene transfection. In this study, we conducted experiments using targeted microbubbles that were attached to cell membrane to facilitate sonoporation. We quantified the dynamic activities of microbubbles exposed to pulsed ultrasound and the resulting sonoporation outcome, and identified distinct regimes of characteristic microbubble behaviors: stable cavitation, coalescence and translation, and inertial cavitation. We found that inertial cavitation generated the highest rate of membrane poration. By establishing direct correlation of ultrasound-induced bubble activities with intracellular uptake and pore size, we designed a ramped pulse exposure scheme for optimizing microbubble excitation to improve sonoporation gene transfection. We implemented a novel sonoporation gene transfection system using an aqueous two phase system (ATPS) for efficient use of reagents and high throughput operation. Using plasmids coding for the green fluorescence protein (GFP), we achieved a sonoporation transfection efficiency in rate aortic smooth muscle cells (RASMCs) of 6.9%±2.2% (n=9), comparable with lipofection (7.5%±0.8%, n=9). Our results reveal characteristic microbubble behaviors responsible for sonoporation and demonstrated a rational strategy to improve sonoporation gene transfection. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Feedback-controlled electro-kinetic traps for single-molecule ...

    Indian Academy of Sciences (India)

    2014-01-11

    Jan 11, 2014 ... However, surface tethering of molecules often introduces artifacts, particularly when studying the structural dynamics of biomolecules. To circumvent this limitation, we investigated alternative ways to extend single-molecule observation times in solution without surface immobilization. Among various ...

  14. Active control synthesis for flexible space structures excited by persistent disturbances

    Science.gov (United States)

    Wie, Bong; Gonzalez, Marcelo

    1990-01-01

    Both classical and state-space synthesis methods for active control of flexible space structures in the presence of persistent disturbances are presented. The methods exploit the so-called internal model principle for asymptotic disturbance rejection. A generic example of flexible space structures is used to illustrate the simplicity of the proposed design methodologies. The concept of a disturbance rejection filter dipole is introduced from a classical control viewpoint. It is shown that the proposed design methods will invariably make use of non-minimum-phase compensation for a class of noncolocated control problems. The need for tradeoffs between performance and parameter robustness is discussed.

  15. Chaotic dynamic and control for micro-electro-mechanical systems of massive storage with harmonic base excitation

    Energy Technology Data Exchange (ETDEWEB)

    Perez Polo, Manuel F. [Departamento de Fisica, Ingenieria de Sistemas y Teoria de la Senal, Universidad de Alicante, Escuela Politecnica Superior, Campus de San Vicente, 03071 Alicante (Spain)], E-mail: manolo@dfists.ua.es; Perez Molina, Manuel [Facultad de Ciencias Matematicas, Universidad Nacional de Educacion a Distancia. UNED, C/Boyero 12-1A, Alicante 03007 (Spain)], E-mail: ma_perez_m@hotmail.com; Gil Chica, Javier [Departamento de Fisica, Ingenieria de Sistemas y Teoria de la Senal, Universidad de Alicante, Escuela Politecnica Superior, Campus de San Vicente, 03071 Alicante (Spain)], E-mail: gil@dfists.ua.es

    2009-02-15

    This paper explores chaotic behaviour and control of micro-electro-mechanical systems (MEMS), which consist of thousands of small read/write probe tips that access gigabytes of data stored in a non-volatile magnetic surface. The model of the system is formed by two masses connected by a nonlinear spring and a viscous damping. The paper shows that, by means of an adequate feedback law, the masses can behave as two coupled Duffing's oscillators, which may reach chaotic behaviour when harmonic forces are applied. The chaotic motion is destroyed by applying the following control strategies: (i) static output feedback control law with constant forces and (ii) geometric nonlinear control. The aim is to drive the masses to a set point even with harmonic base excitation, by using chaotic dynamics and nonlinear control. The paper shows that it is possible to obtain a positioning time around a few ms with sub-nanometre accuracy, velocities, accelerations and forces, as it appears in the design of present MEMS devices. Numerical simulations are used to verify the mathematical discussions.

  16. Vibrational coherence in polar solutions of Zn(II) tetrakis(N-methylpyridyl)porphyrin with Soret-band excitation: rapidly damped intermolecular modes with clustered solvent molecules and slowly damped intramolecular modes from the porphyrin macrocycle.

    Science.gov (United States)

    Dillman, Kevin L; Shelly, Katherine R; Beck, Warren F

    2009-04-30

    Ground-state coherent wavepacket motions arising from intermolecular modes with clustered, first-shell solvent molecules were observed using the femtosecond dynamic absorption technique in polar solutions of Zn(II) meso-tetrakis(N-methylpyridyl)porphyrin (ZnTMPyP) with excitation in the Soret absorption band. As was observed previously in bacteriochlorophyll a solution, the pump-probe transients in ZnTMPyP solutions are weakly modulated by slowly damped (effective damping time gamma > 1 ps) features that are assigned to intramolecular modes, the skeletal normal modes of vibration of the porphyrin. The 40 cm(-1) and 215 cm(-1) modes from the metal-doming and metal-solvent-ligand modes, respectively, are members of this set of modulation components. A slowly damped 2-4 cm(-1) component is assigned to the internal rotation of the N-methylpyridyl rings with respect to the porphyrin macrocycle; this mode obtains strong resonance Raman intensity enhancement from an extensive delocalization of pi-electron density from the porphyrin in the ground state onto the rings in the pi* excited states. The dominant features observed in the pump-probe transients are a pair of rapidly damped (gamma modes with solvent molecules. This structural assignment is supported by an isotope-dependent shift of the average mode frequencies in methanol and perdeuterated methanol. The solvent dependence of the mean intermolecular mode frequency is consistent with a van der Waals intermolecular potential that has significant contributions only from the London dispersion and induction interactions; ion-dipole or ion-induced-dipole terms do not make large contributions because the pi-electron density is not extensively delocalized onto the N-methylpyridyl rings. The modulation depth associated with the intermolecular modes exhibits a marked dependence on the electronic structure of the solvent that is probably related to the degree of covalency; the strongest modulations are observed in acetonitrile

  17. Robust control of seismically excited cable stayed bridges with MR dampers

    Science.gov (United States)

    YeganehFallah, Arash; Khajeh Ahamd Attari, Nader

    2017-03-01

    In recent decades active and semi-active structural control are becoming attractive alternatives for enhancing performance of civil infrastructures subjected to seismic and winds loads. However, in order to have reliable active and semi-active control, there is a need to include information of uncertainties in design of the controller. In real world for civil structures, parameters such as loading places, stiffness, mass and damping are time variant and uncertain. These uncertainties in many cases model as parametric uncertainties. The motivation of this research is to design a robust controller for attenuating the vibrational responses of civil infrastructures, regarding their dynamical uncertainties. Uncertainties in structural dynamic’s parameters are modeled as affine uncertainties in state space modeling. These uncertainties are decoupled from the system through Linear Fractional Transformation (LFT) and are assumed to be unknown input to the system but norm bounded. The robust H ∞ controller is designed for the decoupled system to regulate the evaluation outputs and it is robust to effects of uncertainties, disturbance and sensors noise. The cable stayed bridge benchmark which is equipped with MR damper is considered for the numerical simulation. The simulated results show that the proposed robust controller can effectively mitigate undesired uncertainties effects on systems’ responds under seismic loading.

  18. Cell Death-Associated Molecular-Pattern Molecules: Inflammatory Signaling and Control

    Directory of Open Access Journals (Sweden)

    Beatriz Sangiuliano

    2014-01-01

    Full Text Available Apoptosis, necroptosis, and pyroptosis are different cellular death programs characterized in organs and tissues as consequence of microbes infection, cell stress, injury, and chemotherapeutics exposure. Dying and death cells release a variety of self-proteins and bioactive chemicals originated from cytosol, nucleus, endoplasmic reticulum, and mitochondria. These endogenous factors are named cell death-associated molecular-pattern (CDAMP, damage-associated molecular-pattern (DAMP molecules, and alarmins. Some of them cooperate or act as important initial or delayed inflammatory mediators upon binding to diverse membrane and cytosolic receptors coupled to signaling pathways for the activation of the inflammasome platforms and NF-κB multiprotein complexes. Current studies show that the nonprotein thiols and thiol-regulating enzymes as well as highly diffusible prooxidant reactive oxygen and nitrogen species released together in extracellular inflammatory milieu play essential role in controlling pro- and anti-inflammatory activities of CDAMP/DAMP and alarmins. Here, we provide an overview of these emerging concepts and mechanisms of triggering and maintenance of tissue inflammation under massive death of cells.

  19. Nanostructured lipid carrier-loaded hyaluronic acid microneedles for controlled dermal delivery of a lipophilic molecule.

    Science.gov (United States)

    Lee, Sang Gon; Jeong, Jae Han; Lee, Kyung Min; Jeong, Kyu Ho; Yang, Huisuk; Kim, Miroo; Jung, Hyungil; Lee, Sangkil; Choi, Young Wook

    2014-01-01

    Nanostructured lipid carriers (NLCs) were employed to formulate a lipophilic drug into hydrophilic polymeric microneedles (MNs). Hyaluronic acid (HA) was selected as a hydrophilic and bioerodible polymer to fabricate MNs, and nile red (NR) was used as a model lipophilic molecule. NR-loaded NLCs were consolidated into the HA-based MNs to prepare NLC-loaded MNs (NLC-MNs). A dispersion of NLCs was prepared by high-pressure homogenization after dissolving NR in Labrafil and mixing with melted Compritol, resulting in 268 nm NLCs with a polydispersity index of 0.273. The NLC dispersion showed a controlled release of NR over 24 hours, following Hixson-Crowell's cube root law. After mixing the NLC dispersion with the HA solution, the drawing lithography method was used to fabricate NLC-MNs. The length, base diameter, and tip diameter of the NLC-MNs were approximately 350, 380, and 30 μm, respectively. Fluorescence microscopic imaging of the NLC-MNs helped confirm that the NR-loaded NLCs were distributed evenly throughout the MNs. In a skin permeation study performed using a Franz diffusion cell with minipig dorsal skin, approximately 70% of NR was localized in the skin after 24-hour application of NLC-MNs. Confocal laser scanning microscopy (z-series) of the skin at different depths showed strong fluorescence intensity in the epidermal layer, which appeared to spread out radially with the passage of time. This study indicated that incorporation of drug-loaded NLCs into MNs could represent a promising strategy for controlled dermal delivery of lipophilic drugs.

  20. A feedback control strategy for the airfoil system under non-Gaussian colored noise excitation.

    Science.gov (United States)

    Huang, Yong; Tao, Gang

    2014-09-01

    The stability of a binary airfoil with feedback control under stochastic disturbances, a non-Gaussian colored noise, is studied in this paper. First, based on some approximated theories and methods the non-Gaussian colored noise is simplified to an Ornstein-Uhlenbeck process. Furthermore, via the stochastic averaging method and the logarithmic polar transformation, one dimensional diffusion process can be obtained. At last by applying the boundary conditions, the largest Lyapunov exponent which can determine the almost-sure stability of the system and the effective region of control parameters is calculated.

  1. BACK TO BACK VOLTAGE SOURCE INVERTER FOR CONTROL OF SELF EXCITED INDUCTION GENERATOR

    Directory of Open Access Journals (Sweden)

    Ainur Rachmad Hidayat

    2017-01-01

    Full Text Available Wind is one of the most develop renewable energy to help human meet the electricity needs as availability is abundant. Instrument which can be used to convert wind energy into electrical energy is an induction generator. In this final project will discuss about the operation of the wind turbine with induction generator controlled using back to back voltage source inverter with grid connected system low voltage 380 V. Switching of back to back voltage source inverter was designed in average model.In back to back voltage source inverter, there are two converters that are machine side converter and grid side converter. Machine side converter has function to regulate the voltage and frequency of generator and turbine speed in order to the wind turbine can generate maximum power at any wind speed with method volt / hetrz constant control. Grid side converter has function to adjust the DC voltage keep be contant by synchronizing the phase angle between the converter output and grid using current controlled voltage source inverter method.The simulation results showed that wind turbine always generated the maximum power at any wind speed. Voltage and frequency of Generator is stable and directly proportional to the wind speed and the dc link voltage is always constant so the power flow can bidirectional. Therefore, back-to-back voltage source inverter is suitable for controlling wind turbine using an induction generator.  

  2. Arduino Due based tool to facilitate in vivo two-photon excitation microscopy.

    Science.gov (United States)

    Artoni, Pietro; Landi, Silvia; Sato, Sebastian Sulis; Luin, Stefano; Ratto, Gian Michele

    2016-04-01

    Two-photon excitation spectroscopy is a powerful technique for the characterization of the optical properties of genetically encoded and synthetic fluorescent molecules. Excitation spectroscopy requires tuning the wavelength of the Ti:sapphire laser while carefully monitoring the delivered power. To assist laser tuning and the control of delivered power, we developed an Arduino Due based tool for the automatic acquisition of high quality spectra. This tool is portable, fast, affordable and precise. It allowed studying the impact of scattering and of blood absorption on two-photon excitation light. In this way, we determined the wavelength-dependent deformation of excitation spectra occurring in deep tissues in vivo.

  3. Electric-field controlled capture or release of phosgene molecule on graphene-based materials: First principles calculations

    Science.gov (United States)

    Zhang, Tong; Sun, Hao; Wang, Fengdi; Zhang, Wanqiao; Ma, Junmei; Tang, Shuwei; Gong, Hongwei; Zhang, Jingping

    2018-01-01

    Phosgene, one of the common chemicals in many industry areas, is extremely harmful to human and the environment. Thus, it is necessary to design the advanced materials to detect or remove phosgene effectively. In fact, detection or adsorption of some small gas molecules are not the most difficult to actualize. Whereas, one of the primary challenges is the gas molecules desorption from the adsorbent for the purpose of recycling of substrate materials since the small gas molecules interacts strongly with the substrates. In this work, the interaction between the phosgene molecule and pristine or Mn-doped graphene sheets with different electric field and charge state are investigated by using first-principles simulations. Our results show that the adsorption energy of phosgene on Mn-doped graphene is dramatically weakened by applying an external negative electric field but is obviously enhanced by introducing a positive electric field. These processes can be easily controlled by transform the direction of the electric field. Thus, introducing an external electric field or charge in the system may be an excellent method to control the phosgene molecule adsorption and desorption on Mn-doped graphene sheet. All energy needed is just a small quantity of electricity, which satisfies well the requirement of green chemistry and sustainable development. The mechanism and reason of reversible adsorption/desorption is also revealed in terms of energy, charge distribution and orbital analysis. Such spontaneous adsorption or desorption makes Mn-doped graphene to be used as an excellent reusable scavenger of phosgene.

  4. Formation of Ultracold Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Cote, Robin [Univ. of Connecticut, Storrs, CT (United States)

    2016-01-28

    Advances in our ability to slow down and cool atoms and molecules to ultracold temperatures have paved the way to a revolution in basic research on molecules. Ultracold molecules are sensitive of very weak interactions, even when separated by large distances, which allow studies of the effect of those interactions on the behavior of molecules. In this program, we have explored ways to form ultracold molecules starting from pairs of atoms that have already reached the ultracold regime. We devised methods that enhance the efficiency of ultracold molecule production, for example by tuning external magnetic fields and using appropriate laser excitations. We also investigates the properties of those ultracold molecules, especially their de-excitation into stable molecules. We studied the possibility of creating new classes of ultra-long range molecules, named macrodimers, thousand times more extended than regular molecules. Again, such objects are possible because ultra low temperatures prevent their breakup by collision. Finally, we carried out calculations on how chemical reactions are affected and modified at ultracold temperatures. Normally, reactions become less effective as the temperature decreases, but at ultracold temperatures, they can become very effective. We studied this counter-intuitive behavior for benchmark chemical reactions involving molecular hydrogen.

  5. Quantum-State Controlled Chemical Reactions of Ultracold Potassium-Rubidium Molecules

    National Research Council Canada - National Science Library

    S. Ospelkaus; K.-K. Ni; D. Wang; M. H. G. de Miranda; B. Neyenhuis; G. Queméméner; P. S. Julienne; J. L. Bohn; D. S. Jin; J. Ye

    2010-01-01

    ...? Starting with an optically trapped near-quantum-degenerate gas of polar 40 K 87 Rb molecules prepared in their absolute ground state, we report experimental evidence for exothermic atom-exchange chemical reactions...

  6. Controlling hybrid nonlinearities in transparent conducting oxides via two-colour excitation

    OpenAIRE

    Clerici, Matteo; Kinsey, N.; DeVault, C.; Kim, J; Carnemolla, E.; Caspani, L.; Shaltout, A.; Faccio, D.; Shalaev, V.; Boltasseva, A.; Ferrera, M.

    2017-01-01

    Nanophotonics and metamaterials have revolutionised the way we think about optical space (epsilon, mu), enabling us to engineer the refractive index almost at will, to confine light to the smallest of the volumes, and to manipulate optical signals with extremely small footprints and energy requirements. Significant efforts are now devoted to finding suitable materials and strategies for the dynamic control of the optical properties. Transparent conductive oxides exhibit large ultrafast nonlin...

  7. Neuronal inhibition and excitation, and the dichotomic control of brain hemodynamic and oxygen responses

    DEFF Research Database (Denmark)

    Lauritzen, Martin; Mathiesen, Claus; Schaefer, Katharina

    2012-01-01

    Brain's electrical activity correlates strongly to changes in cerebral blood flow (CBF) and the cerebral metabolic rate of oxygen (CMRO(2)). Subthreshold synaptic processes correlate better than the spike rates of principal neurons to CBF, CMRO(2) and positive BOLD signals. Stimulation-induced ri......Brain's electrical activity correlates strongly to changes in cerebral blood flow (CBF) and the cerebral metabolic rate of oxygen (CMRO(2)). Subthreshold synaptic processes correlate better than the spike rates of principal neurons to CBF, CMRO(2) and positive BOLD signals. Stimulation......-induced rises in CMRO(2) are controlled by the ATP turnover, which depends on the energy used to fuel the Na,K-ATPase to reestablish ionic gradients, while stimulation-induced CBF responses to a large extent are controlled by mechanisms that depend on Ca(2+) rises in neurons and astrocytes. This dichotomy...... and release vasodilators that evoke positive BOLD signals, while the mechanisms that control negative BOLD signals by activity-dependent vasoconstriction are less well understood. Activation of both excitatory and inhibitory neurons produces rises in CBF and positive BOLD signals, while negative BOLD signals...

  8. Controlling the near-field excitation of nano-antennas with phase-change materials.

    Science.gov (United States)

    Kao, Tsung Sheng; Chen, Yi Guo; Hong, Ming Hui

    2013-01-01

    By utilizing the strongly induced plasmon coupling between discrete nano-antennas and quantitatively controlling the crystalline proportions of an underlying Ge2Sb2Te5 (GST) phase-change thin layer, we show that nanoscale light localizations in the immediate proximity of plasmonic nano-antennas can be spatially positioned. Isolated energy hot-spots at a subwavelength scale can be created and adjusted across the landscape of the plasmonic system at a step resolution of λ/20. These findings introduce a new approach for nano-circuitry, bio-assay addressing and imaging applications.

  9. Optimal semi-active vibration absorber for harmonic excitation based on controlled semi-active damper

    Science.gov (United States)

    Weber, F.

    2014-09-01

    The semi-active vibration absorber (SVA) based on controlled semi-active damper is formulated to realize the behaviour of the passive undamped vibration absorber tuned to the actual harmonic disturbing frequency. It is shown that the controlled stiffness force, which is emulated by the semi-active damper to realize the precise real-time frequency tuning of the SVA, is unpreventably combined with the generation of undesirable damping in the semi-active damper whereby the SVA does not behave as targeted. The semi-active stiffness force is therefore optimized for minimum primary structure response. The results point out that the optimal semi-active stiffness force reduces the undesirable energy dissipation in the SVA at the expenses of slight imprecise frequency tuning. Based on these findings, a real-time applicable suboptimal SVA is formulated that also takes the relative motion constraint of real mass dampers into account. The results demonstrate that the performance of the suboptimal SVA is closer to that of the active solution than that of the passive mass damper.

  10. Adaptive control of epileptiform excitability in an in vitro model of limbic seizures.

    Science.gov (United States)

    Panuccio, Gabriella; Guez, Arthur; Vincent, Robert; Avoli, Massimo; Pineau, Joelle

    2013-03-01

    Deep brain stimulation (DBS) is a promising tool for treating drug-resistant epileptic patients. Currently, the most common approach is fixed-frequency stimulation (periodic pacing) by means of stimulating devices that operate under open-loop control. However, a drawback of this DBS strategy is the impossibility of tailoring a personalized treatment, which also limits the optimization of the stimulating apparatus. Here, we propose a novel DBS methodology based on a closed-loop control strategy, developed by exploiting statistical machine learning techniques, in which stimulation parameters are adapted to the current neural activity thus allowing for seizure suppression that is fine-tuned on the individual scale (adaptive stimulation). By means of field potential recording from adult rat hippocampus-entorhinal cortex (EC) slices treated with the convulsant drug 4-aminopyridine we determined the effectiveness of this approach compared to low-frequency periodic pacing, and found that the closed-loop stimulation strategy: (i) has similar efficacy as low-frequency periodic pacing in suppressing ictal-like events but (ii) is more efficient than periodic pacing in that it requires less electrical pulses. We also provide evidence that the closed-loop stimulation strategy can alternatively be employed to tune the frequency of a periodic pacing strategy. Our findings indicate that the adaptive stimulation strategy may represent a novel, promising approach to DBS for individually-tailored epilepsy treatment. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Numerical simulation of a quantum controlled-not gate implemented on four-spin molecules at room temperature

    CERN Document Server

    López, G V; Berman, G P; Doolen, G D; Tsifrinovich, V I

    2003-01-01

    We study numerically the non-resonant effects on four-spin molecules at room temperature with the implemented quantum controlled-not gate and using the 2 pi k method. The four nuclear spins in each molecule represent a four-qubit register. The qubits interact with each other through Ising-type interaction which is characterized by the coupling constant J sub a sub , sub b. We study the errors on the reduced density matrix as a function of the Rabi frequency, OMEGA, using the 2 pi k method and when all the coupling constants are equal or when one of them is different from the others.

  12. Repeated sessions of functional repetitive transcranial magnetic stimulation increases motor cortex excitability and motor control in survivors of stroke.

    Science.gov (United States)

    Massie, Crystal L; Tracy, Brian L; Paxton, Roger J; Malcolm, Matthew P

    2013-01-01

    To determine the impact of a single-session of repetitive transcranial magnetic stimulation (rTMS) and an rTMS intervention on neurophysiology and motor control in survivors of stroke. Twelve stroke survivors were randomized into functional-rTMS or passive-rTMS conditions. Measures of short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF), and force steadiness (coefficient of variation, CV) at 10 and 20% of maximum voluntary contraction were assessed at baseline and after a single-session of rTMS (post single-session), and again following an intervention of 8 rTMS sessions (2 sessions per day; post-intervention). Functional-rTMS required subjects to exceed a muscle activation threshold assessed by surface electromyography to trigger each rTMS train; the passive-rTMS group received rTMS while relaxed. ICF scores significantly increased following the single-session of functional-rTMS compared to the decrease following passive-rTMS. The increase in APB SICI and ICF scores following the intervention was significantly greater for the functional-rTMS group compared to the decreases following passive-rTMS. The groups were significantly different in the CV of force (20%) following the single-session of rTMS, and in the 10 and 20% tasks following the intervention. The functional-rTMS group increased steadiness overtime, whereas the passive group demonstrated a return to baseline following the intervention session. No differences were observed in first dorsal interosseus (FDI) measures (SICI and ICF) between groups. The functional-rTMS protocol enhanced cortical excitability following a single-session and after repeated sessions and improved steadiness, whereas the passive stimulation protocol tended to decrease excitation and no improvements in steadiness were observed.

  13. A Practical Control Strategy for the Maglev Self-Excited Resonance Suppression

    Directory of Open Access Journals (Sweden)

    Jinhui Li

    2016-01-01

    Full Text Available This paper addresses the control strategy for the suppression of maglev vehicle-bridge interaction resonance, which worsens the ride comfort of vehicle and degrades the safety of the bridge. Firstly, a minimum model containing a flexible bridge and ten levitation units is presented. Based on the minimum model, we pointed out that magnetic flux feedback instead of the traditional current feedback is capable of simplifying the block diagram of the interaction system. Furthermore, considering the uncertainty of the bridge’s modal frequency, the stability of the interaction system is explored according to an improved root-locus technique. Motivated by the positive effects of the mechanical damping of bridges and the feedback channels’ difference between the levitation subsystem and the bridge subsystem, the increment of electrical damping by the additional feedback of vertical velocity of bridge is proposed and several related implementation issues are addressed. Finally, the numerical and experimental results illustrating the stability improvement are provided.

  14. Control of magnetism in dilute magnetic semiconductor (Ga,MnAs films by surface decoration of molecules

    Directory of Open Access Journals (Sweden)

    Hailong eWang

    2016-03-01

    Full Text Available The responses of magnetic moments to external stimuli such as magnetic-field, heat, light and electric-field have been utilized to manipulate the magnetism in magnetic semiconductors, with many of the novel ideas applied even to ferromagnetic metals. Here, we review a new experimental development on the control of magnetism in (Ga,MnAs thin films by surface decoration of organic molecules: Molecules deposited on the surface of (Ga,MnAs thin films are shown to be capable of significantly modulating their saturation magnetization and Curie temperature. These phenomena are shown to originate from the carrier-mediated ferromagnetism in (Ga,MnAs and the surface molecules acting as acceptors or donors depending on their highest occupied molecular orbitals, resembling the charge transfer mechanism in a pn junction in which the equilibrium state is reached on the alignment of Fermi levels.

  15. Increasing arousal enhances inhibitory control in calm but not excitable dogs

    Science.gov (United States)

    Bray, Emily E.; MacLean, Evan L.; Hare, Brian A.

    2015-01-01

    The emotional-reactivity hypothesis proposes that problem-solving abilities can be constrained by temperament, within and across species. One way to test this hypothesis is with the predictions of the Yerkes-Dodson law. The law posits that arousal level, a component of temperament, affects problem solving in an inverted U-shaped relationship: optimal performance is reached at intermediate levels of arousal and impeded by high and low levels. Thus, a powerful test of the emotional-reactivity hypothesis is to compare cognitive performance in dog populations that have been bred and trained based in part on their arousal levels. We therefore compared a group of pet dogs to a group of assistance dogs bred and trained for low arousal (N = 106) on a task of inhibitory control involving a detour response. Consistent with the Yerkes-Dodson law, assistance dogs, which began the test with lower levels of baseline arousal, showed improvements when arousal was artificially increased. In contrast, pet dogs, which began the test with higher levels of baseline arousal, were negatively affected when their arousal was increased. Furthermore, the dogs’ baseline levels of arousal, as measured in their rate of tail wagging, differed by population in the expected directions. Low-arousal assistance dogs showed the most inhibition in a detour task when humans eagerly encouraged them while more highly aroused pet dogs performed worst on the same task with strong encouragement. Our findings support the hypothesis that selection on temperament can have important implications for cognitive performance. PMID:26169659

  16. Increasing arousal enhances inhibitory control in calm but not excitable dogs.

    Science.gov (United States)

    Bray, Emily E; MacLean, Evan L; Hare, Brian A

    2015-11-01

    The emotional-reactivity hypothesis proposes that problem-solving abilities can be constrained by temperament, within and across species. One way to test this hypothesis is with the predictions of the Yerkes-Dodson law. The law posits that arousal level, a component of temperament, affects problem solving in an inverted U-shaped relationship: Optimal performance is reached at intermediate levels of arousal and impeded by high and low levels. Thus, a powerful test of the emotional-reactivity hypothesis is to compare cognitive performance in dog populations that have been bred and trained based in part on their arousal levels. We therefore compared a group of pet dogs to a group of assistance dogs bred and trained for low arousal (N = 106) on a task of inhibitory control involving a detour response. Consistent with the Yerkes-Dodson law, assistance dogs, which began the test with lower levels of baseline arousal, showed improvements when arousal was artificially increased. In contrast, pet dogs, which began the test with higher levels of baseline arousal, were negatively affected when their arousal was increased. Furthermore, the dogs' baseline levels of arousal, as measured in their rate of tail wagging, differed by population in the expected directions. Low-arousal assistance dogs showed the most inhibition in a detour task when humans eagerly encouraged them, while more highly aroused pet dogs performed worst on the same task with strong encouragement. Our findings support the hypothesis that selection on temperament can have important implications for cognitive performance.

  17. Modernization of the Control Systems of High-Frequency, Brush-Free, and Collector Exciters of Turbogenerators

    Energy Technology Data Exchange (ETDEWEB)

    Popov, E. N., E-mail: enpo@ruselmash.ru; Komkov, A. L.; Ivanov, S. L.; Timoshchenko, K. P. [JSC “Scientific and Industrial Enterprise “Rusélprom-Élektromash” (Russian Federation)

    2016-11-15

    Methods of modernizing the regulation systems of electric machinery exciters with high-frequency, brush-free, and collector exciters by means of microprocessor technology are examined. The main problems of modernization are to increase the response speed of a system and to use a system stabilizer to increase the stability of the power system.

  18. Controlled enzymatic cutting of DNA molecules adsorbed on surfaces using soft lithography

    Science.gov (United States)

    Auerbach, Alyssa; Budassi, Julia; Shea, Emily; Zhu, Ke; Sokolov, Jonathan

    2013-03-01

    The enzyme DNase I was applied to adsorbed and aligned DNA molecules (Lamda, 48.5 kilobase pairs (kbp), and T4, 165.6 kbp), stretched linearly on a surface, by stamping with a polydimethylsiloxane (PDMS) grating. The DNAs were cut by the enzyme into separated, micron-sized segments along the length of the molecules at positions determined by the grating dimensions (3-20 microns). Ozone-treated PDMS stamps were coated with DNase I solutions and placed in contact with surface-adsorbed DNA molecules deposited on a 750 polymethylmethacrylate (PMMA) film spun-cast onto a silicon substrate. The stamps were applied under pressure for times up to 15 minutes at 37 C. The cutting was observed by fluorescence microscopy imaging of DNA labeled with YOYO dye. Cutting was found to be efficient despite the steric hindrance due to surface attachment of the molecules. Methods for detaching and separating the cut segments for sequencing applications will be discussed. Supported by NSF-DMR program.

  19. Control of amplification without inversion in H2 and LiH molecules ...

    Indian Academy of Sciences (India)

    Dependence of amplification without inversion (AWI) on the relative strength of probe and coherent field Rabi frequencies has been studied in H2 and LiH molecules for three-level configuration. We have derived exact analytical expressions for coherences and populations keeping all the orders of probe field Rabi ...

  20. Laser pulse shaping for optimal control of multiphoton dissociation in a diatomic molecule using genetic algorithm optimization

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Sitansh, E-mail: sitansh@research.iiit.ac.in [Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500 032 (India); Singh, Harjinder, E-mail: harjinder.singh@iiit.ac.in [Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500 032 (India)

    2011-11-18

    Graphical abstract: Application of genetic algorithm optimization to control dissociation process in the ground electronic state of HF molecule is demonstrated. Highlights: Black-Right-Pointing-Pointer Genetic algorithm optimization for the design of laser pulses. Black-Right-Pointing-Pointer Control of dissociation process in the ground electronic state of HF molecule. Black-Right-Pointing-Pointer Two types of pulses, one with fixed frequency components and the other having non-deterministic components. Black-Right-Pointing-Pointer Optimized laser fields possess simple time and frequency structures. - Abstract: We have applied genetic algorithm optimization for the design of laser pulses to control dissociation process in the ground electronic state of HF molecule, within the mathematical framework of optimal control theory. In order to design the experimentally feasible laser fields, we coded the small set of selected field parameters in the GA parameter space. Two types of pulses, one with fixed frequency components and the other having non-deterministic components have been designed. Optimized laser field obtained using this approach, possesses simple time and frequency structures. We show that the fields having non-deterministic frequency components lead to greater dissociation probability compared to the ones having deterministic frequency components.

  1. Deformation rate controls elasticity and unfolding pathway of single tropocollagen molecules.

    Science.gov (United States)

    Gautieri, Alfonso; Buehler, Markus J; Redaelli, Alberto

    2009-04-01

    Collagen is an important structural protein in vertebrates and is responsible for the integrity of many tissues like bone, teeth, cartilage and tendon. The mechanical properties of these tissues are primarily determined by their hierarchical arrangement and the role of the collagen matrix in their structures. Here we report a series of Steered Molecular Dynamics (SMD) simulations in explicit solvent, used to elucidate the influence of the pulling rate on the Young's modulus of individual tropocollagen molecules. We stretch a collagen peptide model sequence [(Gly-Pro-Hyp)(10)](3) with pulling rates ranging from 0.01 to 100 m/s, reaching much smaller deformation rates than reported in earlier SMD studies. Our results clearly demonstrate a strong influence of the loading velocity on the observed mechanical properties. Most notably, we find that Young's modulus converges to a constant value of approximately 4 GPa tangent modulus at 8% tensile strain when the initially crimped molecule is straightened out, for pulling rates below 0.5 m/s. This enables us for the first time to predict the elastic properties of a single tropocollagen molecule at physiologically and experimentally relevant pulling rates, directly from atomistic-level calculations. At deformation rates larger than 0.5 m/s, Young's modulus increases continuously and approaches values in excess of 15 GPa for deformation rates larger than 100 m/s. The analyses of the molecular deformation mechanisms show that the tropocollagen molecule unfolds in distinctly different ways, depending on the loading rate, which explains the observation of different values of Young's modulus at different loading rates. For low pulling rates, the triple helix first uncoils completely at 10%-20% strain, then undergoes some recoiling in the opposite direction, and finally straightens for strains larger than 30%. At intermediate rates, the molecule uncoils linearly with increasing strain up to 35% strain. Finally, at higher

  2. Fluxonium-Based Artificial Molecule with a Tunable Magnetic Moment

    Directory of Open Access Journals (Sweden)

    A. Kou

    2017-08-01

    Full Text Available Engineered quantum systems allow us to observe phenomena that are not easily accessible naturally. The LEGO®-like nature of superconducting circuits makes them particularly suited for building and coupling artificial atoms. Here, we introduce an artificial molecule, composed of two strongly coupled fluxonium atoms, which possesses a tunable magnetic moment. Using an applied external flux, one can tune the molecule between two regimes: one in which the ground-excited state manifold has a magnetic dipole moment and one in which the ground-excited state manifold has only a magnetic quadrupole moment. By varying the applied external flux, we find the coherence of the molecule to be limited by local flux noise. The ability to engineer and control artificial molecules paves the way for building more complex circuits for quantum simulation and protected qubits.

  3. Membrane properties and the balance between excitation and inhibition control gamma-frequency oscillations arising from feedback inhibition.

    Directory of Open Access Journals (Sweden)

    Michael N Economo

    2012-01-01

    Full Text Available Computational studies as well as in vivo and in vitro results have shown that many cortical neurons fire in a highly irregular manner and at low average firing rates. These patterns seem to persist even when highly rhythmic signals are recorded by local field potential electrodes or other methods that quantify the summed behavior of a local population. Models of the 30-80 Hz gamma rhythm in which network oscillations arise through 'stochastic synchrony' capture the variability observed in the spike output of single cells while preserving network-level organization. We extend upon these results by constructing model networks constrained by experimental measurements and using them to probe the effect of biophysical parameters on network-level activity. We find in simulations that gamma-frequency oscillations are enabled by a high level of incoherent synaptic conductance input, similar to the barrage of noisy synaptic input that cortical neurons have been shown to receive in vivo. This incoherent synaptic input increases the emergent network frequency by shortening the time scale of the membrane in excitatory neurons and by reducing the temporal separation between excitation and inhibition due to decreased spike latency in inhibitory neurons. These mechanisms are demonstrated in simulations and in vitro current-clamp and dynamic-clamp experiments. Simulation results further indicate that the membrane potential noise amplitude has a large impact on network frequency and that the balance between excitatory and inhibitory currents controls network stability and sensitivity to external inputs.

  4. Use of a commercially available nucleating agent to control the morphological development of solution-processed small molecule bulk heterojunction organic solar cells

    KAUST Repository

    Sharenko, Alexander

    2014-08-12

    © the Partner Organisations 2014. The nucleating agent DMDBS is used to modulate the crystallization of solution-processed small molecule donor molecules in bulk heterojunction organic photovoltaic (BHJ OPV) devices. This control over donor molecule crystallization leads to a reduction in optimized thermal annealing times as well as smaller donor molecule crystallites, and therefore more efficient devices, when using an excessive amount of solvent additive. We therefore demonstrate the use of nucleating agents as a powerful and versatile processing strategy for solution-processed, small molecule BHJ OPVs. This journal is

  5. Gate-controlled Kondo effect in a single-molecule transistor with elliptical ferromagnetic leads

    Science.gov (United States)

    Scott, G. D.; Hu, T.-C.

    2017-10-01

    We present low-temperature transport measurements of C60-based single-molecule transistors fabricated using ferromagnetic break junction devices with planar elliptical leads, revealing a gate-modulated single-channel spin-1/2 Kondo effect. The shape anisotropy and dipole interaction of the source and drain electrodes allows for the relative alignment of their respective magnetic moments to be switched between a parallel and an antiparallel configuration. Both the ferromagnetism of the electrodes and the manipulation of their magnetization are shown to impact the magnetotransport in the Kondo regime in a manner consistent with analytical results, but with a magnitude highly sensitive to the precise electrode-molecule geometry and associated coupling asymmetry.

  6. Controlled Gas Molecules Doping of Monolayer MoS2 via Atomic-Layer-Deposited Al2O3 Films.

    Science.gov (United States)

    Li, Yuanzheng; Li, Xinshu; Chen, Heyu; Shi, Jia; Shang, Qiuyu; Zhang, Shuai; Qiu, Xiaohui; Liu, Zheng; Zhang, Qing; Xu, Haiyang; Liu, Weizhen; Liu, Xinfeng; Liu, Yichun

    2017-08-23

    MoS2 as atomically thin semiconductor is highly sensitive to ambient atmosphere (e.g., oxygen, moisture, etc.) in optical and electrical properties. Here we report a controlled gas molecules doping of monolayer MoS2 via atomic-layer-deposited Al2O3 films. The deposited Al2O3 films, in the shape of nanospheres, can effectively control the contact areas between ambient atmosphere and MoS2 that allows precise modulation of gas molecules doping. By analyzing photoluminescence (PL) emission spectra of MoS2 with different thickness of Al2O3, the doped carrier concentration is estimated at ∼2.7 × 10(13) cm(-2) based on the mass action model. Moreover, time-dependent PL measurements indicate an incremental stability of single layer MoS2 as the thicknesses of Al2O3 capping layer increase. Effective control of gas molecules doping in monolayer MoS2 provides us a valuable insight into the applications of MoS2 based optical and electrical devices.

  7. Theory of single-molecule controlled rotation experiments, predictions, tests, and comparison with stalling experiments in F1-ATPase.

    Science.gov (United States)

    Volkán-Kacsó, Sándor; Marcus, Rudolph A

    2016-10-25

    A recently proposed chemomechanical group transfer theory of rotary biomolecular motors is applied to treat single-molecule controlled rotation experiments. In these experiments, single-molecule fluorescence is used to measure the binding and release rate constants of nucleotides by monitoring the occupancy of binding sites. It is shown how missed events of nucleotide binding and release in these experiments can be corrected using theory, with F 1 -ATP synthase as an example. The missed events are significant when the reverse rate is very fast. Using the theory the actual rate constants in the controlled rotation experiments and the corrections are predicted from independent data, including other single-molecule rotation and ensemble biochemical experiments. The effective torsional elastic constant is found to depend on the binding/releasing nucleotide, and it is smaller for ADP than for ATP. There is a good agreement, with no adjustable parameters, between the theoretical and experimental results of controlled rotation experiments and stalling experiments, for the range of angles where the data overlap. This agreement is perhaps all the more surprising because it occurs even though the binding and release of fluorescent nucleotides is monitored at single-site occupancy concentrations, whereas the stalling and free rotation experiments have multiple-site occupancy.

  8. Hand Controlled Manipulation of Single Molecules via a Scanning Probe Microscope with a 3D Virtual Reality Interface.

    Science.gov (United States)

    Leinen, Philipp; Green, Matthew F B; Esat, Taner; Wagner, Christian; Tautz, F Stefan; Temirov, Ruslan

    2016-10-02

    Considering organic molecules as the functional building blocks of future nanoscale technology, the question of how to arrange and assemble such building blocks in a bottom-up approach is still open. The scanning probe microscope (SPM) could be a tool of choice; however, SPM-based manipulation was until recently limited to two dimensions (2D). Binding the SPM tip to a molecule at a well-defined position opens an opportunity of controlled manipulation in 3D space. Unfortunately, 3D manipulation is largely incompatible with the typical 2D-paradigm of viewing and generating SPM data on a computer. For intuitive and efficient manipulation we therefore couple a low-temperature non-contact atomic force/scanning tunneling microscope (LT NC-AFM/STM) to a motion capture system and fully immersive virtual reality goggles. This setup permits "hand controlled manipulation" (HCM), in which the SPM tip is moved according to the motion of the experimenter's hand, while the tip trajectories as well as the response of the SPM junction are visualized in 3D. HCM paves the way to the development of complex manipulation protocols, potentially leading to a better fundamental understanding of nanoscale interactions acting between molecules on surfaces. Here we describe the setup and the steps needed to achieve successful hand-controlled molecular manipulation within the virtual reality environment.

  9. Controlling the rotation of asymmetric top molecules by the combination of a long and a short laser pulse

    DEFF Research Database (Denmark)

    Viftrup, Simon S.; Kumarappan, Vinod; Holmegaard, Lotte

    2009-01-01

    We describe theoretically and experimentally a laser-based method to    control the rotations of asymmetric top molecules in three-dimensional    space. Our method relies on keeping one axis of a molecule essentially    fixed in space along the polarization vector of a nanosecond laser    pulse (...... (termed the long pulse) and forcing the molecule to rotate about    the aligned axis by an orthogonally polarized, femtosecond laser pulse    (termed the short pulse). Experimentally, we use femtosecond timed    Coulomb explosion to image the three-dimensional (3D) alignment of the    3...... the role    played by the intensity of the long and the short laser pulses. To    illustrate the generality of our method, we illustrate its    applicability to a molecule (3,4-dibromothiophene), with significantly    different inertia and polarizability tensors. Finally, our theory shows...

  10. Characterization of structural features controlling the receptiveness of empty class II MHC molecules.

    Directory of Open Access Journals (Sweden)

    Bernd Rupp

    Full Text Available MHC class II molecules (MHC II play a pivotal role in the cell-surface presentation of antigens for surveillance by T cells. Antigen loading takes place inside the cell in endosomal compartments and loss of the peptide ligand rapidly leads to the formation of a non-receptive state of the MHC molecule. Non-receptiveness hinders the efficient loading of new antigens onto the empty MHC II. However, the mechanisms driving the formation of the peptide inaccessible state are not well understood. Here, a combined approach of experimental site-directed mutagenesis and computational modeling is used to reveal structural features underlying "non-receptiveness." Molecular dynamics simulations of the human MHC II HLA-DR1 suggest a straightening of the α-helix of the β1 domain during the transition from the open to the non-receptive state. The movement is mostly confined to a hinge region conserved in all known MHC molecules. This shift causes a narrowing of the two helices flanking the binding site and results in a closure, which is further stabilized by the formation of a critical hydrogen bond between residues αQ9 and βN82. Mutagenesis experiments confirmed that replacement of either one of the two residues by alanine renders the protein highly susceptible. Notably, loading enhancement was also observed when the mutated MHC II molecules were expressed on the surface of fibroblast cells. Altogether, structural features underlying the non-receptive state of empty HLA-DR1 identified by theoretical means and experiments revealed highly conserved residues critically involved in the receptiveness of MHC II. The atomic details of rearrangements of the peptide-binding groove upon peptide loss provide insight into structure and dynamics of empty MHC II molecules and may foster rational approaches to interfere with non-receptiveness. Manipulation of peptide loading efficiency for improved peptide vaccination strategies could be one of the applications profiting

  11. Exciting Graphene Surface Plasmon Polaritons through Light and Sound Interplay

    KAUST Repository

    Farhat, Mohamed

    2013-12-05

    We propose a concept that allows for efficient excitation of surface plasmon spolaritons (SPPs) on a thin graphene sheet located on a substrate by an incident electromagnetic field. Elastic vibrations of the sheet, which are generated by a flexural wave, act as a grating that enables the electromagnetic field to couple to propagating graphene SPPs. This scheme permits fast on-off switching of the SPPs and dynamic tuning of their excitation frequency by adjusting the vibration frequency (grating period). Potential applications include single molecule detection and enhanced control of SPP trajectories via surface wave patterning of graphene metasurfaces. Analytical calculations and numerical experiments demonstrate the practical applicability of the proposed concept.

  12. Electron correlation in molecules

    CERN Document Server

    Wilson, S

    2007-01-01

    Electron correlation effects are of vital significance to the calculation of potential energy curves and surfaces, the study of molecular excitation processes, and in the theory of electron-molecule scattering. This text describes methods for addressing one of theoretical chemistry's central problems, the study of electron correlation effects in molecules.Although the energy associated with electron correlation is a small fraction of the total energy of an atom or molecule, it is of the same order of magnitude as most energies of chemical interest. If the solution of quantum mechanical equatio

  13. Dynamic Control of Synaptic Adhesion and Organizing Molecules in Synaptic Plasticity

    Energy Technology Data Exchange (ETDEWEB)

    Rudenko, Gabby (Texas-MED)

    2017-01-01

    Synapses play a critical role in establishing and maintaining neural circuits, permitting targeted information transfer throughout the brain. A large portfolio of synaptic adhesion/organizing molecules (SAMs) exists in the mammalian brain involved in synapse development and maintenance. SAMs bind protein partners, formingtrans-complexes spanning the synaptic cleft orcis-complexes attached to the same synaptic membrane. SAMs play key roles in cell adhesion and in organizing protein interaction networks; they can also provide mechanisms of recognition, generate scaffolds onto which partners can dock, and likely take part in signaling processes as well. SAMs are regulated through a portfolio of different mechanisms that affect their protein levels, precise localization, stability, and the availability of their partners at synapses. Interaction of SAMs with their partners can further be strengthened or weakened through alternative splicing, competing protein partners, ectodomain shedding, or astrocytically secreted factors. Given that numerous SAMs appear altered by synaptic activity, in vivo, these molecules may be used to dynamically scale up or scale down synaptic communication. Many SAMs, including neurexins, neuroligins, cadherins, and contactins, are now implicated in neuropsychiatric and neurodevelopmental diseases, such as autism spectrum disorder, schizophrenia, and bipolar disorder and studying their molecular mechanisms holds promise for developing novel therapeutics.

  14. Dynamic Control of Synaptic Adhesion and Organizing Molecules in Synaptic Plasticity

    Science.gov (United States)

    2017-01-01

    Synapses play a critical role in establishing and maintaining neural circuits, permitting targeted information transfer throughout the brain. A large portfolio of synaptic adhesion/organizing molecules (SAMs) exists in the mammalian brain involved in synapse development and maintenance. SAMs bind protein partners, forming trans-complexes spanning the synaptic cleft or cis-complexes attached to the same synaptic membrane. SAMs play key roles in cell adhesion and in organizing protein interaction networks; they can also provide mechanisms of recognition, generate scaffolds onto which partners can dock, and likely take part in signaling processes as well. SAMs are regulated through a portfolio of different mechanisms that affect their protein levels, precise localization, stability, and the availability of their partners at synapses. Interaction of SAMs with their partners can further be strengthened or weakened through alternative splicing, competing protein partners, ectodomain shedding, or astrocytically secreted factors. Given that numerous SAMs appear altered by synaptic activity, in vivo, these molecules may be used to dynamically scale up or scale down synaptic communication. Many SAMs, including neurexins, neuroligins, cadherins, and contactins, are now implicated in neuropsychiatric and neurodevelopmental diseases, such as autism spectrum disorder, schizophrenia, and bipolar disorder and studying their molecular mechanisms holds promise for developing novel therapeutics. PMID:28255461

  15. Excited Delirium

    Directory of Open Access Journals (Sweden)

    Takeuchi, Asia

    2011-02-01

    Full Text Available Excited (or agitated delirium is characterized by agitation, aggression, acute distress and sudden death, often in the pre-hospital care setting. It is typically associated with the use of drugs that alter dopamine processing, hyperthermia, and, most notably, sometimes with death of the affected person in the custody of law enforcement. Subjects typically die from cardiopulmonary arrest, although the cause is debated. Unfortunately an adequate treatment plan has yet to be established, in part due to the fact that most patients die before hospital arrival. While there is still much to be discovered about the pathophysiology and treatment, it is hoped that this extensive review will provide both police and medical personnel with the information necessary to recognize and respond appropriately to excited delirium. [West J Emerg Med. 2011;12(1:77-83.

  16. Fragmentation Control of a Polyatomic Molecule by fully determined Laser-Fields

    Directory of Open Access Journals (Sweden)

    Varga K.

    2013-03-01

    Full Text Available Strong-field control of acetylene fragmentation by fully determined few-cycle laser pulses is demonstrated. The control mechanism is shown to be based on electron recollision and inelastic ionization from inner-valence molecular orbitals.

  17. Laser Controlled Synthesis of Noble Metal Nanoparticle Arrays for Low Concentration Molecule Recognition

    Directory of Open Access Journals (Sweden)

    Enza Fazio

    2014-12-01

    Full Text Available Nanostructured gold and silver thin films were grown by pulsed laser deposition.Performing the process in an ambient gas (Ar leads to the nucleation and growth ofnanoparticles in the ablation plasma and their self-organization on the substrate. Thedependence of surface nanostructuring of the films on the deposition parameters is discussedconsidering in particular the number of laser pulses and the ambient gas nature and pressure.The performance of the deposited thin films as substrates for surface-enhanced Ramanspectroscopy (SERS was tested against the detection of molecules at a low concentration.Taking Raman maps on micrometer-sized areas, the spatial homogeneity of the substrateswith respect to the SERS signal was tested.

  18. Small molecule-mediated control of hydroxyapatite growth: free energy calculations benchmarked to density functional theory.

    Science.gov (United States)

    Xu, Zhijun; Yang, Yang; Wang, Ziqiu; Mkhonto, Donald; Shang, Cheng; Liu, Zhi-Pan; Cui, Qiang; Sahai, Nita

    2014-01-05

    The unique, plate-like morphology of hydroxyapatite (HAP) nanocrystals in bone lends to the hierarchical structure and functions of bone. Proteins enriched in phosphoserine (Ser-OPO3) and glutamic acid (Glu) residues have been proposed to regulate crystal morphology; however, the atomic-level mechanisms remain unclear. Previous molecular dynamics studies addressing biomineralization have used force fields with limited benchmarking, especially at the water/mineral interface, and often limited sampling for the binding free energy profile. Here, we use the umbrella sampling/weighted histogram analysis method to obtain the adsorption free energy of Ser-OPO3 and Glu on HAP (100) and (001) surfaces to understand organic-mediated crystal growth. The calculated organic-water-mineral interfacial energies are carefully benchmarked to density functional theory calculations, with explicit inclusion of solvating water molecules around the adsorbate plus the Poisson-Boltzmann continuum model for long-range solvation effects. Both amino acids adsorb more strongly on the HAP (100) face than the (001) face. Growth rate along the [100] direction should then be slower than in the [001] direction, resulting in plate-like crystal morphology with greater surface area for the (100) than the (001) face, consistent with bone HAP crystal morphology. Thus, even small molecules are capable of regulating bone crystal growth by preferential adsorption in specific directions. Furthermore, Ser-OPO3 is a more effective growth modifier by adsorbing more strongly than Glu on the (100) face, providing one possible explanation for the energetically expensive process of phosphorylation of some proteins involved in bone biomineralization. The current results have broader implications for designing routes for biomimetic crystal synthesis. Copyright © 2013 Wiley Periodicals, Inc.

  19. Control of optical bistability and third-order nonlinearity via tunneling induced quantum interference in triangular quantum dot molecules

    Directory of Open Access Journals (Sweden)

    Si-Cong Tian

    2015-06-01

    Full Text Available The optical bistability of a triangular quantum dot molecules embedded inside a unidirectional ring cavity is studied. The type, the threshold and the hysteresis loop of the optical bistability curves can be modified by the tunneling parameters, as well as the probe laser field. The linear and nonlinear susceptibilities of the medium are also studied to interpret the corresponding results. The physical interpretation is that the tunneling can induce the quantum interference, which modifies the linear and the nonlinear response of the medium. As a consequence, the characteristics of the optical bistability are changed. The scheme proposed here can be utilized for optimizing and controlling the optical switching process.

  20. Global stabilization control of high-energy responses of a nonlinear wideband piezoelectric vibration energy harvester using a self-excitation circuit

    Science.gov (United States)

    Kitamura, Norihiko; Masuda, Arata

    2017-04-01

    This paper presents a resonance-type vibration energy harvester using a nonlinear oscillator with self-excitation circuit. The bandwidth of the resonance peak and the performance of the power generation at the resonance frequency are trade- offs for the conventional linear vibration energy harvester. A nonlinear oscillator can expand the resonance frequency band to generate larger electric power in a wider frequency range. However, it is difficult for the harmonically excited nonlinear vibration energy harvester to maintain the highest-energy response under the presence of disturbances since the nonlinear oscillator can have multiple stable steady-state solutions in the resonance band. In order to provide the global stability to the highest-energy solution, we introduce a self-excitation circuit which can destabilize other unexpected lower-energy solutions and entrain the oscillator only in the highest-energy solution. Numerical and experimental studies show that the proposed self-excitation control can provide the global stability to the highest-solution and maintain the high performance of the power generation in the widened resonance frequency band.

  1. Smoluchowski rate for diffusion-controlled reactions of molecules with antenna

    Science.gov (United States)

    Vasilyev, Oleg A.; Lizana, Ludvig; Oshanin, Gleb

    2017-06-01

    We study the current J_m(β U_0) of particles to an immobile perfect trap attached to an antenna—a linear array of m partially adsorbing sites with a barrier against desorption U 0 and β being the inverse temperature. Supposing that particles perform standard random walks, in discrete time n, between the nearest-neighbouring sites of an infinite simple cubic lattice, we calculate the current analytically in the limit n \\to ∞ as a function of m and β U0 . We find that for each β U0 , there exists some effective length m * of the antenna, such that J_m(β U_0) is an increasing function of m for m    m *, meaning that only a portion m */m of the antenna (which otherwise can be arbitrarily long) effectively enhances the reaction rate. Our analysis is relevant to such practically important situations as, e.g. reactions with the so-called antenna molecules or protein binding to specific sites on a stretched DNA.

  2. Synthetic strategies for controlling inter- and intramolecular interactions: Applications in single-molecule fluorescence imaging, bioluminescence imaging, and palladium catalysis

    Science.gov (United States)

    Conley, Nicholas R.

    The field of synthetic organic chemistry has reached such maturity that, with sufficient effort and resources, the synthesis of virtually any small molecule which exhibits reasonable stability at room temperature can be realized. While representing a monumental achievement for the field, the ability to exert precise control over molecular structure is just a means to an end, and it is frequently the responsibility of the synthetic chemist to determine which molecules should actually be synthesized. For better or worse, there exists no competitive free market in academia for new molecules, and as a result, the decision of which compounds should be synthesized is seldom driven by the forces of supply and demand; rather, it is guided by the synthetic chemist's interest in an anticipated structure-function relationship or in the properties of a previously unstudied class of molecules. As a consequence, there exists a pervasive need for chemists with synthetic expertise in fields (e.g., molecular imaging) and subdisciplines of chemistry (e.g., physical chemistry) in which the identification of promising synthetic targets dramatically outpaces the synthetic output in that field or subdiscipline, and ample opportunities are available for synthetic chemists who choose to pursue such cross-disciplinary research. This thesis describes synthetic efforts that leverage these opportunities to realize applications in biological imaging and in palladium catalysis. In Part I, the synthesis and characterization of three novel luminophores and their imaging applications are discussed. The first is a molecular beacon that utilizes a fluorophorefluorophore pair which exhibits H-dimer quenching in the closed conformation. This probe offers several advantages over conventional fluorophore-quencher molecular beacons in the detection of oligonucleotides, both in bulk and at the single-molecule level. Secondly, a fluorescent, Cy3-Cy5 covalent heterodimer is reported, which on account of the

  3. Novel, Meso-Substituted Cationic Porphyrin Molecule for Photo-Mediated Larval Control of the Dengue Vector Aedes aegypti

    Science.gov (United States)

    Lucantoni, Leonardo; Magaraggia, Michela; Lupidi, Giulio; Ouedraogo, Robert Kossivi; Coppellotti, Olimpia; Esposito, Fulvio; Fabris, Clara; Jori, Giulio; Habluetzel, Annette

    2011-01-01

    Background Control of the mosquito vector population is the most effective strategy currently available for the prevention of dengue fever and the containment of outbreaks. Photo-activated oxidants may represent promising tools for developing effective, safe and ecofriendly novel larvicides. The purpose of this study was to evaluate the potential of the synthetic meso-substituted porphyrin meso-tri(N-methylpyridyl), meso-mono(N-tetradecylpyridyl)porphine (C14) as a photoactivatable larvicide against the dengue vector Aedes (Stegomyia) aegypti. Methodology The photophysical and photochemical properties of the C14 molecule were assessed spectrophotometrically. Photomediated larvicidal efficacy, route of intake and site of action were determined on Ae. aegypti larvae by laboratory bioassays and fluorescence microscopy. Using powdered food pellet for laboratory rodents (a common larval food used in the laboratory) as a carrier for C14, loading-release dynamics, larvicidal efficacy and residual activity of the C14-carrier complex were investigated. Main Findings The C14 molecule was found to exert a potent photosensitizing activity on Ae. aegypti larvae. At irradiation intervals of 12 h and 1 h, at a light intensity of 4.0 mW/cm2, which is 50–100 times lower than that of natural sunlight, LC50 values of 0.1 µM (0.15 mg/l) and 0.5 µM (0.77 mg/l) were obtained, respectively. The molecule was active after ingestion by the larvae and caused irreversible, lethal damage to the midgut and caecal epithelia. The amphiphilic nature of C14 allowed a formulate to be produced that not only was as active against the larvae as C14 in solution, but also possessed a residual activity of at least two weeks, in laboratory conditions. Conclusions The meso-substituted synthetic porphyrin C14, thanks to its photo-sensitizing properties represents an attractive candidate for the development of novel photolarvicides for dengue vector control. PMID:22206031

  4. Static trapping of polar molecules in a traveling wave decelerator.

    Science.gov (United States)

    Quintero-Pérez, Marina; Jansen, Paul; Wall, Thomas E; van den Berg, Joost E; Hoekstra, Steven; Bethlem, Hendrick L

    2013-03-29

    We present experiments on decelerating and trapping ammonia molecules using a combination of a Stark decelerator and a traveling wave decelerator. In the traveling wave decelerator, a moving potential is created by a series of ring-shaped electrodes to which oscillating high voltages (HV) are applied. By lowering the frequency of the applied voltages, the molecules confined in the moving trap are decelerated and brought to a standstill. As the molecules are confined in a true 3D well, this kind of deceleration has practically no losses, resulting in a great improvement on the usual Stark deceleration techniques. The necessary voltages are generated by amplifying the output of an arbitrary wave generator using fast HV amplifiers, giving us great control over the trapped molecules. We illustrate this by experiments in which we adiabatically cool trapped NH3 and ND3 molecules and resonantly excite their motion.

  5. Insulator-protected mechanically controlled break junctions for measuring single-molecule conductance in aqueous environments

    NARCIS (Netherlands)

    Muthusubramanian, N.; Galan, E.; Maity, C.; Eelkema, R.; Grozema, F.C.; van der Zant, H.S.J.

    2016-01-01

    We present a method to fabricate insulated gold mechanically controlled break junctions (MCBJ) by coating the metal with a thin layer of aluminum oxide using plasma enhanced atomic layer deposition. The Al2O3 thickness deposited on the MCBJ devices was varied from 2 to 15 nm

  6. Contribution to the design and the control of synchronous double excitation machines: hybrid vehicle application; Contribution a la conception et a la commande des machines synchrones a double excitation: application au vehicule hybride

    Energy Technology Data Exchange (ETDEWEB)

    Amara, Y.

    2001-12-01

    Double excitation machines are synchronous machines where two excitation circuits coexist: one with permanent magnets and the other with windings. This study shows that double excitation allows to combine the advantages of synchronous machines with winded inductor with those of permanent magnet machines. This concept allows a better dimensioning of the converter-machine set and a better energy management. In order to allow the operation of permanent magnet machines over a wide range of speeds, it is necessary to have a magnetic reaction of the induced circuit of the same order than the excitation flux. On the other hand, the power factor is weaker and the power supply converter is over-dimensioned. The double excitation allows the permanent magnet machines to work over a large speed range with a better power factor, even when the magnetic reaction of the induced circuit is relatively weak with respect to the excitation flux. (J.S.)

  7. Brain Control of Plasma Cholesterol Involves Polysialic Acid Molecules in the Hypothalamus

    Directory of Open Access Journals (Sweden)

    Xavier Brenachot

    2017-05-01

    Full Text Available The polysialic acid (PSA is a large glycan that is added to cell-surface proteins during their post-translational maturation. In the brain, PSA modulates distances between cells and controls the plasticity of the nervous system. In the hypothalamus, PSA is involved in many aspects of energy balance including food intake, osmoregulation, circadian rhythm, and sleep. In this work, we investigated the role of hypothalamic PSA in the regulation of plasma cholesterol levels and distribution. We report that HFD consumption in mice rapidly increased plasma cholesterol, including VLDL, LDL, and HDL-cholesterol. Although plasma VLDL-cholesterol was normalized within the first week, LDL and HDL were still elevated after 2 weeks upon HFD. Importantly, we found that hypothalamic PSA removal aggravated LDL elevation and reduced HDL levels upon HFD. These results indicate that hypothalamic PSA controls plasma lipoprotein profile by circumventing the rise of LDL-to-HDL cholesterol ratio in plasma during overfeeding. Although mechanisms by which hypothalamic PSA controls plasma cholesterol homeostasis remains to be elucidated, these findings also suggest that low level of hypothalamic PSA might be a risk factor for dyslipidemia and cardiovascular diseases.

  8. Control of the dipole layer of polar organic molecules adsorbed on metal surfaces via different charge-transfer channels

    Science.gov (United States)

    Lin, Meng-Kai; Nakayama, Yasuo; Zhuang, Ying-Jie; Su, Kai-Jun; Wang, Chin-Yung; Pi, Tun-Wen; Metz, Sebastian; Papadopoulos, Theodoros A.; Chiang, T.-C.; Ishii, Hisao; Tang, S.-J.

    2017-02-01

    Organic molecules with a permanent electric dipole moment have been widely used as a template for further growth of molecular layers in device structures. Key properties of the resulting organic films such as energy level alignment (ELA), work function, and injection/collection barrier are linked to the magnitude and direction of the dipole moment at the interface. Using angle-resolved photoemission spectroscopy (ARPES), we have systematically investigated the coverage-dependent work function and spectral line shapes of occupied molecular energy states (MESs) of chloroaluminium-phthalocyanine (ClAlPc) grown on Ag(111). We demonstrate that the dipole orientation of the first ClAlPc layer can be controlled by adjusting the deposition rate and postannealing conditions, and we find that the ELA at the interface differs by ˜0.4 eV between the Cl up and down configurations of the adsorbed ClAlPc molecules. These observations are rationalized by density functional theory (DFT) calculations based on a realistic model of the ClAlPc/Ag(111) interface, which reveal that the different orientations of the ClAlPc dipole layer lead to different charge-transfer channels between the adsorbed ClAlPc and Ag(111) substrate. Our findings provide a useful framework toward method development for ELA tuning.

  9. Attosecond control of dissociative ionization of O{sub 2} molecules

    Energy Technology Data Exchange (ETDEWEB)

    Siu, W.; Kelkensberg, F.; Gademann, G. [FOM Institute AMOLF, Science Park 104, NL-1098 XG Amsterdam (Netherlands); Rouzee, A.; Vrakking, M. J. J. [FOM Institute AMOLF, Science Park 104, NL-1098 XG Amsterdam (Netherlands); Max-Born-Institut, Max-Born Strasse 2A, D-12489 Berlin (Germany); Johnsson, P. [FOM Institute AMOLF, Science Park 104, NL-1098 XG Amsterdam (Netherlands); Department of Physics, Lund University, Post Office Box 118, SE-221 00 Lund (Sweden); Dowek, D. [Laboratoire des Collisions Atomiques et Moleculaires (UMR Universite Paris-Sud et CNRS, 8625), Batiment 351, Universite Paris-Sud, F-91405 Orsay Cedex (France); Lucchini, M.; Calegari, F. [Department of Physics, Politecnico di Milano, Istituto di Fotonica e Nanotecnologie CNR-IFN, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); De Giovannini, U.; Rubio, A. [Nano-bio Spectroscopy Group, ETSF Scientific Development Centre, Universidad del Pais Vasco, Avenida Tolosa 72, E-20018 San Sebastian (Spain); Lucchese, R. R. [Department of Chemistry, Texas A and M University, Post Office Box 30012, College Station, Texas 77842-3012 (United States); Kono, H. [Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578 (Japan); Lepine, F. [Universite Lyon 1/CNRS/LASIM, UMR 5579, 43 Boulevard Du 11 Novembre 1918, F-69622 Villeurbane (France)

    2011-12-15

    We demonstrate that dissociative ionization of O{sub 2} can be controlled by the relative delay between an attosecond pulse train (APT) and a copropagating infrared (IR) field. Our experiments reveal a dependence of both the branching ratios between a range of electronic states and the fragment angular distributions on the extreme ultraviolet (XUV) to IR time delay. The observations go beyond adiabatic propagation of dissociative wave packets on IR-induced quasistatic potential energy curves and are understood in terms of an IR-induced coupling between electronic states in the molecular ion.

  10. Dynamic Covalent Functionalization as a route to Controlling Self Assembly of Organic Molecules

    Science.gov (United States)

    Pentzer, Emily

    Efforts to optimize the optoelectronic properties of conjugated organic materials are ongoing across many fields of science and engineering. For example, in bulk heterojunction polymer solar cells, researchers seek to optimize absorption of the solar spectrum by the active materials, form interpenetrating domains of p-type and n-type materials to facilitate exciton dissociation, and improve interactions between electrode, charge blocking layers, and active layers to ensure rapid charge transport. One advantage of organic polymers compared to inorganic materials (e.g., silicon), is the low cost and ability process the materials in solution. Moreover, assembly of conjugated organic materials in solution or in the solid state (i.e., films) can be used to optimize both a material's optoelectronic properties and its interface with surfaces and other materials, addressing many of the concerns listed above. Unfortunately, such solution processability requires appendage of insulating alkyl chains to the conjugated frameworks, which don solubility, but are also insulating and thus can hurt device performance. This presentation will report recent results from the Pentzer Lab from Case Western Reserve University on using functional alkyl chains that serve to control self-assembly, control interfaces with other materials, or can be removed by an external stimulus as a route to optimizing the materials for solar cell applications.

  11. The immunoproteasome controls the availability of the cardioprotective pattern recognition molecule Pentraxin3.

    Science.gov (United States)

    Paeschke, Anna; Possehl, Anna; Klingel, Karin; Voss, Martin; Voss, Karolin; Kespohl, Meike; Sauter, Martina; Overkleeft, Hermen S; Althof, Nadine; Garlanda, Cecilia; Voigt, Antje

    2016-03-01

    Cardiomyocyte death as a result of viral infection is an excellent model for dissecting the inflammatory stress response that occurs in heart tissue. We reported earlier that a specific proteasome isoform, the immunoproteasome, prevents exacerbation of coxsackievirus B3 (CVB3)-induced myocardial destruction and preserves cell vitality in heart tissue inflammation. Following the aim to decipher molecular targets of immunoproteasome-dependent proteolysis, we investigated the function and regulation of the soluble PRR Pentraxin3 (PTX3). We show that the ablation of PTX3 in mice aggravated CVB3-triggered inflammatory injury of heart tissue, without having any significant effect on viral titers. Thus, there might be a role of PTX3 in preventing damage-associated molecular pattern-induced cell death. We found that the catalytic activity of the immunoproteasome subunit LMP7 regulates the timely availability of factors controlling PTX3 production. We report on immunoproteasome-dependent alteration of ERK1/2 and p38MAPKs, which were both found to be involved in PTX3 expression control. Our finding of a cardioprotective function of immunoproteasome-dependent PTX3 expression revealed a crucial mechanism of the stress-induced damage response in myocardial inflammation. In addition to antigen presentation and cytokine production, proteolysis by the immunoproteasome can also regulate the innate immune response during viral infection. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Re-Defining Photovoltaic Efficiency Through Molecule Scale Control. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Yardley, James T. [Columbia Univ., New York, NY (United States)

    2015-04-30

    specific materials that can be used practically in a solar cell system. In addition much work will be required to envision and demonstrate effective device structures that can utilize this concept. However these discoveries do provide the basis for an entirely new set of opportunities for more efficient solar energy generation moving beyond the Shockley-Queisser limit. A second part of the EFRC research program has been to investigate the material and device properties of an entirely new set of materials based on two-dimensional sheets (“ultra-thin”) with thicknesses of only one atom, or a single molecule or just a few atoms. These materials can exhibit conducting, insulating, and semiconducting character and thus they can form the basis for entirely new types of electrical devices. Recent fundamental investigations of these materials, at Columbia and elsewhere, demonstrate clearly that the flow of electrical charges in these systems is fundamentally different from the nature of electrical current flow in conventional materials. This fact presents many possibilities for new photovoltaic device concepts. The EFRC research team has achieved world leadership in the creation and understanding of these materials and in developing the fabrication techniques necessary to create useful devices from them. We have developed the basic fabrication methodology to build structures of these materials into complex device structures, layer by layer. Our EFRC research team has pioneered the synthesis and understanding for graphene, perhaps the simplest of these materials. Graphene can function as a highly transparent conducting material, capable of funneling an electrical charge over reasonable distances without significant energy loss. The EFRC program has also pioneered the development of ultra-thin sheets that function in a way analogous to semiconductor materials as well as sheets that act as electrical insulators. These developments therefore enable the construction of solar cells

  13. Inter-dot tunneling control of optical bistability in triple quantum dot molecules

    Energy Technology Data Exchange (ETDEWEB)

    Reza Hamedi, Hamid, E-mail: Hamid.r.Hamedi@gmail.com

    2014-09-15

    The behavior of optical bistability (OB) and optical multistability (OM) in a triple coupled quantum dot (QD) system is theoretically explored. It is found that the tunneling coupling between electronic levels has major effect on controlling the threshold and the hysteresis cycle shape of the optical bistability. The impact of incoherent pump field on the OB and OM behavior of such medium is then discussed. We realize that the threshold intensity reduces remarkably through increasing the rate of incoherent pumping. It is also demonstrated that the switch between OB and OM can be obtained just through proper adjusting the frequency detuning of probe field. It should be pointed that in this QD system we used tunneling instead of coupling lasers. These presented results may be applicable in real experiments for realizing an all-optical bistate switching or coding element in a solid-state platform.

  14. Control of sensory neuron excitability by serotonin involves 5HT2C receptors and Ca(2+)-activated chloride channels.

    Science.gov (United States)

    Salzer, Isabella; Gantumur, Enkhbileg; Yousuf, Arsalan; Boehm, Stefan

    2016-11-01

    Serotonin (5HT) is a constituent of the so-called "inflammatory soup" that sensitizes nociceptors during inflammation. Nevertheless, receptors and signaling mechanisms that mediate an excitation of dorsal root ganglion (DRG) neurons by 5HT remained controversial. Therefore, capsaicin-sensitive nociceptive neurons dissociated from rat DRGs were used to investigate effects of 5HT on membrane excitability and currents through ligand- as well as voltage-gated ion channels. In 58% of the neurons tested, 5HT increased action potential firing, an effect that was abolished by the 5HT2 receptor antagonist ritanserin, but not by the 5HT3 antagonist tropisetron. Unlike other algogenic mediators, such as PGE2 and bradykinin, 5HT did not affect currents through TTX-resistant Na(+) channels or Kv7 K(+) channels. In all neurons investigated, 5HT potentiated capsaicin-evoked currents through TRPV1 channels, an effect that was attenuated by antagonists at 5HT2A (4 F 4 PP), 5HT2B (SB 204741), as well as 5HT2C (RS 102221) receptors. 5HT triggered slowly arising inward Cl(-) currents in 53% of the neurons. This effect was antagonized by the 5HT2C receptor blocker only, and the current was prevented by an inhibitor of Ca(2+)-activated chloride channels (CaCC). The 5HT-induced increase in action potential firing was also abolished by this CaCC blocker and by the TRPV1 inhibitor capsazepine. Amongst the subtype selective 5HT2 antagonists, only RS 102221 (5HT2C-selectively) counteracted the rise in action potential firing elicited by 5HT. These results show that 5HT excites DRG neurons mainly via 5HT2C receptors which concomitantly mediate a sensitization of TRPV1 channels and an opening of CaCCs. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Single molecule logical devices.

    Science.gov (United States)

    Renaud, Nicolas; Hliwa, Mohamed; Joachim, Christian

    2012-01-01

    After almost 40 years of development, molecular electronics has given birth to many exciting ideas that range from molecular wires to molecular qubit-based quantum computers. This chapter reviews our efforts to answer a simple question: how smart can a single molecule be? In our case a molecule able to perform a simple Boolean function is a child prodigy. Following the Aviram and Ratner approach, these molecules are inserted between several conducting electrodes. The electronic conduction of the resulting molecular junction is extremely sensitive to the chemical nature of the molecule. Therefore designing this latter correctly allows the implementation of a given function inside the molecular junction. Throughout the chapter different approaches are reviewed, from hybrid devices to quantum molecular logic gates. We particularly stress that one can implement an entire logic circuit in a single molecule, using either classical-like intramolecular connections, or a deformation of the molecular orbitals induced by a conformational change of the molecule. These approaches are radically different from the hybrid-device approach, where several molecules are connected together to build the circuit.

  16. Dynamics of Activated Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Mullin, Amy S. [Univ. of Maryland, College Park, MD (United States)

    2016-11-16

    Experimental studies have been performed to investigate the collisional energy transfer processes of gas-phase molecules that contain large amounts of internal energy. Such molecules are prototypes for molecules under high temperature conditions relevant in combustion and information about their energy transfer mechanisms is needed for a detailed understanding and modeling of the chemistry. We use high resolution transient IR absorption spectroscopy to measure the full, nascent product distributions for collisions of small bath molecules that relax highly vibrationally excited pyrazine molecules with E=38000 cm-1 of vibrational energy. To perform these studies, we developed new instrumentation based on modern IR light sources to expand our experimental capabilities to investigate new molecules as collision partners. This final report describes our research in four areas: the characterization of a new transient absorption spectrometer and the results of state-resolved collision studies of pyrazine(E) with HCl, methane and ammonia. Through this research we have gained fundamental new insights into the microscopic details of relatively large complex molecules at high energy as they undergo quenching collisions and redistribute their energy.

  17. Controlling electron-electron correlation in frustrated double ionization of triatomic molecules with orthogonally polarized two-color laser fields

    Science.gov (United States)

    Chen, A.; Kling, M. F.; Emmanouilidou, A.

    2017-09-01

    We demonstrate the control of electron-electron correlation in frustrated double ionization (FDI) of the two-electron triatomic molecule D3 + when driven by two orthogonally polarized two-color laser fields. We employ a three-dimensional semiclassical model that fully accounts for the electron and nuclear motion in strong fields. We analyze the FDI probability and the distribution of the momentum of the escaping electron along the polarization direction of the longer wavelength and more intense laser field. These observables, when considered in conjunction, bear clear signatures of the prevalence or absence of electron-electron correlation in FDI, depending on the time delay between the two laser pulses. We find that D3 + is a better candidate than H2 for demonstrating also experimentally that electron-electron correlation indeed underlies FDI.

  18. Controlling the formation process and atomic structures of single pyrazine molecular junction by tuning the strength of the metal-molecule interaction.

    Science.gov (United States)

    Kaneko, Satoshi; Takahashi, Ryoji; Fujii, Shintaro; Nishino, Tomoaki; Kiguchi, Manabu

    2017-04-12

    The formation process and atomic structures were investigated for single pyrazine molecular junctions sandwiched by three different Au, Ag, and Cu electrodes using a mechanically controllable break junction technique in ultrahigh vacuum conditions at 300 K. We demonstrated that the formation process of the single-molecule junction crucially depended on the choice of the metal electrodes. While single-molecule junction showing two distinct conductance states were found for the Au electrodes, only the single conductance state was evident for the Ag electrodes, and there was no junction formation for the Cu electrodes. These results suggested that metal-molecule interaction dominates the formation process and probability of the single-molecule junction. In addition to the metal-molecule interaction, temperature affected the formation process of the single-molecule junction. The single pyrazine molecular junction formed between Au electrodes exhibited significant temperature dependence where the junction-formation probability was about 8% at 300 K, while there was no junction-formation at 100 K. Instead of the junction formation, an Au atomic wire was formed at the low temperature. This study provides insight into the tuning of the junction-forming process for single-molecule junctions, which is needed to construct device structures on a single molecule scale.

  19. Molecule nanoweaver

    Science.gov (United States)

    Gerald, II; Rex, E [Brookfield, IL; Klingler, Robert J [Glenview, IL; Rathke, Jerome W [Homer Glen, IL; Diaz, Rocio [Chicago, IL; Vukovic, Lela [Westchester, IL

    2009-03-10

    A method, apparatus, and system for constructing uniform macroscopic films with tailored geometric assemblies of molecules on the nanometer scale. The method, apparatus, and system include providing starting molecules of selected character, applying one or more force fields to the molecules to cause them to order and condense with NMR spectra and images being used to monitor progress in creating the desired geometrical assembly and functionality of molecules that comprise the films.

  20. Optical and microwave control of resonance fluorescence and squeezing spectra in a polar molecule

    Science.gov (United States)

    Antón, M. A.; Maede-Razavi, S.; Carreño, F.; Thanopulos, I.; Paspalakis, E.

    2017-12-01

    A two-level quantum emitter with broken inversion symmetry simultaneously driven by an optical field and a microwave field that couples to the permanent dipole's moment is presented. We focus to a situation where the angular frequency of the microwave field is chosen such that it closely matches the Rabi frequency of the optical field, the so-called Rabi resonance condition. Using a series of unitary transformations we obtain an effective Hamiltonian in the double-dressed basis which results in easily solvable Bloch equations which allow us to derive analytical expressions for the spectrum of the scattered photons. We analyze the steady-state population inversion of the system which shows a distinctive behavior at the Rabi resonance with regard to an ordinary two-level nonpolar system. We show that saturation can be produced even in the case that the optical field is far detuned from the transition frequency, and we demonstrate that this behavior can be controlled through the intensity and the angular frequency of the microwave field. The spectral properties of the scattered photons are analyzed and manifest the emergence of a series of Mollow-like triplets which may be spectrally broadened or narrowed for proper values of the amplitude and/or frequency of the low-frequency field. We also analyze the phase-dependent spectrum which reveals that a significant enhancement or suppression of the squeezing at certain sidebands can be produced. These quantum phenomena are illustrated in a recently synthesized molecular complex with high nonlinear optical response although they can also occur in other quantum systems with broken inversion symmetry.

  1. Growth kinetics for temperature-controlled atomic layer deposition of GaN using trimethylgallium and remote-plasma-excited NH{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Pansila, P. [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510 (Japan); Kanomata, K. [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510 (Japan); Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083 (Japan); Miura, M. [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510 (Japan); Ahmmad, B.; Kubota, S. [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510 (Japan); CREST, Japan Science and Technology Agency, 4-3-16 Jonan, Yonezawa 992-8510 (Japan); Hirose, F., E-mail: fhirose@yz.yamagata-u.ac.jp [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510 (Japan); CREST, Japan Science and Technology Agency, 4-3-16 Jonan, Yonezawa 992-8510 (Japan)

    2015-12-01

    Highlights: • We discuss the reaction mechanism of the low temperature GaN ALD. • The plasma-excited NH{sub 3} is effective in the nitridation of the TMG saturated GaN surface with surface temperatures in excess of 100 °C. • The temperature controlled ALD of GaN is examined using RT-TMG adsorption and plasma-excited NH{sub 3} treatment with the temperature of 115 °C. - Abstract: Fundamental surface reactions in the atomic layer deposition of GaN with trimethylgallium (TMG) and plasma-excited NH{sub 3} are investigated by multiple-internal-reflection infrared absorption spectroscopy (MIR-IRAS) at surface temperatures varying from room temperature (RT) to 400 °C. It is found that TMG is saturated at RT on GaN surfaces when the TMG exposure exceeds 8 × 10{sup 4} Langmuir (L), where 1 L corresponds to 1.33 × 10{sup −4} Pa s (or 1.0 × 10{sup −6} Torr s), and its saturation density reaches the maximum value at RT. Nitridation with the plasma-excited NH{sub 3} on the TMG-saturated GaN surface is investigated by X-ray photoelectron spectroscopy (XPS). The nitridation becomes effective at surface temperatures in excess of 100 °C. The reaction models of TMG adsorption and nitridation on the GaN surface are proposed in this paper. Based on the surface analysis, a temperature-controlled ALD process consisting of RT-TMG adsorption and nitridation at 115 °C is examined, where the growth per cycle of 0.045 nm/cycle is confirmed. XPS analysis indicates that all N atoms are bonded as GaN. Atomic force microscopy indicates an average roughness of 0.23 nm. We discuss the reaction mechanism of GaN ALD in the low-temperature region at around 115 °C with TMG and plasma-excited NH{sub 3}.

  2. Excitation and Adaptation in Bacteria–a Model Signal Transduction System that Controls Taxis and Spatial Pattern Formation

    Directory of Open Access Journals (Sweden)

    Chuan Xue

    2013-04-01

    Full Text Available The machinery for transduction of chemotactic stimuli in the bacterium E. coli is one of the most completely characterized signal transduction systems, and because of its relative simplicity, quantitative analysis of this system is possible. Here we discuss models which reproduce many of the important behaviors of the system. The important characteristics of the signal transduction system are excitation and adaptation, and the latter implies that the transduction system can function as a “derivative sensor” with respect to the ligand concentration in that the DC component of a signal is ultimately ignored if it is not too large. This temporal sensing mechanism provides the bacterium with a memory of its passage through spatially- or temporally-varying signal fields, and adaptation is essential for successful chemotaxis. We also discuss some of the spatial patterns observed in populations and indicate how cell-level behavior can be embedded in population-level descriptions.

  3. Coacervate delivery systems for proteins and small molecule drugs

    OpenAIRE

    Johnson, Noah R; Wang, Yadong

    2014-01-01

    Coacervates represent an exciting new class of drug delivery vehicles, developed in the past decade as carriers of small molecule drugs and proteins. This review summarizes several well-described coacervate systems, including Elastin-like peptides for delivery of anti-cancer therapeutics,Heparin-based coacervates with synthetic polycations for controlled growth factor delivery,Carboxymethyl chitosan aggregates for oral drug delivery,Mussel adhesive protein and hyaluronic acid coacervates.

  4. CINE: Comet INfrared Excitation

    Science.gov (United States)

    de Val-Borro, Miguel; Cordiner, Martin A.; Milam, Stefanie N.; Charnley, Steven B.

    2017-08-01

    CINE calculates infrared pumping efficiencies that can be applied to the most common molecules found in cometary comae such as water, hydrogen cyanide or methanol. One of the main mechanisms for molecular excitation in comets is the fluorescence by the solar radiation followed by radiative decay to the ground vibrational state. This command-line tool calculates the effective pumping rates for rotational levels in the ground vibrational state scaled by the heliocentric distance of the comet. Fluorescence coefficients are useful for modeling rotational emission lines observed in cometary spectra at sub-millimeter wavelengths. Combined with computational methods to solve the radiative transfer equations based, e.g., on the Monte Carlo algorithm, this model can retrieve production rates and rotational temperatures from the observed emission spectrum.

  5. The search for a molecule to measure an autocorrelation trace of the second/third harmonic emission of a Ti:sapphire laser based on two-photon resonant excitation and subsequent one-photon ionization

    Science.gov (United States)

    Imasaka, Tomoko; Okuno, Tomoya; Imasaka, Totaro

    2013-12-01

    The temporal profile of the second and third harmonic emissions of a Ti:sapphire laser was measured using an autocorrelator consisting of a mass spectrometer as a two-photon-response detector. A number of organic compounds that are potentially applicable for two-photon excitation and subsequent one-photon ionization were investigated using density functional theory calculations. N, N'-dimethylaniline and acetonitrile were used for the measurement of the pulse width for the second and third harmonic emissions of the Ti:sapphire laser. This approach has the potential for use in measuring pulse widths as short as 1-3 fs in the ultraviolet region.

  6. An integrated computer-controlled system for assisting researchers in cortical excitability studies by using transcranial magnetic stimulation.

    Science.gov (United States)

    Giordano, D; Kavasidis, I; Spampinato, C; Bella, R; Pennisi, G; Pennisi, M

    2012-07-01

    Transcranial magnetic stimulation (TMS) is the most important technique currently available to study cortical excitability. Additionally, TMS can be used for therapeutic and rehabilitation purposes, replacing the more painful transcranial electric stimulation (TES). In this paper we present an innovative and easy-to-use tool that enables neuroscientists to design, carry out and analyze scientific studies based on TMS experiments for both diagnostic and research purposes, assisting them not only in the practicalities of administering the TMS but also in each step of the entire study's workflow. One important aspect of this tool is that it allows neuroscientists to specify research designs at will, enabling them to define any parameter of a TMS study starting from data acquisition and sample group definition to automated statistical data analysis and RDF data storage. It also supports the diagnosing process by using on-line support vector machines able to learn incrementally from the diseases instances that are continuously added into the system. The proposed system is a neuroscientist-centred tool where the protocols being followed in TMS studies are made explicit, leaving to the users flexibility in exploring and sharing the results, and providing assistance in managing the complexity of the final diagnosis. This type of tool can make the results of medical experiments more easily exploitable, thus accelerating scientific progress. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  7. The coupled cluster approach with a hybrid treatment of connected triple excitations: Spectroscopic constants in open-shell diatomic molecules, and bond-breaking or twisting potential energy surfaces

    Science.gov (United States)

    Kou, Zhuangfei; Shen, Jun; Xu, Enhua; Li, Shuhua

    2012-06-01

    A coupled cluster singles, doubles, and a hybrid treatment of triples [denoted as CCSD(T)-h] has been applied to investigate the equilibrium geometries and harmonic frequencies of five diatomic open-shell molecules, bond breaking potential energy surfaces in C2 and F2+, and the twisting potential energy surface of ethylene. In the present work, CCSD(T)-h calculations are based on the restricted or restricted open-shell Hartree-Fock (RHF or ROHF) reference. A general procedure for constructing the active RHF or ROHF orbitals is proposed. A comparison of CCSD(T)-h with other CC methods show that for all systems CCSD(T)-h is an excellent approximation to CCSDT, being much better than CCSD(T) especially when a molecule exhibits strong multireference character.

  8. Systematic Investigation of Controlled Nanostructuring of Mn 12 Single-Molecule Magnets Templated by Metal–Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Aulakh, Darpandeep [Department of Chemistry; amp, Biomolecular Science, Clarkson University, Potsdam, New York 13699, United States; Xie, Haomiao [Department of Chemistry, Texas A& amp,M University, College Station, Texas 77845, United States; Shen, Zhe [Department of Chemistry, Texas A& amp,M University, College Station, Texas 77845, United States; Harley, Alexander [Department of Chemistry; amp, Biomolecular Science, Clarkson University, Potsdam, New York 13699, United States; Zhang, Xuan [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States; Yakovenko, Andrey A. [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States; Dunbar, Kim R. [Department of Chemistry, Texas A& amp,M University, College Station, Texas 77845, United States; Wriedt, Mario [Department of Chemistry; amp, Biomolecular Science, Clarkson University, Potsdam, New York 13699, United States

    2017-05-25

    This is the first systematic study exploring metal–organic frameworks (MOFs) as platforms for the controlled nanostructuring of molecular magnets. We report the incorporation of seven single-molecule magnets (SMMs) of general composition [Mn12O12(O2CR)16(OH2)4], with R = CF3 (1), (CH3)CCH2 (2), CH2Cl (3), CH2Br (4), CHCl2 (5), CH2But (6), and C6H5 (7), into the hexagonal channel pores of a mesoporous MOF host. The resulting nanostructured composites combine the key SMM properties with the functional properties of the MOF. Synchrotron-based powder diffraction with difference envelope density analysis, physisorption analysis (surface area and pore size distribution), and thermal analyses reveal that the well-ordered hexagonal structure of the host framework is preserved, and magnetic measurements indicate that slow relaxation of the magnetization, characteristic of the corresponding Mn12 derivative guests, occurs inside the MOF pores. Structural host–guest correlations including the bulkiness and polarity of peripheral SMM ligands are discussed as fundamental parameters influencing the global SMM@MOF loading capacities. These results demonstrate that employing MOFs as platforms for the nanostructuration of SMMs is not limited to a particular host–guest system but potentially applicable to a multitude of other molecular magnets. Such fundamental findings will assist in paving the way for the development of novel advanced spintronic devices.

  9. Systematic Investigation of Controlled Nanostructuring of Mn12 Single-Molecule Magnets Templated by Metal-Organic Frameworks.

    Science.gov (United States)

    Aulakh, Darpandeep; Xie, Haomiao; Shen, Zhe; Harley, Alexander; Zhang, Xuan; Yakovenko, Andrey A; Dunbar, Kim R; Wriedt, Mario

    2017-06-19

    This is the first systematic study exploring metal-organic frameworks (MOFs) as platforms for the controlled nanostructuring of molecular magnets. We report the incorporation of seven single-molecule magnets (SMMs) of general composition [Mn12O12(O2CR)16(OH2)4], with R = CF3 (1), (CH3)CCH2 (2), CH2Cl (3), CH2Br (4), CHCl2 (5), CH2Bu(t) (6), and C6H5 (7), into the hexagonal channel pores of a mesoporous MOF host. The resulting nanostructured composites combine the key SMM properties with the functional properties of the MOF. Synchrotron-based powder diffraction with difference envelope density analysis, physisorption analysis (surface area and pore size distribution), and thermal analyses reveal that the well-ordered hexagonal structure of the host framework is preserved, and magnetic measurements indicate that slow relaxation of the magnetization, characteristic of the corresponding Mn12 derivative guests, occurs inside the MOF pores. Structural host-guest correlations including the bulkiness and polarity of peripheral SMM ligands are discussed as fundamental parameters influencing the global SMM@MOF loading capacities. These results demonstrate that employing MOFs as platforms for the nanostructuration of SMMs is not limited to a particular host-guest system but potentially applicable to a multitude of other molecular magnets. Such fundamental findings will assist in paving the way for the development of novel advanced spintronic devices.

  10. Molecule Matters

    Indian Academy of Sciences (India)

    is such an innocuous molecule that you might not think it worthy of special attention. We take this molecule for granted because it is abundantly available on earth. About 80 % of the earth's atmosphere, which means a total of 4×1018 kg, is dinitrogen![1] Secondly, it is ignored because it is quite un- reactive. Nitrogen is such ...

  11. Molecule Matters

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 4. Molecule Matters – van der Waals Molecules - History and Some Perspectives on Intermolecular Forces. E Arunan. Feature Article Volume 14 Issue 4 April 2009 pp 346-356 ...

  12. Attosecond VUV Coherent Control of Molecular Dynamics

    CERN Document Server

    Ranitovic, P; Riviere, P; Palacios, A; Tong, X M; Toshima, N; Gonzalez-Castrillo, A; Martin, L; Martin, F; Murnane, M M; Kapteyn, H C

    2014-01-01

    High harmonic light sources make it possible to access attosecond time-scales, thus opening up the prospect of manipulating electronic wave packets for steering molecular dynamics. However, two decades after the birth of attosecond physics, the concept of attosecond chemistry has not yet been realized. This is because excitation and manipulation of molecular orbitals requires precisely controlled attosecond waveforms in the deep ultraviolet, which have not yet been synthesized. Here, we present a novel approach using attosecond vacuum ultraviolet pulse-trains to coherently excite and control the outcome of a simple chemical reaction in a deuterium molecule in a non-Born Oppenheimer regime. By controlling the interfering pathways of electron wave packets in the excited neutral and singly-ionized molecule, we unambiguously show that we can switch the excited electronic state on attosecond timescales, coherently guide the nuclear wave packets to dictate the way a neutral molecule vibrates, and steer and manipula...

  13. Theoretical studies on the reaction pathways of electronically excited DAAF

    Energy Technology Data Exchange (ETDEWEB)

    Quenneville, Jason M [Los Alamos National Laboratory; Moore, David S [Los Alamos National Laboratory

    2009-01-01

    The use of temporally and spectrally shaped ultrafast laser pulses to initiate, as well as detect, high explosives is being explored at Los Alamos. High level ab initio calculations, presented here, are employed to help guide and interpret the experiments. The ground and first excited electronic states of 3,3{prime}-diamino-4,4{prime}-azoxyfurazan (DAAF) are investigated using complete active space self-consistent field (CASSCF) and time-dependent density functional theory (TD-DFT). The geometrical and energetic character of the excited state minima, conical intersections and reaction pathways of DAAF are described. Two radiative and two non-radiative excited state population quenching mechanisms are outlined, and possible pathways for photochemical and spectroscopic control are discussed. The use of laser light to control chemical reactions has many applications. The initiation and the detection of explosives are two such applications currently under development at Los Alamos. Though inherently experimental, the project can be aided by theory through both prediction and interpretation. When the laser light is in the UV/visible region of the electromagnetic spectrum, the absorbing molecule is excited electronically and excitation decay may occur either radiatively (fluorescence or phosphorescence) or non-radiatively (through internal conversion). In many cases decay of the excitation occurs through a mixture of processes, and maximizing the desired result requires sophisticated laser pulses whose amplitude has been optimally modulated in time and/or frequency space. Control of cis-stilbene photochemistry was recently demonstrated in our group, and we aim to extend this work to high explosive compounds. Maximizing radiative decay leads to increased fluorescence quantum yields and enhances the possibility of spectral detection of the absorbing molecule. Maximizing non-radiative decay can lead to chemistry, heating of the sample and possibly detonation initiation in

  14. Field-free orientation of molecules

    DEFF Research Database (Denmark)

    Machholm, Mette; Henriksen, Niels Engholm

    2001-01-01

    The excitation of angular motion, in particular, the creation of a wave packet in the angular degrees of freedom via short-pulse, off-resonant excitation with respect to rotational transitions, was examined. The key result was that field-free time-dependent orientation for a molecule like LiH can...

  15. Single-molecule detection and radiation control in solutions at high concentrations via a heterogeneous optical slot antenna.

    Science.gov (United States)

    Zhao, Chenglong; Liu, Yongmin; Yang, Jing; Zhang, Jiasen

    2014-08-07

    We designed a heterogeneous optical slot antenna (OSA) that is capable of detecting single molecules in solutions at high concentrations, where most biological processes occur. A heterogeneous OSA consists of a rectangular nanoslot fabricated on heterogeneous metallic films formed by sequential deposition of gold and aluminum on a glass substrate. The rectangular nanoslot gives rise to large field and fluorescence enhancement for single molecules. The near-field intensity inside a heterogeneous OSA is 170 times larger than that inside an aluminum zero-mode waveguide (ZMW), and the fluorescence emission rate of a molecule inside the heterogeneous OSA is about 70 times higher than that of the molecule in free space. Our proposed heterogeneous optical antenna enables excellent balance between performance and cost. The design takes into account the practical experimental conditions so that the parameters chosen in the simulation are well within the reach of current nano-fabrication technologies. Our results can be used as a direct guidance for designing high-performance, low-cost plasmonic nanodevices for the study of bio-molecule and enzyme dynamics at the single-molecule level.

  16. Radiation power control of the industrial CO2 lasers excited by a nonself-sustained glow discharge with regard to dissociation in a working gas mixture

    Science.gov (United States)

    Shemyakin, Andrey N.; Rachkov, Michael Yu.; Solovyov, Nikolay G.; Yakimov, Mikhail Yu.

    2018-01-01

    The action of a working gas mixture degradation related to the plasma chemical reactions in a glow discharge on the laser output power of the molecular laser excited by a nonself-sustained glow discharge has been studied by the example of an industrial laser of ;Lantan; CO2 laser series. It was found that the laser power overshoot when operating on a fresh gas mixture may exceed 3 times power level set in a steady-state regime. The working algorithm for the control system was proposed and developed setting standard fresh CO2/N2/He laser gas mixture to plasma chemical equilibrium composition during the laser turn-on procedure after full refill of a working gas mixture.

  17. Atkins' molecules

    CERN Document Server

    Atkins, Peters

    2003-01-01

    Originally published in 2003, this is the second edition of a title that was called 'the most beautiful chemistry book ever written'. In it, we see the molecules responsible for the experiences of our everyday life - including fabrics, drugs, plastics, explosives, detergents, fragrances, tastes, and sex. With engaging prose Peter Atkins gives a non-technical account of an incredible range of aspects of the world around us, showing unexpected connections, and giving an insight into how this amazing world can be understood in terms of the atoms and molecules from which it is built. The second edition includes dozens of extra molecules, graphical presentation, and an even more accessible and enthralling account of the molecules themselves.

  18. Interstellar Molecules

    Science.gov (United States)

    Solomon, Philip M.

    1973-01-01

    Radioastronomy reveals that clouds between the stars, once believed to consist of simple atoms, contain molecules as complex as seven atoms and may be the most massive objects in our Galaxy. (Author/DF)

  19. Enumerating molecules.

    Energy Technology Data Exchange (ETDEWEB)

    Visco, Donald Patrick, Jr. (, . Tennessee Technological University, Cookeville, TN); Faulon, Jean-Loup Michel; Roe, Diana C.

    2004-04-01

    This report is a comprehensive review of the field of molecular enumeration from early isomer counting theories to evolutionary algorithms that design molecules in silico. The core of the review is a detail account on how molecules are counted, enumerated, and sampled. The practical applications of molecular enumeration are also reviewed for chemical information, structure elucidation, molecular design, and combinatorial library design purposes. This review is to appear as a chapter in Reviews in Computational Chemistry volume 21 edited by Kenny B. Lipkowitz.

  20. Irving Langmuir Prize in Chemical Physics Lecture: The Inner Machinery of Single Molecules: resolving the unresolved with the STM

    Science.gov (United States)

    Ho, Wilson

    2013-03-01

    The scanning tunneling microscope (STM) is a unique instrument that can probe and induce changes in a molecule with atomic scale resolution. Its operation is based on the current that flows between the tip and the substrate with the molecule sandwiched in between. Therefore, the STM can be used to understand the coupling of electrons to the different states and excitations in the molecule and to investigate the influence on them by its environment. From the spatial and energy dependences of the coupling to the charge, spin, and nuclear motions in the molecule, verification of and new insights into the quantum mechanical properties of molecules can be obtained, including the discovery of new conduction and energy transfer mechanisms. This understanding of electron-molecule interactions with the STM enables rational ways to control chemistry and the exploration of novel physical technologies based on molecules.

  1. Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging.

    NARCIS (Netherlands)

    Hoebe, R.A.; van Oven, C.H.; Gadella, Th.W.J.; Dhonukshe, P.B.; van Noorden, C.J.F.; Manders, E.M.M.

    2007-01-01

    Fluorescence microscopy of living cells enables visualization of the dynamics and interactions of intracellular molecules. However, fluorescence live-cell imaging is limited by photobleaching and phototoxicity induced by the excitation light. Here we describe controlled light-exposure microscopy

  2. Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging

    NARCIS (Netherlands)

    Hoebe, R. A.; van Oven, C. H.; Gadella, T. W. J.; Dhonukshe, P. B.; van Noorden, C. J. F.; Manders, E. M. M.

    2007-01-01

    Fluorescence microscopy of living cells enables visualization of the dynamics and interactions of intracellular molecules. However, fluorescence live-cell imaging is limited by photobleaching and phototoxicity induced by the excitation light. Here we describe controlled light-exposure microscopy (

  3. Single molecule electronic devices.

    Science.gov (United States)

    Song, Hyunwook; Reed, Mark A; Lee, Takhee

    2011-04-12

    Single molecule electronic devices in which individual molecules are utilized as active electronic components constitute a promising approach for the ultimate miniaturization and integration of electronic devices in nanotechnology through the bottom-up strategy. Thus, the ability to understand, control, and exploit charge transport at the level of single molecules has become a long-standing desire of scientists and engineers from different disciplines for various potential device applications. Indeed, a study on charge transport through single molecules attached to metallic electrodes is a very challenging task, but rapid advances have been made in recent years. This review article focuses on experimental aspects of electronic devices made with single molecules, with a primary focus on the characterization and manipulation of charge transport in this regime. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Dual PDF signaling pathways reset clocks via TIMELESS and acutely excite target neurons to control circadian behavior.

    Science.gov (United States)

    Seluzicki, Adam; Flourakis, Matthieu; Kula-Eversole, Elzbieta; Zhang, Luoying; Kilman, Valerie; Allada, Ravi

    2014-03-01

    Molecular circadian clocks are interconnected via neural networks. In Drosophila, PIGMENT-DISPERSING FACTOR (PDF) acts as a master network regulator with dual functions in synchronizing molecular oscillations between disparate PDF(+) and PDF(-) circadian pacemaker neurons and controlling pacemaker neuron output. Yet the mechanisms by which PDF functions are not clear. We demonstrate that genetic inhibition of protein kinase A (PKA) in PDF(-) clock neurons can phenocopy PDF mutants while activated PKA can partially rescue PDF receptor mutants. PKA subunit transcripts are also under clock control in non-PDF DN1p neurons. To address the core clock target of PDF, we rescued per in PDF neurons of arrhythmic per⁰¹ mutants. PDF neuron rescue induced high amplitude rhythms in the clock component TIMELESS (TIM) in per-less DN1p neurons. Complete loss of PDF or PKA inhibition also results in reduced TIM levels in non-PDF neurons of per⁰¹ flies. To address how PDF impacts pacemaker neuron output, we focally applied PDF to DN1p neurons and found that it acutely depolarizes and increases firing rates of DN1p neurons. Surprisingly, these effects are reduced in the presence of an adenylate cyclase inhibitor, yet persist in the presence of PKA inhibition. We have provided evidence for a signaling mechanism (PKA) and a molecular target (TIM) by which PDF resets and synchronizes clocks and demonstrates an acute direct excitatory effect of PDF on target neurons to control neuronal output. The identification of TIM as a target of PDF signaling suggests it is a multimodal integrator of cell autonomous clock, environmental light, and neural network signaling. Moreover, these data reveal a bifurcation of PKA-dependent clock effects and PKA-independent output effects. Taken together, our results provide a molecular and cellular basis for the dual functions of PDF in clock resetting and pacemaker output.

  5. Non-linear response of a self-sustained electromechanical seismographs to fifth resonance excitations and chaos control

    Energy Technology Data Exchange (ETDEWEB)

    Siewe, M. Siewe [Laboratoire de Mecanique, Departement de Physique, Faculte des sciences, Universite de Yaounde I, B.P. 812, Yaounde (Cameroon)]. E-mail: msiewe@uycdc.uninet.cm; Kakmeni, F.M. Moukam [Laboratoire de Mecanique, Departement de Physique, Faculte des sciences, Universite de Yaounde I, B.P. 812, Yaounde (Cameroon) and Department of Physics, Faculty of science, University of Buea, P.O. Box 63, Buea (Cameroon)]. E-mail: fmoukam@uycdc.uninet.cm; Bowong, S. [Laboratoire de Mathematiques appliquees, Departement de Mathematiques et Informatique, Faculte des sciences, Universite de Douala, B.P. 24157, Douala (Cameroon)]. E-mail: sbowong@uycdc.uninet.cm; Tchawoua, C. [Laboratoire de Mecanique, Departement de Physique, Faculte des sciences, Universite de Yaounde I, B.P. 812, Yaounde (Cameroon)]. E-mail: ctchawoua@uycdc.uninet.cm

    2006-07-15

    In this paper, the problem of dynamics and chaos control of an electromechanical instrument which is used to record the motion of earth during and earthquake is studied. The amplitude of the fifth sub- and super-harmonic oscillations for the resonant states are obtained and discussed using the multiples time scales method. It is found that chaotic and periodic orbits of the system depend strongly of the value of the damping. The suppression of chaos using small amplitude damping signals is also investigated and the condition under which chaos suppression is possible is derived. Simulation results are presented to confirm analytical process.

  6. Molecular Wring Resonances in Chain Molecules

    DEFF Research Database (Denmark)

    Bohr, Henrik; Brunak, Søren; Bohr, Jakob

    1997-01-01

    It is shown that the eigenfrequency of collective twist excitations in chain molecules can be in the megahertz and gigahertz range. Accordingly, resonance states can be obtained at specific frequencies, and phenomena that involve structural properties can take place. Chain molecules can alter the...

  7. Controlling Electrical Conductance through a π‐Conjugated Cruciform Molecule by Selective Anchoring to Gold Electrodes

    DEFF Research Database (Denmark)

    Huang, Cancan; Chen, Songjie; Ørnsø, Kristian Baruël

    2015-01-01

    of triisopropylsilyl groups, complete conversion from one junction type to another is achieved with a conductance increase by more than one order of magnitude, and it is consistent with predictions from ab initio transport calculations. Although molecules are well known to conduct through different orbitals (either...

  8. Dynamic excitation states and firing patterns are controlled by sodium channel kinetics in myenteric neurons: a simulation study.

    Science.gov (United States)

    Korogod, Sergiy M; Osorio, Nancy; Kulagina, Iryna B; Delmas, Patrick

    2014-01-01

    Enteric neurons located in the gastro-intestinal tract are of particular importance to control digestive functions such as motility and secretion. In our recent publication, we showed that mouse myenteric neurons exhibit 2 types of tetrodotoxin-resistant Na(+) currents: a fast inactivating Na(+) current produced by Nav1.5 channels, present in nearly all myenteric neurons, and a persistent Na(+) current attributed to Nav1.9 channels, restricted to the intrinsic primary afferent neurons (IPANs). By combination of experimental recording and computer simulation we found that Nav1.5 contributed to the upstroke velocity of action potentials (APs), whereas Nav1.9 opposed AP repolarization. Here, we detailed the Na(+), Ca(2+) and K(+) currents used in our computational model of IPAN. We refined the prototype cell to reproduce the sustained firing pattern recorded in situ. As shown in experimental conditions we demonstrated that Nav1.9 channels critically determine the up-state life-time and thus, are essential to sustain tonic firing.

  9. Molecule Matters

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 9. Molecule Matters - A Chromium Compound with a Quintuple Bond. K C Kumara Swamy. Feature Article Volume 11 Issue 9 September 2006 pp 72-75. Fulltext. Click here to view fulltext PDF. Permanent link:

  10. Molecule Matters

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 5. Molecule Matters - N-Heterocyclic Carbenes - The Stable Form of R2 C: Anil J Elias. Feature Article Volume 13 Issue 5 May 2008 pp 456-467. Fulltext. Click here to view fulltext PDF. Permanent link:

  11. Molecule Matters

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 11. Molecule Matters - Carbon Dioxide: Molecular States and Beyond. T P Radhakrishnan. Feature Article Volume 11 Issue 11 November 2006 pp 88-92. Fulltext. Click here to view fulltext PDF. Permanent link:

  12. Electronic excitation induced hydrogen-bond adjustment and lattice control in organic-inorganic hybrid cubic perovskites: a fixed occupation molecular dynamics study.

    Science.gov (United States)

    Wang, Mo-Ran; Ren, Xiang-Yang; Li, Xian-Bin; Chen, Nian-Ke; Sun, Hong-Bo

    2017-10-04

    The organic-inorganic hybrid perovskite has become a new type of semiconductor for low cost and highly efficient solar cells. However, the mechanism of interactions between the organic cation and the inorganic framework is still not completely clear under optical electronic excitation. In this work, we employ first-principles molecular dynamics with electronic excitation effects to prove that the hydrogen-bond interaction between the molecular cation and the inorganic lattice can be readily adjusted by several-percentage-valence-electron excitations in cubic CH3NH3PbI3. While the hydrogen-bond interaction causes serious lattice distortions, the electronic excitation can recover the lattice symmetry largely by weakening hydrogen bonding. The study offers atomic dynamics to understand the excitation process in the organic-inorganic hybrid perovskite semiconductor.

  13. Inner-shell excitation spectroscopy of peroxides

    NARCIS (Netherlands)

    Harding, K. L.; Kalirai, S.; Hayes, R.; Ju, V.; Cooper, G.; Hitchcock, A. P.; Thompson, M. R.

    2015-01-01

    O 1s inner-shell excitation spectra of a number of vapor phase molecules containing peroxide bonds - hydrogen peroxide (H2O2), di-t-butylperoxide ((BuOBu)-Bu-t-Bu-t), benzoyl peroxide, ((C6H5(CO)O)(2)), luperox-F [1,3(4)-bis(tertbutylperoxyisopropyl)benzene], and analogous, non-peroxide compounds -

  14. Isovector monopole excitation energies

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, J.D.; Lipparini, E.; Stringary, S.

    1987-11-05

    Using a hydrodynamical model whose parameters have been adjusted to fit the polarizability and excitation energy of the giant dipole nuclear resonance we predict excitation energies of the isovector monopole resonance. The predicted values are in good agreement with experimental data. The mass dependence of the excitation energy is strongly influenced by nuclear geometry.

  15. Rotation of a Single Acetylene Molecule on Cu(001) by Tunneling Electrons in STM

    Science.gov (United States)

    Shchadilova, Yulia E.; Tikhodeev, Sergei G.; Paulsson, Magnus; Ueba, Hiromu

    2013-11-01

    We study the elementary processes behind one of the pioneering works on scanning tunneling microscope controlled reactions of single molecules [Stipe et al., Phys. Rev. Lett. 81, 1263 (1998)]. Using the Keldysh-Green function approach for the vibrational generation rate in combination with density functional theory calculations to obtain realistic parameters we reproduce the experimental rotation rate of an acetylene molecule on a Cu(100) surface as a function of bias voltage and tunneling current. This combined approach allows us to identify the reaction coordinate mode of the acetylene rotation and its anharmonic coupling with the C-H stretch mode. We show that three different elementary processes, the excitation of C-H stretch, the overtone ladder climbing of the hindered rotational mode, and the combination band excitation together explain the rotation of the acetylene molecule on Cu(100).

  16. Multi-frequency excitation

    KAUST Repository

    Younis, Mohammad I.

    2016-03-10

    Embodiments of multi-frequency excitation are described. In various embodiments, a natural frequency of a device may be determined. In turn, a first voltage amplitude and first fixed frequency of a first source of excitation can be selected for the device based on the natural frequency. Additionally, a second voltage amplitude of a second source of excitation can be selected for the device, and the first and second sources of excitation can be applied to the device. After applying the first and second sources of excitation, a frequency of the second source of excitation can be swept. Using the methods of multi- frequency excitation described herein, new operating frequencies, operating frequency ranges, resonance frequencies, resonance frequency ranges, and/or resonance responses can be achieved for devices and systems.

  17. Excitation of high-radial-order Laguerre-Gaussian modes in a solid-state laser using a lower-loss digitally controlled amplitude mask

    Science.gov (United States)

    Bell, T.; Hasnaoui, A.; Ait-Ameur, K.; Ngcobo, S.

    2017-10-01

    In this paper we experimentally demonstrate selective excitation of high-radial-order Laguerre-Gaussian (LG p or LG{}p,0) modes with radial order p = 1-4 and azimuthal order l = 0 using a diode-pump solid-state laser (DPSSL) that is digitally controlled by a spatial light modulator (SLM). We encoded an amplitude mask containing p-absorbing rings, of various incompleteness (segmented) on grey-scale computer-generated digital holograms, and displayed them on an SLM which acted as an end mirror of the diode-pumped solid-state digital laser. The various incomplete (α) p-absorbing rings were digitally encoded to match the zero-intensity nulls of the desired LG p mode. We show that the creation of LG p , for p = 1 to p = 4, only requires an incomplete circular p-absorbing ring that has a completeness of ≈37.5%, giving the DPSSL resonator a lower pump threshold power while maintaining the same laser characteristics (such as beam propagation properties).

  18. Application of photo-excitation reaction on titanium oxide thin film for control of wettability; Sanka chitann hakumakujo no hikari reiki hanno no nuresei seigyo eno oyo

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T.; Nakajima, A.; Hashimoto, K. [The Univ. of Tokyo, Tokyo (Japan); Takada, Y. [Kyushu Univ., Fukuoka (Japan)

    2000-03-31

    It is clarified that the photo-excitation hydrophilic reaction increasing wettability remarkably is induced by changing surface structure of titanium oxide radiated light. There are already many examples being in practical use of coating products applied hydrophilic reaction of titanium oxide surface such as drip-proof side millers for automobiles, self-cleaning building materials, and the like. When surface of titanium oxide having high activities for oxidisation and decomposition is coated organic materials and radiated light, wettability of surface changes as organic materials are decomposed. If it is possible to change wettability shaping pattern drastically by radiating light, the possibility of application for printing materials will be developed. After increasing contact angle by coating water and oil repellent on the titanium oxide thin film, images can be shaped by radiating light into pattern for changing surface of titanium oxide to be ultra hydrophilicity as decomposition of repellent. At that time, contact angle is 150 degree in water, 80 degree in oil, for not radiated aria, and is 0 degree in water and oil for radiated aria. Application for control technology of wettability keeps possibility of broader development to itself, not staying ability of self-cleaning and drip-proof. (NEDO)

  19. Autoresonant Excitation of Antiproton Plasmas

    CERN Document Server

    Andresen, Gorm B; Baquero-Ruiz, Marcelo; Bertsche, William; Bowe, Paul D; Butler, Eoin; Carpenter, P T; Cesar, Claudio L; Chapman, Steven; Charlton, Michael; Fajans, Joel; Friesen, Tim; Fujiwara, Makoto C; Gill, David R; Hangst, Jeffrey S; Hardy, Walter N; Hayden, Michael E; Humphries, Andrew J; Hurt, J L; Hydomako, Richard; Jonsell, Svante; Madsen, Niels; Menary, Scott; Nolan, Paul; Olchanski, Konstantin; Olin, Art; Povilus, Alexander; Pusa, Petteri; Robicheaux, Francis; Sarid, Eli; Silveira, Daniel M; So, Chukman; Storey, James W; Thompson, Robert I; van der Werf, Dirk P; Wurtele, Jonathan S; Yamazaki, Yasunori

    2011-01-01

    We demonstrate controllable excitation of the center-of-mass longitudinal motion of a thermal antiproton plasma using a swept-frequency autoresonant drive. When the plasma is cold, dense, and highly collective in nature, we observe that the entire system behaves as a single-particle nonlinear oscillator, as predicted by a recent theory. In contrast, only a fraction of the antiprotons in a warm plasma can be similarly excited. Antihydrogen was produced and trapped by using this technique to drive antiprotons into a positron plasma, thereby initiating atomic recombination.

  20. Controlling the Morphology of BDTT-DPP-Based Small Molecules via End-Group Functionalization for Highly Efficient Single and Tandem Organic Photovoltaic Cells.

    Science.gov (United States)

    Kim, Ji-Hoon; Park, Jong Baek; Yang, Hoichang; Jung, In Hwan; Yoon, Sung Cheol; Kim, Dongwook; Hwang, Do-Hoon

    2015-11-04

    A series of narrow-band gap, π-conjugated small molecules based on diketopyrrolopyrrole (DPP) electron acceptor units coupled with alkylthienyl-substituted-benzodithiophene (BDTT) electron donors were designed and synthesized for use as donor materials in solution-processed organic photovoltaic cells. In particular, by end-group functionalization of the small molecules with fluorine derivatives, the nanoscale morphologies of the photoactive layers of the photovoltaic cells were successfully controlled. The influences of different fluorine-based end-groups on the optoelectronic and morphological properties, carrier mobilities, and the photovoltaic performances of these materials were investigated. A high power conversion efficiency (PCE) of 6.00% under simulated solar light (AM 1.5G) illumination has been achieved for organic photovoltaic cells based on a small-molecule bulk heterojunction system consisting of a trifluoromethylbenzene (CF3) end-group-containing oligomer (BDTT-(DPP)2-CF3) as the donor and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) as the acceptor. As a result, the introduction of CF3 end-groups has been found to enhance both the short circuit current density (JSC) and fill factor (FF). A tandem photovoltaic device comprising an inverted BDTT-(DPP)2-CF3:PC71BM cell and a poly(3-hexylthiophene) (P3HT):indene-C60-bisadduct (IC60BA)-based cell as the top and bottom cell components, respectively, showed a maximum PCE of 8.30%. These results provide valuable guidelines for the rational design of conjugated small molecules for applications in high-performance organic photovoltaic cells. Furthermore, to the best of our knowledge, this is the first report on the design of fluorine-functionalized BDTT-DPP-based small molecules, which have been shown to be a viable candidate for use in inverted tandem cells.

  1. Single-Molecule Rotational Switch on a Dangling Bond Dimer Bearing.

    Science.gov (United States)

    Godlewski, Szymon; Kawai, Hiroyo; Kolmer, Marek; Zuzak, Rafał; Echavarren, Antonio M; Joachim, Christian; Szymonski, Marek; Saeys, Mark

    2016-09-27

    One of the key challenges in the construction of atomic-scale circuits and molecular machines is to design molecular rotors and switches by controlling the linear or rotational movement of a molecule while preserving its intrinsic electronic properties. Here, we demonstrate both the continuous rotational switching and the controlled step-by-step single switching of a trinaphthylene molecule adsorbed on a dangling bond dimer created on a hydrogen-passivated Ge(001):H surface. The molecular switch is on-surface assembled when the covalent bonds between the molecule and the dangling bond dimer are controllably broken, and the molecule is attached to the dimer by long-range van der Waals interactions. In this configuration, the molecule retains its intrinsic electronic properties, as confirmed by combined scanning tunneling microscopy/spectroscopy (STM/STS) measurements, density functional theory calculations, and advanced STM image calculations. Continuous switching of the molecule is initiated by vibronic excitations when the electrons are tunneling through the lowest unoccupied molecular orbital state of the molecule. The switching path is a combination of a sliding and rotation motion over the dangling bond dimer pivot. By carefully selecting the STM conditions, control over discrete single switching events is also achieved. Combined with the ability to create dangling bond dimers with atomic precision, the controlled rotational molecular switch is expected to be a crucial building block for more complex surface atomic-scale devices.

  2. Red-light-controllable liquid-crystal soft actuators via low-power excited upconversion based on triplet-triplet annihilation.

    Science.gov (United States)

    Jiang, Zhen; Xu, Ming; Li, Fuyou; Yu, Yanlei

    2013-11-06

    A red-light-controllable soft actuator has been achieved, driven by low-power excited triplet-triplet annihilation-based upconversion luminescence (TTA-UCL). First, a red-to-blue TTA-based upconversion system with a high absolute quantum yield of 9.3 ± 0.5% was prepared by utilizing platinum(II) tetraphenyltetrabenzoporphyrin (PtTPBP) as the sensitizer and 9,10-bis(diphenylphosphoryl)anthracene (BDPPA) as the annihilator. In order to be employed as a highly effective phototrigger of photodeformable cross-linked liquid-crystal polymers (CLCPs), the PtTPBP&BDPPA system was incorporated into a rubbery polyurethane film and then assembled with an azotolane-containing CLCP film. The generating assembly film bent toward the light source when irradiated with a 635 nm laser at low power density of 200 mW cm(-2) because the TTA-UCL was effectively utilized by the azotolane moieties in the CLCP film, inducing their trans-cis photoisomerization and an alignment change of the mesogens via an emission-reabsorption process. It is the first example of a soft actuator in which the TTA-UCL is trapped and utilized to create photomechanical effect. Such advantages of using this novel red-light-controllable soft actuator in potential biological applications have also been demonstrated as negligible thermal effect and its excellent penetration ability into tissues. This work not only provides a novel photomanipulated soft actuation material system based on the TTA-UCL technology but also introduces a new technological application of the TTA-based upconversion system in photonic devices.

  3. Ligand uptake inMycobacterium tuberculosistruncated hemoglobins is controlled by both internal tunnels and active site water molecules.

    Science.gov (United States)

    Boron, Ignacio; Bustamante, Juan Pablo; Davidge, Kelly S; Singh, Sandip; Bowman, Lesley Ah; Tinajero-Trejo, Mariana; Carballal, Sebastián; Radi, Rafael; Poole, Robert K; Dikshit, Kanak; Estrin, Dario A; Marti, Marcelo A; Boechi, Leonardo

    2015-01-01

    Mycobacterium tuberculosis, the causative agent of human tuberculosis, has two proteins belonging to the truncated hemoglobin (trHb) family. Mt-trHbN presents well-defined internal hydrophobic tunnels that allow O 2 and • NO to migrate easily from the solvent to the active site, whereas Mt-trHbO possesses tunnels interrupted by a few bulky residues, particularly a tryptophan at position G8. Differential ligand migration rates allow Mt-trHbN to detoxify • NO, a crucial step for pathogen survival once under attack by the immune system, much more efficiently than Mt-trHbO. In order to investigate the differences between these proteins, we performed experimental kinetic measurements, • NO decomposition, as well as molecular dynamics simulations of the wild type Mt-trHbN and two mutants, VG8F and VG8W. These mutations affect both the tunnels accessibility as well as the affinity of distal site water molecules, thus modifying the ligand access to the iron. We found that a single mutation allows Mt-trHbN to acquire ligand migration rates comparable to those observed for Mt-trHbO, confirming that ligand migration is regulated by the internal tunnel architecture as well as by water molecules stabilized in the active site.

  4. Evolution of Excited Convective Cells in Plasmas

    DEFF Research Database (Denmark)

    Pécseli, Hans; Juul Rasmussen, Jens; Sugai, H.

    1984-01-01

    Convective cells are excited externally in a fully ionized magnetized plasma and their space-time evolution is investigated by two-dimensional potential measurements. A positive cell is excited externally by control of the end losses in the 'scrape off' layer of a plasma column produced by surface...

  5. Spin-dependent rectification in the C59N molecule

    Indian Academy of Sciences (India)

    2013-02-05

    Feb 5, 2013 ... Spin-dependent electron transport; C60 molecule; C59N molecule; rectification effect; tunnel magnetoresistance. PACS Nos 72.25.−b; 72.80.Rj; 73.40.Ei. 1. Introduction. The azafullerene, C59N, represents an exciting addition to the family of fullerene deriva- tives. In this molecule, a single carbon atom of ...

  6. Vibrationally coupled electron transport through single-molecule junctions

    Energy Technology Data Exchange (ETDEWEB)

    Haertle, Rainer

    2012-04-26

    Single-molecule junctions are among the smallest electric circuits. They consist of a molecule that is bound to a left and a right electrode. With such a molecular nanocontact, the flow of electrical currents through a single molecule can be studied and controlled. Experiments on single-molecule junctions show that a single molecule carries electrical currents that can even be in the microampere regime. Thereby, a number of transport phenomena have been observed, such as, for example, diode- or transistor-like behavior, negative differential resistance and conductance switching. An objective of this field, which is commonly referred to as molecular electronics, is to relate these transport phenomena to the properties of the molecule in the contact. To this end, theoretical model calculations are employed, which facilitate an understanding of the underlying transport processes and mechanisms. Thereby, one has to take into account that molecules are flexible structures, which respond to a change of their charge state by a profound reorganization of their geometrical structure or may even dissociate. It is thus important to understand the interrelation between the vibrational degrees of freedom of a singlemolecule junction and the electrical current flowing through the contact. In this thesis, we investigate vibrational effects in electron transport through singlemolecule junctions. For these studies, we calculate and analyze transport characteristics of both generic and first-principles based model systems of a molecular contact. To this end, we employ a master equation and a nonequilibrium Green's function approach. Both methods are suitable to describe this nonequilibrium transport problem and treat the interactions of the tunneling electrons on the molecular bridge non-perturbatively. This is particularly important with respect to the vibrational degrees of freedom, which may strongly interact with the tunneling electrons. We show in detail that the resulting

  7. Photoionization of water molecules by a train of attosecond pulses assisted by a near-infrared laser: delay and polarization control

    Science.gov (United States)

    Martini, Lara; Boll, Diego I. R.; Fojón, Omar A.

    2017-08-01

    Basic reactions involving water molecules are essential to understand the interaction between radiation and the biological tissue because living cells are composed mostly by water. Therefore, the knowledge of ionization of the latter is crucial in many domains of Biology and Physics. So, we study theoretically the photoionization of water molecules by extreme ultraviolet attopulse trains assisted by lasers in the near-infrared range. We use a separable Coulomb-Volkov model in which the temporal evolution of the system can be divided into three stages allowing spatial and temporal separation for the Coulomb and Volkov final state wavefunctions. First, we analyze photoelectron angular distributions for different delays between the attopulse train and the assistant laser field. We compare our results for water and Ne atoms as they belong to the same isoelectronic series. Moreover, we contrast our calculations with previous theoretical and experimental work for Ar atoms due to the similarities of the orbitals involved in the reaction. Second, we study the effect of varying the relative orientations of the attopulse and laser field polarizations and we compare our predictions with other theories and experiments. We expect these studies contribute to the improvement of polarization experiments and the development of the attopulse trains and assistant laser fields technologies. Finally, we hope our work promote progress on the control of the chemical reactivity of water molecules since this could be useful in different fields such as radiobiology and medical physics.

  8. Pretilt angle control of liquid crystal molecules by photoaligned films of azobenzene-containing polyimide with a different content of side-chain

    Science.gov (United States)

    Usami, Kiyoaki; Sakamoto, Kenji; Yokota, Junichiro; Uehara, Yoichi; Ushioda, Sukekatsu

    2008-12-01

    We have investigated the pretilt angle of liquid crystal (LC) molecules induced by photoaligned films of a series of polyimides. The polyimides were random copolymers synthesized from pyromellitic dianhydride and a mixture of 4,4'-diaminoazobenzene and 4-[4'-propylbi(cyclohexan)-4-yl]phenyl 3,5-diaminobenzoate (PBCP-DABA). PBCP-DABA is a diamine to introduce a side-chain structure into polyimide. We found that the pretilt angle of LC molecules can be controlled from 0° to 90° by varying the molar fraction (x) of PBCP-DABA from 0 to 0.5. Defect-free uniform LC alignment was observed for x ≤0.125 and x ≥0.3, but threadlike textures appeared for 0.15≤x≤0.25. Since the interaction between the polyimide backbone structure and the LC molecule may be blocked by relatively dense side-chains, the appearance of threadlike texture is tentatively attributed to weak azimuthal anchoring strength of the photoaligned polyimide films with x ≥0.15.

  9. Relaxation of the excited -(2-hydroxy benzylidene) aniline ...

    Indian Academy of Sciences (India)

    The geometry optimizations and the subsequent frequency calculations of the excited singlet electronic states of the various tautomeric forms of SA molecule were performed with the CIS level of theory. A detail theoretical investigation on the relaxation dynamics of the SA molecule has been presented. Possible explanation ...

  10. Single molecule electronics and devices.

    Science.gov (United States)

    Tsutsui, Makusu; Taniguchi, Masateru

    2012-01-01

    The manufacture of integrated circuits with single-molecule building blocks is a goal of molecular electronics. While research in the past has been limited to bulk experiments on self-assembled monolayers, advances in technology have now enabled us to fabricate single-molecule junctions. This has led to significant progress in understanding electron transport in molecular systems at the single-molecule level and the concomitant emergence of new device concepts. Here, we review recent developments in this field. We summarize the methods currently used to form metal-molecule-metal structures and some single-molecule techniques essential for characterizing molecular junctions such as inelastic electron tunnelling spectroscopy. We then highlight several important achievements, including demonstration of single-molecule diodes, transistors, and switches that make use of electrical, photo, and mechanical stimulation to control the electron transport. We also discuss intriguing issues to be addressed further in the future such as heat and thermoelectric transport in an individual molecule.

  11. Recent progress in electron scattering from atoms and molecules

    Energy Technology Data Exchange (ETDEWEB)

    Brunger, M. J. [Centre for Antimatter-Matter Studies, CAPS, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia and Institute of Mathematical Sciences, University of Malaya, Kuala Lumpur (Malaysia); Buckman, S. J. [Institute of Mathematical Sciences, University of Malaya, Kuala Lumpur, Malaysia and Centre for Antimatter-Matter Studies, AMPL, Australian National University, Canberra, ACT 0200 (Australia); Sullivan, J. P.; Palihawadana, P. [Centre for Antimatter-Matter Studies, AMPL, Australian National University, Canberra, ACT 0200 (Australia); Jones, D. B. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Chiari, L.; Pettifer, Z. [Centre for Antimatter-Matter Studies, CAPS, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Silva, G. B. da [Centre for Antimatter-Matter Studies, CAPS, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia and Universidade Federal de Mato Grosso, Barra do Garças, Mato Grosso (Brazil); Lopes, M. C. A. [Centre for Antimatter-Matter Studies, CAPS, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia and Departamento de Fisica, Universidade Federal de Juiz de Fora, Juiz de Fora, MG (Brazil); Duque, H. V. [Departamento de Fisica, Universidade Federal de Juiz de Fora, Juiz de Fora, MG (Brazil); Masin, Z.; Gorfinkiel, J. D. [Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA (United Kingdom); Garcia, G. [Instituto de Fisica Fundamental, CSIC, Madrid E-28006 (Spain); Hoshino, M.; Tanaka, H. [Department of Physics, Sophia University, Tokyo, 102-8554 (Japan); Limão-Vieira, P. [Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal)

    2014-03-05

    We present and discuss recent results, both experimental and theoretical (where possible), for electron impact excitation of the 3s[3/2 ]{sub 1} and 3s′[1/2 ]{sub 1} electronic states in neon, elastic electron scattering from the structurally similar molecules benzene, pyrazine, and 1,4-dioxane and excitation of the electronic states of the important bio-molecule analogue α-tetrahydrofurfuryl alcohol. While comparison between theoretical and experimental results suggests that benchmarked cross sections for electron scattering from atoms is feasible in the near-term, significant further theoretical development for electron-molecule collisions, particularly in respect to discrete excitation processes, is still required.

  12. Molecule Matters van der Waals Molecules

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 12. Molecule Matters van der Waals Molecules - Noble Gas Clusters are London Molecules! E Arunan. Feature Article Volume 14 Issue 12 December 2009 pp 1210-1222 ...

  13. Vertical Phase Separation in Small Molecule:Polymer Blend Organic Thin Film Transistors Can Be Dynamically Controlled

    KAUST Repository

    Zhao, Kui

    2016-02-03

    © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Blending of small-molecule organic semiconductors (OSCs) with amorphous polymers is known to yield high performance organic thin film transistors (OTFTs). Vertical stratification of the OSC and polymer binder into well-defined layers is crucial in such systems and their vertical order determines whether the coating is compatible with a top and/or a bottom gate OTFT configuration. Here, we investigate the formation of blends prepared via spin-coating in conditions which yield bilayer and trilayer stratifications. We use a combination of in situ experimental and computational tools to study the competing effects of formulation thermodynamics and process kinetics in mediating the final vertical stratification. It is shown that trilayer stratification (OSC/polymer/OSC) is the thermodynamically favored configuration and that formation of the buried OSC layer can be kinetically inhibited in certain conditions of spin-coating, resulting in a bilayer stack instead. The analysis reveals here that preferential loss of the OSC, combined with early aggregation of the polymer phase due to rapid drying, inhibit the formation of the buried OSC layer. The fluid dynamics and drying kinetics are then moderated during spin-coating to promote trilayer stratification with a high quality buried OSC layer which yields unusually high mobility >2 cm2 V-1 s-1 in the bottom-gate top-contact configuration.

  14. B-cell receptor-associated protein 31 regulates human embryonic stem cell adhesion, stemness, and survival via control of epithelial cell adhesion molecule.

    Science.gov (United States)

    Kim, Won-Tae; Seo Choi, Hong; Min Lee, Hyun; Jang, Young-Joo; Ryu, Chun Jeih

    2014-10-01

    B-Cell receptor-associated protein 31 (BAP31) regulates the export of secreted membrane proteins from the endoplasmic reticulum (ER) to the downstream secretory pathway. Previously, we generated a monoclonal antibody 297-D4 against the surface molecule on undifferentiated human embryonic stem cells (hESCs). Here, we found that 297-D4 antigen was localized to pluripotent hESCs and downregulated during early differentiation of hESCs and identified that the antigen target of 297-D4 was BAP31 on the hESC-surface. To investigate the functional role of BAP31 in hESCs, BAP31 expression was knocked down by small interfering RNA. BAP31 depletion impaired hESC self-renewal and pluripotency and drove hESC differentiation into multicell lineages. BAP31 depletion hindered hESC proliferation by arresting cell cycle at G0/G1 phase and inducing caspase-independent cell death. Interestingly, BAP31 depletion reduced hESC adhesion to extracellular matrix (ECM). Analysis of cell surface molecules showed decreased expression of epithelial cell adhesion molecule (EpCAM) in BAP31-depleted hESCs, while ectopic expression of BAP31 elevated the expression of EpCAM. EpCAM depletion also reduced hESC adhesion to ECM, arrested cell cycle at G0/G1 phase and induced cell death, producing similar effects to those of BAP31 depletion. BAP31 and EpCAM were physically associated and colocalized at the ER and cell surface. Both BAP31 and EpCAM depletion decreased cyclin D1 and E expression and suppressed PI3K/Akt signaling, suggesting that BAP31 regulates hESC stemness and survival via control of EpCAM expression. These findings provide, for the first time, mechanistic insights into how BAP31 regulates hESC stemness and survival via control of EpCAM expression. © 2014 AlphaMed Press.

  15. EDITORIAL: Focus on Cold and Ultracold Molecules FOCUS ON COLD AND ULTRACOLD MOLECULES

    Science.gov (United States)

    Carr, Lincoln D.; Ye, Jun

    2009-05-01

    Cold and ultracold molecules are the next wave of ultracold physics, giving rise to an exciting array of scientific opportunities, including many body physics for novel quantum phase transitions, new states of matter, and quantum information processing. Precision tests of fundamental physical laws benefit from the existence of molecular internal structure with exquisite control. The study of novel collision and reaction dynamics will open a new chapter of quantum chemistry. Cold molecules bring together researchers from a variety of fields, including atomic, molecular, and optical physics, chemistry and chemical physics, quantum information science and quantum simulations, condensed matter physics, nuclear physics, and astrophysics, a truly remarkable synergy of scientific explorations. For the past decade there have been steady advances in direct cooling techniques, from buffer-gas cooling to cold molecular beams to electro- and magneto-molecular decelerators. These techniques have allowed a large variety of molecules to be cooled for pioneering studies. Recent amazing advances in experimental techniques combining the ultracold and the ultraprecise have furthermore brought molecules to the point of quantum degeneracy. These latter indirect cooling techniques magnetically associate atoms from a Bose-Einstein condensate and/or a quantum degenerate Fermi gas, transferring at 90% efficiency highly excited Fano-Feshbach molecules, which are on the order of 10 000 Bohr radii in size, to absolute ground state molecules just a few Bohr across. It was this latter advance, together with significant breakthroughs in internal state manipulations, which inspired us to coordinate this focus issue now, and is the reason why we say the next wave of ultracold physics has now arrived. Whether directly or indirectly cooled, heteronuclear polar molecules offer distinct new features in comparison to cold atoms, while sharing all of their advantages (purity, high coherence

  16. Charge-displacement analysis for excited states

    Energy Technology Data Exchange (ETDEWEB)

    Ronca, Enrico, E-mail: enrico@thch.unipg.it; Tarantelli, Francesco, E-mail: francesco.tarantelli@unipg.it [Istituto CNR di Scienze e Tecnologie Molecolari, via Elce di Sotto 8, I-06123 Perugia (Italy); Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, via Elce di Sotto 8, I-06123 Perugia (Italy); Pastore, Mariachiara, E-mail: chiara@thch.unipg.it; Belpassi, Leonardo; De Angelis, Filippo [Istituto CNR di Scienze e Tecnologie Molecolari, via Elce di Sotto 8, I-06123 Perugia (Italy); Angeli, Celestino; Cimiraglia, Renzo [Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Ferrara, via Borsari 46, I-44100 Ferrara (Italy)

    2014-02-07

    We extend the Charge-Displacement (CD) analysis, already successfully employed to describe the nature of intermolecular interactions [L. Belpassi et al., J. Am. Chem. Soc. 132, 13046 (2010)] and various types of controversial chemical bonds [L. Belpassi et al., J. Am. Chem. Soc. 130, 1048 (2008); N. Salvi et al., Chem. Eur. J. 16, 7231 (2010)], to study the charge fluxes accompanying electron excitations, and in particular the all-important charge-transfer (CT) phenomena. We demonstrate the usefulness of the new approach through applications to exemplary excitations in a series of molecules, encompassing various typical situations from valence, to Rydberg, to CT excitations. The CD functions defined along various spatial directions provide a detailed and insightful quantitative picture of the electron displacements taking place.

  17. Excited states 4

    CERN Document Server

    Lim, Edward C

    2013-01-01

    Excited States, Volume 4 is a collection of papers that deals with the excited states of molecular activity. One paper investigates the resonance Raman spectroscopy as the key to vibrational-electronic coupling. This paper reviews the basic theory of Raman scattering; it also explains the derivation of the Raman spectra, excitation profiles, and depolarization ratios for simple resonance systems. Another paper reviews the magnetic properties of triplet states, including the zero-field resonance techniques, the high-field experiments, and the spin Hamiltonian. This paper focuses on the magnetic

  18. Nuclear expansion with excitation

    Energy Technology Data Exchange (ETDEWEB)

    De, J.N. [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Departament d' Estructura i Constituents de la Materia, Facultat de Fisica, Universitat de Barcelona, Diagonal 647, 08028 Barcelona (Spain); Samaddar, S.K. [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Vinas, X. [Departament d' Estructura i Constituents de la Materia, Facultat de Fisica, Universitat de Barcelona, Diagonal 647, 08028 Barcelona (Spain); Centelles, M. [Departament d' Estructura i Constituents de la Materia, Facultat de Fisica, Universitat de Barcelona, Diagonal 647, 08028 Barcelona (Spain)]. E-mail: mario@ecm.ub.es

    2006-07-06

    The expansion of an isolated hot spherical nucleus with excitation energy and its caloric curve are studied in a thermodynamic model with the SkM{sup *} force as the nuclear effective two-body interaction. The calted results are shown to compare well with the recent experimental data from energetic nuclear collisions. The fluctuations in temperature and density are also studied. They are seen to build up very rapidly beyond an excitation energy of {approx}9 MeV/u. Volume-conserving quadrupole deformation in addition to expansion indicates, however, nuclear disassembly above an excitation energy of {approx}4 MeV/u.

  19. Exotic helium molecules; Molecules exotiques d'helium

    Energy Technology Data Exchange (ETDEWEB)

    Portier, M

    2007-12-15

    We study the photo-association of an ultracold cloud of magnetically trapped helium atoms: pairs of colliding atoms interact with one or two laser fields to produce a purely long range {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}P{sub 0}) molecule, or a {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}S{sub 1}) long range molecule. Light shifts in one photon photo-association spectra are measured and studied as a function of the laser polarization and intensity, and the vibrational state of the excited molecule. They result from the light-induced coupling between the excited molecule, and bound and scattering states of the interaction between two metastable atoms. Their analysis leads to the determination of the scattering length a = (7.2 {+-} 0.6) ruling collisions between spin polarized atoms. The two photon photo-association spectra show evidence of the production of polarized, long-range {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}S{sub 1}) molecules. They are said to be exotic as they are made of two metastable atoms, each one carrying a enough energy to ionize the other. The corresponding lineshapes are calculated and decomposed in sums and products of Breit-Wigner and Fano profiles associated to one and two photon processes. The experimental spectra are fit, and an intrinsic lifetime {tau} = (1.4 {+-} 0.3) {mu}s is deduced. It is checked whether this lifetime could be limited by spin-dipole induced Penning autoionization. This interpretation requires that there is a quasi-bound state close to the dissociation threshold in the singlet interaction potential between metastable helium atoms for the theory to match the experiment. (author)

  20. Ultracold molecule assembly with photonic crystals

    Science.gov (United States)

    Pérez-Ríos, Jesús; Kim, May E.; Hung, Chen-Lung

    2017-12-01

    Photoassociation (PA) is a powerful technique to synthesize molecules directly and continuously from cold and ultracold atoms into deeply bound molecular states. In freespace, however, PA efficiency is constrained by the number of spontaneous decay channels linking the initial excited molecular state to a sea of final (meta)stable rovibronic levels. Here, we propose a novel scheme based on molecules strongly coupled to a guided photonic mode in a photonic crystal waveguide that turns PA into a powerful tool for near deterministic formation of ultracold molecules in their ground rovibrational level. Our example shows a potential ground state molecule production efficiency > 90 % , and a saturation rate > {10}6 molecules per second. By combining state-of-the-art cold atomic and molecular physics with nanophotonic engineering, our scheme presents a novel experimental package for trapping, cooling, and optically manipulating ultracold molecules, thus opening up new possibilities in the direction of ultracold chemistry and quantum information.

  1. Implantation of Perylene Molecules into Glass Plates through a Water Layer Using a Laser Induced Molecular Micro-Jet

    Science.gov (United States)

    Goto, Masahiro; Pihosh, Yuriy; Kasahara, Akira; Tosa, Masahiro

    2006-09-01

    Perylene molecules have been successfully implanted onto borosilicate glass plates, forming fluorescent features of 420 nm in diameter, using a method involving laser induced molecular micro-jet ejection through a water layer. The technique utilises a polymer source film in which perylene molecules are dispersed, a borosilicate glass substrate as a target and a pulsed laser. The space gap between the source film and the target is filled with liquid water. Perylene molecules dispersed in the polymer source films are photo-excited using 4-ns laser pulses resulting in the ejection of the molecules from the source matrix after which they become implanted into the target after passing through the water layer. This new advanced implantation method, using a laser induced molecular micro-jet through water, gives fine spatial control for fixing functional organic molecules in a designated region on hard dielectric materials and will have application in the fabrication of molecular devices, molecular sensors, and opto-electronics.

  2. Dynamical analysis of highly excited molecular spectra

    Energy Technology Data Exchange (ETDEWEB)

    Kellman, M.E. [Univ. of Oregon, Eugene (United States)

    1993-12-01

    The goal of this program is new methods for analysis of spectra and dynamics of highly excited vibrational states of molecules. In these systems, strong mode coupling and anharmonicity give rise to complicated classical dynamics, and make the simple normal modes analysis unsatisfactory. New methods of spectral analysis, pattern recognition, and assignment are sought using techniques of nonlinear dynamics including bifurcation theory, phase space classification, and quantization of phase space structures. The emphasis is chaotic systems and systems with many degrees of freedom.

  3. Effects of road transportation on excitability scores of pigs ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-02-08

    Feb 8, 2010 ... excitability scores of pigs administered ascorbic acid (AA) during the hot-dry season in Northern ... pigs (40.0 to 10%). Road transportation decreased the excitability scores and percent excitability in control pigs with high scores. In conclusion ..... temperature in large white Caribbean Creole growing pigs.

  4. Excitation Dynamics and Relaxation in a Molecular Heterodimer

    CERN Document Server

    Balevicius, V; Abramavicius, D; Mancal, T; Valkunas, L

    2011-01-01

    The exciton dynamics in a molecular heterodimer is studied as a function of differences in excitation and reorganization energies, asymmetry in transition dipole moments and excited state lifetimes. The heterodimer is composed of two molecules modeled as two-level systems coupled by the resonance interaction. The system-bath coupling is taken into account as a modulating factor of the energy gap of the molecular excitation, while the relaxation to the ground state is treated phenomenologically. Comparison of the description of the excitation dynamics modeled using either the Redfield equations (secular and full forms) or the Hierarchical quantum master equation (HQME) is demonstrated and discussed. Possible role of the dimer as an excitation quenching center in photosynthesis self-regulation is discussed. It is concluded that the system-bath interaction rather than the excitonic effect determines the excitation quenching ability of such a dimer.

  5. Terahertz pulse shaping through propagation in a gas of symmetric top molecules

    Science.gov (United States)

    Hamraoui, K.; Babilotte, P.; Billard, F.; Hertz, E.; Faucher, O.; Coudert, L. H.; Sugny, D.; Lavorel, B.

    2017-10-01

    Symmetric top molecules of methyl iodide are irradiated with a terahertz pulse generated by a two-color plasma and shaped by a short propagation in air. Free-induction decay is emitted by the excited molecular sample and then propagates in air before detection. The experimental data show that the input terahertz (THz) pulse undergoes strong reshaping through absorption and dispersion. This leads to narrow wave packets at revival times due to the excitation of high rotational energy levels. Typically, a THz burst of duration ≃15 -20 ps is produced periodically, with a central frequency of ≃1 THz and a width that can be as narrow as 60-80 GHz. Pulse shaping based on propagation can be useful for quantum control in molecules. We provide a theoretical description of this wave propagation based on the Maxwell-Bloch equation. The observed experimental signal is in good agreement with the numerical simulations.

  6. Shape-Controlled Generation of Gold Nanoparticles Assisted by Dual-Molecules: The Development of Hydrogen Peroxide and Oxidase-Based Biosensors

    Directory of Open Access Journals (Sweden)

    Chifang Peng

    2014-01-01

    Full Text Available With the assist of dual-molecules, 2-(N-morpholinoethanesulfonic acid (MES and sodium citrate, gold nanoparticles (GNPs with different shapes can be generated in the H2O2-mediated reduction of chloroauric acid. This one-pot reaction can be employed to sensitively detect H2O2, probe substrates or enzymes in oxidase-based reactions as well as prepare branched GNPs controllably. By the “naked eye,” 20 μM H2O2, 0.1 μM glucose, and 0.26 U/mL catalase could be differentiated, respectively. By spectrophotometer, the detected limits of H2O2, glucose, and catalase were 1.0 μM, 0.01 μM, and 0.03 U/mL, respectively, and the detection linear ranges for them were 5.0–400 μM, 0.01–0.3 mM, and 0.03–0.78 U/mL, respectively. The proposed “dual-molecules assist” strategy probably paves a new way for the fabrication of nanosensors based on the growth of anisotropic metal nanoparticles, and the developed catalase sensor can probably be utilized to fabricate ultrasensitive ELISA methods for various analytes.

  7. Altered Expression Patterns of Inflammation-Associated and Trophic Molecules in Substantia Nigra and Striatum Brain Samples from Parkinson's Disease, Incidental Lewy Body Disease and Normal Control Cases.

    Science.gov (United States)

    Walker, Douglas G; Lue, Lih-Fen; Serrano, Geidy; Adler, Charles H; Caviness, John N; Sue, Lucia I; Beach, Thomas G

    2015-01-01

    Evidence of inflammation has been consistently associated with pathology in Parkinson's disease (PD)-affected brains, and has been suggested as a causative factor. Dopaminergic neurons in the substantia nigra (SN) pars compacta, whose loss results in the clinical symptoms associated with PD, are particularly susceptible to inflammatory damage and oxidative stress. Inflammation in the striatum, where SN dopaminergic neurons project, is also a feature of PD brains. It is not known whether inflammatory changes occur first in striatum or SN. Many animal models of PD have implicated certain inflammatory molecules with dopaminergic cell neuronal loss; however, there have been few studies to validate these findings by measuring the levels of these and other inflammatory factors in human PD brain samples. This study also included samples from incidental Lewy body disease (ILBD) cases, since ILBD is considered a non-symptomatic precursor to PD, with subjects having significant loss of tyrosine hydroxylase-producing neurons. We hypothesized that there may be a progressive change in key inflammatory factors in ILBD samples intermediate between neurologically normal and PD. To address this, we used a quantitative antibody-array platform (Raybiotech-Quantibody arrays) to measure the levels of 160 different inflammation-associated cytokines, chemokines, growth factors, and related molecules in extracts of SN and striatum from clinically and neuropathologically characterized PD, ILBD, and normal control cases. Patterns of changes in inflammation and related molecules were distinctly different between SN and striatum. Our results showed significantly different levels of interleukin (IL)-5, IL-15, monokine induced by gamma interferon, and IL-6 soluble receptor in SN between disease groups. A different panel of 13 proteins with significant changes in striatum, with IL-15 as the common feature, was identified. Although the ability to detect some proteins was limited by sensitivity

  8. Controlling electron and energy transfer paths by selective excitation in a zinc porphyrin-BODIPY-C60 multi-modular triad.

    Science.gov (United States)

    Obondi, Christopher O; Lim, Gary N; Martinez, Priscilla; Swamy, Varghese; D'Souza, Francis

    2017-11-23

    A multi-modular donor-acceptor triad composed of zinc porphyrin, BF2-chelated dipyrromethene (BODIPY), and C60 was newly synthesized, with the BODIPY entity at the central position. Using absorbance and emission spectral, electrochemical redox, and computational optimization results, energy level diagrams for the ZnP-BODIPY dyad and ZnP-BODIPY-C60 triad were constructed to envision the different photochemical events upon selective excitation of the BODIPY and ZnP entities. By transient absorption spectral studies covering a wide femtosecond-to-millisecond time scale, evidence for the different photochemical events and their kinetic information was secured. Efficient singlet-singlet energy transfer from 1BODIPY* to ZnP with a rate constant kENT = 1.7 × 1010 s-1 in toluene was observed in the case of the ZnP-BODIPY dyad. Interestingly, in the case of the ZnP-BODIPY-C60 triad, the selective excitation of ZnP resulted in electron transfer leading to the formation of the ZnP˙+-BODIPY-C60˙- charge-separated state. Owing to the distal separation of the radical cation and radical anion species (edge-to-edge distance of 18.7 Å), the radical ion-pair persisted for microseconds. By contrast, the selective excitation of BODIPY resulted in an ultrafast energy transfer to yield ZnP-BODIPY-1C60* as the major product. The 1C60* populated the low-lying 3C60* via intersystem crossing prior to returning to the ground state. The present study successfully demonstrates the importance of supramolecular geometry and selection of excitation wavelength in regulating the different photoprocesses.

  9. Molecular excitations: a new way to detect Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Va' vra, J.

    2014-09-01

    We believe that the Dark Matter (DM) search should be expanded into the domain of detectors sensitive to molecular excitations, and so that we should create detectors which are more sensitive to collisions with very light WIMPs. In this paper we investigate in detail diatomic molecules, such as fused silica material with large OH-molecule content, and water molecules. Presently, we do not have suitable low-cost IR detectors to observe single photons, however some OH-molecular excitations extend to visible and UV wavelengths and can be measured by bialkali photocathodes. There are many other chemical substances with diatomic molecules, or more complex oil molecules, which could be also investigated. This idea invites searches in experiments having large target volumes of such materials coupled to a large array of single-photon detectors with bialkali or infrared-sensitive photocathodes.

  10. Molecular excitations: a new way to detect Dark Matter

    Directory of Open Access Journals (Sweden)

    J. Va'vra

    2014-09-01

    Full Text Available We believe that the Dark Matter (DM search should be expanded into the domain of detectors sensitive to molecular excitations, and so that we should create detectors which are more sensitive to collisions with very light WIMPs. In this paper we investigate in detail diatomic molecules, such as fused silica material with large OH-molecule content, and water molecules. Presently, we do not have suitable low-cost IR detectors to observe single photons, however some OH-molecular excitations extend to visible and UV wavelengths and can be measured by bialkali photocathodes. There are many other chemical substances with diatomic molecules, or more complex oil molecules, which could be also investigated. This idea invites searches in experiments having large target volumes of such materials coupled to a large array of single-photon detectors with bialkali or infrared-sensitive photocathodes.

  11. Photothermal cantilever actuation for fast single-molecule force spectroscopy.

    Science.gov (United States)

    Stahl, Stefan W; Puchner, Elias M; Gaub, Hermann E

    2009-07-01

    Photothermal cantilever excitation provides a fast and easy to implement means to control the deflection of standard atomic force microscopy cantilevers. Minute heat pulses yield deflections on the order of several tens of nanometers or when the deflection is kept constant, forces of several hundreds of piconewton can be applied. In our case these pulses resulted in less than 1 K temperature changes at the sample position. Here we present and characterize the implementation of photothermal actuation for single-molecule force-spectroscopy experiments. When molecules are stretched under force-clamp conditions, fast control cycles that re-establish the pulling force after the rupture of molecular domains are essential for detecting the complete unfolding pattern with high precision. By combining the fast response of photothermal cantilever excitation with a conventional piezoactuator, a fast force-clamp with high accuracy and large working distances is reached. Simple feedback mechanisms and standard cantilever geometries lead to step response times of less than 90 micros, which is more than one order of magnitude faster than those of conventional force-clamp systems that are based only on piezo feedback. We demonstrate the fast and accurate performance of the setup by unfolding a protein construct consisting of one green fluorescent protein and eight surrounding immunoglobulin domains at constant force.

  12. EZH2 modulates the DNA methylome and controls T cell adhesion through junctional adhesion molecule-A in lupus patients.

    Science.gov (United States)

    Tsou, Pei-Suen; Coit, Patrick; Kilian, Nathan C; Sawalha, Amr H

    2017-10-03

    EZH2 is an epigenetic regulator that mediates H3K27 trimethylation and modulates DNA methylation. The aim of this study is to characterize the role of EZH2 in CD4+ T cells upon lupus pathogenesis. EZH2 expression levels were determined in CD4+ T cells isolated from lupus patients and healthy controls. The epigenetic effects of EZH2 overexpression in CD4+ T cells were evaluated using a genome-wide DNA methylation approach. Gene expression and miRNAs were assessed by qPCR while protein expression was examined by Western blotting. A cell adhesion assay was used to assess adhesion of CD4+ T cells to human microvascular endothelial cells. EZH2 and H3K27me3 levels were increased in CD4+ T cells in lupus compared to healthy controls. MiR-26a and miR-101 downregulated EZH2, and were reduced in lupus CD4+ T cells. Overexpressing EZH2 in CD4+ T cells resulted in significant DNA methylation changes. Genes involved in leukocyte adhesion and migration, including F11R encoding JAM-A, become hypomethylated in CD4+ T cells when EZH2 is overexpressed. Overexpression of EZH2 resulted in increased JAM-A expression and CD4+ T cell adhesion. Pre-incubation of EZH2-transfected CD4+ T cells with neutralizing antibodies against JAM-A significantly blunted cell adhesion. Similarly, CD4+ T cells from lupus patients overexpressed JAM-A and adhered significantly more to endothelial cells compared to T cells from healthy controls. Blocking JAM-A or EZH2 significantly reduced endothelial cell adhesion of lupus CD4+ T cells. We identified a novel role for EZH2 in T cell adhesion mediated by epigenetic remodeling and upregulation of JAM-A. Blocking EZH2 or JAM-A might have a therapeutic potential in lupus by reducing T cell adhesion, migration, and extravasation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Ultra-short strong excitation of two-level systems

    Science.gov (United States)

    Jha, Pankaj K.; Eleuch, Hichem; Grazioso, Fabio

    2014-11-01

    We present a model describing the use of ultra-short strong pulses to control the population of the excited level of a two-level quantum system. In particular, we study an off-resonance excitation with a few cycles pulse which presents a smooth phase jump i.e. a change of the pulse's phase which is not step-like, but happens over a finite time interval. A numerical solution is given for the time-dependent probability amplitude of the excited level. The control of the excited level's population is obtained acting on the shape of the phase transient, and other parameters of the excitation pulse.

  14. Wave-packet dynamics in alkaline dimers. Investigation and control through coherent excitation with fs-pulses; Wellenpaketdynamik in Alkali-Dimeren. Untersuchung und Steuerung durch kohaerente Anregung mit fs-Pulsen

    Energy Technology Data Exchange (ETDEWEB)

    Sauer, F.N.B.

    2007-07-01

    During my PhD thesis I investigated alkaline dimers with coherent control in a molecular beam as well as with pump-probe spectroscopy in a magneto-optical trap (MOT). The aim of the coherent control experiments were the isotope selective ionization with phase- and amplitude-shaped fs-pulses. Chapter 4 described the gained results of isotope selective ionization of NaK and KRb in a molecular beam by using different pulse formers. For the NaK dimer was the reached optimization factor R{sub Ph} and {sub Ampl}{sup 770}=R{sub max}/R{sub min}=25 between maximization and minimization of the isotopomer ratio ({sup 23}Na{sup 39}K){sup +}/({sup 23}Na{sup 41}K){sup +} with phase and amplitude modulation of the fs-pulse with a central wavelength of {lambda}=770 nm. From the electronic ground-state X(1){sup 1}{sigma}{sup +};{nu}''=0 transfers a one-photon-excitation population in the first excited A(2) {sup 1}{sigma}{sup +} state. The coherent control experiment on KRb was used to maximize and minimize the isotopomer ratio ({sup 124}KRb){sup +}/({sup 126}KRb){sup +}. It was the first coherent control experiment with a spectral resolution of 1.84 cm{sup -1}/Pixel. For the phase and amplitude optimization was the received optimization factor between minimization and maximization of the isotopomer ratio R{sub Ph} and {sub Ampl}=R{sub max}/R{sub min}=7 at a central wavelength of 840 nm. The results showed a stepwise excitation process from the electronic ground-state in the first excited (2){sup 1}{sigma}{sup +} state with a further excitation, that is possible over three resonant energy potential curves into the ionic ground-state. In the second part of my thesis I realized pump-probe spectroscopy of Rb{sub 2} dimers in a dark SPOT. (orig.)

  15. Highly Efficient Electronic Sensitization of Non-oxidized Graphene Flakes on Controlled Pore-loaded WO3 Nanofibers for Selective Detection of H2S Molecules

    Science.gov (United States)

    Choi, Seon–Jin; Choi, Chanyong; Kim, Sang-Joon; Cho, Hee-Jin; Hakim, Meggie; Jeon, Seokwoo; Kim, Il–Doo

    2015-01-01

    Tailoring of semiconducting metal oxide nanostructures, which possess controlled pore size and concentration, is of great value to accurately detect various volatile organic compounds in exhaled breath, which act as potential biomarkers for many health conditions. In this work, we have developed a very simple and robust route for controlling both the size and distribution of spherical pores in electrospun WO3 nanofibers (NFs) via a sacrificial templating route using polystyrene colloids with different diameters (200 nm and 500 nm). A tentacle-like structure with randomly distributed pores on the surface of electrospun WO3 NFs were achieved, which exhibited improved surface area as well as porosity. Porous WO3 NFs with enhanced surface area exhibited high gas response (Rair/Rgas = 43.1 at 5 ppm) towards small and light H2S molecules. In contrast, porous WO3 NFs with maximized pore diameter showed a high response (Rair/Rgas = 2.8 at 5 ppm) towards large and heavy acetone molecules. Further enhanced sensing performance (Rair/Rgas = 65.6 at 5 ppm H2S) was achieved by functionalizing porous WO3 NFs with 0.1 wt% non-oxidized graphene (NOGR) flakes by forming a Schottky barrier (ΔΦ = 0.11) at the junction between the WO3 NFs (Φ = 4.56 eV) and NOGR flakes (Φ = 4.67 eV), which showed high potential for the diagnosis of halitosis. PMID:25626399

  16. Development of entomotoxic molecules as control agents: illustration of some protein potential uses and limits of lectins (Review

    Directory of Open Access Journals (Sweden)

    Jaber, K.

    2010-01-01

    Full Text Available Worldwide use of pesticide has dramatically increased during the last two decades, which are known to cause a lot of problems to both environment and human health. Due to the harmful effects of insecticide on environment, human health, non target organism, water pollution and increasing insect resistance, recent efforts have been made to reduce broad spectrum of toxicant added to the environment. It is necessary to balance agricultural needs with environmental and health issues when using insecticides. Currently, the use of entomotoxic proteins has been increased because of the growing need to obtain better food quality and to protect the environment. Bt toxins derived from bacteria, Bacillus thuringiensis (Bt the main commercial genetically modified organism (GMO, or entomotoxic product were successfully used against a range of insect orders such as Lepidoptera, Coleoptera and Diptera. In recent years, several investigations were focused on other entomotoxic potential, including products based on some defense proteins present in plants. Among them some classes of proteins such as digestive enzyme inhibitors and lectins showed greater potential for exploitation in transgenic-based pest control strategies. Currently, some lectins from plant and fungal origin were successfully used against a wide range of important insect pests.

  17. Brief reports: Controlling the survival of human pluripotent stem cells by small molecule-based targeting of topoisomerase II alpha.

    Science.gov (United States)

    Ben-David, Uri; Cowell, Ian G; Austin, Caroline A; Benvenisty, Nissim

    2015-03-01

    Pluripotent-specific inhibitors (PluriSIns) make a powerful tool to study the mechanisms controlling the survival of human pluripotent stem cells (hPSCs). Here, we characterize the mechanism of action of PluriSIn#2, a compound that selectively eliminates undifferentiated hPSCs, while sparing various other cell types derived from them. Toxicogenomic analysis predicts this compound to be a topoisomerase inhibitor. Gene expression analyses reveal that one of the human topoisomerase enzymes, topoisomerase II alpha (TOP2A), is uniquely expressed in hPSCs: TOP2A is highly expressed in undifferentiated cells, is downregulated during their differentiation, and its expression depends on the expression of core pluripotency transcription factors. Furthermore, siRNA-based knockdown of TOP2A in undifferentiated hPSCs results in their cell death, revealing that TOP2A expression is required for the survival of these cells. We find that PluriSIn#2 does not directly inhibit TOP2A enzymatic activity, but rather selectively represses its transcription, thereby significantly reducing TOP2A protein levels. As undifferentiated hPSCs require TOP2A activity for their survival, TOP2A inhibition by PluriSIn#2 thus causes their cell death. Therefore, TOP2A dependency can be harnessed for the selective elimination of tumorigenic hPSCs from culture. © 2014 AlphaMed Press.

  18. On the determination of the mean excitation energy of water

    DEFF Research Database (Denmark)

    Sabin, John R.; Oddershede, Jens; Sauer, Stephan P. A.

    2013-01-01

    Water is a ubiquitous substance in nature, and thus the mean excitation energy of water is an important quantity for understanding and prediction of the details of many fast ion/molecule collision processes such as those involved in external beam radiotherapy of tumors. There are several methods ...... for determining numerical values for a mean excitation energy for water, both theoretical and experimental. Here the factors affecting the determination of the value of the mean excitation energy of water, especially from experiment, are discussed.......Water is a ubiquitous substance in nature, and thus the mean excitation energy of water is an important quantity for understanding and prediction of the details of many fast ion/molecule collision processes such as those involved in external beam radiotherapy of tumors. There are several methods...

  19. Fluorescence spectroscopy of single molecules at room temperature and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Taekjip [Univ. of California, Berkeley, CA (United States)

    1996-12-01

    We performed fluorescence spectroscopy of single and pairs of dye molecules on a surface at room temperature. Near field scanning optical microscope (NSOM) and far field scanning optical microscope with multi-color excitation/detection capability were built. The instrument is capable of optical imaging with 100nm resolution and has the sensitivity necessary for single molecule detection. A variety of dynamic events which cannot be observed from an ensemble of molecules is revealed when the molecules are probed one at a time. They include (1) spectral jumps correlated with dark states, (2) individually resolved quantum jumps to and from the meta-stable triplet state, (3) rotational jumps due to desorption/readsorption events of single molecules on the surface. For these studies, a computer controlled optical system which automatically and rapidly locates and performs spectroscopic measurements on single molecules was developed. We also studied the interaction between closely spaced pairs of molecules. In particular, fluorescence resonance energy transfer between a single resonant pair of donor and acceptor molecules was measured. Photodestruction dynamics of the donor or acceptor were used to determine the presence and efficiency of energy transfer Dual molecule spectroscopy was extended to a non-resonant pair of molecules to obtain high resolution differential distance information. By combining NSOM and dual color scheme, we studied the co-localization of parasite proteins and host proteins on a human red blood cell membrane infected with malaria. These dual-molecule techniques can be used to measure distances, relative orientations, and changes in distances/orientations of biological macromolecules with very good spatial, angular and temporal resolutions, hence opening new capabilities in the study of such systems.

  20. Single molecule tracking

    Science.gov (United States)

    Shera, E. Brooks

    1988-01-01

    A detection system is provided for identifying individual particles or molecules having characteristic emission in a flow train of the particles in a flow cell. A position sensitive sensor is located adjacent the flow cell in a position effective to detect the emissions from the particles within the flow cell and to assign spatial and temporal coordinates for the detected emissions. A computer is then enabled to predict spatial and temporal coordinates for the particle in the flow train as a function of a first detected emission. Comparison hardware or software then compares subsequent detected spatial and temporal coordinates with the predicted spatial and temporal coordinates to determine whether subsequently detected emissions originate from a particle in the train of particles. In one embodiment, the particles include fluorescent dyes which are excited to fluoresce a spectrum characteristic of the particular particle. Photones are emitted adjacent at least one microchannel plate sensor to enable spatial and temporal coordinates to be assigned. The effect of comparing detected coordinates with predicted coordinates is to define a moving sample volume which effectively precludes the effects of background emissions.

  1. Molecule Matters van der Waals Molecules

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 7. Molecule Matters van der Waals Molecules - Rg•••HF Complexes are Debye Molecules! E Arunan. Feature Article Volume 15 Issue 7 July 2010 pp 667-674. Fulltext. Click here to view fulltext PDF. Permanent link:

  2. Fluorescence excitation and ultraviolet absorption spectra and theoretical calculations for benzocyclobutane: vibrations and structure of its excited S(1)(π,π(*)) electronic state.

    Science.gov (United States)

    Shin, Hee Won; Ocola, Esther J; Kim, Sunghwan; Laane, Jaan

    2014-01-21

    The fluorescence excitation spectra of jet-cooled benzocyclobutane have been recorded and together with its ultraviolet absorption spectra have been used to assign the vibrational frequencies for this molecule in its S1(π,π(*)) electronic excited state. Theoretical calculations at the CASSCF(6,6)/aug-cc-pVTZ level of theory were carried out to compute the structure of the molecule in its excited state. The calculated structure was compared to that of the molecule in its electronic ground state as well as to the structures of related molecules in their S0 and S1(π,π(*)) electronic states. In each case the decreased π bonding in the electronic excited states results in longer carbon-carbon bonds in the benzene ring. The skeletal vibrational frequencies in the electronic excited state were readily assigned and these were compared to the ground state and to the frequencies of five similar molecules. The vibrational levels in both S0 and S1(π,π(*)) states were remarkably harmonic in contrast to the other bicyclic molecules. The decreases in the frequencies of the out-of-plane skeletal modes reflect the increased floppiness of these bicyclic molecules in their S1(π,π(*)) excited state.

  3. Fluorescence excitation and ultraviolet absorption spectra and theoretical calculations for benzocyclobutane: Vibrations and structure of its excited S{sub 1}(π,π{sup *}) electronic state

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hee Won; Ocola, Esther J.; Laane, Jaan, E-mail: laane@mail.chem.tamu.edu [Department of Chemistry, Texas A and M University, College Station, Texas 77843-3255 (United States); Kim, Sunghwan [National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Department of Health and Human Services, 8600 Rockville Pike, Bethesda, Maryland 20894 (United States)

    2014-01-21

    The fluorescence excitation spectra of jet-cooled benzocyclobutane have been recorded and together with its ultraviolet absorption spectra have been used to assign the vibrational frequencies for this molecule in its S{sub 1}(π,π{sup *}) electronic excited state. Theoretical calculations at the CASSCF(6,6)/aug-cc-pVTZ level of theory were carried out to compute the structure of the molecule in its excited state. The calculated structure was compared to that of the molecule in its electronic ground state as well as to the structures of related molecules in their S{sub 0} and S{sub 1}(π,π{sup *}) electronic states. In each case the decreased π bonding in the electronic excited states results in longer carbon-carbon bonds in the benzene ring. The skeletal vibrational frequencies in the electronic excited state were readily assigned and these were compared to the ground state and to the frequencies of five similar molecules. The vibrational levels in both S{sub 0} and S{sub 1}(π,π{sup *}) states were remarkably harmonic in contrast to the other bicyclic molecules. The decreases in the frequencies of the out-of-plane skeletal modes reflect the increased floppiness of these bicyclic molecules in their S{sub 1}(π,π{sup *}) excited state.

  4. Fluorescence excitation and ultraviolet absorption spectra and theoretical calculations for benzocyclobutane: Vibrations and structure of its excited S1(π,π*) electronic state

    Science.gov (United States)

    Shin, Hee Won; Ocola, Esther J.; Kim, Sunghwan; Laane, Jaan

    2014-01-01

    The fluorescence excitation spectra of jet-cooled benzocyclobutane have been recorded and together with its ultraviolet absorption spectra have been used to assign the vibrational frequencies for this molecule in its S1(π,π*) electronic excited state. Theoretical calculations at the CASSCF(6,6)/aug-cc-pVTZ level of theory were carried out to compute the structure of the molecule in its excited state. The calculated structure was compared to that of the molecule in its electronic ground state as well as to the structures of related molecules in their S0 and S1(π,π*) electronic states. In each case the decreased π bonding in the electronic excited states results in longer carbon-carbon bonds in the benzene ring. The skeletal vibrational frequencies in the electronic excited state were readily assigned and these were compared to the ground state and to the frequencies of five similar molecules. The vibrational levels in both S0 and S1(π,π*) states were remarkably harmonic in contrast to the other bicyclic molecules. The decreases in the frequencies of the out-of-plane skeletal modes reflect the increased floppiness of these bicyclic molecules in their S1(π,π*) excited state. PMID:25669377

  5. Fluorescence excitation and ultraviolet absorption spectra and theoretical calculations for benzocyclobutane: Vibrations and structure of its excited S1(π,π*) electronic state

    Science.gov (United States)

    Shin, Hee Won; Ocola, Esther J.; Kim, Sunghwan; Laane, Jaan

    2014-01-01

    The fluorescence excitation spectra of jet-cooled benzocyclobutane have been recorded and together with its ultraviolet absorption spectra have been used to assign the vibrational frequencies for this molecule in its S1(π,π*) electronic excited state. Theoretical calculations at the CASSCF(6,6)/aug-cc-pVTZ level of theory were carried out to compute the structure of the molecule in its excited state. The calculated structure was compared to that of the molecule in its electronic ground state as well as to the structures of related molecules in their S0 and S1(π,π*) electronic states. In each case the decreased π bonding in the electronic excited states results in longer carbon-carbon bonds in the benzene ring. The skeletal vibrational frequencies in the electronic excited state were readily assigned and these were compared to the ground state and to the frequencies of five similar molecules. The vibrational levels in both S0 and S1(π,π*) states were remarkably harmonic in contrast to the other bicyclic molecules. The decreases in the frequencies of the out-of-plane skeletal modes reflect the increased floppiness of these bicyclic molecules in their S1(π,π*) excited state.

  6. Excitations in organic solids

    CERN Document Server

    Agranovich, Vladimir M

    2009-01-01

    During the last decade our expertise in nanotechnology has advanced considerably. The possibility of incorporating in the same nanostructure different organic and inorganic materials has opened up a promising field of research, and has greatly increased the interest in the study of properties of excitations in organic materials. In this book not only the fundamentals of Frenkel exciton and polariton theory are described, but also the electronic excitations and electronic energytransfers in quantum wells, quantum wires and quantum dots, at surfaces, at interfaces, in thin films, in multilayers,

  7. Vibrational coupling in plasmonic molecules.

    Science.gov (United States)

    Yi, Chongyue; Dongare, Pratiksha D; Su, Man-Nung; Wang, Wenxiao; Chakraborty, Debadi; Wen, Fangfang; Chang, Wei-Shun; Sader, John E; Nordlander, Peter; Halas, Naomi J; Link, Stephan

    2017-10-31

    Plasmon hybridization theory, inspired by molecular orbital theory, has been extremely successful in describing the near-field coupling in clusters of plasmonic nanoparticles, also known as plasmonic molecules. However, the vibrational modes of plasmonic molecules have been virtually unexplored. By designing precisely configured plasmonic molecules of varying complexity and probing them at the individual plasmonic molecule level, intramolecular coupling of acoustic modes, mediated by the underlying substrate, is observed. The strength of this coupling can be manipulated through the configuration of the plasmonic molecules. Surprisingly, classical continuum elastic theory fails to account for the experimental trends, which are well described by a simple coupled oscillator picture that assumes the vibrational coupling is mediated by coherent phonons with low energies. These findings provide a route to the systematic optical control of the gigahertz response of metallic nanostructures, opening the door to new optomechanical device strategies. Published under the PNAS license.

  8. Excitation Methods for Bridge Structures

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, C.R.; Duffy, T.A.; Cornwell, P.J.; Doebling, S.W.

    1999-02-08

    This paper summarizes the various methods that have been used to excited bridge structures during dynamic testing. The excitation methods fall into the general categories of ambient excitation methods and measured-input excitation methods. During ambient excitation the input to the bridge is not directly measured. In contrast, as the category label implies, measured-input excitations are usually applied at a single location where the force input to the structure can be monitored. Issues associated with using these various types of measurements are discussed along with a general description of the various excitation methods.

  9. The silver nanowires synthesized using different molecule weight of polyvinyl pyrrolidone for controlling diameter and length by one-pot polyol method

    Energy Technology Data Exchange (ETDEWEB)

    Junaidi, E-mail: junaidi.1982@fmipa.unila.ac.id [Departement of Physics, Universitas Gadjah Mada, Yogyakarta, 55281 (Indonesia); Departement of Physics, Lampung University, Bandar Lampung (Indonesia); Triyana, K., E-mail: triyana@ugm.ac.id; Suharyadi, E.; Harsojo [Departement of Physics, Universitas Gadjah Mada, Yogyakarta, 55281 (Indonesia); Nanomaterials Research Group, Universitas Gadjah Mada, Yogyakarta, 55281 (Indonesia); Hui, H.; Wu, L. Y. L., E-mail: ylwu@simtech.a-star.edu.sg [Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075 (Singapore)

    2016-06-17

    In this paper, we report our investigation on the effect of the molecular weight and molar ratio of polyvinyl pyrrolidone (PVP) and silver nitrate (AgNO{sub 3}) for controlling diameter and length of the silver nanowires synthesized with a high-aspect-ratio. The silver nanowires synthesized by one-pot polyol method at a constant temperature oil bath of 130°C. Different molecule weights of PVP, i.e. 55 K, 360 K, and 1300 K were used combined with different molar ratios of [PVP:Ag]. The UV–vis spectrophotometry and Field-emission scanning electron microscopy (FE-SEM) were employed to characterize the silver nanowires. The results show that the molecular weight and molar ratio of [PVP:Ag] are very important for controlling growth and properties of the silver nanowires. The diameter and length of silver nanowires are obtained 80 to 140 nm and 30 to 70 µm, respectively. The higher molecular weight of PVP, the greater diameter and length of silver nanowires.

  10. β-Cyclodextrin- and adamantyl-substituted poly(acrylate self-assembling aqueous networks designed for controlled complexation and release of small molecules

    Directory of Open Access Journals (Sweden)

    Liang Yan

    2017-09-01

    Full Text Available Three aqueous self-assembling poly(acrylate networks have been designed to gain insight into the factors controlling the complexation and release of small molecules within them. These networks are formed between 8.8% 6A-(2-aminoethylamino-6A-deoxy-6A-β-cyclodextrin, β-CDen, randomly substituted poly(acrylate, PAAβ-CDen, and one of the 3.3% 1-(2-aminoethylamidoadamantyl, ADen, 3.0% 1-(6-aminohexylamidoadamantyl, ADhn, or 2.9% 1-(12-aminododecylamidoadamantyl, ADddn, randomly substituted poly(acrylates, PAAADen, PAAADhn and PAAADddn, respectively, such that the ratio of β-CDen to adamantyl substituents is ca. 3:1. The variation of the characteristics of the complexation of the dyes methyl red, methyl orange and ethyl orange in these three networks and by β-cyclodextrin, β-CD, and PAAβ-CDen alone provides insight into the factors affecting dye complexation. The rates of release of the dyes through a dialysis membrane from the three aqueous networks show a high dependence on host–guest complexation between the β-CDen substituents and the dyes as well as the structure and the viscosity of the network as shown by ITC, 1H NMR and UV–vis spectroscopy, and rheological studies. Such networks potentially form a basis for the design of controlled drug release systems.

  11. β-Cyclodextrin- and adamantyl-substituted poly(acrylate) self-assembling aqueous networks designed for controlled complexation and release of small molecules.

    Science.gov (United States)

    Yan, Liang; Pham, Duc-Truc; Clements, Philip; Lincoln, Stephen F; Wang, Jie; Guo, Xuhong; Easton, Christopher J

    2017-01-01

    Three aqueous self-assembling poly(acrylate) networks have been designed to gain insight into the factors controlling the complexation and release of small molecules within them. These networks are formed between 8.8% 6(A)-(2-aminoethyl)amino-6(A)-deoxy-6(A)-β-cyclodextrin, β-CDen, randomly substituted poly(acrylate), PAAβ-CDen, and one of the 3.3% 1-(2-aminoethyl)amidoadamantyl, ADen, 3.0% 1-(6-aminohexyl)amidoadamantyl, ADhn, or 2.9% 1-(12-aminododecyl)amidoadamantyl, ADddn, randomly substituted poly(acrylate)s, PAAADen, PAAADhn and PAAADddn, respectively, such that the ratio of β-CDen to adamantyl substituents is ca. 3:1. The variation of the characteristics of the complexation of the dyes methyl red, methyl orange and ethyl orange in these three networks and by β-cyclodextrin, β-CD, and PAAβ-CDen alone provides insight into the factors affecting dye complexation. The rates of release of the dyes through a dialysis membrane from the three aqueous networks show a high dependence on host-guest complexation between the β-CDen substituents and the dyes as well as the structure and the viscosity of the network as shown by ITC, (1)H NMR and UV-vis spectroscopy, and rheological studies. Such networks potentially form a basis for the design of controlled drug release systems.

  12. Accurate Excited State Geometries within Reduced Subspace TDDFT/TDA.

    Science.gov (United States)

    Robinson, David

    2014-12-09

    A method for the calculation of TDDFT/TDA excited state geometries within a reduced subspace of Kohn-Sham orbitals has been implemented and tested. Accurate geometries are found for all of the fluorophore-like molecules tested, with at most all valence occupied orbitals and half of the virtual orbitals included but for some molecules even fewer orbitals. Efficiency gains of between 15 and 30% are found for essentially the same level of accuracy as a standard TDDFT/TDA excited state geometry optimization calculation.

  13. Wideband MEMS Resonator Using Multifrequency Excitation

    KAUST Repository

    Jaber, Nizar

    2016-03-09

    We demonstrate the excitation of combination resonances of additive and subtractive types and their exploitations to realize a large bandwidth micro-machined resonator of large amplitude even at higher harmonic modes of vibrations. The investigation is conducted on a Microelectromechanical systems (MEMS) clamped-clamped microbeam fabricated using polyimide as a structural layer coated with nickel from top and chromium and gold layers from bottom. The microbeam is excited by a two-source harmonic excitation, where the first frequency source is swept around the targeted resonance (first or third mode of vibration) while the second source frequency is kept fixed. We report for the first time a large bandwidth and large amplitude response near the higher order modes of vibration. Also, we show that by properly tuning the frequency and amplitude of the excitation force, the frequency bandwidth of the resonator is controlled.

  14. Radiochemical quality control of phenobarbital, oxamniquine, amantadine and thalidomide molecules labelled with Technetium-99m; Controle de qualidade radioquimico das moleculas de fenobarbital, oxamniquine, amantadina e talidomida marcadas com tecnecio-99m

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Marcia B.N. de; Correa, Rosane C.M.S.; Bernardo-Filho, Mario [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Inst. de Biologia. Dept. de Biofisica e Biometria

    1996-07-01

    The quality control of radiopharmaceuticals is very important. When it is not carried out in can cause problems to the patient, as the necessity of the repetition of the examination and/or misinterpretation of the scintigraphic images. The chromatographic methods have good acceptance and can be used in paper, instant thin-layer chromatography and in gel. In this paper we show the chromatographic techniques applied to molecules labeled with technitium-99m (oxamniquine, phenobarbital, amantadine and thalidomide) used for research in our laboratory. (author)

  15. Sub-diffraction positioning of a two-photon excited and optically trapped quantum dot

    DEFF Research Database (Denmark)

    Pedersen, Liselotte Jauffred; Kyrsting, Anders Højbo; Christensen, Eva Arnspang

    2014-01-01

    Colloidal quantum dots are luminescent long-lived probes that can be two-photon excited and manipulated by a single laser beam. Therefore, quantum dots can be used for simultaneous single molecule visualization and force manipulation using an infra-red laser. Here, we show that even a single...... two-photon absorption likely. This is in accordance with the observation that a trapped quantum dot is only fluorescing 5-10 percent of the time. The results are important for realizing nano-scale quantum dot control and visualization and for correct interpretation of experiments using two...

  16. Positron excitation of neon

    Science.gov (United States)

    Parcell, L. A.; Mceachran, R. P.; Stauffer, A. D.

    1990-01-01

    The differential and total cross section for the excitation of the 3s1P10 and 3p1P1 states of neon by positron impact were calculated using a distorted-wave approximation. The results agree well with experimental conclusions.

  17. Hardness and excitation energy

    Indian Academy of Sciences (India)

    It is shown that the first excitation energy can be given by the Kohn-Sham hardness (i.e. the energy difference of the ground-state lowest unoccupied and highest occupied levels) plus an extra term coming from the partial derivative of the ensemble exchange-correlation energy with respect to the weighting factor in the ...

  18. Excitation of Stellar Pulsations

    DEFF Research Database (Denmark)

    Houdek, G.

    2012-01-01

    In this review I present an overview of our current understanding of the physical mechanisms that are responsible for the excitation of pulsations in stars with surface convection zones. These are typically cooler stars such as the δ Scuti stars, and stars supporting solar-like oscillations....

  19. Spectroscopic and Raman excitation profile studies of 3-benzoylpyridine

    Science.gov (United States)

    Sett, Pinaky; Datta, Shirsendu; Chowdhury, Joydeep; Ghosh, Manash; Mallick, Prabal Kumar

    2017-07-01

    In the present work IR, UV absorption and Raman spectra including Raman excitation profiles and structure of 3-benzoyl pyridine have been investigated. Detailed studies on the vibrational and electronic properties of the molecule have been carried out. All these studies are aided with valuable quantum chemical calculations. The structural changes encountered on excitation to the low lying excited states have been investigated. Theoretical profiles determined by the sum-over-states method based on pertinent Franck-Condon and Herzberg-Teller terms have satisfactorily simulated the experimentally measured relative Raman intensities and these are also in compliance with the structural changes and potential energy distributions.

  20. Room temperature excitation spectroscopy of single quantum dots

    Directory of Open Access Journals (Sweden)

    Christian Blum

    2011-08-01

    Full Text Available We report a single molecule detection scheme to investigate excitation spectra of single emitters at room temperature. We demonstrate the potential of single emitter photoluminescence excitation spectroscopy by recording excitation spectra of single CdSe nanocrystals over a wide spectral range of 100 nm. The spectra exhibit emission intermittency, characteristic of single emitters. We observe large variations in the spectra close to the band edge, which represent the individual heterogeneity of the observed quantum dots. We also find specific excitation wavelengths for which the single quantum dots analyzed show an increased propensity for a transition to a long-lived dark state. We expect that the additional capability of recording excitation spectra at room temperature from single emitters will enable insights into the photophysics of emitters that so far have remained inaccessible.

  1. Localization and Targeted Transfer of Atomic-Scale Nonlinear Excitations: Perspectives for Applications

    Science.gov (United States)

    Kopidakis, G.; Aubry, S.

    We review nonlinearity-induced localization in discrete systems with emphasis on theory and numerical calculations on models used in materials physics to describe interatomic interactions. We discuss how the concept of discrete breather or intrinsic localized mode could become an important tool for understanding nanoscale phenomena in molecules and solids. A particularly attractive field of application for nonlinear localized excitations is the controlled and directed transport of energy. We discuss the recently proposed targeted transfer of localized excitations based on the concept of nonlinear resonance and its potential applications. As an area for such applications, we present directional ultrafast electron transfer at low temperatures using this selective transfer mechanism and we give examples from biological electron transfer. We finally discuss possible applications in nanotechnology and biomolecules.

  2. Rapidly tuning miniature transversely excited atmospheric-pressure CO2 laser.

    Science.gov (United States)

    Qu, Yanchen; Ren, Deming; Hu, Xiaoyong; Liu, Fengmei; Zhao, Jingshan

    2002-08-20

    An experimental study of a rapidly tuning miniature transversely excited atmospheric-pressure CO2 laser is reported. To rapidly shift laser wavelengths over selected transitions in the 9-11 microm wavelength region, we have utilized a high-frequency stepping motor and a diffraction grating. The laser is highly automated with a monolithic microprocessor controlled laser line selection. For the achievement of stable laser output, a system of laser excitation with a voltage of 10 kV, providing effective surface corona preionization and allowing one to work at various gas pressures, is utilized. Laser operation at 59 emission lines of the CO2 molecule rotational transition is obtained and at 51 lines, the pulse energy of laser radiation exceeds 30 mJ. The system can be tuned between two different rotational lines spanning the wavelength range from 9.2 to 10.8 microm within 10 ms.

  3. Photonic Molecule Lasers Revisited

    Science.gov (United States)

    Gagnon, Denis; Dumont, Joey; Déziel, Jean-Luc; Dubé, Louis J.

    2014-05-01

    Photonic molecules (PMs) formed by coupling two or more optical resonators are ideal candidates for the fabrication of integrated microlasers, photonic molecule lasers. Whereas most calculations on PM lasers have been based on cold-cavity (passive) modes, i.e. quasi-bound states, a recently formulated steady-state ab initio laser theory (SALT) offers the possibility to take into account the spectral properties of the underlying gain transition, its position and linewidth, as well as incorporating an arbitrary pump profile. We will combine two theoretical approaches to characterize the lasing properties of PM lasers: for two-dimensional systems, the generalized Lorenz-Mie theory will obtain the resonant modes of the coupled molecules in an active medium described by SALT. Not only is then the theoretical description more complete, the use of an active medium provides additional parameters to control, engineer and harness the lasing properties of PM lasers for ultra-low threshold and directional single-mode emission. We will extend our recent study and present new results for a number of promising geometries. The authors acknowledge financial support from NSERC (Canada) and the CERC in Photonic Innovations of Y. Messaddeq.

  4. Turbulent swirling jets with excitation

    Science.gov (United States)

    Taghavi, Rahmat; Farokhi, Saeed

    1988-01-01

    An existing cold-jet facility at NASA Lewis Research Center was modified to produce swirling flows with controllable initial tangential velocity distribution. Two extreme swirl profiles, i.e., one with solid-body rotation and the other predominated by a free-vortex distribution, were produced at identical swirl number of 0.48. Mean centerline velocity decay characteristics of the solid-body rotation jet flow exhibited classical decay features of a swirling jet with S - 0.48 reported in the literature. However, the predominantly free-vortex distribution case was on the verge of vortex breakdown, a phenomenon associated with the rotating flows of significantly higher swirl numbers, i.e., S sub crit greater than or equal to 0.06. This remarkable result leads to the conclusion that the integrated swirl effect, reflected in the swirl number, is inadequate in describing the mean swirling jet behavior in the near field. The relative size (i.e., diameter) of the vortex core emerging from the nozzle and the corresponding tangential velocity distribution are also controlling factors. Excitability of swirling jets is also investigated by exciting a flow with a swirl number of 0.35 by plane acoustic waves at a constant sound pressure level and at various frequencies. It is observed that the cold swirling jet is excitable by plane waves, and that the instability waves grow about 50 percent less in peak r.m.s. amplitude and saturate further upstream compared to corresponding waves in a jet without swirl having the same axial mass flux. The preferred Strouhal number based on the mass-averaged axial velocity and nozzle exit diameter for both swirling and nonswirling flows is 0.4.

  5. Use of a small molecule cell cycle inhibitor to control cell growth and improve specific productivity and product quality of recombinant proteins in CHO cell cultures.

    Science.gov (United States)

    Du, Zhimei; Treiber, David; McCarter, John D; Fomina-Yadlin, Dina; Saleem, Ramsey A; McCoy, Rebecca E; Zhang, Yuling; Tharmalingam, Tharmala; Leith, Matthew; Follstad, Brian D; Dell, Brad; Grisim, Brent; Zupke, Craig; Heath, Carole; Morris, Arvia E; Reddy, Pranhitha

    2015-01-01

    The continued need to improve therapeutic recombinant protein productivity has led to ongoing assessment of appropriate strategies in the biopharmaceutical industry to establish robust processes with optimized critical variables, that is, viable cell density (VCD) and specific productivity (product per cell, qP). Even though high VCD is a positive factor for titer, uncontrolled proliferation beyond a certain cell mass is also undesirable. To enable efficient process development to achieve consistent and predictable growth arrest while maintaining VCD, as well as improving qP, without negative impacts on product quality from clone to clone, we identified an approach that directly targets the cell cycle G1-checkpoint by selectively inhibiting the function of cyclin dependent kinases (CDK) 4/6 with a small molecule compound. Results from studies on multiple recombinant Chinese hamster ovary (CHO) cell lines demonstrate that the selective inhibitor can mediate a complete and sustained G0/G1 arrest without impacting G2/M phase. Cell proliferation is consistently and rapidly controlled in all recombinant cell lines at one concentration of this inhibitor throughout the production processes with specific productivities increased up to 110 pg/cell/day. Additionally, the product quality attributes of the mAb, with regard to high molecular weight (HMW) and glycan profile, are not negatively impacted. In fact, high mannose is decreased after treatment, which is in contrast to other established growth control methods such as reducing culture temperature. Microarray analysis showed major differences in expression of regulatory genes of the glycosylation and cell cycle signaling pathways between these different growth control methods. Overall, our observations showed that cell cycle arrest by directly targeting CDK4/6 using selective inhibitor compound can be utilized consistently and rapidly to optimize process parameters, such as cell growth, qP, and glycosylation profile in

  6. Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS)

    Science.gov (United States)

    Kneipp, Katrin; Wang, Yang; Kneipp, Harald; Perelman, Lev T.; Itzkan, Irving; Dasari, Ramachandra R.; Feld, Michael S.

    1997-03-01

    By exploiting the extremely large effective cross sections ( 10-17-10-16 cm2/molecule) available from surface-enhanced Raman scattering (SERS), we achieved the first observation of single molecule Raman scattering. Measured spectra of a single crystal violet molecule in aqueous colloidal silver solution using one second collection time and about 2×105 W/cm2 nonresonant near-infrared excitation show a clear ``fingerprint'' of its Raman features between 700 and 1700 cm-1. Spectra observed in a time sequence for an average of 0.6 dye molecule in the probed volume exhibited the expected Poisson distribution for actually measuring 0, 1, 2, or 3 molecules.

  7. Tracking the charge and spin dynamics of electronic excited states in inorganic complexes

    Science.gov (United States)

    Gaffney, Kelly

    2015-03-01

    Inorganic complexes have many advantageous properties for solar energy applications, including strong visible absorption and photocatalytic activity. Whether used as a photocatalyst or a photosensitizer, the lifetime of electronic excited states and the earth abundance of the molecular components represent a key property for solar energy applications. These dual needs have undermined the usefulness of many coordination compounds. Isoelectronic iron and ruthenium based complexes represent a clear example. Ru-polypyridal based molecules have been the workhorse of solar energy related research and dye sensitized solar cells for decades, but the replacement of low abundance Ru with Fe leads to million-fold reductions in metal to ligand charge transfer (MLCT) excited state lifetimes. Understanding the origin of this million-fold reduction in lifetime and how to control excited state relaxation in 3d-metal complexes motivates the work I will discuss. We have used the spin sensitivity of hard x-ray fluorescence spectroscopy and the intense femtosecond duration pulses generated by the LCLS x-ray laser to probe the spin dynamics in a series of electronically excited [Fe(CN)6-2N(2,2'-bipyridine)N]2 N - 4 complexes, with N = 1-3. These femtosecond resolution measurements demonstrate that modification of the solvent and ligand environment can lengthen the MLCT excited state lifetime by more than two orders of magnitude. They also verify the role of triplet ligand field excited states in the spin crossover dynamics from singlet to quintet spin configurations. Work supported by the AMOS program within the Chemical Sciences, Geosciences, and Biosciences Division of the Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy.

  8. Dynamics of Energy Transfer in a Conjugated Dendrimer Driven by Ultrafast Localization of Excitations.

    Science.gov (United States)

    Galindo, Johan F; Atas, Evrim; Altan, Aysun; Kuroda, Daniel G; Fernandez-Alberti, Sebastian; Tretiak, Sergei; Roitberg, Adrian E; Kleiman, Valeria D

    2015-09-16

    Solar energy conversion starts with the harvest of light, and its efficacy depends on the spatial transfer of the light energy to where it can be transduced into other forms of energy. Harnessing solar power as a clean energy source requires the continuous development of new synthetic materials that can harvest photon energy and transport it without significant losses. With chemically-controlled branched architectures, dendrimers are ideally suited for these initial steps, since they consist of arrays of chromophores with relative positioning and orientations to create energy gradients and to spatially focus excitation energies. The spatial localization of the energy delimits its efficacy and has been a point of intense research for synthetic light harvesters. We present the results of a combined theoretical experimental study elucidating ultrafast, unidirectional, electronic energy transfer on a complex molecule designed to spatially focus the initial excitation onto an energy sink. The study explores the complex interplay between atomic motions, excited-state populations, and localization/delocalization of excitations. Our findings show that the electronic energy-transfer mechanism involves the ultrafast collapse of the photoexcited wave function due to nonadiabatic electronic transitions. The localization of the wave function is driven by the efficient coupling to high-frequency vibrational modes leading to ultrafast excited-state dynamics and unidirectional efficient energy funneling. This work provides a long-awaited consistent experiment-theoretical description of excited-state dynamics in organic conjugated dendrimers with atomistic resolution, a phenomenon expected to universally appear in a variety of synthetic conjugated materials.

  9. Attosecond pre-determination of reaction dynamics in polyatomic molecules

    Science.gov (United States)

    Kitzler, Markus

    2014-05-01

    An important aim of Ultrafast Laser Science and Attosecond Physics is the measurement of valence electron dynamics in molecules during complex restructuring and fragmentation reactions. Such reactions may be triggered by the removal of electrons, e.g., by ionization with intense, ultrashort laser pulses. Depending on the valence-shell from which the electrons are removed, the molecular ion might be put into a binding state or a certain dissociative state. With control over the ionization process it might thus be possible to gain control over the subsequent restructuring and fragmentation processes on a purely electronic level. Detailed insight into the process of electron removal can be obtained from interferometric measurements using two bound state wavepackets released at different times within a sub-cycle of a laser field. I will present results of experiments that exploit this kind of electron wavepacket interferometry with sub-10 attosecond resolution for tracing the evolution of the phase of the bound state of an atom or molecule during the removal of an electron. I will furthermore present two conceptually similar schemes that allow pre-determining the outcome of molecular restructuring and fragmentation processes in polyatomic molecules on sub-femtosecond time-scales by gaining control over the process of electron removal. The first method involves recollision double ionization in intense few-cycle laser fields with a known carrier-envelope phase (CEP). Tuning of the CEP allows controlling the removal of inner-valence electrons and the controlled population of dissociative excited states. Using this method I will show experimental CEP-control over various fragmentation reactions of a series of polyatomic molecules. The second control scheme uses the strong preponderance of ionization from specific molecular orbitals to the alignment of the molecular axis with respect to the laser polarization direction for determining which valence level the electrons are

  10. Nanopipette Delivery of Individual Molecules to Cellular Compartments for Single-Molecule Fluorescence Tracking

    National Research Council Canada - National Science Library

    Bruckbauer, Andreas; James, Peter; Zhou, Dejian; Yoon, Ji Won; Excell, David; Korchev, Yuri; Jones, Roy; Klenerman, David

    2007-01-01

    We have developed a new method, using a nanopipette, for controlled voltage-driven delivery of individual fluorescently labeled probe molecules to the plasma membrane which we used for single-molecule...

  11. Exotic nuclear excitations

    CERN Document Server

    Pancholi, S C

    2011-01-01

    By providing the reader with a foundational background in high spin nuclear structure physics and exploring exciting current discoveries in the field, this book presents new phenomena in a clear and compelling way. The quest for achieving the highest spin states has resulted in some remarkable successes which this monograph will address in comprehensive detail. The text covers an array of pertinent subject matter, including the rotational alignment and bandcrossings, magnetic rotation, triaxial strong deformation and wobbling motion and chirality in nuclei. Dr. Pancholi offers his readers a clearly-written and up-to-date treatment of the topics covered. The prerequisites for a proper appreciation are courses in nuclear physics and nuclear models and measurement techniques of observables like gamma-ray energies, intensities, multi-fold coincidences, angular correlations or distributions, linear polarization, internal conversion coefficients, short lifetime (pico-second range) of excited states etc. and instrum...

  12. Excitable scale free networks

    Science.gov (United States)

    Copelli, M.; Campos, P. R. A.

    2007-04-01

    When a simple excitable system is continuously stimulated by a Poissonian external source, the response function (mean activity versus stimulus rate) generally shows a linear saturating shape. This is experimentally verified in some classes of sensory neurons, which accordingly present a small dynamic range (defined as the interval of stimulus intensity which can be appropriately coded by the mean activity of the excitable element), usually about one or two decades only. The brain, on the other hand, can handle a significantly broader range of stimulus intensity, and a collective phenomenon involving the interaction among excitable neurons has been suggested to account for the enhancement of the dynamic range. Since the role of the pattern of such interactions is still unclear, here we investigate the performance of a scale-free (SF) network topology in this dynamic range problem. Specifically, we study the transfer function of disordered SF networks of excitable Greenberg-Hastings cellular automata. We observe that the dynamic range is maximum when the coupling among the elements is critical, corroborating a general reasoning recently proposed. Although the maximum dynamic range yielded by general SF networks is slightly worse than that of random networks, for special SF networks which lack loops the enhancement of the dynamic range can be dramatic, reaching nearly five decades. In order to understand the role of loops on the transfer function we propose a simple model in which the density of loops in the network can be gradually increased, and show that this is accompanied by a gradual decrease of dynamic range.

  13. Controllable synthesis of Zn/Cd(ii) coordination polymers: dual-emissive luminescent properties, and tailoring emission tendency under varying excitation energies.

    Science.gov (United States)

    Xing, Kai; Fan, Ruiqing; Gao, Song; Wang, Xinming; Du, Xi; Wang, Ping; Fang, Ru; Yang, Yulin

    2016-03-21

    Based on a new asymmetric semi-rigid V-shaped tricarboxylate ligand 3-(2',3'-dicarboxylphenoxy)benzoic acid (H3dpob), a series of zinc/cadmium(ii) coordination polymers, {[Cd(Hdpob)(H2O)3]·H2O}n (1), [Cd(Hdpob)(bib)]n (2), [Zn(Hdpob)(bib)0.5]n (3), {[Cd1.5(dpob)(2,2'-bipy)]·0.5H2O}2n (4) and {[Cd3(dpob)2(4,4'-bipy)2]·3H2O}n (5) [bib = 1,4-bis(1-imidazolyl)benzene; 2,2'-bipy = 2,2'-bipyridine; 4,4'-bipy = 4,4'-bipyridine], have been successfully synthesized via hydro(solvo)thermal reactions. 1 forms a three dimensional (3D) supramolecular structure linked by two types of intermolecular hydrogen bonds based on zig-zag 1D chains, whereas 2 and 3 are obtained with a similar 2D layer structure by the same ligands and further connected into a 3D structure through hydrogen bonds. 4 displays a homochiral 2D structure though two achiral ligands 2,2'-bipy and H3dpob, which contains right-handed helical infinite chains. 5 is a 3D structure containing 2D metal-pyridine layer motifs, which are further pillared by beaded dpob(3-) ligands to complete the structure and form a 6-connected pcu (primitive cubic) net. In DMSO solvent, 1-5 illustrate dual-emission properties but have different low-energy emission (LE) intensities relatively. Extraordinarily, the difference resulting from central metals between 2 and 3 makes the intensity of LE dramatically enhanced and quenched. In this regard, the luminescence of 2 and 3 can be tuned between blue and green regions by varying the excitation light, and the tuning tendency can be tailored with inverse directions. Comparing their tunable-sensitivity to energy quantitatively, the theoretical calculation displays that 3 (4.29%) is little higher than 2 (3.59%) in a relative lower excitation wavelength zone. Meanwhile, five coordination polymers show distinct luminescence thermochromism in the solid state. When the temperature decreases from 298 K to 77 K, the red-shift from blue/green to the pure yellow light region is highlighted. The

  14. Control voltage of the generator of auto-excited induction for applications on micro/mini generation o electric power; Control de voltaje del generador de induccion auto-excitado para aplicaciones de micro/mini generacion de energia electrica

    Energy Technology Data Exchange (ETDEWEB)

    Torres Montalvo, Emmanuel

    2006-09-15

    Although only one part of the mini/micro hydraulic power has been exploited in our country, this type of electric energy generation can be considered as a visible way of electricity generation, mainly related to the ecological, economical and social aspects. The impact that these power plants can have in the regions in which they are installed is always positive: cost energy cost reduction, economical spills and mainly a social welfare. The electric energy is one of the pillars for the economical development of a country and provides a better life quality. Nowadays the research and the technology oriented to the operation and control of the micro/mini power plants has awaken the interest of many researchers in several countries of the world as China, India, Canada, and USA to mention some of them. The induction generator plays a crucial role in the uses of these technologies. The work of Basset and Potter in 1935 is the angular stone over the possibility of generating energy making use of the induction machine and a capacitors bank connected to the machine terminals. This configuration is known as induction auto-excited generator (GIAE). Several investigations have been realized that deal about the functioning principle and the dynamic behavior a GIAE, which can supply electric power in remote isolated regions. In the existing literature have been proposed control strategies to offer voltage regulations and/or frequency into the acceptable range. Some of these control strategies present problems such a demand of a reactive power, harmonics injections in the system, the control circuits are complicated, expensive and voluminous and prone to fail. This paper realizes an analysis of the necessary and sufficient conditions so that an induction machine can operate as GIAE. The corresponding curves are presented for each studied case. The dynamic behavior of the voltage and the frequency generated by the GIAE are studied in detail, which is a contribution to the existing

  15. Single Molecule Electronics and Devices

    Science.gov (United States)

    Tsutsui, Makusu; Taniguchi, Masateru

    2012-01-01

    The manufacture of integrated circuits with single-molecule building blocks is a goal of molecular electronics. While research in the past has been limited to bulk experiments on self-assembled monolayers, advances in technology have now enabled us to fabricate single-molecule junctions. This has led to significant progress in understanding electron transport in molecular systems at the single-molecule level and the concomitant emergence of new device concepts. Here, we review recent developments in this field. We summarize the methods currently used to form metal-molecule-metal structures and some single-molecule techniques essential for characterizing molecular junctions such as inelastic electron tunnelling spectroscopy. We then highlight several important achievements, including demonstration of single-molecule diodes, transistors, and switches that make use of electrical, photo, and mechanical stimulation to control the electron transport. We also discuss intriguing issues to be addressed further in the future such as heat and thermoelectric transport in an individual molecule. PMID:22969345

  16. Small molecule probes for cellular death machines.

    Science.gov (United States)

    Li, Ying; Qian, Lihui; Yuan, Junying

    2017-08-01

    The past decade has witnessed a significant expansion of our understanding about the regulated cell death mechanisms beyond apoptosis. The application of chemical biological approaches had played a major role in driving these exciting discoveries. The discovery and use of small molecule probes in cell death research has not only revealed significant insights into the regulatory mechanism of cell death but also provided new drug targets and lead drug candidates for developing therapeutics of human diseases with huge unmet need. Here, we provide an overview of small molecule modulators for necroptosis and ferroptosis, two non-apoptotic cell death mechanisms, and discuss the molecular pathways and relevant pathophysiological mechanisms revealed by the judicial applications of such small molecule probes. We suggest that the development and applications of small molecule probes for non-apoptotic cell death mechanisms provide an outstanding example showcasing the power of chemical biology in exploring novel biological mechanisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Plasmonic toroidal excitation with engineering metamaterials

    Science.gov (United States)

    Wu, Pin Chieh; Hsiao, Hui-Hsin; Liao, Chun Yen; Chung, Tsung Lin; Wu, Pei Ru; Savinov, Vassili; Zheludev, Nikolay I.; Tsai, Din Ping

    2017-08-01

    Natural toroidal molecules, such as biomolecules and proteins, possess toroidal dipole moments that are hard to be detected, which leads to extensive studies of artificial toroidal materials. Recently, toroidal metamaterials have been widely investigated to enhance toroidal dipole moments while the other multipoles are eliminated due to the spacial symmetry. In this talk, we will show several cases on the plasmonic toroidal excitation by engineering the near-field coupling between metamaterials, including their promising applications. In addition, a novel design for a toroidal metamaterial with engineering anapole mode will also be discussed.

  18. Relaxation dynamics in the excited states of a ketocyanine dye ...

    Indian Academy of Sciences (India)

    WINTEC

    Pramanik et al proposed the twisted intramolecular charge transfer (TICT) process in the S1 state, which .... trile clearly suggests that a photon of 400 nm light excites the molecule to its S2 state, the higher energy emission .... 400 nm photon as well as the dynamics of the re- laxation processes taking place in the S1 state. At.

  19. Calculation of vibrational excitation cross-sections in resonant ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 119; Issue 5. Calculation of vibrational excitation cross-sections in resonant electron-molecule scattering using the time-dependent wave packet (TDWP) approach with application to the 2 CO- shape resonance. Raman Kumar Singh Manabendra Sarma Ankit Jain ...

  20. Coherent excitation of vibrational levels using ultra short pulses

    CSIR Research Space (South Africa)

    De Clercq, LE

    2009-07-01

    Full Text Available The purpose of this study was to develop a model of the coherent excitation of the first few vibrational modes in the electronic ground state of the molecule. The model will be used in combination with an optimization algorithm to optimize a...