WorldWideScience

Sample records for excited electronic states

  1. Excited state electron affinity calculations for aluminum

    Science.gov (United States)

    Hussein, Adnan Yousif

    2017-08-01

    Excited states of negative aluminum ion are reviewed, and calculations of electron affinities of the states (3s^23p^2)^1D and (3s3p^3){^5}{S}° relative to the (3s^23p)^2P° and (3s3p^2)^4P respectively of the neutral aluminum atom are reported in the framework of nonrelativistic configuration interaction (CI) method. A priori selected CI (SCI) with truncation energy error (Bunge in J Chem Phys 125:014107, 2006) and CI by parts (Bunge and Carbó-Dorca in J Chem Phys 125:014108, 2006) are used to approximate the valence nonrelativistic energy. Systematic studies of convergence of electron affinity with respect to the CI excitation level are reported. The calculated value of the electron affinity for ^1D state is 78.675(3) meV. Detailed Calculations on the ^5S°c state reveals that is 1216.8166(3) meV below the ^4P state.

  2. Electron affinity and excited states of methylglyoxal

    Science.gov (United States)

    Dauletyarov, Yerbolat; Dixon, Andrew R.; Wallace, Adam A.; Sanov, Andrei

    2017-07-01

    Using photoelectron imaging spectroscopy, we characterized the anion of methylglyoxal (X2A″ electronic state) and three lowest electronic states of the neutral methylglyoxal molecule: the closed-shell singlet ground state (X1A'), the lowest triplet state (a3A″), and the open-shell singlet state (A1A″). The adiabatic electron affinity (EA) of the ground state, EA(X1A') = 0.87(1) eV, spectroscopically determined for the first time, compares to 1.10(2) eV for unsubstituted glyoxal. The EAs (adiabatic attachment energies) of two excited states of methylglyoxal were also determined: EA(a3A″) = 3.27(2) eV and EA(A1A″) = 3.614(9) eV. The photodetachment of the anion to each of these two states produces the neutral species near the respective structural equilibria; hence, the a3A″ ← X2A″ and A1A″ ← X2A″ photodetachment transitions are dominated by intense peaks at their respective origins. The lowest-energy photodetachment transition, on the other hand, involves significant geometry relaxation in the X1A' state, which corresponds to a 60° internal rotation of the methyl group, compared to the anion structure. Accordingly, the X1A' ← X2A″ transition is characterized as a broad, congested band, whose vertical detachment energy, VDE = 1.20(4) eV, significantly exceeds the adiabatic EA. The experimental results are in excellent agreement with the ab initio predictions using several equation-of-motion methodologies, combined with coupled-cluster theory.

  3. Direct conversion of graphite into diamond through electronic excited states

    CERN Document Server

    Nakayama, H

    2003-01-01

    An ab initio total energy calculation has been performed for electronic excited states in diamond and rhombohedral graphite by the full-potential linearized augmented plane wave method within the framework of the local density approximation (LDA). First, calculations for the core-excited state in diamond have been performed to show that the ab initio calculations based on the LDA describe the wavefunctions in the electronic excited states as well as in the ground state quite well. Fairly good coincidence with both experimental data and theoretical prediction has been obtained for the lattice relaxation of the core exciton state. The results of the core exciton state are compared with nitrogen-doped diamond. Next, the structural stability of rhombohedral graphite has been investigated to examine the possibility of the transition into the diamond structure through electronic excited states. While maintaining the rhombohedral symmetry, rhombohedral graphite can be spontaneously transformed to cubic diamond. Tota...

  4. Electronically excited states of tryptamine and its microhydrated complex

    NARCIS (Netherlands)

    Schmitt, M.; Brause, R.; Marian, C.M.; Salzmann, S.; Meerts, W.L.

    2006-01-01

    The lowest electronically excited singlet states of tryptamine and the tryptamine (H2O)(1) cluster have been studied, using time dependent density functional theory for determination of the geometries and multireference configuration interaction for the vertical and adiabatic excitation energies,

  5. Enhanced negative ion formation via electron attachment to electronically-excited states

    Energy Technology Data Exchange (ETDEWEB)

    Pinnaduwage, L.A. [Oak Ridge National Lab., TN (United States). Health Sciences Research Div.]|[Univ. of Tennessee, Knoxville, TN (United States). Dept. of Physics

    1995-12-31

    Recent basic studies on electron attachment to laser-excited molecules show that electron attachment to electronically-excited states can have orders of magnitude larger cross sections compared to the respective ground electronic states. Even though systematic studies have not been conducted, there are indications that electronically-excited states may play a significant role in negative ion formation in gas discharges. The high-lying Rydberg states could be of particular significance since, (i) their production efficiencies are high, and (ii) they have comparatively long lifetimes. Such states could be populated in discharge sources via direct electron impact or via excitation transfer from metastable states of inert gases.

  6. Vibrational kinetics of electronically excited states in H2 discharges

    Science.gov (United States)

    Colonna, Gianpiero; Pietanza, Lucia D.; D'Ammando, Giuliano; Celiberto, Roberto; Capitelli, Mario; Laricchiuta, Annarita

    2017-11-01

    The evolution of atmospheric pressure hydrogen plasma under the action of repetitively ns electrical pulse has been investigated using a 0D state-to-state kinetic model that self-consistently couples the master equation of heavy particles and the Boltzmann equation for free electrons. The kinetic model includes, together with atomic hydrogen states and the vibrational kinetics of H2 ground state, vibrational levels of singlet states, accounting for the collisional quenching, having a relevant role because of the high pressure. The mechanisms of excitations, radiative decay and collisional quenching involving the excited H2 states and the corresponding cross sections, integrated over the non-equilibrium electron energy distribution function (EEDF) to obtain kinetic rates, are discussed in the light of the kinetic simulation results, i.e. the time evolution during the pulse of the plasma composition, of the EEDF and of the vibrational distributions of ground and singlet excited states.

  7. Excited electronic state decomposition mechanisms of clusters of ...

    Indian Academy of Sciences (India)

    In this report, electronically non-adiabatic decomposition pathways of clusters of dimethylnitramine and aluminum (DMNA-Al and DMNA-Al2) are discussed in comparison to isolated dimethylnitramine (DMNA). Electronically excited state processes of DMNA-Al and DMNA-Al2 are explored using the complete active space ...

  8. Probing excited electronic states and ionisation mechanisms of fullerenes

    OpenAIRE

    Johansson, Olof; Campbell, Eleanor E. B.

    2013-01-01

    Fullerenes are interesting model systems for probing the complex, fundamental electron dynamics and ionisation mechanisms of large molecules and nanoparticles. In this Tutorial Review we explain how recent experimental and theoretical advances are providing insight into the interesting phenomenon of thermal electron emission from molecular systems and the properties of hydrogenic, diffuse, excited electronic states, known as superatom molecular orbitals, which are responsible for relatively s...

  9. Excited states

    CERN Document Server

    Lim, Edward C

    1974-01-01

    Excited States, Volume I reviews radiationless transitions, phosphorescence microwave double resonance through optical spectra in molecular solids, dipole moments in excited states, luminescence of polar molecules, and the problem of interstate interaction in aromatic carbonyl compounds. The book discusses the molecular electronic radiationless transitions; the double resonance techniques and the relaxation mechanisms involving the lowest triplet state of aromatic compounds; as well as the optical spectra and relaxation in molecular solids. The text also describes dipole moments and polarizab

  10. Minimal-excitation states for electron quantum optics using levitons.

    Science.gov (United States)

    Dubois, J; Jullien, T; Portier, F; Roche, P; Cavanna, A; Jin, Y; Wegscheider, W; Roulleau, P; Glattli, D C

    2013-10-31

    The on-demand generation of pure quantum excitations is important for the operation of quantum systems, but it is particularly difficult for a system of fermions. This is because any perturbation affects all states below the Fermi energy, resulting in a complex superposition of particle and hole excitations. However, it was predicted nearly 20 years ago that a Lorentzian time-dependent potential with quantized flux generates a minimal excitation with only one particle and no hole. Here we report that such quasiparticles (hereafter termed levitons) can be generated on demand in a conductor by applying voltage pulses to a contact. Partitioning the excitations with an electronic beam splitter generates a current noise that we use to measure their number. Minimal-excitation states are observed for Lorentzian pulses, whereas for other pulse shapes there are significant contributions from holes. Further identification of levitons is provided in the energy domain with shot-noise spectroscopy, and in the time domain with electronic Hong-Ou-Mandel noise correlations. The latter, obtained by colliding synchronized levitons on a beam splitter, exemplifies the potential use of levitons for quantum information: using linear electron quantum optics in ballistic conductors, it is possible to imagine flying-qubit operation in which the Fermi statistics are exploited to entangle synchronized electrons emitted by distinct sources. Compared with electron sources based on quantum dots, the generation of levitons does not require delicate nanolithography, considerably simplifying the circuitry for scalability. Levitons are not limited to carrying a single charge, and so in a broader context n-particle levitons could find application in the study of full electron counting statistics. But they can also carry a fraction of charge if they are implemented in Luttinger liquids or in fractional quantum Hall edge channels; this allows the study of Abelian and non-Abelian quasiparticles in the

  11. Electronic excited states at ultrathin dielectric-metal interfaces

    Science.gov (United States)

    Sementa, L.; Marini, A.; Barcaro, G.; Negreiros, F. R.; Fortunelli, A.

    2013-09-01

    Electronic excited states at a bcc(110) lithium surface, both bare and covered by ionic ultrathin (1-2 monolayers) LiF epitaxial films, are investigated via many-body perturbation theory calculations achieving an atomistic level of detail. The full self-consistent solution of the GW equations is used to account for correlation effects and to properly describe the screened potential in the vacuum. In addition to the correct prediction of image-potential states, we find that the mixing between resonances and image states and the charge compression due to the dielectric ultrathin overlayer give rise to excitations with a hybrid localized but low-lying character whose accurate description cannot intrinsically be achieved via simple models or low-level calculations, but which are expected to play a crucial role in determining the electronic response and transport properties of these systems.

  12. Probing excited electronic states and ionisation mechanisms of fullerenes.

    Science.gov (United States)

    Johansson, J Olof; Campbell, Eleanor E B

    2013-07-07

    Fullerenes are interesting model systems for probing the complex, fundamental electron dynamics and ionisation mechanisms of large molecules and nanoparticles. In this Tutorial Review we explain how recent experimental and theoretical advances are providing insight into the interesting phenomenon of thermal electron emission from molecular systems and the properties of hydrogenic, diffuse, excited electronic states, known as superatom molecular orbitals, which are responsible for relatively simple, well-resolved structure in fs laser photoelectron spectra of fullerenes. We focus on the application of velocity map imaging combined with fs laser photoionisation to study angular-resolved photoelectron emission.

  13. Chemical modulation of electronic structure at the excited state

    Science.gov (United States)

    Li, F.; Song, C.; Gu, Y. D.; Saleem, M. S.; Pan, F.

    2017-12-01

    Spin-polarized electronic structures are the cornerstone of spintronics, and have thus attracted a significant amount of interest; in particular, researchers are looking into how to modulate the electronic structure to enable multifunctional spintronics applications, especially in half-metallic systems. However, the control of the spin polarization has only been predicted in limited two-dimensional systems with spin-polarized Dirac structures and is difficult to achieve experimentally. Here, we report the modulation of the electronic structure in the light-induced excited state in a typical half-metal, L a1 /2S r1 /2Mn O3 -δ . According to the spin-transport measurements, there appears a light-induced increase in magnetoresistance due to the enhanced spin scattering, which is closely associated with the excited spin polarization. Strikingly, the light-induced variation can be enhanced via alcohol processing and reduced by oxygen annealing. X-ray photoelectron spectroscopy measurements show that in the chemical process, a redox reaction occurs with a change in the valence of Mn. Furthermore, first-principles calculations reveal that the change in the valence of Mn alters the electronic structure and consequently modulates the spin polarization in the excited state. Our findings thus report a chemically tunable electronic structure, demonstrating interesting physics and the potential for multifunctional applications and ultrafast spintronics.

  14. Calculations on the electronic excited states of ureas and oligoureas.

    Science.gov (United States)

    Oakley, Mark T; Guichard, Gilles; Hirst, Jonathan D

    2007-03-29

    We report CASPT2 calculations on the electronic excited states of several ureas. For monoureas, we find an electric dipole forbidden n --> pi* transition between 180 and 210 nm, dependent on the geometry and substituents of the urea. We find two intense pinb --> pi* transitions between 150 and 210 nm, which account for the absorptions seen in the experimental spectra. The n' --> pi* and pib --> pi* transitions are at wavelengths below 125 nm, which is below the lower limit of the experimental spectra. Parameter sets modeling the charge densities of the electronic transitions have been derived and permit calculations on larger oligoureas, using the exciton matrix method. For glycouril, a urea dimer, both the CASPT2 method and the matrix method yield similar results. Calculations of the electronic circular dichroism spectrum of an oligourea containing eight urea groups indicate that the experimental spectrum cannot be reproduced without the inclusion of electronic excitations involving the side chains. These calculations are one of the first attempts to understand the relationship between the structure and excited states of this class of macromolecule.

  15. Trapped electronic states in YAG crystal excited by femtosecond radiation

    Energy Technology Data Exchange (ETDEWEB)

    Zavedeev, E.V.; Kononenko, V.V.; Konov, V.I. [General Physics Institute of RAS, Moscow (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation)

    2017-07-15

    The excitation of an electronic subsystem of an yttrium aluminum garnet by 800 nm femtosecond radiation was studied theoretically and experimentally. The spatio-temporal dynamics of the refractive index (n) inside the beam waist was explored by means of the pump-probe interferometric technique with a submicron resolution. The observed increase in n indicated the formation of bound electronic states relaxed for ∝ 150 ps. We showed that the experimental data agreed with the computational simulation based on the numerical solution of the nonlinear Schroedinger equation only if these transient states were considered to arise from a direct light-induced process but not from the decay of radiatively generated free-electron-hole pairs. (orig.)

  16. Femtosecond photoelectron imaging of transient electronic states and Rydberg atom emission from electronically excited he droplets.

    Science.gov (United States)

    Kornilov, Oleg; Bünermann, Oliver; Haxton, Daniel J; Leone, Stephen R; Neumark, Daniel M; Gessner, Oliver

    2011-07-14

    Ultrafast relaxation of electronically excited pure He droplets is investigated by femtosecond time-resolved photoelectron imaging. Droplets are excited by extreme ultraviolet (EUV) pulses with photon energies below 24 eV. Excited states and relaxation products are probed by ionization with an infrared (IR) pulse with 1.6 eV photon energy. An initially excited droplet state decays on a time scale of 220 fs, leading predominantly to the emission of unaligned 1s3d Rydberg atoms. In a second relaxation channel, electronically aligned 1s4p Rydberg atoms are emitted from the droplet within less than 120 fs. The experimental results are described within a model that approximates electronically excited droplet states by localized, atomic Rydberg states perturbed by the local droplet environment in which the atom is embedded. The model suggests that, below 24 eV, EUV excitation preferentially leads to states that are localized in the surface region of the droplet. Electronically aligned 1s4p Rydberg atoms are expected to originate from excitations in the outermost surface regions, while nonaligned 1s3d Rydberg atoms emerge from a deeper surface region with higher local densities. The model is used to simulate the He droplet EUV absorption spectrum in good agreement with previously reported fluorescence excitation measurements.

  17. Coherence, energy and charge transfers in de-excitation pathways of electronic excited state of biomolecules in photosynthesis

    DEFF Research Database (Denmark)

    Bohr, Henrik; Malik, F. Bary

    2013-01-01

    The observed multiple de-excitation pathways of photo-absorbed electronic excited state in the peridinin–chlorophyll complex, involving both energy and charge transfers among its constituents, are analyzed using the bio-Auger (B-A) theory. It is also shown that the usually used F¨orster–Dexter th...

  18. A benchmark study of electronic excitation energies, transition moments, and excited-state energy gradients on the nicotine molecule

    Energy Technology Data Exchange (ETDEWEB)

    Egidi, Franco, E-mail: franco.egidi@sns.it; Segado, Mireia; Barone, Vincenzo, E-mail: vincenzo.barone@sns.it [Scuola Normale Superiore, Piazza dei Cavalieri, 7 I-56126 Pisa (Italy); Koch, Henrik [Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim (Norway); Cappelli, Chiara [Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via G. Moruzzi, 3 I-56124 Pisa (Italy)

    2014-12-14

    In this work, we report a comparative study of computed excitation energies, oscillator strengths, and excited-state energy gradients of (S)-nicotine, chosen as a test case, using multireference methods, coupled cluster singles and doubles, and methods based on time-dependent density functional theory. This system was chosen because its apparent simplicity hides a complex electronic structure, as several different types of valence excitations are possible, including n-π{sup *}, π-π{sup *}, and charge-transfer states, and in order to simulate its spectrum it is necessary to describe all of them consistently well by the chosen method.

  19. Electron impact excitation and assignment of the low-lying electronic states of CO2

    Science.gov (United States)

    Hall, R. I.; Trajmar, S.

    1973-01-01

    Electron scattering spectra of CO2 are reported in the 7 to 10 eV energy-loss range, at energies of 0.2, 0.35, 0.6, 0.7, and 7.0 eV above threshold, and at a scattering angle of 90 deg. Several new distinct overlapping continua with weak, diffuse bands superimposed are observed to lie in this energy-loss range. The experimental spectra are discussed in the light of recent ab initio configuration-interaction calculations of the vertical transition energies of CO2. The experimental spectra are shown to be consistent with the excitation states of CO2.

  20. Transport properties of local thermodynamic equilibrium hydrogen plasmas including electronically excited states.

    Science.gov (United States)

    Capitelli, M; Celiberto, R; Gorse, C; Laricchiuta, A; Pagano, D; Traversa, P

    2004-02-01

    A study of the dependence of transport coefficients (thermal conductivity, viscosity, electrical conductivity) of local thermodynamic equilibrium H2 plasmas on the presence of electronically atomic excited states, H(n), is reported. The results show that excited states with their "abnormal" cross sections strongly affect the transport coefficients especially at high pressure. Large relative errors are found when comparing the different quantities with the corresponding values obtained by using ground-state transport cross sections. The accuracy of the present calculation is finally discussed in the light of the selection of transport cross sections and in dependence of the considered number of excited states.

  1. Excited states 2

    CERN Document Server

    Lim, Edward C

    2013-01-01

    Excited States, Volume 2 is a collection of papers that deals with molecules in the excited states. The book describes the geometries of molecules in the excited electronic states. One paper describes the geometries of a diatomic molecule and of polyatomic molecules; it also discusses the determination of the many excited state geometries of molecules with two, three, or four atoms by techniques similar to diatomic spectroscopy. Another paper introduces an ordered theory related to excitons in pure and mixed molecular crystals. This paper also presents some experimental data such as those invo

  2. Electronic, structural and optical properties of hydrogenated silicon nanocrystals: the role of the excited states

    Energy Technology Data Exchange (ETDEWEB)

    Cantele, G.; Ninno, D.; Iadonisi, G. [Coherentia-INFM and Universita di Napoli ' ' Federico II' ' - Dipartimento di Scienze Fisiche, Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Napoli (Italy); Degoli, Elena; Bisi, O.; Ossicini, Stefano [INFM-S' ' 3 and Dipartimento di Scienze e Metodi dell' Ingegneria, Universita di Modena e Reggio Emilia, via Fogliani, 42100 Reggio Emilia (Italy); Luppi, Eleonora; Magri, Rita [INFM-S' ' 3 and Dipartimento di Fisica, Universita di Modena e Reggio Emilia, via Campi 213/A, 41100 Modena (Italy)

    2005-06-01

    In this paper we report on a first-principle calculation of the electronic and structural properties of hydrogenated silicon nanocrystals both in the ground- and in an excited-state configuration. The presence of an electron-hole pair created under excitation is taken into account and its effects on both the electronic spectrum and the cluster geometry are pointed out. The interpretation of the results is done within a four-level model, which also allows the explanation of the experimentally observed Stokes shift. Size-related aspects are also analysed and discussed. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Description of ground and excited electronic states by ensemble density functional method with extended active space

    Science.gov (United States)

    Filatov, Michael; Martínez, Todd J.; Kim, Kwang S.

    2017-08-01

    An extended variant of the spin-restricted ensemble-referenced Kohn-Sham (REKS) method, the REKS(4,4) method, designed to describe the ground electronic states of strongly multireference systems is modified to enable calculation of excited states within the time-independent variational formalism. The new method, the state-interaction state-averaged REKS(4,4), i.e., SI-SA-REKS(4,4), is capable of describing several excited states of a molecule involving double bond cleavage, polyradical character, or multiple chromophoric units. We demonstrate that the new method correctly describes the ground and the lowest singlet excited states of a molecule (ethylene) undergoing double bond cleavage. The applicability of the new method for excitonic states is illustrated with π stacked ethylene and tetracene dimers. We conclude that the new method can describe a wide range of multireference phenomena.

  4. Conformational analysis of acetamide in the ground and lowest excited electronic states

    Science.gov (United States)

    Tukachev, N. V.; Bataev, V. A.; Godunov, I. A.

    2017-05-01

    For acetamide molecule (CH3CONH2) in the ground (S0) and lowest excited singlet (S1) and triplet (T1) electronic states calculations of equilibrium geometry parameters, harmonic vibrational frequencies and barriers to conformational transitions (also conformer energy differences in excited states) using following ab initio methods: MP2, CCSD(T), CASSCF, CASPT2 and MRCI were performed. One-, two- and three-dimensional potential energy surface (PES) sections by different large amplitude motions (LAM) coordinates were calculated by means of MP2/aug-cc-pVTZ (S0) and CASPT2/cc-pVTZ (S1, T1). As a result of electronic excitation, both CCON and CNH2 fragments become pyramidal. On 2D PES sections by torsion (CN) and inversion coordinates there are six minima forming three pairs of enantiomers. Using PES sections different anharmonic vibrational problems were solved and the frequencies of large amplitude vibrations were estimated.

  5. Construction of Vibronic Diabatic Hamiltonian for Excited-State Electron and Energy Transfer Processes.

    Science.gov (United States)

    Xie, Yu; Jiang, Shengshi; Zheng, Jie; Lan, Zhenggang

    2017-12-21

    Photoinduced excited-state electron and energy transfer processes are crucial in biological photoharvesting systems and organic photovoltaic devices. We discuss the construction of a diabatic vibronic Hamiltonian for the proper treatment of these processes involving the projection approach acting on both electronic wave functions and vibrational modes. In the electronic part, the wave function projection approach is used to construct the diabatic Hamiltonian in which both local excited states and charge-transfer states are included on the same footing. For the vibrational degrees of freedom, the vibronic couplings in the diabatic Hamiltonian are obtained in the basis of the pseudonormal modes localized on each monomer site by applying delocalized-to-localized mode projection. This systematic approach allows us to construct the vibronic diabatic Hamiltonian in molecular aggregates.

  6. Electron impact excitation of the D states of Mg, Ca and Sr atoms ...

    Indian Academy of Sciences (India)

    decay of the atom from D → P and then P → S) is required [3,7–9]. ... for the excitation of helium from its ground 1S state to the 3 1D state at 40 eV. We ..... Further, we use for the projectile electron distorted wave function. FDW i(f) the following relativistic form of partial wave expansion: F± ch,µch (kch, r) = 1. (2π)3/2 ∑ κm.

  7. Excited states 4

    CERN Document Server

    Lim, Edward C

    2013-01-01

    Excited States, Volume 4 is a collection of papers that deals with the excited states of molecular activity. One paper investigates the resonance Raman spectroscopy as the key to vibrational-electronic coupling. This paper reviews the basic theory of Raman scattering; it also explains the derivation of the Raman spectra, excitation profiles, and depolarization ratios for simple resonance systems. Another paper reviews the magnetic properties of triplet states, including the zero-field resonance techniques, the high-field experiments, and the spin Hamiltonian. This paper focuses on the magnetic

  8. Tracking the charge and spin dynamics of electronic excited states in inorganic complexes

    Science.gov (United States)

    Gaffney, Kelly

    2015-03-01

    Inorganic complexes have many advantageous properties for solar energy applications, including strong visible absorption and photocatalytic activity. Whether used as a photocatalyst or a photosensitizer, the lifetime of electronic excited states and the earth abundance of the molecular components represent a key property for solar energy applications. These dual needs have undermined the usefulness of many coordination compounds. Isoelectronic iron and ruthenium based complexes represent a clear example. Ru-polypyridal based molecules have been the workhorse of solar energy related research and dye sensitized solar cells for decades, but the replacement of low abundance Ru with Fe leads to million-fold reductions in metal to ligand charge transfer (MLCT) excited state lifetimes. Understanding the origin of this million-fold reduction in lifetime and how to control excited state relaxation in 3d-metal complexes motivates the work I will discuss. We have used the spin sensitivity of hard x-ray fluorescence spectroscopy and the intense femtosecond duration pulses generated by the LCLS x-ray laser to probe the spin dynamics in a series of electronically excited [Fe(CN)6-2N(2,2'-bipyridine)N]2 N - 4 complexes, with N = 1-3. These femtosecond resolution measurements demonstrate that modification of the solvent and ligand environment can lengthen the MLCT excited state lifetime by more than two orders of magnitude. They also verify the role of triplet ligand field excited states in the spin crossover dynamics from singlet to quintet spin configurations. Work supported by the AMOS program within the Chemical Sciences, Geosciences, and Biosciences Division of the Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy.

  9. Determination and Comparison of Carbonyl Stretching Frequency of a Ketone in Its Ground State and the First Electronic Excited State

    Science.gov (United States)

    Bandyopadhyay, Subhajit; Roy, Saswata

    2014-01-01

    This paper describes an inexpensive experiment to determine the carbonyl stretching frequency of an organic keto compound in its ground state and first electronic excited state. The experiment is simple to execute, clarifies some of the fundamental concepts of spectroscopy, and is appropriate for a basic spectroscopy laboratory course. The…

  10. Structure and conformational dynamics of molecules in the excited electronic states: theory and experiment

    Science.gov (United States)

    Godunov, I. A.; Bataev, V. A.; Maslov, D. V.; Yakovlev, N. N.

    2017-01-01

    The structure of conformational non-rigid molecules in the excited electronic states are investigated by joint theoretical and experimental methods. The theoretical part of work consist of two stages. In first stage the ab initio quantum-chemical calculations are carried out using high level methods. In second stage the vibrational problems of the various dimensions are solved by variational method for vibrations of large amplitude. In experimental part of work the vibronic spectra are investigated: gas-phase absorption and also, fluorescence excitation spectra of jet-cooled molecules. Some examples are considered.

  11. Electronic structures and population dynamics of excited states of xanthione and its derivatives

    Science.gov (United States)

    Fedunov, Roman G.; Rogozina, Marina V.; Khokhlova, Svetlana S.; Ivanov, Anatoly I.; Tikhomirov, Sergei A.; Bondarev, Stanislav L.; Raichenok, Tamara F.; Buganov, Oleg V.; Olkhovik, Vyacheslav K.; Vasilevskii, Dmitrii A.

    2017-09-01

    A new compound, 1,3-dimethoxy xanthione (DXT), has been synthesized and its absorption (stationary and transient) and luminescence spectra have been measured in n-hexane and compared with xanthione (XT) spectra. The pronounced broadening of xanthione vibronic absorption band related to the electronic transition to the second singlet excited state has been observed. Distinctions between the spectra of xanthione and its methoxy derivatives are discussed. Quantum chemical calculations of these compounds in the ground and excited electronic states have been accomplished to clarify the nature of electronic spectra changes due to modification of xanthione by methoxy groups. Appearance of a new absorption band of DXT caused by symmetry changes has been discussed. Calculations of the second excited state structure of xanthione and its methoxy derivatives confirm noticeable charge transfer (about 0.1 of the charge of an electron) from the methoxy group to thiocarbonyl group. Fitting of the transient spectra of XT and DXT has been fulfilled and the time constants of internal conversion S2 →S1 and intersystem crossing S1 →T1 have been determined. A considerable difference between the time constants of internal conversion S2 →S1 in XT and DXT is uncovered.

  12. Electron-excited molecule interactions

    Energy Technology Data Exchange (ETDEWEB)

    Christophorou, L.G. (Oak Ridge National Lab., TN (USA) Tennessee Univ., Knoxville, TN (USA). Dept. of Physics)

    1991-01-01

    In this paper the limited but significant knowledge to date on electron scattering from vibrationally/rotationally excited molecules and electron scattering from and electron impact ionization of electronically excited molecules is briefly summarized and discussed. The profound effects of the internal energy content of a molecule on its electron attachment properties are highlighted focusing in particular on electron attachment to vibrationally/rotationally and to electronically excited molecules. The limited knowledge to date on electron-excited molecule interactions clearly shows that the cross sections for certain electron-molecule collision processes can be very different from those involving ground state molecules. For example, optically enhanced electron attachment studies have shown that electron attachment to electronically excited molecules can occur with cross sections 10{sup 6} to 10{sup 7} times larger compared to ground state molecules. The study of electron-excited molecule interactions offers many experimental and theoretical challenges and opportunities and is both of fundamental and technological significance. 54 refs., 15 figs.

  13. On large amplitude motions of simplest amides in the ground and excited electronic states

    Science.gov (United States)

    Tukachev, N. V.; Bataev, V. A.; Godunov, I. A.

    2017-01-01

    For the formamide, acetamide, N-methylformamide and N-methylacetamide molecules in the ground (S0) and lowest excited singlet (S1) and triplet (T1) electronic states equilibrium geometry parameters, harmonic vibrational frequencies, barriers to conformational transitions and conformer energy differences were estimated by means of MP2, CCSD(T), CASSCF, CASPT2 and MRCI ab initio methods. One-, two- and three-dimensional potential energy surface (PES) sections corresponding to different large amplitude motions (LAM) were calculated by means of MP2/aug-cc-pVTZ (S0) and CASPT2/cc-pVTZ (S1,T1). For these molecules, in each excited electronic state six minima were found on 2D PES sections. Using PES sections, different anharmonic vibrational problems were solved and the frequencies of large amplitude vibrations were determined.

  14. On large amplitude motions of simplest amides in the ground and excited electronic states

    Directory of Open Access Journals (Sweden)

    Tukachev N.V.

    2017-01-01

    Full Text Available For the formamide, acetamide, N-methylformamide and N-methylacetamide molecules in the ground (S0 and lowest excited singlet (S1 and triplet (T1 electronic states equilibrium geometry parameters, harmonic vibrational frequencies, barriers to conformational transitions and conformer energy differences were estimated by means of MP2, CCSD(T, CASSCF, CASPT2 and MRCI ab initio methods. One-, two- and three-dimensional potential energy surface (PES sections corresponding to different large amplitude motions (LAM were calculated by means of MP2/aug-cc-pVTZ (S0 and CASPT2/cc-pVTZ (S1,T1. For these molecules, in each excited electronic state six minima were found on 2D PES sections. Using PES sections, different anharmonic vibrational problems were solved and the frequencies of large amplitude vibrations were determined.

  15. The MRSDCI/CIS study of excited electronic states of the SF 2 radical

    Science.gov (United States)

    Liu, Y.-J.; Huang, M.-B.; Zhou, X.; Yu, S.

    2001-09-01

    The vertical ( Tv) and adiabatic ( T0) excitation energies for singlet electronic excited states of the SF 2 radical have been calculated by using the multireference single and double excitation configuration interaction (MRSDCI) method and aug-cc-pVTZ basis sets augmented by Rydberg functions. The MRSDCI Tv calculations indicate that the X1A1, 1 1A2, 1 1B1, 2 1B1, 2 1A2, 2 1A1, 3 1B1, 4 1B1, 3 1A1, and 1 1B2 states are the 10 lowest-lying singlet states. Based on the MRSDCI//CIS T0 calculations (using CIS optimized geometries for excited states), the A, B, C, E, F, G, H, and I states of SF 2 are assigned to 1 1B1, 2 1B1, 3 1B1, 2 1A2, 2 1A1, 3 1A1, 4 1B1, and 1 1B2, respectively.

  16. Photoelectron spectroscopy of hexachloroplatinate-nucleobase complexes: Nucleobase excited state decay observed via delayed electron emission

    Science.gov (United States)

    Sen, Ananya; Matthews, Edward M.; Hou, Gao-Lei; Wang, Xue-Bin; Dessent, Caroline E. H.

    2015-11-01

    We report low-temperature photoelectron spectra of isolated gas-phase complexes of the hexachloroplatinate dianion bound to the nucleobases uracil, thymine, cytosine, and adenine. The spectra display well-resolved, distinct peaks that are consistent with complexes where the hexachloroplatinate dianion is largely intact. Adiabatic electron detachment energies for the hexachloroplatinate-nucleobase complexes are measured as 2.26-2.36 eV. The magnitudes of the repulsive Coulomb barriers (RCBs) of the complexes are all ˜1.7 eV, values that are lower than the RCB of the uncomplexed PtCl62- dianion as a result of charge solvation by the nucleobases. In addition to the resolved spectral features, broad featureless bands indicative of delayed electron detachment are observed in the 193 nm photoelectron spectra of the four clusters. The 266 nm spectra of the PtCl62- ṡ thymine and PtCl62- ṡ adenine complexes also display very prominent delayed electron emission bands. These results mirror recent results on the related Pt(CN)42- ṡ nucleobase complexes [A. Sen et al., J. Phys. Chem. B 119, 11626 (2015)]. The observation of delayed electron emission bands in the PtCl62- ṡ nucleobase spectra obtained in this work, as for the previously studied Pt(CN)42- ṡ nucleobase complexes, is attributed to one-photon excitation of nucleobase-centred excited states that can effectively couple to the electron detachment continuum, producing strong electron detachment. Moreover, the selective, strong excitation of the delayed emission bands in the 266 nm spectra is linked to fundamental differences in the individual nucleobase photophysics at this excitation energy. This strongly supports our previous suggestion that the dianion within these clusters can be viewed as a "dynamic tag" which has the propensity to emit electrons when the attached nucleobase decays over a time scale long enough to allow autodetachment.

  17. Selective excitation of a vibrational level within the electronic ground state of a polyatomic molecule with ultra pulses

    CSIR Research Space (South Africa)

    de Clercq, L

    2010-09-01

    Full Text Available Coherent control of the upper vibrational level populations in the electronic ground state of a polyatomic molecule was simulated. Results indicate that selective excitation of a specific upper state level is possible...

  18. Selective excitation of a vibrational level within the electronic ground state of a polyatomic molecule with ultra short pulses

    CSIR Research Space (South Africa)

    De Clercq, L

    2010-09-01

    Full Text Available Coherent control of the upper vibrational level populations in the electronic ground state of a polyatomic molecule was simulated. Results indicate that selective excitation of a specific upper state level is possible....

  19. Fluorescence excitation and ultraviolet absorption spectra and theoretical calculations for benzocyclobutane: vibrations and structure of its excited S(1)(π,π(*)) electronic state.

    Science.gov (United States)

    Shin, Hee Won; Ocola, Esther J; Kim, Sunghwan; Laane, Jaan

    2014-01-21

    The fluorescence excitation spectra of jet-cooled benzocyclobutane have been recorded and together with its ultraviolet absorption spectra have been used to assign the vibrational frequencies for this molecule in its S1(π,π(*)) electronic excited state. Theoretical calculations at the CASSCF(6,6)/aug-cc-pVTZ level of theory were carried out to compute the structure of the molecule in its excited state. The calculated structure was compared to that of the molecule in its electronic ground state as well as to the structures of related molecules in their S0 and S1(π,π(*)) electronic states. In each case the decreased π bonding in the electronic excited states results in longer carbon-carbon bonds in the benzene ring. The skeletal vibrational frequencies in the electronic excited state were readily assigned and these were compared to the ground state and to the frequencies of five similar molecules. The vibrational levels in both S0 and S1(π,π(*)) states were remarkably harmonic in contrast to the other bicyclic molecules. The decreases in the frequencies of the out-of-plane skeletal modes reflect the increased floppiness of these bicyclic molecules in their S1(π,π(*)) excited state.

  20. Fluorescence excitation and ultraviolet absorption spectra and theoretical calculations for benzocyclobutane: Vibrations and structure of its excited S{sub 1}(π,π{sup *}) electronic state

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hee Won; Ocola, Esther J.; Laane, Jaan, E-mail: laane@mail.chem.tamu.edu [Department of Chemistry, Texas A and M University, College Station, Texas 77843-3255 (United States); Kim, Sunghwan [National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Department of Health and Human Services, 8600 Rockville Pike, Bethesda, Maryland 20894 (United States)

    2014-01-21

    The fluorescence excitation spectra of jet-cooled benzocyclobutane have been recorded and together with its ultraviolet absorption spectra have been used to assign the vibrational frequencies for this molecule in its S{sub 1}(π,π{sup *}) electronic excited state. Theoretical calculations at the CASSCF(6,6)/aug-cc-pVTZ level of theory were carried out to compute the structure of the molecule in its excited state. The calculated structure was compared to that of the molecule in its electronic ground state as well as to the structures of related molecules in their S{sub 0} and S{sub 1}(π,π{sup *}) electronic states. In each case the decreased π bonding in the electronic excited states results in longer carbon-carbon bonds in the benzene ring. The skeletal vibrational frequencies in the electronic excited state were readily assigned and these were compared to the ground state and to the frequencies of five similar molecules. The vibrational levels in both S{sub 0} and S{sub 1}(π,π{sup *}) states were remarkably harmonic in contrast to the other bicyclic molecules. The decreases in the frequencies of the out-of-plane skeletal modes reflect the increased floppiness of these bicyclic molecules in their S{sub 1}(π,π{sup *}) excited state.

  1. Fluorescence excitation and ultraviolet absorption spectra and theoretical calculations for benzocyclobutane: Vibrations and structure of its excited S1(π,π*) electronic state

    Science.gov (United States)

    Shin, Hee Won; Ocola, Esther J.; Kim, Sunghwan; Laane, Jaan

    2014-01-01

    The fluorescence excitation spectra of jet-cooled benzocyclobutane have been recorded and together with its ultraviolet absorption spectra have been used to assign the vibrational frequencies for this molecule in its S1(π,π*) electronic excited state. Theoretical calculations at the CASSCF(6,6)/aug-cc-pVTZ level of theory were carried out to compute the structure of the molecule in its excited state. The calculated structure was compared to that of the molecule in its electronic ground state as well as to the structures of related molecules in their S0 and S1(π,π*) electronic states. In each case the decreased π bonding in the electronic excited states results in longer carbon-carbon bonds in the benzene ring. The skeletal vibrational frequencies in the electronic excited state were readily assigned and these were compared to the ground state and to the frequencies of five similar molecules. The vibrational levels in both S0 and S1(π,π*) states were remarkably harmonic in contrast to the other bicyclic molecules. The decreases in the frequencies of the out-of-plane skeletal modes reflect the increased floppiness of these bicyclic molecules in their S1(π,π*) excited state. PMID:25669377

  2. Fluorescence excitation and ultraviolet absorption spectra and theoretical calculations for benzocyclobutane: Vibrations and structure of its excited S1(π,π*) electronic state

    Science.gov (United States)

    Shin, Hee Won; Ocola, Esther J.; Kim, Sunghwan; Laane, Jaan

    2014-01-01

    The fluorescence excitation spectra of jet-cooled benzocyclobutane have been recorded and together with its ultraviolet absorption spectra have been used to assign the vibrational frequencies for this molecule in its S1(π,π*) electronic excited state. Theoretical calculations at the CASSCF(6,6)/aug-cc-pVTZ level of theory were carried out to compute the structure of the molecule in its excited state. The calculated structure was compared to that of the molecule in its electronic ground state as well as to the structures of related molecules in their S0 and S1(π,π*) electronic states. In each case the decreased π bonding in the electronic excited states results in longer carbon-carbon bonds in the benzene ring. The skeletal vibrational frequencies in the electronic excited state were readily assigned and these were compared to the ground state and to the frequencies of five similar molecules. The vibrational levels in both S0 and S1(π,π*) states were remarkably harmonic in contrast to the other bicyclic molecules. The decreases in the frequencies of the out-of-plane skeletal modes reflect the increased floppiness of these bicyclic molecules in their S1(π,π*) excited state.

  3. Electron impact excitation cross sections and rates from the ground state of atomic calcium

    CERN Document Server

    Samson, A M

    2001-01-01

    New R-matrix calculations are presented for electron excitation of atomic calcium. The target state expansion includes 22 states: 4s sup 2 sup 1 S; 4snl sup 1 sup , sup 3 L, where nl is 3d, 4p, 5s, 5p, 4d and 4f; 3d4p sup 1 sup , sup 3 P,D,F; and 4p sup 2 sup 3 P, sup 1 D, sup 1 S terms. The calculation is in LS coupling, and configuration interaction involving 3p subshell correlation is included. Electron impact excitation cross sections from the 4s sup 2 ground state to the next 10 states are tabulated for low energies, and thermally averaged effective collision strengths are tabulated over a range of electron temperatures from 1000 to 10,000 K. Comparisons are made with previous cross sections calculations for the 4s sup 2 -4s4p sup 3 P deg. transition; excellent agreement is found with experimentally derived rates for 4s sup 2 -4s4p sup 1 P deg

  4. Electron impact excitation and assignment of the low-lying electronic states of N2O

    Science.gov (United States)

    Hall, R. I.; Chutjian, A.; Trajmar, S.

    1973-01-01

    Electron scattering spectra of nitrous oxide are reported in the 5- to 10-eV energy-loss range at scattering angles of 20, 30, 90, and 130 deg at a residual energy of 7.0 eV; and at residual energies of 10.0, 2.0, 1.0, 0.6, and 0.2 eV at a scattering angle of 90 deg. Several new distinct and overlapping continua are observed to lie in this energy-loss range. The experimental spectra are discussed in the light of semiempirical INDO calculations of Chutjian and Segal (1972) of the vertical transition energies of N2O. An assignment of the symmetries of the observed excitations consistent with the experimental and theoretical data is suggested.

  5. The separation of vibrational coherence from ground- and excited-electronic states in P3HT film

    KAUST Repository

    Song, Yin

    2015-06-07

    © 2015 AIP Publishing LLC. Concurrence of the vibrational coherence and ultrafast electron transfer has been observed in polymer/fullerene blends. However, it is difficult to experimentally investigate the role that the excited-state vibrational coherence plays during the electron transfer process since vibrational coherence from the ground- and excited-electronic states is usually temporally and spectrally overlapped. Here, we performed 2-dimensional electronic spectroscopy (2D ES) measurements on poly(3-hexylthiophene) (P3HT) films. By Fourier transforming the whole 2D ES datasets (S (λ 1, T∼ 2, λ 3)) along the population time (T∼ 2) axis, we develop and propose a protocol capable of separating vibrational coherence from the ground- and excited-electronic states in 3D rephasing and nonrephasing beating maps (S (λ 1, ν∼ 2, λ 3)). We found that the vibrational coherence from pure excited electronic states appears at positive frequency (+ ν∼ 2) in the rephasing beating map and at negative frequency (- ν∼ 2) in the nonrephasing beating map. Furthermore, we also found that vibrational coherence from excited electronic state had a long dephasing time of 244 fs. The long-lived excited-state vibrational coherence indicates that coherence may be involved in the electron transfer process. Our findings not only shed light on the mechanism of ultrafast electron transfer in organic photovoltaics but also are beneficial for the study of the coherence effect on photoexcited dynamics in other systems.

  6. An experimental and theoretical investigation into the excited electronic states of phenol

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D. B.; Chiari, L. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Silva, G. B. da [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Universidade Federal de Mato Grosso, Barra do Garças, Mato Grosso (Brazil); Neves, R. F. C. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Departamento de Física, UFJF, Juiz de Fora, MG (Brazil); Instituto Federal do Sul de Minas Gerais, Campus Poços de Caldas, Minas Gerais (Brazil); Duque, H. V. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Departamento de Física, UFJF, Juiz de Fora, MG (Brazil); Oliveira, E. M. de; Lima, M. A. P. [Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, 13083-859 Campinas, São Paulo (Brazil); Lopes, M. C. A. [Departamento de Física, UFJF, Juiz de Fora, MG (Brazil); Costa, R. F. da [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-580 Santo André, São Paulo (Brazil); Varella, M. T. do N. [Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970 São Paulo (Brazil); Bettega, M. H. F. [Departamento de Física, Universidade Federal do Paraná, CP 19044, 81531-990 Curitiba, Paraná (Brazil); and others

    2014-08-21

    We present experimental electron-energy loss spectra (EELS) that were measured at impact energies of 20 and 30 eV and at angles of 90° and 10°, respectively, with energy resolution ∼70 meV. EELS for 250 eV incident electron energy over a range of angles between 3° and 50° have also been measured at a moderate energy resolution (∼0.9 eV). The latter spectra were used to derive differential cross sections and generalised oscillator strengths (GOS) for the dipole-allowed electronic transitions, through normalization to data for elastic electron scattering from benzene. Theoretical calculations were performed using time-dependent density functional theory and single-excitation configuration interaction methods. These calculations were used to assign the experimentally measured spectra. Calculated optical oscillator strengths were also compared to those derived from the GOS data. This provides the first investigation of all singlet and triplet excited electronic states of phenol up to the first ionization potential.

  7. State-averaged Monte Carlo configuration interaction applied to electronically excited states

    CERN Document Server

    Coe, J P

    2014-01-01

    We introduce state-averaging into the method of Monte Carlo configuration interaction (SA-MCCI) to allow the stable and efficient calculation of excited states. We show that excited potential curves for H$_{3}$, including a crossing with the ground state, can be accurately reproduced using a small fraction of the FCI space. A recently introduced error measure for potential curves [J. P. Coe and M. J. Paterson, J. Chem. Phys., 137, 204108 (2012)] is shown to also be a fair approach when considering potential curves for multiple states. We demonstrate that potential curves for LiF using SA-MCCI agree well with the FCI results and the avoided crossing occurs correctly. The seam of conical intersections for CH$_{2}$ found by Yarkony [J. Chem. Phys., 104, 2932 (1996)] is used as a test for SA-MCCI and we compare potential curves from SA-MCCI with FCI results for this system for the first three triplet states. We then demonstrate the improvement from using SA-MCCI on the dipole of the $2$ $^{1}A_{1}$ state of carbo...

  8. Quantum mechanical modeling of excited electronic states and their relationship to cathodoluminescence of BaZrO3

    OpenAIRE

    Moreira, Mario L.; Andrés Bort, Juan; Gracia Edo, Lourdes; Beltrán Flors, Armando; Montoro, Luciano A.; Varela, José A.; Longo, E.

    2013-01-01

    First-principles calculations set the comprehension over performance of novel cathodoluminescence (CL) properties of BaZrO3 prepared through microwave-assisted hydrothermal. Ground (singlet, s*) and excited (singlet s** and triplet t** ) electronic states were built from zirconium displacement of 0.2 Å in {001} direction. Each ground and excited states were characterized by the correlation of their corresponding geometry with electronic structures and Raman vibrational frequencies which were ...

  9. Excitation of the lowest CO2 vibrational states by electrons in hypersonic boundary layers

    Science.gov (United States)

    Armenise, I.

    2017-07-01

    The state-to-state vibrational kinetics of a CO2/O2/CO/C/O/e- mixture in a hypersonic boundary layer under conditions compatible with the Mars re-entry is studied. The model adopted treats three CO2 modes (the two degenerated bending modes are approximated as a unique one) as not independent ones. Vibrational-translational transitions in the bending mode, inter-mode exchanges within CO2 molecule and between molecules of different chemical species as well as dissociation-recombination reactions are considered. Attention is paid to the electron-CO2 collisions that cause transitions from the ground vibrational state, CO2(0,0,0), to the first excited ones, CO2(1,0,0), CO2(0,1,0) and CO2(0,0,1). The corresponding processes rate coefficients are obtained starting from the electron energy distribution function, calculated either as an equilibrium Boltzmann distribution at the local temperature or by solving the Boltzmann equation. Results obtained either neglecting or including in the kinetic scheme the electron-CO2 collisions are compared and explained by analysing the rate coefficients of the electron-CO2 collisions.

  10. Bimolecular Excited-State Electron Transfer with Surprisingly Long-Lived Radical Ions

    KAUST Repository

    Alsam, Amani Abdu

    2015-09-02

    We explored the excited-state interactions of bimolecular, non-covalent systems consisting of cationic poly[(9,9-di(3,3’-N,N’-trimethyl-ammonium) propyl fluorenyl-2,7-diyl)-alt-co-(9,9-dioctyl-fluorenyl-2,7-diyl)] diiodide salt (PFN) and 1,4-dicyanobenzene (DCB) using steady-state and time-resolved techniques, including femto- and nanosecond transient absorption and femtosecond infrared spectroscopies with broadband capabilities. The experimental results demonstrated that photo-induced electron transfer from PFN to DCB occurs on the picosecond time scale, leading to the formation of PFN+• and DCB-• radical ions. Interestingly, real-time observations of the vibrational marker modes on the acceptor side provided direct evidence and insight into the electron transfer process indirectly inferred from UV-Vis experiments. The band narrowing on the picosecond time scale observed on the antisymmetric C-N stretching vibration of the DCB radical anion provides clear experimental evidence that a substantial part of the excess energy is channeled into vibrational modes of the electron transfer product and that the geminate ion pairs dissociate. More importantly, our nanosecond time-resolved data indicate that the charge-separated state is very long lived ( 30 ns) due to the dissociation of the contact radical ion pair into free ions. Finally, the fast electron transfer and slow charge recombination anticipate the current donor−acceptor system with potential applications in organic solar cells.

  11. Laser excitation of 8-eV electronic states in Th{sup +}. A first pillar of the electronic bridge toward excitation of the Th-229 nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Herrera-Sancho, Oscar-Andrey

    2012-11-23

    The possibility to realize a nuclear clock based on the optical magnetic dipole transition from the ground state to the low-energy isomeric state in the {sup 229}Th nucleus has motivated experiments and proposals toward highly accurate clocks with trapped ions and highly stable optical frequency standards with Th-doped solids. These systems hold great promise to open a field of research in the borderland between atomic and nuclear physics, which will enable highly sensitive tests of postulates from fundamental physics and also will allow us to coherently excite and control nuclear states, opening a wonderful and intriguing new field in physics. A major experimental obstacle that has to be overcome before any precision spectroscopy can be performed with this system is however the insufficient knowledge on the exact transition energy. The best experimental result so far is an indirect determination from {gamma}-spectroscopy with a relative uncertainty of about 6%. To facilitate the search for the nuclear transition within a wide uncertainty range around 8 eV, we investigate two-photon excitation in the dense electronic level structure of Th{sup +}, which enables the nuclear excitation via a resonantly enhanced inverse electronic bridge process. Experiments on one- and two-photon laser excitation of buffer gas cooled {sup 232}Th{sup +} ions in a radio-frequency ion trap are reported in this thesis. The strongest resonance line at 402 nm from the (6d{sup 2}7s)J=3/2 ground state to the (6d7s7p)J=5/2 state is driven as the first excitation step. Using nanosecond laser pulses in the 250-nm wavelength range for the second step of a two-photon excitation, we have observed seven previously unknown levels in the unexplored region of the electronic level structure around 8 eV. This investigation shows that the Th{sup +} ion seems to be well suited for the search of the isomer transition because both, theory and experimental results, agree on the density of strong transitions

  12. Differential cross sections for intermediate-energy electron scattering from α-tetrahydrofurfuryl alcohol: Excitation of electronic-states

    Energy Technology Data Exchange (ETDEWEB)

    Chiari, L.; Jones, D. B.; Thorn, P. A.; Pettifer, Z. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Duque, H. V. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Departamento de Física, Universidade Federal de Juiz de Fora, Juiz de Fora, MG (Brazil); Silva, G. B. da [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Universidade Federal de Mato Grosso, Barra do Garças, Mato Grosso (Brazil); Limão-Vieira, P. [Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Duflot, D. [Laboratoire de Physique des Lasers, Atomes et Molécules, UMR CNRS 8523, Université Lille, F-59655 Villeneuve d’Ascq Cedex (France); Hubin-Franskin, M.-J.; Delwiche, J. [Départment de Chimie, Université de Liège, Institut de Chimie-Bât. B6C, B-4000 Liège 1 (Belgium); Blanco, F. [Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, Madrid E-28040 (Spain); García, G. [Instituto de Física Fundamental, CSIC, Madrid E-28006 (Spain); and others

    2014-07-14

    We report on measurements of differential cross sections (DCSs) for electron impact excitation of a series of Rydberg electronic-states in α-tetrahydrofurfuryl alcohol (THFA). The energy range of these experiments was 20–50 eV, while the scattered electron was detected in the 10°–90° angular range. There are currently no other experimental data or theoretical computations against which we can directly compare the present measured results. Nonetheless, we are able to compare our THFA DCSs with earlier cross section measurements for Rydberg-state electronic excitation for tetrahydrofuran, a similar cyclic ether, from Do et al. [J. Chem. Phys. 134, 144302 (2011)]. In addition, “rotationally averaged” elastic DCSs, calculated using our independent atom model with screened additivity rule correction approach are also reported. Those latter results give integral cross sections consistent with the optical theorem, and supercede those from the only previous study of Milosavljević et al. [Eur. Phys. J. D 40, 107 (2006)].

  13. Reaction of H2with O2in Excited Electronic States: Reaction Pathways and Rate Constants.

    Science.gov (United States)

    Pelevkin, Alexey V; Loukhovitski, Boris I; Sharipov, Alexander S

    2017-12-21

    Comprehensive quantum chemical analysis with the use of the multireference state-averaged complete active space self-consistent field approach was carried out to study the reactions of H 2 with O 2 in a 1 Δ g , b 1 Σ g + , c 1 Σ u - , and A' 3 Δ u electronically excited states. The energetically favorable reaction pathways and possible intersystem crossings have been revealed. The energy barriers were refined employing the extended multiconfiguration quasi-degenerate second-order perturbation theory. It has been shown that the interaction of O 2 (a 1 Δ g ) and O 2 (A' 3 Δ u ) with H 2 occurs through the H-abstraction process with relatively low activation barriers that resulted in the formation of the HO 2 molecule in A″ and A' electronic states, respectively. Meanwhile, molecular oxygen in singlet sigma states (b 1 Σ g + and c 1 Σ u - ) was proved to be nonreactive with respect to the molecular hydrogen. Appropriate rate constants for revealed reaction and quenching channels have been estimated using variational transition-state theory including corrections for the tunneling effect, possible nonadiabatic transitions, and anharmonicity of vibrations for transition states and reactants. It was demonstrated that the calculated reaction rate constant for the H 2 + O 2 (a 1 Δ g ) process is in reasonable agreement with known experimental data. The Arrhenius approximations for these processes have been proposed for the temperature range T = 300-3000 K.

  14. The electronic structure of VO in its ground and electronically excited states: A combined matrix isolation and quantum chemical (MRCI) study

    Energy Technology Data Exchange (ETDEWEB)

    Hübner, Olaf; Hornung, Julius; Himmel, Hans-Jörg, E-mail: hans-jorg.himmel@aci.uni-heidelberg.de [Institut für Anorganische Chemie, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg (Germany)

    2015-07-14

    The electronic ground and excited states of the vanadium monoxide (VO) molecule were studied in detail. Electronic absorption spectra for the molecule isolated in Ne matrices complement the previous gas-phase spectra. A thorough quantum chemical (multi-reference configuration interaction) study essentially confirms the assignment and characterization of the electronic excitations observed for VO in the gas-phase and in Ne matrices and allows the clarification of open issues. It provides a complete overview over the electronically excited states up to about 3 eV of this archetypical compound.

  15. Development and implementation of theoretical methods for the description of electronically core-excited states

    Energy Technology Data Exchange (ETDEWEB)

    Wenzel, Jan

    2016-03-23

    -cc-series, a mean error of -0.23% ±0.12% for core-excitation energies can be identified at the CVS-ADC(2)-x level for carbon, nitrogen and oxygen K-edge excitations, whereas CVS-ADC(3) exhibits errors of 0.61% ± 0.32%. This is due to fortuitous error compensation of basis set truncation, electron correlation, orbital relaxation and neglect of relativistic effects at the CVS-ADC(2)-x level. Transition moments and spectral features, as well as static dipole moments, are excellently described with both CVS-ADC(2)-x and CVS-ADC(3). Especially the 6-311++G** basis set provides an excellent ratio of accuracy to computational time. Another important topic is the description of orbital relaxation effects. In the scope of this thesis, I show, how these effects are included indirectly within the CVS-ADC approaches. For this purpose, two different descriptors are used, i.e. electron promotion numbers and the amount of doubly excited amplitudes. Furthermore, with the help of detachment/attachment (D/A) densities, which can be constructed via the CVS-ISR approach, relaxation effects can be visualized. For this purpose, the (D/A) densities are compared with hole/electron (h/e) densities based on the transition density matrix. With this knowledge, the X-ray absorption spectra of medium-sized molecules and radicals from the fields of organic electronics and biology are investigated and analyzed. On the basis of these studies, the restricted and unrestricted versions of CVS-ADC(2)-x in combination with the 6-311++G** basis set exhibit mean errors of core-excitation energies around 0.1%, compared to experimental values. Additionally, core-excited state characters are analyzed with the help of state densities obtained via the CVS-ISR approach or the transition density matrix. To demonstrate the computational savings as a function of the size of the core space, several systems are investigated. CVS-ADC(3) calculations take about 8-10 times longer than CVS-ADC(2)-x calculations and since the

  16. Ground- and excited-state scattering potentials for the stopping of protons in an electron gas

    Science.gov (United States)

    Matias, F.; Fadanelli, R. C.; Grande, P. L.; Koval, N. E.; Díez Muiño, R.; Borisov, A. G.; Arista, N. R.; Schiwietz, G.

    2017-09-01

    The self-consistent electron-ion potential V(r) is calculated for H+ ions in an electron gas system as a function of the projectile energy to model the electronic stopping power for conduction-band electrons. The results show different self-consistent potentials at low projectile-energies, related to different degrees of excitation of the electron cloud surrounding the intruder ion. This behavior can explain the abrupt change of velocity dependent screening-length of the potential found by the use of the extended Friedel sum rule and the possible breakdown of the standard free electron gas model for the electronic stopping at low projectile energies. A dynamical interpolation of V(r) is proposed and used to calculate the stopping power for H+ interacting with the valence electrons of Al. The results are in good agreement with the TDDFT benchmark calculations as well as with experimental data.

  17. Excited electronic states from a variational approach based on symmetry-projected Hartree--Fock configurations

    CERN Document Server

    Jiménez-Hoyos, Carlos A; Scuseria, Gustavo E

    2013-01-01

    Recent work from our research group has demonstrated that symmetry-projected Hartree--Fock (HF) methods provide a compact representation of molecular ground state wavefunctions based on a superposition of non-orthogonal Slater determinants. The symmetry-projected ansatz can account for static correlations in a computationally efficient way. Here we present a variational extension of this methodology applicable to excited states of the same symmetry as the ground state. Benchmark calculations on the C$_2$ dimer with a modest basis set, which allows comparison with full configuration interaction results, indicate that this extension provides a high quality description of the low-lying spectrum for the entire dissociation profile. We apply the same methodology to obtain the full low-lying vertical excitation spectrum of formaldehyde, in good agreement with available theoretical and experimental data, as well as to a challenging model $C_{2v}$ insertion pathway for BeH$_2$. The variational excited state methodolo...

  18. The generation of stationary π-electron rotations in chiral aromatic ring molecules possessing non-degenerate excited states.

    Science.gov (United States)

    Yamaki, Masahiro; Teranishi, Yoshiaki; Nakamura, Hiroki; Lin, Sheng Hsien; Fujimura, Yuichi

    2016-01-21

    The electron angular momentum is a fundamental quantity of high-symmetry aromatic ring molecules and finds many applications in chemistry such as molecular spectroscopy. The stationary angular momentum or unidirectional rotation of π electrons is generated by the excitation of a degenerated electronic excited state by a circularly-polarized photon. For low-symmetry aromatic ring molecules having non-degenerate states, such as chiral aromatic ring molecules, on the other hand, whether stationary angular momentum can be generated or not is uncertain and has not been clarified so far. We have found by both theoretical treatments and quantum optimal control (QOC) simulations that a stationary angular momentum can be generated even from a low-symmetry aromatic ring molecule. The generation mechanism can be explained in terms of the creation of a dressed-state, and the maximum angular momentum is generated by the dressed state with an equal contribution from the relevant two excited states in a simple three-electronic state model. The dressed state is formed by inducing selective nonresonant transitions between the ground and each excited state by two lasers with the same frequency but having different polarization directions. The selective excitation can be carried out by arranging each photon-polarization vector orthogonal to the electronic transition moment of the other transition. We have successfully analyzed the results of the QOC simulations of (P)-2,2'-biphenol of axial chirality in terms of the analytically determined optimal laser fields. The present findings may open up new types of chemical dynamics and spectroscopy by utilizing strong stationary ring currents and current-induced magnetic fields, which are created at a local site of large compounds such as biomolecules.

  19. Electron impact excitation of the D states of Mg, Ca and Sr atoms ...

    Indian Academy of Sciences (India)

    We have used non-relativistic and relativistic distorted wave approximation methods to study the excitation of the 1 states of magnesium ( = 3), calcium ( = 4) and strontium ( = 5) from the ground 1 state. Calculations have been performed for the complete set of parameters ( , L ~ ⊥ + , L ~ ⊥ − , ~ + , ~ − ) .

  20. Surface-catalyzed recombination into excited electronic, vibrational, rotational, and kinetic energy states: A review

    Science.gov (United States)

    Kofsky, I. L.; Barrett, J. L.

    1985-01-01

    Laboratory experiments in which recombined CO, CO2, D2O, OH, N2, H2, and O2 molecules desorb from surfaces in excited internal and translational states are briefly reviewed. Unequilibrated distributions predominate from the principally catalytic metal substrates so far investigated. Mean kinetic energies have been observed up to approx. 3x, and in some cases less than, wall-thermal; the velocity distributions generally vary with emission angle, with non-Lambertian particle fluxes. The excitation state populations are found to depend on surface impurities, in an as yet unexplained way.

  1. Theoretical Studies of Possible Synthetic Routes for the High Energy Density Material Td N4: Excited Electronic States

    Science.gov (United States)

    Lee, Timothy J.; Dateo, Christopher E.

    2001-01-01

    Vertical electronic excitation energies for single states have been computed for the high energy density material (HEDM) Td N4 in order to assess possible synthetic routes that originate from excited electronic states of N2 molecules. Several ab initio theoretical approaches have been used, including complete active space self-consistent field (CASSCF), state averaged CASSCF (SA-CASSCF), singles configuration interaction (CIS), CIS with second-order and third-order correlation corrections [CIS(D)) and CIS(3)], and linear response singles and doubles coupled-cluster (LRCCSD), which is the highest level of theory employed. Standard double zeta polarized (DZP) and triple zeta double polarized (TZ2P) one-particle basis sets were used. The CASSCF calculations are found to overestimate the excitation energies, while the SA-CASSCF approach rectifies this error to some extent, but not completely. The accuracy of the CIS calculations varied depending on the particular state, while the CIS(D), CIS(3), and LRCCSD results are in generally good agreement. Based on the LRCCSD calculations, the lowest six excited singlet states are 9.35(l(sup)T1), 10.01(l(sup)T2), 10.04(1(sup)A2), 10.07(1(sup)E), 10.12(2(sup)T1), and 10.42(2(sup)T2) eV above the ground state, respectively. Comparison of these excited state energies with the energies of possible excited states of N2+N2 fragments, leads us to propose that the most likely synthetic route for Td N4 involving this mechanism arises from combination of two bound quintet states of N2.

  2. A QM/MM Approach Using the AMOEBA Polarizable Embedding: From Ground State Energies to Electronic Excitations.

    Science.gov (United States)

    Loco, Daniele; Polack, Étienne; Caprasecca, Stefano; Lagardère, Louis; Lipparini, Filippo; Piquemal, Jean-Philip; Mennucci, Benedetta

    2016-08-09

    A fully polarizable implementation of the hybrid quantum mechanics/molecular mechanics approach is presented, where the classical environment is described through the AMOEBA polarizable force field. A variational formalism, offering a self-consistent relaxation of both the MM induced dipoles and the QM electronic density, is used for ground state energies and extended to electronic excitations in the framework of time-dependent density functional theory combined with a state specific response of the classical part. An application to the calculation of the solvatochromism of the pyridinium N-phenolate betaine dye used to define the solvent ET(30) scale is presented. The results show that the QM/AMOEBA model not only properly describes specific and bulk effects in the ground state but it also correctly responds to the large change in the solute electronic charge distribution upon excitation.

  3. An experimental and theoretical investigation into the electronically excited states of para-benzoquinone

    Science.gov (United States)

    Jones, D. B.; Limão-Vieira, P.; Mendes, M.; Jones, N. C.; Hoffmann, S. V.; da Costa, R. F.; Varella, M. T. do N.; Bettega, M. H. F.; Blanco, F.; García, G.; Ingólfsson, O.; Lima, M. A. P.; Brunger, M. J.

    2017-05-01

    We report on a combination of experimental and theoretical investigations into the structure of electronically excited para-benzoquinone (pBQ). Here synchrotron photoabsorption measurements are reported over the 4.0-10.8 eV range. The higher resolution obtained reveals previously unresolved pBQ spectral features. Time-dependent density functional theory calculations are used to interpret the spectrum and resolve discrepancies relating to the interpretation of the Rydberg progressions. Electron-impact energy loss experiments are also reported. These are combined with elastic electron scattering cross section calculations performed within the framework of the independent atom model-screening corrected additivity rule plus interference (IAM-SCAR + I) method to derive differential cross sections for electronic excitation of key spectral bands. A generalized oscillator strength analysis is also performed, with the obtained results demonstrating that a cohesive and reliable quantum chemical structure and cross section framework has been established. Within this context, we also discuss some issues associated with the development of a minimal orbital basis for the single configuration interaction strategy to be used for our high-level low-energy electron scattering calculations that will be carried out as a subsequent step in this joint experimental and theoretical investigation.

  4. Calculation of Ground State Rotational Populations for Kinetic Gas Homonuclear Diatomic Molecules including Electron-Impact Excitation and Wall Collisions

    Energy Technology Data Exchange (ETDEWEB)

    David R. Farley

    2010-08-19

    A model has been developed to calculate the ground-state rotational populations of homonuclear diatomic molecules in kinetic gases, including the effects of electron-impact excitation, wall collisions, and gas feed rate. The equations are exact within the accuracy of the cross sections used and of the assumed equilibrating effect of wall collisions. It is found that the inflow of feed gas and equilibrating wall collisions can significantly affect the rotational distribution in competition with non-equilibrating electron-impact effects. The resulting steady-state rotational distributions are generally Boltzmann for N≥3, with a rotational temperature between the wall and feed gas temperatures. The N=0,1,2 rotational level populations depend sensitively on the relative rates of electron-impact excitation versus wall collision and gas feed rates.

  5. Electron capture into excited projectile states in 6-100 keV Ne/sup 4 +/-Ne collisions

    Energy Technology Data Exchange (ETDEWEB)

    Nikulin, V.K.; Gordeev, Yu.S.; Samoylov, A.V. (AN SSSR, Leningrad. Fiziko-Tekhnicheskij Inst.); Dijkkamp, D.; Heer, F.J. de (FOM-Instituut voor Atoom-en Molecuulfysica, Amsterdam (Netherlands))

    1984-11-14

    The collision system Ne/sup 4 +/-Ne has been studied both theoretically and experimentally. The cross section for one-electron capture into Ne/sup 3 +/(3s,3p) subshells has been determined in the velocity range 0.1-0.5 au by measuring the VUV photons emitted by these excited states. The cross sections for one- and two-electron capture into 3s, 3p subshells were calculated using a multichannel Landau-Zener model. Good agreement exists between experimental and theoretical results for one-electron capture.

  6. State-selective electron transfer and ionization in collisions of highly charged ions with ground-state Na(3s) and laser-excited Na*(3p)

    NARCIS (Netherlands)

    Blank, I.; Otranto, S.; Meinema, C.; Olson, R. E.; Hoekstra, R.

    2012-01-01

    Single electron transfer and ionization in collisions of N5+ and Ne8+ with ground state Na(3s) and laser excited Na*(3p) are investigated both experimentally and theoretically at collision energies from 1 to 10 keV/amu, which includes the classical orbital velocity of the valence electron.

  7. Excitation of the 3p states in electron-sodium scattering at intermediate energies

    Science.gov (United States)

    Kamali, M. Z. M.; Wong, B. R.; Chin, J. H.; Ratnavelu, K.

    2014-03-01

    A coupled-channel-optical method (CCOM), to investigate the excitation of the 3p states for e--Na scattering at intermediate energies, is reported. Nine atomic states( Na(3s), Na(3p), Na(4s), Na(3d), Na(4p), Na(5s), Na(4d), Na(5p), Na(5d) ) together with three optical potentials are used in this work. The inelastic differential cross sections (DCS) as well as the reduced Stokes parameters are compared with latest theoretical data and experimental measurements.

  8. Excited state and ground state proton transfer rates of 3-hydroxyflavone and its derivatives studied by shpol'skii spectroscopy: The influence of redistribution of electron density

    NARCIS (Netherlands)

    Bader, A.N.; Pivovarenko, V.; Demchenko, A.P.; Ariese, F.; Gooijer, C.

    2004-01-01

    We studied the mechanisms of excited-state intramolecular proton transfer (ESIPT) and ground-state back proton transfer (BPT) in 3-hydroxyflavone (3HF) at cryogenic temperatures. The focus was on substituents that change the distribution of electronic density on the chromophore and their influence

  9. Properties of electronically excited states of four squaraine dyes and their complexes with fullerene C70: A theoretical investigation

    Science.gov (United States)

    Zhang, Jian; Li, Tingyu

    2017-09-01

    Solar cells sensitized by polypyridyl Ru(II) complexes exhibit relatively high efficiency, however those photo-sensitizers did not absorb the photons in the far-red and near-infrared region. At present, squaraine dyes have received considerable attention as their attractively intrinsic red light absorption and unusual high molar extinction coefficient. Here we applied density functional theory and time dependent density functional theory to investigate the properties of electronically excited states of four squaraine dyes and their complexes with fullerene C70. The influences of different functionals, basis sets and solvent effects are evaluated. To understand the photophysical properties, the investigations are basing on a classification method which splits the squaraine dyes and their complexes with fullerene C70 into two units to characterize the intramolecular density distribution. We present the signatures of their electronically excited states which are characterized as local excitation or charge-transfer excitation. The relationship between open-circuit voltage and the number of intramolecular hydrogen bonds in squaraine dyes are discussed.

  10. Three-body recombination and dynamics of electrons and excited states in the low-pressure argon afterglow

    Science.gov (United States)

    Tsankov, Tsanko Vaskov; Johnsen, Rainer; Czarnetzki, Uwe

    2016-09-01

    The afterglow phase occurs naturally during the power-off period in pulsed low-pressure plasmas and in atmospheric pressure ns discharges. During that period the electron energy rapidly declines and the charged particles are lost due to diffusion and recombination. In low-pressure discharges the dominant process is three-body recombination (TBR) of Ar+ ions with electrons. It leads to complex dynamics of the excited states, dominated by collisional-radiative cascades that eventually repopulate the metastable states. In this contribution the afterglow dynamics of an argon discharge is analyzed in detail to elucidate the roles played by the various processes. An analytical model for the fast drop of the electron energy by evaporative cooling and electron-ion collisions is combined with a time-dependent collisional radiative model for the atomic excited states that numerically solves the electron energy and density balance equations. By including further gas heating and cooling, the model leads to excellent agreement with experiments utilizing different diagnostic techniques, and hence gives insight into the interplay of the various processes in the afterglow. Work Supported by the DFG (Grant No. TS 307/1-1).

  11. Electron correlation in the 3 (1)Sigma(g)+ and 2 (1)Sigma(u)+ excited state lithium molecule.

    Science.gov (United States)

    Wang, Jian; Zhang, Lei; Wang, Yu; Ugalde, Jesus M

    2006-12-21

    Electron correlation effects in the two excited states of Li(2), 3 (1)Sigma(g) (+) and 2 (1)Sigma(u) (+), one with a shelf shape and another with double minima in their potential energy curves, have been studied with the aid of the calculated electron pair density distribution as a function of the internuclear distance and the analysis of the natural orbitals. Both states show increased electron pair densities at intermediate interelectronic distances around the second minimum of their potential energy curves. Since the bond breaks homolitically this observation runs contrary to regular expectations. Analysis of the electron pair density distributions and the natural orbitals provides mechanisms to account for this abnormal behavior.

  12. Fluorescence excitation involving multiple electron transition states of N{sub 2} and CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Wu, C.Y.R.; Chen, F.Z.; Hung, T.; Judge, D.L. [Univ. of Southern California, Los Angeles, CA (United States)

    1997-04-01

    The electronic states and electronic structures of N{sub 2} and CO{sub 2} in the 8-50 eV energy region have been studied extensively both experimentally and theoretically. In the energy region higher than 25 eV there exists many electronic states including multiple electron transition (MET) states which are responsible for producing most of the dissociative photoionization products. The electronic states at energies higher than 50 eV have been mainly determined by Auger spectroscopy, double charge transfer, photofragment spectroscopy and ion-ion coincidence spectroscopy. The absorption and ionization spectra of these molecules at energies higher than 50 eV mainly show a monotonic decrease in cross section values and exhibit structureless features. The decay channels of MET and Rydberg (or superexcited) states include autoionization, ionization, dissociative ionization, predissociation, and dissociation while those of single ion and multiple ion states may involve predissociation. and dissociation processes. The study of fluorescence specifically probes electronically excited species resulting from the above-mentioned decay channels and provides information for understanding the competition among these channels.

  13. Electronic spectra of azaindole and its excited state mixing: A symmetry-adapted cluster configuration interaction study

    Energy Technology Data Exchange (ETDEWEB)

    Arulmozhiraja, Sundaram, E-mail: raja@cat.hokudai.ac.jp; Coote, Michelle L. [ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, The Australian National University, Canberra, 2601 ACT (Australia); Hasegawa, Jun-ya [Institute for Catalysis, Hokkaido University, Kita 21, Nishi 10, Kita-Ku, Sapporo 001-0021 (Japan)

    2015-11-28

    Electronic structures of azaindole were studied using symmetry-adapted cluster configuration interaction theory utilizing Dunning’s cc-pVTZ basis set augmented with appropriate Rydberg spd functions on carbon and nitrogen atoms. The results obtained in the present study show good agreement with the available experimental values. Importantly, and contrary to previous theoretical studies, the excitation energy calculated for the important n–π{sup ∗} state agrees well with the experimental value. A recent study by Pratt and co-workers concluded that significant mixing of π-π{sup ∗} and n-π{sup ∗} states leads to major change in the magnitude and direction of the dipole moment of the upper state vibrational level in the 0,0 + 280 cm{sup −1} band in the S{sub 1}←S{sub 0} transition when compared to that of the zero-point level of the S{sub 1} state. The present study, however, shows that all the four lowest lying excited states, {sup 1}L{sub b} π-π{sup ∗}, {sup 1}L{sub a} π-π{sup ∗}, n-π{sup ∗}, and π-σ{sup ∗}, cross each other in one way or another, and hence, significant state mixing between them is likely. The upper state vibrational level in the 0,0 + 280 cm{sup −1} band in the S{sub 1}←S{sub 0} transition benefits from this four-state mixing and this can explain the change in magnitude and direction of the dipole moment of the S{sub 1} excited vibrational level. This multistate mixing, and especially the involvement of π-σ{sup ∗} state in mixing, could also provide a route for hydrogen atom detachment reactions. The electronic spectra of benzimidazole, a closely related system, were also investigated in the present study.

  14. Contribution of electronically excited states to the radiation chemistry of organic systems. Progress report, September 1, 1978-August 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Lipsky, S.

    1979-01-01

    The effect of n-perfluorohexane to quench both the emission and photoionization current of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) in isooctane and in tetramethylsilane has been shown to be consistent with an interaction of perfluorohexane with some relatively long-lived, coherently excited state of TMPD that is generated at the photoionization threshold and which decays either to the emitting state of TMPD or to a geminate ion-pair. The 0/sup 0/ and 90/sup 0/ electron impact spectra of the stable isomers of C/sub 3/, C/sub 4/, and C/sub 5/ saturated hydrocarbons are being determined. Preliminary results show large structural effects on the lowest Rydberg singlet-triplet splittings. Two photon excited emission spectra of decalin, bicyclohexyl, and cyclohexane have been observed in good agreement with previously reported one-photon spectra. A weak emission from propylene has also been detected. From measurement of the photosensitized singlet emission of p-xylene by bicyclohexyl excited at 1740 A, it appears that the bicyclohexyl triplet contributes importantly to the sensitization. Also previously reported deviations from Stern-Volmer behavior in the fast-electron-excited process are found too in the photo-excited process (at 1740 A) and therefore cannot be attributed exclusively to ionic processes. The much larger ratio of excimer to monomer intensity in polystyrene as compared to neat liquid benzene appears to be due mainly to a reduced entropy of dissociation of the excimer when the phenyls are tied to the polymer backbone. Excimers formed therefore from distant phenyl groups may manifest themselves at high quencher concentrations and thus provide a new technique for probing polymer conformation.

  15. Excited singlet (S1) state interactions of calixarenes with chloroalkanes: A combination of concerted and stepwise dissociative electron transfer mechanism

    Science.gov (United States)

    Mohanty, J.; Pal, H.; Nayak, S. K.; Chattopadhyay, S.; Sapre, A. V.

    2002-12-01

    Both steady-state and time-resolved studies in acetonitrile (ACN) solutions show that the excited singlet (S1) states of calixarenes (CX) undergo quenching by chloroalkanes (CA). It has been revealed by characterizing the Cl ions in the photolyzed CX-CA systems in ACN solutions that the quenching occurs due to dissociative electron transfer (DET) mechanism, whereby a C-Cl bond of the CAs undergoes dissociation on acceptance of an electron from excited CX. The bimolecular quenching constants (kq) in the present systems were correlated with the free energy changes for the concerted DET reactions based on a suitable DET theory. Such a correlation results in the recovery of an intramolecular reorganization energy, which is substantially lower to account for the C-Cl bond dissociation energy of the CAs. Comparing present results with those of an another donor-acceptor system (e.g., biphenyldiol-CA systems) where a concerted DET mechanism is applicable, it is inferred that in CX-CA systems both concerted and stepwise DET mechanisms operate simultaneously. It is proposed that the interaction of excited CXs with encaged CAs follows the stepwise mechanism whereas that with the out of cage CAs follows the concerted mechanism.

  16. Determination of dipole moment change on the electronic excitation of isolated Coumarin 153 by pendular-state spectroscopy

    Science.gov (United States)

    Kanya, Reika; Ohshima, Yasuhiro

    2003-03-01

    The change (Δ μ) in the permanent dipole moment on the S 1←S 0 electronic excitation is determined for Coumarin 153 (C153) in a molecular beam from the spectral change induced by applying a strong dc electric field up to 200 kV/cm. The comparison of the observed fluorescence excitation spectra under various external fields with the corresponding simulations for a pendular-state molecule yields Δμ=7.1±0.4 D for both the syn and anti conformers of C153. Previous experimental results on Δ μ in the condensed phase, as well as the theoretical predictions reported in the literature, are discussed on the basis of the present value under an isolated condition.

  17. Electronically excited states of vitamin B12 and methylcobalamin: theoretical analysis of absorption, CD, and MCD data.

    Science.gov (United States)

    Solheim, Harald; Kornobis, Karina; Ruud, Kenneth; Kozlowski, Pawel M

    2011-02-03

    Linear and quadratic response time-dependent density functional theory (TD-DFT) has been applied to investigate absorption (Abs), circular dichroism (CD), and magnetic CD (MCD) spectra of cyanocobalamin (CNCbl) and methylcobalamin (MeCbl). Although electronically excited states of both cobalamins have been probed by applying different experimental techniques, their exact nature remains poorly understood from an electronic structure point of view. Recent theoretical studies have revealed a lot of relevant information about their properties but also left some unresolved issues related to the nature of individual transitions. In this contribution, not only Abs but also CD and MCD spectra of both cobalamins were computed for direct comparison with experiment. The results were evaluated with respect to the choice of exchange-correlation functional, basis set, and the environment (gas phase or solvent) used in the calculation. Taking into account the complexity of the CNCbl and MeCbl systems, reliable agreement between theory and experiment was achieved based on calculations employing the BP86 functional, particularly for the low-energy α/β bands. This spectral range has been traditionally interpreted as a vibrational progression associated with a single electronic excitation, but according to the present analysis for both cobalamins, these bands are best interpreted as consisting of multiple electronic transitions.

  18. Role of the electronically excited-state hydrogen bonding and water clusters in the luminescent metal-organic framework.

    Science.gov (United States)

    Sui, Xiao; Ji, Min; Lan, Xin; Mi, Weihong; Hao, Ce; Qiu, Jieshan

    2013-05-20

    The electronically excited state and luminescence property of metal-organic framework Zn(3-tzba)(2,2'-bipy)(H2O)·nH2O have been investigated using the density functional theory (DFT) and time-dependent DFT (TDDFT). The calculated geometry and infrared spectra in the ground state are consistent with the experimental results. The frontier molecular orbitals and electronic configuration indicated that the origin of luminescence is attributed to a ligand-to-ligand charge transfer (LLCT). We theoretically demonstrated that the hydrogen bond H47···O5═C is weakened in the excited state S1; the weakening of the excited-state hydrogen bonding should be beneficial to the luminescence. To explore the effect of the water clusters on the luminescence, we studied four complexes Zn(3-tzba)(2,2'-bipy)(H2O)·3H2O, Zn(3-tzba)(2,2'-bipy)(H2O)·2H2O, Zn(3-tzba)(2,2'-bipy)(H2O)·H2O, and Zn(3-tzba)(2,2'-bipy)(H2O). The results reveal that the presence of water should play an important role in the emission characteristics of the MOF. Also, the UV-vis absorption and emission spectra of Zn(3-tzba)(2,2'-bipy)(H2O)·3H2O are in good agreement with the experimental results.

  19. Ultrafast Excited-State Dynamics of Diketopyrrolopyrrole (DPP)-Based Materials: Static versus Diffusion-Controlled Electron Transfer Process

    KAUST Repository

    Alsulami, Qana

    2015-06-25

    Singlet-to-triplet intersystem crossing (ISC) and photoinduced electron transfer (PET) of platinum(II) containing diketopyrrolopyrrole (DPP) oligomer in the absence and presence of strong electron-acceptor tetracyanoethylene (TCNE) were investigated using femtosecond and nanosecond transient absorption spectroscopy with broadband capabilities. The role of platinum(II) incorporation in those photophysical properties was evaluated by comparing the excited-state dynamics of DPP with and without the metal centers. The steady-state measurements reveal that platinum(II) incorporation facilitates dramatically the interactions between DPP-Pt(acac) and TCNE, resulting in charge transfer (CT) complex formation. The transient absorption spectra in the absence of TCNE reveal ultrafast ISC of DPP-Pt(acac) followed by their long-lived triplet state. In the presence of TCNE, PET from the excited DPP-Pt(acac) and DPP to TCNE, forming the radical ion pairs. The ultrafast PET which occurs statically from DPP-Pt(acac) to TCNE in picosecond regime, is much faster than that from DPP to TCNE (nanosecond time scale) which is diffusion-controlled process, providing clear evidence that PET rate is eventually controlled by the platinum(II) incorporation.

  20. The mechanisms of Excited states in enzymes

    DEFF Research Database (Denmark)

    Petersen, Frederic Nicolas Rønne; Bohr, Henrik

    2010-01-01

    Enzyme catalysis is studied on the basis of excited state processes, which are of electronic, vibrational and thermal nature. The ways of achieving the excited state, such as photo-absorption and ligand binding, are discussed and exemplified by various cases of enzymes.......Enzyme catalysis is studied on the basis of excited state processes, which are of electronic, vibrational and thermal nature. The ways of achieving the excited state, such as photo-absorption and ligand binding, are discussed and exemplified by various cases of enzymes....

  1. Electronic excited states responsible for dimer formation upon UV absorption directly by thymine strands: joint experimental and theoretical study.

    Science.gov (United States)

    Banyasz, Akos; Douki, Thierry; Improta, Roberto; Gustavsson, Thomas; Onidas, Delphine; Vayá, Ignacio; Perron, Marion; Markovitsi, Dimitra

    2012-09-12

    The study addresses interconnected issues related to two major types of cycloadditions between adjacent thymines in DNA leading to cyclobutane dimers (TTs) and (6-4) adducts. Experimental results are obtained for the single strand (dT)(20) by steady-state and time-resolved optical spectroscopy, as well as by HPLC coupled to mass spectrometry. Calculations are carried out for the dinucleoside monophosphate in water using the TD-M052X method and including the polarizable continuum model; the reliability of TD-M052X is checked against CASPT2 calculations regarding the behavior of two stacked thymines in the gas phase. It is shown that irradiation at the main absorption band leads to cyclobutane dimers (TTs) and (6-4) adducts via different electronic excited states. TTs are formed via (1)ππ* excitons; [2 + 2] dimerization proceeds along a barrierless path, in line with the constant quantum yield (0.05) with the irradiation wavelength, the contribution of the (3)ππ* state to this reaction being less than 10%. The formation of oxetane, the reaction intermediate leading to (6-4) adducts, occurs via charge transfer excited states involving two stacked thymines, whose fingerprint is detected in the fluorescence spectra; it involves an energy barrier explaining the important decrease in the quantum yield of (6-4) adducts with the irradiation wavelength.

  2. Excited-state intramolecular hydrogen transfer (ESIHT) of 1,8-Dihydroxy-9,10-anthraquinone (DHAQ) characterized by ultrafast electronic and vibrational spectroscopy and computational modeling

    KAUST Repository

    Mohammed, Omar F.

    2014-05-01

    We combine ultrafast electronic and vibrational spectroscopy and computational modeling to investigate the photoinduced excited-state intramolecular hydrogen-transfer dynamics in 1,8-dihydroxy-9,10-anthraquinone (DHAQ) in tetrachloroethene, acetonitrile, dimethyl sulfoxide, and methanol. We analyze the electronic excited states of DHAQ with various possible hydrogen-bonding schemes and provide a general description of the electronic excited-state dynamics based on a systematic analysis of femtosecond UV/vis and UV/IR pump-probe spectroscopic data. Upon photoabsorption at 400 nm, the S 2 electronic excited state is initially populated, followed by a rapid equilibration within 150 fs through population transfer to the S 1 state where DHAQ exhibits ESIHT dynamics. In this equilibration process, the excited-state population is distributed between the 9,10-quinone (S2) and 1,10-quinone (S1) states while undergoing vibrational energy redistribution, vibrational cooling, and solvation dynamics on the 0.1-50 ps time scale. Transient UV/vis pump-probe data in methanol also suggest additional relaxation dynamics on the subnanosecond time scale, which we tentatively ascribe to hydrogen bond dynamics of DHAQ with the protic solvent, affecting the equilibrium population dynamics within the S2 and S1 electronic excited states. Ultimately, the two excited singlet states decay with a solvent-dependent time constant ranging from 139 to 210 ps. The concomitant electronic ground-state recovery is, however, only partial because a large fraction of the population relaxes to the first triplet state. From the similarity of the time scales involved, we conjecture that the solvent plays a crucial role in breaking the intramolecular hydrogen bond of DHAQ during the S2/S1 relaxation to either the ground or triplet state. © 2014 American Chemical Society.

  3. Dissociative electron attachment to vibrationally excited H{sub 2} molecules involving the {sup 2}{Sigma}{sub g}{sup +} resonant Rydberg electronic state

    Energy Technology Data Exchange (ETDEWEB)

    Celiberto, R., E-mail: r.celiberto@poliba.it [Department of Water Engineering and Chemistry, Polytechnic of Bari, 70125 Bari (Italy); Institute of Inorganic Methodologies and Plasmas, CNR, 70125 Bari (Italy); Janev, R.K., E-mail: r.janev@fz-juelich.de [Macedonian Academy of Sciences and Arts, P.O.B 428, 1000 Skopje (Macedonia, The Former Yugoslav Republic of); Institute of Energy and Climate Research - Plasma Physics, Forschungszentrum Juelich GmbH Association EURATOM-FZJ, Partner in Trilateral Euregio Cluster, 52425 Juelich (Germany); Wadehra, J.M., E-mail: wadehra@wayne.edu [Physics Department, Wayne State University, Detroit, MI 48202 (United States); Tennyson, J., E-mail: j.tennyson@ucl.ac.uk [Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom)

    2012-04-04

    Graphical abstract: Dissociative electron attachment cross sections as a function of the incident electron energy and for the initial vibration levels v{sub i} = 0-5, 10 of the H{sub 2} molecule. Highlights: Black-Right-Pointing-Pointer We calculated electron-hydrogen dissociative attachment cross sections and rates coefficients. Black-Right-Pointing-Pointer Collision processes occurring through a resonant Rydberg state are considered. Black-Right-Pointing-Pointer Cross sections and rates were obtained for vibrationally excited hydrogen molecules. Black-Right-Pointing-Pointer The cross sections exhibit pronounced oscillatory structures. Black-Right-Pointing-Pointer A comparison with the process involving the electron-hydrogen resonant ground state is discussed. - Abstract: Dissociative electron attachment cross sections (DEA) on vibrationally excited H{sub 2} molecule taking place via the {sup 2}{Sigma}{sub g}{sup +} Rydberg-excited resonant state are studied using the local complex potential (LCP) model for resonant collisions. The cross sections are calculated for all initial vibrational levels (v{sub i} = 0-14) of the neutral molecule. In contrast to the previously noted dramatic increase in the DEA cross sections with increasing v{sub i}, when the process proceeds via the X {sup 2}{Sigma}{sub u}{sup +} shape resonance of H{sub 2}, for the {sup 2}{Sigma}{sub g}{sup +} Rydberg resonance the cross sections increase only gradually up to v{sub i} = 3 and then decrease. Moreover, the cross sections for v{sub i} Greater-Than-Or-Slanted-Equal-To 6 exhibit pronounced oscillatory structures. A discussion of the origin of the observed behavior of calculated cross sections is given. The DEA rate coefficients for all v{sub i} levels are also calculated in the 0.5-1000 eV temperature range.

  4. Exploring Potential Energy Surfaces of Electronic Excited States in Solution with the EOM-CCSD-PCM Method.

    Science.gov (United States)

    Caricato, Marco

    2012-12-11

    The effect of the solvent on the structure of a molecule in an electronic excited state cannot be neglected. However, the computational cost of including explicit solvent molecules around the solute becomes rather onerous when an accurate method such as the equation of motion coupled cluster singles and doubles (EOM-CCSD) is employed. Solvation continuum models like the polarizable continuum model (PCM) provide an efficient alternative to explicit models, since the solvent conformational average is implicit and the solute-solvent mutual polarization is naturally accounted for. In this work, the coupling of EOM-CCSD and PCM in a state specific approach is presented for the evaluation of energy and analytic energy gradients. Also, various approximations are explored to maintain the computational cost comparable to gas phase EOM-CCSD. Numerical examples are used to test the different schemes.

  5. Electron Excitation of High Dipole Moment Molecules

    Science.gov (United States)

    Goldsmith, Paul; Kauffmann, Jens

    2018-01-01

    Emission from high-dipole moment molecules such as HCN allows determination of the density in molecular clouds, and is often considered to trace the “dense” gas available for star formation. We assess the importance of electron excitation in various environments. The ratio of the rate coefficients for electrons and H2 molecules, ~10^5 for HCN, yields the requirements for electron excitation to be of practical importance if n(H2) 10^{-5}, where the numerical factors reflect critical values n_c(H2) and X^*(e-). This indicates that in regions where a large fraction of carbon is ionized, X(e-) will be large enough to make electron excitation significant. The situation is in general similar for other “high density tracers”, including HCO+, CN, and CS. But there are significant differences in the critical electron fractional abundance, X^*(e-), defined by the value required for equal effect from collisions with H2 and e-. Electron excitation is, for example, unimportant for CO and C+. Electron excitation may be responsible for the surprisingly large spatial extent of the emission from dense gas tracers in some molecular clouds (Pety et al. 2017, Kauffmann, Goldsmith et al. 2017, A&A, submitted). The enhanced estimates for HCN abundances and HCN/CO and HCN/HCO+ ratios observed in the nuclear regions of luminous galaxies may be in part a result of electron excitation of high dipole moment tracers. The importance of electron excitation will depend on detailed models of the chemistry, which may well be non-steady state and non--static.

  6. Benchmarks for electronically excited states: Time-dependent density functional theory and density functional theory based multireference configuration interaction

    DEFF Research Database (Denmark)

    Silva-Junior, Mario R.; Schreiber, Marko; Sauer, Stephan P. A.

    2008-01-01

    Time-dependent density functional theory (TD-DFT) and DFT-based multireference configuration interaction (DFT/MRCI) calculations are reported for a recently proposed benchmark set of 28 medium-sized organic molecules. Vertical excitation energies, oscillator strengths, and excited-state dipole...

  7. The contribution of electronically excited states to the radiation chemistry of organic systems

    Energy Technology Data Exchange (ETDEWEB)

    Lipsky, S.

    1990-01-01

    The photocurrent from anthracene in 2,2,4-trimethylpentane, 2.2- dimethylbutane, cyclohexane, cyclopentane, and tetramethylsilane has been studied as a function of excitation energy from the ionization threshold to the onset of strong solvent absorption. The fluroescence from solutions of hexafluorobenzene in cyclopentane, 2,2,4-trimethylpentane, 2,2-dimethylbutane and tetramethylsilane irradiated with {beta}-particles has been studied as a function of the hexafluorobenzene concentration from c = 10{sup {minus}3}-10{sup {minus}1} M. The data are analyzed to permit extraction of the geminate ion-pair scavenging probability. The absorption of 160 nm light by cyclohexane in mixtures of cyclohexane, benzene and tetraphenylmethylenediamine results in an emission spectrum consisting of the simultaneous fluorescence from all three components. A mechanism for the development of this spectrum and its dependence on benzene concentration is constructed and shown to be quantitatively consistent with the results of independent measurements on the separate components. 55 refs.

  8. Excited-state Wigner crystals

    Science.gov (United States)

    Rogers, Fergus J. M.; Loos, Pierre-François

    2017-01-01

    Wigner crystals (WCs) are electronic phases peculiar to low-density systems, particularly in the uniform electron gas. Since its introduction in the early twentieth century, this model has remained essential to many aspects of electronic structure theory and condensed-matter physics. Although the (lowest-energy) ground-state WC (GSWC) has been thoroughly studied, the properties of excited-state WCs (ESWCs) are basically unknown. To bridge this gap, we present a well-defined procedure to obtain an entire family of ESWCs in a one-dimensional electron gas using a symmetry-broken mean-field approach. While the GSWC is a commensurate crystal (i.e., the number of density maxima equals the number of electrons), these ESWCs are incommensurate crystals exhibiting more or less maxima. Interestingly, they are lower in energy than the (uniform) Fermi fluid state. For some of these ESWCs, we have found asymmetrical band gaps, which would lead to anisotropic conductivity. These properties are associated with unusual characteristics in their electronic structure.

  9. Effects of solvent on the electronic absorption and fluorescence spectra of quinazolines, and determination of their ground and excited singlet-state dipole moments

    Science.gov (United States)

    Aaron, J. J.; Tine, A.; Gaye, M. D.; Parkanyi, C.; Boniface, C.; Bieze, T. W. N.

    The electronic absorption, and fluorescence excitation and emission spectra of 11 quinazolines have been measured at room temperature (298 K) in several solvents of different polarities (cyclohexane, dioxane, ethylether, chloroform, ethylacetate, 1-butanol, 2-propanol, ethanol, methanol, acetonitrile, dimethylformamide and dimethyl sulfoxide). The effects of the solvent upon the spectral properties are discussed. Experimental ground-state dipole moments were measured for quinazolines and were used in combination with the spectral results to evaluate their first excited singlet-state dipole moments by means of the solvatochromic shift method. The theoretical ground and excited singlet-state dipole moments for selected quinazolines were calculated as a vector sum of the π-component (obtained by the PPP method) and the σ-component (obtained from σ-bond moments). A reasonable agreement was observed between the experimental and the theoretical values. Excited singlet-state dipole moments are higher than the ground-state values for most quinazolines.

  10. Hot-electron-mediated desorption rates calculated from excited-state potential energy surfaces

    DEFF Research Database (Denmark)

    Olsen, Thomas; Gavnholt, Jeppe; Schiøtz, Jakob

    2009-01-01

    We present a model for desorption induced by (multiple) electronic transitions [DIET (DIMET)] based on potential energy surfaces calculated with the delta self-consistent field extension of density-functional theory. We calculate potential energy surfaces of CO and NO molecules adsorbed on variou...

  11. Electron correlation effect on radiative decay processes of the core-excited states of Be-like ions

    Energy Technology Data Exchange (ETDEWEB)

    Sang, Cuicui, E-mail: sangcc@126.com [Department of Physics, Qinghai Normal University, Xining 810001 (China); Li, Kaikai [College of Forensic Science, People' s Public Security University of China, Beijing 100038 (China); Sun, Yan; Hu, Feng [School of Mathematic and Physical Science, Xuzhou Institute of Technology, Xuzhou 221400, Jiangsu (China)

    2016-07-15

    Highlights: • Radiative rates of the states 1s2s{sup 2}2p and 1s2p{sup 3} with Z = 8–54 are studied. • Electron correlation effect on the radiative transition rates is studied. • Forbidden transitions are explored. - Abstract: Energy levels and the radiative decay processes of the core-excited configurations 1s2s{sup 2}2p and 1s2p{sup 3} of Be-like ions with Z = 8–54 are studied. Electron correlation effect on the energy levels and the radiative transition rates are studied in detail. Except for E1 radiative transition rates, the E2, M1 and M2 forbidden transitions are also explored. Further relativistic corrections from the Breit interaction, quantum electrodynamics and the finite nuclear size are included in the calculations to make the results more precise. Good agreement is found between our results and other theoretical data.

  12. Hydrogen bonding and coordination bonding in the electronically excited states of Cu2(L)2 (L = 5-(4-pyridyl)tetrazole)MeOH: A TDDFT study

    Science.gov (United States)

    Meng, Yanfang; Zhang, Chunqing; Ji, Min; Hao, Ce; Qiu, Jieshan

    2013-05-01

    The luminescent metal organic framework (MOF), Cu2(L)2·MeOH (L = 5-(4-pyridyl)tetrazole), was studied using time-dependent density functional theory (TDDFT). A combination of frontier molecular orbitals and electronic configuration analysis revealed that the emission mechanism was a ligand to metal charge transition (LMCT) rather than a metal to ligand charge transfer (MLCT). Hydrogen bonding significantly changed the nature of the frontier orbital and the luminescence. Electronic transition energies predicted that the hydrogen bonding in excited state would become weaker with an electronic spectral blue-shift. The bond lengths, frequencies, and binding energies indicated weakening of the hydrogen bonding in the excited state, which can affect emissions in two ways, including: (i) a decrease in the electronic coupling between methanol and the motif and suppressing the occurrence of the photo-induced electron transfer (PET); and (ii) increasing the energy gap between S1 and S0, leading to radiative transition. Coordination bonding was also investigated in the excited state through bond lengths, frequencies, and bond orders. Coordination bonds were found to become stronger in the excited state leading to an enhancement of the luminescence.

  13. High-resolution spectroscopy of jet-cooled 1,1'-diphenylethylene: electronically excited and ionic states of a prototypical cross-conjugated system.

    Science.gov (United States)

    Smolarek, Szymon; Vdovin, Alexander; Rijs, Anouk; van Walree, Cornelis A; Zgierski, Marek Z; Buma, Wybren J

    2011-09-01

    The photophysics of a prototypical cross-conjugated π-system, 1,1'-diphenylethylene, have been studied using high-resolution resonance enhanced multiphoton ionization excitation spectroscopy and zero kinetic energy photoelectron spectroscopy, in combination with advanced ab initio calculations. We find that the excitation spectrum of S(1) displays extensive vibrational progressions that we identify to arise from large changes in the torsional angles of the phenyl rings upon electronic excitation. The extensive activity of the antisymmetric inter-ring torsional vibration provides conclusive evidence for a loss of symmetry upon excitation, leading to an inequivalence of the two phenyl rings. Nonresonant zero kinetic energy photoelectron spectroscopy from the ground state of the neutral molecule to the ground state of the radical cation, on the other hand, demonstrates that upon ionization symmetry is retained, and that the geometry changes are considerably smaller. Apart from elucidating how removal of an electron affects the structure of the molecule, these measurements provide an accurate value for the adiabatic ionization energy (65274 ± 1 cm(-1) (8.093 eV)). Zero kinetic energy photoelectron spectra obtained after excitation of vibronic levels in S(1) confirm these conclusions and provide us with an extensive atlas of ionic vibronic energy levels. For higher excitation energies the excitation spectrum of S(1) becomes quite congested and shows unexpected large intensities. Ab initio calculations strongly suggest that this is caused by a conical intersection between S(1) and S(2). © 2011 American Chemical Society

  14. Correlating excited state and charge carrier dynamics with photovoltaic parameters of perylene dye sensitized solar cells: influences of an alkylated carbazole ancillary electron-donor.

    Science.gov (United States)

    Li, Yang; Wang, Junting; Yuan, Yi; Zhang, Min; Dong, Xiandui; Wang, Peng

    2017-01-18

    Two perylene dyes characteristic of electron-donors phenanthrocarbazole (PC) and carbazyl functionalized PC are selected to study the complicated dynamics of excited states and charge carriers, which underlie the photovoltaic parameters of dye-sensitized solar cells (DSCs). We have combined femtosecond fluorescence up-conversion and time-resolved single-photon counting techniques to probe the wavelength-dependent photoluminescence dynamics of dye molecules not only dissolved in THF but also grafted on the surface of oxide nanoparticles. Excited state relaxation and electron injection both occur on a similar timescale, resulting in a very distributive kinetics of electron injection. It is also found that the carbazyl ancillary electron-donor causes a faster electron injection, which over-compensates the adverse impact of a slightly shorter lifetime of the equilibrium excited state. Nanosecond transient absorption and transient photovoltage decay measurements have shown that conjugating carbazyl to PC can effectively slow down the kinetics of charge recombination of electrons in titania with both photo-oxidized dye molecules and triiodide anions, improving the cell photovoltage.

  15. Excited Electronic and Vibrational State Decomposition of Energetic Materials and Model Systems on Both Nanosecond and Femtosecond Time Scales

    Science.gov (United States)

    2014-07-22

    The Journal of Chemical Physics , ( 2012): 0. doi: 10.1063/1.4752654 Atanu Bhattacharya, Yuanqing Guo, Elliot R. Bernstein. A comparison of the decomposition of electronically excited nitro-containing molecules with energetic moieties C–NO2, N–NO2, and O–NO2, The Journal of Chemical Physics , ( 2012): 0. doi: 10.1063/1.3668139 Yuanqing Guo, Atanu Bhattacharya, Elliot R. Bernstein. Ultrafast S1 to S0 Internal Conversion Dynamics for Dimethylnitramine through a Conical

  16. State-To Rotational and Vibrational Energy Transfers Following Vibrational Excitation of (1010000) and (0112000) in the Ground Electronic State of Acetylene

    Science.gov (United States)

    Han, Jiande; Freel, Keith; Heaven, Michael C.

    2011-06-01

    We have examined state-to-state rotational and vibrational energy transfers for the vibrational levels (1010000) and (0112000) of C2H2 in the ground electronic state at ambient temperature. Measurements were made using a pulsed IR - UV double resonance technique. Total removal rate constants and state-to-state rotational energy transfer rate constants have been characterized for certain even-numbered rotational levels from J = 0 to 12 within the two vibrational modes. The measured state-to-state rotational energy transfer rate constants were fit to some energy-based empirical scaling and fitting laws, and the rate constants were found to be best reproduced by the statistical power-exponential gap law (PEGL). The measured rate constants were then further evaluated by a kinetic model which simulated the experimental spectra by solving simultaneous first order differential rate equations. Some rotationally-resolved vibrational energy transfer channels were also observed following excitation of (1010000). The vibrational relaxation channels were found to contribute less than 30% to the total removal rate constants of the measured rotational levels for both of the studied vibrational states.

  17. Carotenoids as electron or excited-state energy donors in artificial photosynthesis: an ultrafast investigation of a carotenoporphyrin and a carotenofullerene dyad.

    Science.gov (United States)

    Pillai, Smitha; Ravensbergen, Janneke; Antoniuk-Pablant, Antaeres; Sherman, Benjamin D; van Grondelle, Rienk; Frese, Raoul N; Moore, Thomas A; Gust, Devens; Moore, Ana L; Kennis, John T M

    2013-04-07

    Photophysical investigations of molecular donor-acceptor systems have helped elucidate many details of natural photosynthesis and revealed design principles for artificial photosynthetic systems. To obtain insights into the factors that govern the partition between excited-state energy transfer (EET) and electron transfer (ET) processes among carotenoids and tetrapyrroles and fullerenes, we have designed artificial photosynthetic dyads that are thermodynamically poised to favor ET over EET processes. The dyads were studied using transient absorption spectroscopy with ∼100 femtosecond time resolution. For dyad , a carotenoporphyrin, excitation to the carotenoid S2 state induces ultrafast ET, competing with internal conversion (IC) to the carotenoid S1 state. In addition, the carotenoid S1 state gives rise to ET. In contrast with biological photosynthesis and many artificial photosynthetic systems, no EET at all was detected for this dyad upon carotenoid S2 excitation. Recombination of the charge separated state takes place in hundreds of picoseconds and yields a triplet state, which is interpreted as a triplet delocalized between the porphyrin and carotenoid moieties. In dyad , a carotenofullerene, excitation of the carotenoid in the S2 band results in internal conversion to the S1 state, ET and probably EET to fullerene on ultrafast timescales. From the carotenoid S1 state EET to fullerene occurs. Subsequently, the excited-state fullerene gives rise to ET from the carotenoid to the fullerene. Again, the charge separated state recombines in hundreds of picoseconds. The results illustrate that for a given rate of EET, the ratio of ET to EET can be controlled by adjusting the driving force for electron transfer.

  18. Excited state kinetics of anthracene-bridge-aniline intramolecular exciplexes

    DEFF Research Database (Denmark)

    Thyrhaug, Erling; Hammershøj, Peter; Kjær, Kasper Skov

    2014-01-01

    excited anthracene state (LE) and an excited state complex (exciplex, EP) in non-polar solvents. The kinetics of the excited state processes were established in decalin from the time-resolved emission, and was shown to be strongly influenced by an electron-transfer state (ET). For quantitative studies...

  19. Electronic properties of excited states in single InAs quantum dots; Elektronische Struktur angeregter Zustaende einzelner InAs-Quantenpunkte

    Energy Technology Data Exchange (ETDEWEB)

    Warming, Till

    2009-02-20

    The application of quantum-mechanical effects in semiconductor nanostructures enables the realization of novel opto-electronic devices. Examples are given by single-photon emitters and emitters of entangled photon pairs, both being essential for quantum cryptography, or for qubit systems as needed for quantum computing. InAs/GaAs quantum dots are one of the most promising candidates for such applications. A detailed knowledge of the electronic properties of quantum dots is a prerequisite for this development. The aim of this work is an experimental access to the detailed electronic structure of the excited states in single InAs/GaAs quantum dots including few-particle effects and in particular exchange interaction. The experimental approach is micro photoluminescence excitation spectroscopy ({mu}PLE). One of the main difficulties using {mu}PLE to probe single QDs is the unambiguous assignment of the observed resonances in the spectrum to specific transitions. By comparing micro photoluminescence ({mu}PL) and {mu}PLE spectra, the identification of the main resonances becomes possible. The key is given by the fine structure of the hot trion. Excitation spectroscopy on single charged QDs enables for the first time the complete observation of a non-trivial fine structure of an excitonic complex in a QD, the hot trion. Modelling based on eight-band k.p theory in combination with a configuration interaction scheme is in excellent agreement. Therewith the simulation also enables realistic predictions on the fine structure of the ground-state exciton which is of large importance for single quantum dot devices. Theory concludes from the observed transitions that the structural symmetry of the QDs is broken. Micro photoluminescence excitation spectroscopy combined with resonantly excited micro photoluminescence enables an optical access to the single particle states of the hole without the influence of few-particle coulomb interactions. Based on this knowledge the exciton

  20. Electronic coupling between photo-excited stacked bases in DNA and RNA strands with emphasis on the bright states initially populated

    DEFF Research Database (Denmark)

    Nielsen (Baggesen), Lisbeth Munksgård; Hoffmann, Søren Vrønning; Nielsen, Steen Brøndsted

    2013-01-01

    In biology the interplay between multiple light-absorbers gives rise to complex quantum effects such as superposition states that are of extreme importance for life, both for harvesting solar energy and likely protecting nucleic acids from radiation damage. Still the characteristics of these states...... and their quantum dynamics are a much debated issue. While the electronic properties of single bases are fairly well understood, the situation for strands is complicated by the fact that stacked bases electronically couple when photoexcited. These newly arising states are denoted as exciton states and are simply...... linear combinations of localised wavefunctions that involve N - 1 ground-state bases and one base in its excited state (cf. the Frenkel exciton model). There is disagreement over the number of bases, N, that coherently couple, i.e., the spatial extent of the exciton, and how electronic deexcitation back...

  1. Dual electron transfer pathways from 4,4'-dimethoxybenzophenone ketyl radical in the excited state to parent molecule in the ground state.

    Science.gov (United States)

    Sakamoto, Masanori; Cai, Xichen; Fujitsuka, Mamoru; Majima, Tetsuro

    2005-08-11

    Dual intermolecular electron transfer (ELT) pathways from 4,4'-dimethoxybenzophenone (1) ketyl radical (1H*) in the excited state [1H*(D1)] to the ground-state 4,4'-dimethoxybenzophenone [1(S0)] were found in 2-methyltetrahydrofuran (MTHF) by observing bis(4-methoxyphenyl)methanol cation (1H+) and 4,4'-dimethoxybenzophenone radical anion (1*-) during nanosecond-picosecond two-color two-laser flash photolysis. ELT pathway I involved the two-photon ionization of 1H* following the injection of electron to the solvent. The solvated electron was quickly trapped by 1(S0) to produce 1*-. ELT pathway II was a self-quenching-like ELT from 1H*(D1) to 1(S0) to give 1H+ and 1*-. From the fluorescence quenching of 1H*(D1), the ELT rate constant was determined to be 1.0 x 10(10) M(-1) s(-1), which is close to the diffusion-controlled rate constant of MTHF. The self-quenching-like ELT mechanism was discussed on the basis of Marcus' ELT theory.

  2. Role of the electronic excited-state hydrogen bonding in the nitro-explosives detection by [Zn2(oba)2(bpy)

    Science.gov (United States)

    Wang, Peipei; Song, Xuedan; Zhao, Zhengyan; Liu, Lei; Mu, Wensheng; Hao, Ce

    2016-09-01

    This paper investigates the luminescent properties of luminescent metal-organic framework (LMOF) [Zn2(oba)2(bpy)], and its selectivity for the detection of nitro-explosives via fluorescence quenching, using the density functional and time-dependent density functional theories. The luminescent mechanism of the LMOF follows the electron transfer from ligand to ZnO quantum dot. The hydrogen bondings formed between LMOF and electron-withdrawing nitro-explosives as well as electron-donating aromatic compounds have different influences on the luminescent mechanism of the LMOF. The hydrogen bonding in the excited state was investigated to display the relationship between hydrogen bonding and fluorescence.

  3. Imaging ultrafast excited state pathways in transition metal complexes by X-ray transient absorption and scattering using X-ray free electron laser source

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lin X.; Shelby, Megan L.; Lestrange, Patrick J.; Jackson, Nicholas E.; Haldrup, Kristoffer; Mara, Michael W.; Stickrath, Andrew B.; Zhu, Diling; Lemke, Henrik; Chollet, Matthieu; Hoffman, Brian M.; Li, Xiaosong

    2016-01-01

    This report will describe our recent studies of transition metal complex structural dynamics on the fs and ps time scales using an X-ray free electron laser source, Linac Coherent Light Source (LCLS). Ultrafast XANES spectra at the Ni K-edge of nickel(II) tetramesitylporphyrin (NiTMP) were successfully measured for optically excited state at a timescale from 100 fs to 50 ps, providing insight into its sub-ps electronic and structural relaxation processes. Importantly, a transient reduced state Ni(I) (π, 3dx2-y2) electronic state is captured through the interpretation of a short-lived excited state absorption on the low-energy shoulder of the edge, which is aided by the computation of X-ray transitions for postulated excited electronic states. The observed and computed inner shell to valence orbital transition energies demonstrate and quantify the influence of electronic configuration on specific metal orbital energies. A strong influence of the valence orbital occupation on the inner shell orbital energies indicates that one should not use the transition energy from 1s to other orbitals to draw conclusions about the d-orbital energies. For photocatalysis, a transient electronic configuration could influence d-orbital energies up to a few eV and any attempt to steer the reaction pathway should account for this to ensure that external energies can be used optimally in driving desirable processes. NiTMP structural evolution and the influence of the porphyrin macrocycle conformation on relaxation kinetics can be likewise inferred from this study.

  4. Emission cross sections for spectral lines transiting from the In2+ lower laser 4d105pP states excited by electron impact on the In+ ion

    Science.gov (United States)

    Gomonai, A. N.; Hutych, Yu. I.; Gomonai, A. I.

    2013-09-01

    Energy dependences of ionization-with-excitation cross sections of the λ174.9 nm and λ162.6 nm lines related to the 4d105pP → 4d105sS transitions in the In2+ ion were studied using a spectroscopic method in crossed electron and In+ ion beams. A well-defined structure related to the excitation of the 4d95s2nl autoionizing states of the In+ ion as well as 4d10nl,4d95s2 discrete states and 4d95p2,4d95s5d, and 4d9npn'l autoionizing states of the In2+ ion was observed in the excitation functions for both lines. The absolute cross section values for the lines under investigation were determined and found to be 0.7 × 10-17 cm2 and 1.4 × 10-17 cm2, respectively, at the 100 eV energy. The effective population of the In2+ ion lower 4d105pP laser levels under ionization-with-excitation is shown to result from the contribution of cascade processes as well as excitation-autoionization process related mainly to the correlation interaction between the outer s-shell and inner d-shell.

  5. Attaching naphthalene derivatives onto BODIPY for generating excited triplet state and singlet oxygen: Tuning PET-based photosensitizer by electron donors

    Science.gov (United States)

    Zhang, Xian-Fu; Feng, Nan

    2018-01-01

    meso-Naphthalene substituted BODIPY compounds were prepared in a facile one pot reaction. The naphthalene functionalization of BODIPY leads up to a 5-fold increase in the formation efficiency of excited triplet state and singlet oxygen in polar solvents. Steady state and time resolved fluorescence, laser flash photolysis, and quantum chemistry methods were used to reveal the mechanism. All measured data and quantum chemical results suggest that these systems can be viewed as electron donor-acceptor (D-A) pair (BODIPY acts as the acceptor), photoinduced charge transfer (PCT) or photoinduced electron transfer (PET) occurs upon photo excitation (D-A + hν → Dδ +-Aδ -, 0 PET-based photosensitizers (PSs) show different features from traditional PSs, such as the strong tunability by facile structural modification and good selectivity upon medium polarity. The new character for this type of PSs can lead to important applications in organic oxygenation reactions and photodynamic therapy of tumors.

  6. Quantitative treatment of the solvent effects on the electronic absorption and fluorescence spectra of acridines and phenazines. The ground and first excited singlet-state dipole moments

    Science.gov (United States)

    Aaron, Jean Jacques; Maafi, Mounir; Párkányi, Cyril; Boniface, Christian

    1995-04-01

    Electronic absorption and fluorescence excitation and emission spectra of four acridines (acridine, Acridine Yellow, 9-aminoacridine and proflavine) and three phenazines (phenazine, neutral Red and safranine) are determined at room temperature (298 K) in several solvents of various polarities (dioxane, chloroform, ethyl ether, ethyl acetate, 1-butanol, 2-propanol, ethanol, methanol, dimethylformamide, acetonitrile and dimethyl sulfoxide). The effect of the solvent upon the spectral characteristics of the above compounds, is studied. In combination with the ground-state dipole moments of these compounds, the spectral data are used to evaluate their first excited singlet-state dipole moments by means of the solvatochromic shift method (Bakhshiev's and Kawski-Chamma-Viallet's correlations). The theoretical ground and excited singlet-state dipole moments for acridines and phenazines are also calculated as a vector sum of the π-component (obtained by the PPP method) and the σ-component (obtained from σ-bond moments). For most acridines and phenazines under study, the experimental excited singlet-state dipole moments are found to be higher than their ground state counterpart. The application of the Kamlet-Abboud-Taft solvatochromic parameters to the solvent effect on spectral properties of acridine and phenazine derivatives is discussed.

  7. Electronically Excited States of Vitamin B12: Benchmark Calculations Including Time-Dependent Density Functional Theory and Correlated Ab Initio Methods

    CERN Document Server

    Kornobis, Karina; Wong, Bryan M; Lodowski, Piotr; Jaworska, Maria; Andruniów, Tadeusz; Rudd, Kenneth; Kozlowski, Pawel M; 10.1021/jp110914y

    2011-01-01

    Time-dependent density functional theory (TD-DFT) and correlated ab initio methods have been applied to the electronically excited states of vitamin B12 (cyanocobalamin or CNCbl). Different experimental techniques have been used to probe the excited states of CNCbl, revealing many issues that remain poorly understood from an electronic structure point of view. Due to its efficient scaling with size, TD-DFT emerges as one of the most practical tools that can be used to predict the electronic properties of these fairly complex molecules. However, the description of excited states is strongly dependent on the type of functional used in the calculations. In the present contribution, the choice of a proper functional for vitamin B12 was evaluated in terms of its agreement with both experimental results and correlated ab initio calculations. Three different functionals, i.e. B3LYP, BP86, and LC-BLYP, were tested. In addition, the effect of relative contributions of DFT and HF to the exchange-correlation functional ...

  8. Electronic Raman scattering with excitation between localized states observed in the zinc M{sub 2,3} soft x-ray spectra of ZnS

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, L.; Callcott, T.A.; Jia, J.J. [Univ. of Tennessee, Knoxville, TN (United States)] [and others

    1997-04-01

    Zn M{sub 2,3} soft x-ray fluorescence (SXF) spectra of ZnS and ZnS{sub .5}Se{sub .5} excited near threshold show strong inelastic scattering effects that can be explained using a simple model and an inelastic scattering theory based on second order perturbation theory. This scattering is often called electronic resonance Raman scattering. Tulkki and Aberg have developed this theory in detail for atomic systems, but their treatment can be applied to solid systems by utilizing electronic states characteristic of solids rather than of atomic systems.

  9. S1←S0 vibronic spectra and structure of cyclopropanecarboxaldehyde molecule in the S1 lowest excited singlet electronic state

    Science.gov (United States)

    Godunov, I. A.; Yakovlev, N. N.; Terentiev, R. V.; Maslov, D. V.; Bataev, V. A.; Abramenkov, A. V.

    2016-11-01

    The S1←S0 vibronic spectra of gas-phase absorption at room temperature and fluorescence excitation of jet-cooled cyclopropanecarboxaldehyde (CPCA, c-C3H5CHO)were obtained and analyzed. In addition, the quantum chemical calculation (CASPT2/cc-pVTZ)was carried out for CPCA in the ground (S0) and lowest excited singlet (S1) electronic states. As a result, it was proved that the S1←S0 electronic excitation of the CPCA conformers (syn and anti) causes (after geometrical relaxation) significant structural changes, namely, the carbonyl fragments become non-planar and the cyclopropyl groups rotate around the central C-C bond. As a consequence, the potential energy surface of CPCA in the S1 state has six minima, 1ab, 2ab, and 3ab, corresponding to three pairs of mirror symmetry conformers: a and b. It was shown that vibronic bands of experimental spectra can be assigned to the 2(S1)←syn(S0) electronic transition with the origin at 30,481 cm-1. A number of fundamental vibrational frequencies for the 2 conformer of CPCA were assigned. In addition, several inversional energy levels for the 2 conformer were found and the 2a↔2b potential function of inversion was determined. The experimental barrier to inversion and the equilibrium angle between the CH bond and the CCO plane were calculated as 570 cm-1 and 28°, respectively.

  10. Search for excited charged leptons in electron positron collisions

    CERN Document Server

    Vachon, Brigitte Marie Christine; Sobie, Randall

    2002-01-01

    A search for evidence that fundamental particles are made of smaller subconstituents is performed. The existence of excited states of fundamental particles would be an unambiguous indication of their composite nature. Experimental signatures compatible with the production of excited states of charged leptons in electron-positron collisions are studied. The data analysed were collected by the OPAL detector at the LEP collider. No evidence for the existence of excited states of charged leptons was found. Upper limits on the product of the cross-section and the electromagnetic branching fraction are inferred. Using results from the search for singly produced excited leptons, upper limits on the ratio of the excited lepton coupling constant to the compositeness scale are calculated. From pair production searches, 95% confidence level lower limits on the masses of excited electrons, muons and taus are determined to be 103.2 GeV.

  11. Electronic structure and excited-state properties of Co2TiSn and Co2ZrSn from ab initio calculations

    Directory of Open Access Journals (Sweden)

    L.V.Bekenov

    2005-01-01

    Full Text Available The electronic structure, magnetism as well as the excited-state properties such as the optical and x-ray magnetic circular dichroism (XMCD spectra of the Heusler alloys Co2TiSn and Co2ZrSn were investigated theoretically from first principles using the fully relativistic Dirac LMTO band structure method. The origin of the XMCD spectra at the Co L2,3 edges in the compounds is examined. Densities of valence states, orbital and spin magnetic moments as well as optical spectra are analyzed and discussed. The calculated results are compared with the available experimental data.

  12. Cob(I)alamin: insight into the nature of electronically excited states elucidated via quantum chemical computations and analysis of absorption, CD and MCD data.

    Science.gov (United States)

    Kornobis, Karina; Ruud, Kenneth; Kozlowski, Pawel M

    2013-02-07

    The nature of electronically excited states of the super-reduced form of vitamin B(12) (i.e., cob(I)alamin or B(12s)), a ubiquitous B(12) intermediate, was investigated by performing quantum-chemical calculations within the time-dependent density functional theory (TD-DFT) framework and by establishing their correspondence to experimental data. Using response theory, the electronic absorption (Abs), circular dichroism (CD) and magnetic CD (MCD) spectra of cob(I)alamin were simulated and directly compared with experiment. Several issues have been taken into considerations while performing the TD-DFT calculations, such as strong dependence on the applied exchange-correlation (XC) functional or structural simplification imposed on the cob(I)alamin. In addition, the low-lying transitions were also validated by performing CASSCF/MC-XQDPT2 calculations. By comparing computational results with existing experimental data a new level of understanding of electronic excitations has been established at the molecular level. The present study extends and confirms conclusions reached for other cobalamins. In particular, the better performance of the BP86 functional, rather than hybrid-type, was observed in terms of the excitations associated with both Co d and corrin π localized transitions. In addition, the lowest energy band was associated with multiple metal-to-ligand charge transfer excitations as opposed to the commonly assumed view of a single π → π* transition followed by vibrational progression. Finally, the use of the full cob(I)alamin structure, instead of simplified molecular models, shed new light on the spectral analyses of cobalamin systems and revealed new challenges of this approach related to long-range charge transfer excitations involving side chains.

  13. Imaging ultrafast excited state pathways in transition metal complexes by X-ray transient absorption and scattering using X-ray free electron laser source

    DEFF Research Database (Denmark)

    Chen, Lin X; Shelby, Megan L; Lestrange, Patrick J

    2016-01-01

    This report will describe our recent studies of transition metal complex structural dynamics on the fs and ps time scales using an X-ray free electron laser source, Linac Coherent Light Source (LCLS). Ultrafast XANES spectra at the Ni K-edge of nickel(ii) tetramesitylporphyrin (NiTMP) were measured...... on the low-energy shoulder of the edge, which is aided by the computation of X-ray transitions for postulated excited electronic states. The observed and computed inner shell to valence orbital transition energies demonstrate and quantify the influence of the electronic configuration on specific metal...... orbital energies. A strong influence of the valence orbital occupation on the inner shell orbital energies indicates that one should not use the transition energy from 1s to other orbitals to draw conclusions about the d-orbital energies. For photocatalysis, a transient electronic configuration could...

  14. Organic electronic materials: Recent advances in the dft description of the ground and excited states using tuned range-separated hybrid functionals

    KAUST Repository

    Körzdörfer, Thomas

    2014-11-18

    Density functional theory (DFT) and its time-dependent extension (TD-DFT) are powerful tools enabling the theoretical prediction of the ground- and excited-state properties of organic electronic materials with reasonable accuracy at affordable computational costs. Due to their excellent accuracy-to-numerical-costs ratio, semilocal and global hybrid functionals such as B3LYP have become the workhorse for geometry optimizations and the prediction of vibrational spectra in modern theoretical organic chemistry. Despite the overwhelming success of these out-of-the-box functionals for such applications, the computational treatment of electronic and structural properties that are of particular interest in organic electronic materials sometimes reveals severe and qualitative failures of such functionals. Important examples include the overestimation of conjugation, torsional barriers, and electronic coupling as well as the underestimation of bond-length alternations or excited-state energies in low-band-gap polymers.In this Account, we highlight how these failures can be traced back to the delocalization error inherent to semilocal and global hybrid functionals, which leads to the spurious delocalization of electron densities and an overestimation of conjugation. The delocalization error for systems and functionals of interest can be quantified by allowing for fractional occupation of the highest occupied molecular orbital. It can be minimized by using long-range corrected hybrid functionals and a nonempirical tuning procedure for the range-separation parameter.We then review the benefits and drawbacks of using tuned long-range corrected hybrid functionals for the description of the ground and excited states of π-conjugated systems. In particular, we show that this approach provides for robust and efficient means of characterizing the electronic couplings in organic mixed-valence systems, for the calculation of accurate torsional barriers at the polymer limit, and for the

  15. a. Structural Perturbations of the Electronic Excited States of Zinc Complexes. B. Construction of a Thermal Modulation Emission Apparatus.

    Science.gov (United States)

    Jordan, Kevin James

    Zinc(II) complexes containing both 2,9-dimethyl -1,10,-phenanthroline and substituted benzenethiol ligands were found to crystallize in different phases. Subtle changes in emission lifetimes and bandshapes recorded over periods of months from the same batch were manifestations of slow interphase conversions. Heating the crystals to near their melting points generated the unique high temperature phases. Two phases of the benzenethiol complex were characterized by x-ray crystallography. The 2500 cm^ {-1} energy difference between the peak of the 77 K emission from the ligand-ligand charge-transfer (LLCT) transition in the two phases was considered to arise from the sensitivities of the donor orbitals to rotation of the benzene rings about the sulfur-carbon bonds. The energy of the ^3pipi^ * emission from the nitrogen heterocycle was found to be insensitive both to complexation with Zn(II) and to the presence of the LLCT transitions. The intensity decrease of the ^3pipi^ * phosphorescence in alcoholic glasses with UV exposure was related to the generation of free radicals. Multiple LLCT lifetimes and emission bands with the longer-lived components at higher energies were found in the rigid glasses. LLCT emissions from an analogous dithiol complex revealed similar characteristics. Also the relative intensities of the LLCT components were independent of excitation wavelength. These results indicated that the multiple emissions were not attributable to multiple geometrical conformations. Thermally -modulated emission (TME) spectra were obtained from compounds dispersed in rigid glasses. For bis(cis-1,2-bis(diphenylphosphino)ethylene)Rh(I) perchlorate the maximum temperature excursion was 3.5 and 4.5 K for the resistive and infra-red absorption heating methods respectively. The TME spectrum of crystalline (Cr(urea)_6) Cl_3 .3H_2O demonstrated the technique's advantages for the vibronic analysis of emissions from near-degenerate excited states. The negative signal of the

  16. Electron Impact Excitation-Ionization of Molecules

    Science.gov (United States)

    Ali, Esam Abobakr A.

    In the last few decades, the study of atomic collisions by electron-impact has made significant advances. The most difficult case to study is electron impact ionization of molecules for which many approximations have to be made and the validity of these approximations can only be checked by comparing with experiment. In this thesis, I have examined the Molecular three-body distorted wave (M3DW) or Molecular four-body distorted wave (M4DW) approximations for electron-impact ionization. These models use a fully quantum mechanical approach where all particles are treated quantum mechanically and the post collision interaction (PCI) is treated to all orders of perturbation. These electron impact ionization collisions play central roles in the physics and chemistry of upper atmosphere, biofuel, the operation of discharges and lasers, radiation induced damage in biological material like damage to DNA by secondary electrons, and plasma etching processes. For the M3DW model, I will present results for electron impact single ionization of small molecules such as Water, Ethane, and Carbon Dioxide and the much larger molecules Tetrahydrofuran, phenol, furfural, 1-4 Benzoquinone. I will also present results for the four-body problem in which there are two target electrons involved in the collision. M4DW results will be presented for dissociative excitation-ionization of orientated D2. I will show that M4DW calculations using a variational wave function for the ground state that included s- and p- orbital states give better agreement to the experimental measurements than a ground state approximated as a product of two 1s-type Dyson orbitals.

  17. Symmetry characterization of electrons and lattice excitations

    Directory of Open Access Journals (Sweden)

    Schober H.

    2012-03-01

    Full Text Available Symmetry concerns all aspects of a physical system from the electronic orbitals to structural and magnetic excitations. In this article we will try to elaborate the fundamental connection between symmetry and excitations. As excitations are manyfold in physical systems it is impossible to treat them exhaustively. We thus concentrate on the two topics of Bloch electrons and phonons. These two examples are complementary in the sense that Bloch electrons describe single particles in an external periodic potential while phonons exemplify a decoupled system of interacting particles. The way we develop the argument gives as by-product a short account of molecular orbitals and molecular vibrations.

  18. Synergy effects of electric and magnetic fields on locally excited-state fluorescence of photoinduced electron transfer systems in a polymer film.

    Science.gov (United States)

    Awasthi, Kamlesh; Iimori, Toshifumi; Ohta, Nobuhiro

    2009-10-08

    Photoluminescence of electron donor-acceptor pairs that show photoinduced electron transfer (PIET) has been measured in a polymer film under simultaneous application of electric field and magnetic field. Fluorescence emitted from the locally excited state (LE fluorescence) of 9-methylanthracene (MAnt) and pyrene (Py) is quenched by an electric field in a mixture of 1,3-dicyanobenzene (DCB) with MAnt or Py, indicating that PIET from the excited state of MAnt or Py to DCB is enhanced by an electric field. Simultaneous application of electric and magnetic fields enhances the reverse process from the radical-ion pair produced by PIET to the LE fluorescent state of MAnt or Py. As a result, the electric-field-induced quenching of the LE fluorescence is reduced by application of the magnetic fields. Thus, the synergy effect of electric and magnetic fields is observed on the LE fluorescence of MAnt or Py. Exciplex fluorescence spectra resulting from PIET can be obtained by analyzing the field effects on photoluminescence spectra, even when the exciplex fluorescence is too weak to be determined from the steady-state or time-resolved photoluminescence spectra at zero field.

  19. Excited B states at LEP

    CERN Document Server

    Kluit, Peter M

    2005-01-01

    The first orbitally excited B states were discovered at LEP in 1995. In subsequent years evidence was put forward for the existence of several excited B hadron states. Now, ten years later it is time to review the situation. New analyses have been performed in DELPHI using the full LEP data set with improved and high performance analysis tools. Measurements for the production rate and masses of narrow and broad B/sub u, d//sup **/ mesons will be presented as well as results for the search for B/sub s//sup **/ mesons and Sigma /sub b//sup (*)/ baryons. The results will be compared to earlier measurements, predictions from HQET and measurements in the charm sector.

  20. Reactions of electronically excited boron atoms. Quenching rate constants and the radiative lifetime of the 4p 2P state

    Science.gov (United States)

    Yang, Xuefeng; Dagdigian, Paul J.

    1992-12-01

    Collisional quenching and radiative decay of the 4p 2P level of the boron atom has been studied in a cell experiment, in which B atoms are prepared by 266 nm multiphoton dissociation of BBr 3 and the 4p 2P level is prepared by sequential 2-photon absorption through the 3s 2S level. A radiative lifetime of 360 ± 50 ns is derived for B (4p 2P) by extrapolation of the measured decay rates versus BBr 3 partial pressure in several Torr helium buffer gas. Bimolecular quenching rate constants were also determined for a number of atomic and molecular species from the dependence of the B (4p 2P) decay rate on the quencher gas partial pressure. The quenching rate constants for the molecular species were quite large (≈(1-2)×10 -9 molecule -1 cm 3 s -1), presumably reflecting the small B (4p 2P) ionization potential and the rapid removal of the excited state by chemical reaction.

  1. Vibronic coupling in the excited-states of carotenoids

    Energy Technology Data Exchange (ETDEWEB)

    Miki, Takeshi [Physikalisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; D-69120 Heidelberg, Germany; Buckup, Tiago [Physikalisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; D-69120 Heidelberg, Germany; Krause, Marie S. [Physikalisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; D-69120 Heidelberg, Germany; Southall, June [College of Medical; Veterinary, and Life Science; University of Glasgow; G12 8QQ Glasgow, UK; Cogdell, Richard J. [College of Medical; Veterinary, and Life Science; University of Glasgow; G12 8QQ Glasgow, UK; Motzkus, Marcus [Physikalisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; D-69120 Heidelberg, Germany

    2016-01-01

    The ultrafast femtochemistry of carotenoids is governed by the interaction between electronic excited states, which has been explained by the relaxation dynamics within a few hundred femtoseconds from the lowest optically allowed excited state S2to the optically dark state S1.

  2. Importance of polarization in quantum mechanics/molecular mechanics descriptions of electronic excited states: NaI(H2O)n photodissociation dynamics as a case study.

    Science.gov (United States)

    Koch, Denise M; Peslherbe, Gilles H

    2008-01-17

    Sodium iodide has long been a paradigm for ionic and covalent curve crossing and ultrafast nonadiabatic dynamics, and our interest lies in the influence of solvation on this process. The NaI(H2O)n photodissociation dynamics are simulated with the molecular dynamics with quantum transitions method. A quantum mechanics/molecular mechanics (QM/MM) description is adopted for the NaI(H2O)n electronic states, in which a semiempirical valence bond approach is used to describe the NaI electronic structure, and a polarizable optimized potential for cluster simulations model is used to describe solute-solvent and solvent-solvent interactions. In contrast to previous work with a nonpolarizable MM model [Koch et al., J. Phys. Chem. A, 2006, 110, 1438], this approach predicts that the NaI ionic ground- to covalent first-excited-state Franck-Condon energy gaps reach a plateau by cluster size 16, in relatively good agreement with experiment and electronic structure calculations; this allows us to safely extend our previous simulations to larger cluster sizes, i.e., n > 4. The simulations suggest that the disappearance of the two-photon ionization probe signals observed in femtosecond pump-probe experiments of NaI(H2O)n, n >/= 4, is due to the shift of the NaI curve-crossing region toward larger NaI internuclear separations because of solvent stabilization of the NaI ionic state. Further, the latter causes the adiabatic ground and excited states to acquire pure ionic and covalent character, respectively, by cluster 8, resulting in NaI ionic ground-state recombination or dissociation. To make a connection with electron transfer in solution, free energy curves have been generated as a function of a solvent coordinate similar to that of solution theory. Inspection of the free energy curves together with the results of excited-state simulations reveal that the electron-transfer process in clusters is not governed by the collective motion of the solvent molecules, as in solution, but

  3. Electronic states of thiophene/phenylene co-oligomers: Extreme-ultra violet excited photoelectron spectroscopy observations and density functional theory calculations

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, Yoshizo [Research Institute for Innovation in Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565 (Japan); Electronics and Photonics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Sasaki, Fumio; Mochizuki, Hiroyuki [Electronics and Photonics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Ishitsuka, Tomoaki; Tomie, Toshihisa [Research Institute of Instrumentation Frontier, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Ootsuka, Teruhisa [Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Watanabe, Shuji [Graduate School of Science and Engineering, Yamagata University, 1-4-12, Kojirakawa, Yamagata 990-8560 (Japan); Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Shimoi, Yukihiro [Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Yamao, Takeshi; Hotta, Shu [Department of Macromolecular Science and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan)

    2013-02-28

    We have investigated electronic states in the valence electron bands for the thin films of three thiophene/phenylene co-oligomer (TPCO) compounds, 2,5-bis(4-biphenylyl)thiophene (BP1T), 1,4-bis(5-phenylthiophen-2-yl)benzene (AC5), and 1,4-bis{l_brace}5-[4-(trifluoromethyl)phenyl]thiophen-2-yl{r_brace}benzene (AC5-CF{sub 3}), by using extreme-UV excited photoelectron spectroscopy (EUPS). By comparing both EUPS spectra and secondary electron spectra between AC5 and AC5-CF{sub 3}, we confirm that CF{sub 3} substitution to AC5 deepens valence states by 2 eV, and increases the ionization energy by 3 eV. From the cut-off positions of secondary electron spectra, the work functions of AC5, AC5-CF{sub 3}, and BP1T are evaluated to be 3.8 eV, 4.8 eV, and 4.0 eV, respectively. We calculate molecular orbital (MO) energy levels by the density functional theory and compare results of calculations with those of experiments. Densities of states obtained by broadening MO levels well explain the overall features of experimental EUPS spectra of three TPCOs.

  4. Generation of Triplet Excited States via Photoinduced Electron Transfer in meso-anthra-BODIPY: Fluorogenic Response toward Singlet Oxygen in Solution and in Vitro

    KAUST Repository

    Filatov, Mikhail A.

    2017-04-14

    Heavy atom-free BODIPY-anthracene dyads (BADs) generate locally excited triplet states by way of photoinduced electron transfer (PeT), followed by recombination of the resulting charge-separated states (CSS). Subsequent quenching of the triplet states by molecular oxygen produces singlet oxygen (1O2), which reacts with the anthracene moiety yielding highly fluorescent species. The steric demand of the alkyl substituents in the BODIPY subunit defines the site of 1O2 addition. Novel bis- and tetraepoxides and bicyclic acetal products, arising from rearrangements of anthracene endoperoxides were isolated and characterized. 1O2 generation by BADs in living cells enables visualization of the dyads distribution, promising new imaging applications.

  5. Quantum analysis in the transition process to excited state of an oxygen molecule induced by electron collisions; Denshi shototsu ni tomonau sanso bunshi ni okeru reiki jotai sen`i no ryoshironteki kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Ishimaru, K. [Gifu National College of Technology, Gifu (Japan); Okazaki, K. [Tokyo Inst. of Technology, Tokyo (Japan)

    1996-06-25

    For understanding of fundamental chemical reactions under a highly non equilibrium condition which is quite often used in plasma processing, the relevant atomic and molecular processes must be clarified. In this study, an analysis of the transition process to the excited state of an oxygen molecule induced by electron collisions in the oxygen plasma has been carried out. First, the electron density distribution in an oxygen molecule has been calculated using the extended Huckel molecular orbital method. Then, the electron potential energy distribution in the transition process to the excited state has been estimated. The electron behavior has been calculated using the estimated unidimensional electron potential energy distribution and unsteady quantum mechanics. As a result, the transition process to the excited state of an oxygen molecule induced by electron collisions and its conditions have been clarified qualitatively. 9 refs., 9 figs.

  6. DFT study of anthocyanidin and anthocyanin pigments for Dye-Sensitized Solar Cells: Electron injecting from the excited states and adsorption onto TiO2 (anatase) surface

    Science.gov (United States)

    Marcano, Emildo

    2017-06-01

    We explored, the absorption spectra, excited states and electronic injection parameters of anthocyanidin and anthocyanin pigments using the level of theory (TD)CAM-B3LYP/6-31+G(d,p). For the most isolated dyes, the distribution pattern of HOMO and LUMO spreads over the whole molecules, which lead an efficient electronic delocalization. The calculated light harvesting efficiencies (LHEs) are all near unity. Methoxy group in peonidin molecule lead the largest oscillator strength and LHE. The presence of water lead a higher spontaneous electronic inject process, with ΔGinject average of -1.14 eV. The ΔGinject order is peonidin indicating both, the strong interactions between the dyes and the anatase (TiO2) surface and stronger electronic coupling strengths of the anthocyanin-(TiO2)30 complex, which corresponded to higher observed η. The HOMO and LUMO shape showed the electrons delocalized predominantly on the anthocyanin structure while the LUMO + 1 shape is localized into the (TiO2)30 surface. Therefore, we expected a electronic injection from HOMO to LUMO + 1 in the anthocyanin-(TiO2)30 adsorption complex, after the light absorption.

  7. Photophysical properties of 1,8-naphthalic anhydride in aprotic solvents: An electron acceptor in excited state

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Sujay; Biswas, Subhanip; Mondal, Mousumi; Basu, Samita, E-mail: samita.basu@saha.ac.in

    2014-01-15

    1,8-Naphthalic anhydride (NAN) has long been known as an intermediate for the synthesis of 1,8-naphthalimide derivatives with diverse applications. Uses of NAN for other purposes are restricted because it hydrolyzes in water and other protic solvents. In the current work we have investigated the absorption, steady-state and time-resolved fluorescence spectroscopy of NAN in eight different aprotic solvents of varying polarity. The compound is found to have different quantum yields in all the solvents. Astoundingly, NAN shows minimal fluorescence yield in dimethyl sulphoxide and N,N-dimethylformamide which is found to originate from pure collisional quenching owing to proton affinity of the solvent. In aprotic solvents acetonitrile and ethyl acetate, fluorescence emission and lifetime of NAN are quenched on addition of aliphatic amines namely triethylamine (TEA), tri-N-butylamine (TBA) and diisopropylethylamine (DIEA). Laser flash photolysis experiments in acetonitrile solvent have been used to find out the transient intermediates, which depict the involvement of photo-induced electron transfer from the amines to NAN. Hence, NAN has the potential to act as an efficient photo-induced electron acceptor in aprotic medium. -- Highlights: • In aprotic solvents NAN absorbs with maximum around 330–340 nm. • NAN fluoresce in aprotic solvents with maximum around 345–395 nm. • NAN has negligibly poor fluorescence in DMSO and DMF. • Fluorescence of NAN in aprotic solvents is quenched by TEA, TBA and DIEA. • Photo-induced electron transfer from the amines to NAN is the reason for such interaction.

  8. Excited State Dynamics of DNA and RNA bases

    Science.gov (United States)

    Hudock, Hanneli; Levine, Benjamin; Martinez, Todd

    2007-03-01

    Recent ultrafast spectroscopic experiments have reported excited state lifetimes for DNA and RNA bases and assigned these lifetimes to various electronic states. We have used theoretical and simulation methods to describe the excited state dynamics of these bases in an effort to provide a mechanistic explanation for the observed lifetimes. Our simulations are based on ab initio molecular dynamics, where the electronic and nuclear Schrodinger equations are solved simultaneously. The results are further verified by comparison to high-level ab initio electronic structure methods, including dynamic electron correlation effects through multireference perturbation theory, at important points along the dynamical pathways. Our results provide an explanation of the photochemical mechanism leading to nonradiative decay of the electronic excited states and some suggestions as to the origin of the different lifetimes. Comparisons between pyrimidines illustrate how chemical differences impact excited state dynamics and may play a role in explaining the propensity for dimer formation in thymine.

  9. Excited State Spectra and Dynamics of Phenyl-Substituted Butadienes

    DEFF Research Database (Denmark)

    Wallace-Williams, Stacie E.; Schwartz, Benjamin J.; Møller, Søren

    1994-01-01

    A combination of steady-state and dynamic spectral measurements are used to provide new insights into the nature of the excited-state processes of all-trans-1,4-diphenyl-1,3-butadiene and several analogs: 1,4-diphenyl- 1,3-cyclopentadiene, 1,1,4,4-tetraphenylbutadiene, 1,2,3,4-tetraphenyl-1,3-cyc...... indicate that phenyl torsional motion is not important to the excited-state dynamics and reveal alternative excited-state reaction pathways. The results demonstrate how molecular systems that are structually similar can exhibit different electronic properties and excited-state dynamics....

  10. Can Excited State Electronic Coherence Be Tuned via Molecular Structural Modification? A First-Principles Quantum Electronic Dynamics Study of Pyrazolate-Bridged Pt(II) Dimers

    Energy Technology Data Exchange (ETDEWEB)

    Lingerfelt, David B.; Lestrange, Patrick J.; Radler, Joseph J.; Brown-Xu, Samantha E.; Kim, Pyosang; Castellano, Felix N.; Chen, Lin X.; Li, Xiaosong

    2017-02-24

    Materials and molecular systems exhibiting long-lived electronic coherence can facilitate coherent transport, opening the door to efficient charge and energy transport beyond traditional methods. Recently, signatures of a possible coherent, recurrent electronic motion were identified in femtosecond pump-probe spectroscopy experiments on a binuclear platinum complex, where a persistent periodic beating in the transient absorption signal’s anisotropy was observed. In this study, we investigate the excitonic dynamics that underlie the suspected electronic coherence for a series of binuclear platinum complexes exhibiting a range of interplatinum distances. Results suggest that the long-lived coherence can only result when competitive electronic couplings are in balance. At longer Pt-Pt distances, the electronic couplings between the two halves of the binuclear system weaken, and exciton localization and recombination is favored on short time scales. For short Pt-Pt distances, electronic couplings between the states in the coherent superposition are stronger than the coupling with other excitonic states, leading to long-lived coherence.

  11. Can Excited State Electronic Coherence Be Tuned via Molecular Structural Modification? A First-Principles Quantum Electronic Dynamics Study of Pyrazolate-Bridged Pt(II) Dimers.

    Science.gov (United States)

    Lingerfelt, David B; Lestrange, Patrick J; Radler, Joseph J; Brown-Xu, Samantha E; Kim, Pyosang; Castellano, Felix N; Chen, Lin X; Li, Xiaosong

    2017-03-09

    Materials and molecular systems exhibiting long-lived electronic coherence can facilitate coherent transport, opening the door to efficient charge and energy transport beyond traditional methods. Recently, signatures of a possible coherent, recurrent electronic motion were identified in femtosecond pump-probe spectroscopy experiments on a binuclear platinum complex, where a persistent periodic beating in the transient absorption signal's anisotropy was observed. In this study, we investigate the excitonic dynamics that underlie the suspected electronic coherence for a series of binuclear platinum complexes exhibiting a range of interplatinum distances. Results suggest that the long-lived coherence can only result when competitive electronic couplings are in balance. At longer Pt-Pt distances, the electronic couplings between the two halves of the binuclear system weaken, and exciton localization and recombination is favored on short time scales. For short Pt-Pt distances, electronic couplings between the states in the coherent superposition are stronger than the coupling with other excitonic states, leading to long-lived coherence.

  12. The Effect of Stress in the Density of States of Amorphous Carbon Films Determined by X-Ray Excited Auger Electron Spectroscopy

    Directory of Open Access Journals (Sweden)

    P. F. Barbieri

    2017-01-01

    Full Text Available Amorphous carbon films can be prepared with a large variety of structure and have been used in a number of technological applications. Many of their properties have been determined, but very little is known concerning the effect of pressure on their properties. In this work we investigate the influence of pressure of graphite-like amorphous carbon films on the density of states (DOS using X-ray Excited Auger Electron Spectroscopy (XAES and the second derivate method of the XAES. The films were deposited by ion beam deposition and simultaneously bombarded with argon, which is responsible for the variation of the film stress, reaching extremely high values (4.5 GPa. Marked variations of the density of states of the pπ, pσ, sp, and s components were observed with increasing stress.

  13. Photochemical transformations. 37. Electron-transfer requirements for photosolvolysis and photo-Wagner-Meerwein reactions of some dichlorodibenzobicyclo(2. 2. 2)octadienes in singlet and triplet excited states

    Energy Technology Data Exchange (ETDEWEB)

    Cristol, S.J.; Bindel, T.H.; Hoffmann, D.; Aeling, E.O.

    1984-06-29

    Substituted trans-7,8-dichloro-10-X-2,3:5,6-dibenzobicyclo(2.2.2)octa-2,5-dienes (X = COCH/sub 3/, CN, and NO/sub 2/) and corresponding dinitro-substituted compounds (10,15-dinitro) were solvolyzed with silver acetate in acetic acid and were irradiated in glacial acetic acid or acetonitrile with 254- and 300-nm light. The structures of the monoring-substituted diastereoisomeric dichlorides were demonstrated by proof of structures of the daughter solvolysis products. Unlike compounds previously studied, these compounds were either photochemically inert or photoinactive with respect to Wagner-Meerwein rearrangement or to solvolysis. These results have been rationalized in terms of the inability of the excited states of the light-absorbing chromophores in these compounds to transfer electrons to the carbon-chlorine bonds remote from these chromophores. While triplet states of a variety of cis- and trans-7,8-dichloro-2,3:5,6-dibenzobicyclo(2.2.2)octa-2,5-dienes are reported to be similarly inert, the 10,11-dimethoxy derivatives all were photoactive with acetone sensitization. The migration stereochemistries of the sensitized reactions were quite different from those of direct irradiations or of ground-state reactions. Estimations of the free energies of electron transfer were consistent with these and previously reported results. 26 references, 1 table.

  14. Electron excitation of a Jovian Aurora

    Science.gov (United States)

    Heaps, M. G.; Bass, J. N.; Green, A. E. S.

    1973-01-01

    Because Jupiter possesses a magnetic field, auroral activity is very likely. The auroral emissions due to electron precipitation are estimated for a model atmosphere with and without helium. The incident primary electrons, which are characterized by representative spectra, are degraded in energy by applying the continuous slow down approximation. All secondaries, tertiaries, and higher generation electrons are assumed to be absorbed locally. A compilation of excitation, dissociation, and ionization cross section data for H, H2, and He are used to model all aspects of the energy deposition process. Volume emission rates are calculated from the total direct excitation rates, and appropriate corrections for cascading are applied. Helium emissions are relatively small because the majority of electrons are absorbed above the region of maximum He concentration.

  15. Manipulating the Electronic Excited State Energies of Pyrimidine-Based Thermally Activated Delayed Fluorescence Emitters To Realize Efficient Deep-Blue Emission.

    Science.gov (United States)

    Komatsu, Ryutaro; Ohsawa, Tatsuya; Sasabe, Hisahiro; Nakao, Kohei; Hayasaka, Yuya; Kido, Junji

    2017-02-08

    The development of efficient and robust deep-blue emitters is one of the key issues in organic light-emitting devices (OLEDs) for environmentally friendly, large-area displays or general lighting. As a promising technology that realizes 100% conversion from electrons to photons, thermally activated delayed fluorescence (TADF) emitters have attracted considerable attention. However, only a handful of examples of deep-blue TADF emitters have been reported to date, and the emitters generally show large efficiency roll-off at practical luminance over several hundreds to thousands of cd m-2, most likely because of the long delayed fluorescent lifetime (τd). To overcome this problem, we molecularly manipulated the electronic excited state energies of pyrimidine-based TADF emitters to realize deep-blue emission and reduced τd. We then systematically investigated the relationships among the chemical structure, properties, and device performances. The resultant novel pyrimidine emitters, called Ac-XMHPMs (X = 1, 2, and 3), contain different numbers of bulky methyl substituents at acceptor moieties, increasing the excited singlet (ES) and triplet state (ET) energies. Among them, Ac-3MHPM, with a high ET of 2.95 eV, exhibited a high external quantum efficiency (ηext,max) of 18% and an ηext of 10% at 100 cd m-2 with Commission Internationale de l'Eclairage chromaticity coordinates of (0.16, 0.15). These efficiencies are among the highest values to date for deep-blue TADF OLEDs. Our molecular design strategy provides fundamental guidance to design novel deep-blue TADF emitters.

  16. Excited States in Solution through Polarizable Embedding

    DEFF Research Database (Denmark)

    Olsen, Jógvan Magnus; Aidas, Kestutis; Kongsted, Jacob

    2010-01-01

    We present theory and implementation of an advanced quantum mechanics/molecular mechanics (QM/MM) approach using a fully self-consistent polarizable embedding (PE) scheme. It is a polarizable layered model designed for effective yet accurate inclusion of an anisotropic medium in a quantum...... mechanical calculation. The polarizable embedding potential is described by an atomistic representation including terms up to localized octupoles and anisotropic polarizabilities. It is generally applicable to any quantum chemical description but is here implemented for the case of Kohn−Sham density...... functional theory which we denote the PE-DFT method. It has been implemented in combination with time-dependent quantum mechanical linear and nonlinear response techniques, thus allowing for assessment of electronic excitation processes and dynamic ground- and excited-state molecular properties using...

  17. Excited state Intramolecular Proton Transfer in Anthralin

    DEFF Research Database (Denmark)

    Møller, Søren; Andersen, Kristine B.; Spanget-Larsen, Jens

    1998-01-01

    Quantum chemical calculations performed on anthralin (1,8-dihydroxy-9(10H)-anthracenone) predict the possibility of an excited-state intramolecular proton transfer process. Fluorescence excitation and emission spectra of the compound dissolved in n-hexane at ambient temperature results in an unus......Quantum chemical calculations performed on anthralin (1,8-dihydroxy-9(10H)-anthracenone) predict the possibility of an excited-state intramolecular proton transfer process. Fluorescence excitation and emission spectra of the compound dissolved in n-hexane at ambient temperature results......, associated with an excited-state intramolecular proton transfer process....

  18. Carotenoids as electron or excited-state energy donors in artificial photosynthesis: an ultrafast investigation of a carotenoporphyrin and a carotenofullerene dyad

    NARCIS (Netherlands)

    Pillai, S.; Ravensbergen, J.; Antoniuk-Pablant, A.; Sherman, B.D.; van Grondelle, R.; Frese, R.N.; Moore, T.A.; Gust, D.; Moore, A.L.; Kennis, J.T.M.

    2013-01-01

    Photophysical investigations of molecular donor-acceptor systems have helped elucidate many details of natural photosynthesis and revealed design principles for artificial photosynthetic systems. To obtain insights into the factors that govern the partition between excited-state energy transfer

  19. Ab Initio Potential Energy Surfaces for Both the Ground (X̃1A′ and Excited (A∼1A′′ Electronic States of HSiBr and the Absorption and Emission Spectra of HSiBr/DSiBr

    Directory of Open Access Journals (Sweden)

    Anyang Li

    2012-01-01

    Full Text Available Ab initio potential energy surfaces for the ground (X̃1A′ and excited (A˜A′′1 electronic states of HSiBr were obtained by using the single and double excitation coupled-cluster theory with a noniterative perturbation treatment of triple excitations and the multireference configuration interaction with Davidson correction, respectively, employing an augmented correlation-consistent polarized valence quadruple zeta basis set. The calculated vibrational energy levels of HSiBr and DSiBr of the ground and excited electronic states are in excellent agreement with the available experimental band origins. In addition, the absorption and emission spectra of HSiBr and DSiBr were calculated using an efficient single Lanczos propagation method and are in good agreement with the available experimental observations.

  20. Search for Excited Electrons at HERA

    CERN Document Server

    Adloff, C.; Andrieu, B.; Anthonis, T.; Astvatsatourov, A.; Babaev, A.; Bahr, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Baumgartner, S.; Becker, J.; Beckingham, M.; Beglarian, A.; Behnke, O.; Belousov, A.; Berger, C.; Berndt, T.; Bizot, J.C.; Bohme, J.; Boudry, V.; Braunschweig, W.; Brisson, V.; Broker, H.B.; Brown, D.P.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Burrage, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Caron, S.; Cassol-Brunner, F.; Clarke, D.; Collard, C.; Contreras, J.G.; Coppens, Y.R.; Coughlan, J.A.; Cousinou, M.C.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; Davidsson, M.; Delcourt, B.; Delerue, N.; Demirchyan, R.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dingfelder, J.; Dixon, P.; Dodonov, V.; Dowell, J.D.; Droutskoi, A.; Dubak, A.; Duprel, C.; Eckerlin, Guenter; Eckstein, D.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellerbrock, M.; Elsen, E.; Erdmann, M.; Erdmann, W.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Ferron, S.; Fleischer, M.; Fleischmann, P.; Fleming, Y.H.; Flugge, G.; Fomenko, A.; Foresti, I.; Formanek, J.; Franke, G.; Frising, G.; Gabathuler, E.; Gabathuler, K.; Garvey, J.; Gassner, J.; Gayler, Joerg; Gerhards, R.; Gerlich, C.; Ghazaryan, Samvel; Goerlich, L.; Gogitidze, N.; Grab, C.; Grabski, V.; Grassler, H.; Greenshaw, T.; Grindhammer, Guenter; Hadig, T.; Haidt, D.; Hajduk, L.; Haller, J.; Heinemann, B.; Heinzelmann, G.; Henderson, R.C.W.; Hengstmann, S.; Henschel, H.; Heremans, R.; Herrera, G.; Herynek, I.; Hildebrandt, M.; Hilgers, M.; Hiller, K.H.; Hladky, J.; Hoting, P.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hurling, S.; Ibbotson, M.; Issever, C.; Jacquet, M.; Jaffre, M.; Janauschek, L.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, C.; Johnson, D.P.; Jones, M.A.S.; Jung, H.; Kant, D.; Kapichine, M.; Karlsson, M.; Karschnick, O.; Katzy, J.; Keil, F.; Keller, N.; Kennedy, J.; Kenyon, I.R.; Kiesling, Christian M.; Kjellberg, P.; Klein, M.; Kleinwort, C.; Kluge, T.; Knies, G.; Koblitz, B.; Kolya, S.D.; Korbel, V.; Kostka, P.; Kotelnikov, S.K.; Koutouev, R.; Koutov, A.; Kroseberg, J.; Kruger, K.; Kuhr, T.; Lamb, D.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Laycock, P.; Lebailly, E.; Lebedev, A.; Leissner, B.; Lemrani, R.; Lendermann, V.; Levonian, S.; List, B.; Lobodzinska, E.; Lobodzinski, B.; Loginov, A.; Loktionova, N.; Lubimov, V.; Luders, S.; Luke, D.; Lytkin, L.; Malden, N.; Malinovski, E.; Mangano, S.; Maracek, R.; Marage, P.; Marks, J.; Marshall, R.; Martyn, H.U.; Martyniak, J.; Maxfield, S.J.; Meer, D.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michine, S.; Mikocki, S.; Milstead, D.; Mohrdieck, S.; Mondragon, M.N.; Moreau, F.; Morozov, A.; Morris, J.V.; Muller, K.; Murin, P.; Nagovizin, V.; Naroska, B.; Naumann, J.; Naumann, T.; Newman, Paul R.; Niebergall, F.; Niebuhr, C.; Nix, O.; Nowak, G.; Nozicka, M.; Olivier, B.; Olsson, J.E.; Ozerov, D.; Panassik, V.; Pascaud, C.; Patel, G.D.; Peez, M.; Perez, E.; Petrukhin, A.; Phillips, J.P.; Pitzl, D.; Poschl, R.; Potachnikova, I.; Povh, B.; Rauschenberger, J.; Reimer, P.; Reisert, B.; Risler, C.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rusakov, S.; Rybicki, K.; Sankey, D.P.C.; Schatzel, S.; Scheins, J.; Schilling, F.P.; Schleper, P.; Schmidt, D.; Schmidt, S.; Schmitt, S.; Schneider, M.; Schoeffel, L.; Schoning, A.; Schorner, T.; Schroder, V.; Schultz-Coulon, H.C.; Schwanenberger, C.; Sedlak, K.; Sefkow, F.; Chekelian, V.; Sheviakov, I.; Shtarkov, L.N.; Sirois, Y.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Spitzer, H.; Stamen, R.; Stella, B.; Stiewe, J.; Strauch, I.; Straumann, U.; Tchetchelnitski, S.; Thompson, Graham; Thompson, P.D.; Tomasz, F.; Traynor, D.; Truoel, Peter; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Turney, J.E.; Tzamariudaki, E.; Uraev, A.; Urban, Marcel; Usik, A.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vassiliev, S.; Vazdik, Y.; Veelken, C.; Vest, A.; Vichnevski, A.; Wacker, K.; Wagner, J.; Wallny, R.; Waugh, B.; Weber, G.; Wegener, D.; Werner, C.; Werner, N.; Wessels, M.; White, G.; Wiesand, S.; Wilksen, T.; Winde, M.; Winter, G.G.; Wissing, C.; Wobisch, M.; Woehrling, E.E.; Wunsch, E.; Wyatt, A.C.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zomer, F.; zur Nedden, M.

    2002-01-01

    A search for excited electron e* production is described in which the electroweak decays e*->e gamma, e*->e Z and e*->nu W are considered. The data used correspond to an integrated luminosity of 120 pb^(-1) taken in e^(+-)p collisions from 1994 to 2000 with the H1 detector at HERA at centre-of-mass energies of 300 and 318 GeV. No evidence for a signal is found. Mass dependent exclusion limits are derived for the ratio of the couplings to the compositeness scale, f/Lambda. These limits extend the excluded region to higher masses than has been possible in previous direct searches for excited electrons.

  1. Neutral excitations in the Gaffnian state

    Science.gov (United States)

    Kang, Byungmin; Moore, Joel E.

    2017-06-01

    We study a model fractional quantum Hall (FQH) wave function called the Gaffnian state, which is believed to represent a gapless, strongly correlated state that is very different from conventional metals. To understand this exotic gapless state better, we provide a representation based on work of Halperin in which the pairing structure of the Gaffnian state becomes more explicit. We employ the single-mode approximation introduced by Girvin, MacDonald, and Platzman, here extended to three-body interactions, in order to treat a neutral collective excitation mode in order to clarify the physical origin of the gaplessness of the Gaffnian state. We discuss approaches to extract systematically the relevant physics in the long-distance, large-electron-number limit of FQH states using numerical calculations with relatively few electrons. In Appendices, we provide second-quantized expressions for many-body Haldane pseudopotentials in various geometries including the plane, sphere, cylinder, and torus based on the proper definition of the relative angular momentum.

  2. Theoretical study on the electronic structure of triphenyl sulfonium salts: Electronic excitation and electron transfer processes

    Science.gov (United States)

    Petsalakis, Ioannis D.; Theodorakopoulos, Giannoula; Lathiotakis, Nektarios N.; Georgiadou, Dimitra G.; Vasilopoulou, Maria; Argitis, Panagiotis

    2014-05-01

    Density functional theory (DFT) and Time Dependent DFT calculations on triphenyl sulfonium cation (TPS) and the salts of TPS with triflate, nonaflate, perfluoro-1-octanesulfonate and hexafluoro antimonate anions are presented. These systems are widely used as cationic photoinitiators and as electron ejection layer for polymer light-emitting diodes. While some differences exist in the electronic structure of the different salts, their lowest energy intense absorption maxima are calculated at nearly the same energy for all systems. The first excited state of TPS and of the TPS salts is dissociating. Electron addition to the TPS salts lowers their energy by 1.0-1.33 eV.

  3. Absolute cross sections for electronic excitation of pyrimidine by electron impact

    Energy Technology Data Exchange (ETDEWEB)

    Regeta, Khrystyna; Allan, Michael [Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg (Switzerland); Mašín, Zdeněk [Max-Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Straße 2A, 12489 Berlin (Germany); Gorfinkiel, Jimena D. [Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom)

    2016-01-14

    We measured differential cross sections for electron-impact electronic excitation of pyrimidine, both as a function of electron energy up to 18 eV, and of scattering angle up to 180°. The emphasis of the present work is on recording detailed excitation functions revealing resonances in the excitation process. The differential cross sections were summed to obtain integral cross sections. These are compared to results of R-matrix calculations, which successfully reproduce both the magnitude of the cross section and the major resonant features. Comparison of the experiment to the calculated contributions of different symmetries to the integral cross section permitted assignment of several features to specific core-excited resonances. Comparison of the resonant structure of pyrimidine with that of benzene revealed pronounced similarities and thus a dominant role of π–π{sup ∗} excited states and resonances. Electron energy loss spectra were measured as a preparation for the cross section measurements and vibrational structure was observed for some of the triplet states. A detailed analysis of the electronic excited states of pyrimidine is also presented.

  4. Excited-State Deactivation of Branched Phthalocyanine Compounds.

    Science.gov (United States)

    Zhu, Huaning; Li, Yang; Chen, Jun; Zhou, Meng; Niu, Yingli; Zhang, Xinxing; Guo, Qianjin; Wang, Shuangqing; Yang, Guoqiang; Xia, Andong

    2015-12-21

    The excited-state relaxation dynamics and chromophore interactions in two phthalocyanine compounds (bis- and trisphthalocyanines) are studied by using steady-state and femtosecond transient absorption spectral measurements, where the excited-state energy-transfer mechanism is explored. By exciting phthalocyanine compounds to their second electronically excited states and probing the subsequent relaxation dynamics, a multitude of deactivation pathways are identified. The transient absorption spectra show the relaxation pathway from the exciton state to excimer state and then back to the ground state in bisphthalocyanine (bis-Pc). In trisphthalocyanine (tris-Pc), the monomeric and dimeric subunits are excited and the excitation energy transfers from the monomeric vibrationally hot S1 state to the exciton state of a pre-associated dimer, with subsequent relaxation to the ground state through the excimer state. The theoretical calculations and steady-state spectra also show a face-to-face conformation in bis-Pc, whereas in tris-Pc, two of the three phthalocyanine branches form a pre-associated face-to-face dimeric conformation with the third one acting as a monomeric unit; this is consistent with the results of the transient absorption experiments from the perspective of molecular structure. The detailed structure-property relationships in phthalocyanine compounds is useful for exploring the function of molecular aggregates in energy migration of natural photosynthesis systems. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Cyclopropyl Group: An Excited-State Aromaticity Indicator?

    Science.gov (United States)

    Ayub, Rabia; Papadakis, Raffaello; Jorner, Kjell; Zietz, Burkhard; Ottosson, Henrik

    2017-10-04

    The cyclopropyl (cPr) group, which is a well-known probe for detecting radical character at atoms to which it is connected, is tested as an indicator for aromaticity in the first ππ* triplet and singlet excited states (T 1 and S 1 ). Baird's rule says that the π-electron counts for aromaticity and antiaromaticity in the T 1 and S 1 states are opposite to Hückel's rule in the ground state (S 0 ). Our hypothesis is that the cPr group, as a result of Baird's rule, will remain closed when attached to an excited-state aromatic ring, enabling it to be used as an indicator to distinguish excited-state aromatic rings from excited-state antiaromatic and nonaromatic rings. Quantum chemical calculations and photoreactivity experiments support our hypothesis; calculated aromaticity indices reveal that openings of cPr substituents on [4n]annulenes ruin the excited-state aromaticity in energetically unfavorable processes. Yet, polycyclic compounds influenced by excited-state aromaticity (e.g., biphenylene), as well as 4nπ-electron heterocycles with two or more heteroatoms represent limitations. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A Simple Hubbard Model for the Excited States of Dibenzoterrylene

    CERN Document Server

    Sadeq, Z S

    2016-01-01

    We use a simple Hubbard model to characterize the electronic excited states of the dibenzoterrylene (DBT) molecule; we compute the excited state transition energies and oscillator strengths from the ground state to several singlet excited states. We consider the lowest singlet and triplet states of the molecule, examine their wavefunctions, and compute the density correlation functions that describe these states. We find that the DBT ground state is mostly a closed shell singlet with very slight radical character. We predict a relatively small singlet-triplet splitting of 0.75 eV, which is less than the mid-sized -acenes but larger than literature predictions for this state; this is because the Hubbard interaction makes a very small correction to the singlet and triplet states.

  7. Electron impact excitation of highly charged sodium-like ions

    Science.gov (United States)

    Blaha, M.; Davis, J.

    1978-01-01

    Optical transition probabilities and electron collision strengths for Ca X, Fe XVI, Zn XX, Kr XXVI and Mo XXXII are calculated for transitions between n equal to 3 and n equal to 4 levels. The calculations neglect relativistic effects on the radial functions. A semi-empirical approach provides wave functions of the excited states; a distorted wave function without exchange is employed to obtain the excitation cross sections. The density dependence of the relative intensities of certain emission lines in the sodium isoelectronic sequence is also discussed.

  8. Electron collisions and internal excitation in stored molecular ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Buhr, H.

    2006-07-26

    In storage ring experiments the role, which the initial internal excitation of a molecular ion can play in electron collisions, and the effect of these collisions on the internal excitation are investigated. Dissociative recombination (DR) and inelastic and super-elastic collisions are studied in the system of He{sup +}{sub 2}. The DR rate coefficient at low energies depends strongly on the initial vibrational excitation in this system. Therefore changes in the DR rate coefficient are a very sensitive probe for changes in the vibrational excitation in He{sup +}{sub 2}, which is used to investigate the effects of collisions with electrons and residual gas species. The low-energy DR of HD{sup +} is rich with resonances from the indirect DR process, when certain initial rotational levels in the molecular ion are coupled to levels in neutral Rydberg states lying below the ion state. Using new procedures for high-resolution electron-ion collision spectroscopy developed here, these resonances in the DR cross section can be measured with high energy sensitivity. This allows a detailed comparison with results of a MQDT calculation in an effort to assign some or all of the resonances to certain intermediate Rydberg levels. (orig.)

  9. Excited singlet (S1) state interactions of 2,2'- and 4,4'-biphenyldiols with chloroalkanes: Photoinduced dissociative electron transfer

    Science.gov (United States)

    Mohanty, J.; Pal, H.; Sapre, A. V.

    2002-05-01

    Interactions of the excited singlet (S1) state of 2,2'- and 4,4'-biphenyldiols with a number of chloroalkanes (CA) have been investigated in acetonitrile solutions using fluorescence quenching measurements. For any particular diol-CA pair, the bimolecular quenching constants kq obtained from steady-state and time-resolved measurements are found to be the same, indicating the dynamic nature of the interaction. The kq values for different diol-CA pairs are seen to increase as the oxidation potential of the diol becomes less positive or the reduction potential of the CA becomes less negative, indicating the electron transfer (ET) type of interaction for the observed quenching. Following Marcus' outer-sphere ET theory, the correlation of the observed kq values with the free-energy changes for such reactions (ΔG0) results in the recovery of an unusually higher intramolecular reorganization energy (λin), indicating that the ET in the systems studied might not be of outer sphere in nature. Since the CAs are prone to undergo C-Cl bond cleavage following their reduction, a dissociative ET (DET) mechanism has been proposed for the observed fluorescence quenching. The evidence for the DET mechanism has been obtained by characterizing and estimating the Cl- ions in the photolyzed diol-CA solutions. Following a suitable theory for concerted DET reactions, it is seen that the observed kq values correlate well with the free-energy changes (ΔGDET0) for such reactions. It is seen that the reorganization energy recovered from such correlation accounts well for the C-Cl bond dissociation energy of the CAs, supporting a concerted DET mechanism in these systems.

  10. Theoretical studies on the reaction pathways of electronically excited DAAF

    Energy Technology Data Exchange (ETDEWEB)

    Quenneville, Jason M [Los Alamos National Laboratory; Moore, David S [Los Alamos National Laboratory

    2009-01-01

    The use of temporally and spectrally shaped ultrafast laser pulses to initiate, as well as detect, high explosives is being explored at Los Alamos. High level ab initio calculations, presented here, are employed to help guide and interpret the experiments. The ground and first excited electronic states of 3,3{prime}-diamino-4,4{prime}-azoxyfurazan (DAAF) are investigated using complete active space self-consistent field (CASSCF) and time-dependent density functional theory (TD-DFT). The geometrical and energetic character of the excited state minima, conical intersections and reaction pathways of DAAF are described. Two radiative and two non-radiative excited state population quenching mechanisms are outlined, and possible pathways for photochemical and spectroscopic control are discussed. The use of laser light to control chemical reactions has many applications. The initiation and the detection of explosives are two such applications currently under development at Los Alamos. Though inherently experimental, the project can be aided by theory through both prediction and interpretation. When the laser light is in the UV/visible region of the electromagnetic spectrum, the absorbing molecule is excited electronically and excitation decay may occur either radiatively (fluorescence or phosphorescence) or non-radiatively (through internal conversion). In many cases decay of the excitation occurs through a mixture of processes, and maximizing the desired result requires sophisticated laser pulses whose amplitude has been optimally modulated in time and/or frequency space. Control of cis-stilbene photochemistry was recently demonstrated in our group, and we aim to extend this work to high explosive compounds. Maximizing radiative decay leads to increased fluorescence quantum yields and enhances the possibility of spectral detection of the absorbing molecule. Maximizing non-radiative decay can lead to chemistry, heating of the sample and possibly detonation initiation in

  11. Excitation of the W triplet Delta (U), W singlet Delta (U), B prime triplet Sigma (U) (minus), and A prime singlet Epsison (U) (minus) states of N2 by electron impact

    Science.gov (United States)

    Cartwright, D. C.; Chutjian, A.; Trajmar, S.

    1973-01-01

    Electron energy-loss spectra have been obtained for N2 at 20.6 eV impact energy, and scattering angles of 10-138 deg. The differential cross section for excitation of the W triplet Delta(U) state is the largest triplet-state cross section at all scattering angles, and is the largest inelastic cross section at angles greater than 70 degrees. (Author Modified Abstract)

  12. Rearrangements in ground and excited states

    CERN Document Server

    de Mayo, Paul

    1980-01-01

    Rearrangements in Ground and Excited States, Volume 3 presents essays on the chemical generation of excited states; the cis-trans isomerization of olefins; and the photochemical rearrangements in trienes. The book also includes essays on the zimmerman rearrangements; the photochemical rearrangements of enones; the photochemical rearrangements of conjugated cyclic dienones; and the rearrangements of the benzene ring. Essays on the photo rearrangements via biradicals of simple carbonyl compounds; the photochemical rearrangements involving three-membered rings or five-membered ring heterocycles;

  13. Atomic excitation and molecular dissociation by low energy electron collisions

    Energy Technology Data Exchange (ETDEWEB)

    Weyland, Marvin

    2016-11-16

    In this work, momentum imaging experiments have been conducted for the electron impact excitation of metastable states in noble gases and for dissociative electron attachment (DEA) in polyatomic molecules. For the electron impact excitation study a new experimental technique has been developed which is able to measure the scattering angle distribution of the electrons by detection of the momentum transfer to the atoms. Momentum transfer images have been recorded for helium and neon at fixed electron impact energy close to the excitation threshold and good agreement with current R-matrix theory calculations was found. A new momentum imaging apparatus for negative ions has been built for the purpose of studying DEA in biologically relevant molecules. During this work, DEA was investigated in the molecules ammonia, water, formic acid, furan, pyridine and in two chlorofluorocarbons. Furthermore, the change of DEA resonance energies when molecules form clusters compared to monomers was investigated in ammonia and formic acid. The experimental results of most studied molecules could be compared to recent theoretical calculations and they support further development in the theoretical description of DEA. The new apparatus built in this work also delivered a superior momentum resolution compared to existing setups. This allows the momentum imaging of heavier fragments and fragments with lower kinetic energy.

  14. Dynamics of two-electron excitations in helium

    Energy Technology Data Exchange (ETDEWEB)

    Caldwell, C.D.; Menzel, A.; Frigo, S.P. [Univ. of Central Florida, Orlando, FL (United States)] [and others

    1997-04-01

    Excitation of both electrons in helium offers a unique window for studying electron correlation at the most basic level in an atom in which these two electrons and the nucleus form a three-body system. The authors utilized the first light available at the U-8 undulator-SGM monochromator beamline to investigate the dynamic parameters, partial cross sections, differential cross sections, and photoelectron angular distribution parameters ({beta}), with a high resolving power for the photon beam and at the highly differential level afforded by the use of their electron spectrometer. In parallel, they carried out detailed calculations of the relevant properties by a theoretical approach that is based on the hyperspherical close-coupling method. Partial photoionization cross sections {sigma}{sub n}, and photoelectron angular distributions {beta}{sub n} were measured for all possible final ionic states He{sup +}(n) in the region of the double excitations N(K,T){sup A} up to the N=5 threshold. At a photon energy bandpass of 12 meV below the thresholds N=3, 4, and 5, this level of differentiation offers the most critical assessment of the dynamics of the two-electron excitations to date. The experimental data were seen to be very well described by the most advanced theoretical calculations.

  15. Two-Photon Excitation of Conjugated Molecules in Solution: Spectroscopy and Excited-State Dynamics

    Science.gov (United States)

    Elles, Christopher G.; Houk, Amanda L.; de Wergifosse, Marc; Krylov, Anna

    2017-06-01

    We examine the two-photon absorption (2PA) spectroscopy and ultrafast excited-state dynamics of several conjugated molecules in solution. By controlling the relative wavelength and polarization of the two photons, the 2PA measurements provide a more sensitive means of probing the electronic structure of a molecule compared with traditional linear absorption spectra. We compare experimental spectra of trans-stilbene, cis-stilbene, and phenanthrene in solution with the calculated spectra of the isolated molecules using EOM-EE-CCSD. The calculated spectra show good agreement with the low-energy region of the experimental spectra (below 6 eV) after suppressing transitions with strong Rydberg character and accounting for solvent and method-dependent shifts of the valence transitions. We also monitor the excited state dynamics following two-photon excitation to high-lying valence states of trans-stilbene up to 6.5 eV. The initially excited states rapidly relax to the lowest singlet excited state and then follow the same reaction path as observed following direct one-photon excitation to the lowest absorption band at 4.0 eV.

  16. Nuclear Excitation by Electronic Transition of U-235

    Science.gov (United States)

    Chodash, Perry

    2017-01-01

    Nuclear excitation by electronic transition (NEET) is a rare nuclear excitation that is theorized to exist in numerous isotopes. NEET is the inverse of bound internal conversion and occurs when an electronic transition couples to a nuclear transition causing the nucleus to enter an excited state. This process can only occur for isotopes with low-lying nuclear levels due to the requirement that the electronic and nuclear transitions have similar energies. One of the candidate isotopes for NEET, 235U, has been studied several times over the past 40 years and NEET of 235U has never been conclusively observed. These past experiments generated conflicting results with some experiments claiming to observe NEET of 235U and others setting limits for the NEET rate. If NEET of 235U were to occur, the uranium would be excited to its first excited nuclear state. The first excited nuclear state in 235U is only 76 eV, the second lowest known nuclear state. Additionally, the 76 eV state is a nuclear isomer that decays by internal conversion with a half-life of 26 minutes. In order to measure whether NEET occurs in 235U and at what rate, a uranium plasma was required. The plasma was generated using a Q-switched Nd:YAG laser outputting 789 mJ pulses of 1064 nm light. The laser light was focused onto uranium targets generating an intensity on target of order 1012 W/cm2. The resulting plasma was captured on a catcher plate and electrons emitted from the catcher plate were accelerated and focused onto a microchannel plate detector. Measurements performed using a variety of uranium targets spanning depleted uranium up to 99.4% enriched uranium did not observe a 26 minute decay. An upper limit for the NEET rate of 235U was determined. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The U.S. DHS, UC Berkeley, the NNIS fellowship and the NSSC further supported this work.

  17. Charmonium excited state spectrum in lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Jozef Dudek; Robert Edwards; Nilmani Mathur; David Richards

    2008-02-01

    Working with a large basis of covariant derivative-based meson interpolating fields we demonstrate the feasibility of reliably extracting multiple excited states using a variational method. The study is performed on quenched anisotropic lattices with clover quarks at the charm mass. We demonstrate how a knowledge of the continuum limit of a lattice interpolating field can give additional spin-assignment information, even at a single lattice spacing, via the overlap factors of interpolating field and state. Excited state masses are systematically high with respect to quark potential model predictions and, where they exist, experimental states. We conclude that this is most likely a result of the quenched approximation.

  18. Search for excited states in 25O

    Science.gov (United States)

    Jones, M. D.; Fossez, K.; Baumann, T.; DeYoung, P. A.; Finck, J. E.; Frank, N.; Kuchera, A. N.; Michel, N.; Nazarewicz, W.; Rotureau, J.; Smith, J. K.; Stephenson, S. L.; Stiefel, K.; Thoennessen, M.; Zegers, R. G. T.

    2017-11-01

    Background: Theoretical calculations suggest the presence of low-lying excited states in 25O. Previous experimental searches by means of proton knockout on 26F produced no evidence for such excitations. Purpose: We search for excited states in 25O using the 24O(d ,p ) 25O reaction. The theoretical analysis of excited states in unbound O,2725 is based on the configuration interaction approach that accounts for couplings to the scattering continuum. Method: We use invariant-mass spectroscopy to measure neutron-unbound states in 25O. For the theoretical approach, we use the complex-energy Gamow Shell Model and Density Matrix Renormalization Group method with a finite-range two-body interaction optimized to the bound states and resonances of O-2623, assuming a core of 22O. We predict energies, decay widths, and asymptotic normalization coefficients. Results: Our calculations in a large s p d f space predict several low-lying excited states in 25O of positive and negative parity, and we obtain an experimental limit on the relative cross section of a possible Jπ=1/2 + state with respect to the ground state of 25O at σ1 /2 +/σg .s .=0 .25-0.25+1.0 . We also discuss how the observation of negative parity states in 25O could guide the search for the low-lying negative parity states in 27O. Conclusion: Previous experiments based on the proton knockout of 26F suffered from the low cross sections for the population of excited states in 25O because of low spectroscopic factors. In this respect, neutron transfer reactions carry more promise.

  19. Ab Initio molecular dynamics with excited electrons

    NARCIS (Netherlands)

    Alavi, A.; Kohanoff, J.; Parrinello, M.; Frenkel, D.

    1994-01-01

    A method to do ab initio molecular dynamics suitable for metallic and electronically hot systems is described. It is based on a density functional which is costationary with the finite-temperature functional of Mermin, with state being included with possibly fractional occupation numbers.

  20. Super-atom molecular orbital excited states of fullerenes.

    Science.gov (United States)

    Johansson, J Olof; Bohl, Elvira; Campbell, Eleanor E B

    2016-09-13

    Super-atom molecular orbitals are orbitals that form diffuse hydrogenic excited electronic states of fullerenes with their electron density centred at the centre of the hollow carbon cage and a significant electron density inside the cage. This is a consequence of the high symmetry and hollow structure of the molecules and distinguishes them from typical low-lying molecular Rydberg states. This review summarizes the current experimental and theoretical studies related to these exotic excited electronic states with emphasis on femtosecond photoelectron spectroscopy experiments on gas-phase fullerenes.This article is part of the themed issue 'Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene'. © 2016 The Author(s).

  1. First Principles Calculations of Electronic Excitations in 2D Materials

    DEFF Research Database (Denmark)

    Rasmussen, Filip Anselm

    -thin electronics and high efficiency solar cells. Contrary to many other nano-materials, methods for large scale fabrication and patterning have already been demonstrated and the first real technological applications have already be showcased. Still the technology is very young and the number of well-studied 2D...... mechanics methods. One of these methods, Density Functional Theory (DFT), has been very successful at determining structural properties of 2D materials. It is however well-known that it less accurate when it comes to predicting the energy levels of excited states that are important in order to determine...... electronic transport, optical and chemical properties. On the other hand it has shown to be a great starting point for a systematic pertubation theory approach to obtain the so-called quasiparticle spectrum. In the GW approximation one considers the considers the potential from a charged excitation...

  2. Charge-displacement analysis for excited states

    Energy Technology Data Exchange (ETDEWEB)

    Ronca, Enrico, E-mail: enrico@thch.unipg.it; Tarantelli, Francesco, E-mail: francesco.tarantelli@unipg.it [Istituto CNR di Scienze e Tecnologie Molecolari, via Elce di Sotto 8, I-06123 Perugia (Italy); Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, via Elce di Sotto 8, I-06123 Perugia (Italy); Pastore, Mariachiara, E-mail: chiara@thch.unipg.it; Belpassi, Leonardo; De Angelis, Filippo [Istituto CNR di Scienze e Tecnologie Molecolari, via Elce di Sotto 8, I-06123 Perugia (Italy); Angeli, Celestino; Cimiraglia, Renzo [Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Ferrara, via Borsari 46, I-44100 Ferrara (Italy)

    2014-02-07

    We extend the Charge-Displacement (CD) analysis, already successfully employed to describe the nature of intermolecular interactions [L. Belpassi et al., J. Am. Chem. Soc. 132, 13046 (2010)] and various types of controversial chemical bonds [L. Belpassi et al., J. Am. Chem. Soc. 130, 1048 (2008); N. Salvi et al., Chem. Eur. J. 16, 7231 (2010)], to study the charge fluxes accompanying electron excitations, and in particular the all-important charge-transfer (CT) phenomena. We demonstrate the usefulness of the new approach through applications to exemplary excitations in a series of molecules, encompassing various typical situations from valence, to Rydberg, to CT excitations. The CD functions defined along various spatial directions provide a detailed and insightful quantitative picture of the electron displacements taking place.

  3. Nature of mixed symmetry 2{sup +} states in {sup 94}Mo from high resolution electron and proton scattering and line shape of the first excited 1/2{sup +} state in {sup 9}Be

    Energy Technology Data Exchange (ETDEWEB)

    Burda, Oleksiy

    2007-07-15

    The present work contains two parts. The first one is devoted to the investigation of mixed-symmetry structure in {sup 94}Mo and the second one to the astrophysical relevant line shape of the first excited 1/2{sup +} state in {sup 9}Be. In the first part of the thesis the nature of one- and two-phonon symmetric and mixed-symmetric 2{sup +} states in {sup 94}Mo is investigated with high-resolution inelastic electron and proton scattering experiments in a combined analysis. The (e,e') experiments were carried out at the 169 magnetic spectrometer at the S-DALINAC. Data were taken at a beam energy E e=70 MeV and scattering angles {theta}{sub e}=93 -165 . In dispersion-matching mode an energy resolution {delta}{sub E}=30-45 keV (full width at half maximum) was achieved. The (p,p') measurements were performed at iThemba LABS, South Africa, using a K600 magnetic spectrometer at a proton energy E p=200 MeV and scattering angles {theta}{sub p}=4.5 -26 . Typical energy resolutions were {delta}{sub E}{approx_equal}35 keV. The combined analysis reveals a dominant one-phonon structure of the transitions to the first and third 2{sup +} states, as well as an isovector character of the transition to the one-phonon mixed-symmetric state within the valence shell. Quantitatively consistent estimates of the one-phonon admixtures are obtained from both experimental probes when two-step contributions to the proton scattering cross sections are taken into account. In the second part of the thesis the line shape of the first excited 1/2{sup +} state in {sup 9}Be is studied. Spectra of the {sup 9}Be(e,e') reaction were measured at the S-DALINAC at an electron energy E e=73 MeV and scattering angles of 93 and 141 with high energy resolution up to excitation energies E{sub x}=8 MeV. The form factor of the first excited state has been extracted from the data. The astrophysical relevant {sup 9}Be({gamma},n) cross sections have been extracted from the (e,e') data. The

  4. A quantitative study of the effect of solvent on the electronic absorption and fluorescence spectra of substituted phenothiazines: evaluation of their ground and excited singlet-state dipole moments

    Science.gov (United States)

    Párkányi, C.; Boniface, C.; Aaron, J. J.; Maafi, M.

    1993-11-01

    Electronic absorption and fluorescence excitation and emission spectra of five phenothiazines (phenothiazine, promethazine, thionine, methylene blue and Azure A) were determined at room temperature (293 K) in several solvents of various polarities (cyclohexane, dioxane, ethyl ether, chloroform, ethyl acetate, 1-butanol, 2-propanol, ethanol, methanol, acetonitrile, dimethylformamide and dimethyl sulfoxide). The effect of the solvents upon the spectral characteristics was studied. In combination with the ground state dipole moments of these phenothiazines, the spectral data were used to evaluate their first excited singlet-state dipole moments by means of the solvatochromic shift method (Bakhshiev's and Kawski—Chamma—Viallet correlations). The theoretical ground and excited singlet-state dipole moments for phenothiazines were calculated as a vector sum of the π component (obtained by the Pariser—Parr—Pople method) and the σ component (obtained from σ-bond moments). A reasonable agreement was found with the experimental values. For most phenothiazines under study, excited singlet-state dipole moments were found to be significantly higher than their ground-state counterparts. The application of the Kamlet—Abboud—Taft solvatochromic parameters to the solvent effect on spectral properties of phenothiazines is discussed.

  5. Many-body approach to electronic excitations concepts and applications

    CERN Document Server

    Bechstedt, Friedhelm

    2015-01-01

    The many-body-theoretical basis and applications of theoretical spectroscopy of condensed matter, e.g. crystals, nanosystems, and molecules are unified in one advanced text for readers from graduate students to active researchers in the field. The theory is developed from first principles including fully the electron-electron interaction and spin interactions. It is based on the many-body perturbation theory, a quantum-field-theoretical description, and Green's functions. The important expressions for ground states as well as electronic single-particle and pair excitations are explained. Based on single-particle and two-particle Green's functions, the Dyson and Bethe-Salpeter equations are derived. They are applied to calculate spectral and response functions. Important spectra are those which can be measured using photoemission/inverse photoemission, optical spectroscopy, and electron energy loss/inelastic X-ray spectroscopy. Important approximations are derived and discussed in the light of selected computa...

  6. Excited State Properties of Hybrid Perovskites.

    Science.gov (United States)

    Saba, Michele; Quochi, Francesco; Mura, Andrea; Bongiovanni, Giovanni

    2016-01-19

    Metal halide perovskites have come to the attention of the scientific community for the progress achieved in solar light conversion. Energy sustainability is one of the priorities of our society, and materials advancements resulting in low-cost but efficient solar cells and large-area lighting devices represent a major goal for applied research. From a basic point of view, perovskites are an exotic class of hybrid materials combining some merits of organic and inorganic semiconductors: large optical absorption, large mobilities, and tunable band gap together with the possibility to be processed in solution. When a novel class of promising semiconductors comes into the limelight, lively discussions ensue on the photophysics of band-edge excitations, because just the states close to the band edge are entailed in energy/charge transport and light emission. This was the case several decades ago for III-V semiconductors, it has been up to 10 years ago for organics, and it is currently the case for perovskites. Our aim in this Account is to rationalize the body of experimental evidence on perovskite photophysics in a coherent theoretical framework, borrowing from the knowledge acquired over the years in materials optoelectronics. A crucial question is whether photon absorption leads to a population of unbound, conductive free charges or instead excitons, neutral and insulating bound states created by Coulomb interaction just below the energy of the band gap. We first focus on the experimental estimates of the exciton binding energy (Eb): at room temperature, Eb is comparable to the thermal energy kBT in MAPbI3 and increases up to values 2-3kBT in wide band gap MAPbBr3 and MAPbCl3. Statistical considerations predict that these values, even though comparable to or larger than thermal energy, let free carriers prevail over bound excitons for all levels of excitation densities relevant for devices. The analysis of photophysics evidence confirms that all hybrid halide

  7. The excited state antiaromatic benzene ring: a molecular Mr Hyde?

    Science.gov (United States)

    Papadakis, Raffaello; Ottosson, Henrik

    2015-09-21

    The antiaromatic character of benzene in its first ππ* excited triplet state (T1) was deduced more than four decades ago by Baird using perturbation molecular orbital (PMO) theory [J. Am. Chem. Soc. 1972, 94, 4941], and since then it has been confirmed through a range of high-level quantum chemical calculations. With focus on benzene we now first review theoretical and computational studies that examine and confirm Baird's rule on reversal in the electron count for aromaticity and antiaromaticity of annulenes in their lowest triplet states as compared to Hückel's rule for the ground state (S0). We also note that the rule according to quantum chemical calculations can be extended to the lowest singlet excited state (S1) of benzene. Importantly, Baird, as well as Aihara [Bull. Chem. Soc. Jpn. 1978, 51, 1788], early put forth that the destabilization and excited state antiaromaticity of the benzene ring should be reflected in its photochemical reactivity, yet, today these conclusions are often overlooked. Thus, in the second part of the article we review photochemical reactions of a series of benzene derivatives that to various extents should stem from the excited state antiaromatic character of the benzene ring. We argue that benzene can be viewed as a molecular "Dr Jekyll and Mr Hyde" with its largely unknown excited state antiaromaticity representing its "Mr Hyde" character. The recognition of the "Jekyll and Hyde" split personality feature of the benzene ring can likely be useful in a range of different areas.

  8. Excited state solvatochromic and prototropic behaviour of 4-aminodiphenylamine and 4,4'-diaminodiphenylamine—A comparative study by electronic spectra

    Science.gov (United States)

    Nayaki, S. Kothai; Swaminathan, M.

    2006-06-01

    Solvatochromic and prototropic behaviour of 4-aminodiphenylamine (4ADA) and 4,4'-diaminodiphenylamine (DADA) have been investigated in the solvents of different polarity and at various acid-base concentrations in the ground and excited states using absorption and fluorescence spectra. Solvatochromic shifts have been analysed and observed shifts are explained by the hydrogen bonding interactions. The prototropic study reveals that (i) absorption maximum of monocation of DADA is red shifted to its neutral form, and (ii) the fluorescence of 4ADA is red shifted on protonation. The abnormal fluorescence of 4ADA + is found to be due to large solvent relaxation in polar medium.

  9. Excited state solvatochromic and prototropic behaviour of 4-aminodiphenylamine and 4,4'-diaminodiphenylamine--a comparative study by electronic spectra.

    Science.gov (United States)

    Nayaki, S Kothai; Swaminathan, M

    2006-06-01

    Solvatochromic and prototropic behaviour of 4-aminodiphenylamine (4ADA) and 4,4'-diaminodiphenylamine (DADA) have been investigated in the solvents of different polarity and at various acid-base concentrations in the ground and excited states using absorption and fluorescence spectra. Solvatochromic shifts have been analysed and observed shifts are explained by the hydrogen bonding interactions. The prototropic study reveals that (i) absorption maximum of monocation of DADA is red shifted to its neutral form, and (ii) the fluorescence of 4ADA is red shifted on protonation. The abnormal fluorescence of 4ADA+ is found to be due to large solvent relaxation in polar medium.

  10. Computing correct truncated excited state wavefunctions

    Science.gov (United States)

    Bacalis, N. C.; Xiong, Z.; Zang, J.; Karaoulanis, D.

    2016-12-01

    We demonstrate that, if a wave function's truncated expansion is small, then the standard excited states computational method, of optimizing one "root" of a secular equation, may lead to an incorrect wave function - despite the correct energy according to the theorem of Hylleraas, Undheim and McDonald - whereas our proposed method [J. Comput. Meth. Sci. Eng. 8, 277 (2008)] (independent of orthogonality to lower lying approximants) leads to correct reliable small truncated wave functions. The demonstration is done in He excited states, using truncated series expansions in Hylleraas coordinates, as well as standard configuration-interaction truncated expansions.

  11. Excitation of He(2(1,3)S) by electron impact

    NARCIS (Netherlands)

    DeHeer, FJ; Bray, [No Value; Fursa, DV; Bliek, FW; Hoekstra, R; Summers, HP

    1995-01-01

    Theoretical data for electron impact excitation of neutral helium in the He (2(1,3)S) states are reviewed and a preferred data set is established for excitation to the He (n(1,3)L) states with n=2-4. Such a set of data was presented in a FOM report. The present work is an improvement made possible

  12. Electron impact excitation of helium atom

    Science.gov (United States)

    Han, Xiao-Ying; Zeng, De-Ling; Gao, Xiang; Li, Jia-Ming

    2015-08-01

    A method to deal with the electron impact excitation cross sections of an atom from low to high incident energies are presented. This method combines the partial wave method and the first Born approximation (FBA), i.e., replacing the several lowest partial wave cross sections of the total cross sections within FBA by the corresponding exact partial wave cross sections. A new set of codes are developed to calculate the FBA partial wave cross sections. Using this method, the convergent e-He collision cross sections of optical-forbidden and optical-allowed transitions at low to high incident energies are obtained. The calculation results demonstrate the validity and efficiency of the method. Project supported by the National Basic Research Program of China (Grant Nos. 2011CB921501 and 2013CB922200), the National Natural Science Foundation of China (Grant Nos. 11274035, 11275029, 11328401, 11371218, 11474031, 11474032, and 11474034), and the Foundation of Development of Science and Technology of Chinese Academy of Engineering Physics (Grant Nos. 2013A0102005 and 2014A0102005).

  13. Electronic signatures of large amplitude motions: dipole moments of vibrationally excited local-bend and local-stretch states of S0 acetylene.

    Science.gov (United States)

    Wong, Bryan M; Steeves, Adam H; Field, Robert W

    2006-09-28

    A one-dimensional local bend model is used to describe the variation of electronic properties of acetylene in vibrational levels that embody large amplitude local motions on the S0 potential energy surface. Calculations performed at the CCSD(T) and MR-AQCC levels of theory predict an approximately linear dependence of the dipole moment on the number of quanta in either the local bending or local stretching excitation. In the local mode limit, one quantum of stretching excitation in one CH bond leads to an increase of 0.025 D in the dipole moment, and one quantum of bending vibration in the CCH angle leads to an increase of 0.068 D. The use of a one-dimensional model for the local bend is justified by comparison to the well-established polyad model which reveals a decoupling of the large amplitude bending from other degrees of freedom in the range of Nbend = 14-22. We find that the same one-dimensional large amplitude bending motion emerges from two profoundly different representations, a one-dimensional cut through an ab initio, seven-dimensional Hamiltonian and the three-dimensional (l = 0) pure-bending experimentally parametrized spectroscopic Hamiltonian.

  14. Resonance Raman examination of the electronic excited states of glycylglycine and other dipeptides: Observation of a carboxylate{yields}amide charge transfer transition

    Energy Technology Data Exchange (ETDEWEB)

    Chen, X.G.; Li, P.; Holtz, J.S.W.; Chi, Z.; Pajcini, V.; Asher, S.A. [Univ. of Pittsburgh, PA (United States); Kelly, L.A. [Brookhaven National Lab., Upton, NY (United States)

    1996-10-09

    We have examined the UV resonance Raman and the VUV absorption spectra of aqueous glycylglycine and other dipeptides. We observe strong resonance Raman enhancement of the amide I, II, and III bands and the amide C{sub {alpha}}H bending mode in a manner similar to that we observed previously with excitation within the {pi}{yields}{pi}{sup *} transition of N-methylacetamide. However, in addition, we observe strong resonance Raman enhancement of the ca. 1400 cm{sup -1} symmetric COO{sup -} stretching vibration, whose 206.5 nm Raman cross section is increased 20-fold compared to that of the carboxylate in sodium acetate, for example. Addition of a methylene spacer between the amide and carboxylate groups causes the resonance Raman enhancement of this symmetric COO{sup -} stretch to disappear. The UV resonance Raman excitation profiles, the Raman depolarization ratio dispersion, and the VUV absorption spectra of glycylglycine and other dipeptides demonstrate the existence of a new 197 nm charge transfer band which involves electron transfer from a nonbonding carboxylate orbital to the amide-like {pi}{sup *} orbital. This transition occurs at the penultimate carboxylate end of all peptides and proteins. 18 refs., 9 figs., 3 tabs.

  15. Faster photoinduced electron transfer in a diluted mixture than in a neat donor solvent: effect of excited-state H-bonding.

    Science.gov (United States)

    Barman, Nabajeet; Singha, Debabrata; Sahu, Kalyanasis

    2014-04-07

    In a neat electron-donating solvent (in this case aniline), photoinduced electron transfer (PET) from the solvent to an excited acceptor (e.g. a coumarin fluorophore) may be anticipated to be the most efficient because of the close contact of the acceptor with many donors. Addition of an inert component would most likely retard the PET process by replacing some donors from the neighbourhood of the acceptors. Surprisingly, we found dramatic acceleration of PET (6-10 fold enhancement compared to neat aniline), for coumarin 102 (C102) dissolved in a binary mixture of aniline and an inert solvent (cyclohexane or toluene). The PET induced fluorescence follows an anomalous trend against the mole fraction of aniline (XAN); first quenches up to certain XAN (0.075 for cyclohexane; 0.13 for toluene), thereafter, enhances with increase in XAN. Although the non-interacting component cannot directly participate in the PET process, it may modulate C102-aniline H-bonding association by changing the polarity of the medium or by disrupting the aniline-aniline H-bond. The study clearly illustrates the dominant role of hydrogen bonding in activating the electron transfer rate where standard thermodynamics predicts very weak donor-acceptor interaction.

  16. Improved virtual orbital multireference Møller-Plesset study of the ground and excited electronic states of protonated acetylene, C2H3+

    Science.gov (United States)

    Chaudhuri, Rajat K.; Freed, Karl F.

    2008-08-01

    The ground state geometries and associated normal mode frequencies of the classical and nonclassical protonated acetylene ion, i.e., the vinyl cation C2H3+, are computed using the complete active space self-consistent field and improved virtual orbital (IVO) complete active space configuration interaction methods. In addition, the minimum-energy reaction path for the classical to nonclassical interconversion is determined (as are excitation energies) using the IVO modification of multireference Møller-Plesset (MRMP) perturbation theory. The IVO-MRMP treatment predicts the nonclassical structure to be 4.8 kcal/mol more stable than the classical one, which is consistent with other high level theoretical estimates. The proton affinity of acetylene from the IVO-MRMP treatment (154.8 kcal/mol) also agrees well with experiment (153.3 kcal/mol) and with earlier CASPT2 calculations (154.8 kcal/mol). We further report geometries and vibrational frequencies of low lying excited states of C2H3+, which have not been observed and/or studied before. Comparisons with previous highly correlated calculations further demonstrate the computational efficiency of the IVO-MRPT methods.

  17. A Simple Hubbard Model for the Excited States of $\\pi$ Conjugated -acene Molecules

    CERN Document Server

    Sadeq, Z S

    2015-01-01

    In this paper we present a model that elucidates in a simple way the electronic excited states of $\\pi$ conjugated -acene molecules such as tetracene, pentacene, and hexacene. We use a tight-binding and truncated Hubbard model written in the electron-hole basis to describe the low lying excitations with reasonable quantitative accuracy. We are able to produce semi-analytic wavefunctions for the electronic states of the system, which allows us to compute the density correlation functions for various states such as the ground state, the first two singly excited states, and the lowest lying doubly excited state. We show that in this lowest lying doubly excited state, a state which has been speculated as to being involved in the singlet fission process, the electrons and holes behave in a triplet like manner.

  18. Excited states of muonium in atomic hydrogen

    Indian Academy of Sciences (India)

    Muonium formation in excited states in muon-hydrogen charge-exchange collision is investigated using a method developed in a previous paper. Differential cross-section results are found to resemble positronium formation cross-section results of positron-hydrogen charge-exchange problem. Forward differential and ...

  19. Reactive scattering of electronically excited alkali atoms with molecules

    Energy Technology Data Exchange (ETDEWEB)

    Mestdagh, J.M.; Balko, B.A.; Covinsky, M.H.; Weiss, P.S.; Vernon, M.F.; Schmidt, H.; Lee, Y.T.

    1987-06-01

    Representative families of excited alkali atom reactions have been studied using a crossed beam apparatus. For those alkali-molecule systems in which reactions are also known for ground state alkali and involve an early electron transfer step, no large differences are observed in the reactivity as Na is excited. More interesting are the reactions with hydrogen halides (HCl): it was found that adding electronic energy into Na changes the reaction mechanism. Early electron transfer is responsible of Na(5S, 4D) reactions, but not of Na(3P) reactions. Moreover, the NaCl product scattering is dominated by the HCl/sup -/ repulsion in Na(5S, 4D) reactions, and by the NaCl-H repulsion in the case of Na(3P). The reaction of Na with O/sub 2/ is of particular interest since it was found to be state specific. Only Na(4D) reacts, and the reaction requires restrictive constraints on the impact parameter and the reactants' relative orientation. The reaction with NO/sub 2/ is even more complex since Na(4D) leads to the formation of NaO by two different pathways. It must be mentioned however, that the identification of NaO as product in these reactions has yet to be confirmed.

  20. Excited state carbene formation from UV irradiated diazomethane.

    Science.gov (United States)

    Lee, Hosik; Miyamoto, Yoshiyuki; Tateyama, Yoshitaka

    2009-01-16

    The laser flash photolysis process of diazomethane has been studied by using a real time propagation time-dependent density functional theory (RTP-TDDFT) combined with molecular dynamics. The activation energy barrier for disintegrating diazomethane into nitrogen (N(2)) and carbene (CH(2)) molecules significantly decreases in the electronic excited S(1) state compared to that in the S(0) ground state. Furthermore, the produced carbene molecule can be in the electronic excited state of (1)CH(2) ((1)B(1)) instead of the lowest state among singlet states (1)CH(2) ((1)A(1)), which is evident in the wave function characteristics of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) throughout the disintegration. This is regarded as the initial stage of the rearrangement in the excited state (RIES), the evidence of which has been given by experiments in the past decade. In the RIES mechanism scheme, we suggest that the photoreaction in the S(1) state contributes considerably to the photochemistry of carbene formation. The passing near the S(1)/S(0) conical intersection, which allows the transition to ground state diazomethane producing the lowest singlet state carbene molecule, is considered a rare event from our molecular dynamics, although this has been regarded as the dominant mechanism in previous theoretical studies.

  1. Correlated formation of the excited states of recoil and scattered ions in multiple electron capture collision of Ar8+ with CO2 and OCS

    Science.gov (United States)

    Tezuka, H.; Takahashi, K.; Matsumoto, J.; Karimi, R.; Sanderson, J. H.; Shiromaru, H.

    2018-02-01

    Multiple ionization events induced by low energy collisions between Ar8+ projectiles and linear triatomic molecular targets, CO2 and OCS, were studied in order to shed light on the correlation between the electronic states of the scattered ion and the ionic fragmentation processes. Position-sensitive time-of-flight measurements of all the recoil fragments, triggered by detection of a charge-selected scattered ion, allowed us to distinguish between ionic fragmentation processes in which different numbers of Auger electrons were emitted by the projectile, just after multiple electron capture. A strong correlation is found for triple capture collisions, between fragmentation with high kinetic energy and events when only single Auger electron emission takes place.

  2. Ultrafast excited state dynamics in 9,9'-bifluorenylidene.

    Science.gov (United States)

    Conyard, Jamie; Heisler, Ismael A; Browne, Wesley R; Feringa, Ben L; Amirjalayer, Saeed; Buma, Wybren Jan; Woutersen, Sander; Meech, Stephen R

    2014-08-07

    9,9'-Bifluorenylidene has been proposed as an alternative and flexible electron acceptor in organic photovoltaic cells. Here we characterize its excited state properties and photokinetics, combining ultrafast fluorescence and transient IR measurements with quantum chemical calculations. The fluorescence decay is ultrafast (sub-100 fs) and remarkably independent of viscosity. This suggests that large scale structure change is not the primary relaxation mode. The ultrafast decay populates a dark state characterized by distinct vibrational and electronic spectra. This state decays with a 6 ps time constant to a hot ground state that ultimately populates the initial state with a 20 ps time constant; these times are also insensitive to solvent viscosity. No metastable intermediate structures are resolved in the photocycle after population of the dark state. The implications of these results for the operation of 9,9'-bifluorenylidene as an electron acceptor and as a potential molecular switch are discussed.

  3. Stability of sulfate complexes of electronically excited uranyl

    Energy Technology Data Exchange (ETDEWEB)

    Ostakhov, S.S.; Kazakov, V.P.; Afonichev, D.D. [Inst. of Organic Chemistry, Ufa (Russian Federation)

    1995-11-01

    The complex formation of electronically excited uranyl ions with SO{sub 4}{sup 2-}anions in 0.1 M aqueous HClO{sub 4} has been studied by time-resolved luminescence spectroscopy. The stability constants of uranyl sulfate complexes (UO{sub 2}SO{sub 4}) (K=870 1 mol{sup -1}) and [UO{sub 2}(SO{sub 4}){sub 2}{sup 2-}](K=47000 1 mol{sup -1}) in excited state have been determined; they are more than an order of magnitude greater than those reported for complex formation of uranyl ions in the ground state. The complex formation of uranyl with sulfate ions is accompanied by the increase of the quantum yield of the uranyl lumenescence. The maxima of luminescence and absorption bands of uranyl ions are shifted with increasing the total concentration of SO{sub 4}{sup 2-} in solution, which supports the data obtained. The shift of the maxima of luminescence bands is observed at a sulfate concentration that is considerably lower than that causing the same shift of the maxima of the absorption bands. Such effect is consistent with the calculated stability constants of sulfate complexes of excited uranyl ions.

  4. Excited state conformational dynamics in carotenoids: dark intermediates and excitation energy transfer.

    Science.gov (United States)

    Beck, Warren F; Bishop, Michael M; Roscioli, Jerome D; Ghosh, Soumen; Frank, Harry A

    2015-04-15

    A consideration of the excited state potential energy surfaces of carotenoids develops a new hypothesis for the nature of the conformational motions that follow optical preparation of the S2 (1(1)Bu(+)) state. After an initial displacement from the Franck-Condon geometry along bond length alternation coordinates, it is suggested that carotenoids pass over a transition-state barrier leading to twisted conformations. This hypothesis leads to assignments for several dark intermediate states encountered in femtosecond spectroscopic studies. The Sx state is assigned to the structure reached upon the onset of torsional motions near the transition state barrier that divides planar and twisted structures on the S2 state potential energy surface. The X state, detected recently in two-dimensional electronic spectra, corresponds to a twisted structure well past the barrier and approaching the S2 state torsional minimum. Lastly, the S(∗) state is assigned to a low lying S1 state structure with intramolecular charge transfer character (ICT) and a pyramidal conformation. It follows that the bent and twisted structures of carotenoids that are found in photosynthetic light-harvesting proteins yield excited-state structures that favor the development of an ICT character and optimized energy transfer yields to (bacterio)chlorophyll acceptors. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Excited states of {sup 4}He droplets

    Energy Technology Data Exchange (ETDEWEB)

    Guardiola, R.; Navarro, J.; Portesi, M.

    2001-06-01

    We study low-lying excited states of {sup 4}He clusters up to a cluster size of 40 atoms in a variational framework. The ansatz wave function combines two- and three-body correlations, coming from a translationally invariant configuration interaction description, and Jastrow-type short-range correlation. We have previously used this scheme to determine the ground-state energies of {sup 4}He and {sup 3}He clusters. Here we present an extension of this ansatz wave function having a good quantum angular momentum L. The variational procedure is applied independently to the cases with L=0,2,4, and upper bounds for the corresponding energies are thus obtained. Moreover, centroid energies for L excitations are calculated through the use of sum rules. A comparison with previous calculations is also made.

  6. Competitive Energy and Electron Transfer in β-Functionalized Free-Base Porphyrin-Zinc Porphyrin Dimer Axially Coordinated to C60 : Synthesis, Supramolecular Formation and Excited-State Processes.

    Science.gov (United States)

    Hu, Yi; Thomas, Michael B; Jinadasa, R G Waruna; Wang, Hong; D'Souza, Francis

    2017-09-18

    Simultaneous occurrence of energy and electron transfer events involving different acceptor sites in a newly assembled supramolecular triad comprised of covalently linked free-base porphyrin-zinc porphyrin dyad, H2 P-ZnP axially coordinated to electron acceptor fullerene, has been successfully demonstrated. The dyad was connected through the β-pyrrole positions of the porphyrin macrocycle instead of the traditionally used meso-positions for better electronic communication. Interestingly, the β-pyrrole functionalization modulated the optical properties to such an extent that it was possible to almost exclusively excite the zinc porphyrin entity in the supramolecular triad. The measured binding constant for the complex with 1:1 molecular stoichiometry was in the order of 104  m-1 revealing moderately stable complex formation. An energy level diagram constructed using optical, electrochemical and computational results suggested that both the anticipated energy and electron events are thermodynamically feasible in the triad. Consequently, it was possible to demonstrate occurrence of excited state energy transfer to the covalently linked H2 P, and electron transfer to the coordinated ImC60 from studies involving steady-state and time-resolved emission, and femto- and nanosecond transient absorption studies. The estimated energy transfer was around 67 % in the dyad with a rate constant of 1.1×109  s-1 . In the supramolecular triad, the charge separated state was rather long-lived although it was difficult to arrive the exact lifetime of charge separated state from nanosecond transient spectral studies due to overlap of strong triplet excited signals of porphyrin in the monitoring wavelength window. Nevertheless, simultaneous occurrence of energy and electron transfer in the appropriately positioned energy and electron acceptor entities in a supramolecular triad was possible to demonstrate in the present study, a step forward to unraveling the complex

  7. Rearrangements in ground and excited states

    CERN Document Server

    de Mayo, Paul

    1980-01-01

    Rearrangements in Ground and Excited States, Volume 2 covers essays on the theoretical approach of rearrangements; the rearrangements involving boron; and the molecular rearrangements of organosilicon compounds. The book also includes essays on the polytopal rearrangement at phosphorus; the rearrangement in coordination complexes; and the reversible thermal intramolecular rearrangements of metal carbonyls. Chemists and people involved in the study of rearrangements will find the book invaluable.

  8. Thermally excited multiplet states in macerals separated from bituminous coal

    Science.gov (United States)

    Wieckowski; Pilawa; Swiatkowska; Wojtowicz; Slowik; Lewandowski

    2000-07-01

    Electron paramagnetic resonance searches of thermally excited multiplet states in macerals, exinite, vitrinite, and inertinite of Polish medium-rank coal (85.6 wt% C), were performed. Numerical analysis of lineshape indicates a multicomponent structure of the EPR spectra of macerals heated at 300 degrees and 650 degrees C. EPR spectra of exinite and vitrinite are a superposition of broad Gauss, broad Lorentz (Lorentz 1), and narrow Lorentz (Lorentz 3) lines. Two narrow Lorentz (Lorentz 2 and Lorentz 3) lines were observed in the resonance absorption curves of inertinite. The influence of the measuring temperature (100-300 K) on the EPR lines of the macerals was also studied. The experimentally obtained temperature dependence of the EPR line intensities were fitted by the theoretical functions characteristic for paramagnetic centers with ground doublet state (S = 12) and paramagnetic centers with thermally excited triplet (S = 1) and quadruplet (S = 32) states. Thermally excited multiplet states were found in exinite and vitrinite. Both paramagnetic centers with doublet ground state (S = 12) and paramagnetic centers with thermally excited states, probably quadruplet states (S = 32), exist in the group of paramagnetic centers of exinite and vitrinite with the broad Lorentz 1 lines. Intensities (I) of the broad Gauss and the narrow Lorentz 3 lines of exinite and vitrinite changes with temperature according to the Curie law (I = C/T). The existence of thermally excited multiplet states was not stated for inertinite. The two groups of paramagnetic centers of inertinite with Lorentz 2 and Lorentz 3 lines obey the Curie law. Copyright 2000 Academic Press.

  9. Spectroscopic and quantum mechanical approach of solvatochromic immobilization: modulation of electronic structure and excited-state properties of 1,8-naphthalimide derivative.

    Science.gov (United States)

    Mati, Soumya Sundar; Chall, Sayantani; Rakshit, Soumyadipta; Bhattacharya, Subhash Chandra

    2015-03-01

    Photophysical and spectroscopic properties of a fluorescent analogue, 2-(5-selenocyanato-pentyl)-6-chlorobenzo- [de]isoquinoline-1,3-dione (NP) in different solvents has been described in this paper using steady-state, time resolved spectroscopy and density functional theory (DFT) calculation. Stoke's shifted emission band in different solvents clearly demonstrate the highly polar character of the excited state, which is also supported by the enhancement of dipole moment of the molecule upon photoexcitation. Spectroscopic studies and multiple linear regression analysis method reveal that the solvatochromic behavior of the probe depends not only on the polarity of the medium but also on the hydrogen bonding interaction with the solvents. When the solvent effect was taken into account, the computed results show encouraging agreement with known experimental data. This article reveals the excellent correlation between the predicted and experimental spectral data of 1,8-naphthalimide derivative, providing a useful tool in the design of new fluorogenic probes having potential therapeutic activity.

  10. Computer simulation of electronic excitation in atomic collision cascades

    Energy Technology Data Exchange (ETDEWEB)

    Duvenbeck, A.

    2007-04-05

    The impact of an keV atomic particle onto a solid surface initiates a complex sequence of collisions among target atoms in a near-surface region. The temporal and spatial evolution of this atomic collision cascade leads to the emission of particles from the surface - a process usually called sputtering. In modern surface analysis the so called SIMS technology uses the flux of sputtered particles as a source of information on the microscopical stoichiometric structure in the proximity of the bombarded surface spots. By laterally varying the bombarding spot on the surface, the entire target can be scanned and chemically analyzed. However, the particle detection, which bases upon deflection in electric fields, is limited to those species that leave the surface in an ionized state. Due to the fact that the ionized fraction of the total flux of sputtered atoms often only amounts to a few percent or even less, the detection is often hampered by rather low signals. Moreover, it is well known, that the ionization probability of emitted particles does not only depend on the elementary species, but also on the local environment from which a particle leaves the surface. Therefore, the measured signals for different sputtered species do not necessarily represent the stoichiometric composition of the sample. In the literature, this phenomenon is known as the Matrix Effect in SIMS. In order to circumvent this principal shortcoming of SIMS, the present thesis develops an alternative computer simulation concept, which treats the electronic energy losses of all moving atoms as excitation sources feeding energy into the electronic sub-system of the solid. The particle kinetics determining the excitation sources are delivered by classical molecular dynamics. The excitation energy calculations are combined with a diffusive transport model to describe the spread of excitation energy from the initial point of generation. Calculation results yield a space- and time-resolved excitation

  11. Sunlight-Initiated Photochemistry: Excited Vibrational States of Atmospheric Chromophores

    OpenAIRE

    Veronica Vaida; Karl J. Feierabend; Nabilah Rontu; Kaito Takahashi

    2008-01-01

    Atmospheric chemical reactions are often initiated by ultraviolet (UV) solar radiation since absorption in that wavelength range coincides to typical chemical bond energies. In this review, we present an alternative process by which chemical reactions occur with the excitation of vibrational levels in the ground electronic state by red solar photons. We focus on the O–H vibrational manifold which can be an atmospheric chromophore for driving vibrationally mediated overtone-induced chemical re...

  12. Manipulating charge transfer excited state relaxation and spin crossover in iron coordination complexes with ligand substitution

    DEFF Research Database (Denmark)

    Zhang, Wenkai; Kjær, Kasper Skov; Alonso-Mori, Roberto

    2017-01-01

    state lifetime of iron based complexes due to spin crossover-the extremely fast intersystem crossing and internal conversion to high spin metal-centered excited states. We revitalize a 30 year old synthetic strategy for extending the MLCT excited state lifetimes of iron complexes by making mixed ligand...... iron complexes with four cyanide (CN-;) ligands and one 2,2′-bipyridine (bpy) ligand. This enables MLCT excited state and metal-centered excited state energies to be manipulated with partial independence and provides a path to suppressing spin crossover. We have combined X-ray Free-Electron Laser (XFEL......) Kβ hard X-ray fluorescence spectroscopy with femtosecond time-resolved UV-visible absorption spectroscopy to characterize the electronic excited state dynamics initiated by MLCT excitation of [Fe(CN)4(bpy)]2-. The two experimental techniques are highly complementary; the time-resolved UV...

  13. Search for excited electrons in ep collisions at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D. [National Inst. for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania)]|[Bucharest Univ. (Romania). Faculty of Physics; Alexa, C. [National Inst. for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Andreev, V. [Lebedev Physical Inst., Moscow (RU)] (and others)

    2008-05-15

    A search for excited electrons is performed using the full e{sup {+-}}p data sample collected by the H1 experiment at HERA, corresponding to a total luminosity of 475 pb{sup -1}. The electroweak decays of excited electrons e{sup *} {yields}e{gamma}, e{sup *} {yields}eZ and e{sup *} {yields}{nu}W with subsequent hadronic or leptonic decays of the W and Z bosons are considered. No evidence for excited electron production is found. Mass dependent exclusion limits on e{sup *} production cross sections and on the ratio f/{lambda} of the coupling to the compositeness scale are derived within gauge mediated models. These limits extend the excluded region compared to previous excited electron searches. The e{sup *} production via contact interactions is also addressed for the first time in ep collisions. (orig.)

  14. R-matrix study of electron impact excitation and dissociation of CH+ ions

    Science.gov (United States)

    Chakrabarti, K.; Dora, A.; Ghosh, R.; Choudhury, B. S.; Tennyson, Jonathan

    2017-09-01

    Electron impact excitation and electron impact dissociation of CH+ ions are studied in the framework of the R-matrix method using the diatomic version of the UK molecular R-matrix codes. A configuration interaction calculation is first performed to yield the potential energy curves of the lowest eight singlet and triplet states of CH+. Scattering calculations are then performed to yield vibrationally-resolved electronic excitations to the lowest three bound states, namely the a {}3{{\\Pi }}, A {}1{{\\Pi }} and the b {}3{{{Σ }}}-. Electron impact dissociation cross sections are obtained from the assumption that all electronic excitations above the dissociation threshold result in dissociation. Bound states of CH and resonance positions and widths of Feshbach resonances in the e-CH+ system are also calculated at the CH+ equilibrium bond length 2.137 a0.

  15. Holographic construction of excited CFT states

    Energy Technology Data Exchange (ETDEWEB)

    Christodoulou, Ariana; Skenderis, Kostas [STAG Research Centre and Mathematical Sciences, University of Southampton,High-field, Southampton SO17 1BJ (United Kingdom)

    2016-04-15

    We present a systematic construction of bulk solutions that are dual to CFT excited states. The bulk solution is constructed perturbatively in bulk fields. The linearised solution is universal and depends only on the conformal dimension of the primary operator that is associated with the state via the operator-state correspondence, while higher order terms depend on detailed properties of the operator, such as its OPE with itself and generally involve many bulk fields. We illustrate the discussion with the holographic construction of the universal part of the solution for states of two dimensional CFTs, either on R×S{sup 1} or on R{sup 1,1}. We compute the 1-point function both in the CFT and in the bulk, finding exact agreement. We comment on the relation with other reconstruction approaches.

  16. Identification of excited states in conjugated polymers

    CERN Document Server

    Hartwell, L J

    2003-01-01

    This thesis reports quasi steady state photoinduced absorption measurements from three conjugated polymers: polypyridine (PPy), polyfluorene (PFO) and the emeraldine base (EB) form of polyaniline. The aim of these experiments was to determine the nature of the photoexcited states existing in these materials in the millisecond time domain, as this has important consequences for the operation of real devices manufactured using these materials. The results from the photoinduced absorption experiments are closely compared with published results from pulse radiolysis experiments. In all cases there is very good correspondence between the two data sets, which has enabled the photoexcited states to be assigned with a high degree of confidence. Quasi steady-state photoinduced absorption involves the measurement of the change in absorption of a material in response to optical excitation with a laser beam. The changes in absorption are small, so a instrument was developed and optimised for each different sample. Lock-i...

  17. First 3- excited state of Fe56

    Science.gov (United States)

    Fotiades, N.; Nelson, R. O.; Devlin, M.

    2010-03-01

    There is no reliable evidence for the existence of the 3.076 MeV (3-) level adopted in the ENSDF evaluation for Fe56 although it has been reported in a few experiments. Previous reports of the observation of this level appear to be based on an incorrect assignment in early (e,e') work. Recent neutron inelastic scattering measurements by Demidov [Phys. At. Nucl. 67, 1884, (2004)] show that the assigned γ-ray decay of this state does not occur at a level consistent with known properties of inelastic scattering. In the present work the Fe56(n,n'γ) reaction was used to populate excited states in Fe56. Neutrons in the energy range from 1 to 250 MeV were provided by the pulsed neutron source of the Los Alamos Neutron Science Center’s WNR facility. Deexciting γ rays were detected with the GEANIE spectrometer, a Compton suppressed array of 26 Ge detectors. The γ-γ data obtained with GEANIE were used to establish coincidence relations between transitions. All previously reported levels up to Ex=3.6 MeV excitation energy were observed except for the 3.076 MeV (3-) level. The 991- and 2229-keV transitions, previously reported to deexcite this level, were not observed in the γ-γ coincidence data obtained in the present experiment. The present work supports the assignment of the 4509.6 keV level as the first 3- excited state in Fe56 by observation of two previously known transitions deexciting this state.

  18. Reaction dynamics of electronically excited alkali atoms with simple molecules

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, P.S.; Mestdagh, J.; Schmidt, H.; Vernon, M.F. Covinsky, M.H.; Balko, B.A.; Lee, Y.T.

    1985-09-01

    The reactions of electronically excited sodium atoms with simple molecules have been studied in crossed molecular beams experiments. Electronically excited Na(3/sup 2/P/sub 3/2/,4/sup 2/D/sub 5/2/, and 5/sup 2/S/sub 1/2) were produced by optical pumping using single frequency dye lasers. The effects of the symmetry, and the orientation and alignment of the excited orbital on the chemical reactivity, and detailed information on the reaction dynamics were derived from measurements of the product angular and velocity distributions.

  19. Reaction dynamics of electronically excited alkali atoms with simpler molecules

    Science.gov (United States)

    Weiss, P. S.; Mestdagh, J. M.; Schmidt, H.; Vernon, M. F.; Covinsky, M. H.; Balko, B. A.; Lee, Y. T.

    1985-05-01

    The reactions of electronically excited sodium atoms with simple molecules have been studied in crossed molecular beams experiments. Electronically excited Na(3(2)P(sub 3/2), 4(2)D(sub 5/2), and 5(2)S(sub 1/2) were produced by optical pumping using single frequency dye lasers. The effects of the symmetry, and the orientation and alignment of the excited orbital on the chemical reactivity, and detailed information on the reaction dynamics were derived from measurements of the product angular and velocity distributions.

  20. Extremely confined gap surface-plasmon modes excited by electrons

    DEFF Research Database (Denmark)

    Raza, Søren; Stenger, Nicolas; Pors, Anders Lambertus

    2014-01-01

    High-spatial and energy resolution electron energy-loss spectroscopy (EELS) can be used for detailed characterization of localized and propagating surface-plasmon excitations in metal nanostructures, giving insight into fundamental physical phenomena and various plasmonic effects. Here, applying...... EELS to ultra-sharp convex grooves in gold, we directly probe extremely confined gap surface-plasmon (GSP) modes excited by swift electrons in nanometre-wide gaps. We reveal the resonance behaviour associated with the excitation of the antisymmetric GSP mode for extremely small gap widths, down to ~5...

  1. High-Resolution Spectroscopy of Jet-Cooled 1,1 '-Diphenylethylene: Electronically Excited and Ionic States of a Prototypical Cross-Conjugated System

    NARCIS (Netherlands)

    Smolarek, S.; Vdovin, A.; Rijs, A.; van Walree, C. A.; Zgierski, M. Z.; Buma, W. J.

    2011-01-01

    The photophysics of a prototypical cross-conjugated pi-system, 1,1'-diphenylethylene, have been studied using high-resolution resonance enhanced multiphoton ionization excitation spectroscopy and zero kinetic energy photoelectron spectroscopy, in combination with advanced ab initio

  2. Calculations for electron-impact excitation and ionization of beryllium

    CERN Document Server

    Zatsarinny, Oleg; Fursa, Dmitry V; Bray, Igor

    2016-01-01

    The B-spline R-matrix and the convergent close-coupling methods are used to study electron collisions with neutral beryllium over an energy range from threshold to 100 eV. Coupling to the target continuum significantly affects the results for transitions from the ground state, but to a lesser extent the strong transitions between excited states. Cross sections are presented for selected transitions between low-lying physical bound states of beryllium, as well as for elastic scattering, momentum transfer, and ionization. The present cross sections for transitions from the ground state from the two methods are in excellent agreement with each other, and also with other available results based on nonperturbative convergent pseudo-state and time-dependent close-coupling models. The elastic cross section at low energies is dominated by a prominent shape resonance. The ionization from the $(2s2p)^3P$ and $(2s2p)^1P$ states strongly depends on the respective term. The current predictions represent an extensive set o...

  3. Semiclassical quantization of highly excited scar states

    Science.gov (United States)

    Vergini, Eduardo G.

    2017-04-01

    The semiclassical quantization of Hamiltonian systems with classically chaotic dynamics is restricted to low excited states, close to the ground state, because the number of required periodic orbits grows exponentially with energy. Nevertheless, here we demonstrate that it is possible to find eigenenergies of highly excited states scarred by a short periodic orbit. Specifically, by using 18146 homoclinic orbits (HO)s of the shortest periodic orbit of the hyperbola billiard, we find eigenenergies of the strongest scars over a range which includes 630 even eigenfunctions. The analysis of data reveals that the used semiclassical formula presents two regimes. First, when all HOs with excursion time smaller than the Heisenberg time t H are included, the error is around 3.3% of the mean level spacing. Second, in the energy region defined by \\tilde{t}/ tH > 0.13 , where \\tilde{t} is the maximum excursion time included in the calculation, the error is around 15% of the mean level spacing.

  4. Excited state dynamics of DNA bases

    Czech Academy of Sciences Publication Activity Database

    Kleinermanns, K.; Nachtigallová, Dana; de Vries, M. S.

    2013-01-01

    Roč. 32, č. 2 (2013), s. 308-342 ISSN 0144-235X R&D Projects: GA ČR GAP208/12/1318 Grant - others:National Science Foundation(US) CHE-0911564; NASA(US) NNX12AG77G; Deutsche Forschungsgemeinschaft(DE) SFB 663; Deutsche Forschungsgemeinschaft(DE) KI 531-29 Institutional support: RVO:61388963 Keywords : DNA bases * nucleobases * excited state * dynamics * computations * gas phase * conical intersections Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.920, year: 2013

  5. Excited-State Conformational/Electronic Responses of Saddle-Shaped N,N'-Disubstituted-Dihydrodibenzo[a,c]phenazines: Wide-Tuning Emission from Red to Deep Blue and White Light Combination.

    Science.gov (United States)

    Zhang, Zhiyun; Wu, Yu-Sin; Tang, Kuo-Chun; Chen, Chi-Lin; Ho, Jr-Wei; Su, Jianhua; Tian, He; Chou, Pi-Tai

    2015-07-08

    A tailored strategy is utilized to modify 5,10-dimethylphenazine (DMP) to donor-acceptor type N,N'-disubstituted-dihydrodibenzo[a,c]phenazines. The representative compounds DMAC (N,N'-dimethyl), DPAC (N,N'-diphenyl), and FlPAC (N-phenyl-N'-fluorenyl) reveal significant nonplanar distortions (i.e., a saddle shape) and remarkably large Stokes-shifted emission independent of the solvent polarity. For DPAC and FlPAC with higher steric hindrance on the N,N'-substituents, normal Stokes-shifted emission also appears, for which the peak wavelength reveals solvent-polarity dependence. These unique photophysical behaviors are rationalized by electronic configuration coupled conformation changes en route to the geometry planarization in the excited state. This proposed mechanism is different from the symmetry rule imposed to explain the anomalously long-wavelength emission for DMP and is firmly supported by polarity-, viscosity-, and temperature-dependent steady-state and nanosecond time-resolved spectroscopy. Together with femtosecond early dynamics and computational simulation of the reaction energy surfaces, the results lead us to establish a sequential, three-step kinetics. Upon electronic excitation of N,N'-disubstituted-dihydrodibenzo[a,c]phenazines, intramolecular charge-transfer takes place, followed by the combination of polarization stabilization and skeletal motion toward the planarization, i.e., elongation of the π-delocalization over the benzo[a,c]phenazines moiety. Along the planarization, DPAC and FlPAC encounter steric hindrance raised by the N,N'-disubstitutes, resulting in a local minimum state, i.e., the intermediate. The combination of initial charge-transfer state, intermediate, and the final planarization state renders the full spectrum of interest and significance in their anomalous photophysics. Depending on rigidity, the N,N'-disubstituted-dihydrodibenzo[a,c]phenazines exhibit multiple emissions, which can be widely tuned from red to deep blue and

  6. Surface electronic excitations and dynamic spectral properties of adsorbates

    Science.gov (United States)

    Gumhalter, B.

    Many-body aspects of screening and relaxation mechanisms encountered in spectroscopic studies of the electronic structure of adsorbates have recently attracted considerable attention from both experimental and theoretical physicists. Interest in these phenomena has also been augmented by the rapid improvement of experimental techniques which have enabled better resolution and analysis of various subtile components of the adsorbate spectra. Many of these spectral features have until recently been ascribed to purely chemical and initial state effects. One of the first major advances of the theoretical development in this field was to seek and attribute the origin of these structures to the many-body properties of adsorption systems and, secondly, to predict how the many-body effects would manifest themselves in surface spectroscopies. We start with a rather detailed description of the formalism of the surface electronic response and discuss the properties of the surface excitation spectrum of idealized and real metals. This formalism is then successively applied to set up a model of screening firstly in the nonbonding levels of mainly physisorbed adsorbates and later in the core and valence levels of chemisorbed species. Various modifications of the model enable a dynamic description of the final state relaxation and shake-up effects typical of spectroscopic measurements. To treat the particularly complicated problem of dynamic relaxation in the adsorbate valence levels a special perturbational approach based on Mayer's cluster expansion is developed in §5. The characteristics, and some limitations of this approach, which may also prove useful in other physical problems, are described in detail and discussed within the context of the interaction of localized adsorbate charge fluctuations with bosonic surface excitations. Experimental support for the presented theoretical framework and its applications has been very important. A qualitative comparison with the

  7. Interference through the resonant Auger process via multiple core-excited states

    Science.gov (United States)

    Chatterjee, Souvik; Nakajima, Takashi

    2017-12-01

    We theoretically investigate the resonant Auger process via multiple core-excited states. The presence of multiple core-excited states sets off interference into the common final continuum, and we show that the degree of interference depends on the various parameters such as the intensity of the employed x-ray pulse and the lifetimes of the core-excited states. For the specific examples we employ the double (1 s-13 p and 1 s-14 p ) core-excited states of Ne atom and numerically solve the time-dependent Schrödinger equation to demonstrate that the energy-resolved electron spectra clearly exhibit the signature of interference.

  8. Ultrafast electron diffraction studies of optically excited thin bismuth films

    Energy Technology Data Exchange (ETDEWEB)

    Rajkovic, Ivan

    2008-10-21

    This thesis contains work on the design and the realization of an experimental setup capable of providing sub-picosecond electron pulses for ultrafast electron diffraction experiments, and performing the study of ultrafast dynamics in bismuth after optical excitation using this setup. (orig.)

  9. Rotational excitation of interstellar molecular ions by electrons

    Energy Technology Data Exchange (ETDEWEB)

    Faure, A [Laboratoire d' Astrophysique, UMR 5571 CNRS, Universite Joseph-Fourier, B.P. 53, 38041 Grenoble cedex 09 (France); Tennyson, J [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Kokoouline, V [Department of Physics, University of Central Florida, Orlando, Florida 32816 (United States); Greene, Chris H, E-mail: afaure@obs.ujf-grenoble.f [Department of Physics and JILA, University of Colorado, Boulder, Colorado 80309-0440 (United States)

    2009-11-15

    Electrons are known to be efficient in rotationally exciting molecular ions in cold ionized media. Rotational effects have also been shown to affect the dissociative recombination (DR) process. Electron collisions are thus expected to play a significant role in the thermalization and dissociation dynamics of molecular ions, both in the laboratory and in space. Using the molecular R-matrix method combined with the Adiabatic-Nuclei-Rotation (ANR) approximation corrected for threshold and closed-channel effects, we have computed new rate coefficients for the rotational excitation of H{sup +}{sub 3} and HCO{sup +} by electrons at temperatures from 10 to 1 000K. At temperatures above rotational thresholds, rotational rates are found to compete or even dominate those of dissociative recombination, suggesting that electron collisions provide a possible source of rotational (de)excitation in DR measurements.

  10. Radiative and Excited State Charmonium Physics

    Energy Technology Data Exchange (ETDEWEB)

    Jozef Dudek

    2007-07-30

    Renewed interest in the spectroscopy of charmonium has arisen from recent unexpected observations at $e^+e^-$ colliders. Here we report on a series of works from the previous two years examining the radiative physics of charmonium states as well as the mass spectrum of states of higher spin and internal excitation. Using new techniques applied to Domain-Wall and Clover quark actions on quenched isotropic and anisotropic lattices, radiative transitions and two-photon decays are considered for the first time. Comparisons are made with experimental results and with model approaches. Forthcoming application to the light-quark sector of relevance to experiments like Jefferson Lab's GlueX is discussed.

  11. An Exciting Aspect of Nanotechnology: Unimolecular Electronics

    Directory of Open Access Journals (Sweden)

    Metzger R. M.

    2013-08-01

    Full Text Available This is a brief update on our experimental work towards better one-molecule-thick monolayer rectifiers of electrical current, and on theoretical progress towards a one-molecule amplifier of electrical current. This program aims to provide electronic devices at the 2 to 3 nm level, as a dramatic advance towards practical integrated circuits of the future.

  12. A treatment of excited states in nucleosynthesis

    Science.gov (United States)

    Gupta, Sanjib Shankar

    2002-10-01

    Many isotopes of importance to nucleosynthesis have metastable states whose decay to the ground state is strongly inhibited by a high angular momentum difference. Traditionally, excited states of a nucleus have been treated by assuming attainment of thermal equilibrium; a Hauser-Feshbach calculation is then performed on the whole nucleus to determine nuclear reaction rates. A description of the nucleus when it is not in equilibrium, and a method for computing reaction rates that does not presume thermalization are presented in this work. In nucleosynthesis calculations, we may characterize the internal electromagnetic transitions of a nucleus as a Markov process. This allows us to decompose the interaction of radiation with nucleons into effective interactions between ensembles. Rather than consider a single isotope, we construct the canonical ensembles which are the true nuclear species of interest. We are then in a position to specify nonequilibrium occupations of the ensembles by discretizing the Nuclear Level Density function. The generality of the stochastic process identified at the outset now permits the description of nucleosynthesis as Markov flows in networks of suitably populated ensembles. This allows us to use as many excited states as we wish in nucleosyn thesis while tracking their nonequilibrium evolution as substochastic processes. A website utilizing these principles is discussed in some detail. It accesses the theoretical NLD database from the Brussels Intitute of Astrophysics to supplement adopted experimental data from the ENSDF database (maintained by Brookhaven National Laboratories). The composite is processed by a CGI (Common Gateway Interface) application to dynamically obtain plots and tables of rates on a specified temperature grid. Beta-decay rates are discussed for an isotope important to nuclear astrophysics ( 180TA) as a test-bed for the techniques implemented.

  13. TARGET EXCITATION IN BARE ION XE/AR COLLISIONS STUDIED BY ELECTRON TARGET ION COINCIDENCES

    NARCIS (Netherlands)

    DENIJS, G; HOEKSTRA, R; MORGENSTERN, R

    We present electron spectra resulting from collisions of bare ions N-15(7+) and C-13(6+) on Ar and the charge state distribution of target ions resulting from C-13(6+)-Xe collisions. From both type of experiments we find evidence that electron capture accompanied by target excitation is an important

  14. High-resolution spectroscopy of jet-cooled 1,1 '-diphenylethylene: electronically excited and ionic states of a prototypical cross-conjugated system

    NARCIS (Netherlands)

    Smolarek, S.; Vdovin, A.; Rijs, A.; van Walree, C.A.; Zgierski, M.Z.; Buma, W.J.

    2011-01-01

    The photophysics of a prototypical cross-conjugated π-system, 1,1′-diphenylethylene, have been studied using high-resolution resonance enhanced multiphoton ionization excitation spectroscopy and zero kinetic energy photoelectron spectroscopy, in combination with advanced ab initio calculations. We

  15. Multipair excitations in the two-dimensional electron gas

    Science.gov (United States)

    Pederiva, F.; Emperador, A.; Lipparini, E.

    2002-10-01

    We present a sum-rule study of spin multipair excitations in the two-dimensional electron gas. The cubic-energy-weighted sum rule m3=∫S(q,ω)ω3dω is microscopically calculated taking into account the effect of dynamical correlations. The comparison among exact sum rules and the ones derived within Landau theory allows us to give a proper estimate of the average spin multipair excitation energy and a rigorous lower bound for the multipair contribution to the static form factor in the low-q limit. The relative importance of spin multipair excitations in two- and three-dimensional electron gases is discussed. Finally, numerical results of the contribution of multipair excitations to the m3 sum rule in the density channel are given.

  16. Excited-state Raman spectroscopy with and without actinic excitation: S{sub 1} Raman spectra of trans-azobenzene

    Energy Technology Data Exchange (ETDEWEB)

    Dobryakov, A. L.; Quick, M.; Ioffe, I. N.; Granovsky, A. A.; Ernsting, N. P.; Kovalenko, S. A. [Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, D-12489 Berlin (Germany)

    2014-05-14

    We show that femtosecond stimulated Raman spectroscopy can record excited-state spectra in the absence of actinic excitation, if the Raman pump is in resonance with an electronic transition. The approach is illustrated by recording S{sub 1} and S{sub 0} spectra of trans-azobenzene in n-hexane. The S{sub 1} spectra were also measured conventionally, upon nπ* (S{sub 0} → S{sub 1}) actinic excitation. The results are discussed and compared to earlier reports.

  17. Signature of nonadiabatic coupling in excited-state vibrational modes.

    Science.gov (United States)

    Soler, Miguel A; Nelson, Tammie; Roitberg, Adrian E; Tretiak, Sergei; Fernandez-Alberti, Sebastian

    2014-11-13

    Using analytical excited-state gradients, vibrational normal modes have been calculated at the minimum of the electronic excited-state potential energy surfaces for a set of extended conjugated molecules with different coupling between them. Molecular model systems composed of units of polyphenylene ethynylene (PPE), polyphenylenevinylene (PPV), and naphthacene/pentacene (NP) have been considered. In all cases except the NP model, the influence of the nonadiabatic coupling on the excited-state equilibrium normal modes is revealed as a unique highest frequency adiabatic vibrational mode that overlaps with the coupling vector. This feature is removed by using a locally diabatic representation in which the effect of NA interaction is removed. Comparison of the original adiabatic modes with a set of vibrational modes computed in the locally diabatic representation demonstrates that the effect of nonadiabaticity is confined to only a few modes. This suggests that the nonadiabatic character of a molecular system may be detected spectroscopically by identifying these unique state-specific high frequency vibrational modes.

  18. Coherence Measurements for Excited to Excited State Transitions in Barium

    Science.gov (United States)

    Trajmar, S.; Kanik, I.; Karaganov, V.; Zetner, P. W.; Csanak, G.

    2000-01-01

    Experimental studies concerning elastic and inelastic electron scattering by coherently ensembles of Ba (...6s6p (sub 1)P(sub 1)) atoms with various degrees of alignment will be described. An in-plane, linearly-polarized laser beam was utilized to prepare these target ensembles and the electron scattering signal as a function of polarization angle was measured for several laser geometries at fixed impact energies and scattering angles. From these measurements, we derived cross sections and electron-impact coherence parameters associated with the electron scattering process which is time reverse of the actual experimentally studied process. This interpretation of the experiment is based on the theory of Macek and Herte. The experimental results were also interpreted in terms of cross sections and collision parameters associated with the actual experimental processes. Results obtained so far will be presented and plans for further studies will be discussed.

  19. Sub-50 fs excited state dynamics of 6-chloroguanine upon deep ultraviolet excitation.

    Science.gov (United States)

    Mondal, Sayan; Puranik, Mrinalini

    2016-05-18

    The photophysical properties of natural nucleobases and their respective nucleotides are ascribed to the sub-picosecond lifetime of their first singlet states in the UV-B region (260-350 nm). Electronic transitions of the ππ* type, which are stronger than those in the UV-B region, lie at the red edge of the UV-C range (100-260 nm) in all isolated nucleobases. The lowest energetic excited states in the UV-B region of nucleobases have been investigated using a plethora of experimental and theoretical methods in gas and solution phases. The sub-picosecond lifetime of these molecules is not a general attribute of all nucleobases but specific to the five primary nucleobases and a few xanthine and methylated derivatives. To determine the overall UV photostability, we aim to understand the effect of more energetic photons lying in the UV-C region on nucleobases. To determine the UV-C initiated photophysics of a nucleobase system, we chose a halogen substituted purine, 6-chloroguanine (6-ClG), that we had investigated previously using resonance Raman spectroscopy. We have performed quantitative measurements of the resonance Raman cross-section across the Bb absorption band (210-230 nm) and constructed the Raman excitation profiles. We modeled the excitation profiles using Lee and Heller's time-dependent theory of resonance Raman intensities to extract the initial excited state dynamics of 6-ClG within 30-50 fs after photoexcitation. We found that imidazole and pyrimidine rings of 6-ClG undergo expansion and contraction, respectively, following photoexcitation to the Bb state. The amount of distortions of the excited state structure from that of the ground state structure is reflected by the total internal reorganization energy that is determined at 112 cm(-1). The contribution of the inertial component of the solvent response towards the total reorganization energy was obtained at 1220 cm(-1). In addition, our simulation also yields an instantaneous response of the first

  20. Search for excited $B_c^{+}$ states

    CERN Document Server

    Aaij, Roel; LHCb Collaboration; Adinolfi, Marco; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Alfonso Albero, Alejandro; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Andreassi, Guido; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Archilli, Flavio; d'Argent, Philippe; Arnau Romeu, Joan; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Atzeni, Michele; Auriemma, Giulio; Baalouch, Marouen; Babuschkin, Igor; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baker, Sophie; Balagura, Vladislav; Baldini, Wander; Baranov, Alexander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Baryshnikov, Fedor; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Beiter, Andrew; Bel, Lennaert; Beliy, Nikita; Bellee, Violaine; Belloli, Nicoletta; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Beranek, Sarah; Berezhnoy, Alexander; Bernet, Roland; Berninghoff, Daniel; Bertholet, Emilie; Bertolin, Alessandro; Betancourt, Christopher; Betti, Federico; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bezshyiko, Iaroslava; Bifani, Simone; Billoir, Pierre; Birnkraut, Alex; Bizzeti, Andrea; Bjørn, Mikkel; Blake, Thomas; Blanc, Frederic; Blusk, Steven; Bocci, Valerio; Boettcher, Thomas; Bondar, Alexander; Bondar, Nikolay; Bordyuzhin, Igor; Borghi, Silvia; Borisyak, Maxim; Borsato, Martino; Bossu, Francesco; Boubdir, Meriem; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Braun, Svende; Brodzicka, Jolanta; Brundu, Davide; Buchanan, Emma; Burr, Christopher; Bursche, Albert; Buytaert, Jan; Byczynski, Wiktor; Cadeddu, Sandro; Cai, Hao; Calabrese, Roberto; Calladine, Ryan; Calvi, Marta; Calvo Gomez, Miriam; Camboni, Alessandro; Campana, Pierluigi; Campora Perez, Daniel Hugo; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carniti, Paolo; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Cattaneo, Marco; Cavallero, Giovanni; Cenci, Riccardo; Chamont, David; Chapman, Matthew George; Charles, Matthew; Charpentier, Philippe; Chatzikonstantinidis, Georgios; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu Faye; Chitic, Stefan-Gabriel; Chobanova, Veronika; Chrzaszcz, Marcin; Chubykin, Alexsei; Ciambrone, Paolo; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collins, Paula; Colombo, Tommaso; Comerma-Montells, Albert; Contu, Andrea; Coombs, George; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Costa Sobral, Cayo Mar; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Currie, Robert; D'Ambrosio, Carmelo; Da Cunha Marinho, Franciole; Da Silva, Cesar Luiz; Dall'Occo, Elena; Dalseno, Jeremy; Davis, Adam; De Aguiar Francisco, Oscar; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Serio, Marilisa; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Del Buono, Luigi; Dembinski, Hans Peter; Demmer, Moritz; Dendek, Adam; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Dey, Biplab; Di Canto, Angelo; Di Nezza, Pasquale; Dijkstra, Hans; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Douglas, Lauren; Dovbnya, Anatoliy; Dreimanis, Karlis; Dufour, Laurent; Dujany, Giulio; Durante, Paolo; Durham, John Matthew; Dutta, Deepanwita; Dzhelyadin, Rustem; Dziewiecki, Michal; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Ebert, Marcus; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Farley, Nathanael; Farry, Stephen; Fazzini, Davide; Federici, Luca; Ferguson, Dianne; Fernandez, Gerard; Fernandez Declara, Placido; Fernandez Prieto, Antonio; Ferrari, Fabio; Ferreira Lopes, Lino; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fini, Rosa Anna; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fleuret, Frederic; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Franco Lima, Vinicius; Frank, Markus; Frei, Christoph; Fu, Jinlin; Funk, Wolfgang; Furfaro, Emiliano; Färber, Christian; Gabriel, Emmy; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; Garcia Martin, Luis Miguel; García Pardiñas, Julián; Garra Tico, Jordi; Garrido, Lluis; Garsed, Philip John; Gascon, David; Gaspar, Clara; Gavardi, Laura; Gazzoni, Giulio; Gerick, David; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianì, Sebastiana; Gibson, Valerie; Girard, Olivier Göran; Giubega, Lavinia-Helena; Gizdov, Konstantin; Gligorov, Vladimir; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gorelov, Igor Vladimirovich; Gotti, Claudio; Govorkova, Ekaterina; Grabowski, Jascha Peter; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Greim, Roman; Griffith, Peter; Grillo, Lucia; Gruber, Lukas; Gruberg Cazon, Barak Raimond; Grünberg, Oliver; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Göbel, Carla; Hadavizadeh, Thomas; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hamilton, Brian; Han, Xiaoxue; Hancock, Thomas Henry; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Hasse, Christoph; Hatch, Mark; He, Jibo; Hecker, Malte; Heinicke, Kevin; Heister, Arno; Hennessy, Karol; Henrard, Pierre; Henry, Louis; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hopchev, Plamen Hristov; Hu, Wenhua; Huang, Wenqian; Huard, Zachary; Hulsbergen, Wouter; Humair, Thibaud; Hushchyn, Mikhail; Hutchcroft, David; Ibis, Philipp; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jalocha, Pawel; Jans, Eddy; Jawahery, Abolhassan; Jiang, Feng; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Karacson, Matthias; Kariuki, James Mwangi; Karodia, Sarah; Kazeev, Nikita; Kecke, Matthieu; Keizer, Floris; Kelsey, Matthew; Kenzie, Matthew; Ketel, Tjeerd; Khairullin, Egor; Khanji, Basem; Khurewathanakul, Chitsanu; Kirn, Thomas; Klaver, Suzanne; Klimaszewski, Konrad; Klimkovich, Tatsiana; Koliiev, Serhii; Kolpin, Michael; Kopecna, Renata; Koppenburg, Patrick; Kosmyntseva, Alena; Kotriakhova, Sofia; Kozeiha, Mohamad; Kravchuk, Leonid; Kreps, Michal; Kress, Felix Johannes; Krokovny, Pavel; Krzemien, Wojciech; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kuonen, Axel Kevin; Kvaratskheliya, Tengiz; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lanfranchi, Gaia; Langenbruch, Christoph; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; Leflat, Alexander; Lefrançois, Jacques; Lefèvre, Regis; Lemaitre, Florian; Lemos Cid, Edgar; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Pei-Rong; Li, Tenglin; Li, Yiming; Li, Zhuoming; Liang, Xixin; Likhomanenko, Tatiana; Lindner, Rolf; Lionetto, Federica; Lisovskyi, Vitalii; Liu, Xuesong; Loh, David; Loi, Angelo; Longstaff, Iain; Lopes, Jose; Lucchesi, Donatella; Lucio Martinez, Miriam; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Lusiani, Alberto; Lyu, Xiao-Rui; Machefert, Frederic; Maciuc, Florin; Macko, Vladimir; Mackowiak, Patrick; Maddrell-Mander, Samuel; Maev, Oleg; Maguire, Kevin; Maisuzenko, Dmitrii; Majewski, Maciej Witold; Malde, Sneha; Malecki, Bartosz; Malinin, Alexander; Maltsev, Timofei; Manca, Giulia; Mancinelli, Giampiero; Marangotto, Daniele; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marinangeli, Matthieu; Marino, Pietro; Marks, Jörg; Martellotti, Giuseppe; Martin, Morgan; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Massafferri, André; Matev, Rosen; Mathad, Abhijit; Mathe, Zoltan; Matteuzzi, Clara; Mauri, Andrea; Maurice, Emilie; Maurin, Brice; Mazurov, Alexander; McCann, Michael; McNab, Andrew; McNulty, Ronan; Mead, James Vincent; Meadows, Brian; Meaux, Cedric; Meier, Frank; Meinert, Nis; Melnychuk, Dmytro; Merk, Marcel; Merli, Andrea; Michielin, Emanuele; Milanes, Diego Alejandro; Millard, Edward James; Minard, Marie-Noelle; Minzoni, Luca; Mitzel, Dominik Stefan; Mogini, Andrea; Molina Rodriguez, Josue; Mombächer, Titus; Monroy, Igancio Alberto; Monteil, Stephane; Morandin, Mauro; Morello, Michael Joseph; Morgunova, Olga; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Mulder, Mick; Müller, Dominik; Müller, Janine; Müller, Katharina; Müller, Vanessa; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nandi, Anita; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Thi Dung; Nguyen-Mau, Chung; Nieswand, Simon; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Nogay, Alla; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Ogilvy, Stephen; Oldeman, Rudolf; Onderwater, Gerco; Ossowska, Anna; Otalora Goicochea, Juan Martin; Owen, Patrick; Oyanguren, Maria Aranzazu; Pais, Preema Rennee; Palano, Antimo; Palutan, Matteo; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Parker, William; Parkes, Christopher; Passaleva, Giovanni; Pastore, Alessandra; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Pereima, Dmitrii; Perret, Pascal; Pescatore, Luca; Petridis, Konstantinos; Petrolini, Alessandro; Petrov, Aleksandr; Petruzzo, Marco; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pietrzyk, Guillaume; Pikies, Malgorzata; Pinci, Davide; Pisani, Flavio; Pistone, Alessandro; Piucci, Alessio; Placinta, Vlad-Mihai; Playfer, Stephen; Plo Casasus, Maximo; Polci, Francesco; Poli Lener, Marco; Poluektov, Anton; Polyakov, Ivan; Polycarpo, Erica; Pomery, Gabriela Johanna; Ponce, Sebastien; Popov, Alexander; Popov, Dmitry; Poslavskii, Stanislav; Potterat, Cédric; Price, Eugenia; Prisciandaro, Jessica; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Pullen, Hannah Louise; Punzi, Giovanni; Qian, Wenbin; Qin, Jia-Jia; Quagliani, Renato; Quintana, Boris; Rachwal, Bartlomiej; Rademacker, Jonas; Rama, Matteo; Ramos Pernas, Miguel; Rangel, Murilo; Raniuk, Iurii; Ratnikov, Fedor; Raven, Gerhard; Ravonel Salzgeber, Melody; Reboud, Meril; Redi, Federico; Reichert, Stefanie; dos Reis, Alberto; Remon Alepuz, Clara; Renaudin, Victor; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Robbe, Patrick; Robert, Arnaud; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Lopez, Jairo Alexis; Rogozhnikov, Alexey; Roiser, Stefan; Rollings, Alexandra Paige; Romanovskiy, Vladimir; Romero Vidal, Antonio; Rotondo, Marcello; Rudolph, Matthew Scott; Ruf, Thomas; Ruiz Valls, Pablo; Ruiz Vidal, Joan; Saborido Silva, Juan Jose; Sadykhov, Elnur; Sagidova, Naylya; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santimaria, Marco; Santovetti, Emanuele; Sarpis, Gediminas; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schael, Stefan; Schellenberg, Margarete; Schiller, Manuel; Schindler, Heinrich; Schmelling, Michael; Schmelzer, Timon; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schreiner, HF; Schubiger, Maxime; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Sepulveda, Eduardo Enrique; Sergi, Antonino; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Siddi, Benedetto Gianluca; Silva Coutinho, Rafael; Silva de Oliveira, Luiz Gustavo; Simi, Gabriele; Simone, Saverio; Sirendi, Marek; Skidmore, Nicola; Skwarnicki, Tomasz; Smith, Iwan Thomas; Smith, Jackson; Smith, Mark; Soares Lavra, Lais; Sokoloff, Michael; Soler, Paul; Souza De Paula, Bruno; Spaan, Bernhard; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Stefko, Pavol; Stefkova, Slavomira; Steinkamp, Olaf; Stemmle, Simon; Stenyakin, Oleg; Stepanova, Margarita; Stevens, Holger; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Stramaglia, Maria Elena; Straticiuc, Mihai; Straumann, Ulrich; Sun, Jiayin; Sun, Liang; Swientek, Krzysztof; Syropoulos, Vasileios; Szumlak, Tomasz; Szymanski, Maciej Pawel; T'Jampens, Stephane; Tayduganov, Andrey; Tekampe, Tobias; Tellarini, Giulia; Teubert, Frederic; Thomas, Eric; van Tilburg, Jeroen; Tilley, Matthew James; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Tourinho Jadallah Aoude, Rafael; Tournefier, Edwige; Traill, Murdo; Tran, Minh Tâm; Tresch, Marco; Trisovic, Ana; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tully, Alison; Tuning, Niels; Ukleja, Artur; Usachov, Andrii; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagner, Alexander; Vagnoni, Vincenzo; Valassi, Andrea; Valat, Sebastien; Valenti, Giovanni; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vecchi, Stefania; van Veghel, Maarten; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Venkateswaran, Aravindhan; Verlage, Tobias Anton; Vernet, Maxime; Vesterinen, Mika; Viana Barbosa, Joao Vitor; Vieira, Daniel; Vieites Diaz, Maria; Viemann, Harald; Vilasis-Cardona, Xavier; Vitti, Marcela; Volkov, Vladimir; Vollhardt, Achim; Voneki, Balazs; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Vázquez Sierra, Carlos; Waldi, Roland; Walsh, John; Wang, Jianchun; Wang, Yilong; Ward, David; Wark, Heather Mckenzie; Watson, Nigel; Websdale, David; Weiden, Andreas; Weisser, Constantin; Whitehead, Mark; Wicht, Jean; Wilkinson, Guy; Wilkinson, Michael; Williams, Mark Richard James; Williams, Mike; Williams, Timothy; Wilson, Fergus; Wimberley, Jack; Winn, Michael Andreas; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wyllie, Kenneth; Xie, Yuehong; Xu, Menglin; Xu, Qingnian; Xu, Zehua; Xu, Zhirui; Yang, Zhenwei; Yang, Zishuo; Yao, Yuezhe; Yin, Hang; Yu, Jiesheng; Yuan, Xuhao; Yushchenko, Oleg; Zarebski, Kristian Alexander; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Yanxi; Zhelezov, Alexey; Zheng, Yangheng; Zhu, Xianglei; Zhukov, Valery; Zonneveld, Jennifer Brigitta; Zucchelli, Stefano

    2017-01-01

    A search is performed in the invariant mass spectrum of the $B_c^{+}\\pi^{+}\\pi^{-}$ system for the excited $B_c^{+}$ states $B_c(2^{1}S_{0})^+$ and $B_c(2^{3}S_{1})^+$ using a data sample of $pp$ collisions collected by the LHCb experiment at the centre-of-mass energy of $\\sqrt{s} = 8 \\,{\\mathrm{TeV}}$, corresponding to an integrated luminosity of $2 \\,{\\mathrm{fb^{-1}}}$. No evidence is seen for either state. Upper limits on the ratios of the production cross-sections of the $B_c(2^{1}S_{0})^+$ and $B_c(2^{3}S_{1})^+$ states times the branching fractions of ${B_c(2^{1}S_{0})^+} \\to {B_c^{+}\\pi^{+}\\pi^{-}}$ and ${B_c(2^{3}S_{1})^+} \\to {B_c^{*+}\\pi^{+}\\pi^{-}}$ over the production cross-section of the $B_c^{+}$ state are given as a function of their masses. They are found to be between 0.02 and 0.14 at $95\\%$ confidence level for $B_c(2^{1}S_{0})^+$ and $B_c(2^{3}S_{1})^+$ in the mass ranges $[6830, 6890] \\,{\\mathrm{MeV}}/c^{2}$ and $[6795,6890] \\,{\\mathrm{MeV}}/c^{2}$, respectively.

  1. Two-photon excited fluorescence from higher electronic states of chlorophylls in photosynthetic antenna complexes a new approach to detect strong excitonic chlorophyll a/b coupling

    CERN Document Server

    Leupold, D; Ehlert, J; Irrgang, K D; Renger, G; Lokstein, H

    2002-01-01

    Stepwise two-photon excitation of chlorophyll a and b in the higher plant main light-harvesting complex (LHC II) and the minor complex CP29 (as well as in organic solution) with 100-fs pulses in the Q/sub y/ region results in a weak blue fluorescence. The dependence of the spectral shape of the blue fluorescence on excitation wavelength offers a new approach to elucidate the long-standing problem of the origin of spectral "chlorophyll forms" in pigment-protein complexes, in particular the characterization of chlorophyll a/b-heterodimers. As a first result we present evidence for the existence of strong chlorophyll a/b-interactions (excitonically coupled transitions at 650 and 680 nm) in LHC II at ambient temperature. In comparison with LHC II, the experiments with CP29 provide further evidence that the lowest energy chlorophyll a transition (at ~680 nm) is not excitonically coupled to chlorophyll b. (22 refs).

  2. Quantum marginals from pure doubly excited states

    Science.gov (United States)

    Maciążek, Tomasz; Tsanov, Valdemar

    2017-11-01

    The possible spectra of one-particle reduced density matrices that are compatible with a pure multipartite quantum system of finite dimension form a convex polytope. We introduce a new construction of inner- and outer-bounding polytopes that constrain the polytope for the entire quantum system. The outer bound is sharp. The inner polytope stems only from doubly excited states. We find all quantum systems, where the bounds coincide giving the entire polytope. We show, that those systems are: (i) any system of two particles (ii) L qubits, (iii) three fermions on N≤slant 7 levels, (iv) any number of bosons on any number of levels and (v) fermionic Fock space on N≤slant 5 levels. The methods we use come from symplectic geometry and representation theory of compact Lie groups. In particular, we study the images of proper momentum maps, where our method describes momentum images for all representations that are spherical.

  3. Excited states in {sup 155}Yb and

    Energy Technology Data Exchange (ETDEWEB)

    Ding, K. Y.; Cizewski, J. A.; Seweryniak, D.; Amro, H.; Carpenter, M. P.; Davids, C. N.; Fotiades, N.; Janssens, R. V. F.; Lauritsen, T.; Lister, C. J. (and others)

    2001-09-01

    The 270-MeV {sup 58}Ni+{sup 102}Pd reaction was used for the first recoil-decay tagging measurement with Gammasphere coupled to the Fragment Mass Analyzer at Argonne National Laboratory. Level structures of {sup 155}Yb, {sup 156}Lu, and {sup 157}Lu, as well as the excited states associated with the 25/2{sup -} isomer in {sup 155}Lu, are identified for the first time. The systematical behavior of the energy levels is compared with that of neighboring isotones and isotopes. The attractive interaction between h{sub 11/2} protons and h{sub 9/2} neutrons plays an important role in the structure of {sup 155}Yb and {sup 155,156}Lu.

  4. Shannon information entropy in position space for doubly excited states of helium with finite confinements

    Science.gov (United States)

    Ou, Jen-Hao; Ho, Yew Kam

    2017-12-01

    Quantifying electron localization in quantum confined systems remains challenging, especially for excited states. A quantum dot (QD) is represented by a helium atom in a finite oscillator potential. The effect of dot width variation on the electron localization in QD is systematically examined via Shannon entropy for low-lying doubly excited states (2s21Se, 2p21Se, 2s3s 1Se) obtained using highly correlated Hylleraas functions. In particular, the most effective dot width where the electron density is the most localized is determined successfully and justified by the electron density plot for all three states.

  5. Ultrafast Excited State Relaxation of a Metalloporphyrin Revealed by Femtosecond X-ray Absorption Spectroscopy

    DEFF Research Database (Denmark)

    Shelby, Megan L.; Lestrange, Patrick J.; Jackson, Nicholas E.

    2016-01-01

    and nuclear structure for critical excited electronic states in the relaxation pathway characterize the dependence of the complex's geometry on the electron occupation of the 3d orbitals. Calculated XANES transitions for these excited states assign a short-lived transient signal to the spectroscopic signature...... of the Ni(I) species, resulting from intramolecular charge transfer on a time scale that has eluded previous synchrotron studies. These combined results enable us to examine the excited state structural dynamics of NiTMP prior to thermal relaxation and to capture intermediates of potential photocatalytic...

  6. Exploring the vibrational fingerprint of the electronic excitation energy via molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Deyne, Andy Van Yperen-De; Pauwels, Ewald; Ghysels, An; Waroquier, Michel; Van Speybroeck, Veronique; Hemelsoet, Karen, E-mail: karen.hemelsoet@ugent.be [Center for Molecular Modeling (CMM), Ghent University, Technologiepark 903, 9052 Zwijnaarde (Belgium); De Meyer, Thierry [Center for Molecular Modeling (CMM), Ghent University, Technologiepark 903, 9052 Zwijnaarde (Belgium); Department of Textiles, Ghent University, Technologiepark 907, 9052 Zwijnaarde (Belgium); De Clerck, Karen [Department of Textiles, Ghent University, Technologiepark 907, 9052 Zwijnaarde (Belgium)

    2014-04-07

    A Fourier-based method is presented to relate changes of the molecular structure during a molecular dynamics simulation with fluctuations in the electronic excitation energy. The method implies sampling of the ground state potential energy surface. Subsequently, the power spectrum of the velocities is compared with the power spectrum of the excitation energy computed using time-dependent density functional theory. Peaks in both spectra are compared, and motions exhibiting a linear or quadratic behavior can be distinguished. The quadratically active motions are mainly responsible for the changes in the excitation energy and hence cause shifts between the dynamic and static values of the spectral property. Moreover, information about the potential energy surface of various excited states can be obtained. The procedure is illustrated with three case studies. The first electronic excitation is explored in detail and dominant vibrational motions responsible for changes in the excitation energy are identified for ethylene, biphenyl, and hexamethylbenzene. The proposed method is also extended to other low-energy excitations. Finally, the vibrational fingerprint of the excitation energy of a more complex molecule, in particular the azo dye ethyl orange in a water environment, is analyzed.

  7. Probing the Locality of Excited States with Linear Algebra.

    Science.gov (United States)

    Etienne, Thibaud

    2015-04-14

    This article reports a novel theoretical approach related to the analysis of molecular excited states. The strategy introduced here involves gathering two pieces of physical information, coming from Hilbert and direct space operations, into a general, unique quantum mechanical descriptor of electronic transitions' locality. Moreover, the projection of Hilbert and direct space-derived indices in an Argand plane delivers a straightforward way to visually probe the ability of a dye to undergo a long- or short-range charge-transfer. This information can be applied, for instance, to the analysis of the electronic response of families of dyes to light absorption by unveiling the trend of a given push-pull chromophore to increase the electronic cloud polarization magnitude of its main transition with respect to the size extension of its conjugated spacer. We finally demonstrate that all the quantities reported in this article can be reliably approximated by a linear algebraic derivation, based on the contraction of detachment/attachment density matrices from canonical to atomic space. This alternative derivation has the remarkable advantage of a very low computational cost with respect to the previously used numerical integrations, making fast and accurate characterization of large molecular systems' excited states easily affordable.

  8. Interplay between singlet and triplet excited states in a conformationally locked donor–acceptor dyad

    KAUST Repository

    Filatov, Mikhail A.

    2015-10-13

    The synthesis and photophysical characterization of a palladium(II) porphyrin – anthracene dyad bridged via short and conformationally rigid bicyclo[2.2.2]octadiene spacer were achieved. A spectroscopic investigation of the prepared molecule in solution has been undertaken to study electronic energy transfer in excited singlet and triplet states between the anthracene and porphyrin units. By using steady-state and time-resolved photoluminescence spectroscopy it was shown that excitation of the singlet excited state of the anthracene leads to energy transfer to the lower-lying singlet state of porphyrin. Alternatively, excitation of the porphyrin followed by intersystem crossing to the triplet state leads to very fast energy transfer to the triplet state of anthracene. The rate of this energy transfer has been determined by transient absorption spectroscopy. Comparative studies of the dynamics of triplet excited states of the dyad and reference palladium octaethylporphyrin (PdOEP) have been performed.

  9. Electron--impact resonant vibration excitation cross sections and rate coefficients for carbon monoxide

    CERN Document Server

    Laporta, V; Tennyson, J; Celiberto, R; 10.1088/0963-0252/21/4/045005

    2012-01-01

    Resonant vibrational and rotation-vibration excitation cross sections for electron-CO scattering are calculated in the 0-10 eV energy range for all 81 vibrational states of CO, assuming that the excitation occur via the 2{\\Pi} shape resonance. Static exchange plus polarization calculations performed using the R-matrix method are used to estimate resonance positions and widths as functions of internuclear separation. The effects of nuclear motion are considered using a local complex potential model. Good agreement is obtained with available experimental data on excitation from the vibrational ground state. Excitation rates and cross sections are provided as a functions of the initial CO vibrational state for all ground state vibrational levels.

  10. Calculated low-energy electron-impact vibrational excitation cross sections for CO2 molecule

    CERN Document Server

    Laporta, V; Celiberto, R

    2016-01-01

    Vibrational-excitation cross sections of ground electronic state of carbon dioxide molecule by electron-impact through the CO2-(2\\Pi) shape resonance is considered in the separation of the normal modes approximation. Resonance curves and widths are computed for each vibrational mode. The calculations assume decoupling between normal modes and employ the local complex potential model for the treatment of the nuclear dynamics, usually adopted for the electron-scattering involving diatomic molecules. Results are presented for excitation up to 10 vibrational levels in each mode and comparison with data present in the literature is discussed.

  11. R-matrix calculations of electron impact electronic excitation of BeH

    Science.gov (United States)

    Darby-Lewis, Daniel; Mašín, Zdeněk; Tennyson, Jonathan

    2017-09-01

    The R-matrix method is used to perform high-level calculations of electron collisions with beryllium mono-hydride at its equilibrium geometry with a particular emphasis on electron impact electronic excitation. Several target and scattering models are considered. The calculations were performed using (1) the UKRMol suite which relies on the use of Gaussian type orbitals (GTOs) to represent the continuum and (2) using the new UKRMol+ suite which allows the inclusion of B-spline type orbitals in the basis for the continuum. The final close-coupling scattering models used the UKRMol+ code and a frozen core, valence full configuration interaction, method based on a diffuse GTO atomic basis set. The calculated electronic properties of the molecule are in very good agreement with state-of-the-art electronic structure calculations. The use of the UKRMol+ suite proved critical since it allowed the use of a large R-matrix sphere (35 Bohr), necessary to contain the diffuse electronic states of the molecule. The corresponding calculations using UKRMol are not possible due to numerical problems associated with the combination of GTO-only continuum and a large R-matrix sphere. This work provides the first demonstration of the utility and numerical stability of the new UKRMol+ code. The inelastic cross sections obtained here present a significant improvement over the results of earlier studies on BeH.

  12. Ultrafast Excited State Relaxation of a Metalloporphyrin Revealed by Femtosecond X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Shelby, Megan L. [Chemical; Department; Lestrange, Patrick J. [Department; Jackson, Nicholas E. [Department; Haldrup, Kristoffer [Physics; Mara, Michael W. [Chemical; Department; Stickrath, Andrew B. [Chemical; Zhu, Diling [LCLS, SLAC National Laboratory, Menlo Park, California 94025, United States; Lemke, Henrik T. [LCLS, SLAC National Laboratory, Menlo Park, California 94025, United States; Chollet, Matthieu [LCLS, SLAC National Laboratory, Menlo Park, California 94025, United States; Hoffman, Brian M. [Department; Li, Xiaosong [Department; Chen, Lin X. [Chemical; Department

    2016-07-06

    Photoexcited Nickel(II) tetramesitylporphyrin (NiTMP), like many open-shell metalloporphyrins, relaxes rapidly through multiple electronic states following an initial porphyrin-based excitation, some involving metal centered electronic configuration changes that could be harnessed catalytically before excited state relaxation. While a NiTMP excited state present at 100 ps was previously identified by X-ray transient absorption (XTA) spectroscopy at a synchrotron source as a relaxed (d,d) state, the lowest energy excited state (J. Am. Chem. Soc., 2007, 129, 9616 and Chem. Sci., 2010, 1, 642), structural dynamics before thermalization were not resolved due to the similar to 100 ps duration of the available X-ray probe pulse. Using the femtosecond (fs) X-ray pulses of the Linac Coherent Light Source (LCLS), the Ni center electronic configuration from the initial excited state to the relaxed (d,d) state has been obtained via ultrafast Ni K-edge XANES (X-ray absorption near edge structure) on a time scale from hundreds of femtoseconds to 100 ps. This enabled the identification of a short-lived Ni(I) species aided by time-dependent density functional theory (TDDFT) methods. Computed electronic and nuclear structure for critical excited electronic states in the relaxation pathway characterize the dependence of the complex's geometry on the electron occupation of the 3d orbitals. Calculated XANES transitions for these excited states assign a short-lived transient signal to the spectroscopic signature of the Ni(I) species, resulting from intramolecular charge transfer on a time scale that has eluded previous synchrotron studies. These combined results enable us to examine the excited state structural dynamics of NiTMP prior to thermal relaxation and to capture intermediates of potential photocatalytic significance.

  13. Computer simulation of cluster impact induced electronic excitation of solids

    Energy Technology Data Exchange (ETDEWEB)

    Weidtmann, B.; Hanke, S.; Duvenbeck, A. [Fakultät für Physik, Universität Duisburg-Essen, 47048 Duisburg (Germany); Wucher, A., E-mail: andreas.wucher@uni-deu.de [Fakultät für Physik, Universität Duisburg-Essen, 47048 Duisburg (Germany)

    2013-05-15

    We present a computational study of electronic excitation upon bombardment of a metal surface with cluster projectiles. Our model employs a molecular dynamics (MD) simulation to calculate the particle dynamics following the projectile impact. Kinetic excitation is implemented via two mechanisms describing the electronic energy loss of moving particles: autoionization in close binary collisions and a velocity proportional friction force resulting from direct atom–electron collisions. Two different friction models are compared with respect to the predicted sputter yields after single atom and cluster bombardment. We find that a density dependent friction coefficient leads to a significant reduction of the total energy transferred to the electronic sub-system as compared to the Lindhard friction model, thereby strongly enhancing the predicted sputter yield under cluster bombardment conditions. In contrast, the yield predicted for monoatomic projectile bombardment remains practically unchanged.

  14. A search for excited electrons with the Compact Muon Solenoid detector

    CERN Document Server

    Dusinberre Sudano, Elizabeth Jane

    2012-01-01

    A search for excited electrons using the CMS detector at the LHC with 36 pb$^{-1}$ of proton-proton collision data recorded at $\\sqrt{s}$ = 7 TeV is presented. The search is performed for associated production of an electron and an excited electron followed by the decay of the excited electron to an electron and a photon for a final state of $ e e \\gamma$. No excess of events above the standard model expectation is observed. Interpreting the results in the context of production via novel four-fermion contact interactions and the subsequent decay via electroweak processes, upper limits on the production cross section are set. The exclusion region in the compositeness scale, $\\Lambda$, and excited electron mass, $M_{e^*}$ , parameter space is extended beyond previously established limits. For $\\Lambda$ = 2 TeV, excited electron masses below 760 GeV/c$^2$ are excluded at the 95% confidence level. The cross sections for masses between 200 and 1500 GeV/c$^2$ are limited to be less than 0.21 - 0.16 pb.

  15. Excited State Atom-Ion Charge-Exchange

    Science.gov (United States)

    Li, Ming; Makrides, Constantinos; Petrov, Alexander; Kotochigova, Svetlana

    2017-04-01

    We theoretically investigate the exothermic charge-exchange reaction between an excited atom and a ground-state positive ion. In particular, we focus on MOT-excited Ca*(4s4p 1P) atoms colliding with ground-state Yb+ ions, which are under active study by the experimental group of E. Hudson at UCLA. Collisions between an excited atom and an ion are guided by two major contributions to the long-range interaction potentials, the induction C4 /R4 and charge-quadrupole C3 /R3 potentials, and their coupling by the electron-exchange interaction. Our model of these forces leads to close-coupling equations for multiple reaction channels. We find several avoided crossings between the potentials that couple to the nearby asymptotic limits of Yb*+Ca+, some of which can possibly provide large charge exchange rate coefficients above 10-10 cm3 / s. We acknowledge support from the US Army Research Office, MURI Grants W911NF-14-1-0378 and the US National Science Foundation, Grant PHY-1619788.

  16. Low energy electron impact vibrational excitation of acetylene

    Science.gov (United States)

    Patra, Sigma; Hargreaves, Leigh; Khakoo, Murtadha

    2016-05-01

    Experimental differential cross sections for the vibration excitation of the four fundamental modes of acetylene at low incident electron energies from 1 eV to 20 eV and scattering angles of 10o to 130o will be presented. The results will be compared to results available in the literature. Funded by NSF-AMOP-RUI Grant.

  17. Excited-state kinetics of the carotenoid S//1 state in LHC II and two-photon excitation spectra of lutein and beta-carotene in solution Efficient Car S//1 yields Chl electronic energy transfer via hot S//1 states?

    CERN Document Server

    Walla, P J; Linden, Patricia A; Ohta, Kaoru

    2002-01-01

    The excited-state dynamics of the carotenoids (Car) in light- harvesting complex II (LHC II) of Chlamydomonas reinhardtii were studied by transient absorption measurements. The decay of the Car S //1 population ranges from similar to 200 fs to over 7 ps, depending on the excitation and detection wavelengths. In contrast, a 200 fs Car S//1 yields Chlorophyll (Chl) energy transfer component was the dominant time constant for our earlier two-photon fluorescence up- conversion measurements (Walla, P.J. ; et al. J. Phys. Chem. B 2000, 104, 4799-4806). We also present the two-photon excitation (TPE) spectra of lutein and beta-carotene in solution and compare them with the TPE spectrum of LHC II. The TPE-spectrum of LHC II has an onset much further to the blue and a width that is narrower than expected from comparison to the S//1 fluorescence of lutein and beta-carotene in solution. Different environments may affect the shape of the S//1 spectrum significantly. To explain the blue shift of the TPE spectrum and the d...

  18. Imaging ultrafast excited state pathways in transition metal complexes by X-ray transient absorption and scattering using X-ray free electron laser source

    DEFF Research Database (Denmark)

    Chen, Lin X; Shelby, Megan L; Lestrange, Patrick J

    2016-01-01

    orbital energies. A strong influence of the valence orbital occupation on the inner shell orbital energies indicates that one should not use the transition energy from 1s to other orbitals to draw conclusions about the d-orbital energies. For photocatalysis, a transient electronic configuration could...

  19. Excited-State Effective Masses in Lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    George Fleming, Saul Cohen, Huey-Wen Lin

    2009-10-01

    We apply black-box methods, i.e. where the performance of the method does not depend upon initial guesses, to extract excited-state energies from Euclidean-time hadron correlation functions. In particular, we extend the widely used effective-mass method to incorporate multiple correlation functions and produce effective mass estimates for multiple excited states. In general, these excited-state effective masses will be determined by finding the roots of some polynomial. We demonstrate the method using sample lattice data to determine excited-state energies of the nucleon and compare the results to other energy-level finding techniques.

  20. Electronic and photophysical properties of 2-(2′-hydroxyphenyl)benzoxazole and its derivatives enhancing in the excited-state intramolecular proton transfer processes: A TD-DFT study on substitution effect

    Energy Technology Data Exchange (ETDEWEB)

    Daengngern, Rathawat; Kungwan, Nawee, E-mail: naweekung@gmail.com

    2015-11-15

    The effect of electron donating and withdrawing substituents on the enol absorption and keto emission spectra of 2-(2′-hydroxyphenyl)benzoxazole (HBO) and its derivatives has been systematically investigated by means of density functional theory (DFT) and time-dependent DFT (TD-DFT) methods. The enol absorption spectra of HBO were simulated by using five different DFTs with various exchange-correlation functions to validate a suitable functional prior to being further used as a method of choice to study the effect of substituents on the spectral characteristics of HBO derivatives. The popular B3LYP (Becke, three-parameter, Lee–Yang–Parr) exchange-correlation functional is found to provide the best desirable result in predicting the absorption spectrum close to experimental data. In the ground state, enol forms of HBO and its derivatives are more stable than those of keto forms, while in the first lowest excited state, keto forms are found to be more stable than their enol forms. Overall, simulated absorption and emission spectra of HBO and its derivatives from TD-B3LYP calculations are in good agreement with the experimental data. For enol, absorption maxima of HBO derivatives having electron-withdrawing groups are red-shift corresponding to their lower HOMO–LUMO energy gaps compared to that of HBO. For keto emission, HBO having electron donating groups (m-MeHBO and MHBO) and withdrawing group (CNHBO) at 4′-position on the phenol fragment as well as electron donating groups (HBOMe and HBOM) at 6-position on the benzoxazole fragment make the position of keto emission peak shift to shorter wavelength (blue-shift). However, HBO derivatives with electron withdrawing groups (HBOF, HBOCl, HBOA and HBOE) at 6-position give redshifted emission compared to the parent compound (HBO). The type of substituent on both 4′- and 6-positions certainly has a pronounced effect on the absorption and emission spectra of HBO derivatives. - Highlights: • Simulated spectra

  1. Application of spectroscopy and super-resolution microscopy: Excited state

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Ujjal [Iowa State Univ., Ames, IA (United States)

    2016-02-19

    Photophysics of inorganic materials and organic molecules in complex systems have been extensively studied with absorption and emission spectroscopy.1-4 Steady-state and time-resolved fluorescence studies are commonly carried out to characterize excited-state properties of fluorophores. Although steady-state fluorescence measurements are widely used for analytical applications, time-resolved fluorescence measurements provide more detailed information about excited-state properties and the environment in the vicinity of the fluorophore. Many photophysical processes, such as photoinduced electron transfer (PET), rotational reorientation, solvent relaxation, and energy transfer, occur on a nanosecond (10-9 s) timescale, thus affecting the lifetime of the fluorophores. Moreover, time-resolved microscopy methods, such as lifetimeimaging, combine the benefits of the microscopic measurement and information-rich, timeresolved data. Thus, time-resolved fluorescence spectroscopy combined with microscopy can be used to quantify these processes and to obtain a deeper understanding of the chemical surroundings of the fluorophore in a small area under investigation. This thesis discusses various photophysical and super-resolution microscopic studies of organic and inorganic materials, which have been outlined below.

  2. Polarized Fluorescence from Nitrogen Molecules Excited by Polarized Electron Impact

    Science.gov (United States)

    Maseberg, J. W.; Furst, J. E.; Gay, T. J.

    2005-05-01

    We have measured the optical excitation function and relative Stokes parameters for 388±5 nm fluorescence from spin-polarized electron impact excitation of molecular N2. Specifically, the circular polarization fraction normalized to the incident electron spin, P3/Pe, was found to be +1(5)% at an electron energy of 30eV. This result, even though it contains contributions from 6 different triplet spectral lines, is consistent with the data of the Münster group [1] who measured the N2 337 nm C3πu - B3πg (ν'=0, ν=0) transition and found P3 Mette et al., Verhandl. DPG (VI) 29, 462 (1994). [2] A.S. Green et al., Phys. Rev. Lett. 92, 093201 (2004).

  3. Cherenkov wakefield excitation by relativistic electron beams in plasma channels

    Science.gov (United States)

    Wang, Tianhong; Khudik, Vladimir; Shvets, Gennday

    2017-10-01

    We report on our theoretical investigations of Cherenkov radiation excited by relativistic electron bunches propagating in plasma channels and in polaritonic channels. Two surface plasmons (SPs) modes of the radiation are analyzed: the longitudinal (accelerating) and the transverse (deflecting) ones. Both form Cherenkov cones that are different in the magnitude of the cone angle and the central frequency. We show that the Cherenkov field profile change dramatically depending on the driver velocity and the channel size, and the longitudinal mode forms a reversed Cherenkov radiation cone due to the negative group velocity for sufficiently small air gaps. In addition, we find that when the channel surface is corrugated, a strong deflecting wake is excited by a relativistic electron bunch. A trailing electron bunch experiencing this wake is forced to undergo betatron oscillations and thus to emit radiation. Numerical simulation showed that intense x-ray radiation can be generated.

  4. Spodumene and garnet luminescence excited by subnanosecond electron beams

    Science.gov (United States)

    Baksht, E. Kh.; Burachenko, A. G.; Solomonov, V. I.; Tarasenko, V. F.

    2011-11-01

    Pulsed cathodoluminescence of spodumene and yttrium-aluminum garnet crystals activated by Mn2+ and Nd3+ ions, respectively, is investigated. The luminescence was excited upon crystal irradiation by electron beams with current densities of 35 and 100 A/cm2 and average electron energy of ˜ 50 keV for 0.1, 0.25, and 0.65 ns. It is demonstrated that the electron beam duration decreased to several tenth of a nanosecond does not lead to essential changes of the mechanisms of pulsed cathodoluminescence excitation and character of its spectrum, but in this case, the intensity of luminescence of the hole centers increases compared with the intracenter luminescence.

  5. Fragment transition density method to calculate electronic coupling for excitation energy transfer

    Energy Technology Data Exchange (ETDEWEB)

    Voityuk, Alexander A., E-mail: alexander.voityuk@icrea.cat [Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain and Institut de Química Computacional i Catàlisi (IQCC), Universitat de Girona 17071 Girona (Spain)

    2014-06-28

    A general approach, the Fragment Transition Density (FTD) scheme, is introduced to estimate electronic coupling for excitation energy transfer in a molecular system. Within this method, the excitation energies and transition densities of the system are used to derive the coupling matrix element. The scheme allows one to treat systems where exciton donor and acceptor are close together and their exchange interaction and orbital overlap are significant. The FTD method can be applied in combination with any quantum mechanical approach to treat excited states of general nature including single-, double-, and higher excitations. Using FTD approach, we derive excitonic couplings for several systems computed with the CIS, TD DFT and MS-CASPT2 methods. In particular, it is shown that the estimated coupling values in DNA π-stacks are strongly affected by the short-range electronic interaction of adjacent nucleobases.

  6. Emergence of nontrivial magnetic excitations in a spin-liquid state of kagomé volborthite

    Science.gov (United States)

    Watanabe, Daiki; Sugii, Kaori; Shimozawa, Masaaki; Suzuki, Yoshitaka; Yajima, Takeshi; Ishikawa, Hajime; Hiroi, Zenji; Shibauchi, Takasada; Matsuda, Yuji; Yamashita, Minoru

    2016-01-01

    When quantum fluctuations destroy underlying long-range ordered states, novel quantum states emerge. Spin-liquid (SL) states of frustrated quantum antiferromagnets, in which highly correlated spins fluctuate down to very low temperatures, are prominent examples of such quantum states. SL states often exhibit exotic physical properties, but the precise nature of the elementary excitations behind such phenomena remains entirely elusive. Here, we use thermal Hall measurements that can capture the unexplored property of the elementary excitations in SL states, and report the observation of anomalous excitations that may unveil the unique features of the SL state. Our principal finding is a negative thermal Hall conductivity κxy which the charge-neutral spin excitations in a gapless SL state of the 2D kagomé insulator volborthite Cu3V2O7(OH)2⋅2H2O exhibit, in much the same way in which charged electrons show the conventional electric Hall effect. We find that κxy is absent in the high-temperature paramagnetic state and develops upon entering the SL state in accordance with the growth of the short-range spin correlations, demonstrating that κxy is a key signature of the elementary excitation formed in the SL state. These results suggest the emergence of nontrivial elementary excitations in the gapless SL state which feel the presence of fictitious magnetic flux, whose effective Lorentz force is found to be less than 1/100 of the force experienced by free electrons. PMID:27439874

  7. Electron scattering by laser-excited barium atoms

    Science.gov (United States)

    Register, D. F.; Trajmar, S.; Jensen, S. W.; Poe, R. T.

    1978-01-01

    Inelastic and superelastic scattering of 30- and 100-eV electrons by laser-excited 6s 6p 1P and subsequent cascade-populated 6s 6p 3P, 6s 5d 1D, and 6s 5d 3D Ba atoms have been observed. Absolute differential cross sections for the singlet and relative scattering intensities for the triplet species have been determined in the 5 to 20 deg angular region. Under the present conditions excitations dominate over deexcitations.

  8. TDDFT study on the excited-state proton transfer of 8-hydroxyquinoline: key role of the excited-state hydrogen-bond strengthening.

    Science.gov (United States)

    Lan, Sheng-Cheng; Liu, Yu-Hui

    2015-03-15

    Density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations have been employed to study the excited-state intramolecular proton transfer (ESIPT) reaction of 8-hydroxyquinoline (8HQ). Infrared spectra of 8HQ in both the ground and the lowest singlet excited states have been calculated, revealing a red-shift of the hydroxyl group (-OH) stretching band in the excited state. Hence, the intramolecular hydrogen bond (O-H···N) in 8HQ would be significantly strengthened upon photo-excitation to the S1 state. As the intramolecular proton-transfer reaction occurs through hydrogen bonding, the ESIPT reaction of 8HQ is effectively facilitated by strengthening of the electronic excited-state hydrogen bond (O-H···N). As a result, the intramolecular proton-transfer reaction would occur on an ultrafast timescale with a negligible barrier in the calculated potential energy curve for the ESIPT reaction. Therefore, although the intramolecular proton-transfer reaction is not favorable in the ground state, the ESIPT process is feasible in the excited state. Finally, we have identified that radiationless deactivation via internal conversion (IC) becomes the main dissipative channel for 8HQ by analyzing the energy gaps between the S1 and S0 states for the enol and keto forms. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. submitter Measurement of LYSO Intrinsic Light Yield Using Electron Excitation

    CERN Document Server

    Martinez Turtos, Rosana; Pizzichemi, Marco; Ghezzi, Alessio; Pauwels, Kristof; Auffray, Etiennette; Lecoq, Paul; Paganoni, Marco

    2016-01-01

    The determination of the intrinsic light yield $(LY_{int})$ of scintillating crystals, i.e. number of optical photons created per amount of energy deposited, constitutes a key factor in order to characterize and optimize their energy and time resolution. However, until now measurements of this quantity are affected by large uncertainties and often rely on corrections for bulk absorption and surface/edge state. The novel idea presented in this contribution is based on the confinement of the scintillation emission in the central upper part of a 10 mm cubic crystal using a 1.5 MeV electron beam with diameter of 1 mm. A black non-reflective pinhole aligned with the excitation point is used to fix the light extraction solid angle (narrower than total reflection angle), which then sets a light cone travel path through the crystal. The final number of photoelectrons detected using a Hamamatsu R2059 photomultiplier tube (PMT) was corrected for the extraction solid angle, the Fresnel reflection coefficient and quantum...

  10. Discrimination of nuclear spin isomers exploiting the excited state dynamics of a quinodimethane derivative

    Energy Technology Data Exchange (ETDEWEB)

    Obaid, Rana [Institut für Theoretische Chemie, Universität Wien, Währinger Str. 17, 1090 Wien (Austria); Faculty of Pharmacy, Al-Quds University, Abu Dis, Palestine (Country Unknown); Kinzel, Daniel; Oppel, Markus, E-mail: markus.oppel@univie.ac.at; González, Leticia [Institut für Theoretische Chemie, Universität Wien, Währinger Str. 17, 1090 Wien (Austria)

    2014-10-28

    Despite the concept of nuclear spin isomers (NSIs) exists since the early days of quantum mechanics, only few approaches have been suggested to separate different NSIs. Here, a method is proposed to discriminate different NSIs of a quinodimethane derivative using its electronic excited state dynamics. After electronic excitation by a laser field with femtosecond time duration, a difference in the behavior of several quantum mechanical operators can be observed. A pump-probe experimental approach for separating these different NSIs is then proposed.

  11. Bibliography on electron collisions with molecules: rotational and vibrational excitations, 1980-2000

    Energy Technology Data Exchange (ETDEWEB)

    Itikawa, Yukikazu [Institute of Space and Astronautical Science, Sagamihara, Kanagawa (Japan)

    2001-04-01

    A list of papers reporting cross sections for electron-impact excitations of rotational and vibrational states of molecules is presented. The list includes both the theoretical and the experimental papers published in 1980-2000. An index by molecular species is provided at the end of the bibliography. (author)

  12. HE2+-HE COLLISIONS - ONE-ELECTRON CAPTURE AND TARGET-ION EXCITATION

    NARCIS (Netherlands)

    FOLKERTS, HO; BLIEK, FW; MENG, L; OLSON, RE; MORGENSTERN, R; VONHELLERMANN, M; SUMMERS, HP; HOEKSTRA, R

    1994-01-01

    By means of photon emission spectroscopy we have studied state selective one-electron capture and target-ion excitation in collisions of He-2+ with He. The collision energy has been varied from 1 to 75 keV amu-1 Four-body classical trajectory Monte Carlo calculations have been performed in the

  13. Resonant electron-impact excitation of vibrational modes in polyatomic molecules

    Science.gov (United States)

    Cartwright, David C.; Trajmar, Sandor

    1996-04-01

    Measured differential cross sections (DCSs) for electron-impact excitation of bending vibrational modes involving an odd number of vibrational quanta in 0953-4075/29/8/018/img5 by 4 eV incident energy electrons display a strong trend to zero for forward and backward scattering which is characteristic of `symmetry-forbidden' transitions. This DCS behaviour is postulated here to be produced by a Feshbach resonant mechanism involving a low-lying bent excited state of 0953-4075/29/8/018/img5. The model described here identifies three additional low-lying bent excited states of 0953-4075/29/8/018/img5 which could also be parent states for core-excited Feshbach resonances, one of which may play a role in dissociative attachment in this 3.5 - 5.0 eV energy region. The resonant vibrational excitation mechanism proposed here is also believed to be operative in other polyatomic molecules and could be investigated by performing selected electron energy-loss measurements within the lowest energy resonance regions of the molecules 0953-4075/29/8/018/img8 and 0953-4075/29/8/018/img9.

  14. Assessment of oscillator strengths with multiconfigurational short-range density functional theory for electronic excitations in organic molecules

    DEFF Research Database (Denmark)

    Hedegård, Erik Donovan

    2017-01-01

    considered the large collection of organic molecules whose excited states were investigated with a range of electronic structure methods by Thiel et al. As a by-product of our calculations of oscillator strengths, we also obtain electronic excitation energies, which enable us to compare the performance......We have in a series of recent papers investigated electronic excited states with a hybrid between a complete active space self-consistent field (CASSCF) wave function and density functional theory (DFT). This method has been dubbed the CAS short-range DFT method (CAS–srDFT). The previous papers...

  15. Hydrogen and surface excitation in electron spectra of polyethylene

    Science.gov (United States)

    Orosz, G. T.; Gergely, G.; Menyhard, M.; Tóth, J.; Varga, D.; Lesiak, B.; Jablonski, A.

    2004-09-01

    The inelastic mean free path (IMFP) of electrons of polyethylene was determined by elastic peak electron spectroscopy (EPES). Hydrogen cannot be detected directly by conventional electron spectroscopies, such as Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), reflection electron energy loss spectroscopy (REELS) and EPES. The evaluation of electron spectra on polyethylene (PE) and other polymers needs corrections for hydrogen and surface excitation. Electron elastic backscattering on H atoms appears in the splitting of the elastic peak, shifting and Doppler broadening of the H peak produced by recoil effect. This shift is 0.34-3.8 eV for E=0.2-2.0 keV. Experiments resulted in separating the very low H elastic signal from the background. Surface excitation is characterised by the parameter Pse( E) which was described by formulae of Tanuma, Werner and Chen, using different definitions. The Pse( E) of PE was determined by our new procedure. Si and Ag were used as reference samples for its determination by EPES experiments. Experiments were made with a HSA spectrometer of high energy resolution. Their Monte Carlo evaluation was based on the NIST 64 database and IMFP of Tanuma et al., Gries and Cumpson. Pse( E) of PE was determined by best fit of experimental parameters, comparing the different IMFPs and surface excitation correction factors of Chen and Werner et al. The criteria of best fit are the RMS deviations from the different corrections. The total backscattering spectra (elastic and inelastic) of PE, C and Cu resulted in indirect observation of H.

  16. Vibrationally excited state stectroscopy of radicals in a supersonic plasma

    NARCIS (Netherlands)

    G. Bazalgette Courreges-Lacoste, J. Bulthuis, S. Stolte, T. Motylewski; Linnartz, H.V.J.

    2001-01-01

    A plasma source based on a multilayer discharge geometry in combination with a time-of-flight REMPI experiment is used to study rotationally cold spectra of highly excited vibrational states of mass selected radicals. The rovibrational state distributions upon discharge excitation are characterised

  17. Monte Carlo calculation of collisions of directionally-incident electrons on highly excited hydrogen atoms

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Kazuki; Fujimoto, Takasi [Kyoto Univ., Graduate School of Engineering, Kyoto (Japan)

    2001-10-01

    We treat classically the n-, l- and m{sub r}-changing transitions and ionization. Excitation cross sections against the final state energy continue smoothly to the 'ionization cross sections'. The steady state populations determined by elastic collisions among the degenerate states in the same n level show higher populations in the m{sub 1}=0 states, suggesting positive polarizations of Lyman lines emitted from plasmas having directional electrons. For ionization, the two outgoing electrons have large relative angles, suggesting reduced three body recombination rates for these plasmas. (author)

  18. Investigation of the Electronic Excited States of Small Gold Clusters in Rare Gas Matrices: Spin-Orbit Time-Dependent Density Functional Theory Calculation.

    Science.gov (United States)

    Jamshidi, Zahra; Kaveei, Elham; Mohammadpour, Mozhdeh

    2015-08-13

    The effects of the weak interactions of rare gas atoms on the UV-visible absorption spectra of gold dimer and tetramer clusters are investigated. The time-dependent density functional theory based on the two-component relativistic zeroth-order regular approximation that considered spin-orbit coupling is performed to estimate the absorption spectra of Au2,4-Rgn (Rg = Ne-Xe, and n = 1-6) complexes. Using spin-orbit, including the appropriate functional, shows a close correlation between experiment and our calculations. It is also demonstrated that the weak interactions between rare gas atoms and gold clusters affect the UV-vis spectra of Au2,4 clusters by shifting the electronic transition toward the blue. Moreover, we find that the order of change in peak position, Δν̃, is proportional to the strength of interactions: Δν̃Au2,4-Xe > Δν̃Au2,4-Kr > Δν̃Au2,4-Ar > Δν̃Au2,4-Ne. In addition, comparing the UV-visible spectra of Au2,4-Rgn complexes with those of isolated Au2 and Au4 clusters shows that for Au2,4-Rg2,4,6 complexes in which Rg atoms interacted symmetrically with gold clusters no additional peaks are observed compared to isolated clusters; however, for Au2,4-Rg1,3,5 complexes, extra peaks appear because of the decrease in symmetry.

  19. Theory of nuclear excitation by electron capture for heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Gagyi-Palffy, A.

    2006-07-01

    The resonant process of nuclear excitation by electron capture (NEEC) in collisions involving highly-charged ions has been investigated theoretically. NEEC is a rare recombination process in which a free electron is captured into a bound shell of an ion with the simultaneous excitation of the nucleus. Total cross sections for NEEC followed by the radiative decay of the excited nucleus are presented for various collision systems. The possibility to observe the NEEC in scattering experiments with trapped or stored ions was discussed focusing on the cases with the largest calculated resonance strength. As the photons emitted in different channels of the electron recombination process are indistinguishable in the total cross section, the interference between NEEC followed by the radiative decay of the nucleus and radiative recombination was investigated. The angular distribution of the emitted photons in the recombination process provides means to discern the two processes. Angular differential cross sections for the emitted photons in the case of E2 nuclear transitions were presented for several heavy elements. (orig.)

  20. Ultrafast Excited State Relaxation of a Metalloporphyrin Revealed by Femtosecond X-ray Absorption Spectroscopy

    DEFF Research Database (Denmark)

    Shelby, Megan L.; Lestrange, Patrick J.; Jackson, Nicholas E.

    2016-01-01

    Photoexcited Nickel(II) tetramesitylporphyrin (NiTMP), like many open-shell metalloporphyrins, relaxes rapidly through multiple electronic states following an initial porphyrin-based excitation, some involving metal centered electronic configuration changes that could be harnessed catalytically......), structural dynamics before thermalization were not resolved due to the similar to 100 ps duration of the available X-ray probe pulse. Using the femtosecond (fs) X-ray pulses of the Linac Coherent Light Source (LCLS), the Ni center electronic configuration from the initial excited state to the relaxed (d...

  1. Interplay between magnetic and electric excitations for backward electron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Nojarov, R.; Faessler, A.; Dingfelder, M. [Tuebingen Univ. (Germany). Inst. fuer Theoretische Physik

    1994-10-01

    It is found that the M1 (e,e`) cross sections of low-lying orbital I{sup {pi}} K = 1{sup +}1 excitations in heavy deformed nuclei contain E2 admixtures from the (predominantly longtitudinal) excitation of the accompanying 2{sup +}1 states. This happens even for backward scattering angles as large as {theta} = 165{sup o}, where the E2 excitation is strongly quenched. For small momentum transfer q the E2 cross section is negligible; however, it provides significant corrections to the theoretical M1 cross section for 0.4 < q < 0.6 fm{sup -1} and substantially improves the agreement with experiment in heavy deformed nuclei. (author).

  2. Excited state mass spectra of singly charmed baryons

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Zalak; Kumar Rai, Ajay [Sardar Vallabhbhai National Institute of Technology, Department of Applied Physics, Surat, Gujarat (India); Thakkar, Kaushal [GIDC Degree Engineering College, Department of Applied Sciences and Humanities, Abrama (India); Vinodkumar, P.C. [Sardar Patel University, Department of Physics, V.V. Nagar (India)

    2016-10-15

    Mass spectra of excited states of the singly charmed baryons are calculated using the hypercentral description of the three-body system. The baryons consist of a charm quark and light quarks (u, d and s) are studied in the framework of QCD motivated constituent quark model. The form of the confinement potential is hyper-Coloumb plus power potential with potential index ν, varying from 0.5 to 2.0. The first-order correction to the confinement potential is also incorporated in this approach. The radial as well as orbital excited state masses of Σ{sub c}{sup ++}, Σ{sub c}{sup +}, Σ{sub c}{sup 0}, Ξ{sub c}{sup +}, Ξ{sub c}{sup 0}, Λ{sub c}{sup +}, Ω{sub c}{sup 0} baryons, are reported in this paper. We have incorporated spin-spin, spin-orbit and tensor interactions perturbatively in the present study. The semi-electronic decay of Ω{sub c} and Ξ{sub c} are also calculated using the spectroscopic parameters of these baryons. The computed results are compared with other theoretical predictions as well as with the available experimental observations. We also construct the Regge trajectory in (n{sub r},M{sup 2}) and (J,M{sup 2}) planes for these baryons. (orig.)

  3. Quantum Entanglement and Shannon Information Entropy for the Doubly Excited Resonance State in Positronium Negative Ion

    Directory of Open Access Journals (Sweden)

    Chien-Hao Lin

    2015-09-01

    Full Text Available In the present work, we report an investigation on quantum entanglement in the doubly excited 2s2 1Se resonance state of the positronium negative ion by using highly correlated Hylleraas type wave functions, determined by calculation of the density of resonance states with the stabilization method. Once the resonance wave function is obtained, the spatial (electron-electron orbital entanglement entropies (von Neumann and linear can be quantified using the Schmidt decomposition method. Furthermore, Shannon entropy in position space, a measure for localization (or delocalization for such a doubly excited state, is also calculated.

  4. Electronically Excited C2 from Laser Photodissociated C60

    Science.gov (United States)

    Arepalli, Sivaram; Scott, Carl D.; Nikolaev, Pavel; Smalley, Richard E.

    1999-01-01

    Spectral and transient emission measurements are made of radiation from products of laser excitation of buckminsterfullerene (C60) vapor diluted in argon at 973 K. The principal radiation is from the Swan band system of C2 and, at early times, also from a black body continuum. The C2 radiation is observed only when C60 is excited by green (532 nm) and not with IR (1064 nm) laser radiation at energy densities of about 1.5 J/square cm. Transient measurements indicate that there are two characteristic periods of decay of radiation. The first period, lasting about 2 micro seconds, has a characteristic decay time of about 0.3 micro seconds. The second period, lasting at least 50 micro seconds, has a characteristic decay time of about 5 micro seconds. These characteristic times are thought to be associated with cooling of C60 molecules or nanosized carbon particles during the early period; and with electronically excited C2 that is a decomposition product of laser excited C60, C58, ... molecules during the later period.

  5. Structural insights into excitation-contraction coupling by electron cryomicroscopy.

    Science.gov (United States)

    Serysheva, I I

    2004-11-01

    In muscle, excitation-contraction coupling is defined as the process linking depolarization of the surface membrane with Ca2+ release from cytoplasmic stores, which activates contraction of striated muscle. This process is primarily controlled by interplay between two Ca2+ channels--the voltage-gated L-type Ca2+ channel (dihydropyridine receptor, DHPR) localized in the t-tubule membrane and the Ca2+-release channel (ryanodine receptor, RyR) of the sarcoplasmic reticulum membrane. The structures of both channels have been extensively studied by several groups using electron cryomicroscopy and single particle reconstruction techniques. The structures of RyR, determined at resolutions of 22-30 A, reveal a characteristic mushroom shape with a bulky cytoplasmic region and the membrane-spanning stem. While the cytoplasmic region exhibits a complex structure comprising a multitude of distinctive domains with numerous intervening cavities, at this resolution no definitive statement can be made about the location of the actual pore within the transmembrane region. Conformational changes associated with functional transitions of the Ca2+ release channel from closed to open states have been characterized. Further experiments determined localization of binding sites for various channel ligands. The structural studies of the DHPR are less developed. Although four 3D maps of the DHPR were reported recently at 24-30 A resolution from studies of frozen-hydrated and negatively stained receptors, there are some discrepancies between reported structures with respect to the overall appearance and dimensions of the channel structure. Future structural studies at higher resolution are needed to refine the structures of both channels and to substantiate a proposed molecular model for their interaction.

  6. Excited state mass spectra and Regge trajectories of bottom baryons

    Science.gov (United States)

    Thakkar, Kaushal; Shah, Zalak; Rai, Ajay Kumar; C. Vinodkumar, P.

    2017-09-01

    We present the mass spectra of radial and orbital excited states of singly heavy bottom baryons; Σb+, Σb-, Ξb-, Ξb0, Λb0 and Ωb-. The QCD motivated hypercentral quark model is employed for the three body description of baryons and the form of confinement potential is hyper Coulomb plus linear. The first order correction to the confinement potential is also incorporated in this work. The semi-electronic decay of Ωb and Ξb are calculated using the spectroscopic parameters of the baryons. The computed results are compared with other theoretical predictions as well as with the available experimental observations. The Regge trajectories are plotted in (n ,M2) plane.

  7. Sunlight-Initiated Photochemistry: Excited Vibrational States of Atmospheric Chromophores

    Directory of Open Access Journals (Sweden)

    Veronica Vaida

    2008-01-01

    Full Text Available Atmospheric chemical reactions are often initiated by ultraviolet (UV solar radiation since absorption in that wavelength range coincides to typical chemical bond energies. In this review, we present an alternative process by which chemical reactions occur with the excitation of vibrational levels in the ground electronic state by red solar photons. We focus on the O–H vibrational manifold which can be an atmospheric chromophore for driving vibrationally mediated overtone-induced chemical reactions. Experimental and theoretical O–H intensities of several carboxylic acids, alcohols, and peroxides are presented. The importance of combination bands in spectra at chemically relevant energies is examined in the context of atmospheric photochemistry. Candidate systems for overtone-initiated chemistry are provided, and their lowest energy barrier for reaction and the minimum quanta of O–H stretch required for reaction are calculated. We conclude with a discussion of the major pathways available for overtone-induced reactions in the atmosphere.

  8. Coherent secondary emission from resonantly excited two-exciton states

    DEFF Research Database (Denmark)

    Birkedal, Dan

    2000-01-01

    The coherent interaction of light and the electronic states of semiconductors near the fundamental bandgap has been a very active topic of research since the advent of ultrafast lasers. While many of the ultrafast nonlinear properties of semiconductors have been well explained within mean field...... to the nonlinear susceptibility. The method exploits that emission from two-exciton coherences can occur in non-specular directions, with the recoil momentum taken up by an exciton left behind in the sample. Using ultrafast spectral interferometry we demonstrate the presence of this new coherent component...... of the secondary emission from quantum wells following ultrafast resonant excitation and find that it provides information on not only the bound biexcitons but also the biexciton continuum. Due to the heterodyne nature of the experimental technique we obtain both amplitude and phase of the coherent emission...

  9. Storage of Multiple Coherent Microwave Excitations in an Electron Spin Ensemble

    DEFF Research Database (Denmark)

    Wu, Hua; George, Richard E.; Wesenberg, Janus H.

    2010-01-01

    Strong coupling between a microwave photon and electron spins, which could enable a long-lived quantum memory element for superconducting qubits, is possible using a large ensemble of spins. This represents an inefficient use of resources unless multiple photons, or qubits, can be orthogonally...... stored and retrieved. Here we employ holographic techniques to realize a coherent memory using a pulsed magnetic field gradient and demonstrate the storage and retrieval of up to 100 weak 10 GHz coherent excitations in collective states of an electron spin ensemble. We further show that such collective...... excitations in the electron spin can then be stored in nuclear spin states, which offer coherence times in excess of seconds....

  10. Coherent excitation of a single atom to a Rydberg state

    DEFF Research Database (Denmark)

    Miroshnychenko, Yevhen; Gaëtan, Alpha; Evellin, Charles

    2010-01-01

    We present the coherent excitation of a single Rubidium atom to the Rydberg state 58d3/2 using a two-photon transition. The experimental setup is described in detail, as are experimental techniques and procedures. The coherence of the excitation is revealed by observing Rabi oscillations between...

  11. Excited state of {sup 7}He and its unique structure

    Energy Technology Data Exchange (ETDEWEB)

    Korsheninnikov, A.A.; Golovkov, M.S.; Ozawa, A.; Yoshida, K.; Tanihata, I.; Fulop, Z.; Kusaka, K.; Morimoto, K.; Otsu, H.; Petrascu, H.; Tokanai, F. [Institute of Physical and Chemical Research, Wako, Saitama (Japan); Kuzmin, E.A.; Nikolskii, E.Yu.; Novatskii, B.G.; Ogloblin, A.A. [Russian Research Centre Kurchatov Inst., Moscow (Russian Federation)

    2000-07-01

    The transfer reaction p({sup 8}He,d){sup 7}He with the exotic {sup 8}He-beam has been studied by correlational measurements, and an excited state of {sup 7}He was observed. Most likely, it has a structure with a neutron in an excited state coupled to the {sup 6}He-core which itself is in the excited 2{sup +}-state. The transfer reaction p({sup 8}He,{sup 2}He){sup 7}H was also studied, and manifestation on the possible existence of the resonance {sup 7}H was obtained. (orig.)

  12. Production and decay of chlorine ion excited species in an electron cyclotron resonance ion source plasma

    Energy Technology Data Exchange (ETDEWEB)

    Santos, J P; Martins, M C; Parente, F [Centro de Fisica Atomica, CFA, Departamento de Fisica, Faculdade de Ciencias e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Costa, A M; Marques, J P [Centro de Fisica Atomica, CFA, Departamento de Fisica, Faculdade de Ciencias, FCUL, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa (Portugal); Indelicato, P, E-mail: jps@fct.unl.pt [Laboratoire Kastler Brossel, Ecole Normale Superieure, CNRS, Universite P et M Curie-Paris 6, Case 74, 4 place Jussieu, 75252 Paris Cedex 05 (France)

    2011-06-15

    The most important processes for the creation of chlorine ion excited states from the ground configurations of Cl{sup 10+} to Cl{sup 15+} ions in an electron cyclotron resonance ion source, leading to the emission of K x-ray lines, were studied. Theoretical values for inner-shell excitation and ionization cross-sections, including double KL and triple KLL ionization, transition probabilities and energies for the de-excitation processes, were calculated in the framework of the multi-configuration Dirac-Fock method. With reasonable assumptions about the electron energy distribution, a theoretical K{alpha} x-ray spectrum was obtained, which was then compared with recent experimental data.

  13. Low-energy electronic excitations and band-gap renormalization in CuO

    Science.gov (United States)

    Rödl, Claudia; Ruotsalainen, Kari O.; Sottile, Francesco; Honkanen, Ari-Pekka; Ablett, James M.; Rueff, Jean-Pascal; Sirotti, Fausto; Verbeni, Roberto; Al-Zein, Ali; Reining, Lucia; Huotari, Simo

    2017-05-01

    Combining nonresonant inelastic x-ray scattering experiments with state-of-the-art ab initio many-body calculations, we investigate the electronic screening mechanisms in strongly correlated CuO in a large range of energy and momentum transfers. The excellent agreement between theory and experiment, including the low-energy charge excitations, allows us to use the calculated dynamical screening as a safe building block for many-body perturbation theory and to elucidate the crucial role played by d -d excitations in renormalizing the band gap of CuO. In this way we can dissect the contributions of different excitations to the electronic self-energy which is illuminating concerning both the general theory and this prototypical material.

  14. Excited state dynamics in photosynthetic reaction center and light harvesting complex 1

    Science.gov (United States)

    Strümpfer, Johan; Schulten, Klaus

    2012-08-01

    Key to efficient harvesting of sunlight in photosynthesis is the first energy conversion process in which electronic excitation establishes a trans-membrane charge gradient. This conversion is accomplished by the photosynthetic reaction center (RC) that is, in case of the purple photosynthetic bacterium Rhodobacter sphaeroides studied here, surrounded by light harvesting complex 1 (LH1). The RC employs six pigment molecules to initiate the conversion: four bacteriochlorophylls and two bacteriopheophytins. The excited states of these pigments interact very strongly and are simultaneously influenced by the surrounding thermal protein environment. Likewise, LH1 employs 32 bacteriochlorophylls influenced in their excited state dynamics by strong interaction between the pigments and by interaction with the protein environment. Modeling the excited state dynamics in the RC as well as in LH1 requires theoretical methods, which account for both pigment-pigment interaction and pigment-environment interaction. In the present study we describe the excitation dynamics within a RC and excitation transfer between light harvesting complex 1 (LH1) and RC, employing the hierarchical equation of motion method. For this purpose a set of model parameters that reproduce RC as well as LH1 spectra and observed oscillatory excitation dynamics in the RC is suggested. We find that the environment has a significant effect on LH1-RC excitation transfer and that excitation transfers incoherently between LH1 and RC.

  15. Negative Binomial States of the Radiation Field and their Excitations are Nonlinear Coherent States

    OpenAIRE

    Wang, Xiao-Guang; Fu, Hong-Chen

    1999-01-01

    We show that the well-known negative binomial states of the radiation field and their excitations are nonlinear coherent states. Excited nonlinear coherent state are still nonlinear coherent states with different nonlinear functions. We finally give exponential form of the nonlinear coherent states and remark that the binomial states are not nonlinear coherent states.

  16. Resonance-Enhanced Excited-State Raman Spectroscopy of Conjugated Thiophene Derivatives: Combining Experiment with Theory

    Science.gov (United States)

    Barclay, Matthew S.; Quincy, Timothy J.; Caricato, Marco; Elles, Christopher G.

    2017-06-01

    Resonance-enhanced Femtosecond Stimulated Raman Spectroscopy (FSRS) is an ultrafast experimental method that allows for the study of excited-state structural behaviors, as well as the characterization of higher electronically excited states accessible through the resonant conditions of the observed vibrations. However, interpretation of the experiment is difficult without an accurate vibrational assignment of the resonance-enhanced spectra. We therefore utilize simulations of off-resonant excited-state Raman spectra, in which we employ a numerical derivative of the analytical excited-state polarizabilities along the normal mode displacements, in order to identify and interpret the resonance-enhanced vibrations observed in experiment. We present results for a benchmark series of conjugated organic thiophene derivatives, wherein we have computed the off-resonant excited-state Raman spectra for each molecule and matched it with its resonance-enhanced experimental spectrum. This comparison allows us to successfully identify the vibrational displacements of the observed FSRS bands, as well as validate the accuracy of the theoretical results through an experimental benchmark. The agreement between the experimental and computed results demonstrates that we are able to predict qualitatively accurate excited-state Raman spectra for these conjugated thiophenes, allowing for a more thorough interpretation of excited-state Raman signals at relatively low computational cost.

  17. Effects of crossed states on photoluminescence excitation spectroscopy of InAs quantum dots

    Directory of Open Access Journals (Sweden)

    Lin Chien-Hung

    2011-01-01

    Full Text Available Abstract In this report, the influence of the intrinsic transitions between bound-to-delocalized states (crossed states or quasicontinuous density of electron-hole states on photoluminescence excitation (PLE spectra of InAs quantum dots (QDs was investigated. The InAs QDs were different in size, shape, and number of bound states. Results from the PLE spectroscopy at low temperature and under a high magnetic field (up to 14 T were compared. Our findings show that the profile of the PLE resonances associated with the bound transitions disintegrated and broadened. This was attributed to the coupling of the localized QD excited states to the crossed states and scattering of longitudinal acoustical (LA phonons. The degree of spectral linewidth broadening was larger for the excited state in smaller QDs because of the higher crossed joint density of states and scattering rate.

  18. Relativistic and correlated calculations on the ground, excited, and ionized states of iodine

    NARCIS (Netherlands)

    de Jong, W.A.; Visscher, L; Nieuwpoort, W.C

    1997-01-01

    The electronic structure, spectroscopic, and bonding properties of the ground, excited, and ionized states of iodine are studied within a four-component relativistic framework using the MOLFDIR program package, The experimentally determined properties of the (1) Sigma(g)(+) ground state are well

  19. Excimer Emission using 20keV Electron Beam Excitation

    Science.gov (United States)

    Wieser, J.; Ulrich, A.; Murnick, D. E.

    1996-10-01

    A small, continuously emitting rare gas excimer light source has been developed. The gas is excited by a 20keV dc-electron beam. A 300nm thick, 1×1mm^2 SiNx foil sustaining a pressure difference up to 2bar, separates the target volume from the high vacuum part of the electron gun. Spectra of the rare gases Ar, Kr, and Xe have been studied. The monochromator detector system was intensity calibrated in the wavelength range from 115nm to 320nm. Electron beam currents of typically 1μA were used for excitation. When used as a VUV lamp on the second excimer continua, energy conversion efficiencies of 30% were obtained. Emissions originating from the so called left turning points have been clearly observed at 155, 173, and 222nm in Ar_2^*, Kr_2^*, and Xe_2^*, respectively. The so called third continua between 185nm and 240nm (Ar), 220nm and 250nm (Kr), and at 270nm (Xe) have been studied. A new continuum in Xe at 280nm was found. (Funded by the A.v.Humboldt Foundation and NSF (CTS 94-19440). The authors acknowledge support by H. Huggins, A. Liddle and W.L. Brown (Bell Laboratories, Lucent Technologies))

  20. Experimental and Theoretical Aspects of Excited State Electron Transfer and Related Phenomena: Conference Held in Honour of Zbigniew R. Grabowski in Pultusk, Poland on September 27-October 2, 1992

    Science.gov (United States)

    1992-10-01

    linear law , also typi:al for complex formation in the excited state. These data give evidence for the formation of long lived ( up to 30 ns...Dr. MIaria Amparo Olba-Torrent Department of Physical Chemuistry ProE Jai Pat Mittal University (if Valencia Chemiistry Division Dr. Moliner 5(0

  1. Excited state dynamics of liquid water near the surface

    Directory of Open Access Journals (Sweden)

    Schultz Thomas

    2013-03-01

    Full Text Available Time resolved photoelectron spectroscopy explores the excited state dynamics of liquid water in presence of cations close to the surface. A transient hydrated electroncation complex is observed.

  2. Threshold vibrational excitation of CO{sub 2} by slow electrons

    Energy Technology Data Exchange (ETDEWEB)

    Vanroose, Wim; Zhang, Zhiyong; McCurdy, C.W.; Rescigno, T.N.

    2003-07-08

    Threshold structures, reminiscent of those seen in the polar hydrogen halides, have recently been observed in the cross sections for electron impact excitation of certain vibrational levels of the non-polar CO2 molecule. These structures occur at energies outside the range where shape resonances dominate the dynamics. We propose a virtual state model that describes the multi-dimensional nuclear dynamics during the collision and explains quantitatively the selectivity observed in the excitation of the Fermi dyad, as well as the pattern of threshold peaks and oscillations seen in the upper levels of the higher polyads.

  3. Evidence of the participation of electronic excited states in the mechanism of positronium formation in substitutional Tb1-xEux(dpm)(3) solid solutions studied by optical and positron annihilation spectroscopies

    OpenAIRE

    Fulgencio, F.; Oliveira, F.C. [UNESP; Windmoeller, D.; Brito, Hermi Felinto de; Malta, O. L.; Sa, G. F. de; Magalhaes, W.F.; Machado, J. C.

    2012-01-01

    Positronium formation in the bimary molecular solid solutions Tb1-xEux (dpm)(3) (dpm = dipivaloylmethanate) has been investigated. A strong linear correlation between the D-5(4) Tb(III) energy level excited state lifetime and the positronium formation probability has been observed. This correlation indicates that the ligand-to-metal charge transfer LMCT states act in both luminescence quenching and positronium formation inhibition, as previously proposed. A kinetic mechanism is proposed to ex...

  4. A proposal for fs-electron microscopy experiments on high-energy excitations in solids.

    Science.gov (United States)

    Piazza, L; Musumeci, P; Luiten, O J; Carbone, Fabrizio

    2014-08-01

    Recent advances in ultrafast technology enable both the study and the control of materials properties thanks to the ability to record high temporal resolution movies of their transformations, or the ability to generate new states of matter by selecting ad hoc an excitation to drive the system out of equilibrium. The holy grail of this type of experiments is to combine a high tuneability of the excitation with a wide observation window. For example, this is achieved in multidimensional optical spectroscopy where the response to several excitation energies is monitored in a broad energy range by a large bandwidth optical pulse. In this article, the possibility to combine the chemical sensitivity of intense tuneable X-rays pulses from a free electron laser, with the wide range of observables available in an ultrafast transmission electron microscope is discussed. The requirements for such experiments are quantified via estimates based on state of the art experiments and simulations, and it is proposed that ultrafast electron imaging, diffraction and spectroscopy experiments can be performed in combination with a chemically selective X-ray excitation of materials. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Electronic excitation effects in ion-irradiated high- Tc superconductors

    Science.gov (United States)

    Ishikawa, N.; Chimi, Y.; Iwase, A.; Maeta, H.; Tsuru, K.; Michikami, O.; Kambara, T.; Mitamura, T.; Awaya, Y.; Terasawa, M.

    1998-02-01

    We have measured the fluence dependence of the c-axis lattice parameter in EuBa 2Cu 3O y (EBCO) irradiated with various ions from He to Au over the wide energy range from 0.85 MeV to 3.80 GeV. We have observed a linear increase of the c-axis lattice parameter with increasing fluence for all irradiations. The slope of c-axis lattice parameter against fluence, which corresponds to the defect production rate, is separated into two contributions; the effect via elastic displacement and the effect via electronic excitation. The former contribution exhibits a linear increase against the nuclear stopping power, Sn. The latter contribution is scaled by the primary ionization rate, d J/d x, rather than by the electronic stopping power, Se, and is nearly proportional to (d J/d x) 4.

  6. Using Diffusion Monte Carlo to Probe Rotational Excited States

    Science.gov (United States)

    Petit, Andrew S.; McCoy, Anne B.

    2009-06-01

    Since its inception in 1975 by Anderson, has been successfully applied to a wide range of electronic and vibrational problems. In the latter case, it has been shown to be a powerful method for studying highly fluxional systems exhibiting large amplitude vibrational motions. We report here our recent work developing a new DMC algorithm capable of treating rotational excited states. We first develop the appropriate coordinates, nodal structures, and re-crossing corrections for this problem. Then, using H_3O^+ and D_3O^+ as model systems, we show that our method can successfully describe a range of rotational states from mid0,0,0> to {1}/{√{2}} (mid10,10,0 > + mid 10,-10,0 >). In particular, we examine the combined effects of rotational and zero-point vibrational motion on the geometric structure of the molecules. Finally, we find the mid 10,0,0 > state to be somewhat problematic but show that the problem is straightforward to identify and has a well-defined solution. J. B. Anderson, J. Chem. Phys., 63, 1499 (1975). X. Huang, S. Carter, and J. Bowman, J. Chem. Phys., 118, 5431 (2003).

  7. Relaxation dynamics in the excited states of a ketocyanine dye ...

    Indian Academy of Sciences (India)

    WINTEC

    Pramanik et al proposed the twisted intramolecular charge transfer (TICT) process in the S1 state, which .... trile clearly suggests that a photon of 400 nm light excites the molecule to its S2 state, the higher energy emission .... 400 nm photon as well as the dynamics of the re- laxation processes taking place in the S1 state. At.

  8. Plasma-screening effects on the electron-impact excitation of hydrogenic ions in dense plasmas

    Science.gov (United States)

    Jung, Young-Dae

    1993-01-01

    Plasma-screening effects are investigated on electron-impact excitation of hydrogenic ions in dense plasmas. Scaled cross sections Z(exp 4) sigma for 1s yields 2s and 1s yields 2p are obtained for a Debye-Hueckel model of the screened Coulomb interaction. Ground and excited bound wave functions are modified in the screened Coulomb potential (Debye-Hueckel model) using the Ritz variation method. The resulting atomic wave functions and their eigenenergies agree well with the numerical and high-order perturbation theory calculations for the interesting domain of the Debye length not less than 10. The Born approximation is used to describe the continuum states of the projectile electron. Plasma screening effects on the atomic electrons cannot be neglected in the high-density cases. Including these effects, the cross sections are appreciably increased for 1s yields 2s transitions and decreased for 1s yields 2p transitions.

  9. Electronic excitation and deexcitation of atoms and molecules in nonequilibrium plasmas; Hiheiko plasma chu no denshi reiki ryushi hanno katei

    Energy Technology Data Exchange (ETDEWEB)

    Shimamori, H. [Fukui University of Technology, Fukui (Japan)

    1997-05-20

    Regarding excitation and deexcitation due to collision of electrons and deexcitation due to collision of baryons in nonequilibrium plasma, explanation is made about the general characteristics of the elementary processes involving their formation and disappearance and about the prediction of their sectional areas and velocity constants. As for the process of the formation of excited atoms and molecules by collision of electrons, it may be divided into the direct excitation in the ground state, excitation and light emission toward the resonance state, reexcitation and transformation of excited particles, recombination of electrons and positive atomic ions, and dissociation and recombination of electrons and positive molecular ions. As for the process of the disappearance of excited particles, there exist various courses it may follow, and it is quite complicated because it is dependent on the types of particles involved and the conditions the process proceeds under. Although the skeleton has been built of the theory of derivation of the sectional area of excitation due to collision of electrons and atoms/molecules, yet it is accurate enough only when applied to simple atomic/molecular systems, is far from satisfying in general, and is to be augmented by data from future experiments. 22 refs., 3 figs., 1 tab.

  10. Metastable states of highly excited heavy ions

    Science.gov (United States)

    Pegg, D. J.; Griffin, P. M.; Sellin, I. A.; Smith, W. W.; Donnally, B.

    1973-01-01

    Description of the method used and results obtained in an experimental study of the metastable states of highly stripped heavy ions, aimed at determining the lifetimes of such states by the rates of autoionization and radiation. The significance and limitations of the results presented are discussed.

  11. Absolute differential cross sections for electron excitation of silver at small scattering angles

    Science.gov (United States)

    Tošić, S. D.; Pejčev, V.; Šević, D.; McEachran, R. P.; Stauffer, A. D.; Marinković, B. P.

    2012-05-01

    We present results of our experimental and theoretical investigations of the electron excitation of the ground 4d105s state of silver. Differential cross sections (DCSs) for the excitation of the first combined resonant 4d105p state (two fine-structure levels with total angular momentum J = 1/2 and 3/2 which cannot be distinguished in the present experiment) were measured at electron-impact energies (E0) of 10, 20, 40, 60, 80 and 100 eV and for a range of scattering angles (θ) from 3° up to 15°. Absolute DCSs were obtained by the normalization of relative differential cross sections to the optical oscillator strengths. The relativistic distorted wave (RDW) method was used to calculate DCSs and generalized oscillator strengths for each level separately and the combined results are compared with the measurements.

  12. First-order derivative couplings between excited states from adiabatic TDDFT response theory.

    Science.gov (United States)

    Ou, Qi; Bellchambers, Gregory D; Furche, Filipp; Subotnik, Joseph E

    2015-02-14

    We present a complete derivation of derivative couplings between excited states in the framework of adiabatic time-dependent density functional response theory. Explicit working equations are given and the resulting derivative couplings are compared with derivative couplings from a pseudo-wavefunction ansatz. For degenerate excited states, i.e., close to a conical intersection (CI), the two approaches are identical apart from an antisymmetric overlap term. However, if the difference between two excitation energies equals another excitation energy, the couplings from response theory exhibit an unphysical divergence. This spurious behavior is a result of the adiabatic or static kernel approximation of time-dependent density functional theory leading to an incorrect analytical structure of the quadratic response function. Numerical examples for couplings close to a CI and for well-separated electronic states are given.

  13. Direct observation of photoinduced bent nitrosyl excited-state complexes

    Energy Technology Data Exchange (ETDEWEB)

    Sawyer, Karma R.; Steele, Ryan P.; Glascoe, Elizabeth A.; Cahoon, James F.; Schlegel, Jacob P.; Head-Gordon, Martin; Harris, Charles B.

    2008-06-28

    Ground state structures with side-on nitrosyl ({eta}{sup 2}-NO) and isonitrosyl (ON) ligands have been observed in a variety of transition-metal complexes. In contrast, excited state structures with bent-NO ligands have been proposed for years but never directly observed. Here we use picosecond time-resolved infrared spectroscopy and density functional theory (DFT) modeling to study the photochemistry of Co(CO){sub 3}(NO), a model transition-metal-NO compound. Surprisingly, we have observed no evidence for ON and {eta}{sup 2}-NO structural isomers, but have observed two bent-NO complexes. DFT modeling of the ground and excited state potentials indicates that the bent-NO complexes correspond to triplet excited states. Photolysis of Co(CO){sub 3}(NO) with a 400-nm pump pulse leads to population of a manifold of excited states which decay to form an excited state triplet bent-NO complex within 1 ps. This structure relaxes to the ground triplet state in ca. 350 ps to form a second bent-NO structure.

  14. Excitation of Plasma Waves in Aurora by Electron Beams

    Science.gov (United States)

    daSilva, C. E.; Vinas, A. F.; deAssis, A. S.; deAzevedo, C. A.

    1996-01-01

    In this paper, we study numerically the excitation of plasma waves by electron beams, in the auroral region above 2000 km of altitude. We have solved the fully kinetic dispersion relation, using numerical method and found the real frequency and the growth rate of the plasma wave modes. We have examined the instability properties of low-frequency waves such as the Electromagnetic Ion Cyclotron (EMIC) wave as well as Lower-Hybrid (LH) wave in the range of high-frequency. In all cases, the source of free energy are electron beams propagating parallel to the geomagnetic field. We present some features of the growth rate modes, when the cold plasma parameters are changed, such as background electrons and ions species (H(+) and O(+)) temperature, density or the electron beam density and/or drift velocity. These results can be used in a test-particle simulation code, to investigate the ion acceleration and their implication in the auroral acceleration processes, by wave-particle interaction.

  15. Experimental study on the kinetically induced electronic excitation in atomic collisional cascades; Experimentelle Untersuchung zur kinetisch induzierten elektronischen Anregung in atomaren Stosskaskaden

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, S.

    2006-08-15

    the present thesis deals with the ion-collision-induced electronic excitation of metallic solids. For this for the first time metal-insulator-metal layer systems are used for the detection of this electronic excitation. The here applied aluminium/aluminium oxide/silver layer sytems have barrier heights of 2.4 eV on the aluminium respectively 3.3 eV on the silver side. With the results it could uniquely be shown that the electronic excitation is generated by kinetic processes, this excitation dependenc on the kinetic energy of the colliding particles, and the excitation dependes on the charge state of the projectile.

  16. Measurement of the excited-state transverse hyperfine coupling in NV centers via dynamic nuclear polarization

    Science.gov (United States)

    Poggiali, F.; Cappellaro, P.; Fabbri, N.

    2017-05-01

    Precise knowledge of a quantum system's Hamiltonian is a critical pre-requisite for its use in many quantum information technologies. Here, we report a method for the precise characterization of the nonsecular part of the excited-state Hamiltonian of an electronic-nuclear spin system in diamond. The method relies on the investigation of the dynamic nuclear polarization mediated by the electronic spin, which is currently exploited as a primary tool for initializing nuclear qubits and performing enhanced nuclear magnetic resonance. By measuring the temporal evolution of the population of the ground-state hyperfine levels of a nitrogen-vacancy center, we obtain the first direct estimation of the excited-state transverse hyperfine coupling between its electronic and nitrogen nuclear spin. Our method could also be applied to other electron-nuclear spin systems, such as those related to defects in silicon carbide.

  17. Photochemistry of excited-state species in natural waters: a role for particulate organic matter.

    Science.gov (United States)

    Cottrell, Barbara A; Timko, Stephen A; Devera, Lianne; Robinson, Alice K; Gonsior, Michael; Vizenor, Ashley E; Simpson, André J; Cooper, William J

    2013-09-15

    Laser flash photolysis (LFP) was used to characterize a triplet excited state species isolated from Black River and San Joaquin wetlands particulate organic matter (POM). The solubilized organic matter, isolated from POM by pH-independent diffusion in distilled water, was named PdOM. UV-visible absorption spectroscopy, excitation-emission matrix spectroscopy (EEMs), and (1)H NMR were used to characterize the PdOM. While LFP of dissolved organic matter (DOM) is known to generate the solvated electron, LFP of the PdOM transient in argon-, air-, and nitrous oxide-saturated solutions indicated that this was a triplet excited state species ((3)PdOM*). The lifetime and the reactivity of (3)PdOM* with sorbic acid, a triplet state quencher, were compared with that of the triplet excited state of benzophenone, a DOM proxy. A second excited state species (designated DOM*), with a longer lifetime, was reported in a number of previous studies but not characterized. The lifetime of DOM*, measured for seventeen organic matter isolates, lignin, tannic acid, and three wetlands plant extracts, was shown to differentiate allochthonous from autochthonous DOM. (3)POM* and DOM* were also observed in lake water and a constructed wetlands' water. Aqueous extracts of fresh and aged plant material from the same wetland were shown to be one source of these excited state species. This study provides evidence of a role for POM in the photochemistry of natural and constructed wetland waters. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Low-Energy Electron Impact Excitation of the (010) Bending Mode of CO2

    Science.gov (United States)

    Huo, Winifred M.; Langhoff, Stephen R. (Technical Monitor)

    1996-01-01

    Low-energy electron impact excitation of the fundamental modes of CO2 has been extensively studied, both experimentally and theoretically. Much attention has been paid to the virtual state feature in the the (100) mode excitation and the (sup 2)II(sub upsilon) resonance feature around 3.8 eV, which is observable in all three fundamental modes. For the excitation of the (010) mode away from the resonance region, the Born dipole approximation was generally considered adequate. The present study employs the Born dipole approximation to treat the long range interaction and the Schwinger multichannel method for the short range interaction. The roles of the two interaction potentials will be compared.

  19. Acute excited states and sudden death

    National Research Council Canada - National Science Library

    Farnham, Frank R; Kennedy, Henry G

    1997-01-01

    ... mortality. 2 Such deaths, often in police custody or other highly charged situations, commonly give rise to high profile coroner's hearings and inquiries. 3 In the era before neuroleptics death in such agitated states was attributed to exhaustion, though neuroleptic malignant syndrome and the cardiac effects of neuroleptics now often enter into considerat...

  20. Excited states of muonium in atomic hydrogen

    Indian Academy of Sciences (India)

    Differential cross-section results are found to resemble positronium formation cross-section results of positron–hydrogen charge-exchange problem. Forward ... using velocity scaling are compared with the results of the present calculation. .... to carry out calculations for e− capture by muon into n = 2 and n = 3 states.

  1. Entanglement entropy in excited states of the quantum Lifshitz model

    Science.gov (United States)

    Parker, Daniel E.; Vasseur, Romain; Moore, Joel E.

    2017-06-01

    We investigate the entanglement properties of an infinite class of excited states in the quantum Lifshitz model (QLM). The presence of a conformal quantum critical point in the QLM makes it unusually tractable for a model above one spatial dimension, enabling the ground state entanglement entropy for an arbitrary domain to be expressed in terms of geometrical and topological quantities. Here we extend this result to excited states and find that the entanglement can be naturally written in terms of quantities which we dub ‘entanglement propagator amplitudes’ (EPAs). EPAs are geometrical probabilities that we explicitly calculate and interpret. A comparison of lattice and continuum results demonstrates that EPAs are universal. This work shows that the QLM is an example of a 2  +  1d field theory where the universal behavior of excited-state entanglement may be computed analytically.

  2. Two-neutron decay of excited states of 11Li

    Science.gov (United States)

    Smith, Jenna; MoNA Collaboration

    2013-10-01

    One prominent example of a Borromean nucleus is the two-neutron halo nucleus, 11Li. All excited states of this nucleus are unbound to two-neutron decay. Many theories propose that the two valence neutrons exhibit dineutron behavior in the ground state, but it is unclear what effect such a structure would have on the decay of the excited states. We have recently completed an experiment designed to study the decay of one of these excited states. Unbound 11Li was populated via a two-proton knockout from 13B. The two emitted neutrons were detected with the Modular Neutron Array (MoNA) and the Large-area multi-Institutional Scintillator Array (LISA) in coincidence with the daughter fragment, 9Li. Preliminary results will be discussed.

  3. Excited-state dynamics of hybrid multichromophoric systems: toward an excitation wavelength control of the charge separation pathways.

    Science.gov (United States)

    Banerji, Natalie; Duvanel, Guillaume; Perez-Velasco, Alejandro; Maity, Santanu; Sakai, Naomi; Matile, Stefan; Vauthey, Eric

    2009-07-23

    The photophysical properties of two hybrid multichromophoric systems consisting of an oligophenylethynyl (OPE) scaffold decorated by 10 red or blue naphthalene diimides (NDIs) have been investigated using femtosecond spectroscopy. Ultrafast charge separation was observed with both red and blue systems. However, the nature of the charge-separated state and its lifetime were found to differ substantially. For the red system, electron transfer occurs from the OPE scaffold to an NDI unit, independently of whether the OPE or an NDI is initially excited. However, charge separation upon OPE excitation is about 10 times faster, and takes place with a 100 fs time constant. The average lifetime of the ensuing charge-separated state amounts to about 650 ps. Charge separation in the blue system depends on which of the OPE scaffold or an NDI is excited. In the first case, an electron is transferred from the OPE to an NDI and the hole subsequently shifts to another NDI unit, whereas in the second case symmetry-breaking charge separation between two NDI units occurs. Although the charges are located on two NDIs in both cases, different recombination dynamics are observed. This is explained by the location of the ionic NDI moieties that depends on the charge separation pathway, hence on the excitation wavelength. The very different dynamics observed with red and blue systems can be accounted for by the oxidation potentials of the respective NDIs that are higher and lower than that of the OPE scaffold. Because of this, the relative energies of the two charge-separated states (hole on the OPE or an NDI) are inverted.

  4. Photoionization of excited states of neon-like Mg III

    Indian Academy of Sciences (India)

    The close coupling -matrix method is used to calculate cross-sections for photoionization of Mg III from its first three excited states. Configuration interaction wave functions are used to represent two target states of Mg III retained in the -matrix expansion. The positions and effective quantum numbers for the Rydberg ...

  5. Differential cross sections for ionization and excitation of laser-aligned atoms by electron impact

    Science.gov (United States)

    Murray, Andrew

    2012-06-01

    Differential cross section measurements will be presented for electron impact ionization and excitation of atoms prepared using high resolution continuous wave laser radiation. In the case of ionization, low energy coplanar asymmetric (e,2e) experiments were performed from laser excited Mg atoms that were aligned using radiation around 285nm. The atoms were subjected to linearly polarized radiation whose polarization vector was varied from in the plane to perpendicular to the scattering plane. Ionization measurements were then conducted from the laser-excited 3P state, and the differential cross section determined. By careful analysis of the laser pumping, these measurements were directly compared to those from the ground state. Such experiments provide valuable information on the ionization of aligned targets. In the second experiment to be described here, a resonant enhancement cavity has been placed around the interaction region and super-elastic scattering measurements have been carried out from laser-excited atoms inside the cavity. This new technique opens up many new targets for study, since the cavity increases the effective intensity of the laser radiation that is exciting the atoms by a factor of up to 50. As such, new ionization and excitation measurements are possible using deep UV radiation where the laser power is only a few mW. Results from calcium will be presented, and progress towards studies from silver, copper and gold will be discussed. We are also advancing this new technique to allow simultaneous excitation from the hyperfine levels of different targets (such as Rb), which will allow the method to be adopted in different fields, such as laser cooling and trapping.

  6. Temperature dependent excited state relaxation of a red emitting DNA-templated silver nanocluster

    DEFF Research Database (Denmark)

    Cerretani, Cecilia; Carro-Temboury, Miguel R.; Krause, Stefan

    2017-01-01

    The nanosecond excited state temporal and spectral relaxation of a purified, red-emitting DNA-templated silver nanocluster (DNA–AgNC) was characterized as a function of temperature. The findings are explained by introducing a phenomenological electronic structure diagram. The reproducibility...

  7. Ponderomotive dressing of doubly-excited states with intensity-controlled laser light

    Directory of Open Access Journals (Sweden)

    Ding Thomas

    2013-03-01

    Full Text Available We laser-dress several doubly-excited states in helium. Tuning the coupling-laser intensity from perturbative to the strong-coupling regime, we are able to measure phases imprinted on the two-electron wavefunctions, and observe a new continuum coupling mechanism.

  8. Effect of collective response on electron capture and excitation in collisions of highly charged ions with fullerenes.

    Science.gov (United States)

    Kadhane, U; Misra, D; Singh, Y P; Tribedi, Lokesh C

    2003-03-07

    Projectile deexcitation Lyman x-ray emission following electron capture and K excitation has been studied in collisions of bare and Li-like sulphur ions (of energy 110 MeV) with fullerenes (C(60)/C(70)) and different gaseous targets. The intensity ratios of different Lyman x-ray lines in collisions with fullerenes are found to be substantially lower than those for the gas targets, both for capture and excitation. This has been explained in terms of a model based on "solidlike" effect, namely, wakefield induced stark mixing of the excited states populated via electron capture or K excitation: a collective phenomenon of plasmon excitation in the fullerenes under the influence of heavy, highly charged ions.

  9. Low-energy measurements of electron capture by multicharged ions from excited hydrogen atoms

    Energy Technology Data Exchange (ETDEWEB)

    Havener, C.C. (Oak Ridge National Laboratory, Oak Ridge, Tennesse 37831-6372 (United States)); Haque, M.A. (Alcorn State University, Lorman, Mississippi 39096 (United States)); Smith, A.C.H. (University College London, WC1E 6BT (United Kingdom)); Urbain, X. (Universite Catholique de Louvain, Chemin du Cyclotron 2, B-1348 Louvain-la-Neuve (Belgium)); Zeijlmans van Emmichoven, P.A. (Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6372 (United States) Joint Institute for Heavy Ion Research, Holifield Heavy Ion Research Facility, Oak Ridge, Tennessee 37831-6374 (United States))

    1993-06-05

    For very low collision energies electron capture from excited hydrogen by multicharged ions is characterized by enormous cross sections, the predicted maximum being comparable to the geometric size of the Rydberg atom. The ion-atom merged-beams technique is being used to study these collisions for the variety of charge states and the wide range of energies (0.1 to 1000 eV/amu) accessible to the apparatus. A neutral D beam containing a Rydberg atom population proportional to 1/n[sup 3] is produced by collisional electron detachment of 8 keV D[sup [minus

  10. UV excitation of single DNA and RNA strands produces high yields of exciplex states between two stacked bases

    OpenAIRE

    Takaya, Tomohisa; Su, Charlene; de La Harpe, Kimberly; Crespo-Hernández, Carlos E.; Kohler, Bern

    2008-01-01

    Excited electronic states created by UV excitation of the diribonucleoside monophosphates ApA, ApG, ApC, ApU, and CpG were studied by the femtosecond transient-absorption technique. Bleach recovery signals recorded at 252 nm show that long-lived excited states are formed in all five dinucleosides. The lifetimes of these states exceed those measured in equimolar mixtures of the constituent mononucleotides by one to two orders of magnitude, indicating that electronic coupling between proximal n...

  11. Probing the excited state dynamics of a new family of Cu(I)-complexes with an enhanced light absorption capacity: excitation-wavelength dependent population of states through branching.

    Science.gov (United States)

    Papanikolaou, Panagiotis A; Tkachenko, Nikolai V

    2013-08-21

    The ultrafast dynamics of six homoleptic Cu(I)-complexes and their respective ligands was examined through time-resolved electronic absorption spectroscopy in the subpicosecond time domain, in a variety of solvents, and at different excitation wavelengths. Results indicate that after excitation of the complexes in the blue part of the spectrum, the initially formed intraligand (IL) singlet excited state decays via two pathways yielding simultaneously both the lower-lying MLCT excited state and the ligand locally excited triplet state. The latter is also observed in the case of the free ligands and relaxes back to the ground state in a timescale of 40 ps. Excitation in the red part results in the formation of the MLCT excited state of the complexes which decays to the ground state through the same intraligand triplet excited state. The solvent viscosity does not affect the overall relaxation kinetics. The short time constant observed for the intersystem crossing of the MLCT singlet excited state is discussed in terms of the contribution of the d-orbitals of copper to the wavefunction of these states.

  12. Imaging Magnetic Vortices Dynamics Using Lorentz Electron Microscopy with GHz Excitations

    Science.gov (United States)

    Zhu, Yimei

    2015-03-01

    Magnetic vortices in thin films are naturally formed spiral spin configurations with a core polarization pointing out of the film plane. They typically represent ground states with high structural and thermal stability as well as four different chirality-polarity combinations, offering great promise in the development of spin-based devices. For applications to spin oscillators, non-volatile memory and logic devices, the fundamental understanding and precise control of vortex excitations and dynamic switching behavior are essential. The compact dimensionality and fast spin dynamics set grand challenges for direct imaging technologies. Recently, we have developed a unique method to directly visualize the dynamic magnetic vortex motion using advanced Lorentz electron microscopy combined with GHz electronic excitations. It enables us to map the orbit of a magnetic vortex core in a permalloy square with Material Sciences and Engineering Division, under Contract No. DE-AC02-98CH10886.

  13. Search for excited electrons in p pmacr collisions at s=1.96TeV

    Science.gov (United States)

    Abazov, V. M.; Abbott, B.; Abolins, M.; Acharya, B. S.; Adams, M.; Adams, T.; Aguilo, E.; Ahn, S. H.; Ahsan, M.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G. A.; Anastasoaie, M.; Ancu, L. S.; Andeen, T.; Anderson, S.; Andrieu, B.; Anzelc, M. S.; Arnoud, Y.; Arov, M.; Arthaud, M.; Askew, A.; Åsman, B.; Assis Jesus, A. C. S.; Atramentov, O.; Autermann, C.; Avila, C.; Ay, C.; Badaud, F.; Baden, A.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Banerjee, P.; Barberis, E.; Barfuss, A.-F.; Bargassa, P.; Baringer, P.; Barreto, J.; Bartlett, J. F.; Bassler, U.; Bauer, D.; Beale, S.; Bean, A.; Begalli, M.; Begel, M.; Belanger-Champagne, C.; Bellantoni, L.; Bellavance, A.; Benitez, J. A.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Biscarat, C.; Blazey, G.; Blekman, F.; Blessing, S.; Bloch, D.; Bloom, K.; Boehnlein, A.; Boline, D.; Bolton, T. A.; Borissov, G.; Bose, T.; Brandt, A.; Brock, R.; Brooijmans, G.; Bross, A.; Brown, D.; Buchanan, N. J.; Buchholz, D.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Burke, S.; Burnett, T. H.; Buszello, C. P.; Butler, J. M.; Calfayan, P.; Calvet, S.; Cammin, J.; Carvalho, W.; Casey, B. C. K.; Cason, N. M.; Castilla-Valdez, H.; Chakrabarti, S.; Chakraborty, D.; Chan, K. M.; Chan, K.; Chandra, A.; Charles, F.; Cheu, E.; Chevallier, F.; Cho, D. K.; Choi, S.; Choudhary, B.; Christofek, L.; Christoudias, T.; Cihangir, S.; Claes, D.; Coadou, Y.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M.-C.; Crépé-Renaudin, S.; Cutts, D.; Ćwiok, M.; da Motta, H.; Das, A.; Davies, G.; de, K.; de Jong, S. J.; de La Cruz-Burelo, E.; de Oliveira Martins, C.; Degenhardt, J. D.; Déliot, F.; Demarteau, M.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Diehl, H. T.; Diesburg, M.; Dominguez, A.; Dong, H.; Dudko, L. V.; Duflot, L.; Dugad, S. R.; Duggan, D.; Duperrin, A.; Dyer, J.; Dyshkant, A.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Eno, S.; Ermolov, P.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Ferapontov, A. V.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Ford, M.; Fortner, M.; Fox, H.; Fu, S.; Fuess, S.; Gadfort, T.; Galea, C. F.; Gallas, E.; Galyaev, E.; Garcia, C.; Garcia-Bellido, A.; Gavrilov, V.; Gay, P.; Geist, W.; Gelé, D.; Gerber, C. E.; Gershtein, Y.; Gillberg, D.; Ginther, G.; Gollub, N.; Gómez, B.; Goussiou, A.; Grannis, P. D.; Greenlee, H.; Greenwood, Z. D.; Gregores, E. M.; Grenier, G.; Gris, Ph.; Grivaz, J.-F.; Grohsjean, A.; Grünendahl, S.; Grünewald, M. W.; Guo, J.; Guo, F.; Gutierrez, P.; Gutierrez, G.; Haas, A.; Hadley, N. J.; Haefner, P.; Hagopian, S.; Haley, J.; Hall, I.; Hall, R. E.; Han, L.; Hansson, P.; Harder, K.; Harel, A.; Harrington, R.; Hauptman, J. M.; Hauser, R.; Hays, J.; Hebbeker, T.; Hedin, D.; Hegeman, J. G.; Heinmiller, J. M.; Heinson, A. P.; Heintz, U.; Hensel, C.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Hoeth, H.; Hohlfeld, M.; Hong, S. J.; Hossain, S.; Houben, P.; Hu, Y.; Hubacek, Z.; Hynek, V.; Iashvili, I.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffré, M.; Jain, S.; Jakobs, K.; Jarvis, C.; Jesik, R.; Johns, K.; Johnson, C.; Johnson, M.; Jonckheere, A.; Jonsson, P.; Juste, A.; Kajfasz, E.; Kalinin, A. M.; Kalk, J. R.; Kalk, J. M.; Kappler, S.; Karmanov, D.; Kasper, P. A.; Katsanos, I.; Kau, D.; Kaur, R.; Kaushik, V.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. M.; Khatidze, D.; Kim, T. J.; Kirby, M. H.; Kirsch, M.; Klima, B.; Kohli, J. M.; Konrath, J.-P.; Korablev, V. M.; Kozelov, A. V.; Krop, D.; Kuhl, T.; Kumar, A.; Kunori, S.; Kupco, A.; Kurča, T.; Kvita, J.; Lacroix, F.; Lam, D.; Lammers, S.; Landsberg, G.; Lebrun, P.; Lee, W. M.; Leflat, A.; Lehner, F.; Lellouch, J.; Leveque, J.; Li, J.; Li, Q. Z.; Li, L.; Lietti, S. M.; Lima, J. G. R.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, Y.; Liu, Z.; Lobodenko, A.; Lokajicek, M.; Love, P.; Lubatti, H. J.; Luna, R.; Lyon, A. L.; Maciel, A. K. A.; Mackin, D.; Madaras, R. J.; Mättig, P.; Magass, C.; Magerkurth, A.; Mal, P. K.; Malbouisson, H. B.; Malik, S.; Malyshev, V. L.; Mao, H. S.; Maravin, Y.; Martin, B.; McCarthy, R.; Melnitchouk, A.; Mendoza, L.; Mercadante, P. G.; Merkin, M.; Merritt, K. W.; Meyer, J.; Meyer, A.; Millet, T.; Mitrevski, J.; Molina, J.; Mommsen, R. K.; Mondal, N. K.; Moore, R. W.; Moulik, T.; Muanza, G. S.; Mulders, M.; Mulhearn, M.; Mundal, O.; Mundim, L.; Nagy, E.; Naimuddin, M.; Narain, M.; Naumann, N. A.; Neal, H. A.; Negret, J. P.; Neustroev, P.; Nilsen, H.; Nogima, H.; Novaes, S. F.; Nunnemann, T.; O'Dell, V.; O'Neil, D. C.; Obrant, G.; Ochando, C.; Onoprienko, D.; Oshima, N.; Osta, J.; Otec, R.

    2008-05-01

    We present the results of a search for the production of an excited state of the electron, e*, in proton-antiproton collisions at s=1.96TeV. The data were collected with the D0 experiment at the Fermilab Tevatron Collider and correspond to an integrated luminosity of approximately 1fb-1. We search for e* in the process p pmacr →e*e, with the e* subsequently decaying to an electron plus photon. No excess above the standard model background is observed. Interpreting our data in the context of a model that describes e* production by four-fermion contact interactions and e* decay via electroweak processes, we set 95% C.L. upper limits on the production cross section ranging from 8.9 to 27 fb, depending on the mass of the excited electron. Choosing the scale for contact interactions to be Λ=1TeV, excited electron masses below 756 GeV are excluded at the 95% C.L.

  14. Tracking excited-state charge and spin dynamics in iron coordination complexes

    DEFF Research Database (Denmark)

    Zhang, Wenkai; Alonso-Mori, Roberto; Bergmann, Uwe

    2014-01-01

    Crucial to many light-driven processes in transition metal complexes is the absorption and dissipation of energy by 3d electrons(1-4). But a detailed understanding of such non-equilibrium excited-state dynamics and their interplay with structural changes is challenging: a multitude of excited...... states and possible transitions result in phenomena too complex to unravel when faced with the indirect sensitivity of optical spectroscopy to spin dynamics(5) and the flux limitations of ultrafast X-ray sources(6,7). Such a situation exists for archetypal poly-pyridyl iron complexes, such as [Fe(2......,2'-bipyridine)(3)](2+), where the excited-state charge and spin dynamics involved in the transition from a low-to a high-spin state (spin crossover) have long been a source of interest and controversy(6-15). Here we demonstrate that femtosecond resolution X-ray fluorescence spectroscopy, with its sensitivity...

  15. Role of two-electron processes in the excitation-ionization of lithium atoms by fast ion impact

    CERN Document Server

    Kirchner, T; Gulyás, L

    2015-01-01

    We study excitation and ionization in the 1.5 MeV/amu O$^{8+}$-Li collision system, which was the subject of a recent reaction-microscope-type experiment [Fischer \\textit{et al.}, Phys. Rev. Lett. \\textbf{109}, 113202 (2012)]. Starting from an independent-electron model based on determinantal wave functions and using single-electron basis generator method and continuum distorted-wave with eikonal initial-state calculations we show that pure single ionization of a lithium $K$-shell electron is too weak a process to explain the measured single differential cross section. Rather, our analysis suggests that two-electron excitation-ionization processes occur and have to be taken into account when comparing with the data. Good agreement is obtained only if we replace the independent-electron calculation by an independent-event model for one of the excitation-ionization processes and also take a shake-off process into account.

  16. Accurate Excited State Geometries within Reduced Subspace TDDFT/TDA.

    Science.gov (United States)

    Robinson, David

    2014-12-09

    A method for the calculation of TDDFT/TDA excited state geometries within a reduced subspace of Kohn-Sham orbitals has been implemented and tested. Accurate geometries are found for all of the fluorophore-like molecules tested, with at most all valence occupied orbitals and half of the virtual orbitals included but for some molecules even fewer orbitals. Efficiency gains of between 15 and 30% are found for essentially the same level of accuracy as a standard TDDFT/TDA excited state geometry optimization calculation.

  17. Permittivity of gold with a strongly excited electronic subsystem

    Science.gov (United States)

    Yurkevich, A. A.; Ashitkov, S. I.; Agranat, M. B.

    2017-11-01

    The influence of hot electrons on a permittivity of noble metals is studied. For this purpose, a multicomponent model of the permittivity of noble metals in a two-temperature state is developed for the visible and near IR spectrum. In addition to the Drude component of the permittivity describing the response of conduction band electrons in the IR range, the model includes components associated with the d-band structure and describing the response of valence electrons. Time-resolved interferometric studies of the transient optical properties of gold in a strongly nonequilibrium state during ˜10-13-10-11 s after the irradiation by femtosecond laser pulses are carried out. The results of the measurement of the dynamics of the complex reflectivity of gold at the wavelengths of 800, 620, and 400 nm in the vicinity of ablation threshold are in good agreement with the results of modeling. It is shown that valence d-band electrons in gold start playing a significant role in the behavior of the permittivity in the visible and near IR spectral range if the temperature of hot electrons exceeds 3 kK.

  18. Can $\\beta$-decay probe excited state halos?

    CERN Multimedia

    2002-01-01

    In the first experiment at the newly constructed ISOLDE Facility the first-forbidden $\\beta$-decay of $^{17}$Ne into the first excited state of $^{17}$F has been measured. It is a factor two faster than the corresponding mirror decay and thus gives one of the largest recorded asymmetries for $\\beta$-decays feeding bound final states. Shell-model calculations can only reproduce the asymmetry if the halo structure of the $^{17}$F state is taken into account.

  19. Nonlinear delayed symmetry breaking in a solid excited by hard x-ray free electron laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Ferrer, A., E-mail: aferrer@phys.ethz.ch [Institute for Quantum Electronics, ETH Zurich, CH-8093 Zurich (Switzerland); Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Johnson, J. A., E-mail: jjohnson@chem.byu.edu; Mariager, S. O.; Grübel, S.; Staub, U. [Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Huber, T.; Trant, M.; Johnson, S. L., E-mail: johnson@phys.ethz.ch [Institute for Quantum Electronics, ETH Zurich, CH-8093 Zurich (Switzerland); Zhu, D.; Chollet, M.; Robinson, J.; Lemke, H. T. [LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Ingold, G.; Beaud, P. [Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); SwissFEL, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Milne, C. [SwissFEL, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)

    2015-04-13

    We have studied the ultrafast changes of electronic states in bulk ZnO upon intense hard x-ray excitation from a free electron laser. By monitoring the transient anisotropy induced in an optical probe beam, we observe a delayed breaking of the initial c-plane symmetry of the crystal that lasts for several picoseconds. Interaction with the intense x-ray pulses modifies the electronic state filling in a manner inconsistent with a simple increase in electronic temperature. These results may indicate a way to use intense ultrashort x-ray pulses to investigate high-energy carrier dynamics and to control certain properties of solid-state materials.

  20. Electron Densities in the Upper Ionosphere of Mars from the Excitation of Local Electron Plasma Oscillations

    Science.gov (United States)

    Duru, F.; Gurnett, D. A.; Morgan, D. D.; Modolo, R.; Nagy, A. F.; Najib, D.; Plaut, J. J.; Picardi, G.

    2007-12-01

    In addition to the remote sounding of the ionosphere, the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) instrument on the Mars Express spacecraft, also excites local electron plasma oscillations. This paper summarizes the investigation of the local electron density using measurements of the locally excited electron plasma oscillation frequency. One of the advantages of this method is that the electron densities can be measured at very high altitudes, where remote ionospheric echoes cannot be detected. Measurements from 503 orbits over the period from August 4, 2005 to July 31, 2007 show that the average electron densities at a given solar zenith angle (SZA) decrease exponentially with increasing altitude. There is considerable variability at a given altitude due to the fact that the data at a specific altitude are obtained from different orbits. On the dayside of Mars, this exponential behavior continues up to altitudes of around 750 km. The scale height, in this altitude region, ranges between 130 km and 190 km. The average electron density is almost constant throughout the dayside in a given altitude range, but decreases rapidly as the spacecraft goes into the nightside. Simulations performed using different methods, show that the nearly constant density at a given altitude is due to transport effects. Investigation of individual orbits shows that the electron density throughout a pass often has large fluctuations, sometimes as much as ne/ne ~ 50 %, on time scales as small as 8 s.

  1. Inelastic electron and Raman scattering from the collective excitations in quantum wires: Zero magnetic field

    Directory of Open Access Journals (Sweden)

    Manvir S. Kushwaha

    2013-04-01

    Full Text Available The nanofabrication technology has taught us that an m-dimensional confining potential imposed upon an n-dimensional electron gas paves the way to a quasi-(n-m-dimensional electron gas, with m ⩽ n and 1 ⩽ n, m ⩽ 3. This is the road to the (semiconducting quasi-n dimensional electron gas systems we have been happily traversing on now for almost two decades. Achieving quasi-one dimensional electron gas (Q-1DEG [or quantum wire(s for more practical purposes] led us to some mixed moments in this journey: while the reduced phase space for the scattering led us believe in the route to the faster electron devices, the proximity to the 1D systems left us in the dilemma of describing it as a Fermi liquid or as a Luttinger liquid. No one had ever suspected the potential of the former, but it took quite a while for some to convince the others on the latter. A realistic Q-1DEG system at the low temperatures is best describable as a Fermi liquid rather than as a Luttinger liquid. In the language of condensed matter physics, a critical scrutiny of Q-1DEG systems has provided us with a host of exotic (electronic, optical, and transport phenomena unseen in their higher- or lower-dimensional counterparts. This has motivated us to undertake a systematic investigation of the inelastic electron scattering (IES and the inelastic light scattering (ILS from the elementary electronic excitations in quantum wires. We begin with the Kubo's correlation functions to derive the generalized dielectric function, the inverse dielectric function, and the Dyson equation for the dynamic screened potential in the framework of Bohm-Pines’ random-phase approximation. These fundamental tools then lead us to develop methodically the theory of IES and ILS for the Q-1DEG systems. As an application of the general formal results, which know no bounds regarding the subband occupancy, we compute the density of states, the Fermi energy, the full excitation spectrum [comprised of

  2. Excited-State Dynamics of Melamine and Its Lysine Derivative Investigated by Femtosecond Transient Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Yuyuan Zhang

    2016-11-01

    Full Text Available Melamine may have been an important prebiotic information carrier, but its excited-state dynamics, which determine its stability under UV radiation, have never been characterized. The ability of melamine to withstand the strong UV radiation present on the surface of the early Earth is likely to have affected its abundance in the primordial soup. Here, we studied the excited-state dynamics of melamine (a proto-nucleobase and its lysine derivative (a proto-nucleoside using the transient absorption technique with a UV pump, and UV and infrared probe pulses. For melamine, the excited-state population decays by internal conversion with a lifetime of 13 ps without coupling significantly to any photochemical channels. The excited-state lifetime of the lysine derivative is slightly longer (18 ps, but the dominant deactivation pathway is otherwise the same as for melamine. In both cases, the vast majority of excited molecules return to the electronic ground state on the aforementioned time scales, but a minor population is trapped in a long-lived triplet state.

  3. Dynamics of charge-transfer excited states relevant to photochemical energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Lim, E.C.

    1991-11-01

    The primary objective of the research program is to gain a fundamental understanding of the factors governing the efficiency of excited-state charge transfer CT interactions between two chromophores that are brought together in close proximity, either by a very short covalent linkage or by ground-state complex formation. CT and van der Walls (vdW), interactions in covalently bonded bichromophoric compounds in condensed phase, as well as those in vdW complexes in supersonic jets, are being investigated using laser-based techniques under a variety of experimental conditions. This progress report is divided into three parts, according to the class of molecular systems and the phase (liquid vs. gas) in which the excited-state interactions are probed. The first is concerned with the excited states of bridged diaryl compounds in the condensed phase. The second involves the excited states of vdW complexes in supersonic jets. Finally, the third, is concerned with the excited states of electron donor-acceptor (EDA) systems in both the condensed phase and supersonic jets. In each of these studies, we are concerned with the interchromophore interactions ranging from weak vdW forces to strong CT forces, and the factors determining whether the interaction forces are weak or strong in related molecules.

  4. Quantum control spectroscopy of vibrational modes: Comparison of control scenarios for ground and excited states in {beta}-carotene

    Energy Technology Data Exchange (ETDEWEB)

    Hauer, Juergen; Buckup, Tiago [Fachbereich Chemie, Physikalische Chemie, Philipps-Universitaet Marburg, Hans-Meerwein-Strasse, D-35043 Marburg (Germany); Motzkus, Marcus [Fachbereich Chemie, Physikalische Chemie, Philipps-Universitaet Marburg, Hans-Meerwein-Strasse, D-35043 Marburg (Germany)], E-mail: motzkus@staff.uni-marburg.de

    2008-06-23

    Quantum control spectroscopy (QCS) is used as a tool to study, address selectively and enhance vibrational wavepacket motion in large solvated molecules. By contrasting the application of Fourier-limited and phase-modulated excitation on different electronic states, the interplay between the controllability of vibrational coherence and electronic resonance is revealed. We contrast control on electronic ground and excited state by introducing an additional pump beam prior to a DFWM-sequence (Pump-DFWM). Via phase modulation of this initial pump pulse, coherent control is extended to structural evolution on the vibrationally hot ground state (hot-S{sub 0}) and lowest lying excited state (S{sub 1}) of {beta}-carotene. In an open loop setup, the control scenarios for these different electronic states are compared in their effectiveness and mechanism.

  5. Electron-phonon relaxation and excited electron distribution in gallium nitride

    Energy Technology Data Exchange (ETDEWEB)

    Zhukov, V. P. [Institute of Solid State Chemistry, Urals Branch of the Russian Academy of Sciences, Pervomayskaya st. 91, Yekaterinburg (Russian Federation); Donostia International Physics Center (DIPC), P. Manuel de Lardizabal 4, 20018 San Sebastian (Spain); Tyuterev, V. G., E-mail: valtyut00@mail.ru [Donostia International Physics Center (DIPC), P. Manuel de Lardizabal 4, 20018 San Sebastian (Spain); Tomsk State Pedagogical University, Kievskaya st. 60, Tomsk (Russian Federation); Tomsk State University, Lenin st. 36, Tomsk (Russian Federation); Chulkov, E. V. [Donostia International Physics Center (DIPC), P. Manuel de Lardizabal 4, 20018 San Sebastian (Spain); Tomsk State University, Lenin st. 36, Tomsk (Russian Federation); Departamento de Fisica de Materiales, Facultad de Ciencias Qumicas, UPV/EHU and Centro de Fisica de Materiales CFM-MPC and Centro Mixto CSIC-UPV/EHU, Apdo. 1072, 20080 San Sebastian (Spain); Echenique, P. M. [Donostia International Physics Center (DIPC), P. Manuel de Lardizabal 4, 20018 San Sebastian (Spain); Departamento de Fisica de Materiales, Facultad de Ciencias Qumicas, UPV/EHU and Centro de Fisica de Materiales CFM-MPC and Centro Mixto CSIC-UPV/EHU, Apdo. 1072, 20080 San Sebastian (Spain)

    2016-08-28

    We develop a theory of energy relaxation in semiconductors and insulators highly excited by the long-acting external irradiation. We derive the equation for the non-equilibrium distribution function of excited electrons. The solution for this function breaks up into the sum of two contributions. The low-energy contribution is concentrated in a narrow range near the bottom of the conduction band. It has the typical form of a Fermi distribution with an effective temperature and chemical potential. The effective temperature and chemical potential in this low-energy term are determined by the intensity of carriers' generation, the speed of electron-phonon relaxation, rates of inter-band recombination, and electron capture on the defects. In addition, there is a substantial high-energy correction. This high-energy “tail” largely covers the conduction band. The shape of the high-energy “tail” strongly depends on the rate of electron-phonon relaxation but does not depend on the rates of recombination and trapping. We apply the theory to the calculation of a non-equilibrium distribution of electrons in an irradiated GaN. Probabilities of optical excitations from the valence to conduction band and electron-phonon coupling probabilities in GaN were calculated by the density functional perturbation theory. Our calculation of both parts of distribution function in gallium nitride shows that when the speed of the electron-phonon scattering is comparable with the rate of recombination and trapping then the contribution of the non-Fermi “tail” is comparable with that of the low-energy Fermi-like component. So the high-energy contribution can essentially affect the charge transport in the irradiated and highly doped semiconductors.

  6. Transient optical response of ultrafast nonequilibrium excited metals: effects of electron-electron contribution to collisional absorption.

    Science.gov (United States)

    Colombier, J P; Combis, P; Audouard, E; Stoian, R

    2008-03-01

    Approaching energy coupling in laser-irradiated metals, we point out the role of electron-electron collision as an efficient control factor for ultrafast optical absorption. The high degree of laser-induced electron-ion nonequilibrium drives a complex absorption pattern with consequences on the transient optical properties. Consequently, high electronic temperatures determine largely the collision frequency and establish a transition between absorptive regimes in solid and plasma phases. In particular, taking into account umklapp electron-electron collisions, we performed hydrodynamic simulations of the laser-matter interaction to calculate laser energy deposition during the electron-ion nonequilibrium stage and subsequent matter transformation phases. We observe strong correlations between optical and thermodynamic properties according to the experimental situations. A suitable connection between solid and plasma regimes is chosen in accordance with models that describe the behavior in extreme, asymptotic regimes. The proposed approach describes as well situations encountered in pump-probe types of experiments, where the state of matter is probed after initial excitation. Comparison with experimental measurements shows simulation results which are sufficiently accurate to interpret the observed material behavior. A numerical probe is proposed to analyze the transient optical properties of matter exposed to ultrashort pulsed laser irradiation at moderate and high intensities. Various thermodynamic states are assigned to the observed optical variation. Qualitative indications of the amount of energy coupled in the irradiated targets are obtained.

  7. Nuclear Excitation by Electronic Transition of U-235

    Energy Technology Data Exchange (ETDEWEB)

    Chodash, Perry Adam [Univ. of California, Berkeley, CA (United States)

    2015-07-14

    Nuclear excitation by electronic transition (NEET) is a rare nuclear excitation that is theorized to occur in numerous isotopes. One isotope in particular, 235U, has been studied several times over the past 40 years and NEET of 235U has never been conclusively observed. These past experiments generated con icting results with some experiments claiming to observe NEET of 235U and others setting limits for the NEET rate. This dissertation discusses the latest attempt to measure NEET of 235U. If NEET of 235U were to occur, 235mU would be created. 235mU decays by internal conversion with a decay energy of 76 eV and a half-life of 26 minutes. A pulsed Nd:YAG laser operating at 1064 nm with a pulse energy of 789 mJ and a pulse width of 9 ns was used to generate a uranium plasma. The plasma was captured on a catcher plate and electrons emitted from the catcher plate were accelerated and focused onto a microchannel plate detector. A decay of 26 minutes would suggest the creation of 235mU and the possibility that NEET occurred. However, measurements performed using a variety of uranium targets spanning depleted uranium up to 99.4% enriched uranium did not observe a 26 minute decay. Numerous other decays were observed with half-lives ranging from minutes up to hundreds of minutes. While NEET of 235U was not observed during this experiment, an upper limit for the NEET rate of 235U was determined. In addition, explanations for the con icting results from previous experiments are given. Based on the results of this experiment and the previous experiments looking for NEET of 235U, it is likely that NEET of 235U has never been observed.

  8. Photoionization of excited states of neon-like Mg III

    Indian Academy of Sciences (India)

    . In the present work we have used the close coupling R-matrix method [8,11] to ob- tain accurate photoionization cross-section from the first three excited 1s22s22p53s 3 1P0,. 1s22s22p53p 3Se states of Mg III, allowing for the residual ion to ...

  9. Size dependent deactivation of the excited state of DHICA

    DEFF Research Database (Denmark)

    Gauden, Magdalena; Pezzella, Alessandro; Panzella, Lucia

    2008-01-01

    Melanin is a natural pigment mainly responsible for the protection of skin and eyes from UV damage. 5,6- dihydroxyindole- 2 carboxylic acid (DHICA) is a key melanin building block. We have investigated the excited state dynamics of DHICA as well as its derivatives and oligomeric units using...

  10. Excited state intramolecular charge transfer reaction in 4-(1 ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Excited state intramolecular charge transfer reaction of 4-(1-azetidinyl) benzonitrile (P4C) in deuterated and normal methanol, ethanol and acetonitrile has been studied in order to investigate the solvent isotope effects on reaction rates and yields. These quantities (reaction rates and yields) along with several.

  11. Excited state intramolecular charge transfer reaction in 4-(1 ...

    Indian Academy of Sciences (India)

    Excited state intramolecular charge transfer reaction of 4-(1-azetidinyl) benzonitrile (P4C) in deuterated and normal methanol, ethanol and acetonitrile has been studied in order to investigate the solvent isotope effects on reaction rates and yields. These quantities (reaction rates and yields) along with several other ...

  12. Electronic states of myricetin

    DEFF Research Database (Denmark)

    Vojta, Danijela; Karlsen, Eva; Spanget-Larsen, Jens

    2017-01-01

    Myricetin (3,3',4',5,5',7'-hexahydroxyflavone) was investigated by linear dichroism spectroscopy on molecular samples partially aligned in stretched poly(vinyl alcohol) (PVA). At least five electronic transitions in the range 40000 – 20000 cm–1 were characterized with respect to their wavenumbers...

  13. A new device for combined Coulomb excitation and isomeric conversion electron spectroscopy with fast fragmentation beams

    Energy Technology Data Exchange (ETDEWEB)

    Clement, E. [CEA Saclay, DSM/DAPNIA/SPhN, F-91191 Gif-sur-Yvette (France); GANIL, BP-5027, F-14076 Caen Cedex (France); Goergen, A. [CEA Saclay, DSM/DAPNIA/SPhN, F-91191 Gif-sur-Yvette (France)], E-mail: andreas.goergen@cea.fr; Korten, W. [CEA Saclay, DSM/DAPNIA/SPhN, F-91191 Gif-sur-Yvette (France); Buerger, A. [CEA Saclay, DSM/DAPNIA/SPhN, F-91191 Gif-sur-Yvette (France); Helmholtz-Institut fuer Strahlen- und Kernphysik, Universitaet Bonn, D-53115 Bonn (Germany); Chatillon, A.; Le Coz, Y.; Theisen, Ch. [CEA Saclay, DSM/DAPNIA/SPhN, F-91191 Gif-sur-Yvette (France); Zielinska, M. [CEA Saclay, DSM/DAPNIA/SPhN, F-91191 Gif-sur-Yvette (France); Heavy Ion Laboratory, Warsaw University, Warsaw PL-02097 (Poland); Blank, B. [CEN Bordeaux-Gradignan, Universite Bordeaux I-CNRS/IN2P3, F-33175 Gradignan Cedex (France); Davies, P.J.; Fox, S.P. [Department of Physics, University of York, York YO10 5DD (United Kingdom); Gerl, J. [Gesellschaft fuer Schwerionenforschung, D-64291 Darmstadt (Germany); Georgiev, G.; Grevy, S. [GANIL, BP-5027, F-14076 Caen Cedex (France); Iwanicki, J. [Heavy Ion Laboratory, Warsaw University, Warsaw PL-02097 (Poland); Jenkins, D.G.; Johnston-Theasby, F.; Joshi, P. [Department of Physics, University of York, York YO10 5DD (United Kingdom); Matea, I. [CEN Bordeaux-Gradignan, Universite Bordeaux I-CNRS/IN2P3, F-33175 Gradignan Cedex (France); Napiorkowski, P.J. [Heavy Ion Laboratory, Warsaw University, Warsaw PL-02097 (Poland)] (and others)

    2008-03-21

    A new setup has been designed to perform Coulomb excitation experiments with fragmentation beams at intermediate energy and to measure at the same time conversion electrons from isomeric states populated in the fragmentation reaction. The newly designed setup is described and experimental results from a first experiment are shown. Radioactive even-even nuclei in the mass region A{approx_equal}70 close to the N=Z line were Coulomb excited after fragmentation of an intense primary {sup 78}Kr beam and selection in flight with the LISE3 spectrometer at GANIL. The {gamma} rays emitted after Coulomb excitation were detected in an array of four large segmented HPGe clover detectors in a very close geometry. The scattered ions were identified in a stack of highly segmented annular silicon detectors combined with a time-of-flight measurement using beam tracking detectors. Conversion electrons from isomeric 0{sub 2}{sup +} states decaying via electric monopole transitions were detected in an array of segmented cooled silicon detectors surrounding a telescope of plastic scintillators. Reduced transitions probabilities B(E2;0{sub 1}{sup +}{yields}2{sub 1}{sup +}) were deduced for several stable and radioactive nuclei.

  14. Charge-Transfer Dynamics in the Lowest Excited State of a Pentacene–Fullerene Complex: Implications for Organic Solar Cells

    KAUST Repository

    Joseph, Saju

    2017-10-02

    We characterize the dynamic nature of the lowest excited state in a pentacene/C60 complex on the femtosecond time scale, via a combination of ab initio molecular dynamics and time-dependent density functional theory. We analyze the correlations between the molecular vibrations of the complex and the oscillations in the electron-transfer character of its lowest excited state, which point to vibration-induced coherences between the (pentacene-based) local-excitation (LE) state and the complex charge-transfer (CT) state. We discuss the implications of our results on this model system for the exciton-dissociation process in organic solar cells.

  15. Lattice QCD determination of patterns of excited baryon states

    CERN Document Server

    Basak, Subhasish; Fleming, G T; Juge, K J; Lichtl, A; Morningstar, C; Richards, D G; Sato, I; Wallace, S J

    2007-01-01

    Energies for excited isospin I=1/2 and I=3/2 states that include the nucleon and Delta families of baryons are computed using quenched, anisotropic lattices. Baryon interpolating field operators that are used include nonlocal operators that provide G_2 irreducible representations of the octahedral group. The decomposition of spin 5/2 or higher spin states is realized for the first time in a lattice QCD calculation. We observe patterns of degenerate energies in the irreducible representations of the octahedral group that correspond to the subduction of the continuum spin 5/2 or higher. The overall pattern of low-lying excited states corresponds well to the pattern of physical states subduced to the irreducible representations of the octahedral group.

  16. Optimized resonating valence bond state in square lattice: correlations & excitations

    Directory of Open Access Journals (Sweden)

    Z Nourbakhsh

    2009-09-01

    Full Text Available We consider RVB state as a variational estimate for the ground state of Heisenberg antiferromagnet in square lattice. We present numerical calculation of energy, spin-spin correlation function and spin excitation spectrum. We show, that the quantum flactuations reduce of magnetization respect to Neel order. Our results are in good agreement with other methods such as spin-wave calculation and series expansions.

  17. All Electron ab initio Investigations of the Electronic States of the MoN Molecule

    DEFF Research Database (Denmark)

    Shim, Irene; Gingerich, Karl A.

    1999-01-01

    The low lying electronic states of the molecule MoN have been investigated by performing all electron ab initio multi-configuration self-consistent-field (CASSCF) calculations. The relativistic corrections for the one electron Darwin contact term and the relativistic mass-velocity correction have...... been determined in perturbation calculations. The electronic ground state is confirmed as being 4 . The chemical bond of MoN has triple bond character due to the approximately fully occupied delocalized bonding and orbitals. The spectroscopic constants for the ground state and ten excited states have...... been derived. The excited doublet states, 2 , 2 , 2 , and 2 + are found to be lower lying than the 4 state that has been investigated experimentally. Elaborate multi configuration configuration interaction (MRCI) calculations have been carried out for the states 4 and 4 using various basis sets...

  18. Femtosecond laser electronic excitation tagging for aerodynamic and thermodynamic measurements

    Science.gov (United States)

    Calvert, Nathan David

    This thesis presents applications of Femtosecond Laser Electronic Excitation Tagging (FLEET) to a variety of aerodynamic and thermodynamic measurements. FLEET tagged line characteristics such as intensity, width and spectral features are investigated in various flow conditions (pressure, temperature, velocity, steadiness, etc.) and environments (gas composition) for both temporally and spatially instantaneous and averaged data. Special attention is drawn to the nature of first and second positive systems of molecular nitrogen and the ramifications on FLEET measurements. Existing laser-based diagnostic techniques are summarized and FLEET is directly compared with Particle Image Velocimetry (PIV) in various low speed flows. Multidimensional velocity, acceleration, vorticity and other flow parameters are extracted in supersonic free jets and within an enclosed in-draft tunnel test section. Probability distribution functions of the mean and standard deviation of critical flow parameters are unveiled by utilizing a Bayesian statistical framework wherein likelihood functions are established from prior and posterior distributions. Advanced image processing techniques based on fuzzy logic are applied to single-shot FLEET images with low signal-to-noise ratio to improve image quality and reduce uncertainty in data processing algorithms. Lastly, FLEET second positive and first negative emission are considered at a wide range of pressures to correct for changes in select rovibrational peak magnitude and shape due to density from which bulk gas temperature may be extracted.

  19. Single-active-electron analysis of laser-polarization effects on atomic/molecular multiphoton excitation.

    Science.gov (United States)

    Kanno, Manabu; Inada, Nobuyoshi; Kono, Hirohiko

    2017-10-21

    We theoretically explore the effects of optical ellipticity on single-active-electron multiphoton excitation in atoms and (nearly) spherical molecules irradiated by intense polarized laser fields. This work was motivated by the experimental and theoretical studies of Hertel et al. [Phys. Rev. Lett. 102, 023003 (2009) and Phys. Rev. A 79, 053414 (2009)], who reported pronounced changes in the near-infrared-induced ion yields of xenon and C60 as a function of ellipticity (in particular, yield reduction for circular polarization) at low light intensities and derived a perturbative cross section formula to describe such polarization effects by assuming that the excited-state energies and radial transition electric dipole moments of the system are independent of the azimuthal quantum number l. First, by reformulating the N-photon absorption cross section of a single active electron, we prove that their assumptions reduce the network of optically allowed transition pathways into what we call the "Pascal triangle" consisting of (N + 1) (N + 2)/2 states only. Next, nonperturbative analytical and numerical solutions of the time-dependent Schrödinger equation for a simple model of two-photon excitation are presented not only in the low-intensity regime but also in the high-intensity regime. The results show that the determining factor of ellipticity-dependent multiphoton excitation probability is transition moment magnitudes and that the detailed energetic structure of the system also becomes important at high intensities. The experimentally observed flattening of the ion yields of xenon and C60 with increasing intensity can be explained without a saturation effect, which was previously deemed to be responsible for it. We also argue the applicability range of the cross section formula by Hertel et al. and the identity of the "doorway state" for ionization of C60.

  20. Single-active-electron analysis of laser-polarization effects on atomic/molecular multiphoton excitation

    Science.gov (United States)

    Kanno, Manabu; Inada, Nobuyoshi; Kono, Hirohiko

    2017-10-01

    We theoretically explore the effects of optical ellipticity on single-active-electron multiphoton excitation in atoms and (nearly) spherical molecules irradiated by intense polarized laser fields. This work was motivated by the experimental and theoretical studies of Hertel et al. [Phys. Rev. Lett. 102, 023003 (2009) and Phys. Rev. A 79, 053414 (2009)], who reported pronounced changes in the near-infrared-induced ion yields of xenon and C60 as a function of ellipticity (in particular, yield reduction for circular polarization) at low light intensities and derived a perturbative cross section formula to describe such polarization effects by assuming that the excited-state energies and radial transition electric dipole moments of the system are independent of the azimuthal quantum number l. First, by reformulating the N-photon absorption cross section of a single active electron, we prove that their assumptions reduce the network of optically allowed transition pathways into what we call the "Pascal triangle" consisting of (N + 1) (N + 2)/2 states only. Next, nonperturbative analytical and numerical solutions of the time-dependent Schrödinger equation for a simple model of two-photon excitation are presented not only in the low-intensity regime but also in the high-intensity regime. The results show that the determining factor of ellipticity-dependent multiphoton excitation probability is transition moment magnitudes and that the detailed energetic structure of the system also becomes important at high intensities. The experimentally observed flattening of the ion yields of xenon and C60 with increasing intensity can be explained without a saturation effect, which was previously deemed to be responsible for it. We also argue the applicability range of the cross section formula by Hertel et al. and the identity of the "doorway state" for ionization of C60.

  1. Excited-State N2 Dissociation Pathway on Fe-Functionalized Au.

    Science.gov (United States)

    Martirez, John Mark P; Carter, Emily A

    2017-03-29

    Localized surface plasmon resonances (LSPRs) offer the possibility of light-activated chemical catalysis on surfaces of strongly plasmonic metal nanoparticles. This technology relies on lower-barrier bond formation and/or dissociation routes made available through energy transfer following the eventual decay of LSPRs. The coupling between these decay processes and a chemical trajectory (nuclear motion, charge-transfer, intersystem crossing, etc.) dictates the availability of these alternative (possibly lower barrier) excited-state channels. The Haber-Bosch method of NH3 synthesis from N2 and H2 is notoriously energy intensive. This is due to the difficulty of N2 dissociation despite the overall reaction being thermodynamically favorable at ambient temperatures and pressures. LSPRs may provide means to improve the kinetics of N2 dissociation via induced resonance electronic excitation. In this work, we calculate, via embedded n-electron valence second-order perturbation theory within the density functional embedding theory, the excited-state potential energy surfaces for dissociation of N2 on an Fe-doped Au(111) surface. This metal alloy may take advantage simultaneously of the strong LSPR of Au and the catalytic activity of Fe toward N2 dissociation. We find the ground-state dissociation activation energy to be 4.74 eV/N2, with Fe as the active site on the surface. Consecutive resonance energy transfers (RETs) may be accessed due to the availability of many electronically excited states with intermediate energies arising from the metal surface that may couple to states induced by the Fe-dopant and the adsorbate molecule, and crossing between excited states may effectively lower the dissociation barrier to 1.33 eV. Our work illustrates that large energetic barriers, prohibitive toward chemical reaction, may be overcome through multiple RETs facilitating an otherwise difficult chemical process.

  2. The energy structure and decay channels of the 4p6-shell excited states in Sr

    Science.gov (United States)

    Kupliauskienė, A.; Kerevičius, G.; Borovik, V.; Shafranyosh, I.; Borovik, A.

    2017-11-01

    The ejected-electron spectra arising from the decay of the 4p{}5{{nln}}{\\prime }{l}{\\prime }{n}{\\prime\\prime }{l}{\\prime\\prime } autoionizing states in Sr atoms have been studied precisely at the incident-electron energies close to excitation and ionization thresholds of the 4{{{p}}}6 subshell. The excitation behaviors for 58 lines observed between 12 and 21 eV ejected-electron kinetic energy have been investigated. Also, the ab initio calculations of excitation energies, autoionization probabilities and electron-impact excitation cross sections of the states 4p{}5{{nln}}{\\prime }{l}{\\prime }{n}{\\prime\\prime }{l}{\\prime\\prime } (nl = 4d, 5s, 5p; {n}{\\prime }{l}{\\prime } = 4d, 5s, 5p; {n}{\\prime\\prime }{l}{\\prime\\prime } = 5s, 6s, 7s, 8s, 9s, 5p, 6p, 5d, 6d, 7d, 8d, 4f, 5g) have been performed by employing the large-scale configuration-interaction method in the basis of the solutions of Dirac–Fock–Slater equations. The obtained experimental and theoretical data have been used for the accurate identification of the 60 lines in ejected-electron spectra and the 68 lines observed earlier in photoabsorption spectra. The excitation and decay processes for 105 classified states in the 4p55s{}2{nl}, 4p54d{}2{nl} and 4p55s{{nln}}{\\prime }{l}{\\prime } configurations have been considered in detail. In particular, most of the states lying below the ionization threshold of the 4p6 subshell at 26.92 eV possess up to four decay channels with formation of Sr+ in 5s{}1/2, 4d{}3/{2,5/2} and 5p{}1/{2,3/2} states. Two-step autoionization and two-electron Auger transitions with formation of Sr2+ in the 4p6 {}1{{{S}}}0 ground state are the main decay paths for high-lying autoionizing states. The excitation threshold of the 4{{{p}}}6 subshell in Sr has been established at 20.98 ± 0.05 eV.

  3. Resonant coherent excitation of hydrogen-like ions planar channeled in a crystal; Transition into the first excited state

    Science.gov (United States)

    Babaev, A.; Pivovarov, Yu. L.

    2012-03-01

    The presented program is designed to simulate the characteristics of resonant coherent excitation of hydrogen-like ions planar-channeled in a crystal. The program realizes the numerical algorithm to solve the Schrödinger equation for the ion-bound electron at a special resonance excitation condition. The calculated wave function of the bound electron defines probabilities for the ion to be in the either ground or first excited state, or to be ionized. Finally, in the outgoing beam the fractions of ions in the ground state, in the first excited state, and ionized by collisions with target electrons, are defined. The program code is written on C++ and is designed for multiprocessing systems (clusters). The output data are presented in the table. Program summaryProgram title: RCE_H-like_1 Catalogue identifier: AEKX_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKX_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 2813 No. of bytes in distributed program, including test data, etc.: 34 667 Distribution format: tar.gz Programming language: C++ (g++, icc compilers) Computer: Multiprocessor systems (clusters) Operating system: Any OS based on LINUX; program was tested under Novell SLES 10 Has the code been vectorized or parallelized?: Yes. Contains MPI directives RAM: C++, Intel C++ compilers Nature of problem: When relativistic hydrogen-like ion moves in the crystal in the planar channeling regime, in the ion rest frame the time-periodic electric field acts on the bound electron. If the frequency of this field matches the transition frequency between electronic energy levels, the resonant coherent excitation can take place. Therefore, ions in the different states may be observed in the outgoing beam behind the crystal. To get the probabilities for the ion to be

  4. Excited S-symmetry states of positronic lithium and beryllium.

    Science.gov (United States)

    Strasburger, Krzysztof

    2016-04-14

    The possibility of the existence of excited S-symmetry states of positronic lithium and beryllium, resulting from the positron attachment to high-spin P parent atomic states, is examined and confirmed with variational calculations in the basis of explicitly correlated Gaussian functions. The unexpectedly different order of the energies of the S and P states is explained by the formation of the positronium cluster structure and associated disappearance of the destabilizing centrifugal force. The annihilation properties of newly discovered states are discussed in the context of prospective experimental detection.

  5. Beyond Time-Dependent Density Functional Theory Using Only Single Excitations: Methods for Computational Studies of Excited States in Complex Systems.

    Science.gov (United States)

    Herbert, John M; Zhang, Xing; Morrison, Adrian F; Liu, Jie

    2016-05-17

    Single-excitation methods, namely, configuration interaction singles and time-dependent density functional theory (TDDFT), along with semiempirical versions thereof, represent the most computationally affordable electronic structure methods for describing electronically excited states, scaling as [Formula: see text] absent further approximations. This relatively low cost, combined with a treatment of electron correlation, has made TDDFT the most widely used excited-state quantum chemistry method over the past 20+ years. Nevertheless, certain inherent problems (beyond just the accuracy of this or that exchange-correlation functional) limit the utility of traditional TDDFT. For one, it affords potential energy surfaces whose topology is incorrect in the vicinity of any conical intersection (CI) that involves the ground state. Since CIs are the conduits for transitions between electronic states, the TDDFT description of photochemistry (internal conversion and intersystem crossing) is therefore suspect. Second, the [Formula: see text] cost can become prohibitive in large systems, especially those that involve multiple electronically coupled chromophores, for example, the antennae structures of light-harvesting complexes or the conjugated polymers used in organic photovoltaics. In such cases, the smallest realistic mimics might already be quite large from the standpoint of ab initio quantum chemistry. This Account describes several new computational methods that address these problems. Topology around a CI can be rigorously corrected using a "spin-flip" version of TDDFT, which involves an α → β spin-flipping transition in addition to occupied → virtual excitation of one electron. Within this formalism, singlet states are generated via excitation from a high-spin triplet reference state, doublets from a quartet, etc. This provides a more balanced treatment of electron correlation between ground and excited states. Spin contamination is problematic away from the

  6. Base sequence and higher-order structure induce the complex excited-state dynamics in DNA.

    Science.gov (United States)

    Schwalb, Nina K; Temps, Friedrich

    2008-10-10

    The high photostability of DNA is commonly attributed to efficient radiationless electronic relaxation processes. We used femtosecond time-resolved fluorescence spectroscopy to reveal that the ensuing dynamics are strongly dependent on base sequence and are also affected by higher-order structure. Excited electronic state lifetimes in dG-doped d(A)20 single-stranded DNA and dG.dC-doped d(A)20.d(T)20 double-stranded DNA decrease sharply with the substitution of only a few bases. In duplexes containing d(AGA).d(TCT) or d(AG).d(TC) repeats, deactivation of the fluorescing states occurs on the subpicosecond time scale, but the excited-state lifetimes increase again in extended d(G) runs. The results point at more complex and molecule-specific photodynamics in native DNA than may be evident in simpler model systems.

  7. Three-photon Gaussian–Gaussian–Laguerre–Gaussian excitation of a localized atom to a highly excited Rydberg state

    Science.gov (United States)

    Mashhadi, L.

    2017-12-01

    Optical vortices are currently one of the most intensively studied topics in light–matter interaction. In this work, a three-step axial Doppler- and recoil-free Gaussian–Gaussian-Laguerre–Gaussian (GGLG) excitation of a localized atom to the highly excited Rydberg state is presented. By assuming a large detuning for intermediate states, an effective quadrupole excitation related to the Laguerre–Gaussian (LG) excitation to the highly excited Rydberg state is obtained. This special excitation system radially confines the single highly excited Rydberg atom independently of the trapping system into a sharp potential landscape into the so-called ‘far-off-resonance optical dipole-quadrupole trap’ (FORDQT). The key parameters of the Rydberg excitation to the highly excited state, namely the effective Rabi frequency and the effective detuning including a position-dependent AC Stark shift, are calculated in terms of the basic parameters of the LG beam and of the polarization of the excitation lasers. It is shown that the obtained parameters can be tuned to have a precise excitation of a single atom to the desired Rydberg state as well. The features of transferring the optical orbital and spin angular momentum of the polarized LG beam to the atom via quadrupole Rydberg excitation offer a long-lived and controllable qudit quantum memory. In addition, in contrast to the Gaussian laser beam, the doughnut-shaped LG beam makes it possible to use a high intensity laser beam to increase the signal-to-noise ratio in quadrupole excitation with minimized perturbations coming from stray light broadening in the last Rydberg excitation process.

  8. Azole energetic materials: Initial mechanisms for the energy release from electronical excited nitropyrazoles

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Bing; Yu, Zijun; Bernstein, Elliot R., E-mail: erb@lamar.Colostate.edu [Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872 (United States)

    2014-01-21

    Decomposition of energetic material 3,4-dinitropyrazole (DNP) and two model molecules 4-nitropyrazole and 1-nitropyrazole is investigated both theoretically and experimentally. The initial decomposition mechanisms for these three nitropyrazoles are explored with complete active space self-consistent field (CASSCF) level. The NO molecule is observed as an initial decomposition product from all three materials subsequent to UV excitation. Observed NO products are rotationally cold (<50 K) for all three systems. The vibrational temperature of the NO product from DNP is (3850 ± 50) K, 1350 K hotter than that of the two model species. Potential energy surface calculations at the CASSCF(12,8)/6-31+G(d) level illustrate that conical intersections plays an essential role in the decomposition mechanism. Electronically excited S{sub 2} nitropyraozles can nonradiatively relax to lower electronic states through (S{sub 2}/S{sub 1}){sub CI} and (S{sub 1}/S{sub 0}){sub CI} conical intersection and undergo a nitro-nitrite isomerization to generate NO product either in the S{sub 1} state or S{sub 0} state. In model systems, NO is generated in the S{sub 1} state, while in the energetic material DNP, NO is produced on the ground state surface, as the S{sub 1} decomposition pathway is energetically unavailable. The theoretically predicted mechanism is consistent with the experimental results, as DNP decomposes in a lower electronic state than do the model systems and thus the vibrational energy in the NO product from DNP should be hotter than from the model systems. The observed rotational energy distributions for NO are consistent with the final structures of the respective transition states for each molecule.

  9. Controlling excited-state contamination in nucleon matrix elements

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Boram; Gupta, Rajan; Bhattacharya, Tanmoy; Engelhardt, Michael; Green, Jeremy; Joó, Bálint; Lin, Huey-Wen; Negele, John; Orginos, Kostas; Pochinsky, Andrew; Richards, David; Syritsyn, Sergey; Winter, Frank

    2016-06-01

    We present a detailed analysis of methods to reduce statistical errors and excited-state contamination in the calculation of matrix elements of quark bilinear operators in nucleon states. All the calculations were done on a 2+1 flavor ensemble with lattices of size $32^3 \\times 64$ generated using the rational hybrid Monte Carlo algorithm at $a=0.081$~fm and with $M_\\pi=312$~MeV. The statistical precision of the data is improved using the all-mode-averaging method. We compare two methods for reducing excited-state contamination: a variational analysis and a two-state fit to data at multiple values of the source-sink separation $t_{\\rm sep}$. We show that both methods can be tuned to significantly reduce excited-state contamination and discuss their relative advantages and cost-effectiveness. A detailed analysis of the size of source smearing used in the calculation of quark propagators and the range of values of $t_{\\rm sep}$ needed to demonstrate convergence of the isovector charges of the nucleon to the $t_{\\rm sep} \\to \\infty $ estimates is presented.

  10. Structural Monitoring of the Onset of Excited-State Aromaticity in a Liquid Crystal Phase.

    Science.gov (United States)

    Hada, Masaki; Saito, Shohei; Tanaka, Sei'ichi; Sato, Ryuma; Yoshimura, Masahiko; Mouri, Kazuhiro; Matsuo, Kyohei; Yamaguchi, Shigehiro; Hara, Mitsuo; Hayashi, Yasuhiko; Röhricht, Fynn; Herges, Rainer; Shigeta, Yasuteru; Onda, Ken; Miller, R J Dwayne

    2017-11-08

    Aromaticity of photoexcited molecules is an important concept in organic chemistry. Its theory, Baird's rule for triplet aromaticity since 1972 gives the rationale of photoinduced conformational changes and photochemical reactivities of cyclic π-conjugated systems. However, it is still challenging to monitor the dynamic structural change induced by the excited-state aromaticity, particularly in condensed materials. Here we report direct structural observation of a molecular motion and a subsequent packing deformation accompanied by the excited-state aromaticity. Photoactive liquid crystal (LC) molecules featuring a π-expanded cyclooctatetraene core unit are orientationally ordered but loosely packed in a columnar LC phase, and therefore a photoinduced conformational planarization by the excited-state aromaticity has been successfully observed by time-resolved electron diffractometry and vibrational spectroscopy. The structural change took place in the vicinity of excited molecules, producing a twisted stacking structure. A nanoscale torque driven by the excited-state aromaticity can be used as the working mechanism of new photoresponsive materials.

  11. Electron densities in the upper ionosphere of Mars from the excitation of electron plasma oscillations

    Science.gov (United States)

    Duru, F.; Gurnett, D. A.; Morgan, D. D.; Modolo, R.; Nagy, A. F.; Najib, D.

    2008-07-01

    In addition to remote radio sounding of the ionosphere of Mars, the MARSIS (Mars Advanced Radar for Subsurface and Ionospheric Sounding) instrument on the Mars Express spacecraft is also able to measure the in situ electron density from the excitation of local electron plasma oscillations. This paper presents an investigation of the electron density in the upper ionosphere of Mars based on the frequency of these oscillations. The advantage of this method is that electron densities can be measured at much higher altitudes than can be determined from remote radio soundings. Using this technique electron densities from 503 orbits have been analyzed over the period from 4 August 2005 to 31 July 2007 for altitudes ranging from about 275 to 1300 km. Although there is considerable variability from orbit to orbit, the median electron density at a given solar zenith angle (SZA) on the dayside of Mars decreases systematically with increasing altitude with a characteristic plasma scale height varying from about 80 to 145 km. At a fixed altitude, the electron density remains almost constant for SZAs less than about 80°. For SZAs greater than about 80° the electron density decreases rapidly with increasing SZA, approaching very low values on the nightside. Simulations performed using both magnetohydrodynamic and hybrid codes show that the nearly constant density at a given altitude is caused by the horizontal transport of plasma from the dayside toward the nightside due to interaction with the solar wind.

  12. A low-cost approach to electronic excitation energies based on the driven similarity renormalization group

    Science.gov (United States)

    Li, Chenyang; Verma, Prakash; Hannon, Kevin P.; Evangelista, Francesco A.

    2017-08-01

    We propose an economical state-specific approach to evaluate electronic excitation energies based on the driven similarity renormalization group truncated to second order (DSRG-PT2). Starting from a closed-shell Hartree-Fock wave function, a model space is constructed that includes all single or single and double excitations within a given set of active orbitals. The resulting VCIS-DSRG-PT2 and VCISD-DSRG-PT2 methods are introduced and benchmarked on a set of 28 organic molecules [M. Schreiber et al., J. Chem. Phys. 128, 134110 (2008)]. Taking CC3 results as reference values, mean absolute deviations of 0.32 and 0.22 eV are observed for VCIS-DSRG-PT2 and VCISD-DSRG-PT2 excitation energies, respectively. Overall, VCIS-DSRG-PT2 yields results with accuracy comparable to those from time-dependent density functional theory using the B3LYP functional, while VCISD-DSRG-PT2 gives excitation energies comparable to those from equation-of-motion coupled cluster with singles and doubles.

  13. Photophysical behavior of doubly bridged d7-d7 metal-metal bonded compounds - The crystal structure and the excited- and ground-state electronic spectra of Re2(CO)6(dmpm)2 (dmpm = bis/dimethylphosphino/ methane)

    Science.gov (United States)

    Milder, Steven J.; Castellani, Michael P.; Weakley, Timothy J. R.; Tyler, David R.; Miskowski, Vincent M.; Stiegman, A. E.

    1990-01-01

    Re2(CO)6(dmpm)2 shows photophysical behavior in a rigid medium that differs dramatically from that observed in fluid solution. In a hydrocarbon glass at 77 K, metal-metal bond homolysis is suppressed and an intense phosphorescence is observed. The transient absorption spectrum, which shows only weak transitions to the red of the ground state 1(sigma-sigma asterisk) transition, permits assignment of the emitting state to a 3(sigma-sigma asterisk) transition. The crystal structure of Re2(CO)6(dmpm)2 is also reported. The ground-state electronic structure is discussed relative to the structural data.

  14. Effect of vacuum polarization on the excitation of hydrogen atom by electron impact

    Directory of Open Access Journals (Sweden)

    Sujata Bhattacharyya

    1981-01-01

    for 1S−2S excitation of the hydrogen atom by electron impact. The excitation amplitude calculated field theoretically is found to be lowered by 0.47t2/(t2+93 where t2=4|P−Q|2, P and Q being the momenta of the incident and scattered electrons respectively.

  15. Charge-transfer excited states in aqueous DNA: Insights from many-body Green's function theory.

    Science.gov (United States)

    Yin, Huabing; Ma, Yuchen; Mu, Jinglin; Liu, Chengbu; Rohlfing, Michael

    2014-06-06

    Charge-transfer (CT) excited states play an important role in the excited-state dynamics of DNA in aqueous solution. However, there is still much controversy on their energies. By ab initio many-body Green's function theory, together with classical molecular dynamics simulations, we confirm the existence of CT states at the lower energy side of the optical absorption maximum in aqueous DNA as observed in experiments. We find that the hydration shell can exert strong effects (∼1  eV) on both the electronic structure and CT states of DNA molecules through dipole electric fields. In this case, the solvent cannot be simply regarded as a macroscopic screening medium as usual. The influence of base stacking and base pairing on the CT states is also discussed.

  16. Ultrafast Control of the electronic phase of a manganite viamode-selective vibrational excitation

    Energy Technology Data Exchange (ETDEWEB)

    Rini, Matteo; Tobey, Ra' anan I.; Dean, Nicky; Tokura, Yoshinori; Schoenlein, Robert W.; Cavalleri, Andrea

    2007-05-01

    Controlling a phase of matter by coherently manipulatingspecific vibrational modes has long been an attractive (yet elusive) goalfor ultrafast science. Solids with strongly correlated electrons, inwhich even subtle crystallographic distortions can result in colossalchanges of the electronic and magnetic properties, could be directedbetween competing phases by such selective vibrational excitation. Inthis way, the dynamics of the electronic ground state of the systembecome accessible, and new insight into the underlying physics might begained. Here we report the ultrafast switching of the electronic phase ofa magnetoresistive manganite via direct excitation of a phonon mode at 71meV (17 THz). A prompt, five-order-of-magnitude drop in resistivity isobserved, associated with a non-equilibrium transition from the stableinsulating phase to a metastable metallic phase. In contrast withlight-induced, and current-driven phase transitions, the vibrationallydriven bandgap collapse observed here is not related to hot-carrierinjection and is uniquely attributed to a large-amplitude Mn-Odistortion. This corresponds to a perturbation of theperovskite-structure tolerance factor, which in turn controls theelectronic bandwidth via inter-site orbital overlap. Phase control bycoherent manipulation of selected metal--oxygen phonons should findextensive application in other complex solids--notably in copper oxidesuperconductors, in which the role of Cu-O vibrations on the electronicproperties is currently controversial.

  17. Influence of matrix rigidity on the internal twisting of electronically excited thioflavin T in polymer nanostructures

    Science.gov (United States)

    Lee, Youmin; Kim, Yu Lim; Kim, Myung Hwa; Lee, Minyung

    2013-11-01

    Thioflavin T (ThT) exhibits an enormous increase in fluorescence intensity (or lifetime) upon binding to β-sheet rich protein aggregates. In this letter, we measured the fluorescence lifetimes of ThT in poly (ethylene oxide) (PEO) and poly (acrylic acid) (PAA) polymer films and nanofibers and observed that the excited-state motion of ThT is slowed down as the mechanical rigidity of medium increases. Using ThT as a rigidity sensor, we first demonstrate that the fluorescence lifetime imaging microscopy (FLIM) can easily distinguish the PEO and PAA nanofiber structures, which were not discernable by electron microscopy.

  18. Threshold-energy region in the electron-excitation cross sections of the sodium resonant transition

    Energy Technology Data Exchange (ETDEWEB)

    Ying, C.H.; Perales, F.; Vuskovic, L.; Bederson, B. (Physics Department, New York University, New York, New York 10003 (United States))

    1993-08-01

    We present measurements of absolute excitation differential cross sections for electron scattering by ground-state sodium in the 3[ital P] manifold at 2.3, 2.4, 2.5, 2.6, 3.0, 3.3, and 3.7 eV in the angular range 1[degree] to 60[degree]. No calibration or normalization procedures are involved. Comparisons with computational results of the close-coupling approximation and experimentally obtained [Delta][ital M][sub [ital s

  19. 4f-5d Transitions of Tb3+ in Cs2NaYF6: The Effect of Distortion of the Excited-State Configuration

    NARCIS (Netherlands)

    Duan, C.K.; Tanner, P.A.; Meijerink, A.; Makhov, V.

    2011-01-01

    The low-temperature absorption and excitation spectra of interconfigurational 4f–5d transitions of Tb3+ in a cubic fluoride host demonstrate the appearance of a first-order linear Jahn–Teller effect for the high-spin excited states of the excited electronic configuration 4f75d involving 5d t2g

  20. The reaction dynamics of alkali dimer molecules and electronically excited alkali atoms with simple molecules

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Hongtao [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1995-12-01

    This dissertation presents the results from the crossed molecular beam studies on the dynamics of bimolecular collisions in the gas phase. The primary subjects include the interactions of alkali dimer molecules with simple molecules, and the inelastic scattering of electronically excited alkali atoms with O2. The reaction of the sodium dimers with oxygen molecules is described in Chapter 2. Two reaction pathways were observed for this four-center molecule-molecule reaction, i.e. the formations of NaO2 + Na and NaO + NaO. NaO2 products exhibit a very anisotropic angular distribution, indicating a direct spectator stripping mechanism for this reaction channel. The NaO formation follows the bond breaking of O2, which is likely a result of a charge transfer from Na2 to the excited state orbital of O2-. The scattering of sodium dimers from ammonium and methanol produced novel molecules, NaNH3 and Na(CH3OH), respectively. These experimental observations, as well as the discussions on the reaction dynamics and the chemical bonding within these molecules, will be presented in Chapter 3. The lower limits for the bond dissociation energies of these molecules are also obtained. Finally, Chapter 4 describes the energy transfer between oxygen molecules and electronically excited sodium atoms.

  1. Excited states behavior of nucleobases in solution: insights from computational studies.

    Science.gov (United States)

    Improta, Roberto; Barone, Vincenzo

    2015-01-01

    We review the most significant results obtained in the study of isolated nucleobases in solution by quantum mechanical methods, trying to highlight also the most relevant open issues. We concisely discuss some methodological issues relevant to the study of molecular electronic excited molecular states in condensed phases, focussing on the methods most commonly applied to the study of nucleobases, i.e. continuum models as the Polarizable Continuum Model and explicit solvation models. We analyse how the solvent changes the relative energy of the lowest energy excited states in the Franck-Condon region, their minima and the Conical Intersections among the different states, interpreting the experimental optical spectra, both steady state and time-resolved. Several methods are available for accurately including solvent effects in the Franck-Condon region, and for most of the nucleobases the solvent shift on the different excited states can be considered assessed. The study of the excited state decay, both radiative and non-radiative, in solution still poses instead significant theoretical challenges.

  2. Orbital-exchange and fractional quantum number excitations in an f-electron metal, Yb2Pt2Pb

    NARCIS (Netherlands)

    Wu, L.S.; Gannon, W.J.; Zaliznyak, I.A.; Tsvelik, A.M.; Brockmann, M.; Caux, J.-S.; Kim, M.S.; Qiu, Y.; Copley, J.R.D.; Ehlers, G.; Podlesnyak, A.; Aronson, M.C.

    2016-01-01

    Exotic quantum states and fractionalized magnetic excitations, such as spinons in one-dimensional chains, are generally expected to occur in 3d transition metal systems with spin 1/2. Our neutron-scattering experiments on the 4f-electron metal Yb2Pt 2 Pb overturn this conventional wisdom. We observe

  3. On the calculation of Δ for electronic excitations in time-dependent density-functional theory

    Science.gov (United States)

    Myneni, Hemanadhan; Casida, Mark E.

    2017-04-01

    Excited states are often treated within the context of time-dependent (TD) density-functional theory (DFT), making it important to be able to assign the excited spin-state symmetry. While there is universal agreement on how Δ , the difference between for ground and excited states, should be calculated in a wave-function-like formalism such as the Tamm-Dancoff approximation (TDA), confusion persists as to how to determine the spin-state symmetry of excited states in TD-DFT. We try to clarify the origins of this confusion by examining various possibilities for the parameters (σ1 ,σ2) in the formula

  4. Lifetimes of excited states in neutron-rich Xe isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Ilieva, Stoyanka; Kroell, Thorsten [Institut fuer Kernphysik, TU Darmstadt (Germany); Collaboration: EXILL-FATIMA-Collaboration

    2016-07-01

    The EXILL and FATIMA campaign at ILL, Grenoble is the first prompt-fission γ-ray spectroscopy experiment performed with a mixed array of Ge detectors (EXILL) and fast LaBr{sub 3}(Ce) scintillators (FATIMA). The lifetimes of excited states, populated by neutron-induced fission of {sup 235}U and {sup 241}Pu targets, were directly measured. The high-resolution EXILL detector gives us the possibility to identify the nuclides of interest among the large amount of produced fission fragments. Using the generalized centroid difference method to analyse the data from FATIMA we could measure lifetimes down to ∼ 10 ps. The lifetime of an excited state is a direct measure for the strength (collectivity) of a transition. The properties of the excited states in even-even nuclei can be largely described by quadrupole and octupole degrees of freedom. This contribution will present the current status of the analysis for the neutron-rich even-even {sup 138,140,142}Xe isotopes which lie in the vicinity of the double shell closure Z=50 and N=82. Through the direct lifetime measurement we aim to study the evolution of quadrupole and octupole collectivity above {sup 132}Sn.

  5. Importance of local exact exchange potential in hybrid functionals for accurate excited states

    CERN Document Server

    Kim, Jaewook; Hwang, Sang-Yeon; Ryu, Seongok; Choi, Sunghwan; Kim, Woo Youn

    2016-01-01

    Density functional theory has been an essential analysis tool for both theoretical and experimental chemists since accurate hybrid functionals were developed. Here we propose a local hybrid method derived from the optimized effective potential (OEP) method and compare its distinct features with conventional nonlocal ones from the Hartree-Fock (HF) exchange operator. Both are formally exact for ground states and thus show similar accuracy for atomization energies and reaction barrier heights. For excited states, the local version yields virtual orbitals with N-electron character, while those of the nonlocal version have mixed characters between N- and (N+1)-electron orbitals. As a result, the orbital energy gaps from the former well approximate excitation energies with a small mean absolute error (MAE = 0.40 eV) for the Caricato benchmark set. The correction from time-dependent density functional theory with a simple local density approximation kernel further improves its accuracy by incorporating multi-config...

  6. Experimental observation of reduced electronic stopping in photo-excited C-60

    NARCIS (Netherlands)

    Alvarado, F; Hoekstra, R; Morgenstern, R; Schlatholter, T

    2005-01-01

    Electronic stopping experienced by a keV He+ ion interacting with the valence electrons of a single fullerene is the predominant channel for energy deposition in such collisions. Electronic excitation of the fullerene valence electrons, achieved by absorption of several 532 nm photons, is expected

  7. Investigations into photo-excited state dynamics in colloidal quantum dots

    Science.gov (United States)

    Singh, Gaurav

    Colloidal Quantum dots (QDs) have garnered considerable scientific and technological interest as a promising material for next generation solar cells, photo-detectors, lasers, bright light-emitting diodes (LEDs), and reliable biomarkers. However, for practical realization of these applications, it is crucial to understand the complex photo-physics of QDs that are very sensitive to surface chemistry and chemical surroundings. Depending on the excitation density, QDs can support single or multiple excitations. The first part of this talk addresses evolution of QD excited state dynamics in the regime of low excitation intensity. We use temperature-resolved time-resolved fluorescence spectroscopy to study exciton dynamics from picoseconds to microseconds and use kinetic modeling based on classical electron transfer to show the effect of surface trap states on dynamics of ground-state exciton manifold in core-shell CdSe/CdS QDs. We show that the thickness of CdS shell plays an important role in interaction of CdSe core exciton states with nanocrystal environment, and find that a thicker shell can minimize the mixing of QD exciton states with surface trap states. I will then present an investigation into the dynamics of multiply-excited states in QDs. One of the key challenges in QD spectroscopy is to reliably distinguish multi- from single-excited states that have similar lifetime components and spectroscopic signatures. I will describe the development of a novel multi-pulse fluorescence technique to selectively probe multi-excited states in ensemble QD samples and determine the nature of the multi-excited state contributing to the total fluorescence even in the limit of low fluorescent yields. We find that in our sample of CdSe/CdS core/shell QDs the multi-excited emission is dominated by emissive trion states rather than biexcitons. Next, I will discuss the application of this technique to probe exciton-plasmon coupling in layered hybrid films of QD/gold nanoparticles

  8. Production of excited electrons at TESLA and CLIC based egamma colliders

    CERN Document Server

    Kirca, Z; Cakir, O

    2003-01-01

    We analyze the potential of TESLA and CLIC based electron-photon colliders to search for excited spin-1/2 electrons. The production of excited electrons in the resonance channel through the electron- photon collision and their subsequent decays to leptons and electroweak gauge bosons are investigated. We study in detail the three signal channels of excited electrons and the corresponding backgrounds through the reactions egamma yields egamma, egamma yields eZ and egamma yields vW. Excited electrons with masses up to about 90% of the available collider energy can be probed down to the coupling f = f prime = 0.05(0.1) at TESLA(CLIC) based egamma colliders. 22 Refs.

  9. Determination of the Excited State Density Distribution within a Nonequilibrium, Freely Expanding Argon Arcjet Plume

    Science.gov (United States)

    1977-03-01

    transport problem for the radially dependent number densi- ties is required. The details of this inversion technique, based upon an " onion peel... chat of the arcJeC. The reference signal from the chopper and the preampllfled photomultlpller cube output signal were input to a PAR ® synchronous...condition for equilibrium with the free electron density and thus shows Chat the four lowest excited states are demonstrably nonequllibrium and lie

  10. Variation of excited-state dynamics in trifluoromethyl functionalized C60 fullerenes.

    Science.gov (United States)

    Park, Jaehong; Ramirez, Jessica J; Clikeman, Tyler T; Larson, Bryon W; Boltalina, Olga V; Strauss, Steven H; Rumbles, Garry

    2016-08-17

    We report on electronically excited-state dynamics of three different trifluoromethyl C60 fullerenes (TMFs, C60(CF3)n: C60/4-1, C60/6-2, and C60/10-1, featuring four, six, and ten trifluoromethyl groups, respectively) using steady-state and time-resolved optical spectroscopy as well as ultrafast pump/probe transient absorption spectroscopy. C60/4-1 and C60/6-2 dissolved in toluene solvent show near-unity S1 → T1 intersystem crossing quantum yield (ΦISC), ca. 1 ns S1-state lifetimes, and microsecond-timescale T1-state lifetimes, which are typical of the fullerene class. On the other hand, C60/10-1 exhibits a dominant sub-nanosecond nonradiative S1 → S0 relaxation mechanism and negligible ΦISC, therefore decreasing the average excited-state lifetime (τavg) by about 5 orders of magnitude compared to that of C60/4-1 and C60/6-2 (τavg ≈ 17 μs and 54 μs for C60/4-1 and C60/6-2, respectively, whereas τavg ≈ 100 ps for C60/10-1). These excited-state characteristics of C60/4-1 and C60/6-2 are preserved in polymer matrix, suggesting that fullerene/polymer interactions do not modulate intrinsic photophysics of trifluoromethyl-substituted fullerenes. The contrasting excited-state study results of C60/4-1 and C60/6-2 to that of C60/10-1 infer that intrinsic optical properties and excited-state dynamics can be affected by the substitution on the fullerene.

  11. Variation of excited-state dynamics in trifluoromethyl functionalized C 60 fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jaehong; Ramirez, Jessica J.; Clikeman, Tyler T.; Larson, Bryon W.; Boltalina, Olga V.; Strauss, Steven H.; Rumbles, Garry

    2016-01-01

    We report on electronically excited-state dynamics of three different trifluoromethyl C60 fullerenes (TMFs, C60(CF3)n: C60/4-1, C60/6-2, and C60/10-1, featuring four, six, and ten trifluoromethyl groups, respectively) using steady-state and time-resolved optical spectroscopy as well as ultrafast pump/probe transient absorption spectroscopy. C60/4-1 and C60/6-2 dissolved in toluene solvent show near-unity S1--T1 intersystem crossing quantum yield (..phi..ISC), ca. 1 ns S1-state lifetimes, and microsecond-timescale T1-state lifetimes, which are typical of the fullerene class. On the other hand, C60/10-1 exhibits a dominant sub-nanosecond nonradiative S1--S0 relaxation mechanism and negligible ..phi..ISC, therefore decreasing the average excited-state lifetime (..tau..avg) by about 5 orders of magnitude compared to that of C60/4-1 and C60/6-2 (..tau..avg approx. 17 us and 54 us for C60/4-1 and C60/6-2, respectively, whereas ..tau..avg approx. 100 ps for C60/10-1). These excited-state characteristics of C60/4-1 and C60/6-2 are preserved in polymer matrix, suggesting that fullerene/polymer interactions do not modulate intrinsic photophysics of trifluoromethyl-substituted fullerenes. The contrasting excited- state study results of C60/4-1 and C60/6-2 to that of C60/10-1 infer that intrinsic optical properties and excited-state dynamics can be affected by the substitution on the fullerene.

  12. Rotational Spectra in 29 Vibrationally Excited States of Interstellar Aminoacetonitrile

    Energy Technology Data Exchange (ETDEWEB)

    Kolesniková, L.; Alonso, E. R.; Mata, S.; Alonso, J. L. [Grupo de Espectroscopia Molecular (GEM), Edificio Quifima, Área de Química-Física, Laboratorios de Espectroscopia y Bioespectroscopia, Parque Científico UVa, Unidad Asociada CSIC, Universidad de Valladolid, E-47011 Valladolid (Spain)

    2017-04-01

    We report a detailed spectroscopic investigation of the interstellar aminoacetonitrile, a possible precursor molecule of glycine. Using a combination of Stark and frequency-modulation microwave and millimeter wave spectroscopies, we observed and analyzed the room-temperature rotational spectra of 29 excited states with energies up to 1000 cm{sup −1}. We also observed the {sup 13}C isotopologues in the ground vibrational state in natural abundance (1.1%). The extensive data set of more than 2000 new rotational transitions will support further identifications of aminoacetonitrile in the interstellar medium.

  13. Modular Hamiltonian for Excited States in Conformal Field Theory.

    Science.gov (United States)

    Lashkari, Nima

    2016-07-22

    We present a novel replica trick that computes the relative entropy of two arbitrary states in conformal field theory. Our replica trick is based on the analytic continuation of partition functions that break the Z_{n} replica symmetry. It provides a method for computing arbitrary matrix elements of the modular Hamiltonian corresponding to excited states in terms of correlation functions. We show that the quantum Fisher information in vacuum can be expressed in terms of two-point functions on the replica geometry. We perform sample calculations in two-dimensional conformal field theories.

  14. Renormalized energy of ground and first excited state of Fröhlich polaron in the range of weak coupling

    Directory of Open Access Journals (Sweden)

    M.V. Tkach

    2015-09-01

    Full Text Available The partial summing of infinite range of diagrams for the two-phonon mass operator of polaron described by Frohlich Hamiltonian is performed using the Feynman-Pines diagram technique. The renormalized spectral parameters of ground and first excited (phonon repeat polaron state are accurately calculated for the weak electron-phonon coupling at T=0 K. It is shown that the stronger electron-phonon interaction shifts the energy of both states into low-energy region of the spectra. The ground state stays stationary and the excited one - decays at bigger coupling constant.

  15. D-state Rydberg electrons interacting with ultracold atoms

    Energy Technology Data Exchange (ETDEWEB)

    Krupp, Alexander Thorsten

    2014-10-02

    This thesis was established in the field of ultracold atoms where the interaction of highly excited D-state electrons with rubidium atoms was examined. This work is divided into two main parts: In the first part we study D-state Rydberg molecules resulting from the binding of a D-state Rydberg electron to a ground state rubidium atom. We show that we can address specific rovibrational molecular states by changing our laser detuning and thus create perfectly aligned axial or antialigned toroidal molecules, in good agreement with our theoretical calculations. Furthermore the influence of the electric field on the Rydberg molecules was investigated, creating novel states which show a different angular dependence and alignment. In the second part of this thesis we excite single D-state Rydberg electrons in a Bose-Einstein condensate. We study the lifetime of these Rydberg electrons, the change of the shape of our condensate and the atom losses in the condensate due to this process. Moreover, we observe quadrupolar shape oscillations of the whole condensate created by the consecutive excitation of Rydberg atoms and compare all results to previous S-state measurements. In the outlook we propose a wide range of further experiments including the proposal of imaging a single electron wavefunction by the imprint of its orbit into the Bose-Einstein condensate.

  16. Excited states using semistochastic heat-bath configuration interaction

    Science.gov (United States)

    Holmes, Adam A.; Umrigar, C. J.; Sharma, Sandeep

    2017-10-01

    We extend our recently developed heat-bath configuration interaction (HCI) algorithm, and our semistochastic algorithm for performing multireference perturbation theory, to calculate excited-state wavefunctions and energies. We employ time-reversal symmetry, which reduces the memory requirements by more than a factor of two. An extrapolation technique is introduced to reliably extrapolate HCI energies to the full CI limit. The resulting algorithm is used to compute fourteen low-lying potential energy surfaces of the carbon dimer using the cc-pV5Z basis set, with an estimated error in energy of 30-50 μHa compared to full CI. The excitation energies obtained using our algorithm have a mean absolute deviation of 0.02 eV compared to experimental values.

  17. Stark-induced adiabatic Raman ladder for preparing highly vibrationally excited quantum states of molecular hydrogen

    Science.gov (United States)

    Mukherjee, Nandini; Perreault, William E.; Zare, Richard N.

    2017-07-01

    We present a multi-color ladder excitation scheme that exploits Stark-induced adiabatic Raman passage to selectively populate a highly excited vibrational level of a molecule. We suggest that this multi-color coherent ladder excitation provides a practical way of accessing levels near the vibrational dissociation limit as well as the dissociative continuum, which would allow the generation of an entangled pair of fragments with near-zero relative kinetic energy. Specifically, we consider four- and six-photon coherent excitation of molecular hydrogen to high vibrational levels via intermediate vibrational levels, which are pairwise coupled by two-photon resonant interaction. Using a sequence of three partially overlapping, single-mode, nanosecond laser pulses we show that the sixth vibrational level of H2, which is too weakly coupled to be easily accessed by direct two-photon Raman excitation from the ground vibrational level, can be efficiently populated without leaving any population stranded in the intermediate level. Furthermore, we show that the fourteenth vibrational level of H2, which is the highest vibrational level in the ground electronic state with a binding energy of 22 meV, can be efficiently and selectively populated using a sequence of four pulses. The present technique offers the unique possibility of preparing entangled quantum states of H atoms without resorting to an ultracold system.

  18. Quimiluminescência de peróxidos orgânicos: geração de estados eletronicamente excitados na decomposição de 1,2-dioxetanos Chemiluminescence of cyclic organic peroxides: generation of electronically excited states in 1,2-dioxetane decomposition

    Directory of Open Access Journals (Sweden)

    Ana L. P. Nery

    2001-10-01

    Full Text Available In this review article, we give a general introduction on the mechanisms involved in organic chemiluminescence, where three basic models for excited state formation are presented. The chemiluminescence properties of 1,2-dioxetanes - four membered ring peroxides - are briefly outlined in the second part. In the main part, the mechanisms involved in the decomposition of 1,2-dioxetanes and analogous peroxides are discussed: (i the unimolecular decomposition of 1,2-dioxetanes; (ii the electron transfer catalyzed decomposition of peroxides by an intermolecular CIEEL (Chemically Initiated Electron Exchange Luminescence mechanism; (iii 1,2-dioxetane decomposition catalyzed by an intramolecular electron transfer mechanism (intramolecular CIEEL. Special emphasis is given to the latter subject, where recent examples with potential analytical applications are presented.

  19. Introduction to solid state electronics

    CERN Document Server

    Wang, FFY

    1989-01-01

    This textbook is specifically tailored for undergraduate engineering courses offered in the junior year, providing a thorough understanding of solid state electronics without relying on the prerequisites of quantum mechanics. In contrast to most solid state electronics texts currently available, with their generalized treatments of the same topics, this is the first text to focus exclusively and in meaningful detail on introductory material. The original text has already been in use for 10 years. In this new edition, additional problems have been added at the end of most chapters. These proble

  20. Dual electron transfer pathways from the excited C60 radical anion: enhanced reactivities due to the photoexcitation of reaction intermediates.

    Science.gov (United States)

    Fujitsuka, Mamoru; Ohsaka, Tatsuya; Majima, Tetsuro

    2015-12-14

    In the present study, electron transfer (ET) processes from excited radical anions have been investigated using dyad molecules including C60. The deactivation process of excited C60˙(-), including the internal conversion from the D1 to the D0 state and the cooling process of the vibrationally hot ground state (D), was observed spectroscopically for the first time. These processes could be unambiguously distinguished by the observation of the stimulated emission from the D1 state. The intramolecular ET processes from the excited C60˙(-) were confirmed by the transient absorption spectra. Clearly, both D1 and D states acted as precursors for the ET, i.e., dual ET pathways were confirmed. The driving force dependence of the ET rates was well characterized by the Marcus theory, which revealed that the forward ET processes are located at the top region of the Marcus parabola. In addition, the ET from the excited imide radical anion to C60 and that from the ground state C60˙(-) to imide were examined. The ET rate from the excited imide radical anion and that from ground state C60˙(-) did not follow the Marcus parabola estimated for the ET from the excited C60˙(-). The observed difference can be attributed to the difference in the energy required to form the reduced spacer (Δ) in the superexchange mechanism. Because the Δ value tends to become smaller for ET processes from excited radical ions, fast and efficient ET processes are expected from these states as demonstrated in the present study.

  1. Reactions of excited states of phenoxazin-3-one dyes with amino acids.

    Science.gov (United States)

    Villegas, M L; Bertolotti, S G; Previtali, C M; Encinas, M V

    2005-01-01

    The interaction with amino acids of the excited states of the N-oxide resazurin and its deoxygenation product resorufin, has been studied in aqueous solution at pH 7.5. Steady-state and time-resolved studies show that the fluorescence is quenched by amino acids. Complexation of the dyes in the ground state with aromatic amino acids was also observed. The singlet quenching is attributed to electron transfer from the amino acids to the excited dye based on the dependence of the bimolecular rate constants with the ionization potential of quenchers. Flash photolysis experiments allowed determination of the quenching rate constants for the triplet deactivation of dyes by several amino acids, as well as the characterization of the transients formed in the process. These data show that the triplet is also deactivated by an electron transfer process. However, the deactivation of the N-oxide dye by tryptophan can be described by a hydrogen atom transfer. The protolytic dissociation constants of the dye radical ions are reported. The irradiation of rezasurin in the presence of amino acids leads to deoxygenation of the dye to give resorufin. This process involves the triplet excited state of resazurin and is efficient only in the presence of amino acids containing the -SH group.

  2. Geometries and adiabatic excitation energies of the low-lying valence states of CNC, C{sub 2}N, N{sub 3} and NCO studied with the electron-attached and ionized equation-of-motion coupled-cluster methodologies

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Jared A; Piecuch, Piotr; Lutz, Jesse J; Gour, Jeffrey R, E-mail: piecuch@chemistry.msu.edu [Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States)

    2011-08-01

    The full and active-space variants of the electron-attached (EA) equation-of-motion (EOM) coupled-cluster (CC) method with up to three-particle-two-hole (3p-2h) excitations in the electron-attaching operator R{sub {mu}}{sup (N+1)} that use the CC singles and doubles (CCSD) approach to obtain the ground state of the reference N-electron closed-shell system, abbreviated as EA-EOMCCSD(3p-2h), and their ionized (IP) counterparts with up to three-hole-two-particle (3h-2p) excitations in the ionizing operator R{sub {mu}}{sup (N-1)}, abbreviated as IP-EOMCCSD(3h-2p), are used to optimize the geometries of the ground and low-lying excited states of four open-shell molecules, CNC, C{sub 2}N, NCO and N{sub 3}, and determine the corresponding adiabatic excitation energies. The full and active-space EA-EOMCCSD(3p-2h) results for the CNC and C{sub 2}N molecules, obtained with the correlation-consistent basis sets as large as cc-pVTZ and cc-pVQZ, respectively, are compared with one another, with the corresponding EA-EOMCCSD(2p-1h) calculations, with the previously generated small basis set EA-EOMCC and symmetry-adapted-cluster configuration-interaction (SAC-CI-SDT-R/PS) data, and, wherever possible, with experiment. The analogous comparison of the full and active-space IP-EOMCCSD(3h-2p) results with the IP-EOMCCSD(2h-1p), SAC-CI-SDT-R/PS and experimental data is performed for the NCO and N{sub 3} molecules. It is shown that the active-space EA-EOMCCSD(3p-2h) and IP-EOMCCSD(3h-2p) approaches using small numbers of active orbitals, which have computational costs that are of the order of the CCSD calculations, provide excitation energies and optimized geometries that are in excellent agreement with the results of the significantly more expensive parent EA-EOMCCSD(3p-2h) and IP-EOMCCSD(3h-2p) calculations, independent of the basis set. It is also demonstrated that the basic EA-EOMCCSD(2p-1h) and IP-EOMCCSD(2h-1p) methods, while generally inadequate for a reliable description of the

  3. The effect of atoms excited by electron beam on metal evaporation

    CERN Document Server

    Xie Guo Feng; Ying Chun Tong

    2002-01-01

    In atomic vapor laser isotope separation (AVLIS), the metal is heated to melt by electron beams. The vapor atoms may be excited by electrons when flying through the electron beam. The excited atoms may be deexcited by inelastic collision during expansion. The electronic energy transfers translational energy. In order to analyse the effect of reaction between atoms and electron beams on vapor physical parameters, such as density, velocity and temperature, direct-simulation Monte Carlo method (DSMC) is used to simulate the 2-D gadolinium evaporation from long and narrow crucible. The simulation results show that the velocity and temperature of vapor increase, and the density decreases

  4. Application of relativistic coupled-cluster theory to electron impact excitation of Mg+ in the plasma environment

    Science.gov (United States)

    Sharma, Lalita; Sahoo, Bijaya Kumar; Malkar, Pooja; Srivastava, Rajesh

    2018-01-01

    A relativistic coupled-cluster theory is implemented to study electron impact excitations of atomic species. As a test case, the electron impact excitations of the 3 s 2 S 1/2-3 p 2 P 1/2;3/2 resonance transitions are investigated in the singly charged magnesium (Mg+) ion using this theory. Accuracies of wave functions of Mg+ are justified by evaluating its attachment energies of the relevant states and compared with the experimental values. The continuum wave function of the projectile electron are obtained by solving Dirac equations assuming distortion potential as static potential of the ground state of Mg+. Comparison of the calculated electron impact excitation differential and total cross-sections with the available measurements are found to be in very good agreements at various incident electron energies. Further, calculations are carried out in the plasma environment in the Debye-Hückel model framework, which could be useful in the astrophysics. Influence of plasma strength on the cross-sections as well as linear polarization of the photon emission in the 3 p 2 P 3/2-3 s 2 S 1/2 transition is investigated for different incident electron energies.

  5. Ultrafast electronic dynamics in laser-excited crystalline bismuth

    Directory of Open Access Journals (Sweden)

    Chekalin S.

    2013-03-01

    Full Text Available Femtosecond spectroscopy was applied to capture complex dynamics of non equilibrium electrons in bismuth. Data analysis reveals significant wavevector dependence of electron-hole and electron-phonon coupling strength along the Γ-T direction of the Brillouin zone

  6. Charge Migration in Eyring, Walter and Kimball's 1944 Model of the Electronically Excited Hydrogen-Molecule Ion.

    Science.gov (United States)

    Diestler, Dennis J; Hermann, Gunter; Manz, Jörn

    2017-07-20

    In an elementary variational treatment of the electronic structure of H2(+), Eyring, Walter, and Kimball (EWK) serendipitously discovered charge migration (CM) in 1944. Using an analytic expression for the electronic probability density (EPD), they found that if the electron is initially localized on one of the protons (by taking the initial state to be a superposition of the ground and first excited electronic energy eigenstates), then it oscillates adiabatically between fixed protons with a period T inversely proportional to the energy gap between the eigenstates. At the equilibrium internuclear separation, T = 550.9 as. As shown here, the EWK model also yields an analytic formula for the electronic flux density (EFD). While the EPD indicates where the electron is at any instant, the EFD reveals the pathways the electron follows during its migration. Thus, the EFD complements the EPD, providing valuable new insight into the mechanism of CM. The formula for the EFD is a simple product of a time factor and a spatial factor. This factoring exposes a plethora of spatial-temporal symmetry relations which imply novel and surprising properties. An especially significant finding is that, in contrast to multielectron systems, where electron correlation may play a role in CM, in the EWK model of H2(+), CM is due strictly to quantum interference between the ground and first excited electronic states.

  7. Theoretical study of the low-lying excited states of ABCO, DABCO and homologous cage amines

    Science.gov (United States)

    Galasso, V.

    1997-02-01

    The electronic spectra of 1-azabicyclo[2.2.2]octane (ABCO), 1,4-diazabicyclo[2.2.2]octane (DABCO), and their [1.1.1] and [3.3.3] congeners have been studied at the ab initio level using the symmetry adapted cluster configuration interaction method. A comprehensive theoretical prediction of the discrete excitation spectra, up to the HOMO → 5s transition, is presented. All the low-lying singlet and triplet electronic states of these symmetric cage amines are found to have essentially Rydberg nature and originate from excitations out of the n-type molecular orbitals. The theoretical results correlate with the available spectroscopic data satisfactorily and provide quantitative support to a number of experimental assignments based on REMPI and MCD measurements.

  8. Laguerre polynomial excited coherent state: generation and nonclassical properties

    Science.gov (United States)

    Ye, Wei; Zhou, Weidong; Zhang, Haoliang; Liu, Cunjin; Huang, Jiehui; Hu, Liyun

    2017-11-01

    We propose a theoretical protocol to generate a kind of non-Gaussian state—a Laguerre polynomial excited coherent state (LPECS) by exploiting a two-mode squeezing transformation and a conditional measurement with a coherent state input. Then we investigate the nonclassical features of the LPECS according to the Glauber-Sudarshan P(α ) function, photon number distribution, Mandel’s Q parameter, second-order correlation function, and squeezing properties as well as negative Wigner distribution. Our results show that the generated output state presents obvious nonclassical properties which can be modulated by a coherent amplitude, a squeezing parameter and a conditional measurement. In particular, the squeezing and negative Wigner function are clear.

  9. Excited state mass spectra of doubly heavy Ξ baryons

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Zalak; Rai, Ajay Kumar [Sardar Vallabhbhai National Institute of Technology, Department of Applied Physics, Surat, Gujarat (India)

    2017-02-15

    In this paper, the mass spectra are obtained for doubly heavy Ξ baryons, namely, Ξ{sub cc}{sup +}, Ξ{sub cc}{sup ++}, Ξ{sub bb}{sup -}, Ξ{sub bb}{sup 0}, Ξ{sub bc}{sup 0} and Ξ{sub bc}{sup +}. These baryons consist of two heavy quarks (cc, bb, and bc) with a light (d or u) quark. The ground, radial, and orbital states are calculated in the framework of the hypercentral constituent quark model with Coulomb plus linear potential. Our results are also compared with other predictions, thus, the average possible range of excited states masses of these Ξ baryons can be determined. The study of the Regge trajectories is performed in (n, M{sup 2}) and (J, M{sup 2}) planes and their slopes and intercepts are also determined. Lastly, the ground state magnetic moments of these doubly heavy baryons are also calculated. (orig.)

  10. Excited-State Dynamics of Oxyluciferin in Firefly Luciferase.

    Science.gov (United States)

    Snellenburg, Joris J; Laptenok, Sergey P; DeSa, Richard J; Naumov, Panče; Solntsev, Kyril M

    2016-12-21

    The color variations of light emitted by some natural and mutant luciferases are normally attributed to collective factors referred to as microenvironment effects; however, the exact nature of these interactions between the emitting molecule (oxyluciferin) and the active site remains elusive. Although model studies of noncomplexed oxyluciferin and its variants have greatly advanced the understanding of its photochemistry, extrapolation of the conclusions to the real system requires assumptions about the polarity and proticity of the active site. To decipher the intricate excited-state dynamics, global and target analysis is performed here for the first time on the steady-state and time-resolved spectra of firefly oxyluciferin complexed with luciferase from the Japanese firefly (Luciola cruciata). The experimental steady-state and time-resolved luminescence spectra of the oxyluciferin/luciferase complex in solution are compared with the broadband time-resolved firefly bioluminescence recorded in vivo. The results demonstrate that de-excitation of the luminophore results in a complex cascade of photoinduced proton transfer processes and can be interpreted by the pH dependence of the emitted light. It is confirmed that proton transfer is the central event in the spectrochemistry of this system for which any assignment of the pH-dependent emission to a single chemical species would be an oversimplification.

  11. Excited-State Dynamics of Oxyluciferin in Firefly Luciferase

    KAUST Repository

    Snellenburg, Joris J.

    2016-11-23

    The color variations of light emitted by some natural and mutant luciferases are normally attributed to collective factors referred to as microenvironment effects; however, the exact nature of these interactions between the emitting molecule (oxyluciferin) and the active site remains elusive. Although model studies of noncomplexed oxyluciferin and its variants have greatly advanced the understanding of its photochemistry, extrapolation of the conclusions to the real system requires assumptions about the polarity and proticity of the active site. To decipher the intricate excited-state dynamics, global and target analysis is performed here for the first time on the steady-state and time-resolved spectra of firefly oxyluciferin complexed with luciferase from the Japanese firefly (Luciola cruciata). The experimental steady-state and time resolved luminescence spectra of the oxyluciferin/luciferase complex in solution are compared with the broadband time-resolved firefly bioluminescence recorded in vivo. The results demonstrate that de-excitation of the luminophore results in a complex cascade of photoinduced proton transfer processes and can be interpreted by the pH dependence of the emitted light. It is confirmed that proton transfer is the central event in the spectrochemistry of this system for which any assignment of the pH dependent emission to a single chemical species would be an oversimplification.

  12. Triaxiality near the 110Ru ground state from Coulomb excitation

    Directory of Open Access Journals (Sweden)

    D.T. Doherty

    2017-03-01

    Full Text Available A multi-step Coulomb excitation measurement with the GRETINA and CHICO2 detector arrays was carried out with a 430-MeV beam of the neutron-rich 110Ru (t1/2=12 s isotope produced at the CARIBU facility. This represents the first successful measurement following the post-acceleration of an unstable isotope of a refractory element. The reduced transition probabilities obtained for levels near the ground state provide strong evidence for a triaxial shape; a conclusion confirmed by comparisons with the results of beyond-mean-field and triaxial rotor model calculations.

  13. Python framework for kinetic modeling of electronically excited reaction pathways

    Science.gov (United States)

    Verboncoeur, John; Parsey, Guy; Guclu, Yaman; Christlieb, Andrew

    2012-10-01

    The use of plasma energy to enhance and control the chemical reactions during combustion, a technology referred to as ``plasma assisted combustion'' (PAC), can result in a variety of beneficial effects: e.g. stable lean operation, pollution reduction, and wider range of p-T operating conditions. While experimental evidence abounds, theoretical understanding of PAC is at best incomplete, and numerical tools still lack in reliable predictive capabilities. In the context of a joint experimental-numerical effort at Michigan State University, we present here an open-source modular Python framework dedicated to the dynamic optimization of non-equilibrium PAC systems. Multiple sources of experimental reaction data, e.g. reaction rates, cross-sections and oscillator strengths, are used in order to quantify the effect of data uncertainty and limiting assumptions. A collisional-radiative model (CRM) is implemented to organize reactions by importance and as a potential means of measuring a non-Maxwellian electron energy distribution function (EEDF), when coupled to optical emission spectroscopy data. Finally, we explore scaling laws in PAC parameter space using a kinetic global model (KGM) accelerated with CRM optimized reaction sequences and sparse stiff integrators.

  14. Role of two-electron excitation-ionization processes in the ionization of lithium atoms by fast ion impact

    Science.gov (United States)

    Kirchner, T.; Khazai, N.; Gulyás, L.

    2014-06-01

    We study excitation and ionization in the 1.5-MeV/amu O8+-Li collision system, which was the subject of a recent reaction-microscope-type experiment [D. Fischer et al., Phys. Rev. Lett. 109, 113202 (2012), 10.1103/PhysRevLett.109.113202]. Starting from an independent-electron model based on determinantal wave functions and using a single-electron basis generator method calculation and a single-electron continuum distorted-wave with eikonal initial-state calculation, we show that pure single ionization of a lithium K-shell electron is too weak a process to explain the measured electron-energy-differential cross section. Rather, our analysis suggests that two-electron excitation-ionization processes occur and have to be taken into account when comparing with the data. Good agreement is obtained only if we replace the independent-electron calculation by an independent-event model for one of the excitation-ionization processes and also take a shake-off process into account.

  15. Time-resolved study of excited states of N2 near its first ionization threshold

    Science.gov (United States)

    Moise, Angelica; Prince, Kevin C.; Richter, Robert

    2011-03-01

    Two-photon, two-color double-resonance ionization spectroscopy combining synchrotron vacuum ultraviolet radiation with a tunable near-infrared (NIR) laser has been used to investigate gerade symmetry states of the nitrogen molecule. The rotationally resolved spectrum of an autoionizing 1Σg- state has been excited via the intermediate c4 (v = 0) 1Πu Rydberg state. We present the analysis of the band located at Tv = 10 800.7 ± 2 cm-1 with respect to the intermediate state, 126 366 ± 11 cm-1 with respect to the ground state, approximately 700 cm-1 above the first ionization threshold. From the analysis a rotational constant of Bv = 1.700 ± 0.005 cm-1 has been determined for this band. Making use of the pulsed structure of the two radiation beams, lifetimes of several rotational levels of the intermediate state have been measured. We also report rotationally-averaged fluorescence lifetimes (300 K) of several excited electronic states accessible from the ground state by absorption of one photon in the range of 13.85-14.9 eV. The averaged lifetimes of the c4 (0) and c5 (0) states are 5.6 and 4.4 ns, respectively, while the b' (12), c'4 (4, 5, 6), and c'5 (0) states all have lifetimes in the range of hundreds of picoseconds.

  16. Surface chemical reactions induced by molecules electronically-excited in the gas

    DEFF Research Database (Denmark)

    Petrunin, Victor V.

    2011-01-01

    We present a model suggesting high chemical activity of electronically-excited molecules colliding with an isolator surface. Initial photochemical event is accounted for as the result of molecular evolution on the electronically-excited potential energy surface (PES), where acceleration and align...... beams inducing the reaction can be used to distinguish the new process we try to investigate from chemical reactions induced by photoexcitation within adsorbed molecules and/or gas phase photolysis....

  17. Photoluminescence and excited states dynamics in PbWO4:Pr3+ crystals

    CERN Document Server

    Auffray, E; Shalapska, T; Zazubovich, S

    2014-01-01

    Luminescence and photo-thermally stimulated defects creation processes are studied for a Pr3+-doped PbWO4 crystal at 4.2-400 K under excitation in the band-to-band, exciton, and charge-transfer transitions regions, as well as in the Pr3+-related absorption bands. Emission spectra of Pr3+ centers depend on the excitation energy, indicating the presence of Pr3+ centers of two types. The origin of these centers is discussed. The 2.03-2.06 eV emission, arising from the D-1(2) -> H-3(4) transitions of Pr3+ ions, is found to be effectively excited in a broad intense absorption band peaking at 4.2 K at 3.92 eV. By analogy with some other Pe(3+)-doped compounds, this band is suggested to arise from an electron transfer from an impurity Pr3+ ion to the crystal lattice W6+ or Pb2+ ions. The dynamics of the Pr3+-related excited states is clarified. In the PbWO4:Pr crystal studied, the concentration of single oxygen and lead vacancies as traps for electrons and holes is found to be negligible.

  18. Observation of interference effects via four photon excitation of highly excited Rydberg states in thermal cesium vapor

    CERN Document Server

    Kondo, Jorge M; Guttridge, Alex; Wade, Christopher G; De Melo, Natalia R; Adams, Charles S; Weatherill, Kevin J

    2015-01-01

    We report on the observation of Electromagnetically Induced Transparency (EIT) and Absorption (EIA) of highly-excited Rydberg states in thermal Cs vapor using a 4-step excitation scheme. The advantage of this 4-step scheme is that the final transition to the Rydberg state has a large dipole moment and one can achieve similar Rabi frequencies to 2 or 3 step excitation schemes using two orders of magnitude less laser power. Consequently each step is driven by a relatively low power infra-red diode laser opening up the prospect for new applications. The observed lineshapes are in good agreement with simulations based on multilevel optical Bloch equations.

  19. Excited state potential energy surfaces of bistridentate RuII complexes - A TD-DFT study

    Science.gov (United States)

    Österman, Tomas; Persson, Petter

    2012-10-01

    Time-dependent density functional theory (TD-DFT) calculations have been used to investigate low-energy singlet and triplet excited state potential energy surfaces (PES) of two prototype RuII-bistridentate complexes: [RuII(tpy)2]2+ (tpy is 2,2':6',2''-terpyridine) and [RuII(dqp)2]2+ (dqp is 2,6-di(quinolin-8-yl)pyridine). Solvent effects were considered using a self-consistent reaction field scheme. The calculations provide information about the excited state manifold along pathways for activated decay of metal-to-ligand charge-transfer (MLCT) excited states via metal-centered (MC) states for the two complexes. Significant differences in the energy profiles of the investigated PESs are explained through characterization of the electronic properties of the involved states calculated by the TD-DFT calculations. Finally, implications of the computational results for the design of octahedral metal complexes utilizing ligand field splitting (LFS) strategies for efficient light-harvesting in photochemical applications such as artificial photosynthesis are discussed.

  20. The Astrophysical Weeds: Rotational Transitions in Excited Vibrational States

    Science.gov (United States)

    Alonso, José L.; Kolesniková, Lucie; Alonso, Elena R.; Mata, Santiago

    2017-06-01

    The number of unidentified lines in the millimeter and submillimeter wave surveys of the interstellar medium has grown rapidly. The major contributions are due to rotational transitions in excited vibrational states of a relatively few molecules that are called the astrophysical weeds. necessary data to deal with spectral lines from astrophysical weeds species can be obtained from detailed laboratory rotational measurements in the microwave and millimeter wave region. A general procedure is being used at Valladolid combining different time and/or frequency domain spectroscopic tools of varying importance for providing the precise set of spectroscopic constants that could be used to search for this species in the ISM. This is illustrated in the present contribution through its application to several significant examples. Fortman, S. M., Medvedev, I. R., Neese, C.F., & De Lucia, F.C. 2010, ApJ,725, 1682 Rotational Spectra in 29 Vibrationally Excited States of Interstellar Aminoacetonitrile, L. Kolesniková, E. R. Alonso, S. Mata, and J. L. Alonso, The Astrophysical Journal Supplement Series 2017, (in press).

  1. Symmetry Constraints and Diffusion Monte Carlo Calculations of Excited State Properties

    Science.gov (United States)

    Foulkes, W. M. C.; Hood, Randolph Q.; Needs, R. J.

    1998-03-01

    It is now well established that the fixed--node diffusion Monte Carlo (DMC) method can be used to carry out very accurate calculations of the ground state electronic properties of solids and molecules. For a system containing N electrons in three dimensions, a trial N--electron wavefunction is used to fix a nodal surface (the 3N - 1 dimensional surface on which the trial wavefunction is zero), and the DMC algorithm then projects out the lowest energy variational wavefunction consistent with that imposed nodal surface. In attempts to use DMC to calculate excited--state information, it has often been assumed that the DMC energy must be greater than or equal to the energy of the lowest exact eigenfunction with the same symmetry as the trial function. We show by constructing an explicit example that this common assumption is wrong, and that only a weaker and much less useful variational principle applies.

  2. Role of two-electron processes in the excitation-ionization of lithium atoms by fast ion impact

    OpenAIRE

    Kirchner, T.; Khazai, N.; Gulyás, L.

    2015-01-01

    We study excitation and ionization in the 1.5 MeV/amu O$^{8+}$-Li collision system, which was the subject of a recent reaction-microscope-type experiment [Fischer \\textit{et al.}, Phys. Rev. Lett. \\textbf{109}, 113202 (2012)]. Starting from an independent-electron model based on determinantal wave functions and using single-electron basis generator method and continuum distorted-wave with eikonal initial-state calculations we show that pure single ionization of a lithium $K$-shell electron is...

  3. A semiempirical study for the ground and excited states of free-base and zinc porphyrin-fullerene dyads

    Science.gov (United States)

    Parusel, A. B.

    2000-01-01

    The ground and excited states of a covalently linked porphyrin-fullerene dyad in both its free-base and zinc forms (D. Kuciauskas et al., J. Phys. Chem. 100 (1996) 15926) have been investigated by semiempirical methods. The excited-state properties are discussed by investigation of the character of the molecular orbitals. All frontier MOs are mainly localized on either the donor or the acceptor subunit. Thus, the absorption spectra of both systems are best described as the sum of the spectra of the single components. The experimentally observed spectra are well reproduced by the theoretical computations. Both molecules undergo efficient electron transfer in polar but not in apolar solvents. This experimental finding is explained theoretically by explicitly considering solvent effects. The tenth excited state in the gas phase is of charge-separated character where an electron is transferred from the porphyrin donor to the fullerene acceptor subunit. This state is stabilized in energy in polar solvents due to its large formal dipole moment. The stabilization energy for an apolar environment such as benzene is not sufficient to lower this state to become the first excited singlet state. Thus, no electron transfer is observed, in agreement with experiment. In a polar environment such as acetonitrile, the charge-separated state becomes the S, state and electron transfer takes place, as observed experimentally. The flexible single bond connecting both the donor and acceptor subunits allows free rotation by ca. +/- 30 degrees about the optimized ground-state conformation. For the charge-separated state this optimized geometry has a maximum dipole moment. The geometry of the charge-separated state thus does not change relatively to the ground-state conformation. The electron-donating properties of porphyrin are enhanced in the zinc derivative due to a reduced porphyrin HOMO-LUMO energy gap. This yields a lower energy for the charge-separated state compared to the free

  4. Rotationally resolved IR-diode laser studies of ground-state CO2 excited by collisions with vibrationally excited pyridine.

    Science.gov (United States)

    Johnson, Jeremy A; Kim, Kilyoung; Mayhew, Maurine; Mitchell, Deborah G; Sevy, Eric T

    2008-03-27

    Relaxation of highly vibrationally excited pyridine (C5NH5) by collisions with carbon dioxide has been investigated using diode laser transient absorption spectroscopy. Vibrationally hot pyridine (E' = 40,660 cm(-1)) was prepared by 248 nm excimer laser excitation followed by rapid radiationless relaxation to the ground electronic state. Pyridine then collides with CO2, populating the high rotational CO2 states with large amounts of translational energy. The CO2 nascent rotational population distribution of the high-J (J = 58-80) tail of the 00(0)0 state was probed at short times following the excimer laser pulse to measure rate constants and probabilities for collisions populating these CO2 rotational states. Doppler spectroscopy was used to measure the CO2 recoil velocity distribution for J = 58-80 of the 00(0)0 state. The energy-transfer distribution function, P(E,E'), from E' - E approximately 1300-7000 cm(-1) was obtained by re-sorting the state-indexed energy-transfer probabilities as a function of DeltaE. P(E,E') is fit to an exponential or biexponential function to determine the average energy transferred in a single collision between pyridine and CO2. Also obtained are fit parameters that can be compared to previously studied systems (pyrazine, C6F6, methylpyrazine, and pyrimidine/CO2). Although the rotational and translational temperatures that describe pyridine/CO2 energy transfer are similar to previous systems, the energy-transfer probabilities are much smaller. P(E,E') fit parameters for pyridine/CO2 and the four previously studied systems are compared to various donor molecular properties. Finally, P(E,E') is analyzed in the context of two models, one indicating that P(E,E') shape is primarily determined by the low-frequency out-of-plane donor vibrational modes, and the other that indicates that P(E,E') shape can be determined from how the donor molecule final density of states changes with DeltaE.

  5. Integral cross sections for the direct excitation of the A 3 (sigma) u +, B 3 (pi) g, W 3 (delta) u, B' 3 (sigma) u -, a' 1 (sigma) u -, a 1 (pi) g, w 1 (delta) u, and C 3 (pi) u electronic states in

    Science.gov (United States)

    Johnson, P. V.; Malone, C. P.; Kanik, I.

    2005-01-01

    Integral cross sections for electron impact excitation out of the ground state (X 1(sigma)g +) to the A 3(sigma)u +, B 3(pi)g, W 3(delta)u, B' 3(sigma)u -, a' 1(sigma)u -, a 1(pi)g, w 1(delta)u, and states in N2 are reported at incident energies ranging between 10 and 100 eV. These data have been derived by integrating differential cross sections previously reported by this group. New differential cross section measurements for the a 1(pi)g state at 200 eV are also presented to extend the range of the reported integral cross sections for this state, which is responsible for the emissions of the Lyman-Birge-Hopfield band system (a 1(pi)g (rightwards arrow) X 1(sigma)g +). The present results are compared and critically evaluated against existing cross sec In general, the present cross sections are smaller than previous results at low impact energies from threshold through the excitation function peak regions. These lower cross sections have potentially significant implications on our understanding of UV emissions in the atmospheres of Earth and Titan.

  6. Unbound excited states in $^{19}$,$^{17}$C

    CERN Document Server

    Satou, Y; Fukuda, N; Sugimoto, T; Kondo, Y; Matsui, N; Hashimoto, Y; Nakabayashi, T; Okumura, T; Shinohara, M; Motobayashi, T; Yanagisawa, Y; Aoi, N; Takeuchi, S; Gomi, T; Togano, Y; Kawai, S; Sakuraï, H; Ong, H J; Onishi, T K; Shimoura, S; Tamaki, M; Kobayashi, T; Otsu, H; Matsuda, Y; Endo, N; Kitayama, M; Ishihara, M

    2008-01-01

    The neutron-rich carbon isotopes 19,17C have been investigated via proton inelastic scattering on a liquid hydrogen target at 70 MeV/nucleon. The invariant mass method in inverse kinematics was employed to reconstruct the energy spectrum, in which fast neutrons and charged fragments were detected in coincidence using a neutron hodoscope and a dipole magnet system. A peak has been observed with an excitation energy of 1.46(10) MeV in 19C, while three peaks with energies of 2.20(3), 3.05(3), and 6.13(9) MeV have been observed in 17C. Deduced cross sections are compared with microscopic DWBA calculations based on p-sd shell model wave functions and modern nucleon-nucleus optical potentials. Jpi assignments are made for the four observed states as well as the ground states of both nuclei.

  7. Elastic scattering and vibrational excitation for electron impact on para-benzoquinone

    Science.gov (United States)

    Jones, D. B.; Blanco, F.; García, G.; da Costa, R. F.; Kossoski, F.; Varella, M. T. do N.; Bettega, M. H. F.; Lima, M. A. P.; White, R. D.; Brunger, M. J.

    2017-12-01

    We report on theoretical elastic and experimental vibrational-excitation differential cross sections (DCSs) for electron scattering from para-benzoquinone (C6H4O2), in the intermediate energy range 15-50 eV. The calculations were conducted with two different theoretical methodologies, the Schwinger multichannel method with pseudopotentials (SMCPP) and the independent atom method with screening corrected additivity rule (IAM-SCAR) that also now incorporates a further interference (I) term. The SMCPP with N energetically open electronic states (Nopen) at the static-exchange-plus-polarisation (Nopench-SEP) level was used to calculate the scattering amplitudes using a channel coupling scheme that ranges from 1ch-SE up to the 89ch-SEP level of approximation. We found that in going from the 38ch-SEP to the 89ch-SEP, at all energies considered here, the elastic DCSs did not change significantly in terms of both their shapes and magnitudes. This is a good indication that our SMCPP 89ch-SEP elastic DCSs are converged with respect to the multichannel coupling effect for the investigated intermediate energies. While agreement between our IAM-SCAR+I and SMCPP 89ch-SEP computations improves as the incident electron energy increases from 15 eV, overall the level of accord is only marginal. This is particularly true at middle scattering angles, suggesting that our SCAR and interference corrections are failing somewhat for this molecule below 50 eV. We also report experimental DCS results, using a crossed-beam apparatus, for excitation of some of the unresolved ("hybrid") vibrational quanta (bands I-III) of para-benzoquinone. Those data were derived from electron energy loss spectra that were measured over a scattered electron angular range of 10°-90° and put on an absolute scale using our elastic SMCPP 89ch-SEP DCS results. The energy resolution of our measurements was ˜80 meV, which is why, at least in part, the observed vibrational features were only partially resolved. To

  8. Excitation of a cylindrical cavity by a helical current and an axial electron beam current

    Science.gov (United States)

    Davidovich, M. V.; Bushuev, N. A.

    2013-07-01

    The explicit expressions (in the Vainshtein and Markov forms) are derived for the excitation of a cylindrical cavity with perfectly conducting walls and with impedance end faces. Excitation of a cylindrical cavity and a cylindrical waveguide with a preset nonuniform axial electron-beam current and a helical current with a variable pitch, which is excited by a concentrated voltage source and is loaded by a preset pointlike matched load, is considered. For the helical current, the integro-differential equation is formulated. The traveling-wave tube (TWT) is simulated in the preset beam current approximation taking into account the nonuniform winding of the spiral coil, nonuniform electron beam, and losses.

  9. Energy cascades, excited state dynamics, and photochemistry in cob(III)alamins and ferric porphyrins.

    Science.gov (United States)

    Rury, Aaron S; Wiley, Theodore E; Sension, Roseanne J

    2015-03-17

    Porphyrins and the related chlorins and corrins contain a cyclic tetrapyrrole with the ability to coordinate an active metal center and to perform a variety of functions exploiting the oxidation state, reactivity, and axial ligation of the metal center. These compounds are used in optically activated applications ranging from light harvesting and energy conversion to medical therapeutics and photodynamic therapy to molecular electronics, spintronics, optoelectronic thin films, and optomagnetics. Cobalt containing corrin rings extend the range of applications through photolytic cleavage of a unique axial carbon-cobalt bond, permitting spatiotemporal control of drug delivery. The photochemistry and photophysics of cyclic tetrapyrroles are controlled by electronic relaxation dynamics including internal conversion and intersystem crossing. Typically the electronic excitation cascades through ring centered ππ* states, ligand to metal charge transfer (LMCT) states, metal to ligand charge transfer (MLCT) states, and metal centered states. Ultrafast transient absorption spectroscopy provides a powerful tool for the investigation of the electronic state dynamics in metal containing tetrapyrroles. The UV-visible spectrum is sensitive to the oxidation state, electronic configuration, spin state, and axial ligation of the central metal atom. Ultrashort broadband white light probes spanning the range from 270 to 800 nm, combined with tunable excitation pulses, permit the detailed unravelling of the time scales involved in the electronic energy cascade. State-of-the-art theoretical calculations provide additional insight required for precise assignment of the states. In this Account, we focus on recent ultrafast transient absorption studies of ferric porphyrins and corrin containing cob(III)alamins elucidating the electronic states responsible for ultrafast energy cascades, excited state dynamics, and the resulting photoreactivity or photostability of these compounds. Iron

  10. A New Method To Evaluate Excited States Lifetimes Based on Green's Function: Application to Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Sulzer, David; Iuchi, Satoru; Yasuda, Koji

    2016-07-12

    Dye-sensitized solar cell (DSSCs) are the promising device for electricity generation. However, the initial stage in which an electron is injected from a dye to the semiconductor has not been precisely understood. Standard quantum chemistry methods cannot handle infinite number of orbitals coming from the band structure of the semiconductor, whereas solid state calculations cannot handle many excited states at a reasonable computational cost. In this regard, we propose a new method to evaluate lifetimes of many excited states of a molecule on a semi-infinite surface. On the basis of the theory of resonance state, the effect of the semi-infinite semiconductor is encoded into the complex self-energy from surface Green's function. The lifetimes of excited states are evaluated through the imaginary part of the self-energy, and the self-energy correction is included into excitation energies obtained from time-dependent density functional theory calculations. This new method is applied to a DSSC system composed of black dye attached to the TiO2 semiconductor, and the computed lifetimes are linked to the natures of excited states and to the surface properties. The present method provides the firm ground for analysis of interplay between many excited states of the dye and band structure of the semiconductor.

  11. Dielectronic recombination rate coefficients to excited states of Be-like oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Izumi; Safronova, Ulyana I.; Kato, Takako

    2001-05-01

    We have calculated energy levels, radiative transition probabilities, and autoionization rates for Be-like oxygen (O{sup 4+}) including ls{sup 2}2lnl' (n=2 - 8, l {<=} n - 1) and 1s{sup 2}3l'nl (n=3 - 6, l {<=} n - l) states by multi-configurational Hartree-Fock method (Cowan code) and perturbation theory Z-expansion method (MZ code). The state selective dielectronic recombination rate coefficients to excited states of Be-like O ions are obtained. Configuration mixing plays an important role for the principal quantum number n distribution of the dielectronic recombination rate coefficients for 2snl (n {<=} 5) levels at low electron temperature. The orbital angular momentum quantum number l distribution of the rate coefficients shows a peak at l = 4. The total dielectronic recombination rate coefficient is derived as a function of electron temperature. (author)

  12. Switching of the triplet excited state of rhodamine/naphthaleneimide dyads: an experimental and theoretical study.

    Science.gov (United States)

    Cui, Xiaoneng; Zhao, Jianzhang; Lou, Zhangrong; Li, Shujing; Wu, Huijian; Han, Ke-Li

    2015-01-02

    Rhodamine-bromonaphthaleneimide (RB-NI) and rhodamine-bromonaphthalenediimide (RB-NDI) dyads were prepared for switching of the triplet excited states. Bromo-NI or bromo-NDI parts in the dyads are the spin converters, i.e., the triplet state producing modules, whereas the RB unit is the acid-activatable electron donor/energy acceptor. NI and NDI absorb at 359 and 541 nm, and the T1 state energy levels are 2.25 and 1.64 eV, respectively. RB undertakes the reversible spirolactam (RB-c) ↔ opened amide (RB-o) transformation. RB-c shows no visible light absorption, and the triplet-state energy level is ET1 = 3.36 eV. Conversely RB-o shows strong absorption at 557 nm, and ET1 is 1.73 eV. Thus, the acid-activated fluorescence-resonance-energy-transfer (FRET) competes with the ISC of NI or NDI. No triplet state was observed for the dyads with nanosecond time-resolved transient absorption spectroscopy. Upon addition of acid, strong fluorescence and long-living triplet excited states were observed. Thus, the producing of triplet state is acid-activatable. The triplet state of RB-NI is localized on RB-o part, whereas in RB-NDI the triplet state is delocalized on both the NDI and RB-o units. The ISC of spin converter was not outcompeted by RET. These studies are useful for switching of triplet excited state.

  13. Electronic excitation of molecules in solution calculated using the symmetry-adapted cluster–configuration interaction method in the polarizable continuum model

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Ryoichi, E-mail: fukuda@ims.ac.jp; Ehara, Masahiro [Institute for Molecular Science and Research Center for Computational Science, 38 Nishigo-naka, Myodaiji, Okazaki, 444-8585 (Japan); Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University Katsura, Kyoto 615-8520 (Japan)

    2015-12-31

    The effects from solvent environment are specific to the electronic states; therefore, a computational scheme for solvent effects consistent with the electronic states is necessary to discuss electronic excitation of molecules in solution. The PCM (polarizable continuum model) SAC (symmetry-adapted cluster) and SAC-CI (configuration interaction) methods are developed for such purposes. The PCM SAC-CI adopts the state-specific (SS) solvation scheme where solvent effects are self-consistently considered for every ground and excited states. For efficient computations of many excited states, we develop a perturbative approximation for the PCM SAC-CI method, which is called corrected linear response (cLR) scheme. Our test calculations show that the cLR PCM SAC-CI is a very good approximation of the SS PCM SAC-CI method for polar and nonpolar solvents.

  14. Final Technical Report [Scalable methods for electronic excitations and optical responses of nanostructures: mathematics to algorithms to observables

    Energy Technology Data Exchange (ETDEWEB)

    Saad, Yousef

    2014-03-19

    The master project under which this work is funded had as its main objective to develop computational methods for modeling electronic excited-state and optical properties of various nanostructures. The specific goals of the computer science group were primarily to develop effective numerical algorithms in Density Functional Theory (DFT) and Time Dependent Density Functional Theory (TDDFT). There were essentially four distinct stated objectives. The first objective was to study and develop effective numerical algorithms for solving large eigenvalue problems such as those that arise in Density Functional Theory (DFT) methods. The second objective was to explore so-called linear scaling methods or Methods that avoid diagonalization. The third was to develop effective approaches for Time-Dependent DFT (TDDFT). Our fourth and final objective was to examine effective solution strategies for other problems in electronic excitations, such as the GW/Bethe-Salpeter method, and quantum transport problems.

  15. Accounting for highly excited states in detailed opacity calculations

    CERN Document Server

    Pain, Jean-Christophe

    2015-01-01

    In multiply-charged ion plasmas, a significant number of electrons may occupy high-energy orbitals. These "Rydberg" electrons, when they act as spectators, are responsible for a number of satellites of X-ray absorption or emission lines, yielding a broadening of the red wing of the resonance lines. The contribution of such satellite lines may be important, because of the high degeneracy of the relevant excited configurations which give these large Boltzmann weights. However, it is in general difficult to take these configurations into account since they are likely to give rise to a large number of lines. We propose to model the perturbation induced by the spectators in a way similar to the Partially-Resolved-Transition-Array approach recently published by C. Iglesias. It consists in a partial detailed-line-accounting calculation in which the effect of the Rydberg spectators is included through a shift and width, expressed in terms of the canonical partition functions, which are key-ingredients of the Super-Tr...

  16. Distance Dependence of Electron Spin Polarization during Photophysical Quenching of Excited Naphthalene by TEMPO Radical.

    Science.gov (United States)

    Rane, Vinayak; Das, Ranjan

    2015-06-04

    Quenching of excited states by a free radical is generally studied in systems where these two are separate entities freely moving in a liquid solution. Random diffusive encounters bring them together to cause the quenching and leave the spins of the radical polarized. In the dynamics of the radical-triplet pair mechanism of the generation of electron spin polarization (ESP), the distance-dependent exchange interaction plays a crucial role. To investigate how the distance between the excited molecule and the radical influences the ESP, we have covalently linked a naphthalene moiety to a TEMPO free radical through a spacer group of three different lengths. We compared the ESP process of these linked compounds with that of the usual "unlinked system" of naphthalene and TEMPO through time-resolved EPR experiments at low temperature in n-hexane solution. The time evolution of both the linked and the "unlinked system" was treated on a similar footing. The time-dependent EPR signal was analyzed by combining photophysical kinetics and time-dependent Bloch equations incorporating spin dynamics. Sequential quenching of the singlet state and the triplet state of naphthalene was seen in all the systems, as revealed through the spin-polarized TREPR spectra of opposite phase. The magnitudes of the ESP in the linked molecules were higher than those of the "unlinked system," showing that when the two moieties are held together greater mixing of quartet-doublet states takes place. The magnitudes of ESP steadily decrease with increasing the length of the spacer group. The polarization magnitudes due to triplet quenching and singlet quenching are very similar, differing by a factor of only ∼2. These characteristics show that for all the linked molecules the quenching takes place in the "weak exchange" regime and at almost the same distance of separation between the two moieties. Our results also showed that observation of small absorptive TREPR signals does not necessarily imply

  17. Luminescence of spodumene and garnet crystals excited by subnanosecond and nanosecond electron beams

    Science.gov (United States)

    Tarasenko, V. F.; Solomonov, V. I.; Polisadova, E. F.; Burachenko, A. G.; Baksht, E. Kh.

    2012-05-01

    The pulsed cathode luminescence of spodumene and yttrium-aluminum garnet crystals activated by Mn2+ and Nd3+ ions, respectively, is studied. Luminescence is excited by the irradiation of the crystals by electron beams with a duration of 0.1, 0.25, 0.65, and 10 ns and a current density of ˜40 and 100 A/cm2 at an electron energy of ˜200 keV. A decrease in the electron beam duration to several tenths of a nanosecond is shown not to cause substantial changes in the excitation mechanisms of pulsed cathode luminescence and its spectrum.

  18. Excitation Energies from Spin-Restricted Ensemble-Referenced Kohn-Sham Method : A State-Average Approach

    NARCIS (Netherlands)

    Kazaryan, Andranik; Heuver, Jeroen; Filatov, Michael

    2008-01-01

    A time-independent density functional approach to the calculation of excitation energies from the ground states of molecules typified by the strong nondynamic electron correlation is suggested. The new method is based on the use of the spin-restricted ensemble-referenced Kohn-Sham formalism

  19. Twisting in the excited state of an N-methylpyridinium fluorescent dye modulated by nano-heterogeneous micellar systems.

    Science.gov (United States)

    Cesaretti, A; Carlotti, B; Gentili, P L; Germani, R; Spalletti, A; Elisei, F

    2016-04-01

    A push-pull N-methylpyridinium fluorescent dye with a pyrenyl group as the electron-donor portion was investigated within the nano-heterogeneous media provided by some micellar systems. The molecule was studied by stationary and time-resolved spectroscopic techniques in spherical micellar solutions and viscoelastic hydrogels, in order to throw light on the role played by twisting in its excited state deactivation. As proven by femtosecond fluorescence up-conversion and transient absorption experiments, the excited state dynamics of the molecule is ruled by charge transfer and twisting processes, which, from the locally excited (LE) state initially populated upon excitation, progressively lead to twisted (TICT) and planar (PICT) intramolecular charge transfer states. The inclusion within micellar aggregates was found to slow down and/or limit the rotation of the molecule with respect to what had previously been observed in water, while its confinement within the hydrophobic domains of the gel matrixes prevents any molecular torsion. The increasing viscosity of the medium, when passing from water to micellar systems, implies that the detected steady-state fluorescence comes from an excited state which is not fully relaxed, as is the case with the TICT state in micelles or the LE state in hydrogels, where the detected emission changes its usual orange colour to yellow.

  20. Hidden hyperchaos and electronic circuit application in a 5D self-exciting homopolar disc dynamo.

    Science.gov (United States)

    Wei, Zhouchao; Moroz, Irene; Sprott, J C; Akgul, Akif; Zhang, Wei

    2017-03-01

    We report on the finding of hidden hyperchaos in a 5D extension to a known 3D self-exciting homopolar disc dynamo. The hidden hyperchaos is identified through three positive Lyapunov exponents under the condition that the proposed model has just two stable equilibrium states in certain regions of parameter space. The new 5D hyperchaotic self-exciting homopolar disc dynamo has multiple attractors including point attractors, limit cycles, quasi-periodic dynamics, hidden chaos or hyperchaos, as well as coexisting attractors. We use numerical integrations to create the phase plane trajectories, produce bifurcation diagram, and compute Lyapunov exponents to verify the hidden attractors. Because no unstable equilibria exist in two parameter regions, the system has a multistability and six kinds of complex dynamic behaviors. To the best of our knowledge, this feature has not been previously reported in any other high-dimensional system. Moreover, the 5D hyperchaotic system has been simulated using a specially designed electronic circuit and viewed on an oscilloscope, thereby confirming the results of the numerical integrations. Both Matlab and the oscilloscope outputs produce similar phase portraits. Such implementations in real time represent a new type of hidden attractor with important consequences for engineering applications.

  1. Excited-State Interaction of Semiconducting Single-Walled Carbon Nanotubes with Their Wrapping Polymers.

    Science.gov (United States)

    Kahmann, Simon; Salazar Rios, Jorge M; Zink, Matthias; Allard, Sybille; Scherf, Ullrich; Dos Santos, Maria C; Brabec, Christoph J; Loi, Maria A

    2017-11-16

    We employ photoluminescence and pump-probe spectroscopy on films of semiconducting single-walled carbon nanotubes (CNTs) of different chirality wrapped with either a wide band gap polyfluorene derivative (PF12) or a polythiophene with narrower gap (P3DDT) to elucidate the excited states' interplay between the two materials. Excitation above the polymer band gap gives way to an ultrafast electron transfer from both polymers toward the CNTs. By monitoring the hole polaron on the polymer via its mid infrared signature, we show that also illumination below the polymer band gap leads to the formation of this fingerprint and infer that holes are also transferred toward the polymer. As this contradicts the standard way of discussing the involved energy levels, we propose that polymer-wrapped CNTs should be considered as a single hybrid system, exhibiting states shared between the two components. This proposition is validated through quantum chemical calculations that show hybridization of the first excited states, especially for the thiophene-CNT sample.

  2. Excitation, ionization, and electron-capture processes in slow He2++H and H++He+ collisions

    Science.gov (United States)

    Krstic, P. S.; Janev, R. K.

    1993-05-01

    Using the concept of hidden adiabatic energy crossings in the complex plane of internuclear distance, the collision dynamics in the system He2++H(n), nstates, coupled by 220 isolated (hidden-crossing) radial transitions and by the rotational transitions at R~=0 between the m states of (Nl) manifolds up to the N=10 united-atom principal quantum number, have been included in the calculations of the evolution matrix of the system. The calculated cross sections for transitions between the discrete states (excitation and electron capture), and from any of the considered discrete states to the continuum (ionization), are compared with other theoretical and experimental results where these are available.

  3. Quantitative Measurements of Electronically Excited CH Concentration in Normal Gravity and Microgravity Coflow Laminar Diffusion Flames

    Science.gov (United States)

    Giassi, D.; Cao, S.; Stocker, D. P.; Takahashi, F.; Bennett, B. A. V.; Smooke, M. D.; Long, M. B.

    2015-01-01

    With the conclusion of the SLICE campaign aboard the ISS in 2012, a large amount of data was made available for the analysis of the effect of microgravity on laminar coflow diffusion flames. Previous work focused on the study of sooty flames in microgravity as well as the ability of numerical models to predict its formation in a simplified buoyancy-free environment. The current work shifts the investigation to soot-free flames, putting an emphasis on the chemiluminescence emission from electronically excited CH (CH*). This radical species is of significant interest in combustion studies: it has been shown that the electronically excited CH spatial distribution is indicative of the flame front position and, given the relatively simple diagnostic involved with its measurement, several works have been done trying to understand the ability of electronically excited CH chemiluminescence to predict the total and local flame heat release rate. In this work, a subset of the SLICE nitrogen-diluted methane flames has been considered, and the effect of fuel and coflow velocity on electronically excited CH concentration is discussed and compared with both normal gravity results and numerical simulations. Experimentally, the spectral characterization of the DSLR color camera used to acquire the flame images allowed the signal collected by the blue channel to be considered representative of the electronically excited CH emission centered around 431 nm. Due to the axisymmetric flame structure, an Abel deconvolution of the line-of-sight chemiluminescence was used to obtain the radial intensity profile and, thanks to an absolute light intensity calibration, a quantification of the electronically excited CH concentration was possible. Results show that, in microgravity, the maximum flame electronically excited CH concentration increases with the coflow velocity, but it is weakly dependent on the fuel velocity; normal gravity flames, if not lifted, tend to follow the same trend

  4. The response of the electronic structure to electronic excitation and double bond torsion in fulvene: a combined QTAIM, stress tensor and MO perspective.

    Science.gov (United States)

    Jenkins, Samantha; Blancafort, Lluís; Kirk, Steven R; Bearpark, Michael J

    2014-04-21

    New insights into the double bond isomerization of fulvene in the ground and excited electronic states are provided by newly developed QTAIM and stress tensor tools. The S0 and S1 states follow the 'biradical' torsion model, but the double bond is stiffer in the S0 state; by contrast, the S2 state follows the 'zwitterionic' torsion. Differences are explained in terms of the ellipticity and bond critical point (BCP) stiffness for both QTAIM and the stress tensor. Overall, the wave-function based analysis is found to be in agreement with the work of Bonačić-Koutecký and Michl that the bond-twisted species can have biradical or zwitterionic character, depending on the state. Using QTAIM and the stress tensor a new understanding of bond torsion is revealed; the electronic charge density around the twisted bond is found not to rotate in concert with the nuclei of the rotated -CH2 methylene group. The ability to visualize how the bond stiffness varies between individual electronic states and how this correlates with the QTAIM and stress tensor bond stiffness is highlighted. In addition, the most and least preferred morphologies of bond-path torsion are visualized. Briefly we discuss the prospects for using this new QTAIM and stress tensor analysis for excited state chemistry.

  5. Investigation of Multiconfigurational Short-Range Density Functional Theory for Electronic Excitations in Organic Molecules

    DEFF Research Database (Denmark)

    Hubert, Mickaël; Hedegård, Erik D.; Jensen, Hans Jørgen Aa

    2016-01-01

    -srDFT for a selected benchmark set of electronic excitations of organic molecules, covering the most common types of organic chromophores. This investigation confirms the expectation that the MC-srDFT method is accurate for a broad range of excitations and comparable to accurate wave function methods such as CASPT2......Computational methods that can accurately and effectively predict all types of electronic excitations for any molecular system are missing in the toolbox of the computational chemist. Although various Kohn-Sham density-functional methods (KS-DFT) fulfill this aim in some cases, they become...... and double excitations have been promising, it is nevertheless important that the accuracy of MC-srDFT is at least comparable to the best KS-DFT methods also for organic molecules that are typically of single-reference character. In this paper we therefore systematically investigate the performance of MC...

  6. Photoinduced charge-transfer electronic excitation of tetracyanoethylene/tetramethylethylene complex in dichloromethane

    Science.gov (United States)

    Xu, Long-Kun; Bi, Ting-Jun; Ming, Mei-Jun; Wang, Jing-Bo; Li, Xiang-Yuan

    2017-07-01

    Based on the previous work on nonequilibrium solvation model by the authors, Intermolecular charge-transfer electronic excitation of tetracyanoethylene (TCE)/tetramethylethylene (TME) π -stacked complex in dichloromethane (DCM) has been investigated. For weak interaction correction, dispersion corrected functional DFT-D3 is adopted for geometry optimization. In order to identify the excitation metric, dipole moment components of each Cartesian direction, atomic charge, charge separation and Δr index are analyzed for TCE/TME complex. Calculation shows that the calculated excitation energy is dependent on the functional choice, when conjuncted with suitable time-dependent density functional, the modified nonequilibrium expression gives satisfied results for intermolecular charge-transfer electronic excitation.

  7. An accurate and efficient method to predict the electronic excitation energies of BODIPY fluorescent dyes.

    Science.gov (United States)

    Wang, Jia-Nan; Jin, Jun-Ling; Geng, Yun; Sun, Shi-Ling; Xu, Hong-Liang; Lu, Ying-Hua; Su, Zhong-Min

    2013-03-15

    Recently, the extreme learning machine neural network (ELMNN) as a valid computing method has been proposed to predict the nonlinear optical property successfully (Wang et al., J. Comput. Chem. 2012, 33, 231). In this work, first, we follow this line of work to predict the electronic excitation energies using the ELMNN method. Significantly, the root mean square deviation of the predicted electronic excitation energies of 90 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) derivatives between the predicted and experimental values has been reduced to 0.13 eV. Second, four groups of molecule descriptors are considered when building the computing models. The results show that the quantum chemical descriptions have the closest intrinsic relation with the electronic excitation energy values. Finally, a user-friendly web server (EEEBPre: Prediction of electronic excitation energies for BODIPY dyes), which is freely accessible to public at the web site: http://202.198.129.218, has been built for prediction. This web server can return the predicted electronic excitation energy values of BODIPY dyes that are high consistent with the experimental values. We hope that this web server would be helpful to theoretical and experimental chemists in related research. Copyright © 2012 Wiley Periodicals, Inc.

  8. Spectroscopic and excited-state properties of tri-9-anthrylborane I: Solvent polarity effects.

    Science.gov (United States)

    Kitamura, Noboru; Sakuda, Eri

    2005-08-25

    Spectroscopic and excited-state properties of tri-9-anthrylborane (TAB), showing unique absorption and fluorescence characteristics originating from p(boron)-pi(anthryl group) orbital interactions, were studied in 12 solvents. Although the absorption maximum energy (nu(a)) of TAB which appeared at around 21 x 10(3) cm(-1) (band I) was almost independent of the solvent polarity parameter, f(X) (f(X) = (D(s) - 1)/(2D(s) + 1) - (n(2) - 1)/(2n(2) + 1) where D(s) and n represent the static dielectric constant and the refractive index of a solvent, respectively), the fluorescence maximum energy (nu(f)) showed a linear correlation with f(X). The f(X) dependence of the value of nu(a) - nu(f) demonstrated that the change in the dipole moment of TAB upon light excitation was approximately 8.0 D, indicating that absorption band I was ascribed to an intramolecular charge-transfer transition in nature. The excited electron of TAB was thus concluded to localize primarily on the p orbital of the boron atom. Furthermore, it was shown that the fluorescence lifetime and quantum yield of TAB varied from 11.8 to 1.1 ns and from 0.41 to 0.02, respectively, with an increase in f(X). The present results indicated that the nonradiative decay rate constant (k(nr)) of TAB was influenced significantly by f(X). Excited-state decay of TAB was understood by intramolecular back-electron (charge) transfer from the p orbital of the boron atom to the pi orbital of the anthryl group, which was discussed in terms of the energy gap dependence of k(nr). Specific solvent interactions of TAB revealed by the present spectroscopic and photophysical studies are also discussed.

  9. Peroxidase-promoted aerobic oxidation of 2-nitropropane: mechanism of excited state formation.

    Science.gov (United States)

    Indig, G L; Cilento, G

    1987-03-19

    Using sensitized emission, the horseradish peroxidase-catalyzed aerobic oxidation of the toxic pollutant 2-nitropropane to nitrite and acetone is shown to produce the latter in the electronically excited triplet state. In turn, this chemiexcitation implies a hydroperoxide precursor. Taking into account the stoichiometry of the reaction and available isotopic data it is inferred that the hydroperoxide reacts with a second molecule of the substrate (aci form). While triplet acetone formed from isobutanal (enol form) is generated within the enzyme, in the present case triplet acetone is formed in the bulk solution.

  10. The H$_2^+$ ion in a strong magnetic field. Lowest excited states

    OpenAIRE

    Turbiner, A. V.; Vieyra, J. C. Lopez

    2003-01-01

    As a continuation of our previous work ({\\it Phys. Rev. A68, 012504 (2003)}) an accurate study of the lowest $1\\si_g$ and the low-lying excited $1\\si_u$, $2\\si_g$, $1\\pi_{u,g}$, $1\\de_{g,u}$ electronic states of the molecular ion $H_2^+$ is made. Since the parallel configuration where the molecular axis coincides with the magnetic field direction is optimal, this is the only configuration which is considered. The variational method is applied and the {\\it same} trial function is used for diff...

  11. Photophysical Model of 10-Hydroxybenzo[h]quinoline: Internal Conversion and Excited State Intramolecular Proton Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Junghwa; Joo, Taiha [Pohang Univ. of Science and Technology, Pohang (Korea, Republic of)

    2014-03-15

    Photophysics of 10-hydroxybenzo[h]quinoline (HBQ) has been in controversy, in particular, on the nature of the electronic states before and after the excited state intramolecular proton transfer (ESIPT), even though the dynamics and mechanism of the ESIPT have been well established. We report highly time resolved fluorescence spectra over the full emission frequency regions of the enol and keto isomers and the anisotropy in time domain to determine the accurate rates of the population decay, spectral relaxation and anisotropy decay of the keto isomer. We have shown that the ∼300 fs component observed frequently in ESIPT dynamics arises from the S{sub 2}→S{sub 1} internal conversion in the reaction product keto isomer and that the ESIPT occurs from the enol isomer in S{sub 1} state to the keto isomer in S{sub 2} state.

  12. Application of a grating coupler for surface plasmon polariton excitation in a photoemission electron microscopy experiment

    DEFF Research Database (Denmark)

    Leißner, Till; Jauernik, Stephan; Lemke, Christoph

    Surface plasmon polariton (SPP) excitation at a gold-vacuum interface via 800 nm light pulses mediated by a periodic array of gold ridges is probed at high lateral resolution by means of photoemission electron microscopy (PEEM). We directly monitor and quantify the coupling properties as a function...... to the grazing incidence excitation geometry intrinsic to a conventional PEEM scheme and the limited propagation distance of the SPP modes at the gold-vacuum interface at the used wavelength....

  13. Matrix photochemistry of small molecules: Influencing reaction dynamics on electronically excited hypersurfaces

    Energy Technology Data Exchange (ETDEWEB)

    Laursen, S.L.

    1990-01-01

    Investigations of chemical reactions on electronically excited reaction surfaces are presented. The role of excited-surface multiplicity is of particular interest, as are chemical reactivity and energy transfer in systems in which photochemistry is initiated through a metal atom sensitizer.'' Two approaches are employed: A heavy-atom matrix affords access to forbidden triplet reaction surfaces, eliminating the need for a potentially reactive sensitizer. Later, the role of the metal atom in the photosensitization process is examined directly.

  14. Search for Excited or Exotic Electron Production Using the Dielectron + Photon Signature at CDF in Run II

    Energy Technology Data Exchange (ETDEWEB)

    Gerberich, Heather Kay [Duke Univ., Durham, NC (United States)

    2004-01-01

    The author presents a search for excited or exotic electrons decaying to an electron and a photon with high transverse momentum. An oppositely charged electron is produced in association with the excited electron, yielding a final state dielectron + photon signature. The discovery of excited electrons would be a first indication of lepton compositeness. They use ~ 202 pb-1 of data collected in p$\\bar{p}$ collisions at √s = 1.96 TeV with the Collider Detector at Fermilab during March 2001 through September 2003. The data are consistent with standard model expectations. Upper limits are set on the experimental cross-section σ($\\bar{p}$p → ee* → eeγ) at the 95% confidence level in a contact-interaction model and a gauge-mediated interaction model. Limits are also presented as exclusion regions in the parameter space of the excited electron mass (Me*) and the compositeness energy scale (Λ). In the contact-interaction model, for which there are no previously published limits, they find Me* < 906 GeV is excluded for Me* = Λ. In the gauge-mediated model, the exclusion region in the Me* versus the phenomenological coupling f/Λ parameter space is extended to M{sub e*} < 430 GeV for f/Λ ~ 10-2 GeV-1. In comparison, other experiments have excluded Me* < 280 GeV for f/Λ ~ 10-2 GeV-1.

  15. Exciting hot carrier to a high energy state by impact excitation in low density nanocrystalline Si films

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Wei, E-mail: yuwei_hbu@126.com [College of Physics Science and Technology, Hebei University, Baoding 071002 (China); Wang, Xinzhan; Dai, Wanlei; Liu, Yumei; Xu, Yanmei; Lu, Wanbing; Fu, Guangsheng [College of Physics Science and Technology, Hebei University, Baoding 071002 (China)

    2013-02-15

    The carrier recombination processes in low density nanocrystalline (nc-) Si films have been studied by steady and time-resolved photoluminescence (PL) spectra, and the hot carriers have been excited to a high energy state by impact excitation. A yellow-green PL band locating at 580 nm appears when the studied film is excited by two optical beams. The yellow-green PL band results from band-to-band transition in Si nanocrystals with double-bonded oxygen atoms, which is caused by impact excitation among the carriers in the nc-Si film. The decay time of the yellow-green PL band is 230 ns, which is much longer than the hot carrier cooling. The results indicate that the lost energy in the solar cell may be collected from the new recombination center in the further structural design.

  16. Photoionization and electron impact excitation cross sections for Fe I

    Science.gov (United States)

    Bautista, Manuel A.; Lind, Karin; Bergemann, Maria

    2017-10-01

    Context. Iron is a major contributor to the opacity in the atmospheres of late-type stars, as well as a major contributor to the observed lines in their visible spectrum. Iron lines are commonly used to derive basic stellar parameters from medium/high resolution spectroscopy, that is, spectroscopy which shows metal content, effective temperature, and surface gravity. Aims: Here we present large R-matrix calculations for photoionization cross sections and electron impact collision strengths. Methods: The photoionization calculations included 35 configurations and 134 LS close coupling terms of the target ion. The eigenfunction expansion accounts for the photoionization of the outer nl subshells, with n ≥ 4, as well as the open inner 3d subshell. Our results include total and partial (term-to-term) photoionization cross sections for 936 energy terms of iron with principal quantum number ≤10, and total angular momentum from zero to seven. Our electron impact collision strengths include the lowest 46 LS terms of the atom. Results: The present photoionization cross sections should be considerably more accurate than those currently available in the literature. On the other hand, the electron impact cross sections, which are being reported for the first time, are needed in non-local thermodynamic equilibrium (NLTE) modeling of the solar spectrum and late-type stars in general. Tables 5 and 6 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/A127

  17. Periodic calculations of excited state properties for solids using a semiempirical approach.

    Science.gov (United States)

    Gadaczek, Immanuel; Hintze, Kim Julia; Bredow, Thomas

    2012-01-14

    The semiempirical SCF MO method MSINDO (modified symmetrically orthogonalized intermediate neglect of differential overlap) [T. Bredow and K. Jug, Electronic Encyclopedia of Computational Chemistry, 2004] is extended to the calculation of excited state properties through implementation of the configuration interaction singles (CIS) approach. MSINDO allows the calculation of periodic systems via the cyclic cluster model (CCM) [T. Bredow et al., J. Comput. Chem., 2001, 22, 89] which is a direct-space approach and therefore can be in principle combined with all molecular quantum-chemical techniques. The CIS equations are solved for a cluster with periodic boundary conditions using the Davidson-Liu iterative block diagonalization approach. As a proof-of-principle, MSINDO-CCM-CIS is applied for the calculation of optical spectra of ZnO and TiO(2), oxygen-defective rutile, and F-centers in NaCl. The calculated spectra are compared to available experimental and theoretical literature data. After re-adjustment of the empirical parameters the quantitative agreement with experiment is satisfactory. The present approximate approach is one of the first examples of a quantum-chemical methodology for solids where excited states are correctly described as n-electron state functions. After careful benchmark testing it will allow calculation of photophysical and photochemical processes relevant to materials science and catalysis.

  18. Theoretical description of protein field effects on electronic excitations of biological chromophores

    Science.gov (United States)

    Varsano, Daniele; Caprasecca, Stefano; Coccia, Emanuele

    2017-01-01

    Photoinitiated phenomena play a crucial role in many living organisms. Plants, algae, and bacteria absorb sunlight to perform photosynthesis, and convert water and carbon dioxide into molecular oxygen and carbohydrates, thus forming the basis for life on Earth. The vision of vertebrates is accomplished in the eye by a protein called rhodopsin, which upon photon absorption performs an ultrafast isomerisation of the retinal chromophore, triggering the signal cascade. Many other biological functions start with the photoexcitation of a protein-embedded pigment, followed by complex processes comprising, for example, electron or excitation energy transfer in photosynthetic complexes. The optical properties of chromophores in living systems are strongly dependent on the interaction with the surrounding environment (nearby protein residues, membrane, water), and the complexity of such interplay is, in most cases, at the origin of the functional diversity of the photoactive proteins. The specific interactions with the environment often lead to a significant shift of the chromophore excitation energies, compared with their absorption in solution or gas phase. The investigation of the optical response of chromophores is generally not straightforward, from both experimental and theoretical standpoints; this is due to the difficulty in understanding diverse behaviours and effects, occurring at different scales, with a single technique. In particular, the role played by ab initio calculations in assisting and guiding experiments, as well as in understanding the physics of photoactive proteins, is fundamental. At the same time, owing to the large size of the systems, more approximate strategies which take into account the environmental effects on the absorption spectra are also of paramount importance. Here we review the recent advances in the first-principle description of electronic and optical properties of biological chromophores embedded in a protein environment. We show

  19. Hybrid lead halide perovskites for light energy conversion: Excited state properties and photovoltaic applications

    Science.gov (United States)

    Manser, Joseph S.

    The burgeoning class of metal halide perovskites constitutes a paradigm shift in the study and application of solution-processed semiconductors. Advancements in thin film processing and our understanding of the underlying structural, photophysical, and electronic properties of these materials over the past five years have led to development of perovskite solar cells with power conversion efficiencies that rival much more mature first and second-generation commercial technologies. It seems only a matter of time before the real-world impact of these compounds is put to the test. Like oxide perovskites, metal halide perovskites have ABX3 stoichiometry, where typically A is a monovalent cation, B a bivalent post-transition metal, and X a halide anion. Characterizing the behavior of photogenerated charges in metal halide perovskites is integral for understanding the operating principles and fundamental limitations of perovskite optoelectronics. The majority of studies outlined in this dissertation involve fundamental study of the prototypical organic-inorganic compound methylammonium lead iodide (CH3NH3PbI 3). Time-resolved pump-probe spectroscopy serves as a principle tool in these investigations. Excitation of a semiconductor can lead to formation of a number different excited state species and electronic complexes. Through analysis of excited state decay kinetics and optical nonlinearities in perovskite thin films, we identify spontaneous formation of a large fraction of free electrons and holes, whose presence is requisite for efficient photovoltaic operation. Following photogeneration of charge carriers in a semiconductor absorber, these species must travel large distances across the thickness of the material to realize large external quantum efficiencies and efficient carrier extraction. Using a powerful technique known as transient absorption microscopy, we directly image long-range carrier diffusion in a CH3NH3PbI 3 thin film. Charges are unambiguously shown to

  20. Modeling Electronic-Nuclear Interactions for Excitation Energy Transfer Processes in Light-Harvesting Complexes.

    Science.gov (United States)

    Lee, Mi Kyung; Coker, David F

    2016-08-18

    An accurate approach for computing intermolecular and intrachromophore contributions to spectral densities to describe the electronic-nuclear interactions relevant for modeling excitation energy transfer processes in light harvesting systems is presented. The approach is based on molecular dynamics (MD) calculations of classical correlation functions of long-range contributions to excitation energy fluctuations and a separate harmonic analysis and single-point gradient quantum calculations for electron-intrachromophore vibrational couplings. A simple model is also presented that enables detailed analysis of the shortcomings of standard MD-based excitation energy fluctuation correlation function approaches. The method introduced here avoids these problems, and its reliability is demonstrated in accurate predictions for bacteriochlorophyll molecules in the Fenna-Matthews-Olson pigment-protein complex, where excellent agreement with experimental spectral densities is found. This efficient approach can provide instantaneous spectral densities for treating the influence of fluctuations in environmental dissipation on fast electronic relaxation.

  1. Optical and structural characterisation of low dimensional structures using electron beam excitation systems

    CERN Document Server

    Mohammed, A

    2000-01-01

    suppressed by nonradiative recombination centres. The temperatures at which the QW luminescence starts to quench and the activation energies of luminescence quenching are found to depend on excitation conditions, sample quality and QW depth. The results of CL intensity dependence on the excitation intensity revealed that luminescence from good quality QW structures is dominated by radiative recombination processes even at high temperatures during thermal quenching. In contrast, in defected structures non-radiative recombination mechanisms dominate the luminescence properties at all temperatures. Secondary electron images of hexagonal growth hillocks of GaN obtained at a range of electron beam excitation energies vary because of the different signals involved in the imaging. Electron backscatter diffraction measurements have been used for phase identification and lattice constants determination in a strained GaN epilayer. This thesis presents studies on optical and structural characterisation of low dimensiona...

  2. Electronic states and nature of bonding of the molecule PdGe by all electron ab initio HF–CI calculations and mass spectrometric equilibrium experiments

    DEFF Research Database (Denmark)

    Shim, Irene; Kingcade, Joseph E. , Jr.; Gingerich, Karl A.

    1986-01-01

    In the present work we present all-electron ab initio Hartree–Fock (HF) and configuration interaction (CI) calculations of six electronic states of the PdGe molecule. The molecule is predicted to have a 3Pi ground state and two low-lying excited states 3Sigma− and 1Sigma+. The electronic structure...

  3. Dynamics of charge-transfer excited states relevant to photochemical energy conversion. Progress report, June 1, 1991--November 15, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Lim, E.C.

    1991-11-01

    The primary objective of the research program is to gain a fundamental understanding of the factors governing the efficiency of excited-state charge transfer CT interactions between two chromophores that are brought together in close proximity, either by a very short covalent linkage or by ground-state complex formation. CT and van der Walls (vdW), interactions in covalently bonded bichromophoric compounds in condensed phase, as well as those in vdW complexes in supersonic jets, are being investigated using laser-based techniques under a variety of experimental conditions. This progress report is divided into three parts, according to the class of molecular systems and the phase (liquid vs. gas) in which the excited-state interactions are probed. The first is concerned with the excited states of bridged diaryl compounds in the condensed phase. The second involves the excited states of vdW complexes in supersonic jets. Finally, the third, is concerned with the excited states of electron donor-acceptor (EDA) systems in both the condensed phase and supersonic jets. In each of these studies, we are concerned with the interchromophore interactions ranging from weak vdW forces to strong CT forces, and the factors determining whether the interaction forces are weak or strong in related molecules.

  4. Validity of Eucken formula and Stokes’ viscosity relation in high-temperature electronically excited gases

    Energy Technology Data Exchange (ETDEWEB)

    Istomin, V. A.; Kustova, E. V.; Mekhonoshina, M. A. [Department of Mathematics and Mechanics, Saint Petersburg State University, 198504 Universitetskiy pr., 28, Saint Petersburg (Russian Federation)

    2014-12-09

    In the present work we evaluate the accuracy of the Eucken formula and Stokes’ viscosity relation in high temperature non-equilibrium air species with electronic excitation. The thermal conductivity coefficient calculated using the exact kinetic theory methods is compared with that obtained applying approximate formulas in the temperature range 200–20000 K. A modification of the Eucken formula providing a good agreement with exact calculations is proposed. It is shown that the Stokes viscosity relation is not valid in electronically excited monoatomic gases at temperatures higher than 2000 K.

  5. Electron beam excitation assisted optical microscope with ultra-high resolution.

    Science.gov (United States)

    Inami, Wataru; Nakajima, Kentaro; Miyakawa, Atsuo; Kawata, Yoshimasa

    2010-06-07

    We propose electron beam excitation assisted optical microscope, and demonstrated its resolution higher than 50 nm. In the microscope, a light source in a few nanometers size is excited by focused electron beam in a luminescent film. The microscope makes it possible to observe dynamic behavior of living biological specimens in various surroundings, such as air or liquids. Scan speed of the nanometric light source is faster than that in conventional near-field scanning optical microscopes. The microscope enables to observe optical constants such as absorption, refractive index, polarization, and their dynamic behavior on a nanometric scale. The microscope opens new microscopy applications in nano-technology and nano-science.

  6. Electron Impact Excitation Collision Strengths for Extreme Ultraviolet Lines of Fe VII and Fe IX

    Science.gov (United States)

    Tayal, Swaraj S.; Zatsarinny, Oleg

    2014-08-01

    Extensive calculations are performed for electron excitation collision strengths and transitions probabilities for a wide range of ultraviolet lines in Fe VII and Fe IX. The collision strengths are calculated in the close-coupling approximation using the B-spline Breit-Pauli R-matrix method. The multiconfiguration Hartree-Fock method in conjunction with B-spline expansions is employed for an accurate representation of the target wave-functions. The close-coupling expansions include 189 and 370 fine-structure levels of Fe VII and Fe IX respectively. We have included levels of the 3p6, 3p53d,4l,5s, 3s3p63d,4s,4p, 3p43d2, 3s3p53d2 configurations and some low-lying levels of the 3p33d3 configuration for Fe IX. The effective collision strengths are obtained by averaging the electron collision strengths over a Maxwellian distribution of velocities at electron temperatures in the range from 104 to 107 K. There is a good agreement with the previous R-matrix calculation for transitions between first 17 levels of the 3p6, 3p53d, and 3s3p63d configurations in Fe IX. We were able to generate more accurate target states than those in the previous calculations. We included all 3p43d3nl correlation configurations and 3p-4f promotion for Fe VII which were found very important for accurate representation of 3dnl states. The present results considerably expand the existing data sets for Fe IX, allowing a more detailed treatment of the available measured spectra from different space observatories.This research work is supported by NASA grant NNX11AB62G from the Solar and Heliophysics program.

  7. Electronic excitation energy transfer and nonstationary processes in KH2PO4:Tl crystals

    Science.gov (United States)

    Ogorodnikov, I. N.; Pustovarov, V. A.

    2017-04-01

    We report the results of our experimental study and numerical simulation of the electronic excitation energy transfer to impurity centers under conditions where nonstationary processes take place in the hydrogen sublattice of potassium dihydrogen phosphate (KH2PO4) single crystals doped with mercury-like Tl+ ions (KDP:Tl). We present the experimental results of our investigation of the decay kinetics of the transient optical absorption (100 ns-50 s) of intrinsic defects in the hydrogen sublattice of KDP:Tl obtained by pulsed absorption spectroscopy and the results of our study of the dynamics of the change in steady-state luminescence intensity with irradiation time (1-5000 s). To explain the transfer of the energy being released during electron recombination involving intrinsic KDP:Tl lattice defects, we formulate a mathematical model for the transfer of this energy to impurity Tl+ luminescence centers. Within the model being developed, we present the systems of differential balance equations describing the nonstationary processes in the electron subsystem and the hydrogen sublattice; provide a technique for calculating the pair correlation functions Y( r, t) of dissimilar defects based on the solution of the Smoluchowski equation for the system of mobile hydrogen sublattice defects; calculate the time-dependent reaction rate constants K( t) for various experimental conditions; and outline the peculiarities and results of the model parametrization based on our experimental data. Based on our investigation, the dramatic and significant effect of a gradual inertial increase by a factor of 50-100 in steady-state luminescence intensity in the 4.5-eV band in KDP:Tl crystals due to the luminescence of mercury-like Tl+ ions has been explained qualitatively and quantitatively.

  8. Thermodynamical analysis of spin-state transitions in LaCo O3 : Negative energy of mixing to assist thermal excitation to the high-spin excited state

    Science.gov (United States)

    Kyômen, Tôru; Asaka, Yoshinori; Itoh, Mitsuru

    2005-01-01

    Magnetic susceptibility and heat capacity due to the spin-state transition in LaCoO3 were calculated by a molecular-field model in which the energy-level diagram of high-spin state reported by Ropka and Radwanski [Phys. Rev. B 67, 172401 (2003)] is assumed for the excited state, and the energy and entropy of mixing of high-spin Co ions and low-spin Co ions are introduced phenomenologically. The experimental data below 300K were well reproduced by this model, which proposes that the high-spin excited state can be populated even if the energy of high-spin state is much larger than that of low-spin state, because the negatively large energy of mixing reduces the net excitation energy. The stability of each spin state including the intermediate-spin state is discussed based on the present results and other reports.

  9. Studies of photoionization processes from ground-state and excited-state atoms and molecules

    Energy Technology Data Exchange (ETDEWEB)

    Ederer, D.L.; Parr, A.C.; West, J.B.

    1982-01-01

    Recent triply-differential photoelectron spectroscopy experiments designed for the study of correlation effects in atoms and molecules are described. Final-state symmetry of the n=2 state of helium has been determined. The non-Franck-Condon behavior of vibrational branching ratios and large variations of the angular asymmetry parameter has been observed for shape resonances and autoionizing resonances in CO and other molecules. Recent observations of the photoionization of excited sodium atoms are also described.

  10. Electronic excitations and metallization of dense solid hydrogen

    Science.gov (United States)

    Cohen, R. E.; Naumov, Ivan I.; Hemley, Russell J.

    2013-01-01

    Theoretical calculations and an assessment of recent experimental results for dense solid hydrogen lead to a unique scenario for the metallization of hydrogen under pressure. The existence of layered structures based on graphene sheets gives rise to an electronic structure related to unique features found in graphene that are well studied in the carbon phase. The honeycombed layered structure for hydrogen at high density, first predicted in molecular calculations, produces a complex optical response. The metallization of hydrogen is very different from that originally proposed via a phase transition to a close-packed monoatomic structure, and different from simple metallization recently used to interpret recent experimental data. These different mechanisms for metallization have very different experimental signatures. We show that the shift of the main visible absorption edge does not constrain the point of band gap closure, in contrast with recent claims. This conclusion is confirmed by measured optical spectra, including spectra obtained to low photon energies in the infrared region for phases III and IV of hydrogen. PMID:23904476

  11. Modeling the high-energy electronic state manifold of adenine: Calibration for nonlinear electronic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nenov, Artur, E-mail: Artur.Nenov@unibo.it; Giussani, Angelo; Segarra-Martí, Javier; Jaiswal, Vishal K. [Dipartimento di Chimica “G. Ciamician,” Università di Bologna, Via Selmi 2, IT-40126 Bologna (Italy); Rivalta, Ivan [Université de Lyon, CNRS, Institut de Chimie de Lyon, École Normale Supérieure de Lyon, 46 Allée d’Italie, F-69364 Lyon Cedex 07 (France); Cerullo, Giulio [Dipartimento di Fisica, Politecnico di Milano, IFN-CNR, Piazza Leonardo Da Vinci 32, IT-20133 Milano (Italy); Mukamel, Shaul [Department of Chemistry, University of California, Irvine, California 92697-2025 (United States); Garavelli, Marco, E-mail: marco.garavelli@unibo.it, E-mail: marco.garavelli@ens-lyon.fr [Dipartimento di Chimica “G. Ciamician,” Università di Bologna, Via Selmi 2, IT-40126 Bologna (Italy); Université de Lyon, CNRS, Institut de Chimie de Lyon, École Normale Supérieure de Lyon, 46 Allée d’Italie, F-69364 Lyon Cedex 07 (France)

    2015-06-07

    Pump-probe electronic spectroscopy using femtosecond laser pulses has evolved into a standard tool for tracking ultrafast excited state dynamics. Its two-dimensional (2D) counterpart is becoming an increasingly available and promising technique for resolving many of the limitations of pump-probe caused by spectral congestion. The ability to simulate pump-probe and 2D spectra from ab initio computations would allow one to link mechanistic observables like molecular motions and the making/breaking of chemical bonds to experimental observables like excited state lifetimes and quantum yields. From a theoretical standpoint, the characterization of the electronic transitions in the visible (Vis)/ultraviolet (UV), which are excited via the interaction of a molecular system with the incoming pump/probe pulses, translates into the determination of a computationally challenging number of excited states (going over 100) even for small/medium sized systems. A protocol is therefore required to evaluate the fluctuations of spectral properties like transition energies and dipole moments as a function of the computational parameters and to estimate the effect of these fluctuations on the transient spectral appearance. In the present contribution such a protocol is presented within the framework of complete and restricted active space self-consistent field theory and its second-order perturbation theory extensions. The electronic excited states of adenine have been carefully characterized through a previously presented computational recipe [Nenov et al., Comput. Theor. Chem. 1040–1041, 295-303 (2014)]. A wise reduction of the level of theory has then been performed in order to obtain a computationally less demanding approach that is still able to reproduce the characteristic features of the reference data. Foreseeing the potentiality of 2D electronic spectroscopy to track polynucleotide ground and excited state dynamics, and in particular its expected ability to provide

  12. Structural Influence on Excited State Dynamics in Simple Amines

    DEFF Research Database (Denmark)

    Klein, Liv Bærenholdt

    experiments with calculations, provides new insight into the nature of the internal conversion processes that mediate the dynamical evolution between Rydberg states, and how structural variations in simple amine system have a large impact on the non-adiabatic processes. The experimental method of choice......Simple amines are basic model system of nitrogen-containing chromophores that appear widely in nature. They are also ideal systems for detailed investigation of nonadiabatic dynamical processes and ultrafast temporal evolution of electronic states of the Rydberg type. This investigation, combining...... and sensitive collection of photoelectron spectra. In particular, the angleresolved data available from the VMI approach provides highly detailed mechanistic insight about the relaxation pathways. One striking novel nding is that for tertiary amines, the critical factor driving the non-adiabatic dynamics...

  13. Unrestricted density functional theory based on the fragment molecular orbital method for the ground and excited state calculations of large systems

    Energy Technology Data Exchange (ETDEWEB)

    Nakata, Hiroya, E-mail: nakata.h.ab@m.titech.ac.jp [Center for Biological Resources and Informatics, Tokyo Institute of Technology, B-62 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501 (Japan); RIKEN, Research Cluster for Innovation, Nakamura Lab, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Fedorov, Dmitri G. [NRI, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Yokojima, Satoshi [RIKEN, Research Cluster for Innovation, Nakamura Lab, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Tokyo University of Pharmacy and Life Sciences, 1423-1 Horinouchi, Hachioji-shi, Tokyo 192-0392 (Japan); Kitaura, Kazuo [Graduate School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501 (Japan); Sakurai, Minoru [Center for Biological Resources and Informatics, Tokyo Institute of Technology, B-62 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501 (Japan); Nakamura, Shinichiro [RIKEN, Research Cluster for Innovation, Nakamura Lab, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2014-04-14

    We extended the fragment molecular orbital (FMO) method interfaced with density functional theory (DFT) into spin unrestricted formalism (UDFT) and developed energy gradients for the ground state and single point excited state energies based on time-dependent DFT. The accuracy of FMO is evaluated in comparison to the full calculations without fragmentation. Electronic excitations in solvated organic radicals and in the blue copper protein, plastocyanin (PDB code: 1BXV), are reported. The contributions of solvent molecules to the electronic excitations are analyzed in terms of the fragment polarization and quantum effects such as interfragment charge transfer.

  14. Excited-state proton-transfer dynamics of 1-methyl-6-hydroxyquinolinium embedded in a solid matrix of poly(2-hydroxyethyl methacrylate).

    Science.gov (United States)

    Park, Sun-Young; Lee, Young-Shin; Jang, Du-Jeon

    2008-11-28

    The excited-state intrinsic proton transfer and its geminate recombination, as well as the ground-state equilibria, of 1-methyl-6-hydroxyquinolinium embedded in a solid matrix of poly(2-hydroxyethyl methacrylate) have been studied by measuring time-resolved and steady-state fluorescence spectra along with absorption and excitation spectra. Proton transfer takes place within 3.3 ns to form ion pairs while its back-reaction occurs on the time scale of 3.7 ns. The ion pairs in the rigid alcoholic matrix go through neither diffusion to form free ions nor subsequent electronic rearrangement to form the keto species within their excited-state lifetimes.

  15. Ground and excited states for exotic three-body atomic systems

    Directory of Open Access Journals (Sweden)

    Gasaneo G.

    2010-04-01

    Full Text Available An Angular Correlated Configuration Interaction method is extended and applied to exotic threebody atomic systems with general masses. A recently proposed angularly correlated basis set is used to construct, simultaneously and with a single diagonalization, ground and excited states wave functions which: (i satisfy exactly Kato cusp conditions at the two-body coalescence points; (ii have only linear parameters; (iii show a fast convergency rate for the energy; (iv form an orthogonal set. The efficiency of the construction is illustrated by the study a variety of three-body atomic systems [m1− m2− m3z3+ ] with two negatively charged light particles, with 123 diverse masses m1− and m2−, and a heavy positively charged nucleus m3z3+. The calculated ground 11S and several excited n1,3S state energies are compared with those given in the literature, when available. We also present a short discussion on the critical charge necessary to get a stable three-body system supporting two electrons, an electron and a muon, or two muons.

  16. The reactions of ground and excited state sodium atoms with hydrogen halide molecules

    Science.gov (United States)

    Weiss, P. S.; Mestdagh, J. M.; Covinsky, M. H.; Balko, B. A.; Lee, Y. T.

    1988-10-01

    The reactions of ground and excited state Na atoms with hydrogen halide (HX) molecules have been studied using the crossed molecular beams method. With both increasing translational and increasing electronic energy, the reactive cross sections increase in the reactions of HCl and HBr. From product angular and velocity distributions detailed center-of-mass information is derived. For the reactions of Na (3 2S 1/2, 3 2P 1/2, 4 2D 5/2, 5 2S 1/2) with HCl, the product NaCl is back-scattered with respect to the incoming Na atom in the center-of-mass frame of reference. The reaction of each Na state studied with HCl is direct and proceeds via collinear and near-collinear Na-Cl-H approach geometries. For the Na (3 2P 3/2) and Na (4 2D 5/2) reactions with HCl the predominant transition state symmetry is 2Σ in a collinear (C ∞ν) Na-Cl-H geometry. This is consistent with the reaction proceeding via electron transfer from the Na atom to the halide atom. Absolute reactive cross sections for each state of Na studied with HCl were determined by comparison with both small and large angle elastic scattering. We were unable to observe Na atoms with over 4 eV of electronic energy react with HF up to collision energies of 13 kcal/mole.

  17. Possible interaction between thermal electrons and vibrationally excited N2 in the lower E-region

    Directory of Open Access Journals (Sweden)

    K.-I. Oyama

    2011-03-01

    Full Text Available As one of the tasks to find the energy source(s of thermal electrons, which elevate(s electron temperature higher than neutral temperature in the lower ionosphere E-region, energy distribution function of thermal electron was measured with a sounding rocket at the heights of 93–131 km by the applying second harmonic method. The energy distribution function showed a clear hump at the energy of ~0.4 eV. In order to find the reason of the hump, we conducted laboratory experiment. We studied difference of the energy distribution functions of electrons in thermal energy range, which were measured with and without EUV radiation to plasma of N2/Ar and N2/O2 gas mixture respectively. For N2/Ar gas mixture plasma, the hump is not clearly identified in the energy distribution of thermal electrons. On the other hand for N2/O2 gas mixture, which contains vibrationally excited N2, a clear hump is found when irradiated by EUV. The laboratory experiment seems to suggest that the hump is produced as a result of interaction between vibrationally excited N2 and thermal electrons, and this interaction is the most probable heating source for the electrons of thermal energy range in the lower E-region. It is also suggested that energy distribution of the electrons in high energy part may not be Maxwellian, and DC probe measures the electrons which are non Maxwellian, and therefore "electron temperature" is calculated higher.

  18. Solvent effects on excitation energies obtained using the state-specific TD-DFT method with a polarizable continuum model based on constrained equilibrium thermodynamics.

    Science.gov (United States)

    Bi, Ting-Jun; Xu, Long-Kun; Wang, Fan; Ming, Mei-Jun; Li, Xiang-Yuan

    2017-12-13

    Nonequilibrium solvation effects need to be treated properly in the study of electronic absorption processes of solutes since solvent polarization is not in equilibrium with the excited-state charge density of the solute. In this work, we developed a state specific (SS) method based on the novel nonequilibrium solvation model with constrained equilibrium manipulation to account for solvation effects in electronic absorption processes. Time-dependent density functional theory (TD-DFT) is adopted to calculate electronic excitation energies and a polarizable continuum model is employed in the treatment of bulk solvent effects on both the ground and excited electronic states. The equations based on this novel nonequilibrium solvation model in the framework of TDDFT to calculate vertical excitation energy are presented and implemented in the Q-Chem package. The implementation is validated by comparing reorganization energies for charge transfer excitations between two atoms obtained from Q-Chem and those obtained using a two-sphere model. Solvent effects on electronic transitions of coumarin 153 (C153), acetone, pyridine, (2E)-3-(3,4-dimethoxyphenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one (DMHP), and uracil in different solvents are investigated using the newly developed code. Our results show that the obtained vertical excitation energies as well as spectral shifts generally agree better with the available experimental values than those obtained using the traditional nonequlibrium solvation model. This new model is thus appropriate to study nonequilibrium excitation processes in solution.

  19. Excitation of surface and volume plasmons in metal nanocluster by fast electrons

    CERN Document Server

    Gildenburg, V B; Pavlichenko, I A

    2015-01-01

    Surface and volume plasmons excited in a metal cluster by moving electron and corresponding inelastic scattering spectra are studied based on the hydrodynamic approach. Along with the bulk losses traditionally taken into account, the surface and radiative ones are also considered as the physical mechanisms responsible for the plasmon damping. The second and third mechanisms are found to be essential for the surface plasmons and depend very differently on the multipole mode order. The differential equations are obtained which describe the temporal evolution of every particular mode as that one of a linear oscillator excited by the given external force, and the electron energy loss spectra are calculated. The changes in spectrum shape with the impact parameter and with the electron passage time are analyzed and found to be in good enough agreement with the data of scanning transmission electron microscopy (STEM) experiments. It is shown that, in the general case, a pronounced contribution to the formation of th...

  20. Probing an Excited-State Atomic Transition Using Hyperfine Quantum Beat Spectroscopy

    CERN Document Server

    Wade, Christopher G; Keaveney, James; Adams, Charles S; Weatherill, Kevin J

    2014-01-01

    We describe a method to observe the dynamics of an excited-state transition in a room temperature atomic vapor using hyperfine quantum beats. Our experiment using cesium atoms consists of a pulsed excitation of the D2 transition, and continuous-wave driving of an excited-state transition from the 6P$_{3/2}$ state to the 7S$_{1/2}$ state. We observe quantum beats in the fluorescence from the 6P$_{3/2}$ state which are modified by the driving of the excited-state transition. The Fourier spectrum of the beat signal yields evidence of Autler-Townes splitting of the 6P$_{3/2}$, F = 5 hyperfine level and Rabi oscillations on the excited-state transition. A detailed model provides qualitative agreement with the data, giving insight to the physical processes involved.

  1. Excited-State Dynamics of Biological Molecules in Solution: Photoinduced Charge Transfer in Oxidatively Damaged DNA and Deactivation of Violacein in Viscous Solvents

    Science.gov (United States)

    Beckstead, Ashley Ann

    UV radiation from the sun is strongly absorbed by DNA, and the resulting electronic excited states can lead to the formation of mutagenic photoproducts. Decades of research have brought to light the excited-state dynamics of single RNA and DNA nucleobases, but questions remain about the nature of excited states accessed in DNA strands. In this thesis, I present ultrafast spectroscopic observations of photoinduced electron transfer from the oxidatively damaged bases, 8-oxo-7,8-dihydro-2'-deoxyguanosine, 5-hydroxy-2'-deoxycytidine and 5-hydroxy-2'-deoxyuridine, to adenine in three dinucleotides. The results reveal that charge transfer states are formed on a timescale faster than our instrumental resolution (electron transfer efficiently returns the excited-state population to the ground state on timescales from tens to hundreds of ps. In addition to recent spectroscopic observations of charge transfer state species in DNA by other groups, our results have augmented understanding of the long-lived transient signals observed in DNA strands. The observation of photoinduced electron transfer in these oxidatively damaged nucleobases also supports a recent proposal regarding the role of oxidative products in pre-RNA catalysis. I discuss these observations in the contexts of fundamental DNA excited-state dynamics and prebiotic chemical evolution. In this thesis, I also present the first ultrafast spectroscopic investigation of violacein, a pigment isolated from Antarctic bacteria. Despite claims for the photoprotective role of this pigment, there has never been a spectroscopic analysis of excited-state deactivation in violacein. Emission spectra, fluorescence quantum yields and excited-state lifetimes of violacein in various solvents were measured for the first time. Both the fluorescence quantum yield and excited-state lifetime of violacein increase in increasingly viscous solvents, suggesting a large-scale motion mediates excited-state deactivation. I compare these

  2. Circular polarization of X-ray radiation emitted by longitudinally polarized electron impact excitation: Under a screened Coulomb interaction

    Science.gov (United States)

    Chen, Zhan-Bin

    2017-12-01

    Longitudinally polarized electron impact excitation from the ground state 1s2 to the excited state 1s2l (l =s,p) levels of highly charged He-like Fe24+ ions in weakly coupled hot-dense plasmas is investigated using a fully relativistic distorted-wave method. The Debye-Hückel potential is used to describe the plasma screening. Benchmark results such as the total cross sections, the magnetic sublevels cross sections, and the circular polarizations of corresponding X-ray radiations are presented. For the excitation process, results show that the plasma screening has an effect in reducing both the total and magnetic sublevels cross sections. For the de-excitation process, it is found that while the plasma screening as a slightly effect on the circular polarizations of radiations for the 1 s 2 s 3S1 → 1 s21S0,1 s 2 p 3P2 → 1 s21S0 , and 1 s 2 p 1P1 → 1 s21S0 transition lines, it gives a substantial contribution for the same properties of the 1 s 2 p 3P1 → 1 s21S0 line.

  3. Excitation of surface modes by electron beam in semi-bounded quantum plasma

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, B. F., E-mail: mohamedbahf@yahoo.co.uk [Plasma Physics Department, N.R.C., Atomic Energy Authority, Cairo (Egypt); Elbasha, N. M. [Physics Department, Faculty of Science, Ain-Shams University, Cairo (Egypt)

    2015-10-15

    The excitation of the TM surface modes due to the interaction of electron beam with a semi-bounded quantum magnetized plasma is investigated. The generated current and the perturbed densities of the electron beam and plasma are obtained. The wave equation that describes the excited fields has been solved to obtain the dispersion relation for these modes. It is found that the quantum effects play important role for frequencies less and bigger than plasma frequency such that the phase velocity of modes increases with increasing the quantum effects compared to the classical case. It has also been displayed that in the absence of external magnetic field, the surface modes appear in the all regions of the wavelength while they have been only excited for high wavenumber in the presence of the magnetic field. Besides, it has been shown that the dispersion curves of the modes depend essentially on the density ratio of beam and plasma.

  4. Current status of free radicals and electronically excited metastable species as high energy propellants

    Science.gov (United States)

    Rosen, G.

    1973-01-01

    A survey is presented of free radicals and electronically excited metastable species as high energy propellants for rocket engines. Nascent or atomic forms of diatomic gases are considered free radicals as well as the highly reactive diatomic triatomic molecules that posess unpaired electrons. Manufacturing and storage problems are described, and a review of current experimental work related to the manufacture of atomic hydrogen propellants is presented.

  5. Influence of environment induced correlated fluctuations in electronic coupling on coherent excitation energy transfer dynamics in model photosynthetic systems.

    Science.gov (United States)

    Huo, Pengfei; Coker, David F

    2012-03-21

    Two-dimensional photon-echo experiments indicate that excitation energy transfer between chromophores near the reaction center of the photosynthetic purple bacterium Rhodobacter sphaeroides occurs coherently with decoherence times of hundreds of femtoseconds, comparable to the energy transfer time scale in these systems. The original explanation of this observation suggested that correlated fluctuations in chromophore excitation energies, driven by large scale protein motions could result in long lived coherent energy transfer dynamics. However, no significant site energy correlation has been found in recent molecular dynamics simulations of several model light harvesting systems. Instead, there is evidence of correlated fluctuations in site energy-electronic coupling and electronic coupling-electronic coupling. The roles of these different types of correlations in excitation energy transfer dynamics are not yet thoroughly understood, though the effects of site energy correlations have been well studied. In this paper, we introduce several general models that can realistically describe the effects of various types of correlated fluctuations in chromophore properties and systematically study the behavior of these models using general methods for treating dissipative quantum dynamics in complex multi-chromophore systems. The effects of correlation between site energy and inter-site electronic couplings are explored in a two state model of excitation energy transfer between the accessory bacteriochlorophyll and bacteriopheophytin in a reaction center system and we find that these types of correlated fluctuations can enhance or suppress coherence and transfer rate simultaneously. In contrast, models for correlated fluctuations in chromophore excitation energies show enhanced coherent dynamics but necessarily show decrease in excitation energy transfer rate accompanying such coherence enhancement. Finally, for a three state model of the Fenna-Matthews-Olsen light

  6. Electron impact excitation collision strengths for neon-like Ni XIX ...

    Indian Academy of Sciences (India)

    Abstract. In a recent paper [Pramana – J. Phys. 64, 129 (2005)] results have been presented for electron impact excitation collision strengths for transitions among the fine- structure levels of the 2s22p6 and 2s22p53s configurations of Ni XIX. In this paper we demonstrate through an independent calculation with the ...

  7. Electron-energy-loss spectroscopy of plasmon excitations in concentric-shell fullerenes

    NARCIS (Netherlands)

    Henrard, L.; Malengreau, F.; Rudolf, P.; Hevesi, K.; Caudano, R.; Lambin, Ph.; Cabioc’h, Th.

    1999-01-01

    We report evidence for surface plasmon excitations in concentric-shell fullerenes. A film of these concentric-shell fullerenes with radii around 5–7 nm was produced by carbon bombardment of a silver polycrystalline target and measured by electron-energy-loss spectroscopy (EELS) in reflection

  8. Vibrational excitation resulting from electron capture in LUMO of F 2 ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 124; Issue 1. Vibrational excitation resulting from electron capture in LUMO of F2 and HCl - A treatment using the time-dependent wave packet approach. Bhavesh K Shandilya Manabendra Sarma Satrajit Adhikari Manoj K Mishra. Volume 124 Issue 1 January 2012 ...

  9. Application of a grating coupler for surface plasmon polariton excitation in a photoemission electron microscopy experiment

    DEFF Research Database (Denmark)

    Leißner, Till; Jauernik, Stephan; Lemke, Christoph

    Surface plasmon polariton (SPP) excitation at a gold-vacuum interface via 800 nm light pulses mediated by a periodic array of gold ridges is probed at high lateral resolution by means of photoemission electron microscopy (PEEM). We directly monitor and quantify the coupling properties as a function...

  10. Imaging studies of excited and dissociative States of hydroxymethylene produced in the photodissociation of the hydroxymethyl radical.

    Science.gov (United States)

    Rodrigo, Chirantha P; Sutradhar, Subhasish; Reisler, Hanna

    2014-12-26

    Rotational, vibrational, and electronic states of formaldehyde and cis-hydroxymethylene products generated in the photodissociation of the hydroxymethyl radical are investigated by sliced velocity map imaging (SVMI) following excitation of the radical to its 3px and 3pz Rydberg states. SVMI of H and D photofragments is essential in these studies because it allows zooming in on low-velocity regions of the images where small threshold signals can be identified. With CH2OD precursors, formaldehyde and hydroxymethylene products are examined separately by monitoring D and H, respectively. Whereas the main dissociation channels lead to formaldehyde and cis-hydroxymethylene in their ground electronic states, at higher excitation energies the kinetic energy distributions (KEDs) of H and D photofragments exhibit additional small peaks, which are assigned as triplet states of formaldehyde and hydroxymethylene. Results obtained with deuterated isotopologs of CH2OH demonstrate that the yield of the triplet state of formaldehyde decreases upon increasing deuteration, suggesting that the conical intersection seams that govern the dynamics depend on the degree of deuteration. The rotational excitation of cis-hydroxymethylene depends on the excited Rydberg state of CH2OD and is lower in dissociation via the 3pz state than via the lower lying 3px and 3s states. Vibrational excitation of cis-HCOD, which spans the entire allowed internal energy range, consists mostly of the CO-stretch and in-plane bend modes. When the internal energy of cis-HCOD exceeds the dissociation threshold to D + HCO, slow D and H photofragments deriving from secondary dissociation are observed. The yields of these H and D fragments are comparable, and we propose that they are generated via prior isomerization of cis-HCOD to HDCO.

  11. Electronic excitation of furfural as probed by high-resolution vacuum ultraviolet spectroscopy, electron energy loss spectroscopy, and ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira da Silva, F.; Lange, E. [Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Limão-Vieira, P., E-mail: plimaovieira@fct.unl.pt, E-mail: michael.brunger@flinders.edu.au, E-mail: maplima@ifi.unicamp.br [Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Jones, N. C.; Hoffmann, S. V. [ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Århus C (Denmark); Hubin-Franskin, M.-J.; Delwiche, J. [Départment de Chimie, Institut de Chimie-Bât. B6C, Université de Liège, B-4000 Liège 1 (Belgium); Brunger, M. J., E-mail: plimaovieira@fct.unl.pt, E-mail: michael.brunger@flinders.edu.au, E-mail: maplima@ifi.unicamp.br [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia); and others

    2015-10-14

    The electronic spectroscopy of isolated furfural (2-furaldehyde) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 3.5–10.8 eV energy-range, with absolute cross section measurements derived. Electron energy loss spectra are also measured over a range of kinematical conditions. Those energy loss spectra are used to derive differential cross sections and in turn generalised oscillator strengths. These experiments are supported by ab initio calculations in order to assign the excited states of the neutral molecule. The good agreement between the theoretical results and the measurements allows us to provide the first quantitative assignment of the electronic state spectroscopy of furfural over an extended energy range.

  12. Highly-sensitive Eu3+ ratiometric thermometers based on excited state absorption with predictable calibration

    Science.gov (United States)

    Souza, Adelmo S.; Nunes, Luiz A. O.; Silva, Ivan G. N.; Oliveira, Fernando A. M.; da Luz, Leonis L.; Brito, Hermi F.; Felinto, Maria C. F. C.; Ferreira, Rute A. S.; Júnior, Severino A.; Carlos, Luís D.; Malta, Oscar L.

    2016-02-01

    Temperature measurements ranging from a few degrees to a few hundreds of Kelvin are of great interest in the fields of nanomedicine and nanotechnology. Here, we report a new ratiometric luminescent thermometer using thermally excited state absorption of the Eu3+ ion. The thermometer is based on the simple Eu3+ energy level structure and can operate between 180 and 323 K with a relative sensitivity ranging from 0.7 to 1.7% K-1. The thermometric parameter is defined as the ratio between the emission intensities of the 5D0 --> 7F4 transition when the 5D0 emitting level is excited through the 7F2 (physiological range) or 7F1 (down to 180 K) level. Nano and microcrystals of Y2O3:Eu3+ were chosen as a proof of concept of the operational principles in which both excitation and detection are within the first biological transparent window. A novel and of paramount importance aspect is that the calibration factor can be calculated from the Eu3+ emission spectrum avoiding the need for new calibration procedures whenever the thermometer operates in different media.Temperature measurements ranging from a few degrees to a few hundreds of Kelvin are of great interest in the fields of nanomedicine and nanotechnology. Here, we report a new ratiometric luminescent thermometer using thermally excited state absorption of the Eu3+ ion. The thermometer is based on the simple Eu3+ energy level structure and can operate between 180 and 323 K with a relative sensitivity ranging from 0.7 to 1.7% K-1. The thermometric parameter is defined as the ratio between the emission intensities of the 5D0 --> 7F4 transition when the 5D0 emitting level is excited through the 7F2 (physiological range) or 7F1 (down to 180 K) level. Nano and microcrystals of Y2O3:Eu3+ were chosen as a proof of concept of the operational principles in which both excitation and detection are within the first biological transparent window. A novel and of paramount importance aspect is that the calibration factor can be

  13. Femtosecond insights into direct electron injection in dye anchored ZnO QDs following charge transfer excitation.

    Science.gov (United States)

    Kumar, Pushpendra; Kumar, Sunil; Ghosh, Subrata; Pal, Suman Kalyan

    2016-07-27

    The role of the charge transfer (CT) state in interfacial electron transfer in dye-sensitized semiconductor nanocrystals is still poorly understood. To address this problem, femtosecond transient absorption (TA) spectroscopy is used as a probe to investigate the electron injection across a newly synthesized coumarin dye (8-hydroxy-2-oxo-4-phenyl-2 benzo[h]chromene-3-carbonitrile, coded BC5) and ZnO quantum dots (QDs). Steady state and time-resolved spectroscopic measurements reveal that BC5 dye interacts strongly with ZnO QDs in the ground state forming a CT complex. The BC5-ZnO QD complex absorbs more towards red compared to only the dye and QDs, and emits fluorescence due to radiative recombination of photogenerated charges. The formation of charges following the excitation of the CT complex has been demonstrated by observing the signature of dye radical cations and electrons in the conduction band (CB) of the QDs in the TA spectra. The TA signals of these charges grow sharply as a result of ultrafast direct electron injection into the QD. We have monitored the complete dynamics of photogenerated charges by measuring the TA signals of the charges up to a couple of nanoseconds. The injected electrons that are free or shallowly trapped recombine with a time constant of 625 fs, whereas deeply trapped electrons disappear slowly (526 ps) via radiative recombination. Furthermore, theoretical studies based on ab initio calculations have been carried out to complement the experimental findings.

  14. Excited state non-adiabatic dynamics of pyrrole: A time-resolved photoelectron spectroscopy and quantum dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Guorong [National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Neville, Simon P.; Worth, Graham A., E-mail: g.a.worth@bham.ac.uk [School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Schalk, Oliver [National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Department of Physics, AlbaNova University Center, Stockholm University, Roslagstullsbacken 21, 109 61 Stockholm (Sweden); Sekikawa, Taro [National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Department of Applied Physics, Hokkaido University, Kita-13 Nishi-8, Kita-ku, Sapporo 060-8628 (Japan); Ashfold, Michael N. R. [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Stolow, Albert, E-mail: astolow@uottawa.ca [National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada); Departments of Chemistry and Physics, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5 (Canada)

    2015-02-21

    The dynamics of pyrrole excited at wavelengths in the range 242-217 nm are studied using a combination of time-resolved photoelectron spectroscopy and wavepacket propagations performed using the multi-configurational time-dependent Hartree method. Excitation close to the origin of pyrrole’s electronic spectrum, at 242 and 236 nm, is found to result in an ultrafast decay of the system from the ionization window on a single timescale of less than 20 fs. This behaviour is explained fully by assuming the system to be excited to the A{sub 2}(πσ{sup ∗}) state, in accord with previous experimental and theoretical studies. Excitation at shorter wavelengths has previously been assumed to result predominantly in population of the bright A{sub 1}(ππ{sup ∗}) and B{sub 2}(ππ{sup ∗}) states. We here present time-resolved photoelectron spectra at a pump wavelength of 217 nm alongside detailed quantum dynamics calculations that, together with a recent reinterpretation of pyrrole’s electronic spectrum [S. P. Neville and G. A. Worth, J. Chem. Phys. 140, 034317 (2014)], suggest that population of the B{sub 1}(πσ{sup ∗}) state (hitherto assumed to be optically dark) may occur directly when pyrrole is excited at energies in the near UV part of its electronic spectrum. The B{sub 1}(πσ{sup ∗}) state is found to decay on a timescale of less than 20 fs by both N-H dissociation and internal conversion to the A{sub 2}(πσ{sup ∗}) state.

  15. Temperature effects on excited state of strong-coupling polaron in an asymmetric RbCl quantum dot

    Science.gov (United States)

    Feng, Li-Qin; Li, Jing-Qi; Xiao, Jing-Lin

    2015-01-01

    On the condition of strong electron-LO phonon coupling in an asymmetric RbCl quantum dot (QD), the first excited state energy (FESE), the excitation energy (EE), and the transition frequency (TF) between the first excited ground states (FEGS) of the polaron are calculated by using the linear combination operator and the unitary transformation methods. The variation of the FESE, the EE and the TF with the temperature, the transverse and longitudinal confinement strengths (TLCS) of the QD are studied in detail. We find that the FESE, the EE and the TF decreases (increases) with increasing temperature when the temperature is in lower (higher) temperature regime. They are increasing functions of the TLCS. We find three ways to tune the FESE, the EE and the TF via controlling the temperature and the TLCS.

  16. Cluster decay of Ba isotopes from ground state and as an excited ...

    Indian Academy of Sciences (India)

    122 is studied by modifying the Coulomb and proximity potential model for both the ground and excited state decays ... 20 and they arise as multiple clusters and are accompanied by multiple light particles. (Z ≤ 2). ... all aspects of α and cluster decay from these isotopes from both ground and excited states beginning with ...

  17. Ground State and Excited State Tuning in Ferric Dipyrrin Complexes Promoted by Ancillary Ligand Exchange

    Energy Technology Data Exchange (ETDEWEB)

    Kleinlein, Claudia; Zheng, Shao-Liang; Betley, Theodore A.

    2017-04-24

    Three ferric dipyrromethene complexes featuring different ancillary ligands were synthesized by one electron oxidation of ferrous precursors. Four-coordinate iron complexes of the type (ArL)FeX2 [ArL = 1,9-(2,4,6-Ph3C6H2)2-5-mesityldipyrromethene] with X = Cl or tBuO were prepared and found to be high-spin (S = 5/2), as determined by superconducting quantum interference device magnetometry, electron paramagnetic resonance, and 57Fe Mössbauer spectroscopy. The ancillary ligand substitution was found to affect both ground state and excited properties of the ferric complexes examined. While each ferric complex displays reversible reduction and oxidation events, each alkoxide for chloride substitution results in a nearly 600 mV cathodic shift of the FeIII/II couple. The oxidation event remains largely unaffected by the ancillary ligand substitution and is likely dipyrrin-centered. While the alkoxide substituted ferric species largely retain the color of their ferrous precursors, characteristic of dipyrrin-based ligand-to-ligand charge transfer (LLCT), the dichloride ferric complex loses the prominent dipyrrin chromophore, taking on a deep green color. Time-dependent density functional theory analyses indicate the weaker-field chloride ligands allow substantial configuration mixing of ligand-to-metal charge transfer into the LLCT bands, giving rise to the color changes observed. Furthermore, the higher degree of covalency between the alkoxide ferric centers is manifest in the observed reactivity. Delocalization of spin density onto the tert-butoxide ligand in (ArL)FeCl(OtBu) is evidenced by hydrogen atom abstraction to yield (ArL)FeCl and HOtBu in the presence of substrates containing weak C–H bonds, whereas the chloride (ArL)FeCl2 analogue does not react under these conditions.

  18. Ultrafast fluorescence study of the effect of carboxylic and carboxylate substituents on the excited state properties of anthracene

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Córdoba, William [Escuela de Física, Universidad Nacional de Colombia Sede Medellín, A.A. 3840, Medellín (Colombia); Noria-Moreno, Raquel; Navarro, Pedro [Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, 04510 México, DF (Mexico); Peon, Jorge, E-mail: jpeon@unam.mx [Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, 04510 México, DF (Mexico)

    2014-01-15

    With the objective of understanding the interaction between carboxylic substituents and aromatic systems in electronically excited states, we have studied the photophysics of anthracene-9-carboxylic acid and its conjugate base through spectroscopic and computational approaches. We measured the emission spectrum evolution with femtosecond resolution observing that the formation of the relaxed fluorescent state of the acid corresponds to a red shifting of the emission which takes place within the first picosecond after excitation, a time-scale defined by the solvent response (acetone). For the case of the anthracene-9-carboxylate system, the spectral evolution is practically absent, indicating a lack of relaxation of the substituent orientation in the S{sub 1} state. Computational work at the time-dependent density functional theory level, considering the novel state-specific formalism, indicates that for anthracene-9-carboxylic acid, the first electronically excited state evolves from a structure with a nearly 60° dihedral angle between the carboxylic and aromatic systems, to a relaxed structure with a nearly 30° angle. On the other hand, the calculations show that for the salt, the carboxylate group remains decoupled from the aromatic system both in the ground and fluorescent state, remaining in both states at nearly 90°. Our results elucidate that the emission spectra of the acid and conjugate base are defined by the degree of interaction between the carboxylic (or carboxylate) group and the aromatic system. Such interactions are drastically different from the formal charge present in the carboxylate ion. -- Highlights: • Understanding of the interaction between carboxylic substituents and aromatic systems in electronically excited states. • Elucidation of the excited state dynamics of 9-ACA and its conjugated base in acetone solutions. • The spectral evolution time-scale of the aromatic acid and its salt depends on the solvation dynamics. • The

  19. Rate coefficients for dissociative attachment and resonant electron-impact dissociation involving vibrationally excited O{sub 2} molecules

    Energy Technology Data Exchange (ETDEWEB)

    Laporta, V. [Istituto di Metodologie Inorganiche e dei Plasmi, CNR, Bari, Italy and Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom); Celiberto, R. [Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica, Politecnico di Bari, Italy and Istituto di Metodologie Inorganiche e dei Plasmi, CNR, Bari (Italy); Tennyson, J. [Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom)

    2014-12-09

    Rate coefficients for dissociative electron attachment and electron-impact dissociation processes, involving vibrationally excited molecular oxygen, are presented. Analytical fits of the calculated numerical data, useful in the applications, are also provided.

  20. Defect production and annihilation in metals through electronic excitation by energetic heavy ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Iwase, Akihiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    Defect production, radiation annealing and defect recovery are studied in Ni and Cu irradiated with low-energy ({approx}1-MeV) and high-energy ({approx}100-MeV) ions. Irradiation of Ni with {approx}100-MeV ions causes an anomalous reduction, or even a complete disappearance of the stage-I recovery. This result shows that the energy transferred from excited electrons to lattice atoms through the electron-lattice interaction contributes to the annihilation of the stage-I interstitials. This effect is also observed in Ni as a large radiation annealing during 100-MeV heavy ion irradiation. On the other hand, in Cu thin foils, we find the defect production process strongly associated with electron excitation, where the defect production cross section is nearly proportional to S{sub e}{sup 2}. (author)

  1. Excitation of vibrational quanta in furfural by intermediate-energy electrons

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D. B. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Neves, R. F. C. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Instituto Federal do Sul de Minas Gerais, Campus Poços de Caldas, Minas Gerais (Brazil); Departamento de Física, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, MG (Brazil); Lopes, M. C. A. [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, MG (Brazil); Costa, R. F. da [Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, Campinas, 13083-859 São Paulo (Brazil); Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, 09210-580 São Paulo (Brazil); Varella, M. T. do N. [Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970 São Paulo, São Paulo (Brazil); Bettega, M. H. F. [Departamento de Física, Universidade Federal do Paraná, CP 19044, 81531-990 Curitiba, Paraná (Brazil); Lima, M. A. P. [Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, Campinas, 13083-859 São Paulo (Brazil); García, G. [Instituto de Física Fundamental, CSIC, Serrano 113-bis, 28006 Madrid (Spain); and others

    2015-12-14

    We report cross sections for electron-impact excitation of vibrational quanta in furfural, at intermediate incident electron energies (20, 30, and 40 eV). The present differential cross sections are measured over the scattered electron angular range 10°–90°, with corresponding integral cross sections subsequently being determined. Furfural is a viable plant-derived alternative to petrochemicals, being produced via low-temperature plasma treatment of biomass. Current yields, however, need to be significantly improved, possibly through modelling, with the present cross sections being an important component of such simulations. To the best of our knowledge, there are no other cross sections for vibrational excitation of furfural available in the literature, so the present data are valuable for this important molecule.

  2. Excitation of monochromatic and stable electron acoustic wave by two counter-propagating laser beams

    Science.gov (United States)

    Xiao, C. Z.; Liu, Z. J.; Zheng, C. Y.; He, X. T.

    2017-07-01

    The undamped electron acoustic wave is a newly-observed nonlinear electrostatic plasma wave and has potential applications in ion acceleration, laser amplification and diagnostics due to its unique frequency range. We propose to make the first attempt to excite a monochromatic and stable electron acoustic wave (EAW) by two counter-propagating laser beams. The matching conditions relevant to laser frequencies, plasma density, and electron thermal velocity are derived and the harmonic effects of the EAW are excluded. Single-beam instabilities, including stimulated Raman scattering and stimulated Brillouin scattering, on the excitation process are quantified by an interaction quantity, η =γ {τ }B, where γ is the growth rate of each instability and {τ }B is the characteristic time of the undamped EAW. The smaller the interaction quantity, the more successfully the monochromatic and stable EAW can be excited. Using one-dimensional Vlasov-Maxwell simulations, we excite EAW wave trains which are amplitude tunable, have a duration of thousands of laser periods, and are monochromatic and stable, by carefully controlling the parameters under the above conditions.

  3. Chromophore twisting in the excited state of a photoswitchable fluorescent protein captured by time-resolved serial femtosecond crystallography

    Science.gov (United States)

    Coquelle, Nicolas; Sliwa, Michel; Woodhouse, Joyce; Schirò, Giorgio; Adam, Virgile; Aquila, Andrew; Barends, Thomas R. M.; Boutet, Sébastien; Byrdin, Martin; Carbajo, Sergio; de La Mora, Eugenio; Doak, R. Bruce; Feliks, Mikolaj; Fieschi, Franck; Foucar, Lutz; Guillon, Virginia; Hilpert, Mario; Hunter, Mark S.; Jakobs, Stefan; Koglin, Jason E.; Kovacsova, Gabriela; Lane, Thomas J.; Lévy, Bernard; Liang, Mengning; Nass, Karol; Ridard, Jacqueline; Robinson, Joseph S.; Roome, Christopher M.; Ruckebusch, Cyril; Seaberg, Matthew; Thepaut, Michel; Cammarata, Marco; Demachy, Isabelle; Field, Martin; Shoeman, Robert L.; Bourgeois, Dominique; Colletier, Jacques-Philippe; Schlichting, Ilme; Weik, Martin

    2018-01-01

    Chromophores absorb light in photosensitive proteins and thereby initiate fundamental biological processes such as photosynthesis, vision and biofluorescence. An important goal in their understanding is the provision of detailed structural descriptions of the ultrafast photochemical events that they undergo, in particular of the excited states that connect chemistry to biological function. Here we report on the structures of two excited states in the reversibly photoswitchable fluorescent protein rsEGFP2. We populated the states through femtosecond illumination of rsEGFP2 in its non-fluorescent off state and observed their build-up (within less than one picosecond) and decay (on the several picosecond timescale). Using an X-ray free-electron laser, we performed picosecond time-resolved crystallography and show that the hydroxybenzylidene imidazolinone chromophore in one of the excited states assumes a near-canonical twisted configuration halfway between the trans and cis isomers. This is in line with excited-state quantum mechanics/molecular mechanics and classical molecular dynamics simulations. Our new understanding of the structure around the twisted chromophore enabled the design of a mutant that displays a twofold increase in its off-to-on photoswitching quantum yield.

  4. Dynamics of transfer of electron excitation in a donor-acceptor system with a carbon chain and ways of its relaxation

    Directory of Open Access Journals (Sweden)

    M.M. Sevryukova

    2017-12-01

    Full Text Available The optical properties and dynamics of transport of electron excitation and the ways of its relaxation in the supramolecular D–π–A complex on the basis of merocyanines have been investigated. There have been found two components in the transfer of charge: fast and slow, which correspond to different conformational states of the carbon chain in merocyanines. It was found that the main photoluminescence of the studied molecular solutions of merocyanines by its nature is similar to the exciplex luminescence, as a manifestation of resonant and charge transfer interaction in an excited state. The lifetime in this state is about 2000 ps.

  5. An instant photo-excited electrons relaxation on the photo-degradation properties of TiO2-x films

    CSIR Research Space (South Africa)

    Nkosi, SS

    2014-11-01

    Full Text Available %. The prepared films were characterized by XRD, SEM and AFM.A connection between the photocatalytic degradation performance and photo-excited electron recovery/relaxation was observed. It was found that longer photo-excited electron recovery/relaxation leads...

  6. Ground and excited state properties of high performance anthocyanidin dyes-sensitized solar cells in the basic solutions

    Energy Technology Data Exchange (ETDEWEB)

    Prima, Eka Cahya [Advanced Functional Material Laboratory, Engineering Physics, Institut Teknologi Bandung (Indonesia); Computational Material Design and Quantum Engineering Laboratory, Engineering Physics, Institut Teknologi Bandung (Indonesia); International Program on Science Education, Universitas Pendidikan Indonesia (Indonesia); Yuliarto, Brian; Suyatman, E-mail: yatman@tf.itb.ac.id [Advanced Functional Material Laboratory, Engineering Physics, Institut Teknologi Bandung (Indonesia); Dipojono, Hermawan Kresno [Computational Material Design and Quantum Engineering Laboratory, Engineering Physics, Institut Teknologi Bandung (Indonesia)

    2015-09-30

    The aglycones of anthocyanidin dyes were previously reported to form carbinol pseudobase, cis-chalcone, and trans-chalcone due to the basic levels. The further investigations of ground and excited state properties of the dyes were characterized using density functional theory with PCM(UFF)/B3LYP/6-31+G(d,p) level in the basic solutions. However, to the best of our knowledge, the theoretical investigation of their potential photosensitizers has never been reported before. In this paper, the theoretical photovoltaic properties sensitized by dyes have been successfully investigated including the electron injections, the ground and excited state oxidation potentials, the estimated open circuit voltages, and the light harvesting efficiencies. The results prove that the electronic properties represented by dyes’ LUMO-HOMO levels will affect to the photovoltaic performances. Cis-chalcone dye is the best anthocyanidin aglycone dye with the electron injection spontaneity of −1.208 eV, the theoretical open circuit voltage of 1.781 V, and light harvesting efficiency of 56.55% due to the best HOMO-LUMO levels. Moreover, the ethanol solvent slightly contributes to the better cell performance than the water solvent dye because of the better oxidation potential stabilization in the ground state as well as in the excited state. These results are in good agreement with the known experimental report that the aglycones of anthocyanidin dyes in basic solvent are the high potential photosensitizers for dye-sensitized solar cell.

  7. Addressing the electronic properties of III-V nanowires by photoluminescence excitation spectroscopy

    Science.gov (United States)

    De Luca, M.

    2017-02-01

    Semiconductor nanowires (NWs) have been attracting an increasing interest in the scientific community. This is due to their peculiar filamentary shape and nanoscale diameter, which renders them versatile and cost-effective components of novel technological devices and also makes them an ideal platform for the investigation of a variety of fascinating physical effects. Absorption spectroscopy is a powerful and non-destructive technique able to provide information on the physical properties of the NWs. However, standard absorption spectroscopy is hard to perform in NWs, because of their small volume and the presence of opaque substrates. Here, we demonstrate that absorption can be successfully replaced by photoluminescence excitation (PLE). First, the use of polarization-resolved PLE to address the complex and highly-debated electronic band structure of wurtzite GaAs and InP NWs is shown. Then, PLE is used as a statistically-relevant method to localize the presence of separate wurtzite and zincblende NWs in the same InP sample. Finally, a variety of resonant exotic effects in the density of states of In x Ga1-x As/GaAs core/shell NWs are highlighted by high-resolution PLE. , which features invited work from the best early-career researchers working within the scope of J. Phys. D. This project is part of the Journal of Physics’ series 50th anniversary celebrations in 2017. Marta De Luca was selected by the Editorial Board of J. Phys. D as a Leader.

  8. Polarization correlations from electron-impact excitation of multipolarity L=3-5 in 208Pb and 89Y nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Jakubassa-Amundsen, Doris [Mathematics Institute, LMU Munich (Germany)

    2015-07-01

    The DWBA formalism is used to calculate differential excitation cross sections and to predict spin asymmetries for the scattering of spin-polarized electrons from heavy nuclei. Polarization correlations between the incoming and the scattered electron are a sensitive tool to study the various nuclear models inherent in the transition densities. By selecting the lowest 3- and 5- states of 208Pb it is found that the spin asymmetries for elastic and inelastic electron scattering are comparably large as long as the contribution from the current-current interaction is negligible. The investigation of the 89Y nucleus with its large magnetic transition densities shows, however, a strong quenching of the transverse polarization correlations at backward scattering angles.

  9. On the truncation of the number of excited states in density functional theory sum-over-states calculations of indirect spin spin coupling constants

    DEFF Research Database (Denmark)

    Zarycz, M. Natalia C.; Provasi, Patricio F.; Sauer, Stephan P. A.

    2015-01-01

    It is investigated, whether the number of excited (pseudo)states can be truncated in the sum-over-states expression for indirect spin-spin coupling constants (SSCC), which is used in the Contributions from Localized Orbitals within the Polarization Propagator Approach and Inner Projections......-correlation functional and the specialized core-property basis set, aug-cc-pVTZ-J. We investigated both how the calculated coupling constants depend on the number of (pseudo)states included in the summation and whether the summation can be truncated in a systematic way at a smaller number of states and extrapolated...... to the total number of (pseudo)states for the given one-electron basis set. We find that this is possible and that for some of the couplings it is sufficient to include only about 30% of the excited (pseudo)states....

  10. Directing the path of light-induced electron transfer at a molecular fork using vibrational excitation

    Science.gov (United States)

    Delor, Milan; Archer, Stuart A.; Keane, Theo; Meijer, Anthony J. H. M.; Sazanovich, Igor V.; Greetham, Gregory M.; Towrie, Michael; Weinstein, Julia A.

    2017-11-01

    Ultrafast electron transfer in condensed-phase molecular systems is often strongly coupled to intramolecular vibrations that can promote, suppress and direct electronic processes. Recent experiments exploring this phenomenon proved that light-induced electron transfer can be strongly modulated by vibrational excitation, suggesting a new avenue for active control over molecular function. Here, we achieve the first example of such explicit vibrational control through judicious design of a Pt(II)-acetylide charge-transfer donor-bridge-acceptor-bridge-donor 'fork' system: asymmetric 13C isotopic labelling of one of the two -C≡C- bridges makes the two parallel and otherwise identical donor→acceptor electron-transfer pathways structurally distinct, enabling independent vibrational perturbation of either. Applying an ultrafast UVpump(excitation)-IRpump(perturbation)-IRprobe(monitoring) pulse sequence, we show that the pathway that is vibrationally perturbed during UV-induced electron transfer is dramatically slowed down compared to its unperturbed counterpart. One can thus choose the dominant electron transfer pathway. The findings deliver a new opportunity for precise perturbative control of electronic energy propagation in molecular devices.

  11. E2 transitions between excited single-phonon states: Role of ground-state correlations

    Energy Technology Data Exchange (ETDEWEB)

    Kamerdzhiev, S. P. [National Research Centre Kurchatov Institute (Russian Federation); Voitenkov, D. A., E-mail: dvoytenkov@ippe.ru [Institute for Physics and Power Engineering (Russian Federation)

    2016-11-15

    The probabilities for E2 transitions between low-lying excited 3{sup −} and 5{sup −} single-phonon states in the {sup 208}Pb and {sup 132}Sn magic nuclei are estimated on the basis of the theory of finite Fermi systems. The approach used involves a new type of ground-state correlations, that which originates from integration of three (rather than two, as in the random-phase approximation) single-particle Green’s functions. These correlations are shown to make a significant contribution to the probabilities for the aforementioned transitions.

  12. Excited States and Optical Spectra Based on GW-BSE: Dimensionality and Screening

    Science.gov (United States)

    Louie, Steven G.

    In this talk, I discuss some recent developments and applications of first-principles GW plus Bethe Salpeter equation (GW-BSE) approach to the understanding and prediction of photo-excited states, optical responses, and related spectroscopic properties of materials, in particular atomically thin two-dimensional (2D) crystals. Owing to their reduced dimensionality, quasi-2D materials and their nanostructures can exhibit highly unusual behaviors. Symmetry, many-body interactions, doping, and substrate screening effects play a critical role in shaping qualitatively and quantitatively their excited-state properties. Accurate treatment of these effects, in particular many-electron interactions, poses new theoretical and computational challenges. I will present some new developments in addressing these challenges, and present studies on monolayer and few-layer transition metal dichalcogenides and metal monochalcogenides, as well as black phosphorus and other 2D crystals. Several highly interesting and unexpected phenomena are discovered: unusual excitonic level structures and optical selection rules; exchange-induced light-like (massless) exciton dispersion in 2D; tunable optical and plasmonic properties; and the dominant influence of substrate screening. I would like to acknowledge collaborations with members of the Louie group. This work was supported by U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences & Engineering Division, and by National Science Foundation.

  13. Structures of Annulenes and Model Annulene Systems in the Ground and Lowest Excited States

    Directory of Open Access Journals (Sweden)

    Pier Remigio Salvi

    2010-11-01

    Full Text Available The paper introduces general considerations on structural properties of aromatic, antiaromatic and non-aromatic conjugated systems in terms of potential energy along bond length alternation and distortion coordinates, taking as examples benzene, cyclobutadiene and cyclooctatetraene. Pentalene, formally derived from cyclooctatetraene by cross linking, is also considered as a typical antiaromatic system. The main interest is concerned with [n]annulenes and model [n]annulene molecular systems, n ranging from 10 to 18. The rich variety of conformational and  configurational isomers and of dynamical processes among them is described. Specific attention is devoted to bridged [10]- and [14]annulenes in the ground and lowest excited states as well as to s-indacene and biphenylene. Experimental data obtained from vibrational and electronic spectroscopies are discussed and compared with ab initio calculation results. Finally, porphyrin, tetraoxaporphyrin dication and diprotonated porphyrin are presented as annulene structures adopting planar/non-planar geometries depending on the steric hindrance in the inner macrocycle ring. Radiative and non-radiative relaxation processes from excited state levels have been observed by means of time-resolved fluorescence and femtosecond transient absorption spectroscopy. A short account is also given of porphycene, the structural isomer of porphyrin, and of porphycene properties.

  14. Electronic states and nature of bonding in the molecule MoC by all electron ab initio calculations

    DEFF Research Database (Denmark)

    Shim, Irene; Gingerich, Karl A.

    1997-01-01

    by solving the Schrodinger equation for the nuclear motion numerically. Based on the results of the CASSCF calculations the (3) Sigma(-) ground state of MoC is separated from the excited states (3) Delta, (5) Sigma-, (1) Sigma, (1) Delta, (5) Pi, (1) Sigma(+), and (3) Pi by transition energies of 4500, 6178...... Darwin contact term and the relativistic mass-velocity correction have been determined in perturbation calculations. The electronic ground state is predicted as (3) Sigma(-). The spectroscopic constants for the (3) Sigma(-) electronic ground state and eight low-lying excited states have been derived......, 7207, 9312, 10 228, 11 639, and 16 864 cm(-1), respectively. The transition energy between the (3) Sigma(-) ground state and the (3) Pi state as derived in the MRCI calculations is 15 484 cm(-1). For the (3) Sigma(-) ground state the equilibrium distance has been determined as 1.688 Angstrom...

  15. Discussion of the role of many-electron motions in multiphoton ionization and excitation

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, K.; Jara, H.; Luk, T.S.; McIntyre, I.A.; McPherson, A.; Rosman, R.; Solem, J.C.; Rhodes, C.K. (Illinois Univ., Chicago, IL (United States). Lab. for Atomic, Molecular, and Radiation Physics); Szoeke, A. (Lawrence Livermore National Lab., CA (United States))

    1987-01-01

    The character of many-electron interactions in atoms is examined in relation to a possible role for these couplings in multiphoton processes. It is found that they provide a natural mechanism which can produce both (1) anomalously rapid rates of multiphoton ionization and (2) the direct production of electronically excited ionic species. Furthermore, it is determined that these two phenomena should be strongly correlated. On this basis, the experimental data concerning multiphoton ionization and the generation of fluorescence give evidence for a significant role for two-electron amplitudes in the heavy rare gases. For subpicosecond irradiation at 248 nm, the data indicate that the multi-electron processes become important above an intensity of [approximately] 10 [sup 14] W cm[sup [minus]2], particularly for xenon. The trend exhibited by these findings suggests that multi-electron processes will become increasingly prominent at intensities above [approximately] 10[sup 16] W cm[sup [minus]2].

  16. Discussion of the role of many-electron motions in multiphoton ionization and excitation

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, K.; Jara, H.; Luk, T.S.; McIntyre, I.A.; McPherson, A.; Rosman, R.; Solem, J.C.; Rhodes, C.K. [Illinois Univ., Chicago, IL (United States). Lab. for Atomic, Molecular, and Radiation Physics; Szoeke, A. [Lawrence Livermore National Lab., CA (United States)

    1987-12-31

    The character of many-electron interactions in atoms is examined in relation to a possible role for these couplings in multiphoton processes. It is found that they provide a natural mechanism which can produce both (1) anomalously rapid rates of multiphoton ionization and (2) the direct production of electronically excited ionic species. Furthermore, it is determined that these two phenomena should be strongly correlated. On this basis, the experimental data concerning multiphoton ionization and the generation of fluorescence give evidence for a significant role for two-electron amplitudes in the heavy rare gases. For subpicosecond irradiation at 248 nm, the data indicate that the multi-electron processes become important above an intensity of {approximately} 10 {sup 14} W cm{sup {minus}2}, particularly for xenon. The trend exhibited by these findings suggests that multi-electron processes will become increasingly prominent at intensities above {approximately} 10{sup 16} W cm{sup {minus}2}.

  17. Analysis of Excitation and Ionization of Atoms and Molecules by Electron Impact

    CERN Document Server

    Chaudhry, Afzal

    2011-01-01

    Analysis of Excitation and Ionization of Atoms and Molecules by Electron Impact, by Afzal Chaudhry and Hans Kleinpoppen, describes in detail the measurements of the partial and total doubly differential cross sections for the multiple-ionization of rare gas atoms by electron impact. These measurements show, among other trends, the role of Auger transitions in the production of multiply ionized atoms in the region where the incident electron energy is sufficient to produce inner shell ionization. Other processes like Coster-Kronig transitions and shake off also contribute towards increasing the charge of the ions. As discussed in the book, an incident electron having energy of 6 keV, for example, in a collision with xenon atom can remove up to nine electrons! The measurements of doubly differential cross sections for the dissociative and non-dissociative ionization of hydrogen, sulfur dioxide and sulfur hexa fluoride molecular gases are also explored. The results of the measurements for the sulfur dioxide mole...

  18. Inelastic low-energy collisions of electrons with HeH+: Rovibrational excitation and dissociative recombination

    Science.gov (United States)

    Čurík, Roman; Greene, Chris H.

    2017-08-01

    Inelastic low-energy (0-1 eV) c