WorldWideScience

Sample records for excitation field weakening

  1. Analysis and control of excitation, field weakening and stability in direct torque controlled electrically excited synchronous motor drives

    Energy Technology Data Exchange (ETDEWEB)

    Pyrhoenen, O.

    1998-12-31

    Direct torque control (DTC) is a new control method for rotating field electrical machines. DTC controls directly the motor stator flux linkage with the stator voltage, and no stator current controllers are used. With the DTC method very good torque dynamics can be achieved. Until now, DTC has been applied to asynchronous motor drives. The purpose of this work is to analyse the applicability of DTC to electrically excited synchronous motor drives. Compared with asynchronous motor drives, electrically excited synchronous motor drives require an additional control for the rotor field current. The field current control is called excitation control in this study. The dependence of the static and dynamic performance of DTC synchronous motor drives on the excitation control has been analysed and a straightforward excitation control method has been developed and tested. In the field weakening range the stator flux linkage modulus must be reduced in order to keep the electro motive force of the synchronous motor smaller than the stator voltage and in order to maintain a sufficient voltage reserve. The dynamic performance of the DTC synchronous motor drive depends on the stator flux linkage modulus. Another important factor for the dynamic performance in the field weakening range is the excitation control. The field weakening analysis considers both dependencies. A modified excitation control method, which maximises the dynamic performance in the field weakening range, has been developed. In synchronous motor drives the load angle must be kept in a stabile working area in order to avoid loss of synchronism. The traditional vector control methods allow to adjust the load angle of the synchronous motor directly by the stator current control. In the DTC synchronous motor drive the load angle is not a directly controllable variable, but it is formed freely according to the motor`s electromagnetic state and load. The load angle can be limited indirectly by limiting the torque

  2. Flux-weakening control methods for hybrid excitation synchronous motor

    Directory of Open Access Journals (Sweden)

    Mingming Huang

    2015-09-01

    Full Text Available The hybrid excitation synchronous motor (HESM, which aim at combining the advantages of permanent magnet motor and wound excitation motor, have the characteristics of low-speed high-torque hill climbing and wide speed range. Firstly, a new kind of HESM is presented in the paper, and its structure and mathematical model are illustrated. Then, based on a space voltage vector control, a novel flux-weakening method for speed adjustment in the high speed region is presented. The unique feature of the proposed control method is that the HESM driving system keeps the q-axis back-EMF components invariable during the flux-weakening operation process. Moreover, a copper loss minimization algorithm is adopted to reduce the copper loss of the HESM in the high speed region. Lastly, the proposed method is validated by the simulation and the experimental results.

  3. Experimental research into indoor static geomagnetic field weakening phenomenon

    Directory of Open Access Journals (Sweden)

    V.Yu. Rozov

    2013-12-01

    Full Text Available A technique and results of experimental studies of geomagnetic field (GMF induction in 195 different rooms in educational institutions, residential buildings, shopping malls and subway are presented. It is shown that in all the buildings there is weakening of the natural GMF. However, the GMF weakening is slight in the most areas and not dangerous to public health. Exceptions are areas of high-rise frame-cast-in-place residential blocks, offices and premises of shopping centers with steel frames and platforms of underground stations. Here, the GMF can be weakened to a dangerous level (less than 25 µT, which requires measures for its normalization.

  4. Speed Regulated Continuous DTC Induction Motor Drive in Field Weakening

    Directory of Open Access Journals (Sweden)

    MATIC, P.

    2011-02-01

    Full Text Available The paper describes sensorless speed controlled continuous Direct Torque Control (DTC Induction Motor (IM drive in the field weakening regime. Drive comprises an inner torque loop and an outer speed loop. Torque control is based on Proportional - Integral (PI controller with adaptive Gain Scheduling (GS parameters. The GS PI control provides full DC link voltage utilization and a robust disturbance rejection along with a fast torque response. Outer speed loop has a PI regulator with the gains selected so as to obtain a fast and strictly aperiodic response. Proposed drive fully utilizes the available DC bus voltage. The paper comprises analytical considerations, simulation results, and detailed description of the implementation steps. Experimental verification of the proposed solution is conducted on a fixed point Digital Signal Processor (DSP platform.

  5. Composite lateral electric field excited piezoelectric resonator.

    Science.gov (United States)

    Zaitsev, B D; Shikhabudinov, A M; Borodina, I A; Teplykh, A A; Kuznetsova, I E

    2017-01-01

    The novel method of suppression of parasitic oscillations in lateral electric field excited piezoelectric resonator is suggested. Traditionally such resonator represents the piezoelectric plate with two electrodes on one side of the plate. The crystallographic orientation of the plate is selected so that the tangential components of electric field excite bulk acoustic wave with given polarization travelling along the normal to the plate sides. However at that the normal components of field excite the parasitic Lamb waves and bulk waves of other polarization which deteriorate the resonant properties of the resonator. In this work we suggest to separate the source of the HF electric field and resounded piezoelectric plate by air gap. In this case the tangential components of the field in piezoelectric plate do not practically weaken but normal components significantly decrease. This method is realized on the composite resonator having the structure "glass plate with rectangular electrodes - air gap - plate of 128 Y-X lithium niobate." It has been shown that there exist the optimal value of the width gap which ensure the good quality of series and parallel resonances in frequency range 3-4MHz with record values of Q-factor of ∼15,000 in both cases. Copyright © 2016. Published by Elsevier B.V.

  6. [Initial growth processes in seeds in magnetic fields, strengthened or weakened in relation to the geomagnetic field].

    Science.gov (United States)

    Es'kov, E K; Rodionov, Iu A

    2010-01-01

    The effects of modifications of magnetic fields, simulating anomalies of natural magnetism of the Earth, were studied in the seeds of peas and winter wheat. It has been shown that strengthening or weakening of the geomagnetic field inhibits water absorption and initial growth processes. The influence of magnetic fields on the orientation of rootlets and development of plantlets is determined. The connection between the magnetic susceptibility of seeds and content of heavy metals in them is established, which obviously concerns the magnetic susceptibility and magnetotropism in plants.

  7. Weakened magnetic braking as the origin of anomalously rapid rotation in old field stars.

    Science.gov (United States)

    van Saders, Jennifer L; Ceillier, Tugdual; Metcalfe, Travis S; Aguirre, Victor Silva; Pinsonneault, Marc H; García, Rafael A; Mathur, Savita; Davies, Guy R

    2016-01-14

    A knowledge of stellar ages is crucial for our understanding of many astrophysical phenomena, and yet ages can be difficult to determine. As they become older, stars lose mass and angular momentum, resulting in an observed slowdown in surface rotation. The technique of 'gyrochronology' uses the rotation period of a star to calculate its age. However, stars of known age must be used for calibration, and, until recently, the approach was untested for old stars (older than 1 gigayear, Gyr). Rotation periods are now known for stars in an open cluster of intermediate age (NGC 6819; 2.5 Gyr old), and for old field stars whose ages have been determined with asteroseismology. The data for the cluster agree with previous period-age relations, but these relations fail to describe the asteroseismic sample. Here we report stellar evolutionary modelling, and confirm the presence of unexpectedly rapid rotation in stars that are more evolved than the Sun. We demonstrate that models that incorporate dramatically weakened magnetic braking for old stars can--unlike existing models--reproduce both the asteroseismic and the cluster data. Our findings might suggest a fundamental change in the nature of ageing stellar dynamos, with the Sun being close to the critical transition to much weaker magnetized winds. This weakened braking limits the diagnostic power of gyrochronology for those stars that are more than halfway through their main-sequence lifetimes.

  8. The Research on Full-speed Field Weakening Control Method of Electric Vehicle Interior Permanent Magnet Synchronous Motor

    Directory of Open Access Journals (Sweden)

    Gao Run-Ze

    2017-01-01

    Full Text Available The motor drive system represents a key technology for development of the electrical vehicles, and the permanent magnet synchronous motor becomes the mainstream of the new energy vehicle drive motor for the superior performances in power density, low-speed torque density, efficiency and reliability. The paper studies the field weakening control strategy for the interior permanent magnet synchronous motor (IPMSM and provides a field weakening control strategy for the IPMSM at the full-speed range. By studying the mathematical IPMSM model and the methods of conventional vector control and analyzing the operating conditions of the IPMSM at the full-speed range, the paper divides the operating conditions into constant torque operation region I, constant torque operation region II, constant power field weakening operation region and high-speed field weakening operation region to confirm the control strategy algorithm in each region and the transition conditions between regions and provide the current control strategy that the d-axis current and q-axis current are confirmed by the reference torque and the feedback speed. Modeling of the field weakening control strategies in each region is made through the Matlab/Simulink, and simulation of the operating conditions with a steady-state load and a dynamic load is done to verify that the field weakening control strategy in each region is feasible. A co-simulation is made by combining the Matlab/Simulink-based control model, the RecurDyn-based virtual prototype and the RT-LAB to verify the feasible field weakening control strategy.

  9. Investigation of mechanical field weakening of axial flux permanent magnet motor

    Science.gov (United States)

    Syaifuddin Mohd, M.; Aziz, A. Rashid A.; Syafiq Mohd, M.

    2015-12-01

    An investigation of axial flux permanent magnet motor (AFPM) characteristics was conducted with a proposed mechanical field weakening control mechanisms (by means of stator-rotor force manipulation) on the motor through modeling and experimentation. By varying the air gap between at least two bistable positions, the peak torque and top speed of the motor can be extended. The motor high efficiency region can also be extended to cover greater part of the motor operating points. An analytical model of the motor had been developed to study the correlation between the total attraction force (between the rotor and the stator) and the operating parameters of the motor. The test results shows that the motor output complies with the prediction of the research hypothesis and it is likely that a spring locking mechanism can be built to dynamically adjust the air gap of the motor to increase the operating range and could be applied in electric drivetrain applications to improve overall efficiency of electric and hybrid electric vehicles.

  10. Gauge Fields as Composite Boundary Excitations

    CERN Document Server

    Ferrara, Sergio; Ferrara, Sergio; Fronsdal, Christian

    1998-01-01

    We investigate representations of the conformal group that describe "massless" particles in the interior and at the boundary of anti-de Sitter space. It turns out that massless gauge excitations in anti-de Sitter are gauge "current" operators at the boundary. Conversely, massless excitations at the boundary are topological singletons in the interior. These representations lie at the threshold of two "unitary bounds" that apply to any conformally invariant field theory. Gravity and Yang-Mills gauge symmetry in anti-De Sitter is translated to global translational symmetry and continuous R-symmetry of the boundary superconformal field theory.

  11. 16,000-rpm Interior Permanent Magnet Reluctance Machine with Brushless Field Excitation

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, J.S.; Burress, T.A.; Lee, S.T.; Wiles, R.H.; Coomer, C.L.; McKeever, J.W.; Adams, D.J.

    2007-10-31

    The reluctance interior permanent magnet (RIPM) motor is currently used by many leading auto manufacturers for hybrid vehicles. The power density for this type of motor is high compared with that of induction motors and switched reluctance motors. The primary drawback of the RIPM motor is the permanent magnet (PM) because during high-speed operation, the fixed PM produces a huge back electromotive force (emf) that must be reduced before the current will pass through the stator windings. This reduction in back-emf is accomplished with a significant direct-axis (d-axis) demagnetization current, which opposes the PM's flux to reduce the flux seen by the stator wires. This may lower the power factor and efficiency of the motor and raise the requirement on the alternate current (ac) power supply; consequently, bigger inverter switching components, thicker motor winding conductors, and heavier cables are required. The direct current (dc) link capacitor is also affected when it must accommodate heavier harmonic currents. It is commonly agreed that, for synchronous machines, the power factor can be optimized by varying the field excitation to minimize the current. The field produced by the PM is fixed and cannot be adjusted. What can be adjusted is reactive current to the d-axis of the stator winding, which consumes reactive power but does not always help to improve the power factor. The objective of this project is to avoid the primary drawbacks of the RIPM motor by introducing brushless field excitation (BFE). This offers both high torque per ampere (A) per core length at low speed by using flux, which is enhanced by increasing current to a fixed excitation coil, and flux, which is weakened at high speed by reducing current to the excitation coil. If field weakening is used, the dc/dc boost converter used in a conventional RIPM motor may be eliminated to reduce system costs. However, BFE supports a drive system with a dc/dc boost converter, because it can further

  12. Field weakening capability investigation of an axial flux permanent-magnet synchronous machine with radially sliding permanent magnets used for electric vehicles

    Science.gov (United States)

    Zhao, Jing; Cheng, Dansong; Zheng, Ping; Liu, Xiangdong; Tong, Chengde; Song, Zhiyi; Zhang, Lu

    2012-04-01

    Due to the advantage of high power density compared with the conventional radial flux machines, the axial flux permanent-magnet synchronous machines (PMSMs) are very suitable candidates for the power train of electric vehicles (EVs). In this paper, a new axial flux PMSM adopting radially sliding permanent magnets (PMs) to fulfill field-weakening control and to improve the operating speed range is investigated. The field-weakening structure and principle of the axial flux PMSM with radially sliding PMs are proposed and analyzed. The influence of radially sliding PMs on electromagnetic performances and parameters is analyzed based on FEM. The field-weakening method with radially sliding PMs, which is a mechanical method, is compared and combined with traditional electrical method. Due to the optimized combination of the two methods, the field-weakening capability of the machine is much improved and the maximum speed can reach up to six times of the base speed with constant power, which is very satisfying for EV drive application.

  13. Brushless exciters using a high temperature superconducting field winding

    Science.gov (United States)

    Garces, Luis Jose [Schenectady, NY; Delmerico, Robert William [Clifton Park, NY; Jansen, Patrick Lee [Scotia, NY; Parslow, John Harold [Scotia, NY; Sanderson, Harold Copeland [Tribes Hill, NY; Sinha, Gautam [Chesterfield, MO

    2008-03-18

    A brushless exciter for a synchronous generator or motor generally includes a stator and a rotor rotatably disposed within the stator. The rotor has a field winding and a voltage rectifying bridge circuit connected in parallel to the field winding. A plurality of firing circuits are connected the voltage rectifying bridge circuit. The firing circuit is configured to fire a signal at an angle of less than 90.degree. or at an angle greater than 90.degree.. The voltage rectifying bridge circuit rectifies the AC voltage to excite or de-excite the field winding.

  14. Percolation of optical excitation mediated by near-field interactions

    Science.gov (United States)

    Naruse, Makoto; Kim, Song-Ju; Takahashi, Taiki; Aono, Masashi; Akahane, Kouichi; D'Acunto, Mario; Hori, Hirokazu; Thylén, Lars; Katori, Makoto; Ohtsu, Motoichi

    2017-04-01

    Optical excitation transfer in nanostructured matter has been intensively studied in various material systems for versatile applications. Herein, we theoretically and numerically discuss the percolation of optical excitations in randomly organized nanostructures caused by optical near-field interactions governed by Yukawa potential in a two-dimensional stochastic model. The model results demonstrate the appearance of two phases of percolation of optical excitation as a function of the localization degree of near-field interaction. Moreover, it indicates sublinear scaling with percolation distances when the light localization is strong. Furthermore, such a character is maximized at a particular size of environments. The results provide fundamental insights into optical excitation transfer and will facilitate the design and analysis of nanoscale signal-transfer characteristics.

  15. Parametric Resonance of Magnetization Excited by Electric Field.

    Science.gov (United States)

    Chen, Yu-Jin; Lee, Han Kyu; Verba, Roman; Katine, Jordan A; Barsukov, Igor; Tiberkevich, Vasil; Xiao, John Q; Slavin, Andrei N; Krivorotov, Ilya N

    2017-01-11

    Manipulation of magnetization by electric field is a central goal of spintronics because it enables energy-efficient operation of spin-based devices. Spin wave devices are promising candidates for low-power information processing, but a method for energy-efficient excitation of short-wavelength spin waves has been lacking. Here we show that spin waves in nanoscale magnetic tunnel junctions can be generated via parametric resonance induced by electric field. Parametric excitation of magnetization is a versatile method of short-wavelength spin wave generation, and thus, our results pave the way toward energy-efficient nanomagnonic devices.

  16. Modular Hamiltonian for Excited States in Conformal Field Theory.

    Science.gov (United States)

    Lashkari, Nima

    2016-07-22

    We present a novel replica trick that computes the relative entropy of two arbitrary states in conformal field theory. Our replica trick is based on the analytic continuation of partition functions that break the Z_{n} replica symmetry. It provides a method for computing arbitrary matrix elements of the modular Hamiltonian corresponding to excited states in terms of correlation functions. We show that the quantum Fisher information in vacuum can be expressed in terms of two-point functions on the replica geometry. We perform sample calculations in two-dimensional conformal field theories.

  17. The mechanisms of low nitrogen induced weakened photosynthesis in summer maize (Zea mays L.) under field conditions.

    Science.gov (United States)

    Wei, Shanshan; Wang, Xiangyu; Shi, Deyang; Li, Yanhong; Zhang, Jiwang; Liu, Peng; Zhao, Bin; Dong, Shuting

    2016-08-01

    Soil nitrogen (N) shortage is a problem which affects many developing nations. Crops grown with low soil N levels show a marked decrease in the rate of photosynthesis and this deficiency reduces crop yield significantly. Therefore, developing a better understanding of the mechanisms by which low N levels cause decreased photosynthesis is crucial for maize agriculture. To better understand this process, we assessed the responses of photosynthesis traits and enzymatic activities in the summer maize cultivar Denghai 618 under field conditions with and without the use of N fertilisers. We measured photosynthesis parameters, and compared proteome compositions to identify the mechanisms of physiological and biochemical adaptations to N deficiency in maize. We observed that parameters that indicated the rate of photosynthesis decreased significantly under N deficiency, and this response was associated with leaf senescence. Moreover, we identified 37 proteins involved in leaf photosynthesis, and found that N deficiency significantly affected light-dependent and light-independent reactions in maize leaf photosynthesis. Although further analysis is required to fully elucidate the roles of these proteins in the response to N deficiency, our study identified candidate proteins which may be involved in the regulatory mechanisms involved in reduced photosynthesis under low N conditions in maize. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. A Digital Self Excited Loop for Accelerating Cavity Field Control

    Energy Technology Data Exchange (ETDEWEB)

    Curt Hovater; Trent Allison; Jean Delayen; John Musson; Tomasz Plawski

    2007-06-22

    We have developed a digital process that emulates an analog oscillator and ultimately a self excited loop (SEL) for field control. The SEL, in its analog form, has been used for many years for accelerating cavity field control. In essence the SEL uses the cavity as a resonant circuit -- much like a resonant (tank) circuit is used to build an oscillator. An oscillating resonant circuit can be forced to oscillate at different, but close, frequencies to resonance by applying a phase shift in the feedback path. This allows the circuit to be phased-locked to a master reference, which is crucial for multiple cavity accelerators. For phase and amplitude control the SEL must be forced to the master reference frequency, and feedback provided for in both dimensions. The novelty of this design is in the way digital signal processing (DSP) is structured to emulate an analog system. While the digital signal processing elements are not new, to our knowledge this is the first time that the digital SEL concept has been designed and demonstrated. This paper reports on the progress of the design and implementation of the digital SEL for field control of superconducting accelerating cavities.

  19. A modal plate excited by an airborne field and its consequences for SEA

    DEFF Research Database (Denmark)

    Brunskog, Jonas

    2014-01-01

    In this paper a plate excited by a diffuse airborne field is analyzed directly using a modal approach, thus including both so called forced and resonant vibrations, and the results are compared with classical Statistical Energy Analys is (SEA) results. The background is that in SEA two important...... assumptions are that 1) the subsyste ms excitation are spatially uniformly distributed and uncorrelated, and 2) the principle of reciprocity . The first assumption is realized as a so called ’rain-on-the-roof’ excitation, with a large number of uncorrelated point excitations, distributed spatially over...... the subsystem. In this way is it gua ranteed that in the considered frequency band all the modes is excited equally we ll. However, the ’rain-on-the-roof’ excitation excludes the important excitation of a diffuse airborne sound field, where each plane wave is projected on the plate. The second condition says...

  20. Enhancement of the Excitation Efficiency of the Non-Contact Magnetostrictive Sensor for Pipe Inspection by Adjusting the Alternating Magnetic Field Axial Length

    Directory of Open Access Journals (Sweden)

    Pengfei Sun

    2014-01-01

    Full Text Available The non-contact magnetostrictive sensor (MsS has been widely used in the guided wave testing of pipes, cables, and so on. However, it has a disadvantage of low excitation efficiency. A new method for enhancing the excitation efficiency of the non-contact MsS for pipe inspection using guided waves, by adjusting the axial length of the excitation magnetic field, is proposed. A special transmitter structure, in which two copper rings are added beside the transmitter coil, is used to adjust the axial length at the expense of weakening the excitation magnetic field. An equivalent vibration model is presented to analyze the influence of the axial length variation. The final result is investigated by experiments. Results show that the excitation efficiency of the non-contact MsS is enhanced in the whole inspection frequency range of the L(0,2 mode if the axial length is adjusted to a certain value. Moreover that certain axial length is the same for pipes of different sizes but made of the same material.

  1. Terahertz Solitons in Biomolecular Systems and their Excitation by External Electromagnetic Field

    Directory of Open Access Journals (Sweden)

    Bugay А.N.

    2015-01-01

    Full Text Available Nonlinear dynamics of charge and acoustic excitations in cellular microtubules is considered. Different types of nonlinear solitary waves were studied taking account for dissipation. The mechanism of electro-acoustic pulse excitation by external electromagnetic field of terahertz frequency is recognized.

  2. Negative Binomial States of the Radiation Field and their Excitations are Nonlinear Coherent States

    OpenAIRE

    Wang, Xiao-Guang; Fu, Hong-Chen

    1999-01-01

    We show that the well-known negative binomial states of the radiation field and their excitations are nonlinear coherent states. Excited nonlinear coherent state are still nonlinear coherent states with different nonlinear functions. We finally give exponential form of the nonlinear coherent states and remark that the binomial states are not nonlinear coherent states.

  3. Excitations

    Energy Technology Data Exchange (ETDEWEB)

    Dorner, B. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1996-12-31

    A short introduction to instrumental resolution is followed by a discussion of visibilities of phonon modes due to their eigenvectors. High precision phonon dispersion curves in GaAs are presented together with `ab initio` calculations. Al{sub 2}O{sub 3} is taken as an example of selected visibility due to group theory. By careful determination of phonon intensities eigenvectors can be determined, such as in Silicon and Diamond. The investigation of magnon modes is shown for the garnet Fe{sub 2}Ca{sub 3}(GeO{sub 4}){sub 3}, where also a quantum gap due to zero point spin fluctuations was observed. The study of the splitting of excitons in CsFeCl{sub 3} in an applied magnetic field demonstrates the possibilities of neutron polarisation analysis, which made it possible to observe a mode crossing. An outlook to inelastic X-ray scattering with very high energy resolution of synchrotron radiation is given with the examples of phonons in Beryllium and in water. (author) 19 figs., 36 refs.

  4. Surface fields on the source-excited dielectric wedge

    DEFF Research Database (Denmark)

    Balling, P

    1973-01-01

    Approximate surface fields due to a plane-wave solution and a local-mode solution are compared. The plane-wave solution, which is new, is shown to agree well with experiment. The local-mode solution, which often has been applied to tapered waveguides and antennas, fails near the cutoffs of the su...

  5. Ellipticity Weakens Chameleon Screening

    OpenAIRE

    Burrage, Clare; Copeland, Edmund J.; Stevenson, James

    2014-01-01

    The chameleon mechanism enables a long range fifth force to be screened in dense environments when non-trivial self interactions of the field cause its mass to increase with the local density. To date, chameleon fifth forces have mainly been studied for spherically symmetric sources, however the non-linear self interactions mean that the chameleon responds to changes in the shape of the source differently to gravity. In this work we focus on ellipsoidal departures from spherical symmetry and ...

  6. Phased Array Excitations For Efficient Near Field Wireless Power Transmission

    Science.gov (United States)

    2016-09-01

    aerial vehicle PEC perfect electrical conductor PO physical optics RF radio frequency SBR shooting and bouncing ray TE transverse electric TEM...analysis of near-field focusing for WPT, specifically in [2]. The WPT method was introduced in the 1960s for vehicle propulsion , and researchers from...Development of a Wireless Power Transmission System for a Micro Air Vehicle (MAV),” M.S. thesis, Dept. Elec. & Comp. Eng., Naval Postgraduate School

  7. Effect of magnetic field on the impurity binding energy of the excited ...

    Indian Academy of Sciences (India)

    The effect of external magnetic field on the excited state energies in a spherical quantum dot was studied. The impurity energy and binding energy were calculated using the variational method within the effective mass approximation and finite barrier potential. The results showed that by increasing the magnetic field, the ...

  8. Wide-field microscopic FRET imaging using simultaneous spectral unmixing of excitation and emission spectra.

    Science.gov (United States)

    Du, Mengyan; Zhang, Lili; Xie, Shusen; Chen, Tongsheng

    2016-07-11

    Simultaneous spectral unmixing of excitation and emission spectra (ExEm unmixing) has the inherent ability to resolve donor emission, fluorescence resonance energy transfer (FRET)-sensitized acceptor emission and directly excited acceptor emission. We here develop an ExEm unmixing-based quantitative FRET measurement method (EES-FRET) independent of excitation intensity and detector parameter setting. The ratio factor (rK), predetermined using a donor-acceptor tandem construct, of total acceptor absorption to total donor absorption in excitation wavelengths used is introduced for determining the concentration ratio of acceptor to donor. We implemented EES-FRET method on a wide-field microscope to image living cells expressing tandem FRET constructs with different donor-acceptor stoichiometry.

  9. Study on the adjustment capability of the excitation system located inside superconducting machine electromagnetic shield

    Science.gov (United States)

    Xia, D.; Xia, Z.

    2017-12-01

    The ability for the excitation system to adjust quickly plays a very important role in maintaining the normal operation of superconducting machines and power systems. However, the eddy currents in the electromagnetic shield of superconducting machines hinder the exciting magnetic field change and weaken the adjustment capability of the excitation system. To analyze this problem, a finite element calculation model for the transient electromagnetic field with moving parts is established. The effects of three different electromagnetic shields on the exciting magnetic field are analyzed using finite element method. The results show that the electromagnetic shield hinders the field changes significantly, the better its conductivity, the greater the effect on the superconducting machine excitation.

  10. Development of PZT-excited stroboscopic shearography for full-field nondestructive evaluation

    Science.gov (United States)

    Asemani, Hamidreza; Park, Jinwoo; Lee, Jung-Ryul; Soltani, Nasser

    2017-05-01

    Nondestructive evaluation using shearography requires a way to stress the inspection target. This technique is able to directly measure the displacement gradient distribution on the object surface. Shearography visualizes the internal structural damages as the anomalous pattern in the shearograpic fringe pattern. A piezoelectric (PZT) excitation system is able to generate loadings in the vibrational, acoustic, and ultrasonic regimes. In this paper, we propose a PZT-excited stroboscopic shearography. The PZT excitation could generate vibrational loading, a stationary wavefield, and a nonstationary propagation wave to fulfill the external loading requirement of shearography. The sweeping of the PZT excitation frequency, the formation of a standing wave, and a small shearing to suppress the incident wave were powerful controllable tools to detect the defects. The sweeping of the PZT excitation frequency enabled us to determine one of the defect-sensitive frequencies almost in real time. In addition, because the defect sensitive frequencies always existed in wide and plural ranges, the risk of the defect being overlooked by the inspector could be alleviated. The results of evaluation using stroboscopic shearography showed that an artificial 20 mm-diameter defect could be visualized at the excitation frequencies of 5-8 kHz range and 12.5-15.5 kHz range. This technique provided full field reliable and repeatable inspection results. Additionally, the proposed method overcame the important drawback of the time-averaged shearography, being required to identify the resonance vibration frequency sensitive to the defect.

  11. Coherent phase control of excitation of atoms by bichromatic laser radiation in an electric field

    NARCIS (Netherlands)

    Astapenko, VA

    A new method for coherent phase control of excitation of atoms in a discrete spectrum under the action of bichromatic laser radiation with the frequency ratio 1 : 2 is analysed. An important feature of this control method is the presence of a electrostatic field, which removes the parity selection

  12. Near-field optical microscopy of localized excitations on rough surfaces: influence of a probe

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.

    1999-01-01

    Starting from the general principles of near-field optical microscopy. I consider the influence of a probe when being used to image localized dipolar excitations and suggest a way of evaluating the perturbation thus introduced. Using the rigorous microscopic (electric) point-dipole description, I...

  13. Ultrahigh Enhancement of Electromagnetic Fields by Exciting Localized with Extended Surface Plasmons

    CERN Document Server

    Li, Anran; Abdulhalim, Ibrahim; Li, Shuzhou

    2015-01-01

    Excitation of localized surface plasmons (LSPs) of metal nanoparticles (NPs) residing on a flat metal film has attracted great attentions recently due to the enhanced electromagnetic (EM) fields found to be higher than the case of NPs on a dielectric substrate. In the present work, it is shown that even much higher enhancement of EM fields is obtained by exciting the LSPs through extended surface plasmons (ESPs) generated at the metallic film surface using the Kretschmann-Raether configuration. We show that the largest EM field enhancement and the highest surface-enhanced fluorescence intensity are obtained when the incidence angle is the ESP resonance angle of the underlying metal film. The finite-difference time-domain simulations indicate that excitation of LSPs using ESPs can generate 1-3 orders higher EM field intensity than direct excitation of the LSPs using incidence from free space. The ultrahigh enhancement is attributed to the strong confinement of the ESP waves in the vertical direction. The drast...

  14. Theoretical investigations of zero-field splitting of excited states for 3d3 ions in trigonal crystal fields.

    Science.gov (United States)

    Wei, Qun; Yang, Ziyuan; Wang, Canjun; Xu, Qiming

    2007-11-01

    By taking into account slight interactions, i.e. spin-spin, spin-other-orbit and orbit-orbit interactions, in addition to spin-orbit interaction, the zero-field splitting of ground state and low excited states and g factors of ZnGa2O4:Cr3+ crystal have been interpreted systematically. And the contributions to zero-field splitting arising from slight magnetic interaction and trigonal crystal field are investigated. It is found that there exist combined mechanism between magnetic interactions and trigonal crystal field.

  15. Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Svendsen, Niels Bruun

    1992-01-01

    A method for simulation of pulsed pressure fields from arbitrarily shaped, apodized and excited ultrasound transducers is suggested. It relies on the Tupholme-Stepanishen method for calculating pulsed pressure fields, and can also handle the continuous wave and pulse-echo case. The field...... is calculated by dividing the surface into small rectangles and then Summing their response. A fast calculation is obtained by using the far-field approximation. Examples of the accuracy of the approach and actual calculation times are given...

  16. Fermionic Basis in Conformal Field Theory and Thermodynamic Bethe Ansatz for Excited States

    Directory of Open Access Journals (Sweden)

    Hermann Boos

    2011-01-01

    Full Text Available We generalize the results of [Comm. Math. Phys. 299 (2010, 825-866] (hidden Grassmann structure IV to the case of excited states of the transfer matrix of the six-vertex model acting in the so-called Matsubara direction. We establish an equivalence between a scaling limit of the partition function of the six-vertex model on a cylinder with quasi-local operators inserted and special boundary conditions, corresponding to particle-hole excitations, on the one hand, and certain three-point correlation functions of conformal field theory (CFT on the other hand. As in hidden Grassmann structure IV, the fermionic basis developed in previous papers and its conformal limit are used for a description of the quasi-local operators. In paper IV we claimed that in the conformal limit the fermionic creation operators generate a basis equivalent to the basis of the descendant states in the conformal field theory modulo integrals of motion suggested by A. Zamolodchikov (1987. Here we argue that, in order to completely determine the transformation between the above fermionic basis and the basis of descendants in the CFT, we need to involve excitations. On the side of the lattice model we use the excited-state TBA approach. We consider in detail the case of the descendant at level 8.

  17. Spontaneous excitation of a circularly accelerated atom coupled with vacuum Dirac field fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jing [Institute of Physics and Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha, Hunan 410081 (China); Hu, Jiawei [Center for Nonlinear Science and Department of Physics, Ningbo University, Ningbo, Zhejiang 315211 (China); Yu, Hongwei, E-mail: hwyu@hunnu.edu.cn [Institute of Physics and Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha, Hunan 410081 (China); Center for Nonlinear Science and Department of Physics, Ningbo University, Ningbo, Zhejiang 315211 (China)

    2015-02-15

    We study the spontaneous excitation of a circularly accelerated atom coupled with vacuum Dirac field fluctuations by separately calculating the contribution to the excitation rate of vacuum fluctuations and a cross term which involves both vacuum fluctuations and radiation reaction, and demonstrate that although the spontaneous excitation for the atom in its ground state would occur in vacuum, such atoms in circular motion do not perceive a pure thermal radiation as their counterparts in linear acceleration do since the transition rates of the atom do not contain the Planckian factor characterizing a thermal bath. We also find that the contribution of the cross term that plays the same role as that of radiation reaction in the scalar and electromagnetic fields cases differs for atoms in circular motion from those in linear acceleration. This suggests that the conclusion drawn for atoms coupled with the scalar and electromagnetic fields that the contribution of radiation reaction to the mean rate of change of atomic energy does not vary as the trajectory of the atom changes from linear acceleration to circular motion is not a general trait that applies to the Dirac field where the role of radiation reaction is played by the cross term. - Highlights: • Spontaneous excitation of a circularly accelerated atom is studied. • The atom interacts with the Dirac field through nonlinear coupling. • A cross term involving vacuum fluctuations and radiation reaction contributes. • The atom in circular motion does not perceive pure thermal radiation. • The contribution of the cross term changes as the atomic trajectory varies.

  18. Self-modulated dynamics of a relativistic charged particle beam in plasma wake field excitation

    Energy Technology Data Exchange (ETDEWEB)

    Akhter, T.; Fedele, R. [Dipartimento di Fisica ‘Ettore Pancini’, Università di Napoli Federico II and INFN Sezione di Napoli, Napoli (Italy); Nicola, S. De [CNR-SPIN and INFN Sezione di Napoli, Napoli (Italy); Tanjia, F. [Dipartimento di Fisica ‘Ettore Pancini’, Università di Napoli Federico II and INFN Sezione di Napoli, Napoli (Italy); Jovanović, D. [Institute of Physics, University of Belgrade, Belgrade (Serbia); Mannan, A. [Department of Physics, Jahangirnagar University, Savar, Dhaka (Bangladesh)

    2016-09-01

    The self-modulated dynamics of a relativistic charged particle beam is provided within the context of the theory of plasma wake field excitation. The self-consistent description of the beam dynamics is provided by coupling the Vlasov equation with a Poisson-type equation relating the plasma wake potential to the beam density. An analysis of the beam envelope self-modulation is then carried out and the criteria for the occurrence of the instability are discussed thereby.

  19. Noise squeezing of fields that bichromatically excite atoms in a cavity.

    Science.gov (United States)

    Li, Lingchao; Hu, Xiangming; Rao, Shi; Xu, Jun

    2016-11-14

    It is well known that bichromatic excitation on one common transition can tune the emission or absorption spectra of atoms due to the modulation frequency dependent non-linearities. However little attention has been focused on the quantum dynamics of fields under bichromatic excitation. Here we present dissipative effects on noise correlations of fields in bichromatic interactions with atoms in cavities. We first consider an ensemble of two-level atoms that interacts with the two cavity fields of different frequencies and considerable amplitudes. By transferring the atom-field nonlinearities to the dressed atoms we separate out the dissipative interactions of Bogoliubov modes with the dressed atoms. The Bogoliubov mode dissipation establishes stable two-photon processes of two involved fields and therefore leads to two-mode squeezing. As a generalization, we then consider an ensemble of three-level Λ atoms for cascade bichromatic interactions. We extract the Bogoliubov-like four-mode interactions, which establish a quadrilateral of the two-photon processes of four involved fields and thus result in four-mode squeezing.

  20. Near-field Moiré effect mediated by surface plasmon polariton excitation.

    Science.gov (United States)

    Liu, Zhaowei; Durant, Stéphane; Lee, Hyesog; Xiong, Yi; Pikus, Yuri; Sun, Cheng; Zhang, Xiang

    2007-03-15

    We have demonstrated a surface plasmon polariton mediated optical Moiré effect by inserting a silver slab between two subwavelength gratings. Enhancement of the evanescent fields by the surface plasmon excitations on the silver slab leads to a remarkable contrast improvement in the Moiré fringes from two subwavelength gratings. Numerical calculations, which agree very well with the experimental observation of evanescent-wave Moiré fringes, elucidate the crucial role of the surface plasmon polaritons. The near-field Moiré effect has potential applications to extend the existing Moiré techniques to subwavelength characterization of nanostructures.

  1. Excitation spectrum of PrOs{sub 4}Sb{sub 12} under a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, S; Flouquet, J [CEA-DSM/INAC/SPSMS, F-38054 Grenoble (France); Kuwahara, K [Institute of Applied Beam Science, Ibaraki University, Mito 310-8512 (Japan); Kaneko, K; Metoki, N [ASRC, Japan Atomic Energy Agency, Ibaraki 319-1195 (Japan); Iwasa, K [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Kohgi, M; Aoki, Y; Sato, H [Department of Physics, Tokyo Metropolitan University, Tokyo 192-0397 (Japan); Hiess, A [Institut Laue Langevin, F-38042 Grenoble Cedex (France); Sugawara, H [Faculty of Integrated Arts and Science, University of Tokushima, Tokushima 770-8502 (Japan)

    2009-05-27

    The evolution of the magnetic excitation spectrum of the heavy fermion superconductor PrOs{sub 4}Sb{sub 12} was studied by inelastic neutron scattering on crossing the critical field H{sub c2} for superconductivity at low temperature. The peak positions in energy and the peak intensities of the modes of the triplet split by magnetic field confirm the known crystal field parameters for PrOs{sub 4}Sb{sub 12} in T{sub h} symmetry. A selective broadening of the lineshape occurs on increasing the magnetic field: the linewidth of the upper mode of the triplet increases while the one of the middle mode does not.

  2. Delta self-consistent field method to obtain potential energy surfaces of excited molecules on surfaces

    DEFF Research Database (Denmark)

    Gavnholt, Jeppe; Olsen, Thomas; Engelund, Mads

    2008-01-01

    We present a modification of the Delta self-consistent field (Delta SCF) method of calculating energies of excited states in order to make it applicable to resonance calculations of molecules adsorbed on metal surfaces, where the molecular orbitals are highly hybridized. The Delta SCF approximation...... is a density-functional method closely resembling standard density-functional theory (DFT), the only difference being that in Delta SCF one or more electrons are placed in higher lying Kohn-Sham orbitals instead of placing all electrons in the lowest possible orbitals as one does when calculating the ground......-state energy within standard DFT. We extend the Delta SCF method by allowing excited electrons to occupy orbitals which are linear combinations of Kohn-Sham orbitals. With this extra freedom it is possible to place charge locally on adsorbed molecules in the calculations, such that resonance energies can...

  3. Recollision induced excitation-ionization with counter-rotating two-color circularly polarized laser field

    Science.gov (United States)

    Ben, Shuai; Guo, Pei-Ying; Pan, Xue-Fei; Xu, Tong-Tong; Song, Kai-Li; Liu, Xue-Shen

    2017-07-01

    Nonsequential double ionization of Ar by a counter-rotating two-color circularly polarized laser field is theoretically investigated. At the combined intensity in the "knee" structure range, the double ionization occurs mainly through recollision induced excitation followed by subsequent ionization of Ar+∗ . By tracing the history of the recollision trajectories, we explain how the relative intensity ratio of the two colors controls the correlated electron dynamics and optimizes the ionization yields. The major channels contributing to enhancing the double ionization are through the elliptical trajectories with smaller travel time but not through the triangle shape or the other long cycle trajectories. Furthermore, the correlated electron dynamics could be limited to the attosecond time scale by adjusting the relative intensity ratio. Finally, the double ionization from doubly excited complex at low laser intensity is qualitatively discussed.

  4. A novel rotor design for a hybrid excited synchronous machine

    Directory of Open Access Journals (Sweden)

    Paplicki Piotr

    2017-03-01

    Full Text Available The paper presents three novel rotor design concepts for a three-phase electric controlled permanent magnet synchronous machine (ECPMS-machine with hybrid excitation. The influence of magnets and flux-barriers arrangement on the magnetic field distribution and field-weakening characteristics of the machine is examined, based on a three-dimensional finite element analysis (3D-FEA. Moreover, a prototype rotor design based on a new rotor concept with a good field-weakening capability is presented in detail. Finally, the experimental results of no-load back electromotive force (back-EMF waveforms and field-weakening characteristics versus a control coil current of the machine are reported.

  5. Optical electric-field enhancement at a metal surface arising from surface-plasmon excitation.

    Science.gov (United States)

    Weber, W H; Ford, G W

    1981-03-01

    Surface plasmons can be excited on a metal by an external plane-wave beam through the use of prism or grating couplers or by introducing roughness. This can enhance the electric field at the surface compared with that in the incident beam, and it has been suggested that this effect is an important aspect of surface-enhanced Raman scattering. A general upper limit for this field enhancement is derived on the basis of energy conservation. Numerical results are given for Ag, Au, and Cu. With a perfect coupler on a Ag surface, the maximum increase of the square of the electric field in the 2-3-eV range is congruent with300. On randomly roughened surfaces, the estimated enhancements are of the order of unity.

  6. On the dynamics of excited atoms in time dependent electromagnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Foerre, Morten

    2004-06-01

    This thesis is composed of seven scientific publications written in the period 2001-2004. The focus has been set on Rydberg atoms of hydrogen and lithium in relatively weak electromagnetic fields. Such atoms have been studied extensively during many years, both experimentally and theoretically, They are relatively easy to handle in the laboratory. Their willingness to react to conventional field sources and their long lifetimes, are two reasons for this. Much new insight into fundamental quantum mechanics has been extracted from such studies. By exciting a non-hydrogenic ground state atom or molecule into a highly excited state, many properties of atomic hydrogen are adopted. In many cases the dynamics of such systems can be accurately described by the hydrogenic theory, or alternatively by some slightly modified version like quantum defect theory. In such theories the Rydberg electron(s) of the non-hydrogenic Rydberg system is treated like it is confined in a modified Coulomb potential, which arises from the non-hydrogenic core. defined by the non-excited electrons and the nucleus. The more heavily bound core electrons are less influenced from external perturbations than the excited electrons, giving rise to the so-called frozen-core approximation. where the total effect of the core electrons is put into a modified Coulomb potential. A major part of this thesis has been allocated to the study of core effects in highly excited states of lithium. In collaboration with time experimental group of Erik Horsdal-Pedersen at Aarhus University, we have considered several hydrogenic and non-hydrogenic aspects of such states, when exposed to weak slowly varying electromagnetic fields. The dynamics was restricted to one principal shell (intrashell). Two general features were observed, either the hydrogenic theory applied or alternatively, in case of massive deviation, the dynamics was accurately described by quantum defect theory, clearly demonstrating the usefulness of such

  7. Vibroacoustic response of panels under diffuse acoustic field excitation from sensitivity functions and reciprocity principles.

    Science.gov (United States)

    Marchetto, Christophe; Maxit, Laurent; Robin, Olivier; Berry, Alain

    2017-06-01

    This paper aims at developing an experimental method to characterize the vibroacoustic response of a panel to a diffuse acoustic field (DAF) excitation with a different laboratory setup than those used in standards (i.e., coupled rooms). The proposed methodology is based on a theoretical model of the DAF and on the measurement of the panel's sensitivity functions, which characterize its vibroacoustic response to wall plane waves. These functions can be estimated experimentally using variations of the reciprocity principle, which are described in the present paper. These principles can either be applied for characterizing the structural response by exciting the panel with a normal force at the point of interest or for characterizing the acoustic response (radiated pressure, acoustic intensity) by exciting the panel with a monopole and a dipole source. For both applications, the validity of the proposed approach is numerically and experimentally verified on a test case composed of a baffled simply supported plate. An implementation for estimating the sound transmission loss of the plate is finally proposed. The results are discussed and compared with measurements performed in a coupled anechoic-reverberant room facility following standards.

  8. Relative entropy of excited states in conformal field theories of arbitrary dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Sárosi, Gábor [Theoretische Natuurkunde, Vrije Universiteit Brussels and International Solvay Institutes,Pleinlaan 2, Brussels, B-1050 (Belgium); David Rittenhouse Laboratory, University of Pennsylvania,Philadelphia, PA 19104 (United States); Ugajin, Tomonori [Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106 (United States)

    2017-02-10

    Extending our previous work, we study the relative entropy between the reduced density matrices obtained from globally excited states in conformal field theories of arbitrary dimensions. We find a general formula in the small subsystem size limit. When one of the states is the vacuum of the CFT, our result matches with the holographic entanglement entropy computations in the corresponding bulk geometries, including AdS black branes. We also discuss the first asymmetric part of the relative entropy and comment on some implications of the results on the distinguishability of black hole microstates in AdS/CFT.

  9. The H$_2^+$ ion in a strong magnetic field. Lowest excited states

    OpenAIRE

    Turbiner, A. V.; Vieyra, J. C. Lopez

    2003-01-01

    As a continuation of our previous work ({\\it Phys. Rev. A68, 012504 (2003)}) an accurate study of the lowest $1\\si_g$ and the low-lying excited $1\\si_u$, $2\\si_g$, $1\\pi_{u,g}$, $1\\de_{g,u}$ electronic states of the molecular ion $H_2^+$ is made. Since the parallel configuration where the molecular axis coincides with the magnetic field direction is optimal, this is the only configuration which is considered. The variational method is applied and the {\\it same} trial function is used for diff...

  10. Interaction of excitable waves emitted from two defects by pulsed electric fields

    Science.gov (United States)

    Chen, Jiang-Xing; Zhang, Han; Qiao, Li-Yan; Liang, Hong; Sun, Wei-Gang

    2018-01-01

    In response to a pulsed electric field, spatial distributed heterogeneities in excitable media can serve as nucleation sites for the generation of intramural electrical waves, a phenomenon called as ;wave emission from heterogeneities; (WEH effect). Heterogeneities in cardiac tissue strongly influence each other in the WEH effect. We study the WEH effect in a medium possessing two defects. The role of two defects and their interaction by pulsed DC electric fields (DEF) and rotating electric fields (REF) are investigated. The direction of the applied electric field plays a major role not only in the minimum electrical field necessary to originate wave propagation, but also in the degree of influences of nearby defects. The distance between two defects, i.e. the density of defects, also play an important role in the WEH effect. Generally, the REF is better than the DEF when pulsed electric fields are applied. These results may contribute to the improved application of WEH, especially in older patients with fibrosis and scarring, which are accompanied by a higher incidence of conductivity discontinuities.

  11. Fast field-induced dissociation and recombination of optical excitations in a pi-conjugated polymer

    CERN Document Server

    Lupton, J M; Baessler, H

    2003-01-01

    We present time resolved photoluminescence measurements on thin films of a phenyl-substituted poly(phenylene-vinylene) incorporated in a diode structure. Under reverse bias conditions rapid exciton dissociation is observed leading to luminescence quenching by up to 30%. In contrast, under forward bias conditions the initial quenching is substantially reduced due to shielding by space charges. At longer times thermally activated exciton quenching by injected polarons dominates the quenching process. At 3 ns after excitation, the external field is found to enhance the delayed luminescence. We attribute this to increased recombination of spatially correlated charge carrier pairs in the presence of the electric field, which are generated by exciton dissociation by bimolecular annihilation or on defect states.

  12. The optical properties of a weak probe field in a graphene ensemble under Raman excitation

    Science.gov (United States)

    Raheli, Ali; Hamedi, H. R.; Sahrai, M.

    2016-06-01

    We investigate the coherent manipulation of certain optical properties in graphene under Raman excitation by using a density-matrix approach. It is shown that the absorption and dispersion, the group velocity, and the transmission coefficient of the probe field can be efficiently controlled through proper adjustment of the intensity and frequency detuning of the control field. In addition, the optical bistability (OB) behavior is explored for the proposed system. It is found that the bistable threshold intensity and related hysteresis loop of OB can be controlled by the parameters of the system. The results obtained may be used in real experiments for the development of new types of nanoelectronic devices used for the realization of all-optical switching processes.

  13. A small animal time-resolved optical tomography platform using wide-field excitation

    Science.gov (United States)

    Venugopal, Vivek

    Small animal imaging plays a critical role in present day biomedical research by filling an important gap in the translation of research from the bench to the bedside. Optical techniques constitute an emerging imaging modality which have tremendous potential in preclinical applications. Optical imaging methods are capable of non-invasive assessment of the functional and molecular characteristics of biological tissue. The three-dimensional optical imaging technique, referred to as diffuse optical tomography, provides an approach for the whole-body imaging of small animal models and can provide volumetric maps of tissue functional parameters (e.g. blood volume, oxygen saturation etc.) and/or provide 3D localization and quantification of fluorescence-based molecular markers in vivo. However, the complex mathematical reconstruction problem associated with optical tomography and the cumbersome instrumental designs limits its adoption as a high-throughput quantitative whole-body imaging modality in current biomedical research. The development of new optical imaging paradigms is thus necessary for a wide-acceptance of this new technology. In this thesis, the design, development, characterization and optimization of a small animal optical tomography system is discussed. Specifically, the platform combines a highly sensitive time-resolved imaging paradigm with multi-spectral excitation capability and CCD-based detection to provide a system capable of generating spatially, spectrally and temporally dense measurement datasets. The acquisition of such data sets however can take long and translate to often unrealistic acquisition times when using the classical point source based excitation scheme. The novel approach in the design of this platform is the adoption of a wide-field excitation scheme which employs extended excitation sources and in the process allows an estimated ten-fold reduction in the acquisition time. The work described herein details the design of the imaging

  14. Gamma Oscillations and Neural Field DCMs Can Reveal Cortical Excitability and Microstructure

    Directory of Open Access Journals (Sweden)

    Dimitris Pinotsis

    2014-05-01

    Full Text Available This paper shows how gamma oscillations can be combined with neural population models and dynamic causal modeling (DCM to distinguish among alternative hypotheses regarding cortical excitability and microstructure. This approach exploits inter-subject variability and trial-specific effects associated with modulations in the peak frequency of gamma oscillations. Neural field models are used to evaluate model evidence and obtain parameter estimates using invasive and non-invasive gamma recordings. Our overview comprises two parts: in the first part, we use neural fields to simulate neural activity and distinguish the effects of post synaptic filtering on predicted responses in terms of synaptic rate constants that correspond to different timescales and distinct neurotransmitters. We focus on model predictions of conductance and convolution based field models and show that these can yield spectral responses that are sensitive to biophysical properties of local cortical circuits like synaptic kinetics and filtering; we also consider two different mechanisms for this filtering: a nonlinear mechanism involving specific conductances and a linear convolution of afferent firing rates producing post synaptic potentials. In the second part of this paper, we use neural fields quantitatively—to fit empirical data recorded during visual stimulation. We present two studies of spectral responses obtained from the visual cortex during visual perception experiments: in the first study, MEG data were acquired during a task designed to show how activity in the gamma band is related to visual perception, while in the second study, we exploited high density electrocorticographic (ECoG data to study the effect of varying stimulus contrast on cortical excitability and gamma peak frequency.

  15. HIF Stabilization Weakens Primary Cilia.

    Science.gov (United States)

    Resnick, Andrew

    2016-01-01

    Although solitary or sensory cilia are present in most cells of the body and their existence has been known since the sixties, very little is known about their functions. One suspected function is fluid flow sensing- physical bending of cilia produces an influx of Ca++, which can then result in a variety of activated signaling pathways. Defective cilia and ciliary-associated proteins have been shown to result in cystic diseases. Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a progressive disease, typically appearing in the 5th decade of life and is one of the most common monogenetic inherited human diseases, affecting approximately 600,000 people in the United States. Because the mechanical properties of cilia impact their response to applied flow, we asked how the stiffness of cilia can be controlled pharmacologically. We performed an experiment subjecting cilia to Taxol (a microtubule stabilizer) and CoCl2 (a HIF stabilizer to model hypoxia). Madin-Darby Canine Kidney (MDCK) cells were selected as our model system. After incubation with a selected pharmacological agent, cilia were optically trapped and the bending modulus measured. We found that HIF stabilization significantly weakens cilia. These results illustrate a method to alter the mechanical properties of primary cilia and potentially alter the flow sensing properties of cilia.

  16. Specific absorption rate benefits of including measured electric field interactions in parallel excitation pulse design.

    Science.gov (United States)

    Deniz, Cem Murat; Alon, Leeor; Brown, Ryan; Sodickson, Daniel K; Zhu, Yudong

    2012-01-01

    Specific absorption rate management and excitation fidelity are key aspects of radiofrequency pulse design for parallel transmission at ultra-high magnetic field strength. The design of radiofrequency pulses for multiple channels is often based on the solution of regularized least-squares optimization problems for which a regularization term is typically selected to control the integrated or peak pulse waveform amplitude. Unlike single-channel transmission, the specific absorption rate of parallel transmission is significantly influenced by interferences between the electric fields associated with the individual transmission elements, which a conventional regularization term does not take into account. This work explores the effects upon specific absorption rate of incorporating experimentally measurable electric field interactions into parallel transmission pulse design. Results of numerical simulations and phantom experiments show that the global specific absorption rate during parallel transmission decreases when electric field interactions are incorporated into pulse design optimization. The results also show that knowledge of electric field interactions enables robust prediction of the net power delivered to the sample or subject by parallel radiofrequency pulses before they are played out on a scanner. Copyright © 2011 Wiley-Liss, Inc.

  17. Circuit-field coupled finite element analysis method for an electromagnetic acoustic transducer under pulsed voltage excitation

    Science.gov (United States)

    Hao, Kuan-Sheng; Huang, Song-Ling; Zhao, Wei; Wang, Shen

    2011-06-01

    This paper presents an analytical method for electromagnetic acoustic transducers (EMATs) under voltage excitation and considers the non-uniform distribution of the biased magnetic field. A complete model of EMATs including the non-uniform biased magnetic field, a pulsed eddy current field and the acoustic field is built up. The pulsed voltage excitation is transformed to the frequency domain by fast Fourier transformation (FFT). In terms of the time harmonic field equations of the EMAT system, the impedances of the coils under different frequencies are calculated according to the circuit-field coupling method and Poynting's theorem. Then the currents under different frequencies are calculated according to Ohm's law and the pulsed current excitation is obtained by inverse fast Fourier transformation (IFFT). Lastly, the sequentially coupled finite element method (FEM) is used to calculate the Lorentz force in the EMATs under the current excitation. An actual EMAT with a two-layer two-bundle printed circuit board (PCB) coil, a rectangular permanent magnet and an aluminium specimen is analysed. The coil impedances and the pulsed current are calculated and compared with the experimental results. Their agreement verified the validity of the proposed method. Furthermore, the influences of lift-off distances and the non-uniform static magnetic field on the Lorentz force under pulsed voltage excitation are studied.

  18. Photo-excited charge collection spectroscopy probing the traps in field-effect transistors

    CERN Document Server

    Im, Seongil; Kim, Jae Hoon

    2013-01-01

    Solid state field-effect devices such as organic and inorganic-channel thin-film transistors (TFTs) have been expected to promote advances in display and sensor electronics. The operational stabilities of such TFTs are thus important, strongly depending on the nature and density of charge traps present at the channel/dielectric interface or in the thin-film channel itself. This book contains how to characterize these traps, starting from the device physics of field-effect transistor (FET). Unlike conventional analysis techniques which are away from well-resolving spectral results, newly-introduced photo-excited charge-collection spectroscopy (PECCS) utilizes the photo-induced threshold voltage response from any type of working transistor devices with organic-, inorganic-, and even nano-channels, directly probing on the traps. So, our technique PECCS has been discussed through more than ten refereed-journal papers in the fields of device electronics, applied physics, applied chemistry, nano-devices and materia...

  19. METODOLOGÍA DE CONTROL DE MÁQUINAS ELÉCTRICAS DE IP CON CAPACIDAD DE DEBILITAMIENTO DE CAMPO CONTROL METHODOLOGY OF PM MACHINE WITH FIELD WEAKENING CAPABILITY

    Directory of Open Access Journals (Sweden)

    Delvis González L

    2007-04-01

    Full Text Available En el mundo actual los requerimientos de los accionamientos se hacen cada vez más exigentes en cuanto a precisión y eficiencia. Por esta razón los diseñadores se ven obligados a encontrar nuevas topologías y mecanismos de control que las satisfagan, especialmente para aplicaciones de velocidad variable como tracción eléctrica. Las máquinas sincrónicas de imanes permanentes son una solución atractiva debido a su elevada eficiencia y su gran densidad de potencia. En estas aplicaciones, para velocidad por debajo de la nominal, el accionamiento opera a torque constante siguiendo la trayectoria de máximo par por ampere. Para valores de velocidad por encima de la nominal es necesario inyectar un flujo negativo en el eje directo, para reducir el flujo impuesto por el imán. De esta manera el voltaje y la corriente se mantienen en 1.0 pu. Este efecto se logra con un control adecuado del ángulo de la corriente en los ejes dq. Este trabajo muestra un método de control para operar las máquinas de corriente alterna e imanes permanentes con capacidad de debilitamiento de campo. Utilizando el Simulink del Matlab se verifica la estrategia de control propuesta. Además se muestran las propiedades de una nueva topología de MCAIP para aplicaciones de velocidad variable.Presently the AC machine drive’s requirements are more demanding in terms of precision and efficiency. Under these circumstances, designers are forced to find new machine topologies and control methods to meet these conditions, especially for variable speed applications such us electric traction. PM machines are an attractive solution because of their intrinsic higher efficiency and their power density. For these operations - below the rated speed - the drive works under constant torque strategy following the maximum torque per ampere trajectory. For speeds over the rated value, it is necessary to inject a negative d-axis flux, to reduce the field imposed by the PM. In this manner

  20. Altered Balance of Receptive Field Excitation and Suppression in Visual Cortex of Amblyopic Macaque Monkeys.

    Science.gov (United States)

    Hallum, Luke E; Shooner, Christopher; Kumbhani, Romesh D; Kelly, Jenna G; García-Marín, Virginia; Majaj, Najib J; Movshon, J Anthony; Kiorpes, Lynne

    2017-08-23

    In amblyopia, a visual disorder caused by abnormal visual experience during development, the amblyopic eye (AE) loses visual sensitivity whereas the fellow eye (FE) is largely unaffected. Binocular vision in amblyopes is often disrupted by interocular suppression. We used 96-electrode arrays to record neurons and neuronal groups in areas V1 and V2 of six female macaque monkeys ( Macaca nemestrina ) made amblyopic by artificial strabismus or anisometropia in early life, as well as two visually normal female controls. To measure suppressive binocular interactions directly, we recorded neuronal responses to dichoptic stimulation. We stimulated both eyes simultaneously with large sinusoidal gratings, controlling their contrast independently with raised-cosine modulators of different orientations and spatial frequencies. We modeled each eye's receptive field at each cortical site using a difference of Gaussian envelopes and derived estimates of the strength of central excitation and surround suppression. We used these estimates to calculate ocular dominance separately for excitation and suppression. Excitatory drive from the FE dominated amblyopic visual cortex, especially in more severe amblyopes, but suppression from both the FE and AEs was prevalent in all animals. This imbalance created strong interocular suppression in deep amblyopes: increasing contrast in the AE decreased responses at binocular cortical sites. These response patterns reveal mechanisms that likely contribute to the interocular suppression that disrupts vision in amblyopes. SIGNIFICANCE STATEMENT Amblyopia is a developmental visual disorder that alters both monocular vision and binocular interaction. Using microelectrode arrays, we examined binocular interaction in primary visual cortex and V2 of six amblyopic macaque monkeys ( Macaca nemestrina ) and two visually normal controls. By stimulating the eyes dichoptically, we showed that, in amblyopic cortex, the binocular combination of signals is

  1. Measuring curvature and velocity vector fields for waves of cardiac excitation in 2-D media.

    Science.gov (United States)

    Kay, Matthew W; Gray, Richard A

    2005-01-01

    Excitable media theory predicts the effect of electrical wavefront morphology on the dynamics of propagation in cardiac tissue. It specifies that a convex wavefront propagates slower and a concave wavefront propagates faster than a planar wavefront. Because of this, wavefront curvature is thought to be an important functional mechanism of cardiac arrhythmias. However, the curvature of wavefronts during an arrhythmia are generally unknown. We introduce a robust, automated method to measure the curvature vector field of discretely characterized, arbitrarily shaped, two-dimensional (2-D) wavefronts. The method relies on generating a smooth, continuous parameterization of the shape of a wave using cubic smoothing splines fitted to an isopotential at a specified level, which we choose to be -30 mV. Twice differentiating the parametric form provides local curvature vectors along the wavefront and waveback. Local conduction velocities are computed as the wave speed along lines normal to the parametric form. In this way, the curvature and velocity vector field for wavefronts and wavebacks can be measured. We applied the method to data sampled from a 2-D numerical model and several examples are provided to illustrate its usefulness for studying the dynamics of cardiac propagation in 2-D media.

  2. Generation of excited coherent states for a charged particle in a uniform magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Mojaveri, B., E-mail: bmojaveri@azaruniv.ac.ir [Department of Physics, Azarbaijan Shahid Madani University, P.O. Box 51745-406, Tabriz (Iran, Islamic Republic of); Dehghani, A., E-mail: a-dehghani@tabrizu.ac.ir, E-mail: alireza.dehghani@gmail.com [Department of Physics, Payame Noor University, P.O. Box 19395-3697, Tehran (Iran, Islamic Republic of)

    2015-04-15

    We introduce excited coherent states, |β,α;nгЂ‰≔a{sup †n}|β,αгЂ‰, where n is an integer and states |β,αгЂ‰ denote the coherent states of a charged particle in a uniform magnetic field. States |β,αгЂ‰ minimize the Schrödinger-Robertson uncertainty relation while having the nonclassical properties. It has been shown that the resolution of identity condition is realized with respect to an appropriate measure on the complex plane. Some of the nonclassical features such as sub-Poissonian statistics and quadrature squeezing of these states are investigated. Our results are compared with similar Agarwal’s type photon added coherent states (PACSs) and it is shown that, while photon-counting statistics of |β,α,nгЂ‰ are the same as PACSs, their squeezing properties are different. It is also shown that for large values of |β|, while they are squeezed, they minimize the uncertainty condition. Additionally, it has been demonstrated that by changing the magnitude of the external magnetic field, B{sub ext}, the squeezing effect is transferred from one component to another. Finally, a new scheme is proposed to generate states |β,α;nгЂ‰ in cavities. .

  3. THE NUMERICAL FIELD ANALYSIS OF EXCITATION MODES AND OF THE DIFFERENT TYPES OF THE ARMATURE REACTION IN A POWERFUL TURBOGENERATOR

    Directory of Open Access Journals (Sweden)

    V. I. Milykh

    2013-07-01

    Full Text Available Principle and the numerical field analysis results of the different excitation modes and of the different types of the armature reaction of powerful turbogenerator are presented. A selection of the the magnetic field excitation factors in the idle mode, the rated load and short-circuit, as well as those specific modes that are characterized by longitudinal demagnetizing and magnetizing and more cross-reaction of the armature excitation of the magnetic field only the stator winding along the longitudinal and transverse axes of the rotor is shown. The principle, which allows by the results of the magnetic field calculation in each mode to determine the key electromagnetic values (magnetic flux and EMF and the phase relationship between them and the currents is considered. The pictures of the magnetic fields are graphically presented in all modes, and the principle of the corresponding vector diagrams construction is also presented on the basis of calculation of these fields. In the original received vector diagrams it is possible to identify qualitatively and quantitatively the share and role of the magnetic field of the rotor and the stator magnetic field. The conducted research can be the basis for improving the system of study, analysis and design of turbogenerators and other electric machines because the considered method of analysis of magnetic fields is quite universal

  4. Multimodal wide-field two-photon excitation imaging: characterization of the technique for in vivo applications.

    Science.gov (United States)

    Hwang, Jae Youn; Wachsmann-Hogiu, Sebastian; Ramanujan, V Krishnan; Nowatzyk, Andreas G; Koronyo, Yosef; Medina-Kauwe, Lali K; Gross, Zeev; Gray, Harry B; Farkas, Daniel L

    2011-01-13

    We report fast, non-scanning, wide-field two-photon fluorescence excitation with spectral and lifetime detection for in vivo biomedical applications. We determined the optical characteristics of the technique, developed a Gaussian flat-field correction method to reduce artifacts resulting from non-uniform excitation such that contrast is enhanced, and showed that it can be used for ex vivo and in vivo cellular-level imaging. Two applications were demonstrated: (i) ex vivo measurements of beta-amyloid plaques in retinas of transgenic mice, and (ii) in vivo imaging of sulfonated gallium(III) corroles injected into tumors. We demonstrate that wide-field two photon fluorescence excitation with flat-field correction provides more penetration depth as well as better contrast and axial resolution than the corresponding one-photon wide field excitation for the same dye. Importantly, when this technique is used together with spectral and fluorescence lifetime detection modules, it offers improved discrimination between fluorescence from molecules of interest and autofluorescence, with higher sensitivity and specificity for in vivo applications.

  5. Second harmonic generation in NLO polymers excited by Surface Plasmon enhanced electric field induced by femtosecond optical pulses

    Directory of Open Access Journals (Sweden)

    Kawata Y.

    2013-03-01

    Full Text Available We will report second harmonic generation (SHG in nonlinear optical (NLO polymers excited by surface plasmon enhanced optical fields. The surface plasmon (SP polariton was excited in an attenuated total reflection geometry having the Kretchmann configuration. The NLO polymers, consisting of Disperse Red1 as guest chromophores and poly (methyl methacrylate as host materials, were coated upon the Ag layers. Our experimental results indicated that the SHG signal intensity from the polymer coated Ag films was more than 10 times higher than that from the non-coated Ag films. The SHG autocorrelation traces excited by SP-enhanced fields were also studied and the correlation time was shorter than 150 fs, the temporal resolutions of the present spectrometer.

  6. Weakened Immune System and Adult Vaccination

    Science.gov (United States)

    ... for Healthcare Professionals Weakened Immune System and Adult Vaccination Recommend on Facebook Tweet Share Compartir Vaccines are ... up to age 26 years Learn about adult vaccination and other health conditions Asplenia Diabetes Type 1 ...

  7. Raman scattering by phonons and crystal-field excitations in cerium hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Avisar, David [Nuclear Research Center, Negev, P.O. Box 9001, Beer- Sheva, 84190 Israel (Israel); Livneh, Tsachi, E-mail: T.Livneh@nrcn.org.i [Nuclear Research Center, Negev, P.O. Box 9001, Beer- Sheva, 84190 Israel (Israel)

    2010-04-02

    The effect of cerium hydrides (deutrides) stoichiometry, CeH(D){sub 2+x} (x = 0-0.90), on the vibrational and Ce{sup +3} crystal-field excitations was studied at room temperature by means of Raman scattering spectroscopy. The assignment of CeH{sub 2+x} vibrational Raman bands, with x < 0.6, are facilitated by the remarkable similarity of their frequencies to the previously measured inelastic neutron scattering (INS) frequencies for the corresponding LaH{sub 2+x}. Above x{approx}0.60 the INS and Raman spectra become increasingly different presumably due to the repulsive H-H interactions, which are also known to increase the magnitude of dispersion in optic-mode vibrations. The intensity of a band at {approx}810 cm{sup -1} relative to that of a band at {approx}710 cm{sup -1} decreases by an order of magnitude from x{approx}0.60 to x{approx}0.72 and remain practically constant up to x = 0.90. Since at room temperature the composition dependent structural tetragonal-cubic and electronic metal-semiconductor transitions occur at x{approx}0.60 and 0.7 < x < 0.8, respectively, the above spectral changes cannot be clearly assigned to either.

  8. Optical near-field studies of waveguiding organic nanofibers by angular dependent excitation

    DEFF Research Database (Denmark)

    Maibohm, Christian

    defined and highly polarized. By UV excitation in a fluorescence microscope it has also been shown that nanofibers have waveguiding properties. To further characterize the waveguiding properties the optical near-field has to be investigated. This is done by transferring nanofibers to an quartz half sphere...

  9. Experimental investigation of processes responsible for dehydration weakening and embrittlement

    Science.gov (United States)

    Hirth, G.; Okazaki, K.; Proctor, B.

    2016-12-01

    We have conducted suites of experiments designed to test the efficacy of dehydration embrittlement for inducing intermediate depth earthquakes. Deformation experiments have been conducted in a Griggs apparatus at 1 to 2 GPa on both antigorite and lawsonite gouge. To scale experimental results to natural conditions, we conducted experiments where we use temperature ramps to induce dehydration while the samples deform at a constant strain rate. The weakening rate of the samples scales with the ratio of the temperature ramp rate over the strain rate. We also conducted experiments at these conditions where the pore fluid pressure is either drained or undrained. In this poster, we will describe the following observations: (1) Experiments on antigorite demonstrate that weakening is associated with an increase in pore-fluid pressure. However, weakening is always stable even when the weakening rate is the same as the apparatus stiffness. Strain rate stepping experiments on both antigorite, and dehydrating antigorite indicate velocity strengthening behavior and no AEs are resolvable during the dehydration reaction. (2) Experiments on lawsonite show unstable weakening (i.e. stick slip behavior) at all ratios of temperature ramp rate over strain rate. Experiments within the lawsonite stability field exhibit stick-slip behavior and AEs are detected both during deformation within the lawsonite stability field and during the dehydration reaction. These results indicate that dehydration embrittlement is suppressed when the reacting phase shows velocity strengthening frictional behavior. The results of the experiments on dehydration of antigorite also suggest that embrittlement of the reaction products is suppressed by enhancement of solution-precipitation processes. This observation provides a possible explanation for why dehydration of antigorite induces embrittlement at lower confining pressures (i.e. 200 MPa), where the dehydration temperature is lower and hence the

  10. Parallel electric field in the auroral ionosphere: excitation of acoustic waves by Alfvén waves

    Directory of Open Access Journals (Sweden)

    P. L. Israelevich

    2004-09-01

    Full Text Available We investigate a new mechanism for the formation of a parallel electric field observed in the auroral ionosphere. For this purpose, the excitation of acoustic waves by propagating Alfvén waves was studied numerically. We find that the magnetic pressure perturbation due to finite amplitude Alfvén waves causes the perturbation of the plasma pressure that propagates in the form of acoustic waves, and gives rise to a parallel electric field. This mechanism explains the observations of the strong parallel electric field in the small-scale electromagnetic perturbations of the auroral ionosphere. For the cases when the parallel electric current in the small-scale auroral perturbations is so strong that the velocity of current carriers exceeds the threshold of the ion sound instability, the excited ion acoustic waves may account for the parallel electric fields as strong as tens of mV/m.

  11. Full-field modal analysis during base motion excitation using high-speed 3D digital image correlation

    Science.gov (United States)

    Molina-Viedma, Ángel J.; López-Alba, Elías; Felipe-Sesé, Luis; Díaz, Francisco A.

    2017-10-01

    In recent years, many efforts have been made to exploit full-field measurement optical techniques for modal identification. Three-dimensional digital image correlation using high-speed cameras has been extensively employed for this purpose. Modal identification algorithms are applied to process the frequency response functions (FRF), which relate the displacement response of the structure to the excitation force. However, one of the most common tests for modal analysis involves the base motion excitation of a structural element instead of force excitation. In this case, the relationship between response and excitation is typically based on displacements, which are known as transmissibility functions. In this study, a methodology for experimental modal analysis using high-speed 3D digital image correlation and base motion excitation tests is proposed. In particular, a cantilever beam was excited from its base with a random signal, using a clamped edge join. Full-field transmissibility functions were obtained through the beam and converted into FRF for proper identification, considering a single degree-of-freedom theoretical conversion. Subsequently, modal identification was performed using a circle-fit approach. The proposed methodology facilitates the management of the typically large amounts of data points involved in the DIC measurement during modal identification. Moreover, it was possible to determine the natural frequencies, damping ratios and full-field mode shapes without requiring any additional tests. Finally, the results were experimentally validated by comparing them with those obtained by employing traditional accelerometers, analytical models and finite element method analyses. The comparison was performed by using the quantitative indicator modal assurance criterion. The results showed a high level of correspondence, consolidating the proposed experimental methodology.

  12. Spin-wave modes in ferromagnetic nanodisks, their excitation via alternating currents and fields, and auto-oscillations

    Science.gov (United States)

    Mancilla-Almonacid, D.; Arias, R. E.

    2017-06-01

    The excitation of the linear spin wave modes of a soft ferromagnetic free layer of a nanopillar structure through dc-ac currents that traverse the structure is studied, as well as with ac magnetic fields. There is interest in understanding the magnetization dynamics in these structures since they may be used as microwave sources when these nano-oscillators enter into auto-oscillatory regimes. The free layer is a soft ferromagnet, like Permalloy, in the shape of a circular disk, with a very small thickness in the range of the exchange length. Using a description of the magnetization dynamics in terms of a Hamiltonian for weakly interacting waves, we determine the spin wave modes of the structure under two approximations: a very thin film limit, and under a model that includes the effect of the full magnetostatic interaction. We consider direct and parametric excitations of different spin wave modes with ac currents, i.e., with exciting frequency approximately equal to the frequency of the mode or to twice its value, respectively. The Oersted field mainly plays a role in the direct resonant excitation of the modes. Our main conclusion is that for a dc current below the critical value necessary for the development of auto-oscillations, using parametric excitation, a very high value of the ac current is necessary to reach the auto-oscillatory behavior in this geometry. However, if the out-of-plane component of the spin transfer torque is high enough, the ac critical current for auto-oscillations is significantly reduced, leading to a signature for its detection. We comment on parallel pumping and transverse excitation using ac magnetic fields.

  13. Optical imaging of nanosized structures by using plasmonically excited cascade near-field coupling with a carbon nanotube probe

    Science.gov (United States)

    Watanabe, Masahiro; Tachizaki, Takehiro; Nakata, Toshihiko

    2017-10-01

    Near-field scanning optical microscopy (NSOM) overcomes the diffraction limit, thereby realizing a spatial resolution far beyond the wavelength of light used. However, NSOM still has a problem in repeatable imaging at the high spatial resolution and high contrast with conventional aperture or apertureless probes that are needed for practical applications. Here, we describe an optical imaging technique based on plasmonically excited cascade near-field coupling that has the potential to achieve single-nanometer spatial resolution with high imaging repeatability. This technique makes use of a plasmon waveguide coupled with a high-stiffness carbon nanotube optical probe. Through the action of surface plasmon polaritons, the input far-field light is converted into an optical near field that is used as an excitation source. This excitation near field is strongly enhanced and concentrated on the probe tip such that it generates a second near field as a nanosized probe spot on the apex of the tip. Extremely high-resolution optical imaging is accomplished by scanning the sample surface with the probe spot. At a wavelength of 850 nm, a 5-nm-wide metallic striped pattern on a cross-sectional superlattice sample was clearly resolved as a permittivity distribution.

  14. A flexible wide-field FLIM endoscope utilising blue excitation light for label-free contrast of tissue.

    Science.gov (United States)

    Sparks, Hugh; Warren, Sean; Guedes, Joana; Yoshida, Nagisa; Charn, Tze Choong; Guerra, Nadia; Tatla, Taranjit; Dunsby, Christopher; French, Paul

    2015-01-01

    Fluorescence lifetime imaging (FLIM) has previously been shown to provide contrast between normal and diseased tissue. Here we present progress towards clinical and preclinical FLIM endoscopy of tissue autofluorescence, demonstrating a flexible wide-field endoscope that utilised a low average power blue picosecond laser diode excitation source and was able to acquire ∼mm-scale spatial maps of autofluorescence lifetimes from fresh ex vivo diseased human larynx biopsies in ∼8 seconds using an average excitation power of ∼0.5 mW at the specimen. To illustrate its potential for FLIM at higher acquisition rates, a higher power mode-locked frequency doubled Ti:Sapphire laser was used to demonstrate FLIM of ex vivo mouse bowel at up to 2.5 Hz using 10 mW of average excitation power at the specimen. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. EXCITATION TEMPERATURE OF THE WARM NEUTRAL MEDIUM AS A NEW PROBE OF THE Lyα RADIATION FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Claire E.; Lindner, Robert R.; Stanimirović, Snežana; Pingel, Nickolas M.; Lawrence, Allen; Babler, Brian L. [Department of Astronomy, University of Wisconsin, Madison, WI 53706 (United States); Goss, W. M.; Jencson, Jacob [National Radio Astronomy Observatory, P.O. Box O, 1003 Lopezville, Socorro, NM 87801 (United States); Heiles, Carl [Radio Astronomy Laboratory, UC Berkeley, 601 Campbell Hall, Berkeley, CA 94720 (United States); Dickey, John [University of Tasmania, School of Maths and Physics, Private Bag 37, Hobart, TAS 7001 (Australia); Hennebelle, Patrick, E-mail: cmurray@astro.wisc.edu [Laboratoire AIM, Paris-Saclay, CEA/IRFU/SAp—CNRS—Université Paris Diderot, F-91191 Gif-sur-Yvette Cedex (France)

    2014-02-01

    We use the Karl G. Jansky Very Large Array to conduct a high-sensitivity survey of neutral hydrogen (H I) absorption in the Milky Way. In combination with corresponding H I emission spectra obtained mostly with the Arecibo Observatory, we detect a widespread warm neutral medium component with excitation temperature 〈T{sub s}〉=7200{sub −1200}{sup +1800} K (68% confidence). This temperature lies above theoretical predictions based on collisional excitation alone, implying that Lyα scattering, the most probable additional source of excitation, is more important in the interstellar medium (ISM) than previously assumed. Our results demonstrate that H I absorption can be used to constrain the Lyα radiation field, a critical quantity for studying the energy balance in the ISM and intergalactic medium yet notoriously difficult to model because of its complicated radiative transfer, in and around galaxies nearby and at high redshift.

  16. Balanced excitation and inhibition: model based analysis of local field potentials.

    Science.gov (United States)

    Zheng, Ying; Luo, Jing Jing; Harris, Sam; Kennerley, Aneurin; Berwick, Jason; Billings, Steve A; Mayhew, John

    2012-10-15

    We have developed a model of the local field potential (LFP) based on the conservation of charge, the independence principle of ionic flows and the classical Hodgkin-Huxley (HH) type intracellular model of synaptic activity. Insights were gained through the simulation of the HH intracellular model on the nonlinear relationship between the balance of synaptic conductances and that of post-synaptic currents. The latter is dependent not only on the former, but also on the temporal lag between the excitatory and inhibitory conductances, as well as the strength of the afferent signal. The proposed LFP model provides a method for decomposing the LFP recordings near the soma of layer IV pyramidal neurons in the barrel cortex of anaesthetised rats into two highly correlated components with opposite polarity. The temporal dynamics and the proportional balance of the two components are comparable to the excitatory and inhibitory post-synaptic currents computed from the HH model. This suggests that the two components of the LFP reflect the underlying excitatory and inhibitory post-synaptic currents of the local neural population. We further used the model to decompose a sequence of evoked LFP responses under repetitive electrical stimulation (5Hz) of the whisker pad. We found that as neural responses adapted, the excitatory and inhibitory components also adapted proportionately, while the temporal lag between the onsets of the two components increased during frequency adaptation. Our results demonstrated that the balance between neural excitation and inhibition can be investigated using extracellular recordings. Extension of the model to incorporate multiple compartments should allow more quantitative interpretations of surface Electroencephalography (EEG) recordings into components reflecting the excitatory, inhibitory and passive ionic current flows generated by local neural populations. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Gapless Spin Excitations in the Field-Induced Quantum Spin Liquid Phase of α -RuCl3

    Science.gov (United States)

    Zheng, Jiacheng; Ran, Kejing; Li, Tianrun; Wang, Jinghui; Wang, Pengshuai; Liu, Bin; Liu, Zheng-Xin; Normand, B.; Wen, Jinsheng; Yu, Weiqiang

    2017-12-01

    α -RuCl3 is a leading candidate material for the observation of physics related to the Kitaev quantum spin liquid (QSL). By combined susceptibility, specific-heat, and nuclear-magnetic-resonance measurements, we demonstrate that α -RuCl3 undergoes a quantum phase transition to a QSL in a magnetic field of 7.5 T applied in the a b plane. We show further that this high-field QSL phase has gapless spin excitations over a field range up to 16 T. This highly unconventional result, unknown in either Heisenberg or Kitaev magnets, offers insight essential to establishing the physics of α -RuCl3 .

  18. Nonsequential double ionization of helium in IR+XUV two-color laser fields II: collision-excitation ionization process

    Science.gov (United States)

    Jin, Facheng; Chen, Jing; Yang, Yujun; Liu, Xiaojun; Yan, Zong-Chao; Wang, Bingbing

    2018-02-01

    We recently investigated the collision-ionization mechanism of the nonsequential double-ionization (NSDI) process in IR+XUV two-color laser fields [(2016) Phys. Rev. A 93 043417]. Here, we extend this work to study the collision-excitation-ionization (CEI) mechanism of the NSDI processes in the two-color laser fields with different laser conditions. It is found that the CEI mechanism makes a dominant contribution to the NSDI as the extreme ultraviolet (XUV) photon energy is smaller than the ionization threshold of the He+ ion, and the momentum spectrum shows complex interference patterns and symmetrical structures. By channel analysis, we find that, as the energy carried by the recollision electron is not enough to excite the bound electron, the bound electron will absorb XUV photons during their collision; as a result, both forward and backward collisions make a comparable contribution to the NSDI processes. However, it is found that, as the energy carried by the recollision electron is large enough to excite the bound electron, the bound electron does not absorb any XUV photon and it is excited only by sharing the energy carried by the recollision electron, hence the forward collision plays a dominant role in the NSDI processes. Moreover, we find that the interference patterns of the NSDI spectra can be reconstructed by the spectra of two above-threshold ionization (ATI) processes, which may be used to analyze the structure of the two separate ATI spectra by NSDI processes.

  19. SENSORS OFMAGNETIC HEADINGOF THE AIRCRAFT AND THE LOCAL MAGNETIC FIELDS ON THE BASIS OF FERROPROBES WITH PULSE EXCITATION SCHEME

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available The flux gate for measurement of size and direction of magnetic field of the Earth and for measurement of local magnetic fields, applying the unidirectional pulse scheme in an excitement chain are examined. The article treats the bene- fits of ferroprobes with pulse excitement in comparison with the similar sensors with sinusoidal excitement. According to the original circuit proposed by the authors of the article flux gate sensor for measurement of a local magnetic field with two ferroprobes for the purpose of compensation of the Earth’s magnetic field is designed. The experiment with flux gate sensors which contain various quantities of rounds in an output winding and a permanent magnet is carried out. The factors that influence the output voltage of the sensor are examined during the experiment. The regression equation for the ferro- probe by the experimental data is obtained. The regression is important for development of similar measuring systems. First of all, the results of the research are important for the analysis of technical characteristics of magneto-modulation sensors, and for ferroprobes design in aircraft industry.

  20. Probing the plasmonic near-field by one- and two-photon excited surface enhanced Raman scattering

    Directory of Open Access Journals (Sweden)

    Katrin Kneipp

    2013-12-01

    Full Text Available Strongly enhanced and spatially confined near-fields in the vicinity of plasmonic nanostructures open up exciting new capabilities for photon-driven processes and particularly also for optical spectroscopy. Surface enhanced Raman signatures of single molecules can provide us with important information about the optical near-field. We discuss one- and two-photon excited surface enhanced Raman scattering at the level of single molecules as a tool for probing the plasmonic near-field of silver nanoaggregates. The experiments reveal enhancement factors of local fields in the hottest hot spots of the near-field and their dependence on the photon energy. Also, the number of the hottest spots and their approximate geometrical size are found. Near-field amplitudes in the hottest spots can be enhanced by three orders of magnitudes. Nanoaggregates of 100 nm dimensions provide one hot spot on this highest enhancement level where the enhancement is confined within less than 1nm dimension. The near-field enhancement in the hottest spots increases with decreasing photon energy.

  1. A full-spectrum analysis of high-speed train interior noise under multi-physical-field coupling excitations

    Science.gov (United States)

    Zheng, Xu; Hao, Zhiyong; Wang, Xu; Mao, Jie

    2016-06-01

    High-speed-railway-train interior noise at low, medium, and high frequencies could be simulated by finite element analysis (FEA) or boundary element analysis (BEA), hybrid finite element analysis-statistical energy analysis (FEA-SEA) and statistical energy analysis (SEA), respectively. First, a new method named statistical acoustic energy flow (SAEF) is proposed, which can be applied to the full-spectrum HST interior noise simulation (including low, medium, and high frequencies) with only one model. In an SAEF model, the corresponding multi-physical-field coupling excitations are firstly fully considered and coupled to excite the interior noise. The interior noise attenuated by sound insulation panels of carriage is simulated through modeling the inflow acoustic energy from the exterior excitations into the interior acoustic cavities. Rigid multi-body dynamics, fast multi-pole BEA, and large-eddy simulation with indirect boundary element analysis are first employed to extract the multi-physical-field excitations, which include the wheel-rail interaction forces/secondary suspension forces, the wheel-rail rolling noise, and aerodynamic noise, respectively. All the peak values and their frequency bands of the simulated acoustic excitations are validated with those from the noise source identification test. Besides, the measured equipment noise inside equipment compartment is used as one of the excitation sources which contribute to the interior noise. Second, a full-trimmed FE carriage model is firstly constructed, and the simulated modal shapes and frequencies agree well with the measured ones, which has validated the global FE carriage model as well as the local FE models of the aluminum alloy-trim composite panel. Thus, the sound transmission loss model of any composite panel has indirectly been validated. Finally, the SAEF model of the carriage is constructed based on the accurate FE model and stimulated by the multi-physical-field excitations. The results show

  2. Excited-states of hydrogenic-like impurities in InGaN–GaN spherical QD: Electric field effect

    Energy Technology Data Exchange (ETDEWEB)

    El Ghazi, Haddou, E-mail: hadghazi@gmail.com [LPS, Faculty of Sciences, Dhar EL Mehrez, B.P 1796 Atlas Fez (Morocco); Special Mathematics, CPGE Kénitra (Morocco); Jorio, Anouar [LPS, Faculty of Sciences, Dhar EL Mehrez, B.P 1796 Atlas Fez (Morocco)

    2013-12-01

    By means of a traditional Ritz variational method within the effective-mass and single parabolic band approximations, the excited-states energy with and without the existence of the impurity is performed. Externally applied electric field and system radius effects are considered in wurtzite (In,Ga)N–GaN spherical quantum dot with finite potential barrier. The normalized binding energy is also reported. Compared to the previous theoretical findings, a good agreement is shown.

  3. Excitation of plasma waves by unstable photoelectron and thermal electron populations on closed magnetic field lines in the Martian ionosphere

    Directory of Open Access Journals (Sweden)

    N. Borisov

    2005-06-01

    Full Text Available It is argued that anisotropic electron pitch angle distributions in the closed magnetic field regions of the Martian ionosphere gives rise to excitation of plasma instabilities. We discuss two types of instabilities that are excited by two different populations of electrons. First, the generation of Langmuir waves by photoelectrons with energies of the order of 10eV is investigated. It is predicted that the measured anisotropy of their pitch angle distribution at the heights z≈400km causes excitation of waves with frequencies f~30kHz and wavelengths λ~30m. Near the terminators the instability of the electrostatic waves with frequencies of the order of or less than the electron gyrofrequency exited by thermal electrons is predicted. The typical frequencies of these waves depend on the local magnitude of the magnetic field and can achieve values f~3-5kHz above strong crustal magnetic fields.

  4. Vibrational excitations in the paired phases of a two-dimensional electron crystal in a perpendicular magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Asgari, R.; Polini, M.; Carnevale, V.; Tosi, M.P

    2003-08-01

    We evaluate the elementary excitations of both spin-singlet and spin-triplet paired crystalline phases of a two-dimensional system of electrons in a perpendicular magnetic field. We use the harmonic Hamiltonian derived from a truncation of the intercell interactions at dipolar terms and treat it within a circular-cell approximation. At this level the excitations are of two types, i.e. a discrete spectrum of localized vibrorotational modes and a continuum of dispersive magneto-oscillations. The eigenfunctions and eigenfrequencies of the intracell dynamics depend on a single parameter, which contains the electron density and the magnetic length, and are exhibited as functions of this parameter for various sets of values of the radial and angular-momentum quantum numbers. The propagating excitations describe collective oscillations of the centre of mass of the electron pairs and derive, as in the usual unpaired crystal phase, from the magnetic-field-induced shifts of plasmons and transverse phonons of the crystal in zero field. Several illustrations of their dispersion curves are given. Possible extensions of the theory to include anharmonicity and higher intercell couplings are briefly discussed.

  5. Structural imaging of nanoscale phonon transport in ferroelectrics excited by metamaterial-enhanced terahertz fields

    Science.gov (United States)

    Zhu, Yi; Chen, Frank; Park, Joonkyu; Sasikumar, Kiran; Hu, Bin; Damodaran, Anoop R.; Jung, Il Woong; Highland, Matthew J.; Cai, Zhonghou; Tung, I.-Cheng; Walko, Donald A.; Freeland, John W.; Martin, Lane W.; Sankaranarayanan, Subramanian K. R. S.; Evans, Paul G.; Lindenberg, Aaron M.; Wen, Haidan

    2017-11-01

    Nanoscale phonon transport is a key process that governs thermal conduction in a wide range of materials and devices. Creating controlled phonon populations by resonant excitation at terahertz (THz) frequencies can drastically change the characteristics of nanoscale thermal transport and allow a direct real-space characterization of phonon mean-free paths. Using metamaterial-enhanced terahertz excitation, we tailored a phononic excitation by selectively populating low-frequency phonons within a nanoscale volume in a ferroelectric BaTi O3 thin film. Real-space time-resolved x-ray diffraction microscopy following THz excitation reveals ballistic phonon transport over a distance of hundreds of nm, two orders of magnitude longer than the averaged phonon mean-free path in BaTi O3 . On longer length scales, diffusive phonon transport dominates the recovery of the transient strain response, largely due to heat conduction into the substrate. The measured real-space phonon transport can be directly compared with the phonon mean-free path as predicted by molecular dynamics modeling. This time-resolved real-space visualization of THz-matter interactions opens up opportunities to engineer and image nanoscale transient structural states with new functionalities.

  6. Heating, weakening and shear localization in earthquake rupture

    Science.gov (United States)

    Rice, James R.

    2017-08-01

    Field and borehole observations of active earthquake fault zones show that shear is often localized to principal deforming zones of order 0.1-10 mm width. This paper addresses how frictional heating in rapid slip weakens faults dramatically, relative to their static frictional strength, and promotes such intense localization. Pronounced weakening occurs even on dry rock-on-rock surfaces, due to flash heating effects, at slip rates above approximately 0.1 m s-1 (earthquake slip rates are typically of the order of 1 m s-1). But weakening in rapid shear is also predicted theoretically in thick fault gouge in the presence of fluids (whether native ground fluids or volatiles such as H2O or CO2 released by thermal decomposition reactions), and the predicted localizations are compatible with such narrow shear zones as have been observed. The underlying concepts show how fault zone materials with high static friction coefficients, approximately 0.6-0.8, can undergo strongly localized shear at effective dynamic friction coefficients of the order of 0.1, thus fitting observational constraints, e.g. of earthquakes producing negligible surface heat outflow and, for shallow events, only rarely creating extensive melt. The results to be summarized include those of collaborative research published with Nicolas Brantut (University College London), Eric Dunham (Stanford University), Nadia Lapusta (Caltech), Hiroyuki Noda (JAMSTEC, Japan), John D. Platt (Carnegie Institution for Science, now at *gramLabs), Alan Rempel (Oregon State University) and John W. Rudnicki (Northwestern University). This article is part of the themed issue 'Faulting, friction and weakening: from slow to fast motion'.

  7. Inelastic electron and Raman scattering from the collective excitations in quantum wires: Zero magnetic field

    Directory of Open Access Journals (Sweden)

    Manvir S. Kushwaha

    2013-04-01

    Full Text Available The nanofabrication technology has taught us that an m-dimensional confining potential imposed upon an n-dimensional electron gas paves the way to a quasi-(n-m-dimensional electron gas, with m ⩽ n and 1 ⩽ n, m ⩽ 3. This is the road to the (semiconducting quasi-n dimensional electron gas systems we have been happily traversing on now for almost two decades. Achieving quasi-one dimensional electron gas (Q-1DEG [or quantum wire(s for more practical purposes] led us to some mixed moments in this journey: while the reduced phase space for the scattering led us believe in the route to the faster electron devices, the proximity to the 1D systems left us in the dilemma of describing it as a Fermi liquid or as a Luttinger liquid. No one had ever suspected the potential of the former, but it took quite a while for some to convince the others on the latter. A realistic Q-1DEG system at the low temperatures is best describable as a Fermi liquid rather than as a Luttinger liquid. In the language of condensed matter physics, a critical scrutiny of Q-1DEG systems has provided us with a host of exotic (electronic, optical, and transport phenomena unseen in their higher- or lower-dimensional counterparts. This has motivated us to undertake a systematic investigation of the inelastic electron scattering (IES and the inelastic light scattering (ILS from the elementary electronic excitations in quantum wires. We begin with the Kubo's correlation functions to derive the generalized dielectric function, the inverse dielectric function, and the Dyson equation for the dynamic screened potential in the framework of Bohm-Pines’ random-phase approximation. These fundamental tools then lead us to develop methodically the theory of IES and ILS for the Q-1DEG systems. As an application of the general formal results, which know no bounds regarding the subband occupancy, we compute the density of states, the Fermi energy, the full excitation spectrum [comprised of

  8. Nostalgia Weakens the Desire for Money

    OpenAIRE

    Jannine D. Lasaleta; Constantine Sedikides; Kathleen D. Vohs

    2014-01-01

    Nostalgia has a strong presence in the marketing of goods and services. The current research asked whether its effectiveness is driven by its weakening of the desire for money. Six experiments demonstrated that feeling nostalgic decreased people's desire for money. Using multiple operationalizations of desire for money, nostalgia (vs. neutral) condition participants were willing to pay more for products (experiment 1), parted with more money but not more time (experiment 2), valued money less...

  9. Near-field properties of a gold nanoparticle array on different substrates excited by a femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Nedyalkov, Nikolay N [Department of Electronics and Electrical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Atanasov, Petar A [Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko shousse 72, Sofia 1784 (Bulgaria); Obara, Minoru [Department of Electronics and Electrical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2007-08-01

    In this paper we present experimental and theoretical results on the properties of the electromagnetic field in the near-field zone of gold nanoparticles excited by an 800 nm ultrashort laser pulse. The near-field properties are studied for the case of a single isolated particle and 2D nanoparticle array case. Particles are deposited on different substrates: metal (Au), semiconductor (Si) and dielectric (SiO{sub 2}). The calculations based on the finite difference time domain (FDTD) simulation technique predict that the field in the vicinity of the particles is enhanced as the magnitude of the field intensity depends on the substrate material and the interparticle distance for 2D array. For closely arrayed nanoparticles on the gold substrate, the maximal field intensity is more than two times lower than that of a single particle. With the increase of the distance between 200 nm diameter gold particles, the value of the field intensity increases up to a distance of about 800 nm. The theoretical prediction of the field enhancement on the substrate is confirmed experimentally. The irradiation of the nanoparticles deposited on the three different substrates with a single laser pulse of a Ti:sapphire laser results in a nanohole formation. Discussion on the observed properties is presented.

  10. Distinguishing the laser-induced spin precession excitation mechanism in Fe/MgO(001) through field orientation dependent measurements

    Science.gov (United States)

    Ma, T. P.; Zhang, S. F.; Yang, Y.; Chen, Z. H.; Zhao, H. B.; Wu, Y. Z.

    2015-01-01

    Rotational field dependence of laser-induced magnetization precession in a single-crystal Fe/MgO(001) sample was studied by the time resolved magneto-optical Kerr effect. Polar and longitudinal magnetization components were separated by measuring precession dynamics under opposite fields. When the applied field is weaker than the anisotropy field of an Fe film, the precession amplitude is small for the field direction near the easy axis and becomes larger as the field rotates towards the hard axis, showing a four-fold symmetry in agreement with the in-plane magnetic anisotropy; whereas at higher fields, the amplitude displays a drop near the hard axis. Such precession behavior can be well reproduced using an excitation model with rapidly modified but slowly recovered magnetic anisotropy and considering the elliptical precession trajectory. Our results indicate that the dominant mechanism for triggering Fe spin precession is the anisotropy modulation correlating with the lattice thermalization, rather than the transient anisotropy modulation due to the high electron temperature within 1 ps.

  11. Higher order mode excitation in eccentric active nano-particles for tailoring of the near-field radiation

    DEFF Research Database (Denmark)

    Thorsen, R. O.; Arslanagic, Samel

    2015-01-01

    We examine the excitation of resonant modes inside eccentrically layered cylindrical active nano-particles. The nano-particle is a three-layer structure comprised of a silica core, a free-space middle layer, and an outer shell of silver. It is shown that a concentric configuration, initially desi...... of the gain constant, is shown to be controlled by the direction of the core displacement. The present eccentric active nano-particles may provide alternative strategies for directive near-field radiation relative to the existing designs....

  12. Optical near-field excitation at the semiconductor band edge: Field distributions, anisotropic transitions and quadrupole enhancement

    NARCIS (Netherlands)

    von der Heydt, A.; Knorr, A.; Hanewinkel, B.; Koch, S.W.

    2000-01-01

    The optical near-field response of a three dimensional subwavelength aperture-semiconductor system is analyzed within a finite difference time domain scheme for Maxwell's and excitonic material equations. The analysis includes the field modification due to the high refractive index environment and

  13. Multiple reflected beam synthesis of fields excited by a high-frequency oblique beam input in an elastic plate.

    Science.gov (United States)

    Zeroug, S; Felsen, L B

    1992-04-01

    Transducer-excited beams provide important diagnostic tools for ultrasonic nondestructive evaluation (NDE) of elastic materials. For bonded multilayer elastic plates, an obliquely injected high-frequency compressional (P) beam creates interior dynamic fields that are sensitive to weak debonding between the layers. In an effort to clarify the wave phenomena that are operative under these conditions of excitation, a highly idealized model has been chosen wherein a lossless plate in vacuum is insonified by an internal oblique P-beam source. This problem was analyzed in a previous investigation [Lu, Felsen, and Klosner, J. Acoust. Soc. Am. 87, 42-53 (1990)] by expressing the total field in terms of a sum of P-S (vertically polarized or in-plane) coupled normal modes. While the resulting field assumed oscillatory modal patterns at interior cross sections far from the source region, the modally synthesized field near the source clearly outlined profiles interpretable as incident and singly or multiply reflected P-S coupled beams. The problem is therefore studied here directly by Gaussian beam tracing as implemented via our previously employed complex ray field algorithm. The results clarify the observed phenomena by revealing the successive buildup from initially well-resolved beams into oscillatory mode patterns synthesized by overlapping multiples. For the same idealized model, the beam algorithm has been applied elsewhere to the detection and identification of weak debonding in a layered plate [Felsen and Zeroug, J. Acoust. Soc. Am. 90, 1527-1538 (1991)]. With an understanding of the physical mechanisms that arise in the beam-to-mode conversion, one may now explore how their utility is affected under realistic NDE conditions.

  14. The influence of excitation number of photon-added coherent state field on the entanglement swapping process

    Science.gov (United States)

    Soltani, M.; Tavassoly, M. K.; Pakniat, R.

    2017-10-01

    In this paper, we outline a scheme for the entanglement swapping procedure based on cavity quantum electrodynamics using the Jaynes-Cummings model consisting of the coherent and photon-added coherent states. In particular, utilizing the photon-added coherent states (|α,m〉≃â†m|α〉, where |α〉 is the Glauber coherent state) in the scheme, enables us to investigate the effect of m, i.e., the number of excitations corresponding to the photon-added coherent field on the entanglement swapping process. In the scheme, two two-level atoms A1 and A2 are initially entangled together, and distinctly two exploited cavity fields F1 and F2 are prepared in an entangled state (a combination of coherent and photon-added coherent states). Interacting the atom A2 with field F1 (via the Jaynes-Cummings model) and then making detection on them, transfers the entanglement from the two atoms A1, A2 and the two fields F1, F2 to the atom-field “A1-F2”, i.e., entanglement swapping occurs. In the continuation, we pay our attention to the evaluation of the fidelity of the swapped entangled state relative to a suitable maximally entangled state, success probability of the performed detections and linear entropy as the degree of entanglement of the swapped entangled state. It is demonstrated that, an increase in the number of excitations, m, leads to the increment of fidelity as well as the amount of entanglement. According to our numerical results, the maximum values of fidelity (linear entropy) 0.98 (0.46) is obtained for m = 9, however, the maximum value of success probability does not significantly change by increasing m.

  15. Theoretical description of protein field effects on electronic excitations of biological chromophores

    Science.gov (United States)

    Varsano, Daniele; Caprasecca, Stefano; Coccia, Emanuele

    2017-01-01

    Photoinitiated phenomena play a crucial role in many living organisms. Plants, algae, and bacteria absorb sunlight to perform photosynthesis, and convert water and carbon dioxide into molecular oxygen and carbohydrates, thus forming the basis for life on Earth. The vision of vertebrates is accomplished in the eye by a protein called rhodopsin, which upon photon absorption performs an ultrafast isomerisation of the retinal chromophore, triggering the signal cascade. Many other biological functions start with the photoexcitation of a protein-embedded pigment, followed by complex processes comprising, for example, electron or excitation energy transfer in photosynthetic complexes. The optical properties of chromophores in living systems are strongly dependent on the interaction with the surrounding environment (nearby protein residues, membrane, water), and the complexity of such interplay is, in most cases, at the origin of the functional diversity of the photoactive proteins. The specific interactions with the environment often lead to a significant shift of the chromophore excitation energies, compared with their absorption in solution or gas phase. The investigation of the optical response of chromophores is generally not straightforward, from both experimental and theoretical standpoints; this is due to the difficulty in understanding diverse behaviours and effects, occurring at different scales, with a single technique. In particular, the role played by ab initio calculations in assisting and guiding experiments, as well as in understanding the physics of photoactive proteins, is fundamental. At the same time, owing to the large size of the systems, more approximate strategies which take into account the environmental effects on the absorption spectra are also of paramount importance. Here we review the recent advances in the first-principle description of electronic and optical properties of biological chromophores embedded in a protein environment. We show

  16. Magnetic field dependence of rotationally resolved excitation spectra of the 1B3u 000 transition of jet-cooled pyrazine

    NARCIS (Netherlands)

    Jonkman, Harry Th.; Drabe, Karel E.

    1991-01-01

    We report rotationally resolved excitation spectra of the 1B3u 000 transition of jet-cooled pyrazine in magnetic fields up to 50 kG. The emission intensity of every rotational line is found to decrease by a factor of three for magnetic fields larger than about 300 G. For still larger magnetic fields

  17. Rapid changes in corticospinal excitability during force field adaptation of human walking

    DEFF Research Database (Denmark)

    Barthélemy, Dorothy; Alain, S; Grey, Michael James

    2012-01-01

    Force field adaptation of locomotor muscle activity is one way of studying the ability of the motor control networks in the brain and spinal cord to adapt in a flexible way to changes in the environment. Here, we investigate whether the corticospinal tract is involved in this adaptation. We...... measured changes in motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) in the tibialis anterior (TA) muscle before, during, and after subjects adapted to a force field applied to the ankle joint during treadmill walking. When the force field assisted dorsiflexion during...... the swing phase of the step cycle, subjects adapted by decreasing TA EMG activity. In contrast, when the force field resisted dorsiflexion, they increased TA EMG activity. After the force field was removed, normal EMG activity gradually returned over the next 5 min of walking. TA MEPs elicited in the early...

  18. Chemical Reactivity Dynamics and Quantum Chaos in Highly Excited Hydrogen Atoms in an External Field: A Quantum Potential Approach

    Directory of Open Access Journals (Sweden)

    B. Maiti

    2002-04-01

    Full Text Available Abstract: Dynamical behavior of chemical reactivity indices like electronegativity, hardness, polarizability, electrophilicity and nucleophilicity indices is studied within a quantum fluid density functional framework for the interactions of a hydrogen atom in its ground electronic state (n = 1 and an excited electronic state (n = 20 with monochromatic and bichromatic laser pulses. Time dependent analogues of various electronic structure principles like the principles of electronegativity equalization, maximum hardness, minimum polarizability and maximum entropy have been found to be operative. Insights into the variation of intensities of the generated higher order harmonics on the color of the external laser field are obtained. The quantum signature of chaos in hydrogen atom has been studied using a quantum theory of motion and quantum fluid dynamics. A hydrogen atom in the electronic ground state (n = 1 and in an excited electronic state ( n = 20 behaves differently when placed in external oscillating monochromatic and bichromatic electric fields. Temporal evolutions of Shannon entropy, quantum Lyapunov exponent and Kolmogorov – Sinai entropy defined in terms of the distance between two initially close Bohmian trajectories for these two cases show marked differences. It appears that a larger uncertainty product and a smaller hardness value signal a chaotic behavior.

  19. Regularity and Chaos in the Hydrogen Atom Highly Excited with a Strong Magnetic Field

    Directory of Open Access Journals (Sweden)

    M. Amdouni

    2014-01-01

    Full Text Available The effects of the relativistic corrections on the energy spectra are analyzed. Effective simulations based on manipulations of operators in the Sturmian basis are developed. Discrete and continuous energy spectra of a hydrogen atom with realistic nucleus mass in a strong magnetic field are computed. The transition from regularity to chaos in diamagnetic problem with the effect of the nucleus recoil energy is explored. Anticrossing of energy levels is observed for strong magnetic field.

  20. Nonlinear excitations of blood flow in large vessels under thermal radiations and uniform magnetic field

    Science.gov (United States)

    Tabi, C. B.; Motsumi, T. G.; Bansi Kamdem, C. D.; Mohamadou, A.

    2017-08-01

    A nonlinear model of blood flow in large vessels is addressed. The influence of radiations, viscosity and uniform magnetic fields on velocity and temperature distribution waveforms is studied. Exact solutions for the studied model are investigated through the F - expansion method. Based on the choice of parameter values, single-, multi-soliton and Jacobi elliptic function solutions are obtained. Viscosity and permanent magnetic field bring about wave spreading and reduce the velocity of blood, while radiations have reversed effects with strong impact on the waveform frequency of both the velocity and temperature distribution.

  1. Mean field dynamics of networks of delay-coupled noisy excitable units

    Energy Technology Data Exchange (ETDEWEB)

    Franović, Igor, E-mail: franovic@ipb.ac.rs [Scientific Computing Laboratory, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Todorović, Kristina; Burić, Nikola [Department of Physics and Mathematics, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade (Serbia); Vasović, Nebojša [Department of Applied Mathematics, Faculty of Mining and Geology, University of Belgrade, PO Box 162, Belgrade (Serbia)

    2016-06-08

    We use the mean-field approach to analyze the collective dynamics in macroscopic networks of stochastic Fitzhugh-Nagumo units with delayed couplings. The conditions for validity of the two main approximations behind the model, called the Gaussian approximation and the Quasi-independence approximation, are examined. It is shown that the dynamics of the mean-field model may indicate in a self-consistent fashion the parameter domains where the Quasi-independence approximation fails. Apart from a network of globally coupled units, we also consider the paradigmatic setup of two interacting assemblies to demonstrate how our framework may be extended to hierarchical and modular networks. In both cases, the mean-field model can be used to qualitatively analyze the stability of the system, as well as the scenarios for the onset and the suppression of the collective mode. In quantitative terms, the mean-field model is capable of predicting the average oscillation frequency corresponding to the global variables of the exact system.

  2. The hydrolytic weakening effect in quartz

    Science.gov (United States)

    Hobbs, B. E.

    Experiments on single crystals of quartz have shown that an order of magnitude increase in the fugacity of H2O is associated with about an order of magnitude decrease in the flow strength at a given temperature and pressure. The classical interpretation of this hydrolytic weakening effect is that H2O groups are incorporated into the quartz structure as Si-OH.HO-Si groups. Then, in order to move a dislocation, OH.HO bonds need to be broken rather than Si-O bonds. The rate controlling process is envisaged as the diffusion of the (OH)-defect to or with the dislocation core. This paper discusses the manner in which charged hydrogen- or hydroxyl-defects alter the concentrations of other charged defects such as kinks and jogs on dislocations or vacancies and interstitials and so have an influence on the deformation rate. As an example, an increase in the concentration of negatively charged (OH)-defects leads to an increase in the concentration of positively charged kinks on dislocations thus increasing the strain rate. Other deformation mechanisms involving diffusion of oxygen and silicon with or without climb of dislocations or motion of kinks are also investigated and are shown to be capable of explaining the observed effect. This defect chemistry interpretation is consistent with the classical interpretation but also proposes other mechanisms where the direct diffusion of (OH)-defects plays no role in the process. As an example, an increase in the concentration of negatively charged (OH)-defects increases both the concentration of positively charged jogs and positively charged silicon interstitials in such a way as to explain the magnitude of the hydrolytic weakening effect. As such, the rate controlling process is the climb of dislocations controlled by silicon diffusion, not the diffusion of (OH)-defects. Although several different mechanisms are capable of explaining the hydrolytic weakening effect, many have different dependencies upon the activity of oxygen so

  3. Interference effects in the plasmon fields excited by a diatomic molecule

    Energy Technology Data Exchange (ETDEWEB)

    Segui, S. [Centro Atómico Bariloche (Comisión Nacional de Energía Atómica), Av. Bustillo 9500, 8400 San Carlos de Bariloche, Río Negro (Argentina); Gervasoni, J.L. [Centro Atómico Bariloche (Comisión Nacional de Energía Atómica), Av. Bustillo 9500, 8400 San Carlos de Bariloche, Río Negro (Argentina); Instituto Balseiro (Universidad Nacional de Cuyo and Comisión Nacional de Energía Atómica) (Argentina)

    2015-07-01

    We study the fluctuations of the plasmon field associated to the wake potential generated by a dimer formed by two identical charged particles (such as two nuclei of the ionized hydrogen molecule) traveling through a semiinfinite dielectric medium. We use coherent states to describe bulk and surface plasmons as wave packets that raise fluctuations in the electronic density of the material. We analyze different configurations of interest, taking into account various trajectories and orientations of the dimer.

  4. Analytic Calculation of Transmission Field in Homogeneously Layered Mediums Excited by EMP

    Directory of Open Access Journals (Sweden)

    Dong-yang Sun

    2017-01-01

    Full Text Available This paper presents an analytic derivation for the time-domain transmission across layered mediums. The transmission coefficient and attenuation coefficient are obtained in the time-domain from general electromagnetic theory. The transmission electric field can be obtained within a few seconds by convolving the coefficients with incident EMP. The results are accordant with the FDTD method, and this approach can deal with the multilayer mediums problem. The limitations of this approach are discussed in this paper.

  5. High-field magnetic phase transitions and spin excitations in magnetoelectric LiNiPO4

    DEFF Research Database (Denmark)

    Toft-Petersen, Rasmus; Jensen, Jens; Jensen, Thomas Bagger Stibius

    2011-01-01

    The magnetically ordered phases and spin dynamics of magnetoelectric LiNiPO4 have been studied in fields up to 17.3 T along the c axis. Using neutron diffraction, we show that a previously proposed linearly polarized incommensurate (IC) structure exists only for temperatures just below the Neel...... temperature T-N. The ordered IC structure at the lowest temperatures is shown instead to be an elliptically polarized canted spiral for fields larger than 12 T. The transition between the two IC phases is of second order and takes place about 2 K below T-N. For mu H-0 > 16 T and temperatures below 10 K......, the spiral structure is found to lock in to a period of five crystallographic unit cells along the b axis. Based on the neutron-diffraction data, combined with detailed magnetization measurements along all three crystallographic axes, we establish the magnetic phase diagrams for fields up to 17.3 T along c...

  6. MgB_{2} nonlinear properties investigated under localized high rf magnetic field excitation

    Directory of Open Access Journals (Sweden)

    Tamin Tai

    2012-12-01

    Full Text Available The high transition temperature and low surface resistance of MgB_{2} attracts interest in its potential application in superconducting radio frequency accelerating cavities. However, compared to traditional Nb cavities, the viability of MgB_{2} at high rf fields is still open to question. Our approach is to study the nonlinear electrodynamics of the material under localized rf magnetic fields. Because of the presence of the small superconducting gap in the π band, the nonlinear response of MgB_{2} at low temperature is potentially complicated compared to a single-gap s-wave superconductor such as Nb. Understanding the mechanisms of nonlinearity coming from the two-band structure of MgB_{2}, as well as extrinsic sources of nonlinearity, is an urgent requirement. A localized and strong rf magnetic field, created by a magnetic write head, is integrated into our nonlinear-Meissner-effect scanning microwave microscope [T. Tai et al., IEEE Trans. Appl. Supercond. 21, 2615 (2011ITASE91051-822310.1109/TASC.2010.2096531]. MgB_{2} films with thickness 50 nm, fabricated by a hybrid physical-chemical vapor deposition technique on dielectric substrates, are measured at a fixed location and show a strongly temperature-dependent third harmonic response. We propose that several possible mechanisms are responsible for this nonlinear response.

  7. Ionisation potential theorem in the presence of the electric field: Assessment of range-separated functional in the reproduction of orbital and excitation energies.

    Science.gov (United States)

    Borpuzari, Manash Protim; Boruah, Abhijit; Kar, Rahul

    2016-04-28

    Recently, the range-separated density functionals have been reported to reproduce gas phase orbital and excitation energies with good accuracy. In this article, we have revisited the ionisation potential theorem in the presence of external electric field. Numerical results on six linear molecules are presented and the performance of the range-separated density functionals in reproducing highest occupied molecular orbital (HOMO) energies, LUMO energies, HOMO-LUMO gaps in the presence of the external electric field is assessed. In addition, valence and Rydberg excitation energies in the presence of the external electric field are presented. It is found that the range-separated density functionals reproduce orbital and excitation energies accurately in the presence of the electric field. Moreover, we have performed fractional occupation calculation using cubic spline equation and tried to explain the performance of the functional.

  8. MAGNETIC-FIELD DEPENDENCE OF ROTATIONALLY RESOLVED EXCITATION-SPECTRA OF THE B-1(3U)0(0)(0) TRANSITION OF JET-COOLED PYRAZINE

    NARCIS (Netherlands)

    DELANGE, PJ; JONKMAN, HT; DRABE, KE

    1991-01-01

    We report rotationally resolved excitation spectra of the 1B3u 0(0)0 transition of jet-cooled pyrazine in magnetic fields up to 50 kG. The emission intensity of every rotational line is found to decrease by a factor of three for magnetic fields larger than about 300 G. For still larger magnetic

  9. Infrared absorption, laser excitation and crystal-field analyses of the C-4v symmetry centre in KY3F10 doped with Pr3+

    NARCIS (Netherlands)

    Wells, J. P. R.; Yamaga, M.; Han, T. P. J.; Gallagher, H. G.

    2000-01-01

    We report a comprehensive spectroscopic study of KY3F10 doped with trivalent praseodymium. Employing both infrared absorption and laser excited fluorescence spectroscopy, we have constructed an energy level scheme of 39 crystal-field states. A C-4v symmetry, conventional crystal-field analysis can

  10. NMR investigation of domain wall dynamics and hyperfine field anisotropy in magnets by the magnetic video-pulse excitation method

    Science.gov (United States)

    Gavasheli, Ts A.; Mamniashvili, GI; Gegechkori, T. O.

    2017-04-01

    Two-pulse nuclear spin echoes were studied experimentally depending on the time of application and pulse amplitudes of the DC magnetic field-magnetic video-pulses (MVP) as well as on the value of the external magnetic field. The measurements were performed with nanopowders and polycrystals of metallic cobalt, in lithium ferrite and half metal Co2MnSi. Two types of dependences of these signals on time of application of MVP with respect to moments of application of exciting radio-frequency pulses were established, which were determined by the degree of anisotropy of local hyperfine fields. The mechanisms of influence of the pinning and mobility of domain walls on the revealed specific features of the signals under study are also discussed. It is shown that temporal spectra of the MVP effect on two-pulse echoes in multidomain magnets are determined by the parameters of domain walls and can be used for qualitative and quantitative characterization of the domain wall dynamics of magnets.

  11. Far-Infrared Excitations in an Antidot at Finite Magnetic Fields

    Science.gov (United States)

    Emperador, Agustí; Pi, Martí; Barranco, Manuel; Lipparini, Enrico; Serra, Llorenç

    2001-02-01

    We have investigated the far-infrared dipole modes of an antidot submitted to a perpendicularly applied magnetic field B. The ground state of the antidot is described in local spin-density functional theory, and the spectrum in time-dependent local spin-density functional theory. The results are compared with those corresponding to a quantum dot of similar electronic surface density. The method is able to reproduce two of the more salient experimental features, namely, that the main bulk and edge modes have the same circular polarization, and that the negative B dispersion edge branch oscillates, with minima at the B values corresponding to fully occupied Landau levels. It fails, however, to achieve the unique feature of short-period antidot lattices that the energy of the edge magnetoplasmon approaches the cyclotron frequency for small B values. The existence of anticyclotron-polarized bulk modes is discussed, and a detailed account of the dipole spin mode is presented.

  12. Influence of geomagnetic field for continuous wave (CW) laser excited sodium guide stars backward fluorescence intensity

    Science.gov (United States)

    Zhang, Shao-peng; Wang, Hong-yan; Hua, Wei-hong; Ning, Yu; Xu, Xiao-jun

    2013-09-01

    Recent years, benefited from their greater coverage and smaller focus anisoplanatism, sodium laser guide stars are becoming more attractive in providing artificial beacons for adaptive optical (AO) system in large ground telescopes compared to Rayleigh guide stars. And it had been found that the Sodium laser guide stars backward fluorescence intensity is closely related with the local magnetic field intensity and direction. In this paper, we make use of the World Magnetic Model (WMM) 2010 and by considering the geographical differences in Beijing, Nanjing and Kunming we investigate the effects of the light intensity, line-width, polarization of the CW laser and re-pumping conditions on the photon return flux by numerically solving the Rochester et al. Bloch model. So in theory we can get better Sodium guide star in Beijing. In conclusion, according to the simulation results, we can acquire much bright of Sodium guide stars by optimize the parameter of the launched 589 nm laser.

  13. Pulsed magnetic field excitation sensitivity of match-type electric blasting caps

    Science.gov (United States)

    Parson, Jonathan; Dickens, James; Walter, John; Neuber, Andreas A.

    2010-10-01

    This paper presents a study on energy deposition and electromagnetic compatibility of match-type electroexplosive devices (EEDs), which recently have found more usage in pulsed power environments with high electromagnetic interference (EMI) background. The sensitivity of these devices makes them dangerous to intended and unintended radiation produced by devices commonly used in pulsed power environments. Match-type EEDs have been found to be susceptible to such low levels of energy (7-8 mJ) that safe operation of these EEDs is vital when in use near devices that produce high levels of pulsed EMI. The scope of this paper is to provide an investigation that incorporates results of similar studies to provide detonation characteristics of these EEDs. The three topics included in this study are sensitivity testing, modeling of the thermodynamic heat propagation, and electromagnetic compatibility from pulsed electromagnetic radiation. The thermodynamic joule heating of the primary explosive has been modeled by a solution to the 1D heat equation. A simple pulsed generator, Marx generator with an inductive load, was used for the electromagnetic compatibility assessment of the coupled field between the pulse generator and shorted EED. The results of the electromagnetic compatibility assessment relate the resistive, inductive, and capacitive components of the pulse generator to the area of the shorted EED.

  14. Pulsed magnetic field excitation sensitivity of match-type electric blasting caps.

    Science.gov (United States)

    Parson, Jonathan; Dickens, James; Walter, John; Neuber, Andreas A

    2010-10-01

    This paper presents a study on energy deposition and electromagnetic compatibility of match-type electroexplosive devices (EEDs), which recently have found more usage in pulsed power environments with high electromagnetic interference (EMI) background. The sensitivity of these devices makes them dangerous to intended and unintended radiation produced by devices commonly used in pulsed power environments. Match-type EEDs have been found to be susceptible to such low levels of energy (7-8 mJ) that safe operation of these EEDs is vital when in use near devices that produce high levels of pulsed EMI. The scope of this paper is to provide an investigation that incorporates results of similar studies to provide detonation characteristics of these EEDs. The three topics included in this study are sensitivity testing, modeling of the thermodynamic heat propagation, and electromagnetic compatibility from pulsed electromagnetic radiation. The thermodynamic joule heating of the primary explosive has been modeled by a solution to the 1D heat equation. A simple pulsed generator, Marx generator with an inductive load, was used for the electromagnetic compatibility assessment of the coupled field between the pulse generator and shorted EED. The results of the electromagnetic compatibility assessment relate the resistive, inductive, and capacitive components of the pulse generator to the area of the shorted EED.

  15. External Electric Field Effects on Excited-State Intramolecular Proton Transfer in 4'-N,N-Dimethylamino-3-hydroxyflavone in Poly(methyl methacrylate) Films.

    Science.gov (United States)

    Furukawa, Kazuki; Hino, Kazuyuki; Yamamoto, Norifumi; Awasthi, Kamlesh; Nakabayashi, Takakazu; Ohta, Nobuhiro; Sekiya, Hiroshi

    2015-09-17

    The external electric field effects on the steady-state electronic spectra and excited-state dynamics were investigated for 4'-N,N-(dimethylamino)-3-hydroxyflavone (DMHF) in a poly(methyl methacrylate) (PMMA) film. In the steady-state spectrum, dual emission was observed from the excited states of the normal (N*) and tautomer (T*) forms. Application of an external electric field of 1.0 MV·cm(-1) enhanced the N* emission and reduced the T* emission, indicating that the external electric field suppressed the excited-state intramolecular proton transfer (ESIPT). The fluorescence decay profiles were measured for the N* and T* forms. The change in the emission intensity ratio N*/T* induced by the external electric field is dominated by ESIPT from the Franck-Condon excited state of the N* form and vibrational cooling in potential wells of the N* and T* forms occurring within tens of picoseconds. Three manifolds of fluorescent states were identified for both the N* and T* forms. The excited-state dynamics of DMHF in PMMA films has been found to be very different from that in solution due to intermolecular interactions in a rigid environment.

  16. Seasonal Variations of the Earth's Gravitational Field: An Analysis of Atmospheric Pressure, Ocean Tidal, and Surface Water Excitation

    Science.gov (United States)

    Dong, D,; Gross, R.S.; Dickey, J.

    1996-01-01

    Monthly mean gravitational field parameters (denoted here as C(sub even)) that represent linear combinations of the primarily even degree zonal spherical harmonic coefficients of the Earth's gravitational field have been recovered using LAGEOS I data and are compared with those derived from gridded global surface pressure data of the National meteorological center (NMC) spanning 1983-1992. The effect of equilibrium ocean tides and surface water variations are also considered. Atmospheric pressure and surface water fluctuations are shown to be the dominant cause of observed annual C(sub even) variations. Closure with observations is seen at the 1sigma level when atmospheric pressure, ocean tide and surface water effects are include. Equilibrium ocean tides are shown to be the main source of excitation at the semiannual period with closure at the 1sigma level seen when both atmospheric pressure and ocean tide effects are included. The inverted barometer (IB) case is shown to give the best agreement with the observation series. The potential of the observed C(sub even) variations for monitoring mass variations in the polar regions of the Earth and the effect of the land-ocean mask in the IB calculation are discussed.

  17. Impurity binding energy of lowest-excited state in (In,Ga)N–GaN spherical QD under electric field effect

    Energy Technology Data Exchange (ETDEWEB)

    Ghazi, Haddou El, E-mail: hadghazi@gmail.com [LPS, Faculty of Sciences, Dhar EL Mehrez, B.P 1796 Atlas, Fez (Morocco); Special Mathematics, CPGE Kénitra (Morocco); Jorio, Anouar; Zorkani, Izeddine [LPS, Faculty of Sciences, Dhar EL Mehrez, B.P 1796 Atlas, Fez (Morocco)

    2013-10-01

    External electric field effect on the lowest-excited state in wurtzite (In,Ga)N–GaN spherical quantum dot is considered. By means of a traditional Ritz variational method within the effective-mass approximation and finite potential barrier, the lowest-excited state energy with and without the presence of the impurity is investigated. The normalized binding energy under electric field effect is also performed. Our numerical results are compared with the previous theoretical findings and show a good agreement with those concerning especially the ground-state for different semiconductors materials and different QDs-shapes.

  18. Crystal-field excitations in multiferroic TbMnO3 by Mn L3 and O K resonant inelastic X-ray scattering

    Science.gov (United States)

    Feng, Jiatai; Juhin, Amélie; Delaunay, Renaud; Jarrier, Romain; Jaouen, Nicolas; Nicolaou, Alessandro; Sinclair, Ryan; Zhou, Haidong; Mariot, Jean-Michel; Chiuzbǎian, Sorin G.

    2017-11-01

    d-d excitations in multiferroic TbMnO3 have been investigated by X-ray absorption spectroscopy and resonant inelastic X-ray scattering at the Mn L3,2 and O K edges. Confrontation between experimental data and multiplet crystal-field calculations performed for Mn3+ ions in D4h symmetry has enabled us to identify the origin of the observed excitations and has provided reliable manganese crystal-field parameters that enter the description of the antisymmetric exchange interaction responsible for the multiferroicity in this compound.

  19. Anisotropic excitation of surface plasmon polaritons on a metal film by a scattering-type scanning near-field microscope with a non-rotationally-symmetric probe tip

    Directory of Open Access Journals (Sweden)

    Walla Frederik

    2018-01-01

    Full Text Available We investigated the excitation of surface plasmon polaritons on gold films with the metallized probe tip of a scattering-type scanning near-field optical microscope (s-SNOM. The emission of the polaritons from the tip, illuminated by near-infrared laser radiation, was found to be anisotropic and not circularly symmetric as expected on the basis of literature data. We furthermore identified an additional excitation channel via light that was reflected off the tip and excited the plasmon polaritons at the edge of the metal film. Our results, while obtained for a non-rotationally-symmetric type of probe tip and thus specific for this situation, indicate that when an s-SNOM is employed for the investigation of plasmonic structures, the unintentional excitation of surface waves and anisotropic surface wave propagation must be considered in order to correctly interpret the signatures of plasmon polariton generation and propagation.

  20. Anisotropic excitation of surface plasmon polaritons on a metal film by a scattering-type scanning near-field microscope with a non-rotationally-symmetric probe tip

    Science.gov (United States)

    Walla, Frederik; Wiecha, Matthias M.; Mecklenbeck, Nicolas; Beldi, Sabri; Keilmann, Fritz; Thomson, Mark D.; Roskos, Hartmut G.

    2018-01-01

    We investigated the excitation of surface plasmon polaritons on gold films with the metallized probe tip of a scattering-type scanning near-field optical microscope (s-SNOM). The emission of the polaritons from the tip, illuminated by near-infrared laser radiation, was found to be anisotropic and not circularly symmetric as expected on the basis of literature data. We furthermore identified an additional excitation channel via light that was reflected off the tip and excited the plasmon polaritons at the edge of the metal film. Our results, while obtained for a non-rotationally-symmetric type of probe tip and thus specific for this situation, indicate that when an s-SNOM is employed for the investigation of plasmonic structures, the unintentional excitation of surface waves and anisotropic surface wave propagation must be considered in order to correctly interpret the signatures of plasmon polariton generation and propagation.

  1. Melatonin and the pathologies of weakened or dysregulated circadian oscillators.

    Science.gov (United States)

    Hardeland, Rüdiger

    2017-01-01

    Dynamic aspects of melatonin's actions merit increasing future attention. This concerns particularly entirely different effects in senescent, weakened oscillators and in dysregulated oscillators of cancer cells that may be epigenetically blocked. This is especially obvious in the case of sirtuin 1, which is upregulated by melatonin in aged tissues, but strongly downregulated in several cancer cells. These findings are not at all controversial, but are explained on the basis of divergent changes in weakened and dysregulated oscillators. Similar findings can be expected to occur in other accessory oscillator components that are modulated by melatonin, among them several transcription factors and metabolic sensors. Another cause of opposite effects concerns differences between nocturnally active laboratory rodents and the diurnally active human. This should be more thoroughly considered in the field of metabolic syndrome and related pathologies, especially with regard to type 2 diabetes and other aspects of insulin resistance. Melatonin was reported to impair glucose tolerance in humans, especially in carriers of the risk allele of the MT2 receptor gene, MTNR1B, that contains the SNP rs10830963. These findings contrast with numerous reports on improvements of glucose tolerance in preclinical studies. However, the relationship between melatonin and insulin may be more complex, as indicated by loss-of-function mutants of the MT2 receptor that are also prodiabetic, by the age-dependent time course of risk allele overexpression, by progressive reduction in circadian amplitudes and melatonin secretion, which are aggravated in diabetes. By supporting high-amplitude rhythms, melatonin may be beneficial in preventing or delaying diabetes. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Neuronal excitation and permeabilization by 200-ns pulsed electric field: An optical membrane potential study with FluoVolt dye.

    Science.gov (United States)

    Pakhomov, Andrei G; Semenov, Iurii; Casciola, Maura; Xiao, Shu

    2017-07-01

    Electric field pulses of nano- and picosecond duration are a novel modality for neurostimulation, activation of Ca 2+ signaling, and tissue ablation. However it is not known how such brief pulses activate voltage-gated ion channels. We studied excitation and electroporation of hippocampal neurons by 200-ns pulsed electric field (nsPEF), by means of time-lapse imaging of the optical membrane potential (OMP) with FluoVolt dye. Electroporation abruptly shifted OMP to a more depolarized level, which was reached within 10s), so cells remained above the resting OMP level for at least 20-30s. Activation of voltage-gated sodium channels (VGSC) enhanced the depolarizing effect of electroporation, resulting in an additional tetrodotoxin-sensitive OMP peak in 4-5ms after nsPEF. Omitting Ca 2+ in the extracellular solution did not reduce the depolarization, suggesting no contribution of voltage-gated calcium channels (VGCC). In 40% of neurons, nsPEF triggered a single action potential (AP), with the median threshold of 3kV/cm (range: 1.9-4kV/cm); no APs could be evoked by stimuli below the electroporation threshold (1.5-1.9kV/cm). VGSC opening could already be detected in 0.5ms after nsPEF, which is too fast to be mediated by the depolarizing effect of electroporation. The overlap of electroporation and AP thresholds does not necessarily reflect the causal relation, but suggests a low potency of nsPEF, as compared to conventional electrostimulation, for VGSC activation and AP induction. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The effect of the resistive properties of bone on neural excitation and electric fields in cochlear implant models.

    Science.gov (United States)

    Malherbe, T K; Hanekom, T; Hanekom, J J

    2015-09-01

    The resistivity of bone is the most variable of all the tissues in the human body, ranging from 312 Ω cm to 84,745 Ω cm. Volume conduction models of cochlear implants have generally used a resistivity value of 641 Ω cm for the bone surrounding the cochlea. This study investigated the effect that bone resistivity has on modelled neural thresholds and intracochlear potentials using user-specific volume conduction models of implanted cochleae applying monopolar stimulation. The complexity of the description of the head volume enveloping the cochlea was varied between a simple infinite bone volume and a detailed skull containing a brain volume, scalp and accurate return electrode position. It was found that, depending on the structure of the head model and implementation of the return electrode, different bone resistivity values are necessary to match model predictions to data from literature. Modelled forward-masked spatial tuning curve (fmSTC) widths and slopes and intracochlear electric field profile length constants were obtained for a range of bone resistivity values for the various head models. The predictions were compared to measurements found in literature. It was concluded that, depending on the head model, a bone resistivity value between 3500 Ω cm and 10,500 Ω cm allows prediction of neural and electrical responses that match measured data. A general recommendation is made to use a resistivity value of approximately 10,000 Ω cm for bone volumes in conduction models of the implanted cochlea when neural excitation is predicted and a value of approximately 6500 Ω cm when predicting electric fields inside the cochlear duct. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Differential Radiative Heating Drives Tropical Atmospheric Circulation Weakening

    Science.gov (United States)

    Xia, Yan; Huang, Yi

    2017-10-01

    The tropical atmospheric circulation is projected to weaken during global warming, although the mechanisms that cause the weakening remain to be elucidated. We hypothesize that the weakening is related to the inhomogeneous distribution of the radiative forcing and feedback, which heats the tropical atmosphere in the ascending and subsiding regions differentially and thus requires the circulation to weaken due to energetic constraints. We test this hypothesis in a series of numerical experiments using a fully coupled general circulation model (GCM), in which the radiative forcing distribution is controlled using a novel method. The results affirm the effect of inhomogeneous forcing on the tropical circulation weakening, and this effect is greatly amplified by radiative feedback, especially that of clouds. In addition, we find that differential heating explains the intermodel differences in tropical circulation response to CO2 forcing in the GCM ensemble of the Climate Model Intercomparison Project.

  5. Synergy effects of electric and magnetic fields on locally excited-state fluorescence of photoinduced electron transfer systems in a polymer film.

    Science.gov (United States)

    Awasthi, Kamlesh; Iimori, Toshifumi; Ohta, Nobuhiro

    2009-10-08

    Photoluminescence of electron donor-acceptor pairs that show photoinduced electron transfer (PIET) has been measured in a polymer film under simultaneous application of electric field and magnetic field. Fluorescence emitted from the locally excited state (LE fluorescence) of 9-methylanthracene (MAnt) and pyrene (Py) is quenched by an electric field in a mixture of 1,3-dicyanobenzene (DCB) with MAnt or Py, indicating that PIET from the excited state of MAnt or Py to DCB is enhanced by an electric field. Simultaneous application of electric and magnetic fields enhances the reverse process from the radical-ion pair produced by PIET to the LE fluorescent state of MAnt or Py. As a result, the electric-field-induced quenching of the LE fluorescence is reduced by application of the magnetic fields. Thus, the synergy effect of electric and magnetic fields is observed on the LE fluorescence of MAnt or Py. Exciplex fluorescence spectra resulting from PIET can be obtained by analyzing the field effects on photoluminescence spectra, even when the exciplex fluorescence is too weak to be determined from the steady-state or time-resolved photoluminescence spectra at zero field.

  6. Excited-state free energy surfaces in solution: time-dependent density functional theory∕reference interaction site model self-consistent field method.

    Science.gov (United States)

    Minezawa, Noriyuki

    2013-06-28

    Constructing free energy surfaces for electronically excited states is a first step toward the understanding of photochemical processes in solution. For that purpose, the analytic free energy gradient is derived and implemented for the linear-response time-dependent density functional theory combined with the reference interaction site model self-consistent field method. The proposed method is applied to study (1) the fluorescence spectra of aqueous acetone and (2) the excited-state intramolecular proton transfer reaction of ortho-hydroxybenzaldehyde in an acetonitrile solution.

  7. MCSCF wave functions for excited states of polar molecules - Application to BeO. [Multi-Configuration Self-Consistent Field

    Science.gov (United States)

    Bauschlicher, C. W., Jr.; Yarkony, D. R.

    1980-01-01

    A previously reported multi-configuration self-consistent field (MCSCF) algorithm based on the generalized Brillouin theorem is extended in order to treat the excited states of polar molecules. In particular, the algorithm takes into account the proper treatment of nonorthogonality in the space of single excitations and invokes, when necessary, a constrained optimization procedure to prevent the variational collapse of excited states. In addition, a configuration selection scheme (suitable for use in conjunction with extended configuration interaction methods) is proposed for the MCSCF procedure. The algorithm is used to study the low-lying singlet states of BeO, a system which has not previously been studied using an MCSCF procedure. MCSCF wave functions are obtained for three 1 Sigma + and two 1 Pi states. The 1 Sigma + results are juxtaposed with comparable results for MgO in order to assess the generality of the description presented here.

  8. Finite magneto-static field effect on the excitation of THz hybrid modes in an elliptical metallic plasma waveguide with two energy sources

    Science.gov (United States)

    Safari, S.; Jazi, B.

    2017-05-01

    The effect of finite magnetic field on the excitation, generation, and amplification of slow electromagnetic waves at THz frequency in a magnetized plasma waveguide with elliptical cross section is investigated. In configuration mentioned above, there are two electron beams with opposite directions as energy sources, and the role of magnetic field power on the appearance of the number of dispersion branches is analysed. It is shown that with increasing magnetic field, the field profiles of hybrid waves are increased in regions where the interaction of waves and electron beams are optimized. It is also shown that by applying the magnetic field, generation of THz frequencies can be easy to obtain in comparison to the unmagnetized case. In other words, by applying a finite magnetic field, better THz excitation occurs in the absence of high accelerating voltage. Increasing growth rate which can be achieved with increasing static magnetic field is also investigated. In this paper, because of high longitudinal velocity of electron beams, the effect of finite magnetic field on the fluctuations of electron beams is considered negligible.

  9. Tip-enhanced near-field optical microscope with side-on and ATR-mode sample excitation for super-resolution Raman imaging of surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Heilman, A. L.; Gordon, M. J. [Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106-5080 (United States)

    2016-06-14

    A tip-enhanced near-field optical microscope with side-on and attenuated total reflectance (ATR) excitation and collection is described and used to demonstrate sub-diffraction-limited (super-resolution) optical and chemical characterization of surfaces. ATR illumination is combined with an Au optical antenna tip to show that (i) the tip can quantitatively transduce the optical near-field (evanescent waves) above the surface by scattering photons into the far-field, (ii) the ATR geometry enables excitation and characterization of surface plasmon polaritons (SPPs), whose associated optical fields are shown to enhance Raman scattering from a thin layer of copper phthalocyanine (CuPc), and (iii) SPPs can be used to plasmonically excite the tip for super-resolution chemical imaging of patterned CuPc via tip-enhanced Raman spectroscopy (TERS). ATR-illumination TERS is also quantitatively compared with the more conventional side-on illumination scheme. In both cases, spatial resolution was better than 40 nm and tip on/tip off Raman enhancement factors were >6500. Furthermore, ATR illumination was shown to provide similar Raman signal levels at lower “effective” pump powers due to additional optical energy delivered by SPPs to the active region in the tip-surface gap.

  10. 3D elastic full waveform inversion using P-wave excitation amplitude: Application to OBC field data

    KAUST Repository

    Oh, Juwon

    2017-12-05

    We propose an efficient elastic full waveform inversion (FWI) based on the P-wave excitation amplitude (maximum energy arrival) approximation in the source wavefields. Because, based on the P-wave excitation approximation (ExA), the gradient direction is approximated by the cross-correlation of source and receiver wavefields at only excitation time, it estimates the gradient direction faster than its conventional counterpart. In addition to this computational speedup, the P-wave excitation approximation automatically ignores SP and SS correlations in the approximated gradient direction. In elastic FWI for ocean bottom cable (OBC) data, the descent direction for the S-wave velocity is often degraded by undesired long-wavelength features from the SS correlation. For this reason, the P-wave excitation approach increases the convergence rate of multi-parameter FWI compared to the conventional approach. The modified 2D Marmousi model with OBC acquisition is used to verify the differences between the conventional method and ExA. Finally, the feasibility of the proposed method is demonstrated on a real OBC data from North Sea.

  11. Macroalgal spore dysfunction: ocean acidification delays and weakens adhesion.

    Science.gov (United States)

    Guenther, Rebecca; Miklasz, Kevin; Carrington, Emily; Martone, Patrick T

    2017-12-29

    Early life stages of marine organisms are predicted to be vulnerable to ocean acidification. For macroalgae, reproduction and population persistence rely on spores to settle, adhere and continue the algal life cycle, yet the effect of ocean acidification on this critical life stage has been largely overlooked. We explicitly tested the biomechanical impact of reduced pH on early spore adhesion. We developed a shear flume to examine the effect of reduced pH on spore attachment time and strength in two intertidal rhodophyte macroalgae, one calcified (Corallina vancouveriensis) and one non-calcified (Polyostea robusta). Reduced pH delayed spore attachment of both species by 40-52% and weakened attachment strength in C. vancouveriensis, causing spores to dislodge at lower flow-induced shear forces, but had no effect on the attachment strength of P. robusta. Results are consistent with our prediction that reduced pH disrupts proper curing and gel formation of spore adhesives (anionic polysaccharides and glycoproteins) via protonation and cation displacement, although experimental verification is needed. Our results demonstrate that ocean acidification negatively, and differentially, impacts spore adhesion in two macroalgae. If results hold in field conditions, reduced ocean pH has the potential to impact macroalgal communities via spore dysfunction, regardless of the physiological tolerance of mature thalli. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Medications that Weaken Your Immune System and Fungal Infections

    Science.gov (United States)

    ... Patients Medications that Weaken Your Immune System Outbreaks Rhizopus Investigation CDC at Work Global Fungal Diseases Cryptococcal ... January 25, 2017 Content source: Centers for Disease Control and Prevention National Center for Emerging and Zoonotic ...

  13. Role of the density, density effect and mean excitation energy in solid-state detectors for small photon fields.

    Science.gov (United States)

    Andreo, Pedro; Benmakhlouf, Hamza

    2017-02-21

    A number of recent publications on small photon beam dosimetry aim at contributing to the understanding of the response of solid-state detectors in small fields. Some of them assign the difference in response to the mass density, or to the electron density, of the sensitive detector material relative to that of water. This work analyses the role of the mass and electron density ([Formula: see text]), density effect (δ) and mean excitation energy (I-value) of some detector materials in a 6 MV photon beam of 0.5 cm radius, its rationale being that the response of a detector depends critically on the stopping-power ratio detector-to-water. The influence on the detector response of volume scaling by electron density, and of electron single and multiple scattering, is also investigated. Detector materials are water, diamond and silicon, and additional materials are included for consistency in the analysis. A detailed analysis on the ([Formula: see text]) dependence of stopping-power ratios shows that the density effect δ depends both on the electron density and on the I-value of the medium, but not on the mass density ρ alone as is usually assumed. This leads to a double dependence of stopping-power ratios on the I-value and questions the adequacy of a 'density perturbation factor' or of common interpretations of detector response in terms of ρ alone. Differences in response can be described in terms of the variation of stopping power ratios detector-to-water, mainly due to different I-values and to a lesser extent to different values of electron density. It is found that at low energies the trend of Monte Carlo-calculated electron fluence spectra inside the detector materials depends solely on their I-values. No dependence on mass density or density effect alone is observed at any energy. The trend of restricted-cema ratios to water (as a substitute of absorbed dose ratios) follows that of stopping-power ratios at 1 MeV, the most probable energy of differential

  14. Electronic structure of InAs/GaAs self-assembled quantum dots studied by high-excitation luminescence in magnetic fields up to 73 T

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, D.; Raymond, S.; Studenikin, S.; Babinski, A.; Leotin, J.; Frings, P.; Potemski, M.; Sachrajda, A

    2004-04-30

    We report on high-excitation photoluminescence (PL) measurements of an ensemble of InAs/GaAs self-assembled quantum dots with large inter-shell spacing (75 meV) in magnetic fields up to 73 T. The PL spectra show a complex picture of levels splitting and crossings. A simple two-band single-particle model provides a good approximation to explain the observed magneto-PL spectra.

  15. Excitations of the field-induced quantum soliton lattice in CuGeO3

    DEFF Research Database (Denmark)

    Enderle, M.; Rønnow, H.M.; McMorrow, D.F.

    2001-01-01

    distinct excitation branches are observed, all of which are gapped. The two highest energy modes have minimum gaps at the commensurate wave vector and correspond to the creation or annihilation of soliton pairs. The third mode is incommensurate and is discussed in relation to theoretical predictions....

  16. Removal of pinned scroll waves in cardiac tissues by electric fields in a generic model of three-dimensional excitable media.

    Science.gov (United States)

    Pan, De-Bei; Gao, Xiang; Feng, Xia; Pan, Jun-Ting; Zhang, Hong

    2016-02-24

    Spirals or scroll waves pinned to heterogeneities in cardiac tissues may cause lethal arrhythmias. To unpin these life-threatening spiral waves, methods of wave emission from heterogeneities (WEH) induced by low-voltage pulsed DC electric fields (PDCEFs) and circularly polarized electric fields (CPEFs) have been used in two-dimensional (2D) cardiac tissues. Nevertheless, the unpinning of scroll waves in three-dimensional (3D) cardiac systems is much more difficult than that of spiral waves in 2D cardiac systems, and there are few reports on the removal of pinned scroll waves in 3D cardiac tissues by electric fields. In this article, we investigate in detail the removal of pinned scroll waves in a generic model of 3D excitable media using PDCEF, AC electric field (ACEF) and CPEF, respectively. We find that spherical waves can be induced from the heterogeneities by these electric fields in initially quiescent excitable media. However, only CPEF can induce spherical waves with frequencies higher than that of the pinned scroll wave. Such higher-frequency spherical waves induced by CPEF can be used to drive the pinned scroll wave out of the cardiac systems. We hope this remarkable ability of CPEF can provide a better alternative to terminate arrhythmias caused by pinned scroll waves.

  17. Interatomic potentials, electric properties and spectroscopy of the ground and excited states of the Rb2 molecule: ab initio calculations and effect of a non-resonant field*

    Science.gov (United States)

    Tomza, Michał; Skomorowski, Wojciech; Musiał, Monika; González-Férez, Rosario; Koch, Christiane P.; Moszynski, Robert

    2013-07-01

    We formulate the theory for a diatomic molecule in a spatially degenerate electronic state interacting with a non-resonant laser field and investigate its rovibrational structure in the presence of the field. We report on ab initio calculations employing the double electron attachment intermediate Hamiltonian Fock space coupled cluster method restricted to single and double excitations for all electronic states of the Rb2 molecule up to 5s+5d dissociation limit of about 26,000 cm-1. In order to correctly predict the spectroscopic behaviour of Rb2, we have also calculated the electric transition dipole moments, non-adiabatic coupling and spin-orbit coupling matrix elements, and static dipole polarisabilities, using the multireference configuration interaction method. When a molecule is exposed to strong non-resonant light, its rovibrational levels get hybridised. We study the spectroscopic signatures of this effect for transitions between the X1Σ+ g electronic ground state and the A1Σ+ u and b3Π u excited state manifold. The latter is characterised by strong perturbations due to the spin-orbit interaction. We find that for non-resonant field strengths of the order 109 W/cm2, the spin-orbit interaction and coupling to the non-resonant field become comparable. The non-resonant field can then be used to control the singlet-triplet character of a rovibrational level.

  18. Separation of Recollision Mechanisms in Nonsequential Strong Field Double Ionization of Ar: The Role of Excitation Tunneling

    Energy Technology Data Exchange (ETDEWEB)

    Feuerstein, B.; Moshammer, R.; Fischer, D.; Dorn, A.; Schroeter, C. D.; Deipenwisch, J.; Crespo Lopez-Urrutia, J. R.; Hoehr, C.; Neumayer, P.; Ullrich, J. (and others)

    2001-07-23

    Vector momentum distributions of two electrons created in double ionization of Ar by 25fs, 0.25 PW/cm{sup 2} laser pulses at 795nm have been measured using a ''reaction microscope.'' At this intensity, where nonsequential ionization dominates, distinct correlation patterns are observed in the two-electron momentum distributions. A kinematical analysis of these spectra within the classical ''recollision model'' revealed an (e,2e) -like process and excitation with subsequent tunneling of the second electron as two different ionization mechanisms. This allows a qualitative separation of the two mechanisms demonstrating that excitation-tunneling is the dominant contribution to the total double ionization yield.

  19. Water distribution in the lower mantle: Implications for hydrolytic weakening

    Science.gov (United States)

    Muir, Joshua M. R.; Brodholt, John P.

    2018-02-01

    The presence of water in lower mantle minerals is thought to have substantial effects on the rheological properties of the Earth's lower mantle in what is generally known as "hydrolytic weakening". This weakening will have profound effects on global convection, but hydrolytic weakening in lower mantle minerals has not been observed experimentally and thus the effect of water on global dynamics remains speculative. In order to constrain the likelihood of hydrolytic weakening being important in the lower mantle, we use first principles methods to calculate the partitioning of water (strictly protons) between mineral phases of the lower mantle under lower mantle conditions. We show that throughout the lower mantle water is primarily found either in the minor Ca-perovskite phase or in bridgmanite as an Al3+-H+ pair. Ferropericlase remains dry. However, neither of these methods of water absorption creates additional vacancies in bridgmanite and thus the effect of hydrolytic weakening is likely to be small. We find that water creates significant number of vacancies in bridgmanite only at the deepest part of the lower mantle and only for very high water contents (>1000 ppm). We conclude that water is thus likely to have only a limited effect on the rheological properties of the lower mantle.

  20. Multipole expansion for transient electric and magnetic fields in an internally excited spherical cavity containing dampers of finite thickness with distributed electrical properties

    Science.gov (United States)

    Curry, B. P.

    1981-10-01

    The multipole expansion coefficients needed to calculate transient electromagnetic fields and cavity frequency response in an internally excited, damped cavity are derived for an arbitrary but centralized distribution of source currents and an arbitrary number of dampers which have finite width. A block matrix procedure is devised to solve the N damper boundary value problems, but specific solutions are presented for the cases of zero, one, and two dampers. Also, the TM wave multipole coefficients for an uncapped biconical antenna used as excitation source are obtained in closed form, with use of Schelkunoff's mode solution for the antenna currents. Finally, coupled integrodifferential equations for the current distribution in the end caps and the conical sections of a capped bicone source are presented. This entire theory will be encoded to permit analysis of AEDC experiments.

  1. Excited states 4

    CERN Document Server

    Lim, Edward C

    2013-01-01

    Excited States, Volume 4 is a collection of papers that deals with the excited states of molecular activity. One paper investigates the resonance Raman spectroscopy as the key to vibrational-electronic coupling. This paper reviews the basic theory of Raman scattering; it also explains the derivation of the Raman spectra, excitation profiles, and depolarization ratios for simple resonance systems. Another paper reviews the magnetic properties of triplet states, including the zero-field resonance techniques, the high-field experiments, and the spin Hamiltonian. This paper focuses on the magnetic

  2. Nonconsumptive effects of a predator weaken then rebound over time.

    Science.gov (United States)

    Kimbro, David L; Grabowski, Jonathan H; Hughes, A Randall; Piehler, Michael F; White, J Wilson

    2017-03-01

    Predators can influence prey traits and behavior (nonconsumptive effects [NCEs]), often with cascading effects for basal resources and ecosystem function. But critiques of NCE experiments suggest that their duration and design produce results that describe the potential importance of NCEs rather than their actual importance. In light of these critiques, we re-evaluated a toadfish (predator), crab (prey), and oyster (resource) NCE-mediated trophic cascade. In a 4-month field experiment, we varied toadfish cue (NCE) and crab density (approximating variation in predator consumptive effects, CE). Toadfish initially benefitted oyster survival by causing crabs to reduce consumption. But this NCE weakened over time (possibly due to prey hunger), so that after 2 months, crab density (CE) dictated oyster survivorship, regardless of cue. However, the NCE ultimately re-emerged on reefs with a toadfish cue, increasing oyster survivorship. At no point did the effect of toadfish cue on mud crab foraging behavior alter oyster population growth or sediment organic matter on the reef, which is a measure of benthic-pelagic coupling. Instead, both decreased with increasing crab density. Thus, within a system shown to exhibit strong NCEs in short-term experiments (days) our study supported predictions from theoretical models: (a) within the generation of individual prey, the relative influence of NCEs appears to cycle over longer time periods (months); and (b) predator CEs, not NCEs, drive longer-term resource dynamics and ecosystem function. Thus, our study implies that the impacts of removing top predators via activities such as hunting and overfishing will cascade to basal resources and ecosystem properties primarily through density-mediated interactions. © 2016 by the Ecological Society of America.

  3. Ultrafast dynamics of near-field enhancements at an off-resonance nano-dimer via femtosecond laser excitations

    Science.gov (United States)

    Du, GuangQing; Yang, Qing; Chen, Feng; Bian, Hao; Wu, Yanmin; Lu, Yu; Farooq, Umar; Hou, Xun

    2015-04-01

    Giant electric-field enhancements localized on nano-antennas are important for the optical near-field applications in fields such as super-resolution imaging, near-field optical tweezers, and photothermal therapy. Physically, the field enhancement requires plasmon resonance with respect to structure matching. We report a tunable near-field effect, including localized electric-field enhancement and resistive heating at an off-resonance Au nano-sphere dimer via femtosecond laser irradiation. The near field was strongly modified (up to 81 times) with respect to time evolution at a laser fluence of 0.1 \\text{J/cm}2 . The results are explained as thermal dynamics manipulation of the Au nano-sphere dimer plasmon resonances. This study provides a new alternative route to tailoring the near-field enhancement for wide applications in nano-antennas.

  4. Frictional velocity-weakening in landslides on Earth and on other planetary bodies.

    Science.gov (United States)

    Lucas, Antoine; Mangeney, Anne; Ampuero, Jean Paul

    2014-03-04

    One of the ultimate goals in landslide hazard assessment is to predict maximum landslide extension and velocity. Despite much work, the physical processes governing energy dissipation during these natural granular flows remain uncertain. Field observations show that large landslides travel over unexpectedly long distances, suggesting low dissipation. Numerical simulations of landslides require a small friction coefficient to reproduce the extension of their deposits. Here, based on analytical and numerical solutions for granular flows constrained by remote-sensing observations, we develop a consistent method to estimate the effective friction coefficient of landslides. This method uses a constant basal friction coefficient that reproduces the first-order landslide properties. We show that friction decreases with increasing volume or, more fundamentally, with increasing sliding velocity. Inspired by frictional weakening mechanisms thought to operate during earthquakes, we propose an empirical velocity-weakening friction law under a unifying phenomenological framework applicable to small and large landslides observed on Earth and beyond.

  5. First results in rapid MR imaging of focal liver and spleen lesions using field echos and small angle excitation (gradient echo sequences)

    Energy Technology Data Exchange (ETDEWEB)

    Griebel, J.; Hess, C.F.; Kurtz, B.; Klose, U.; Kueper, K.

    1987-01-01

    15 healthy subjects and 39 patients with focal liver and spleen lesions were examined via MR tomography at 1.5 tesla. Gradient field echos at small angle excitation (< 90/sup 0/) were employed. The imaging time per layer was 10 seconds so that rapid imaging could be carried out at respiratory standstill. This enabled visualisation of liver and spleen without interference by breathing artifacts and with accurate localisation. Focal lesions can be imaged best at low flip-angle pulses (liver) or low to medium-angle pulses (spleen). The primary liver cell carcinoma is visualised as an inhomogeneous structure with similar signal intensity as the surrounding tissue. All other examined liver lesions (metastases, haemangiomas, lymphatic infiltrates, echinococcus cysts, FNH, gummae) showed greater signal intensity than the remaining organ at small angle excitation. Furthermore, contrast reversals were seen at medium-angle pulses. Contrariwise, with the exception of the light-coloured spleen infarcts, spleen lesions (lymphatic infiltrate, Boeck's disease or sarcoidosis) appeared darker at all excitation angles than the surrounding tissue.

  6. The Dugdale solution for two unequal straight cracks weakening in ...

    Indian Academy of Sciences (India)

    A crack arrest model is proposed for an infinite elastic perfectly-plastic plate weakened by two unequal, quasi-static, collinear straight cracks. The Dugdale model solution is obtained for the above problem when the developed plastic zones are subjected to normal cohesive quadratically varying yield point stress. Employing ...

  7. Earthquake slip weakening and asperities explained by thermal pressurization.

    Science.gov (United States)

    Wibberley, Christopher A J; Shimamoto, Toshihiko

    2005-08-04

    An earthquake occurs when a fault weakens during the early portion of its slip at a faster rate than the release of tectonic stress driving the fault motion. This slip weakening occurs over a critical distance, D(c). Understanding the controls on D(c) in nature is severely limited, however, because the physical mechanism of weakening is unconstrained. Conventional friction experiments, typically conducted at slow slip rates and small displacements, have obtained D(c) values that are orders of magnitude lower than values estimated from modelling seismological data for natural earthquakes. Here we present data on fluid transport properties of slip zone rocks and on the slip zone width in the centre of the Median Tectonic Line fault zone, Japan. We show that the discrepancy between laboratory and seismological results can be resolved if thermal pressurization of the pore fluid is the slip-weakening mechanism. Our analysis indicates that a planar fault segment with an impermeable and narrow slip zone will become very unstable during slip and is likely to be the site of a seismic asperity.

  8. The Dugdale solution for two unequal straight cracks weakening in ...

    Indian Academy of Sciences (India)

    Abstract. A crack arrest model is proposed for an infinite elastic perfectly- plastic plate weakened by two unequal, quasi-static, collinear straight cracks. The. Dugdale model solution is obtained for the above problem when the developed plastic zones are subjected to normal cohesive quadratically varying yield point stress.

  9. A comparison of the response of a captive carried store to both reverberant wave acoustic excitation and the field environment

    Energy Technology Data Exchange (ETDEWEB)

    Cap, J.S.; Togami, T.C.; Hollingshead, J.R.

    1996-10-01

    Stores that are carried on high performance military aircraft are exposed to severe vibroacoustic environments from several different sources. Sandia National Laboratories conducted a test program to determine the viability of reproducing these field 10 environments with a combined vibroacoustic test. This paper will present the results of that test series emphasizing the methods used to derive the laboratory inputs that produce the {open_quotes}best{close_quotes} possible match for the field response.

  10. Dynamic performance analysis of permanent magnet contactor with a flux-weakening control strategy

    Science.gov (United States)

    Wang, Xianbing; Lin, Heyun; Fang, Shuhua; Jin, Ping; Wang, Junhua; Ho, S. L.

    2011-04-01

    A new flux-weakening control strategy for permanent magnet contactors is proposed. By matching the dynamic attraction force and the antiforce, the terminal velocity and collision energy of the movable iron in the closing process are significantly reduced. The movable iron displacement is estimated by detecting the closing voltage and current with the proposed control. A dynamic mathematical model is also established under four kinds of excitation scenarios. The attraction force and flux linkage are predicted by finite element method and the dynamics of the closing process is simulated using the 4th-order Runge-Kutta algorithm. Experiments are carried out on a 250A prototype with an intelligent control unit to verify the proposed control strategy.

  11. Simultaneous excitation of 85Rb and 87Rb isotopes inside a microfabricated vapor cell with double-RF fields for a chip-scale MZ magnetometer

    Science.gov (United States)

    Gan, Qi; Shang, Jintang; Ji, Yu; Wu, Lei

    2017-11-01

    We report a novel method adopting two RF fields to simultaneously excite 85Rb and 87Rb isotopes for an MZ type atomic magnetometer. The MZ magnetometer adopts a 6 mm3 microfabricated vapor cell with natural abundance rubidium and 0.74 amagat nitrogen as buffer gas inside. The excessively broadened magnetic resonance signals of the two rubidium isotopes overlap with each other and cause deterioration in accuracy and sensitivity performance. To solve this problem, a Double-RF Field Method (DRFM) is proposed, which adopts two RF fields with a central frequency ratio of 2:3. Compared with traditional Single-RF Field Method (SRFM), the DRFM reduces the detection error by over 50% and improves the sensitivity by more than 10%. The experiments are conducted at three temperatures and under various static magnetic fields. Theoretical models are also built to discuss the performance improvement of the magnetometer by the DRFM against the SRFM. This method provides a way to improve the performance of chip-scale MZ atomic magnetometers with low cost natural abundance rubidium.

  12. Engineering elliptical spin-excitations by complex anisotropy fields in Fe adatoms and dimers on Cu(111)

    Science.gov (United States)

    Guimarães, Filipe S. M.; dos Santos Dias, Manuel; Schweflinghaus, Benedikt; Lounis, Samir

    2017-10-01

    We investigate the dynamics of Fe adatoms and dimers deposited on the Cu(111) metallic surface in the presence of spin-orbit coupling, within time-dependent density functional theory. The ab initio results provide material-dependent parameters that can be used in semiclassical approaches, which are used for insightful interpretations of the excitation modes. By manipulating the surroundings of the magnetic elements, we show that elliptical precessional motion may be induced through the modification of the magnetic anisotropy energy. We also demonstrate how different kinds of spin precession are realized, considering the symmetry of the magnetic anisotropy energy, the ferro- or antiferromagnetic nature of the exchange coupling between the impurities, and the strength of the magnetic damping. In particular, the normal modes of a dimer depend on the initial magnetic configuration, changing drastically by going from a ferromagnetic metastable state to the antiferromagnetic ground state. By taking into account the effect of the damping into their resonant frequencies, we reveal that an important contribution arises for strongly biaxial systems and specially for the antiferromagnetic dimers with large exchange couplings. Counterintuitively, our results indicate that the magnetic damping influences the quantum fluctuations by decreasing the zero-point energy of the system.

  13. An improved recommendation algorithm via weakening indirect linkage effect

    Science.gov (United States)

    Chen, Guang; Qiu, Tian; Shen, Xiao-Quan

    2015-07-01

    We propose an indirect-link-weakened mass diffusion method (IMD), by considering the indirect linkage and the source object heterogeneity effect in the mass diffusion (MD) recommendation method. Experimental results on the MovieLens, Netflix, and RYM datasets show that, the IMD method greatly improves both the recommendation accuracy and diversity, compared with a heterogeneity-weakened MD method (HMD), which only considers the source object heterogeneity. Moreover, the recommendation accuracy of the cold objects is also better elevated in the IMD than the HMD method. It suggests that eliminating the redundancy induced by the indirect linkages could have a prominent effect on the recommendation efficiency in the MD method. Project supported by the National Natural Science Foundation of China (Grant No. 11175079) and the Young Scientist Training Project of Jiangxi Province, China (Grant No. 20133BCB23017).

  14. Reaction-induced rheological weakening enables oceanic plate subduction

    OpenAIRE

    Hirauchi, Ken-ichi; Fukushima, Kumi; Kido, Masanori; Muto, Jun; Okamoto, Atsushi

    2016-01-01

    Earth is the only terrestrial planet in our solar system where an oceanic plate subducts beneath an overriding plate. Although the initiation of plate subduction requires extremely weak boundaries between strong plates, the way in which oceanic mantle rheologically weakens remains unknown. Here we show that shear-enhanced hydration reactions contribute to the generation and maintenance of weak mantle shear zones at mid-lithospheric depths. High-pressure friction experiments on peridotite goug...

  15. Enhanced Emission from Single Isolated Gold Quantum Dots Investigated Using Two-Photon-Excited Fluorescence Near-Field Scanning Optical Microscopy.

    Science.gov (United States)

    Abeyasinghe, Neranga; Kumar, Santosh; Sun, Kai; Mansfield, John F; Jin, Rongchao; Goodson, Theodore

    2016-12-21

    New approaches in molecular nanoscopy are greatly desired for interrogation of biological, organic, and inorganic objects with sizes below the diffraction limit. Our current work investigates emergent monolayer-protected gold quantum dots (nanoclusters, NCs) composed of 25 Au atoms by utilizing two-photon-excited fluorescence (TPEF) near-field scanning optical microscopy (NSOM) at single NC concentrations. Here, we demonstrate an approach to synthesize and isolate single NCs on solid glass substrates. Subsequent investigation of the NCs using TPEF NSOM reveals that, even when they are separated by distances of several tens of nanometers, we can excite and interrogate single NCs individually. Interestingly, we observe an enhanced two-photon absorption (TPA) cross section for single Au25 NCs that can be attributed to few-atom local field effects and to local field-induced microscopic cascading, indicating their potential for use in ultrasensitive sensing, disease diagnostics, cancer cell therapy, and molecular computers. Finally, we report room-temperature aperture-based TPEF NSOM imaging of these NCs for the first time at 30 nm point resolution, which is a ∼5-fold improvement compared to the previous best result for the same technique. This report unveils the unique combination of an unusually large TPA cross section and the high photostability of Au NCs to (non-destructively) investigate stable isolated single NCs using TPEF NSOM. This is the first reported optical study of monolayer-protected single quantum clusters, opening some very promising opportunities in spectroscopy of nanosized objects, bioimaging, ultrasensitive sensing, molecular computers, and high-density data storage.

  16. Weakening of the Yellow Sea Warm Current during 1951 2000

    Science.gov (United States)

    Fang, Yue; Tana, Celia; Sun, Shuangwen; Wang, Huiwu; Liu, Baochao; Liu, Yanliang

    2017-04-01

    The Yellow Sea Warm Current (YSWC) plays a critical role in heat and mass transport in the Yellow Sea and has great impacts on ecosystem and sedimentation. The YSWC is mainly driven by the East Asian winter monsoon (EAWM) and shows strong intra-seasonal and inter-annual variability. However, how it varies on longer timescale, in particular decadal timescale under the influence of global climate change, has not yet been revealed. Here we show a significant slowdown in the YSWC during 1950s-1990s. Weakening of the EAWM and the spatial variation of bathymetry are the key factors in the change of the YSWC. The change is further verified with the variation of the thermal front to the east of the Shandong peninsular. The anomalous heat transport induced by the weakening of the YSWC enhances the warming trend in the sea surface temperature (SST) in the western Yellow Sea but suppresses that in the eastern Yellow Sea. Our findings demonstrate how the current and SST in a marginal sea respond to the global climate change. The weakening of the YSWC may have serious consequences on self-cleaning capacity of the Yellow Sea if the global warming persists considering the increasing pollutant discharge due to the fast growing economy of the coastal cities.

  17. Excited states

    CERN Document Server

    Lim, Edward C

    1974-01-01

    Excited States, Volume I reviews radiationless transitions, phosphorescence microwave double resonance through optical spectra in molecular solids, dipole moments in excited states, luminescence of polar molecules, and the problem of interstate interaction in aromatic carbonyl compounds. The book discusses the molecular electronic radiationless transitions; the double resonance techniques and the relaxation mechanisms involving the lowest triplet state of aromatic compounds; as well as the optical spectra and relaxation in molecular solids. The text also describes dipole moments and polarizab

  18. Excitation thresholds of field-aligned irregularities and associated ionospheric hysteresis at very high latitudes observed using SPEAR-induced HF radar backscatter

    Directory of Open Access Journals (Sweden)

    D. M. Wright

    2009-07-01

    Full Text Available On 10 October 2006 the SPEAR high power radar facility was operated in a power-stepping mode where both CUTLASS radars were detecting backscatter from the SPEAR-induced field-aligned irregularities (FAIs. The effective radiated power of SPEAR was varied from 1–10 MW. The aim of the experiment was to investigate the power thresholds for excitation (Pt and collapse (Pc of artificially-induced FAIs in the ionosphere over Svalbard. It was demonstrated that FAI could be excited by a SPEAR ERP of only 1 MW, representing only 1/30th of SPEAR's total capability, and that once created the irregularities could be maintained for even lower powers. The experiment also demonstrated that the very high latitude ionosphere exhibits hysteresis, where the down-going part of the power cycle provided a higher density of irregularities than for the equivalent part of the up-going cycle. Although this second result is similar to that observed previously by CUTLASS in conjunction with the Tromsø heater, the same is not true for the equivalent incoherent scatter measurements. The EISCAT Svalbard Radar (ESR failed to detect any hysteresis in the plasma parameters over Svalbard in stark contract with the measurements made using the Tromsø UHF.

  19. Excitation thresholds of field-aligned irregularities and associated ionospheric hysteresis at very high latitudes observed using SPEAR-induced HF radar backscatter

    Directory of Open Access Journals (Sweden)

    D. M. Wright

    2009-07-01

    Full Text Available On 10 October 2006 the SPEAR high power radar facility was operated in a power-stepping mode where both CUTLASS radars were detecting backscatter from the SPEAR-induced field-aligned irregularities (FAIs. The effective radiated power of SPEAR was varied from 1–10 MW. The aim of the experiment was to investigate the power thresholds for excitation (Pt and collapse (Pc of artificially-induced FAIs in the ionosphere over Svalbard. It was demonstrated that FAI could be excited by a SPEAR ERP of only 1 MW, representing only 1/30th of SPEAR's total capability, and that once created the irregularities could be maintained for even lower powers. The experiment also demonstrated that the very high latitude ionosphere exhibits hysteresis, where the down-going part of the power cycle provided a higher density of irregularities than for the equivalent part of the up-going cycle. Although this second result is similar to that observed previously by CUTLASS in conjunction with the Tromsø heater, the same is not true for the equivalent incoherent scatter measurements. The EISCAT Svalbard Radar (ESR failed to detect any hysteresis in the plasma parameters over Svalbard in stark contract with the measurements made using the Tromsø UHF.

  20. Low-Drift Coherent Population Trapping Clock Based on Laser-Cooled Atoms and High-Coherence Excitation Fields

    Science.gov (United States)

    Liu, Xiaochi; Ivanov, Eugene; Yudin, Valeriy I.; Kitching, John; Donley, Elizabeth A.

    2017-11-01

    A compact cold-atom coherent population trapping clock in which laser-cooled atoms are interrogated with highly coherent coherent population trapping fields under free fall is presented. The system achieves fractional frequency instability at the level of 3 ×10-13 on the time scale of an hour. The clock may lend itself to portable applications since the atoms typically fall only 1.6 mm during the typical interrogation period of 18 ms.

  1. The Effect of Plant Supplements on the Development of Artificially Weaken Bee Families

    Directory of Open Access Journals (Sweden)

    Liviu Al. Mărghitaş

    2010-05-01

    Full Text Available In this study, infusions from nettle, thyme and Echinacea, fresh juice of onion and garlic, and Protofil (alcoholic extract of different plants enriched with vitamins and mineral elements, were used in supplementary feeding of artificially weaken bee families. Correlation between total phenolic content, total flavonoid content and antioxidant activity of the supplements used in honeybee feeding and uncapped, capped and total brood surface of experimental groups were established. The highest content of biologically active compounds exhibit nettle infusion, which present the most effective growth in field experiments.

  2. Lateral field excitation (LFE) of thickness shear mode (TSM) acoustic waves in thin film bulk acoustic resonators (FBAR) as a potential biosensor.

    Science.gov (United States)

    Dickherber, Anthony; Corso, Christopher D; Hunt, William

    2006-01-01

    Lateral field excitation (LFE) of a thin film bulk acoustic resonator (FBAR) is an ideal platform for biomedical sensors. A thickness shear mode (TSM) acoustic wave in a piezoelectric thin film is desirable for probing liquid samples because of the poor coupling of shear waves into the liquid. The resonator becomes an effective sensor by coating the surface with a bio- or chemi-specific layer. Perturbations of the surface can be detected by monitoring the resonance condition. Furthermore, FBARs can be easily fabricated to operate at higher frequencies, yielding greater sensitivity. An array of sensors offers the possibility of redundancy, allowing for statistical decision making as well as immediate corroboration of results. Array structures also offer the possibility of signature detection, by monitoring multiple targets in a sample simultaneously. This technology has immediate application to cancer and infectious disease diagnostics and also could serve as a tool for general proteomic research.

  3. Analytical modeling and analysis of magnetic field and torque for novel axial flux eddy current couplers with PM excitation

    Science.gov (United States)

    Li, Zhao; Wang, Dazhi; Zheng, Di; Yu, Linxin

    2017-10-01

    Rotational permanent magnet eddy current couplers are promising devices for torque and speed transmission without any mechanical contact. In this study, flux-concentration disk-type permanent magnet eddy current couplers with double conductor rotor are investigated. Given the drawback of the accurate three-dimensional finite element method, this paper proposes a mixed two-dimensional analytical modeling approach. Based on this approach, the closed-form expressions of magnetic field, eddy current, electromagnetic force and torque for such devices are obtained. Finally, a three-dimensional finite element method is employed to validate the analytical results. Besides, a prototype is manufactured and tested for the torque-speed characteristic.

  4. Hybrid excited claw pole generator with skewed and non-skewed permanent magnets

    Directory of Open Access Journals (Sweden)

    Wardach Marcin

    2017-12-01

    Full Text Available This article contains simulation results of the Hybrid Excited Claw Pole Generator with skewed and non-skewed permanent magnets on rotor. The experimental machine has claw poles on two rotor sections, between which an excitation control coil is located. The novelty of this machine is existence of non-skewed permanent magnets on claws of one part of the rotor and skewed permanent magnets on the second one. The paper presents the construction of the machine and analysis of the influence of the PM skewing on the cogging torque and back-emf. Simulation studies enabled the determination of the cogging torque and the back-emf rms for both: the strengthening and the weakening of magnetic field. The influence of the magnets skewing on the cogging torque and the back-emf rms have also been analyzed.

  5. Electronic Excitations and Metal-Insulator Transition inPoly(3-hexylthiophene) Organic Field-Effect Transistors

    Energy Technology Data Exchange (ETDEWEB)

    Sai, N.; Li, Z.Q.; Martin, M.C.; Basov, D.N.; Di Ventra, M.

    2006-11-07

    We carry out a comprehensive theoretical and experimentalstudy of charge injection in poly(3-hexylthiophene) (P3HT) to determinethe most likely scenario for metal-insulator transition in this system.Wecalculate the optical-absorption frequencies corresponding to a polaronand a bipolaron lattice in P3HT. We also analyze the electronicexcitations for three possible scenarios under which a first- or asecond-order metal-insulator transition can occur in doped P3HT. Thesetheoretical scenarios are compared with data from infrared absorptionspectroscopy on P3HT thin-film field-effect transistors (FETs). Ourmeasurements and theoretical predictions suggest that charge-inducedlocalized states in P3HT FETs are bipolarons and that the highest dopinglevel achieved in our experiments approaches that required for afirst-order metal-insulator transition.

  6. New concept of spinal orthosis for weakened back muscles.

    Science.gov (United States)

    Watanabe, H; Kutsuna, T; Asami, T; Inoue, E

    1995-04-01

    An anterior bending posture of the trunk during walking is often seen among the elderly commonly due to weakened thoraco-lumbar and gluteal muscles. For the management of this debilitating condition, the authors have developed a modified design of thoraco-lumbosacral orthosis (TLSO). Incorporated in this device are pockets for the accommodation of lead weights, which are located posteriorly at the level of the lumbar region and an elasticated anterior abdominal band. The results and level of patient acceptance achieved with the use of this brace have both been excellent.

  7. Excitations in organic solids

    CERN Document Server

    Agranovich, Vladimir M

    2009-01-01

    During the last decade our expertise in nanotechnology has advanced considerably. The possibility of incorporating in the same nanostructure different organic and inorganic materials has opened up a promising field of research, and has greatly increased the interest in the study of properties of excitations in organic materials. In this book not only the fundamentals of Frenkel exciton and polariton theory are described, but also the electronic excitations and electronic energytransfers in quantum wells, quantum wires and quantum dots, at surfaces, at interfaces, in thin films, in multilayers,

  8. Topological excitations in magnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Bazeia, D., E-mail: bazeia@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, 58051-970 João Pessoa, PB (Brazil); Doria, M.M. [Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro (Brazil); Dipartimento di Fisica, Università di Camerino, I-62032 Camerino (Italy); Rodrigues, E.I.B. [Departamento de Física, Universidade Federal da Paraíba, 58051-970 João Pessoa, PB (Brazil)

    2016-05-20

    In this work we propose a new route to describe topological excitations in magnetic systems through a single real scalar field. We show here that spherically symmetric structures in two spatial dimensions, which map helical excitations in magnetic materials, admit this formulation and can be used to model skyrmion-like structures in magnetic materials.

  9. Excited Delirium

    Directory of Open Access Journals (Sweden)

    Takeuchi, Asia

    2011-02-01

    Full Text Available Excited (or agitated delirium is characterized by agitation, aggression, acute distress and sudden death, often in the pre-hospital care setting. It is typically associated with the use of drugs that alter dopamine processing, hyperthermia, and, most notably, sometimes with death of the affected person in the custody of law enforcement. Subjects typically die from cardiopulmonary arrest, although the cause is debated. Unfortunately an adequate treatment plan has yet to be established, in part due to the fact that most patients die before hospital arrival. While there is still much to be discovered about the pathophysiology and treatment, it is hoped that this extensive review will provide both police and medical personnel with the information necessary to recognize and respond appropriately to excited delirium. [West J Emerg Med. 2011;12(1:77-83.

  10. Rheological weakening due to phase mixing in olivine + orthopyroxene aggregates

    Science.gov (United States)

    Kohlstedt, D. L.; Tasaka, M.; Zimmerman, M. E.

    2016-12-01

    To understand the processes involved in rheological weakening due to phase mixing, we conducted torsion experiments on samples composed of iron-rich olivine + orthopyroxene. Samples with volume fractions of pyroxene of fpx= 0.1, 0.3, and 0.4 were deformed in torsion at a temperature of 1200°C and a confining pressure of 300 MPa using a gas-medium apparatus. The value of the stress exponent, n, decreases with increasing strain, γ, with the rate of decrease depending on fpx. In samples with larger amounts of pyroxene, fpx = 0.3 and 0.4, n decreases from n = 3.5 at lower strains of 1 ≤ γ ≤ 3 to n = 1.7 at higher strains of 24 ≤ γ ≤ 25. In contrast, the sample with fpx = 0.1, n = 3.5 at lower strain decreases only to n = 3.0 at higher strains. In samples with larger fpx, the value of p changes from p = 1 at lower strains to p = 3 at higher strains. Furthermore, Hansen et al. (2012) observed that n = 4.l and p = 0.7 in samples without pyroxene (fpx = 0) regardless of strain. For samples with larger fpx, these values of n and p indicate that the deformation mechanism changes with strain, whereas for samples with smaller fpxno change in mechanism occurs. The microstructures in our samples with larger amounts of pyroxene provide insight into the change in deformation mechanism identified from the experimental results. First, elongated olivine and pyroxene grains align sub-parallel to the shear direction with a strong crystallographic preferred orientation (CPO) in samples deformed to lower strains for which n = 3.5. Second, mixtures of small, rounded grains of both phases, with a nearly random CPO develop in samples deformed to higher strains that exhibit a smaller stress exponent and strain weakening. The microstructural development forming well-mixed fine-grained olivine-pyroxene aggregates can be explained by the diffusivity difference between Si, Me (= Fe or Mg), and O, such that transport of MeO is significantly faster than that of SiO2. These mechanical

  11. Reaction-induced rheological weakening enables oceanic plate subduction.

    Science.gov (United States)

    Hirauchi, Ken-Ichi; Fukushima, Kumi; Kido, Masanori; Muto, Jun; Okamoto, Atsushi

    2016-08-26

    Earth is the only terrestrial planet in our solar system where an oceanic plate subducts beneath an overriding plate. Although the initiation of plate subduction requires extremely weak boundaries between strong plates, the way in which oceanic mantle rheologically weakens remains unknown. Here we show that shear-enhanced hydration reactions contribute to the generation and maintenance of weak mantle shear zones at mid-lithospheric depths. High-pressure friction experiments on peridotite gouge reveal that in the presence of hydrothermal water, increasing strain and reactions lead to an order-of-magnitude reduction in strength. The rate of deformation is controlled by pressure-solution-accommodated frictional sliding on weak hydrous phyllosilicate (talc), providing a mechanism for the 'cutoff' of the high peak strength at the brittle-plastic transition. Our findings suggest that infiltration of seawater into transform faults with long lengths and low slip rates is an important controlling factor on the initiation of plate tectonics on terrestrial planets.

  12. Excitation of high-frequency electromagnetic waves by energetic electrons with a loss cone distribution in a field-aligned potential drop

    Science.gov (United States)

    Fung, Shing F.; Vinas, Adolfo F.

    1994-01-01

    The electron cyclotron maser instability (CMI) driven by momentum space anisotropy (df/dp (sub perpendicular) greater than 0) has been invoked to explain many aspects, such as the modes of propagation, harmonic emissions, and the source characteristics of the auroral kilometric radiation (AKR). Recent satellite observations of AKR sources indicate that the source regions are often imbedded within the auroral acceleration region characterized by the presence of a field-aligned potential drop. In this paper we investigate the excitation of the fundamental extraordinary mode radiation due to the accelerated electrons. The momentum space distribution of these energetic electrons is modeled by a realistic upward loss cone as modified by the presence of a parallel potential drop below the observation point. On the basis of linear growth rate calculations we present the emission characteristics, such as the frequency spectrum and the emission angular distribution as functions of the plasma parameters. We will discuss the implication of our results on the generation of the AKR from the edges of the auroral density cavities.

  13. Excitation of high-frequency electromagnetic waves by energetic electrons with a loss cone distribution in a field-aligned potential drop

    Energy Technology Data Exchange (ETDEWEB)

    Fung, S.F.; Vinas, A.F. [NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    1994-05-01

    The electron cyclotron maser instability (CMI) driven by momentum space anisotropy, {partial_derivative}f/{partial_derivative}p{perpendicular} > 0, has been invoked to explain many aspects, such as the modes of propagation, harmonic emissions, and the source characteristics of the auroral kilometric radiation (AKR). Recent satellite observations of AKR sources indicate that the source regions are often imbedded within the auroral acceleration region characterized by the presence of a field-aligned potential drop. In this paper the authors investigate the excitation of the fundamental extraordinary mode radiation due to the accelerated electrons. The momentum space distribution of these energetic electrons is modeled by a realistic upward loss cone as modified by the presence of a parallel potential drop below the observation point. On the basis of linear growth rate calculations the authors present the emission characteristics, such as the frequency spectrum and the emission angular distribution as functions of the plasma parameters. They will discuss the implication of their results on the generation of the AKR from the edges of the auroral density cavities. 31 refs., 12 figs., 1 tab.

  14. The influence of higher spatial harmonics of atomic polarization on the saturated absorption resonance upon excitation of open dipole transitions by a field of counterpropagating waves

    Science.gov (United States)

    Brazhnikov, D. V.; Novokreshchenov, A. S.

    2017-04-01

    The effect of a double structure of saturated absorption resonance in the field of counterpropagating light waves interacting with an atomic gas is studied. The experimental observation of this effect was first reported in 2011 in a work by our colleagues at the P.N. Lebedev Physical Institute of the Russian Academy of Sciences (Laboratory of Frequency Standards). The essence of the effect lies in the fact that, on exciting an open dipole transition, another, narrower, resonance of an opposite sign can be observed at the center of the ordinary saturated absorption resonance. A theoretical analysis of this effect has also been performed in this work in terms of a simple spectroscopic model of an atom with two nondegenerate energy levels without taking into account higher spatial harmonics of atomic polarization and polarizations of light waves (scalar model). The present work is devoted to the development of a theory of the formation of a central narrow resonance for the example of a real F g = 1 → F e = 1 atomic transition and to the study of its main characteristics (amplitude, width, contrast, and amplitude-to-width ratio). In addition, the theoretical results obtained without taking into account the influence of higher spatial harmonics and with inclusion of the influence of first higher harmonics are compared. This comparison shows that their influence on the parameters of the new nonlinear resonance is strong even in moderately intense light fields ( R γ, where R is the Rabi frequency). The results of this study can be of interest for quantum metrology, as well as for many experiments in which the laser-radiation frequency is stabilized by the saturated absorption resonance on open dipole transitions in atoms and molecules.

  15. Small Field-of-view single-shot EPI-DWI of the prostate: Evaluation of spatially-tailored two-dimensional radiofrequency excitation pulses.

    Science.gov (United States)

    Attenberger, Ulrike I; Rathmann, Nils; Sertdemir, Metin; Riffel, Philipp; Weidner, Anja; Kannengiesser, Stefan; Morelli, John N; Schoenberg, Stefan O; Hausmann, Daniel

    2016-06-01

    Spatially-tailored (RF) excitation pulses in echo-planar imaging (EPI), combined with a decreased FOV in the phase-encoding direction, enable a reduction of k-space acquisition lines, which shortens the echo train length (ETL) and reduces susceptibility artifacts. The purpose of this study was to evaluate the image quality of a zoomed EPI (z-EPI) sequence in diffusion-weighted imaging (DWI) of the prostate in comparison to a conventional single-shot EPI using single-channel (c-EPI1) and multi-channel (c-EPI2) RF excitation, with and without use of an endorectal coil. 33 consecutive patients (mean age: 61 +/- 9 years; mean PSA: 8.67±6.23 ng/ml) with examinations between 10/2012 and 02/2014 were analyzed in this retrospective study. In 26 of 33 patients the initial multiparametric (mp)-MRI was performed on a whole-body 3T scanner (Magnetom Trio, Siemens, Erlangen, Germany) using an endorectal coil (c (conventional)-EPI1). Zoomed-EPI (Z-EPI) examinations of these patients and a complete mp-MRI protocol including c-EPI2 of 7 additional patients were carried out on another 3T wb MR scanner with two-channel dynamic parallel transmit capability (Magnetom Skyra with TimTX TrueShape, Siemens). For z-EPI, the one-dimensional spatially selective RF excitation pulse was replaced by a two-dimensional RF pulse. Degree of image blur and susceptibility artifacts (0=not present to 3= non-diagnostic), maximum image distortion (mm), apparent diffusion coefficient (ADC) values, as well as overall scan preference were evaluated. SNR maps were generated to compare c-EPI2 and z-EPI. Overall image quality of z-EPI was preferred by both readers in all examinations with a single exception. Susceptibility artifacts were rated significantly lower on z-EPI compared to both other methods (z-EPI vs c-EPI1: pEPI vs c-EPI2: pEPI vs c-EPI1: pEPI vs c-EPI2: pEPI (z-EPI vs c-EPI1: p=0.12; z-EPI vs c-EPI2: p=0.42). Interobserver agreement for ratings of susceptibility artifacts, image blur and

  16. Breather excitation observed by high-field ESR in one-dimensional antiferromagnet BaCu{sub 2}(Si{sub 1-x}Ge{sub x}){sub 2}O{sub 7} (x=0.65)

    Energy Technology Data Exchange (ETDEWEB)

    Ohta, H. E-mail: ohta@phys.sci.kobe-u.ac.jp; Okubo, S.; Fukuoka, D.; Inagaki, Y.; Kunimoto, T.; Kimata, M.; Koyama, K.; Motokawa, M.; Hiroi, Z

    2004-05-01

    We have performed the high-field ESR of the one-dimensional BaCu{sub 2}(Si{sub 1-x}Ge{sub x}){sub 2}O{sub 7} (x=0.65) antiferromagnet at 0.5 and 1.8 K in the wider frequency and magnetic field region (40-500 GHz, up to 30 T), and found the breather excitation predicted by the Oshikawa-Affleck (OA) theory. The observed field-induced gap for B||c (chain direction) shows the B{sup 2/3} dependence suggested by the OA theory, and the dependence is weak for the other directions which is consistent with the anisotropy of the Dzyaloshinsky-Moriya interaction. The results will be also discussed in connection with the breather excitation observed in Cu-benzoate.

  17. Weakening of the North American monsoon with global warming

    Science.gov (United States)

    Pascale, Salvatore; Boos, William R.; Bordoni, Simona; Delworth, Thomas L.; Kapnick, Sarah B.; Murakami, Hiroyuki; Vecchi, Gabriel A.; Zhang, Wei

    2017-11-01

    Future changes in the North American monsoon, a circulation system that brings abundant summer rains to vast areas of the North American Southwest, could have significant consequences for regional water resources. How this monsoon will change with increasing greenhouse gases, however, remains unclear, not least because coarse horizontal resolution and systematic sea-surface temperature biases limit the reliability of its numerical model simulations. Here we investigate the monsoon response to increased atmospheric carbon dioxide (CO2) concentrations using a 50-km-resolution global climate model which features a realistic representation of the monsoon climatology and its synoptic-scale variability. It is found that the monsoon response to CO2 doubling is sensitive to sea-surface temperature biases. When minimizing these biases, the model projects a robust reduction in monsoonal precipitation over the southwestern United States, contrasting with previous multi-model assessments. Most of this precipitation decline can be attributed to increased atmospheric stability, and hence weakened convection, caused by uniform sea-surface warming. These results suggest improved adaptation measures, particularly water resource planning, will be required to cope with projected reductions in monsoon rainfall in the American Southwest.

  18. Nitrogen deposition weakens plant-microbe interactions in grassland ecosystems.

    Science.gov (United States)

    Wei, Cunzheng; Yu, Qiang; Bai, Edith; Lü, Xiaotao; Li, Qi; Xia, Jianyang; Kardol, Paul; Liang, Wenju; Wang, Zhengwen; Han, Xingguo

    2013-12-01

    Soil carbon (C) and nitrogen (N) stoichiometry is a main driver of ecosystem functioning. Global N enrichment has greatly changed soil C : N ratios, but how altered resource stoichiometry influences the complexity of direct and indirect interactions among plants, soils, and microbial communities has rarely been explored. Here, we investigated the responses of the plant-soil-microbe system to multi-level N additions and the role of dissolved organic carbon (DOC) and inorganic N stoichiometry in regulating microbial biomass in semiarid grassland in northern China. We documented a significant positive correlation between DOC and inorganic N across the N addition gradient, which contradicts the negative nonlinear correlation between nitrate accrual and DOC availability commonly observed in natural ecosystems. Using hierarchical structural equation modeling, we found that soil acidification resulting from N addition, rather than changes in the plant community, was most closely related to shifts in soil microbial community composition and decline of microbial respiration. These findings indicate a down-regulating effect of high N availability on plant-microbe interactions. That is, with the limiting factor for microbial biomass shifting from resource stoichiometry to soil acidity, N enrichment weakens the bottom-up control of soil microorganisms by plant-derived C sources. These results highlight the importance of integratively studying the plant-soil-microbe system in improving our understanding of ecosystem functioning under conditions of global N enrichment. © 2013 John Wiley & Sons Ltd.

  19. Tectonic inheritance, reactivation and long term fault weakening processes

    Science.gov (United States)

    Holdsworth, Bob

    2017-04-01

    This talk gives a geological review of weakening processes in faults and their long-term effect on reactivation and tectonic inheritance during crustal deformation. Examples will be drawn from the Atlantic margins, N America, Japan and the Alps. Tectonic inheritance and reactivation are fundamentally controlled by the processes of stress concentration and shear localisation manifested at all scales in the continental lithosphere. Lithosphere-scale controls include crustal thickness, thermal age and the boundary conditions imposed by the causative plate tectonic processes during extension. At the other end of the scale range, grain-scale controls include local environmental controls (depth, stress, strain rate), rock composition, grainsize, fabric intensity and the presence of fluids or melt. Intermediate-scale geometric controls are largely related to the size, orientation and interconnectivity of pre-existing anisotropies. If reactivation of pre-existing structures occurs, it likely requires a combination of processes across all three scale ranges to be favourable. This can make the unequivocal recognition of inheritance and reactivation difficult. Large (e.g. crustal-scale) pre-existing structures are especially important due to their ability to efficiently concentrate stress and localise strain. For big faults (San Andreas, Great Glen, Median Tectonic Line), detailed studies of the associated exposed fault rocks indicate that reactivation is linked to the development of strongly anisotropic phyllosilicate-rich fault rocks that are weak (e.g. friction coefficients as low as 0.2 or less) under a broad range of deformation conditions. In the case of pre-existing regional dyke swarms (S Atlantic, NW Scotland) - which may themselves track deep mantle fabrics at depth - multiple reactivation of dyke margins is widespread and may preclude reactivation of favourably oriented local basement fabrics. In a majority of cases, pre-existing structures in the crust are

  20. Uniform excitations in magnetic nanoparticles

    Directory of Open Access Journals (Sweden)

    Steen Mørup

    2010-11-01

    Full Text Available We present a short review of the magnetic excitations in nanoparticles below the superparamagnetic blocking temperature. In this temperature regime, the magnetic dynamics in nanoparticles is dominated by uniform excitations, and this leads to a linear temperature dependence of the magnetization and the magnetic hyperfine field, in contrast to the Bloch T3/2 law in bulk materials. The temperature dependence of the average magnetization is conveniently studied by Mössbauer spectroscopy. The energy of the uniform excitations of magnetic nanoparticles can be studied by inelastic neutron scattering.

  1. Uniform excitations in magnetic nanoparticles

    DEFF Research Database (Denmark)

    Mørup, Steen; Frandsen, Cathrine; Hansen, Mikkel Fougt

    2010-01-01

    We present a short review of the magnetic excitations in nanoparticles below the superparamagnetic blocking temperature. In this temperature regime, the magnetic dynamics in nanoparticles is dominated by uniform excitations, and this leads to a linear temperature dependence of the magnetization...... and the magnetic hyperfine field, in contrast to the Bloch T3/2 law in bulk materials. The temperature dependence of the average magnetization is conveniently studied by Mössbauer spectroscopy. The energy of the uniform excitations of magnetic nanoparticles can be studied by inelastic neutron scattering....

  2. Exotic nuclear excitations

    CERN Document Server

    Pancholi, S C

    2011-01-01

    By providing the reader with a foundational background in high spin nuclear structure physics and exploring exciting current discoveries in the field, this book presents new phenomena in a clear and compelling way. The quest for achieving the highest spin states has resulted in some remarkable successes which this monograph will address in comprehensive detail. The text covers an array of pertinent subject matter, including the rotational alignment and bandcrossings, magnetic rotation, triaxial strong deformation and wobbling motion and chirality in nuclei. Dr. Pancholi offers his readers a clearly-written and up-to-date treatment of the topics covered. The prerequisites for a proper appreciation are courses in nuclear physics and nuclear models and measurement techniques of observables like gamma-ray energies, intensities, multi-fold coincidences, angular correlations or distributions, linear polarization, internal conversion coefficients, short lifetime (pico-second range) of excited states etc. and instrum...

  3. Weakening of the stratospheric polar vortex by Arctic sea-ice loss

    National Research Council Canada - National Science Library

    Kim, Baek-Min; Son, Seok-Woo; Min, Seung-Ki; Jeong, Jee-Hoon; Kim, Seong-Joong; Zhang, Xiangdong; Shim, Taehyoun; Yoon, Jin-Ho

    2014-01-01

    ... of planetary-scale waves with wavenumbers of 1 and 2, subsequently weakening the stratospheric polar vortex in mid-winter (January-February). The weakened polar vortex preferentially induces a negative phase of Arctic Oscillation at the surface, resulting in low temperatures in mid-latitudes.

  4. Move to weaken picture warnings on tobacco packets in India causes outcry

    National Research Council Canada - National Science Library

    Mudur, Ganapati

    2007-01-01

    ...�� at mo� e to weaken warnin� s on to� a�� o produ� ts, p 366 o ut� r�� at mo� e to weaken warnin� s on to� a�� o produ� ts, p 366 , p 366 Cancer survival in UK...

  5. Assessment of charge-transfer excitations with time-dependent, range-separated density functional theory based on long-range MP2 and multiconfigurational self- consistent field wave functions

    DEFF Research Database (Denmark)

    Hedegård, Erik D.; Jensen, Hans Jørgen Aagaard; Knecht, Stefan

    2013-01-01

    Charge transfer excitations can be described within Time-Dependent Density Functional Theory (TD-DFT), not only by means of the Coulomb Attenuated Method (CAM) but also with a combination of wave function theory and TD-DFT based on range separation. The latter approach enables a rigorous formulat......Charge transfer excitations can be described within Time-Dependent Density Functional Theory (TD-DFT), not only by means of the Coulomb Attenuated Method (CAM) but also with a combination of wave function theory and TD-DFT based on range separation. The latter approach enables a rigorous...... formulation of multi-determinantal TD-DFT schemes where excitation classes, which are absent in conventional TD-DFT spectra (like for example double excitations), can be addressed. This paper investigates the combination of both the long-range Multi-Configuration Self-Consistent Field (MCSCF) and Second Order...... Polarization Propagator Approximation (SOPPA) ansätze with a short-range DFT (srDFT) description. We find that the combinations of SOPPA or MCSCF with TD-DFT yield better results than could be expected from the pure wave function schemes. For the Time-Dependent MCSCF short-range DFT ansatz (TD...

  6. Excite City

    DEFF Research Database (Denmark)

    Marling, Gitte; Kiib, Hans; Jensen, Ole B.

    This paper takes its point of departure in the pressure of the experience economy on European cities - a pressure which in recent years has found its expression in a number of comprehensive transformations of the physical and architectural environments, and new eventscapes related to fun and cult......This paper takes its point of departure in the pressure of the experience economy on European cities - a pressure which in recent years has found its expression in a number of comprehensive transformations of the physical and architectural environments, and new eventscapes related to fun...... and cultural experience are emerging. The physical, cultural and democratic consequences of this development are discussed in the paper, which concludes with a presentation of a new field of research that highlights the problems and the new opportunities with which "the experience city" is faced. Special...... attention is put on a new research project called "Experience City - hybrid cultural projects and performative urban spaces". The thesis and research themes are presented and related to the general framework of present cultural planning and post industrial urban transformation....

  7. Lateral extrusion of a thermally weakened pluton overburden (Campiglia Marittima, Tuscany)

    Science.gov (United States)

    Vezzoni, Simone; Rocchi, Sergio; Dini, Andrea

    2017-10-01

    The ascent and emplacement of magmas in the upper crust modify the local pre-existing thermal and rheological settings. Such changes have important effects in producing anomalous structures, mass extrusion, rock fracturing, and in some conditions, hydrothermal mineralizations. In the Campiglia Marittima area, detailed field mapping led to the reconstruction of a local deformation history that overlaps, chronologically and spatially, with regional extension. This local deformation was triggered at the Miocene-Pliocene boundary by the intrusion of a monzogranitic pluton beneath a carbonate sedimentary sequence. The emplacement of the pluton produced a perturbation in the rheological behaviour of the carbonate host rocks, producing transient ductile conditions in the very shallow crust. The carbonate rocks were thermally weakened and flowed laterally, accumulating downslope of the pluton roof, mainly toward the east. As the thermal anomaly was decaying, the brittle-ductile boundary moved progressively back towards the pluton, and large tension gash-shaped volumes of fractured marble were generated. These fractured volumes were exploited by rising hydrothermal fluids generating sigmoidal skarn bodies and ore shoots. This work presents the Campiglia Marittima case study as a prime example of structural interference between regional extensional structures and local, lateral mass extrusion in a transient ductile rheological regime triggered by pluton emplacement.

  8. Using fractional order method to generalize strengthening generating operator buffer operator and weakening buffer operator

    OpenAIRE

    Wu, L.; Liu, S.; Yang, Yingjie

    2016-01-01

    Traditional integer order buffer operator is extended to fractional order buffer operator, the corresponding relationship between the weakening buffer operator and the strengthening buffer operator is revealed. Fractional order buffer operator not only can generalize the weakening buffer operator and the strengthening buffer operator, but also realize tiny adjustment of buffer effect. The effectiveness of GM(1,1) with the fractional order buffer operator is validated by six cases.

  9. Waves on magnetic fluid surface excited by horizontal non-uniform alternating magnetic field; Suihei hiichiyo koryu jiba ni yotte reikisareru jisei ryutai kaimen no hado

    Energy Technology Data Exchange (ETDEWEB)

    Mai, J. [Tokyo Institute of Technology, Tokyo (Japan); Okubo, M. [University of Osaka Prefecture, Osaka (Japan). Faculty of Engineering; Ishibashi, Y. [Chiba Polytechnic College, Chiba (Japan); Oshima, S.; Yamane, R. [Tokyo Institute of Technology, Tokyo (Japan). Faculty of Engineering

    2000-02-25

    The surface waves of a magnetic fluid under a horizontal non-uniform alternating magnetic field is investigated experimentally and analytically. While the frequency of the wave on a magnetic fluid is usually the same as that of the applied magnetic field, in the case of the iron nitride magnetic fluid, which is newly developed and has very high susceptibility and magnetization, the frequency of the wave is twice that of the applied magnetic field. This is confirmed by the linear stability theory. The shape of the surface, the motion inside of the fluid and the disturbed magnetic field are presented. (author)

  10. Magnetic equivalent circuit model for unipolar hybrid excitation synchronous machine

    OpenAIRE

    Kupiec Emil; Przyborowski Włodzimierz

    2015-01-01

    Lately, there has been increased interest in hybrid excitation electrical machines. Hybrid excitation is a construction that combines permanent magnet excitation with wound field excitation. Within the general classification, these machines can be classified as modified synchronous machines or inductor machines. These machines may be applied as motors and generators. The complexity of electromagnetic phenomena which occur as a result of coupling of magnetic fluxes of separate excitation syste...

  11. Universal adaptive torque control for PM motors for field-weakening region operation

    Science.gov (United States)

    Royak, Semyon [Beachwood, OH; Harbaugh, Mark M [Richfield, OH; Breitzmann, Robert J [South Russel, OH; Nondahl, Thomas A [Wauwatosa, WI; Schmidt, Peter B [Franklin, WI; Liu, Jingbo [Milwaukee, WI

    2011-03-29

    The invention includes a motor controller and method for controlling a permanent magnet motor. In accordance with one aspect of the present technique, a permanent magnet motor is controlled by, among other things, receiving a torque command, determining a normalized torque command by normalizing the torque command to a characteristic current of the motor, determining a normalized maximum available voltage, determining an inductance ratio of the motor, and determining a direct-axis current based upon the normalized torque command, the normalized maximum available voltage, and the inductance ratio of the motor.

  12. Torque limit of PM motors for field-weakening region operation

    Science.gov (United States)

    Royak, Semyon [Beachwood, OH; Harbaugh, Mark M [Richfield, OH

    2012-02-14

    The invention includes a motor controller and technique for controlling a permanent magnet motor. In accordance with one aspect of the present technique, a permanent magnet motor is controlled by receiving a torque command, determining a physical torque limit based on a stator frequency, determining a theoretical torque limit based on a maximum available voltage and motor inductance ratio, and limiting the torque command to the smaller of the physical torque limit and the theoretical torque limit. Receiving the torque command may include normalizing the torque command to obtain a normalized torque command, determining the physical torque limit may include determining a normalized physical torque limit, determining a theoretical torque limit may include determining a normalized theoretical torque limit, and limiting the torque command may include limiting the normalized torque command to the smaller of the normalized physical torque limit and the normalized theoretical torque limit.

  13. Magnetic-field-induced spin excitations and renormalized spin gap of the underdoped La1895Sr0105CuO4 superconductor

    DEFF Research Database (Denmark)

    Chang, J.; Schnyder, A.P.; Gilardi, R.

    2007-01-01

    High-resolution neutron inelastic scattering experiments in applied magnetic fields have been performed on La1.895Sr0.105CuO4 (LSCO). In zero field, the temperature dependence of the low-energy peak intensity at the incommensurate momentum transfer Q(IC)=(0.5,0.5 +/-delta,0),(0.5 +/-delta,0.5,0) ...

  14. Investigating excitation-dependent and fringe-field effects of electromagnet and permanent-magnet phase shifters for a crossed undulator

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Ting-Yi, E-mail: chung.albert@nsrrc.org.tw [National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 30076, Taiwan (China); Yang, Chih-Sheng; Chu, Yun-Liang; Lin, Fu-Yuan; Jan, Jyh-Chyuan [National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 30076, Taiwan (China); Hwang, Ching-Shiang [National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 30076, Taiwan (China); Department of Electrophysics, National Chiao Tung University, Hsinchu 30050, Taiwan (China)

    2017-04-01

    To enhance the flux density or to control polarization, a phase shifter was designed and used to modulate the phase matching between segmented undulators. A larger hysteresis loop causes, however, a repeatability issue in the phase matching; the fringe field of the phase shifter creates an extra magnetic-field error. The design of the phase shifter must therefore minimize the hysteresis loop and fringe field to maintain the phases exact and to ignore the crosstalk effect. Two critical issues are the hysteresis-loop problem and the fringe-field effect, which determine the radiation performance and the stability of the ring. To investigate these issues, a phase shifter was constructed to operate in accordance with electromagnetic- and permanent-type magnets; the results from the field measurements and shims are discussed here. The shimming algorithm and a compact permanent-magnet phase shifter that eliminates the issues are also presented.

  15. Electromagnetic excitation of ultrasound in electrolytes

    Science.gov (United States)

    Tankovsky, N. S.

    1996-11-01

    An electromagnetic explanation is given in earlier experimental evidence for the possibility of exciting acoustic signals by a transient electric field in an electrolyte. The theory is in agreement with experimental observations of acoustic signals excited by some elementary electric signals. The described mechanism can be applied to the construction of ultrasonic transducers operating in liquids or in living tissues.

  16. Excitations of Neodymium Ions in Praseodymium

    DEFF Research Database (Denmark)

    Wulff, M.; Jensen, J.; Mackintosh, A.R.

    1983-01-01

    The excitations of Nd ions dissolved in Pr have been studied by inelastic neutron scattering. A crystal-field level at about 1.2 meV interferes strongly with the host excitations. In the antiferromagnetic phase, another level is observed about 0.5 meV above the ground-state, which is split by the...

  17. New mode of magnetic excitation in praseodymium

    DEFF Research Database (Denmark)

    Clausen, K.N.; McEwen, K.A.; Jensen, J.

    1994-01-01

    A novel propagating mode of magnetic excitation has been observed in Pr. It takes the form of low-energy satellites to the crystal-field excitations on both the hexagonal and cubic sites which are very broad at long wavelengths, rise in energy and rapidly narrow with increasing q, and disappear b...

  18. A large electrically excited synchronous generator

    DEFF Research Database (Denmark)

    2014-01-01

    This invention relates to a large electrically excited synchronous generator (100), comprising a stator (101), and a rotor or rotor coreback (102) comprising an excitation coil (103) generating a magnetic field during use, wherein the rotor or rotor coreback (102) further comprises a plurality...... adjacent neighbouring poles. In this way, a large electrically excited synchronous generator (EESG) is provided that readily enables a relatively large number of poles, compared to a traditional EESG, since the excitation coil in this design provides MMF for all the poles, whereas in a traditional EESG...

  19. Stochastic hierarchical systems: excitable dynamics.

    Science.gov (United States)

    Leonhardt, Helmar; Zaks, Michael A; Falcke, Martin; Schimansky-Geier, Lutz

    2008-10-01

    We present a discrete model of stochastic excitability by a low-dimensional set of delayed integral equations governing the probability in the rest state, the excited state, and the refractory state. The process is a random walk with discrete states and nonexponential waiting time distributions, which lead to the incorporation of memory kernels in the integral equations. We extend the equations of a single unit to the system of equations for an ensemble of globally coupled oscillators, derive the mean field equations, and investigate bifurcations of steady states. Conditions of destabilization are found, which imply oscillations of the mean fields in the stochastic ensemble. The relation between the mean field equations and the paradigmatic Kuramoto model is shown.

  20. Dislocation Motion and the Microphysics of Flash Heating and Weakening of Faults during Earthquakes

    Directory of Open Access Journals (Sweden)

    Elena Spagnuolo

    2016-07-01

    Full Text Available Earthquakes are the result of slip along faults and are due to the decrease of rock frictional strength (dynamic weakening with increasing slip and slip rate. Friction experiments simulating the abrupt accelerations (>>10 m/s2, slip rates (~1 m/s, and normal stresses (>>10 MPa expected at the passage of the earthquake rupture along the front of fault patches, measured large fault dynamic weakening for slip rates larger than a critical velocity of 0.01–0.1 m/s. The dynamic weakening corresponds to a decrease of the friction coefficient (defined as the ratio of shear stress vs. normal stress up to 40%–50% after few millimetres of slip (flash weakening, almost independently of rock type. The microstructural evolution of the sliding interfaces with slip may yield hints on the microphysical processes responsible for flash weakening. At the microscopic scale, the frictional strength results from the interaction of micro- to nano-scale surface irregularities (asperities which deform during fault sliding. During flash weakening, the visco-plastic and brittle work on the asperities results in abrupt frictional heating (flash heating and grain size reduction associated with mechano-chemical reactions (e.g., decarbonation in CO2-bearing minerals such as calcite and dolomite; dehydration in water-bearing minerals such as clays, serpentine, etc. and phase transitions (e.g., flash melting in silicate-bearing rocks. However, flash weakening is also associated with grain size reduction down to the nanoscale. Using focused ion beam scanning and transmission electron microscopy, we studied the micro-physical mechanisms associated with flash heating and nanograin formation in carbonate-bearing fault rocks. Experiments were conducted on pre-cut Carrara marble (99.9% calcite cylinders using a rotary shear apparatus at conditions relevant to seismic rupture propagation. Flash heating and weakening in calcite-bearing rocks is associated with a shock-like stress

  1. Fracture resistance of weakened teeth restored using accessory glass fiber posts.

    Science.gov (United States)

    da Rosa, Ricardo Abreu; Barreto, Mirela Sangoi; da Rosa, Tiago Abreu; Reis, Katia Rodrigues; Kaizer, Osvaldo Bazzan

    2013-01-01

    This study used differential root weakening to evaluate the fracture resistance of bovine teeth restored using glass fiber posts (with or without accessory glass fiber posts). Fifty bovine mandibular incisors were sectioned 14 mm from the apex, fixed in acrylic resin blocks, and divided into 5 groups: healthy roots with a glass fiber post (Group 1), partially weakened teeth with a glass fiber post (Group 2), partially weakened teeth with a glass fiber post and 2 accessory glass fiber posts (Group 3), extensively weakened teeth with a glass fiber post (Group 4), and extensively weakened teeth with a glass fiber post and 5 accessory glass fiber posts (Group 5). Posts were luted with resin cement, cores were prepared using composite resin, and metallic crowns were cemented. The specimens were stored in distilled water at 37°C for more than 72 hours until the fracture resistance test. Specimens were loaded at 135 degrees relative to the long axis of the tooth at a crosshead speed of 0.5 mm/minute in a universal testing machine. All groups predominantly exhibited favorable failure patterns and there were no statistically significant differences between groups (two-way ANOVA, α = 0.05).

  2. Notch strengthening or weakening governed by transition of shear failure to normal mode fracture.

    Science.gov (United States)

    Lei, Xianqi; Li, Congling; Shi, Xinghua; Xu, Xianghong; Wei, Yujie

    2015-05-29

    It is generally observed that the existence of geometrical discontinuity like notches in materials will lead to strength weakening, as a resultant of local stress concentration. By comparing the influence of notches to the strength of three typical materials, aluminum alloys with intermediate tensile ductility, metallic glasses with no tensile ductility, and brittle ceramics, we observed strengthening in aluminum alloys and metallic glasses: Tensile strength of the net section in circumferentially notched cylinders increases with the constraint quantified by the ratio of notch depth over notch root radius; in contrast, the ceramic exhibit notch weakening. The strengthening in the former two is due to resultant deformation transition: Shear failure occurs in intact samples while samples with deep notches break in normal mode fracture. No such deformation transition was observed in the ceramic, and stress concentration leads to its notch weakening. The experimental results are confirmed by theoretical analyses and numerical simulation. The results reported here suggest that the conventional criterion to use brittleness and/or ductility to differentiate notch strengthening or weakening is not physically sound. Notch strengthening or weakening relies on the existence of failure mode transition and materials exhibiting shear failure while subjected to tension will notch strengthen.

  3. Isovector monopole excitation energies

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, J.D.; Lipparini, E.; Stringary, S.

    1987-11-05

    Using a hydrodynamical model whose parameters have been adjusted to fit the polarizability and excitation energy of the giant dipole nuclear resonance we predict excitation energies of the isovector monopole resonance. The predicted values are in good agreement with experimental data. The mass dependence of the excitation energy is strongly influenced by nuclear geometry.

  4. Influence of frequency of the excitation magnetic field and material's electric conductivity on domain wall dynamics in ferromagnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Chávez-González, A.F. [Laboratorio de Evaluación No Destructiva Electromagnética (LENDE), ESIME-SEPI, Edif. Z-4, Instituto Politécnico Nacional, Zacatenco, México D.F., México (Mexico); Pérez-Benítez, J.A., E-mail: benitez_edl@yahoo.es [Laboratorio de Evaluación No Destructiva Electromagnética (LENDE), ESIME-SEPI, Edif. Z-4, Instituto Politécnico Nacional, Zacatenco, México D.F., México (Mexico); Espina-Hernández, J.H. [Laboratorio de Evaluación No Destructiva Electromagnética (LENDE), ESIME-SEPI, Edif. Z-4, Instituto Politécnico Nacional, Zacatenco, México D.F., México (Mexico); Grössinger, R. [Institute of Solid State Physics, Vienna University of Technology, Vienna (Austria); Hallen, J.M. [Departamento de Ingeniería Metalúrgica, ESIQIE, UPALM Edif. 7, Instituto Politécnico Nacional, Zacatenco, C.P. 07738, México D.F., México (Mexico)

    2016-03-01

    The present work analyzes the influence of electric conductivity on the Magnetic Barkhausen Noise (MBN) signal using a microscopic model which includes the influence of eddy currents. This model is also implemented to explain the dependence of MBN on the frequency of the applied magnetic field. The results presented in this work allow analyzing the influence of eddy currents on MBN signals for different values of the material's electric conductivity and for different frequencies of applied magnetic field. Additionally, the outcomes of this research can be used as a reference to differentiate the influence of eddy currents from that of second phase particles in the MBN signal, which has been reported in previous works. - Highlights: • Electromagnetic simulation of MBN with eddy currents and micro-magnetism. • Influence of applied field frequency on MBN is explained. • Influence of electric conductivity on MBN is analyzed. • Hysteresis losses in ferromagnetic materials is analyzed using the model.

  5. Excited cosmic strings with superconducting currents

    Science.gov (United States)

    Hartmann, Betti; Michel, Florent; Peter, Patrick

    2017-12-01

    We present a detailed analysis of excited cosmic string solutions that possess superconducting currents. These currents can be excited inside the string core, and—if the condensate is large enough—can lead to the excitations of the Higgs field. Next to the case with global unbroken symmetry, we discuss also the effects of the gauging of this symmetry and show that excited condensates persist when coupled to an electromagnetic field. The space-time of such strings is also constructed by solving the Einstein equations numerically and we show how the local scalar curvature is modified by the excitation. We consider the relevance of our results on the cosmic string network evolution as well as observations of primordial gravitational waves and cosmic rays.

  6. Loss of excitation of synchronous generator

    Science.gov (United States)

    Krištof, Vladimír; Mešter, Marián

    2017-01-01

    This paper presents results of study of loss-of-excitation phenomena simulations. Loss of excitation is a very common fault in synchronous machine operating and can be caused by short circuit of the field winding, unexpected field breaker open or loss-of-excitation relay mal-operation. According to the statistic [1], the generator failure due to loss-of-excitation accounts for 69% of all generator failures. There has been concern over possible incorrect operation of the relay when operating the generator in the under-excited region, during stable transient swings and during major system disturbances. This article can serve as inputs for system operators in preparation of operation area or protection relaying area.

  7. Non-Native Ambrosia Beetles as Opportunistic Exploiters of Living but Weakened Trees.

    Science.gov (United States)

    Ranger, Christopher M; Schultz, Peter B; Frank, Steven D; Chong, Juang H; Reding, Michael E

    2015-01-01

    Exotic Xylosandrus spp. ambrosia beetles established in non-native habitats have been associated with sudden and extensive attacks on a diverse range of living trees, but factors driving their shift from dying/dead hosts to living and healthy ones are not well understood. We sought to characterize the role of host physiological condition on preference and colonization by two invaders, Xylosandrus germanus and Xylosandrus crassiusculus. When given free-choice under field conditions among flooded and non-flooded deciduous tree species of varying intolerance to flooding, beetles attacked flood-intolerant tree species over more tolerant species within 3 days of initiating flood stress. In particular, flood-intolerant flowering dogwood (Cornus florida) sustained more attacks than flood-tolerant species, including silver maple (Acer saccharinum) and swamp white oak (Quercus bicolor). Ethanol, a key host-derived attractant, was detected at higher concentrations 3 days after initiating flooding within stems of flood intolerant species compared to tolerant and non-flooded species. A positive correlation was also detected between ethanol concentrations in stem tissue and cumulative ambrosia beetle attacks. When adult X. germanus and X. crassiusculus were confined with no-choice to stems of flood-stressed and non-flooded C. florida, more ejected sawdust resulting from tunneling activity was associated with the flood-stressed trees. Furthermore, living foundresses, eggs, larvae, and pupae were only detected within galleries created in stems of flood-stressed trees. Despite a capability to attack diverse tree genera, X. germanus and X. crassiusculus efficiently distinguished among varying host qualities and preferentially targeted trees based on their intolerance of flood stress. Non-flooded trees were not preferred or successfully colonized. This study demonstrates the host-selection strategy exhibited by X. germanus and X. crassiusculus in non-native habitats involves

  8. Non-Native Ambrosia Beetles as Opportunistic Exploiters of Living but Weakened Trees

    Science.gov (United States)

    Ranger, Christopher M.; Schultz, Peter B.; Frank, Steven D.; Chong, Juang H.; Reding, Michael E.

    2015-01-01

    Exotic Xylosandrus spp. ambrosia beetles established in non-native habitats have been associated with sudden and extensive attacks on a diverse range of living trees, but factors driving their shift from dying/dead hosts to living and healthy ones are not well understood. We sought to characterize the role of host physiological condition on preference and colonization by two invaders, Xylosandrus germanus and Xylosandrus crassiusculus. When given free-choice under field conditions among flooded and non-flooded deciduous tree species of varying intolerance to flooding, beetles attacked flood-intolerant tree species over more tolerant species within 3 days of initiating flood stress. In particular, flood-intolerant flowering dogwood (Cornus florida) sustained more attacks than flood-tolerant species, including silver maple (Acer saccharinum) and swamp white oak (Quercus bicolor). Ethanol, a key host-derived attractant, was detected at higher concentrations 3 days after initiating flooding within stems of flood intolerant species compared to tolerant and non-flooded species. A positive correlation was also detected between ethanol concentrations in stem tissue and cumulative ambrosia beetle attacks. When adult X. germanus and X. crassiusculus were confined with no-choice to stems of flood-stressed and non-flooded C. florida, more ejected sawdust resulting from tunneling activity was associated with the flood-stressed trees. Furthermore, living foundresses, eggs, larvae, and pupae were only detected within galleries created in stems of flood-stressed trees. Despite a capability to attack diverse tree genera, X. germanus and X. crassiusculus efficiently distinguished among varying host qualities and preferentially targeted trees based on their intolerance of flood stress. Non-flooded trees were not preferred or successfully colonized. This study demonstrates the host-selection strategy exhibited by X. germanus and X. crassiusculus in non-native habitats involves

  9. Multidecadal Weakening of Indian Summer Monsoon Circulation Induces an Increasing Northern Indian Ocean Sea Level

    Science.gov (United States)

    Swapna, P.; Jyoti, J.; Krishnan, R.; Sandeep, N.; Griffies, S. M.

    2017-10-01

    North Indian Ocean sea level has shown significant increase during last three to four decades. Analyses of long-term climate data sets and ocean model sensitivity experiments identify a mechanism for multidecadal sea level variability relative to global mean. Our results indicate that North Indian Ocean sea level rise is accompanied by a weakening summer monsoon circulation. Given that Indian Ocean meridional heat transport is primarily regulated by the annual cycle of monsoon winds, weakening of summer monsoon circulation has resulted in reduced upwelling off Arabia and Somalia and decreased southward heat transport, and corresponding increase of heat storage in the North Indian Ocean. These changes in turn lead to increased retention of heat and increased thermosteric sea level rise in the North Indian Ocean, especially in the Arabian Sea. These findings imply that rising North Indian Ocean sea level due to weakening of monsoon circulation demands adaptive strategies to enable a resilient South Asian population.

  10. Multi-frequency excitation

    KAUST Repository

    Younis, Mohammad I.

    2016-03-10

    Embodiments of multi-frequency excitation are described. In various embodiments, a natural frequency of a device may be determined. In turn, a first voltage amplitude and first fixed frequency of a first source of excitation can be selected for the device based on the natural frequency. Additionally, a second voltage amplitude of a second source of excitation can be selected for the device, and the first and second sources of excitation can be applied to the device. After applying the first and second sources of excitation, a frequency of the second source of excitation can be swept. Using the methods of multi- frequency excitation described herein, new operating frequencies, operating frequency ranges, resonance frequencies, resonance frequency ranges, and/or resonance responses can be achieved for devices and systems.

  11. Excitation of transient lobe cell convection and auroral arc at the cusp poleward boundary during a transition of the interplanetary magnetic field from south to north

    Directory of Open Access Journals (Sweden)

    P. E. Sandholt

    2001-05-01

    Full Text Available We document the activation of transient polar arcs emanating from the cusp within a 15 min long intermediate phase during the transition from a standard two-cell convection pattern, representative of a strongly southward interplanetary magnetic field (IMF, to a "reverse" two-cell pattern, representative of strongly northward IMF conditions. During the 2–3 min lifetime of the arc, its base in the cusp, appearing as a bright spot, moved eastward toward noon by ~ 300 km. As the arc moved, it left in its "wake" enhanced cusp precipitation. The polar arc is a tracer of the activation of a lobe convection cell with clockwise vorticity, intruding into the previously established large-scale distorted two-cell pattern, due to an episode of localized lobe reconnection. The lobe cell gives rise to strong flow shear (converging electric field and an associated sheet of outflowing field-aligned current, which is manifested by the polar arc. The enhanced cusp precipitation represents, in our view, the ionospheric footprint of the lobe reconnection process.Key words. Magnetospheric physics (auroral phenomena; magnetopause, cusp, and boundary layers; plasma convection

  12. Modeling short-pulse laser excitation of dielectric materials

    DEFF Research Database (Denmark)

    Wædegaard, Kristian Juncher; Sandkamm, Ditte Både; Haahr-Lillevang, Lasse

    2014-01-01

    A theoretical description of ultrashort-pulse laser excitation of dielectric materials based on strong-field excitation in the Keldysh picture combined with a multiple-rateequation model for the electronic excitation including collisional processes is presented. The model includes light attenuation...

  13. The role of mid-level vortex in the intensification and weakening of ...

    Indian Academy of Sciences (India)

    Govindan Kutty

    2017-10-06

    Oct 6, 2017 ... and weakening of tropical cyclones. Govindan Kutty* and Kanishk Gohil. Indian Institute of Space Science and Technology, Thiruvananthapuram 695 547, India. *Corresponding author. e-mail: govind@iist.ac.in. MS received 2 October 2016; revised 18 April 2017; accepted 25 April 2017; published online 6 ...

  14. Dislocation motion and the microphysics of flash heating and weakening of faults during earthquakes

    NARCIS (Netherlands)

    Spagnuolo, Elena; Plümper, Oliver; Violay, Marie; Cavallo, Andrea; Di Toro, Giulio

    2016-01-01

    Earthquakes are the result of slip along faults and are due to the decrease of rock frictional strength (dynamic weakening) with increasing slip and slip rate. Friction experiments simulating the abrupt accelerations (>>10 m/s2), slip rates (~1 m/s), and normal stresses (>>10 MPa) expected at the

  15. Velocity-dependent frictional weakening of large rock avalanche basal facies: Implications for rock avalanche hypermobility?

    Science.gov (United States)

    Wang, Y. F.; Dong, J. J.; Cheng, Q. G.

    2017-03-01

    To characterize the hypermobility mechanism of rock avalanches, a series of rotary shear tests at different shearing velocities (Veq) ranging from 0.07 m/s to 1.31 m/s and at a normal stress of 1.47 MPa were carried out on soil sampled from the basal facies of the Yigong rock avalanche that occurred in the Tibetan plateau in China. Through conducting these tests, the macroscale and microscale features of the deformed samples were analyzed in detail with the following valuable conclusions being reached: (1) soil subjected to rotary shear exhibits a clear velocity-dependent weakening characteristic with an apparent steady state friction of 0.13 being reached at Veq ≥ 0.61 m/s, (2) high-temperature rises and layers with high porosity were observed in the samples sheared at Veq ≥ 0.61 m/s, and (3) the cooperation of thermal pressurization and moisture fluidization induced by friction heating plays an important role in explaining the marked frictional weakening of the soil. In addition, the appearance of nanoparticles due to particle fragmentation should facilitate the weakening of the soil but is not the key reason for the marked frictional weakening.

  16. Fast-moving dislocations trigger flash weakening in carbonate-bearing faults during earthquakes

    Science.gov (United States)

    Spagnuolo, Elena; Plümper, Oliver; Violay, Marie; Cavallo, Andrea; di Toro, Giulio

    2015-11-01

    Rupture fronts can cause fault displacement, reaching speeds up to several ms-1 within a few milliseconds, at any distance away from the earthquake nucleation area. In the case of silicate-bearing rocks the abrupt slip acceleration results in melting at asperity contacts causing a large reduction in fault frictional strength (i.e., flash weakening). Flash weakening is also observed in experiments performed in carbonate-bearing rocks but evidence for melting is lacking. To unravel the micro-physical mechanisms associated with flash weakening in carbonates, experiments were conducted on pre-cut Carrara marble cylinders using a rotary shear apparatus at conditions relevant to earthquakes propagation. In the first 5 mm of slip the shear stress was reduced up to 30% and CO2 was released. Focused ion beam, scanning and transmission electron microscopy investigations of the slipping zones reveal the presence of calcite nanograins and amorphous carbon. We interpret the CO2 release, the formation of nanograins and amorphous carbon to be the result of a shock-like stress release associated with the migration of fast-moving dislocations. Amorphous carbon, given its low friction coefficient, is responsible for flash weakening and promotes the propagation of the seismic rupture in carbonate-bearing fault patches.

  17. Perception of a Regional Spanish Sound: The Case of /s/-Weakening

    Science.gov (United States)

    George, Angela

    2014-01-01

    While taking foreign language classes or interacting in the target language community, language learners will be exposed to dialectal differences. This paper addresses how adult learners of Spanish in beginning, intermediate, and advanced Spanish courses at a large US university perceived a common sociolinguistic feature of Spanish, /s/-weakening,…

  18. The weakening summer circulation in the Northern Hemisphere mid-latitudes

    NARCIS (Netherlands)

    Coumou, Dim; Lehmann, Jascha; Beckmann, Johanna

    2015-01-01

    Rapid warming in the Arctic could influence mid-latitude circulation by reducing the poleward temperature gradient. The largest changes are generally expected in autumn or winter, but whether significant changes have occurred is debated. Here we report significant weakening of summer circulation

  19. The climatological mean atmospheric transport under weakened Atlantic thermohaline circulation climate scenario

    Energy Technology Data Exchange (ETDEWEB)

    Erukhimova, T. [Texas A and M University, Department of Physics, College Station, TX (United States); Zhang, R. [GFDL/NOAA, Princeton, NJ (United States); Bowman, K.P. [Texas A and M University, Department of Atmospheric Sciences, College Station, TX (United States)

    2009-02-15

    Global atmospheric transport in a climate subject to a substantial weakening of the Atlantic thermohaline circulation (THC) is studied by using climatological Green's functions of the mass conservation equation for a conserved, passive tracer. Two sets of Green's functions for the perturbed climate and for the present climate are evaluated from 11-year atmospheric trajectory calculations, based on 3-D winds simulated by GFDL's newly developed global coupled ocean-atmosphere model (CM2.1). The Green's function analysis reveals pronounced effects of the climate change on the atmospheric transport, including seasonally modified Hadley circulation with a stronger Northern Hemisphere cell in DJF and a weaker Southern Hemisphere cell in JJA. A weakened THC is also found to enhance mass exchange rates through mixing barriers between the tropics and the two extratropical zones. The response in the tropics is not zonally symmetric. The 3-D Green's function analysis of the effect of THC weakening on transport in the tropical Pacific shows a modified Hadley cell in the eastern Pacific, confirming the results of our previous studies, and a weakening (strengthening) of the upward and eastward motion to the south (north) of the Equator in the western Pacific in the perturbed climate as compared to the present climate. (orig.)

  20. Whisker Deprivation Drives Two Phases of Inhibitory Synapse Weakening in Layer 4 of Rat Somatosensory Cortex.

    Directory of Open Access Journals (Sweden)

    Melanie A Gainey

    Full Text Available Inhibitory synapse development in sensory neocortex is experience-dependent, with sustained sensory deprivation yielding fewer and weaker inhibitory synapses. Whether this represents arrest of synapse maturation, or a more complex set of processes, is unclear. To test this, we measured the dynamics of inhibitory synapse development in layer 4 of rat somatosensory cortex (S1 during continuous whisker deprivation from postnatal day 7, and in age-matched controls. In deprived columns, spontaneous miniature inhibitory postsynaptic currents (mIPSCs and evoked IPSCs developed normally until P15, when IPSC amplitude transiently decreased, recovering by P16 despite ongoing deprivation. IPSCs remained normal until P22, when a second, sustained phase of weakening began. Delaying deprivation onset by 5 days prevented the P15 weakening. Both early and late phase weakening involved measurable reduction in IPSC amplitude relative to prior time points. Thus, deprivation appears to drive two distinct phases of active IPSC weakening, rather than simple arrest of synapse maturation.

  1. Self consistent hydrodynamic description of the plasma wake field excitation induced by a relativistic charged-particle beam in an unmagnetized plasma

    Science.gov (United States)

    Jovanović, Dušan; Fedele, Renato; De Nicola, Sergio; Akhter, Tamina; Belić, Milivoj

    2017-12-01

    A self-consistent nonlinear hydrodynamic theory is presented of the propagation of a long and thin relativistic electron beam, for a typical plasma wake field acceleration configuration in an unmagnetized and overdense plasma. The random component of the trajectories of the beam particles as well as of their velocity spread is modelled by an anisotropic temperature, allowing the beam dynamics to be approximated as a 3D adiabatic expansion/compression. It is shown that even in the absence of the nonlinear plasma wake force, the localisation of the beam in the transverse direction can be achieved owing to the nonlinearity associated with the adiabatic compression/rarefaction and a coherent stationary state is constructed. Numerical calculations reveal the possibility of the beam focussing and defocussing, but the lifetime of the beam can be significantly extended by the appropriate adjustments, so that transverse oscillations are observed, similar to those predicted within the thermal wave and Vlasov kinetic models.

  2. Excited states 2

    CERN Document Server

    Lim, Edward C

    2013-01-01

    Excited States, Volume 2 is a collection of papers that deals with molecules in the excited states. The book describes the geometries of molecules in the excited electronic states. One paper describes the geometries of a diatomic molecule and of polyatomic molecules; it also discusses the determination of the many excited state geometries of molecules with two, three, or four atoms by techniques similar to diatomic spectroscopy. Another paper introduces an ordered theory related to excitons in pure and mixed molecular crystals. This paper also presents some experimental data such as those invo

  3. A non-empirical calculation of 2p core-electron excitation in compounds with 3d transition metal ions using ligand-field and density functional theory (LFDFT).

    Science.gov (United States)

    Ramanantoanina, Harry; Daul, Claude

    2017-08-09

    Methodological advents for the calculation of the multiplet energy levels arising from multiple-open-shell 2p53dn+1 electron configurations, with n = 0, 1, 2,… and 9, are presented. We use the Ligand-Field Density Functional Theory (LFDFT) program, which has been recently implemented in the Amsterdam Density Functional (ADF) program package. The methodology consists of calculating the electronic structure of a central metal ion together with its ligand coordination by means of the Density Functional Theory code. Besides, the core-hole effects are treated by incorporating many body effects and corrections via the configuration interaction algorithm within the active space of Kohn-Sham orbitals with dominant 2p and 3d characters of the transition metal ions, using an effective ligand-field Hamiltonian. The Slater-Condon integrals (F2(3d,3d), F4(3d,3d), G1(2p,3d), G3(2p,3d) and F2(2p,3d)), spin-orbit coupling constants (ζ2p and ζ3d) and parameters of the ligand-field potential (represented within the Wybourne formalism) are therefore determined giving rise to the multiplet structures of systems with 3dn and 2p53dn+1 configurations. The oscillator strengths of the electric-dipole allowed 3dn → 2p53dn+1 transitions are also calculated allowing the theoretical simulation of the absorption spectra of the 2p core-electron excitation. This methodology is applied to transition metal ions in the series Sc2+, Ti2+,…, Ni2+ and Cu2+ but also to selective compounds, namely SrTiO3 and MnF2. The comparison with available experimental data is good. Therefore, a non-empirical ligand-field treatment of the 2p53dn+1 configurations is established and available in the ADF program package illustrating the spectroscopic details of the 2p core-electron excitation that can be valuable in the further understanding and interpretation of the transition metal L2,3-edge X-ray absorption spectra.

  4. Possible Weakening Processes Imposed on California's Earthen Levees under Protracted Drought

    Science.gov (United States)

    Robinson, J. D.; Vahedifard, F.; AghaKouchak, A.

    2015-12-01

    California is currently suffering from a multiyear extreme drought and the impacts of the drought are anticipated to worsen in a warming climate. The resilience of critical infrastructure under extreme drought conditions is a major concern which has not been well understood. Thus, there is a crucial need to improve our understanding about the potential threats of drought on infrastructure and take subsequent actions in a timely manner to mitigate these threats and adopt our infrastructure for forthcoming extreme events. The need is more pronounced for earthen levees, since their functionality to protect limited water resources and dryland is more critical during drought. A significant amount of California's levee systems are currently operating under a high risk condition. Protracted drought can further threaten the structural competency of these already at-risk levee systems through several thermo-hydro mechanical weakening processes that undermine their stability. Viable information on the implications of these weakening processes, particularly on California's earthen levees, is relatively incomplete. This article discusses, from a geotechnical engineering perspective, how California's protracted drought might threaten the integrity of levee systems through the imposition of several thermo-hydro mechanical weakening processes. Pertinent facts and statistics regarding the drought in California are presented and discussed. Catastrophic levee failures and major damages resulting from drought-induce weakening processes such as shear strength reduction, desiccation cracking, land subsidence and surface erosion, fissuring and soil softening, and soil carbon oxidation are discussed to illustrate the devastating impacts that the California drought might impose on existing earthen levees. This article calls for further research in light of these potential drought-inducing weakening mechanisms to support mitigation strategies for reducing future catastrophic levee failures.

  5. Full-Wave Analysis of Field-to-Line Coupling Effects Using 1D FDTD Method under Exciting Source with Different Bandwidths

    Directory of Open Access Journals (Sweden)

    Qi Zhang

    2014-01-01

    Full Text Available With the aim to analyze field-to-line coupling effects based on energy spectrum, parallel finite-difference time-domain (FDTD method is applied to calculate the induced voltage on overhead lines under high-power electromagnetic (HPEM environment. Firstly, the energy distribution laws of HEMP (IEC 61000-2-9, HEMP (Bell Laboratory, HEMP (Paulino et al., 2010, and LEMP (IEC61000-4-5 are given. Due to the air-earth stratified medium, both the absorbing boundary and the connecting boundary applied to scattering by finite-length objects are separately set in aerial and underground parts. Moreover, the influence of line length on induced voltage is analyzed and discussed. The results indicate that the half-peak width is wider with the increase of the line length. But the steepness of induced voltage on the overhead line is invariable. There is no further increase in the peak of induced voltage especially when the line length increases to be equivalent to the wavelength of the frequency bands with the maximum energy.

  6. UV scale calibration transfer from an improved pyroelectric detector standard to field UV-A meters and 365 nm excitation sources

    Science.gov (United States)

    Eppeldauer, G. P.; Podobedov, V. B.; Cooksey, C. C.

    2017-05-01

    Calibration of the emitted radiation from UV sources peaking at 365 nm, is necessary to perform the ASTM required 1 mW/cm2 minimum irradiance in certain military material (ships, airplanes etc) tests. These UV "black lights" are applied for crack-recognition using fluorescent liquid penetrant inspection. At present, these nondestructive tests are performed using Hg-lamps. Lack of a proper standard and the different spectral responsivities of the available UV meters cause significant measurement errors even if the same UV-365 source is measured. A pyroelectric radiometer standard with spectrally flat (constant) response in the UV-VIS range has been developed to solve the problem. The response curve of this standard determined from spectral reflectance measurement, is converted into spectral irradiance responsivity with standard cryogenic radiometer. The flat pyroelectric radiometer standard can be used to perform uniform integrated irradiance measurements from all kinds of UV sources (with different peaks and distributions) without using any source standard. Using this broadband calibration method, yearly spectral calibrations for the reference UV (LED) sources and irradiance meters is not needed. Field UV sources and meters can be calibrated against the pyroelectric radiometer standard for broadband (integrated) irradiance and integrated responsivity. Using the broadband measurement procedure, the UV measurements give uniform results with significantly decreased uncertainties.

  7. Relationship between the lunar tidal amplification in the equatorial electrojet and weakening of the northern polar vortex

    Science.gov (United States)

    Adnan Siddiqui, Tarique; Luehr, Hermann; Stolle, Claudia; Matzka, Jürgen

    2016-07-01

    Enhanced lunar tidal effects in the equatorial electrojet (EEJ) during boreal winters have been reported in the form of so-called "big L days" for a long time. Recent studies have suggested a relation between these enhanced lunar tidal observations and stratospheric sudden warming (SSW) events in the northern hemisphere through changes in tidal propagation conditions due to increased planetary wave activity. In this study we have used the horizontal component of the magnetic field recorded at Huancayo, Peru from 1997-2013 to study the relation between the timing and magnitude of the semimonthly lunar tide in the EEJ and the stratospheric polar vortex weakening (PVW). The definition of PVW is used to characterize the individual SSW events, and the intensity of PVW during each winter is estimated by taking into account the stratospheric temperature and wind conditions at polar latitudes. Our results indicate that the semimonthly lunar tide in the EEJ gets enhanced during boreal winters when a significant weakening in the polar vortex occurs and its timing and magnitude is correlated with the timing and intensity of the PVW. Our results suggest that the initiation of the lunar tidal enhancement in most of the cases is closely related to a PVW event. Further, we also discuss the longitudinal differences in lunar tidal enhancements of the EEJ during the SSW years. Finally, we extend the lunar tidal time series by utilizing the recently digitized magnetic recordings from Huancayo. The additional data of Huancayo recordings between 1962-1984 will open new perspectives in investigating long term trends of equatorial electrodynamics.

  8. Charmonium excited state spectrum in lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Jozef Dudek; Robert Edwards; Nilmani Mathur; David Richards

    2008-02-01

    Working with a large basis of covariant derivative-based meson interpolating fields we demonstrate the feasibility of reliably extracting multiple excited states using a variational method. The study is performed on quenched anisotropic lattices with clover quarks at the charm mass. We demonstrate how a knowledge of the continuum limit of a lattice interpolating field can give additional spin-assignment information, even at a single lattice spacing, via the overlap factors of interpolating field and state. Excited state masses are systematically high with respect to quark potential model predictions and, where they exist, experimental states. We conclude that this is most likely a result of the quenched approximation.

  9. Strain-related weakening in deep orogenic shear zones: what factors to consider?

    Science.gov (United States)

    Gerbi, C. C.; Culshaw, N.

    2011-12-01

    Quantifying strain-related weakening requires knowing which weakening processes dominate under various tectonic conditions. One commonly cited weakening factor is a change in phase topology, with a rock losing strength as weak phases become more interconnected. Accurate determinations of bulk strength requires knowledge of both the individual phase strengths and the control of microstructure on the bulk strength. Calculations described here focus first on the effects of microstructure and in particular phase topology. The calculations assume deformation by mechanisms that can be described simply by phase strengths and ignore mass transfer and grain boundary sliding. The initial motivating question is whether a constant value can adequately parameterize a given phase distribution and, if so, if that parameter value is predictable. Using a two-dimensional finite element calculation scheme for linearly viscous materials, it appears that constant values of the two microstructural parameters tested satisfactorily describe the bulk strength at viscosity contrasts less than ~50 for a given phase distribution and modal abundance. Neither tested parameter is constant with changes in mode. The values of the examined microstructural parameters do not appear to be predictable based on a qualitative analysis of the phase topology. Thus although a constant parameter value can adequately describe a given phase distribution, because that parameter is not determinable a priori, accurate measurement of the bulk strength of a composite requires a numerical calculation method. In natural samples from high strain zones from deep orogenic crust, weak phases are not necessarily interconnected and simply changing the shape preferred orientation of weak phases relative to the transport direction (i.e., transposition) can accommodate a moderate degree of weakening, particularly in the absence of large modal changes due to reactions. However, many natural shear zones also experience

  10. Relativistic dynamical spin excitations of magnetic adatoms

    Science.gov (United States)

    dos Santos Dias, M.; Schweflinghaus, B.; Blügel, S.; Lounis, S.

    2015-02-01

    We present a first-principles theory of dynamical spin excitations in the presence of spin-orbit coupling. The broken global spin rotational invariance leads to a new sum rule. We explore the competition between the magnetic anisotropy energy and the external magnetic field, as well as the role of electron-hole excitations, through calculations for 3 d -metal adatoms on the Cu(111) surface. The spin excitation resonance energy and lifetime display nontrivial behavior, establishing the strong impact of relativistic effects. We legitimate the use of the Landau-Lifshitz-Gilbert equation down to the atomic limit, but with parameters that differ from a stationary theory.

  11. On the relative significance of lithospheric weakening mechanisms for sustained plate tectonics

    Science.gov (United States)

    Araceli Sanchez-Maes, Sophia

    2018-01-01

    Plate tectonics requires the bending of strong plates at subduction zones, which is difficult to achieve without a secondary weakening mechanism. Two classes of weakening mechanisms have been proposed for the generation of ongoing plate tectonics, distinguished by whether or not they require water. Here we show that the energy budget of global subduction zones offers a simple yet decisive test on their relative significance. Theoretical studies of mantle convection suggest bending dissipation to occupy only 10-20 % of total dissipation in the mantle, and our results indicate that the hydrous mechanism in the shallow part of plates is essential to satisfy the requirement. Thus, surface oceans are required for the long-term operation of plate tectonics on terrestrial worlds. Establishing this necessary and observable condition for sustained plate tectonics carries important implications for planetary habitability at large.

  12. Weakening of the Stratospheric Polar Vortex by Arctic Sea-Ice Loss

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Baek-Min; Son, Seok-Woo; Min, Seung-Ki; Jeong, Jee-Hoon; Kim, Seong-Joong; Zhang, Xiangdong; Shim, Taehyoun; Yoon, Jin-Ho

    2014-09-02

    Successive cold winters of severely low temperatures in recent years have had critical social and economic impacts on the mid-latitude continents in the Northern Hemisphere. Although these cold winters are thought to be partly driven by dramatic losses of Arctic sea ice, the mechanism that links sea ice loss to cold winters remains a subject of debate. Here, by conducting observational analyses and model experiments, we show how Arctic sea ice loss and cold winters in extra-polar regions are dynamically connected through the polar stratosphere. We find that decreased sea ice cover during early winter months (November-December), especially over the Barents-Kara seas, enhance the upward propagation of planetary-scale waves with wavenumbers of 1 and 2, subsequently weakening the stratospheric polar vortex in mid-winter (January- February). The weakened polar vortex preferentially induces a negative phase of Arctic Oscillation at the surface, resulting in low temperatures in mid-latitudes.

  13. Substantiation of effectiveness of trainings on health related methodic for students with weakened motor fitness

    Directory of Open Access Journals (Sweden)

    Kuzmin V.A.

    2015-12-01

    Full Text Available Purpose: to work out methodic, facilitating successful conduct of health related trainings of students withy weakened motor (physical fitness. Material: in the research 47 students with weakened motor fitness participated. Analysis of indicators of morbidity frequency and duration was carried out on the base of medical records’ studying during all academic year. Experimental methodic consisted of three chapters: execution of specifically selected Hatha yoga static postures, breathing exercises and boxing techniques. Breathing exercises were grouped in four complexes. Every complex was fulfilled during 6 trainings, after each of them the next followed. Results: it was found that frequency and duration of diseases statistically confidently decreased in academic year. It was shown that formation of healthy life style skills statistically confidently improved. Conclusions: we have determined: increased students’ interest to physical culture practicing; reduction of frequency and duration of diseases; higher level of formation of healthy life style skills.

  14. Effect of Weakening of Ipsilateral Depressor Anguli Oris on Smile Symmetry in Postparalysis Facial Palsy.

    Science.gov (United States)

    Jowett, Nate; Malka, Ronit; Hadlock, Tessa A

    2017-01-01

    Aberrant depressor anguli oris (DAO) activity may arise after recovery from acute facial paralysis and restrict movement of the oral commissure. To quantify the degree to which DAO inhibition affects smile dynamics and perceived emotional state. In this prospective, pretest-posttest study performed at an academic tertiary referral hospital, patients with unilateral postparalysis facial palsy were studied from January 16 through April 30, 2016. Local anesthetic injection into the ipsilateral DAO. Healthy- and paretic-side commissure displacements from the midline lower vermillion border referenced to the horizontal plane were calculated from random-ordered photographs of full-effort smile before and after injection, and random-ordered hemifacial photographs of the paretic side were assessed as expressing positive, negative, or indiscernible emotion. Twenty patients were identified as having unilateral postparalysis facial palsy with marked synkinesis of the ipsilateral DAO. Patient mean age was 46 years (range, 24-67 years), with a male to female ratio of 1:3. Mean paretic-side commissure displacement increased from 27.45 mm at 21.65° above the horizontal plane to 29.35 mm at 23.58° after DAO weakening (mean difference, 1.90 mm; 95% CI, 1.26-2.54 mm; and 1.93°; 95% CI, 0.34°-3.51°; P emotion; this proportion increased to 13 of 20 (65%) after DAO weakening (P = .03). Ipsilateral DAO weakening results in significant improvements in smile dynamics and perceived expression of positive emotion on the paretic hemiface in postparalysis facial palsy. A trial of DAO weakening should be offered to patients with this disfiguring complication of Bell palsy and similar facial nerve insults. 3.

  15. Interactions between Nosema microspores and a neonicotinoid weaken honeybees (Apis mellifera)

    OpenAIRE

    Brunet, Jean-Luc; Dussaubat, Claudia; Mondet, Fanny; Tchamitchian, Sylvie; Cousin, Marianne; Brillard, Julien; Baldy, Aurélie; Belzunces, Luc; Le Conte, Yves

    2010-01-01

    Global pollinators, like honeybees, are declining in abundance and diversity, which can adversely affect natural ecosystems and agriculture. Therefore, we tested the current hypotheses describing honeybee losses as a multifactorial syndrome, by investigating integrative effects of an infectious organism and an insecticide on honeybee health. We demonstrated that the interaction between the microsporidia Nosema and a neonicotinoid (imidacloprid) significantly weakened honeybees. In the short t...

  16. The realization of a permanent magnet synchronous motor drive with flux weakening

    Directory of Open Access Journals (Sweden)

    Lars Norum

    1992-01-01

    Full Text Available This paper presents the realization and performance of a fully digital permanent magnet synchronous motor drive. A new control algorithm gives maximum torque to current ratio in both the constant torque region and in flux weakening. Inner loop current control and vector modulation with short calculation time are obtained by thc use of look-up tables. The controller is implemented in a singleboard control computer for power electronics systems, which is based on a 16 bit microcontroller.

  17. Nuclear expansion with excitation

    Energy Technology Data Exchange (ETDEWEB)

    De, J.N. [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Departament d' Estructura i Constituents de la Materia, Facultat de Fisica, Universitat de Barcelona, Diagonal 647, 08028 Barcelona (Spain); Samaddar, S.K. [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Vinas, X. [Departament d' Estructura i Constituents de la Materia, Facultat de Fisica, Universitat de Barcelona, Diagonal 647, 08028 Barcelona (Spain); Centelles, M. [Departament d' Estructura i Constituents de la Materia, Facultat de Fisica, Universitat de Barcelona, Diagonal 647, 08028 Barcelona (Spain)]. E-mail: mario@ecm.ub.es

    2006-07-06

    The expansion of an isolated hot spherical nucleus with excitation energy and its caloric curve are studied in a thermodynamic model with the SkM{sup *} force as the nuclear effective two-body interaction. The calted results are shown to compare well with the recent experimental data from energetic nuclear collisions. The fluctuations in temperature and density are also studied. They are seen to build up very rapidly beyond an excitation energy of {approx}9 MeV/u. Volume-conserving quadrupole deformation in addition to expansion indicates, however, nuclear disassembly above an excitation energy of {approx}4 MeV/u.

  18. Robust Projected Weakening of Winter Monsoon Winds Over the Arabian Sea Under Climate Change

    Science.gov (United States)

    Parvathi, V.; Suresh, I.; Lengaigne, M.; Izumo, T.; Vialard, J.

    2017-10-01

    The response of the Indian winter monsoon to climate change has received considerably less attention than that of the summer monsoon. We show here that all Coupled Model Intercomparison Project Phase 5 (CMIP5) models display a consistent reduction (of 6.5% for Representative Concentration Pathways 8.5 and 3.5% for 4.5, on an average) of the winter monsoon winds over the Arabian Sea at the end of 21st century. This projected reduction weakens but remains robust when corrected for overestimated winter Arabian Sea winds in CMIP5. This weakening is driven by a reduction in the interhemispheric sea level pressure gradient resulting from enhanced warming of the dry Arabian Peninsula relative to the southern Indian Ocean. The wind weakening reduces winter oceanic heat losses to the atmosphere and deepening of convective mixed layer in the northern Arabian Sea and hence can potentially inhibit the seasonal chlorophyll bloom that contributes substantially to the Arabian Sea annual productivity.

  19. Simplified Fuzzy Control for Flux-Weakening Speed Control of IPMSM Drive

    Directory of Open Access Journals (Sweden)

    M. J. Hossain

    2011-01-01

    Full Text Available This paper presents a simplified fuzzy logic-based speed control scheme of an interior permanent magnet synchronous motor (IPMSM above the base speed using a flux-weakening method. In this work, nonlinear expressions of d-axis and q-axis currents of the IPMSM have been derived and subsequently incorporated in the control algorithm for the practical purpose in order to implement fuzzy-based flux-weakening strategy to operate the motor above the base speed. The fundamentals of fuzzy logic algorithms as related to motor control applications are also illustrated. A simplified fuzzy speed controller (FLC for the IPMSM drive has been designed and incorporated in the drive system to maintain high performance standards. The efficacy of the proposed simplified FLC-based IPMSM drive is verified by simulation at various dynamic operating conditions. The simplified FLC is found to be robust and efficient. Laboratory test results of proportional integral (PI controller-based IPMSM drive have been compared with the simulated results of fuzzy controller-based flux-weakening IPMSM drive system.

  20. Semiclassical treatment of laser excitation of the hydrogen atom

    DEFF Research Database (Denmark)

    Billing, Gert D.; Henriksen, Niels Engholm; Leforestier, C.

    1992-01-01

    We present an alternative method for studying excitation of atoms in intense laser fields. In the present paper we focus upon the optical harmonic generation by hydrogen atoms.......We present an alternative method for studying excitation of atoms in intense laser fields. In the present paper we focus upon the optical harmonic generation by hydrogen atoms....

  1. Vibration Analysis of Blade Under Multiple Composite Unsteady Excitations

    Directory of Open Access Journals (Sweden)

    Licheng FANG

    2014-01-01

    Full Text Available In order to understand the effects of the unsteady aerodynamic excitations in complex flow field on blades, on the basis of the data obtained from the single-stage axial flow compressor, three kinds of exciting forms in the compressor had been studied, including the correlation between excitations and responses in the upstream blade row wake, inlet distortion and rotating stall. Results showed that the response characteristics of the unsteady aerodynamic excitation could be extracted by adopting cross-relation method to distinguish effects of different exciting forms on blades. When many kinds of unsteady aerodynamic excitations co-existed, various exciting factors could be extracted from the mixed excitations through the cross-correlation analysis of excitation and response signals and by comparing with the characteristics of single aerodynamic excitation. Simulation data showed that the trail excitation energy on blades focused mainly on high frequency domains, the dynamic excitation of rotating stall centered on low frequency domains the excitation of the inlet distortion on blades existed in both high and low frequencies and amplitude at low frequency was larger than that at high frequency.

  2. Creation of skyrmion through resonance excitation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhi-xiong; Chen, Yi-fu; Zhou, Zhen-wei; Nie, Yao-zhuang; Xia, Qing-lin; Wang, Dao-wei; Guo, Guang-hua, E-mail: guogh@mail.csu.edu.cn

    2017-07-01

    Highlights: • Intrinsic oscillation modes of skyrmion are studied by using micromagnetic simulation. • Creation of skyrmion through resonant excitation is proposed. • The number of generated skyrmions can be effectively controlled by manipulating the driving field. • Skyrmion lattice in extended film is generated via resonant excitation. - Abstract: Controllable creation of magnetic skyrmions in nanostructures is a prerequisite for the application of skyrmions in spintronics. Here, we propose a new method for the creation of skyrmions. We show by using micromagnetic simulations that the skyrmions can be nucleated by resonantly exciting one of the skyrmion intrinsic oscillation modes. We first studied the dynamics of skyrmion in a ferromagnetic nanodisk with perpendicular anisotropy. One breathing mode and two non-degenerate gyrotropic modes are identified. Then we applied a circular-polarized microwave field to excite the uniformly magnetized nanodisk. When the frequency of the driving field is equal to the eigenfrequency of the skyrmion gyrotropic mode, stable skyrmions can be created from the initial uniform state. The number of skyrmions can be effectively controlled by appropriately choosing the duration of the driving field or tuning the field amplitude.

  3. Sensor-fault tolerant control of PMSM in flux-weakening operation using LKF observer

    DEFF Research Database (Denmark)

    Mathe, Laszlo; Kopacz, Csaba; Bede, Lorand

    2012-01-01

    The reliability and high efficiency of the power electronic drives used in electric vehicles is an essential requirement. To achieve high efficiency for the electrical drive system permanent magnet synchronous motors (PMSM) are employed. At high speed operation of the electric vehicles...... the electrical motors usually operate in the so called flux-weakening operation mode. When the control of the PMSM in fluxweakening operation mode is lost (due to untrustworthy position or current feedback signal) high voltage will appear in the DClink which can damage the power switches, the battery...

  4. The signal of ill-defined CPT weakening entanglement in the $B_d$ system

    OpenAIRE

    Bernabeu, Jose; Botella, Francisco J.; Mavromatos, Nick E.; Nebot, Miguel

    2016-01-01

    In the presence of quantum gravity fluctuations (space-time foam), the CPT operator may be ill-defined. Its perturbative treatment leads to a modification of the Einstein-Podolsky-Rosen correlation of the neutral meson system by adding an Entanglement-weakening term of the wrong exchange symmetry, the $\\omega$-effect. In the current paper we identify how to probe the complex $\\omega$ in the entangled $B_d$-system using Flavour(f)-CP(g) eigenstate decay channels: the connection between the Int...

  5. The signal of ill-defined CPT weakening entanglement in the Bd system

    OpenAIRE

    Bernabéu, José; Botella, Francisco J.; Mavromatos, Nick E.; Nebot, Miguel

    2017-01-01

    In the presence of quantum-gravity fluctuations (space-time foam), the CPT operator may be ill-defined. Its perturbative treatment leads to a modification of the Einstein–Podolsky–Rosen correlation of the neutral meson system by adding an entanglement-weakening term of the wrong exchange symmetry, the ω -effect. In the current paper we identify how to probe the complex ω in the entangled Bd -system using the flavour ( f )–CP( g ) eigenstate decay channels: the connection between the intensiti...

  6. Plasmon excitations in two-dimensional atomic cluster systems

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yan-Qin; Yu, Ya-Bin, E-mail: apybyu@hnu.edu.cn; Xue, Hong-Jie; Wang, Ya-Xin; Chen, Jie

    2016-09-01

    Properties of plasmon excitations in two-dimensional (2D) atomic cluster systems are theoretically studied within an extended Hubbard model. The collective oscillation equations of charge, plasmon eigen-equations and the energy-absorption spectrum formula are presented. The calculated results show that different symmetries of plasmons exist in the cluster systems, and the symmetry of charge distribution in the plasmon resonance originate from the intrinsic symmetry of the corresponding eigen-plasmon modes, but not from the symmetry of applied external fields; however, the plasmon excitation with a certain polarization direction should be excited by the field in this direction, the dipole mode of plasmons can be excited by both uniform and non-uniform fields, but multipole ones cannot be excited by an uniform field. In addition, we show that for a given electron density, plasmon spectra are red-shifted with increasing size of the systems.

  7. a simple a simple excitation control excitation control excitation

    African Journals Online (AJOL)

    eobe

    synchronous generator from no-load to full load while maintaining the rated terminal voltage on the stator terminals. The d-q rotor reference frame equations were used for the calculations and it is shown that values of the field voltages determined follow a simple quadratic relationship that offer a very simple control scheme, ...

  8. Sea level rise, surface warming, and the weakened buffering ability of South China Sea to strong typhoons in recent decades

    National Research Council Canada - National Science Library

    Jingru Sun; Leo Oey; F-H Xu; Y-C Lin

    2017-01-01

    ...). Although the storms remain above a warm open sea, the majority of them weaken due to atmospheric and oceanic environments unfavorable for typhoon intensification in SCS, which therefore serves...

  9. Subcritical crack propagation due to chemical rock weakening: macroscale chemo-plasticity and chemo-elasticity modeling

    Science.gov (United States)

    Hueckel, T.; Hu, M.

    2015-12-01

    Crack propagation in a subcritically stressed rock subject to chemically aggressive environment is analyzed and numerically simulated. Chemically induced weakening is often encountered in hydraulic fracturing of low-permeability oil/gas reservoirs and heat reservoirs, during storage of CO2 and nuclear waste corroding canisters, and other circumstances when rock matrix acidizing is involved. Upon acidizing, mineral mass dissolution is substantially enhanced weakening the rock and causing crack propagation and eventually permeability changes in the medium. The crack process zone is modeled mathematically via a chemo-plastic coupling and chemo-elastic coupling model. In plasticity a two-way coupling is postulated between mineral dissolution and a yield limit of rock matrix. The rate of dissolution is described by a rate law, but the mineral mass removal per unit volume is also a function of a variable internal specific surface area, which is in turn affected by the micro-cracking (treated as a plastic strain). The behavior of the rock matrix is modeled as rigid-plastic adding a chemical softening capacity to Cam-Clay model. Adopting the Extended Johnson's approximation of processes around the crack tip, the evolution of the stress field and deformation as a function of the chemically enhanced rock damage is modeled in a simplified way. In addition, chemical reactive transport is made dependent on plastic strain representing micro-cracking. Depending on mechanical and chemical boundary conditions, the area of enhanced chemical softening is near or somewhat away from the crack tip.In elasticity, chemo-mechanical effect is postulated via a chemical volumetric shrinkage strain proportional to mass removal variable, conceived analogously to thermal expansion. Two versions are considered: of constant coefficient of shrinkage and a variable one, coupled to deviatoric strain. Airy Potential approach used for linear elasticity is extended considering an extra term, which is

  10. Excitation Methods for Bridge Structures

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, C.R.; Duffy, T.A.; Cornwell, P.J.; Doebling, S.W.

    1999-02-08

    This paper summarizes the various methods that have been used to excited bridge structures during dynamic testing. The excitation methods fall into the general categories of ambient excitation methods and measured-input excitation methods. During ambient excitation the input to the bridge is not directly measured. In contrast, as the category label implies, measured-input excitations are usually applied at a single location where the force input to the structure can be monitored. Issues associated with using these various types of measurements are discussed along with a general description of the various excitation methods.

  11. Relaxed pollinator-mediated selection weakens floral integration in self-compatible taxa of Leavenworthia (Brassicaceae).

    Science.gov (United States)

    Anderson, Ingrid A; Busch, Jeremiah W

    2006-06-01

    Natural selection should favor the integration of floral traits that enhance pollen export and import in plant populations that rely upon pollinators. If this is true, then phenotypic correlations between floral traits should weaken in self-fertilizing groups that do not require pollinator visitation to produce seed. We tested this hypothesis in Leavenworthia, a plant genus in which there have been multiple independent losses of the sporophytic self-incompatibility system found throughout the Brassicaceae. In particular, we conducted phylogenetically independent contrasts of floral trait correlations between two pairs of self-incompatible (SI) and self-compatible (SC) sister taxa. In support of the hypothesis that pollinator-mediated selection integrates floral traits, we found that both SC Leavenworthia taxa have weaker overall floral correlations in comparison to sister taxa that rely upon pollinators. The two independently derived SC Leavenworthia flowers have significantly weaker stamen-petal or pistil-petal correlations, respectively, whereas the stamen-pistil correlation remains constant. These patterns suggest that relaxation of pollinator-mediated selection weakens the integration of traits associated with pollen export and import. The retention of high stamen-pistil correlations in the SC taxa of Leavenworthia further implies that the integration of these traits is either constrained or maintained by selection favoring the successful transfer of pollen within flowers to secure self-pollination.

  12. Influence of Different Restorative Techniques on the Strength of Endodontically Treated Weakened Roots

    Directory of Open Access Journals (Sweden)

    Khalid H. Alsamadani

    2012-01-01

    Full Text Available Objective. Comparing effect of different restoration techniques on fracture resistance of compromised roots. Methods. Crowns of 100 single-rooted teeth were sectioned and 10 roots were kept as negative control group (Group 1. Remaining roots were instrumented and divided into one and positive control group of 10 samples (Group 2 and 4 experimental groups of 20 samples each. Group 3: roots were obturated with gutta-percha; Group 4: roots were restored with gutta-percha, composite, and glass fiber post; Group 5: roots were obturated with Resilon; Group 6: Roots were restored with Resilon, composite, and glass fiber post. Roots were weakened before obturation in groups 2, 3, and 5 and after obturation in groups 4 and 6. Fracture strengths were measured using Dartec testing machine and fracture load was recorded in kilo-Newton. Statistical analysis was done using ANOVA and Tukeys test. Results. The fractures resistance of restored roots was significantly higher in groups 4, 5, and 6 than in Groups 2 and 3. There were no significant differences between groups 1, 4, 5, and 6. Conclusions. Restoration of weakened roots with Resilon or bonding an intermediate composite resin to coronal radicular dentin and to glass fiber post increased their fracture resistance.

  13. Think leader, think White? Capturing and weakening an implicit pro-White leadership bias.

    Science.gov (United States)

    Gündemir, Seval; Homan, Astrid C; de Dreu, Carsten K W; van Vugt, Mark

    2014-01-01

    Across four studies, we found evidence for an implicit pro-White leadership bias that helps explain the underrepresentation of ethnic minorities in leadership positions. Both White-majority and ethnic minority participants reacted significantly faster when ethnically White names and leadership roles (e.g., manager; Study 1) or leadership traits (e.g., decisiveness; Study 2 & 3) were paired in an Implicit Association Test (IAT) rather than when ethnic minority names and leadership traits were paired. Moreover, the implicit pro-White leadership bias showed discriminant validity with the conventional implicit bias measures (Study 3). Importantly, results showed that the pro-White leadership bias can be weakened when situational cues increase the salience of a dual identity (Study 4). This, in turn, can diminish the explicit pro-White bias in promotion related decision making processes (Study 4). This research offers a new tool to measure the implicit psychological processes underlying the underrepresentation of ethnic minorities in leadership positions and proposes interventions to weaken such biases.

  14. Think leader, think White? Capturing and weakening an implicit pro-White leadership bias.

    Directory of Open Access Journals (Sweden)

    Seval Gündemir

    Full Text Available Across four studies, we found evidence for an implicit pro-White leadership bias that helps explain the underrepresentation of ethnic minorities in leadership positions. Both White-majority and ethnic minority participants reacted significantly faster when ethnically White names and leadership roles (e.g., manager; Study 1 or leadership traits (e.g., decisiveness; Study 2 & 3 were paired in an Implicit Association Test (IAT rather than when ethnic minority names and leadership traits were paired. Moreover, the implicit pro-White leadership bias showed discriminant validity with the conventional implicit bias measures (Study 3. Importantly, results showed that the pro-White leadership bias can be weakened when situational cues increase the salience of a dual identity (Study 4. This, in turn, can diminish the explicit pro-White bias in promotion related decision making processes (Study 4. This research offers a new tool to measure the implicit psychological processes underlying the underrepresentation of ethnic minorities in leadership positions and proposes interventions to weaken such biases.

  15. Think Leader, Think White? Capturing and Weakening an Implicit Pro-White Leadership Bias

    Science.gov (United States)

    Gündemir, Seval; Homan, Astrid C.; de Dreu, Carsten K. W.; van Vugt, Mark

    2014-01-01

    Across four studies, we found evidence for an implicit pro-White leadership bias that helps explain the underrepresentation of ethnic minorities in leadership positions. Both White-majority and ethnic minority participants reacted significantly faster when ethnically White names and leadership roles (e.g., manager; Study 1) or leadership traits (e.g., decisiveness; Study 2 & 3) were paired in an Implicit Association Test (IAT) rather than when ethnic minority names and leadership traits were paired. Moreover, the implicit pro-White leadership bias showed discriminant validity with the conventional implicit bias measures (Study 3). Importantly, results showed that the pro-White leadership bias can be weakened when situational cues increase the salience of a dual identity (Study 4). This, in turn, can diminish the explicit pro-White bias in promotion related decision making processes (Study 4). This research offers a new tool to measure the implicit psychological processes underlying the underrepresentation of ethnic minorities in leadership positions and proposes interventions to weaken such biases. PMID:24416181

  16. Was the East Mediterranean deep thermohaline cell weakening during 2006-2009?

    Energy Technology Data Exchange (ETDEWEB)

    Kontoyiannis, H., E-mail: hk@ath.hcmr.gr; Lykoysis, V.

    2011-01-21

    The East Mediterranean deep thermohaline cell is a series of processes that refer to the water sinking during winter at specific locations and the subsequent spreading that fills the deep near-bottom layers of the East Mediterranean with oxygen-rich water masses. These waters tend to preserve the hydrologic characteristics (temperature, salinity, and transparency) of their formation region. Hydrographic sections offshore from Cape Passero (west Ionian Sea) and near the southwest tip of Peloponnisos (east Ionian Sea), in the framework of the deep-neutrino-telescope-related KM3net program, cut through a bottom plume of Adriatic water at {approx}3500 m in the southwest Ionian and a deep vein at {approx}3200 m of Cretan water in the southeast Ionian. In the period 2006-2009, the Adriatic plume, originally characterized by a strong signal of locally higher salinity and oxygen and lower transparency in the near-bottom 500 m, tends to weaken and shrink within the near-bottom {approx}200 m in 2009. This weakening trend may be associated with the relatively warm/mild winters following 2006. It may be typical inter-annual variability or a signature of global warming in which case an expected prolonged continuation can potentially affect the deep oxygen supply.

  17. Weakening and shift of the Arctic stratospheric polar vortex: Internal variability or forced response?

    Science.gov (United States)

    Seviour, William J. M.

    2017-04-01

    Recent studies have proposed that the Arctic stratospheric polar vortex has weakened and shifted away from the North Pole during the past three decades. Some of these studies suggest that this trend has been driven by a decline in Arctic sea ice leading to enhanced zonal wave number 1 waves propagating into the stratosphere and that it has in turn contributed to a recent wintertime surface cooling over North America and some parts of Eurasia. Here trends in several measures of the location and strength of the stratospheric polar vortex from 1980 to 2016 are examined in two reanalysis products. All measures show weakening and equatorward shift trends, but only one measure, the vortex centroid latitude, has a trend which is statistically significant at the 95% level in both reanalyses. By comparing large ensembles of historical simulations with preindustrial control simulations for two coupled climate models, the ensemble mean response of the vortex is found to be small relative to internal variability. There is also no relationship between sea ice decline and trends in either vortex location or strength. Despite this, individual ensemble members are found to have vortex trends similar to those observed, indicating that these trends may be primarily a result of natural internally generated climate variability.

  18. Aerosol-weakened summer monsoons decrease lake fertilization on the Chinese Loess Plateau

    Science.gov (United States)

    Liu, Jianbao; Rühland, Kathleen M.; Chen, Jianhui; Xu, Yangyang; Chen, Shengqian; Chen, Qiaomei; Huang, Wei; Xu, Qinghai; Chen, Fahu; Smol, John P.

    2017-02-01

    Anthropogenic aerosol increases over the past few decades have weakened the Asian summer monsoon with potentially far-reaching socio-economic and ecological repercussions. However, it is unknown how these changes will affect freshwater ecosystems that are important to densely populated regions of Asia. High-resolution diatom records and other proxy data archived in lake sediment cores from the Chinese Loess Plateau allow the comparison of summer monsoon intensity, lake trophic status and aquatic ecosystem responses during warming periods over the past two millennia. Here we show that an abrupt shift towards eutrophic limnological conditions coincided with historical warming episodes, marked by increased wind intensity and summer monsoon rainfall leading to phosphorus-laden soil erosion and natural lake fertilization. In contrast, aerosol-affected Anthropocene warming catalysed a marked weakening in summer monsoon intensity leading to decreases in soil erosion and lake mixing. The recent warm period triggered a strikingly different aquatic ecosystem response with a limnological regime shift marked by turnover in diatom species composition now dominated by oligotrophic taxa, consistent with reductions in nutrient fertilization, reduced ice cover and increased thermal stratification. Anthropogenic aerosols have altered climate-monsoon dynamics that are unparalleled in the past ~2,000 years, ushering in a new ecological state.

  19. Malfunction of subpectorally implanted cardiac resynchronization therapy defibrillators due to weakened header bond.

    Science.gov (United States)

    Hayat, Sajad A; Kojodjojo, Pipin; Mason, Anthony; Benfield, Ann; Wright, Ian; Whinnett, Zachary; Lim, Phang Boon; Davies, D Wyn; Lefroy, David; Peters, Nicholas S; Kanagaratnam, Prapa

    2013-03-01

    Implantable cardioverter defibrillator (ICD) implantation has increased significantly over the last 10 years. Concerns about the safety and reliability of ICD systems have been raised, with premature lead failure and battery malfunctions accounting for the majority of reported adverse events. We describe the unique mode of presentation, diagnosis, and management of cardiac resynchronization therapy defibrillators (CRT-D) malfunctions that were caused by weakened bonding between the generator and header. Between June 2008 and December 2009, 22 Teligen™ ICDs and 24 Cognis™ CRT-Ds were implanted subpectorally at our institution, until a product advisory was issued. Of 24 Cognis™ CRT-D implants, 3 patients presented with CRT-D malfunctions. All our cases presented with initially intermittent and then persisting increases in shock lead impedance, associated with nonphysiological noise in the shock electrogram channels. These issues were rectified by generator change. Postexplant laboratory analysis confirmed inadequate bonding between device header and titanium casing in all cases, resulting in loosening and rocking of the header followed by fatigue-induced fracture of the shock circuitry. Weakened bonding between the header and generator casing of subpectorally implanted CRT-Ds can result in fractures and malfunction of the HV circuit. Physicians monitoring patients with devices affected by the product advisory should remain vigilant in order to diagnose and manage similar device malfunction expediently. © 2012 Wiley Periodicals, Inc.

  20. Insights into anisotropy development and weakening of ice from in situ P wave velocity monitoring during laboratory creep

    Science.gov (United States)

    Vaughan, M. J.; Prior, D. J.; Jefferd, M.; Brantut, N.; Mitchell, T. M.; Seidemann, M.

    2017-09-01

    Polycrystalline ice weakens significantly after a few percent strain, during high homologous temperature deformation. Weakening is correlated broadly with the development of a crystallographic preferred orientation (CPO). We deformed synthetic polycrystalline ice at -5°C under uniaxial compression, while measuring ultrasonic P wave velocities along several raypaths through the sample. Changes in measured P wave velocities (Vp) and in the velocities calculated from microstructural measurements of CPO (by cryo-electron backscatter diffraction) both show that velocities along trajectories parallel and perpendicular to shortening decrease with increasing strain, while velocities on diagonal trajectories increase. Thus, in these experiments, velocity data provide a continuous measurement of CPO evolution in creeping ice. Samples reach peak stresses after 1% shortening. Weakening corresponds to the start of CPO development, as indicated by divergence of P wave velocity changes for different raypaths, and initiates at ≈3% shortening. Selective growth by strain-induced grain boundary migration (GBM) of grains favorably oriented for basal slip may initiate weakening through the formation of an interconnected network of these grains by 3% shortening. After weakening initiates, CPO continues to develop by GBM and nucleation processes. The resultant CPO has an open cone (small circle) configuration, with the cone axis parallel to shortening. The development of this CPO causes significant weakening under uniaxial compression, where the shear stresses resolved on the basal planes (Schmid factors) are high.

  1. Extracting excited mesons from the finite volume

    Energy Technology Data Exchange (ETDEWEB)

    Doring, Michael [George Washington Univ., Washington, DC (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2014-12-01

    As quark masses come closer to their physical values in lattice simulations, finite volume effects dominate the level spectrum. Methods to extract excited mesons from the finite volume are discussed, like moving frames in the presence of coupled channels. Effective field theory can be used to stabilize the determination of the resonance spectrum.

  2. Positron excitation of neon

    Science.gov (United States)

    Parcell, L. A.; Mceachran, R. P.; Stauffer, A. D.

    1990-01-01

    The differential and total cross section for the excitation of the 3s1P10 and 3p1P1 states of neon by positron impact were calculated using a distorted-wave approximation. The results agree well with experimental conclusions.

  3. Hardness and excitation energy

    Indian Academy of Sciences (India)

    It is shown that the first excitation energy can be given by the Kohn-Sham hardness (i.e. the energy difference of the ground-state lowest unoccupied and highest occupied levels) plus an extra term coming from the partial derivative of the ensemble exchange-correlation energy with respect to the weighting factor in the ...

  4. Excitation of Stellar Pulsations

    DEFF Research Database (Denmark)

    Houdek, G.

    2012-01-01

    In this review I present an overview of our current understanding of the physical mechanisms that are responsible for the excitation of pulsations in stars with surface convection zones. These are typically cooler stars such as the δ Scuti stars, and stars supporting solar-like oscillations....

  5. Statistical dynamo theory: Mode excitation.

    Science.gov (United States)

    Hoyng, P

    2009-04-01

    We compute statistical properties of the lowest-order multipole coefficients of the magnetic field generated by a dynamo of arbitrary shape. To this end we expand the field in a complete biorthogonal set of base functions, viz. B= summation operator_{k}a;{k}(t)b;{k}(r) . The properties of these biorthogonal function sets are treated in detail. We consider a linear problem and the statistical properties of the fluid flow are supposed to be given. The turbulent convection may have an arbitrary distribution of spatial scales. The time evolution of the expansion coefficients a;{k} is governed by a stochastic differential equation from which we infer their averages a;{k} , autocorrelation functions a;{k}(t)a;{k *}(t+tau) , and an equation for the cross correlations a;{k}a;{l *} . The eigenfunctions of the dynamo equation (with eigenvalues lambda_{k} ) turn out to be a preferred set in terms of which our results assume their simplest form. The magnetic field of the dynamo is shown to consist of transiently excited eigenmodes whose frequency and coherence time is given by Ilambda_{k} and -1/Rlambda_{k} , respectively. The relative rms excitation level of the eigenmodes, and hence the distribution of magnetic energy over spatial scales, is determined by linear theory. An expression is derived for |a;{k}|;{2}/|a;{0}|;{2} in case the fundamental mode b;{0} has a dominant amplitude, and we outline how this expression may be evaluated. It is estimated that |a;{k}|;{2}/|a;{0}|;{2} approximately 1/N , where N is the number of convective cells in the dynamo. We show that the old problem of a short correlation time (or first-order smoothing approximation) has been partially eliminated. Finally we prove that for a simple statistically steady dynamo with finite resistivity all eigenvalues obey Rlambda_{k}<0 .

  6. Turbulent swirling jets with excitation

    Science.gov (United States)

    Taghavi, Rahmat; Farokhi, Saeed

    1988-01-01

    An existing cold-jet facility at NASA Lewis Research Center was modified to produce swirling flows with controllable initial tangential velocity distribution. Two extreme swirl profiles, i.e., one with solid-body rotation and the other predominated by a free-vortex distribution, were produced at identical swirl number of 0.48. Mean centerline velocity decay characteristics of the solid-body rotation jet flow exhibited classical decay features of a swirling jet with S - 0.48 reported in the literature. However, the predominantly free-vortex distribution case was on the verge of vortex breakdown, a phenomenon associated with the rotating flows of significantly higher swirl numbers, i.e., S sub crit greater than or equal to 0.06. This remarkable result leads to the conclusion that the integrated swirl effect, reflected in the swirl number, is inadequate in describing the mean swirling jet behavior in the near field. The relative size (i.e., diameter) of the vortex core emerging from the nozzle and the corresponding tangential velocity distribution are also controlling factors. Excitability of swirling jets is also investigated by exciting a flow with a swirl number of 0.35 by plane acoustic waves at a constant sound pressure level and at various frequencies. It is observed that the cold swirling jet is excitable by plane waves, and that the instability waves grow about 50 percent less in peak r.m.s. amplitude and saturate further upstream compared to corresponding waves in a jet without swirl having the same axial mass flux. The preferred Strouhal number based on the mass-averaged axial velocity and nozzle exit diameter for both swirling and nonswirling flows is 0.4.

  7. A novel excitation assistance switched reluctance wind power generator

    DEFF Research Database (Denmark)

    Liu, Xiao; Park, Kiwoo; Chen, Zhe

    2014-01-01

    The high inductance of a general switched reluctance generator (SRG) may prevent the excitation of the magnetic field from being quickly established enough, which may further limit the output power of the SRG. A novel excitation assistance SRG (EASRG) for wind power generation is proposed...

  8. Between the processes of strengthening and weakening of the Family Health Strategy

    Directory of Open Access Journals (Sweden)

    Regina Stella Spagnuolo

    2013-06-01

    Full Text Available This was a qualitative study with the purpose of designing a meta-model for the work process of the Family Health Strategy (FHS team. It was based on the experience of six sample groups, composed of their members (physicians, professional nurses, dentists, dental assistants, licensed technical nurses and community health agents in a city in São Paulo state, Brazil, totaling 54 subjects. Six theoretical models emerged from non-directive interviews. These were analyzed according to Grounded Theory and submitted to the meta-synthesis strategy, which produced the meta-model "between the processes of strengthening and weakening of the FHS model: professional-team-community reciprocity as an intervening component". When analyzed in light of the Theory of Complexity (TC, it showed to be a work with a vertical and authoritarian tendency, which is largely hegemonic in the tradition of public health care policies.

  9. Water weakening of chalk explaied from a fluid-solid friction factor

    DEFF Research Database (Denmark)

    Andreassen, Katrine Alling; Fabricius, Ida Lykke

    2010-01-01

    to where it is dominated by inertial forces, i.e. when the pore fluid motion lags behind the applied frequency. It is therefore a measure of the internal surface friction between solid and fluid which can be interpreted as a friction factor on the pore scale and we propose it can be extrapolated...... using the Biot critical frequency as a single reference. Other viscoplastic parameters were investigated in the same manner to verify the range of the functioning of the friction factor. The findings show that the Biot critical frequency can be used as a common friction factor and is useful in combining...... laboratory results. It is also inferred that the observed water weakening phenomenon may be attributed to the friction between solid and fluid....

  10. Weakening of the diamagnetic shielding in FeSe1 -xSx at high pressures

    Science.gov (United States)

    Yip, K. Y.; Chan, Y. C.; Niu, Q.; Matsuura, K.; Mizukami, Y.; Kasahara, S.; Matsuda, Y.; Shibauchi, T.; Goh, Swee K.

    2017-07-01

    The superconducting transition of FeSe1 -xSx with three distinct sulfur concentrations x was studied under hydrostatic pressures up to ˜70 kbar via bulk ac susceptibility. The pressure dependence of the superconducting transition temperature (Tc) features a small dome-shaped variation at low pressures for x =0.04 and x =0.12 , followed by a more substantial Tc enhancement to a value of around 30 K at moderate pressures. In x =0.21 , a similar overall pressure dependence of Tc is observed, except that the small dome at low pressures is flattened. For all three concentrations, a significant weakening of the diamagnetic shielding is observed beyond the pressure around which the maximum Tc of 30 K is reached near the verge of the pressure-induced magnetic phase. This observation points to a strong competition between the magnetic and high-Tc superconducting states at high pressure in this system.

  11. Absence makes the heart grow fonder: social compensation when failure to interact risks weakening a relationship

    CERN Document Server

    Bhattacharya, Kunal; Monsivais, Daniel; Dunbar, Robin; Kaski, Kimmo

    2016-01-01

    Social networks require active relationship maintenance if they are to be kept at a constant level of emotional closeness. For primates, including humans, failure to interact leads inexorably to a decline in relationship quality, and a consequent loss of the benefits that derive from individual relationships. As a result, many social species compensate for weakened relationships by investing more heavily in them. Here we study how humans behave in similar situations, using data from mobile call detail records from a European country. For the less frequent contacts between pairs of communicating individuals we observe a logarithmic dependence of the duration of the succeeding call on the time gap with the previous call. We find that such behaviour is likely when the individuals in these dyadic pairs have the same gender and are in the same age bracket as well as being geographically distant. Our results indicate that these pairs deliberately invest more time in communication so as to reinforce their social bon...

  12. Arctic sea-ice decline weakens the Atlantic Meridional Overturning Circulation

    Science.gov (United States)

    Sévellec, Florian; Fedorov, Alexey V.; Liu, Wei

    2017-08-01

    The ongoing decline of Arctic sea ice exposes the ocean to anomalous surface heat and freshwater fluxes, resulting in positive buoyancy anomalies that can affect ocean circulation. In this study, we use an optimal flux perturbation framework and comprehensive climate model simulations to estimate the sensitivity of the Atlantic Meridional Overturning Circulation (AMOC) to such buoyancy forcing over the Arctic and globally, and more generally to sea-ice decline. It is found that on decadal timescales, flux anomalies over the subpolar North Atlantic have the largest impact on the AMOC, while on multi-decadal timescales (longer than 20 years), flux anomalies in the Arctic become more important. These positive buoyancy anomalies spread to the North Atlantic, weakening the AMOC and its poleward heat transport. Therefore, the Arctic sea-ice decline may explain the suggested slow-down of the AMOC and the `Warming Hole’ persisting in the subpolar North Atlantic.

  13. Excitable scale free networks

    Science.gov (United States)

    Copelli, M.; Campos, P. R. A.

    2007-04-01

    When a simple excitable system is continuously stimulated by a Poissonian external source, the response function (mean activity versus stimulus rate) generally shows a linear saturating shape. This is experimentally verified in some classes of sensory neurons, which accordingly present a small dynamic range (defined as the interval of stimulus intensity which can be appropriately coded by the mean activity of the excitable element), usually about one or two decades only. The brain, on the other hand, can handle a significantly broader range of stimulus intensity, and a collective phenomenon involving the interaction among excitable neurons has been suggested to account for the enhancement of the dynamic range. Since the role of the pattern of such interactions is still unclear, here we investigate the performance of a scale-free (SF) network topology in this dynamic range problem. Specifically, we study the transfer function of disordered SF networks of excitable Greenberg-Hastings cellular automata. We observe that the dynamic range is maximum when the coupling among the elements is critical, corroborating a general reasoning recently proposed. Although the maximum dynamic range yielded by general SF networks is slightly worse than that of random networks, for special SF networks which lack loops the enhancement of the dynamic range can be dramatic, reaching nearly five decades. In order to understand the role of loops on the transfer function we propose a simple model in which the density of loops in the network can be gradually increased, and show that this is accompanied by a gradual decrease of dynamic range.

  14. Weakening of salmonella with selected microbial metabolites of berry-derived phenolic compounds and organic acids.

    Science.gov (United States)

    Alakomi, Hanna-Leena; Puupponen-Pimiä, Riitta; Aura, Anna-Marja; Helander, Ilkka M; Nohynek, Liisa; Oksman-Caldentey, Kirsi-Marja; Saarela, Maria

    2007-05-16

    Gram-negative bacteria are important food spoilage and pathogenic bacteria. Their unique outer membrane (OM) provides them with a hydrophilic surface structure, which makes them inherently resistant to many antimicrobial agents, thus hindering their control. However, with permeabilizers, compounds that disintegrate and weaken the OM, Gram-negative cells can be sensitized to several external agents. Although antimicrobial activity of plant-derived phenolic compounds has been widely reported, their mechanisms of action have not yet been well demonstrated. The aim of our study was to elucidate the role of selected colonic microbial metabolites of berry-derived phenolic compounds in the weakening of the Gram-negative OM. The effect of the agents on the OM permeability of Salmonella was studied utilizing a fluorescence probe uptake assay, sensitization to hydrophobic antibiotics, and lipopolysaccharide (LPS) release. Our results show that 3,4-dihydroxyphenylacetic acid, 3-hydroxyphenylacetic acid, 3-(3,4-dihydroxyphenyl)propionic acid (3,4-diHPP), 3-(4-hydroxyphenyl)propionic acid, 3-phenylpropionic acid, and 3-(3-hydroxyphenyl)propionic acid efficiently destabilized the OM of Salmonella enterica subsp. enterica serovar Typhimurium and S. enterica subsp. enterica serovar Infantis as indicated by an increase in the uptake of the fluorescent probe 1-N-phenylnaphthylamine (NPN). The OM-destabilizing activity of the compounds was partially abolished by MgCl2 addition, indicating that part of their activity is based on removal of OM-stabilizing divalent cations. Furthermore, 3,4-dihydroxyphenylacetic acid, 3-hydroxyphenylacetic acid, and 3,4-diHPP increased the susceptibility of S. enterica subsp. enterica serovar Typhimurium strains for novobiocin. In addition, organic acids present in berries, such as malic acid, sorbic acid, and benzoic acid, were shown to be efficient permeabilizers of Salmonella as shown by an increase in the NPN uptake assay and by LPS release.

  15. Biomechanical Weakening of Different Re-treatment Options After Small Incision Lenticule Extraction (SMILE).

    Science.gov (United States)

    Kling, Sabine; Spiru, Bogdan; Hafezi, Farhad; Sekundo, Walter

    2017-03-01

    To determine the corneal weakening induced by different re-treatment options after small incision lenticule extraction (SMILE) and investigate the potential of corneal cross-linking (CXL) to reestablish the original corneal stress resistance. A total of 96 freshly enucleated porcine corneas were used. The initial refractive correction was defined to be -11.00 diopters (D) and the required enhancement to be -3.00 D. Three different re-treatment options were analyzed: -3D Re-SMILE, -3D photorefractive keratectomy (PRK) on top of the SMILE cap, and cap-to-flap conversion and -3D excimer ablation on the stromal bed (LASIK). The control condition did not receive any treatment. Subsequently, accelerated CXL (9 mW/cm2, 10 min) was performed in two groups with currently common enhancement techniques: following cap-to-flap conversion (-3D LASIK enhancement) and in controls. Biomechanical properties were measured with stress-strain extensometry ranging from 1.27 to 12.5 N. The Re-SMILE and PRK enhancement did not significantly reduce the overall elastic modulus of the cornea compared to controls (24.7 ± 2.23 and 22.7 ± 2.61 versus 23.8 ± 3.35 MPa, P ≥ .176), whereas LASIK enhancement did (22.2 ± 3.37 MPa, P = .048). CXL treatment significantly increased the elastic modulus compared to all non-cross-linked conditions (P ≤.001). Refractive surgery decreased the overall elastic modulus by 7%, whereas CXL increased it by 20%. In enhancement, the corneal biomechanical integrity is less affected with both Re-SMILE and PRK enhancement. Corneal weakening through laser refractive surgery is small compared to the stiffening effect after CXL. [J Refract Surg. 2017;33(3):193-198.]. Copyright 2017, SLACK Incorporated.

  16. Predictive simulation of diabetic gait: Individual contribution of ankle stiffness and muscle weakening.

    Science.gov (United States)

    Santos, Gilmar F; Gomes, Aline A; Sacco, Isabel C N; Ackermann, Marko

    2017-10-01

    Diabetic neuropathic individuals present massive muscle strength reduction at the ankle plantar- and dorsiflexors and increased joint stiffness. Our aim is to investigate the adaptation strategies to these musculoskeletal alterations during walking by means of predictive simulations. We used a seven segment planar musculoskeletal model actuated by eight Hill-type muscles in each leg. The effect of all passive tissue in muscles and other joint structures was modeled by net passive joint moment curves. The predictive simulations were generated by solving an optimal control problem that minimized a cost function, including effort and tracking terms, using direct collocation and a commercial optimal control package. We simulate four conditions to represent the weakening of the distal muscles triceps sural (TS) and tibialis anterior (TA), and five conditions to represent the effect of increasing nonlinear ankle stiffness in flexion. The weakening of the distal muscles leads to a delayed action of the TS and a progressive decrease of the gastrocnemius peak force in the push-off phase. This distal deficit is compensated by a larger hip flexion moment resulting from an increase in the iliopsoas muscle force in this phase, known as the hip strategy. The adaptation mechanisms observed in response to an increase in ankle stiffness include the hip strategy and the exploitation of the passive joint structures as springs, which store energy during midstance and release it during push-off, reducing TS force and power in this phase and leading to a consistent decrease in the overall muscle force levels. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The transition of dynamic rupture styles in elastic media under velocity-weakening friction

    KAUST Repository

    Gabriel, A.-A.

    2012-09-01

    Although kinematic earthquake source inversions show dominantly pulse-like subshear rupture behavior, seismological observations, laboratory experiments and theoretical models indicate that earthquakes can operate with different rupture styles: either as pulses or cracks, that propagate at subshear or supershear speeds. The determination of rupture style and speed has important implications for ground motions and may inform about the state of stress and strength of active fault zones. We conduct 2D in-plane dynamic rupture simulations with a spectral element method to investigate the diversity of rupture styles on faults governed by velocity-and-state-dependent friction with dramatic velocity-weakening at high slip rate. Our rupture models are governed by uniform initial stresses, and are artificially initiated. We identify the conditions that lead to different rupture styles by investigating the transitions between decaying, steady state and growing pulses, cracks, sub-shear and super-shear ruptures as a function of background stress, nucleation size and characteristic velocity at the onset of severe weakening. Our models show that small changes of background stress or nucleation size may lead to dramatic changes of rupture style. We characterize the asymptotic properties of steady state and self-similar pulses as a function of background stress. We show that an earthquake may not be restricted to a single rupture style, but that complex rupture patterns may emerge that consist of multiple rupture fronts, possibly involving different styles and back-propagating fronts. We also demonstrate the possibility of a super-shear transition for pulse-like ruptures. Finally, we draw connections between our findings and recent seismological observations.

  18. Springing response due to bidirectional wave excitation

    DEFF Research Database (Denmark)

    Vidic-Perunovic, Jelena

    2005-01-01

    Springing is a two-node high frequency resonant vibration of the hull induced by unsteady wave pressure field on the hull. The excitation force may be rather complex - any wave activity (or their combination) in the Ocean matching the two-node natural hull vibration frequency. With some ship...... designs the hull natural frequency may get low enough that the corresponding level of excitation energy becomes large. Springing vibration negatively influences the fatigue life of the ship but, paradoxically, it still doesn't get much attention of the technical society. Usually, non-linear hydroelastic...... theories deal with the unidirectional wave excitation. This is quite standard. The problem is how to include more than one directional wave systems described by a wave spectrum with arbitrary heading. The main objective of the present work has been to account for the additional second-order springing...

  19. Sigma-1 Receptor and Neuronal Excitability.

    Science.gov (United States)

    Kourrich, Saïd

    2017-01-01

    The sigma-1 receptor (Sig-1R), via interaction with various proteins, including voltage-gated and ligand-gated ion channels (VGICs and LGICs), is involved in a plethora of neuronal functions. This capability to regulate a variety of ion channel targets endows the Sig-1R with a powerful capability to fine tune neuronal excitability, and thereby the transmission of information within brain circuits. This versatility may also explain why the Sig-1R is associated to numerous diseases at both peripheral and central levels. To date, how the Sig-1R chooses its targets and how the combinations of target modulations alter overall neuronal excitability is one of the challenges in the field of Sig-1R-dependent regulation of neuronal activity. Here, we will describe and discuss the latest findings on Sig-1R-dependent modulation of VGICs and LGICs, and provide hypotheses that may explain the diverse excitability outcomes that have been reported so far.

  20. Three-dimensional MRI with independent slab excitation and encoding.

    Science.gov (United States)

    Eissa, Amir; Wilman, Alan H

    2012-02-01

    Three-dimensional MRI is typically performed with the same orientation for radiofrequency slab excitation and slab select phase encoding. We introduce independent slab excitation and encoding to create a new degree of freedom in three-dimensional MRI, which is the angular relationship between the prescribed excitation volume and the voxel encoding grid. By separating the directions of slab excitation and slab phase encoding, the independent slab excitation and encoding method allows choice of optimal voxel orientation, while maintaining volume excitation based on anatomic landmarks. The method requires simple pulse sequence modifications and uses standard image reconstruction followed by removal of aliasing and image reformatting. The independent slab excitation and encoding method enables arbitrary oblique angle imaging using fixed voxel encoding gradients to maintain similar eddy current, concomitant field, or magnetic dipole effects independent of the oblique angle of excitation. We apply independent slab excitation and encoding to phase and susceptibility-weighted imaging using fixed voxel encoding aligned with the main magnetic field to demonstrate its value in both standardizing and improving image contrast, when using arbitrary oblique imaging volumes. Copyright © 2011 Wiley Periodicals, Inc.

  1. Ion-Beam-Excited Electrostatic Ion Cyclotron Waves

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1976-01-01

    Self-excited electrostatic ion cyclotron waves were observed in an ion-beam-plasma system produced in a DP-operated Q-machine. The frequency of the waves showed the theoretically predicted variation with the magnetic field.......Self-excited electrostatic ion cyclotron waves were observed in an ion-beam-plasma system produced in a DP-operated Q-machine. The frequency of the waves showed the theoretically predicted variation with the magnetic field....

  2. Quantum control of vibrational excitations in a heteronuclear ...

    Indian Academy of Sciences (India)

    Optimal control theory is applied to obtain infrared laser pulses for selective vibrational excitation in a heteronuclear diatomic molecule. The problem of finding the optimized field is phrased as a maximization of a cost functional which depends on the laser field. A time dependent Gaussian factor is introduced in the field ...

  3. Quantum Phase Transition of Polaritonic Excitations in a Multi-Excitation Coupled Array

    Science.gov (United States)

    Shen, Lituo; Chen, Rongxin; Wu, Huaizhi; Yang, Zhenbiao; Irish, E. K.; Zheng, Shibiao

    2017-11-01

    We analyze the quantum phase transition-like behavior in the lowest energy state of a two-site coupled atom-cavity system, where each cavity contains one atom but the total excitation number is not limited to two. Under the large-detuning condition, we identify an interesting coexisting phase involving characteristics of both photonic superfluid and atomic insulator, which has not been previously revealed. For small hopping, we find that the signature of the photonic superfluid state becomes more pronounced with the increase in total excitation number, and that the boundaries of the various phases shift with respect to the case of two excitations. In the limit of small atom-field interaction, the polaritonic superfluid region becomes broader as the total excitation number increases. We use alternative order parameters to characterize the nonclassical property in the lowest-energy state, and find that the entanglement of photons in the photonic superfluid state has an approximately quadratic-like dependence on the total excitation number within the large-detuning limits. The second-order cross-correlation function is demonstrated to become inversely proportional to the total excitation number in the large detuning limits.

  4. Modelling of fault reactivation and fault slip in producing gas fields using a slip-weakening friction law.

    NARCIS (Netherlands)

    Wassing, B.B.T., Buijze, L., Orlic, B.

    2016-01-01

    Geomechanical numerical simulations were conducted to analyze the stability of faults during gas production. A FLAC3D model of a fault intersecting a producing gas reservoir was developed which incorporates the fully dynamic behavior of the fault and surrounding rock mass, and a fault frictional

  5. The Research on Full-speed Field Weakening Control Method of Electric Vehicle Interior Permanent Magnet Synchronous Motor

    National Research Council Canada - National Science Library

    Run-Ze Gao; Li Zhai; Li-Wei Su

    2017-01-01

    The motor drive system represents a key technology for development of the electrical vehicles, and the permanent magnet synchronous motor becomes the mainstream of the new energy vehicle drive motor...

  6. Weakening Pin Bone Attachment in Fish Fillets Using High-Intensity Focused Ultrasound

    Directory of Open Access Journals (Sweden)

    Martin H. Skjelvareid

    2017-09-01

    Full Text Available High Intensity Focused Ultrasound (HIFU can be used for the localized heating of biological tissue through the conversion of sound waves into heat. Although originally developed for human medicine, HIFU may also be used to weaken the attachment of pin bones in fish fillets to enable easier removal of such bones. This was shown in the present study, where a series of experiments were performed on HIFU phantoms and fillets of cod and salmon. In thin objects such as fish fillets, the heat is mainly dissipated at the surfaces. However, bones inside the fillet absorb ultrasound energy more efficiently than the surrounding tissue, resulting in a “self-focusing” heating of the bones. Salmon skin was found to effectively block the ultrasound, resulting in a significantly lower heating effect in fillets with skin. Cod skin partly blocked the ultrasound, but only to a small degree, enabling HIFU treatment through the skin. The treatment of fillets to reduce the pin bone attachment yielded an average reduction in the required pulling force by 50% in cod fillets with skin, with little muscle denaturation, and 72% in skinned fillets, with significant muscle denaturation. Salmon fillets were treated from the muscle side of the fillet to circumvent the need for penetration through skin. The treatment resulted in a 30% reduction in the peak pulling force and 10% reduction in the total pulling work, with a slight denaturation of the fillet surface.

  7. Rehabilitation of weakened premolars with a new polyfiber post and adhesive materials

    Directory of Open Access Journals (Sweden)

    Marcia Rachel Costa Braga

    2015-01-01

    Full Text Available Background: Polyfiber posts used inside the root canal can help to restore the fracture resistance of weakened premolars. Aim: To assess the fracture resistance of endodontically treated premolars restored with different techniques, including the new polyfiber post (Spirapost. Materials and Methods: One hundred superior premolars were distributed into 10 groups (n = 10: Sound teeth (G1-positive control and experimental (G2 to G10, which received MODP cavities and canal treatment. Groups were restored as follows: G2 - unrestored (negative control; G3 - microhybrid resin (MR; G4 - flowable resin (FR + (MR; G5 - glass fiber post (Reforpost + MR; G6 - Reforpost + FR + MR; G7 - polyethylene fiber (Ribbond + MR; G8 - Ribbond + FR + MR; G9 - polyfiber post (Spirapost + MR and G10 - Spirapost + FR + MR. After 24 h, the specimens were loaded until fracture. Data were analyzed by ANOVA and Tukey's test (P 0.05 and different from the others (P < 0.05. Inferior values were found in G2 (P < 0.05. Conclusion: Fracture resistance of premolars with MODP cavities and endodontic access was recovered with the direct rehabilitation with Spirapost, regardless of the type of composite resin.

  8. Resistance to compression of weakened roots subjected to different root reconstruction protocols

    Directory of Open Access Journals (Sweden)

    Lucas Villaça Zogheib

    2011-12-01

    Full Text Available OBJECTIVE: This study evaluated, in vitro, the fracture resistance of human non-vital teeth restored with different reconstruction protocols. MATERIAL AND METHODS: Forty human anterior roots of similar shape and dimensions were assigned to four groups (n=10, according to the root reconstruction protocol: Group I (control: non-weakened roots with glass fiber post; Group II: roots with composite resin by incremental technique and glass fiber post; Group III: roots with accessory glass fiber posts and glass fiber post; and Group IV: roots with anatomic glass fiber post technique. Following post cementation and core reconstruction, the roots were embedded in chemically activated acrylic resin and submitted to fracture resistance testing, with a compressive load at an angle of 45º in relation to the long axis of the root at a speed of 0.5 mm/min until fracture. All data were statistically analyzed with bilateral Dunnett's test (α=0.05. RESULTS: Group I presented higher mean values of fracture resistance when compared with the three experimental groups, which, in turn, presented similar resistance to fracture among each other. None of the techniques of root reconstruction with intraradicular posts improved root strength, and the incremental technique was suggested as being the most recommendable, since the type of fracture that occurred allowed the remaining dental structure to be repaired. CONCLUSION: The results of this in vitro study suggest that the healthy remaining radicular dentin is more important to increase fracture resistance than the root reconstruction protocol.

  9. [Effects of beam weakening and beam hardening on the measured CT values].

    Science.gov (United States)

    Schultz, E; Lackner, K

    1981-06-01

    The present article reports on the effects of weakening and hardening of radiation on CT values in the environment of highly absorptive materials, using phantoms for carrying out these measurements. First of all, it was found with the help of geometrically simple phantoms (discs, circular rings), that the measured CT value of each volume element depends on the density distribution in the environment and that the CT values of homogeneous object layer are not uniform, but clearly dependent on the location at which measurement is effected. The standard deviation of the CT values of a homogeneous part of an object layer was also found to depend on the environment. Finally, using anatomically relevant phantoms, it was found that density value changes from max. +20 HU to -65 HU occur in the region of the cranium, whereas in the environment of the lumbar vertebra the density varies between max. +20 HU and -10 HU; in the pleural region, the maximum density variations are +/- 10 HU.

  10. The Weakening of Kin Ties: Exploring the Need for Life-World Led Interventions

    Directory of Open Access Journals (Sweden)

    Gert Schout

    2018-01-01

    Full Text Available The protective features that families and wider social relationships can have are required to meet the demands of life in contemporary Western societies. Choice and detraditionalization, however; impede this source of solidarity. Family Group Conferencing (FGC and other life-world led interventions have the potential to strengthen primary groups. This paper explores the need for such a social intervention, using insights from sociological and philosophical theories and empirical findings from a case study of the research project ‘FGC in mental health’. This need is understandable considering the weakening of kin ties, the poor qualities of state agencies to mobilise self-care and informal care, its capacity to produce a shift of power from public to private spheres and its capacity to mitigate the co-isolation of individuals, families and communities. A life-world led intervention like FGC with a specific and modest ambition contributes to small-scale solidarity. This ambition is not inclined to establish a broad social cohesion within society but to restore; in terms of the German philosopher Peter Sloterdijk; immunity (protection and solidarity in primary groups, and consequently, resolve issues with those (family, neighbours, colleagues who share a sphere (a situation, a process, a fate.

  11. The Weakening of Kin Ties: Exploring the Need for Life-World Led Interventions.

    Science.gov (United States)

    Schout, Gert; de Jong, Gideon

    2018-01-25

    The protective features that families and wider social relationships can have are required to meet the demands of life in contemporary Western societies. Choice and detraditionalization, however; impede this source of solidarity. Family Group Conferencing (FGC) and other life-world led interventions have the potential to strengthen primary groups. This paper explores the need for such a social intervention, using insights from sociological and philosophical theories and empirical findings from a case study of the research project 'FGC in mental health'. This need is understandable considering the weakening of kin ties, the poor qualities of state agencies to mobilise self-care and informal care, its capacity to produce a shift of power from public to private spheres and its capacity to mitigate the co-isolation of individuals, families and communities. A life-world led intervention like FGC with a specific and modest ambition contributes to small-scale solidarity. This ambition is not inclined to establish a broad social cohesion within society but to restore; in terms of the German philosopher Peter Sloterdijk; immunity (protection) and solidarity in primary groups, and consequently, resolve issues with those (family, neighbours, colleagues) who share a sphere (a situation, a process, a fate).

  12. Weakening self-control biases the emotional evaluation of appetitive cues.

    Science.gov (United States)

    Wiesner, Christian Dirk; Lindner, Christoph

    2017-01-01

    Exerting self-control in a first task weakens self-control in a second completely unrelated task (ego-depletion). It has been proposed that ego-depletion increases approach motivation which would amplify positive emotions to appetitive cues. Here we investigated the effect of the depletion of cognitive self-control on the subsequent emotional evaluation of appetitive cues. Participants of the depletion group copied a text omitting frequent letters and thereby exerting self-control to inhibit automated writing habits. Participants of the control group just copied the text. In a subsequent task participants had to rate valence and arousal of their responses to neutral vs. positive pictures of humans, animals, food, or sceneries. Ego-depletion caused more positive valence ratings of neutral pictures and lower arousal ratings of positive pictures. The findings do not support the notion that ego-depletion increases approach motivation in general. Rather they suggest that-without a specific motivational context-depletion of cognitive self-control differentially alters the immediate emotional evaluation of appetitive cues.

  13. Strain-weakening rheology of marine sponges and its evolutionary implication

    Science.gov (United States)

    Kraus, Emily; Janmey, Paul; Sweeney, Alison; van Oosten, Anne

    Animal cells respond to mechanical stimuli as sensitively as they do to chemical stimuli. Further, cell proliferation is dependent on the viscoelasticity of the polymeric extracellular matrix (ECM) in which they are embedded. Biophysicists are therefore motivated to understand the biomechanics of the ECM itself. To date, this work has focused on the more familiar Bilateria, animals, including humans, with bilateral symmetry. The ECM of this group of animals is now understood to exhibit non-linear rheology that is typically strain- and compression-stiffening, and shear moduli that are frequency-dependent. These complex properties have been attributed to the semi-flexible nature of the underlying polymers. In contrast, we show that marine sponges are markedly strain-weakening under physiologically relevant conditions. Since sponges are a much earlier evolutionary branch than Bilateria, we interrogate the evolutionary potential and biochemical underpinnings of this novel complex rheology in filamentous networks, and cells ability to respond. Further, their life history strategy is uniquely dependent on flow and correlated shear stress, making them a model organism to study self-assembly algorithms organized around flow.

  14. Does the weakening of intrinsic foot muscles cause the decrease of medial longitudinal arch height?

    Science.gov (United States)

    Okamura, Kazunori; Kanai, Shusaku; Oki, Sadaaki; Tanaka, Satoshi; Hirata, Naohisa; Sakamura, Yoshiaki; Idemoto, Norikatsu; Wada, Hiroki; Otsuka, Akira

    2017-06-01

    [Purpose] There are no reliable evidences that the weakening of intrinsic foot muscles causes the decrease of the medial longitudinal arch (MLA) height. The purpose of this study was to confirm whether the fatigue of intrinsic foot muscles decrease the MLA height during standing and gait using 3D motion analysis system. [Subjects and Methods] Twenty healthy male subjects participated in this study. Foot kinematics was measured using an Oxford Foot Model before and after fatigue-inducing exercises of the abductor hallucis and flexor hallucis brevis muscles. [Results] Following fatigue-inducing exercise, in both standing and gait, the MLA height did not decrease but slightly increased. In addition, the reduction of a rear foot eversion angle was noted. [Conclusion] Fatigue of the abductor hallucis and flexor hallucis brevis muscles did not cause a change associated with collapsing of the MLA during both standing and gait. This suggested that the MLA support force from these muscles would be compensated by other MLA support structures, such as extrinsic foot muscles.

  15. Rate-weakening friction characterizes both slow sliding and catastrophic failure of landslides.

    Science.gov (United States)

    Handwerger, Alexander L; Rempel, Alan W; Skarbek, Rob M; Roering, Joshua J; Hilley, George E

    2016-09-13

    Catastrophic landslides cause billions of dollars in damages and claim thousands of lives annually, whereas slow-moving landslides with negligible inertia dominate sediment transport on many weathered hillslopes. Surprisingly, both failure modes are displayed by nearby landslides (and individual landslides in different years) subjected to almost identical environmental conditions. Such observations have motivated the search for mechanisms that can cause slow-moving landslides to transition via runaway acceleration to catastrophic failure. A similarly diverse range of sliding behavior, including earthquakes and slow-slip events, occurs along tectonic faults. Our understanding of these phenomena has benefitted from mechanical treatments that rely upon key ingredients that are notably absent from previous landslide descriptions. Here, we describe landslide motion using a rate- and state-dependent frictional model that incorporates a nonlocal stress balance to account for the elastic response to gradients in slip. Our idealized, one-dimensional model reproduces both the displacement patterns observed in slow-moving landslides and the acceleration toward failure exhibited by catastrophic events. Catastrophic failure occurs only when the slip surface is characterized by rate-weakening friction and its lateral dimensions exceed a critical nucleation length [Formula: see text] that is shorter for higher effective stresses. However, landslides that are extensive enough to fall within this regime can nevertheless slide slowly for months or years before catastrophic failure. Our results suggest that the diversity of slip behavior observed during landslides can be described with a single model adapted from standard fault mechanics treatments.

  16. Conceptual disorganization weakens links in cognitive pathways: Disentangling neurocognition, social cognition, and metacognition in schizophrenia.

    Science.gov (United States)

    Minor, Kyle S; Marggraf, Matthew P; Davis, Beshaun J; Luther, Lauren; Vohs, Jenifer L; Buck, Kelly D; Lysaker, Paul H

    2015-12-01

    Disentangling links between neurocognition, social cognition, and metacognition offers the potential to improve interventions for these cognitive processes. Disorganized symptoms have shown promise for explaining the limiting relationship that neurocognition holds with both social cognition and metacognition. In this study, primary aims included: 1) testing whether conceptual disorganization, a specific disorganized symptom, moderated relationships between cognitive processes, and 2) examining the level of conceptual disorganization necessary for links between cognitive processes to break down. To accomplish these aims, comprehensive assessments of conceptual disorganization, neurocognition, social cognition, and metacognition were administered to 67 people with schizophrenia-spectrum disorders. We found that conceptual disorganization significantly moderated the relationship between neurocognition and metacognition, with links between cognitive processes weakening when conceptual disorganization is present even at minimal levels of severity. There was no evidence that conceptual disorganization-or any other specific disorganized symptom-drove the limiting relationship of neurocognition on social cognition. Based on our findings, conceptual disorganization appears to be a critical piece of the puzzle when disentangling the relationship between neurocognition and metacognition. Roles of specific disorganized symptoms in the neurocognition - social cognition relationship were less clear. Findings from this study suggest that disorganized symptoms are an important treatment consideration when aiming to improve cognitive impairments. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Weakening temperature control on the interannual variations of spring carbon uptake across northern lands

    Energy Technology Data Exchange (ETDEWEB)

    Piao, Shilong [Chinese Academy of Sciences (CAS), Beijing (China); Peking Univ., Beijing (China); Liu, Zhuo [Peking Univ., Beijing (China); Wang, Tao [Chinese Academy of Sciences (CAS), Beijing (China); Peng, Shushi [Peking Univ., Beijing (China); Ciais, Philippe [Alternative Energies and Atomic Energy Commission (CEA), Gif-sur-Yvette (France); Huang, Mengtian [Peking Univ., Beijing (China); Ahlstrom, Anders [Stanford Univ., CA (United States); Burkhart, John F. [Univ. of Oslo (Norway); Chevallier, Frédéric [Alternative Energies and Atomic Energy Commission (CEA), Gif-sur-Yvette (France); Janssens, Ivan A. [Univ. of Antwerp, Wilrijk (Belgium); Jeong, Su-Jong [South Univ. of Science and Technology of China, Shenzhen (China); Lin, Xin [Alternative Energies and Atomic Energy Commission (CEA), Gif-sur-Yvette (France); Mao, Jiafu [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Miller, John [National Oceanic and Atmospheric Administration Earth Systems Research Lab., Boulder, CO (United States); Univ. of Colorado, Boulder, CO (United States); Mohammat, Anwar [Chinese Academy of Sciences (CAS), Beijing (China); Myneni, Ranga B. [Boston Univ., MA (United States); Peñuelas, Josep [Centre for Ecological Research and Forestry Applications (CREAF), Barcelona (Spain); Shi, Xiaoying [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Stohl, Andreas [Norwegian Institute for Air Research (NILU), Kjeller (Norway); Yao, Yitong [Peking Univ., Beijing (China); Zhu, Zaichun [Peking Univ., Beijing (China); Tans, Pieter P. [National Oceanic and Atmospheric Administration Earth Systems Research Lab., Boulder, CO (United States)

    2017-04-24

    Ongoing spring warming allows the growing season to begin earlier, enhancing carbon uptake in northern ecosystems. We use 34 years of atmospheric CO2 concentration measurements at Barrow, Alaska (BRW, 71° N) to show that the interannual relationship between spring temperature and carbon uptake has recently shifted. Here, we use two indicators: the spring zero-crossing date of atmospheric CO2 (SZC) and the magnitude of CO2 drawdown between May and June (SCC). The previously reported strong correlation between SZC, SCC and spring land temperature (ST) was found in the first 17 years of measurements, but disappeared in the last 17 years. As a result, the sensitivity of both SZC and SCC to warming decreased. Simulations with an atmospheric transport model coupled to a terrestrial ecosystem model suggest that the weakened interannual correlation of SZC and SCC with ST in the last 17 years is attributable to the declining temperature response of spring net primary productivity (NPP) rather than to changes in heterotrophic respiration or in atmospheric transport patterns. Reduced chilling during dormancy and emerging light limitation are possible mechanisms that may have contributed to the loss of NPP response to ST. These results thus challenge the ‘warmer spring–bigger sink’ mechanism.

  18. Pseudouridine and N6-methyladenosine modifications weaken PUF protein/RNA interactions.

    Science.gov (United States)

    Vaidyanathan, Pavanapuresan P; AlSadhan, Ishraq; Merriman, Dawn K; Al-Hashimi, Hashim M; Herschlag, Daniel

    2017-05-01

    RNA modifications are ubiquitous in biology, with over 100 distinct modifications. While the vast majority were identified and characterized on abundant noncoding RNA such as tRNA and rRNA, the advent of sensitive sequencing-based approaches has led to the discovery of extensive and regulated modification of eukaryotic messenger RNAs as well. The two most abundant mRNA modifications-pseudouridine (Ψ) and N6-methyladenosine (m6A)-affect diverse cellular processes including mRNA splicing, localization, translation, and decay and modulate RNA structure. Here, we test the hypothesis that RNA modifications directly affect interactions between RNA-binding proteins and target RNA. We show that Ψ and m6A weaken the binding of the human single-stranded RNA binding protein Pumilio 2 (hPUM2) to its consensus motif, with individual modifications having effects up to approximately threefold and multiple modifications giving larger effects. While there are likely to be some cases where RNA modifications essentially fully ablate protein binding, here we see modest responses that may be more common. Such modest effects could nevertheless profoundly alter the complex landscape of RNA:protein interactions, and the quantitative rather than qualitative nature of these effects underscores the need for quantitative, systems-level accounting of RNA:protein interactions to understand post-transcriptional regulation. © 2017 Vaidyanathan et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  19. Negative Emotion Weakens the Degree of Self-reference Effect: Evidence from ERPs

    Directory of Open Access Journals (Sweden)

    Wei Fan

    2016-09-01

    Full Text Available We investigated the influence of negative emotion on the degree of self-reference effect using event-related potentials (ERPs. We presented emotional pictures and self-referential stimuli (stimuli that accelerate and improve processing and improve memory of information related to an individual’s self-concept in sequence. Participants judged the color of the target stimulus (self-referential stimuli. ERP results showed that the target stimuli elicited larger P2 amplitudes under neutral conditions than under negative emotional conditions. Under neutral conditions, N2 amplitudes for highly self-relevant names (target stimulus were smaller than those for any other names. Under negative emotional conditions, highly and moderately self-referential stimuli activated smaller N2 amplitudes. P3 amplitudes activated by self-referential processing under negative emotional conditions were smaller than neutral conditions. In the left and central sites, highly self-relevant names activated larger P3 amplitudes than any other names. But in the central sites, moderately self-relevant names activated larger P3 amplitudes than non-self-relevant names. The findings indicate that negative emotional processing could weaken the degree of self-reference effect.

  20. Polar motion excitation from several models of land hydrosphere

    Science.gov (United States)

    Nastula, Jolanta

    2017-04-01

    The impact of land hydrosphere mass variations on polar motion excitation is still not sufficiently estimated and not known as well as the role of the atmosphere and ocean. A comparison of the hydrological excitation function (Hydrological Angular Momentum - HAM) with observed geodetic excitation functions (GAM) is a common method of assessing of the influence of land hydrology on polar motion excitation function. HAM can be estimated either from global models of the land hydrosphere or from the Earth's gravity field variations. Our previous attempt to assess the role of land hydrology in the excitation balance using the hydrological angular momentum (HAM) estimates from Gravity Recovery and Climate Experiment (GRACE) data and hydrological models was not conclusive (Brzeziński et al., 2009, Nastula et al., 2011, Wińska et al., 2016). We found for example that gravimetric-hydrological excitation functions, based on the Gravity and Climate Recovery Experiment (GRACE) gravity fiels determined from the several processing centers differed significantly. Additionally hydrological excitation computed from different hydrological models differed significantly in amplitudes and phases. In this work we re - estimate hydrological polar motion excitation functions from several hydrological models and climate models and from GRACE gravity fields. Our investigations are focused on the influence of land hydrosphere on polar motion excitation functions at seasonal and non-seasonal time scales and comprises two steps: • first determinations hydrological excitation functions (HAM) from regional distribution of Terrestrial Water Storage (TWS). • the second comparison of the global HAM with hydrological signal in the observed geodetic excitation function of polar motion.

  1. CINE: Comet INfrared Excitation

    Science.gov (United States)

    de Val-Borro, Miguel; Cordiner, Martin A.; Milam, Stefanie N.; Charnley, Steven B.

    2017-08-01

    CINE calculates infrared pumping efficiencies that can be applied to the most common molecules found in cometary comae such as water, hydrogen cyanide or methanol. One of the main mechanisms for molecular excitation in comets is the fluorescence by the solar radiation followed by radiative decay to the ground vibrational state. This command-line tool calculates the effective pumping rates for rotational levels in the ground vibrational state scaled by the heliocentric distance of the comet. Fluorescence coefficients are useful for modeling rotational emission lines observed in cometary spectra at sub-millimeter wavelengths. Combined with computational methods to solve the radiative transfer equations based, e.g., on the Monte Carlo algorithm, this model can retrieve production rates and rotational temperatures from the observed emission spectrum.

  2. Abscisic acid controls embryo growth potential and endosperm cap weakening during coffee (Coffea arabica cv. Rubi) seed germination

    NARCIS (Netherlands)

    Silva, da E.A.A.; Toorop, P.E.; Aelst, van A.C.; Hilhorst, H.W.M.

    2004-01-01

    The mechanism and regulation of coffee seed germination were studied in Coffea arabica L. cv. Rubi. The coffee embryo grew inside the endosperm prior to radicle protrusion and abscisic acid (ABA) inhibited the increase in its pressure potential. There were two steps of endosperm cap weakening. An

  3. Changes in extreme regional sea surface height due to an abrupt weakening of the Atlantic meridional overturning circulation

    NARCIS (Netherlands)

    Brunnabend, S.-E.; Dijkstra, H. A.; Kliphuis, M. A.; van Werkhoven, B.J.C.; Bal, H. E.; Seinstra, F.; Maassen, J.; van Meersbergen, M.

    2014-01-01

    As an extreme scenario of dynamical sea level changes, regional sea surface height (SSH) changes that occur in the North Atlantic due to an abrupt weakening of the Atlantic meridional overturning circulation (AMOC) are simulated. Two versions of the same ocean-only model are used to study the effect

  4. Density and field effect on electron-ion collision cross-sections in hot dense plasma; Etude de l'influence de l'environnement plasma sur les sections efficaces d'excitation collisionnelle electron-ion dans un plasma chaud et dense

    Energy Technology Data Exchange (ETDEWEB)

    Gaufridy de Dortan, F. de

    2003-03-15

    Collisional excitation cross-sections are essential for the modeling of the properties of non equilibrium plasmas. There has been a lot of work on electron impact excitation of isolated ions, but in dense plasmas, neighboring particles are expected to widely disturb these electron transitions in atoms. Plasma modeling through a radially perturbed potential has already been done but is not satisfactory as it does not account for levels degeneracy breaking and its consequences. Introduction of a quasistatic electric micro-field of neighboring ions allows us to break spherical symmetry. Our original theoretical study has given birth to a numerical code that accurately computes collisional strengths and rates (in the Distorted Waves approach) in atoms submitted to a realistic micro-field. Hydrogen- and helium-like aluminium is studied. Stark mixing widely increases rates of transitions from high l levels and forbidden transitions are field-enhanced by many orders of magnitude until they reach allowed ones. Eventually, we conduct an elementary stationary collisional radiative study to investigate field-enhancement effects on corresponding line shapes. In cases we study (aluminium, hydrogen- and helium-like) we find a relatively weak increase of K-shell line broadening.

  5. Luminescence and excitation spectra of YAG:Nd{sup 3+} excited by synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ning Lixin [Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Tanner, Peter A. [Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)], E-mail: bhtan@cityu.edu.hk; Harutunyan, Vachagan V.; Aleksanyan, Eduard [Yerevan Physics Institute, 2 Alikhanian Brothers Str., 375036 Yerevan (Armenia); Makhov, Vladimir N. [Lebedev Physical Institute, Leninskii Prospect 53, 119991 Moscow (Russian Federation); Institute of Physics, University of Tartu, Riia 142, 51014 Tartu (Estonia); Kirm, Marco [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu (Estonia)

    2007-12-15

    The low-temperature 4f{sup 2}5d{yields}4f{sup 3} fast emission of Nd{sup 3+} from YAG:Nd{sup 3+} has been studied under excitation by synchrotron radiation. Additionally, 4f{sup 3}{yields}4f{sup 3} luminescence of Nd{sup 3+} has been observed and assigned to transitions from the {sup 2}F(2){sub 5/2} and {sup 4}F{sub 3/2} multiplet terms. The observed experimental spectra of Nd{sup 3+} d-f emission and f-d excitation are well simulated by crystal-field calculations.

  6. Subsurface excitations in a metal

    DEFF Research Database (Denmark)

    Ray, M. P.; Lake, R. E.; Sosolik, C. E.

    2009-01-01

    We investigate internal hot carrier excitations in a Au thin film bombarded by hyperthermal and low energy alkali and noble gas ions. Excitations within the thin film of a metal-oxide-semiconductor device are measured revealing that ions whose velocities fall below the classical threshold given...... by the free-electron model of a metal still excite hot carriers. Excellent agreement between these results and a nonadiabatic model that accounts for the time-varying ion-surface interaction indicates that the measured excitations are due to semilocalized electrons near the metal surface....

  7. Fluvial incision by the Qingyijiang River on the northern fringe of Mt. Huangshan, eastern China: Responses to weakening of the East Asian summer monsoon

    Science.gov (United States)

    Hu, Chunsheng; Liu, Shaochen; Hu, Chenqi; Xu, Guanglai; Zhou, Yingqiu

    2017-12-01

    This paper focuses on climatic and tectonic controls to determine their relative importance to the Quaternary fluvial incision by the Qingyijiang River, eastern China. The Qingyijiang, which is one of longest tributaries of the lower Yangtze River, drains the northern piedmont of Mt. Huangshan. A field survey focused on three natural sections of the Qingyijiang in the Jingxian basin, where a well-preserved sequence of one alluvial platform (P) and three fluvial terraces (T3, T2, and T1) is presented. The heights of the platform and the terraces above river level are 65, 40, 20, and 7 m respectively. In this study, electron spin resonance (ESR), optical stimulated luminescence (OSL), and palaeomagnetic dating were applied to reconstruct the fluvial incision history of the Qingyijiang and evaluate the possible influence of tectonic uplift and/or climate change on the fluvial incision. The main results show that (1) the ages of P, T3, T2, and T1 were determined to be ∼ 1300, ∼ 900, ∼ 600, and ∼ 1.5 ka respectively, corresponding to four incision events in the Qingyijiang; (2) the East Asian summer monsoon (EASM) experienced four significant weakening events at 1300, 900, 600, and ∼ 1.5 ka, according to previous research. Correspondingly, we propose that four significant increased periods of regional precipitation occurred at 1300, 900, 600, and ∼ 1.5 ka in the study area because of the negative correlation between the intensity of the EASM and regional precipitation from 1960 to 2012; and (3) fluvial incision by the Qingyijiang arose as a result of the weakening of the EASM in combination with tectonic uplift, determined by matching fluvial incision history of the Qingyijiang with tectonic movement and EASM change. In addition, the weakening of the EASM climatically triggered fluvial incision by the Qingyijiang. This study supports the conclusion that major fluvial incision has been climatically triggered; however, it also suggests that the mechanism of

  8. Regime shifts and weakened environmental gradients in open oak and pine ecosystems.

    Science.gov (United States)

    Hanberry, Brice B; Dey, Dan C; He, Hong S

    2012-01-01

    Fire suppression allows tree species that are intolerant of fire stress to increase their distribution, potentially resulting in disruption of historical species-environmental relationships. To measure changes between historical General Land Office surveys (1815 to 1850) and current USDA Forest Inventory and Assessment surveys (2004 to 2008), we compared composition, distribution, and site factors of 21 tree species or species groups in the Missouri Ozarks. We used 24 environmental variables and random forests as a classification method to model distributions. Eastern redcedar, elms, maples, and other fire-sensitive species have increased in dominance in oak forests, with concurrent reductions by oak species; specific changes varied by ecological subsection. Ordinations displayed loss of separation between formerly distinctive oak and fire-sensitive tree species groups. Distribution maps showed decreased presence of disturbance-dependent oak and pine species and increased presence of fire-sensitive species that generally expanded from subsections protected from fire along rivers to upland areas, except for eastern redcedar, which expanded into these subsections. Large scale differences in spatial gradients between past and present communities paralleled reduced influence of local topographic gradients in the varied relief of the Missouri Ozarks, as fire-sensitive species have moved to higher, drier, and sunnier sites away from riverine corridors. Due to changes in land use, landscapes in the Missouri Ozarks, eastern United States, and world-wide are changing from open oak and pine-dominated ecosystems to novel oak-mixed species forests, although at fine scales, forests are becoming more diverse in tree species today. Fire suppression weakened the influence by environmental gradients over species dominance, allowing succession from disturbance-dependent oaks to an alternative state of fire-sensitive species. Current and future research and conservation that rely on

  9. Regime shifts and weakened environmental gradients in open oak and pine ecosystems.

    Directory of Open Access Journals (Sweden)

    Brice B Hanberry

    Full Text Available Fire suppression allows tree species that are intolerant of fire stress to increase their distribution, potentially resulting in disruption of historical species-environmental relationships. To measure changes between historical General Land Office surveys (1815 to 1850 and current USDA Forest Inventory and Assessment surveys (2004 to 2008, we compared composition, distribution, and site factors of 21 tree species or species groups in the Missouri Ozarks. We used 24 environmental variables and random forests as a classification method to model distributions. Eastern redcedar, elms, maples, and other fire-sensitive species have increased in dominance in oak forests, with concurrent reductions by oak species; specific changes varied by ecological subsection. Ordinations displayed loss of separation between formerly distinctive oak and fire-sensitive tree species groups. Distribution maps showed decreased presence of disturbance-dependent oak and pine species and increased presence of fire-sensitive species that generally expanded from subsections protected from fire along rivers to upland areas, except for eastern redcedar, which expanded into these subsections. Large scale differences in spatial gradients between past and present communities paralleled reduced influence of local topographic gradients in the varied relief of the Missouri Ozarks, as fire-sensitive species have moved to higher, drier, and sunnier sites away from riverine corridors. Due to changes in land use, landscapes in the Missouri Ozarks, eastern United States, and world-wide are changing from open oak and pine-dominated ecosystems to novel oak-mixed species forests, although at fine scales, forests are becoming more diverse in tree species today. Fire suppression weakened the influence by environmental gradients over species dominance, allowing succession from disturbance-dependent oaks to an alternative state of fire-sensitive species. Current and future research and

  10. Feelings of disgust and disgust-induced avoidance weaken following induced sexual arousal in women.

    Directory of Open Access Journals (Sweden)

    Charmaine Borg

    Full Text Available BACKGROUND: Sex and disgust are basic, evolutionary relevant functions that are often construed as paradoxical. In general the stimuli involved in sexual encounters are, at least out of context strongly perceived to hold high disgust qualities. Saliva, sweat, semen and body odours are among the strongest disgust elicitors. This results in the intriguing question of how people succeed in having pleasurable sex at all. One possible explanation could be that sexual engagement temporarily reduces the disgust eliciting properties of particular stimuli or that sexual engagement might weaken the hesitation to actually approach these stimuli. METHODOLOGY: Participants were healthy women (n = 90 randomly allocated to one of three groups: the sexual arousal, the non-sexual positive arousal, or the neutral control group. Film clips were used to elicit the relevant mood state. Participants engaged in 16 behavioural tasks, involving sex related (e.g., lubricate the vibrator and non-sex related (e.g., take a sip of juice with a large insect in the cup stimuli, to measure the impact of sexual arousal on feelings of disgust and actual avoidance behaviour. PRINCIPAL FINDINGS: The sexual arousal group rated the sex related stimuli as less disgusting compared to the other groups. A similar tendency was evident for the non-sex disgusting stimuli. For both the sex and non-sex related behavioural tasks the sexual arousal group showed less avoidance behaviour (i.e., they conducted the highest percentage of tasks compared to the other groups. SIGNIFICANCE: This study has investigated how sexual arousal interplays with disgust and disgust eliciting properties in women, and has demonstrated that this relationship goes beyond subjective report by affecting the actual approach to disgusting stimuli. Hence, this could explain how we still manage to engage in pleasurable sexual activity. Moreover, these findings suggest that low sexual arousal might be a key feature in the

  11. Long-range topological insulators and weakened bulk-boundary correspondence

    Science.gov (United States)

    Lepori, L.; Dell’Anna, L.

    2017-10-01

    We investigate the appearance of new types of insulators and superconductors in long-range (LR) fermionic quantum systems. These phases are not included in the famous ‘ten-fold way classification’ (TWC), valid in the short-range (SR) limit. This conclusion is obtained analysing at first specific one-dimensional models, in particular their phase diagrams and entanglement properties. The LR phases are signalled, for instance, by the violation of the area-law for the von Neumann entropy and by a corresponding peculiar entanglement spectrum (ES). Later on, the origin of the deviations from the TWC is investigated from a more general point of view and in any dimension, showing that it is related with the presence of divergences occurring in the spectrum, due to the LR couplings. A satisfying characterization for the LR phases can be achieved, at least for one-dimensional quantum systems, as well as the definition of a nontrivial topology for them, resulting in the presence of massive edge states, provided a careful evaluation of the LR contributions. Our results allows to infer, at least for one-dimensional models, the weakening of the bulk-boundary correspondence, due to the important correlations between bulk and edges, and consequently to clarify the nature of the massive edge states. The emergence of this peculiar edge structure is signalled again by the bulk ES. The stability of the LR phases against local disorder is also discussed, showing notably that this ingredient can even strengthen the effect of the LR couplings. Finally, we analyse the entanglement content of the paradigmatic LR Ising chain, inferring again important deviations from the SR regime, as well as the limitations of bulk-boundary (tensor-network based) approaches to classify LR spin models.

  12. On the initiation of sustained slip-weakening ruptures by localized stresses

    KAUST Repository

    Galis, Martin

    2014-12-10

    Numerical simulations of dynamic earthquake rupture require an artificial initiation procedure, if they are not integrated in long-term earthquake cycle simulations. A widely applied procedure involves an \\'overstressed asperity\\', a localized region stressed beyond the static frictional strength. The physical properties of the asperity (size, shape and overstress) may significantly impact rupture propagation. In particular, to induce a sustained rupture the asperity size needs to exceed a critical value. Although criteria for estimating the critical nucleation size under linear slip-weakening friction have been proposed for 2-D and 3-D problems based on simplifying assumptions, they do not provide general rules for designing 3-D numerical simulations. We conduct a parametric study to estimate parameters of the asperity that minimize numerical artefacts (e.g. changes of rupture shape and speed, artificial supershear transition, higher slip-rate amplitudes). We examine the critical size of square, circular and elliptical asperities as a function of asperity overstress and background (off-asperity) stress. For a given overstress, we find that asperity area controls rupture initiation while asperity shape is of lesser importance. The critical area obtained from our numerical results contrasts with published theoretical estimates when background stress is low. Therefore, we derive two new theoretical estimates of the critical size under low background stress while also accounting for overstress. Our numerical results suggest that setting the asperity overstress and area close to their critical values eliminates strong numerical artefacts even when the overstress is large. We also find that properly chosen asperity size or overstress may significantly shorten the duration of the initiation. Overall, our results provide guidelines for determining the size of the asperity and overstress to minimize the effects of the forced initiation on the subsequent spontaneous

  13. Targeted Memory Reactivation during Sleep Adaptively Promotes the Strengthening or Weakening of Overlapping Memories.

    Science.gov (United States)

    Oyarzún, Javiera P; Morís, Joaquín; Luque, David; de Diego-Balaguer, Ruth; Fuentemilla, Lluís

    2017-08-09

    System memory consolidation is conceptualized as an active process whereby newly encoded memory representations are strengthened through selective memory reactivation during sleep. However, our learning experience is highly overlapping in content (i.e., shares common elements), and memories of these events are organized in an intricate network of overlapping associated events. It remains to be explored whether and how selective memory reactivation during sleep has an impact on these overlapping memories acquired during awake time. Here, we test in a group of adult women and men the prediction that selective memory reactivation during sleep entails the reactivation of associated events and that this may lead the brain to adaptively regulate whether these associated memories are strengthened or pruned from memory networks on the basis of their relative associative strength with the shared element. Our findings demonstrate the existence of efficient regulatory neural mechanisms governing how complex memory networks are shaped during sleep as a function of their associative memory strength.SIGNIFICANCE STATEMENT Numerous studies have demonstrated that system memory consolidation is an active, selective, and sleep-dependent process in which only subsets of new memories become stabilized through their reactivation. However, the learning experience is highly overlapping in content and thus events are encoded in an intricate network of related memories. It remains to be explored whether and how memory reactivation has an impact on overlapping memories acquired during awake time. Here, we show that sleep memory reactivation promotes strengthening and weakening of overlapping memories based on their associative memory strength. These results suggest the existence of an efficient regulatory neural mechanism that avoids the formation of cluttered memory representation of multiple events and promotes stabilization of complex memory networks. Copyright © 2017 the authors 0270-6474/17/377748-11$15.00/0.

  14. Preventing disulfide bond formation weakens non-covalent forces among lysozyme aggregates.

    Directory of Open Access Journals (Sweden)

    Vijay Kumar Ravi

    Full Text Available Nonnative disulfide bonds have been observed among protein aggregates in several diseases like amyotrophic lateral sclerosis, cataract and so on. The molecular mechanism by which formation of such bonds promotes protein aggregation is poorly understood. Here in this work we employ previously well characterized aggregation of hen eggwhite lysozyme (HEWL at alkaline pH to dissect the molecular role of nonnative disulfide bonds on growth of HEWL aggregates. We employed time-resolved fluorescence anisotropy, atomic force microscopy and single-molecule force spectroscopy to quantify the size, morphology and non-covalent interaction forces among the aggregates, respectively. These measurements were performed under conditions when disulfide bond formation was allowed (control and alternatively when it was prevented by alkylation of free thiols using iodoacetamide. Blocking disulfide bond formation affected growth but not growth kinetics of aggregates which were ∼50% reduced in volume, flatter in vertical dimension and non-fibrillar in comparison to control. Interestingly, single-molecule force spectroscopy data revealed that preventing disulfide bond formation weakened the non-covalent interaction forces among monomers in the aggregate by at least ten fold, thereby stalling their growth and yielding smaller aggregates in comparison to control. We conclude that while constrained protein chain dynamics in correctly disulfide bonded amyloidogenic proteins may protect them from venturing into partial folded conformations that can trigger entry into aggregation pathways, aberrant disulfide bonds in non-amyloidogenic proteins (like HEWL on the other hand, may strengthen non-covalent intermolecular forces among monomers and promote their aggregation.

  15. Physics for excited neutrons

    Science.gov (United States)

    Cartlidge, Edwin

    2017-01-01

    Some scientists claim they can control genetically engineered neurons using magnetic fields. Have they and the high-profile journals that published their research failed to understand basic physics? Edwin Cartlidge investigates

  16. Axonal Excitability in Amyotrophic Lateral Sclerosis : Axonal Excitability in ALS.

    Science.gov (United States)

    Park, Susanna B; Kiernan, Matthew C; Vucic, Steve

    2017-01-01

    Axonal excitability testing provides in vivo assessment of axonal ion channel function and membrane potential. Excitability techniques have provided insights into the pathophysiological mechanisms underlying the development of neurodegeneration and clinical features of amyotrophic lateral sclerosis (ALS) and related neuromuscular disorders. Specifically, abnormalities of Na+ and K+ conductances contribute to development of membrane hyperexcitability in ALS, thereby leading to symptom generation of muscle cramps and fasciculations, in addition to promoting a neurodegenerative cascade via Ca2+-mediated processes. Modulation of axonal ion channel function in ALS has resulted in significant symptomatic improvement that has been accompanied by stabilization of axonal excitability parameters. Separately, axonal ion channel dysfunction evolves with disease progression and correlates with survival, thereby serving as a potential therapeutic biomarker in ALS. The present review provides an overview of axonal excitability techniques and the physiological mechanisms underlying membrane excitability, with a focus on the role of axonal ion channel dysfunction in motor neuron disease and related neuromuscular diseases.

  17. Effect of excitation methods on electrical characteristics of fully superconducting generator model

    Science.gov (United States)

    Muta, Itsuya; Tsukiji, H.; Handa, N.; Hoshino, Tsutomu; Mukai, E.

    1994-07-01

    We have fabricated a fully superconducting generator of 20 kW class, in which both of armature and field coils are made of superconductors. Two different types of excitation system were selected and tested: a brushless excitation method consisted of 'magnetic flux pump' and a conventional excitation method equipped with collector ring and brushes. The paper describes the experimental machine model and the comparison of test results between the two different types of excitation methods.

  18. Excited-state Wigner crystals

    Science.gov (United States)

    Rogers, Fergus J. M.; Loos, Pierre-François

    2017-01-01

    Wigner crystals (WCs) are electronic phases peculiar to low-density systems, particularly in the uniform electron gas. Since its introduction in the early twentieth century, this model has remained essential to many aspects of electronic structure theory and condensed-matter physics. Although the (lowest-energy) ground-state WC (GSWC) has been thoroughly studied, the properties of excited-state WCs (ESWCs) are basically unknown. To bridge this gap, we present a well-defined procedure to obtain an entire family of ESWCs in a one-dimensional electron gas using a symmetry-broken mean-field approach. While the GSWC is a commensurate crystal (i.e., the number of density maxima equals the number of electrons), these ESWCs are incommensurate crystals exhibiting more or less maxima. Interestingly, they are lower in energy than the (uniform) Fermi fluid state. For some of these ESWCs, we have found asymmetrical band gaps, which would lead to anisotropic conductivity. These properties are associated with unusual characteristics in their electronic structure.

  19. BEGA-a biaxial excitation Generator for automobiles

    DEFF Research Database (Denmark)

    Scridon, S.; Boldea, Ion; Tutelea, L.

    2005-01-01

    This paper presents the design and test results for a biaxial excitation generator/motor for automobiles (BEGA), which has a three-phase stator and a salient-pole excited heteropolar rotor with multiple flux barriers filled with low-cost permanent magnets (PMs). For this new generator, the low-voltage...... regulation is obtained by the flux-barrier PM combination with field (excitation) low-power control and a full-power diode rectifier in the stator. Good power/volume and superior efficiency (up to 80%) are obtained at costs comparable to those of an existing Lundell generator. The generator configuration...

  20. Electron excitation of a Jovian Aurora

    Science.gov (United States)

    Heaps, M. G.; Bass, J. N.; Green, A. E. S.

    1973-01-01

    Because Jupiter possesses a magnetic field, auroral activity is very likely. The auroral emissions due to electron precipitation are estimated for a model atmosphere with and without helium. The incident primary electrons, which are characterized by representative spectra, are degraded in energy by applying the continuous slow down approximation. All secondaries, tertiaries, and higher generation electrons are assumed to be absorbed locally. A compilation of excitation, dissociation, and ionization cross section data for H, H2, and He are used to model all aspects of the energy deposition process. Volume emission rates are calculated from the total direct excitation rates, and appropriate corrections for cascading are applied. Helium emissions are relatively small because the majority of electrons are absorbed above the region of maximum He concentration.

  1. Stochastic dilution effects weaken deterministic effects of niche-based processes in species rich forests.

    Science.gov (United States)

    Wang, Xugao; Wiegand, Thorsten; Kraft, Nathan J B; Swenson, Nathan G; Davies, Stuart J; Hao, Zhanqing; Howe, Robert; Lin, Yiching; Ma, Keping; Mi, Xiangcheng; Su, Sheng-Hsin; Sun, I-fang; Wolf, Amy

    2016-02-01

    Recent theory predicts that stochastic dilution effects may result in species-rich communities with statistically independent species spatial distributions, even if the underlying ecological processes structuring the community are driven by deterministic niche differences. Stochastic dilution is a consequence of the stochastic geometry of biodiversity where the identities of the nearest neighbors of individuals of a given species are largely unpredictable. Under such circumstances, the outcome of deterministic species interactions may vary greatly among individuals of a given species. Consequently, nonrandom patterns in the biotic neighborhoods of species, which might be expected from coexistence or community assembly theory (e.g., individuals of a given species are neighbored by phylogenetically similar species), are weakened or do not emerge, resulting in statistical independence of species spatial distributions. We used data on phylogenetic and functional similarity of tree species in five large forest dynamics plots located across a gradient of species richness to test predictions of the stochastic dilution hypothesis. To quantify the biotic neighborhood of a focal species we used the mean phylogenetic (or functional) dissimilarity of the individuals of the focal species to all species within a local neighborhood. We then compared the biotic neighborhood of species to predictions from stochastic null models to test if a focal species was surrounded by more or less similar species than expected by chance. The proportions of focal species that showed spatial independence with respect to their biotic neighborhoods increased with total species richness. Locally dominant, high-abundance species were more likely to be surrounded by species that were statistically more similar or more dissimilar than expected by chance. Our results suggest that stochasticity may play a stronger role in shaping the spatial structure of species rich tropical forest communities than it

  2. Marine Cloud Brightening: regional applications to the weakening of hurricanes and reduction in coral bleaching

    Science.gov (United States)

    Gadian, A.; Hauser, R.; Kleypas, J. A.; Latham, J.; Parkes, B.; Salter, S.

    2013-12-01

    boxes in both panels represent the three coral reef regions. In the Southern north Atlantic, the warmer SSTs in (a) is reduced to the current "control" temperatures, weakening hurricane formation.

  3. Do health-related labour costs weaken the competitiveness of the economy?

    Science.gov (United States)

    Häussler, Bertram; Ecker, Thomas; Schneider, Markus

    2006-12-01

    At least in Germany, it is widely assumed that healthcare-related labour costs weaken the competitiveness of national industries. However, there is a lack of knowledge about the amount of employers' financial burden in Germany and in other competing countries, as well as the impact on market prices of German goods. To quantify the health-related labour costs for employers in seven countries and different industries, and identify the effects of current reforms in Germany on the financial burden of employers. We calculated the spending on health in Germany and the burden on German employers (by branch of production). We then compared the total burden with that of six other countries. A univariate analysis was then conducted to examine the connection between health-related labour costs and employment. In 2000, employers paid 41.2% of the total of 283.3 billion spent on health matters in Germany. These total costs account for 3.2% of the gross output (UK: 1.8%, Switzerland: 1.9%, Poland: 2.1%, US: 3.2%, France: 3.6%, The Netherlands: 3.7%). Health-related labour costs account for 10.6% of the total labour costs. The health-related labour costs per employee are on average 3013 (from 2752 to 4793 in healthcare and the chemical industry, respectively). In the UK and the US there are corresponding labour costs of 1836 and 4256 per employee, respectively. The current health reform (2003) would reduce the labour costs by only 0.7% after 4 years (based on 2000, with all factors remaining constant). Employment increased by 3.7% from 1995 to 2000 (textile industry: -26.8%, vehicle manufacture: +18.3%). There is no empirical connection between employment and health-related labour costs. Labour costs increased by a higher amount than the health-related labour costs. The burden on German employers is moderate when compared internationally. The current reform of the German health system is not expected to improve companies' financial situation or German competitiveness

  4. Coupling effects of nonlocal and modified couple stress theories incorporating surface energy on analytical transverse vibration of a weakened nanobeam

    Science.gov (United States)

    Sourki, R.; Hosseini, S. A.

    2017-04-01

    An analytical solution to the flexural vibration of a weakened nanobeam on the basis of the nonlocal modified couple stress theory including surface effects is under consideration. In this investigation nanobeams are studied within the framework of the Euler-Bernoulli beam theory. The nanobeam is weakened by a crack modeled as a rotational spring at the crack position. This assumption divides the beam into two sections, invoking additional conditions on the beam. The governing equations and boundary conditions for the beam are obtained by applying the Hamilton principle. The natural frequencies for the cracked nanobeam are determined to investigate the effects of crack severity, crack position, nonlocal parameter, material length scale parameter and surface effect parameters. It has been found that the mentioned parameters have considerable effects on stiffness and have a significant impact the dynamic behavior of the nanobeam.

  5. Weakening and Shifting of the Saharan Heat Low Circulation During Wet Years of the West African Monsoon

    CERN Document Server

    Shekhar, Ravi

    2016-01-01

    The correlation between increased West African monsoon rainfall and anomalously low surface pressure over the Sahara is well established in observations and global climate models, and has been interpreted as a strengthening of the Saharan Heat Low (SHL) during wet monsoon years. This study uses two atmospheric reanalysis datasets to examine interannual variability of Sahel rainfall and the shallow Saharan Heat Low circulation, which consists of the near surface SHL and the Saharan High in the lower mid-troposphere. During wet Sahel years, the SHL circulation shifts poleward, producing a drop in low-level geopotential height and surface pressure over the Sahara. Statistically removing the effect of the poleward shift from the low-level geopotential eliminates significant correlations between this geopotential and Sahel precipitation. As the SHL circulation shifts poleward, its mid-tropospheric divergent outflow decreases, indicating a weakening of its overturning mass flux. The poleward shift and weakening of ...

  6. Changes in extreme regional sea surface height due to an abrupt weakening of the Atlantic meridional overturning circulation

    OpenAIRE

    Brunnabend, S.-E.; Dijkstra, H.A.; Kliphuis, M. A.; Werkhoven, B van.; Bal, H.E.; F. Seinstra; Maassen, J.; M. van Meersbergen

    2014-01-01

    As an extreme scenario of dynamical sea level changes, regional sea surface height (SSH) changes that occur in the North Atlantic due to an abrupt weakening of the Atlantic meridional overturning circulation (AMOC) are simulated. Two versions of the same ocean-only model are used to study the effect of ocean model resolution on these SSH changes: a high-resolution (HR) strongly eddying version and a low-resolution (LR) version in which the effect of eddies is parameterised. ...

  7. Symmetric Problem of Elasticity Theory for a Half-Plane Weakened with a Round Opening and a Crack

    OpenAIRE

    Babloyan A.H.; Baghdasaryan A.V.

    2007-01-01

    The article presents the solution of a symmetric problem of elasticity theory for an elastic half-plane weakened by a round opening and a rectilinear crack, the latter being perpendicular to the edge of the half-plane. Symmetrically distributed normal loadings are given at the edges of the opening, the half-plane and banks of the split. On the infinity the half-plane spreads by equally distributed loadings with p intensity (fig.1).

  8. Symmetric Problem of Elasticity Theory for a Half-Plane Weakened with a Round Opening and an Internal Crack

    OpenAIRE

    A.H. Babloyan; A.V. Baghdasaryan

    2007-01-01

    The article presents the solution of a symmetric problem of elasticity theory for an elastic half-plane weakened by a round opening and a rectilinear internal crack, the latter being perpendicular to the edge of the half-plane. Symmetrically distributed normal loadings are given at the edges of the opening, the half-plane and banks of the split. On the infinity the half-plane spreads by equally distributed loadings with p intensity (fig.1).

  9. Sensorless flux-weakening control of permanent-magnet brushless machines using third harmonic back EMF \\ud

    OpenAIRE

    Shen, J.X.; Zhu, Z Q; Howe, D.

    2004-01-01

    The sensorless control of brushless machines by detecting the third harmonic back electromotive force is a relatively simple and potentially low-cost technique. However, its application has been reported only for brushless dc motors operating under normal commutation. In this paper, the utility of the method for the sensorless control of both brushless dc and ac motors, including operation in the flux-weakening mode, is demonstrated.

  10. Displacement and dynamic weakening processes in smectite-rich gouge from the Central Deforming Zone of the San Andreas Fault

    Science.gov (United States)

    French, M. E.; Kitajima, H.; Chester, J. S.; Chester, F. M.; Hirose, T.

    2014-03-01

    The strength of clay-rich gouge from the Central Deforming Zone (CDZ) of the San Andreas Fault (SAF) was measured using a high-speed rotary shear apparatus to evaluate the potential for unstable slip along the creeping segment of the SAF. Wet and dry gouge was sheared at 0.1-1.3 m/s, 0.5-1.5 MPa normal stress, and 1-20 m displacement. CDZ gouge is weaker wet than dry and exhibits displacement strengthening to peak friction followed by weakening to steady state strength that decreases with increasing velocity. A clay foliation (Unit 2) develops from the initial microstructure (Unit 1) during the first 1.5 m of slip coincident with increasing strength. Subsequent weakening occurs during shear within Unit 2, and subsequently with development of a localized foliated slip zone (Unit 4) and fluidized material (Unit 3). Displacement and dynamic weakening result from slip along clay foliation assisted by shear-heating pressurization of pore fluid in wet gouge and additional grain-size reduction and possible clay dehydration in dry gouge. Peak strength is proportional to normal stress, but steady state strength is insensitive to normal stress probably because pore pressure approaches the normal stress. As such, CDZ gouge is weak at coseismic rates relative to interseismic creep strength. The potential for sustaining rupture propagation into the CDZ from an adjacent seismic segment is sensitive to the relationship used to extrapolate the critical weakening displacement from experimental to in situ conditions. Rupture propagation from a microseismic patch within the CDZ is unlikely, but sustained propagation from a large earthquake (e.g., Parkfield event) may be possible.

  11. Chromosomal instability by inefficient Mps1 auto-activation due to a weakened mitotic checkpoint and lagging chromosomes.

    Directory of Open Access Journals (Sweden)

    Nannette Jelluma

    Full Text Available BACKGROUND: Chromosomal instability (CIN, a feature widely shared by cells from solid tumors, is caused by occasional chromosome missegregations during cell division. Two of the causes of CIN are weakened mitotic checkpoint signaling and persistent merotelic attachments that result in lagging chromosomes during anaphase. PRINCIPAL FINDINGS: Here we identify an autophosphorylation event on Mps1 that is required to prevent these two causes of CIN. Mps1 is phosphorylated in mitotic cells on at least 7 residues, 4 of which by autophosphorylation. One of these, T676, resides in the activation loop of the kinase domain and a mutant that cannot be phosphorylated on T676 is less active than wild-type Mps1 but is not kinase-dead. Strikingly, cells in which endogenous Mps1 was replaced with this mutant are viable but missegregate chromosomes frequently. Anaphase is initiated in the presence of misaligned and lagging chromosomes, indicative of a weakened checkpoint and persistent merotelic attachments, respectively. CONCLUSIONS/SIGNIFICANCE: We propose that full activity of Mps1 is essential for maintaining chromosomal stability by allowing resolution of merotelic attachments and to ensure that single kinetochores achieve the strength of checkpoint signaling sufficient to prevent premature anaphase onset and chromosomal instability. To our knowledge, phosphorylation of T676 on Mps1 is the first post-translational modification in human cells of which the absence causes checkpoint weakening and CIN without affecting cell viability.

  12. Excited cooper pairs

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Arrietea, M. G.; Solis, M. A.; De Llano, M. [Universidad Nacional Autonoma de Mexico, Mexico, D.F (Mexico)

    2001-02-01

    Excited cooper pairs formed in a many-fermion system are those with nonzero total center-of mass momentum (CMM). They are normally neglected in the standard Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity for being too few compared with zero CMM pairs. However, a Bose-Einstein condensation picture requires both zero and nonzero CMM pairs. Assuming a BCS model interaction between fermions we determine the populations for all CMM values of Cooper pairs by actually calculating the number of nonzero-CMM pairs relative to that of zero-CMM ones in both 2D and 3D. Although this ratio decreases rapidly with CMM, the number of Cooper pairs for any specific CMM less than the maximum (or breakup of the pair) momentum turns out to be typically larger than about 95% of those with zero-CMM at zero temperature T. Even at T {approx}100 K this fraction en 2D is still as large as about 70% for typical quasi-2D cuprate superconductor parameters. [Spanish] Los pares de cooper excitados formados en un sistema de muchos electrones, son aquellos con momentos de centro de masa (CMM) diferente de cero. Normalmente estos no son tomados en cuenta en la teoria estandar de la superconductividad de Bardeen-Cooper-Schrieffer (BCS) al suponer que su numero es muy pequeno comparados con los pares de centro de masa igual a cero. Sin embargo, un esquema de condensacion Bose-Einstein requiere de ambos pares, con CMM cero y diferente de cero. Asumiendo una interaccion modelo BCS entre los fermiones, determinamos la poblacion de pares cooper con cada uno de todos los posibles valores del CMM calculando el numero de pares con momentos de centro de masa diferente de cero relativo a los pares de CMM igual a cero, en 2D y 3D. Aunque esta razon decrece rapidamente con el CMM, el numero de pares de cooper para cualquier CMM especifico menor que el momento maximo (o rompimiento de par) es tipicamente mas grande que el 95% de aquellos con CMM cero. Aun a T {approx}100 K esta fraccion en 2D es

  13. Indirect excitation of ultrafast demagnetization

    National Research Council Canada - National Science Library

    Vodungbo, B; Tudu, B; Perron, J; Delaunay, R; Müller, L; Berntsen, M.H; Grübel, G; Malinowski, G; Weier, C; Gautier, J; Lambert, G; Zeitoun, P; Gutt, C; Jal, E; Reid, A.H; Granitzka, P.W; Jaouen, N; Dakovski, G.L; Moeller, S; Minitti, M.P; Mitra, A; Carron, S; Pfau, B; von Korff Schmising, C; Schneider, M; Eisebitt, S; Lüning, J

    2016-01-01

    .... Upon excitation with an intense femtosecond-short IR laser pulse, the film exhibits the classical ultrafast demagnetization phenomenon although only a negligible number of IR photons penetrate the aluminum layer...

  14. Transport waves as crystal excitations

    Science.gov (United States)

    Cepellotti, Andrea; Marzari, Nicola

    2017-09-01

    We introduce the concept of transport waves by showing that the linearized Boltzmann transport equation admits excitations in the form of waves that have well-defined dispersion relations and decay times. Crucially, these waves do not represent single-particle excitations, but are collective excitations of the equilibrium distribution functions. We study in detail the case of thermal transport, where relaxons are found in the long-wavelength limit, and second sound is reinterpreted as the excitation of one or several temperature waves at finite frequencies. Graphene is studied numerically, finding decay times of the order of microseconds. The derivation, obtained by a spectral representation of the Boltzmann equation, holds in principle for any crystal or semiclassical transport theory and is particularly relevant when transport takes place in the hydrodynamic regime.

  15. Bidomain Predictions of Virtual Electrode-Induced Make and Break Excitations around Blood Vessels.

    Science.gov (United States)

    Connolly, Adam J; Vigmond, Edward; Bishop, Martin J

    2017-01-01

    Virtual electrodes formed by field stimulation during defibrillation of cardiac tissue play an important role in eliciting activations. It has been suggested that the coronary vasculature is an important source of virtual electrodes, especially during low-energy defibrillation. This work aims to further the understanding of how virtual electrodes from the coronary vasculature influence defibrillation outcomes. Using the bidomain model, we investigated how field stimulation elicited activations from virtual electrodes around idealized intramural blood vessels. Strength-interval curves, which quantify the stimulus strength required to elicit wavefront propagation from the vessels at different states of tissue refractoriness, were computed for each idealized geometry. Make excitations occurred at late diastolic intervals, originating from regions of depolarization around the vessel. Break excitations occurred at early diastolic intervals, whereby the vessels were able to excite surrounding refractory tissue due to the local restoration of excitability by virtual electrode-induced hyperpolarizations. Overall, strength-interval curves had similar morphologies and underlying excitation mechanisms compared with previous experimental and numerical unipolar stimulation studies of cardiac tissue. Including the presence of the vessel wall increased the field strength required for make excitations but decreased the field strength required for break excitations, and the field strength at which break excitations occurred was generally greater than 5 V/cm. Finally, in a more realistic ventricular slice geometry, the proximity of virtual electrodes around subepicardial vessels was seen to cause break excitations in the form of propagating unstable wavelets to the subepicardial layer. Representing the blood vessel wall microstructure in computational bidomain models of defibrillation is recommended as it significantly alters the electrophysiological response of the vessel to

  16. Indirect excitation of ultrafast demagnetization

    OpenAIRE

    Boris Vodungbo; Bahrati Tudu; Jonathan Perron; Renaud Delaunay; Leonard Müller; Berntsen, Magnus H.; Gerhard Grübel; Grégory Malinowski; Christian Weier; Julien Gautier; Guillaume Lambert; Philippe Zeitoun; Christian Gutt; Emmanuelle Jal; Reid, Alexander H.

    2016-01-01

    Does the excitation of ultrafast magnetization require direct interaction between the photons of the optical pump pulse and the magnetic layer? Here, we demonstrate unambiguously that this is not the case. For this we have studied the magnetization dynamics of a ferromagnetic cobalt/palladium multilayer capped by an IR-opaque aluminum layer. Upon excitation with an intense femtosecond-short IR laser pulse, the film exhibits the classical ultrafast demagnetization phenomenon although only a ne...

  17. Stochastic Hierarchical Systems: Excitable Dynamics

    OpenAIRE

    Leonhardt, Helmar; Zaks, Michael A.; Falcke, Martin; Schimansky-Geier, Lutz

    2008-01-01

    We present a discrete model of stochastic excitability by a low-dimensional set of delayed integral equations governing the probability in the rest state, the excited state, and the refractory state. The process is a random walk with discrete states and nonexponential waiting time distributions, which lead to the incorporation of memory kernels in the integral equations. We extend the equations of a single unit to the system of equations for an ensemble of globally coupled oscillators, derive...

  18. Autowaves in moving excitable media

    Directory of Open Access Journals (Sweden)

    V.A.Davydov

    2004-01-01

    Full Text Available Within the framework of kinematic theory of autowaves we suggest a method for analytic description of stationary autowave structures appearing at the boundary between the moving and fixed excitable media. The front breakdown phenomenon is predicted for such structures. Autowave refraction and, particulary, one-side "total reflection" at the boundary is considered. The obtained analytical results are confirmed by computer simulations. Prospects of the proposed method for further studies of autowave dynamics in the moving excitable media are discussed.

  19. Have Gluonic Excitations Been Found?

    OpenAIRE

    Page, Philip R.

    1996-01-01

    New experimental information on the non-exotic J^PC = 0^-+ isovector seen at 1.8 GeV by VES yields convincing evidence of its excited gluonic (hybrid) nature when a critical study of alternative quarkonium assignments is made in the context of ^3 P_0 decay by flux-tube breaking. Production of this gluonic excitation via meson exchange is promising, although its two photon production vanishes.

  20. Thermal Excitation System for Shearography (TESS)

    Science.gov (United States)

    Lansing, Matthew D.; Bullock, Michael W.

    1996-01-01

    One of the most convenient and effective methods of stressing a part or structure for shearographic evaluation is thermal excitation. This technique involves heating the part, often convectively with a heat gun, and then monitoring with a shearography device the deformation during cooling. For a composite specimen, unbonds, delaminations, inclusions, or matrix cracking will deform during cooling differently than other more structurally sound regions and thus will appear as anomalies in the deformation field. However, one of the difficulties that cause this inspection to be dependent on the operator experience is the conventional heating process. Fanning the part with a heat gun by hand introduces a wide range of variability from person to person and from one inspection to the next. The goal of this research effort was to conduct research in the methods of thermal excitation for shearography inspection. A computerized heating system was developed for inspection of 0.61 m (24 in.) square panels. The Thermal Excitation System for Shearography (TESS) provides radiant heating with continuous digital measurement of the surface temperature profile to ensure repeatability. The TESS device functions as an accessory to any electronic shearography device.

  1. Electronic excitation induced hydrogen-bond adjustment and lattice control in organic-inorganic hybrid cubic perovskites: a fixed occupation molecular dynamics study.

    Science.gov (United States)

    Wang, Mo-Ran; Ren, Xiang-Yang; Li, Xian-Bin; Chen, Nian-Ke; Sun, Hong-Bo

    2017-10-04

    The organic-inorganic hybrid perovskite has become a new type of semiconductor for low cost and highly efficient solar cells. However, the mechanism of interactions between the organic cation and the inorganic framework is still not completely clear under optical electronic excitation. In this work, we employ first-principles molecular dynamics with electronic excitation effects to prove that the hydrogen-bond interaction between the molecular cation and the inorganic lattice can be readily adjusted by several-percentage-valence-electron excitations in cubic CH3NH3PbI3. While the hydrogen-bond interaction causes serious lattice distortions, the electronic excitation can recover the lattice symmetry largely by weakening hydrogen bonding. The study offers atomic dynamics to understand the excitation process in the organic-inorganic hybrid perovskite semiconductor.

  2. Electron-excited molecule interactions

    Energy Technology Data Exchange (ETDEWEB)

    Christophorou, L.G. (Oak Ridge National Lab., TN (USA) Tennessee Univ., Knoxville, TN (USA). Dept. of Physics)

    1991-01-01

    In this paper the limited but significant knowledge to date on electron scattering from vibrationally/rotationally excited molecules and electron scattering from and electron impact ionization of electronically excited molecules is briefly summarized and discussed. The profound effects of the internal energy content of a molecule on its electron attachment properties are highlighted focusing in particular on electron attachment to vibrationally/rotationally and to electronically excited molecules. The limited knowledge to date on electron-excited molecule interactions clearly shows that the cross sections for certain electron-molecule collision processes can be very different from those involving ground state molecules. For example, optically enhanced electron attachment studies have shown that electron attachment to electronically excited molecules can occur with cross sections 10{sup 6} to 10{sup 7} times larger compared to ground state molecules. The study of electron-excited molecule interactions offers many experimental and theoretical challenges and opportunities and is both of fundamental and technological significance. 54 refs., 15 figs.

  3. Plasmonic toroidal excitation with engineering metamaterials

    Science.gov (United States)

    Wu, Pin Chieh; Hsiao, Hui-Hsin; Liao, Chun Yen; Chung, Tsung Lin; Wu, Pei Ru; Savinov, Vassili; Zheludev, Nikolay I.; Tsai, Din Ping

    2017-08-01

    Natural toroidal molecules, such as biomolecules and proteins, possess toroidal dipole moments that are hard to be detected, which leads to extensive studies of artificial toroidal materials. Recently, toroidal metamaterials have been widely investigated to enhance toroidal dipole moments while the other multipoles are eliminated due to the spacial symmetry. In this talk, we will show several cases on the plasmonic toroidal excitation by engineering the near-field coupling between metamaterials, including their promising applications. In addition, a novel design for a toroidal metamaterial with engineering anapole mode will also be discussed.

  4. Magnetic equivalent circuit model for unipolar hybrid excitation synchronous machine

    Directory of Open Access Journals (Sweden)

    Kupiec Emil

    2015-03-01

    Full Text Available Lately, there has been increased interest in hybrid excitation electrical machines. Hybrid excitation is a construction that combines permanent magnet excitation with wound field excitation. Within the general classification, these machines can be classified as modified synchronous machines or inductor machines. These machines may be applied as motors and generators. The complexity of electromagnetic phenomena which occur as a result of coupling of magnetic fluxes of separate excitation systems with perpendicular magnetic axis is a motivation to formulate various mathematical models of these machines. The presented paper discusses the construction of a unipolar hybrid excitation synchronous machine. The magnetic equivalent circuit model including nonlinear magnetization curves is presented. Based on this model, it is possible to determine the multi-parameter relationships between the induced voltage and magnetomotive force in the excitation winding. Particular attention has been paid to the analysis of the impact of additional stator and rotor yokes on above relationship. Induced voltage determines the remaining operating parameters of the machine, both in the motor and generator mode of operation. The analysis of chosen correlations results in an identification of the effective control range of electromotive force of the machine.

  5. Collective excitations in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Chomaz, Ph. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France); Collaboration: La Direction des Sciences de la Matiere du CEA (FR); Le Fonds National de la Recherche Scientifique de Belgique (BE)

    1998-12-31

    The properties of the nucleus cannot be reduced to the properties of its constituents: it is a complex system. The fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation of this complexity. In particular, the nucleons can thus self-organize in collective motions such as giant resonances. Therefore the study of this collective motions is a very good tool to understand the properties of the nucleus itself. The purpose of this article is to stress some aspects of these collective vibrations. We have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations which are behaving like a gas of bosons in weak interaction. Understanding of these phenomena remains one of the important subjects of actuality in the context of quantal systems in strong interaction. In particular, the study of the states with one or two vibration quanta provides a direct information on the structure of nuclei close to their ground states. Moreover, some collective states appear to be very robust against the onset of chaos. This is the case of the hot giant dipole built on top of a hot nucleus which seems to survive up to rather high temperatures. Their sudden disappearance is still a subject of controversy. It may be that the mean-field and the associated collective states are playing a crucial role also in catastrophic processes such as the phase-transitions. Indeed, when the system is diluted the collective vibrations may become unstable and it seems that these unstable modes provide a natural explanation to the self organization of the system in drops. Finally, considering the diversity of the different structures of exotic nuclei one may expect new vibration types. All these studies are showing the diversity of the collective motions of strongly correlated quantum systems such as the nucleus but many open questions remain to be solved. (authors) 304 refs., 53 figs., 5 tabs.

  6. Exciting Graphene Surface Plasmon Polaritons through Light and Sound Interplay

    KAUST Repository

    Farhat, Mohamed

    2013-12-05

    We propose a concept that allows for efficient excitation of surface plasmon spolaritons (SPPs) on a thin graphene sheet located on a substrate by an incident electromagnetic field. Elastic vibrations of the sheet, which are generated by a flexural wave, act as a grating that enables the electromagnetic field to couple to propagating graphene SPPs. This scheme permits fast on-off switching of the SPPs and dynamic tuning of their excitation frequency by adjusting the vibration frequency (grating period). Potential applications include single molecule detection and enhanced control of SPP trajectories via surface wave patterning of graphene metasurfaces. Analytical calculations and numerical experiments demonstrate the practical applicability of the proposed concept.

  7. Electromagnetic toroidal excitations in matter and free space

    Science.gov (United States)

    Papasimakis, N.; Fedotov, V. A.; Savinov, V.; Raybould, T. A.; Zheludev, N. I.

    2016-03-01

    The toroidal dipole is a localized electromagnetic excitation, distinct from the magnetic and electric dipoles. While the electric dipole can be understood as a pair of opposite charges and the magnetic dipole as a current loop, the toroidal dipole corresponds to currents flowing on the surface of a torus. Toroidal dipoles provide physically significant contributions to the basic characteristics of matter including absorption, dispersion and optical activity. Toroidal excitations also exist in free space as spatially and temporally localized electromagnetic pulses propagating at the speed of light and interacting with matter. We review recent experimental observations of resonant toroidal dipole excitations in metamaterials and the discovery of anapoles, non-radiating charge-current configurations involving toroidal dipoles. While certain fundamental and practical aspects of toroidal electrodynamics remain open for the moment, we envision that exploitation of toroidal excitations can have important implications for the fields of photonics, sensing, energy and information.

  8. The rise of the daughter-in-law: Why son preference is weakening in ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2012-11-13

    Nov 13, 2012 ... Daughters are a curse,” a mother hissed at me, enraged at the return home of a daughter whom she believed had been successfully married off. I first encountered the dark side of son preference that has long characterised South Asian societies as a young researcher carrying out field work in the village of ...

  9. Lignosulfonate-mediated cellulase adsorption: enhanced enzymatic saccharification of lignocellulose through weakening nonproductive binding to lignin

    Science.gov (United States)

    Zhaojiang Wang; JY Zhu; Yingjuan Fu; Menghua Qin; Zhiyong Shao; Jungang Jiang; Fang Yang

    2013-01-01

    Thermochemical pretreatment of lignocellulose is crucial to bioconversion in the fields of biorefinery and biofuels. However, the enzyme inhibitors in pretreatment hydrolysate make solid substrate washing and hydrolysate detoxification indispensable prior to enzymatic hydrolysis. Sulfite pretreatment to overcome recalcitrance of lignocelluloses (SPORL) is a relatively...

  10. UV Excited Photoacoustic Raman

    Energy Technology Data Exchange (ETDEWEB)

    Carter, J. Chance [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chambers, David H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Steele, Paul T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Haugen, Peter [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Heller, Don [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-11-15

    To summarize, our efforts and findings are as follows: we analyzed the theoretical system performance using known PARS theory coupled with an acoustic detector model to estimate the expected signal-­to-noise ratio (SNR). The system model comprised a mathematical model of the Raman process leading to a prediction of the temperature change in the active region; a thermoacoustic gas prediction of the radiated pressure field (amplitude and pulse shape); and the receiver response for an acoustic microphone, including a simple model of the receiver circuitry (filters, integrators, etc.). Based on the PARS experimental parameters in Appendix B, the model predicted a PARS signal with pressure peak of 7 Pa and duration slightly longer than 2 ms at a distance of 7 mm from the focal spot when acoustic dissipation is not included. An analytical model of a PARS signal with acoustic dissipation was constructed but the numerical calculation is limited to gains of <1% of the experimental value. For these lower gains, the model predicts spreading of the signal.

  11. Collective excitations in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Chomaz, Ph

    1997-12-31

    The properties of the nucleus cannot be reduced to the properties of its constituents: it is a complex system. The fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation of this complexity. In particular the nucleons can thus self-organize in collective motions such as giant resonances. Therefore the study of these collective motions is a very good to understand the properties of the nucleus itself. The purpose of this article was to stress some aspects of these collective vibrations. In particular we have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations which are behaving like a gas of bosons in weak interaction. The understanding of these phenomena remains one of the important subjects of actually in the context of quantal systems in strong interaction. In particular the study of the states with one or two vibration quanta provides a direct information on the structure if nuclei close to their ground states. (author) 270 refs.

  12. Sadomasochism, sexual excitement, and perversion.

    Science.gov (United States)

    Kernberg, O F

    1991-01-01

    Sadomasochism, an ingredient of infantile sexuality, is an essential part of normal sexual functioning and love relations, and of the very nature of sexual excitement. Sadomasochistic elements are also present in all sexual perversions. Sadomasochism starts out as the potential for erotic masochism in both sexes, and represents a very early capacity to link aggression with the libidinal elements of sexual excitement. Sexual excitement may be considered a basic affect that overcomes primitive splitting of love and hatred. Erotic desire is a more mature form of sexual excitement. Psychoanalytic exploration makes it possible to uncover the unconscious components of sexual excitement: wishes for symbiotic fusion and for aggressive penetration and intermingling; bisexual identifications; the desire to transgress oedipal prohibitions and the secretiveness of the primal scene, and to violate the boundaries of a teasing and withholding object. The relation between these wishes and the development of erotic idealization processes in both sexes is explored in the context of a critical review of the pertinent psychoanalytic literature.

  13. Coulomb excitation of (31)Mg

    CERN Document Server

    Seidlitz, M; Reiter, P; Bildstein, V; Blazhev, A; Bree, N; Bruyneel, B; Cederkall, J; Clement, E; Davinson, T; van Duppen, P; Ekstrom, A; Finke, F; Fraile, L M; Geibel, K; Gernhauser, R; Hess, H; Holler, A; Huyse, M; Ivanov, O; Jolie, J; Kalkuhler, M; Kotthaus, T; Krucken, R; Lutter, R; Piselli, E; Scheit, H; Stefanescu, I; van de Walle, J; Voulot, D; Warr, N; Wenander, F; Wiens, A

    2011-01-01

    The ground state properties of ^3^1Mg indicate a change of nuclear shape at N=19 with a deformed J^@p=1/2^+ intruder state as a ground state, implying that ^3^1Mg is part of the ''island of inversion''. The collective properties of excited states were the subject of a Coulomb excitation experiment at REX-ISOLDE, CERN, employing a radioactive ^3^1Mg beam. De-excitation @c-rays were detected by the MINIBALL @c-spectrometer in coincidence with scattered particles in a segmented Si-detector. The level scheme of ^3^1Mg was extended. Spin and parity assignment of the 945 keV state yielded 5/2^+ and its de-excitation is dominated by a strong collective M1 transition. Comparison of the transition probabilities of ^3^0^,^3^1^,^3^2Mg establishes that for th e N=19 magnesium isotope not only the ground state but also excited states are largely dominated by a deformed pf intruder configuration.

  14. Obedience to authority the era of weakening of fundamental principle of industrial management

    OpenAIRE

    Nikodijević, Dragan

    2013-01-01

    Throughout the whole history of theory and practice of industrial management, the idea of authority has been regarded as one of the basic supports of processes of organization and management. However, as all processes in social environment rest on some sort of authority system, crucial discoveries on the phenomenon of obedience to authority do not come from the study of management. Actually, they are the result of time consuming experiments undertaken in the field of social psychology and are...

  15. Weakening Gravity on Redshift-Survey Scales with Kinetic Matter Mixing

    CERN Document Server

    D'Amico, Guido; Mancarella, Michele; Vernizzi, Filippo

    2017-01-01

    We explore general scalar-tensor models in the presence of a kinetic mixing between matter and the scalar field, which we call Kinetic Matter Mixing. In the frame where gravity is de-mixed from the scalar this is due to disformal couplings of matter species to the gravitational sector, with disformal coefficients that depend on the gradient of the scalar field. In the frame where matter is minimally coupled, it originates from the so-called beyond Horndeski quadratic Lagrangian. We extend the Effective Theory of Interacting Dark Energy by allowing disformal coupling coefficients to depend on the gradient of the scalar field as well. In this very general approach, we derive the conditions to avoid ghost and gradient instabilities and we define Kinetic Matter Mixing independently of the frame metric used to described the action. We study its phenomenological consequences for a $\\Lambda$CDM background evolution, first analytically on small scales. Then, we compute the matter power spectrum and the angular spectr...

  16. Holographic construction of excited CFT states

    Energy Technology Data Exchange (ETDEWEB)

    Christodoulou, Ariana; Skenderis, Kostas [STAG Research Centre and Mathematical Sciences, University of Southampton,High-field, Southampton SO17 1BJ (United Kingdom)

    2016-04-15

    We present a systematic construction of bulk solutions that are dual to CFT excited states. The bulk solution is constructed perturbatively in bulk fields. The linearised solution is universal and depends only on the conformal dimension of the primary operator that is associated with the state via the operator-state correspondence, while higher order terms depend on detailed properties of the operator, such as its OPE with itself and generally involve many bulk fields. We illustrate the discussion with the holographic construction of the universal part of the solution for states of two dimensional CFTs, either on R×S{sup 1} or on R{sup 1,1}. We compute the 1-point function both in the CFT and in the bulk, finding exact agreement. We comment on the relation with other reconstruction approaches.

  17. Indirect excitation of ultrafast demagnetization

    Science.gov (United States)

    Vodungbo, Boris; Tudu, Bahrati; Perron, Jonathan; Delaunay, Renaud; Müller, Leonard; Berntsen, Magnus H.; Grübel, Gerhard; Malinowski, Grégory; Weier, Christian; Gautier, Julien; Lambert, Guillaume; Zeitoun, Philippe; Gutt, Christian; Jal, Emmanuelle; Reid, Alexander H.; Granitzka, Patrick W.; Jaouen, Nicolas; Dakovski, Georgi L.; Moeller, Stefan; Minitti, Michael P.; Mitra, Ankush; Carron, Sebastian; Pfau, Bastian; von Korff Schmising, Clemens; Schneider, Michael; Eisebitt, Stefan; Lüning, Jan

    2016-01-01

    Does the excitation of ultrafast magnetization require direct interaction between the photons of the optical pump pulse and the magnetic layer? Here, we demonstrate unambiguously that this is not the case. For this we have studied the magnetization dynamics of a ferromagnetic cobalt/palladium multilayer capped by an IR-opaque aluminum layer. Upon excitation with an intense femtosecond-short IR laser pulse, the film exhibits the classical ultrafast demagnetization phenomenon although only a negligible number of IR photons penetrate the aluminum layer. In comparison with an uncapped cobalt/palladium reference film, the initial demagnetization of the capped film occurs with a delayed onset and at a slower rate. Both observations are qualitatively in line with energy transport from the aluminum layer into the underlying magnetic film by the excited, hot electrons of the aluminum film. Our data thus confirm recent theoretical predictions.

  18. Magnetic excitations in deformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Nojarov, R. [Tuebingen Univ. (Germany). Inst. fuer Theoretische Physik

    1995-08-01

    Cross sections for inelastic electron scattering and energy distributions of M1 and E2 strengths of K{sup {pi}} - 1{sup +} excitations in titanium, rare-earth, and actinide nuclei are studied microscopically within QRPA. The spin M1 strength has two peaks, isoscalar and isovector, residing between the low-and high-energy orbital M1 strength. The latter is strongly fragmented and lies in the region of the IVGQR, where the (e,e`) cross sections are almost one order of magnitude larger for E2 than for M1 excitations. Comparison with the quantized isovector rotor allows the interpretation of all the orbital M1 excitations at both low and high energies as manifestation of the collective scissors mode. (author).

  19. Excitation optimization for damage detection

    Energy Technology Data Exchange (ETDEWEB)

    Bement, Matthew T [Los Alamos National Laboratory; Bewley, Thomas R [UCSD

    2009-01-01

    A technique is developed to answer the important question: 'Given limited system response measurements and ever-present physical limits on the level of excitation, what excitation should be provided to a system to make damage most detectable?' Specifically, a method is presented for optimizing excitations that maximize the sensitivity of output measurements to perturbations in damage-related parameters estimated with an extended Kalman filter. This optimization is carried out in a computationally efficient manner using adjoint-based optimization and causes the innovations term in the extended Kalman filter to be larger in the presence of estimation errors, which leads to a better estimate of the damage-related parameters in question. The technique is demonstrated numerically on a nonlinear 2 DOF system, where a significant improvement in the damage-related parameter estimation is observed.

  20. Indirect excitation of ultrafast demagnetization.

    Science.gov (United States)

    Vodungbo, Boris; Tudu, Bharati; Tudu, Bahrati; Perron, Jonathan; Delaunay, Renaud; Müller, Leonard; Berntsen, Magnus H; Grübel, Gerhard; Malinowski, Grégory; Weier, Christian; Gautier, Julien; Lambert, Guillaume; Zeitoun, Philippe; Gutt, Christian; Jal, Emmanuelle; Reid, Alexander H; Granitzka, Patrick W; Jaouen, Nicolas; Dakovski, Georgi L; Moeller, Stefan; Minitti, Michael P; Mitra, Ankush; Carron, Sebastian; Pfau, Bastian; von Korff Schmising, Clemens; Schneider, Michael; Eisebitt, Stefan; Lüning, Jan

    2016-01-06

    Does the excitation of ultrafast magnetization require direct interaction between the photons of the optical pump pulse and the magnetic layer? Here, we demonstrate unambiguously that this is not the case. For this we have studied the magnetization dynamics of a ferromagnetic cobalt/palladium multilayer capped by an IR-opaque aluminum layer. Upon excitation with an intense femtosecond-short IR laser pulse, the film exhibits the classical ultrafast demagnetization phenomenon although only a negligible number of IR photons penetrate the aluminum layer. In comparison with an uncapped cobalt/palladium reference film, the initial demagnetization of the capped film occurs with a delayed onset and at a slower rate. Both observations are qualitatively in line with energy transport from the aluminum layer into the underlying magnetic film by the excited, hot electrons of the aluminum film. Our data thus confirm recent theoretical predictions.

  1. Autoresonant Excitation of Antiproton Plasmas

    CERN Document Server

    Andresen, Gorm B; Baquero-Ruiz, Marcelo; Bertsche, William; Bowe, Paul D; Butler, Eoin; Carpenter, P T; Cesar, Claudio L; Chapman, Steven; Charlton, Michael; Fajans, Joel; Friesen, Tim; Fujiwara, Makoto C; Gill, David R; Hangst, Jeffrey S; Hardy, Walter N; Hayden, Michael E; Humphries, Andrew J; Hurt, J L; Hydomako, Richard; Jonsell, Svante; Madsen, Niels; Menary, Scott; Nolan, Paul; Olchanski, Konstantin; Olin, Art; Povilus, Alexander; Pusa, Petteri; Robicheaux, Francis; Sarid, Eli; Silveira, Daniel M; So, Chukman; Storey, James W; Thompson, Robert I; van der Werf, Dirk P; Wurtele, Jonathan S; Yamazaki, Yasunori

    2011-01-01

    We demonstrate controllable excitation of the center-of-mass longitudinal motion of a thermal antiproton plasma using a swept-frequency autoresonant drive. When the plasma is cold, dense, and highly collective in nature, we observe that the entire system behaves as a single-particle nonlinear oscillator, as predicted by a recent theory. In contrast, only a fraction of the antiprotons in a warm plasma can be similarly excited. Antihydrogen was produced and trapped by using this technique to drive antiprotons into a positron plasma, thereby initiating atomic recombination.

  2. The Hybridization Barrier between Herbaceous Medicago sativa and Woody M. arborea Is Weakened by Selection of Seed Parents

    Directory of Open Access Journals (Sweden)

    Edwin Bingham

    2013-05-01

    Full Text Available Medicago sativa, alfalfa or lucerne, and M. arborea were considered reproductively isolated until recently. Then, in 2003, an alfalfa genotype was identified that produced a few seeds and progeny with hybrid traits after a large number of pollinations by M. arborea. A derivative of this alfalfa genotype also produced a low frequency of progeny with hybrid traits. Thus, the hybridization barrier was weakened by selection of seed parents. Hybrids from both events expressed traits from M. arborea and M. arborea-specific DNA bands, although more of the M. sativa genome was retained, based on the DNA results. Thus, there was chromatin elimination during embryogenesis, resulting in partial hybrids (hereafter hybrids. However, more than 30 hybrids with an array of M. arborea traits have been obtained thus far, and research continues on the nature of the hybrids. Traits have been genetically transmitted in crosses, and selected traits are in use for alfalfa breeding. This paper reviews the first hybrids and then focuses on further weakening of the hybridization barrier with the discovery of a more efficient hybridizer derived from crossing Medicago sativa subspecies, sativa, coerulea and falcata. This genotype was found to have reproductive abnormalities associated with its complex subspecies origin that are best described as hybrid breakdown. In effect, this subspecies derivative is a bridge-cross parent that consistently produces hybrids. Reproductive abnormalities in the bridge-cross parent are reported and discussed.

  3. Effect of water on slip weakening of cohesive rocks during earthquakes (EMRP Division Outstanding ECS Award Lecture)

    Science.gov (United States)

    Violay, Marie; Alejandro Acosta, Mateo; Passelegue, François; Schubnel, Alexandre

    2017-04-01

    Fluids play an important role in fault zone and in earthquakes generation. Experimental studies of fault frictional properties in presence of fluid can provide unique insights into this phenomenon. Here we compare rotary shear experiments and tri-axial stick slip tests performed on cohesive silicate-bearing rocks (gabbro and granite) in the presence of fluids. Surprisingly, for both type of tests, the weakening mechanism (melting of the asperities) is hindered in the presence of water. Indeed, in rotary shear experiments, at a given effective normal stress (σn-pf), the decay in friction is more gradual and longer in the presence of pore water (32% of friction drop after 20 mm of slip) than under room humidity (41% after 20 mm of slip) and vacuum conditions (60% after 20 mm of slip). During stick slip tests, at a given effective confining pressure (Pc-pf), the dynamic shear stress drops are lower ( 30%) and slip distances were shorter ( 30 to 40%) in the presence of high pressure pore water (Pc=95 MPa; Pf=25 MPa) than under room humidity conditions (Pc=70 MPa; Pf=0 MPa). Thermal modeling of the asperity contacts under load shows that the presence of fluids cools the asperities and delays the formation of melt patches, increasing weakening duration.

  4. Unusual magnetic hysteresis and the weakened transition behavior induced by Sn substitution in Mn3SbN

    Science.gov (United States)

    Sun, Ying; Guo, Yanfeng; Tsujimoto, Yoshihiro; Wang, Cong; Li, Jun; Wang, Xia; Feng, Hai L.; Sathish, Clastin I.; Matsushita, Yoshitaka; Yamaura, Kazunari

    2014-01-01

    Substitution of Sb with Sn was achieved in ferrimagnetic antiperovskite Mn3SbN. The experimental results indicate that with an increase in Sn concentration, the magnetization continuously decreases and the crystal structure of Mn3Sb1-xSnxN changes from tetragonal to cubic phase at around x of 0.8. In the doping series, step-like anomaly in the isothermal magnetization was found and this behavior was highlighted at x = 0.4. The anomaly could be attributed to the magnetic frustration, resulting from competition between the multiple spin configurations in the antiperovskite lattice. Meantime, Hc of 18 kOe was observed at x = 0.3, which is probably the highest among those of manganese antiperovskite materials reported so far. With increasing Sn content, the abrupt change of resistivity and the sharp peak of heat capacity in Mn3SbN were gradually weakened. The crystal structure refinements indicate the weakened change at the magnetic transition is close related to the change of c/a ratio variation from tetragonal to cubic with Sn content. The results derived from this study indicate that the behavior of Mn3Sb1-xSnxN could potentially enhance its scientific and technical applications, such as spin torque transfer and hard magnets.

  5. Unusual magnetic hysteresis and the weakened transition behavior induced by Sn substitution in Mn{sub 3}SbN

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Ying, E-mail: sunying@buaa.edu.cn [Center for Condensed Matter and Materials Physics, Department of Physics, Beihang University, Beijing 100191 (China); International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Tsukuba, Ibaraki 305-0044 (Japan); Guo, Yanfeng; Li, Jun; Wang, Xia [Superconducting Properties Unit, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044 (Japan); Tsujimoto, Yoshihiro [Materials Processing Unit, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047 (Japan); Wang, Cong [Center for Condensed Matter and Materials Physics, Department of Physics, Beihang University, Beijing 100191 (China); Feng, Hai L.; Sathish, Clastin I.; Yamaura, Kazunari, E-mail: yamaura.kazunari@nims.go.jp [Superconducting Properties Unit, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044 (Japan); Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-0810 (Japan); Matsushita, Yoshitaka [Analysis Station, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047 (Japan)

    2014-01-28

    Substitution of Sb with Sn was achieved in ferrimagnetic antiperovskite Mn{sub 3}SbN. The experimental results indicate that with an increase in Sn concentration, the magnetization continuously decreases and the crystal structure of Mn{sub 3}Sb{sub 1-x}Sn{sub x}N changes from tetragonal to cubic phase at around x of 0.8. In the doping series, step-like anomaly in the isothermal magnetization was found and this behavior was highlighted at x = 0.4. The anomaly could be attributed to the magnetic frustration, resulting from competition between the multiple spin configurations in the antiperovskite lattice. Meantime, H{sub c} of 18 kOe was observed at x = 0.3, which is probably the highest among those of manganese antiperovskite materials reported so far. With increasing Sn content, the abrupt change of resistivity and the sharp peak of heat capacity in Mn{sub 3}SbN were gradually weakened. The crystal structure refinements indicate the weakened change at the magnetic transition is close related to the change of c/a ratio variation from tetragonal to cubic with Sn content. The results derived from this study indicate that the behavior of Mn{sub 3}Sb{sub 1-x}Sn{sub x}N could potentially enhance its scientific and technical applications, such as spin torque transfer and hard magnets.

  6. Sea level rise, surface warming, and the weakened buffering ability of South China Sea to strong typhoons in recent decades.

    Science.gov (United States)

    Sun, Jingru; Oey, Leo; Xu, F-H; Lin, Y-C

    2017-08-07

    Each year, a number of typhoons in the western North Pacific pass through the Luzon Strait into South China Sea (SCS). Although the storms remain above a warm open sea, the majority of them weaken due to atmospheric and oceanic environments unfavorable for typhoon intensification in SCS, which therefore serves as a natural buffer that shields the surrounding coasts from potentially more powerful storms. This study examines how this buffer has changed over inter-decadal and longer time scales. We show that the buffer weakens (i.e. greater potential for more powerful typhoons) in negative Pacific Decadal Oscillation (PDO) years, as well as with sea-level-rise and surface warming, caused primarily by the deepening of the ocean's 26 °C isotherm Z 26 . A new Intensity Change Index is proposed to describe the typhoon intensity change as a function of Z 26 and other environmental variables. In SCS, the new index accounts for as high as 75% of the total variance of typhoon intensity change.

  7. Interaction of a shock wave with an array of particles and effect of particles on the shock wave weakening

    Science.gov (United States)

    Bulat, P. V.; Ilyina, T. E.; Volkov, K. N.; Silnikov, M. V.; Chernyshov, M. V.

    2017-06-01

    Two-phase systems that involve gas-particle or gas-droplet flows are widely used in aerospace and power engineering. The problems of weakening and suppression of detonation during saturation of a gas or liquid flow with the array of solid particles are considered. The tasks, associated with the formation of particles arrays, dust lifting behind a travelling shock wave, ignition of particles in high-speed and high-temperature gas flows are adjoined to safety of space flight. The mathematical models of shock wave interaction with the array of solid particles are discussed, and numerical methods are briefly described. The numerical simulations of interaction between sub- and supersonic flows and an array of particles being in motionless state at the initial time are performed. Calculations are carried out taking into account the influence that the particles cause on the flow of carrier gas. The results obtained show that inert particles significantly weaken the shock waves up to their suppression, which can be used to enhance the explosion safety of spacecrafts.

  8. The Hybridization Barrier between Herbaceous Medicago sativa and Woody M. arborea Is Weakened by Selection of Seed Parents

    Science.gov (United States)

    Bingham, Edwin; Armour, David; Irwin, John

    2013-01-01

    Medicago sativa, alfalfa or lucerne, and M. arborea were considered reproductively isolated until recently. Then, in 2003, an alfalfa genotype was identified that produced a few seeds and progeny with hybrid traits after a large number of pollinations by M. arborea. A derivative of this alfalfa genotype also produced a low frequency of progeny with hybrid traits. Thus, the hybridization barrier was weakened by selection of seed parents. Hybrids from both events expressed traits from M. arborea and M. arborea-specific DNA bands, although more of the M. sativa genome was retained, based on the DNA results. Thus, there was chromatin elimination during embryogenesis, resulting in partial hybrids (hereafter hybrids). However, more than 30 hybrids with an array of M. arborea traits have been obtained thus far, and research continues on the nature of the hybrids. Traits have been genetically transmitted in crosses, and selected traits are in use for alfalfa breeding. This paper reviews the first hybrids and then focuses on further weakening of the hybridization barrier with the discovery of a more efficient hybridizer derived from crossing Medicago sativa subspecies, sativa, coerulea and falcata. This genotype was found to have reproductive abnormalities associated with its complex subspecies origin that are best described as hybrid breakdown. In effect, this subspecies derivative is a bridge-cross parent that consistently produces hybrids. Reproductive abnormalities in the bridge-cross parent are reported and discussed. PMID:27137379

  9. Slow light excitation in tapered 1D photonic crystals: theory

    NARCIS (Netherlands)

    Yudistira, D.; Hoekstra, Hugo; Hammer, Manfred; Marpaung, D.A.I.

    2006-01-01

    Slow light (SL) states corresponding to wavelength regions near the bandgap edge of grated structures are known to show strong field enhancement. Such states may be excited efficiently by well-optimised adiabatic transitions in grated structures, e.g., by slowly turning on the modulation depth. To

  10. Local excitation of surface plasmon polaritons in random surface nanostructures

    DEFF Research Database (Denmark)

    Bozhevolnyi, S.I.; Volkov, V.S.; Boltasseva, Alexandra

    2003-01-01

    We investigate local excitation of surface plasmon polaritons (SPPs) at a 55-nm-thick gold layer covered with randomly located scatterers (density similar to75 mum(-2)) by using an uncoated fiber tip of a near-field optical microscope as a radiation source and detecting the radiation scattered...

  11. How many atoms get excited when they decay?

    DEFF Research Database (Denmark)

    Blocher, Philip Daniel; Mølmer, Klaus

    2017-01-01

    We analyse the time evolution of a two-level system prepared in a superposition of its ground state and radiatively unstable excited state. We show that by choosing appropriate means of detection of the radiated field, we can steer the evolution of the emitter and herald its preparation in the fu...

  12. Quantum control of vibrational excitations in a heteronuclear ...

    Indian Academy of Sciences (India)

    WINTEC

    Quantum control of vibrational excitations in a heteronuclear diatomic molecule. SITANSH SHARMA, PURSHOTAM SHARMA and HARJINDER SINGH* ... electric field is calculated and used for the subsequent quantum dynamics, within the dipole approxima- tion. ... properties of interference of dynamical paths to regulate ...

  13. Quantum dimensions from local operator excitations in the Ising model

    Science.gov (United States)

    Caputa, Paweł; Rams, Marek M.

    2017-02-01

    We compare the time evolution of entanglement measures after local operator excitation in the critical Ising model with predictions from conformal field theory. For the spin operator and its descendants we find that Rényi entropies of a block of spins increase by a constant that matches the logarithm of the quantum dimension of the conformal family. However, for the energy operator we find a small constant contribution that differs from the conformal field theory answer equal to zero. We argue that the mismatch is caused by the subtleties in the identification between the local operators in conformal field theory and their lattice counterpart. Our results indicate that evolution of entanglement measures in locally excited states not only constraints this identification, but also can be used to extract non-trivial data about the conformal field theory that governs the critical point. We generalize our analysis to the Ising model away from the critical point, states with multiple local excitations, as well as the evolution of the relative entropy after local operator excitation and discuss universal features that emerge from numerics.

  14. Weakening forensic science in Spain: from expert evidence to documentary evidence.

    Science.gov (United States)

    Lucena-Molina, Jose-Juan; Pardo-Iranzo, Virginia; Gonzalez-Rodriguez, Joaquin

    2012-07-01

    An amendment in 2002 to the Spanish Code of Criminal Procedure converted into documentary evidence the expert reports prepared by official laboratories aimed at determining the nature, weight, and purity of seized drugs. In most cases, experts are spared from appearance before the courts. This is likely to be extended to other forensic fields. After an overview of criminalistic identification in current forensic science, the objectivity and reliability concepts used by jurists and scientists are considered by comparing the paradigm of individualization with that of likelihood. Subsequently, a detailed critical study is made on the above-mentioned Spanish legal reform, and a comparison is made with the decision on the Melendez-Diaz v. Massachusetts case as ruled by the Supreme Court of the United States. Although the reform is in compliance with the Spanish Constitution, it is at odds with science, in particular regarding the logic underpinning the scientific evaluation of evidence. © 2012 American Academy of Forensic Sciences.

  15. Excitation of a biconical line

    Science.gov (United States)

    Goshin, G. G.

    1985-01-01

    The Kontorovich-Lebedev integral transformation is used to obtain in an analytic form a rigorous solution to the quasi-three-dimensional problem involving the excitation of a biconical surface with ideally conducting boundaries by slotted ring sources that are phased according to the traveling-wave law. The results can be used in the design of elliptical-polarization biconical antennas.

  16. Performance of thermally excited resonators

    NARCIS (Netherlands)

    Lammerink, Theodorus S.J.; Elwenspoek, Michael Curt; van Ouwerkerk, R.H.; Bouwstra, S.; Bouwstra, S.; Fluitman, J.H.J.

    A study of electrothermal excitation of micro-machined silicon beams is reported. The temperature distribution is calculated as a function of the position of the transducer, resulting in stress in the structure which reduces the resonance frequency. Test samples are realized and measurements or

  17. Indirect excitation of ultrafast demagnetization

    NARCIS (Netherlands)

    Vodungbo, B.; Tudu, B.; Perron, J.; Delaunay, R.; Müller, L.; Berntsen, M.H.; Grübel, G.; Malinowski, G.; Weier, C.; Gautier, J.; Lambert, G.; Zeitoun, P.; Gutt, C.; Jal, E.; Reid, A.H.; Granitzka, P.W.; Jaouen, N,; Dakovski, G.L.; Moeller, S.; Minitti, M.P.; Mitra, A.; Carron, S.; Pfau, B.; von Korff Schmising, C.; Schneider, M.; Eisebitt, S.; Lüning, J.

    2016-01-01

    Does the excitation of ultrafast magnetization require direct interaction between the photons of the optical pump pulse and the magnetic layer? Here, we demonstrate unambiguously that this is not the case. For this we have studied the magnetization dynamics of a ferromagnetic cobalt/palladium

  18. Predictions for Excited Strange Baryons

    Energy Technology Data Exchange (ETDEWEB)

    Fernando, Ishara P.; Goity, Jose L. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-04-01

    An assessment is made of predictions for excited hyperon masses which follow from flavor symmetry and consistency with a 1/N c expansion of QCD. Such predictions are based on presently established baryonic resonances. Low lying hyperon resonances which do not seem to fit into the proposed scheme are discussed.

  19. Comparison of Flux Regulation Ability of the Hybrid Excitation Doubly Salient Machines

    DEFF Research Database (Denmark)

    Chen, ZhiHui; Wang, Bo; Chen, Zhe

    2014-01-01

    A hybrid excitation doubly salient machine (DSM) (HEDSM) can adjust the air gap flux with the limited field exciting ampere-turns. There are a few studied structures with different air gap flux regulation abilities. In this paper, several HEDSMs with different structures are analyzed by using...... excitation prototype machine is used to conduct the no-load and loading experiments, and the results show the good agreement with the analysis based on the equivalent magnetic circuit....

  20. Higher Order Parametric Excitation Modes for Spaceborne Quadrupole Mass Spectrometers

    Science.gov (United States)

    Gershman, D. J.; Block, B. P.; Rubin, M.; Benna, M.; Mahaffy, P. R.; Zurbuchen, T. H.

    2011-01-01

    This paper describes a technique to significantly improve upon the mass peak shape and mass resolution of spaceborne quadrupole mass spectrometers (QMSs) through higher order auxiliary excitation of the quadrupole field. Using a novel multiresonant tank circuit, additional frequency components can be used to drive modulating voltages on the quadrupole rods in a practical manner, suitable for both improved commercial applications and spaceflight instruments. Auxiliary excitation at frequencies near twice that of the fundamental quadrupole RF frequency provides the advantages of previously studied parametric excitation techniques, but with the added benefit of increased sensed excitation amplitude dynamic range and the ability to operate voltage scan lines through the center of upper stability islands. Using a field programmable gate array, the amplitudes and frequencies of all QMS signals are digitally generated and managed, providing a robust and stable voltage control system. These techniques are experimentally verified through an interface with a commercial Pfeiffer QMG422 quadrupole rod system.When operating through the center of a stability island formed from higher order auxiliary excitation, approximately 50% and 400% improvements in 1% mass resolution and peak stability were measured, respectively, when compared with traditional QMS operation. Although tested with a circular rod system, the presented techniques have the potential to improve the performance of both circular and hyperbolic rod geometry QMS sensors.

  1. Electrically tunable plasma excitations in AA-stacking multilayer graphene

    OpenAIRE

    Lin, Ming-Fa; Chuang, Ying-Chih; Wu, Jhao-Ying

    2014-01-01

    We use a tight-binding model and the random-phase approximation to study the Coulomb excitations in simple-hexagonal-stacking multilayer graphene and discuss the field effects. The calculation results include the energy bands, the response functions, and the plasmon dispersions. A perpendicular electric field is predicted to induce significant charge transfer and thus capable of manipulating the energy, intensity, and the number of plasmon modes. This could be further validated by inelastic l...

  2. Nitrogen enrichment weakens ecosystem stability through decreased species asynchrony and population stability in a temperate grassland.

    Science.gov (United States)

    Zhang, Yunhai; Loreau, Michel; Lü, Xiaotao; He, Nianpeng; Zhang, Guangming; Han, Xingguo

    2016-04-01

    Biodiversity generally promotes ecosystem stability. To assess whether the diversity-stability relationship observed under ambient nitrogen (N) conditions still holds under N enriched conditions, we designed a 6-year field experiment to test whether the magnitude and frequency of N enrichment affects ecosystem stability and its relationship with species diversity in a temperate grassland. Results of this experiment showed that the frequency of N addition had no effect on either the temporal stability of ecosystem and population or the relationship between diversity and stability. Nitrogen addition decreased ecosystem stability significantly through decreases in species asynchrony and population stability. Species richness was positively associated with ecosystem stability, but no significant relationship between diversity and the residuals of ecosystem stability was detected after controlling for the effects of the magnitude of N addition, suggesting collinearity between the effects of N addition and species richness on ecosystem stability, with the former prevailing over the latter. Both population stability and the residuals of population stability after controlling for the effects of the magnitude of N addition were positively associated with ecosystem stability, indicating that the stabilizing effects of component populations were still present after N enrichment. Our study supports the theory predicting that the effects of environmental factors on ecosystem functioning are stronger than those of biodiversity. Understanding such mechanisms is important and urgent to protect biodiversity in mediating ecosystem functioning and services in the face of global changes. © 2015 John Wiley & Sons Ltd.

  3. Hydrodynamic excitations in hot QCD plasma

    Science.gov (United States)

    Abbasi, Navid; Allahbakhshi, Davood; Davody, Ali; Taghavi, Seyed Farid

    2017-12-01

    We study the long wavelength excitations in rotating QCD fluid in the presence of an external magnetic field at finite vector and axial charge densities. We consider the fluctuations of vector and axial charge currents coupled to energy and momentum fluctuations and compute the S O (3 ) covariant dispersion relations of the six corresponding hydrodynamic modes. Among them, there are always two scalar chiral-magnetic-vortical-heat (CMVH) waves; in the absence of a magnetic field (vorticity) these waves reduce to chiral-vortical-heat (CVH) [chiral-magnetic-heat (CMH)] waves. While CMVH waves are a mixture of CMH and CVH waves, they have generally different velocities compared to the sum of velocities of the latter waves. The other four modes, which are made out of scalar-vector fluctuations, are mixed sound-Alfvén waves. We show that when the magnetic field is parallel with the vorticity, these four modes are the two ordinary sound modes together with two chiral Alfvén waves propagating along the common direction of the magnetic field and vorticity.

  4. Evanescent excitation and emission in fluorescence microscopy.

    Science.gov (United States)

    Axelrod, Daniel

    2013-04-02

    Evanescent light-light that does not propagate but instead decays in intensity over a subwavelength distance-appears in both excitation (as in total internal reflection) and emission (as in near-field imaging) forms in fluorescence microscopy. This review describes the physical connection between these two forms as a consequence of geometrical squeezing of wavefronts, and describes newly established or speculative applications and combinations of the two. In particular, each can be used in analogous ways to produce surface-selective images, to examine the thickness and refractive index of films (such as lipid multilayers or protein layers) on solid supports, and to measure the absolute distance of a fluorophore to a surface. In combination, the two forms can further increase selectivity and reduce background scattering in surface images. The polarization properties of each lead to more sensitive and accurate measures of fluorophore orientation and membrane micromorphology. The phase properties of the evanescent excitation lead to a method of creating a submicroscopic area of total internal reflection illumination or enhanced-resolution structured illumination. Analogously, the phase properties of evanescent emission lead to a method of producing a smaller point spread function, in a technique called virtual supercritical angle fluorescence. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Electromagnetic excitation of the Delta(1232) resonance

    Energy Technology Data Exchange (ETDEWEB)

    V. Pascalutsa; M. Vanderhaeghen; Shin Nan Yang

    2006-09-05

    We review the description of the lowest-energy nucleon excitation--the Delta(1232)-resonance. Much of the recent effort has been focused on the precision measurements of the nucleon to Delta transition by means of electromagnetic probes. We review the results of those measurements and confront them with the state-of-the-art calculations based on chiral effective-field theories (EFT), lattice QCD, and QCD-inspired models. Some of the theoretical approaches are reviewed in detail. In particular, we describe the chiral EFT of QCD in the energy domain of the Delta-resonance, and its applications to the electromagnetic nucleon-to-Delta transition (gamma N Delta). We also describe the recent dynamical and unitary-isobar models of pion electroproduction which are extensively used in the extraction of the gamma* N Delta form factors from experiment. Furthermore, we discuss the link of the gamma* N Delta form factors to generalized parton distributions (GPDs), as well as the predictions of perturbative QCD for these transition form factors. The present status of understanding the Delta-resonance properties and the nature of its excitation is summarized.

  6. Propagation of collective pair excitations in disordered Bose superfluids

    Science.gov (United States)

    Lellouch, Samuel; Lim, Lih-King; Sanchez-Palencia, Laurent

    2015-10-01

    We study the effect of disorder on the propagation of collective excitations in a disordered Bose superfluid. We incorporate local-density depletion induced by strong disorder at the mean-field level and formulate the transport of the excitations in terms of a screened scattering problem. We show that the competition of disorder, screening, and density depletion induces a strongly nonmonotonic energy dependence of the disorder parameter. In three dimensions, it results in a rich localization diagram with four different classes of mobility spectra, characterized by either no or up to three mobility edges. Implications on experiments with disordered ultracold atoms are discussed.

  7. Holonomic Quantum Control by Coherent Optical Excitation in Diamond

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Brian B.; Jerger, Paul C.; Shkolnikov, V. O.; Heremans, F. Joseph; Burkard, Guido; Awschalom, David D.

    2017-10-01

    Although geometric phases in quantum evolution are historically overlooked, their active control now stimulates strategies for constructing robust quantum technologies. Here, we demonstrate arbitrary singlequbit holonomic gates from a single cycle of nonadiabatic evolution, eliminating the need to concatenate two separate cycles. Our method varies the amplitude, phase, and detuning of a two-tone optical field to control the non-Abelian geometric phase acquired by a nitrogen-vacancy center in diamond over a coherent excitation cycle. We demonstrate the enhanced robustness of detuned gates to excited-state decoherence and provide insights for optimizing fast holonomic control in dissipative quantum systems.

  8. DESIGN METHODOLOGY OF SELF-EXCITED ASYNCHRONOUS GENERATOR

    Directory of Open Access Journals (Sweden)

    Berzan V.

    2012-04-01

    Full Text Available The paper sets out the methodology of designing an asynchronous generator with capacitive self-excitation. It is known that its design is possible on the basis of serial synchronous motor with squirrel cage rotor. With this approach, the design reworked only the stator winding of electrical machines, making it cost-effectively implement the creation of the generator. Therefore, the methodology for the design, optimization calculations, the development scheme and the stator winding excitation system gain, not only of practical interest, and may also be useful for specialists in the field of electrical machines in the design of asynchronous generators.

  9. Holonomic Quantum Control by Coherent Optical Excitation in Diamond

    Science.gov (United States)

    Zhou, Brian B.; Jerger, Paul C.; Shkolnikov, V. O.; Heremans, F. Joseph; Burkard, Guido; Awschalom, David D.

    2017-10-01

    Although geometric phases in quantum evolution are historically overlooked, their active control now stimulates strategies for constructing robust quantum technologies. Here, we demonstrate arbitrary single-qubit holonomic gates from a single cycle of nonadiabatic evolution, eliminating the need to concatenate two separate cycles. Our method varies the amplitude, phase, and detuning of a two-tone optical field to control the non-Abelian geometric phase acquired by a nitrogen-vacancy center in diamond over a coherent excitation cycle. We demonstrate the enhanced robustness of detuned gates to excited-state decoherence and provide insights for optimizing fast holonomic control in dissipative quantum systems.

  10. Mean excitation energies for molecular ions

    DEFF Research Database (Denmark)

    Jensen, Phillip W. K.; Sauer, Stephan P. A.; Oddershede, Jens

    2017-01-01

    The essential material constant that determines the bulk of the stopping power of high energy projectiles, the mean excitation energy, is calculated for a range of smaller molecular ions using the RPA method. It is demonstrated that the mean excitation energy of both molecules and atoms increase...... with ionic charge. However, while the mean excitation energies of atoms also increase with atomic number, the opposite is the case for mean excitation energies for molecules and molecular ions. The origin of these effects is explained by considering the spectral representation of the excited state...... contributing to the mean excitation energy....

  11. Mean excitation energies for molecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Phillip W.K.; Sauer, Stephan P.A. [Department of Chemistry, University of Copenhagen, Copenhagen (Denmark); Oddershede, Jens [Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense (Denmark); Quantum Theory Project, Departments of Physics and Chemistry, University of Florida, Gainesville, FL (United States); Sabin, John R., E-mail: sabin@qtp.ufl.edu [Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense (Denmark); Quantum Theory Project, Departments of Physics and Chemistry, University of Florida, Gainesville, FL (United States)

    2017-03-01

    The essential material constant that determines the bulk of the stopping power of high energy projectiles, the mean excitation energy, is calculated for a range of smaller molecular ions using the RPA method. It is demonstrated that the mean excitation energy of both molecules and atoms increase with ionic charge. However, while the mean excitation energies of atoms also increase with atomic number, the opposite is the case for mean excitation energies for molecules and molecular ions. The origin of these effects is explained by considering the spectral representation of the excited state contributing to the mean excitation energy.

  12. Correlators of arbitrary untwisted operators and excited twist operators for N branes at angles

    Directory of Open Access Journals (Sweden)

    Igor Pesando

    2014-09-01

    Full Text Available We compute the generic correlator with L untwisted operators and N (excited twist fields for branes at angles on T2 and show that it is given by a generalization of the Wick theorem. We give also the recipe to compute efficiently the generic OPE between an untwisted operator and an excited twisted state.

  13. Effect of vacuum polarization on the excitation of hydrogen atom by electron impact

    Directory of Open Access Journals (Sweden)

    Sujata Bhattacharyya

    1981-01-01

    for 1S−2S excitation of the hydrogen atom by electron impact. The excitation amplitude calculated field theoretically is found to be lowered by 0.47t2/(t2+93 where t2=4|P−Q|2, P and Q being the momenta of the incident and scattered electrons respectively.

  14. Involvement of reactive oxygen species in endosperm cap weakening and embryo elongation growth during lettuce seed germination.

    Science.gov (United States)

    Zhang, Yu; Chen, Bingxian; Xu, Zhenjiang; Shi, Zhaowan; Chen, Shanli; Huang, Xi; Chen, Jianxun; Wang, Xiaofeng

    2014-07-01

    Endosperm cap (CAP) weakening and embryo elongation growth are prerequisites for the completion of lettuce seed germination. Although it has been proposed that the cell wall loosening underlying these processes results from an enzymatic mechanism, it is still unclear which enzymes are involved. Here it is shown that reactive oxygen species (ROS), which are non-enzymatic factors, may be involved in the two processes. In Guasihong lettuce seeds imbibed in water, O2·(-) and H2O2 accumulated and peroxidase activity increased in the CAP, whereas its puncture force decreased. In addition, in the radicle, the increase in embryo growth potential was accompanied by accumulation of O2·(-) and an increase in peroxidase activity. Imbibing seeds in 0.3% sodium dichloroisocyanurate (SDIC) reduced endosperm viability and the levels of O2·(-), H2O2, and peroxidase activity in the CAP, whereas the decrease in its puncture force was inhibited. However, in the embryo, SDIC did not affect the accumulation of O2·(-), peroxidase activity, and the embryo growth potential. As a result, SDIC caused atypical germination, in which the endosperm ruptured at the boundary between the CAP and lateral endosperm. ROS scavengers and ROS generation inhibitors inhibited the CAP weakening and also decreased the embryo growth potential, thus decreasing the percentage of seed germination. Exogenous ROS and ROS generation inducers increased the percentage of CAP rupture to some extent, and the addition of H2O2 to 0.3% SDIC enabled some seeds to undergo typical germination. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  15. Infiltration of matrix-non-producers weakens the Salmonella biofilm and impairs its antimicrobial tolerance and pathogenicity

    Directory of Open Access Journals (Sweden)

    Srinandan eChakravarthy

    2015-12-01

    Full Text Available Bacterial biofilms display a collective lifestyle, wherein the cells secrete extracellular polymeric substances (EPS that helps in adhesion, aggregation, stability, and to protect the bacteria from antimicrobials. We asked whether the EPS could act as a public good for the biofilm and observed that infiltration of cells that do not produce matrix components weakened the biofilm of Salmonella enterica serovar Typhimurium. EPS production was costly for the producing cells, as indicated by a significant reduction in the fitness of wild type (WT cells during competitive planktonic growth relative to the non-producers. Infiltration frequency of non-producers in the biofilm showed a concomitant decrease in overall productivity. It was apparent in the confocal images that the non-producing cells benefit from the EPS produced by the Wild Type (WT to stay in the biofilm. The biofilm containing non-producing cells were more significantly susceptible to sodium hypochlorite and ciprofloxacin treatment than the WT biofilm. Biofilm infiltrated with non-producers delayed the pathogenesis, as tested in a murine model. The cell types were spatially assorted, with non-producers being edged out in the biofilm. However, cellulose was found to act as a barrier to keep the non-producers away from the WT microcolony. Our results show that the infiltration of non-cooperating cell types can substantially weaken the biofilm making it vulnerable to antibacterials and delay their pathogenesis. Cellulose, a component of EPS, was shown to play a pivotal role of acting as the main public good, and to edge-out the non-producers away from the cooperating microcolony.

  16. Protracted weakening during lower crustal shearing along an extensional shear zone

    Science.gov (United States)

    degli Alessandrini, Giulia; Menegon, Luca; Giuntoli, Francesco

    2017-04-01

    This study investigates grain-scale deformation mechanisms in the mafic lower continental crust, with particular focus on the role of syn-kinematic metamorphic reactions and their product - symplectites - in promoting grain size reduction, phase mixing and thus strain localization. The investigated extensional shear zone is hosted in the Finero mafic-ultramafic complex in the Italian Southern Alps. Field and microstructural observations indicate that strain partitioned in gabbroic layers where the primary mineralogical assemblage contained amphibole, forming ultramylonites. These ultramylonites are characterized by isolated porphyroclasts of amphibole, garnet, clinopyroxene and orthopyroxene, embedded in a matrix of plagioclase (ca. 39 vol%) + amphibole (25 vol%) + clinopyroxene (18 vol%) + orthopyroxene (11 vol%) + Fe-Ti oxides (6 vol%) ± apatite (CPO with [001] axes preferentially aligned parallel to the stretching lineation, which we interpret as oriented grain growth during heterogeneous nucleation of amphibole. Pyroxenes and plagioclase lack a CPO and evidence for dislocation creep and dynamic recrystallization. Protracted shearing was initiated by syn-kinematic metamorphic reactions: garnet porphyroclasts formed orthopyroxene + plagioclase symplectites and amphibole porphyroclasts formed pyroxene + plagioclase symplectites. The latter reaction indicates that strain localization initiated with dehydration reactions leading to primary amphibole breakdown into pyroxene and plagioclase, now preserved in the ultramylonite. Geothermobarometry using plagioclase-amphibole pairs in the ultramylonites indicate temperature conditions of ca. 800˚ C and pressures from 8 to 6kbar. This suggests that protracted shearing in the ultramylonites occurred at decreasing pressure and nearly constant T. We suggest that the fluids released during the dehydration reaction were channelized in the ultramylonites and subsequently assisted amphibole nucleation in dilatant sites during

  17. Excited B states at LEP

    CERN Document Server

    Kluit, Peter M

    2005-01-01

    The first orbitally excited B states were discovered at LEP in 1995. In subsequent years evidence was put forward for the existence of several excited B hadron states. Now, ten years later it is time to review the situation. New analyses have been performed in DELPHI using the full LEP data set with improved and high performance analysis tools. Measurements for the production rate and masses of narrow and broad B/sub u, d//sup **/ mesons will be presented as well as results for the search for B/sub s//sup **/ mesons and Sigma /sub b//sup (*)/ baryons. The results will be compared to earlier measurements, predictions from HQET and measurements in the charm sector.

  18. International Meeting: Excited QCD 2014

    CERN Document Server

    Giacosa, Francesco; Malek, Magdalena; Marinkovic, Marina; Parganlija, Denis

    2014-01-01

    Excited QCD 2014 will take place on the beautiful Bjelasnica mountain located in the vicinity of the Bosnian capital Sarajevo. Bjelasnica was a venue of the XIV Winter Olympic Games and it is situated only 30 kilometers from Sarajevo International Airport. The workshop program will start on February 2 and finish on February 8, 2014, with scientific lectures taking place from February 3 to 7. Workshop participants will be accomodated in Hotel Marsal, only couple of minutes by foot from the Olympic ski slopes. ABOUT THE WORKSHOP This edition is the sixth in a series of workshops that were previously organised in Poland, Slovakia, France and Portugal. Following the succesful meeting in 2013, the Workshop is returning to Sarajevo Olympic mountains in 2014, exactly thirty years after the Games. The workshop covers diverse aspects of QCD: (i) QCD at low energies: excited hadrons, glueballs, multiquarks. (ii) QCD at high temperatures and large densities: heavy-ion collisions, jets, diffraction, hadronisation, quark-...

  19. Uniform magnetic excitations in nanoparticles

    DEFF Research Database (Denmark)

    Mørup, Steen; Hansen, Britt Rosendahl

    2005-01-01

    We have used a spin-wave model to calculate the temperature dependence of the (sublattice) magnetization of magnetic nanoparticles. The uniform precession mode, corresponding to a spin wave with wave vector q=0, is predominant in nanoparticles and gives rise to an approximately linear temperature...... dependence of the (sublattice) magnetization well below the superparamagnetic blocking temperature for both ferro-, ferri-, and antiferromagnetic particles. This is in accordance with the results of a classical model for collective magnetic excitations in nanoparticles. In nanoparticles of antiferromagnetic...... materials, quantum effects give rise to a small deviation from the linear temperature dependence of the (sublattice) magnetization at very low temperatures. The complex nature of the excited precession states of nanoparticles of antiferromagnetic materials, with deviations from antiparallel orientation...

  20. Channelopathies of skeletal muscle excitability

    Science.gov (United States)

    Cannon, Stephen C.

    2016-01-01

    Familial disorders of skeletal muscle excitability were initially described early in the last century and are now known to be caused by mutations of voltage-gated ion channels. The clinical manifestations are often striking, with an inability to relax after voluntary contraction (myotonia) or transient attacks of severe weakness (periodic paralysis). An essential feature of these disorders is fluctuation of symptoms that are strongly impacted by environmental triggers such as exercise, temperature, or serum K+ levels. These phenomena have intrigued physiologists for decades, and in the past 25 years the molecular lesions underlying these disorders have been identified and mechanistic studies are providing insights for therapeutic strategies of disease modification. These familial disorders of muscle fiber excitability are “channelopathies” caused by mutations of a chloride channel (ClC-1), sodium channel (NaV1.4), calcium channel (CaV1.1) and several potassium channels (Kir2.1, Kir2.6, Kir3.4). This review provides a synthesis of the mechanistic connections between functional defects of mutant ion channels, their impact on muscle excitability, how these changes cause clinical phenotypes, and approaches toward therapeutics. PMID:25880512

  1. Slip of a one-body dynamical spring-slider model in the presence of slip-weakening friction and viscosity

    Directory of Open Access Journals (Sweden)

    Jeen-Hwa Wang

    2016-11-01

    Full Text Available This study is focused on analytic study at small displacements and numerical simulations of slip of a one-body dynamical slider-slider model in the presence of slip-weakening friction and viscosity. Analytic results with numerical computations show that the displacement of the slider is controlled by the decreasing rate, [gamma], of friction force with slip and viscosity, [eta], of fault-zone material. The natural period of the system with slip-weakening friction and viscosity is longer than that of the system without the two factors. There is a solution regime for [eta] and [gamma] to make the slider slip steadily without strong attenuation. The viscous effect is stronger than the frictional effect. Meanwhile, a change of [eta] results in a larger effect on the slip of the slider than a change of [gamma]. Numerical simulations are made for a one-body dynamical slider-slider model in the presence of three slip-weakening friction laws, i.e., the thermal-pressurization (TP friction law, the softening-hardening (SH friction law, and a simple slip-weakening (SW friction law, and viscosity. Results show that slip-weakening friction and viscosity remarkably affect slip of the slider. The TP and SW friction laws cause very similar results. The results caused by the SH friction law are quite different from those by the other two. For the cases in study, the fixed points are not an attractor.

  2. The exciton excitations and relaxation processes in low-dimensional semiconductor heterostructures with quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Aleshkin, V. Ya.; Gavrilenko, L. V.; Gaponova, D. M., E-mail: dmg@ipmras.ru; Krasil’nik, Z. F.; Kryzhkov, D. I. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)

    2016-12-15

    The processes associated with the transfer of excitonic excitations between tunnel-uncoupled quantum wells (QW) and the influence of the local electric field were investigated in AlGaAs/GaAs heterostructures by the method of photoluminescence excitation (PLE) spectroscopy at low (4.2 K) temperature. The variation in the intensity of photoluminescence (PL) from the wider QW under resonant excitation of excitonic transition in the adjacent narrow QW has been observed. The difference in the PL maximum position and intensity of the wider QW under resonance excitation of the narrow one is explained by the influence of quantum-confined Stark effect on the process of exciton recombination.

  3. Improved Underwater Excitation-Emission Matrix Fluorometer

    Science.gov (United States)

    Moore, Casey; daCunha, John; Rhoades, Bruce; Twardowski, Michael

    2007-01-01

    A compact, high-resolution, two-dimensional excitation-emission matrix fluorometer (EEMF) has been designed and built specifically for use in identifying and measuring the concentrations of organic compounds, including polluting hydrocarbons, in natural underwater settings. Heretofore, most EEMFs have been designed and built for installation in laboratories, where they are used to analyze the contents of samples collected in the field and brought to the laboratories. Because the present EEMF can be operated in the field, it is better suited to measurement of spatially and temporally varying concentrations of substances of interest. In excitation-emission matrix (EEM) fluorometry, fluorescence is excited by irradiating a sample at one or more wavelengths, and the fluorescent emission from the sample is measured at multiple wavelengths. When excitation is provided at only one wavelength, the technique is termed one-dimensional (1D) EEM fluorometry because the resulting matrix of fluorescence emission data (the EEM) contains only one row or column. When excitation is provided at multiple wavelengths, the technique is termed two-dimensional (2D) EEM fluorometry because the resulting EEM contains multiple rows and columns. EEM fluorometry - especially the 2D variety - is well established as a means of simultaneously detecting numerous dissolved and particulate compounds in water. Each compound or pool of compounds has a unique spectral fluorescence signature, and each EEM is rich in information content, in that it can contain multiple fluorescence signatures. By use of deconvolution and/or other mixture-analyses techniques, it is often possible to isolate the spectral signature of compounds of interest, even when their fluorescence spectra overlap. What distinguishes the present 2D EEMF over prior laboratory-type 2D EEMFs are several improvements in packaging (including a sealed housing) and other aspects of design that render it suitable for use in natural underwater

  4. Asymmetric excitation of surface plasmons by dark mode coupling

    KAUST Repository

    Zhang, X.

    2016-02-19

    Control over surface plasmons (SPs) is essential in a variety of cutting-edge applications, such as highly integrated photonic signal processing systems, deep-subwavelength lasing, high-resolution imaging, and ultrasensitive biomedical detection. Recently, asymmetric excitation of SPs has attracted enormous interest. In free space, the analog of electromagnetically induced transparency (EIT) in metamaterials has been widely investigated to uniquely manipulate the electromagnetic waves. In the near field, we show that the dark mode coupling mechanism of the classical EIT effect enables an exotic and straightforward excitation of SPs in a metasurface system. This leads to not only resonant excitation of asymmetric SPs but also controllable exotic SP focusing by the use of the Huygens-Fresnel principle. Our experimental findings manifest the potential of developing plasmonic metadevices with unique functionalities.

  5. Entanglement entropy in excited states of the quantum Lifshitz model

    Science.gov (United States)

    Parker, Daniel E.; Vasseur, Romain; Moore, Joel E.

    2017-06-01

    We investigate the entanglement properties of an infinite class of excited states in the quantum Lifshitz model (QLM). The presence of a conformal quantum critical point in the QLM makes it unusually tractable for a model above one spatial dimension, enabling the ground state entanglement entropy for an arbitrary domain to be expressed in terms of geometrical and topological quantities. Here we extend this result to excited states and find that the entanglement can be naturally written in terms of quantities which we dub ‘entanglement propagator amplitudes’ (EPAs). EPAs are geometrical probabilities that we explicitly calculate and interpret. A comparison of lattice and continuum results demonstrates that EPAs are universal. This work shows that the QLM is an example of a 2  +  1d field theory where the universal behavior of excited-state entanglement may be computed analytically.

  6. Thermal Transport in Supported Graphene: Substrate Effects on Collective Excitations

    Science.gov (United States)

    France-Lanord, Arthur; Soukiassian, Patrick; Glattli, Christian; Wimmer, Erich

    2017-03-01

    A detailed computational analysis of thermal transport in supported graphene reveals the possibility of tuning its thermal conductivity by targeted chemical modifications of the substrate's surface. Based on classical molecular dynamics with an accurate charge-optimized bond-order force field and a time-domain normal-mode analysis, our approach allows us to distinguish collective from single-phonon excitations. The computations reveal a disproportional reduction of the thermal conductivity, due to the two different excitations, when graphene interacts with a substrate. Deposition of graphene on a bare silica surface leads to a dramatic reduction of the thermal conductivity and a change in the heat transport mechanism. Remarkably, partial hydroxylation of the silica surface almost doubles the thermal conductivity of the collective excitations. Thus, specific surface terminations allow for control of the thermal conductivity of graphene.

  7. Sound Radiation of Aerodynamically Excited Flat Plates into Cavities

    Directory of Open Access Journals (Sweden)

    Johannes Osterziel

    2017-10-01

    Full Text Available Flow-induced vibrations and the sound radiation of flexible plate structures of different thickness mounted in a rigid plate are experimentally investigated. Therefore, flow properties and turbulent boundary layer parameters are determined through measurements with a hot-wire anemometer in an aeroacoustic wind tunnel. Furthermore, the excitation of the vibrating plate is examined by laser scanning vibrometry. To describe the sound radiation and the sound transmission of the flexible aluminium plates into cavities, a cuboid-shaped room with adjustable volume and 34 flush-mounted microphones is installed at the non flow-excited side of the aluminium plates. Results showed that the sound field inside the cavity is on the one hand dependent on the flow parameters and the plate thickness and on the other hand on the cavity volume which indirectly influences the level and the distribution of the sound pressure behind the flexible plate through different excited modes.

  8. Geodesic acoustic modes excited by finite beta drift waves

    DEFF Research Database (Denmark)

    Chakrabarti, Nikhil Kumar; Guzdar, P.N.; Kleva, R.G.

    2008-01-01

    Presented in this paper is a mode-coupling analysis for the nonlinear excitation of the geodesic acoustic modes (GAMs) in tokamak plasmas by finite beta drift waves. The finite beta effects give rise to a strong stabilizing influence on the parametric excitation process. The dominant finite beta...... effect is the combination of the Maxwell stress, which has a tendency to cancel the primary drive from the Reynolds stress, and the finite beta modification of the drift waves. The zonal magnetic field is also excited at the GAM frequency. However, it does not contribute to the overall stability...... of the three-wave process for parameters of relevance to the edge region of tokamaks....

  9. Excitation system testing in HPP 'Uvac'

    Directory of Open Access Journals (Sweden)

    Milojčić Nemanja

    2011-01-01

    Full Text Available The excitation system of hydro unit in HPP 'Uvac' and results of testings of excitation system performed for achieving of unit's mathematical model are presented in this paper. Description of excitation system equipment, parameters of regulators and results obtained after testings are presented. The presented results showed that the regulators are properly adjusted and that the excitation system is completely functional and reliable.

  10. Getting super-excited with modified dispersion relations

    Science.gov (United States)

    Ashoorioon, Amjad; Casadio, Roberto; Geshnizjani, Ghazal; Kim, Hyung J.

    2017-09-01

    We demonstrate that in some regions of parameter space, modified dispersion relations can lead to highly populated excited states, which we dub as "super-excited" states. In order to prepare such super-excited states, we invoke dispersion relations that have negative slope in an interim sub-horizon phase at high momenta. This behaviour of quantum fluctuations can lead to large corrections relative to the Bunch-Davies power spectrum, which mimics highly excited initial conditions. We identify the Bogolyubov coefficients that can yield these power spectra. In the course of this computation, we also point out the shortcomings of the gluing method for evaluating the power spectrum and the Bogolyubov coefficients. As we discuss, there are other regions of parameter space, where the power spectrum does not get modified. Therefore, modified dispersion relations can also lead to so-called "calm excited states". We conclude by commenting on the possibility of obtaining these modified dispersion relations within the Effective Field Theory of Inflation.

  11. Femtosecond laser excitation of dielectric materials

    DEFF Research Database (Denmark)

    Wædegaard, Kristian Juncher; Balling, Peter; Frislev, Martin Thomas

    2012-01-01

    We report an approach to modeling the interaction between ultrashort laser pulses and dielectric materials. The model includes the excitation of carriers by the laser through strongfield excitation, collisional excitation, and absorption in the plasma consisting of conduction-band electrons formed...

  12. Electron Energy Loss and One- and Two-Photon Excited SERS Probing of “Hot” Plasmonic Silver Nanoaggregates

    DEFF Research Database (Denmark)

    Kadkhodazadeh, Shima; Wagner, Jakob Birkedal; Joseph, Virginia

    2013-01-01

    between two- and one-photon excited SERS measured at different excitation wavelengths provides information about local fields in the hottest spots and their dependence on the photon energy. Our data verify experimentally the predicted increase of local optical fields in the hot spots with increasing wave...

  13. Blocked and overshadowed stimuli are weakened in their ability to serve as blockers and second-order reinforcers in Pavlovian fear conditioning.

    Science.gov (United States)

    Rauhut, A S; McPhee, J E; Ayres, J J

    1999-01-01

    The ability of a blocked or overshadowed conditioned stimulus (CS) to serve as (a) blocker or (b) a 2nd-order reinforcer in Pavlovian fear conditioning was tested in 152 albino rats. CS-evoked suppression of barpressing for food was the index of conditioned fear. Experiments 1 and 2 showed that an overshadowed CS was weakened in its ability to serve as a blocker. In Experiment 2, a blocked CS was similarly weakened. Experiment 3 showed that an overshadowed and blocked CS was weakened in its ability to serve as a 2nd-order reinforcer. Experiments 4 and 5 failed to restore the blocking ability of blocked (Experiment 4) or overshadowed (Experiment 5) CSs by extinguishing the CSs that had blocked or overshadowed them. Results favor a learning-deficit view of blocking and overshadowing.

  14. Induced Voltage Self-Excitation for a Switched-Reluctance Generator. Experimental Verification of Concept

    National Research Council Canada - National Science Library

    Lipo, Thomas

    2000-01-01

    .... One means to excite the machine in a "self-starting" mode is to attach permanent magnets to the machine stator, so that rotor rotation will cause the magnet's field to induce electric current within...

  15. Self-healing slip pulses driven by thermal decomposition: Towards identifying dynamic weakening mechanisms in seismic observations

    Science.gov (United States)

    Platt, J. D.; Viesca, R. C.; Garagash, D.

    2012-12-01

    Seismological observations indicate that earthquake ruptures commonly propagate as self-healing slip pulses, with slip duration at any location on the fault being much shorter than the total event duration [Heaton 1990]. Theoretical work has linked these slip pulses to low values of the background driving stress on the fault [Zheng and Rice 1998]. Recent experiments [Han et al. 2007;Brantut et al. 2008] have shown that fault materials may thermally decompose during shear. These endothermic reactions release pore fluid, leading to an increase in pore pressure and a decrease in temperature [Sulem and Famin 2009]. An Arrhenius kinetic controls the reaction rate, and dynamic weakening only occurs when the temperature reaches a critical temperature triggering the reaction. This abrupt change is in sharp contrast with thermal pressurization where the pore pressure increases smoothly with slip. Previous theoretical studies of thermal decomposition have focused on simple mechanical systems with imposed slip rates [Sulem and Famin 2009], or coupling to a spring-slider model [Brantut et al. 2011]. We present the first solutions to couple thermal decomposition with dynamic rupture, extending the model in Garagash [2012] to solve for self-healing slip pulses. For a range of driving stresses there are two possible slip pulses, compared with a single solution for thermal pressurization alone. One solution corresponds to small slip and a low temperature rise that precludes the reaction; the other is a larger slip solution with weakening due to thermal pressurization at the rupture tip, and weakening due to thermal decomposition in the middle of the pulse. A dramatic drop in fault strength accompanies the onset of the reaction, leading to peak slip rates coinciding with the onset of the reaction. For thermal pressurization alone the maximum strain rate always occurs at the rupture tip, and depends sensitively on the driving stress. Thermal decomposition is identified by slower

  16. PENETRATION OF A SOUND FIELD THROUGH A MULTILAYERED SPHERICAL SHELL

    Directory of Open Access Journals (Sweden)

    G. Ch. Shushkevich

    2013-01-01

    Full Text Available An analytical solution of the boundary problem describing the process of penetration of thesound field of a spherical emitter located inside a thin unclosed spherical shell through a permeable multilayered spherical shell is considered. The influence of some parameters of the problem on the value of the sound field weakening (screening coefficient is studied via a numerical simulation.

  17. Excited state Intramolecular Proton Transfer in Anthralin

    DEFF Research Database (Denmark)

    Møller, Søren; Andersen, Kristine B.; Spanget-Larsen, Jens

    1998-01-01

    Quantum chemical calculations performed on anthralin (1,8-dihydroxy-9(10H)-anthracenone) predict the possibility of an excited-state intramolecular proton transfer process. Fluorescence excitation and emission spectra of the compound dissolved in n-hexane at ambient temperature results in an unus......Quantum chemical calculations performed on anthralin (1,8-dihydroxy-9(10H)-anthracenone) predict the possibility of an excited-state intramolecular proton transfer process. Fluorescence excitation and emission spectra of the compound dissolved in n-hexane at ambient temperature results......, associated with an excited-state intramolecular proton transfer process....

  18. Excitation of surface electromagnetic waves on water.

    Science.gov (United States)

    Singh, A K; Goben, C A; Davarpanah, M; Boone, J L

    1978-11-01

    Excitation of surface electromagnetic waves (SEW) on water was studied using optical coupling techniques at microwave frequencies. Excitation of SEW was also achieved using direct horn antenna coupling. The transmitted SEW power was increased by adding acid and salt to water. The horn antenna gave the maximum excitation efficiency 70%. It was increased to 75% by collimating the electromagnetic beam in the vertical direction. Excitation efficiency for the prism (0 degrees pitch angle) and grating couplers were 15.2% and 10.5% respectively. By changing the prism coupler pitch angle to +36 degrees , its excitation efficiency was increased to 82%.

  19. Modeling brittle fracture, slip weakening, and variable friction in geomaterials with an embedded strong discontinuity finite element.

    Energy Technology Data Exchange (ETDEWEB)

    Regueiro, Richard A. (University of Colorado, Boulder, CO); Borja, R. I. (Stanford University, Stanford, CA); Foster, C. D. (Stanford University, Stanford, CA)

    2006-10-01

    Localized shear deformation plays an important role in a number of geotechnical and geological processes. Slope failures, the formation and propagation of faults, cracking in concrete dams, and shear fractures in subsiding hydrocarbon reservoirs are examples of important effects of shear localization. Traditional engineering analyses of these phenomena, such as limit equilibrium techniques, make certain assumptions on the shape of the failure surface as well as other simplifications. While these methods may be adequate for the applications for which they were designed, it is difficult to extrapolate the results to more general scenarios. An alternative approach is to use a numerical modeling technique, such as the finite element method, to predict localization. While standard finite elements can model a wide variety of loading situations and geometries quite well, for numerical reasons they have difficulty capturing the softening and anisotropic damage that accompanies localization. By introducing an enhancement to the element in the form of a fracture surface at an arbitrary position and orientation in the element, we can regularize the solution, model the weakening response, and track the relative motion of the surfaces. To properly model the slip along these surfaces, the traction-displacement response must be properly captured. This report focuses on the development of a constitutive model appropriate to localizing geomaterials, and the embedding of this model into the enhanced finite element framework. This modeling covers two distinct phases. The first, usually brief, phase is the weakening response as the material transitions from intact continuum to a body with a cohesionless fractured surface. Once the cohesion has been eliminated, the response along the surface is completely frictional. We have focused on a rate- and state-dependent frictional model that captures stable and unstable slip along the surface. This model is embedded numerically into the

  20. Pneumonia - weakened immune system

    Science.gov (United States)

    ... carinii) pneumonia Pneumonia - cytomegalovirus Pneumonia Viral pneumonia Walking pneumonia Causes People whose immune system is not working well ... people. They are also more vulnerable to regular causes of pneumonia , which can affect anyone. Your immune system may ...

  1. In an in-vitro model using human fetal membranes, 17-α hydroxyprogesterone caproate is not an optimal progestogen for inhibition of fetal membrane weakening.

    Science.gov (United States)

    Kumar, Deepak; Moore, Robert M; Mercer, Brian M; Mansour, Joseph M; Mesiano, Sam; Schatz, Frederick; Lockwood, Charles J; Moore, John J

    2017-12-01

    The progestogen 17-α hydroxyprogesterone caproate (17-OHPC) is 1 of only 2 agents recommended for clinical use in the prevention of spontaneous preterm delivery, and studies of its efficacy have been conflicting. We have developed an in-vitro model to study the fetal membrane weakening process that leads to rupture in preterm premature rupture of the fetal membranes (pPROM). Inflammation/infection associated with tumor necrosis factor-α (TNF-α) induction and decidual bleeding/abruption associated thrombin release are leading causes of preterm premature rupture of the fetal membranes. Both agents (TNF-α and thrombin) cause fetal membrane weakening in the model system. Furthermore, granulocyte-macrophage colony-stimulating factor (GM-CSF) is a critical intermediate for both TNF-α and thrombin-induced fetal membrane weakening. In a previous report, we demonstrated that 3 progestogens, progesterone, 17-alpha hydroxyprogesterone (17-OHP), and medroxyprogesterone acetate (MPA), each inhibit both TNF-α- and thrombin-induced fetal membrane weakening at 2 distinct points of the fetal membrane weakening pathway. Each block both the production of and the downstream action of the critical intermediate granulocyte-macrophage colony-stimulating factor. The objective of the study was to characterize the inhibitory effects of 17-OHPC on TNF-α- and thrombin-induced fetal membrane weakening in vitro. Full-thickness human fetal membrane fragments from uncomplicated term repeat cesarean deliveries were mounted in 2.5 cm Transwell inserts and cultured with/without 17-alpha hydroxyprogesterone caproate (10-9 to 10-7 M). After 24 hours, medium (supernatant) was removed and replaced with/without the addition of tumor necrosis factor-alpha (20 ng/mL) or thrombin (10 U/mL) or granulocyte-macrophage colony-stimulating factor (200 ng/mL). After 48 hours of culture, medium from the maternal side compartment of the model was assayed for granulocyte-macrophage colony-stimulating factor

  2. Coulomb excitation of 73Ga

    CERN Document Server

    Diriken, J; Balabanski, D; Blasi, N; Blazhev, A; Bree, N; Cederkäll, J; Cocolios, T E; Davinson, T; Eberth, J; Ekström, A; Fedorov, D V; Fedosseev, V N; Fraille, L M; Franchoo, S; Georgiev, G; Gladnishki, K; Huyse, M; Ivanov, O V; Ivanov, V S; Iwanicki, V; Jolie, J; Konstantinopoulos, T; Kröll, Th; Krücken, R; Köster, U; Lagoyannis, A; Bianco, G Lo; Maierbeck, P; March, B A; Napiarkowski, P; Patronis, N; Pauwels, D; Reiter, P; Seliverstov, M; Sletten, G; Van de Walle, J; Van Duppen, P; Voulot, D; Walters, W B; Warr, N; Wenander, F; Wrzosek, K

    2010-01-01

    The B(E2; Ii ! If ) values for transitions in 71Ga and 73Ga were deduced from a Coulomb excitation experiment at the safe energy of 2.95 MeV/nucleon using post-accelerated beams of 71,73Ga at the REX-ISOLDE on-line isotope mass separator facility. The emitted gamma rays were detected by the MINIBALL-detector array and B(E2; Ii->If ) values were obtained from the yields normalized to the known strength of the 2+ -> 0+ transition in the 120Sn target. The comparison of these new results with the data of less neutron-rich gallium isotopes shows a shift of the E2 collectivity towards lower excitation energy when adding neutrons beyond N = 40. This supports conclusions from previous studies of the gallium isotopes which indicated a structural change in this isotopical chain between N = 40 and N = 42. Combined with recent measurements from collinear laser spectroscopy showing a 1/2- spin and parity for the ground state, the extracted results revealed evidence for a 1/2-; 3/2- doublet near the ground state in 73 31Ga...

  3. Weakened biological signals: highly-developed eating schemas amongst women are associated with maladaptive patterns of comfort food consumption.

    Science.gov (United States)

    Lebel, Jordan L; Lu, Ji; Dubé, Laurette

    2008-06-09

    We examine the comfort food preferences and consumption patterns of women with highly versus less developed schemas for cognitive restraint, emotional and situational eating. In an online survey, 196 women provided their personal definition of what constitutes a comfort food, indicated their favourite one, and their level of hunger and fullness as well as emotional state before and after consumption. Low/high (n=32/n=30) schematic groups respectively scored below/above the median on all three factors of the Dutch Eating Behavior Questionnaire (DEBQ). Results support our proposition that complex eating schemas weaken biological signals and produce maladaptive patterns: high schematics preferred high calorie comfort foods, eaten even when feeling full to alleviate negative emotions at the cost of more post-consumption guilt. High schematics reported a lesser post-consumption increase in fullness than low schematics. Low schematics favoured low and high calorie foods equally, their choice motivated by pleasure and positive emotions. High schematics' definitions revealed that comfort foods are eaten to fill a void or when experiencing negative emotions as well as a deep concern with weight gain; low schematics focused on comfort foods' hedonic attributes. Our results highlight the hitherto unexplored influence of possessing all three highly-developed DEBQ eating schemas in reducing the effectiveness of biological signals and leading to maladaptive eating choices and behaviors.

  4. Disrupting the memory of places induced by drugs of abuse weakens motivational withdrawal in a context-dependent manner.

    Science.gov (United States)

    Taubenfeld, Stephen M; Muravieva, Elizaveta V; Garcia-Osta, Ana; Alberini, Cristina M

    2010-07-06

    Addicts repeatedly relapse to drug seeking even after years of abstinence, and this behavior is frequently induced by the recall of memories of the rewarding effects of the drug. Established memories, including those induced by drugs of abuse, can become transiently fragile if reactivated, and during this labile phase, known as reconsolidation, can be persistently disrupted. Here we show that, in rats, a morphine-induced place preference (mCPP) memory is linked to context-dependent withdrawal as disrupting the reconsolidation of the memory leads to a significant reduction of withdrawal evoked in the same context. Moreover, the hippocampus plays a critical role in linking the place preference memory with the context-conditioned withdrawal, as disrupting hippocampal protein synthesis and cAMP-dependent-protein kinase A after the reactivation of mCPP significantly weakens the withdrawal. Hence, targeting memories induced by drugs may represent an important strategy for attenuating context-conditioned withdrawal and therefore subsequent relapse in opiate addicts.

  5. Integrating Multiple Source Data to Enhance Variation and Weaken the Blooming Effect of DMSP-OLS Light

    Directory of Open Access Journals (Sweden)

    Ruifang Hao

    2015-01-01

    Full Text Available Defense Meteorological Satellite Program/Operational Linescan System (DMSP-OLS nighttime light has proved to be an effective tool to monitor human activities, especially in mapping urban areas. However, the inherent defects of DMSP-OLS light including saturation and blooming effects remain to be tackled. In this study, the Normalized Difference Vegetation Index (NDVI product of the Moderate-resolution Imaging Spectroradiometer/Normalized Difference Vegetation Index 1-Month (MODND1M, the temperature product of Moderate-resolution Imaging Spectroradiometer/Land Surface Temperature 1-Month (MODLT1M and DMSP-OLS light were integrated to establish the Vegetation Temperature Light Index (VTLI, aiming at weakening the saturation and blooming effects of DMSP-OLS light. In comparison with DMSP-OLS nighttime light, this new methodology achieved the following improvements: (1 the high value (30%–100% range of VTLI was concentrated in the urban areas; (2 VTLI could effectively enhance the variation of DMSP-OLS light, especially in the urban center; and (3 VTLI reached convergence faster than Vegetation Adjusted Normalized Urban Index (VANUI. Results showed that the urban areas extracted by VTLI were closer to those from Landsat TM images with the accuracy of kappa coefficients in Beijing (0.410, Shanghai (0.718, Lanzhou (0.483, and Shenyang (0.623, respectively. Thus, it can be concluded that the proposed index is able to serve as a favorable option for urban areas mapping.

  6. Highly excited strings I: Generating function

    Directory of Open Access Journals (Sweden)

    Dimitri P. Skliros

    2017-03-01

    Full Text Available This is the first of a series of detailed papers on string amplitudes with highly excited strings (HES. In the present paper we construct a generating function for string amplitudes with generic HES vertex operators using a fixed-loop momentum formalism. We generalise the proof of the chiral splitting theorem of D'Hoker and Phong to string amplitudes with arbitrary HES vertex operators (with generic KK and winding charges, polarisation tensors and oscillators in general toroidal compactifications E=RD−1,1×TDcr−D (with generic constant Kähler and complex structure target space moduli, background Kaluza–Klein (KK gauge fields and torsion. We adopt a novel approach that does not rely on a “reverse engineering” method to make explicit the loop momenta, thus avoiding a certain ambiguity pointed out in a recent paper by Sen, while also keeping the genus of the worldsheet generic. This approach will also be useful in discussions of quantum gravity and in particular in relation to black holes in string theory, non-locality and breakdown of local effective field theory, as well as in discussions of cosmic superstrings and their phenomenological relevance. We also discuss the manifestation of wave/particle (or rather wave/string duality in string theory.

  7. Toward the excited isoscalar meson spectrum from lattice QCD

    CERN Document Server

    Dudek, Jozef J; Guo, Peng; Thomas, Christopher E

    2013-01-01

    We report on the extraction of an excited spectrum of isoscalar mesons using lattice QCD. Calculations on several lattice volumes are performed with a range of light quark masses corresponding to pion masses down to about 400 MeV. The distillation method enables us to evaluate the required disconnected contributions with high statistical precision for a large number of meson interpolating fields. We find relatively little mixing between light and strange in most JPC channels; one notable exception is the pseudoscalar sector where the approximate SU(3)F octet, singlet structure of the {\\eta}, {\\eta}' is reproduced. We extract exotic JPC states, identified as hybrid mesons in which an excited gluonic field is coupled to a color-octet qqbar pair, along with non-exotic hybrid mesons embedded in a qqbar-like spectrum.

  8. Importance of thermochemical pressurization in the dynamic weakening of the Longmenshan Fault during the 2008 Wenchuan earthquake: Inferences from experiments and modeling

    NARCIS (Netherlands)

    Chen, J.; Yang, X.; Duan, Q.; Shimamoto, T.; Spiers, C.J.

    We determined the internal structure and mineral composition of the Yingxiu-Beichuan fault zone at the Zhaojiagou exposure and measured frictional and transport properties of the fault rocks collected to gain a better understanding of dynamic weakening mechanisms during seismic fault motion. This

  9. Magnetic vortex core reversal by excitation of spin waves

    OpenAIRE

    KAMMERER, M.; Weigand, M.; Curcic, M.; Noske, M.; Sproll, M.; Vansteenkiste, A.; Van Waeyenberge, B.; Stoll, H.; Woltersdorf, G.; Back, C. H.; Schuetz, G

    2011-01-01

    Micron-sized magnetic platelets in the flux-closed vortex state are characterized by an in-plane curling magnetization and a nanometer-sized perpendicularly magnetized vortex core. Having the simplest non-trivial configuration, these objects are of general interest to micromagnetics and may offer new routes for spintronics applications. Essential progress in the understanding of nonlinear vortex dynamics was achieved when low-field core toggling by excitation of the gyrotropic eigenmode at su...

  10. Introduction to gas lasers with emphasis on selective excitation processes

    CERN Document Server

    Willett, Colin S

    1974-01-01

    Introduction to Gas Lasers: Population Inversion Mechanisms focuses on important processes in gas discharge lasers and basic atomic collision processes that operate in a gas laser. Organized into six chapters, this book first discusses the historical development and basic principles of gas lasers. Subsequent chapters describe the selective excitation processes in gas discharges and the specific neutral, ionized and molecular laser systems. This book will be a valuable reference on the behavior of gas-discharge lasers to anyone already in the field.

  11. Localization of optical excitations on random surfaces: SNOM studies

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.

    1999-01-01

    Localization of optical excitations on nanostructured metal surfaces and fractal colloid silver aggregates are studied by using a scanning near-field optical microscope (SNOM). The SNOM images obtained in both configurations exhibit spatially localized (within 150 to 250 nm) light intensity...... enhancement by up to two orders of magnitude. The observed phenomena are related to strong (Anderson) localization of quasi-two-dimensional light waves....

  12. Omnidirectional excitation of sidewall gap-plasmons in a hybrid gold-nanoparticle/aluminum-nanopore structure

    Directory of Open Access Journals (Sweden)

    Chatdanai Lumdee

    2016-06-01

    Full Text Available The gap-plasmon resonance of a gold nanoparticle inside a nanopore in an aluminum film is investigated in polarization dependent single particle microscopy and spectroscopy. Scattering and transmission measurements reveal that gap-plasmons of this structure can be excited and observed under normal incidence excitation and collection, in contrast to the more common particle-on-a-mirror structure. Correlation of numerical simulations with optical spectroscopy suggests that a local electric field enhancement factor in excess of 50 is achieved under normal incidence excitation, with a hot-spot located near the top surface of the structure. It is shown that the strong field enhancement from this sidewall gap-plasmon mode can be efficiently excited over a broad angular range. The presented plasmonic structure lends itself to implementation in low-cost, chemically stable, easily addressable biochemical sensor arrays providing large optical field enhancement factors.

  13. Synaptic control of motoneuronal excitability

    DEFF Research Database (Denmark)

    Rekling, J C; Funk, G D; Bayliss, D A

    2000-01-01

    Movement, the fundamental component of behavior and the principal extrinsic action of the brain, is produced when skeletal muscles contract and relax in response to patterns of action potentials generated by motoneurons. The processes that determine the firing behavior of motoneurons are therefore...... important in understanding the transformation of neural activity to motor behavior. Here, we review recent studies on the control of motoneuronal excitability, focusing on synaptic and cellular properties. We first present a background description of motoneurons: their development, anatomical organization...... current, hyperpolarization-activated inward current, Ca(2+) channels, or presynaptic release processes. Together, these numerous inputs mediate and modify incoming motor commands, ultimately generating the coordinated firing patterns that underlie muscle contractions during motor behavior....

  14. An improved RF circuit for Overhauser magnetometer excitation

    Science.gov (United States)

    Zheng, Di; Zhang, Shuang; Guo, Xin; Fu, Haoyang

    2015-08-01

    Overhauser magnetometer is a high-precision device for magnetostatic field measurement, which can be used in a wide variety of purposes: UXO detection, pipeline mapping and other engineering and environmental applications. Traditional proton magnetometer adopts DC polarization, suffering from low polarization efficiency, high power consumption and low signal noise ratio (SNR). Compared with the traditional proton magnetometer, nitroxide free radicals are used for dynamic nuclear polarization (DNP) to enhance nuclear magnetic resonance (NMR). RF excitation is very important for electron resonance in nitrogen oxygen free radical solution, and it is primarily significant for the obtention of high SNR signal and high sensitive field observation. Therefore, RF excitation source plays a crucial role in the development of Overhauser magnetometer. In this paper, an improved design of a RF circuit is discussed. The new RF excitation circuit consists of two parts: Quartz crystal oscillator circuit and RF power amplifier circuit. Simulation and optimization designs for power amplifier circuit based on software ADS are presented. Finally we achieve a continuous and stable sine wave of 60MHz with 1-2.5 W output power, and the second harmonic suppression is close to -20dBc. The improved RF circuit has many merits such as small size, low-power consumption and high efficiency, and it can be applied to Overhauser magnetometer to obtain high sensitive field observation.

  15. Crystal fields and conduction electrons in praseodymium

    DEFF Research Database (Denmark)

    Clausen, K.N.; Aagaard Sørensen, S.; McEwen, K.A.

    1995-01-01

    The interactions between the crystal-field excitations, the phonons and the conduction electrons in Pr have been studied further. The low-energy satellites to the crystal-field excitations, which are believed to be associated with propagating paramagnon modes in the conduction-electron gas, appea...

  16. Aquatic monitoring programs conducted during environmental impact assessments in Canada: preliminary assessment before and after weakened environmental regulation.

    Science.gov (United States)

    Roach, Brynn; Walker, Tony R

    2017-03-01

    Aquatic monitoring programs are imperative for the functioning of the environmental impact assessment (EIA) process and a cornerstone for industrial compliance in Canada. However, in 2012, several leading pieces of federal environmental legislation (e.g., Canadian Environmental Assessment Act c.19, s. 52, 2012) were drastically altered, effectively weakening levels of environmental protection for aquatic ecosystems during project developments. This paper assesses the impact of CEAA 2012 on aquatic monitoring programs (and subsequent monitoring data reporting) across Canada for ten projects (five completed pre-CEAA 2012 and five completed post-CEAA 2012). Projects included four energy and six mining projects and were selected based on the following criteria: (i) representative of Canada's resource economy; (ii) project information was publicly available; and (iii) strong public interest. Projects pre- and post-CEAA 2012 exhibited few apparent differences before and after environmental regulatory changes. However, wide discrepancies exist in numbers and types of parameters reported, along with a lack of consistency in reporting. Projects pre-CEAA 2012 provided more follow-up monitoring commitments. Although qualitative differences remain inconclusive, this paper highlights requirements for further assessment of aquatic monitoring and follow-up programs in Canada. Recommendations for the government to consider during reviews of the federal environmental assessment processes include (i) improved transparency on the Canadian Environmental Assessment Agency website ( https://www.ceaa-acee.gc.ca/ ); (ii) creation of a legally binding standardized aquatic monitoring program framework to ensure that all Canadian aquatic ecosystems are monitored with equal rigour; and (iii) commitments and justification related to frequency of aquatic monitoring of water quality.

  17. Fracture resistance of weakened human premolar roots after use of a glass fiber post together with accessory posts

    Directory of Open Access Journals (Sweden)

    Clarissa Estefani SEGATO

    Full Text Available OBJECTIVE: To evaluate the fracture strength of human premolar teeth with wide root canals, restored with glass fiber posts and resin cement, together with different numbers of accessory posts.MATERIAL AND METHOD: Thirty-six premolars received standardized preparations that simulated weakened roots, and were divided into three groups (n=12: G0 - glass fiber post (Reforpost/Angelus cementation with dual cure resin cement (Rely X ARC/3M ESPE; G1 - glass fiber post cementation and one accessory post (Reforpin/Angelus, with dual cure resin cement; G2 - glass fiber post cementation and two accessory posts, with dual cure resin cement. Resin composite cores were placed in each tooth. A metal coping was placed in a standardized position on the cores to perform the compressive tests using a test machine. Testing was performed applying a force parallel to the long axis of the teeth at a speed of 0.5 mm/min. Fracture mode was analyzed under a stereoscopic loupe, classified by scores.RESULT: the Analysis of Variance (ANOVA was applied, and there was no statistical difference in the mean values of fracture strength among the groups (in kgf: G0 = 91.1 ± 56.9; G1 = 104.7 ± 66.6; G2 = 106.1 ± 51.9. Greater frequency of fracture or cracks was observed in the cervical one-third of the root in the teeth without cemented accessory posts, but no statistical difference was observed among the fracture modes.CONCLUSION: The number of accessory posts cemented into debilitated roots had no influence on either fracture strength or type of fracture of pre-molar roots.

  18. Atomic collisions involving C60 and collective excitation

    Science.gov (United States)

    Tribedi, L. C.; Kelkar, A. H.

    2011-12-01

    Here we review and discuss some of our recent investigations on collective excitation in a free C60 molecule and its influence on the atomic collisions. In particular, emphasis has been given for collisions with fast highly charged ions. It is demonstrated, from the charge-state-dependence studies of recoil-ion spectra, that the plasmon excitation plays a dominant role in the single and double ionization process. The observed linear charge-state-dependence is in contrast to the expected behavior predicted by ion-atom collisions models. This behavior was observed for different projectiles and at different energies. The time-of-flight recoil-ion mass spectroscopy experiments involve 1-5 MeV/u C, O, F and Si ion beams with different charge states, ranging between 4+ and 14+. In addition, the influence of the collective excitation on the electron capture process was also investigated. The wake-field induced Stark-mixing and splitting of sub-levels of projectile-ions following electron capture from C60 carries signature of the collective plasmon excitation. For the electron capture studies X-ray spectroscopic technique was used for collisions with bare and dressed S and Cl ion beams. The results on the TOF data on fullerene target obtained in last few years will be summarized.

  19. Inertia-driven resonant excitation of a magnetic skyrmion.

    Science.gov (United States)

    Shiino, Takayuki; Kim, Kab-Jin; Lee, Ki-Suk; Park, Byong-Guk

    2017-10-25

    Topological spin structures such as magnetic domain walls, vortices, and skyrmions, have been receiving great interest because of their high potential application in various spintronic devices. To utilize them in the future spintronic devices, it is first necessary to understand the dynamics of the topological spin structures. Since inertial effect plays a crucial role in the dynamics of a particle, understanding the inertial effect of topological spin structures is an important task. Here, we report that a strong inertial effect appears steadily when a skyrmion is driven by an oscillating spin-Hall-spin-torque (SHST). We find that the skyrmion exhibits an inertia-driven hypocycloid-type trajectory when it is excited by the oscillating SHST. This motion has not been achieved by an oscillating magnetic field, which only excites the breathing mode without the inertial effect. The distinct inertial effect can be explained in terms of a spin wave excitation in the skyrmion boundary which is induced by the non-uniform SHST. Furthermore, the inertia-driven resonant excitation provides a way of experimentally estimating the inertial mass of the skyrmion. Our results therefore pave the way for the development of skyrmion-based device applications.

  20. Two Step Excitation in Hot Atomic Sodium Vapor.

    Science.gov (United States)

    Docters, Bernd; Wrachtrup, Jörg; Gerhardt, Ilja

    2017-09-18

    A two step excitation scheme in hot atomic sodium vapor is experimentally investigated. The observed effects reflect a coupling between the 32S, 32P and the 32D states. We present the relative dependence on detuning of the two utilized lasers around λ = 589 nm and 819 nm. Unlike expected, we achieve a higher detuning dependence of the probe and the coupling laser by a factor of approximately three. The presented work aimed for a Rydberg excitation and quantum light storage. Such schemes are usually implemented with a red laser on the D-line transition and a coupling laser of shorter (typically blue) wavelength. Due to the fact that higher P-Rydberg states are approximately two times higher in energy than the 32D state, a two photon transition from the atomic excited 32P state to a Rydberg P state is feasible. This might circumvent laser frequency doubling whereby only two lasers might mediate a three photon process. The scheme of adding three k-vectors allows for electromagnetically induced transparency experiments in which the resulting k-vector can be effectively reduced to zero. By measurements utilizing electric fields and an analysis of the emission spectrum of the atomic vapor, we can exclude the excitation of the P-P two photon transition.

  1. Excitations of Superfluid He4 Beyond the Roton

    Science.gov (United States)

    Sakhel, Asaad; Glyde, Henry

    2001-03-01

    Excitations of Superfluid ^4He Beyond the Roton. A. R. SAKHEL and H. R. GLYDE, University of Delaware - We present a Quantum Field Theoretical Model that reproduces the basic features of the temperature dependence of the dynamic structure factor S(Q,ω) as observed in the inelastic-neutron scattering results at IRIS, (J.V. Pierce, R.T. Azuah, B.Fåk, A.R. Sakhel, H.R. Glyde, and W.G. Stirling, to be published.) UK. The range of the wavevector Q beyond the roton (Q > 2.0Åis considered. The model is able to simulate the decay of the excitations into two rotons when the excitation energy exceeds 2Δ, where Δ is the roton energy. The model is based on the formulation of S(Q,ω) of Gavoret and Nozières.(J. Gavoret and Nozières, Ann. Phys.), 28, 349-399 (1964). The component of dynamic susceptibility involving the condensate is modelled by an equation of the form: \\chis = n n_0(T) Λ G Λ where Λ is a vertex, G the renormalized single particle Green's function, n the density of ^4He at SVP and n_0(T) the condensate fraction as a function of temperature. The dynamic susceptibility involving states above the condensate is modelled by a damped harmonic oscillator function.(H. R. Glyde, Excitation in Liquid and Solid Helium), Oxford, Clarendron Press (1994).

  2. The mechanisms of Excited states in enzymes

    DEFF Research Database (Denmark)

    Petersen, Frederic Nicolas Rønne; Bohr, Henrik

    2010-01-01

    Enzyme catalysis is studied on the basis of excited state processes, which are of electronic, vibrational and thermal nature. The ways of achieving the excited state, such as photo-absorption and ligand binding, are discussed and exemplified by various cases of enzymes.......Enzyme catalysis is studied on the basis of excited state processes, which are of electronic, vibrational and thermal nature. The ways of achieving the excited state, such as photo-absorption and ligand binding, are discussed and exemplified by various cases of enzymes....

  3. Elementary excitations of ferromagnetic metal nanoparticles

    Science.gov (United States)

    Cehovin, A.; Canali, C.; MacDonald, A.

    2003-07-01

    We present a theory of the elementary spin excitations in transition-metal ferromagnet nanoparticles which achieves a unified and consistent quantum description of both collective and quasiparticle physics. The theory starts by recognizing the essential role played by spin-orbit interactions in determining the energies of ferromagnetic resonances in the collective excitation spectrum and the strength of their coupling to low-energy particle-hole excitations. We argue that a crossover between Landau-damped ferromagnetic resonance and pure-state collective magnetic excitations occurs as the number of atoms in typical transition-metal ferromagnet nanoparticles drops below approximately 104, about where the single-particle level spacing, δ, becomes larger than (α)Eres, where Eres is the ferromagnetic resonance frequency and α is the Gilbert damping parameter. We illustrate our ideas by studying the properties of semirealistic model Hamiltonians, which we solve numerically for nanoparticles containing several hundred atoms. For small nanoparticles, we find one isolated ferromagnetic resonance collective mode below the lowest particle-hole excitation energy, at Eres≈0.1 meV. The spectral weight of this pure excitation nearly exhausts the transverse dynamical susceptibility spectral weight. As δ approaches (α)Eres, the ferromagnetic collective excitation is more likely to couple strongly with discrete particle-hole excitations. In this regime the distinction between the two types of excitations blurs. We discuss the significance of this picture for the interpretation of recent single-electron tunneling experiments.

  4. Self-excitation of Rydberg atoms at a metal surface

    DEFF Research Database (Denmark)

    Bordo, Vladimir

    2017-01-01

    The novel effect of self-excitation of an atomic beam propagating above a metal surface is predicted and a theory is developed. Its underlying mechanism is positive feedback provided by the reflective surface for the atomic polarization. Under certain conditions the atomic beam flying in the near...... field of the metal surface acts as an active device that supports sustained atomic dipole oscillations, which generate, in their turn, an electromagnetic field. This phenomenon does not exploit stimulated emission and therefore does not require population inversion in atoms. An experiment with Rydberg...... atoms in which this effect should be most pronounced is proposed and the necessary estimates are given....

  5. Molecular excitation dynamics and relaxation quantum theory and spectroscopy

    CERN Document Server

    Valkunas, Leonas; Mancal, Tomas

    2013-01-01

    Meeting the need for a work that brings together quantum theory and spectroscopy to convey excitation processes to advanced students and specialists wishing to conduct research and understand the entire field rather than just single aspects.Written by an experienced author and recognized authority in the field, this text covers numerous applications and offers examples taken from different disciplines. As a result, spectroscopists, molecular physicists, physical chemists, and biophysicists will all find this a must-have for their research. Also suitable as supplementary reading in graduate

  6. Electrically tunable plasma excitations in AA-stacked multilayer graphene

    Science.gov (United States)

    Lin, Ming-Fa; Chuang, Ying-Chih; Wu, Jhao-Ying

    2012-09-01

    We use a tight-binding model and the random-phase approximation to study the Coulomb excitations in simple-hexagonal-stacking multilayer graphene and discuss the field effects. The calculation results include the energy bands, the response functions, and the plasmon dispersions. A perpendicular electric field is predicted to induce significant charge transfer and thus is capable of manipulating the energy, intensity, and the number of plasmon modes. This could be further validated by inelastic light scattering or electron-energy-loss spectroscopy.

  7. Finite-amplitude strain waves in laser-excited plates.

    Science.gov (United States)

    Mirzade, F Kh

    2008-07-09

    The governing equations for two-dimensional finite-amplitude longitudinal strain waves in isotropic laser-excited solid plates are derived. Geometric and weak material nonlinearities are included, and the interaction of longitudinal displacements with the field of concentration of non-equilibrium laser-generated atomic defects is taken into account. An asymptotic approach is used to show that the equations are reducible to the Kadomtsev-Petviashvili-Burgers nonlinear evolution equation for a longitudinal self-consistent strain field. It is shown that two-dimensional shock waves can propagate in plates.

  8. Inelastic neutron scattering study on low-energy excitations of the heavy-fermion superconductor PrOs{sub 4}Sb{sub 12}

    Energy Technology Data Exchange (ETDEWEB)

    Kuwahara, K. [Department of Physics, Tokyo Metropolitan University, Tokyo 192-0397 (Japan)]. E-mail: kuwahara@phys.metro-u.ac.jp; Iwasa, K. [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Kohgi, M. [Department of Physics, Tokyo Metropolitan University, Tokyo 192-0397 (Japan); Kaneko, K. [ASRC, Japan Atomic Energy Research Institute, Ibaraki 319-1195 (Japan); Metoki, N. [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); ASRC, Japan Atomic Energy Research Institute, Ibaraki 319-1195 (Japan); Raymond, S. [CEA-Grenoble, DRFMC/SPSMS, 38054 Grenoble (France); Institut Laue-Langevin, 38042 Grenoble (France); Measson, M.-A. [CEA-Grenoble, DRFMC/SPSMS, 38054 Grenoble (France); Flouquet, J. [CEA-Grenoble, DRFMC/SPSMS, 38054 Grenoble (France); Sugawara, H. [Faculty of Integrated Arts and Sciences, Tokushima University, Tokushima 770-8592 (Japan); Aoki, Y. [Department of Physics, Tokyo Metropolitan University, Tokyo 192-0397 (Japan); Sato, H. [Department of Physics, Tokyo Metropolitan University, Tokyo 192-0397 (Japan)

    2006-11-15

    Low-energy magnetic excitations in single crystals of the heavy-fermion superconductor PrOs{sub 4}Sb{sub 12} have been studied by inelastic neutron scattering. The clear softening of excitations at a wave vector Q=(1,0,0), which is the same as the modulation vector of the field-induced antiferro-quadrupolar ordering, and the intensity analyses of excitations directly evidence that the nonmagnetic quadrupolar fluctuations are dominant in this system. Furthermore, the narrowing of the linewidths of the excitations in the superconducting phase indicates the close connection between the superconductivity and the excitations. The preliminary data under magnetic fields are also presented.

  9. Resonant coherent excitation of fast heavy ions in crystals. Pt. 7. Projectile excitation

    Energy Technology Data Exchange (ETDEWEB)

    Moak, C.D.; Biggerstaff, J.A.; Crawford, O.H.; Dittner, P.F.; Datz, S.; Gomez del Campo, J.; Hvelplund, P.; Knudsen, H.; Krause, H.F.; Miller, P.D. (Oak Ridge National Lab., TN (USA))

    1982-03-15

    Hydrogen-like ions of B, C, N, O and F and helium-like ions of N, O and F have been shown to exhibit resonant coherent excitation from their n = 1 to their n = 2 states, caused by periodic electric potential oscillations which occur as the ion moves through axial or planar channels of a thin crystal of Au. The resonance velocities of the ions exhibit shifts and splittings which are the result of the crystal fields acting upon the one-, or two-electron ions. Comparisons with theory show fairly good agreement except for certain weak resonance components which do not appear or appear at unexpected values of the resonance velocity.

  10. Parametric excitation and squeezing in a many-body spinor condensate

    Science.gov (United States)

    Hoang, T. M.; Anquez, M.; Robbins, B. A.; Yang, X. Y.; Land, B. J.; Hamley, C. D.; Chapman, M. S.

    2016-01-01

    Atomic spins are usually manipulated using radio frequency or microwave fields to excite Rabi oscillations between different spin states. These are single-particle quantum control techniques that perform ideally with individual particles or non-interacting ensembles. In many-body systems, inter-particle interactions are unavoidable; however, interactions can be used to realize new control schemes unique to interacting systems. Here we demonstrate a many-body control scheme to coherently excite and control the quantum spin states of an atomic Bose gas that realizes parametric excitation of many-body collective spin states by time varying the relative strength of the Zeeman and spin-dependent collisional interaction energies at multiples of the natural frequency of the system. Although parametric excitation of a classical system is ineffective from the ground state, we show that in our experiment, parametric excitation from the quantum ground state leads to the generation of quantum squeezed states. PMID:27044675

  11. The blue light indicator in rubidium 5S-5P-5D cascade excitation

    Science.gov (United States)

    Raja, Waseem; Ali, Md. Sabir; Chakrabarti, Alok; Ray, Ayan

    2017-07-01

    The cascade system has played an important role in contemporary research areas related to fields like Rydberg excitation, four wave mixing and non-classical light generation, etc. Depending on the specific objective, co or counter propagating pump-probe laser experimental geometry is followed. However, the stepwise excitation of atoms to states higher than the first excited state deals with increasingly much fewer number of atoms even compared to the population at first excited level. Hence, one needs a practical indicator to study the complex photon-atom interaction of the cascade system. Here, we experimentally analyze the case of rubidium 5S → 5P → 5D as a specimen of two-step excitation and highlight the efficacy of monitoring one branch, which emits 420 nm, of associated cascade decay route 5D → 6P → 5S, as an effective monitor of the coherence in the system.

  12. Weakening of thickness dependence of J{sub C} in YBa{sub 2}Cu{sub 3}O{sub 7-δ} films using a titanium-added MOD precursor solution

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H.L., E-mail: zhanghuiliang@mail.iee.ac.cn [Key Laboratory of Applied Superconductivity, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); School of Science, Hebei University of Engineering, Handan 056038 (China); Ding, F.Z., E-mail: dingfazhu@mail.iee.ac.cn [Key Laboratory of Applied Superconductivity, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Gu, H.W., E-mail: guhw@mail.iee.ac.cn [Key Laboratory of Applied Superconductivity, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Dong, Z.B. [Key Laboratory of Applied Superconductivity, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Qu, F.; Zhang, H.; Shang, H.J. [Key Laboratory of Applied Superconductivity, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China)

    2017-04-15

    Highlights: • The thickness dependence of J{sub C} in YBCO film was weakened by introducing BaTiO{sub 3} nanoparticles into YBCO matrix. • The high I{sub C} value of 430 MA/cm-width was obtained in the BaTiO{sub 3}-doped YBCO film prepared by the MOD method. • The YBCO composite thick film prepared by using the precursor solution with polyethyleneglycol shows a compact and smooth surface. - Abstract: BaTiO{sub 3} (BTO)-doped YBa{sub 2}Cu{sub 3}O{sub 7-δ} (YBCO) films were prepared by the metal-organic deposition method using a precursor solution with titanium ion. These YBCO films were deposited on (00l)-oriented LaAlO{sub 3} single-crystal substrates using an automated dip coater. The thickness dependence of critical current density (J{sub C}) in the BTO-doped YBCO films was investigated. The J{sub C} value of the YBCO composite film was reduced from 6.3 to 4.6 MA/cm{sup 2} with increasing film thickness from 450 to 930 nm in self-filed at 77 K, which arose mainly from degradation of texture and roughening of the film. However, relative to undoped YBCO thick films, J{sub C} values of the YBCO composite thick films were greatly improved, and more importantly, the reduction in J{sub C} with increasing film thickness was hindered, especially in a high magnetic field. This result indicated that the introduction of BTO nanoparticles as pinning centers into YBCO matrix weakened the thickness dependence of J{sub C}.

  13. Properties, Propagation, and Excitation of EMIC Waves Properties, Propagation, and Excitation of EMIC Waves

    Science.gov (United States)

    Zhang, Jichun; Coffey, Victoria N.; Chandler, Michael O.; Boardsen, Scott A.; Saikin, Anthony A.; Mello, Emily M.; Russell, Christopher T.; Torbert, Roy B.; Fuselier, Stephen A.; Giles, Barbara L.; hide

    2017-01-01

    Electromagnetic ion cyclotron (EMIC) waves (0.1-5 Hz) play an important role in particle dynamics in the Earth's magnetosphere. EMIC waves are preferentially excited in regions where hot anisotropic ions and cold dense plasma populations spatially overlap. While the generation region of EMIC waves is usually on or near the magnetic equatorial plane in the inner magnetosphere, EMIC waves have both equatorial and off-equator source regions on the dayside in the compressed outer magnetosphere. Using field and plasma measurements from the Magnetospheric Multiscale (MMS) mission, we perform a case study of EMIC waves and associated local plasma conditions observed on 19 October 2015. From 0315 to 0810 UT, before crossing the magnetopause into the magnetosheath, all four MMS spacecraft detected long-lasting He(exp +)-band EMIC wave emissions around local noon (MLT = 12.7 - 14.0) at high L-shells (L = 8.8 - 15.2) and low magnetic latitudes (MLAT = -21.8deg - -30.3deg). Energetic (greater than 1 keV) and anisotropic ions were present throughout this event that was in the recovery phase of a weak geomagnetic storm (min. Dst = -48 nT at 1000 UT on 18 October 2015). The testing of linear theory suggests that the EMIC waves were excited locally. Although the wave event is dominated by small normal angles, its polarization is mixed with right- and left-handedness and its propagation is bi-directional with regard to the background magnetic field. The short inter-spacecraft distances (as low as 15 km) of the MMS mission make it possible to accurately determine the k vector of the waves using the phase difference technique. Preliminary analysis finds that the k vector magnitude, phase speed, and wavelength of the 0.3-Hz wave packet at 0453:55 UT are 0.005 km(exp -1), 372.9 km/s, and 1242.9 km, respectively.

  14. LS1: exciting times ahead

    CERN Multimedia

    Caroline Duc

    2013-01-01

    As the first and last proton-lead run of 2013 draws to a close, the extensive upgrade and maintenance programme of the LHC's first long shutdown (LS1) is about to get under way.   The LHC has provided physicists with a huge quantity of data to analyse since the first physics run in 2009. Now it's time for the machine, along with CERN's other accelerators, to get a facelift. LS1 will start on 13 February 2013, but this doesn’t mean that life at the Laboratory will be any less rich and exciting. Although there will be no collisions for a period of almost two years, the whole CERN site will be a hive of activity, with large-scale work under way to modernise the infrastructure and prepare the LHC for operation at higher energy. "A whole series of renovation work will be carried out around the LHC during LS1,” explains Simon Baird, deputy head of the EN Department. "The key driver is of course the consolidation of the 10,170 high-curren...

  15. Hydrological excitation of polar motion by different variables from the GLDAS models

    Science.gov (United States)

    Winska, Malgorzata; Nastula, Jolanta; Salstein, David

    2017-12-01

    Continental hydrological loading by land water, snow and ice is a process that is important for the full understanding of the excitation of polar motion. In this study, we compute different estimations of hydrological excitation functions of polar motion (as hydrological angular momentum, HAM) using various variables from the Global Land Data Assimilation System (GLDAS) models of the land-based hydrosphere. The main aim of this study is to show the influence of variables from different hydrological processes including evapotranspiration, runoff, snowmelt and soil moisture, on polar motion excitations at annual and short-term timescales. Hydrological excitation functions of polar motion are determined using selected variables of these GLDAS realizations. Furthermore, we use time-variable gravity field solutions from the Gravity Recovery and Climate Experiment (GRACE) to determine the hydrological mass effects on polar motion excitation. We first conduct an intercomparison of the maps of variations of regional hydrological excitation functions, timing and phase diagrams of different regional and global HAMs. Next, we estimate the hydrological signal in geodetically observed polar motion excitation as a residual by subtracting the contributions of atmospheric angular momentum and oceanic angular momentum. Finally, the hydrological excitations are compared with those hydrological signals determined from residuals of the observed polar motion excitation series. The results will help us understand the relative importance of polar motion excitation within the individual hydrological processes, based on hydrological modeling. This method will allow us to estimate how well the polar motion excitation budget in the seasonal and inter-annual spectral ranges can be closed.

  16. Resonant coherent excitation of channeled ions

    Energy Technology Data Exchange (ETDEWEB)

    Datz, S.; Moak, C.D.; Crawford, O.H.; Krause, H.F.; Dittner, P.F.; Gomez del Campo, J.; Biggerstaff, J.A.; Miller, P.D.; Hvelplund, P.; Knudsen, H.

    1978-03-27

    We have observed resonant excitation of swift channeled hydrogenlike ions (Z = 5 to Z = 9) and heliumlike F/sup 7 +/ which arises from a coherent periodic perturbation by the atoms in the bounding crystal rows. The resonance excitation was seen through the reduction in the transmission of fixed-charge-state ions through channels in thin crystals of Au and Ag.

  17. Evolution of Excited Convective Cells in Plasmas

    DEFF Research Database (Denmark)

    Pécseli, Hans; Juul Rasmussen, Jens; Sugai, H.

    1984-01-01

    Convective cells are excited externally in a fully ionized magnetized plasma and their space-time evolution is investigated by two-dimensional potential measurements. A positive cell is excited externally by control of the end losses in the 'scrape off' layer of a plasma column produced by surface...

  18. Excitations in Topological Superfluids and Superconductors

    Science.gov (United States)

    Wu, Hao

    In this thesis I present the theoretical work on Fermionic surface states, and %the bulk Bosonic collective excitations in topological superfluids and superconductors. Broken symmetries %Bulk-edge correspondence in topological condensed matter systems have implications for the spectrum of Fermionic excitations confined on surfaces or topological defects. (Abstract shortened by ProQuest.).

  19. Transient and local weakening of surface winds observed above the Kuroshio front in the winter East China Sea

    National Research Council Canada - National Science Library

    Kasamo, Kenki; Isobe, Atsuhiko; Minobe, Shoshiro; Manda, Atsuyoshi; Nakamura, Hirohiko; Ogata, Koto; Nishikawa, Hatsumi; Tachibana, Yoshihiro; Kako, Shin'ichiro

    2014-01-01

    To confirm whether surface winds strengthen above warm waters around oceanic fronts using in situ data, a field measurement was conducted using both expendable bathythermographs and Global Positioning...

  20. Role of dynamical screening in excitation kinetics of biased quantum wells: Nonlinear absorption and ultrabroadband terahertz emission

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Monozon, B. S.; Jepsen, Peter Uhd

    2006-01-01

    In this work we describe the ultrafast excitation kinetics of biased quantum well, arising from the optically induced dynamical screening of a bias electric field. The initial bia electric field inside the quantum well is screened by the optically excited polarized electron-hole pairs. This leads...... to a dynamical modification of the properties of the system within an excitation pulse duration. We calculate the excitation kinetics of a biased quantum well and the dependency of resulting electronic and optical properties on the excitation pulse fluence, quantum well width,and initial bias field strength. Our...... wells are in good agreement with our experimental observations [Turchinovich et al., Phys. Rev. B 68, 241307(R) (2003)], as well as in perfect compliance with qualitative considerations. ©2006 American Institute of Physics...

  1. Heteroclinic tangle phenomena in nanomagnets subject to time-harmonic excitations

    Energy Technology Data Exchange (ETDEWEB)

    Serpico, C.; Quercia, A.; Perna, S. [DIETI, Università di Napoli “Federico II,” I-80125 Napoli (Italy); Bertotti, G.; Ansalone, P. [Istituto Nazionale di Ricerca Metrologica, I-10135 Torino (Italy); D' Aquino, M. [Dip. di Ingegneria, Università di Napoli “Parthenope,” I-80143 Napoli (Italy); Mayergoyz, I. [ECE Department and UMIACS, University of Maryland, College Park, Maryland 20742 (United States)

    2015-05-07

    Magnetization dynamics in uniformly magnetized nanomagnets excited by time-harmonic (AC) external fields or spin-polarized injected currents is considered. The analysis is focused on the behaviour of the AC-excited dynamics near saddle equilibria. It turns out that this dynamics has a chaotic character at moderately low power level. This chaotic and fractal nature is due to the phenomenon of heteroclinic tangle which is produced by the combined effect of AC-excitations and saddle type dynamics. By using the perturbation technique based on Melnikov function, analytical formulas for the threshold AC excitation amplitudes necessary to create the heteroclinic tangle are derived. Both the cases of AC applied fields and AC spin-polarized injected currents are treated. Then, by means of numerical simulations, we show how heteroclinic tangle is accompanied by the erosion of the safe basin around the stable regimes.

  2. Plasmon assisted control of photo-induced excitation energy transfer in a molecular chain

    Science.gov (United States)

    Wang, Luxia; May, Volkhard

    2017-08-01

    The strong and ultrafast laser pulse excitation of a molecular chain in close vicinity to a spherical metal nano-particle (MNP) is studied theoretically. Due to local-field enhancement around the MNP, pronounced excited-state formation has to be expected for the part of the chain which is in proximity to the MNP. Here, the description of this phenomenon will be based on a uniform quantum theory of the MNP-molecule system. It accounts for local-field effects due to direct consideration of the strong excitation energy transfer coupling between the MNP and the various molecules. The molecule-MNP distances are chosen in such a way as to achieve a correct description of the MNP via dipole-plasmon excitations. Short plasmon life-times are incorporated in the framework of a density matrix approach. By extending earlier work the present description allows for multi-exciton formation and multiple dipole-plasmon excitation. The region of less intense and not-too-short optical excitation is identified as being best suited for excitation energy localization in the chain.

  3. Off-resonant vibrational excitation: Orientational dependence and spatial control of photofragments

    DEFF Research Database (Denmark)

    Machholm, Mette; Henriksen, Niels Engholm

    2000-01-01

    -dependent response to the IR fields is due to the anharmonicity of the potential. A subsequent ultraviolet laser pulse in resonance at the outer turning point of the vibrational motion can then dissociate the oscillating molecules, all with the same orientation, leading to spatial control of the photofragment......Off-resonant and resonant vibrational excitation with short intense infrared (IR) laser pulses creates localized oscillating wave packets, but differs by the efficiency of the excitation and surprisingly by the orientational dependence. Orientational selectivity of the vibrational excitation...

  4. Selective excitation of laser modes in an organic photonic dot microcavity

    Science.gov (United States)

    Langner, M.; Sudzius, M.; Fröb, H.; Lyssenko, V. G.; Leo, K.

    2009-08-01

    We experimentally investigate variable laser mode excitation in an organic photonic dot microcavity by shifting the excitation beam position. The sample comprises two highly reflective dielectric mirrors (R >99.9%) and a square-shaped organic dye mesa of a DCM doped (2 wt %) Alq3-matrix. Its wavelength-size (≈5×5 μm2) transforms the cavity mode dispersion to a set of discrete states, each with a different intensity distribution of the electromagnetic field in space. Numerical simulations, including absorption and gain, confirm the experimentally observed relation between mode distribution and progression on the excitation condition.

  5. Application brushless machines with combine excitation for a hybrid car and an electric car

    Directory of Open Access Journals (Sweden)

    Gandzha S.A.

    2015-08-01

    Full Text Available This article shows advantages of application the brushless machines with combined excitation (excitation from permanent magnets and excitation winding for the hybrid car and the electric car. This type of electric machine is compared with a typical brushless motor and an induction motor. The main advantage is the decrease of the dimensions of electric machine and the reduction of the price for an electronic control system. It is shown the design and the principle of operation of the electric machine. The machine was modeled using Solidworks program for creating design and Maxwell program for the magnetic field analysis. The result of tests is shown as well.

  6. Surface Plasmon Excitation and Localization by Metal-Coated Axicon Prism

    Directory of Open Access Journals (Sweden)

    Atsushi Ono

    2012-02-01

    Full Text Available Collimated Gaussian beams are efficiently localized at the apex of a metal-coated axicon prism by surface plasmon excitations. We observed the light scattered at the apex and the light reflected by the prism. Intense scattered light was observed with the radial polarization incidence. Further, each incidence of the radial, azimuthal, and linear polarizations provided field distributions of bright and dark intensities in the reflected images according to the surface plasmon excitation. We have demonstrated that surface plasmon waves are excited at the sides of the prism in the Kretschmann configuration and that they converge to its apex.

  7. 11th Workshop on The Physics of Excited Nucleons

    CERN Document Server

    Hammer, Hans-Werner; Thoma, Ulrike; Schmieden, Hartmut; NSTAR 2007

    2008-01-01

    The excitation spectrum of the nucleon promises to offer important insights into the non-perturbative regime of QCD. Dedicated experimental programs at various laboratories exist to perform accurate measurements of meson photo- and electroproduction off the nucleon, studying its excitation. The NStar workshops are a well-established series of meetings that bring together experimenters and theoreticians working on baryon resonances and related areas to discuss New results on pseudoscalar and vector meson production; Partial wave analysis and resonance parameters; Baryon resonance structure and quark models; Dynamical models and coupled channel analysis; Baryon resonances in lattice QCD; Chiral symmetry and baryon resonances; Laboratory reports and future projects. The refereed and edited proceedings constitute an indispensable archival record of the progress in the field.

  8. Excited baryons from Bayesian priors and overlap fermions

    Energy Technology Data Exchange (ETDEWEB)

    F.X. Lee; S.J. Dong; T. Draper; I. Horvath; K.F. Liu; N. Mathur; J.B. Zhang

    2003-05-01

    Using the constrained-fitting method based on Bayesian priors, we extract the masses of the two lowest states of octet and decouplet baryons with both parities. The calculation is done on quenched 163 x 28 lattices of a = 0.2 fm using an improved gauge action and overlap fermions, with the pion mass as low as 180 MeV. The Roper state N(1440)+ is clearly observed for the first time as the 1st-excited state of the nucleon from the standard interpolating field. Together with other baryons, our preliminary results indicate that the level-ordering of the low-lying baryon states on the lattice is largely consistent with experiment. The realization is helped by cross-overs between the excited + and - states in the region of mp 300 to 400 MeV.

  9. Lattice QCD determination of patterns of excited baryon states

    CERN Document Server

    Basak, Subhasish; Fleming, G T; Juge, K J; Lichtl, A; Morningstar, C; Richards, D G; Sato, I; Wallace, S J

    2007-01-01

    Energies for excited isospin I=1/2 and I=3/2 states that include the nucleon and Delta families of baryons are computed using quenched, anisotropic lattices. Baryon interpolating field operators that are used include nonlocal operators that provide G_2 irreducible representations of the octahedral group. The decomposition of spin 5/2 or higher spin states is realized for the first time in a lattice QCD calculation. We observe patterns of degenerate energies in the irreducible representations of the octahedral group that correspond to the subduction of the continuum spin 5/2 or higher. The overall pattern of low-lying excited states corresponds well to the pattern of physical states subduced to the irreducible representations of the octahedral group.

  10. One Photon Can Simultaneously Excite Two or More Atoms.

    Science.gov (United States)

    Garziano, Luigi; Macrì, Vincenzo; Stassi, Roberto; Di Stefano, Omar; Nori, Franco; Savasta, Salvatore

    2016-07-22

    We consider two separate atoms interacting with a single-mode optical or microwave resonator. When the frequency of the resonator field is twice the atomic transition frequency, we show that there exists a resonant coupling between one photon and two atoms, via intermediate virtual states connected by counterrotating processes. If the resonator is prepared in its one-photon state, the photon can be jointly absorbed by the two atoms in their ground state which will both reach their excited state with a probability close to one. Like ordinary quantum Rabi oscillations, this process is coherent and reversible, so that two atoms in their excited state will undergo a downward transition jointly emitting a single cavity photon. This joint absorption and emission process can also occur with three atoms. The parameters used to investigate this process correspond to experimentally demonstrated values in circuit quantum electrodynamics systems.

  11. Cherenkov wakefield excitation by relativistic electron beams in plasma channels

    Science.gov (United States)

    Wang, Tianhong; Khudik, Vladimir; Shvets, Gennday

    2017-10-01

    We report on our theoretical investigations of Cherenkov radiation excited by relativistic electron bunches propagating in plasma channels and in polaritonic channels. Two surface plasmons (SPs) modes of the radiation are analyzed: the longitudinal (accelerating) and the transverse (deflecting) ones. Both form Cherenkov cones that are different in the magnitude of the cone angle and the central frequency. We show that the Cherenkov field profile change dramatically depending on the driver velocity and the channel size, and the longitudinal mode forms a reversed Cherenkov radiation cone due to the negative group velocity for sufficiently small air gaps. In addition, we find that when the channel surface is corrugated, a strong deflecting wake is excited by a relativistic electron bunch. A trailing electron bunch experiencing this wake is forced to undergo betatron oscillations and thus to emit radiation. Numerical simulation showed that intense x-ray radiation can be generated.

  12. Scanless multitarget-matching multiphoton excitation fluorescence microscopy

    Directory of Open Access Journals (Sweden)

    Junpeng Qiu

    2018-03-01

    Full Text Available Using the combination of a reflective blazed grating and a reflective phase-only diffractive spatial light modulator (SLM, scanless multitarget-matching multiphoton excitation fluorescence microscopy (SMTM-MPM was achieved. The SLM shaped an incoming mode-locked, near-infrared Ti:sapphire laser beam into an excitation pattern with addressable shapes and sizes that matched the samples of interest in the field of view. Temporal and spatial focusing were simultaneously realized by combining an objective lens and a blazed grating. The fluorescence signal from illuminated areas was recorded by a two-dimensional sCMOS camera. Compared with a conventional temporal focusing multiphoton microscope, our microscope achieved effective use of the laser power and decreased photodamage with higher axial resolution.

  13. Reconstruction of Input Excitation Acting on Vibration Isolation System

    Directory of Open Access Journals (Sweden)

    Pan Zhou

    2016-01-01

    Full Text Available Vibration isolation systems are widely employed in automotive, marine, aerospace, and other engineering fields. Accurate input forces are of great significance for mechanical design, vibration prediction, and structure modification and optimization. One-stage vibration isolation system including engine, vibration isolators, and flexible supporting structure is modeled theoretically in this paper. Input excitation acting on the vibration isolation system is reconstructed using dynamic responses measured on engine and supporting structure under in-suit condition. The reconstructed forces reveal that dynamic responses on rigid body are likely to provide more accurate estimation results. Moreover, in order to improve the accuracy of excitation reconstructed by dynamic responses on flexible supporting structure, auto/cross-power spectral density function is utilized to reduce measurement noise.

  14. Enhanced Electromagnetic Chirality by Locally Excited Surface Plasmon Polaritons

    CERN Document Server

    Alizadeh, M H

    2015-01-01

    The possibility to enhance chiral light-matter interactions through plasmonic nanostructures provides entirely new opportunities for greatly improving the detection limits of chiroptical spectroscopies down to the single molecule level. The most pronounced of these chiral interactions occur in the ultraviolet (UV) range of the electromagnetic spectrum, which is difficult to access with conventional localized plasmon resonance based sensors. Although Surface Plasmon Polaritons (SPPs) on noble metal films can sustain resonances in the desired spectral range, their transverse magnetic nature has been an obstacle for enhancing chiroptical effects. Here we demonstrate, both analytically and numerically, that SPPs excited by near-field sources can exhibit rich and non-trivial chiral characteristics. In particular, we show that the excitation of SPPs by a chiral source not only results in a locally enhanced optical chirality but also achieves manifold enhancement of net optical chirality. Our finding that SPPs facil...

  15. Edge Functionalization and Optical Excitations in Graphene Nanoflakes

    Science.gov (United States)

    Cocchi, Caterina; Prezzi, Deborah; Ruini, Alice; Caldas, Marilia J.; Molinari, Elisa

    2012-02-01

    We investigate the effects of edge covalent functionalization on the opto-electronic properties of finite elongated graphene nano-flakes (GNFs). Following our previous work on nanojunctions[1], we compute mean-field ground state electronic properties and configuration-interaction UV-vis optical excitations at varying size and functionalization by means of semi-empirical methods. The character of the lowest energy excitations and the influence exerted on them both by length/width modulation and by the specific chemical properties of the terminating groups are analyzed in details. The role of local distortions spontaneously arising upon geometrical optimization is inspected. Nanoplasmonic-like features related to the spectrum of these elongated finite graphene nanostructures are also discussed. [1] C. Cocchi et al. J. Phys. Chem. Lett. 2, 1315 (2011)

  16. Theoretical studies on the reaction pathways of electronically excited DAAF

    Energy Technology Data Exchange (ETDEWEB)

    Quenneville, Jason M [Los Alamos National Laboratory; Moore, David S [Los Alamos National Laboratory

    2009-01-01

    The use of temporally and spectrally shaped ultrafast laser pulses to initiate, as well as detect, high explosives is being explored at Los Alamos. High level ab initio calculations, presented here, are employed to help guide and interpret the experiments. The ground and first excited electronic states of 3,3{prime}-diamino-4,4{prime}-azoxyfurazan (DAAF) are investigated using complete active space self-consistent field (CASSCF) and time-dependent density functional theory (TD-DFT). The geometrical and energetic character of the excited state minima, conical intersections and reaction pathways of DAAF are described. Two radiative and two non-radiative excited state population quenching mechanisms are outlined, and possible pathways for photochemical and spectroscopic control are discussed. The use of laser light to control chemical reactions has many applications. The initiation and the detection of explosives are two such applications currently under development at Los Alamos. Though inherently experimental, the project can be aided by theory through both prediction and interpretation. When the laser light is in the UV/visible region of the electromagnetic spectrum, the absorbing molecule is excited electronically and excitation decay may occur either radiatively (fluorescence or phosphorescence) or non-radiatively (through internal conversion). In many cases decay of the excitation occurs through a mixture of processes, and maximizing the desired result requires sophisticated laser pulses whose amplitude has been optimally modulated in time and/or frequency space. Control of cis-stilbene photochemistry was recently demonstrated in our group, and we aim to extend this work to high explosive compounds. Maximizing radiative decay leads to increased fluorescence quantum yields and enhances the possibility of spectral detection of the absorbing molecule. Maximizing non-radiative decay can lead to chemistry, heating of the sample and possibly detonation initiation in

  17. Investigation of in-vivo skin autofluorescence lifetimes under long-term cw optical excitation

    Energy Technology Data Exchange (ETDEWEB)

    Lihachev, A; Ferulova, I; Vasiljeva, K; Spigulis, J [Institute of Atomic Physics and Spectroscopy, University of Latvia, Riga (Latvia)

    2014-08-31

    The main results obtained during the last five years in the field of laser-excited in-vivo human skin photobleaching effects are presented. The main achievements and results obtained, as well as methods and experimental devices are briefly described. In addition, the impact of long-term 405-nm cw low-power laser excitation on the skin autofluorescence lifetime is experimentally investigated. (laser biophotonics)

  18. Discrimination of nuclear spin isomers exploiting the excited state dynamics of a quinodimethane derivative

    Energy Technology Data Exchange (ETDEWEB)

    Obaid, Rana [Institut für Theoretische Chemie, Universität Wien, Währinger Str. 17, 1090 Wien (Austria); Faculty of Pharmacy, Al-Quds University, Abu Dis, Palestine (Country Unknown); Kinzel, Daniel; Oppel, Markus, E-mail: markus.oppel@univie.ac.at; González, Leticia [Institut für Theoretische Chemie, Universität Wien, Währinger Str. 17, 1090 Wien (Austria)

    2014-10-28

    Despite the concept of nuclear spin isomers (NSIs) exists since the early days of quantum mechanics, only few approaches have been suggested to separate different NSIs. Here, a method is proposed to discriminate different NSIs of a quinodimethane derivative using its electronic excited state dynamics. After electronic excitation by a laser field with femtosecond time duration, a difference in the behavior of several quantum mechanical operators can be observed. A pump-probe experimental approach for separating these different NSIs is then proposed.

  19. Enhanced population of side band of {sup 155}Gd in heavy-ion Coulomb excitation

    Energy Technology Data Exchange (ETDEWEB)

    Oshima, Masumi; Hayakawa, Takehito; Hatsukawa, Yuichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    1998-03-01

    In the Coulomb excitation of {sup 155}Gd with heavy projectiles, {sup 32}S, {sup 58}Ni and {sup 90}Zr, unexpectedly large enhancement of a positive-parity side band has been observed. This enhancement could not be reproduced by a Coulomb-excitation calculation taking into account the recommended upper limits of E1 or E3 transitions, which are compiled in the whole mass region, and is proportional to the electric field accomplished in the Coulomb-scattering process. (author)

  20. {beta}-decay studies at the N=28 shell closure: indications for a weakening of the spin-orbit force far from stability?

    Energy Technology Data Exchange (ETDEWEB)

    Grevy, S. [Laboratoire de Physique Corpusculaire de Caen, IN2P3-CNRS, ENSICAEN et Universite de Caen, F-14050 Caen Cedex (France)]. E-mail: grevy@in2p3.fr; Angelique, J.C.; Baumann, P.; Borcea, C.; Buta, A.; Canchel, G.; Catford, W.N.; Courtin, S.; Daugas, J.M.; Oliveira, F. de; Dessagne, P.; Dlouhy, Z.; Knipper, A.; Kratz, K.L.; Lecolley, F.R.; Lecouey, J.L.; Lehrsenneau, G.; Lewitowicz, M.; Lienard, E.; Lukyanov, S.; Marechal, F.; Miehe, C.; Mrazek, J.; Negoita, F.; Orr, N.A.; Pantelica, D.; Penionzhkevich, Y.; Peter, J.; Pfeiffer, B.; Pietri, S.; Poirier, E.; Sorlin, O.; Stanoiu, M.; Stefan, I.; Stodel, C.; Timis, C

    2004-12-27

    A {beta}-decay experiment on nuclei in the region of N=28 has been performed at the GANIL facility. New measured half-lives for the Si isotopes from N=25 to N=28 are reported and discussed in the light of the deformation occurring in this region. Comparison with QRPA calculations suggests that a weakening of the spin-orbit force occurs for the very neutron-rich Si isotopes.

  1. Experimental investigation of the degree of weakening in structural notch area of 7075-T6 aluminum alloy sheet welded with the RFSSW method

    Directory of Open Access Journals (Sweden)

    Kubit Andrzej

    2017-01-01

    Full Text Available The paper presents the methodology of the research determining the degree of weakening of the welded sheet obtained by the refill friction stir spot welding (RFSSW method. The considered weakness is the effect of a structural notch resulting from penetration by the tool. RFSSW technology is a relatively new method of joining metals, which can successfully provide an alternative to resistance welding or riveting - traditionally used methods of joining thin-walled structures in the aerospace and automotive industries. The study presented in the paper focuses on the overlapping of sheet metal with 7075-T6 aluminum alloy combined in the configuration: 1.6 mm top sheet and 0.8 mm bottom sheet. Joints were assembled following the following process parameters: Welding time 1.5 s, the tool plunge depth in the range of 1.5 ÷ 1.9 mm, and the spindle speed of 2600 rpm. The analysis of the microstructure of joints revealed that along the edge of the tool path a structural notch is formed, the size and shape of which depend on the parameters applied. The paper describes the study consisting in punching the welded area along the formed notch in the upper sheet. The punching process was performed on a universal testing machine and the punching force was measured during the test. Based on the force value, the degree of sheet weakening in the notched area was determined. The smallest weakening was observed in joints made with the smallest tool depth, i.e. 1.5 mm, whereas the biggest weakening was obtained for tool depth of 1.9 mm. The load applied to the joints was equal to 5290N and 7585N respectively.

  2. Excitation of Banded Whistler Waves in the Magnetosphere

    Energy Technology Data Exchange (ETDEWEB)

    Gary, S. Peter [Los Alamos National Laboratory; Liu, Kaijun [Los Alamos National Laboratory; Winske, Dan [Los Alamos National Laboratory

    2012-07-13

    Banded whistler waves can be generated by the whistler anisotropy instability driven by two bi-Maxwellian electron components with T{sub {perpendicular}}/T{sub {parallel}} > 1 at different T{sub {parallel}} For typical magnetospheric condition of 1 < {omega}{sub e}/{Omega}{sub e} < 5 in regions associated with strong chorus, upper-band waves can be excited by anisotropic electrons below {approx} 1 keV, while lower-band waves are excited by anisotropic electrons above {approx} 10 keV. Lower-band waves are generally field-aligned and substantially electromagnetic, while upper-band waves propagate obliquely and have quasi-electrostatic fluctuating electric fields. The quasi-electrostatic feature of upper-band waves suggests that they may be more easily identified in electric field observations than in magnetic field observations. Upper-band waves are liable to Landau damping and the saturation level of upperband waves is lower than lower-band waves, consistent with observations that lower-band waves are stronger than upper-band waves on average. The oblique propagation, the lower saturation level, and the more severe Landau damping together would make upper-band waves more tightly confined to the geomagnetic equator (|{lambda}{sub m}| < {approx}10{sup o}) than lower-band waves.

  3. Excited de Sitter brane worlds localized by a kink

    Science.gov (United States)

    Brihaye, Y.; Delsate, T.

    2012-07-01

    We reconsider, in five-dimensional space-time, the issue of thick brane localized in the extra dimension by a kink formed by a scalar field. The localization is achieved by a sine-Gordon potential. Apart from a fundamental brane (where the scalar field is a monotonic function of the extra dimension [R. Koley and S. Kar, Classical Quantum Gravity 22, 753 (2005)CQGRDG0264-938110.1088/0264-9381/22/4/008]), we show that a series of new solutions exist as well, labeled by the number of zeros of the scalar field. These solutions are regular, localized on the brane, and mirror-symmetric with respect to the extra dimension. They form a tower of “excited branes”. The study of some perturbations of the solutions reveals that the new solutions are not stable. Finally, fermions are coupled to the scalar field by means of a Yukawa potential and their localization in the background of the new solutions is examined. It turns out that the excited branes can localize left and right chiral fermions either on the brane and/or in the bulk but close to the brane.

  4. Role of the electronically excited-state hydrogen bonding and water clusters in the luminescent metal-organic framework.

    Science.gov (United States)

    Sui, Xiao; Ji, Min; Lan, Xin; Mi, Weihong; Hao, Ce; Qiu, Jieshan

    2013-05-20

    The electronically excited state and luminescence property of metal-organic framework Zn(3-tzba)(2,2'-bipy)(H2O)·nH2O have been investigated using the density functional theory (DFT) and time-dependent DFT (TDDFT). The calculated geometry and infrared spectra in the ground state are consistent with the experimental results. The frontier molecular orbitals and electronic configuration indicated that the origin of luminescence is attributed to a ligand-to-ligand charge transfer (LLCT). We theoretically demonstrated that the hydrogen bond H47···O5═C is weakened in the excited state S1; the weakening of the excited-state hydrogen bonding should be beneficial to the luminescence. To explore the effect of the water clusters on the luminescence, we studied four complexes Zn(3-tzba)(2,2'-bipy)(H2O)·3H2O, Zn(3-tzba)(2,2'-bipy)(H2O)·2H2O, Zn(3-tzba)(2,2'-bipy)(H2O)·H2O, and Zn(3-tzba)(2,2'-bipy)(H2O). The results reveal that the presence of water should play an important role in the emission characteristics of the MOF. Also, the UV-vis absorption and emission spectra of Zn(3-tzba)(2,2'-bipy)(H2O)·3H2O are in good agreement with the experimental results.

  5. Regional Differences in Striatal Neuronal Ensemble Excitability Following Cocaine and Extinction Memory Retrieval in Fos-GFP Mice.

    Science.gov (United States)

    Ziminski, Joseph J; Sieburg, Meike C; Margetts-Smith, Gabriella; Crombag, Hans S; Koya, Eisuke

    2017-05-25

    Learned associations between drugs of abuse and the drug administration environment have an important role in addiction. In rodents, exposure to a drug-associated environment elicits conditioned psychomotor activation, which may be weakened following extinction (EXT) learning. Although widespread drug-induced changes in neuronal excitability have been observed, little is known about specific changes within neuronal ensembles activated during the recall of drug-environment associations. Using a cocaine-conditioned locomotion (CL) procedure, the present study assessed the excitability of neuronal ensembles in the nucleus accumbens core and shell (NAccore and NAcshell), and dorsal striatum (DS) following cocaine conditioning and EXT in Fos-GFP mice that express green fluorescent protein (GFP) in activated neurons (GFP+). During conditioning, mice received repeated cocaine injections (20 mg/kg) paired with a locomotor activity chamber (Paired) or home cage (Unpaired). Seven to 13 days later, both groups were re-exposed to the activity chamber under drug-free conditions and Paired, but not Unpaired, mice exhibited CL. In a separate group of mice, CL was extinguished by repeatedly exposing mice to the activity chamber under drug-free conditions. Following the expression and EXT of CL, GFP+ neurons in the NAccore (but not NAcshell and DS) displayed greater firing capacity compared to surrounding GFP- neurons. This difference in excitability was due to a generalized decrease in GFP- excitability following CL and a selective increase in GFP+ excitability following its EXT. These results suggest a role for both widespread and ensemble-specific changes in neuronal excitability following recall of drug-environment associations.Neuropsychopharmacology advance online publication, 12 July 2017; doi:10.1038/npp.2017.101.

  6. Abnormally large magnetospheric electric field on 9 November 2004 ...

    Indian Academy of Sciences (India)

    region recorded by a GPS receiver at Udaipur and attributed the reduced TEC following the storm by weakened electric field due to disturbance dynamo. The space weather event of November 2004 has been studied by Fejer et al. (2007) using Jica- marca VHF radar, magnetometers in Peruvian. (Jicamarca and Piura) and ...

  7. FY 2000 report on the results of the regional consortium R and D project - Regional consortium energy field. First year report. Development of the process for creation of new functional materials using electron beam excited plasma; 2000 nendo chiiki consortium kenkyu kaihatsu jigyo - chiiki consortium energy bun'ya. Denshi beam reiki plasma wo mochiita shinkino zairyo sosei process no kaihatsu (dai 1 nendo) seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The development of manufacturing technology was proceeded with for a high speed nitriding system using electron beam excited plasma device which realizes high dissociation for nitrogen molecules and controls the plasma state. By the device, the following are aimed at: high quality/high speed nitriding, formation of super-hard cubic system boron nitride (c-BN) and carbon nitride (CN) films on the surface of tools, and formation of TiO{sub 2} thin films with high infrared reflectance and environmental purification photocatalyst function. TiO{sub 2} thin films are assumed to be applied to window glass by making use of the high performance heat mirror function as well as the environmental purification function. Studies were made in the following 6 fields: 1)development of small electron beam excitation plasma source; 2) development of high speed nitrided container; 3) establishment of technology for real-time monitoring of radicals and ions; 4) design/trial manufacture of a device to form super-hard nitrided thin films; 5) development of heat mirror film formation device; 6) establishment of a method to evaluate effects of photocatalyst. (NEDO)

  8. Ferrimagnetic resonance and magnetoelastic excitations in magnetoelectric hexaferrites

    Science.gov (United States)

    Vittoria, Carmine

    2015-08-01

    Static field properties of magnetoelectric hexaferrites have been explored extensively in the past five years. In this paper, dynamic properties of magnetoelectric hexaferrites are being explored. In particular, effects of the linear magnetoelectric coupling (α ) on ferrimagnetic resonance (FMR) and magnetoelastic excitations are being investigated. A magnetoelastic free energy which includes Landau-Lifshitz mathematical description of a spin spiral configuration is proposed to calculate FMR and magnetoelastic excitations in magnetoelectric hexaferrites. It is predicted that the ordinary uniform precession FMR mode contains resonance frequency shifts that are proportional to magnetoelectric static and dynamic fields. The calculated FMR fields are in agreement with experiments. Furthermore, it is predicted at low frequencies (approximately megahertz ranges), near zero magnetic field FMR frequencies, there is an extra uniform precession FMR mode besides the ordinary FMR mode which can only be accounted by dynamic magnetoelectric fields. Whereas the FMR frequency shifts in the ordinary FMR mode due to the α coupling scale as α , the shifts in the new discovered FMR mode scale as α2. Also, magnetoelastic dispersions were calculated, and it is predicted that the effect of the α coupling are the following: (1) The strength of admixture of modes and splitting in energy between spin waves and transverse acoustic waves is proportional to α . (2) The degeneracy of the two transverse acoustic wave modes is lifted even for relatively low values of α . Interestingly, at low frequencies near zero field FMR frequencies, the surface spin wave mode branch flip-flops with the volume spin wave branch whereby one branch assumes real values of the propagation constant and the other purely imaginary upon the application of a static electric field.

  9. Symmetry characterization of electrons and lattice excitations

    Directory of Open Access Journals (Sweden)

    Schober H.

    2012-03-01

    Full Text Available Symmetry concerns all aspects of a physical system from the electronic orbitals to structural and magnetic excitations. In this article we will try to elaborate the fundamental connection between symmetry and excitations. As excitations are manyfold in physical systems it is impossible to treat them exhaustively. We thus concentrate on the two topics of Bloch electrons and phonons. These two examples are complementary in the sense that Bloch electrons describe single particles in an external periodic potential while phonons exemplify a decoupled system of interacting particles. The way we develop the argument gives as by-product a short account of molecular orbitals and molecular vibrations.

  10. Studies of HeH: Dissociative Excitation

    Directory of Open Access Journals (Sweden)

    Ertan E.

    2016-01-01

    Full Text Available We have used structure and scattering calculations to determine the potential energy curves, non-adiabatic couplings and autoionization widths for the HeH system. These will be used to study a variety of processes ranging from dissociative recombination to mutual neutralization. As an example, we present our results on the direct dissociative excitation of HeH+ by electron impact via excitation to the two lowest excited states of the ion. The results are found to be in good agreement with experiment.

  11. Nerve excitability in the rat forelimb

    DEFF Research Database (Denmark)

    Arnold, Ria; Moldovan, Mihai; Rosberg, Mette Romer

    2017-01-01

    a novel setup to explore the ulnar nerve excitability in rodents. We provide normative ulnar data in 11 adult female Long Evans rats under anaesthesia by comparison with tibial and caudal nerves. Additionally, these measures were repeated weekly on 3 occasions to determine the repeatability of these tests....... Results Nerve excitability assessment of ulnar nerve proved to be a longitudinally repeatable measure of axonal function mature in rats, as were measures in tibial and caudal nerves. Comparison with existing method: Ulnar nerve motor excitability measures were different from the caudal and tibial...

  12. Resonant Excitation of Selected Modes by a Train of Electron Bunches in a Rectangular Dielectric Wakefield Accelerator

    CERN Document Server

    Onishchenko, Ivan N; Onishchenko, Nikolay; Sotnikov, Gennadiy

    2005-01-01

    The dielectric wake field accelerator is based on particle acceleration by wake fields excited in a dielectric waveguide by a regular sequence of electron bunches. Enhancement of the accelerating field can be achieved using two phenomena: coherent excitation by many bunches (multibunch effect) and constructive interference of many excited eigenmodes (multimode effect). It was believed that the latter is possible only for planar slab geometry in which the excited modes are equally spaced in frequency. By analysis and simulation, in this presentation the effect of wake field superposition to high amplitude is demonstrated for arbitrary rectangular geometry that is more realizable in experiment. We find this result using simultaneous multibunch and multimode operation providing the repetition frequency of the bunch sequence is equal to the frequency difference between selected modes, whereupon resonant oscillation takes place. Moreover, it is shown that for an appropriate choice of selected modes and bunch repet...

  13. Wideband MEMS Resonator Using Multifrequency Excitation

    KAUST Repository

    Jaber, Nizar

    2016-03-09

    We demonstrate the excitation of combination resonances of additive and subtractive types and their exploitations to realize a large bandwidth micro-machined resonator of large amplitude even at higher harmonic modes of vibrations. The investigation is conducted on a Microelectromechanical systems (MEMS) clamped-clamped microbeam fabricated using polyimide as a structural layer coated with nickel from top and chromium and gold layers from bottom. The microbeam is excited by a two-source harmonic excitation, where the first frequency source is swept around the targeted resonance (first or third mode of vibration) while the second source frequency is kept fixed. We report for the first time a large bandwidth and large amplitude response near the higher order modes of vibration. Also, we show that by properly tuning the frequency and amplitude of the excitation force, the frequency bandwidth of the resonator is controlled.

  14. "Safe" Coulomb Excitation of $^{30}$Mg

    CERN Document Server

    Niedermaier, O; Bildstein, V; Boie, H; Fitting, J; Von Hahn, R; Köck, F; Lauer, M; Pal, U K; Podlech, H; Repnow, R; Schwalm, D; Alvarez, C; Ames, F; Bollen, G; Emhofer, S; Habs, D; Kester, O; Lutter, R; Rudolph, K; Pasini, M; Thirolf, P G; Wolf, B H; Eberth, J; Gersch, G; Hess, H; Reiter, P; Thelen, O; Warr, N; Weisshaar, D; Aksouh, F; Van den Bergh, P; Van Duppen, P; Huyse, M; Ivanov, O; Mayet, P; Van de Walle, J; Äystö, J; Butler, P A; Cederkäll, J; Delahaye, P; Fynbo, H O U; Fraile-Prieto, L M; Forstner, O; Franchoo, S; Köster, U; Nilsson, T; Oinonen, M; Sieber, T; Wenander, F; Pantea, M; Richter, A; Schrieder, G; Simon, H; Behrens, T; Gernhäuser, R; Kröll, T; Krücken, R; Münch, M M; Davinson, T; Gerl, J; Huber, G; Hurst, A; Iwanicki, J; Jonson, B; Lieb, P; Liljeby, L; Schempp, A; Scherillo, A; Schmidt, P; Walter, G

    2005-01-01

    We report on the first radioactive beam experiment performed at the recently commissioned REX-ISOLDE facility at CERN in conjunction with the highly efficient $\\gamma$ -spectrometer MINIBALL. Using $^{30}$Mg ions accelerated to an energy of 2.25MeV/u together with a thin $^{nat}$Ni target, Coulomb excitation of the first excited 2+ states of the projectile and target nuclei well below the Coulomb barrier was observed. From the measured relative de-excitation $\\gamma$ -ray yields the B(E2; 0$^{+}_{gs} \\rightarrow 2^{+}_{1}$) value of $^{30}$Mg was determined to be 241(31)$e^{2}$fm$^{4}$. Our result is lower than values obtained at projectile fragmenttion facilities using the intermediate-energy Coulomb excitation method and confirms that the theoretical conjecture that the neutron-rich magnesium isotope $^{30}$Mg lies still outside the "island of inversion".

  15. Parametric excitation of a linear oscillator

    Science.gov (United States)

    Butikov, Eugene I.

    2004-07-01

    The phenomenon of parametric resonance is explained and investigated both analytically and with the help of a computer simulation. Parametric excitation is studied for the example of the rotary oscillations of a simple linear system—mechanical torsion spring pendulum excited by periodic variations of its moment of inertia. Conditions and characteristics of parametric resonance and regeneration are found and discussed in detail. Ranges of frequencies within which parametric excitation is possible are determined. Stationary oscillations at the boundaries of these ranges are investigated. The simulation experiments aid greatly an understanding of basic principles and peculiarities of parametric excitation and complement the analytical study of the subject in a manner that is mutually reinforcing.

  16. Parametric excitation of a linear oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Butikov, Eugene I [St Petersburg State University, St Petersburg (Russian Federation)

    2004-07-16

    The phenomenon of parametric resonance is explained and investigated both analytically and with the help of a computer simulation. Parametric excitation is studied for the example of the rotary oscillations of a simple linear system-mechanical torsion spring pendulum excited by periodic variations of its moment of inertia. Conditions and characteristics of parametric resonance and regeneration are found and discussed in detail. Ranges of frequencies within which parametric excitation is possible are determined. Stationary oscillations at the boundaries of these ranges are investigated. The simulation experiments aid greatly an understanding of basic principles and peculiarities of parametric excitation and complement the analytical study of the subject in a manner that is mutually reinforcing.

  17. Faraday waves under time-reversed excitation.

    Science.gov (United States)

    Pietschmann, Dirk; Stannarius, Ralf; Wagner, Christian; John, Thomas

    2013-03-01

    Do parametrically driven systems distinguish periodic excitations that are time mirrors of each other? Faraday waves in a Newtonian fluid are studied under excitation with superimposed harmonic wave forms. We demonstrate that the threshold parameters for the stability of the ground state are insensitive to a time inversion of the driving function. This is a peculiarity of some dynamic systems. The Faraday system shares this property with standard electroconvection in nematic liquid crystals [J. Heuer et al., Phys. Rev. E 78, 036218 (2008)]. In general, time inversion of the excitation affects the asymptotic stability of a parametrically driven system, even when it is described by linear ordinary differential equations. Obviously, the observed symmetry has to be attributed to the particular structure of the underlying differential equation system. The pattern selection of the Faraday waves above threshold, on the other hand, discriminates between time-mirrored excitation functions.

  18. Students Excited by Stellar Discovery

    Science.gov (United States)

    2011-02-01

    In the constellation of Ophiuchus, above the disk of our Milky Way Galaxy, there lurks a stellar corpse spinning 30 times per second -- an exotic star known as a radio pulsar. This object was unknown until it was discovered last week by three high school students. These students are part of the Pulsar Search Collaboratory (PSC) project, run by the National Radio Astronomy Observatory (NRAO) in Green Bank, WV, and West Virginia University (WVU). The pulsar, which may be a rare kind of neutron star called a recycled pulsar, was discovered independently by Virginia students Alexander Snider and Casey Thompson, on January 20, and a day later by Kentucky student Hannah Mabry. "Every day, I told myself, 'I have to find a pulsar. I better find a pulsar before this class ends,'" said Mabry. When she actually made the discovery, she could barely contain her excitement. "I started screaming and jumping up and down." Thompson was similarly expressive. "After three years of searching, I hadn't found a single thing," he said, "but when I did, I threw my hands up in the air and said, 'Yes!'." Snider said, "It actually feels really neat to be the first person to ever see something like that. It's an uplifting feeling." As part of the PSC, the students analyze real data from NRAO's Robert C. Byrd Green Bank Telescope (GBT) to find pulsars. The students' teachers -- Debra Edwards of Sherando High School, Leah Lorton of James River High School, and Jennifer Carter of Rowan County Senior High School -- all introduced the PSC in their classes, and interested students formed teams to continue the work. Even before the discovery, Mabry simply enjoyed the search. "It just feels like you're actually doing something," she said. "It's a good feeling." Once the pulsar candidate was reported to NRAO, Project Director Rachel Rosen took a look and agreed with the young scientists. A followup observing session was scheduled on the GBT. Snider and Mabry traveled to West Virginia to assist in the

  19. Exact solutions for the source-excited cylindrical electromagnetic waves in a nonlinear nondispersive medium.

    Science.gov (United States)

    Es'kin, V A; Kudrin, A V; Petrov, E Yu

    2011-06-01

    The behavior of electromagnetic fields in nonlinear media has been a topical problem since the discovery of materials with a nonlinearity of electromagnetic properties. The problem of finding exact solutions for the source-excited nonlinear waves in curvilinear coordinates has been regarded as unsolvable for a long time. In this work, we present the first solution of this type for a cylindrically symmetric field excited by a pulsed current filament in a nondispersive medium that is simultaneously inhomogeneous and nonlinear. Assuming that the medium has a power-law permittivity profile in the linear regime and lacks a center of inversion, we derive an exact solution for the electromagnetic field excited by a current filament in such a medium and discuss the properties of this solution.

  20. Excitation of surface modes by electron beam in semi-bounded quantum plasma

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, B. F., E-mail: mohamedbahf@yahoo.co.uk [Plasma Physics Department, N.R.C., Atomic Energy Authority, Cairo (Egypt); Elbasha, N. M. [Physics Department, Faculty of Science, Ain-Shams University, Cairo (Egypt)

    2015-10-15

    The excitation of the TM surface modes due to the interaction of electron beam with a semi-bounded quantum magnetized plasma is investigated. The generated current and the perturbed densities of the electron beam and plasma are obtained. The wave equation that describes the excited fields has been solved to obtain the dispersion relation for these modes. It is found that the quantum effects play important role for frequencies less and bigger than plasma frequency such that the phase velocity of modes increases with increasing the quantum effects compared to the classical case. It has also been displayed that in the absence of external magnetic field, the surface modes appear in the all regions of the wavelength while they have been only excited for high wavenumber in the presence of the magnetic field. Besides, it has been shown that the dispersion curves of the modes depend essentially on the density ratio of beam and plasma.