Sample records for excitation energy transfer

  1. Excitation energy transfer in the photosystem I

    Energy Technology Data Exchange (ETDEWEB)

    Webber, Andrew N


    Photosystem I is a multimeric pigment protein complex in plants, green alage and cyanobacteria that functions in series with Photosystem II to use light energy to oxidize water and reduce carbon dioxide. The Photosystem I core complex contains 96 chlorophyll a molecules and 22 carotenoids that are involved in light harvesting and electron transfer. In eucaryotes, PSI also has a peripheral light harvesting complex I (LHCI). The role of specific chlorophylls in excitation and electron transfer are still unresolved. In particular, the role of so-called bridging chlorophylls, located between the bulk antenna and the core electron transfer chain, in the transfer of excitation energy to the reaction center are unknown. During the past funding period, site directed mutagenesis has been used to create mutants that effect the physical properties of these key chlorophylls, and to explore how this alters the function of the photosystem. Studying these mutants using ultrafast absorption spectroscopy has led to a better understanding of the process by which excitation energy is transferred from the antenna chlorophylls to the electron transfer chain chlorophylls, and what the role of connecting chlorophylls and A_0 chlorophylls is in this process. We have also used these mutants to investigate whch of the central group of six chlorophylls are involved in the primary steps of charge separation and electron transfer.

  2. Excitation energy transfer from dye molecules to doped graphene

    Indian Academy of Sciences (India)

    Recently, we have reported theoretical studies on the rate of energy transfer from an electronically excited molecule to graphene. It was found that graphene is a very efficient quencher of the electronically excited states and that the rate -4. The process was found to be effective up to 30 which is well beyond the ...

  3. Excitation energy transfer in isolated chlorosomes from Chloroflexus aurantiacus (United States)

    Martiskainen, Jari; Linnanto, Juha; Kananavičius, Robertas; Lehtovuori, Viivi; Korppi-Tommola, Jouko


    Chlorosomes from green photosynthetic bacteria Chloroflexus aurantiacus have been studied by time-resolved femtosecond transient absorption spectroscopy. The fastest kinetics of 200-300 fs resolved, was interpreted to stem for intra-chlorosomal excitation energy transfer. Energy transfer from the antenna to the baseplate appeared as a major 9.2 ps rise component detected at the baseplate probe wavelength. Excitation energy transfer rates were evaluated for a model chlorosome. Calculated rod to rod, and rods to baseplate rate constants of 200-400 fs and 10-20 ps, respectively, are in accord with the experimental results.

  4. Excitation energy transfer processes in condensed matter theory and applications

    CERN Document Server

    Singh, Jai


    Applying a unified quantum approach, contributors offer fresh insights into the theoretical developments in the excitation energy transfer processes in condensed matter This comprehensive volume examines Frenkel and Wannier excitonic processes; rates of excitonic processes; theory of laser sputter and polymer ablation; and polarons, excitonic polarons and self-trapping

  5. Excitation energy transfer from dye molecules to doped graphene

    Indian Academy of Sciences (India)

    Excitation energy transfer from dye molecules to doped graphene. #. R S SWATHIa and K L SEBASTIANb,∗. aSchool of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695 016, India. bDepartment of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, ...

  6. Dependence of the energy transfer to graphene on the excitation energy

    Energy Technology Data Exchange (ETDEWEB)

    Mackowski, Sebastian, E-mail:; Kamińska, Izabela [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland)


    Fluorescence studies of natural photosynthetic complexes on a graphene layer demonstrate pronounced influence of the excitation wavelength on the energy transfer efficiency to graphene. Ultraviolet light yields much faster decay of fluorescence, with average efficiencies of the energy transfer equal to 87% and 65% for excitation at 405 nm and 640 nm, respectively. This implies that focused light changes locally the properties of graphene affecting the energy transfer dynamics, in an analogous way as in the case of metallic nanostructures. Demonstrating optical control of the energy transfer is important for exploiting unique properties of graphene in photonic and sensing architectures.

  7. Excited state conformational dynamics in carotenoids: dark intermediates and excitation energy transfer. (United States)

    Beck, Warren F; Bishop, Michael M; Roscioli, Jerome D; Ghosh, Soumen; Frank, Harry A


    A consideration of the excited state potential energy surfaces of carotenoids develops a new hypothesis for the nature of the conformational motions that follow optical preparation of the S2 (1(1)Bu(+)) state. After an initial displacement from the Franck-Condon geometry along bond length alternation coordinates, it is suggested that carotenoids pass over a transition-state barrier leading to twisted conformations. This hypothesis leads to assignments for several dark intermediate states encountered in femtosecond spectroscopic studies. The Sx state is assigned to the structure reached upon the onset of torsional motions near the transition state barrier that divides planar and twisted structures on the S2 state potential energy surface. The X state, detected recently in two-dimensional electronic spectra, corresponds to a twisted structure well past the barrier and approaching the S2 state torsional minimum. Lastly, the S(∗) state is assigned to a low lying S1 state structure with intramolecular charge transfer character (ICT) and a pyramidal conformation. It follows that the bent and twisted structures of carotenoids that are found in photosynthetic light-harvesting proteins yield excited-state structures that favor the development of an ICT character and optimized energy transfer yields to (bacterio)chlorophyll acceptors. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Excitation energy transfer in a non-markovian dynamical disordered environment: localization, narrowing, and transfer efficiency. (United States)

    Chen, Xin; Silbey, Robert J


    The non-markovian effect of a fluctuating environment plays an important role in electronic excitation transfer in organic disordered media, such as light-harvesting systems and conjugated polymers. Stochastic Liouville equations (SLE) are used to study the interaction between excitons and the environment. We model the non-markovian environment phenomenologically with a dichotomic process. An exact approach to solve the SLE based on Shapiro and Loginov's differentiation formulas allows us to rigorously study the effect of the non-markovian environment on excitation energy transfer, such as coherence conservation and its implication for transfer efficiency. This simple SLE model goes beyond the perturbative second-order master equation valid for both the weak coupling and short time correlation conditions. In addition, we discuss why our non-markovian model is a good approximation to the SLE model driven by the stationary Gauss-Markov process (Ornstein-Uhlenbeck process) over a broad range of fluctuation strengths and correlation times. Numerical results based on our SLE model for dimeric aggregates and the Fenna-Matthews-Olson (FMO) complex reveal the important interplay of intermolecular coupling, correlation time, and fluctuation strength, and their effects on the exciton relaxation process due to the environmental phonon. The results also uncover the connection between localization and motional narrowing, and the efficiency of electronic excitation transfer, demonstrating that the non-markovian environment is critical for chromophore aggregates to achieve an optimal transfer rate in a noisy environment and to contribute to the robustness of the FMO excitation energy transfer network.

  9. Excitation energy transfer in a classical analogue of photosynthetic antennae. (United States)

    Mančal, Tomáš


    We formulate a classical pure dephasing system-bath interaction model in a full correspondence to the well-studied quantum model of natural light-harvesting antennae. The equations of motion of our classical model not only represent the correct classical analogy to the quantum description of excitonic systems, but they also have exactly the same functional form. We demonstrate derivation of classical dissipation and relaxation tensor in second order perturbation theory. We find that the only difference between the classical and quantum descriptions is in the interpretation of the state and in certain limitations imposed on the parameters of the model by classical physics. The effects of delocalization, transfer pathway interference, and the transition from coherent to diffusive transfer can be found already in the classical realm. The only qualitatively new effect occurring in quantum systems is the preference for a downhill energy transfer and the resulting possibility of trapping the energy in the lowest energy state.

  10. Coherence, energy and charge transfers in de-excitation pathways of electronic excited state of biomolecules in photosynthesis

    DEFF Research Database (Denmark)

    Bohr, Henrik; Malik, F. Bary


    The observed multiple de-excitation pathways of photo-absorbed electronic excited state in the peridinin–chlorophyll complex, involving both energy and charge transfers among its constituents, are analyzed using the bio-Auger (B-A) theory. It is also shown that the usually used F¨orster–Dexter th...

  11. Variety in excitation energy transfer processes from phycobilisomes to photosystems I and II. (United States)

    Ueno, Yoshifumi; Aikawa, Shimpei; Niwa, Kyosuke; Abe, Tomoko; Murakami, Akio; Kondo, Akihiko; Akimoto, Seiji


    The light-harvesting antennas of oxygenic photosynthetic organisms capture light energy and transfer it to the reaction centers of their photosystems. The light-harvesting antennas of cyanobacteria and red algae, called phycobilisomes (PBSs), supply light energy to both photosystem I (PSI) and photosystem II (PSII). However, the excitation energy transfer processes from PBS to PSI and PSII are not understood in detail. In the present study, the energy transfer processes from PBS to PSs in various cyanobacteria and red algae were examined in vivo by selectively exciting their PSs or PBSs, and measuring the resulting picosecond to nanosecond time-resolved fluorescences. By observing the delayed fluorescence spectrum of PBS-selective excitation in Arthrospira platensis, we demonstrated that energy transfer from PBS to PSI via PSII (PBS→PSII→PSI transfer) occurs even for PSI trimers. The contribution of PBS→PSII→PSI transfer was species dependent, being largest in the wild-type of red alga Pyropia yezoensis (formerly Porphyra yezoensis) and smallest in Synechococcus sp. PCC 7002. Comparing the time-resolved fluorescence after PSs- and PBS-selective excitation, we revealed that light energy flows from CP43 to CP47 by energy transfer between the neighboring PSII monomers in PBS-PSII supercomplexes. We also suggest two pathways of energy transfer: direct energy transfer from PBS to PSI (PBS→PSI transfer) and indirect transfer through PSII (PBS→PSII→PSI transfer). We also infer that PBS→PSI transfer conveys light energy to a lower-energy red chlorophyll than PBS→PSII→PSI transfer.

  12. Effects of Herzberg-Teller vibronic coupling on coherent excitation energy transfer (United States)

    Zhang, Hou-Dao; Qiao, Qin; Xu, Rui-Xue; Yan, YiJing


    In this work, we study the effects of non-Condon vibronic coupling on the quantum coherence of excitation energy transfer, via the exact dissipaton-equation-of-motion evaluations on excitonic model systems. Field-triggered excitation energy transfer dynamics and two dimensional coherent spectroscopy are simulated for both Condon and non-Condon vibronic couplings. Our results clearly demonstrate that the non-Condon vibronic coupling intensifies the dynamical electronic-vibrational energy transfer and enhances the total system-and-bath quantum coherence. Moreover, the hybrid bath dynamics for non-Condon effects enriches the theoretical calculation, and further sheds light on the interpretation of the experimental nonlinear spectroscopy.

  13. Generating Excitement: Build Your Own Generator to Study the Transfer of Energy (United States)

    Fletcher, Kurt; Rommel-Esham, Katie; Farthing, Dori; Sheldon, Amy


    The transfer of energy from one form to another can be difficult to understand. The electrical energy that turns on a lamp may come from the burning of coal, water falling at a hydroelectric plant, nuclear reactions, or gusts of wind caused by the uneven heating of the Earth. The authors have developed and tested an exciting hands-on activity to…

  14. Dynamics of Energy Transfer in a Conjugated Dendrimer Driven by Ultrafast Localization of Excitations. (United States)

    Galindo, Johan F; Atas, Evrim; Altan, Aysun; Kuroda, Daniel G; Fernandez-Alberti, Sebastian; Tretiak, Sergei; Roitberg, Adrian E; Kleiman, Valeria D


    Solar energy conversion starts with the harvest of light, and its efficacy depends on the spatial transfer of the light energy to where it can be transduced into other forms of energy. Harnessing solar power as a clean energy source requires the continuous development of new synthetic materials that can harvest photon energy and transport it without significant losses. With chemically-controlled branched architectures, dendrimers are ideally suited for these initial steps, since they consist of arrays of chromophores with relative positioning and orientations to create energy gradients and to spatially focus excitation energies. The spatial localization of the energy delimits its efficacy and has been a point of intense research for synthetic light harvesters. We present the results of a combined theoretical experimental study elucidating ultrafast, unidirectional, electronic energy transfer on a complex molecule designed to spatially focus the initial excitation onto an energy sink. The study explores the complex interplay between atomic motions, excited-state populations, and localization/delocalization of excitations. Our findings show that the electronic energy-transfer mechanism involves the ultrafast collapse of the photoexcited wave function due to nonadiabatic electronic transitions. The localization of the wave function is driven by the efficient coupling to high-frequency vibrational modes leading to ultrafast excited-state dynamics and unidirectional efficient energy funneling. This work provides a long-awaited consistent experiment-theoretical description of excited-state dynamics in organic conjugated dendrimers with atomistic resolution, a phenomenon expected to universally appear in a variety of synthetic conjugated materials.

  15. Time Resolved Energy Transfer and Photodissociation of Vibrationally Excited Molecules

    National Research Council Canada - National Science Library

    Crim, F. F


    ...) in solution and in the gas phase. This second experiment is one of the few direct comparisons of intramolecular vibrational energy flow in a solvated molecule with that in the same molecule isolated in a gas...

  16. Assessment of quantum chemical methods and basis sets for excitation energy transfer

    Energy Technology Data Exchange (ETDEWEB)

    Fink, Reinhold F. [Institute of Physical Chemistry, University of Wuerzburg, Am Hubland, D-97074 Wuerzburg (Germany); Pfister, Johannes; Zhao Hongmei [Institute of Organic Chemistry, University of Wuerzburg, Am Hubland, D-97074 Wuerzburg (Germany); Engels, Bernd [Institute of Organic Chemistry, University of Wuerzburg, Am Hubland, D-97074 Wuerzburg (Germany)], E-mail:


    The validity of several standard quantum chemical approaches and other models for the prediction of exciton energy transfer is investigated using the HOMO-LUMO excited states of benzene dimer as an example. The configuration interaction singles (CIS), time-dependent Hartree-Fock (TD-HF), time dependent density functional theroy (TD-DFT), and complete-active-space self-consistent-field (CASSCF) methods are applied with a supermolecule approach and compared to the previously established monomer transition density method and the ideal dipole approximation. Strong and physically incorrect admixture of charge-transfer states makes TD-DFT inappropriate for investigations of potential energy surfaces in such dimer systems. CIS, TD-HF and CASSCF perform qualitatively correct. TD-HF seems to be a particularly appropriate method due to its general applicability and overall good performance for the excited state and for transition properties. Double-zeta basis sets with polarisation functions are found to be sufficient to predict transfer rates of dipole allowed excitations. Efficient excitation energy transfer is predicted between degenerate excited states while avoided curve crossings of nearly spaced {pi}-aggregates are identified as a possible trapping mechanism.

  17. A model for energy transfer in collisions of atoms with highly excited molecules. (United States)

    Houston, Paul L; Conte, Riccardo; Bowman, Joel M


    A model for energy transfer in the collision between an atom and a highly excited target molecule has been developed on the basis of classical mechanics and turning point analysis. The predictions of the model have been tested against the results of trajectory calculations for collisions of five different target molecules with argon or helium under a variety of temperatures, collision energies, and initial rotational levels. The model predicts selected moments of the joint probability distribution, P(Jf,ΔE) with an R(2) ≈ 0.90. The calculation is efficient, in most cases taking less than one CPU-hour. The model provides several insights into the energy transfer process. The joint probability distribution is strongly dependent on rotational energy transfer and conservation laws and less dependent on vibrational energy transfer. There are two mechanisms for rotational excitation, one due to motion normal to the intermolecular potential and one due to motion tangential to it and perpendicular to the line of centers. Energy transfer is found to depend strongly on the intermolecular potential and only weakly on the intramolecular potential. Highly efficient collisions are a natural consequence of the energy transfer and arise due to collisions at "sweet spots" in the space of impact parameter and molecular orientation.

  18. Determining excitation-energy transfer times and mechanisms from stochastic time-dependent density functional theory. (United States)

    Hofmann-Mees, D; Appel, H; Di Ventra, M; Kümmel, S


    We developed an approach for calculating excitation-energy transfer times in supermolecular arrangements based on stochastic time-dependent density functional theory (STDDFT). The combination of real-time propagation and the stochastic Schrödinger equation with a Kohn-Sham Hamiltonian allows for simulating how an excitation spreads through an assembly of molecular systems. The influence that approximations, such as the dipole-dipole coupling approximation of Förster theory, have on energy-transfer times can be checked explicitly. As a first application of our approach we investigate a light-harvesting-inspired model ring system, calculating the time it takes for an excitation to travel from one side of the ring to the opposite side under ideal and perturbed conditions. Among other things we find that completely removing a molecule from the ring may inhibit energy transfer less than having an energetically detuned molecule in the ring. In addition, Förster's dipole coupling approximation may noticeably overestimate excitation-energy transfer efficiency.

  19. Elastic, excitation, ionization and charge transfer cross sections of current interest in fusion energy research

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, D.R.; Krstic, P.S. [Oak Ridge National Lab. TN (United States). Physics Div.


    Due to the present interest in modeling and diagnosing the edge and divertor plasma regions in magnetically confined fusion devices, we have sought to provide new calculations regarding the elastic, excitation, ionization, and charge transfer cross sections in collisions among relevant ions, neutrals, and isotopes in the low-to intermediate-energy regime. We summarize here some of our recent work. (author)

  20. Fragment transition density method to calculate electronic coupling for excitation energy transfer

    Energy Technology Data Exchange (ETDEWEB)

    Voityuk, Alexander A., E-mail: [Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain and Institut de Química Computacional i Catàlisi (IQCC), Universitat de Girona 17071 Girona (Spain)


    A general approach, the Fragment Transition Density (FTD) scheme, is introduced to estimate electronic coupling for excitation energy transfer in a molecular system. Within this method, the excitation energies and transition densities of the system are used to derive the coupling matrix element. The scheme allows one to treat systems where exciton donor and acceptor are close together and their exchange interaction and orbital overlap are significant. The FTD method can be applied in combination with any quantum mechanical approach to treat excited states of general nature including single-, double-, and higher excitations. Using FTD approach, we derive excitonic couplings for several systems computed with the CIS, TD DFT and MS-CASPT2 methods. In particular, it is shown that the estimated coupling values in DNA π-stacks are strongly affected by the short-range electronic interaction of adjacent nucleobases.

  1. Modeling Electronic-Nuclear Interactions for Excitation Energy Transfer Processes in Light-Harvesting Complexes. (United States)

    Lee, Mi Kyung; Coker, David F


    An accurate approach for computing intermolecular and intrachromophore contributions to spectral densities to describe the electronic-nuclear interactions relevant for modeling excitation energy transfer processes in light harvesting systems is presented. The approach is based on molecular dynamics (MD) calculations of classical correlation functions of long-range contributions to excitation energy fluctuations and a separate harmonic analysis and single-point gradient quantum calculations for electron-intrachromophore vibrational couplings. A simple model is also presented that enables detailed analysis of the shortcomings of standard MD-based excitation energy fluctuation correlation function approaches. The method introduced here avoids these problems, and its reliability is demonstrated in accurate predictions for bacteriochlorophyll molecules in the Fenna-Matthews-Olson pigment-protein complex, where excellent agreement with experimental spectral densities is found. This efficient approach can provide instantaneous spectral densities for treating the influence of fluctuations in environmental dissipation on fast electronic relaxation.

  2. Plasmon assisted control of photo-induced excitation energy transfer in a molecular chain (United States)

    Wang, Luxia; May, Volkhard


    The strong and ultrafast laser pulse excitation of a molecular chain in close vicinity to a spherical metal nano-particle (MNP) is studied theoretically. Due to local-field enhancement around the MNP, pronounced excited-state formation has to be expected for the part of the chain which is in proximity to the MNP. Here, the description of this phenomenon will be based on a uniform quantum theory of the MNP-molecule system. It accounts for local-field effects due to direct consideration of the strong excitation energy transfer coupling between the MNP and the various molecules. The molecule-MNP distances are chosen in such a way as to achieve a correct description of the MNP via dipole-plasmon excitations. Short plasmon life-times are incorporated in the framework of a density matrix approach. By extending earlier work the present description allows for multi-exciton formation and multiple dipole-plasmon excitation. The region of less intense and not-too-short optical excitation is identified as being best suited for excitation energy localization in the chain.

  3. Picosecond excitation energy transfer of allophycocyanin studied in solution and in crystals. (United States)

    Ranjbar Choubeh, Reza; Sonani, Ravi R; Madamwar, Datta; Struik, Paul C; Bader, Arjen N; Robert, Bruno; van Amerongen, Herbert


    Cyanobacteria perform photosynthesis with the use of large light-harvesting antennae called phycobilisomes (PBSs). These hemispherical PBSs contain hundreds of open-chain tetrapyrrole chromophores bound to different peptides, providing an arrangement in which excitation energy is funnelled towards the PBS core from where it can be transferred to photosystem I and/or photosystem II. In the PBS core, many allophycocyanin (APC) trimers are present, red-light-absorbing phycobiliproteins that covalently bind phycocyanobilin (PCB) chromophores. APC trimers were amongst the first light-harvesting complexes to be crystallized. APC trimers have two spectrally different PCBs per monomer, a high- and a low-energy pigment. The crystal structure of the APC trimer reveals the close distance (~21 Å) between those two chromophores (the distance within one monomer is ~51 Å) and this explains the ultrafast (~1 ps) excitation energy transfer (EET) between them. Both chromophores adopt a somewhat different structure, which is held responsible for their spectral difference. Here we used spectrally resolved picosecond fluorescence to study EET in these APC trimers both in crystallized and in solubilized form. We found that not all closely spaced pigment couples consist of a low- and a high-energy pigment. In ~10% of the cases, a couple consists of two high-energy pigments. EET to a low-energy pigment, which can spectrally be resolved, occurs on a time scale of tens of picoseconds. This transfer turns out to be three times faster in the crystal than in the solution. The spectral characteristics and the time scale of this transfer component are similar to what have been observed in the whole cells of Synechocystis sp. PCC 6803, for which it was ascribed to EET from C-phycocyanin to APC. The present results thus demonstrate that part of this transfer should probably also be ascribed to EET within APC trimers.

  4. Construction of Vibronic Diabatic Hamiltonian for Excited-State Electron and Energy Transfer Processes. (United States)

    Xie, Yu; Jiang, Shengshi; Zheng, Jie; Lan, Zhenggang


    Photoinduced excited-state electron and energy transfer processes are crucial in biological photoharvesting systems and organic photovoltaic devices. We discuss the construction of a diabatic vibronic Hamiltonian for the proper treatment of these processes involving the projection approach acting on both electronic wave functions and vibrational modes. In the electronic part, the wave function projection approach is used to construct the diabatic Hamiltonian in which both local excited states and charge-transfer states are included on the same footing. For the vibrational degrees of freedom, the vibronic couplings in the diabatic Hamiltonian are obtained in the basis of the pseudonormal modes localized on each monomer site by applying delocalized-to-localized mode projection. This systematic approach allows us to construct the vibronic diabatic Hamiltonian in molecular aggregates.

  5. Finite Size Corrections to the Excitation Energy Transfer in a Massless Scalar Interaction Model

    CERN Document Server

    Maeda, N; Tobita, Y; Ishikawa, K


    We study the excitation energy transfer (EET) for a simple model in which a virtual massless scalar particle is exchanged between two molecules. If the time interval is finite, then the finite size effect generally appears in a transition amplitude through the regions where the wave nature of quanta remains. We calculated the transition amplitude for EET and obtained finite size corrections to the standard formula derived by using Fermi's golden rule. These corrections for the transition amplitude appear outside the resonance energy region. The estimation in a photosynthesis system indicates that the finite size correction could reduce the EET time considerably.

  6. The role of coherent excitation and collisional energy transfer in atomic vapor filters and photon detectors (United States)

    Correll, Tiffany Lee

    Many optical techniques, including laser Doppler velocimetry, free space optical communications, and chemical imaging, require-or can be enhanced by-high spectral resolution photon detection. Such detection is characterized by spectral discrimination on the order of GHz or MHz i.e., approximately 10-4 nm in the near-infrared region. This spectral resolution has recently been achieved by exploiting the narrow absorption features of gas phase atoms. Absorption of light by alkali vapors is intrinsically selective and can be monitored by detecting the fluorescence resulting from laser excitation coupled to selectively excited atomic states. Imaging can be accomplished by spatially expanding the excitation lasers into two dimensions. Fluorescence photons are only created and detected when the interrogated object is forced to scatter radiation of an energy precisely matching one of the transitions of a pre-determined optimal excitation/fluorescence scheme. Devices based on resonance fluorescence photon detection have recently been described using cesium atoms. In this work, the sensitivity and spectral resolution of cesium-based photon detectors were evaluated and improved. To this end, initial experiments focused on laser induced fluorescence in room temperature cesium vapor. The fluorescence response of the detector was augmented by the use of cesium-induced collisional excitation energy transfer between states involved in the chosen excitation scheme. Additional studies focused on helium and argon-induced collisions in the vapor to increase the signal output while maintaining adequate spatial resolution in imaging mode. The probability or cross section of helium-cesium collisions at the operating temperature of the detector was determined by use of a simplified rate equation model. The spectral response of the detector was improved by the use of coherent optical effects resulting from the interaction of a multi-level atomic system with narrowband radiation. Superior

  7. High Excitation Transfer Efficiency from Energy Relay Dyes in Dye-Sensitized Solar Cells

    KAUST Repository

    Hardin, Brian E.


    The energy relay dye, 4-(Dicyanomethylene)-2-methyl-6-(4- dimethylaminostyryl)-4H-pyran (DCM), was used with a near-infrared sensitizing dye, TT1, to increase the overall power conversion efficiency of a dye-sensitized solar cell (DSC) from 3.5% to 4.5%. The unattached DCM dyes exhibit an average excitation transfer efficiency (EÌ?TE) of 96% inside TT1-covered, mesostructured TiO2 films. Further performance increases were limited by the solubility of DCM in an acetonitrile based electrolyte. This demonstration shows that energy relay dyes can be efficiently implemented in optimized dye-sensitized solar cells, but also highlights the need to design highly soluble energy relay dyes with high molar extinction coefficients. © 2010 American Chemical Society.

  8. High resolution IR diode laser study of collisional energy transfer between highly vibrationally excited monofluorobenzene and CO2: the effect of donor fluorination on strong collision energy transfer. (United States)

    Kim, Kilyoung; Johnson, Alan M; Powell, Amber L; Mitchell, Deborah G; Sevy, Eric T


    Collisional energy transfer between vibrational ground state CO2 and highly vibrationally excited monofluorobenzene (MFB) was studied using narrow bandwidth (0.0003 cm(-1)) IR diode laser absorption spectroscopy. Highly vibrationally excited MFB with E' = ∼41,000 cm(-1) was prepared by 248 nm UV excitation followed by rapid radiationless internal conversion to the electronic ground state (S1→S0*). The amount of vibrational energy transferred from hot MFB into rotations and translations of CO2 via collisions was measured by probing the scattered CO2 using the IR diode laser. The absolute state specific energy transfer rate constants and scattering probabilities for single collisions between hot MFB and CO2 were measured and used to determine the energy transfer probability distribution function, P(E,E'), in the large ΔE region. P(E,E') was then fit to a bi-exponential function and extrapolated to the low ΔE region. P(E,E') and the biexponential fit data were used to determine the partitioning between weak and strong collisions as well as investigate molecular properties responsible for large collisional energy transfer events. Fermi's Golden rule was used to model the shape of P(E,E') and identify which donor vibrational motions are primarily responsible for energy transfer. In general, the results suggest that low-frequency MFB vibrational modes are primarily responsible for strong collisions, and govern the shape and magnitude of P(E,E'). Where deviations from this general trend occur, vibrational modes with large negative anharmonicity constants are more efficient energy gateways than modes with similar frequency, while vibrational modes with large positive anharmonicity constants are less efficient at energy transfer than modes of similar frequency.

  9. Excitation energy transfer in individual light-harvesting chlorosome from green photosynthetic bacterium Chloroflexus aurantiacus at cryogenic temperature (United States)

    Saga, Yoshitaka; Tamiaki, Hitoshi; Shibata, Yutaka; Itoh, Shigeru


    The excitation energy transfer from bacteriochlorophyll(BChl)- c self-aggregates to energy-accepting BChl- a in proteins (baseplates) in an individual photosynthetic light-harvesting complex (chlorosome) of a green filamentous photosynthetic bacterium Chloroflexus aurantiacus was successfully observed at cryogenic temperature. The ratio of intensity of the fluorescence peak of BChl- a to that of BChl- c self-aggregates in individual chlorosomes, which demonstrated relative efficiency of the excitation energy transfer, was heterogeneous between 0.09 and 0.72. This suggests that excitonic interaction between BChl- c self-aggregates and BChl- a in baseplates was heterogeneous among individual chlorosomes.

  10. Shape similarity of charge-transfer (CT) excitation energy curves in a series of donor-acceptor complexes and its description with a transferable energy of CT orbital (United States)

    Gritsenko, O. V.


    A simple nature of charge-transfer (CT) in the prototype complexes Dp -F2 (Dp =NH3 , H2O) manifests itself in a very close shape of their CT excitation energy curves ωCT (R) along the donor-acceptor separation R. It affords a simple orbital description in terms of the CT orbitals (CTOs) obtained with a transformation of the virtual orbitals of the standard local density approximation (LDA). The transferable energy of the relevant CTO as a function of R closely approximates the common shape of ωCT (R) , while the height of the individual curve is determined with the ionization potential of Dp .

  11. Electronic excitation energy transfer and nonstationary processes in KH2PO4:Tl crystals (United States)

    Ogorodnikov, I. N.; Pustovarov, V. A.


    We report the results of our experimental study and numerical simulation of the electronic excitation energy transfer to impurity centers under conditions where nonstationary processes take place in the hydrogen sublattice of potassium dihydrogen phosphate (KH2PO4) single crystals doped with mercury-like Tl+ ions (KDP:Tl). We present the experimental results of our investigation of the decay kinetics of the transient optical absorption (100 ns-50 s) of intrinsic defects in the hydrogen sublattice of KDP:Tl obtained by pulsed absorption spectroscopy and the results of our study of the dynamics of the change in steady-state luminescence intensity with irradiation time (1-5000 s). To explain the transfer of the energy being released during electron recombination involving intrinsic KDP:Tl lattice defects, we formulate a mathematical model for the transfer of this energy to impurity Tl+ luminescence centers. Within the model being developed, we present the systems of differential balance equations describing the nonstationary processes in the electron subsystem and the hydrogen sublattice; provide a technique for calculating the pair correlation functions Y( r, t) of dissimilar defects based on the solution of the Smoluchowski equation for the system of mobile hydrogen sublattice defects; calculate the time-dependent reaction rate constants K( t) for various experimental conditions; and outline the peculiarities and results of the model parametrization based on our experimental data. Based on our investigation, the dramatic and significant effect of a gradual inertial increase by a factor of 50-100 in steady-state luminescence intensity in the 4.5-eV band in KDP:Tl crystals due to the luminescence of mercury-like Tl+ ions has been explained qualitatively and quantitatively.

  12. Influence of environment induced correlated fluctuations in electronic coupling on coherent excitation energy transfer dynamics in model photosynthetic systems. (United States)

    Huo, Pengfei; Coker, David F


    Two-dimensional photon-echo experiments indicate that excitation energy transfer between chromophores near the reaction center of the photosynthetic purple bacterium Rhodobacter sphaeroides occurs coherently with decoherence times of hundreds of femtoseconds, comparable to the energy transfer time scale in these systems. The original explanation of this observation suggested that correlated fluctuations in chromophore excitation energies, driven by large scale protein motions could result in long lived coherent energy transfer dynamics. However, no significant site energy correlation has been found in recent molecular dynamics simulations of several model light harvesting systems. Instead, there is evidence of correlated fluctuations in site energy-electronic coupling and electronic coupling-electronic coupling. The roles of these different types of correlations in excitation energy transfer dynamics are not yet thoroughly understood, though the effects of site energy correlations have been well studied. In this paper, we introduce several general models that can realistically describe the effects of various types of correlated fluctuations in chromophore properties and systematically study the behavior of these models using general methods for treating dissipative quantum dynamics in complex multi-chromophore systems. The effects of correlation between site energy and inter-site electronic couplings are explored in a two state model of excitation energy transfer between the accessory bacteriochlorophyll and bacteriopheophytin in a reaction center system and we find that these types of correlated fluctuations can enhance or suppress coherence and transfer rate simultaneously. In contrast, models for correlated fluctuations in chromophore excitation energies show enhanced coherent dynamics but necessarily show decrease in excitation energy transfer rate accompanying such coherence enhancement. Finally, for a three state model of the Fenna-Matthews-Olsen light

  13. General theory of excitation energy transfer in donor-mediator-acceptor systems. (United States)

    Kimura, Akihiro


    General theory of the excitation energy transfer (EET) in the case of donor-mediator-acceptor system was constructed by using generalized master equation (GME). In this theory, we consider the direct and indirect transitions in the EET consistently. Hence, our theory includes the quantum mechanical interference between the direct and indirect transitions automatically. Memory functions in the GME were expressed by the overlap integrals among the time-dependent emission spectrum of the donor, the absorption spectrum of the mediator, the time-dependent emission spectrum of the mediator, and the absorption spectrum of the acceptor. In the Markov limit of the memory functions, we obtained the rate of EET which consists of three terms due to the direct transition, the indirect transition, and the interference between them. We found that the interference works effectively in the limit of slow thermalization at the intermediate state. The formula of EET rate in this limit was expressed by the convolution of the EET interaction and optical spectra. The interference effect strongly depends on the width of the absorption spectrum of mediator molecule and the energy gap between the donor and the mediator molecules.

  14. Comparison of calculated and experimentally resolved rate constants for excitation energy transfer in C-phycocyanin. 1. Monomers

    Energy Technology Data Exchange (ETDEWEB)

    Debreczeny, M.P.; Sauer, K. [Lawrence Berkeley Lab., CA (United States); Zhou, J.; Bryant, D.A. [Pennsylvania State Univ., University Park, PA (United States)


    Rate constants for excitation energy transfer in light-harvesting protein, C-phycocyanin (PC), in the monomeric aggregation state, isolated from the cyanobacterium cynechococcus sp. PCC 7002, are calculated, using Foerster theory and compared with the results of time-resolved fluorescence measurements. The assignments of the energy-transfer rate constants in PC monomers are confirmed here by time-resolved fluorescence anisotropy measurements of the PC monomers isolated from both the wild-type and a mutant strain (cpcB/C155S) whose PC is missing the {beta}{sub 155} chromophore. It is concluded that the Foerster model of resonant energy transfer in the weak coupling limit successfully describes the dominant energy-transfer processes in this protein in the monomeric state. 31 refs., 3 figs., 4 tabs.

  15. Vibrational energy transfer in selectively excited diatomic molecules. [Relaxation rates, self-relaxation, upper limits

    Energy Technology Data Exchange (ETDEWEB)

    Dasch, C.J.


    Single rovibrational states of HCl(v=2), HBr(v=2), DCl(v=2), and CO(v=2) were excited with a pulsed optical parametric oscillator (OPO). Total vibrational relaxation rates near - resonance quenchers were measured at 295/sup 0/K using time resolved infrared fluorescence. These rates are attributed primarily to V - V energy transfer, and they generally conform to a simple energy gap law. A small deviation was found for the CO(v) + DCl(v') relaxation rates. Upper limits for the self relaxation by V - R,T of HCl(v=2) and HBr(v=2) and for the two quantum exchange between HCl and HBr were determined. The HF dimer was detected at 295/sup 0/K and 30 torr HF pressure with an optoacoustic spectrometer using the OPO. Pulsed and chopped, resonant and non-resonant spectrophones are analyzed in detail. From experiments and first order perturbation theory, these V - V exchange rates appear to behave as a first order perturbation in the vibrational coordinates. The rotational dynamics are known to be complicated however, and the coupled rotational - vibrational dynamics were investigated theoreticaly in infinite order by the Dillon and Stephenson and the first Magnus approximations. Large transitions appear to be important, but these calculations differ by orders of magnitude on specific rovibrational transition rates. Integration of the time dependent semiclassical equations by a modified Gordon method and a rotationally distorted wave approximation are discussed as methods which would treat the rotational motion more accurately. 225 references.

  16. Dynamics of charge-transfer excited states relevant to photochemical energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Lim, E.C.


    The primary objective of the research program is to gain a fundamental understanding of the factors governing the efficiency of excited-state charge transfer CT interactions between two chromophores that are brought together in close proximity, either by a very short covalent linkage or by ground-state complex formation. CT and van der Walls (vdW), interactions in covalently bonded bichromophoric compounds in condensed phase, as well as those in vdW complexes in supersonic jets, are being investigated using laser-based techniques under a variety of experimental conditions. This progress report is divided into three parts, according to the class of molecular systems and the phase (liquid vs. gas) in which the excited-state interactions are probed. The first is concerned with the excited states of bridged diaryl compounds in the condensed phase. The second involves the excited states of vdW complexes in supersonic jets. Finally, the third, is concerned with the excited states of electron donor-acceptor (EDA) systems in both the condensed phase and supersonic jets. In each of these studies, we are concerned with the interchromophore interactions ranging from weak vdW forces to strong CT forces, and the factors determining whether the interaction forces are weak or strong in related molecules.

  17. Strategies to enhance the excitation energy-transfer efficiency in a light-harvesting system using the intra-molecular charge transfer character of carotenoids

    Energy Technology Data Exchange (ETDEWEB)

    Yukihira, Nao [Department of Applied Chemistry for Environment; School of Science and Technology; Kwansei Gakuin University; Sanda; Japan; Sugai, Yuko [Department of Applied Chemistry for Environment; School of Science and Technology; Kwansei Gakuin University; Sanda; Japan; Fujiwara, Masazumi [Department of Applied Chemistry for Environment; School of Science and Technology; Kwansei Gakuin University; Sanda; Japan; Kosumi, Daisuke [Institute of Pulsed Power Science; Kumamoto University; Kumamoto; Japan; Iha, Masahiko [South Product Co. Ltd.; Uruma-shi; Japan; Sakaguchi, Kazuhiko [Department of Chemistry; Graduate School of Science; Osaka City University; Osaka 558-8585; Japan; Katsumura, Shigeo [Department of Chemistry; Graduate School of Science; Osaka City University; Osaka 558-8585; Japan; Gardiner, Alastair T. [Glasgow Biomedical Research Centre; University of Glasgow; 126 University Place; Glasgow, G12 8QQ; UK; Cogdell, Richard J. [Glasgow Biomedical Research Centre; University of Glasgow; 126 University Place; Glasgow, G12 8QQ; UK; Hashimoto, Hideki [Department of Applied Chemistry for Environment; School of Science and Technology; Kwansei Gakuin University; Sanda; Japan


    Fucoxanthin is a carotenoid that is mainly found in light-harvesting complexes from brown algae and diatoms. Due to the presence of a carbonyl group attached to polyene chains in polar environments, excitation produces an excited intra-molecular charge transfer. This intra-molecular charge transfer state plays a key role in the highly efficient (~95%) energy-transfer from fucoxanthin to chlorophyllain the light-harvesting complexes from brown algae. In purple bacterial light-harvesting systems the efficiency of excitation energy-transfer from carotenoids to bacteriochlorophylls depends on the extent of conjugation of the carotenoids. In this study we were successful, for the first time, in incorporating fucoxanthin into a light-harvesting complex 1 from the purple photosynthetic bacterium,Rhodospirillum rubrumG9+ (a carotenoidless strain). Femtosecond pump-probe spectroscopy was applied to this reconstituted light-harvesting complex in order to determine the efficiency of excitation energy-transfer from fucoxanthin to bacteriochlorophyllawhen they are bound to the light-harvesting 1 apo-proteins.

  18. Isovector monopole excitation energies

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, J.D.; Lipparini, E.; Stringary, S.


    Using a hydrodynamical model whose parameters have been adjusted to fit the polarizability and excitation energy of the giant dipole nuclear resonance we predict excitation energies of the isovector monopole resonance. The predicted values are in good agreement with experimental data. The mass dependence of the excitation energy is strongly influenced by nuclear geometry.

  19. Dynamics of charge-transfer excited states relevant to photochemical energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Lim, E.C.


    A systematic study of intramolecular photoassociation and photoinduced charge transfer (CT) was initiated in bichromophoric systems of M-X-M, where two identical aromatic hydrocarbons M are joined by X=CH[sub 2], O, NH, etc. Dinaphthylamines, dinaphthylethers, and dinaphthylmethanes in nonpolar solvents form triplet excimers, following inter system crossing of singlets to the triplet manifold; in polar solvents, the molecule forms an intramolecular CT state. The interchromophore interaction study was extended to N-phenyl-2-naphthylamine. The lowest excited singlet states of the dinaphthylamines were studied by semiempirical quantum chemical methods. Exciplex formation was studied in excited states of jet-cooled van der Waals complexes, such as fluorene/substituted benzenes and 1-cyanonaphthalene-aliphatic amines.

  20. Resonant electronic excitation energy transfer by exchange mechanism in the quantum dot system (United States)

    Chikalova-Luzina, O. P.; Samosvat, D. M.; Vyatkin, V. M.; Zegrya, G. G.


    A microscopic theory of nonradiative resonance energy transfer between spherical A3B5 semiconductor quantum dots by the exchange mechanism is suggested. The interdot Coulomb interaction is taken into consideration. It is assumed that the quantum dot-donor and the quantum dot-acceptor are made from the same A3B5 compound and are embedded in the matrix of another material that produces potential barriers for electrons and holes. The dependences of the energy transfer rate on the quantum-dot system parameters are found in the frame of the Kane model that provides the most adequate description of the real spectra of A3B5 semiconductors. The analytical treatment is carried out with using the density matrix method, which enabled us to perform an energy transfer analysis both in the weak-interaction approximation and in the strong-interaction approximation. The numerical calculations showed the saturation of the energy transfer rate at the distances between the donor and the acceptor approaching the contact one. The contributions of the exchange and direct Coulomb intractions can be of the same order at the small distances and can have the same value in the saturation range.

  1. Electron and excitation energy transfers in covalently linked donor-acceptor dyads: mechanisms and dynamics revealed using quantum chemistry. (United States)

    Cupellini, Lorenzo; Giannini, Samuele; Mennucci, Benedetta


    Photoinduced electron transfer (ET), hole transfer (HT), charge recombination (CR) and energy transfer (EET) are fundamental mechanisms, which occur in both natural and artificial light harvesting systems. Here, we present a computational strategy which determines ET, HT, CR and EET rates in a consistent way and merges them in a kinetic model to reproduce the net excited state dynamics. The effects of the solvent are included in all steps of the calculations making the present strategy a useful tool for a rational design of charge and energy transfer processes in complex systems. An application to covalently linked zinc and free-base porphyrin-naphthalenediimide dyads is presented. For each of the two systems, ultrafast optical spectroscopy experiments have shown a specific photophysics with different processes taking place simultaneously. The model reveals that such a diversity is mainly due to the different relative stability of the charge-separated state, while the electronic couplings for charge and energy transfer processes are quite similar in the two dyads.

  2. Excited baryon form-factors at high momentum transfer at CEBAF at higher energies

    Energy Technology Data Exchange (ETDEWEB)

    Stoler, P. [Rensselaer Polytechnic Inst., Troy, NY (United States)


    The possibilities of measuring the properties of excited nucleons at high Q{sup 2} by means of exclusive single meson production at CEBAF with an electron energy of 8 GeV is considered. The motivation is to access short range phenomena in baryon structure, and to investigate the transition from the low Q{sup 2} non-perturbative QCD regime, where constituent quark models are valid, to higher Q{sup 2} where it is believed perturbative QCD plays an increasingly important role. It is found that high quality baryon decay angular distributions can be obtained for the most prominent states up to Q{sup 2} {approximately} 12 GeV{sup 2}/c{sup 2} using a set of moderate resolution, large solid angle magnetic spectrometers.

  3. Terahertz excited plasmon-magnon interaction and magnetoplasmon-enhanced energy transfer within the framework of generalized spin Hamiltonian (United States)

    Gritzaenko, Vyacheslav S.; Bazhanov, Dmitry I.; Farberovich, Oleg V.


    Research into ultrafast terahertz technology attracts a significant interest nowdays in the fields of plasmonics and magnonics, since a recent progress in both fields unveils new fundamental physics and opens up new opportunities to engineering high-speed spintronic devices. However insufficient exchange of knowledge between these research fields still remains. The goal of this paper is to bridge such a gap by presenting a new theoretical approach to study magnetoplasmon-enhaced energy transfer between supported magnetic nanoparticles in the framework of generalized spin Hamiltonian (GSH) under ultrafast THz-wave excitation.

  4. Effect of NaCl Salts on the Activation Energy of Excited-State Proton Transfer Reaction of Coumarin 183. (United States)

    Joung, Joonyoung F; Kim, Sangin; Park, Sungnam


    Coumarin 183 (C183) was used as a photoacid to study excited-state proton transfer (ESPT) reactions. Here, we studied the effect of ions on the ESPT of C183 in aqueous NaCl solutions using a steady-state fluorescence spectroscopy and time-correlated single photon counting (TCSPC) method. The acid dissociation equilibrium of excited-state C183 and the activation energy for the ESPT of C183 were determined as a function of NaCl concentration. The change in the equilibrium constant was found to be correlated with the solvation energy of deprotonated C183. Frequency-resolved TCSPC signals measured at several temperatures were analyzed by using a global fitting analysis method which enabled us to extract all the rate constants involving the ESPT reaction and the spectra of individual species. The activation energy for the ESPT reaction of C183 was highly dependent on NaCl concentration. Quantum chemical calculations were used to calculate the local hydrogen-bond (H-bond) configurations around C183 in aqueous NaCl solutions. It was found that the activation energy for the ESPT was determined by the local H-bond configurations around C183 which were significantly influenced by the dissolved ions.

  5. Tunable luminescence mediated by energy transfer in Tm3+/Dy3+ co-doped phosphate glasses under UV excitation (United States)

    Chen, Yong; Chen, Guohua; Liu, Xiangyu; Yuan, Changlai; Zhou, Changrong


    Tm3+/Dy3+ co-doped phosphate glasses for white light-emitting diodes were synthesized by a conventional melting-quenching method. A spectroscopic research based on optical, photoluminescence spectrum and decay time curves in Tm3+/Dy3+ co-doped phosphate glasses was carried out. The color of luminescence could be tuned by altering the concentrations of Tm3+ ions. Under UV light excitation, the CIE chromaticity coordinates (0.3471, 0.3374) and color correlate temperature (CCT = 4866.21 K) close to the standard white-light illumination (0.333, 0.333 and CCT = 5454.12 K) could be achieved in 0.4 Tm3+/0.6 Dy3+ (mol %) co-doped glass sample. The decrease of the Dy3+ emission decay time in existence of Tm3+ ascertained that non-radiative energy transfer from Dy3+ to Tm3+ occurred. Moreover, the research of energy transfers between Dy3+ and Tm3+ based on the Inokuti-Hirayama model revealed that an electric quadrupole-quadrupole interaction might be the predominant mechanism participated in the energy transfer. This finding suggests that the as-prepared Tm3+/Dy3+ co-doped phosphate glasses may be promising candidate for white LEDs and other display devices.

  6. Hardness and excitation energy

    Indian Academy of Sciences (India)

    It is shown that the first excitation energy can be given by the Kohn-Sham hardness (i.e. the energy difference of the ground-state lowest unoccupied and highest occupied levels) plus an extra term coming from the partial derivative of the ensemble exchange-correlation energy with respect to the weighting factor in the ...

  7. Role of delocalized exciton states of light-harvesting pigments in excitation energy transfer in natural photosynthesis (United States)

    Fetisova, Zoya; Mauring, Koit; Taisova, Alexandra


    Photosynthesis is an extremely efficient converter of light into chemical energy, with an observed quantum yield for primary photochemistry approximately 90%. To achieve this the photosynthetic apparatus must be highly optimized, and some of the design principles that may be involved have been suggested. The role of delocalized exciton states of light-harvesting pigments in the energy transfer process has been considered by mathematical simulation of the light-harvesting process in model systems. Namely, it has been shown that aggregation of antenna pigments (allowing to consider each aggregate as a supermolecule) is biologically expedient, as an efficient strategy for light harvesting in photosynthesis. The question of whether this design principle is realized in a natural antenna has been examined for the 3D chlorosomal superantenna of green bacteria with the hole-burning spectroscopy. Spectral hole burning studies of intact cells of green bacteria Chlorobium phaeovibriodes. Chloroflexus aurantiacus and Chlorobium limicola have proven that the Qy- absorption system of antenna bacteriochlorophylls e or c (BChl e or BChl c) should be interpreted in terms of the delocalized exciton level structure of an aggregate. For the first time the 0-0 transition band of the lowest exciton state of BChl e and BChl c aggregates has been directly detected as the lowest energy inhomogeneously broadened band of the 1.8 K near-infrared excitation spectrum. These lowest energy bands have different spectral position of their maximums: approximately 739 nm in C.phaeovibriodes (BChl e band), approximately 752 nm in C.aurantiacus (BChl c band) and approximately 774 nm in C.limicola (BChl c band) cells. However, these bands display a number of fundamentally similar spectral features: (1) The magnitude of inhomogeneous broadening of these bands is 90 - 100 cm-1; (2) The width of each band is 2 - 3 times less than that of the monomeric BChl c (or BChl e) in vitro at 5 K; (3) Each band

  8. Construction of a molecular beacon based on two-photon excited fluorescence resonance energy transfer with quantum dot as donor. (United States)

    Liu, Lingzhi; Li, Hui; Qiu, Ting; Zhou, Guohua; Wong, Kwok-Yin; He, Zhike; Liu, Zhihong


    A new molecular beacon (MB) driven by two-photon excitation (TPE) using quantum dots as energy donor is constructed, which provides reduced direct excitation of acceptor and is free of interferences from autofluorescence or scattering light in a complicated biological matrix.

  9. Behavior of Poisson Bracket Mapping Equation in Studying Excitation Energy Transfer Dynamics of Cryptophyte Phycocyanin 645 Complex

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Weon Gyu; Kelly, Aaron; Rhee, Young Min [Pohang University of Science and Technology, Pohang (Korea, Republic of)


    Recently, it has been shown that quantum coherence appears in energy transfers of various photosynthetic light harvesting complexes at from cryogenic to even room temperatures. Because the photosynthetic systems are inherently complex, these findings have subsequently interested many researchers in the field of both experiment and theory. From the theoretical part, simplified dynamics or semiclassical approaches have been widely used. In these approaches, the quantum-classical Liouville equation (QCLE) is the fundamental starting point. Toward the semiclassical scheme, approximations are needed to simplify the equations of motion of various degrees of freedom. Here, we have adopted the Poisson bracket mapping equation (PBME) as an approximate form of QCLE and applied it to find the time evolution of the excitation in a photosynthetic complex from marine algae. The benefit of using PBME is its similarity to conventional Hamiltonian dynamics. Through this, we confirmed the coherent population transfer behaviors in short time domain as previously reported with a more accurate but more time-consuming iterative linearized density matrix approach. However, we find that the site populations do not behave according to the Boltzmann law in the long time limit. We also test the effect of adding spurious high frequency vibrations to the spectral density of the bath, and find that their existence does not alter the dynamics to any significant extent as long as the associated reorganization energy is changed not too drastically. This suggests that adopting classical trajectory based ensembles in semiclassical simulations should not influence the coherence dynamics in any practical manner, even though the classical trajectories often yield spurious high frequency vibrational features in the spectral density.

  10. Excitation energy transfer in natural photosynthetic complexes and chlorophyll trefoils: hole-burning and single complex/trefoil spectroscopic studies

    Energy Technology Data Exchange (ETDEWEB)

    Ryszard Jankowiak, Kansas State University, Department of Chemistry, CBC Bldg., Manhattan KS, 66505; Phone: (785) 532-6785


    In this project we studied both natural photosynthetic antenna complexes and various artificial systems (e.g. chlorophyll (Chl) trefoils) using high resolution hole-burning (HB) spectroscopy and excitonic calculations. Results obtained provided more insight into the electronic (excitonic) structure, inhomogeneity, electron-phonon coupling strength, vibrational frequencies, and excitation energy (or electron) transfer (EET) processes in several antennas and reaction centers. For example, our recent work provided important constraints and parameters for more advanced excitonic calculations of CP43, CP47, and PSII core complexes. Improved theoretical description of HB spectra for various model systems offers new insight into the excitonic structure and composition of low-energy absorption traps in very several antenna protein complexes and reaction centers. We anticipate that better understanding of HB spectra obtained for various photosynthetic complexes and their simultaneous fits with other optical spectra (i.e. absorption, emission, and circular dichroism spectra) provides more insight into the underlying electronic structures of these important biological systems. Our recent progress provides a necessary framework for probing the electronic structure of these systems via Hole Burning Spectroscopy. For example, we have shown that the theoretical description of non-resonant holes is more restrictive (in terms of possible site energies) than those of absorption and emission spectra. We have demonstrated that simultaneous description of linear optical spectra along with HB spectra provides more realistic site energies. We have also developed new algorithms to describe both nonresonant and resonant hole-burn spectra using more advanced Redfield theory. Simultaneous description of various optical spectra for complex biological system, e.g. artificial antenna systems, FMO protein complexes, water soluble protein complexes, and various mutants of reaction centers

  11. An accurate full-dimensional potential energy surface for H-Au(111): Importance of nonadiabatic electronic excitation in energy transfer and adsorption. (United States)

    Janke, Svenja M; Auerbach, Daniel J; Wodtke, Alec M; Kandratsenka, Alexander


    We have constructed a potential energy surface (PES) for H-atoms interacting with fcc Au(111) based on fitting the analytic form of the energy from Effective Medium Theory (EMT) to ab initio energy values calculated with density functional theory. The fit used input from configurations of the H-Au system with Au atoms at their lattice positions as well as configurations with the Au atoms displaced from their lattice positions. It reproduces the energy, in full dimension, not only for the configurations used as input but also for a large number of additional configurations derived from ab initio molecular dynamics (AIMD) trajectories at finite temperature. Adiabatic molecular dynamics simulations on this PES reproduce the energy loss behavior of AIMD. EMT also provides expressions for the embedding electron density, which enabled us to develop a self-consistent approach to simulate nonadiabatic electron-hole pair excitation and their effect on the motion of the incident H-atoms. For H atoms with an energy of 2.7 eV colliding with Au, electron-hole pair excitation is by far the most important energy loss pathway, giving an average energy loss ≈3 times that of the adiabatic case. This increased energy loss enhances the probability of the H-atom remaining on or in the Au slab by a factor of 2. The most likely outcome for H-atoms that are not scattered also depends prodigiously on the energy transfer mechanism; for the nonadiabatic case, more than 50% of the H-atoms which do not scatter are adsorbed on the surface, while for the adiabatic case more than 50% pass entirely through the 4 layer simulation slab.

  12. Solution structure and excitation energy transfer in phycobiliproteins of Acaryochloris marina investigated by small angle scattering. (United States)

    Golub, M; Combet, S; Wieland, D C F; Soloviov, D; Kuklin, A; Lokstein, H; Schmitt, F-J; Olliges, R; Hecht, M; Eckert, H-J; Pieper, J


    The structure of phycobiliproteins of the cyanobacterium Acaryochloris marina was investigated in buffer solution at physiological temperatures, i.e. under the same conditions applied in spectroscopic experiments, using small angle neutron scattering. The scattering data of intact phycobiliproteins in buffer solution containing phosphate can be well described using a cylindrical shape with a length of about 225Å and a diameter of approximately 100Å. This finding is qualitatively consistent with earlier electron microscopy studies reporting a rod-like shape of the phycobiliproteins with a length of about 250 (M. Chen et al., FEBS Letters 583, 2009, 2535) or 300Å (J. Marquart et al., FEBS Letters 410, 1997, 428). In contrast, phycobiliproteins dissolved in buffer lacking phosphate revealed a splitting of the rods into cylindrical subunits with a height of 28Å only, but also a pronounced sample aggregation. Complementary small angle neutron and X-ray scattering experiments on phycocyanin suggest that the cylindrical subunits may represent either trimeric phycocyanin or trimeric allophycocyanin. Our findings are in agreement with the assumption that a phycobiliprotein rod with a total height of about 225Å can accommodate seven trimeric phycocyanin subunits and one trimeric allophycocyanin subunit, each of which having a height of about 28Å. The structural information obtained by small angle neutron and X-ray scattering can be used to interpret variations in the low-energy region of the 4.5K absorption spectra of phycobiliproteins dissolved in buffer solutions containing and lacking phosphate, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. A novel construction of complex-valued Gaussian processes with arbitrary spectral densities and its application to excitation energy transfer. (United States)

    Chen, Xin; Cao, Jianshu; Silbey, Robert J


    The recent experimental discoveries about excitation energy transfer (EET) in light harvesting antenna (LHA) attract a lot of interest. As an open non-equilibrium quantum system, the EET demands more rigorous theoretical framework to understand the interaction between system and environment and therein the evolution of reduced density matrix. A phonon is often used to model the fluctuating environment and convolutes the reduced quantum system temporarily. In this paper, we propose a novel way to construct complex-valued Gaussian processes to describe thermal quantum phonon bath exactly by converting the convolution of influence functional into the time correlation of complex Gaussian random field. Based on the construction, we propose a rigorous and efficient computational method, the covariance decomposition and conditional propagation scheme, to simulate the temporarily entangled reduced system. The new method allows us to study the non-Markovian effect without perturbation under the influence of different spectral densities of the linear system-phonon coupling coefficients. Its application in the study of EET in the Fenna-Matthews-Olson model Hamiltonian under four different spectral densities is discussed. Since the scaling of our algorithm is linear due to its Monte Carlo nature, the future application of the method for large LHA systems is attractive. In addition, this method can be used to study the effect of correlated initial condition on the reduced dynamics in the future.

  14. Dynamics of charge-transfer excited states relevant to photochemical energy conversion. Progress report, June 1, 1991--November 15, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Lim, E.C.


    The primary objective of the research program is to gain a fundamental understanding of the factors governing the efficiency of excited-state charge transfer CT interactions between two chromophores that are brought together in close proximity, either by a very short covalent linkage or by ground-state complex formation. CT and van der Walls (vdW), interactions in covalently bonded bichromophoric compounds in condensed phase, as well as those in vdW complexes in supersonic jets, are being investigated using laser-based techniques under a variety of experimental conditions. This progress report is divided into three parts, according to the class of molecular systems and the phase (liquid vs. gas) in which the excited-state interactions are probed. The first is concerned with the excited states of bridged diaryl compounds in the condensed phase. The second involves the excited states of vdW complexes in supersonic jets. Finally, the third, is concerned with the excited states of electron donor-acceptor (EDA) systems in both the condensed phase and supersonic jets. In each of these studies, we are concerned with the interchromophore interactions ranging from weak vdW forces to strong CT forces, and the factors determining whether the interaction forces are weak or strong in related molecules.

  15. Study of the transferred angular momentum as a function of the excitation energy in the Kr + U reaction at 35 A.MeV; Etude du moment angulaire transfere en fonction de l`energie d`excitation dans la reaction Kr + U a 35 A.MeV

    Energy Technology Data Exchange (ETDEWEB)

    Josset, M.


    The aim of this study is to measure the angular momentum transferred to the target-like product, in the Kr + U reaction at 35 A.MeV, as a function of the excitation energy. The measured neutron multiplicity, as seen by the detector ORION, was used as the basic event selection criterion. This multiplicity also allows an estimation of the excitation energy transferred to the target-like product on an event by event basis. The study of the behaviour of the projectile-like component allows one to characterize two-body mechanisms, which are associated with a large energy dissipation for less peripheral collisions. The spin transferred to the target-like component is deduced from the out-plane angular distributions of the fission fragments. The study of the angular correlation between these fission fragments confirms that the dominant mechanism is essentially a two-body process. We show that the angular momentum values obtained, as a function of the excitation energy of the target-like product, have little dependence on the time taken for the nucleus to reach the saddle point. We observe a constant increase in the target-like component`s spin, varying from 15{Dirac_h} to 60{Dirac_h}, as the excitation energy increases from roughly 8 to 400 MeV. For the higher excitation energies the spin does not increase. This behaviour reflects the vanishing binary fission mechanism at high angular momenta. (author). 81 refs.

  16. Excited state Intramolecular Proton Transfer in Anthralin

    DEFF Research Database (Denmark)

    Møller, Søren; Andersen, Kristine B.; Spanget-Larsen, Jens


    Quantum chemical calculations performed on anthralin (1,8-dihydroxy-9(10H)-anthracenone) predict the possibility of an excited-state intramolecular proton transfer process. Fluorescence excitation and emission spectra of the compound dissolved in n-hexane at ambient temperature results in an unus......Quantum chemical calculations performed on anthralin (1,8-dihydroxy-9(10H)-anthracenone) predict the possibility of an excited-state intramolecular proton transfer process. Fluorescence excitation and emission spectra of the compound dissolved in n-hexane at ambient temperature results......, associated with an excited-state intramolecular proton transfer process....

  17. Dynamics of charge-transfer excited states relevant to photochemical energy conversion. Technical report, June 1, 1992--March 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Lim, E.C.


    A systematic study of intramolecular photoassociation and photoinduced charge transfer (CT) was initiated in bichromophoric systems of M-X-M, where two identical aromatic hydrocarbons M are joined by X=CH{sub 2}, O, NH, etc. Dinaphthylamines, dinaphthylethers, and dinaphthylmethanes in nonpolar solvents form triplet excimers, following inter system crossing of singlets to the triplet manifold; in polar solvents, the molecule forms an intramolecular CT state. The interchromophore interaction study was extended to N-phenyl-2-naphthylamine. The lowest excited singlet states of the dinaphthylamines were studied by semiempirical quantum chemical methods. Exciplex formation was studied in excited states of jet-cooled van der Waals complexes, such as fluorene/substituted benzenes and 1-cyanonaphthalene-aliphatic amines.

  18. Excitation energy transfer in europium chelate with doxycycline in the presence of a second ligand in micellar solutions of nonionic surfactants (United States)

    Smirnova, T. D.; Shtykov, S. N.; Kochubei, V. I.; Khryachkova, E. S.


    The complexation of Eu3+ with doxycycline (DC) antibiotic in the presence of several second ligands and surfactant micelles of different types is studied by the spectrophotometric and luminescence methods. It is found that the efficiency of excitation energy transfer in Eu3+-DC chelate depends on the nature of the second ligand and surfactant micelles. Using thenoyltrifluoroacetone (TTA) as an example, it is shown that the second ligand additionally sensitizes the europium fluorescence, and the possibility of intermediate sensitization of DC and then of europium is shown by the example of 1,10-phenanthroline. In all cases, the excitation energy transfer efficiency was increased due to the so-called antenna effect. The decay kinetics of the sensitized fluorescence of the binary and mixed-ligand chelates in aqueous and micellar solutions of nonionic surfactants is studied and the relative quantum yields and lifetimes of fluorescence are determined.

  19. Controlling electron and energy transfer paths by selective excitation in a zinc porphyrin-BODIPY-C60 multi-modular triad. (United States)

    Obondi, Christopher O; Lim, Gary N; Martinez, Priscilla; Swamy, Varghese; D'Souza, Francis


    A multi-modular donor-acceptor triad composed of zinc porphyrin, BF2-chelated dipyrromethene (BODIPY), and C60 was newly synthesized, with the BODIPY entity at the central position. Using absorbance and emission spectral, electrochemical redox, and computational optimization results, energy level diagrams for the ZnP-BODIPY dyad and ZnP-BODIPY-C60 triad were constructed to envision the different photochemical events upon selective excitation of the BODIPY and ZnP entities. By transient absorption spectral studies covering a wide femtosecond-to-millisecond time scale, evidence for the different photochemical events and their kinetic information was secured. Efficient singlet-singlet energy transfer from 1BODIPY* to ZnP with a rate constant kENT = 1.7 × 1010 s-1 in toluene was observed in the case of the ZnP-BODIPY dyad. Interestingly, in the case of the ZnP-BODIPY-C60 triad, the selective excitation of ZnP resulted in electron transfer leading to the formation of the ZnP˙+-BODIPY-C60˙- charge-separated state. Owing to the distal separation of the radical cation and radical anion species (edge-to-edge distance of 18.7 Å), the radical ion-pair persisted for microseconds. By contrast, the selective excitation of BODIPY resulted in an ultrafast energy transfer to yield ZnP-BODIPY-1C60* as the major product. The 1C60* populated the low-lying 3C60* via intersystem crossing prior to returning to the ground state. The present study successfully demonstrates the importance of supramolecular geometry and selection of excitation wavelength in regulating the different photoprocesses.

  20. State-To Rotational and Vibrational Energy Transfers Following Vibrational Excitation of (1010000) and (0112000) in the Ground Electronic State of Acetylene (United States)

    Han, Jiande; Freel, Keith; Heaven, Michael C.


    We have examined state-to-state rotational and vibrational energy transfers for the vibrational levels (1010000) and (0112000) of C2H2 in the ground electronic state at ambient temperature. Measurements were made using a pulsed IR - UV double resonance technique. Total removal rate constants and state-to-state rotational energy transfer rate constants have been characterized for certain even-numbered rotational levels from J = 0 to 12 within the two vibrational modes. The measured state-to-state rotational energy transfer rate constants were fit to some energy-based empirical scaling and fitting laws, and the rate constants were found to be best reproduced by the statistical power-exponential gap law (PEGL). The measured rate constants were then further evaluated by a kinetic model which simulated the experimental spectra by solving simultaneous first order differential rate equations. Some rotationally-resolved vibrational energy transfer channels were also observed following excitation of (1010000). The vibrational relaxation channels were found to contribute less than 30% to the total removal rate constants of the measured rotational levels for both of the studied vibrational states.

  1. Enhanced neutron pair transfer and collective excitations in the system sup 2 sup 0 sup 6 Pb+ sup 1 sup 1 sup 8 Sn at barrier energies

    CERN Document Server

    Peter, I; Kaspar, M; Kozhoukharov, I; Rejmund, M; Wollersheim, H J; Oertzen, W V; Fachbereich-Physik, F U B; Thummerer, S; Bohlen, H G; Gebauer, B; Kröll, T; Thompson, I J


    At energies below the Coulomb barrier, neutron transfer and Coulomb excitation have been measured in a very heavy asymmetric nuclear system, in sup 2 sup 0 sup 6 Pb+ sup 1 sup 1 sup 8 Sn. These are semi-magic nuclei showing super-fluid properties. Particle-gamma coincidence techniques using 5 Euroball Cluster detectors (EB), combined in a set-up with the Heidelberg-Darmstadt NaI Crystal Ball (CB), have been used. Position-sensitive detectors allowed the observation of scattering processes covering angles from 110 up to 150 degrees. The fragments are identified via the known gamma-decays of the lowest excited states using the high resolution of EB. Using the unique feature of the set-up with the CB, transfer to well-defined final channels with known quantum numbers is selected using the high-efficiency multiplicity filter of the CB with no second gamma-ray, i.e. without feeding. The data are analysed using the semi-classical approach and transfer probabilities are obtained. Coulomb excitation has been analysed...

  2. Energy transfer processes in solar energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Fayer, M.D.


    By combining picosecond optical experiments and detailed statistical mechanics theory we continue to increase our understanding of the complex interplay of structure and dynamics in important energy transfer situations. A number of different types of problems will be focused on experimentally and theoretically. They are excitation transport among chromophores attached to finite size polymer coils; excitation transport among chromophores in monolayers, bilayers, and finite and infinite stacks of layers; excitation transport in large vesicle systems; and photoinduced electron transfer in glasses and liquids, focusing particularly on the back transfer of the electron from the photogenerated radical anion to the radical cation. 33 refs., 13 figs.

  3. Energy transfer in anisotropic systems: A. Excitation migration in substitutionally disordered one-dimensional solids. B. The spectroscopy of molecules adsorbed on metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Zwemer, D.A.


    The energy and dynamics of excited states in a variety of anisotropic environments, including isotopically and chemically mixed crystals and molecular overlayers adsorbed on a nickel (111) surface, are investigated. The relationship between local and long-range structure and spectroscopic properties is explored. A theory for energy transfer in substitutionally disordered solids is presented. Explicit expressions for the ''diffusion'' coefficients and the energy partitioning ratios in binary systems are derived. Energy transfer between localized states is found to be facilitated by concurrent tunnelling and thermal promotion. Experimental results for triplet energy partitioning between mobile and stationary trap states as a function of mobile trap concentration in the ternary d/sub 2/-1,2,4,5-tetrachlorobenzene--h/sub 2/-1,2,4,5-tetrachlorobenzene--pyrazine system are analyzed. It is shown that both tunnelling and thermal detrapping contribute to triplet exciton mobility below 4.2 K. Singlet exciton migration makes an important contribution to trap equilibration before intersystem crossing to the triplet manifold. Spin coherence experiments are used to determine the energy level structure, physical geometry, and exciton dynamics of a series of impurity-induced traps in 1,2,4,5-tetrachlorobenzene. The uv spectra of pyrazine, pyridine, and naphthalene adsorbed on a nickel single crystal (111) surface are measured by spectroscopic ellipsometry at low temperatures. The excited electronic and vibronic energy levels measured are similar to bulk molecular crystal values, but pyrazine and pyridine show small, but significant deviations. The ordering of molecular overlays is observed spectroscopically and information about overlayer crystal structure is deduced. 148 references, 48 figures, 5 tables.

  4. Comparison of calculated and experimentally resolved rate constants for excitation energy transfer in C-phycocyanin. 2. Trimers

    Energy Technology Data Exchange (ETDEWEB)

    Debreczeny, M.F.; Sauer, K. [Lawrence Berkeley Lab., CA (United States); Zhou, J.; Bryant, D.A. [Pennsylvania State Univ., University Park, PA (United States)


    Resolution of the absorption spectrum of the {beta}{sub 155} chromophore in C-phycocyanin (PC) trimers is achieved by comparison of the steady state absorption spectra of ({alpha}{sup PC}{beta}{sup PC}){sub 3} and ({alpha}{sup PC}{beta}{sup *}){sub 3}. Comparison of the anisotropy decays of ({alpha}{sup PC}{beta}{sup PC}){sub 3} and ({alpha}{sup PC}{beta}{sup *}){sub 3} also greatly aids in the assignment of the dominant kinetic processes in PC trimers. A comparison is made of calculated Foerster rate constants for energy transfer with those rate constants resolved experimentally in the PC trimers. 35 refs.., 10 figs., 2 tabs.

  5. An instrument for fast acquisition of fluorescence decay curves at picosecond resolution designed for "double kinetics" experiments: application to fluorescence resonance excitation energy transfer study of protein folding. (United States)

    Ishay, Eldad Ben; Hazan, Gershon; Rahamim, Gil; Amir, Dan; Haas, Elisha


    The information obtained by studying fluorescence decay of labeled biopolymers is a major resource for understanding the dynamics of their conformations and interactions. The lifetime of the excited states of probes attached to macromolecules is in the nanosecond time regime, and hence, a series of snapshot decay curves of such probes might - in principle - yield details of fast changes of ensembles of labeled molecules down to sub-microsecond time resolution. Hence, a major current challenge is the development of instruments for the low noise detection of fluorescence decay curves within the shortest possible time intervals. Here, we report the development of an instrument, picosecond double kinetics apparatus, that enables recording of multiple fluorescence decay curves with picosecond excitation pulses over wide spectral range during microsecond data collection for each curve. The design is based on recording and averaging multiphoton pulses of fluorescence decay using a fast 13 GHz oscilloscope during microsecond time intervals at selected time points over the course of a chemical reaction or conformational transition. We tested this instrument in a double kinetics experiment using reference probes (N-acetyl-tryptophanamide). Very low stochastic noise level was attained, and reliable multi-parameter analysis such as derivation of distance distributions from time resolved FRET (fluorescence resonance excitation energy transfer) measurements was achieved. The advantage of the pulse recording and averaging approach used here relative to double kinetics methods based on the established time correlated single photon counting method, is that in the pulse recording approach, averaging of substantially fewer kinetic experiments is sufficient for obtaining the data. This results in a major reduction in the consumption of labeled samples, which in many cases, enables the performance of important experiments that were not previously feasible.

  6. Systems approach to excitation-energy and electron transfer reaction networks in photosystem II complex: model studies for chlorophyll a fluorescence induction kinetics. (United States)

    Matsuoka, Takeshi; Tanaka, Shigenori; Ebina, Kuniyoshi


    Photosystem II (PS II) is a protein complex which evolves oxygen and drives charge separation for photosynthesis employing electron and excitation-energy transfer processes over a wide timescale range from picoseconds to milliseconds. While the fluorescence emitted by the antenna pigments of this complex is known as an important indicator of the activity of photosynthesis, its interpretation was difficult because of the complexity of PS II. In this study, an extensive kinetic model which describes the complex and multi-timescale characteristics of PS II is analyzed through the use of the hierarchical coarse-graining method proposed in the authors׳ earlier work. In this coarse-grained analysis, the reaction center (RC) is described by two states, open and closed RCs, both of which consist of oxidized and neutral special pairs being in quasi-equilibrium states. Besides, the PS II model at millisecond scale with three-state RC, which was studied previously, could be derived by suitably adjusting the kinetic parameters of electron transfer between tyrosine and RC. Our novel coarse-grained model of PS II can appropriately explain the light-intensity dependent change of the characteristic patterns of fluorescence induction kinetics from O-J-I-P, which shows two inflection points, J and I, between initial point O and peak point P, to O-J-D-I-P, which shows a dip D between J and I inflection points. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Mean excitation energies for molecular ions

    DEFF Research Database (Denmark)

    Jensen, Phillip W. K.; Sauer, Stephan P. A.; Oddershede, Jens


    The essential material constant that determines the bulk of the stopping power of high energy projectiles, the mean excitation energy, is calculated for a range of smaller molecular ions using the RPA method. It is demonstrated that the mean excitation energy of both molecules and atoms increase...... with ionic charge. However, while the mean excitation energies of atoms also increase with atomic number, the opposite is the case for mean excitation energies for molecules and molecular ions. The origin of these effects is explained by considering the spectral representation of the excited state...... contributing to the mean excitation energy....

  8. Mean excitation energies for molecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Phillip W.K.; Sauer, Stephan P.A. [Department of Chemistry, University of Copenhagen, Copenhagen (Denmark); Oddershede, Jens [Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense (Denmark); Quantum Theory Project, Departments of Physics and Chemistry, University of Florida, Gainesville, FL (United States); Sabin, John R., E-mail: [Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense (Denmark); Quantum Theory Project, Departments of Physics and Chemistry, University of Florida, Gainesville, FL (United States)


    The essential material constant that determines the bulk of the stopping power of high energy projectiles, the mean excitation energy, is calculated for a range of smaller molecular ions using the RPA method. It is demonstrated that the mean excitation energy of both molecules and atoms increase with ionic charge. However, while the mean excitation energies of atoms also increase with atomic number, the opposite is the case for mean excitation energies for molecules and molecular ions. The origin of these effects is explained by considering the spectral representation of the excited state contributing to the mean excitation energy.

  9. UV and 532 nm Photo-Dissociation of 2-Nitrotoluene: Observation of Electronically-Excited NO; Emission from Carbon (I); N2-NO Energy Transfer; and Stabilization of 2-Nitrotoluene-Ar Clusters (United States)

    Diez-y-Riega, H.; Eilers, H.


    2-nitrotoluene is a taggant used in explosive compounds and also often used as a simulant for nitro-based high explosives. Various spectroscopic techniques focus on the detection of vibrationally excited NO as an indicator for the presence of explosives. We report on the photo-dissociation of 2-nitrotoluene using UV and 532 nm wavelengths. We not only observe vibrationally excited NO in its electronic ground state, but also vibrationally excited NO in its electronic excited state. The photo-dissociation of 2-nitrotoluene leads to the formation of atomic carbon and its emission, overlapping the NO emission, is observed. Energy transfer from laser-excited nitrogen to NO leads to NO emission with long lifetimes. Argon atoms stabilize 2-nitrotoluene molecules and delay their photo-dissociation.

  10. Excitation transfer through open quantum networks: Three basic mechanisms (United States)

    Campos Venuti, Lorenzo; Zanardi, Paolo


    A variety of open quantum networks are currently under intense examination to model energy transport in photosynthetic systems. Here, we study the coherent transfer of a quantum excitation over a network incoherently coupled with a structured and small environment that effectively models the photosynthetic reaction center. Our goal is to distill a few basic, possibly universal, mechanisms or effects that are featured in simple energy-transfer models. In particular, we identify three different phenomena: the congestion effect, the asymptotic unitarity, and the staircase effects. We begin with few-site models, in which these effects can be fully understood, and then proceed to study more complex networks similar to those employed to model energy transfer in light-harvesting complexes.

  11. Spectroscopic probes of vibrationally excited molecules at chemically significant energies

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, T.R. [Univ. of Rochester, NY (United States)


    This project involves the application of multiple-resonance spectroscopic techniques for investigating energy transfer and dissociation dynamics of highly vibrationally excited molecules. Two major goals of this work are: (1) to provide information on potential energy surfaces of combustion related molecules at chemically significant energies, and (2) to test theoretical modes of unimolecular dissociation rates critically via quantum-state resolved measurements.

  12. Constrained geometric dynamics of the Fenna-Matthews-Olson complex: the role of correlated motion in reducing uncertainty in excitation energy transfer. (United States)

    Fokas, Alexander S; Cole, Daniel J; Chin, Alex W


    The trimeric Fenna-Mathews-Olson (FMO) complex of green sulphur bacteria is a well-studied example of a photosynthetic pigment-protein complex, in which the electronic properties of the pigments are modified by the protein environment to promote efficient excitonic energy transfer from antenna complexes to the reaction centres. By a range of simulation methods, many of the electronic properties of the FMO complex can be extracted from knowledge of the static crystal structure. However, the recent observation and analysis of long-lasting quantum dynamics in the FMO complex point to protein dynamics as a key factor in protecting and generating quantum coherence under laboratory conditions. While fast inter- and intra-molecular vibrations have been investigated extensively, the slow, conformational dynamics which effectively determine the optical inhomogeneous broadening of experimental ensembles has received less attention. The following study employs constrained geometric dynamics to study the flexibility in the protein network by efficiently generating the accessible conformational states from the published crystal structure. Statistical and principle component analyses reveal highly correlated low frequency motions between functionally relevant elements, including strong correlations between pigments that are excitonically coupled. Our analysis reveals a hierarchy of structural interactions which enforce these correlated motions, from the level of monomer-monomer interfaces right down to the α-helices, β-sheets and pigments. In addition to inducing strong spatial correlations across the conformational ensemble, we find that the overall rigidity of the FMO complex is exceptionally high. We suggest that these observations support the idea of highly correlated inhomogeneous disorder of the electronic excited states, which is further supported by the remarkably low variance (typically <5%) of the excitonic couplings of the conformational ensemble.

  13. Nonclassical energy transfer in photosynthetic FMO complex

    Directory of Open Access Journals (Sweden)

    Abramavicius Vytautas


    Full Text Available Excitation energy transfer in a photosynthetic FMO complex has been simulated using the stochastic Schrödinger equation. Fluctuating chromophore transition energies are simulated from the quantum correlation function which allows to properly include the finite temperature. The resulting excitation dynamics shows fast thermalization of chromophore occupations into proper thermal equilibrium. The relaxation process is characterized by entropy dynamics, which shows nonclassical behavior.

  14. A benchmark study of electronic excitation energies, transition moments, and excited-state energy gradients on the nicotine molecule

    Energy Technology Data Exchange (ETDEWEB)

    Egidi, Franco, E-mail:; Segado, Mireia; Barone, Vincenzo, E-mail: [Scuola Normale Superiore, Piazza dei Cavalieri, 7 I-56126 Pisa (Italy); Koch, Henrik [Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim (Norway); Cappelli, Chiara [Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via G. Moruzzi, 3 I-56124 Pisa (Italy)


    In this work, we report a comparative study of computed excitation energies, oscillator strengths, and excited-state energy gradients of (S)-nicotine, chosen as a test case, using multireference methods, coupled cluster singles and doubles, and methods based on time-dependent density functional theory. This system was chosen because its apparent simplicity hides a complex electronic structure, as several different types of valence excitations are possible, including n-π{sup *}, π-π{sup *}, and charge-transfer states, and in order to simulate its spectrum it is necessary to describe all of them consistently well by the chosen method.

  15. Competitive Energy and Electron Transfer in β-Functionalized Free-Base Porphyrin-Zinc Porphyrin Dimer Axially Coordinated to C60 : Synthesis, Supramolecular Formation and Excited-State Processes. (United States)

    Hu, Yi; Thomas, Michael B; Jinadasa, R G Waruna; Wang, Hong; D'Souza, Francis


    Simultaneous occurrence of energy and electron transfer events involving different acceptor sites in a newly assembled supramolecular triad comprised of covalently linked free-base porphyrin-zinc porphyrin dyad, H2 P-ZnP axially coordinated to electron acceptor fullerene, has been successfully demonstrated. The dyad was connected through the β-pyrrole positions of the porphyrin macrocycle instead of the traditionally used meso-positions for better electronic communication. Interestingly, the β-pyrrole functionalization modulated the optical properties to such an extent that it was possible to almost exclusively excite the zinc porphyrin entity in the supramolecular triad. The measured binding constant for the complex with 1:1 molecular stoichiometry was in the order of 104  m-1 revealing moderately stable complex formation. An energy level diagram constructed using optical, electrochemical and computational results suggested that both the anticipated energy and electron events are thermodynamically feasible in the triad. Consequently, it was possible to demonstrate occurrence of excited state energy transfer to the covalently linked H2 P, and electron transfer to the coordinated ImC60 from studies involving steady-state and time-resolved emission, and femto- and nanosecond transient absorption studies. The estimated energy transfer was around 67 % in the dyad with a rate constant of 1.1×109  s-1 . In the supramolecular triad, the charge separated state was rather long-lived although it was difficult to arrive the exact lifetime of charge separated state from nanosecond transient spectral studies due to overlap of strong triplet excited signals of porphyrin in the monitoring wavelength window. Nevertheless, simultaneous occurrence of energy and electron transfer in the appropriately positioned energy and electron acceptor entities in a supramolecular triad was possible to demonstrate in the present study, a step forward to unraveling the complex

  16. Coherence in Energy Transfer and Photosynthesis (United States)

    Chenu, Aurélia; Scholes, Gregory D.


    Ultrafast energy transfer is used to transmit electronic excitation among the many molecules in photosynthetic antenna complexes. Recent experiments and theories have highlighted the role of coherent transfer in femtosecond studies of these proteins, suggesting the need for accurate dynamical models to capture the subtle characteristics of energy transfer mechanisms. Here we discuss how to think about coherence in light harvesting and electronic energy transfer. We review the various fundamental concepts of coherence, spanning from classical phenomena to the quantum superposition, and define coherence in electronic energy transfer. We describe the current status of experimental studies on light-harvesting complexes. Insights into the microscopic process are presented to highlight how and why this is a challenging problem to elucidate. We present an overview of the applicable dynamical theories to model energy transfer in the intermediate coupling regime.

  17. Effect of optical excitation energy on the red luminescence of Eu3+ in GaN (United States)

    Peng, H. Y.; Lee, C. W.; Everitt, H. O.; Lee, D. S.; Steckl, A. J.; Zavada, J. M.


    Photoluminescence (PL) excitation spectroscopy mapped the photoexcitation wavelength dependence of the red luminescence (D05→F27) from GaN:Eu. Time-resolved PL measurements revealed that for excitation at the GaN bound exciton energy, the decay transients are almost temperature insensitive between 86 K and 300 K, indicating an efficient energy transfer process. However, for excitation energies above or below the GaN bound exciton energy, the decaying luminescence indicates excitation wavelength- and temperature-dependent energy transfer influenced by intrinsic and Eu3+-related defects.

  18. The mean excitation energy of atomic ions

    DEFF Research Database (Denmark)

    Sauer, Stephan P. A.; Oddershede, Jens; Sabin, John R.


    A method for calculation of the mean excitation energies of atomic ions is presented, making the calculation of the energy deposition of fast ions to plasmas, warm, dense matter, and complex biological systems possible. Results are reported to all ions of helium, lithium, carbon, neon, aluminum, ...

  19. Excitation energy flow in chlorosome antennas of green photosynthetic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Mimuro, Mamoru (National Institute for Basic Biology, Aichi (Japan)); Nozawa, Tsunenori (Tohoku Univ., Miyagi (Japan)); Tamai, Naoto; Yamazaki, Iwao (Institute for Molecular Science, Aichi (Japan)); Shimada, Keizou (Tokyo Metropolitan Univ. (Japan)); Lin, Su; Knox, R.S. (Univ. of Rochester, NY (USA)); Wittmershaus, B.P.; Brune, D.C.; Blankenship, R.E. (Arizona State Univ., Tempe (USA))


    Energy flow in whole cells of the thermophilic green photosynthetic bacterium Chloroflexus aurantiacus was studied by measurements of time-resolved fluorescence spectra in the picosecond time range, detected by both streak camera and single-photon counting methods. These data characterize the energy-transfer sequence from bacteriochlorophyll c (BChl c), found in membrane-associated antenna structures called chlorosomes, to BChl a in the chlorosome baseplate, then to a BChl a antenna complex in the cytoplasmic membrane, and finally to the photochemical reaction center. Upon selective excitation of BChl c in chlorosomes, the decay time of the emission arising from BChl c was 16 ps. The apparent rise time of the emission from the baseplate pigment was < 3 ps. The time course of the transfer from the baseplate BChl a to the membrane-bound BChl a complex was clearly detected. A major 41-ps decay component of the baseplate BChl a emission corresponded to the rise term found for the membrane-bound BChl a emission. With a kinetic analysis, a model is proposed for the structure and function of the chlorosome antenna system in Chloroflexus aurantiacus. The data suggest that the excitation-transfer process may utilize a novel mechanism that takes advantage of the photophysical properties of aggregated pigments. BChl c molecules form naturally occurring aggregates with oligomeric structures similar to J aggregates, but very different from the organization of antenna pigment-proteins from other photosynthetic organisms. These oligomers absorb light and transfer excitations to a small amount of BChl a antenna proteins in the baseplate. The baseplate acts as an energy-transfer interface between the chlorosome and the antenna protein complexes located within the membrane. The integral membrane antenna complexes in turn deliver the excitations to the reaction center where photosynthesis is initiated by electron-transfer reactions.

  20. Excitation-energy influence at the scission configuration

    Directory of Open Access Journals (Sweden)

    Ramos D.


    Full Text Available Transfer- and fusion-induced fission in inverse kinematics was proven to be a powerful tool to investigate nuclear fission, widening the information of the fission fragments and the access to unstable fissioning systems with respect to other experimental approaches. An experimental campaign for fission investigation has being carried out at GANIL with this technique since 2008. In these experiments, a beam of 238U, accelerated to 6.1 MeV/u, impinges on a 12C target. Fissioning systems from U to Cf are populated through transfer and fusion reactions, with excitation energies that range from few MeV up to 46 MeV. The use of inverse kinematics, the SPIDER telescope, and the VAMOS spectrometer permitted the characterization of the fissioning system in terms of mass, nuclear charge, and excitation energy, and the isotopic identification of the full fragment distribution. The neutron excess, the total neutron multiplicity, and the even-odd staggering in the nuclear charge of fission fragments are presented as a function of the excitation energy of the fissioning system. Structure effects are observed at Z∼50 and Z∼55, where their impact evolves with the excitation energy.

  1. Excitation-energy influence at the scission configuration (United States)

    Ramos, D.; Rodríguez-Tajes, C.; Caamaño, M.; Farget, F.; Audouin, L.; Benlliure, J.; Casarejos, E.; Clement, E.; Cortina, D.; Delaune, O.; Derkx, X.; Dijon, A.; Doré, D.; Fernández-Domínguez, B.; de France, G.; Heinz, A.; Jacquot, B.; Navin, A.; Paradela, C.; Rejmund, M.; Roger, T.; Salsac, M.-D.; Schmitt, C.


    Transfer- and fusion-induced fission in inverse kinematics was proven to be a powerful tool to investigate nuclear fission, widening the information of the fission fragments and the access to unstable fissioning systems with respect to other experimental approaches. An experimental campaign for fission investigation has being carried out at GANIL with this technique since 2008. In these experiments, a beam of 238U, accelerated to 6.1 MeV/u, impinges on a 12C target. Fissioning systems from U to Cf are populated through transfer and fusion reactions, with excitation energies that range from few MeV up to 46 MeV. The use of inverse kinematics, the SPIDER telescope, and the VAMOS spectrometer permitted the characterization of the fissioning system in terms of mass, nuclear charge, and excitation energy, and the isotopic identification of the full fragment distribution. The neutron excess, the total neutron multiplicity, and the even-odd staggering in the nuclear charge of fission fragments are presented as a function of the excitation energy of the fissioning system. Structure effects are observed at Z˜50 and Z˜55, where their impact evolves with the excitation energy.

  2. Size effect of water cluster on the excited-state proton transfer in aqueous solvent (United States)

    Liu, Yu-Hui; Chu, Tian-Shu


    Time-dependent density functional theory (TDDFT) was used to investigate the excited-state proton transfer (ESPT) dynamics of 6-hydroxyquinolinium (6HQc) in aqueous solvent, resulting in the excited zwitterionic form (6HQz). The optimized excited-state energy profiles of 6HQc:(H 2O) n complexes have been calculated along the phenolic O sbnd H bond to simulate the minimum energy pathway (MEP) in the excited state. The results suggested that the threshold of the size of the water cluster is 3 for the excited-state proton transfer of 6HQc in aqueous solvent, since the conformation of the stable hydrated proton requires proton transferring to the second or deeper shell of water solvent. Moreover, the stability of the hydrated proton can be improved significantly by adding one more H 2O molecule to form an Eigen cation in the excited-state 6HQz:H 9O 4+. The effect of the size of water cluster on the proton transfer is investigated theoretically in the excited state for the first time.

  3. Practical use of corrected fluorescence excitation and emission spectra of fluorescent proteins in Förster Resonance Energy Transfer (FRET) studies

    NARCIS (Netherlands)

    Hink, M.A.; Visser, N.V.; Borst, J.W.; Hoek, van A.; Visser, A.J.W.G.


    Corrected fluorescence excitation and emission spectra have been obtained from several enhanced variants of the green fluorescent protein (EGFP) isolated from the jellyfish Aequorea victoria, blue fluorescence protein (EBFP), cyan fluorescent protein (ECFP), EGFP and yellow fluorescent protein

  4. Effects of Molecular Stresses on Energy Transfer Pathways in Opto- and Electro-Excited Conjugated Polymers for High-Efficiency Optoelectronic Devices (United States)


    effects of stretching the conjugated polymer of MEH-PPV (Mw = 55kg/mole) on the photoluminescence behavior was further studied in the experiment Opto- and Electro-Excitated Conjugated Polymers for High- Efficiency Optoelectronic Devices 5a. CONTRACT NUMBER FA2386-12-1-4064 5b. GRANT...The role of mechanical stresses in the optoelectronic behavior and exciton formation of conjugated polymers was explored in order to understand and to

  5. Intramolecular Energy Transfer, Charge Transfer & Hydrogen Bond

    Indian Academy of Sciences (India)

    Ultrafast Dynamics of Chemical Reactions in Condensed Phase: Intramolecular Energy Transfer, Charge Transfer & Hydrogen Bond · PowerPoint Presentation · Slide 3 · Slide 4 · Slide 5 · Slide 6 · Slide 7 · Slide 8 · Slide 9 · Slide 10 · Slide 11 · Slide 12 · Slide 13 · Slide 14 · Slide 15 · Slide 16 · Slide 17 · Slide 18 · Slide 19.

  6. Excited state intramolecular charge transfer reaction in 4-(1 ...

    Indian Academy of Sciences (India)


    Abstract. Excited state intramolecular charge transfer reaction of 4-(1-azetidinyl) benzonitrile (P4C) in deuterated and normal methanol, ethanol and acetonitrile has been studied in order to investigate the solvent isotope effects on reaction rates and yields. These quantities (reaction rates and yields) along with several.

  7. Excited state intramolecular charge transfer reaction in 4-(1 ...

    Indian Academy of Sciences (India)

    Excited state intramolecular charge transfer reaction of 4-(1-azetidinyl) benzonitrile (P4C) in deuterated and normal methanol, ethanol and acetonitrile has been studied in order to investigate the solvent isotope effects on reaction rates and yields. These quantities (reaction rates and yields) along with several other ...

  8. Atomic excitation and molecular dissociation by low energy electron collisions

    Energy Technology Data Exchange (ETDEWEB)

    Weyland, Marvin


    In this work, momentum imaging experiments have been conducted for the electron impact excitation of metastable states in noble gases and for dissociative electron attachment (DEA) in polyatomic molecules. For the electron impact excitation study a new experimental technique has been developed which is able to measure the scattering angle distribution of the electrons by detection of the momentum transfer to the atoms. Momentum transfer images have been recorded for helium and neon at fixed electron impact energy close to the excitation threshold and good agreement with current R-matrix theory calculations was found. A new momentum imaging apparatus for negative ions has been built for the purpose of studying DEA in biologically relevant molecules. During this work, DEA was investigated in the molecules ammonia, water, formic acid, furan, pyridine and in two chlorofluorocarbons. Furthermore, the change of DEA resonance energies when molecules form clusters compared to monomers was investigated in ammonia and formic acid. The experimental results of most studied molecules could be compared to recent theoretical calculations and they support further development in the theoretical description of DEA. The new apparatus built in this work also delivered a superior momentum resolution compared to existing setups. This allows the momentum imaging of heavier fragments and fragments with lower kinetic energy.

  9. Ultrafast Energy Transfer in an Artificial Photosynthetic Antenna

    Directory of Open Access Journals (Sweden)

    van Grondelle R.


    Full Text Available We temporally resolved energy transfer kinetics in an artificial light-harvesting dyad composed of a phthalocyanine covalently linked to a carotenoid. Upon carotenoid photo-excitation, energy transfers within ≈100fs (≈52% efficiency to the phthalocyanine.

  10. Photoinduced charge-transfer electronic excitation of tetracyanoethylene/tetramethylethylene complex in dichloromethane (United States)

    Xu, Long-Kun; Bi, Ting-Jun; Ming, Mei-Jun; Wang, Jing-Bo; Li, Xiang-Yuan


    Based on the previous work on nonequilibrium solvation model by the authors, Intermolecular charge-transfer electronic excitation of tetracyanoethylene (TCE)/tetramethylethylene (TME) π -stacked complex in dichloromethane (DCM) has been investigated. For weak interaction correction, dispersion corrected functional DFT-D3 is adopted for geometry optimization. In order to identify the excitation metric, dipole moment components of each Cartesian direction, atomic charge, charge separation and Δr index are analyzed for TCE/TME complex. Calculation shows that the calculated excitation energy is dependent on the functional choice, when conjuncted with suitable time-dependent density functional, the modified nonequilibrium expression gives satisfied results for intermolecular charge-transfer electronic excitation.

  11. Excited-state kinetics of the carotenoid S//1 state in LHC II and two-photon excitation spectra of lutein and beta-carotene in solution Efficient Car S//1 yields Chl electronic energy transfer via hot S//1 states?

    CERN Document Server

    Walla, P J; Linden, Patricia A; Ohta, Kaoru


    The excited-state dynamics of the carotenoids (Car) in light- harvesting complex II (LHC II) of Chlamydomonas reinhardtii were studied by transient absorption measurements. The decay of the Car S //1 population ranges from similar to 200 fs to over 7 ps, depending on the excitation and detection wavelengths. In contrast, a 200 fs Car S//1 yields Chlorophyll (Chl) energy transfer component was the dominant time constant for our earlier two-photon fluorescence up- conversion measurements (Walla, P.J. ; et al. J. Phys. Chem. B 2000, 104, 4799-4806). We also present the two-photon excitation (TPE) spectra of lutein and beta-carotene in solution and compare them with the TPE spectrum of LHC II. The TPE-spectrum of LHC II has an onset much further to the blue and a width that is narrower than expected from comparison to the S//1 fluorescence of lutein and beta-carotene in solution. Different environments may affect the shape of the S//1 spectrum significantly. To explain the blue shift of the TPE spectrum and the d...

  12. Localization and Targeted Transfer of Atomic-Scale Nonlinear Excitations: Perspectives for Applications (United States)

    Kopidakis, G.; Aubry, S.

    We review nonlinearity-induced localization in discrete systems with emphasis on theory and numerical calculations on models used in materials physics to describe interatomic interactions. We discuss how the concept of discrete breather or intrinsic localized mode could become an important tool for understanding nanoscale phenomena in molecules and solids. A particularly attractive field of application for nonlinear localized excitations is the controlled and directed transport of energy. We discuss the recently proposed targeted transfer of localized excitations based on the concept of nonlinear resonance and its potential applications. As an area for such applications, we present directional ultrafast electron transfer at low temperatures using this selective transfer mechanism and we give examples from biological electron transfer. We finally discuss possible applications in nanotechnology and biomolecules.

  13. Reevaluating the mechanism of excitation energy regulation in iron-starved cyanobacteria. (United States)

    Chen, Hui-Yuan S; Liberton, Michelle; Pakrasi, Himadri B; Niedzwiedzki, Dariusz M


    This paper presents spectroscopic investigations of IsiA, a chlorophyll a-binding membrane protein produced by cyanobacteria grown in iron-deficient environments. IsiA, if associated with photosystem I, supports photosystem I in light harvesting by efficiently transferring excitation energy. However, if separated from photosystem I, IsiA exhibits considerable excitation quenching observed as a substantial reduction of protein-bound chlorophyll a fluorescence lifetime. Previous spectroscopic studies suggested that carotenoids are involved in excitation energy dissipation and in addition play a second role in this antenna complex by supporting chlorophyll a in light harvesting by absorbing in the spectral range inaccessible for chlorophyll a and transferring excitation to chlorophylls. However, this investigation does not support these proposed roles of carotenoids in this light harvesting protein. This study shows that carotenoids do not transfer excitation energy to chlorophyll a. In addition, our investigations do not support the hypothesis that carotenoids are quenchers of the excited state of chlorophyll a in this protein complex. We propose that quenching of chlorophyll a fluorescence in IsiA is maintained by pigment-protein interaction via electron transfer from an excited chlorophyll a to a cysteine residue, an excitation quenching mechanism that was recently proposed to regulate the light harvesting capabilities of the bacteriochlorophyll a-containing Fenna-Mathews-Olson protein from green sulfur bacteria. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Energy transfer with semiconductor nanocrystals

    NARCIS (Netherlands)

    Rogach, A.L.; Klar, T.A.; Lupton, J.M.; Meijerink, A.; Feldmann, J.


    Fo¨ rster (or fluorescence) resonant energy transfer (FRET) is a powerful spectroscopic technique to study interactions, conformational and distance changes, in hybrid nanosystems. Semiconductor nanocrystals, also known as colloidal quantum dots, are highly efficient fluorophores with a strong

  15. Silica-Coated Mn-Doped CsPb(Cl/Br)3 Inorganic Perovskite Quantum Dots: Exciton-to-Mn Energy Transfer and Blue-Excitable Solid-State Lighting. (United States)

    Chen, Daqin; Fang, Gaoliang; Chen, Xiao


    Tunability of emitting colors of perovskite quantum dots (PQDs) was generally realized via composition/size modulation. Due to their bandgap absorption and ionic crystal features, the mixing of multiple PQDs inevitably suffers from reabsorption and anion-exchange effects. Herein, we address these issues with high-content Mn2+-doped CsPbCl3 PQDs that can yield blue-excitable orange Mn2+ emission benefited from exciton-to-Mn energy transfer and Cl-to-Br anion exchange. Silica-coating was applied to improve air stability of PQDs, suppress the loss of Mn2+, and avoid anion-exchange between different PQDs. As a direct benefit of intense multicolor emissions from Mn2+-doped PQD@SiO2 solid phosphors, a prototype white light-emitting diode with excellent optical performance and superior light stability was constructed using green CsPbBr3@SiO2 and orange Mn: CsPb(Cl/Br)3@SiO2 composites as color converters, verifying their potential applications in the field of optoelectronics.

  16. Photoinduced energy and electron transfer in rubrene-benzoquinone and rubrene-porphyrin systems

    KAUST Repository

    Khan, Jafar Iqbal


    Excited-state electron and energy transfer from singlet excited rubrene (Ru) to benzoquinone (BQ) and tetra-(4-aminophenyl) porphyrin (TAPP) were investigated by steady-state absorption and emission, time-resolved transient absorption, and femtosecond (fs)-nanosecond (ns) fluorescence spectroscopy. The low reduction potential of BQ provides the high probability of electron transfer from the excited Ru to BQ. Steady-state and time-resolved results confirm such an excited electron transfer scenario. On the other hand, strong spectral overlap between the emission of Ru and absorption of TAPP suggests that energy transfer is a possible deactivation pathway of the Ru excited state.

  17. TDDFT study on the excited-state proton transfer of 8-hydroxyquinoline: key role of the excited-state hydrogen-bond strengthening. (United States)

    Lan, Sheng-Cheng; Liu, Yu-Hui


    Density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations have been employed to study the excited-state intramolecular proton transfer (ESIPT) reaction of 8-hydroxyquinoline (8HQ). Infrared spectra of 8HQ in both the ground and the lowest singlet excited states have been calculated, revealing a red-shift of the hydroxyl group (-OH) stretching band in the excited state. Hence, the intramolecular hydrogen bond (O-H···N) in 8HQ would be significantly strengthened upon photo-excitation to the S1 state. As the intramolecular proton-transfer reaction occurs through hydrogen bonding, the ESIPT reaction of 8HQ is effectively facilitated by strengthening of the electronic excited-state hydrogen bond (O-H···N). As a result, the intramolecular proton-transfer reaction would occur on an ultrafast timescale with a negligible barrier in the calculated potential energy curve for the ESIPT reaction. Therefore, although the intramolecular proton-transfer reaction is not favorable in the ground state, the ESIPT process is feasible in the excited state. Finally, we have identified that radiationless deactivation via internal conversion (IC) becomes the main dissipative channel for 8HQ by analyzing the energy gaps between the S1 and S0 states for the enol and keto forms. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Double, Rydberg and charge transfer excitations from pairing matrix fluctuation and particle-particle random phase approximation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yang [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States); Aggelen, Helen van [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States); Department of Inorganic and Physical Chemistry, Ghent University, 9000 Ghent (Belgium); Yang, Weitao, E-mail: [Department of Chemistry and Department of Physics, Duke University, Durham, North Carolina 27708 (United States)


    Double, Rydberg, and charge transfer (CT) excitations have been great challenges for time-dependent density functional theory (TDDFT). Starting from an (N ± 2)-electron single-determinant reference, we investigate excitations for the N-electron system through the pairing matrix fluctuation, which contains information on two-electron addition/removal processes. We adopt the particle-particle random phase approximation (pp-RPA) and the particle-particle Tamm-Dancoff approximation (pp-TDA) to approximate the pairing matrix fluctuation and then determine excitation energies by the differences of two-electron addition/removal energies. This approach captures all types of interesting excitations: single and double excitations are described accurately, Rydberg excitations are in good agreement with experimental data and CT excitations display correct 1/R dependence. Furthermore, the pp-RPA and the pp-TDA have a computational cost similar to TDDFT and consequently are promising for practical calculations.

  19. Failures of TDDFT in describing the lowest intramolecular charge-transfer excitation in para-nitroaniline

    DEFF Research Database (Denmark)

    Eriksen, Janus J.; Sauer, Stephan P. A.; Mikkelsen, Kurt V.


    for charge{transfer character, we furthermore conrm that the di¿erence between excitation energies calculated with TDDFT and with the Tamm-Danco¿ approximation (TDA) to TDDFT is indeed correlated with the charge-transfer character of a given electronic transition both in vacuo and in solution...

  20. Evaluation of excitation energy and spin from light charged particles multiplicities in heavy-ion collisions

    CERN Document Server

    Steckmeyer, J C; Grotowski, K; Pawowski, P; Aiello, S; Anzalone, A; Bini, M; Borderie, B; Bougault, R; Cardella, G; Casini, G; Cavallaro, S; Charvet, J L; Dayras, R; De Filippo, E; Durand, D; Femin, S; Frankland, J D; Galíchet, E; Geraci, M; Giustolisi, F; Guazzoni, P; Iacono-Manno, M; Lanzalone, G; Lanzan, G; Le Neindre, N; Lo Nigro, S; Lo Piano, F; Olmi, A; Pagano, A; Papa, M; Pârlog, M; Pasquali, G; Piantelli, S; Pirrone, S; Politi, G; Porto, F; Rivet, M F; Rizzo, F; Rosato, E; Roy, R; Sambataro, S; Sperduto, M L; Stefanini, A A; Sutera, C; Tamain, B; Vient, E; Volant, C; Wieleczko, J P; Zetta, L


    A simple procedure for evaluating the excitation energy and the spin transfer in heavy-ion dissipative collisions is proposed. It is based on a prediction of the GEMINI evaporation code : for a nucleus with a given excitation energy, the average number of emitted protons decreases with increasing spin, whereas the average number of alpha particles increases. Using that procedure for the reaction 107Ag+58Ni at 52 MeV/nucleon, the excitation energy and spin of quasi-projectiles have been evaluated. The results obtained in this way have been compared with the predictions of a model describing the primary dynamic stage of heavy-ion collisions.

  1. Integrated analysis of energy transfers in elastic-wave turbulence. (United States)

    Yokoyama, Naoto; Takaoka, Masanori


    In elastic-wave turbulence, strong turbulence appears in small wave numbers while weak turbulence does in large wave numbers. Energy transfers in the coexistence of these turbulent states are numerically investigated in both the Fourier space and the real space. An analytical expression of a detailed energy balance reveals from which mode to which mode energy is transferred in the triad interaction. Stretching energy excited by external force is transferred nonlocally and intermittently to large wave numbers as the kinetic energy in the strong turbulence. In the weak turbulence, the resonant interactions according to the weak turbulence theory produce cascading net energy transfer to large wave numbers. Because the system's nonlinearity shows strong temporal intermittency, the energy transfers are investigated at active and moderate phases separately. The nonlocal interactions in the Fourier space are characterized by the intermittent bundles of fibrous structures in the real space.

  2. Stray energy transfer during endoscopy. (United States)

    Jones, Edward L; Madani, Amin; Overbey, Douglas M; Kiourti, Asimina; Bojja-Venkatakrishnan, Satheesh; Mikami, Dean J; Hazey, Jeffrey W; Arcomano, Todd R; Robinson, Thomas N


    Endoscopy is the standard tool for the evaluation and treatment of gastrointestinal disorders. While the risk of complication is low, the use of energy devices can increase complications by 100-fold. The mechanism of increased injury and presence of stray energy is unknown. The purpose of the study was to determine if stray energy transfer occurs during endoscopy and if so, to define strategies to minimize the risk of energy complications. A gastroscope was introduced into the stomach of an anesthetized pig. A monopolar generator delivered energy for 5 s to a snare without contacting tissue or the endoscope itself. The endoscope tip orientation, energy device type, power level, energy mode, and generator type were varied to mimic in vivo use. The primary outcome (stray current) was quantified as the change in tissue temperature (°C) from baseline at the tissue closest to the tip of the endoscope. Data were reported as mean ± standard deviation. Using the 60 W coag mode while changing the orientation of the endoscope tip, tissue temperature increased by 12.1 ± 3.5 °C nearest the camera lens (p energy transfer (p = 0.04 and p = 0.002, respectively) as did utilizing the low-voltage cut mode (6.6 ± 0.5 °C, p energy transfer compared to a standard generator (1.5 ± 3.5 °C vs. 9.5 ± 0.8 °C, p energy is transferred within the endoscope during the activation of common energy devices. This could result in post-polypectomy syndrome, bleeding, or perforation outside of the endoscopist's view. Decreasing the power, utilizing low-voltage modes and/or an impedance-monitoring generator can decrease the risk of complication.

  3. Directing the path of light-induced electron transfer at a molecular fork using vibrational excitation (United States)

    Delor, Milan; Archer, Stuart A.; Keane, Theo; Meijer, Anthony J. H. M.; Sazanovich, Igor V.; Greetham, Gregory M.; Towrie, Michael; Weinstein, Julia A.


    Ultrafast electron transfer in condensed-phase molecular systems is often strongly coupled to intramolecular vibrations that can promote, suppress and direct electronic processes. Recent experiments exploring this phenomenon proved that light-induced electron transfer can be strongly modulated by vibrational excitation, suggesting a new avenue for active control over molecular function. Here, we achieve the first example of such explicit vibrational control through judicious design of a Pt(II)-acetylide charge-transfer donor-bridge-acceptor-bridge-donor 'fork' system: asymmetric 13C isotopic labelling of one of the two -C≡C- bridges makes the two parallel and otherwise identical donor→acceptor electron-transfer pathways structurally distinct, enabling independent vibrational perturbation of either. Applying an ultrafast UVpump(excitation)-IRpump(perturbation)-IRprobe(monitoring) pulse sequence, we show that the pathway that is vibrationally perturbed during UV-induced electron transfer is dramatically slowed down compared to its unperturbed counterpart. One can thus choose the dominant electron transfer pathway. The findings deliver a new opportunity for precise perturbative control of electronic energy propagation in molecular devices.

  4. Effects of oxidants and reductants on the efficiency of excitation transfer in green photosynthetic bacteria (United States)

    Wang, J.; Brune, D. C.; Blankenship, R. E.


    The efficiency of energy transfer in chlorosome antennas in the green sulfur bacteria Chlorobium vibrioforme and Chlorobium limicola was found to be highly sensitive to the redox potential of the suspension. Energy transfer efficiencies were measured by comparing the absorption spectrum of the bacteriochlorophyll c or d pigments in the chlorosome to the excitation spectrum for fluorescence arising from the chlorosome baseplate and membrane-bound antenna complexes. The efficiency of energy transfer approaches 100% at low redox potentials induced by addition of sodium dithionite or other strong reductants, and is lowered to 10-20% under aerobic conditions or after addition of a variety of membrane-permeable oxidizing agents. The redox effect on energy transfer is observed in whole cells, isolated membranes and purified chlorosomes, indicating that the modulation of energy transfer efficiency arises within the antenna complexes and is not directly mediated by the redox state of the reaction center. It is proposed that chlorosomes contain a component that acts as a highly quenching center in its oxidized state, but is an inefficient quencher when reduced by endogenous or exogenous reductants. This effect may be a control mechanism that prevents cellular damage resulting from reaction of oxygen with reduced low-potential electron acceptors found in the green sulfur bacteria. The redox modulation effect is not observed in the green gliding bacterium Chloroflexus aurantiacus, which contains chlorosomes but does not contain low-potential electron acceptors.

  5. Dual fluorescence of ellipticine: excited state proton transfer from solvent versus solvent mediated intramolecular proton transfer. (United States)

    Banerjee, Sanghamitra; Pabbathi, Ashok; Sekhar, M Chandra; Samanta, Anunay


    Photophysical properties of a natural plant alkaloid, ellipticine (5,11-dimethyl-6H-pyrido[4,3-b]carbazole), which comprises both proton donating and accepting sites, have been studied in different solvents using steady state and time-resolved fluorescence techniques primarily to understand the origin of dual fluorescence that this molecule exhibits in some specific alcoholic solvents. Ground and excited state calculations based on density functional theory have also been carried out to help interpretation of the experimental data. It is shown that the long-wavelength emission of the molecule is dependent on the hydrogen bond donating ability of the solvent, and in methanol, this emission band arises solely from an excited state reaction. However, in ethylene glycol, both ground and excited state reactions contribute to the long wavelength emission. The time-resolved fluorescence data of the system in methanol and ethylene glycol indicates the presence of two different hydrogen bonded species of ellipticine of which only one participates in the excited state reaction. The rate constant of the excited state reaction in these solvents is estimated to be around 4.2-8.0 × 10(8) s(-1). It appears that the present results are better understood in terms of solvent-mediated excited state intramolecular proton transfer reaction from the pyrrole nitrogen to the pyridine nitrogen leading to the formation of the tautomeric form of the molecule rather than excited state proton transfer from the solvents leading to the formation of the protonated form of ellipticine. © 2011 American Chemical Society

  6. Differential and total cross sections for charge transfer and transfer-excitation in ion-helium collisions (United States)

    Halder, S.; Mondal, A.; Samaddar, S.; Mandal, C. R.; Purkait, M.


    Total cross sections for single charge transfer in collisions of multicharged bare ions with ground-state helium atoms at incident energy ranging from 40 to 5000 keV/amu have been calculated in the framework of a four-body model of final channel distorted-wave (FC-DW-4B) approximation. In this formalism, distortion in the final channel related to the Coulomb continuum of the target and the Coulomb interaction between the passive electron in the target with the projectile are included. In all cases, total single electron-capture cross sections have been calculated by summing over all contributions up to n =3 shells and subshells. It has been observed that the contribution of the capture cross sections into excited states have insignificant contributions for symmetric collisions. Comprehensive comparisons are made between the four body model of boundary corrected continuum intermediate-state approximations [Phys. Rev. A 83, 032706 (2011), 10.1103/PhysRevA.83.032706] and the present FC-DW-4B model. The main purpose of the present study is to investigate the relative importance of dynamic electron correlation and the role of passive electron in the target at intermediate and high impact energies. In addition, projectile angular differential cross sections (DCS) for charge transfer and transfer-excitation in p -He collisions are calculated at different impact energies. At low projectile energies, the present DCS data exhibits the typical steeply decreasing dependence on the projectile scattering angles, whereas at high impact energies, the double-scattering region centered on the Thomas angle is obtained. Detailed comparisons with the available experimental data and other theories are reported with the purpose of further assessing the relevance of the present model at different impact energies. Overall, the calculated cross sections show good agreement with the available experimental findings.

  7. Electron transfer mechanism and photochemistry of ferrioxalate induced by excitation in the charge transfer band. (United States)

    Chen, Jie; Zhang, Hua; Tomov, Ivan V; Rentzepis, Peter M


    The photoredox reaction of ferrioxalate after 266/267 nm excitation in the charge transfer band has been studied by means of ultrafast extended X-ray absorption fine structure (EXAFS) analysis, optical transient spectroscopy, and quantum chemistry calculations. The Fe-O bond length changes combined with the transient spectra and kinetics have been measured and in combination with ultrahigh frequency density functional theory (UHF/DFT) calculations are used to determine the photochemical mechanism for the Fe(III) to Fe(II) redox reaction. The present data and the results obtained with 266/267 nm excitations strongly suggest that the primary reaction is the dissociation of the Fe-O bond before intramolecular electron transfer occurs. Low quantum yield electron photodetachment from ferrioxalate has also been observed.

  8. Charge-transfer excited states in aqueous DNA: Insights from many-body Green's function theory. (United States)

    Yin, Huabing; Ma, Yuchen; Mu, Jinglin; Liu, Chengbu; Rohlfing, Michael


    Charge-transfer (CT) excited states play an important role in the excited-state dynamics of DNA in aqueous solution. However, there is still much controversy on their energies. By ab initio many-body Green's function theory, together with classical molecular dynamics simulations, we confirm the existence of CT states at the lower energy side of the optical absorption maximum in aqueous DNA as observed in experiments. We find that the hydration shell can exert strong effects (∼1  eV) on both the electronic structure and CT states of DNA molecules through dipole electric fields. In this case, the solvent cannot be simply regarded as a macroscopic screening medium as usual. The influence of base stacking and base pairing on the CT states is also discussed.

  9. Fluorescence resonance energy transfer from tryptophan in human ...

    Indian Academy of Sciences (India)


    After excitation, competition prevails between the various decay processes, namely, fluorescence and non-radiative deactivations, inclu- ding energy transfer to the surrounding molecules. Efficiency of FRET is known to depend on the in- verse sixth power of the intermolecular distance bet- ween the donor and the acceptor ...

  10. Distance dependence of fluorescence resonance energy transfer

    Indian Academy of Sciences (India)


    excitations namely, graphene, a two-dimensional semiconducting sheet and the case of such a ..... graphene. We now consider the process of energy transfer from a fluorescent dye to graphene (see figure 1). 6,7. We use the tight-binding model for graphene. 8. The ...... to a monolayer of semiconductor nanocrystals.

  11. Roles of the Excitation in Harvesting Energy from Vibrations.

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    Full Text Available The study investigated the role of excitation in energy harvesting applications. While the energy ultimately comes from the excitation, it was shown that the excitation may not always behave as a source. When the device characteristics do not perfectly match the excitation, the excitation alternately behaves as a source and a sink. The extent to which the excitation behaves as a sink determines the energy harvesting efficiency. Such contradictory roles were shown to be dictated by a generalized phase defined as the instantaneous phase angle between the velocity of the device and the excitation. An inductive prototype device with a diamagnetically levitated seismic mass was proposed to take advantage of the well established phase changing mechanism of vibro-impact to achieve a broader device bandwidth. Results suggest that the vibro-impact can generate an instantaneous, significant phase shift in response velocity that switches the role of the excitation. If introduced properly outside the resonance zone it could dramatically increase the energy harvesting efficiency.

  12. Energy-Transfer Kinetics Driven by Midinfrared Amplified Spontaneous Emission after Two-Photon Excitation from Xe (s0) to the Xe (6p[1/2]0) State. (United States)

    He, Shan; Guan, Yafu; Liu, Dong; Xia, Xusheng; Gai, Baodong; Hu, Shu; Guo, Jingwei; Sang, Fengting; Jin, Yuqi


    In optically pumped laser systems, rare gas lasers (RGLs) are a field of great interest for researchers. Gas laser regimes with metastable Ne, Ar, and Kr atoms have been investigated, while studies of RGLs based on metastable Xe are sparse. In this work, when a strong excitation laser (2.92 mJ/pulse, 7.44 × 105 W/cm2) was applied to excite Xe atoms from the ground state to the 6p[1/2]0 state, an interesting phenomenon emerged: An intense fluorescence of 980 nm (6p[1/2]1-6s[3/2]2) was produced. However, when the energy of excitation laser was decreased to 0.50 mJ/pulse (1.27 × 105 W/cm2), the fluorescence of 980 nm became very weak. Besides, lifetime and decay rate constant of the 6p[1/2]0 state under the condition of E = 2.92 mJ are significantly different from either those measured by other groups or those of E = 0.50 mJ. These phenomena indicate that the high energy of excitation laser should trigger some new kinetic mechanisms. Further works identified that the new kinetic mechanism is the MIR ASE of 3408 nm (6p[1/2]0-6s'[1/2]1). The mechanisms are proposed as follows. Substantial 6p[1/2]0 atoms are produced by laser excitation. Then, the ASE of 3408 nm (6p[1/2]0-6s'[1/2]1) is quickly produced to populate substantial 6s'[1/2]1 atoms. The 6s'[1/2]1 atoms can readily arrive at the 6p[1/2]1 states through collision by virtue of the small energy difference (84 cm-1) and high collision rate constant of the transition from the 6s'[1/2]1 state to the 6p[1/2]1 state. As a result, the intense fluorescence of 980 nm is generated.

  13. Coherent excitation transferring via dark state in light-harvesting process

    CERN Document Server

    Dong, H; Sun, C P


    We study the light absorption and energy transferring in a donor-acceptor system with a bionic structure. In the optimal case with uniform couplings, it is found that the quantum dynamics of this seemingly complicated system is reduced as a three-level system of $\\Lambda$-type. With this observation, we show that the dark state based electromagnetically-induced transparency (EIT) effect could enhance the energy transfer efficiency, through a quantum interference effect suppressing the excited population of the donors. We estimate the optimal parameters of the system to achieve the maximum output power. The splitting behavior of maximum power may be used to explain the phenomenon that the photosynthesis systems mainly absorb two colors of light.

  14. Sum rules and mean excitation energies for longitudinal isoscalar electroexcitation of nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Lipparini, E.; Orlandini, G.; Leonardi, R.


    A useful momentum dependent sum rule is discussed for the longitudinal isoscalar electroexcitation of nuclei; combining this sum rule with the Kao-Fallieros sum rule, we study the momentum dependence of the mean excitation energy of the electroexcitation operator. For low momentum transfer this operator reduces to the monopole operator. Detailed results are given for /sup 16/O and /sup 208/Pb.

  15. Excitation of Terahertz Charge Transfer Plasmons in Metallic Fractal Structures (United States)

    Ahmadivand, Arash; Gerislioglu, Burak; Sinha, Raju; Vabbina, Phani Kiran; Karabiyik, Mustafa; Pala, Nezih


    There have been extensive researches on terahertz (THz) plasmonic structures supporting resonant modes to demonstrate nano and microscale devices with high efficiency and responsivity as well as frequency selectivity. Here, using antisymmetric plasmonic fractal Y-shaped (FYS) structures as building blocks, we introduce a highly tunable four-member fractal assembly to support charge transfer plasmons (CTPs) and classical dipolar resonant modes with significant absorption cross section in the THz domain. We first present that the unique geometrical nature of the FYS system and corresponding spectral response allow for supporting intensified dipolar plasmonic modes under polarised light exposure in a standalone structure. In addition to classical dipolar mode, for the very first time, we demonstrated CTPs in the THz domain due to the direct shuttling of the charges across the metallic fractal microantenna which led to sharp resonant absorption peaks. Using both numerical and experimental studies, we have investigated and confirmed the excitation of the CTP modes and highly tunable spectral response of the proposed plasmonic fractal structure. This understanding opens new and promising horizons for tightly integrated THz devices with high efficiency and functionality.

  16. On the determination of the mean excitation energy of water

    DEFF Research Database (Denmark)

    Sabin, John R.; Oddershede, Jens; Sauer, Stephan P. A.


    Water is a ubiquitous substance in nature, and thus the mean excitation energy of water is an important quantity for understanding and prediction of the details of many fast ion/molecule collision processes such as those involved in external beam radiotherapy of tumors. There are several methods ...... for determining numerical values for a mean excitation energy for water, both theoretical and experimental. Here the factors affecting the determination of the value of the mean excitation energy of water, especially from experiment, are discussed.......Water is a ubiquitous substance in nature, and thus the mean excitation energy of water is an important quantity for understanding and prediction of the details of many fast ion/molecule collision processes such as those involved in external beam radiotherapy of tumors. There are several methods...

  17. An estimate of spherical impactor energy transfer for mechanical frequency up-conversion energy harvester

    Directory of Open Access Journals (Sweden)

    L. R. Corr


    Full Text Available Vibration energy harvesters, which use the impact mechanical frequency up-conversion technique, utilize an impactor, which gains kinetic energy from low frequency ambient environmental vibrations, to excite high frequency systems that efficiently convert mechanical energy to electrical energy. To take full advantage of the impact mechanical frequency up-conversion technique, it is prudent to understand the energy transfer from the low frequency excitations, to the impactor, and finally to the high frequency systems. In this work, the energy transfer from a spherical impactor to a multi degree of freedom spring / mass system, due to Hertzian impact, is investigated to gain insight on how best to design impact mechanical frequency up-conversion energy harvesters. Through this academic work, it is shown that the properties of the contact (or impact area, i.e., radius of curvature and material properties, only play a minor role in energy transfer and that the equivalent mass of the target system (i.e., the spring / mass system dictates the total amount of energy transferred during the impact. The novel approach of utilizing the well-known Hertzian impact methodology to gain an understanding of impact mechanical frequency up-conversion energy harvesters has made it clear that the impactor and the high frequency energy generating systems must be designed together as one system to ensure maximum energy transfer, leading to efficient ambient vibration energy harvesters.

  18. Core-excitation effects in O20(d,pO21 transfer reactions: Suppression or enhancement?

    Directory of Open Access Journals (Sweden)

    A. Deltuva


    Full Text Available O20(d,pO21 transfer reactions are described using momentum-space Faddeev-type equations for transition operators and including the vibrational excitation of the 20O core. The available experimental cross section data at 10.5 MeV/nucleon beam energy for the 21O ground state 52+ and excited state 12+ are quite well reproduced by our calculations including the core excitation. Its effect can be roughly simulated reducing the single-particle cross section by the corresponding spectroscopic factor. Consequently, the extraction of the spectroscopic factors taking the ratio of experimental data and single-particle cross section at this energy is a reasonable procedure. However, at higher energies core-excitation effects are much more complicated and have no simple relation to spectroscopic factors. We found that core-excitation effects are qualitatively very different for reactions with the orbital angular momentum transfer ℓ=0 and ℓ=2, suppressing the cross sections for the former and enhancing for the latter, and changes the shape of the angular distribution in both cases. Furthermore, the core-excitation effect is a result of a complicated interplay between its contributions of the two- and three-body nature.

  19. Energy transfer in macromolecular arrays (United States)

    Andrews, David L.; Jenkins, Robert D.


    Macromolecular systems comprised of many light-sensitive centres (the photosynthetic unit, dendrimers, and other highly symmetric multichromophore arrays) are important structures offering challenges to theoreticians and synthetic chemists alike. Here we outline novel photophysical interactions predicted and observed in such arrays. Using the tools of molecular quantum electrodynamics (QED) we present quantum amplitudes for a variety of higher-order resonance energy transfer (RET) schemes associated with well-known nonlinear optical effects such as two- and three-photon absorption. The initial analysis is extended to account for situations where the participant donor species are identical and exist in a highly symmetric environment, leading to the possible formation of excitons. It emerges from the QED theory that such excitons are closely associated with the higher-order RET processes. General results are interpreted by analyzing particular molecular architectures which offer interesting features such as rate enhancement or limitation and exciton pathway quenching. Applications in the areas of photosynthesis, molecular logic gates and low-intensity fluorescence energy transfer are predicted.

  20. Theoretical Insights Into the Excited State Double Proton Transfer Mechanism of Deep Red Pigment Alkannin. (United States)

    Zhao, Jinfeng; Dong, Hao; Zheng, Yujun


    As the most important component of deep red pigments, alkannin is investigated theoretically in detail based on time-dependent density functional theory (TDDFT) method. Exploring the dual intramolecular hydrogen bonds (O1-H2···O3 and O4-H5···O6) of alkannin, we confirm the O1-H2···O3 may play a more important role in the first excited state than the O4-H5···O6 one. Infrared (IR) vibrational analyses and subsequent charge redistribution also support this viewpoint. Via constructing the S1-state potential energy surface (PES) and searching transition state (TS) structures, we illuminate the excited state double proton transfer (ESDPT) mechanism of alkannin is the stepwise process that can be first launched by the O1-H2···O3 hydrogen bond wire in gas state, acetonitrile (CH3CN) and cyclohexane (CYH) solvents. We present a novel mechanism that polar aprotic solvents can contribute to the first-step proton transfer (PT) process in the S1 state, and nonpolar solvents play important roles in lowering the potential energy barrier of the second-step PT reaction.

  1. A schematic model for energy and charge transfer in the chlorophyll complex

    DEFF Research Database (Denmark)

    Bohr, Henrik; Malik, F.B.


    -chlorophylls chromophore to the reaction center by sending an electromagnetic wave (a photon) which provides a novel new mechanism for energy production. In the simplest version of the Förster–Dexter theory, the excitation energy of a donor is transferred to an acceptor and then de-excited to the ground state...

  2. Rotational energy transfer of the A{sup 2}{Sigma}`({nu}`=1) state of OH

    Energy Technology Data Exchange (ETDEWEB)

    Beaud, P.; Radi, P.; Frey, H.B.; Mischler, B.; Tzannis, A.P.; Gerber, T. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)


    Spectrally and temporally resolved laser excited fluorescence of OH is investigated in the picosecond time domain. The total rotational energy transfer (RET) rate from the excited state is determined from the experimental data. Simulated spectra obtained by modelling RET with the energy corrected sudden approximation agree well with the measured spectra. (author) 1 fig., 1 tab., 5 refs.

  3. Energy relaxation in optically excited Si and Ge nanocrystals

    NARCIS (Netherlands)

    Saeed, S.


    The scientific objective of the research presented in this thesis is to explore energy relaxation processes of optically excited Si and Ge nanocrystals. The identification and deeper understanding of unique energy relaxation paths in these materials will open a new window of opportunity for these

  4. Stepwise vs concerted excited state tautomerization of 2-hydroxypyridine: Ammonia dimer wire mediated hydrogen/proton transfer

    Energy Technology Data Exchange (ETDEWEB)

    Esboui, Mounir, E-mail: [Laboratoire de Spectroscopie Atomique, Moléculaire et Applications, Département de Physique, Faculté des Sciences de Tunis, 2092 Tunis (Tunisia); Technical and Vocational Training Corporation, Hail College of Technology, P.O. Box 1960, Hail 81441 (Saudi Arabia)


    The stepwise and concerted excited state intermolecular proton transfer (PT) and hydrogen transfer (HT) reactions in 2-hydroxypyridine-(NH{sub 3}){sub 2} complex in the gas phase under Cs symmetry constraint and without any symmetry constraints were performed using quantum chemical calculations. It shows that upon excitation, the hydrogen bonded in 2HP-(NH{sub 3}){sub 2} cluster facilitates the releasing of both hydrogen and proton transfer reactions along ammonia wire leading to the formation of the 2-pyridone tautomer. For the stepwise mechanism, it has been found that the proton and the hydrogen may transfer consecutively. These processes are distinguished from each other through charge translocation analysis and the coupling between the motion of the proton and the electron density distribution along ammonia wire. For the complex under Cs symmetry, the excited state HT occurs on the A″({sup 1}πσ{sup ∗}) and A′({sup 1}nσ{sup ∗}) states over two accessible energy barriers along reaction coordinates, and excited state PT proceeds mainly through the A′({sup 1}ππ{sup ∗}) and A″({sup 1}nπ{sup ∗}) potential energy surfaces. For the unconstrained complex, potential energy profiles show two {sup 1}ππ{sup ∗}-{sup 1}πσ{sup ∗} conical intersections along enol → keto reaction path indicating that proton and H atom are localized, respectively, on the first and second ammonia of the wire. Moreover, the concerted excited state PT is competitive to take place with the stepwise process, because it proceeds over low barriers of 0.14 eV and 0.11 eV with respect to the Franck-Condon excitation of enol tautomer, respectively, under Cs symmetry and without any symmetry constraints. These barriers can be probably overcome through tunneling effect.

  5. Low-energy electronic excitations and band-gap renormalization in CuO (United States)

    Rödl, Claudia; Ruotsalainen, Kari O.; Sottile, Francesco; Honkanen, Ari-Pekka; Ablett, James M.; Rueff, Jean-Pascal; Sirotti, Fausto; Verbeni, Roberto; Al-Zein, Ali; Reining, Lucia; Huotari, Simo


    Combining nonresonant inelastic x-ray scattering experiments with state-of-the-art ab initio many-body calculations, we investigate the electronic screening mechanisms in strongly correlated CuO in a large range of energy and momentum transfers. The excellent agreement between theory and experiment, including the low-energy charge excitations, allows us to use the calculated dynamical screening as a safe building block for many-body perturbation theory and to elucidate the crucial role played by d -d excitations in renormalizing the band gap of CuO. In this way we can dissect the contributions of different excitations to the electronic self-energy which is illuminating concerning both the general theory and this prototypical material.

  6. Measurement of excitation energy of neutron-rich precursor fragments (United States)

    Mosby, Michelle Anthea

    Projectile fragmentation forms the basis for beam production at radioactive beam facilities such as the National Superconducting Cyclotron Laboratory (NSCL), yet uncertainties remain about the specifics of the production mechanism. For example, very little is known about the excitation energy of the precursors of the observed final fragments. In the present work, isotopes of sodium, neon, and fluorine produced in the fragmentation of a 32 Mg beam at 86 MeV/nucleon in a beryllium target, ranging in mass loss from DeltaA = 3--12, were observed and the coincident neutrons were detected using the Modular Neutron Array (MoNA). Neutron hit multiplicity in MoNA was compared to output from the statistical evaporation model PACE which was passed through a GEANT4 simulation to account for detector response with a X2v analysis. The neutron hit multiplicity distributions were used to determine the mass loss and excitation energy of the precursor fragments created in the fast step of the reaction. The mass loss and excitation energy were compared to abrasion/ablation models and an internuclear cascade model, ISABEL. For sodium and neon observed fragments, a single precursor mass was found, with a wide range of high excitation energies, up to 60 MeV. Observed fluorine isotopes were also found to have high excitation energies, ranging from 40--80 MeV, but with some variation in precursor mass.

  7. Modeling the efficiency of Förster resonant energy transfer from energy relay dyes in dye-sensitized solar cells

    KAUST Repository

    Hoke, Eric T.


    Förster resonant energy transfer can improve the spectral breadth, absorption and energy conversion efficiency of dye sensitized solar cells. In this design, unattached relay dyes absorb the high energy photons and transfer the excitation to sensitizing dye molecules by Förster resonant energy transfer. We use an analytic theory to calculate the excitation transfer efficiency from the relay dye to the sensitizing dye accounting for dynamic quenching and relay dye diffusion. We present calculations for pores of cylindrical and spherical geometry and examine the effects of the Förster radius, the pore size, sensitizing dye surface concentration, collisional quenching rate, and relay dye lifetime. We find that the excitation transfer efficiency can easily exceed 90% for appropriately chosen dyes and propose two different strategies for selecting dyes to achieve record power conversion efficiencies. © 2010 Optical Society of America.

  8. Anomalous surplus energy transfer observed with multiple FRET acceptors.

    Directory of Open Access Journals (Sweden)

    Srinagesh V Koushik


    Full Text Available Förster resonance energy transfer (FRET is a mechanism where energy is transferred from an excited donor fluorophore to adjacent chromophores via non-radiative dipole-dipole interactions. FRET theory primarily considers the interactions of a single donor-acceptor pair. Unfortunately, it is rarely known if only a single acceptor is present in a molecular complex. Thus, the use of FRET as a tool for measuring protein-protein interactions inside living cells requires an understanding of how FRET changes with multiple acceptors. When multiple FRET acceptors are present it is assumed that a quantum of energy is either released from the donor, or transferred in toto to only one of the acceptors present. The rate of energy transfer between the donor and a specific acceptor (k(D-->A can be measured in the absence of other acceptors, and these individual FRET transfer rates can be used to predict the ensemble FRET efficiency using a simple kinetic model where the sum of all FRET transfer rates is divided by the sum of all radiative and non-radiative transfer rates.The generality of this approach was tested by measuring the ensemble FRET efficiency in two constructs, each containing a single fluorescent-protein donor (Cerulean and either two or three FRET acceptors (Venus. FRET transfer rates between individual donor-acceptor pairs within these constructs were calculated from FRET efficiencies measured after systematically introducing point mutations to eliminate all other acceptors. We find that the amount of energy transfer observed in constructs having multiple acceptors is significantly greater than the FRET efficiency predicted from the sum of the individual donor to acceptor transfer rates.We conclude that either an additional energy transfer pathway exists when multiple acceptors are present, or that a theoretical assumption on which the kinetic model prediction is based is incorrect.

  9. Realistic Quantum Control of Energy Transfer in Photosynthetic Processes

    Directory of Open Access Journals (Sweden)

    Reda M. El-Shishtawy


    Full Text Available The occurrence of coherence phenomenon as a result of the interference of the probability amplitude terms is among the principle features of quantum mechanics concepts. Current experiments display the presence of quantum techniques whose coherence is supplied over large interval times. Specifically, photosynthetic mechanisms in light-harvesting complexes furnish oscillatory behaviors owing to quantum coherence. In this manuscript, we study the coherent quantum energy transfer for a single-excitation and nonlocal correlation in a dimer system (donor+acceptor displayed by two-level systems (TLSs, interacting with a cavity field with a time-dependent coupling effect considering the realistic situation of coupling between each TLS and the cavity field. We analyze and explore the specific conditions which are viable with real experimental realization for the ultimate transfer of quantum energy and nonlocal quantum correlation. We show that the enhancement of the probability for a single-excitation energy transfer greatly benefits from the energy detuning, photon-number transition, classicality of the field, and the time-dependent coupling effect. We also find that the entanglement between the donor and acceptor is very sensitive to the physical parameters and it can be generated during the coherent energy transfer.

  10. Optimal Energy Transfer in Light-Harvesting Systems

    Directory of Open Access Journals (Sweden)

    Lipeng Chen


    Full Text Available Photosynthesis is one of the most essential biological processes in which specialized pigment-protein complexes absorb solar photons, and with a remarkably high efficiency, guide the photo-induced excitation energy toward the reaction center to subsequently trigger its conversion to chemical energy. In this work, we review the principles of optimal energy transfer in various natural and artificial light harvesting systems. We begin by presenting the guiding principles for optimizing the energy transfer efficiency in systems connected to dissipative environments, with particular attention paid to the potential role of quantum coherence in light harvesting systems. We will comment briefly on photo-protective mechanisms in natural systems that ensure optimal functionality under varying ambient conditions. For completeness, we will also present an overview of the charge separation and electron transfer pathways in reaction centers. Finally, recent theoretical and experimental progress on excitation energy transfer, charge separation, and charge transport in artificial light harvesting systems is delineated, with organic solar cells taken as prime examples.

  11. Bimolecular Excited-State Electron Transfer with Surprisingly Long-Lived Radical Ions

    KAUST Repository

    Alsam, Amani Abdu


    We explored the excited-state interactions of bimolecular, non-covalent systems consisting of cationic poly[(9,9-di(3,3’-N,N’-trimethyl-ammonium) propyl fluorenyl-2,7-diyl)-alt-co-(9,9-dioctyl-fluorenyl-2,7-diyl)] diiodide salt (PFN) and 1,4-dicyanobenzene (DCB) using steady-state and time-resolved techniques, including femto- and nanosecond transient absorption and femtosecond infrared spectroscopies with broadband capabilities. The experimental results demonstrated that photo-induced electron transfer from PFN to DCB occurs on the picosecond time scale, leading to the formation of PFN+• and DCB-• radical ions. Interestingly, real-time observations of the vibrational marker modes on the acceptor side provided direct evidence and insight into the electron transfer process indirectly inferred from UV-Vis experiments. The band narrowing on the picosecond time scale observed on the antisymmetric C-N stretching vibration of the DCB radical anion provides clear experimental evidence that a substantial part of the excess energy is channeled into vibrational modes of the electron transfer product and that the geminate ion pairs dissociate. More importantly, our nanosecond time-resolved data indicate that the charge-separated state is very long lived ( 30 ns) due to the dissociation of the contact radical ion pair into free ions. Finally, the fast electron transfer and slow charge recombination anticipate the current donor−acceptor system with potential applications in organic solar cells.

  12. Vibration transfers to measure the performance of vibration isolated platforms on site using background noise excitation

    NARCIS (Netherlands)

    Segerink, Franciscus B.; Korterik, Jeroen P.; Offerhaus, Herman L.


    This article demonstrates a quick and easy way of quantifying the performance of a vibration-isolated platform. We measure the vibration transfer from floor to table using background noise excitation from the floor. As no excitation device is needed, our setup only requires two identical sensors (in

  13. Excited state intramolecular charge transfer reaction of 4 ...

    Indian Academy of Sciences (India)


    We will use the twisted intramolecular charge transfer (TICT) model to explain the photo-induced charge transfer ..... full width at half maxima (Γ) are expressed in 103 cm–1. –ΔGr are in kJ mol–1 units. PFH: per- ..... incorrect values of thermodynamic and kinetic parameters calculated using these reaction times, leading to ...

  14. Comparative study on contribution of charge-transfer collision to excitations of iron ion between argon radio-frequency inductively-coupled plasma and nitrogen microwave induced plasma

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Kozue; Wagatsuma, Kazuaki, E-mail:


    This paper describes an ionization/excitation phenomenon of singly-ionized iron occurring in an Okamoto-cavity microwave induced plasma (MIP) as well as an argon radio-frequency inductively-coupled plasma (ICP), by comparing the Boltzmann distribution among iron ionic lines (Fe II) having a wide range of the excitation energy from 4.76 to 9.01 eV. It indicated in both the plasmas that plots of Fe II lines having lower excitation energies (4.76 to 5.88 eV) were fitted on each linear relationship, implying that their excitations were caused by a dominant thermal process such as collision with energetic electron. However, Fe II lines having higher excitation energies (more than 7.55 eV) had a different behavior from each other. In the ICP, Boltzmann plots of Fe II lines assigned to the higher excited levels also followed the normal Boltzmann relationship among the low-lying excited levels, even including a deviation from it in particular excited levels having an excitation energy of ca. 7.8 eV. This deviation can be attributed to a charge-transfer collision with argon ion, which results in the overpopulation of these excited levels, but the contribution is small. On the other hand, the distribution of the high-lying excited levels was non-thermal in the Okamoto-cavity MIP, which did not follow the normal Boltzmann relationship among the low-lying excited levels. A probable reason for the non-thermal characteristics in the MIP is that a charge-transfer collision with nitrogen molecule ion having many vibrational/rotational levels could work for populating the 3d{sup 6}4p (3d{sup 5}4s4p) excited levels of iron ion broadly over an energy range of 7.6–9.0 eV, while collisional excitation by energetic electron would occur insufficiently to excite these high-energy levels. - Highlights: • This paper describes the excitation mechanism of iron ion in Okamoto-cavity MIP in comparison with conventional ICP. • Boltzmann distribution is studied among iron ionic lines of

  15. Low energy electron impact vibrational excitation of acetylene (United States)

    Patra, Sigma; Hargreaves, Leigh; Khakoo, Murtadha


    Experimental differential cross sections for the vibration excitation of the four fundamental modes of acetylene at low incident electron energies from 1 eV to 20 eV and scattering angles of 10o to 130o will be presented. The results will be compared to results available in the literature. Funded by NSF-AMOP-RUI Grant.

  16. Antenna organization in green photosynthetic bacteria. 2. Excitation transfer in detached and membrane-bound chlorosomes from Chloroflexus aurantiacus

    Energy Technology Data Exchange (ETDEWEB)

    Brune, D.C.; King, G.H.; Infosino, A.; Steiner, T.; Thewalt, M.L.W.; Blankenship, R.E.


    The photosynthetic antenna of Chloroflexus aurantiacus includes bacteriochlorophyll (BChl) c/sub 740/ and BChl a/sub 292/, both of which occur in chlorosomes, and B808-866 (containing BChl a/sub 808/ and BChl a/sub 866/), which is membrane-located (subscripts refer to near-infrared absorption maxima in vivo). BChl a/sub 792/ is thought to mediate excitation transfer from BChl c/sub 740/ to BChl a/sub 808/. Lifetimes of fluorescence from BChl c/sub 792/ and BChl a/sub 792/ were measured in isolated and membrane-bound chlorosomes in order to study energy transfer from these pigments. In both preparations, the lifetime of BChl c/sub 740/ fluorescence was at or below the instrumental limit of temporal resolution (about 30-50 ps), implying extremely fast excitation transfer from this pigment. Attempts to disrupt excitation transfer from BChl c/sub 740/, either by conversion of part of this pigment to a monomeric form absorbing at 671 nm or by partial destruction of BChl a/sub 792/ by oxidation with K/sub 3/Fe(CN)/sub 6/, had no discernible effects on the lifetime of BChl c/sub 740/ fluorescence. Most of the fluorescence from BChl a/sub 792/ decayed with a lifetime of 93 +/- 21 ps in membrane-attached chlorosomes and 155 +/- 22 ps in isolated chlorosomes at room temperature. Assuming that the only difference between these preparations is the occurrence of excitation transfer from BChl a/sub 792/ to B808-866, a 41% efficiency was calculated for this process. These results imply either that BChl a/sub 792/ is not an obligatory intermediate in energy transfer from BChl c/sub 7/$/sub 0/ to B808-866 or (more probably) that chlorosome isolation introduces new processes for quenching fluorescence from BChl a/sub 792/.

  17. Long-wave UVA radiation excited warm white-light emitting NaGdTiO{sub 4}: Tm{sup 3+}/Dy{sup 3+}/Eu{sup 3+} ions tri-doped phosphors: Synthesis, energy transfer and color tunable properties

    Energy Technology Data Exchange (ETDEWEB)

    Bharat, L. Krishna; Du, Peng; Yu, Jae Su, E-mail:


    NaGdTiO{sub 4} (NGT) phosphors doped with different activator ions (Tm{sup 3+}, Dy{sup 3+}, and Eu{sup 3+}) were synthesized by a conventional solid-state reaction method in an ambient atmosphere. These phosphors were characterized by scanning electron microscope images, transmission electron microscope images, X-ray diffraction patterns, Fourier transform infrared spectra, and photoluminescence spectra. All the samples were crystallized in an orthorhombic phase with a space group of Pbcm (57). In Tm{sup 3+}/Dy{sup 3+} ions co-doped samples, white-light emission was observed under near-ultraviolet (NUV) excitation. In addition, the energy transfer between Tm{sup 3+} and Dy{sup 3+} ions was proved to be a resonant type via an electric dipole–dipole mechanism and the critical distance of energy transfer was calculated to be 19.91 Å. Furthermore, Tm{sup 3+}/Dy{sup 3+}/Eu{sup 3+} ions tri-doped NGT phosphors demonstrated warm white-light emission by appropriately tuning the activator content, based on the principle of energy transfer. These NUV wavelength excitable phosphors exhibit great potential as a single-phase full-color emitting phosphor for white light-emitting diode applications. - Highlights: • The pebble shaped NaGdTiO{sub 4} particles were prepared by solid-state reaction method. • Tm{sup 3+} and Dy{sup 3+} single doping gives respective blue and cool white light emission. • The Tm{sup 3+}/Dy{sup 3+} ions co-doped samples give CIE values near to standard white light. • Addition of Eu{sup 3+} ions shifts the CIE values towards warm white light region. • This single phase white light emitting phosphors have lower CCT values (<5000 K).

  18. Theoretical study on water-mediated excited-state multiple proton transfer in 7-azaindole: significance of hydrogen bond rearrangement. (United States)

    Yu, Xue-fang; Yamazaki, Shohei; Taketsugu, Tetsuya


    Excited-state multiple proton transfer (ESMPT) in the cluster of 7-azaindole with three water molecules [7-azaindole(H(2)O)(3)] is theoretically investigated by the TDDFT, CASPT2, and CC2 methods. Examination of the potential energy surface in the first excited state indicates that ESMPT in 7-azaindole(H(2)O)(3) proceeds initially with the rearrangement of hydrogen bond structure of water molecules from a bridged-planar isomer to a cyclic-nonplanar isomer, followed by triple proton transfer in the latter. This reaction is found to be energetically more favorable than quadruple proton transfer in the bridged-planar isomer without hydrogen bond reorganization. It is also shown that all proton-transfer processes follow a concerted mechanism rather than a stepwise mechanism. The computational results show good consistency with the unexpected experimental observations as to the electronic spectra and excited-state lifetime. In particular, the barrier of the hydrogen bond rearrangement is found to be less than 1 kcal/mol, consistent with the missing vibronic bands for 7-azaindole(H(2)O)(3) with an excess energy of more than 200 cm(-1) in the S(1) state.

  19. The feasibility of coherent energy transfer in microtubules. (United States)

    Craddock, Travis John Adrian; Friesen, Douglas; Mane, Jonathan; Hameroff, Stuart; Tuszynski, Jack A


    It was once purported that biological systems were far too 'warm and wet' to support quantum phenomena mainly owing to thermal effects disrupting quantum coherence. However, recent experimental results and theoretical analyses have shown that thermal energy may assist, rather than disrupt, quantum coherent transport, especially in the 'dry' hydrophobic interiors of biomolecules. Specifically, evidence has been accumulating for the necessary involvement of quantum coherent energy transfer between uniquely arranged chromophores in light harvesting photosynthetic complexes. The 'tubulin' subunit proteins, which comprise microtubules, also possess a distinct architecture of chromophores, namely aromatic amino acids, including tryptophan. The geometry and dipolar properties of these aromatics are similar to those found in photosynthetic units indicating that tubulin may support coherent energy transfer. Tubulin aggregated into microtubule geometric lattices may support such energy transfer, which could be important for biological signalling and communication essential to living processes. Here, we perform a computational investigation of energy transfer between chromophoric amino acids in tubulin via dipole excitations coupled to the surrounding thermal environment. We present the spatial structure and energetic properties of the tryptophan residues in the microtubule constituent protein tubulin. Plausibility arguments for the conditions favouring a quantum mechanism of signal propagation along a microtubule are provided. Overall, we find that coherent energy transfer in tubulin and microtubules is biologically feasible. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  20. Simple estimates of excitation energy sharing between heavy and light fragments in heavy-ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Dasso, C.H.; Lozano, M.; Pollarolo, G.


    Qualitative arguments are used to estiamte the ratio of excitation energies between heavy and light fragments for asymmetric heavy-ion collisions. The value of this quantity is linked to the relative role played by inelastic and transfer degrees of freedom and thereby to an approximate function of the total kinetic energy loss. A numerical analysis that confirms the trends anticipated by the simple arguments is performed for the reactions /sup 56/Fe+ /sup 238/U and /sup 86/Kr+ /sup 208/Pb at bombarding energies in the laboratory of 476 and 1565 MeV, respectively.

  1. Frenkel and Charge-Transfer Excitations in Donor-acceptor Complexes from Many-Body Green's Functions Theory. (United States)

    Baumeier, Björn; Andrienko, Denis; Rohlfing, Michael


    Excited states of donor-acceptor dimers are studied using many-body Green's functions theory within the GW approximation and the Bethe-Salpeter equation. For a series of prototypical small-molecule based pairs, this method predicts energies of local Frenkel and intermolecular charge-transfer excitations with the accuracy of tens of meV. Application to larger systems is possible and allowed us to analyze energy levels and binding energies of excitons in representative dimers of dicyanovinyl-substituted quarterthiophene and fullerene, a donor-acceptor pair used in state of the art organic solar cells. In these dimers, the transition from Frenkel to charge transfer excitons is endothermic and the binding energy of charge transfer excitons is still of the order of 1.5-2 eV. Hence, even such an accurate dimer-based description does not yield internal energetics favorable for the generation of free charges either by thermal energy or an external electric field. These results confirm that, for qualitative predictions of solar cell functionality, accounting for the explicit molecular environment is as important as the accurate knowledge of internal dimer energies.

  2. Evolution of isotopic fission-fragment yields with excitation energy

    Directory of Open Access Journals (Sweden)

    Bazin D.


    Full Text Available Two fission experiments have been performed at GANIL using 238U beams at different energies and light targets. Different fissioning systems were produced with excitation energies from 10 to 230 MeV and their decay by fission was investigated with GANIL spectrometers. Preliminary fission-fragment isotopic distributions have been obtained. The evolution with impinging energy of their properties, the neutron excess and the width of the neutron-number distributions, gives important insights into the dynamics of fusion-fission mechanism.

  3. Excited state intramolecular charge transfer reaction in non-aqueous ...

    Indian Academy of Sciences (India)

    concentration dependent reaction rate constant of a. TICT reaction already measured in bulk electrolyte solutions.44–46 Here, we report such a study where photo-induced intramolecular charge transfer reaction has been investigated in AOT/heptane non-aqueous reverse micelles at different Ws values, and also in.

  4. Importance of excitation and trapping conditions in photosynthetic environment-assisted energy transport. (United States)

    León-Montiel, Roberto de J; Kassal, Ivan; Torres, Juan P


    It has been argued that excitonic energy transport in photosynthetic complexes is efficient because of a balance between coherent evolution and decoherence, a phenomenon called environment-assisted quantum transport (ENAQT). Studies of ENAQT have usually assumed that the excitation is initially localized on a particular chromophore, and that it is transferred to a reaction center through a similarly localized trap. However, these assumptions are not physically accurate. We show that more realistic models of excitation and trapping can lead to very different predictions about the importance of ENAQT. In particular, although ENAQT is a robust effect if one assumes a localized trap, its effect can be negligible if the trapping is more accurately modeled as Förster transfer to a reaction center. Our results call into question the suggested role of ENAQT in the photosynthetic process of green sulfur bacteria and highlight the subtleties associated with drawing lessons for designing biomimetic light-harvesting complexes.

  5. Resonance energy transfer: Dye to metal nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wari, M. N.; Pujar, G. H.; Inamdar, S. R., E-mail: [Laser Spectroscopy Programme, Department of Physics, Karnatak University, Dharwad-580003 (India)


    In the present study, surface energy transfer (SET) from Coumarin 540A (C540 A) to Gold nanoparticle (Au) is demonstrated. The observed results show pronounced effect on the photoluminescence intensity and shortening of the lifetime of Coumarin 540A upon interaction with the spherical gold nanoparticle, also there are measured effects on radiative rate of the dye. Experimental results are analyzed with fluorescence resonance energy transfer (FRET) and SET theories. The results obtained from distance-dependent quenching provide experimental evidence that the efficiency curve slope and distance of quenching is best modeled by surface energy transfer process.

  6. Exogenous quinones inhibit photosynthetic electron transfer in Chloroflexus aurantiacus by specific quenching of the excited bacteriochlorophyll c antenna

    DEFF Research Database (Denmark)

    Frigaard, N-U; Tokita, S; Matsuura, K


    -hydroxy-1,4-naphthoquinone, or 4 microM 2-acetyl-3-methyl-1,4-naphthoquinone. Between 25 and 100 times higher quinone concentrations were needed to quench BChl a fluorescence to a similar extent. These quinones also efficiently inhibited flash-induced cytochrome c oxidation when BChl c was excited......, but not when BChl a was excited. The quenching of BChl c fluorescence induced by these quinones correlated with the inhibition of flash-induced cytochrome c oxidation. We concluded that the quinones inhibited electron transfer in the reaction center by specifically quenching the excitation energy in the BChl c...... antenna. Our results provide a model system for studying the redox-dependent antenna quenching in green sulfur bacteria because the antennas in these bacteria inherently exhibit a sensitivity to O(2) similar to the quinone-supplemented cells of Cfx. aurantiacus....

  7. Excited state charge transfer reaction in (mixed solvent + electrolyte ...

    Indian Academy of Sciences (India)

    charge transfer reaction of 4-(1-azetidinyl)benzonitrile (P4C) in two sets of mixed solvents, (1-propanol + ethyl acetate) and (propylene ...... Harun Al Rasid Gazi and Ranjit Biswas. PrOH+EA. Normalized F.I.. 0. 1. Normalized F.I.. 0. 1. -3. 0. 3. 3000. 4000. 5000. 6000. Residual. -3. 0. 3. Residual. -3. 0. 3. Time(ps). 3000. 4000.

  8. High-energy excited states in {sup 98}Cd

    Energy Technology Data Exchange (ETDEWEB)

    Blazhev, A; Braun, N; Jolie, J [Universitaet zu Koeln, Cologne (Germany); Grawe, H; Boutachkov, P; Gorska, M; Pietri, S; Domingo-Pardo, C; Kojouharov, I; Caceres, L; Engert, T; Farinon, F; Gerl, J; Goel, N [GSI, Darmstadt (Germany); Singh, B S Nara; Brock, T; Wadsworth, R [University of York, York (United Kingdom); Liu, Zh [University of Edinburgh, Edinburgh (United Kingdom); Nowacki, F [IPHC, Strasbourg (France); Grebosz, J, E-mail: a.blazhev@ikp.uni-koeln.d [IFJ PAN, Krakow (Poland)


    In {sup 98}Cd a new high-energy isomeric {gamma}-ray transition was identified, which confirms previous spin-parity assignments and enables for the first time the measurement of the E2 and E4 strength for the two decay branches of the isomer. Preliminary results on the {sup 98}Cd high-excitation level scheme are presented. A comparison to shell-model calculations as well as implications for the nuclear structure around {sup 100}Sn are discussed.

  9. Low-threshold wavelength-switchable organic nanowire lasers based on excited-state intramolecular proton transfer. (United States)

    Zhang, Wei; Yan, Yongli; Gu, Jianmin; Yao, Jiannian; Zhao, Yong Sheng


    Coherent light signals generated at the nanoscale are crucial to the realization of photonic integrated circuits. Self-assembled nanowires from organic dyes can provide both a gain medium and an effective resonant cavity, which have been utilized for fulfilling miniaturized lasers. Excited-state intramolecular proton transfer (ESIPT), a classical molecular photoisomerization process, can be used to build a typical four-level system, which is more favorable for population inversion. Low-power driven lasing in proton-transfer molecular nanowires with an optimized ESIPT energy-level process has been achieved. With high gain and low loss from the ESIPT, the wires can be applied as effective FP-type resonators, which generated single-mode lasing with a very low threshold. The lasing wavelength can be reversibly switched based on a conformation conversion of the excited keto form in the ESIPT process. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Carotenoids as electron or excited-state energy donors in artificial photosynthesis: an ultrafast investigation of a carotenoporphyrin and a carotenofullerene dyad

    NARCIS (Netherlands)

    Pillai, S.; Ravensbergen, J.; Antoniuk-Pablant, A.; Sherman, B.D.; van Grondelle, R.; Frese, R.N.; Moore, T.A.; Gust, D.; Moore, A.L.; Kennis, J.T.M.


    Photophysical investigations of molecular donor-acceptor systems have helped elucidate many details of natural photosynthesis and revealed design principles for artificial photosynthetic systems. To obtain insights into the factors that govern the partition between excited-state energy transfer

  11. Mutations to R. sphaeroides Reaction Center Perturb Energy Levels and Vibronic Coupling but Not Observed Energy Transfer Rates. (United States)

    Flanagan, Moira L; Long, Phillip D; Dahlberg, Peter D; Rolczynski, Brian S; Massey, Sara C; Engel, Gregory S


    The bacterial reaction center is capable of both efficiently collecting and quickly transferring energy within the complex; therefore, the reaction center serves as a convenient model for both energy transfer and charge separation. To spectroscopically probe the interactions between the electronic excited states on the chromophores and their intricate relationship with vibrational motions in their environment, we examine coherences between the excited states. Here, we investigate this question by introducing a series of point mutations within 12 Å of the special pair of bacteriochlorophylls in the Rhodobacter sphaeroides reaction center. Using two-dimensional spectroscopy, we find that the time scales of energy transfer dynamics remain unperturbed by these mutations. However, within these spectra, we detect changes in the mixed vibrational-electronic coherences in these reaction centers. Our results indicate that resonance between bacteriochlorophyll vibrational modes and excitonic energy gaps promote electronic coherences and support current vibronic models of photosynthetic energy transfer.

  12. Optimal dephasing for ballistic energy transfer in disordered linear chains (United States)

    Zhang, Yang; Celardo, G. Luca; Borgonovi, Fausto; Kaplan, Lev


    We study the interplay between dephasing, disorder, and coupling to a sink on transport efficiency in a one-dimensional chain of finite length N , and in particular the beneficial or detrimental effect of dephasing on transport. The excitation moves along the chain by coherent nearest-neighbor hopping Ω , under the action of static disorder W and dephasing γ . The last site is coupled to an external acceptor system (sink), where the excitation can be trapped with a rate Γtrap. While it is known that dephasing can help transport in the localized regime, here we show that dephasing can enhance energy transfer even in the ballistic regime. Specifically, in the localized regime we recover previous results, where the optimal dephasing is independent of the chain length and proportional to W or W2/Ω . In the ballistic regime, the optimal dephasing decreases as 1 /N or 1 /√{N } , respectively, for weak and moderate static disorder. When focusing on the excitation starting at the beginning of the chain, dephasing can help excitation transfer only above a critical value of disorder Wcr, which strongly depends on the sink coupling strength Γtrap. Analytic solutions are obtained for short chains.

  13. Theoretical study on the excited-state intramolecular proton-transfer reaction of 10-hydroxybenzo[h]quinoline in methanol and cyclohexane

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Meng [Department of Chemistry, Liaoning University, Shenyang 110036 (China); State Key Lab of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Zhao, Jinfeng [Department of Physics, Liaoning University, Shenyang 110036 (China); State Key Lab of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Cui, Yanling; Wang, Qianyu [Department of Physics, Liaoning University, Shenyang 110036 (China); Dai, Yumei [Normal College, Shenyang University, Shenyang 110044 (China); Song, Peng, E-mail: [Department of Physics, Liaoning University, Shenyang 110036 (China); Xia, Lixin, E-mail: [Department of Chemistry, Liaoning University, Shenyang 110036 (China)


    The dynamics of the excited-state intramolecular proton-transfer (ESIPT) reaction of 10-hydroxybenzoquinoline (HBQ) in different solvents, have been investigated based on the time-dependent density functional theory (TD-DFT) in detail. Upon excitation, the intramolecular hydrogen bond between the hydroxyl and phenanthrene functionality is significantly strengthened in the S{sub 1} state, which can be used as a reasonable tendency for facilitating the ESIPT process. In addition, the calculated vertical excitation energies in the S{sub 0} state and S{sub 1} state reproduce the experimental UV–vis absorbance and fluorescence emission spectra well. Through calculating the fluorescence spectra of the HBQ chromophore, two outcomes for this chromophore were found in the S{sub 1} state, which demonstrates that the ESIPT process occurs. The potential energy curves have been calculated to account for the mechanism of the proton-transfer process in the excited-state. As a result, the barrierless ESIPT process can occur in the S{sub 1} state with proton transfer from the O atom to the N atom. And maybe the ESIPT process is easier in methanol solvent due to the higher potential energy difference. - Highlights: • The hydrogen bond between the hydroxyl and phenanthrene is strengthened. • The hydrogen bond facilitates the proton transfer from the hydroxyl group to the N atom. • The spontaneous excited-state intramolecular proton transfer reaction can be observed.

  14. Posture-Dependent Corticomotor Excitability Differs Between the Transferred Biceps in Individuals With Tetraplegia and the Biceps of Nonimpaired Individuals. (United States)

    Peterson, Carrie L; Rogers, Lynn M; Bednar, Michael S; Bryden, Anne M; Keith, Michael W; Perreault, Eric J; Murray, Wendy M


    Following biceps transfer to enable elbow extension in individuals with tetraplegia, motor re-education may be facilitated by greater corticomotor excitability. Arm posture modulates corticomotor excitability of the nonimpaired biceps. If arm posture also modulates excitability of the transferred biceps, posture may aid in motor re-education. Our objective was to determine whether multi-joint arm posture affects corticomotor excitability of the transferred biceps similar to the nonimpaired biceps. We also aimed to determine whether corticomotor excitability of the transferred biceps is related to elbow extension strength and muscle length. Corticomotor excitability was assessed in 7 arms of individuals with tetraplegia and biceps transfer using transcranial magnetic stimulation and compared to biceps excitability of nonimpaired individuals. Single-pulse transcranial magnetic stimulation was delivered to the motor cortex with the arm in functional postures at rest. Motor-evoked potential amplitude was recorded via surface electromyography. Elbow moment was recorded during maximum isometric extension trials, and muscle length was estimated using a biomechanical model. Arm posture modulated corticomotor excitability of the transferred biceps differently than the nonimpaired biceps. Elbow extension strength was positively related and muscle length was unrelated, respectively, to motor-evoked potential amplitude across the arms with biceps transfer. Corticomotor excitability of the transferred biceps is modulated by arm posture and may contribute to strength outcomes after tendon transfer. Future work should determine whether modulating corticomotor excitability via posture promotes motor re-education during the rehabilitative period following surgery.

  15. Optical Energy Transfer and Conversion System (United States)

    Stone, William C. (Inventor); Hogan, Bartholomew P. (Inventor)


    An optical power transfer system comprising a fiber spooler, a fiber optic rotary joint mechanically connected to the fiber spooler, and an electrical power extraction subsystem connected to the fiber optic rotary joint with an optical waveguide. Optical energy is generated at and transferred from a base station through fiber wrapped around the spooler, through the rotary joint, and ultimately to the power extraction system at a remote mobility platform for conversion to another form of energy.

  16. Photochemistry and electron-transfer mechanism of transition metal oxalato complexes excited in the charge transfer band. (United States)

    Chen, Jie; Zhang, Hua; Tomov, Ivan V; Ding, Xunliang; Rentzepis, Peter M


    The photoredox reaction of trisoxalato cobaltate (III) has been studied by means of ultrafast extended x-ray absorption fine structure and optical transient spectroscopy after excitation in the charge-transfer band with 267-nm femtosecond pulses. The Co-O transient bond length changes and the optical spectra and kinetics have been measured and compared with those of ferrioxalate. Data presented here strongly suggest that both of these metal oxalato complexes operate under similar photoredox reaction mechanisms where the primary reaction involves the dissociation of a metal-oxygen bond. These results also indicate that excitation in the charge-transfer band is not a sufficient condition for the intramolecular electron transfer to be the dominant photochemistry reaction mechanism.

  17. Manipulating charge transfer excited state relaxation and spin crossover in iron coordination complexes with ligand substitution

    DEFF Research Database (Denmark)

    Zhang, Wenkai; Kjær, Kasper Skov; Alonso-Mori, Roberto


    state lifetime of iron based complexes due to spin crossover-the extremely fast intersystem crossing and internal conversion to high spin metal-centered excited states. We revitalize a 30 year old synthetic strategy for extending the MLCT excited state lifetimes of iron complexes by making mixed ligand...... iron complexes with four cyanide (CN-;) ligands and one 2,2′-bipyridine (bpy) ligand. This enables MLCT excited state and metal-centered excited state energies to be manipulated with partial independence and provides a path to suppressing spin crossover. We have combined X-ray Free-Electron Laser (XFEL......) Kβ hard X-ray fluorescence spectroscopy with femtosecond time-resolved UV-visible absorption spectroscopy to characterize the electronic excited state dynamics initiated by MLCT excitation of [Fe(CN)4(bpy)]2-. The two experimental techniques are highly complementary; the time-resolved UV...

  18. Targeting Low-Energy Ballistic Lunar Transfers (United States)

    Parker, Jeffrey S.


    Numerous low-energy ballistic transfers exist between the Earth and Moon that require less fuel than conventional transfers, but require three or more months of transfer time. An entirely ballistic lunar transfer departs the Earth from a particular declination at some time in order to arrive at the Moon at a given time along a desirable approach. Maneuvers may be added to the trajectory in order to adjust the Earth departure to meet mission requirements. In this paper, we characterize the (Delta)V cost required to adjust a low-energy ballistic lunar transfer such that a spacecraft may depart the Earth at a desirable declination, e.g., 28.5(white bullet), on a designated date. This study identifies the optimal locations to place one or two maneuvers along a transfer to minimize the (Delta)V cost of the transfer. One practical application of this study is to characterize the launch period for a mission that aims to launch from a particular launch site, such as Cape Canaveral, Florida, and arrive at a particular orbit at the Moon on a given date using a three-month low-energy transfer.

  19. Proton-Proton Elastic Scattering Excitation Functions at Intermediate Energies (United States)

    Albers, D.; Bisplinghoff, J.; Bollmann, R.; Büßer, K.; Cloth, P.; Daniel, R.; Diehl, O.; Dohrmann, F.; Engelhardt, H. P.; Ernst, J.; Eversheim, P. D.; Gasthuber, M.; Gebel, R.; Greiff, J.; Groß, A.; Groß-Hardt, R.; Heider, S.; Heine, A.; Hinterberger, F.; Igelbrink, M.; Jahn, R.; Jeske, M.; Lahr, U.; Langkau, R.; Lindlein, J.; Maier, R.; Maschuw, R.; Mayer-Kuckuk, T.; Mosel, F.; Müller, M.; Münstermann, M.; Prasuhn, D.; Rohdjeß, H.; Rosendaal, D.; Roß, U.; von Rossen, P.; Scheid, H.; Schirm, N.; Schulz-Rojahn, M.; Schwandt, F.; Schwarz, V.; Scobel, W.; Sterzenbach, G.; Trelle, H. J.; Wellinghausen, A.; Wiedmann, W.; Woller, K.; Ziegler, R.


    Excitation functions of proton-proton elastic scattering cross sections have been measured in narrow steps for projectile momenta pp (energies Tp) from 1100 to 3300 MeV/c (500 to 2500 MeV) in the angular range 35°<=Θc.m.<=90° with a detector providing ΔΘc.m.~1.4° resolution. Measurements have been performed continuously during projectile acceleration in the cooler synchrotron COSY with an internal CH2 fiber target, taking particular care to monitor luminosity as a function of Tp. The advantages of this experimental technique are demonstrated, and the excitation functions obtained are compared to existing cross section data. No evidence for narrow structures was found.

  20. Proton-Proton Elastic Scattering Excitation Functions at Intermediate Energies

    Energy Technology Data Exchange (ETDEWEB)

    Bisplinghoff, J.; Daniel, R.; Diehl, O.; Engelhardt, H.; Ernst, J.; Eversheim, P.; Gro-Hardt, R.; Heider, S.; Heine, A.; Hinterberger, F.; Jahn, R.; Jeske, M.; Lahr, U.; Maschuw, R.; Mayer-Kuckuk, T.; Mosel, F.; Rohdje, H.; Rosendaal, D.; Ro, U.; Scheid, H.; Schulz-Rojahn, M.; Schwandt, F.; Schwarz, V.; Trelle, H.; Wiedmann, W.; Ziegler, R. [Inst.fuer Strahlen- und Kernphysik, Universitaet Bonn, D-53115 Bonn (Germany); Albers, D.; Bollmann, R.; Bueer, K.; Dohrmann, F.; Gasthuber, M.; Greiff, J.; Gro, A.; Igelbrink, M.; Langkau, R.; Lindlein, J.; Mueller, M.; Muenstermann, M.; Schirm, N.; Scobel, W.; Wellinghausen, A.; Woller, K. [I. Inst.fuer Experimentalphysik, Universitaet Hamburg, D-22761 Hamburg (Germany); Cloth, P.; Gebel, R.; Maier, R.; Prasuhn, D.; von Rossen, P.; Sterzenbach, G. [Inst.fuer Kernphysik, KFA Juelich, Juelich (Germany)


    Excitation functions of proton-proton elastic scattering cross sections have been measured in narrow steps for projectile momenta p{sub p} (energies T{sub p}) from 1100 to 3300MeV/c (500 to 2500MeV) in the angular range 35{degree}{le}{Theta}{sub c.m.}{le}90{degree} with a detector providing {Delta}{Theta}{sub c.m.}{approx}1.4{degree} resolution. Measurements have been performed continuously during projectile acceleration in the cooler synchrotron COSY with an internal CH{sub 2} fiber target, taking particular care to monitor luminosity as a function of T{sub p}. The advantages of this experimental technique are demonstrated, and the excitation functions obtained are compared to existing cross section data. No evidence for narrow structures was found. {copyright} {ital 1997} {ital The American Physical Society}

  1. Observation of Electronic Excitation Transfer Through Light Harvesting Complex II Using Two-Dimensional Electronic-Vibrational Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, NHC; Gruenke, NL; Oliver, TAA; Ballottari, M; Bassi, R; Fleming, GR


    Light-harvesting complex II (LHCII) serves a central role in light harvesting for oxygenic photosynthesis and is arguably the most important photosynthetic antenna complex. In this article, we present two-dimensional electronic–vibrational (2DEV) spectra of LHCII isolated from spinach, demonstrating the possibility of using this technique to track the transfer of electronic excitation energy between specific pigments within the complex. We assign the spectral bands via comparison with the 2DEV spectra of the isolated chromophores, chlorophyll a and b, and present evidence that excitation energy between the pigments of the complex are observed in these spectra. Lastly, we analyze the essential components of the 2DEV spectra using singular value decomposition, which makes it possible to reveal the relaxation pathways within this complex.

  2. Excitation energies of strontium mono-hydroxide bands measured in flames

    NARCIS (Netherlands)

    Hurk, J. van der; Hollander, Tj.; Alkemade, C.T.J.


    Experiments are described to yield more decisive information about the excitation energies of visible strontium monohydroxide bands appearing in flames. Excitation energy differences are derived directly from the ratio of thermal band intensities measured as a function of temperature. Absolute

  3. Wireless energy transfer between anisotropic metamaterials shells

    Energy Technology Data Exchange (ETDEWEB)

    Díaz-Rubio, Ana; Carbonell, Jorge; Sánchez-Dehesa, José, E-mail:


    The behavior of strongly coupled Radial Photonic Crystals shells is investigated as a potential alternative to transfer electromagnetic energy wirelessly. These sub-wavelength resonant microstructures, which are based on anisotropic metamaterials, can produce efficient coupling phenomena due to their high quality factor. A configuration of selected constitutive parameters (permittivity and permeability) is analyzed in terms of its resonant characteristics. The coupling to loss ratio between two coupled resonators is calculated as a function of distance, the maximum (in excess of 300) is obtained when the shells are separated by three times their radius. Under practical conditions an 83% of maximum power transfer has been also estimated. -- Highlights: •Anisotropic metamaterial shells exhibit high quality factors and sub-wavelength size. •Exchange of electromagnetic energy between shells with high efficiency is analyzed. •Strong coupling is supported with high wireless transfer efficiency. •End-to-end energy transfer efficiencies higher than 83% can be predicted.

  4. Excitation photon energy dependence of photo-induced phase transition in (EDO-TTF)2PF6 (United States)

    Ogihara, S.; Onda, K.; Shimizu, M.; Ishikawa, T.; Okimoto, Y.; Shao, X. F.; Nakano, Y.; Yamochi, H.; Saito, G.; Koshihara, S.


    The conducting charge transfer complex (EDO-TTF)2PF6 has two types of charge transfer bands in the low temperature insulator phase: CT1 at 0.56 eV and CT2 at 1.38 eV. We excited these bands independently with a tunable ultrashort pulse laser and studied the difference of the photo-induced phases by measuring change in reflectivity spectrum over a wide photon energy range. As a result, we found that both the photo-induced phases by CT1 and CT2 excitation are the same except for their photo-conversion efficiencies

  5. Angular and energy dependence of (e,e{sup `}) cross sections for orbital 1{sup +} excitations

    Energy Technology Data Exchange (ETDEWEB)

    Nojarov, R. [Tuebingen Univ. (Germany). Inst. fuer Theoretische Physik; Faessler, A. [Tuebingen Univ. (Germany). Inst. fuer Theoretische Physik; Dingfelder, M. [Tuebingen Univ. (Germany). Inst. fuer Theoretische Physik


    The main features of the (e,e`) cross sections of low-lying orbital excitations with K{sup {pi}}=1{sup +} in heavy deformed nuclei are studied in RPA on the example of {sup 156}Gd. The dependence of the DWBA E2 and M1 cross sections on the scattering angle 0 {sup circle} <{theta}<180 {sup circle} and incident electron energy E{sub i} < 210 MeV is analyzed in PWBA. The cross section is larger for M1 than for E2 transitions at any angle if E{sub i}<30 MeV. The longitudinal (Coulomb) C2 excitation dominates the E2 response for 5 {sup circle} <{theta}<170 {sup circle}. Only transverse M1 and E2 excitations compete for {theta}>175 {sup circle} and the former one is dominant for q<1.2 fm{sup -1}. The M1 response is almost purely orbital up to q=1.4 fm{sup -1} even in backward scattering. Qualitative PWBA estimates based on the q-dependence of the form factors alone are not able to predict some important features of the (e,e`) cross sections stemming from the strong magnetic and orbital character of the studied 1{sup +} excitations. The expectation for M1 over E2 dominance in backward scattering should not be extended to higher momentum transfers and incident energies. (orig.).

  6. Boltzmann rovibrational collisional coarse-grained model for internal energy excitation and dissociation in hypersonic flows. (United States)

    Munafò, A; Panesi, M; Magin, T E


    A Boltzmann rovibrational collisional coarse-grained model is proposed to reduce a detailed kinetic mechanism database developed at NASA Ames Research Center for internal energy transfer and dissociation in N(2)-N interactions. The coarse-grained model is constructed by lumping the rovibrational energy levels of the N(2) molecule into energy bins. The population of the levels within each bin is assumed to follow a Boltzmann distribution at the local translational temperature. Excitation and dissociation rate coefficients for the energy bins are obtained by averaging the elementary rate coefficients. The energy bins are treated as separate species, thus allowing for non-Boltzmann distributions of their populations. The proposed coarse-grained model is applied to the study of nonequilibrium flows behind normal shock waves and within converging-diverging nozzles. In both cases, the flow is assumed inviscid and steady. Computational results are compared with those obtained by direct solution of the master equation for the rovibrational collisional model and a more conventional multitemperature model. It is found that the proposed coarse-grained model is able to accurately resolve the nonequilibrium dynamics of internal energy excitation and dissociation-recombination processes with only 20 energy bins. Furthermore, the proposed coarse-grained model provides a superior description of the nonequilibrium phenomena occurring in shock heated and nozzle flows when compared with the conventional multitemperature models.

  7. Excited states populated via nucleon transfer in the reaction [sup 32]S+[sup 208]Pb

    Energy Technology Data Exchange (ETDEWEB)

    Corradi, L.; Petrache, C.M.; Ackermann, D.; De Angelis, G.; Moreno, H.; Napoli, D.R.; Spolaore, P.; Stefanini, A.M. (INFN, Lab. Nazionali di Legnaro (Italy)); Beghini, S.; Montagnoli, G.; Scarlassara, F.; Segato, G.F.; Signorini, C. (Padua Univ. (Italy). Dipt. di Fisica INFN, Padua (Italy)); Pollarolo, G. (Turin Univ. (Italy). Dipt. di Fisica INFN, Turin (Italy))


    The population strengths of excited states in nuclei produced via transfer reactions in the 185 MeV[sup 32]S+[sup 208]Pb reaction have been investigated by heavy-ion-[gamma] coincidence techniques. The cross sections extracted from the [gamma] spectra, have been analyzed in the framework of the Complex WKB approximation theory. (orig.).

  8. Symmetry-breaking intramolecular charge transfer in the excited state of meso-linked BODIPY dyads

    KAUST Repository

    Whited, Matthew T.


    We report the synthesis and characterization of symmetric BODIPY dyads where the chromophores are attached at the meso position, using either a phenylene bridge or direct linkage. Both molecules undergo symmetry-breaking intramolecular charge transfer in the excited state, and the directly linked dyad serves as a visible-light-absorbing analogue of 9,9′-bianthryl.

  9. Dual electron transfer pathways from the excited C60 radical anion: enhanced reactivities due to the photoexcitation of reaction intermediates. (United States)

    Fujitsuka, Mamoru; Ohsaka, Tatsuya; Majima, Tetsuro


    In the present study, electron transfer (ET) processes from excited radical anions have been investigated using dyad molecules including C60. The deactivation process of excited C60˙(-), including the internal conversion from the D1 to the D0 state and the cooling process of the vibrationally hot ground state (D), was observed spectroscopically for the first time. These processes could be unambiguously distinguished by the observation of the stimulated emission from the D1 state. The intramolecular ET processes from the excited C60˙(-) were confirmed by the transient absorption spectra. Clearly, both D1 and D states acted as precursors for the ET, i.e., dual ET pathways were confirmed. The driving force dependence of the ET rates was well characterized by the Marcus theory, which revealed that the forward ET processes are located at the top region of the Marcus parabola. In addition, the ET from the excited imide radical anion to C60 and that from the ground state C60˙(-) to imide were examined. The ET rate from the excited imide radical anion and that from ground state C60˙(-) did not follow the Marcus parabola estimated for the ET from the excited C60˙(-). The observed difference can be attributed to the difference in the energy required to form the reduced spacer (Δ) in the superexchange mechanism. Because the Δ value tends to become smaller for ET processes from excited radical ions, fast and efficient ET processes are expected from these states as demonstrated in the present study.

  10. Energy-donor phosphorescence quenching study of triplet–triplet energy transfer between UV absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Azusa; Nakabai, Yuya [Department of Chemistry, Graduate School of Engineering, Yokohama National University, Tokiwadai, Hodogaya-ku, Yokohama 240-8501 (Japan); Oguchi-Fujiyama, Nozomi; Miyazawa, Kazuyuki [Shiseido Research Center, Hayabuchi, Tsuzuki-ku, Yokohama 224-8558 (Japan); Yagi, Mikio, E-mail: [Department of Chemistry, Graduate School of Engineering, Yokohama National University, Tokiwadai, Hodogaya-ku, Yokohama 240-8501 (Japan)


    The intermolecular triplet–triplet energy transfer from a photounstable UV-A absorber, 4-tert-butyl-4′-methoxydibenzoylmethane (BMDBM), to UV-B absorbers, 2-ethylhexyl 4-methoxycinnamate (octyl methoxycinnamate, OMC), octocrylene (OCR) and dioctyl 4-methoxybenzylidenemalonate (DOMBM) has been observed using a 355 nm laser excitation in rigid solutions at 77 K. The decay curves of the energy-donor phosphorescence in the presence of the UV-B absorbers deviate from the exponential decay at the initial stage of the decay. The Stern–Volmer formulation is not valid in rigid solutions because molecular diffusion is impossible. The experimental results indicate that the rate constant of triplet–triplet energy transfer from BMDBM to the UV-B absorbers, k{sub T–T}, decreases in the following order: k{sub T–T} (BMDBM–DOMBM)>k{sub T–T} (BMDBM–OMC)≥k{sub T–T} (BMDBM–OCR). The presence of DOMBM enhances the photostability of the widely used combination of UV-A and UV-B absorbers, BMDBM and OCR. The effects of the triplet–triplet energy transfer on the photostability of BMDBM are discussed. - Highlights: • The intermolecular triplet–triplet energy transfer between UV absorbers was observed. • The phosphorescence decay deviates from exponential at the initial stage of decay. • The effects of triplet–triplet energy transfer on the photostability are discussed.

  11. Resonant transfer excitation of fluorine-like Mo{sup 33+} ion

    Energy Technology Data Exchange (ETDEWEB)

    Ramadan, Hassan [Ain Shams Univ., Cairo (Egypt). Dept. of Basic Sciences; Elkilany, Sabbah [Kafr El-sheikh Univ. (Egypt). Dept. of Mathematics


    Dielectronic recombination (DR) cross sections (anti {sigma}{sup DR}) and rate coefficients ({alpha}{sup DR}) for Mo{sup 33+} are calculated using the angular momentum average scheme (AMA). Moreover, the resonant transfer excitation followed by X-ray emission (RTEX) cross sections ({sigma}{sup RTEX}) for the collision of Mo{sup 33+} with H{sub 2} and He targets are calculated and studied. The calculations of the cross sections are performed for both K- and L-shell excitations. A smooth change with the temperatures for {alpha}{sup DR} is found for all kinds of excitations. The rates for K-shell excitation are very small in comparison with the rates for L-shell excitation. The RTEX cross sections for Mo{sup 33+} ions are obtained from their corresponding DR cross sections by the method of folding in the impulse approximation (IMA). {sigma}{sup RTEX} for the K-shell excitation shows two overlapped peaks which may be attributed to the two groups in this excitation process. The present calculations are considered as a database for future comparison with theoretical and experimental data using other coupling schemes. Multiple Auger channels are complicating the dependence of the cross sections on principal quantum numbers. (orig.)

  12. Photophysical properties and energy transfer mechanism of PFO/Fluorol 7GA hybrid thin films

    Energy Technology Data Exchange (ETDEWEB)

    Al-Asbahi, Bandar Ali, E-mail: [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor (Malaysia); Department of Physics, Faculty of Science, Sana' a University (Yemen); Jumali, Mohammad Hafizuddin Haji, E-mail: [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor (Malaysia); Yap, Chi Chin; Flaifel, Moayad Husein [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor (Malaysia); Salleh, Muhamad Mat [Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor (Malaysia)


    Photophysical properties of poly (9,9′-di-n-octylfluorenyl-2.7-diyl) (PFO)/2-butyl-6- (butylamino)benzo [de] isoquinoline-1,3-dione (Fluorol 7GA) and energy transfer between them have been investigated. In this work, both PFO and Fluorol 7GA act as donor and acceptor, respectively. Based on the absorption and luminescence measurements, the photophysical and energy transfer properties such as fluorescence quantum yield (Φ{sub f}), fluorescence lifetime (τ), radiative rate constant (k{sub r}), non-radiative rate constant (k{sub nr}), quenching rate constant (k{sub SV}), energy transfer rate constant (k{sub ET}), energy transfer probability (P{sub DA}), energy transfer efficiency (η), critical concentration of acceptor (C{sub o}), energy transfer time (τ{sub ET}) and critical distance of energy transfer (R{sub o}) were calculated. Large values of k{sub SV}, k{sub ET} and R{sub o} suggested that Förster-type energy transfer was the dominant mechanism for the energy transfer between the excited donor and ground state acceptor molecules. It was observed that the Förster energy transfer together with the trapping process are crucial for performance improvement in ITO/(PFO/Fluorol7GA)/Al device. -- Highlights: • The efficient of energy transfer from PFO to Fluorol 7GA was evidenced. • The resonance energy transfer (Förster type) is the dominant mechanism. • Hsu et al. model was used to calculate Φ{sub f}, τ, k{sub r} and k{sub nr} of PFO thin film. • Several of the photophysical and energy transfer properties were calculated. • Trapping process and Förster energy transfer led to improve the device performance.

  13. Probing nuclear shell structure beyond the N=40 subshell using multiple Coulomb excitation and transfer experiments

    Energy Technology Data Exchange (ETDEWEB)

    Hellgartner, Stefanie Christine


    In this work, the N=40 subshell closure is investigated with two complementary methods using a radioactive {sup 72}Zn ISOLDE beam: One- and two-neutron transfer reactions and multiple Coulomb excitation. In the one-neutron transfer reaction, two new levels of {sup 73}Zn were discovered. The two-neutron transfer channel allowed to study the differential cross section of the ground state and the 2{sup +}{sub 1} state of {sup 74}Zn. In the Coulomb excitation experiment, the measured B(E2) values and quadrupole moments of {sup 72}Zn showed that the yrast states 0{sup +}{sub 1}, 2{sup +}{sub 1} and 4{sup +}{sub 1} are moderately collective. Contrary, the 0{sup +}{sub 2} state has a different structure, since it features a stronger closed N=40 configuration compared to the ground state.

  14. Limit on rotational energy available to excite Jovian aurora (United States)

    Eviatar, A.; Siscoe, G. L.


    There is a fundamental relationship between the power that is extracted from Jupiter's rotation to drive magnetospheric processes and the rate at which mass is injected into the Io plasma torus. Half of this power is consumed by bulk motion of the plasma and the other half represents an upper limit on the energy from rotation available for dissipation and in particular to excite the Jovian aurora. Since the rotation of the planet is the only plausible source of energy, the power inferred from the observed auroral intensities requires a plasma injection rate of 2.6 x 10 to the 29th AMU/sec or greater. This in turn leads to a residence time of a torus particle of 48 days or less. These results raise doubts about the applicability of equilibrium thermodynamics to the determination of plasma parameters in the Io torus.

  15. State-selective electron transfer and ionization in collisions of highly charged ions with ground-state Na(3s) and laser-excited Na*(3p)

    NARCIS (Netherlands)

    Blank, I.; Otranto, S.; Meinema, C.; Olson, R. E.; Hoekstra, R.


    Single electron transfer and ionization in collisions of N5+ and Ne8+ with ground state Na(3s) and laser excited Na*(3p) are investigated both experimentally and theoretically at collision energies from 1 to 10 keV/amu, which includes the classical orbital velocity of the valence electron.

  16. Excited state potential energy surfaces of bistridentate RuII complexes - A TD-DFT study (United States)

    Österman, Tomas; Persson, Petter


    Time-dependent density functional theory (TD-DFT) calculations have been used to investigate low-energy singlet and triplet excited state potential energy surfaces (PES) of two prototype RuII-bistridentate complexes: [RuII(tpy)2]2+ (tpy is 2,2':6',2''-terpyridine) and [RuII(dqp)2]2+ (dqp is 2,6-di(quinolin-8-yl)pyridine). Solvent effects were considered using a self-consistent reaction field scheme. The calculations provide information about the excited state manifold along pathways for activated decay of metal-to-ligand charge-transfer (MLCT) excited states via metal-centered (MC) states for the two complexes. Significant differences in the energy profiles of the investigated PESs are explained through characterization of the electronic properties of the involved states calculated by the TD-DFT calculations. Finally, implications of the computational results for the design of octahedral metal complexes utilizing ligand field splitting (LFS) strategies for efficient light-harvesting in photochemical applications such as artificial photosynthesis are discussed.

  17. Photoinduced excitation and charge transfer processes of organic dyes with siloxane anchoring groups: a combined spectroscopic and computational study. (United States)

    Castellucci, Elena; Monini, Marco; Bessi, Matteo; Iagatti, Alessandro; Bussotti, Laura; Sinicropi, Adalgisa; Calamante, Massimo; Zani, Lorenzo; Basosi, Riccardo; Reginato, Gianna; Mordini, Alessandro; Foggi, Paolo; Di Donato, Mariangela


    Dye-sensitized solar cells (DSSCs) have attracted significant interest in the last few years as effective low-cost devices for solar energy conversion. We have analyzed the excited state dynamics of several organic dyes bearing both cyanoacrylic acid and siloxane anchoring groups. The spectroscopic properties of the dyes have been studied both in solution and when adsorbed on a TiO2 film using stationary and time-resolved techniques, probing the sub-picosecond to nanosecond time interval. The comparison between the spectra registered in solution and on the solid substrate evidences different pathways for energy and electron relaxation. The transient spectra of the TiO2-adsorbed dyes show the appearance of a long wavelength excited state absorption band, attributed to the cationic dye species, which is absent in the spectra measured in solution. Furthermore, the kinetic traces of the samples adsorbed on the TiO2 film show a long decay component not present in solution which constitutes indirect evidence of electron transfer between the dye and the semiconductor. The interpretation of the experimental results has been supported by theoretical DFT calculations of the excited state energies and by the analysis of molecular orbitals of the analyzed dye molecules.

  18. Excited singlet (S1) state interactions of calixarenes with chloroalkanes: A combination of concerted and stepwise dissociative electron transfer mechanism (United States)

    Mohanty, J.; Pal, H.; Nayak, S. K.; Chattopadhyay, S.; Sapre, A. V.


    Both steady-state and time-resolved studies in acetonitrile (ACN) solutions show that the excited singlet (S1) states of calixarenes (CX) undergo quenching by chloroalkanes (CA). It has been revealed by characterizing the Cl ions in the photolyzed CX-CA systems in ACN solutions that the quenching occurs due to dissociative electron transfer (DET) mechanism, whereby a C-Cl bond of the CAs undergoes dissociation on acceptance of an electron from excited CX. The bimolecular quenching constants (kq) in the present systems were correlated with the free energy changes for the concerted DET reactions based on a suitable DET theory. Such a correlation results in the recovery of an intramolecular reorganization energy, which is substantially lower to account for the C-Cl bond dissociation energy of the CAs. Comparing present results with those of an another donor-acceptor system (e.g., biphenyldiol-CA systems) where a concerted DET mechanism is applicable, it is inferred that in CX-CA systems both concerted and stepwise DET mechanisms operate simultaneously. It is proposed that the interaction of excited CXs with encaged CAs follows the stepwise mechanism whereas that with the out of cage CAs follows the concerted mechanism.

  19. Multiconfiguration Pair-Density Functional Theory Outperforms Kohn-Sham Density Functional Theory and Multireference Perturbation Theory for Ground-State and Excited-State Charge Transfer. (United States)

    Ghosh, Soumen; Sonnenberger, Andrew L; Hoyer, Chad E; Truhlar, Donald G; Gagliardi, Laura


    The correct description of charge transfer in ground and excited states is very important for molecular interactions, photochemistry, electrochemistry, and charge transport, but it is very challenging for Kohn-Sham (KS) density functional theory (DFT). KS-DFT exchange-correlation functionals without nonlocal exchange fail to describe both ground- and excited-state charge transfer properly. We have recently proposed a theory called multiconfiguration pair-density functional theory (MC-PDFT), which is based on a combination of multiconfiguration wave function theory with a new type of density functional called an on-top density functional. Here we have used MC-PDFT to study challenging ground- and excited-state charge-transfer processes by using on-top density functionals obtained by translating KS exchange-correlation functionals. For ground-state charge transfer, MC-PDFT performs better than either the PBE exchange-correlation functional or CASPT2 wave function theory. For excited-state charge transfer, MC-PDFT (unlike KS-DFT) shows qualitatively correct behavior at long-range with great improvement in predicted excitation energies.

  20. Interactive Joint Transfer of Energy and Information

    DEFF Research Database (Denmark)

    Popovski, Petar; Fouladgar, A. M.; Simeone, Osvaldo


    resources, such as radio waves, particles and qubits, can conceivably reuse, at least part, of the received resources. This paper aims at illustrating some of the new challenges that arise in the design of communication networks in which the signals exchanged by the nodes carry both information and energy......In some communication networks, such as passive RFID systems, the energy used to transfer information between a sender and a recipient can be reused for successive communication tasks. In fact, from known results in physics, any system that exchanges information via the transfer of given physical....... To this end, a baseline two-way communication system is considered in which two nodes communicate in an interactive fashion. In the system, a node can either send an “on” symbol (or “1”), which costs one unit of energy, or an “off” signal (or “0”), which does not require any energy expenditure. Upon reception...

  1. Real-space investigation of energy transfer in heterogeneous molecular dimers (United States)

    Imada, Hiroshi; Miwa, Kuniyuki; Imai-Imada, Miyabi; Kawahara, Shota; Kimura, Kensuke; Kim, Yousoo


    Given its central role in photosynthesis and artificial energy-harvesting devices, energy transfer has been widely studied using optical spectroscopy to monitor excitation dynamics and probe the molecular-level control of energy transfer between coupled molecules. However, the spatial resolution of conventional optical spectroscopy is limited to a few hundred nanometres and thus cannot reveal the nanoscale spatial features associated with such processes. In contrast, scanning tunnelling luminescence spectroscopy has revealed the energy dynamics associated with phenomena ranging from single-molecule electroluminescence, absorption of localized plasmons and quantum interference effects to energy delocalization and intervalley electron scattering with submolecular spatial resolution in real space. Here we apply this technique to individual molecular dimers that comprise a magnesium phthalocyanine and a free-base phthalocyanine (MgPc and H2Pc) and find that locally exciting MgPc with the tunnelling current of the scanning tunnelling microscope generates a luminescence signal from a nearby H2Pc molecule as a result of resonance energy transfer from the former to the latter. A reciprocating resonance energy transfer is observed when exciting the second singlet state (S2) of H2Pc, which results in energy transfer to the first singlet state (S1) of MgPc and final funnelling to the S1 state of H2Pc. We also show that tautomerization of H2Pc changes the energy transfer characteristics within the dimer system, which essentially makes H2Pc a single-molecule energy transfer valve device that manifests itself by blinking resonance energy transfer behaviour.

  2. A bisindolylmaleimide-naphthalimide building block for the construction of the energy transfer cassette. (United States)

    Li, Xiaochuan; Shi, Ruijuan; Jin, Yingchun; Lou, Yan; Ge, Qingshan; Li, Mengmeng; Kim, Hyungjoo; Son, Young-A


    Double build-in chromophores with naphthalimide and bisindolylmaleimide incorporating to one molecule were synthesized efficiently and characterized fully. Its spectral properties were investigated. Effective intramolecular energy transfer together with the strong emission in solution and solid state were discussed in terms of its electronic structures. Optimized structure and frontier molecular orbital were calculated based on D3(mol) platform. Obviously electron delocalization before and after excitation was observed according to the molecular orbital calculation, which corresponds to the mechanism of excitation energy transfer through space occurred in the donor-linker-acceptor molecular system. The opto-physical properties of the dye indicated potential application of electro-optical materials.

  3. Energy transfer during the hydroentanglement of fibres

    CSIR Research Space (South Africa)

    Moyo, D


    Full Text Available , and the resultant degree of fibre entanglement, determines the tensile strength of the nonwoven fabric as a consequence of the inter-fibre friction. Here, the relationship between hydroentangling energy from the waterjets and the changes it brings about... in the nonwoven fabric strength were studied. In the study, the energies of the waterjets transferred to every fabric sample as a function of the waterjet pressure, machine speed, machine efficiency and the web area weight were quantified, and the resultant...

  4. Energy Efficient Storage and Transfer of Cryogens (United States)

    Fesmire, James E.


    Cryogenics is globally linked to energy generation, storage, and usage. Thermal insulation systems research and development is an enabling part of NASA's technology goals for Space Launch and Exploration. New thermal testing methodologies and materials are being transferred to industry for a wide range of commercial applications.

  5. A new energy transfer channel from carotenoids to chlorophylls in purple bacteria. (United States)

    Feng, Jin; Tseng, Chi-Wei; Chen, Tingwei; Leng, Xia; Yin, Huabing; Cheng, Yuan-Chung; Rohlfing, Michael; Ma, Yuchen


    It is unclear whether there is an intermediate dark state between the S 2 and S 1 states of carotenoids. Previous two-dimensional electronic spectroscopy measurements support its existence and its involvement in the energy transfer from carotenoids to chlorophylls, but there is still considerable debate on the origin of this dark state and how it regulates the energy transfer process. Here we use ab initio calculations on excited-state dynamics and simulated two-dimensional electronic spectrum of carotenoids from purple bacteria to provide evidence supporting that the dark state may be assigned to a new A g + state. Our calculations also indicate that groups on the conjugation backbone of carotenoids may substantially affect the excited-state levels and the energy transfer process. These results contribute to a better understanding of carotenoid excited states.Carotenoids harvest energy from light and transfer it to chlorophylls during photosynthesis. Here, Feng et al. perform ab initio calculations on excited-state dynamics and simulated 2D electronic spectrum of carotenoids, supporting the existence of a new excited state in carotenoids.

  6. Risk transfer via energy savings insurance

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Evan


    Among the key barriers to investment in energy efficiency improvements are uncertainties about attaining projected energy savings and apprehension about potential disputes over these savings. The fields of energy management and risk management are thus intertwined. While many technical methods have emerged to manage performance risks (e.g. building commissioning), financial risk transfer techniques are less developed in the energy management arena than in other more mature segments of the economy. Energy Savings Insurance (ESI) - formal insurance of predicted energy savings - is one method of transferring financial risks away from the facility owner or energy services contractor. ESI offers a number of significant advantages over other forms of financial risk transfer, e.g. savings guarantees or performance bonds. ESI providers manage risk via pre-construction design review as well as post-construction commissioning and measurement and verification of savings. We found that the two mos t common criticisms of ESI - excessive pricing and onerous exclusions - are not born out in practice. In fact, if properly applied, ESI can potentially reduce the net cost of energy savings projects by reducing the interest rates charged by lenders, and by increasing the level of savings through quality control. Debt service can also be ensured by matching loan payments to projected energy savings while designing the insurance mechanism so that payments are made by the insurer in the event of a savings shortfall. We estimate the U.S. ESI market potential of $875 million/year in premium income. From an energy-policy perspective, ESI offers a number of potential benefits: ESI transfers performance risk from the balance sheet of the entity implementing the energy savings project, thereby freeing up capital otherwise needed to ''self-insure'' the savings. ESI reduces barriers to market entry of smaller energy services firms who do not have sufficiently strong balance

  7. High-energy excited states in {sup 98}Cd

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Norbert; Blazhev, Andrey; Jolie, Jan [Institut fuer Kernphysik, Universitaet Koeln (Germany); Boutachkov, Plamen; Gorska, Magda; Grawe, Hubert; Pietri, Stephane [GSI, Darmstadt (Germany); Brock, Tim; Nara Singh, B.S.; Wadsworth, Robert [Department of Physics, University of York, York (United Kingdom); Liu, Zhong [University of Edinburgh, Edinburgh (United Kingdom)


    Studies of isomerism in the proton-rich N {approx_equal}Z nuclei around {sup 100}Sn give important insights into the role of proton-neutron pairing and also serve as testing grounds for nuclear models. In summer 2008, an experiment on {sup 96,97,98}Cd was performed using the FRS fragment separator and the RISING germanium array at GSI. These exotic nuclei of interest were produced using fragmentation of a 850 MeV/u {sup 124}Xe beam on a 4 g/cm{sup 2} {sup 9}Be target and finally implanted into an active stopper consisting of 9 double-sided silicon strip detectors. In {sup 98}Cd, a new high-energy isomeric transition was identified. Preliminary results on {sup 98}Cd are presented and their implications for the high-excitation level scheme are discussed.

  8. Analysis of the Coupling Coefficient in Inductive Energy Transfer Systems

    Directory of Open Access Journals (Sweden)

    Rafael Mendes Duarte


    Full Text Available In wireless energy transfer systems, the energy is transferred from a power source to an electrical load without the need of physical connections. In this scope, inductive links have been widely studied as a way of implementing these systems. Although high efficiency can be achieved when the system is operating in a static state, it can drastically decrease if changes in the relative position and in the coupling coefficient between the coils occur. In this paper, we analyze the coupling coefficient as a function of the distance between two planar and coaxial coils in wireless energy transfer systems. A simple equation is derived from Neumann’s equation for mutual inductance, which is then used to calculate the coupling coefficient. The coupling coefficient is computed using CST Microwave Studio and compared to calculation and experimental results for two coils with an excitation signal of up to 10 MHz. The results showed that the equation presents good accuracy for geometric parameters that do not lead the solution of the elliptic integral of the first kind to infinity.

  9. metal-induced energy transfer (MIET) (Conference Presentation) (United States)

    Karedla, Narain V. S.; Isbaner, Sebastian; Chizhik, Alexey I.; Gregor, Ingo; Enderlein, Joerg; Chizhik, Anna M.


    We present a new concept for measuring distance values of single molecules from a surface with nanometer accuracy using the energy transfer from the excited molecule to surface plasmons of a metal film [1]. We measure the fluorescence lifetime of individual dye molecules deposited on a dielectric spacer as a function of a spacer thickness. By using our theoretical model [2], we convert the lifetime values into the axial distance of individual molecules. Similar to Förster resonance energy transfer (FRET), this allows emitters to be localized with nanometer accuracy, but in contrast to FRET the distance range at which efficient energy transfer takes place is an order of magnitude larger. Together with orientation measurements [3], one can potentially use smMIET to localize single emitters with a nanometer precision isotropically, which will facilitate intra- and intermolecular distance measurements in biomolecules and complexes, circumventing the requirement of the knowledge of mutual orientations between two dipole emitters which severely limits the quantification of such distances from a conventional single-pair FRET (spFRET) experiment. [1] Karedla, N., Chizhik, A.I., Gregor, I., Chizhik, A.M., Schulz, O., Enderlein, J., ChemPhysChem, 15, 705-711 (2014). [2] Enderlein J., Biophyical Journal, 78, 2151-8 (2000). [3] Karedla, N., Stein, S. C., Hähnel, D., Gregor, I., Chizhik, A., and Enderlein, J., Physical Review Letters, 115, 173002 (2015).

  10. New determination of proton spectroscopic factors and reduced widths for 8Be states in the 16.5-18.0 MeV excitation energy region via the study of the 7Li(3He,d )8Be transfer reaction at Elab=20 MeV: Implication for the 7Li(p ,α )4He hydrogen burning reaction (United States)

    Belhout, A.; Ouichaoui, S.; Beaumevieille, H.; Bouchemha, A.; Bogaert, G.; Fortier, S.; Kiener, J.; Lefebvre-Schuhl, A.; Maison, J. M.; Rosier, L.; Rotbard, J.; Tatischeff, V.; Thibaud, J. P.; Vernotte, J.


    The angular distributions of 8Be states in the excitation energy region Ex˜(16.5 -18.2 ) MeV produced in the 7Li(3He,d )8Be proton transfer reaction have been measured at the Orsay 14.8 -MV tandem accelerator for 2+3He ion bombarding energy, Elab=20 MeV, and forward angular range, θlab=5 ∘-50 ∘ . A high energy resolution detection system composed of a split-pole magnetic spectrometer and a Δ E -E , position-sensitive drift chamber was used to record the energy spectra of outgoing deuterons. The measured cross section data for the direct reaction component have been separated from the compound nucleus one, then analyzed in the framework of the nonlocal, finite-range (FR)-distorted-wave Born approximation (DWBA) theory. New values of the C2S and (Sp 1 /2,Sp 3 /2) proton absolute and partial spectroscopic factors and related γp2(a ) proton reduced widths versus the p +7Li channel radius have been extracted for the 2+(16.626 ) and 2+(16.922 ) ,T =0 +1 isospin-mixed loosely bound states of astrophysical interest and the 1+(17.640 ) , T =1 unbound state of 8Be. They are compared to sparse earlier experimental values and to shell-model-predicted ones from the literature, and are discussed. In particular, the status of the spectroscopic information on the 2+ isospin-mixed doublet is reviewed and updated. The application in nuclear astrophysics of the DWBA derived results is emphasized.

  11. Exciting hot carrier to a high energy state by impact excitation in low density nanocrystalline Si films

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Wei, E-mail: [College of Physics Science and Technology, Hebei University, Baoding 071002 (China); Wang, Xinzhan; Dai, Wanlei; Liu, Yumei; Xu, Yanmei; Lu, Wanbing; Fu, Guangsheng [College of Physics Science and Technology, Hebei University, Baoding 071002 (China)


    The carrier recombination processes in low density nanocrystalline (nc-) Si films have been studied by steady and time-resolved photoluminescence (PL) spectra, and the hot carriers have been excited to a high energy state by impact excitation. A yellow-green PL band locating at 580 nm appears when the studied film is excited by two optical beams. The yellow-green PL band results from band-to-band transition in Si nanocrystals with double-bonded oxygen atoms, which is caused by impact excitation among the carriers in the nc-Si film. The decay time of the yellow-green PL band is 230 ns, which is much longer than the hot carrier cooling. The results indicate that the lost energy in the solar cell may be collected from the new recombination center in the further structural design.

  12. Shared-mode assisted resonant energy transfer in the weak coupling regime. (United States)

    Hennebicq, E; Beljonne, D; Curutchet, C; Scholes, G D; Silbey, R J


    Recent work has suggested that correlations in the environments of chromophores can lead to a change in the dynamics of excitation transfer in both the coherent and incoherent limits. An example of this effect that is relevant to many single molecule experiments occurs in the standard Forster model for resonant energy transfer (RET). The standard formula for the FRET rate breaks down when the electronic excitations on weakly interacting donor and acceptor couple to the same vibrational modes. The transfer rate can then no longer be factored into donor emission and acceptor absorption lineshapes, but must be recast in terms of a renormalized phonon reorganization energy accounting for the magnitude and sign of the excitation-vibration couplings. In this paper, we derive theoretically how the FRET rate depends on the shared mode structure and coupling, examine the simplified case of Gaussian lineshapes and then provide a quantitative calculation for a system of current interest.

  13. Orbital response to backward (e,e{sup `}) scattering at low and high excitation energies

    Energy Technology Data Exchange (ETDEWEB)

    Nojarov, R. [Tuebingen Univ. (Germany). Inst. fuer Theoretische Physik; Faessler, A. [Tuebingen Univ. (Germany). Inst. fuer Theoretische Physik; Dingfelder, M. [Tuebingen Univ. (Germany). Inst. fuer Theoretische Physik


    The response of orbital excitations with K{sup {pi}}=1{sup +} in heavy deformed nuclei to backward (e,e`) scattering is studied in RPA on the example of {sup 154}Sm. The summed M1 and E2 cross sections are of comparable magnitude over wide ranges of transferred momenta: 0.9excitation energies E{sub x}< 9 MeV and 0.6energy region 17energy and the E2 response in the high-energy region. The transition densities of the single strongest RPA states from the two energy regions are similar to that of the scissors state, apart from their smaller amplitudes. The spin M1 responses are similar at low and high energy and dominant for high q. The orbital M1 response is dominant up to high q-values at low energy and only for small q at high energy. The electric response of the low RPA state (mainly C2) is suppressed at a full backward angle, while it persists at high energy for {theta}{>=}165 {sup circle} due to its dominant transverse E2 component. The E2 strength below 9 MeV and between 13 and 17 MeV belongs neither to the isoscalar nor to the isovector giant resonances. (orig.).

  14. Excited State Structural Dynamics of Carotenoids and ChargeTransfer Systems

    Energy Technology Data Exchange (ETDEWEB)

    Van Tassle, Aaron Justin [Univ. of California, Berkeley, CA (United States)


    This dissertation describes the development andimplementation of a visible/near infrared pump/mid-infrared probeapparatus. Chapter 1 describes the background and motivation ofinvestigating optically induced structural dynamics, paying specificattention to solvation and the excitation selection rules of highlysymmetric molecules such as carotenoids. Chapter 2 describes thedevelopment and construction of the experimental apparatus usedthroughout the remainder of this dissertation. Chapter 3 will discuss theinvestigation of DCM, a laser dye with a fluorescence signal resultingfrom a charge transfer state. By studying the dynamics of DCM and of itsmethyl deuterated isotopomer (an otherwise identical molecule), we areable to investigate the origins of the charge transfer state and provideevidence that it is of the controversial twisted intramolecular (TICT)type. Chapter 4 introduces the use of two-photon excitation to the S1state, combined with one-photon excitation to the S2 state of thecarotenoid beta-apo-8'-carotenal. These 2 investigations show evidencefor the formation of solitons, previously unobserved in molecular systemsand found only in conducting polymers Chapter 5 presents an investigationof the excited state dynamics of peridinin, the carotenoid responsiblefor the light harvesting of dinoflagellates. This investigation allowsfor a more detailed understanding of the importance of structuraldynamics of carotenoids in light harvesting.

  15. Observation of excited state charge transfer with fs/ps-CARS

    Energy Technology Data Exchange (ETDEWEB)

    Blom, Alex Jason [Iowa State Univ., Ames, IA (United States)


    Excited state charge transfer processes are studied using the fs/ps-CARS probe technique. This probe allows for multiplexed detection of Raman active vibrational modes. Systems studied include Michler's Ketone, Coumarin 120, 4-dimethylamino-4'-nitrostilbene, and several others. The vibrational spectrum of the para di-substituted benzophenone Michler's Ketone in the first excited singlet state is studied for the first time. It is found that there are several vibrational modes indicative of structural changes of the excited molecule. A combined experimental and theoretical approach is used to study the simplest 7-amino-4-methylcoumarin, Coumarin 120. Vibrations observed in FTIR and spontaneous Raman spectra are assigned using density functional calculations and a continuum solvation model is used to predict how observed modes are affected upon inclusion of a solvent. The low frequency modes of the excited state charge transfer species 4-dimethylamino-4{prime}-nitrostilbene are studied in acetonitrile. Results are compared to previous work on this molecule in the fingerprint region. Finally, several partially completed projects and their implications are discussed. These include the two photon absorption of Coumarin 120, nanoconfinement in cyclodextrin cavities and sensitization of titania nanoparticles.

  16. Low-energy d-d excitations in MnO studied by resonant x-ray fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Butorin, S.M.; Guo, J.; Magnuson, M. [Uppsala Univ. (Sweden)] [and others


    Resonant soft X-ray emission spectroscopy has been demonstrated to possess interesting abilities for studies of electronic structure in various systems, such as symmetry probing, alignment and polarization dependence, sensitivity to channel interference, etc. In the present abstract the authors focus on the feasibility of resonant soft X-ray emission to probe low energy excitations by means of resonant electronic X-ray Raman scattering. Resonant X-ray emission can be regarded as an inelastic scattering process where a system in the ground state is transferred to a low excited state via a virtual core excitation. The energy closeness to a core excitation of the exciting radiation enhances the (generally) low probability for inelastic scattering at these wavelengths. Therefore soft X-ray emission spectroscopy (in resonant electronic Raman mode) can be used to study low energy d-d excitations in transition metal systems. The involvement of the intermediate core state allows one to use the selection rules of X-ray emission, and the appearance of the elastically scattered line in the spectra provides the reference to the ground state.

  17. Vibration transfers to measure the performance of vibration isolated platforms on site using background noise excitation (United States)

    Segerink, F. B.; Korterik, J. P.; Offerhaus, H. L.


    This article demonstrates a quick and easy way of quantifying the performance of a vibration-isolated platform. We measure the vibration transfer from floor to table using background noise excitation from the floor. As no excitation device is needed, our setup only requires two identical sensors (in our case, low noise accelerometers), a data acquisition system, and processing software. Background noise excitation from the floor has the additional advantage that any non-linearity in the suspension system relevant to the actual vibration amplitudes will be taken into account. Measurement time is typically a few minutes, depending on the amount of background noise. The (coherent) transfer of the vibrations in the floor to the platform, as well as the (non-coherent) acoustical noise pick-up by the platform are measured. Since we use calibrated sensors, the absolute value of the vibration levels is established and can be expressed in vibration criterion curves. Transfer measurements are shown and discussed for two pneumatic isolated optical tables, a spring suspension system, and a simple foam suspension system.

  18. Quantum Coherence as a Witness of Vibronically Hot Energy Transfer in Bacterial Reaction Centre

    CERN Document Server

    Paleček, David; Westenhoff, Sebastian; Zigmantas, Donatas


    Photosynthetic proteins have evolved over billions of years so as to undergo optimal energy transfer to the sites of charge separation. Based on spectroscopically detected quantum coherences, it has been suggested that this energy transfer is partially wavelike. This conclusion critically depends on assignment of the coherences to the evolution of excitonic superpositions. Here we demonstrate for a bacterial reaction centre protein that long-lived coherent spectroscopic oscillations, which bear canonical signatures of excitonic superpositions, are essentially vibrational excited state coherences shifted to the ground state of the chromophores . We show that appearance of these coherences is brought about by release of electronic energy during the energy transfer. Our results establish how energy migrates on vibrationally hot chromophores in the reaction centre and they call for a re-examination of claims of quantum energy transfer in photosynthesis.

  19. Energy harvesting from human motion: exploiting swing and shock excitations (United States)

    Ylli, K.; Hoffmann, D.; Willmann, A.; Becker, P.; Folkmer, B.; Manoli, Y.


    Modern compact and low power sensors and systems are leading towards increasingly integrated wearable systems. One key bottleneck of this technology is the power supply. The use of energy harvesting techniques offers a way of supplying sensor systems without the need for batteries and maintenance. In this work we present the development and characterization of two inductive energy harvesters which exploit different characteristics of the human gait. A multi-coil topology harvester is presented which uses the swing motion of the foot. The second device is a shock-type harvester which is excited into resonance upon heel strike. Both devices were modeled and designed with the key constraint of device height in mind, in order to facilitate the integration into the shoe sole. The devices were characterized under different motion speeds and with two test subjects on a treadmill. An average power output of up to 0.84 mW is achieved with the swing harvester. With a total device volume including the housing of 21 cm3 a power density of 40 μW cm-3 results. The shock harvester generates an average power output of up to 4.13 mW. The power density amounts to 86 μW cm-3 for the total device volume of 48 cm3. Difficulties and potential improvements are discussed briefly.

  20. Energy transfer in structured and unstructured environments

    DEFF Research Database (Denmark)

    Iles-Smith, Jake; Dijkstra, Arend G.; Lambert, Neill


    We explore excitonic energy transfer dynamics in a molecular dimer system coupled to both structured and unstructured oscillator environments. By extending the reaction coordinate master equation technique developed by Iles-Smith et al. [Phys. Rev. A 90, 032114 (2014)], we go beyond the commonly...... used Born-Markov approximations to incorporate system-environment correlations and the resultant non-Markovian dynamical effects. We obtain energy transfer dynamics for both underdamped and overdamped oscillator environments that are in perfect agreement with the numerical hierarchical equations...... of motion over a wide range of parameters. Furthermore, we show that the Zusman equations, which may be obtained in a semiclassical limit of the reaction coordinate model, are often incapable of describing the correct dynamical behaviour. This demonstrates the necessity of properly accounting for quantum...

  1. Elementary Energy Transfer Pathways in Allochromatium vinosum Photosynthetic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Lüer, Larry; Carey, Anne-Marie; Henry, Sarah; Maiuri, Margherita; Hacking, Kirsty; Polli, Dario; Cerullo, Giulio; Cogdell, Richard J.


    Allochromatium vinosum (formerly Chromatium vinosum) purple bacteria are known to adapt their light-harvesting strategy during growth according to environmental factors such as temperature and average light intensity. Under low light illumination or low ambient temperature conditions, most of the LH2 complexes in the photosynthetic membranes form a B820 exciton with reduced spectral overlap with LH1. To elucidate the reason for this light and temperature adaptation of the LH2 electronic structure, we performed broadband femtosecond transient absorption spectroscopy as a function of excitation wavelength in A. vinosum membranes. A target analysis of the acquired data yielded individual rate constants for all relevant elementary energy transfer (ET) processes. We found that the ET dynamics in high-light-grown membranes was well described by a homogeneous model, with forward and backward rate constants independent of the pump wavelength. Thus, the overall B800→B850→B890→ Reaction Center ET cascade is well described by simple triexponential kinetics. In the low-light-grown membranes, we found that the elementary backward transfer rate constant from B890 to B820 was strongly reduced compared with the corresponding constant from B890 to B850 in high-light-grown samples. The ET dynamics of low-light-grown membranes was strongly dependent on the pump wavelength, clearly showing that the excitation memory is not lost throughout the exciton lifetime. The observed pump energy dependence of the forward and backward ET rate constants suggests exciton diffusion via B850→ B850 transfer steps, making the overall ET dynamics nonexponential. Our results show that disorder plays a crucial role in our understanding of low-light adaptation in A. vinosum.

  2. Elementary Energy Transfer Pathways in Allochromatium vinosum Photosynthetic Membranes (United States)

    Lüer, Larry; Carey, Anne-Marie; Henry, Sarah; Maiuri, Margherita; Hacking, Kirsty; Polli, Dario; Cerullo, Giulio; Cogdell, Richard J.


    Allochromatium vinosum (formerly Chromatium vinosum) purple bacteria are known to adapt their light-harvesting strategy during growth according to environmental factors such as temperature and average light intensity. Under low light illumination or low ambient temperature conditions, most of the LH2 complexes in the photosynthetic membranes form a B820 exciton with reduced spectral overlap with LH1. To elucidate the reason for this light and temperature adaptation of the LH2 electronic structure, we performed broadband femtosecond transient absorption spectroscopy as a function of excitation wavelength in A. vinosum membranes. A target analysis of the acquired data yielded individual rate constants for all relevant elementary energy transfer (ET) processes. We found that the ET dynamics in high-light-grown membranes was well described by a homogeneous model, with forward and backward rate constants independent of the pump wavelength. Thus, the overall B800→B850→B890→ Reaction Center ET cascade is well described by simple triexponential kinetics. In the low-light-grown membranes, we found that the elementary backward transfer rate constant from B890 to B820 was strongly reduced compared with the corresponding constant from B890 to B850 in high-light-grown samples. The ET dynamics of low-light-grown membranes was strongly dependent on the pump wavelength, clearly showing that the excitation memory is not lost throughout the exciton lifetime. The observed pump energy dependence of the forward and backward ET rate constants suggests exciton diffusion via B850→ B850 transfer steps, making the overall ET dynamics nonexponential. Our results show that disorder plays a crucial role in our understanding of low-light adaptation in A. vinosum. PMID:26536265

  3. Nature does not rely on long-lived electronic quantum coherence for photosynthetic energy transfer (United States)

    Duan, Hong-Guang; Prokhorenko, Valentyn I.; Cogdell, Richard J.; Ashraf, Khuram; Stevens, Amy L.; Thorwart, Michael; Miller, R. J. Dwayne


    During the first steps of photosynthesis, the energy of impinging solar photons is transformed into electronic excitation energy of the light-harvesting biomolecular complexes. The subsequent energy transfer to the reaction center is commonly rationalized in terms of excitons moving on a grid of biomolecular chromophores on typical timescales light-harvesting complexes, we anticipate that this finding is general and directly applies to even larger photoactive biomolecular complexes.

  4. Energy transfer problems of ball lightning

    Energy Technology Data Exchange (ETDEWEB)

    Egely, G.


    The paper analyzes the energy transport phenomenon of ball lightnings, but momentum and charge transport phenomena are considered as well. The physical properties as energy density and transfer are investigated using several observers' accounts of interactions with different objects. It is shown that contrary to previous assumptions the ball lightning has negative electric charge, and very high internal energy density. Both internal and external energy source models are analyzed, and it is shown that regardless to the details of a given model neither of them can explain actual observations. This has been validated by a well documented case study, and by several additional observations. An entirely new, testable model is suggested, which is able to stand for all observed properties of ball lightnings, and it explains the cause of rarity of ball lightnings, and the reasons of the unsuccessful experimental efforts. It is shown that the plasma sphere is just a visible side effect of a more important phenomenon.

  5. Förster Resonance Energy Transfer and Harvesting in II-VI Fractional Monolayer Structures (United States)

    Shubina, T. V.; Semina, M. A.; Belyaev, K. G.; Rodina, A. V.; Toropov, A. A.; Ivanov, S. V.


    We report on Förster resonance energy transfer in the dense arrays of epitaxial quantum dots (QDs), formed by fractional monolayer CdSe insertions within a ZnSe matrix. In such arrays comprising the QDs of different sizes, the energy transfer can take place between the ground levels of small QDs and the excited levels of large radiating QDs, when these states are in resonance. This mechanism provides directional excitation of a limited number of the large QDs possessing the excited levels. It reveals itself by the shrinkage of photoluminescence (PL) bands and the appearance of the narrow single excitonic lines in micro-PL spectra. The strong shortening of characteristic PL decay times in the energy-donating QDs is observed when the distance between them and the energy-accepting QDs decreases. Photoluminescence excitation spectroscopy demonstrates the switching of the dominant energy transfer mechanism at the energy predicted by theoretical modeling of the excitonic levels in the QD arrays. Our results pave the way for engineering of the architecture of excitonic levels in the QD arrays to realize efficient nano-emitters.

  6. Measuring distances within unfolded biopolymers using fluorescence resonance energy transfer: The effect of polymer chain dynamics on the observed fluorescence resonance energy transfer efficiency (United States)

    Makarov, Dmitrii E.; Plaxco, Kevin W.


    Recent years have seen a number of investigations in which distances within unfolded proteins, polypeptides, and other biopolymers are probed via fluorescence resonance energy transfer, a method that relies on the strong distance dependence of energy transfer between a pair of dyes attached to the molecule of interest. In order to interpret the results of such experiments it is commonly assumed that intramolecular diffusion is negligible during the excited state lifetime. Here we explore the conditions under which this “frozen chain” approximation fails, leading to significantly underestimated donor-acceptor distances, and describe a means of correcting for polymer dynamics in order to estimate these distances more accurately. PMID:19725638

  7. Energy transfer and biexciton decay in Cs2UO2Cl4 crystals

    NARCIS (Netherlands)

    Krol, D.M.


    We have investigated the influence of energy transfer on luminescence properties of Cs2UO2Cl4 crystals at low temperatures. Time-resolved emission spectra and luminescence decay times were measured between 1.5 and 15 K with the use of selective excitation techniques. The luminescence of Cs2UO2Cl4

  8. Resonance Energy Transfer Molecular Imaging Application in Biomedicine

    Directory of Open Access Journals (Sweden)

    NIE Da-hong1,2;TANG Gang-hua1,3


    Full Text Available Resonance energy transfer molecular imaging (RETI can markedly improve signal intensity and tissue penetrating capacity of optical imaging, and have huge potential application in the deep-tissue optical imaging in vivo. Resonance energy transfer (RET is an energy transition from the donor to an acceptor that is in close proximity, including non-radiative resonance energy transfer and radiative resonance energy transfer. RETI is an optical imaging technology that is based on RET. RETI mainly contains fluorescence resonance energy transfer imaging (FRETI, bioluminescence resonance energy transfer imaging (BRETI, chemiluminescence resonance energy transfer imaging (CRETI, and radiative resonance energy transfer imaging (RRETI. RETI is the hot field of molecular imaging research and has been widely used in the fields of biology and medicine. This review mainly focuses on RETI principle and application in biomedicine.

  9. Imaging and Manipulating Energy Transfer Among Quantum Dots at Individual Dot Resolution. (United States)

    Nguyen, Duc; Nguyen, Huy A; Lyding, Joseph W; Gruebele, Martin


    Many processes of interest in quantum dots involve charge or energy transfer from one dot to another. Energy transfer in films of quantum dots as well as between linked quantum dots has been demonstrated by luminescence shift, and the ultrafast time-dependence of energy transfer processes has been resolved. Bandgap variation among dots (energy disorder) and dot separation are known to play an important role in how energy diffuses. Thus, it would be very useful if energy transfer could be visualized directly on a dot-by-dot basis among small clusters or within films of quantum dots. To that effect, we report single molecule optical absorption detected by scanning tunneling microscopy (SMA-STM) to image energy pooling from donor into acceptor dots on a dot-by-dot basis. We show that we can manipulate groups of quantum dots by pruning away the dominant acceptor dot, and switching the energy transfer path to a different acceptor dot. Our experimental data agrees well with a simple Monte Carlo lattice model of energy transfer, similar to models in the literature, in which excitation energy is transferred preferentially from dots with a larger bandgap to dots with a smaller bandgap.

  10. Control of base-excited dynamical systems through piezoelectric energy harvesting absorber (United States)

    Abdelmoula, H.; Dai, H. L.; Abdelkefi, A.; Wang, L.


    The spring-mass absorber usually offers a good control to dynamical systems under direct base excitations for a specific value of the excitation frequency. As the vibrational energy of a primary dynamical system is transferred to the absorber, it gets dissipated. In this study, this energy is no longer dissipated but converted to available electrical power by designing efficient energy harvesters. A novel design of a piezoelectric beam installed inside an elastically-mounted dynamical system undergoing base excitations is considered. A design is carried out in order to determine the properties and dimensions of the energy harvester with the constraint of simultaneously decreasing the oscillating amplitudes of the primary dynamical system and increasing the harvested power of the energy harvesting absorber. An analytical model for the coupled system is constructed using Euler-Lagrange principle and Galerkin discretization. Different strategies for controlling the primary structure displacement and enhancing the harvested power as functions of the electrical load resistance and thickness of the beam substrate are performed. The linear polynomial approximation of the system’s key parameters as a function of the beam’s substrate thickness is first carried out. Then, the gradient method is applied to determine the adequate values of the electrical load resistance and thickness of the substrate under the constraints of minimizing the amplitudes of the primary structure or maximizing the levels of the harvested power. After that, an iterative strategy is considered in order to simultaneously minimize the amplitudes of the primary structure and maximize the levels of the harvested power as functions of the thickness of the substrate and electrical load resistance. In addition to harmonic excitations, the coupled system subjected to a white noise is explored. Through this analysis, the load resistance and thickness of the substrate of the piezoelectric energy harvester

  11. Topics in design and analysis of transcutaneous energy transfer to ventricular assist devices.


    Daniela Wolter Ferreira


    This research studies a Transcutaneous Energy Transfer (TET) system which uses electromagnetic fields to transfer power from outside the body to an artificial organ (AO) in the body. It works like a high frequency transformer whereas the skin is part of the magnetic coupling between the primary (external) and secondary (internal) coils. Thus, the external coil (transmitter), which is excited by an oscillator circuit that transforms the continuous (DC) voltage to high-frequency alternating (AC...

  12. Theoretical study of excited-state proton transfer of 2,7-diazaindole·(H2O)2 cluster via hydrogen bonding dynamics (United States)

    Liu, Yuan; Tang, Zhe; Wang, Yi; Tian, Jing; Fei, Xu; Cao, Fang; Li, GuangYue


    A new chromophore, 2,7-diazaindole (2,7-DAI), has been designed to surpass the limitation of 7-azaindole (7AI). It exhibits remarkable water catalyzed proton-transfer properties. Excited-state proton transfer (ESPT) has been investigated based on the time-dependent density functional theory method. The calculated vertical excitation energies in the S0 and S1 states agree well with the experimental values. Proton transfer couples with hydrogen-bonding dynamics between the 2,7-diazaindole and the surrounding water molecules. Hydrogen bond strengthening has been testified in the S1 state based on a comparison of primary bond lengths and hydrogen bond energy that is involved in the intermolecular hydrogen bond between the S0 and S1 states. Frontier molecular further suggest that the electron density changes between the ground and excited states serve as basic driving forces for proton transfer. We determined the potential-energy curves of the S0 and S1 states to characterize the ESPT process. This work explains that the ESPT process for 2,7-DAI·(H2O)2 clusters at the molecular level, and highlights the importance of hydrogen bonding in ESPT.

  13. Direct observation of multistep energy transfer in LHCII with fifth-order 3D electronic spectroscopy (United States)

    Zhang, Zhengyang; Lambrev, Petar H.; Wells, Kym L.; Garab, Győző; Tan, Howe-Siang


    During photosynthesis, sunlight is efficiently captured by light-harvesting complexes, and the excitation energy is then funneled towards the reaction centre. These photosynthetic excitation energy transfer (EET) pathways are complex and proceed in a multistep fashion. Ultrafast two-dimensional electronic spectroscopy (2DES) is an important tool to study EET processes in photosynthetic complexes. However, the multistep EET processes can only be indirectly inferred by correlating different cross peaks from a series of 2DES spectra. Here we directly observe multistep EET processes in LHCII using ultrafast fifth-order three-dimensional electronic spectroscopy (3DES). We measure cross peaks in 3DES spectra of LHCII that directly indicate energy transfer from excitons in the chlorophyll b (Chl b) manifold to the low-energy level chlorophyll a (Chl a) via mid-level Chl a energy states. This new spectroscopic technique allows scientists to move a step towards mapping the complete complex EET processes in photosynthetic systems.

  14. Energy transfer and kinetics in mechanochemistry. (United States)

    Chen, Zhiliang; Lu, Shengyong; Mao, Qiongjing; Buekens, Alfons; Wang, Yuting; Yan, Jianhua


    Mechanochemistry (MC) exerts extraordinary degradation and decomposition effects on many chlorinated, brominated, and even fluorinated persistent organic pollutants (POPs). However, its application is still limited by inadequate study of its reaction kinetic aspects. In the present work, the ball motion and energy transfer in planetary ball mill are investigated in some detail. Almost all milling parameters are summarised in a single factor-total effective impact energy. Furthermore, the MC kinetic between calcium oxide/Al and hexachlorobenzene is well established and modelled. The results indicate that total effective impact energy and reagent ratio are the two factors sufficient for describing the MC degradation degree of POPs. The reaction rate constant only depends on the chemical properties of reactants, so it could be used as an important index to appraise the quality of MC additives. This model successfully predicts the reaction rate for different operating conditions, indicating that it could be suitably applied for conducting MC reactions in other reactors.

  15. Theoretical study on the electronic structure of triphenyl sulfonium salts: Electronic excitation and electron transfer processes (United States)

    Petsalakis, Ioannis D.; Theodorakopoulos, Giannoula; Lathiotakis, Nektarios N.; Georgiadou, Dimitra G.; Vasilopoulou, Maria; Argitis, Panagiotis


    Density functional theory (DFT) and Time Dependent DFT calculations on triphenyl sulfonium cation (TPS) and the salts of TPS with triflate, nonaflate, perfluoro-1-octanesulfonate and hexafluoro antimonate anions are presented. These systems are widely used as cationic photoinitiators and as electron ejection layer for polymer light-emitting diodes. While some differences exist in the electronic structure of the different salts, their lowest energy intense absorption maxima are calculated at nearly the same energy for all systems. The first excited state of TPS and of the TPS salts is dissociating. Electron addition to the TPS salts lowers their energy by 1.0-1.33 eV.

  16. Prototropic studies in vitreous and in solid phases: Pyranine and 2-naphthol excited state proton transfer

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Fátima Aparecida das Chagas [Departamento de Química Fundamental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, SP (Brazil); Rezende, Eduardo Triboni [Universidade Nove de Julho, São Paulo, SP (Brazil); Filho, Décio Briotto [Departamento de Bioquímica Instituto de Química, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, SP (Brazil); Brito Rezende, Daisy de [Departamento de Química Fundamental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, SP (Brazil); Cuccovia, Iolanda Midea [Departamento de Bioquímica Instituto de Química, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, SP (Brazil); Gome, Ligia Ferreira [Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, SP (Brazil); Silva, Mauro Francisco Pinheiro da [Departamento de Química Fundamental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, SP (Brazil); and others


    Excited state proton transfer processes in vitreous glasses and in solid mixtures are investigated by steady state fluorimetry and laser flash photolysis kinetic studies with the photoacids pyranine and 2-naphthol. Glasses were derived from TEOS by the sol–gel condensation process and hydrated solid mixtures from NaCl or KH{sub 2}PO{sub 4}/K{sub 2}HPO{sub 4} crystals. The extent of the water content necessary for the reaction is determined. Shrinkage of TEOS derived monoliths from water loss leads to an increase in proton transfer extent due to the increase in local concentrations of accepting and donor buffer species, but the concomitant increase in the ionic strength actuates in an opposite direction. Furthermore, water losses by aging of air-exposed gel goes to a critical 20% weight fraction, beyond it proton transfer reactions are hindered. Similar studies with solid NaCl or solid phosphate buffer mixtures demonstrated the same critical water level indicating that free water molecules are crucial for the proton to escape from the original cage where the geminate ion pair [–||RO{sup −⁎}H{sup +}||–] is formed and can undergo coupled proton transfer reactions. -- Highlights: • Pyranine and 2-naphthol excited state proton transfer in SiO{sub 2} gel, solid phosphate buffer and NaCl. • Sol–gel formation leads to contraction and concentration of donor and accepting species. • 20% weight fraction water is required for the ESPT to go forward.

  17. Distributed Wireless Power Transfer With Energy Feedback (United States)

    Lee, Seunghyun; Zhang, Rui


    Energy beamforming (EB) is a key technique for achieving efficient radio-frequency (RF) transmission enabled wireless energy transfer (WET). By optimally designing the waveforms from multiple energy transmitters (ETs) over the wireless channels, they can be constructively combined at the energy receiver (ER) to achieve an EB gain that scales with the number of ETs. However, the optimal design of EB waveforms requires accurate channel state information (CSI) at the ETs, which is challenging to obtain practically, especially in a distributed system with ETs at separate locations. In this paper, we study practical and efficient channel training methods to achieve optimal EB in a distributed WET system. We propose two protocols with and without centralized coordination, respectively, where distributed ETs either sequentially or in parallel adapt their transmit phases based on a low-complexity energy feedback from the ER. The energy feedback only depends on the received power level at the ER, where each feedback indicates one particular transmit phase that results in the maximum harvested power over a set of previously used phases. Simulation results show that the two proposed training protocols converge very fast in practical WET systems even with a large number of distributed ETs, while the protocol with sequential ET phase adaptation is also analytically shown to converge to the optimal EB design with perfect CSI by increasing the training time. Numerical results are also provided to evaluate the performance of the proposed distributed EB and training designs as compared to other benchmark schemes.

  18. Evidence for coherent mixing of excited and charge-transfer states in the major plant light-harvesting antenna, LHCII. (United States)

    Ramanan, Charusheela; Ferretti, Marco; van Roon, Henny; Novoderezhkin, Vladimir I; van Grondelle, Rienk


    LHCII, the major light harvesting antenna from plants, plays a dual role in photosynthesis. In low light it is a light-harvester, while in high light it is a quencher that protects the organism from photodamage. The switching mechanism between these two orthogonal conditions is mediated by protein dynamic disorder and photoprotective energy dissipation. The latter in particular is thought to occur in part via spectroscopically 'dark' states. We searched for such states in LHCII trimers from spinach, at both room temperature and at 77 K. Using 2D electronic spectroscopy, we explored coherent interactions between chlorophylls absorbing on the low-energy side of LHCII, which is the region that is responsible for both light-harvesting and photoprotection. 2D beating frequency maps allow us to identify four frequencies with strong excitonic character. In particular, our results show the presence of a low-lying state that is coupled to a low-energy excitonic state. We assign this to a mixed excitonic-charge transfer state involving the state with charge separation within the Chl a603-b609 heterodimer, borrowing some dipole strength from the Chl a602-a603 excited states. Such a state may play a role in photoprotection, in conjunction with specific and environmentally controlled realizations of protein dynamic disorder. Our identification and assignment of the coherences observed in the 2D frequency maps suggests that the structure of exciton states as well as a mixing of the excited and charge-transfer states is affected by coupling of these states to resonant vibrations in LHCII.

  19. Wireless energy transfer through non-resonant magnetic coupling

    DEFF Research Database (Denmark)

    Peng, Liang; Breinbjerg, Olav; Mortensen, Asger


    We demonstrate by theoretical analysis and experimental verification that mid-range wireless energy transfer systems may take advantage of de-tuned coupling devices, without jeopardizing the energy transfer efficiency. Allowing for a modest de-tuning of the source coil, energy transfer systems co...

  20. Exploring the vibrational fingerprint of the electronic excitation energy via molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Deyne, Andy Van Yperen-De; Pauwels, Ewald; Ghysels, An; Waroquier, Michel; Van Speybroeck, Veronique; Hemelsoet, Karen, E-mail: [Center for Molecular Modeling (CMM), Ghent University, Technologiepark 903, 9052 Zwijnaarde (Belgium); De Meyer, Thierry [Center for Molecular Modeling (CMM), Ghent University, Technologiepark 903, 9052 Zwijnaarde (Belgium); Department of Textiles, Ghent University, Technologiepark 907, 9052 Zwijnaarde (Belgium); De Clerck, Karen [Department of Textiles, Ghent University, Technologiepark 907, 9052 Zwijnaarde (Belgium)


    A Fourier-based method is presented to relate changes of the molecular structure during a molecular dynamics simulation with fluctuations in the electronic excitation energy. The method implies sampling of the ground state potential energy surface. Subsequently, the power spectrum of the velocities is compared with the power spectrum of the excitation energy computed using time-dependent density functional theory. Peaks in both spectra are compared, and motions exhibiting a linear or quadratic behavior can be distinguished. The quadratically active motions are mainly responsible for the changes in the excitation energy and hence cause shifts between the dynamic and static values of the spectral property. Moreover, information about the potential energy surface of various excited states can be obtained. The procedure is illustrated with three case studies. The first electronic excitation is explored in detail and dominant vibrational motions responsible for changes in the excitation energy are identified for ethylene, biphenyl, and hexamethylbenzene. The proposed method is also extended to other low-energy excitations. Finally, the vibrational fingerprint of the excitation energy of a more complex molecule, in particular the azo dye ethyl orange in a water environment, is analyzed.

  1. Nonextensive kinetics of fluorescence resonance energy transfer. (United States)

    Rolinski, Olaf J; Birch, David J S


    Some fluorescence dyes in complex media, such as those found in biology, demonstrate nonextensive kinetics, which implies representing their fluorescence decays in terms of lifetime distributions rather than simple exponentials. Complex kinetics usually discourage application to lifetime sensors, as it is believed, that additional molecular mechanisms employed for detection of an analyte will make the resulting kinetics ambiguous and the sensor response inconclusive. In this paper we investigate theoretically the applicability of complex dye kinetics as a fluorescence resonance energy transfer based lifetime sensor and demonstrate that the nonextensive nature of its kinetics does not decrease the sensing performance, and indeed even provides richer structural information than a simple exponential behavior.

  2. Förster Resonance Energy Transfer between Core/Shell Quantum Dots and Bacteriorhodopsin

    Directory of Open Access Journals (Sweden)

    Mark H. Griep


    Full Text Available An energy transfer relationship between core-shell CdSe/ZnS quantum dots (QDs and the optical protein bacteriorhodopsin (bR is shown, demonstrating a distance-dependent energy transfer with 88.2% and 51.1% of the QD energy being transferred to the bR monomer at separation distances of 3.5 nm and 8.5 nm, respectively. Fluorescence lifetime measurements isolate nonradiative energy transfer, other than optical absorptive mechanisms, with the effective QD excited state lifetime reducing from 18.0 ns to 13.3 ns with bR integration, demonstrating the Förster resonance energy transfer contributes to 26.1% of the transferred QD energy at the 3.5 nm separation distance. The established direct energy transfer mechanism holds the potential to enhance the bR spectral range and sensitivity of energies that the protein can utilize, increasing its subsequent photocurrent generation, a significant potential expansion of the applicability of bR in solar cell, biosensing, biocomputing, optoelectronic, and imaging technologies.

  3. Low-Energy Ballistic Transfers to Lunar Halo Orbits (United States)

    Parker, Jeffrey S.


    Recent lunar missions have begun to take advantage of the benefits of low-energy ballistic transfers between the Earth and the Moon rather than implementing conventional Hohmann-like lunar transfers. Both Artemis and GRAIL plan to implement low-energy lunar transfers in the next few years. This paper explores the characteristics and potential applications of many different families of low-energy ballistic lunar transfers. The transfers presented here begin from a wide variety of different orbits at the Earth and follow several different distinct pathways to the Moon. This paper characterizes these pathways to identify desirable low-energy lunar transfers for future lunar missions.

  4. Spectral energy transfer of atmospheric gravity waves through sum and difference nonlinear interactions

    Directory of Open Access Journals (Sweden)

    K. M. Huang


    Full Text Available Nonlinear interactions of gravity waves are studied with a two-dimensional, fully nonlinear model. The energy exchanges among resonant and near-resonant triads are examined in order to understand the spectral energy transfer through interactions. The results show that in both resonant and near-resonant interactions, the energy exchange between two high frequency waves is strong, but the energy transfer from large to small vertical scale waves is rather weak. This suggests that the energy cascade toward large vertical wavenumbers through nonlinear interaction is inefficient, which is different from the rapid turbulence cascade. Because of considerable energy exchange, nonlinear interactions can effectively spread high frequency spectrum, and play a significant role in limiting wave amplitude growth and transferring energy into higher altitudes. In resonant interaction, the interacting waves obey the resonant matching conditions, and resonant excitation is reversible, while near-resonant excitation is not so. Although near-resonant interaction shows the complexity of match relation, numerical experiments show an interesting result that when sum and difference near-resonant interactions occur between high and low frequency waves, the wave vectors tend to approximately match in horizontal direction, and the frequency of the excited waves is also close to the matching value.

  5. Assignment of the Charge-Transfer Excited States of Bis(N-Heterocyclic) Complexes of Copper(I) (United States)


    Excited States of Bis (N-Heterocyclic) Complexes of Copper ( I) 12 PERSONAL AUTHOR(S( W. L. Parker and G. A. Crosby 3a 7YPE OF REPORT i b ’!ME COVERED ~ aDATE...Assignment of the Charge-Transfer Excited States of Bis (N-Heterocyclic) Complexes of Copper (I) by W. L. Parker and G. A. Crosby Prepared for Publication in...IHmited. Assignment of the Charge-Transfer Excited States of Bis (N-Heterocycl ic) Complexes of Copper (I) W. L. Parker and G. A. Crosby* Chemical

  6. Charge-Transfer Dynamics in the Lowest Excited State of a Pentacene–Fullerene Complex: Implications for Organic Solar Cells

    KAUST Repository

    Joseph, Saju


    We characterize the dynamic nature of the lowest excited state in a pentacene/C60 complex on the femtosecond time scale, via a combination of ab initio molecular dynamics and time-dependent density functional theory. We analyze the correlations between the molecular vibrations of the complex and the oscillations in the electron-transfer character of its lowest excited state, which point to vibration-induced coherences between the (pentacene-based) local-excitation (LE) state and the complex charge-transfer (CT) state. We discuss the implications of our results on this model system for the exciton-dissociation process in organic solar cells.

  7. Non-typical fluorescence studies of excited and ground state proton and hydrogen transfer (United States)

    Gil, Michał; Kijak, Michał; Piwoński, Hubert; Herbich, Jerzy; Waluk, Jacek


    Fluorescence studies of tautomerization have been carried out for various systems that exhibit single and double proton or hydrogen translocation in various environments, such as liquid and solid condensed phases, ultracold supersonic jets, and finally, polymer matrices with single emitters. We focus on less explored areas of application of fluorescence for tautomerization studies, using porphycene, a porphyrin isomer, as an example. Fluorescence anisotropy techniques allow investigations of self-exchange reactions, where the reactant and product are formally identical. Excitation with polarized light makes it possible to monitor tautomerization in single molecules and to detect their three-dimensional orientation. Analysis of fluorescence from single vibronic levels of jet-isolated porphycene not only demonstrates coherent tunneling of two internal protons, but also indicates that the process is vibrational mode-specific. Next, we present bifunctional proton donor-acceptor systems, molecules that are able, depending on the environment, to undergo excited state single intramolecular or double intermolecular proton transfer. For molecules that have donor and acceptor groups located in separate moieties linked by a single bond, excited state tautomerization can be coupled to mutual twisting of the two subunits.

  8. Non-typical fluorescence studies of excited and ground state proton and hydrogen transfer

    KAUST Repository

    Gil, Michał


    Fluorescence studies of tautomerization have been carried out for various systems that exhibit single and double proton or hydrogen translocation in various environments, such as liquid and solid condensed phases, ultracold supersonic jets, and finally, polymer matrices with single emitters.We focus on less explored areas of application of fluorescence for tautomerization studies, using porphycene, a porphyrin isomer, as an example. Fluorescence anisotropy techniques allow investigations of self-exchange reactions, where the reactant and product are formally identical. Excitation with polarized light makes it possible to monitor tautomerization in single molecules and to detect their three-dimensional orientation. Analysis of fluorescence from single vibronic levels of jet-isolated porphycene not only demonstrates coherent tunneling of two internal protons, but also indicates that the process is vibrational mode-specific. Next, we present bifunctional proton donoracceptor systems, molecules that are able, depending on the environment, to undergo excited state single intramolecular or double intermolecular proton transfer. For molecules that have donor and acceptor groups located in separate moieties linked by a single bond, excited state tautomerization can be coupled to mutual twisting of the two subunits.

  9. Excitation energy and spins of the Yrast superdeformed states in {sup 193}Tl; Energie d`excitation et spins des etats superdeformes Yrast de {sup 193}Tl

    Energy Technology Data Exchange (ETDEWEB)

    Bouneau, S.; Duprat, J.; Azaiez, F. [Experimental Research Division, Inst. de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France)] [and others


    Discrete {gamma}-rays of high energy connecting states of the two Yrast superdeformed bands in {sup 193}Tl to the normal deformed states have been identified. Thus, for the first time, in an odd SD nucleus, it has been possible to propose an excitation energy and spins of the two lowest bands. (authors) 3 refs., 2 figs.

  10. Excitations

    Energy Technology Data Exchange (ETDEWEB)

    Dorner, B. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)


    A short introduction to instrumental resolution is followed by a discussion of visibilities of phonon modes due to their eigenvectors. High precision phonon dispersion curves in GaAs are presented together with `ab initio` calculations. Al{sub 2}O{sub 3} is taken as an example of selected visibility due to group theory. By careful determination of phonon intensities eigenvectors can be determined, such as in Silicon and Diamond. The investigation of magnon modes is shown for the garnet Fe{sub 2}Ca{sub 3}(GeO{sub 4}){sub 3}, where also a quantum gap due to zero point spin fluctuations was observed. The study of the splitting of excitons in CsFeCl{sub 3} in an applied magnetic field demonstrates the possibilities of neutron polarisation analysis, which made it possible to observe a mode crossing. An outlook to inelastic X-ray scattering with very high energy resolution of synchrotron radiation is given with the examples of phonons in Beryllium and in water. (author) 19 figs., 36 refs.

  11. Enhancing radiative energy transfer through thermal extraction (United States)

    Tan, Yixuan; Liu, Baoan; Shen, Sheng; Yu, Zongfu


    Thermal radiation plays an increasingly important role in many emerging energy technologies, such as thermophotovoltaics, passive radiative cooling and wearable cooling clothes [1]. One of the fundamental constraints in thermal radiation is the Stefan-Boltzmann law, which limits the maximum power of far-field radiation to P0 = σT4S, where σ is the Boltzmann constant, S and T are the area and the temperature of the emitter, respectively (Fig. 1a). In order to overcome this limit, it has been shown that near-field radiations could have an energy density that is orders of magnitude greater than the Stefan-Boltzmann law [2-7]. Unfortunately, such near-field radiation transfer is spatially confined and cannot carry radiative heat to the far field. Recently, a new concept of thermal extraction was proposed [8] to enhance far-field thermal emission, which, conceptually, operates on a principle similar to oil immersion lenses and light extraction in light-emitting diodes using solid immersion lens to increase light output [62].Thermal extraction allows a blackbody to radiate more energy to the far field than the apparent limit of the Stefan-Boltzmann law without breaking the second law of thermodynamics. Thermal extraction works by using a specially designed thermal extractor to convert and guide the near-field energy to the far field, as shown in Fig. 1b. The same blackbody as shown in Fig. 1a is placed closely below the thermal extractor with a spacing smaller than the thermal wavelength. The near-field coupling transfers radiative energy with a density greater than σT4. The thermal extractor, made from transparent and high-index or structured materials, does not emit or absorb any radiation. It transforms the near-field energy and sends it toward the far field. As a result, the total amount of far-field radiative heat dissipated by the same blackbody is greatly enhanced above SσT4, where S is the area of the emitter. This paper will review the progress in thermal

  12. Carrier multiplication in semiconductor nanocrystals detected by energy transfer to organic dye molecules. (United States)

    Xiao, Jun; Wang, Ying; Hua, Zheng; Wang, Xiaoyong; Zhang, Chunfeng; Xiao, Min


    Carrier multiplication describes an interesting optical phenomenon in semiconductors whereby more than one electron-hole pair, or exciton, can be simultaneously generated upon absorption of a single high-energy photon. So far, it has been highly debated whether the carrier multiplication efficiency is enhanced in semiconductor nanocrystals as compared with their bulk counterpart. The controversy arises from the fact that the ultrafast optical methods currently used need to correctly account for the false contribution of charged excitons to the carrier multiplication signals. Here we show that this charged exciton issue can be resolved in an energy transfer system, where biexcitons generated in the donor nanocrystals are transferred to the acceptor dyes, leading to an enhanced fluorescence from the latter. With the biexciton Auger and energy transfer lifetime measurements, an average carrier multiplication efficiency of ~17.1% can be roughly estimated in CdSe nanocrystals when the excitation photon energy is ~2.46 times of their energy gap.

  13. New Rh2(II,II) Complexes for Solar Energy Applications: Panchromatic Absorption and Excited-State Reactivity. (United States)

    Whittemore, Tyler J; Sayre, Hannah J; Xue, Congcong; White, Travis A; Gallucci, Judith C; Turro, Claudia


    The new heteroleptic paddlewheel complexes cis-[Rh 2 (μ-form) 2 (μ-np) 2 ][BF 4 ] 2 , where form = p-ditolylformamidinate (DTolF) or p-difluorobenzylformamidinate (F-form) and np = 1,8-napthyridyine, and cis-Rh 2 (μ-form) 2 (μ-npCOO) 2 (npCOO - = 1,8-naphthyridine-2-carboxylate), were synthesized and characterized. The complexes absorb strongly throughout the ultraviolet (λ max = 300 nm, ε = 20 300 M -1 cm -1 ) and visible regions (λ max = 640 nm ε = 3500 M -1 cm -1 ), making them potentially useful new dyes with panchromatic light absorption for solar energy conversion applications. Ultrafast and nanosecond transient absorption and time-resolved infrared spectroscopies were used to characterize the identity and dynamics of the excited states, where singlet and triplet Rh 2 /form-to-naphthyridine, metal/ligand-to-ligand charge-transfer (ML-LCT) excited states were observed in all four complexes. The npCOO - complexes exhibit red-shifted absorption profiles extending into the near-IR and undergo photoinitiated electron transfer to generate reduced methyl viologen, a species that persists in the presence of a sacrificial donor. The energy of the triplet excited state of each complex was estimated from energy-transfer quenching experiments using a series of organic triplet donors (E( 3 ππ*) from 1.83 to 0.78 eV). The singlet reduction (+0.6 V vs Ag/AgCl) potentials, and singlet and triplet oxidation potentials (-1.1 and -0.5 V vs Ag/AgCl, respectively) were determined. Based on the excited-state lifetimes and redox properties, these complexes represent a new class of light absorbers with potential application as dyes for charge injection into semiconductor solar cells and in sensitizer-catalyst assemblies for photocatalysis that operate with irradiation from the ultraviolet to ∼800 nm.

  14. Optical Energy Transfer Mechanisms: From Naphthalene to Biacetyl in Liquids and from Pyrazine to Biacetyl

    Directory of Open Access Journals (Sweden)

    Fuat Bayrakceken


    Full Text Available Optical energy transfer from naphthalene to biacetyl in liquids at room temperature is studied. Electronically excited naphthalene with 200–260 nm ultraviolet (UV light emits photons in its emission band and the emitted photons are absorbed by biacetyl, which, in turn, excites biacetyl phosphorescence. The resulting phosphorescence is very stable with emission peak at 545 nm for different excitation wavelengths from 200 to 260 nm. Similar optical energy transfer is also observed from pyrazine to biacetyl. The sensitization of biacetyl by several aromatic donors has been investigated in detail. An aromatic donor, pyrazine, is raised to its first excited singlet state by absorption of ultraviolet radiation. Excitation wavelengths were selected in the first - band of pyrazine. Intersystem crossing in pyrazine is sufficiently fast to give a triplet yield of almost unity as determined by the biacetyl method. The optical excess energy in the biacetyl will be released as light, which is sensitized fluorescence. Biacetyl is the simplest molecule among a wide range of -dicarbonyl compounds, which is important for photophysics and photochemistry applications.

  15. Quantum Transfer Energy and Nonlocal Correlation in a Dimer with Time-Dependent Coupling Effect (United States)

    El-Shishtawy, Reda M.; Berrada, K.; C. Haddon, Robert; Al-Hadeethi, Yas F.; H. Al-Heniti, Saleh.; Raffah, Bahaaudin M.


    The presence of coherence phenomenon due to the interference of probability amplitude terms, is one of the most important features of quantum mechanics theory. Recent experiments show the presence of quantum processes whose coherence provided over suddenly large interval-time. In particular, photosynthetic mechanisms in light-harvesting complexes provide oscillatory behaviors in quantum mechanics due to quantum coherence. In this work, we investigate the coherent quantum transfer energy for a single-excitation and nonlocal correlation in a dimer system modelled by a two-level atom system with and without time-dependent coupling effect. We analyze and explore the required conditions that are feasible with real experimental realization for optimal transfer of quantum energy and generation of nonlocal quantum correlation. We show that the enhancement of the probability for a single-excitation transfer energy is greatly benefits from the combination of the energy detuning and time-dependent coupling effect. We investigate the presence of quantum correlations in the dimer using the entanglement of formation. We also find that the entanglement between the donor and acceptor is very sensitive to the physical parameters and it can be generated during the coherent energy transfer. On the other hand, we study the dynamical behavior of the quantum variance when performing a measurement on an observable of the density matrix operator. Finally, an interesting relationship between the transfer probability, entanglement and quantum variance is explored during the time evolution in terms of the physical parameters.

  16. Enhancing radiative energy transfer through thermal extraction

    Directory of Open Access Journals (Sweden)

    Tan Yixuan


    Full Text Available Thermal radiation plays an increasingly important role in many emerging energy technologies, such as thermophotovoltaics, passive radiative cooling and wearable cooling clothes [1]. One of the fundamental constraints in thermal radiation is the Stefan-Boltzmann law, which limits the maximum power of far-field radiation to P0 = σT4S, where σ is the Boltzmann constant, S and T are the area and the temperature of the emitter, respectively (Fig. 1a. In order to overcome this limit, it has been shown that near-field radiations could have an energy density that is orders of magnitude greater than the Stefan-Boltzmann law [2-7]. Unfortunately, such near-field radiation transfer is spatially confined and cannot carry radiative heat to the far field. Recently, a new concept of thermal extraction was proposed [8] to enhance far-field thermal emission, which, conceptually, operates on a principle similar to oil immersion lenses and light extraction in light-emitting diodes using solid immersion lens to increase light output [62].Thermal extraction allows a blackbody to radiate more energy to the far field than the apparent limit of the Stefan-Boltzmann law without breaking the second law of thermodynamics.

  17. Nanophotonics: Energy Transfer towards Enhanced Luminescent Chemosensing

    Directory of Open Access Journals (Sweden)

    Roy Aad


    Full Text Available We discuss a recently proposed novel photonic approach for enhancing the fluorescence of extremely thin chemosensing polymer layers. We present theoretical and experimental results demonstrating the concept of gain-assisted waveguided energy transfer (G-WET on a very thin polymer nanolayer spincoated on an active ZnO thin film. The G-WET approach is shown to result in an 8-fold increase in polymer fluorescence. We then extend the G-WET concept to nanostructured media. The benefits of using active nanostructured substrates on the sensitivity and fluorescence of chemosensing polymers are discussed. Preliminary theoretical results on enlarged sensing surface and photonic band-gap are presented.

  18. Scaled Second Order Perturbation Corrections to Configuration Interaction Singles: Efficient and Reliable Excitation Energy Methods

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, Young Min; Head-Gordon, Martin


    Two modifications of the perturbative doubles correction to configuration interaction with single substitutions (CIS(D)) are suggested, which are excited state analogs of ground state scaled second order Moeller-Plesset (MP2) methods. The first approach employs two parameters to scale the two spin components of the direct term of CIS(D), starting from the two-parameter spin-component scaled (SCS) MP2 ground state, and is termed SCS-CIS(D). An efficient resolution-of-the-identity (RI) implementation of this approach is described. The second approach employs a single parameter to scale only the opposite-spin direct term of CIS(D), starting from the one-parameter scaled opposite spin (SOS) MP2 ground state, and is called SOS-CIS(D). By utilizing auxiliary basis expansions and a Laplace transform, a fourth order algorithm for SOS-CIS(D) is described and implemented. The parameters describing SCS-CIS(D) and SOS-CIS(D) are optimized based on a training set including valence excitations of various organic molecules and Rydberg transitions of water and ammonia, and they significantly improve upon CIS(D) itself. The accuracy of the two methods is found to be comparable. This arises from a strong correlation between the same-spin and opposite-spin portions of the excitation energy terms. The methods are successfully applied to the zincbacteriochlorin-bacteriochlorin charge transfer transition, for which time-dependent density functional theory, with presently available exchange-correlation functionals, is known to fail. The methods are also successfully applied to describe various electronic transitions outside of the training set. The efficiency of SOS-CIS(D) and the auxiliary basis implementation of CIS(D) and SCS-CIS(D) are confirmed with a series of timing tests.

  19. The contributions of 49ers to the measurements and models of ultrafast photosynthetic energy transfer

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, Graham R. [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)


    Progress in measuring and understanding the mechanism of the elementary energy transfer steps in photosynthetic light harvesting from roughly 1949 to the present is sketched with a focus on the group of scientists born in 1949 ± 1. Improvements in structural knowledge, laser spectroscopic methods, and quantum dynamical theories have led to the ability to record and calculate with reasonable accuracy the timescales of elementary energy transfer steps. The importance of delocalized excited states and of near-field Coulombic coupling is noted. The microscopic understanding enables consistent coarse graining and should enable a much-improved understanding of the regulation of photosynthetic light harvesting.

  20. The contributions of 49ers to the measurements and models of ultrafast photosynthetic energy transfer. (United States)

    Fleming, Graham R


    Progress in measuring and understanding the mechanism of the elementary energy transfer steps in photosynthetic light harvesting from roughly 1949 to the present is sketched with a focus on the group of scientists born in 1949 ± 1. Improvements in structural knowledge, laser spectroscopic methods, and quantum dynamical theories have led to the ability to record and calculate with reasonable accuracy the timescales of elementary energy transfer steps. The significance of delocalized excited states and of near-field Coulombic coupling is noted. The microscopic understanding enables consistent coarse graining and should enable a much-improved understanding of the regulation of photosynthetic light harvesting.

  1. Excitation Migration, Quenching, and Regulation of Photosynthetic Light Harvesting in Photosystem II

    NARCIS (Netherlands)

    Valkunas, L.; Chmeliov, J.; Trinkunas, G.; Duffy, C.D.P.; van Grondelle, R.; Ruban, A.V.


    Excitation energy transfer and quenching in LHCII aggregates is considered in terms of a coarse-grained model. The model assumes that the excitation energy transfer within a pigment-protein complex is much faster than the intercomplex excitation energy transfer, whereas the quenching ability is

  2. Energy harvesting from coherent resonance of horizontal vibration of beam excited by vertical base motion

    Energy Technology Data Exchange (ETDEWEB)

    Lan, C. B.; Qin, W. Y. [Department of Engineering Mechanics, Northwestern Polytechnical University, Xi' an 710072 (China)


    This letter investigates the energy harvesting from the horizontal coherent resonance of a vertical cantilever beam subjected to the vertical base excitation. The potential energy of the system has two symmetric potential wells. So, under vertical excitation, the system can jump between two potential wells, which will lead to the large vibration in horizontal direction. Two piezoelectric patches are pasted to harvest the energy. From experiment, it is found that the vertical excitation can make the beam turn to be bistable. The system can transform vertical vibration into horizontal vibration of low frequency when excited by harmonic motion. The horizontal coherence resonance can be observed when excited by a vertical white noise. The corresponding output voltages of piezoelectric films reach high values.

  3. Role of intramolecular hydrogen bonding in the excited-state intramolecular double proton transfer (ESIDPT of calix[4]arene: A TDDFT study

    Directory of Open Access Journals (Sweden)

    Wang Se


    Full Text Available The time-dependent density functional theory (TDDFT method was performed to investigate the excited-state intramolecular double proton transfer (ESIDPT reaction of calix[4]arene (C4A and the role of the intramolecular hydrogen bonds in the ESIDPT process. The geometries of C4A in the ground state and excited states (S1, S2 and T1 were optimized. Four intramolecular hydrogen bonds formed in the C4A are strengthened or weakened in the S2 and T1 states compared to those in the ground state. Interestingly, upon excitation to the S1 state of C4A, two protons H1 and H2 transfer along the two intramolecular hydrogen bonds O1-H1···O2 and O2-H2···O3, while the other two protons do not transfer. The ESIDPT reaction breaks the primary symmetry of C4A in the ground state. The potential energy curves of proton transfer demonstrate that the ESIDPT process follows the stepwise mechanism but not the concerted mechanism. Findings indicate that intramolecular hydrogen bonding is critical to the ESIDPT reactions in intramolecular hydrogen-bonded systems.

  4. Kinetic energy transfer during the tennis serve

    Directory of Open Access Journals (Sweden)

    C.L. de Subijana


    Full Text Available Several studies have established the pattern used in the over arm hitting and throwing movements, however to date there has not been one which statistically expresses the Kinetic Link Principle of the tennis serve. The main goals of this study were: first to investigate the kinetic energy transmission pattern using a complete mechanical body model and second, to create a tool which could help evaluating the individual technique of a tennis player. This tool was a statistical procedure which expressed the individual technique of a player as a mathematical function. Fourteen and twelve flat tennis serves of two top tennis players landing in an aiming area were recorded with two synchronized video cameras at 125 Hz. The experimental technique was 3D photogrammetry. A 28 points body model with five solid-rigid (the pelvis, the thorax, the upper arms and the racquet was built. The kinetic energies from the body segments were considered the biomechanical parameters. The mean speeds of the balls were 41.9 m/s (150.9 km/hr and 38.1 m/s (137.2 km/hr. A Kinetic Sequential Action Muscle principle based on the kinetic energy transfer was probed statistically by mean a correlation analysis [3]. This pattern showed the existence of a proximal to distal sequence of kinetic energy maximums. A significant (p<0.05 discriminant function for each player could predict the category of the serve (“good” or “bad” in the 78.6% and 100% of the cases. This function facilitated the understanding of the individual technique of a tennis player showing that this could be a tool for the tennis training complementary to the qualitative (observational analysis.

  5. Proton transfer in phenol-amine complexes: phenol electronic effects on free energy profile in solution. (United States)

    Aono, Shinji; Kato, Shigeki


    Free energy profiles for the proton transfer reactions in hydrogen-bonded complex of phenol with trimethylamine in methyl chloride solvent are studied with the reference interaction site model self-consistent field method. The reactions in both the electronic ground and excited states are considered. The second-order Møller-Plesset perturbation (MP) theory or the second-order multireference MP theory is used to evaluate the effect of the dynamical electron correlation on the free energy profiles. The free energy surface in the ground state shows a discrepancy with the experimental results for the related hydrogen-bonded complexes. To resolve this discrepancy, the effects of chloro-substitutions in phenol are examined, and its importance in stabilizing the ionic form is discussed. The temperature effect is also studied. In contrast to the ground state, the ππ* excited state of phenol-trimethylamine complex exhibits the proton transfer reaction with a low barrier. The reaction is almost thermoneutral. This is attributed to the reduction of proton affinity of phenol by the ππ* electronic excitation. We further examine the possibility of the electron-proton-coupled transfer in the ππ* state through the surface crossing with the charge transfer type πσ* state. © 2010 Wiley Periodicals, Inc.

  6. Synergistic "ping-pong" energy transfer for efficient light activation in a chromophore-catalyst dyad. (United States)

    Quaranta, Annamaria; Charalambidis, Georgios; Herrero, Christian; Margiola, Sofia; Leibl, Winfried; Coutsolelos, Athanassios; Aukauloo, Ally


    The synthesis of a porphyrin-Ru(II) polypyridine complex where the porphyrin acts as a photoactive unit and the Ru(II) polypyridine as a catalytic precursor is described. Comparatively, the free base porphyrin was found to outperform the ruthenium based chromophore in the yield of light induced electron transfer. Mechanistic insights indicate the occurrence of a ping-pong energy transfer from the (1)LC excited state of the porphyrin chromophore to the (3)MCLT state of the catalyst and back to the (3)LC excited state of the porphyrin unit. The latter, triplet-triplet energy transfer back to the chromophore, efficiently competes with fast radiationless deactivation of the excited state at the catalyst site. The energy thus recovered by the chromophore allows improved yield of formation of the oxidized form of the chromophore and concomitantly of the oxidation of the catalytic unit by intramolecular charge transfer. The presented results are among the rare examples where a porphyrin chromophore is successfully used to drive an oxidative activation process where reductive processes prevail in the literature.

  7. Excited-state intramolecular hydrogen transfer (ESIHT) of 1,8-Dihydroxy-9,10-anthraquinone (DHAQ) characterized by ultrafast electronic and vibrational spectroscopy and computational modeling

    KAUST Repository

    Mohammed, Omar F.


    We combine ultrafast electronic and vibrational spectroscopy and computational modeling to investigate the photoinduced excited-state intramolecular hydrogen-transfer dynamics in 1,8-dihydroxy-9,10-anthraquinone (DHAQ) in tetrachloroethene, acetonitrile, dimethyl sulfoxide, and methanol. We analyze the electronic excited states of DHAQ with various possible hydrogen-bonding schemes and provide a general description of the electronic excited-state dynamics based on a systematic analysis of femtosecond UV/vis and UV/IR pump-probe spectroscopic data. Upon photoabsorption at 400 nm, the S 2 electronic excited state is initially populated, followed by a rapid equilibration within 150 fs through population transfer to the S 1 state where DHAQ exhibits ESIHT dynamics. In this equilibration process, the excited-state population is distributed between the 9,10-quinone (S2) and 1,10-quinone (S1) states while undergoing vibrational energy redistribution, vibrational cooling, and solvation dynamics on the 0.1-50 ps time scale. Transient UV/vis pump-probe data in methanol also suggest additional relaxation dynamics on the subnanosecond time scale, which we tentatively ascribe to hydrogen bond dynamics of DHAQ with the protic solvent, affecting the equilibrium population dynamics within the S2 and S1 electronic excited states. Ultimately, the two excited singlet states decay with a solvent-dependent time constant ranging from 139 to 210 ps. The concomitant electronic ground-state recovery is, however, only partial because a large fraction of the population relaxes to the first triplet state. From the similarity of the time scales involved, we conjecture that the solvent plays a crucial role in breaking the intramolecular hydrogen bond of DHAQ during the S2/S1 relaxation to either the ground or triplet state. © 2014 American Chemical Society.

  8. Energy cascades, excited state dynamics, and photochemistry in cob(III)alamins and ferric porphyrins. (United States)

    Rury, Aaron S; Wiley, Theodore E; Sension, Roseanne J


    Porphyrins and the related chlorins and corrins contain a cyclic tetrapyrrole with the ability to coordinate an active metal center and to perform a variety of functions exploiting the oxidation state, reactivity, and axial ligation of the metal center. These compounds are used in optically activated applications ranging from light harvesting and energy conversion to medical therapeutics and photodynamic therapy to molecular electronics, spintronics, optoelectronic thin films, and optomagnetics. Cobalt containing corrin rings extend the range of applications through photolytic cleavage of a unique axial carbon-cobalt bond, permitting spatiotemporal control of drug delivery. The photochemistry and photophysics of cyclic tetrapyrroles are controlled by electronic relaxation dynamics including internal conversion and intersystem crossing. Typically the electronic excitation cascades through ring centered ππ* states, ligand to metal charge transfer (LMCT) states, metal to ligand charge transfer (MLCT) states, and metal centered states. Ultrafast transient absorption spectroscopy provides a powerful tool for the investigation of the electronic state dynamics in metal containing tetrapyrroles. The UV-visible spectrum is sensitive to the oxidation state, electronic configuration, spin state, and axial ligation of the central metal atom. Ultrashort broadband white light probes spanning the range from 270 to 800 nm, combined with tunable excitation pulses, permit the detailed unravelling of the time scales involved in the electronic energy cascade. State-of-the-art theoretical calculations provide additional insight required for precise assignment of the states. In this Account, we focus on recent ultrafast transient absorption studies of ferric porphyrins and corrin containing cob(III)alamins elucidating the electronic states responsible for ultrafast energy cascades, excited state dynamics, and the resulting photoreactivity or photostability of these compounds. Iron

  9. Deviation from Boltzmann distribution in excited energy levels of singly-ionized iron in an argon glow discharge plasma for atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Lei; Kashiwakura, Shunsuke; Wagatsuma, Kazuaki, E-mail:


    A Boltzmann plot for many iron ionic lines having excitation energies of 4.7-9.1 eV was investigated in an argon glow discharge plasma when the discharge parameters, such as the voltage/current and the gas pressure, were varied. A Grimm-style radiation source was employed in a DC voltage range of 400-800 V at argon pressures of 400-930 Pa. The plot did not follow a linear relationship over a wide range of the excitation energy, but it yielded a normal Boltzmann distribution in the range of 4.7-5.8 eV and a large overpopulation in higher-lying excitation levels of iron ion. A probable reason for this phenomenon is that excitations for higher excited energy levels of iron ion would be predominantly caused by non-thermal collisions with argon species, the internal energy of which is received by iron atoms for the ionization. Particular intense ionic lines, which gave a maximum peak of the Boltzmann plot, were observed at an excitation energy of ca. 7.7 eV. They were the Fe II 257.297-nm and the Fe II 258.111-nm lines, derived from the 3d{sup 5}4s4p {sup 6}P excited levels. The 3d{sup 5}4s4p {sup 6}P excited levels can be highly populated through a resonance charge transfer from the ground state of argon ion, because of good matching in the excitation energy as well as the conservation of the total spin before and after the collision. An enhancement factor of the emission intensity for various Fe II lines could be obtained from a deviation from the normal Boltzmann plot, which comprised the emission lines of 4.7-5.8 eV. It would roughly correspond to a contribution of the charge transfer excitation to the excited levels of iron ion, suggesting that the charge-transfer collision could elevate the number density of the corresponding excited levels by a factor of ca.10{sup 4}. The Boltzmann plots give important information on the reason why a variety of iron ionic lines can be emitted from glow discharge plasmas.

  10. Characterising excited states in and around the semi-magic nucleus $^{68}$ Ni using Coulomb excitation and one-neutron transfer

    CERN Multimedia

    It is proposed to investigate the structure of excited states in $^{68, 70}$Ni(Z =28, N=40, 42) via the measurement of electromagnetic matrix elements in a Coulomb excitation experiment in order to study the N = 40 harmonic-oscillator shell and the Z = 28 proton shell closures. The measured B(E2) values connecting low-lying 0$^{+}$ and 2$^{+}$ can be compared to shell-model predictions. It is also proposed to perform the one-neutron transfer reaction ${d}$($^{68}$Ni,$^{69}$Ni)${p}$, with the aim of populating excited states in $^{69}$Ni. Comparisons with the states populated in the recently performed ${d}$($^{66}$Ni,$^{67}$Ni)${p}$ reaction will be useful in determining the role of the neutron $d_{5/2}$ orbital in the semi-magic properties of $^{68}$Ni.

  11. Transfer reactions and multiple Coulomb excitation in the $^{100}$Sn Region

    CERN Multimedia

    It is proposed to continue our REX-ISOLDE program in the $^{100}$Sn region at HIE-ISOLDE at ~5 MeV/u. Earlier measurements, with a precision of 10-20%, at 3 MeV/u with REX-ISOLDE point to a deviation between the measured B(E2) values for the first excited 2$^{+}$ states in $^{110,108,106}$Sn compared to theoretical predictions. In addition, the trend of B(E2) values for the lighter isotopes, in particular $^{106}$Sn, appear to differ between low- and high-energy measurements. In line with our letter-of-intent we aim in a first step to address the electromagnetic properties of the first 2$^{+}$and 4$^{+}$ states in $^{110,108,106}$Sn using Coulomb excitation. In these measurements we will directly access the lifetimes of the first excited 4$^{+}$ states in $^{110,108,106}$Sn for the first time. The yield of $^{104}$Sn from the LaC$_{x}$ target will be revisited to clarify if the new solid state RILIS gives sufficient yield to expand the measurements to this isotope. Following this proposal we plan similar meas...

  12. Excitation functions of fusion reactions and neutron transfer in the interaction of 6He with 197Au and 206Pb (United States)

    Penionzhkevich, Yu. E.; Astabatyan, R. A.; Demekhina, N. A.; Gulbekian, G. G.; Kalpakchieva, R.; Kulko, A. A.; Lukyanov, S. M.; Markaryan, E. R.; Maslov, V. A.; Muzychka, Yu. A.; Oganessian, Yu. Ts.; Revenko, R. V.; Skobelev, N. K.; Sobolev, Yu. G.; Testov, D. A.; Zholdybaev, T.


    Excitation functions for evaporation residues in the reactions 197Au(6He, xn)203-xnTl, x = 2-7, and 206Pb(6He, 2n)210Po, as well as for neutron transfer reactions for the production of 196Au and 198Au in the interaction of 6He with 197Au were measured. The 6He beam was obtained from the accelerator complex for radioactive beams DRIBs (JINR). The maximum energy of the beam was about 10AMeV and the intensity reached 2×107pps. The stacked-foil activation technique was used directly in the beam extracted from the cyclotron or in the focal plane of the magnetic spectrometer MSP-144. The identification of the reaction products was done by their radioactive γ- or α-decay. The fusion reaction with the evaporation of two neutrons was characterized by an increase in the cross-section compared to statistical model calculations. The analysis of the data in the framework of the statistical model for the decay of excited nuclei, which took into account the sequential fusion of 6He has shown good agreement between the experimental and the calculated values of the cross-sections in the case of sub-Coulomb-barrier fusion in the 206Pb + 6He reaction. An unusually large cross-section was observed below the Coulomb barrier for the production of 198Au in the interaction of 6He with 197Au. Possible mechanisms of formation and decay of transfer reaction products are discussed.

  13. Radiative energy transfer from MoS2 excitons to surface plasmons (United States)

    Kang, Yimin; Li, Bowen; Fang, Zheyu


    In this work, we demonstrated the energy transfer process from few-layer MoS2 to gold dimer arrays via ultrafast pump-probe spectroscopy. With the overlap between the MoS2 exciton and the designed plasmon dipolar modes in the frequency domain, the exciton energy can be radiatively transferred to plasmonic structures, excited the localized surface plasmon resonance, and then enhanced the oscillation of coherent acoustic phonons. Power-dependent differential reflection signals and an analytical model based on the rate equation of exciton density were carried out to quantitatively study the energy transfer process. Our finding explores the energy flow between MoS2 excitons and surface plasmons, and can be contributed to the design of exciton-plasmon structures utilizing ultrathin materials.

  14. Deactivation of 6-Aminocoumarin Intramolecular Charge Transfer Excited State through Hydrogen Bonding (United States)

    Krystkowiak, Ewa; Dobek, Krzysztof; Maciejewski, Andrzej


    This paper presents results of the spectral (absorption and emission) and photophysical study of 6-aminocoumarin (6AC) in various aprotic hydrogen-bond forming solvents. It was established that solvent polarity as well as hydrogen-bonding ability influence solute properties. The hydrogen-bonding interactions between S1-electronic excited solute and solvent molecules were found to facilitate the nonradiative deactivation processes. The energy-gap dependence on radiationless deactivation in aprotic solvents was found to be similar to that in protic solvents. PMID:25244014

  15. Radioactive beam EXperiments at ISOLDE : Coulomb excitation and neutron transfer reactions of exotic nuclei.

    CERN Multimedia

    Kugler, E; Ratzinger, U; Wenander, F J C


    % IS347 \\\\ \\\\We propose to perform a pilot experiment to study very neutron rich (A<32) Na-Mg and (A<52) K-Ca isotopes in the region around the neutron shell closures of N=20 and N=28 after Coulomb excitation and neutron transfer, and to demonstrate highly efficient and cost-effective ways to bunch, charge-state breed and accelerate already existing mass-separated singly-charged radioactive ion beams. \\\\ \\\\To do this we plan to accelerate the ISOLDE beams up to 2~MeV/u by means of a novel acceleration scheme and to install an efficient $\\gamma$-ray array for low-multiplicity events around the target position.

  16. Photophysical Model of 10-Hydroxybenzo[h]quinoline: Internal Conversion and Excited State Intramolecular Proton Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Junghwa; Joo, Taiha [Pohang Univ. of Science and Technology, Pohang (Korea, Republic of)


    Photophysics of 10-hydroxybenzo[h]quinoline (HBQ) has been in controversy, in particular, on the nature of the electronic states before and after the excited state intramolecular proton transfer (ESIPT), even though the dynamics and mechanism of the ESIPT have been well established. We report highly time resolved fluorescence spectra over the full emission frequency regions of the enol and keto isomers and the anisotropy in time domain to determine the accurate rates of the population decay, spectral relaxation and anisotropy decay of the keto isomer. We have shown that the ∼300 fs component observed frequently in ESIPT dynamics arises from the S{sub 2}→S{sub 1} internal conversion in the reaction product keto isomer and that the ESIPT occurs from the enol isomer in S{sub 1} state to the keto isomer in S{sub 2} state.

  17. Energy transfer dynamics in trimers and aggregates of light-harvesting complex II probed by 2D electronic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Enriquez, Miriam M.; Zhang, Cheng; Tan, Howe-Siang, E-mail: [Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore); Akhtar, Parveen; Garab, Győző; Lambrev, Petar H., E-mail: [Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged (Hungary)


    The pathways and dynamics of excitation energy transfer between the chlorophyll (Chl) domains in solubilized trimeric and aggregated light-harvesting complex II (LHCII) are examined using two-dimensional electronic spectroscopy (2DES). The LHCII trimers and aggregates exhibit the unquenched and quenched excitonic states of Chl a, respectively. 2DES allows direct correlation of excitation and emission energies of coupled states over population time delays, hence enabling mapping of the energy flow between Chls. By the excitation of the entire Chl b Q{sub y} band, energy transfer from Chl b to Chl a states is monitored in the LHCII trimers and aggregates. Global analysis of the two-dimensional (2D) spectra reveals that energy transfer from Chl b to Chl a occurs on fast and slow time scales of 240–270 fs and 2.8 ps for both forms of LHCII. 2D decay-associated spectra resulting from the global analysis identify the correlation between Chl states involved in the energy transfer and decay at a given lifetime. The contribution of singlet–singlet annihilation on the kinetics of Chl energy transfer and decay is also modelled and discussed. The results show a marked change in the energy transfer kinetics in the time range of a few picoseconds. Owing to slow energy equilibration processes, long-lived intermediate Chl a states are present in solubilized trimers, while in aggregates, the population decay of these excited states is significantly accelerated, suggesting that, overall, the energy transfer within the LHCII complexes is faster in the aggregated state.

  18. Excited state proton transfer in 9-aminoacridine carboxamides in water and in DNA

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Charles A. [Iowa State Univ., Ames, IA (United States)


    The 9-aminoacridine molecule is important in several different fields of chemistry. The absorption and fluorescence spectra of this compound are pH sensitive and it is this property that allowed it to be used as a pH probe in different chemical environments. The compound exhibits proton transfer reactions which are among the most fundamental of chemical reactions. The planarity of 9-aminoacridine allows it to intercalate into DNA. Intercalation is a process in which the aromatic flat surface of the intercalator inserts between adjacent base pairs of DNA. The large surface area of 9-aminoacridine`s fused tricyclic ring system allows strong intercalative binding through van der Waals attractions. 9-aminoacridine and many of its derivatives have been tried as possible antitumor drugs. The cytotoxicity of an antitumor agent can be dramatically increased through the addition of one or two cationic side chains. This increase in cytotoxicity using the 9-aminoacridine compound as a parent molecule has been investigated through various derivatives with cationic side chains consisting of different number of carbon atoms between the proximal and distal N atoms. Similar derivatives varied the position of the carboxamide side chain on the aromatic ring system. The objective of this work is to first create a baseline study of the excited state kinetics of the 9-aminoacridine carboxamides in the absence of DNA. The baseline study will allow the excited state kinetics of these antitumor drugs when placed in DNA to be more fully understood.

  19. Pulsed magnetization transfer contrast MRI by a sequence with water selective excitation

    Energy Technology Data Exchange (ETDEWEB)

    Schick, F. [Univ. of Tuebingen (Germany)


    A water selective SE imaging sequence was developed providing suitable properties for the assessment of magnetization transfer (MT) effects in tissues with considerable amounts of fat. The sequence with water selective excitation and slice selective refocusing combines the following features: The RIF exposure on the macromolecular protons is relatively low for single slice imaging without MT prepulses, since no additional pulses for fat saturation are necessary. Water selection by frequency selective excitation diminishes faults in the subtraction of images recorded with and without MT prepulses (which might arise from movements). High differences in the signal amplitudes from hyaline cartilage and muscle tissue were obtained comparing images recorded with irradiation of the series of prepulses for MT and those lacking MT prepulses. Utilizations of the described water selective approach for the assessment of MT effects in lesions of cartilage and bone are demonstrated. MT saturation was also examined in muscles with fatty degeneration of patients suffering from progressive muscular dystrophy. The described technique allows determination of MT effects with good precision in a single slice, especially in regions with dominating fat signals. 22 refs., 5 figs.

  20. Low energy nuclear spin excitations in Ho metal investigated by high resolution neutron spectroscopy. (United States)

    Chatterji, Tapan; Jalarvo, Niina


    We have investigated the low energy excitations in metallic Ho by high resolution neutron spectroscopy. We found at T = 3 K clear inelastic peaks in the energy loss and energy gain sides, along with the central elastic peak. The energy of this low energy excitation, which is 26.59 ± 0.02 μeV at T = 3 K, decreased continuously and became zero at TN ≈ 130 K. By fitting the data in the temperature range 100-127.5 K with a power law we obtained the power-law exponent β = 0.37 ± 0.02, which agrees with the expected value β = 0.367 for a three-dimensional Heisenberg model. Thus the energy of the low energy excitations can be associated with the order parameter.

  1. Proceedings of the 1984 workshop on high-energy excitations in condensed matter. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    Silver, R.N. (comp.)


    This volume covers electronic excitations, momentum distributions, high energy photons, and a wrap-up session. Abstracts of individual items from the conference were prepared separately for the data base. (GHT)

  2. Ergodicity, configurational entropy and free energy in pigment solutions and plant photosystems: influence of excited state lifetime. (United States)

    Jennings, Robert C; Zucchelli, Giuseppe


    We examine ergodicity and configurational entropy for a dilute pigment solution and for a suspension of plant photosystem particles in which both ground and excited state pigments are present. It is concluded that the pigment solution, due to the extreme brevity of the excited state lifetime, is non-ergodic and the configurational entropy approaches zero. Conversely, due to the rapid energy transfer among pigments, each photosystem is ergodic and the configurational entropy is positive. This decreases the free energy of the single photosystem pigment array by a small amount. On the other hand, the suspension of photosystems is non-ergodic and the configurational entropy approaches zero. The overall configurational entropy which, in principle, includes contributions from both the single excited photosystems and the suspension which contains excited photosystems, also approaches zero. Thus the configurational entropy upon photon absorption by either a pigment solution or a suspension of photosystem particles is approximately zero. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Influence of excited states on the energy loss of fast ions in a hydrogen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kaercher, B. (Max-Planck-Institut fuer Quantenoptik, D-8046 Garching, Germany (DE)); Peter, T. (Max-Planck-Institut fuer Chemie, D-6500 Mainz, Germany (DE))


    Stopping power calculations of fast ions penetrating a hydrogen plasma target in local thermodynamic equilibrium at arbitrary temperatures are performed. Excited state contributions to the energy loss are included in the framework of the Bethe formalism. Average ionization potentials for the excited ions are given in a quasiclassical approximation. It is shown that the net effect is an enhancement of the stopping power compared to the energy loss when assuming all atoms to be in their ground state.

  4. The security energy encryption in wireless power transfer (United States)

    Sadzali, M. N.; Ali, A.; Azizan, M. M.; Albreem, M. A. M.


    This paper presents a concept of security in wireless power transfer (WPT) by applying chaos theory. Chaos theory is applied as a security system in order to safeguard the transfer of energy from a transmitter to the intended receiver. The energy encryption of the wireless power transfer utilizes chaos theory to generate the possibility of a logistic map for the chaotic security key. The simulation for energy encryption wireless power transfer system was conducted by using MATLAB and Simulink. By employing chaos theory, the chaotic key ensures the transmission of energy from transmitter to its intended receiver.

  5. Solvent effects on excitation energies obtained using the state-specific TD-DFT method with a polarizable continuum model based on constrained equilibrium thermodynamics. (United States)

    Bi, Ting-Jun; Xu, Long-Kun; Wang, Fan; Ming, Mei-Jun; Li, Xiang-Yuan


    Nonequilibrium solvation effects need to be treated properly in the study of electronic absorption processes of solutes since solvent polarization is not in equilibrium with the excited-state charge density of the solute. In this work, we developed a state specific (SS) method based on the novel nonequilibrium solvation model with constrained equilibrium manipulation to account for solvation effects in electronic absorption processes. Time-dependent density functional theory (TD-DFT) is adopted to calculate electronic excitation energies and a polarizable continuum model is employed in the treatment of bulk solvent effects on both the ground and excited electronic states. The equations based on this novel nonequilibrium solvation model in the framework of TDDFT to calculate vertical excitation energy are presented and implemented in the Q-Chem package. The implementation is validated by comparing reorganization energies for charge transfer excitations between two atoms obtained from Q-Chem and those obtained using a two-sphere model. Solvent effects on electronic transitions of coumarin 153 (C153), acetone, pyridine, (2E)-3-(3,4-dimethoxyphenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one (DMHP), and uracil in different solvents are investigated using the newly developed code. Our results show that the obtained vertical excitation energies as well as spectral shifts generally agree better with the available experimental values than those obtained using the traditional nonequlibrium solvation model. This new model is thus appropriate to study nonequilibrium excitation processes in solution.

  6. Conservative modelling of the moisture and heat transfer in building components under atmospheric excitation

    DEFF Research Database (Denmark)

    Janssen, Hans; Blocken, Bert; Carmeliet, Jan


    While the transfer equations for moisture and heat in building components are currently undergoing standardisation, atmospheric boundary conditions, conservative modelling and numerical efficiency are not addressed. In a first part, this paper adds a comprehensive description of those boundary...... conditions, emphasising wind-driven rain and vapour exchange, the main moisture supply and removal mechanism, respectively. In the second part the numerical implementation is tackled, with specific attention to the monotony of the spatial discretisation, and to the mass and energy conservation...

  7. Förster Resonance Energy Transfer between Quantum Dot Donors and Quantum Dot Acceptors (United States)

    Chou, Kenny F.; Dennis, Allison M.


    Förster (or fluorescence) resonance energy transfer amongst semiconductor quantum dots (QDs) is reviewed, with particular interest in biosensing applications. The unique optical properties of QDs provide certain advantages and also specific challenges with regards to sensor design, compared to other FRET systems. The brightness and photostability of QDs make them attractive for highly sensitive sensing and long-term, repetitive imaging applications, respectively, but the overlapping donor and acceptor excitation signals that arise when QDs serve as both the donor and acceptor lead to high background signals from direct excitation of the acceptor. The fundamentals of FRET within a nominally homogeneous QD population as well as energy transfer between two distinct colors of QDs are discussed. Examples of successful sensors are highlighted, as is cascading FRET, which can be used for solar harvesting. PMID:26057041

  8. Förster Resonance Energy Transfer between Quantum Dot Donors and Quantum Dot Acceptors

    Directory of Open Access Journals (Sweden)

    Kenny F. Chou


    Full Text Available Förster (or fluorescence resonance energy transfer amongst semiconductor quantum dots (QDs is reviewed, with particular interest in biosensing applications. The unique optical properties of QDs provide certain advantages and also specific challenges with regards to sensor design, compared to other FRET systems. The brightness and photostability of QDs make them attractive for highly sensitive sensing and long-term, repetitive imaging applications, respectively, but the overlapping donor and acceptor excitation signals that arise when QDs serve as both the donor and acceptor lead to high background signals from direct excitation of the acceptor. The fundamentals of FRET within a nominally homogeneous QD population as well as energy transfer between two distinct colors of QDs are discussed. Examples of successful sensors are highlighted, as is cascading FRET, which can be used for solar harvesting.

  9. Effect of magnetic field on the impurity binding energy of the excited ...

    Indian Academy of Sciences (India)

    The effect of external magnetic field on the excited state energies in a spherical quantum dot was studied. The impurity energy and binding energy were calculated using the variational method within the effective mass approximation and finite barrier potential. The results showed that by increasing the magnetic field, the ...

  10. Correlated natural transition orbital framework for low-scaling excitation energy calculations (CorNFLEx) (United States)

    Baudin, Pablo; Kristensen, Kasper


    We present a new framework for calculating coupled cluster (CC) excitation energies at a reduced computational cost. It relies on correlated natural transition orbitals (NTOs), denoted CIS(D')-NTOs, which are obtained by diagonalizing generalized hole and particle density matrices determined from configuration interaction singles (CIS) information and additional terms that represent correlation effects. A transition-specific reduced orbital space is determined based on the eigenvalues of the CIS(D')-NTOs, and a standard CC excitation energy calculation is then performed in that reduced orbital space. The new method is denoted CorNFLEx (Correlated Natural transition orbital Framework for Low-scaling Excitation energy calculations). We calculate second-order approximate CC singles and doubles (CC2) excitation energies for a test set of organic molecules and demonstrate that CorNFLEx yields excitation energies of CC2 quality at a significantly reduced computational cost, even for relatively small systems and delocalized electronic transitions. In order to illustrate the potential of the method for large molecules, we also apply CorNFLEx to calculate CC2 excitation energies for a series of solvated formamide clusters (up to 4836 basis functions).

  11. Identification of the low-energy excitations in a quantum critical system

    Directory of Open Access Journals (Sweden)

    Tom Heitmann


    Full Text Available We have identified low-energy magnetic excitations in a doped quantum critical system by means of polarized neutron scattering experiments. The presence of these excitations could explain why Ce(Fe0.76Ru0.242Ge2 displays dynamical scaling in the absence of local critical behavior or long-range spin-density wave criticality. The low-energy excitations are associated with the reorientations of the superspins of fully ordered, isolated magnetic clusters that form spontaneously upon lowering the temperature. The system houses both frozen clusters and dynamic clusters, as predicted by Hoyos and Vojta [Phys. Rev. B 74, 140401(R (2006].

  12. Charge-transfer excitations in low-gap systems under the influence of solvation and conformational disorder: Exploring range-separation tuning (United States)

    de Queiroz, Thiago B.; Kümmel, Stephan


    Charge transfer excitations play a prominent role in the fields of molecular electronics and light harvesting. At the same time they have developed a reputation for being hard to predict with time-dependent density functional theory, which is the otherwise predominant method for calculating molecular structure and excitations. Recently, it has been demonstrated that range-separated hybrid functionals, in particular with an "optimally tuned" range separation parameter, describe charge-transfer excitations reliably for different molecules. Many of these studies focused on molecules in vacuum. Here we investigate the influence of solvation on the electronic excitations of thiophene oligomers, i.e., paradigm low gap systems. We take into account bulk solvation using a continuum solvation model and geometrical distortions from molecular dynamics. From our study, three main findings emerge. First, geometrical distortions increase absorption energies by about 0.5 eV for the longer thiophene oligomers. Second, combining optimal tuning of the range separation parameter with a continuum solvation method is not straightforward and has to be approached with great care. Third, optimally tuned range-separated hybrids without a short-range exchange component tend to inherit undesirable characteristics of semi-local functionals: with increasing system size the range separation parameter takes a smaller value, leading to a functional of effectively more semi-local nature and thus not accurately capturing, e.g., the saturation of the optical gap with increasing system size.

  13. The energy transfer from Eu2+ to Tb3+ in calcium chlorapatite phosphor and its potential application in LEDs (United States)

    Zhang, Z.; Wang, J.; Zhang, M.; Zhang, Q.; Su, Q.


    Energy transfer from Eu2+ to Tb3+ was observed by investigating the optical properties from photoluminescence spectra and decay time curves in Tb3+ singly doped and Eu2+ Tb3+ co-doped calcium chlorapatite, Ca5(PO4)3Cl (CPCl). It is dominated by the cooperation of a phonon-assisted energy transfer process and a non-radiative resonant energy transfer process caused by the exchange interaction. Eu2+ Tb3+ co-doped calcium chlorapatite phosphors in which Tb3+ can be efficiently excited by 400 nm are potential candidates for phosphor-converted LED.

  14. Highly emitting near-infrared lanthanide "encapsulated sandwich" metallacrown complexes with excitation shifted toward lower energy. (United States)

    Trivedi, Evan R; Eliseeva, Svetlana V; Jankolovits, Joseph; Olmstead, Marilyn M; Petoud, Stéphane; Pecoraro, Vincent L


    Near-infrared (NIR) luminescent lanthanide complexes hold great promise for practical applications, as their optical properties have several complementary advantages over organic fluorophores and semiconductor nanoparticles. The fundamental challenge for lanthanide luminescence is their sensitization through suitable chromophores. The use of the metallacrown (MC) motif is an innovative strategy to arrange several organic sensitizers at a well-controlled distance from a lanthanide cation. Herein we report a series of lanthanide “encapsulated sandwich” MC complexes of the form Ln3+ [12-MC(Zn(II),quinHA)-4]2[24-MC(Zn(II),quinHA)-8] (Ln3+ [Zn(II)MC(quinHA)]) in which the MC framework is formed by the self-assembly of Zn2+ ions and tetradentate chromophoric ligands based on quinaldichydroxamic acid (quinHA). A first-generation of luminescent MCs was presented previously but was limited due to excitation wavelengths in the UV. We report here that through the design of the chromophore of the MC assembly, we have significantly shifted the absorption wavelength toward lower energy (450 nm). In addition to this near-visible inter- and/or intraligand charge transfer absorption, Ln3+ [Zn(II)MC(quinHA)] exhibits remarkably high quantum yields, long luminescence lifetimes (CD3OD; Yb3+, QLn(L) = 2.88(2)%, τobs = 150.7(2) μs; Nd3+, QLn(L) = 1.35(1)%, τobs = 4.11(3) μs; Er3+, QLn(L) = 3.60(6)·10–2%, τobs = 11.40(3) μs), and excellent photostability. Quantum yields of Nd3+ and Er3+ MCs in the solid state and in deuterated solvents, upon excitation at low energy, are the highest values among NIR-emitting lanthanide complexes containing C–H bonds. The versatility of the MC strategy allows modifications in the excitation wavelength and absorptivity through the appropriate design of the ligand sensitizer, providing a highly efficient platform with tunable properties.

  15. Energy transfer mechanism and optoelectronic properties of (PFO/TiO2)/Fluorol 7GA nanocomposite thin films (United States)

    Al-Asbahi, Bandar Ali


    Energy transfer between poly (9,9'-di-n-octylfluorenyl-2,7-diyl) (PFO) as a donor in presence of TiO2 nanoparticles (NPs) and Fluorol 7GA as an acceptor with different weight ratios has been investigated by steady-state emission measurements. Based on the absorption and fluorescence measurements, the energy transfer properties, such as quenching rate constant (kSV), energy transfer rate constant (kET), quantum yield (ϕDA), and lifetime (τDA), of the donor in the presence of the acceptor, energy transfer probability (PDA), energy transfer efficiency (η), energy transfer time (τET), and critical distance of the energy transfer (Ro) were calculated. Förster-type energy transfer between the excited donor and ground-state acceptor molecules was the dominant mechanism responsible for the energy transfer as evidenced by large values of kSV, kET, and Ro. Moreover, these composite materials were employed as an emissive layer in organic light-emitting diodes (OLEDs). Additionally, the optoelectronic properties of OLEDs were investigated in terms of current density-voltage characteristics and electroluminescence spectra.

  16. Excited-state free energy surfaces in solution: time-dependent density functional theory∕reference interaction site model self-consistent field method. (United States)

    Minezawa, Noriyuki


    Constructing free energy surfaces for electronically excited states is a first step toward the understanding of photochemical processes in solution. For that purpose, the analytic free energy gradient is derived and implemented for the linear-response time-dependent density functional theory combined with the reference interaction site model self-consistent field method. The proposed method is applied to study (1) the fluorescence spectra of aqueous acetone and (2) the excited-state intramolecular proton transfer reaction of ortho-hydroxybenzaldehyde in an acetonitrile solution.

  17. Energy transfer in erbium doped optical waveguides based on silicon

    NARCIS (Netherlands)

    Kik, Pieter Geert


    Energy transfer in erbium doped optical waveguides based on silicon This thesis describes the energy transfer processes occurring in materials that can be used for the fabrication of silicon compatible optical integrated circuits, operating at 1.54 mm.The thesis consists of three parts: Part I

  18. Mode-to-mode energy transfers in convective patterns

    Indian Academy of Sciences (India)

    Abstract. We investigate the energy transfer between various Fourier modes in a low- dimensional model for thermal convection. We have used the formalism of mode-to-mode energy transfer rate in our calculation. The evolution equations derived using this scheme is the same as those derived using the hydrodynamical ...

  19. Significance of a Recurring Function in Energy Transfer (United States)

    Mishra, Subodha


    The appearance of a unique function in the energy transfer from one system to the other in different physical situations such as electrical, mechanical, optical, and quantum mechanical processes is established in this work. Though the laws governing the energy transformation and its transfer from system to system are well known, here we notice a…

  20. Ion association in aqueous solutions probed through vibrational energy transfers among cation, anion, and water molecules. (United States)

    Li, Jiebo; Bian, Hongtao; Chen, Hailong; Wen, Xiewen; Hoang, Bryan T; Zheng, Junrong


    KSCN and NH4SCN aqueous solutions were investigated with intermolecular vibrational energy transfer methods. In a KSCN/H2O (1/10 molar ratio) solution, 90% of the initial excitation of the CN stretch (~2066 cm(-1)) of the SCN(-) anion is transferred to the HOH bending mode (~1636 cm(-1)) of water molecules with an energy transfer time constant 3.1 ps. In a NH4SCN/H2O (1/10 molar ratio) solution, only 49% of the CN excitation flows to the water HOH bending mode with a time constant 6.3 ps. Most of the remaining CN excitation goes to the NH bending mode (~1460 cm(-1)) of the NH(+) cation with a time constant of 7.0 ps. The results indicate that about 50% of the energy transfer channel from the CN stretch to the HOH bending observed in the KSCN solution is overpowered by the NH4(+) cations in the NH4SCN/H2O solution. Ion concentration dependent measurements support this argument. According to the dipole/dipole approximation, the CN/OH energy transfer occurs most efficiently between SCN(-) anions and the water molecules closest to them. The experimental results therefore suggest that more than 50% of the water molecules closest to the SCN(-) anions are replaced by the NH4(+) cations in the NH4SCN/H2O (1/10 molar ratio) solution. The percentage is much larger than the NH4(+)/water ratio of 10%, indicating that the ion association between NH4(+) and SCN(-) is caused by the chemical nature of the solution rather than the statistical "forced contact" because of the high ion concentration.


    NARCIS (Netherlands)

    Recent collision experiments are reviewed in which one-electron transfer between laser excited target atoms and (highly charged) keV-ions has been studied. Especially results showing a dependence of the charge exchange on the initial target orbital alignment are discussed. The question to what

  2. Interplay Effect of Excitation and Temperature on Carrier Transfer between Vertically Aligned InAs/GaAs Quantum Dot Pairs

    Directory of Open Access Journals (Sweden)

    Yao Liu


    Full Text Available Carrier transfer in vertically-coupled InAs/GaAs quantum dot (QD pairs is investigated. Photoluminescence (PL and PL excitation spectra measured at low temperature indicate that the PL peak intensity ratio between the emission from the two sets of QDs—i.e., the relative population of carriers between the two layers of QDs—changes with increasing excitation intensity. Temperature-dependent PL reveals unexpected non-monotonic variations in the peak wavelength and linewidth of the seed layer of QDs with temperature. The PL intensity ratio exhibits a “W” behavior with respect to the temperature due to the interplay between temperature and excitation intensity on the inter-layer carrier transfer.

  3. Local orientational order in liquids revealed by resonant vibrational energy transfer. (United States)

    Panman, M R; Shaw, D J; Ensing, B; Woutersen, S


    We demonstrate that local orientational ordering in a liquid can be observed in the decay of the vibrational anisotropy caused by resonant transfer of vibrational excitations between its constituent molecules. We show that the functional form of this decay is determined by the (distribution of) angles between the vibrating bonds of the molecules between which energy transfer occurs, and that the initial drop in the decay reflects the average angle between nearest neighbors. We use this effect to observe the difference in local orientational ordering in the two hydrogen-bonded liquids ethanol and N-methylacetamide.

  4. High-precision gas gain and energy transfer measurements in Ar–CO{sub 2} mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Şahin, Özkan, E-mail: [Department of Physics, Uludağ University, 16059 Bursa (Turkey); Kowalski, Tadeusz Z. [Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków (Poland); Veenhof, Rob [Department of Physics, Uludağ University, 16059 Bursa (Turkey); RD51 collaboration, CERN, Genève (Switzerland)


    Ar–CO{sub 2} is a Penning mixture since a fraction of the energy stored in Ar 3p{sup 5}3d and higher excited states can be transferred to ionize CO{sub 2} molecules. In the present work, concentration and pressure dependence of Penning transfer rate and photon feedback parameter in Ar–CO{sub 2} mixtures have been investigated with recent systematic high-precision gas gain measurements which cover the range 1–50% CO{sub 2} at 400, 800, 1200, 1800 hPa and gas gain from 1 to 5×10{sup 5}.

  5. Visible light stimulating dual-wavelength emission and O vacancy involved energy transfer behavior in luminescence for coaxial nanocable arrays (United States)

    Yang, Lei; Dong, Jiazhang; Jiang, Zhongcheng; Pan, Anlian; Zhuang, Xiujuan


    We report a strategy to investigate O vacancy (VO) involved energy transfer and dual-wavelength yellow emission in coaxial nanocable. By electric field deposition and subsequent sol-gel template approach, ZnO:Tb/Y2O3:Eu coaxial nanocable arrays are synthesized. After visible light excitation, system is promoted to O vacancy charge transfer state of VO(0/+). In the following cross relaxation, energy transfer from VO to the excitation energy level of Tb3+ in ZnO:Tb core area. While in Y2O3:Eu shell area, energy transfer to the excitation energy level of Eu3+. Subsequently, dual-wavelength emission is observed. By constructing nanocable with dual-wavelength emission, yellow luminescence is obtained. Adjust doping concentration of Eu3+ or Tb3+ in the range of 0.01-0.05, chromaticity coordinates of ZnO:Tb/Y2O3:Eu nanocable stably stays at yellow region in color space except ZnO:Tb0.01/Y2O3:Eu0.01. As Vo states act as media in energy transfer process in nanocablers, visible light can stimulate dual-wavelength emissions. Yellow luminescent nanocable arrays will have great applications in light-emitting diode luminescence.

  6. Light harvesting via energy transfer in the dye solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Siegers, Conrad


    ratio was varied between 1 and 9. The different donor acceptor sensitizers were then incorporated into dye solar cells. Additionally, cells were prepared by the coadsorption of [Ru(dcbpy)2(NCS)2] (N719), which is today's standard dye for DSC applications, and a carboxy-functionalized Fluorol. Hence DSCs resulted that were sensitized via (i) coadsorbed chromophores, (ii) the dyad, and (iii) above-mentioned polymers. The resulting devices were characterized via current-voltage, transmission and external quantum efficiency (EQE) measurements. The current-voltage measurements were carried out under simulated sunlight (AM1.5G) as well as under monochromatic blue and green illumination. This data allowed the calculation of the ratio of short circuit currents acquired under blue and green illumination, which indicates to what extent the current output of the solar cell may be enhanced by energy transfer. Furthermore, the energy transfer efficiency (ETE) was calculated from the DSC's spectral properties. All three concepts for the implementation of donor acceptor systems in the DSC revealed high ETEs (up to 90%). The introduction of an additional donor chromophore via coadsorption led to an increase of the monochromatic power conversion efficiency. The last-mentioned increase was more pronounced if covalently assembled donor acceptor sensitizers were used. The relative energy-transfer-mediated current gain was 21%, 24% and up to 179%, when coadsorbed chromophores, the dyad and donor acceptor polymers were used as sensitizers, respectively (in relation to the current generated by selective excitation of the acceptor component within the cell). These values confirm that energy transfer from fluorescent dyes being poor electron donors in themselves to good electroactive dyes (e.g. Ru-complexes) is also a viable process for light-to-electricity conversion in DSCs. Further optimization of the concepts investigated in this thesis (notably with respect to enhancing the light

  7. Light Absorption and Energy Transfer in the Antenna Complexes of Photosynthetic Organisms. (United States)

    Mirkovic, Tihana; Ostroumov, Evgeny E; Anna, Jessica M; van Grondelle, Rienk; Govindjee; Scholes, Gregory D


    The process of photosynthesis is initiated by the capture of sunlight by a network of light-absorbing molecules (chromophores), which are also responsible for the subsequent funneling of the excitation energy to the reaction centers. Through evolution, genetic drift, and speciation, photosynthetic organisms have discovered many solutions for light harvesting. In this review, we describe the underlying photophysical principles by which this energy is absorbed, as well as the mechanisms of electronic excitation energy transfer (EET). First, optical properties of the individual pigment chromophores present in light-harvesting antenna complexes are introduced, and then we examine the collective behavior of pigment-pigment and pigment-protein interactions. The description of energy transfer, in particular multichromophoric antenna structures, is shown to vary depending on the spatial and energetic landscape, which dictates the relative coupling strength between constituent pigment molecules. In the latter half of the article, we focus on the light-harvesting complexes of purple bacteria as a model to illustrate the present understanding of the synergetic effects leading to EET optimization of light-harvesting antenna systems while exploring the structure and function of the integral chromophores. We end this review with a brief overview of the energy-transfer dynamics and pathways in the light-harvesting antennas of various photosynthetic organisms.

  8. The Photochemical Branching Ratio in 1,6-Dinitropyrene Depends on the Excitation Energy. (United States)

    Brister, Matthew M; Piñero-Santiago, Luis E; Morel, María; Arce, Rafael; Crespo-Hernández, Carlos E


    Nitropolycyclic aromatic hydrocarbons constitute one of the most disconcerting classes of pollutants. Photochemical degradation is thought to be a primary mode of their natural removal from the environment, but the microscopic mechanism leading to product formation as a function of excitation wavelength is poorly understood. In this Letter, it is revealed that excitation of 1,6-dinitropyrene with 425, 415, or 340 nm radiation leads to an increasing amount of radical production through photodissociation at the expense of triplet-state population-the two primary reaction pathways in this class of pollutants. Radical formation requires overcoming an energy barrier in the excited singlet manifold. This activation energy explains the large fraction of the initial singlet-state population that intersystem crosses to a doorway triplet state, instead of leading overwhelmingly to photodissociation. The unforeseen excitation wavelength dependence of this branching process is expected to regulate the photochemistry of 1,6-dinitropyrene and possibly of other nitroaromatic pollutants in the environment.

  9. Finite strain effects in piezoelectric energy harvesters under direct and parametric excitations (United States)

    Mam, Koliann; Peigney, Michaël; Siegert, Dominique


    This paper addresses the dynamic behavior of piezoelectric cantilevers under base excitations. Such devices are frequently used for applications in energy harvesting. An Euler-Bernoulli model that accounts for large-deflection effects and piezoelectric nonlinearities is proposed. Closed-form expressions of the frequency response are derived, both for direct excitation (i.e. with a base acceleration transverse to the axis of the cantilever) and parametric excitation (i.e. with a base acceleration along the axis of the cantilever). Experimental results are reported and used for assessing the validity of the proposed model. Building on the model presented, some critical issues related to energy-harvesting are investigated, such as the influence of nonlinearities on the optimal load resistance, the limits of validity of linear models, and hysteresis effects in the electrical power. The efficiency of direct and parametric excitation is also compared in detail.

  10. The theoretical study of excited-state intramolecular proton transfer of 2,5-bis(benzoxazol-2-yl)thiophene-3,4-diol (United States)

    Lan, Rui-Fang; Yang, Yun-Fan; Ma, Yan-Zhen; Li, Yong-Qing


    The symmetrical structures 2,5-bis(benzoxazol-2-yl)thiophene-3,4-diol (BBTD) can take shape two intramolecular hydrogen bonds in chloroform. In order to research the molecular dynamic behavior of BBTD upon photo-induced process, we utilize density functional theory (DFT) and time-dependent density functional theory (TDDFT) to complete theoretical calculation. Through the comparison of bond length, bond angle, IR spectra, and frontier molecular orbitals between ground state (S0) and first excited state (S1), it clearly indicates that photoexcitation have slightly influence for intensity of hydrogen bond. For the sake of understanding the mechanism of excited state intramolecular proton transfer (ESIPT) of BBTD in chloroform, potential energy surfaces have been scanned along with the orientation of O1-H2 and O4-H5 in S0 and S1 state, respectively. A intrigued hydrogen bond dynamic phenomenon has been found that ESIPT of BBTD is not a synergetic double proton transfer process, but a stepwise single proton transfer process BBTD → BBTD-S → BBTD-D. Moreover, the proton transfer process of BBTD-S → BBTD-D is easier to occur than that of BBTD → BBTD-S in S1 state.

  11. Nature does not rely on long-lived electronic quantum coherence for photosynthetic energy transfer

    CERN Document Server

    Duan, Hong-Guang; Cogdell, Richard; Ashraf, Khuram; Stevens, Amy L; Thorwart, Michael; Miller, R J Dwayne


    During the first steps of photosynthesis, the energy of impinging solar photons is transformed into electronic excitation energy of the light-harvesting biomolecular complexes. The subsequent energy transfer to the reaction center is understood in terms of exciton quasiparticles which move on a grid of biomolecular sites on typical time scales less than 100 femtoseconds (fs). Since the early days of quantum mechanics, this energy transfer is described as an incoherent Forster hopping with classical site occupation probabilities, but with quantum mechanically determined rate constants. This orthodox picture has been challenged by ultrafast optical spectroscopy experiments with the Fenna-Matthews-Olson protein in which interference oscillatory signals up to 1.5 picoseconds were reported and interpreted as direct evidence of exceptionally long-lived electronic quantum coherence. Here, we show that the optical 2D photon echo spectra of this complex at ambient temperature in aqueous solution do not provide evidenc...

  12. Probing shape coexistence in neutron-deficient $^{72}$Se via low-energy Coulomb excitation

    CERN Multimedia

    We propose to study the evolution of nuclear structure in neutron-­deficient $^{72}$Se by performing a low-­energy Coulomb excitation measurement. Matrix elements will be determined for low-­lying excited states allowing for a full comparison with theoretical predictions. Furthermore, the intrinsic shape of the ground state, and the second 0$^{+}$ state, will be investigated using the quadrupole sum rules method.

  13. Be, Li, He and H decay half-lives at low excitation energy

    CERN Document Server

    Bonilla, C


    The Be, Li, He and H decay half-lives of slightly excited nuclei have been determined within a tunneling process through a potential barrier calculated from a generalized liquid drop model and quasimolecular shapes. Analytic formulae allowing to obtain rapidly these different partial half-lives are proposed. For a given decay they depend only on the mass and charge numbers of the emitter, the Q value and the excitation energy. (author)

  14. Fission of heavy and superheavy nuclei at low excitation energies

    CERN Document Server

    Itkis, M G; Hanappe, F; Itkis, Y M; Kelic, A; Kondratev, N A; Kozulin, E M; Oganessian, Yu T; Pokrovsky, I V; Prokhorova, E V; Rudolf, G; Rusanov, A Ya; Stuttgé, L


    The talk presents the results of an investigation of the main characteristics (mass and energy distributions of fission fragments and multiplicity of neutrons) of the fission of the nuclei of sup 2 sup 2 sup 0 Ra, sup 2 sup 2 sup 6 Th, sup 2 sup 5 sup 6 No, sup 2 sup 7 sup 0 Sg, sup 2 sup 8 sup 6 112 produced in reactions with ions of sup 1 sup 8 O, sup 2 sup 2 Ne and sup 4 sup 8 Ca at energies close to and essentially below the Coulomb barrier. The data obtained show that the form of the mass and energy distributions of the fission fragments of sup 2 sup 2 sup 6 Th and sup 2 sup 7 sup 0 Sg is accounted for by the multimodal nature of the fission. In addition, for sup 2 sup 2 sup 6 Th, a new phenomenon was established: there is a significant difference between the numbers of prescission neutrons for symmetric and asymmetric fission modes. It was found that, for the low-energy fission of the nucleus of sup 2 sup 8 sup 6 112, the mass distribution of the fragments is of a clear-cut asymmetric form, contrary to ...

  15. Visual prosthesis wireless energy transfer system optimal modeling. (United States)

    Li, Xueping; Yang, Yuan; Gao, Yong


    Wireless energy transfer system is an effective way to solve the visual prosthesis energy supply problems, theoretical modeling of the system is the prerequisite to do optimal energy transfer system design. On the basis of the ideal model of the wireless energy transfer system, according to visual prosthesis application condition, the system modeling is optimized. During the optimal modeling, taking planar spiral coils as the coupling devices between energy transmitter and receiver, the effect of the parasitic capacitance of the transfer coil is considered, and especially the concept of biological capacitance is proposed to consider the influence of biological tissue on the energy transfer efficiency, resulting in the optimal modeling's more accuracy for the actual application. The simulation data of the optimal model in this paper is compared with that of the previous ideal model, the results show that under high frequency condition, the parasitic capacitance of inductance and biological capacitance considered in the optimal model could have great impact on the wireless energy transfer system. The further comparison with the experimental data verifies the validity and accuracy of the optimal model proposed in this paper. The optimal model proposed in this paper has a higher theoretical guiding significance for the wireless energy transfer system's further research, and provide a more precise model reference for solving the power supply problem in visual prosthesis clinical application.

  16. An excited-state intramolecular photon transfer fluorescence probe for localizable live cell imaging of cysteine (United States)

    Liu, Wei; Chen, Wen; Liu, Si-Jia; Jiang, Jian-Hui


    Small molecule probes suitable for selective and specific fluorescence imaging of some important but low-concentration intracellular reactive sulfur species such as cysteine (Cys) pose a challenge in chemical biology. We present a readily available, fast-response fluorescence probe CHCQ-Ac, with 2-(5‧-chloro-2-hydroxyl-phenyl)-6-chloro-4(3 H)-quinazolinone (CHCQ) as the fluorophore and acrylate group as the functional moiety, that enables high-selectivity and high-sensitivity for detecting Cys in both solution and biological system. After specifically reacted with Cys, the probe undergoes a seven-membered intramolecular cyclization and released the fluorophore CHCQ with excited-state intramolecular photon transfer effect. A highly fluorescent, insoluble aggregate was then formed to facilitate high-sensitivity and high-resolution imaging. The results showed that probe CHCQ-Ac affords a remarkably large Stokes shift and can detect Cys under physiological pH condition with no interference from other analytes. Moreover, this probe was proved to have excellent chemical stability, low cytotoxicity and good cell permeability. Our design of this probe provides a novel potential tool to visualize and localize cysteine in bioimaging of live cells that would greatly help to explore various Cys-related physiological and pathological cellular processes in cell biology and diagnostics.

  17. An accurate and efficient method to predict the electronic excitation energies of BODIPY fluorescent dyes. (United States)

    Wang, Jia-Nan; Jin, Jun-Ling; Geng, Yun; Sun, Shi-Ling; Xu, Hong-Liang; Lu, Ying-Hua; Su, Zhong-Min


    Recently, the extreme learning machine neural network (ELMNN) as a valid computing method has been proposed to predict the nonlinear optical property successfully (Wang et al., J. Comput. Chem. 2012, 33, 231). In this work, first, we follow this line of work to predict the electronic excitation energies using the ELMNN method. Significantly, the root mean square deviation of the predicted electronic excitation energies of 90 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) derivatives between the predicted and experimental values has been reduced to 0.13 eV. Second, four groups of molecule descriptors are considered when building the computing models. The results show that the quantum chemical descriptions have the closest intrinsic relation with the electronic excitation energy values. Finally, a user-friendly web server (EEEBPre: Prediction of electronic excitation energies for BODIPY dyes), which is freely accessible to public at the web site:, has been built for prediction. This web server can return the predicted electronic excitation energy values of BODIPY dyes that are high consistent with the experimental values. We hope that this web server would be helpful to theoretical and experimental chemists in related research. Copyright © 2012 Wiley Periodicals, Inc.

  18. Observation of Ground- and Excited-State Charge Transfer at the C60/Graphene Interface. (United States)

    Jnawali, Giriraj; Rao, Yi; Beck, Jonathan H; Petrone, Nicholas; Kymissis, Ioannis; Hone, James; Heinz, Tony F


    We examine charge transfer interactions in the hybrid system of a film of C60 molecules deposited on single-layer graphene using Raman spectroscopy and Terahertz (THz) time-domain spectroscopy. In the absence of photoexcitation, we find that the C60 molecules in the deposited film act as electron acceptors for graphene, yielding increased hole doping in the graphene layer. Hole doping of the graphene film by a uniform C60 film at a level of 5.6 × 10(12)/cm(2) or 0.04 holes per interfacial C60 molecule was determined by the use of both Raman and THz spectroscopy. We also investigate transient charge transfer occurring upon photoexcitation by femtosecond laser pulses with a photon energy of 3.1 eV. The C60/graphene hybrid exhibits a short-lived (ps) decrease in THz conductivity, followed by a long-lived increase in conductivity. The initial negative photoconductivity transient, which decays within 2 ps, reflects the intrinsic photoresponse of graphene. The longer-lived positive conductivity transient, with a lifetime on the order of 100 ps, is attributed to photoinduced hole doping of graphene by interfacial charge transfer. We discuss possible microscopic pathways for hot carrier processes in the hybrid system.

  19. Temperature dependence of energy transfer mechanisms in Eu-doped GaN (United States)

    Lee, Chang-Won; Everitt, Henry O.; Lee, D. S.; Steckl, A. J.; Zavada, J. M.


    The temperature dependent behavior of continuous-wave and time-resolved photoluminescence of Eu-doped GaN in the visible region is measured for both the 5D0→7F2 and 5D0→7F3 transitions. The radiative decay of these transitions, following pulsed laser excitation of the GaN host, is monitored by a grating spectrometer and photomultiplier tube detector system. In addition to these two radiative energy transfer pathways within Eu3+, the data reveal two nonradiative energy transfer paths between Eu3+ and the host GaN. Decay constants for the relaxation processes are extracted from the data using a numerically solved rate equation model. Although the dominant radiative relaxation processes decayed with a temperature insensitive decay constant of 166 μs, a prominent role for nonradiative transfer between Eu3+ and impurities within the GaN host was deduced above 180 K.

  20. The Grover energy transfer algorithm for relativistic speeds

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Escartin, Juan Carlos; Chamorro-Posada, Pedro, E-mail: [Dpto. de TeorIa de la Senal y Comunicaciones e Ingenieria Telematica, Universidad de Valladolid, ETSI de Telecomunicacion, Campus Miguel Delibes, Paseo Belen 15, 47011 Valladolid (Spain)


    Grover's algorithm for quantum search can also be applied to classical energy transfer. The procedure takes a system in which the total energy is equally distributed among N subsystems and transfers most of it to one marked subsystem. We show that in a relativistic setting the efficiency of this procedure can be improved. We will consider the transfer of relativistic kinetic energy in a series of elastic collisions. In this case, the number of steps of the energy transfer procedure approaches 1 as the initial velocities of the objects become closer to the speed of light. This is a consequence of introducing nonlinearities in the procedure. However, the maximum attainable transfer will depend on the particular combination of speed and number of objects. In the procedure, we will use N elements, as in the classical non-relativistic case, instead of the log{sub 2}(N) states of the quantum algorithm.

  1. Temperature measurements of micro-droplets using pulsed 2-color laser-induced fluorescence with MDR-enhanced energy transfer (United States)

    Palmer, Johannes; Reddemann, Manuel A.; Kirsch, Valeri; Kneer, Reinhold


    In this work, a new measurement system is presented for studying temperature of micro-droplets by pulsed 2-color laser-induced fluorescence. Pulsed fluorescence excitation allows motion blur suppression and thus simultaneous measurements of droplet size, velocity and temperature. However, high excitation intensities of pulsed lasers lead to morphology-dependent resonances inside micro-droplets, which are accompanied by disruptive stimulated emission. Investigations showed that stimulated emission can be avoided by enhanced energy transfer via an additional dye. The suitability and accuracy of the new pulsed method are verified on the basis of a spectroscopic analysis and comparison to continuously excited 2-color laser-induced fluorescence.

  2. Metastable Electronically Excited Atoms and Molecules: Excitation Transfer in Slow Collisions, Probed by Means of a Counter-Rotating Supersonic Jet (United States)


    Acetylene S1 State,’’ J. Phys. Chem. A (feature article) 115, 11921-11943 (2011). 5. S. H. Lipoff and D. R. Herschbach, “Low-Energy Limit for...triplet states) and how these mechanisms may be experimentally characterized. Throughout this project, the spin-orbit interaction of the acetylene S1...Laser Excited Metastables (SEELEM) experiments, largely because we have accumulated an unprecedentedly complete description of the vibrational levels

  3. Energy Transformations in a Self-Excited Switched Reluctance Generator

    Directory of Open Access Journals (Sweden)

    Abelardo Martinez-Iturbe


    Full Text Available Wind generation systems require mechanisms that allow optimal adaptation of the generator to varying wind speed and to extract maximum energy from the wind. Robust and affordable high-performance methods are also needed for isolated sites. This paper takes this approach, in which an AC switched reluctance generator is used as a generator with a variable rotor speed. Although the voltage obtained is of insufficient quality to connect the generator directly to the power grid, this kind of generator can be used in isolated sites to charge a battery bank with a simple bridge rectifier. Due to the nonlinear behavior of the machine with the position and current, along with the alternating nature of the current that circulates through its phases, the machine experiences cyclical energy transformations of a mechanical, electrical and magnetic nature. This paper analyzes these transformations for the purpose of providing guidelines for machine design and optimization as a wind turbine in isolated sites.

  4. Elucidating energy and electron transfer dynamics within molecular assemblies for solar energy conversion (United States)

    Morseth, Zachary Aaron

    The use of sunlight to make chemical fuels (i.e. solar fuels) is an attractive approach in the quest to develop sustainable energy sources. Using nature as a guide, assemblies for artificial photosynthesis will need to perform multiple functions. They will need to be able to harvest light across a broad region of the solar spectrum, transport excited-state energy to charge-separation sites, and then transport and store redox equivalents for use in the catalytic reactions that produce chemical fuels. This multifunctional behavior will require the assimilation of multiple components into a single macromolecular system. A wide variety of different architectures including porphyrin arrays, peptides, dendrimers, and polymers have been explored, with each design posing unique challenges. Polymer assemblies are attractive due to their relative ease of production and facile synthetic modification. However, their disordered nature gives rise to stochastic dynamics not present in more ordered assemblies. The rational design of assemblies requires a detailed understanding of the energy and electron transfer events that follow light absorption, which can occur on timescales ranging from femtoseconds to hundreds of microseconds, necessitating the use of sophisticated techniques. We have used a combination of time-resolved absorption and emission spectroscopies with observation times that span nine orders of magnitude to follow the excited-state evolution within single-site and polymer-based molecular assemblies. We complement experimental observations with electronic structure calculations, molecular dynamics simulations, and kinetic modeling to develop a microscopic view of these dynamics. This thesis provides an overview of work on single-site molecular assemblies and polymers decorated with pendant chromophores, both in solution and on surfaces. This work was made possible through extensive collaboration with Dr. Kirk Schanze's and Dr. John Reynolds' research groups who

  5. Pair transfer processes probed at deep sub barrier energies

    Directory of Open Access Journals (Sweden)

    Scarlassara F.


    Full Text Available Multinucleon transfer cross sections in the system 40Ca+96Zr have been measured at bombarding energies ranging from the Coulomb barrier to ~ 25% below. Target-like (lighter recoils in inverse kinematics have been completely identif ed in A,Z and Q-value with the large solid angle magnetic spectrometer PRISMA. The experimental slopes of the neutron transfer probabilities at large internuclear separation are consistent with the values derived from the binding energies. A phenomenological interpretation of the transfer probabilities indicates the presence of enhanced values for the even number of neutron transfers.

  6. Near-field effects and energy transfer in hybrid metal-oxide nanostructures

    Directory of Open Access Journals (Sweden)

    Ulrich Herr


    Full Text Available One of the big challenges of the 21st century is the utilization of nanotechnology for energy technology. Nanoscale structures may provide novel functionality, which has been demonstrated most convincingly by successful applications such as dye-sensitized solar cells introduced by M. Grätzel. Applications in energy technology are based on the transfer and conversion of energy. Following the example of photosynthesis, this requires a combination of light harvesting, transfer of energy to a reaction center, and conversion to other forms of energy by charge separation and transfer. This may be achieved by utilizing hybrid nanostructures, which combine metallic and nonmetallic components. Metallic nanostructures can interact strongly with light. Plasmonic excitations of such structures can cause local enhancement of the electrical field, which has been utilized in spectroscopy for many years. On the other hand, the excited states in metallic structures decay over very short lifetimes. Longer lifetimes of excited states occur in nonmetallic nanostructures, which makes them attractive for further energy transfer before recombination or relaxation sets in. Therefore, the combination of metallic nanostructures with nonmetallic materials is of great interest. We report investigations of hybrid nanostructured model systems that consist of a combination of metallic nanoantennas (fabricated by nanosphere lithography, NSL and oxide nanoparticles. The oxide particles were doped with rare-earth (RE ions, which show a large shift between absorption and emission wavelengths, allowing us to investigate the energy-transfer processes in detail. The main focus is on TiO2 nanoparticles doped with Eu3+, since the material is interesting for applications such as the generation of hydrogen by photocatalytic splitting of water molecules. We use high-resolution techniques such as confocal fluorescence microscopy for the investigation of energy-transfer processes. The

  7. Single-collision studies of energy transfer and chemical reaction

    Energy Technology Data Exchange (ETDEWEB)

    Valentini, J.J. [Columbia Univ., New York, NY (United States)


    The research focus in this group is state-to-state dynamics of reaction and energy transfer in collisions of free radicals such as H, OH, and CH{sub 3} with H{sub 2}, alkanes, alcohols and other hydrogen-containing molecules. The motivation for the work is the desire to provide a detailed understanding of the chemical dynamics of prototype reactions that are important in the production and utilization of energy sources, most importantly in combustion. The work is primarily experimental, but with an important and growing theoretical/computational component. The focus of this research program is now on reactions in which at least one of the reactants and one of the products is polyatomic. The objective is to determine how the high dimensionality of the reactants and products differentiates such reactions from atom + diatom reactions of the same kinematics and energetics. The experiments use highly time-resolved laser spectroscopic methods to prepare reactant states and analyze the states of the products on a single-collision time scale. The primary spectroscopic tool for product state analysis is coherent anti-Stokes Raman scattering (CARS) spectroscopy. CARS is used because of its generality and because the extraction of quantum state populations from CARS spectra is straightforward. The combination of the generality and easy analysis of CARS makes possible absolute cross section measurements (both state-to-state and total), a particularly valuable capability for characterizing reactive and inelastic collisions. Reactant free radicals are produced by laser photolysis of appropriate precursors. For reactant vibrational excitation stimulated Raman techniques are being developed and implemented.

  8. Electronic energy transfer involving carotenoid pigments in chlorosomes of two green bacteria: Chlorobium tepidum and Chloroflexus aurantiacus

    DEFF Research Database (Denmark)

    Melø, T B; Frigaard, N-U; Matsuura, K


    Electronic energy transfer processes in chlorosomes isolated from the green sulphur bacterium Chlorobium tepidum and from the green filamentous bacterium Chloroflexus aurantiacus have been investigated. Steady-state fluorescence excitation spectra and time-resolved triplet-minus-singlet (Tm...... and bacteriochlorophyll a (BChla) transfer their triplet excitation to the Car's with nearly 100% efficiency. The lifetime of the Car triplet states is approximately 3 micros, appreciably shorter than that of the Car triplets in the light-harvesting complex II (LHCII) in green plants and in other antenna systems. In both...

  9. Geo energy research and development: technology transfer update

    Energy Technology Data Exchange (ETDEWEB)

    Traeger, R.K.; Dugan, V.L.


    Sandia Geo Energy Programs in geothermal, coal, oil and gas, and synfuel technologies have been effective in transferring research concepts to applications in private industry. This report updates the previous summary (SAND82-0211, March 1982) to include recent technology transfers and to reflect recent changes in philosophy on technology transfer. Over 40 items transferred to industry have been identified in the areas of Hardware, Risk Removal and Understanding. Successful transfer is due largely to personal interactions between Sandia engineers and the technical staffs of private industry.

  10. Resonant energy transfer under the influence of the evanescent field from the metal. (United States)

    Poudel, Amrit; Chen, Xin; Ratner, Mark A


    We present a quantum framework based on a density matrix of a dimer system to investigate the quantum dynamics of excitation energy transfer (EET) in the presence of the evanescent field from the metal and the phonon bath. Due to the spatial correlation of the electric field in the vicinity of the metal, the spectral density of the evanescent field is similar to that of a shared phonon bath. However, the EET dynamics under the influence of the evanescent field is an open and a new problem. Here we use a thin metallic film to investigate the effect of the evanescent field on the excitation energy transfer in a dimer system based on a density matrix approach. Our results indicate that a thin metallic film enhances the energy transfer rate at the expense of absorbing energy during the process. Since the spectral density of the evanescent field is affected by the geometry of the medium and the distance of a dimer system from the medium, our results demonstrate the possibility to tune EET based on material geometry and distances. Our model also serves as an expansion to quantum heat engine models and provides a framework to investigate the EET in light harvesting molecular networks under the influence of the evanescent field.

  11. Resonant energy transfer under the influence of the evanescent field from the metal (United States)

    Poudel, Amrit; Chen, Xin; Ratner, Mark A.


    We present a quantum framework based on a density matrix of a dimer system to investigate the quantum dynamics of excitation energy transfer (EET) in the presence of the evanescent field from the metal and the phonon bath. Due to the spatial correlation of the electric field in the vicinity of the metal, the spectral density of the evanescent field is similar to that of a shared phonon bath. However, the EET dynamics under the influence of the evanescent field is an open and a new problem. Here we use a thin metallic film to investigate the effect of the evanescent field on the excitation energy transfer in a dimer system based on a density matrix approach. Our results indicate that a thin metallic film enhances the energy transfer rate at the expense of absorbing energy during the process. Since the spectral density of the evanescent field is affected by the geometry of the medium and the distance of a dimer system from the medium, our results demonstrate the possibility to tune EET based on material geometry and distances. Our model also serves as an expansion to quantum heat engine models and provides a framework to investigate the EET in light harvesting molecular networks under the influence of the evanescent field.

  12. Solvent-dependent excited-state hydrogen transfer and intersystem crossing in 2-(2′-hydroxyphenyl)-benzothiazole

    KAUST Repository

    Aly, Shawkat Mohammede


    The excited-state intramolecular hydrogen transfer (ESIHT) of 2-(2′-hydroxyphenyl) benzothiazole (HBT) has been investigated in a series of nonpolar, polar aprotic, and polar protic solvents. A variety of state-of-the-art experimental methods were employed, including femto- and nanosecond transient absorption and fluorescence upconversion spectroscopy with broadband capabilities. We show that the dynamics and mechanism of ESIHT of the singlet excited HBT are strongly solvent-dependent. In nonpolar solvents, the data demonstrate that HBT molecules adopt a closed form stabilized by O-H⋯N chelated hydrogen bonds with no twisting angle, and the photoinduced H transfer occurs within 120 fs, leading to the formation of a keto tautomer. In polar solvents, owing to dipole-dipole cross talk and hydrogen bonding interactions, the H transfer process is followed by ultrafast nonradiative deactivation channels, including ultrafast internal conversion (IC) and intersystem crossing (ISC). This is likely to be driven by the twisting motion around the C-C bond between the hydroxyphenyl and thiazole moieties, facilitating the IC back to the enol ground state or to the keto triplet state. In addition, our femtosecond time-resolved fluorescence experiments indicate, for the first time, that the lifetime of the enol form in ACN is approximately 280 fs. This observation indicates that the solvent plays a crucial role in breaking the H bond and deactivating the excited state of the HBT. Interestingly, the broadband transient absorption and fluorescence up-conversion data clearly demonstrate that the intermolecular proton transfer from the excited HBT to the DMSO solvent is about 190 fs, forming the HBT anion excited state.

  13. Convergence of environment polarization effects in multiscale modeling of excitation energies

    DEFF Research Database (Denmark)

    Beerepoot, Maarten; Steindal, Arnfinn Hykkerud; Ruud, Kenneth


    of polarization interactions for chromophores in different chemical environments. We find that the rate of convergence of excitation energies with respect to polarization cut-off is much slower for chromophores in an ordered environment such as a protein than for chromophores in a homogeneous medium......We present a systematic investigation of the influence of polarization effects from a surrounding medium on the excitation energies of a chromophore. We use a combined molecular dynamics and polarizable embedding time-dependent density functional theory (PE-TD-DFT) approach for chromophores....... By varying the subset of sites in the environment for which atomic polarizabilities are included, we investigate to what distance from the quantum region explicit polarization effects need to be taken into account in order to provide converged excitation energies. Our study gives new insight into the range...

  14. Charging power optimization for nonlinear vibration energy harvesting systems subjected to arbitrary, persistent base excitations (United States)

    Dai, Quanqi; Harne, Ryan L.


    The vibrations of mechanical systems and structures are often a combination of periodic and random motions. Emerging interest to exploit nonlinearities in vibration energy harvesting systems for charging microelectronics may be challenged by such reality due to the potential to transition between favorable and unfavorable dynamic regimes for DC power delivery. Therefore, a need exists to devise an optimization method whereby charging power from nonlinear energy harvesters remains maximized when excitation conditions are neither purely harmonic nor purely random, which have been the attention of past research. This study meets the need by building from an analytical approach that characterizes the dynamic response of nonlinear energy harvesting platforms subjected to combined harmonic and stochastic base accelerations. Here, analytical expressions are formulated and validated to optimize charging power while the influences of the relative proportions of excitation types are concurrently assessed. It is found that about a 2 times deviation in optimal resistive loads can reduce the charging power by 20% when the system is more prominently driven by harmonic base accelerations, whereas a greater proportion of stochastic excitation results in a 11% reduction in power for the same resistance deviation. In addition, the results reveal that when the frequency of a predominantly harmonic excitation deviates by 50% from optimal conditions the charging power reduces by 70%, whereas the same frequency deviation for a more stochastically dominated excitation reduce total DC power by only 20%. These results underscore the need for maximizing direct current power delivery for nonlinear energy harvesting systems in practical operating environments.

  15. CC2 oscillator strengths within the local framework for calculating excitation energies (LoFEx) (United States)

    Baudin, Pablo; Kjærgaard, Thomas; Kristensen, Kasper


    In a recent work [P. Baudin and K. Kristensen, J. Chem. Phys. 144, 224106 (2016)], we introduced a local framework for calculating excitation energies (LoFEx), based on second-order approximated coupled cluster (CC2) linear-response theory. LoFEx is a black-box method in which a reduced excitation orbital space (XOS) is optimized to provide coupled cluster (CC) excitation energies at a reduced computational cost. In this article, we present an extension of the LoFEx algorithm to the calculation of CC2 oscillator strengths. Two different strategies are suggested, in which the size of the XOS is determined based on the excitation energy or the oscillator strength of the targeted transitions. The two strategies are applied to a set of medium-sized organic molecules in order to assess both the accuracy and the computational cost of the methods. The results show that CC2 excitation energies and oscillator strengths can be calculated at a reduced computational cost, provided that the targeted transitions are local compared to the size of the molecule. To illustrate the potential of LoFEx for large molecules, both strategies have been successfully applied to the lowest transition of the bivalirudin molecule (4255 basis functions) and compared with time-dependent density functional theory.

  16. A planning framework for transferring building energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Farhar, B C; Brown, M A; Mohler, B L; Wilde, M; Abel, F H


    Accelerating the adoption of new and existing cost-effective technologies has significant potential to reduce the energy consumed in US buildings. This report presents key results of an interlaboratory technology transfer planning effort in support of the US Department of Energy's Office of Building Technologies (OBT). A guiding assumption for planning was that OBT's R D program should forge linkages with existing programs whose goals involved enhancing energy efficiency in buildings. An ad hoc Technology Transfer Advisory Group reviewed the existing analysis and technology transfer program, brainstormed technology transfer approaches, interviewed DOE program managers, identified applicable research results, and developed a framework that management could use in deciding on the best investments of technology transfer resources. Representatives of 22 organizations were interviewed on their views of the potential for transferring energy efficiency technologies through active linking with OBT. The report describes these programs and interview results; outlines OBT tools, technologies, and practices to be transferred; defines OBT audiences; identifies technology transfer functions and presents a framework devised using functions and audiences; presents some 60 example technology transfer activities; and documents the Advisory Group's recommendations. 37 refs., 3 figs., 12 tabs.

  17. Ionization of Water Clusters is Mediated by Exciton Energy Transfer from Argon Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Golan, Amir; Ahmed, Musahid


    The exciton energy deposited in an argon cluster, (Arn ,< n=20>) using VUV radiation is transferred to softly ionize doped water clusters, ((H2O)n, n=1-9) leading to the formation of non-fragmented clusters. Following the initial excitation, electronic energy is channeled to ionize the doped water cluster while evaporating the Ar shell, allowing identification of fragmented and complete water cluster ions. Examination of the photoionization efficiency curve shows that cluster evaporation from excitons located above 12.6 eV are not enough to cool the energized water cluster ion, and leads to their dissociation to (H2O)n-2H+ (protonated) clusters.

  18. Kinetics and heterogeneity of energy transfer from light harvesting complex II to photosystem I in the supercomplex isolated from Arabidopsis. (United States)

    Santabarbara, Stefano; Tibiletti, Tania; Remelli, William; Caffarri, Stefano


    State transitions are a phenomenon that maintains the excitation balance between photosystem II (PSII) and photosystem I (PSI-LHCI) by controlling their relative absorption cross-sections. Under light conditions exciting PSII preferentially, a trimeric LHCII antenna moves from PSII to PSI-LHCI to form the PSI-LHCI-LHCII supercomplex. In this work, the excited state dynamics in the PSI-LHCI and PSI-LHCI-LHCII supercomplexes isolated from Arabidopsis have been investigated by picosecond time-resolved fluorescence spectroscopy. The excited state decays were analysed using two approaches based on either (i) a sum of discrete exponentials or (ii) a continuous distribution of lifetimes. The results indicate that the energy transfer from LHCII to the bulk of the PSI antenna occurs with an average macroscopic transfer rate in the 35-65 ns-1 interval. Yet, the most satisfactory description of the data is obtained when considering a heterogeneous population containing two PSI-LHCI-LHCII supercomplexes characterised by a transfer time of ∼15 and ∼60 ns-1, likely due to the differences in the strength and orientation of LHCII harboured to PSI. Both these values are of the same order of magnitude of those estimated for the average energy transfer rates from the low energy spectral forms of LHCI to the bulk of the PSI antenna (15-40 ns-1), but they are slower than the transfer from the bulk antenna of PSI to the reaction centre (>150 ns-1), implying a relatively small kinetics bottleneck for the energy transfer from LHCII. Nevertheless, the kinetic limitation imposed by excited state diffusion has a negligible impact on the photochemical quantum efficiency of the supercomplex, which remains about 98% in the case of PSI-LHCI.

  19. Energy and Information Transfer Via Coherent Exciton Wave Packets (United States)

    Zang, Xiaoning

    associated excitations were dubbed twisted excitons. Twisted exciton packets can be manipulated as they travel down molecular chains, and this has applications in quantum information science as well. In each setting considered, exciton dynamics were initially studied using a simple tight-binding formalism. This misses the actual many-body interactions and multiple energy levels associated real systems. To remedy this, I adapted an existing time-domain Density Functional Theory code and applied it to study the dynamics of exciton wave packets on quasi-one-dimensional systems. This required the use of high-performance computing and the construction of a number of key auxiliary codes. Establishing the requisite methodology constituted a substantial part of the entire thesis. Surprisingly, this effort uncovered a computational issue associated with Rabi oscillations that had been incorrectly characterized in the literature. My research elucidated the actual problem and a solution was found. This new methodology was an integral part of the overall computational analysis. The thesis then takes up the a detailed consideration of the prospect for creating systems that support a strong measure of transport coherence. While physical implementations include molecular assemblies, solid-state superlattices, and even optical lattices, I decided to focus on assemblies of nanometer-sized silicon quantum dots. First principles computational analysis was used to quantify reorganization within individual dots and excitonic coupling between dots. Quantum dot functionalizations were identified that make it plausible to maintain a measure of excitonic coherence even at room temperatures. Attention was then turned to the use of covalently bonded bridge material to join quantum dots in a way that facilitates efficient exciton transfer. Both carbon and silicon structures were considered by considering the way in which subunits might be best brought together. This resulted in a set of design criteria

  20. Vibronic coupling explains the ultrafast carotenoid-to-bacteriochlorophyll energy transfer in natural and artificial light harvesters (United States)

    Perlík, Václav; Seibt, Joachim; Cranston, Laura J.; Cogdell, Richard J.; Lincoln, Craig N.; Savolainen, Janne; Šanda, František; Mančal, Tomáš; Hauer, Jürgen


    The initial energy transfer steps in photosynthesis occur on ultrafast timescales. We analyze the carotenoid to bacteriochlorophyll energy transfer in LH2 Marichromatium purpuratum as well as in an artificial light-harvesting dyad system by using transient grating and two-dimensional electronic spectroscopy with 10 fs time resolution. We find that Förster-type models reproduce the experimentally observed 60 fs transfer times, but overestimate coupling constants, which lead to a disagreement with both linear absorption and electronic 2D-spectra. We show that a vibronic model, which treats carotenoid vibrations on both electronic ground and excited states as part of the system's Hamiltonian, reproduces all measured quantities. Importantly, the vibronic model presented here can explain the fast energy transfer rates with only moderate coupling constants, which are in agreement with structure based calculations. Counterintuitively, the vibrational levels on the carotenoid electronic ground state play the central role in the excited state population transfer to bacteriochlorophyll; resonance between the donor-acceptor energy gap and the vibrational ground state energies is the physical basis of the ultrafast energy transfer rates in these systems.

  1. Vibronic coupling explains the ultrafast carotenoid-to-bacteriochlorophyll energy transfer in natural and artificial light harvesters

    Energy Technology Data Exchange (ETDEWEB)

    Perlík, Václav; Seibt, Joachim; Šanda, František; Mančal, Tomáš [Institute of Physics, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, Prague 121 16 (Czech Republic); Cranston, Laura J.; Cogdell, Richard J. [Institute of Molecular Cell and System Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Biomedical Research Centre, 120 University Place, Glasgow G12 8TA, Scotland (United Kingdom); Lincoln, Craig N.; Hauer, Jürgen, E-mail: [Photonics Institute, Vienna University of Technology, Gusshausstrasse 27, 1040 Vienna (Austria); Savolainen, Janne [Department of Physical Chemistry II, Ruhr-University Bochum, 44780 Bochum (Germany)


    The initial energy transfer steps in photosynthesis occur on ultrafast timescales. We analyze the carotenoid to bacteriochlorophyll energy transfer in LH2 Marichromatium purpuratum as well as in an artificial light-harvesting dyad system by using transient grating and two-dimensional electronic spectroscopy with 10 fs time resolution. We find that Förster-type models reproduce the experimentally observed 60 fs transfer times, but overestimate coupling constants, which lead to a disagreement with both linear absorption and electronic 2D-spectra. We show that a vibronic model, which treats carotenoid vibrations on both electronic ground and excited states as part of the system’s Hamiltonian, reproduces all measured quantities. Importantly, the vibronic model presented here can explain the fast energy transfer rates with only moderate coupling constants, which are in agreement with structure based calculations. Counterintuitively, the vibrational levels on the carotenoid electronic ground state play the central role in the excited state population transfer to bacteriochlorophyll; resonance between the donor-acceptor energy gap and the vibrational ground state energies is the physical basis of the ultrafast energy transfer rates in these systems.

  2. Energy efficient building design. A transfer guide for local governments

    Energy Technology Data Exchange (ETDEWEB)


    The fundamental concepts of the building design process, energy codes and standards, and energy budgets are introduced. These tools were combined into Energy Design Guidelines and design contract requirements. The Guidelines were repackaged for a national audience and a videotape for selling the concept to government executives. An effort to test transfer of the Guidelines to outside agencies is described.

  3. Dependence of Fission-Fragment Properties On Excitation Energy For Neutron-Rich Actinides

    Directory of Open Access Journals (Sweden)

    Ramos D.


    Isotopic fission yields of 250Cf, 244Cm, 240Pu, 239Np and 238U are presented in this work. With this information, the average number of neutrons as a function of the atomic number of the fragments is calculated, which reflects the impact of nuclear structure around Z=50, N=80 on the production of fission fragments. The characteristics of the Super Long, Standard I, Standard II, and Standard III fission channels were extracted from fits of the fragment yields for different ranges of excitation energy. The position and contribution of the fission channels as function of excitation energy are presented.

  4. Energy conservation attenuates the loss of skeletal muscle excitability during intense contractions

    DEFF Research Database (Denmark)

    Macdonald, W A; Ørtenblad, N; Nielsen, Ole Bækgaard


    changes in muscle metabolites. However, the role of metabolites in the loss of muscle excitability is not clear. The metabolic state of isolated rat extensor digitorum longus muscles at 30 degrees C was manipulated by decreasing energy expenditure and thereby allowed investigation of the effects of energy...... conservation on skeletal muscle excitability. Muscle ATP utilization was reduced using a combination of the cross-bridge cycling blocker N-benzyl-p-toluene sulfonamide (BTS) and the SR Ca2+ release channel blocker Na-dantrolene, which reduce activity of the myosin ATPase and SR Ca2+-ATPase. Compared...

  5. Thymine dimer repair by electron transfer from photo-excited 2',3',5'-tri-O-acetyl-8-oxo-7,8-dihydroguanosine or 2',3',5'-tri-O-acetyl-ribosyluric acid - a theoretical study (United States)

    Marchaj, Marzena; Sieradzan, Iwona; Anusiewicz, Iwona; Skurski, Piotr; Simons, Jack


    Electronic structure calculations are combined with published experimental data from another laboratory to interpret trends in the rates of thymine dimer repair induced by photo-exciting the title molecules or their deprotonated derivatives. Opening of the thymine dimer's cyclobutane ring is believed to be initiated by electron transfer from the photo-excited molecule and to then pass over thermally accessible energy barriers. Therefore, the repair rates are determined by rates of accessing activation barriers connecting the photo-excited state to the electron-transferred state. These barriers are shown to depend on the electronic excitation energy and electron-binding energy of the donor and the electron affinity of the thymine dimer acceptor. For neutral donors, the barriers also depend on the distance between the donor and the thymine dimer through a screened Coulomb interaction between the donor cation and acceptor anion. For the deprotonated (anionic) donors, this Coulomb-derived distance dependence is absent. For both neutral and anionic donors, the range for electron transfer is spatially limited by the strength of the electronic couplings. The model put forth here rationalizes why anionic donors can be expected to perform better than neutrals and offers a framework for designing electron transfer agents optimal for a given electron acceptor.

  6. Tryptophan-to-Tryptophan Energy Transfer in UV-B photoreceptor UVR8 (United States)

    Li, Xiankun; Zhong, Dongping

    UVR8 (UV RESISTANCE LOCUS 8) protein is a UV-B photoreceptor in high plants. UVR8 is a homodimer that dissociates into monomers upon UV-B irradiation (280 nm to 315 nm), which triggers various protective mechanisms against UV damages. Uniquely, UVR8 does not contain any external chromophores and utilizes the UV-absorbing natural amino acid tryptophan (Trp) to perceive UV-B. Each UVR8 monomer has 14 tryptophan residues. However, only 2 epicenter Trp (W285 W233) are critical to the light induced dimer-to-monomer transformation. Here, we revealed, using site-directed mutagenesis and spectroscopy, a striking energy flow network, in which other tryptophan chromophores serve as antenna to transfer excitation energy to epicenter Trp, greatly enhancing UVR8 light-harvesting efficiency. Furthermore, Trp-to-Trp energy transfer rates were measured and agree well with theoretical values.

  7. Kinetic Energy Distribution of H(2p) Atoms from Dissociative Excitation of H2 (United States)

    Ajello, Joseph M.; Ahmed, Syed M.; Kanik, Isik; Multari, Rosalie


    The kinetic energy distribution of H(2p) atoms resulting from electron impact dissociation of H2 has been measured for the first time with uv spectroscopy. A high resolution uv spectrometer was used for the measurement of the H Lyman-alpha emission line profiles at 20 and 100 eV electron impact energies. Analysis of the deconvolved 100 eV line profile reveals the existence of a narrow line peak and a broad pedestal base. Slow H(2p) atoms with peak energy near 80 meV produce the peak profile, which is nearly independent of impact energy. The wings of H Lyman-alpha arise from dissociative excitation of a series of doubly excited Q(sub 1) and Q(sub 2) states, which define the core orbitals. The fast atom energy distribution peaks at 4 eV.

  8. High spin spectroscopy near the N=Z line: Channel selection and excitation energy systematics

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, C.E.; Cameron, J.A.; Flibotte, S. [McMaster Univ., Ontario (Canada)] [and others


    The total {gamma}-ray and charged-particle energies emitted in fusion-evaporation reactions leading to N=Z compound systems in the A = 50-70 mass region have been measured with the 8{pi} {gamma}-ray spectrometer and the miniball charged-particle detector array. A new method of channel selection has been developed which combines particle identification with these total energy measurements and greatly improves upon the selectivity possible with particle detection alone. In addition, the event by event measurement of total {gamma}-ray energies using the BGO ball of the 8{pi} spectrometer has allowed a determination of excitation energies following particle evaporation for a large number of channels in several different reactions. The new channel selection procedure and excitation energy systematics are illustrated with data from the reaction of {sup 24}Mg on {sup 40}Ca at E{sub lab} = 80MeV.

  9. Inelastic low-energy collisions of electrons with HeH+: Rovibrational excitation and dissociative recombination (United States)

    Čurík, Roman; Greene, Chris H.


    Inelastic low-energy (0-1 eV) collisions of electrons with HeH+ cations are treated theoretically, with a focus on the rovibrational excitation and dissociative recombination (DR) channels. In an application of ab initio multichannel quantum defect theory, the description of both processes is based on the Born-Oppenheimer quantum defects. The quantum defects were determined using the R-matrix approach in two different frames of reference: the center-of-charge and the center-of-mass frames. The results obtained in the two reference systems, after implementing the Fano-Jungen style rovibrational frame-transformation technique, show differences in the rate of convergence for these two different frames of reference. We find good agreement with the available theoretically predicted rotationally inelastic thermal rate coefficients. Our computed DR rate also agrees well with the available experimental results. Moreover, several computational experiments shed light on the role of rotational and vibrational excitations in the indirect DR mechanism that governs the low energy HeH+ dissociation process. While the rotational excitation is several orders of magnitude more probable process at the studied collision energies, the closed-channel resonances described by the high-n, rotationally excited neutral molecules of HeH contribute very little to the dissociation probability. But the situation is very different for resonances defined by the high-n, vibrationally excited HeH molecules, which are found to dissociate with approximately 90% probability.


    Energy Technology Data Exchange (ETDEWEB)

    Edward C. Lim


    A concerted experimental and computational study of energy transfer in nucleic acid bases and charge transfer in dialkylaminobenzonitriles, and related electron donor-acceptor molecules, indicate that the ultrafast photoprocesses occur through three-state conical interactions involving an intermediate state of biradical character.

  11. Intermolecular Modes between LH2 Bacteriochlorophylls and Protein Residues: The Effect on the Excitation Energies. (United States)

    Anda, André; De Vico, Luca; Hansen, Thorsten


    Light-harvesting system 2 (LH2) executes the primary processes of photosynthesis in purple bacteria; photon absorption, and energy transportation to the reaction center. A detailed mechanistic insight into these operations is obscured by the complexity of the light-harvesting systems, particularly by the chromophore-environment interaction. In this work, we focus on the effects of the protein residues that are ligated to the bacteriochlorophylls (BChls) and construct potential energy surfaces of the ground and first optically excited state for the various BChl-residue systems where we in each case consider two degrees of freedom in the intermolecular region. We find that the excitation energies are only slightly affected by the considered modes. In addition, we see that axial ligands and hydrogen-bonded residues have opposite effects on both excitation energies and oscillator strengths by comparing to the isolated BChls. Our results indicate that only a small part of the chromophore-environment interaction can be associated with the intermolecular region between a BChl and an adjacent residue, but that it may be possible to selectively raise or lower the excitation energy at the axial and planar residue positions, respectively.

  12. Energy transfer dynamics in an RC-LH1-PufX tubular photosynthetic membrane (United States)

    Hsin, J.; Strümpfer, J.; Şener, M.; Qian, P.; Hunter, C. N.; Schulten, K.


    Light absorption and the subsequent transfer of excitation energy are the first two steps in the photosynthetic process, carried out by protein-bound pigments, mainly bacteriochlorophylls (BChls), in photosynthetic bacteria. BChls are anchored in light-harvesting (LH) complexes, such as light-harvesting complex I (LH1), which directly associates with the reaction center (RC), forming the RC-LH1 core complex. In Rhodobacter sphaeroides, RC-LH1 core complexes contain an additional protein, PufX, and assemble into dimeric RC-LH1-PufX core complexes. In the absence of LH complex II (LH2), the former complexes can aggregate into a helically ordered tubular photosynthetic membrane. We have examined the excitation transfer dynamics in a single RC-LH1-PufX core complex dimer using the hierarchical equations of motion for dissipative quantum dynamics that accurately, yet in a computationally costly manner, treat the coupling between BChls and their protein environment. A widely employed description, the generalized Förster (GF) theory, was also used to calculate the transfer rates of the same excitonic system in order to verify the accuracy of this computationally cheap method. Additionally, in light of the structural uncertainties in the Rba. sphaeroides RC-LH1-PufX core complex, geometrical alterations were introduced into the BChl organization. It is shown that the energy transfer dynamics are not affected by the considered changes in the BChl organization and that the GF theory provides accurate transfer rates. An all-atom model for a tubular photosynthetic membrane is then constructed on the basis of electron microscopy data, and the overall energy transfer properties of this membrane are computed.

  13. Fluorescence and Intramolecular Energy Transfer in Polyphenylene Dendrimers

    NARCIS (Netherlands)

    Liu, Daojun; Feyter, Steven De; Cotlet, Mircea; Stefan, Alina; Wiesler, Uwe-Martin; Herrmann, Andreas; Grebel-Koehler, Dörthe; Qu, Jianqiang; Müllen, Klaus; Schryver, Frans C. De


    The fluorescence of polyphenylene dendrimers and the intramolecular energy transfer in polyphenylene dendrimers containing a perylenediimide core have been investigated in this paper. Polyphenylene dendrimers composed of tens or hundreds of out-of-plane twisted phenyl units exhibit strong

  14. Energy transfers and magnetic energy growth in small-scale dynamo

    KAUST Repository

    Kumar, Rohit Raj


    In this letter we investigate the dynamics of magnetic energy growth in small-scale dynamo by studying energy transfers, mainly energy fluxes and shell-to-shell energy transfers. We perform dynamo simulations for the magnetic Prandtl number Pm = 20 on 10243 grid using the pseudospectral method. We demonstrate that the magnetic energy growth is caused by nonlocal energy transfers from the large-scale or forcing-scale velocity field to small-scale magnetic field. The peak of these energy transfers moves towards lower wave numbers as dynamo evolves, which is the reason why the integral scale of the magnetic field increases with time. The energy transfers U2U (velocity to velocity) and B2B (magnetic to magnetic) are forward and local. Copyright © EPLA, 2013.

  15. Modelling excitonic-energy transfer in light-harvesting complexes


    Kramer, Tobias; Kreisbeck, Christoph


    The theoretical and experimental study of energy transfer in photosynthesis has revealed an interesting transport regime, which lies at the borderline between classical transport dynamics and quantum-mechanical interference effects. Dissipation is caused by the coupling of electronic degrees of freedom to vibrational modes and leads to a directional energy transfer from the antenna complex to the target reaction-center. The dissipative driving is robust and does not rely on fine-tuning of spe...

  16. Linear-response theory for Mukherjee's multireference coupled-cluster method: excitation energies. (United States)

    Jagau, Thomas-C; Gauss, Jürgen


    The recently presented linear-response function for Mukherjee's multireference coupled-cluster method (Mk-MRCC) [T.-C. Jagau and J. Gauss, J. Chem. Phys. 137, 044115 (2012)] is employed to determine vertical excitation energies within the singles and doubles approximation (Mk-MRCCSD-LR) for ozone as well as for o-benzyne, m-benzyne, and p-benzyne, which display increasing multireference character in their ground states. In order to assess the impact of a multireference ground-state wavefunction on excitation energies, we compare all our results to those obtained at the single-reference coupled-cluster level of theory within the singles and doubles as well as within the singles, doubles, and triples approximation. Special attention is paid to the artificial splitting of certain excited states which arises from the redundancy intrinsic to Mk-MRCC theory and hinders the straightforward application of the Mk-MRCC-LR method.

  17. Does excited-state proton-transfer reaction contribute to the emission behaviour of 4-aminophthalimide in aqueous media? (United States)

    Khara, Dinesh Chandra; Banerjee, Sanghamitra; Samanta, Anunay


    4-Aminophthalimide (AP) is an extensively used molecule both for fundamental studies and applications primarily due to its highly solvent-sensitive fluorescence properties. The fluorescence spectrum of AP in aqueous media was recently shown to be dependent on the excitation wavelength. A time-dependent blue shift of its emission spectrum is also reported. On the basis of these findings, the excited-state solvent-mediated proton-transfer reaction of the molecule, which was proposed once but discarded at a later stage, is reintroduced. We report on the fluorescence behaviour of AP and its imide-H protected derivative, N-BuAP, to prove that a solvent-assisted excited-state keto-enol transformation does not contribute to the steady-state and time-resolved emission behaviour of AP in aqueous media. Our results also reveal that the fluorescence of AP in aqueous media arises from two distinct hydrogen-bonded species. The deuterium isotope effect on the fluorescence quantum yield and lifetime of AP, which was thought to be a reflection of the excited-state proton-transfer reaction in the system, is explained by considering the difference in the influence of H(2)O and D(2)O on the nonradiative rates and ground-state exchange of the proton with the solvent. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Measurement of both the equilibrium constant and rate constant for electronic energy transfer by control of the limiting kinetic regimes. (United States)

    Vagnini, Michael T; Rutledge, W Caleb; Wagenknecht, Paul S


    Electronic energy transfer can fall into two limiting cases. When the rate of the energy transfer back reaction is much faster than relaxation of the acceptor excited state, equilibrium between the donor and acceptor excited states is achieved and only the equilibrium constant for the energy transfer can be measured. When the rate of the back reaction is much slower than relaxation of the acceptor, the energy transfer is irreversible and only the forward rate constant can be measured. Herein, we demonstrate that with trans-[Cr(d(4)-cyclam)(CN)(2)](+) as the donor and either trans-[Cr([15]ane-ane-N(4))(CN)(2)](+) or trans-[Cr(cyclam)(CN)(2)](+) as the acceptor, both limits can be obtained by control of the donor concentration. The equilibrium constant and rate constant for the case in which trans-[Cr([15]ane-ane-N(4))(CN)(2)](+) is the acceptor are 0.66 and 1.7 x 10(7) M(-1) s(-1), respectively. The equilibrium constant is in good agreement with the value of 0.60 determined using the excited state energy gap between the donor and acceptor species. For the thermoneutral case in which trans-[Cr(cyclam)(CN)(2)](+) is the acceptor, an experimental equilibrium constant of 0.99 was reported previously, and the rate constant has now been measured as 4.0 x 10(7) M(-1) s(-1).

  19. Thermodynamical analysis of spin-state transitions in LaCo O3 : Negative energy of mixing to assist thermal excitation to the high-spin excited state (United States)

    Kyômen, Tôru; Asaka, Yoshinori; Itoh, Mitsuru


    Magnetic susceptibility and heat capacity due to the spin-state transition in LaCoO3 were calculated by a molecular-field model in which the energy-level diagram of high-spin state reported by Ropka and Radwanski [Phys. Rev. B 67, 172401 (2003)] is assumed for the excited state, and the energy and entropy of mixing of high-spin Co ions and low-spin Co ions are introduced phenomenologically. The experimental data below 300K were well reproduced by this model, which proposes that the high-spin excited state can be populated even if the energy of high-spin state is much larger than that of low-spin state, because the negatively large energy of mixing reduces the net excitation energy. The stability of each spin state including the intermediate-spin state is discussed based on the present results and other reports.

  20. Proposal of a New Method for Measuring Förster Resonance Energy Transfer (FRET Rapidly, Quantitatively and Non-Destructively

    Directory of Open Access Journals (Sweden)

    Paul Johannes Helm


    Full Text Available The process of radiationless energy transfer from a chromophore in an excited electronic state (the “donor” to another chromophore (an “acceptor”, in which the energy released by the donor effects an electronic transition, is known as “Förster Resonance Energy Transfer” (FRET. The rate of energy transfer is dependent on the sixth power of the distance between donor and acceptor. Determining FRET efficiencies is tantamount to measuring distances between molecules. A new method is proposed for determining FRET efficiencies rapidly, quantitatively, and non-destructively on ensembles containing donor acceptor pairs: at wavelengths suitable for mutually exclusive excitations of donors and acceptors, two laser beams are intensity-modulated in rectangular patterns at duty cycle ½ and frequencies ƒ1 and ƒ2 by electro-optic modulators. In an ensemble exposed to these laser beams, the donor excitation is modulated at ƒ1, and the acceptor excitation, and therefore the degree of saturation of the excited electronic state of the acceptors, is modulated at ƒ2. Since the ensemble contains donor acceptor pairs engaged in FRET, the released donor fluorescence is modulated not only at ƒ1 but also at the beat frequency Δƒ: = |ƒ1 − ƒ2|. The depth of the latter modulation, detectable via a lock-in amplifier, quantitatively indicates the FRET efficiency.

  1. Electron-energy-loss spectroscopy of plasmon excitations in concentric-shell fullerenes

    NARCIS (Netherlands)

    Henrard, L.; Malengreau, F.; Rudolf, P.; Hevesi, K.; Caudano, R.; Lambin, Ph.; Cabioc’h, Th.


    We report evidence for surface plasmon excitations in concentric-shell fullerenes. A film of these concentric-shell fullerenes with radii around 5–7 nm was produced by carbon bombardment of a silver polycrystalline target and measured by electron-energy-loss spectroscopy (EELS) in reflection

  2. Low-energy excitations in a low-viscous glass-forming liquid

    Indian Academy of Sciences (India)

    Low-energy excitations in a low-viscous glass-forming liquid. ANGELOS G KALAMPOUNIAS. Department of Chemical Engineering, University of Patras, GR 26504, Patras, Greece and Foundation for Research and Technology Hellas – Institute of Chemical Engineering and High Temperature Chemical Processes, ...

  3. Compact and Low-Frequency Vibration Energy Scavenger using the longitudinal excitation of a piezoelectric bar (United States)

    Colin, M.; Mortier, Q.; Basrour, S.; Bencheikh, N.


    This paper introduces an innovative architecture of a piezoelectric harvester, which enables harvesting vibration energy at low frequency using the {33}-transduction mode of a piezoelectric element. Unlike cantilevers integrating ferroelectric material combined with interdigitated electrodes, the concept that we propose is based on the elongation/compression excitation of a piezoelectric bar.

  4. Ionic bond effects on the mean excitation energy for stopping power (United States)

    Wilson, J. W.; Chang, C. K.; Kamaratos, E.; Xu, Y. J.


    Molecular mean excitation energies for ionic bonded molecules calculated according to the local plasma approximation are compared to the Bragg rule. Adjustments of 15% are calculated for LiF in agreement with experiments while 6% adjustments are predicted for HF and 3% for LiH.

  5. Excitation Energy Dependent Raman Signatures of ABA- and ABC-stacked Few-layer Graphene (United States)

    Nguyen, The An; Lee, Jae-Ung; Yoon, Duhee; Cheong, Hyeonsik


    The dependence of the Raman spectrum on the excitation energy has been investigated for ABA-and ABC- stacked few-layer graphene in order to establish the fingerprint of the stacking order and the number of layers, which affect the transport and optical properties of few-layer graphene. Five different excitation sources with energies of 1.96, 2.33, 2.41, 2.54 and 2.81 eV were used. The position and the line shape of the Raman 2D, G*, N, M, and other combination modes show dependence on the excitation energy as well as the stacking order and the thickness. One can unambiguously determine the stacking order and the thickness by comparing the 2D band spectra measured with 2 different excitation energies or by carefully comparing weaker combination Raman modes such as N, M, or LOLA modes. The criteria for unambiguous determination of the stacking order and the number of layers up to 5 layers are established.

  6. On Kinetics Modeling of Vibrational Energy Transfer (United States)

    Gilmore, John O.; Sharma, Surendra P.; Cavolowsky, John A. (Technical Monitor)


    Two models of vibrational energy exchange are compared at equilibrium to the elementary vibrational exchange reaction for a binary mixture. The first model, non-linear in the species vibrational energies, was derived by Schwartz, Slawsky, and Herzfeld (SSH) by considering the detailed kinetics of vibrational energy levels. This model recovers the result demanded at equilibrium by the elementary reaction. The second model is more recent, and is gaining use in certain areas of computational fluid dynamics. This model, linear in the species vibrational energies, is shown not to recover the required equilibrium result. Further, this more recent model is inconsistent with its suggested rate constants in that those rate constants were inferred from measurements by using the SSH model to reduce the data. The non-linear versus linear nature of these two models can lead to significant differences in vibrational energy coupling. Use of the contemporary model may lead to significant misconceptions, especially when integrated in computer codes considering multiple energy coupling mechanisms.

  7. Experimental and theoretical investigations of rotational energy transfer in HBr + He collisions. (United States)

    Kabir, Md Humayun; Antonov, Ivan O; Merritt, Jeremy M; Heaven, Michael C


    Rotational relaxation rates for HBr(v = 1) colliding with helium atoms at room temperature have been measured using a time-resolved optical-optical double resonance technique. Rotational state selective excitation of v = 1 for rotational levels in the range J = 1-9 was achieved by stimulated Raman pumping. The population decay in the prepared states and the transfer of population to nearby rotational states was monitored via 2 + 1 resonance-enhanced multiphoton ionization (REMPI) spectroscopy using the g(3)Σ(-)-X(1)Σ(+) (0-1) band. Collision-induced population evolution for transfer events with |ΔJ| ≤ 8 was observed at pressures near 0.7 Torr. The experimental data were analyzed using fitting and scaling functions to generate state-to-state rotational energy transfer rate constant matrices. Total depopulation rate constants were found to be in the range (1.3 to 2.0) × 10(-10) cm(3) s(-1). As a test of current computational methods, state-to-state rotational energy transfer rate constants were calculated using ab initio theory. The total removal rate constants were in good agreement with the measured values, but the transfer probabilities for events with |ΔJ| ≥ 3 were underestimated. Inspection of the anisotropic characteristics of the potential energy surface did not yield an obvious explanation for the discrepancies, but it is most likely that the problem stems from inaccuracies in the potential surface.

  8. Photoinduced electron transfer at the tetrapyrrole-TiO2 interface: Effect of the energy alignment (United States)

    Nieto-Pescador, Jesus S.

    Photoinduced electron transfer is a ubiquitous process behind several physical, chemical, and biological processes. Its potential applications, ranging from solar cell technologies to photodynamic cancer therapy, require a thorough understanding of the basics of the reaction. This dissertation addresses open questions for a particular case of electron transfer processes: Heterogeneous Electron Transfer (HET). In this process, an electron is transferred between a localized donor and a multitude of delocalized acceptor states. HET between photoexcited tetrapyrroles and colloidal TiO2 has been investigated using femtosecond transient absorption spectroscopy. Specifically, this work explores the not well-understood influence of the availability of states on the HET reaction. This problem is addressed by measuring electron injection times as a function of the energy difference between the LUMO and the conduction band of TiO2. The change in the energy alignment was done using two experimental strategies. The first one employs a recently synthesized phlorin with two different excited states above the conduction band of TiO2. This molecule allows comparing HET rates from two different excited states. The second strategy measures the electron injection rates after exciting the same electronic state of a set of specially designed porphyrins. The novelty of the approach is that the difference in energy alignment is attained by the introduction of dipole groups within the bridge group of the molecule. This strategy generates a difference in energy alignment of up to 200 meV. The reported measurements were carried in a high vacuum environment with an apparatus capable of resolving sub 30 fs processes. Disentanglement of the electron transfer processes was done, after careful study of the relaxation dynamics of the molecules in solution, by monitoring the decay of the excited state absorption and the rise of the cation spectral signatures. Within our time resolution, our results

  9. Energy-Looping Nanoparticles: Harnessing Excited-State Absorption for Deep-Tissue Imaging. (United States)

    Levy, Elizabeth S; Tajon, Cheryl A; Bischof, Thomas S; Iafrati, Jillian; Fernandez-Bravo, Angel; Garfield, David J; Chamanzar, Maysamreza; Maharbiz, Michel M; Sohal, Vikaas S; Schuck, P James; Cohen, Bruce E; Chan, Emory M


    Near infrared (NIR) microscopy enables noninvasive imaging in tissue, particularly in the NIR-II spectral range (1000-1400 nm) where attenuation due to tissue scattering and absorption is minimized. Lanthanide-doped upconverting nanocrystals are promising deep-tissue imaging probes due to their photostable emission in the visible and NIR, but these materials are not efficiently excited at NIR-II wavelengths due to the dearth of lanthanide ground-state absorption transitions in this window. Here, we develop a class of lanthanide-doped imaging probes that harness an energy-looping mechanism that facilitates excitation at NIR-II wavelengths, such as 1064 nm, that are resonant with excited-state absorption transitions but not ground-state absorption. Using computational methods and combinatorial screening, we have identified Tm(3+)-doped NaYF4 nanoparticles as efficient looping systems that emit at 800 nm under continuous-wave excitation at 1064 nm. Using this benign excitation with standard confocal microscopy, energy-looping nanoparticles (ELNPs) are imaged in cultured mammalian cells and through brain tissue without autofluorescence. The 1 mm imaging depths and 2 μm feature sizes are comparable to those demonstrated by state-of-the-art multiphoton techniques, illustrating that ELNPs are a promising class of NIR probes for high-fidelity visualization in cells and tissue.

  10. Restricted second random phase approximations and Tamm-Dancoff approximations for electronic excitation energy calculations

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Degao; Yang, Yang; Zhang, Peng [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States); Yang, Weitao, E-mail: [Department of Chemistry and Department of Physics, Duke University, Durham, North Carolina 27708 (United States)


    In this article, we develop systematically second random phase approximations (RPA) and Tamm-Dancoff approximations (TDA) of particle-hole and particle-particle channels for calculating molecular excitation energies. The second particle-hole RPA/TDA can capture double excitations missed by the particle-hole RPA/TDA and time-dependent density-functional theory (TDDFT), while the second particle-particle RPA/TDA recovers non-highest-occupied-molecular-orbital excitations missed by the particle-particle RPA/TDA. With proper orbital restrictions, these restricted second RPAs and TDAs have a formal scaling of only O(N{sup 4}). The restricted versions of second RPAs and TDAs are tested with various small molecules to show some positive results. Data suggest that the restricted second particle-hole TDA (r2ph-TDA) has the best overall performance with a correlation coefficient similar to TDDFT, but with a larger negative bias. The negative bias of the r2ph-TDA may be induced by the unaccounted ground state correlation energy to be investigated further. Overall, the r2ph-TDA is recommended to study systems with both single and some low-lying double excitations with a moderate accuracy. Some expressions on excited state property evaluations, such as 〈S{sup ^2}〉 are also developed and tested.

  11. Restricted second random phase approximations and Tamm-Dancoff approximations for electronic excitation energy calculations (United States)

    Peng, Degao; Yang, Yang; Zhang, Peng; Yang, Weitao


    In this article, we develop systematically second random phase approximations (RPA) and Tamm-Dancoff approximations (TDA) of particle-hole and particle-particle channels for calculating molecular excitation energies. The second particle-hole RPA/TDA can capture double excitations missed by the particle-hole RPA/TDA and time-dependent density-functional theory (TDDFT), while the second particle-particle RPA/TDA recovers non-highest-occupied-molecular-orbital excitations missed by the particle-particle RPA/TDA. With proper orbital restrictions, these restricted second RPAs and TDAs have a formal scaling of only O(N4). The restricted versions of second RPAs and TDAs are tested with various small molecules to show some positive results. Data suggest that the restricted second particle-hole TDA (r2ph-TDA) has the best overall performance with a correlation coefficient similar to TDDFT, but with a larger negative bias. The negative bias of the r2ph-TDA may be induced by the unaccounted ground state correlation energy to be investigated further. Overall, the r2ph-TDA is recommended to study systems with both single and some low-lying double excitations with a moderate accuracy. Some expressions on excited state property evaluations, such as < hat{S}2rangle are also developed and tested.

  12. Lanthanide doped ultrafine hybrid nanostructures: multicolour luminescence, upconversion based energy transfer and luminescent solar collector applications. (United States)

    Singh, Priyam; Shahi, Praveen Kumar; Singh, Sunil Kumar; Singh, Akhilesh Kumar; Singh, Manish Kumar; Prakash, Rajiv; Rai, Shyam Bahadur


    We herein demonstrate novel inorganic-organic hybrid nanoparticles (HNPs) composed of inorganic NPs, NaY0.78Er0.02Yb0.2F4, and an organic β-diketonate complex, Eu(TTA)3Phen, for energy harvesting applications. Both the systems maintain their core integrity and remain entangled through weak interacting forces. HNPs incorporate the characteristic optical behaviour of both the systems i.e. they give an intense red emission under UV excitation, due to Eu3+ in organic complexes, and efficient green upconversion emission of Er3+ in inorganic NPs for NIR (980 nm) excitation. However, (i) an energy transfer from Er3+ (inorganic NPs) to Eu3+ (organic complex) under NIR excitation, and (ii) an increase in the decay time of 5D0 → 7F2 transition of Eu3+ for HNPs as compared to the Eu(TTA)3Phen complex, under different excitation wavelengths, are added optical characteristics which point to an important role of the interface between both the systems. Herein, the ultra-small size (6-9 nm) and spherical shape of the inorganic NPs offer a large surface area, which improves the weak interaction force between both the systems. Furthermore, the HNPs dispersed in the PMMA polymer have been successfully utilized for luminescent solar collector (LSC) applications.

  13. Energy transfers in dynamos with small magnetic Prandtl numbers

    KAUST Repository

    Kumar, Rohit


    We perform numerical simulation of dynamo with magnetic Prandtl number Pm = 0.2 on 10243 grid, and compute the energy fluxes and the shell-to-shell energy transfers. These computations indicate that the magnetic energy growth takes place mainly due to the energy transfers from large-scale velocity field to large-scale magnetic field and that the magnetic energy flux is forward. The steady-state magnetic energy is much smaller than the kinetic energy, rather than equipartition; this is because the magnetic Reynolds number is near the dynamo transition regime. We also contrast our results with those for dynamo with Pm = 20 and decaying dynamo. © 2015 Taylor & Francis.

  14. Quantum Monte Carlo Characterization of Excited States and Energy-Level Alignment at Oligomer/Quantum-Dot Interfaces (United States)

    Kanai, Yosuke; Dubois, Jonathan L.; Lee, Donghwa


    Charge separation of excitons in materials is one of the most important physical processes that need to take place in excitonic solar cells and in photocatalytic devices. Heterogeneous interfaces with the so-called type-II character are often employed for inducing the exciton dissociation through interfacial charge transfer. As the simplest criterion for designing such an interface, the energy alignment of the quasi-particle states is often discussed in literature, together with the exciton binding energy of electron-donating materials. Therefore, accurate characterization of the interfacial energy-level alignment and the exciton binding energy using first principles calculations is important for making systematic progresses in designing better materials for solar energy conversion. However, Density Functional Theory calculations need to be employed with caution in this context. First principles calculations such as Many-Body Perturbation Theory and Quantum Monte Carlo are promising alternatives for accurate characterization, but much more work is needed in this area to assess how well these methods perform in practice. In this talk, we will discuss our preliminary results using diffusion Quantum Monte Carlo on calculating the excited states and energy-level alignment of popular Oligomer/Quantum-Dot interfaces.

  15. Surface-catalyzed recombination into excited electronic, vibrational, rotational, and kinetic energy states: A review (United States)

    Kofsky, I. L.; Barrett, J. L.


    Laboratory experiments in which recombined CO, CO2, D2O, OH, N2, H2, and O2 molecules desorb from surfaces in excited internal and translational states are briefly reviewed. Unequilibrated distributions predominate from the principally catalytic metal substrates so far investigated. Mean kinetic energies have been observed up to approx. 3x, and in some cases less than, wall-thermal; the velocity distributions generally vary with emission angle, with non-Lambertian particle fluxes. The excitation state populations are found to depend on surface impurities, in an as yet unexplained way.

  16. A new recoil distance technique using low energy coulomb excitation in inverse kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Rother, W., E-mail: [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Dewald, A.; Pascovici, G.; Fransen, C.; Friessner, G.; Hackstein, M. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Ilie, G. [Wright Nuclear Structure Laboratory, Yale University, New Haven, CT 06520 (United States); National Institute of Physics and Nuclear Engineering, P.O. Box MG-6, Bucharest-Magurele (Romania); Iwasaki, H. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Jolie, J. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Melon, B. [Dipartimento di Fisica, Universita di Firenze and INFN Sezione di Firenze, Sesto Fiorentino (Firenze) I-50019 (Italy); Petkov, P. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); INRNE-BAS, Sofia (Bulgaria); Pfeiffer, M. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Pissulla, Th. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Bundesumweltministerium, Robert-Schuman-Platz 3, D - 53175 Bonn (Germany); Zell, K.-O. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Jakobsson, U.; Julin, R.; Jones, P.; Ketelhut, S.; Nieminen, P.; Peura, P. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FI-40014 (Finland); and others


    We report on the first experiment combining the Recoil Distance Doppler Shift technique and multistep Coulomb excitation in inverse kinematics at beam energies of 3-10 A MeV. The setup involves a standard plunger device equipped with a degrader foil instead of the normally used stopper foil. An array of particle detectors is positioned at forward angles to detect target-like recoil nuclei which are used as a trigger to discriminate against excitations in the degrader foil. The method has been successfully applied to measure lifetimes in {sup 128}Xe and is suited to be a useful tool for experiments with radioactive ion beams.

  17. Energy transfer in scattering by rotating potentials

    Indian Academy of Sciences (India)

    Quantum mechanical scattering theory is studied for time-dependent Schrödinger operators, in particular for particles in a rotating potential. Under various assumptions about the decay rate at infinity we show uniform boundedness in time for the kinetic energy of scattering states, existence and completeness of wave ...

  18. A coupled cluster theory with iterative inclusion of triple excitations and associated equation of motion formulation for excitation energy and ionization potential. (United States)

    Maitra, Rahul; Akinaga, Yoshinobu; Nakajima, Takahito


    A single reference coupled cluster theory that is capable of including the effect of connected triple excitations has been developed and implemented. This is achieved by regrouping the terms appearing in perturbation theory and parametrizing through two different sets of exponential operators: while one of the exponentials, involving general substitution operators, annihilates the ground state but has a non-vanishing effect when it acts on the excited determinant, the other is the regular single and double excitation operator in the sense of conventional coupled cluster theory, which acts on the Hartree-Fock ground state. The two sets of operators are solved as coupled non-linear equations in an iterative manner without significant increase in computational cost than the conventional coupled cluster theory with singles and doubles excitations. A number of physically motivated and computationally advantageous sufficiency conditions are invoked to arrive at the working equations and have been applied to determine the ground state energies of a number of small prototypical systems having weak multi-reference character. With the knowledge of the correlated ground state, we have reconstructed the triple excitation operator and have performed equation of motion with coupled cluster singles, doubles, and triples to obtain the ionization potential and excitation energies of these molecules as well. Our results suggest that this is quite a reasonable scheme to capture the effect of connected triple excitations as long as the ground state remains weakly multi-reference.

  19. A low-cost approach to electronic excitation energies based on the driven similarity renormalization group (United States)

    Li, Chenyang; Verma, Prakash; Hannon, Kevin P.; Evangelista, Francesco A.


    We propose an economical state-specific approach to evaluate electronic excitation energies based on the driven similarity renormalization group truncated to second order (DSRG-PT2). Starting from a closed-shell Hartree-Fock wave function, a model space is constructed that includes all single or single and double excitations within a given set of active orbitals. The resulting VCIS-DSRG-PT2 and VCISD-DSRG-PT2 methods are introduced and benchmarked on a set of 28 organic molecules [M. Schreiber et al., J. Chem. Phys. 128, 134110 (2008)]. Taking CC3 results as reference values, mean absolute deviations of 0.32 and 0.22 eV are observed for VCIS-DSRG-PT2 and VCISD-DSRG-PT2 excitation energies, respectively. Overall, VCIS-DSRG-PT2 yields results with accuracy comparable to those from time-dependent density functional theory using the B3LYP functional, while VCISD-DSRG-PT2 gives excitation energies comparable to those from equation-of-motion coupled cluster with singles and doubles.

  20. Photoinduced energy and electron transfer in phenylethynyl-bridged zinc porphyrin-oligothienylenevinylene-C60 ensembles. (United States)

    Urbani, Maxence; Ohkubo, Kei; Islam, D M Shafiqul; Fukuzumi, Shunichi; Langa, Fernando


    Donor-bridge-acceptor triad (Por-2TV-C(60)) and tetrad molecules ((Por)(2)-2TV-C(60)), which incorporated C(60) and one or two porphyrin molecules that were covalently linked through a phenylethynyl-oligothienylenevinylene bridge, were synthesized. Their photodynamics were investigated by fluorescence measurements, and by femto- and nanosecond laser flash photolysis. First, photoinduced energy transfer from the porphyrin to the C(60) moiety occurred rather than electron transfer, followed by electron transfer from the oligothienylenevinylene to the singlet excited state of the C(60) moiety to produce the radical cation of oligothienylenevinylene and the radical anion of C(60). Then, back-electron transfer occurred to afford the triplet excited state of the oligothienylenevinylene moiety rather than the ground state. Thus, the porphyrin units in (Por)-2TV-C(60) and (Por)(2)-2TV-C(60) acted as efficient photosensitizers for the charge separation between oligothienylenevinylene and C(60). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Energy transfer process of anisothermal wall-bounded flows

    Energy Technology Data Exchange (ETDEWEB)

    Aulery, Frédéric, E-mail: [PROMES CNRS – UPR 8521, Rambla de la Thermodynamique, Tecnosud, Perpignan (France); Toutant, Adrien [PROMES CNRS – UPR 8521, Rambla de la Thermodynamique, Tecnosud, Perpignan (France); Université de Perpignan Via Domitia, 52 avenue Paul Alduy, 66860 Perpignan Cedex 9 (France); Bataille, Françoise [PROMES CNRS – UPR 8521, Rambla de la Thermodynamique, Tecnosud, Perpignan (France); Florida State University, Department of Mathematics, Tallahassee, FL (United States); Zhou, Ye, E-mail: [Lawrence Livermore National Laboratory, Livermore, CA (United States)


    Strong temperature gradients introduce a major external agency into the wall-bounded turbulent flows. In these flows, the temperature field and the turbulent velocity field are highly correlated. In fact, standard RANS turbulent models are not able to accurately reproduce these flows. In order to improve the performance of the models, we need to understand how the energy is produced, transferred, and dissipated in a strong anisothermal wall-bounded flow. This letter presents a first detailed investigation on the roles played by each contributor in the energy transfer equation. - Highlights: • Turbulent flows subject to high temperature gradients are considered. • The influence of the “temperature gradients” on the energy transfer process is determined. • Inverse energy cascade in an anisotropic flow is observed.

  2. Energy harvesting in a quad-stable harvester subjected to random excitation

    Directory of Open Access Journals (Sweden)

    Zhi-yong Zhou


    Full Text Available In response to the defects of bi-stable energy harvester (BEH, we develop a novel quad-stable energy harvester (QEH to improve harvesting efficiency. The device is made up of a bimorph cantilever beam having a tip magnet and three external fixed magnets. By adjusting the positions of the fixed magnets and the distances between the tip magnet and the fixed ones, the quad-stable equilibrium positions can emerge. The potential energy shows that the barriers of the QEH are lower than those of the BEH for the same separation distance. Experiment results reveal that the QEH can realize snap-through easier and make a dense snap-through in response under random excitation. Moreover, its strain and voltage both become large for snap-through between the nonadjacent stable positions. There exists an optimal separation distance for different excitation intensities.

  3. Delta self-consistent field method to obtain potential energy surfaces of excited molecules on surfaces

    DEFF Research Database (Denmark)

    Gavnholt, Jeppe; Olsen, Thomas; Engelund, Mads


    We present a modification of the Delta self-consistent field (Delta SCF) method of calculating energies of excited states in order to make it applicable to resonance calculations of molecules adsorbed on metal surfaces, where the molecular orbitals are highly hybridized. The Delta SCF approximation...... is a density-functional method closely resembling standard density-functional theory (DFT), the only difference being that in Delta SCF one or more electrons are placed in higher lying Kohn-Sham orbitals instead of placing all electrons in the lowest possible orbitals as one does when calculating the ground......-state energy within standard DFT. We extend the Delta SCF method by allowing excited electrons to occupy orbitals which are linear combinations of Kohn-Sham orbitals. With this extra freedom it is possible to place charge locally on adsorbed molecules in the calculations, such that resonance energies can...

  4. Intermediate-energy differential and integral cross sections for vibrational excitation in α-tetrahydrofurfuryl alcohol

    Energy Technology Data Exchange (ETDEWEB)

    Duque, H. V. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Departamento de Física, Universidade Federal de Juiz de Fora, Juiz de Fora, MG (Brazil); Chiari, L.; Jones, D. B.; Pettifer, Z. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Silva, G. B. da [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Universidade Federal de Mato Grosso, Barra do Garças, Mato Grosso (Brazil); Limão-Vieira, P. [Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Blanco, F. [Departamento de Física Atómica, Molecular y Nuclear, Universidad Complutense de Madrid, Madrid E-28040 (Spain); García, G. [Instituto de Física Fundamental, CSIC, Madrid E-28006 (Spain); White, R. D. [School of Engineering and Physical Sciences, James Cook University, Townsville, 4810 Queensland (Australia); Lopes, M. C. A. [Departamento de Física, Universidade Federal de Juiz de Fora, Juiz de Fora, MG (Brazil); Brunger, M. J., E-mail: [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, Kuala Lumpur (Malaysia)


    Differential and integral cross section measurements, for incident electron energies in the 20–50 eV range, are reported for excitation of several composite vibrational modes in α-tetrahydrofurfuryl alcohol (THFA). Optimisation and frequency calculations, using GAUSSIAN 09 at the B3LYP/aug-cc-pVDZ level, were also undertaken for the two most abundant conformers of THFA, with results being reported for their respective mode classifications and excitation energies. Those calculations assisted us in the experimental assignments of the composite features observed in our measured energy loss spectra. There are, to the best of our knowledge, no other experimental or theoretical data currently available in the literature against which we can compare the present results.

  5. Dynamic failure of high energy materials under compression and periodic excitation (United States)

    Koslowski, Marisol; Grilli, Nicolo; Tanasoiu, Bogdan; Duarte Cordon, Camilo


    Polymer bonded explosives consist of high energetic particles in a polymeric binder. When these composites are subjected to heat, impact, friction, shock, or other initiation stimulus, they undergo a rapid chemical change. The sensitivity to initiation depends not only on the amount of energy available in the system but also on the rate at which available energy is released. Therefore, it is of extreme importance to predict the dissipated energy and its rate due to mechanical insults from accurate predictions of the deformation fields including localization, fracture and plasticity. The focus of this work is to study energy dissipation due to fracture and plasticity in high energy particles embeded in a polymer binder using finite elements. Numerical simulations of crack propagation under compressive load and dynamic excitation are performed with a phase field damage model. A systematic study of the energy release rate and initial microstructure is performed to analyze their repercussion on the dissipated energy and initiation. MURI-ONR.

  6. Excitation Energies Through the Locally Renormalized Equation-of-Motion Formalism: Singles and Doubles Model

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, Karol


    The stationary conditions obtained from approximate coupled-cluster functional derived from the Numerator-Denominator connected Expansion (NDC) [K. Kowalski, P. Piecuch, J Chem. Phys. 122 (2005) 074107] are employed to calculate the linear response of cluster amplitudes. A simple scheme that involves singly and doubly excited amplitudes, termed locally renormalized equation-of-motion approach with singles and doubles (LR-EOMCCSD), is compared with other excited-state methods that include up to two-body operators in the wavefunction expansion. In particular, the impact of the local denominators on the excitation energies is discussed in detail. Several benchmark calculations on the CH+, C?, N?, O?, CIOCI molecules are presented to illustrate the performance of the LR-EOMCCSD approach.

  7. Low-Energy Electron Impact Excitation of the (010) Bending Mode of CO2 (United States)

    Huo, Winifred M.; Langhoff, Stephen R. (Technical Monitor)


    Low-energy electron impact excitation of the fundamental modes of CO2 has been extensively studied, both experimentally and theoretically. Much attention has been paid to the virtual state feature in the the (100) mode excitation and the (sup 2)II(sub upsilon) resonance feature around 3.8 eV, which is observable in all three fundamental modes. For the excitation of the (010) mode away from the resonance region, the Born dipole approximation was generally considered adequate. The present study employs the Born dipole approximation to treat the long range interaction and the Schwinger multichannel method for the short range interaction. The roles of the two interaction potentials will be compared.

  8. Dispersive high-energy spin excitations in iron pnictide superconductors investigated with RIXS

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, Thorsten; Zhou, Kejin; Monney, C.; Strocov, V.N. [Paul Scherrer Institut, Villigen (Switzerland); Huang, Y.B. [Paul Scherrer Institut, Villigen (Switzerland); IOP, CAS, Beijing (China); Brink, J. van den [IFW Dresden (Germany); Ding, H. [IOP, CAS, Beijing (China)


    The discovery of iron-based high temperature superconductivity has triggered tremendous research efforts in searching for novel high-T{sub c} superconductors. Unlike cuprates, which have long-range ordered antiferromagnetic Mott insulators as parent compounds, the parent compounds of iron-based superconductors are spin-density wave metals with delocalized electronic structure and more itinerant magnetism. Recent developments of the high-resolution resonant inelastic X-ray scattering (RIXS) technique have enabled investigations of magnetic excitations in cuprates, which show excellent agreement with results from Inelastic Neutron Scattering. In this presentation we demonstrate that RIXS can be used to measure collective magnetic excitations in iron-based superconductors despite their much stronger itinerancy compared to cuprates. The persistence of high-energy spin excitations even in optimally doped pnictide superconductors in a wide range of temperatures strongly suggests a spin-mediated Cooper pairing mechanism as proposed in cuprate superconductors.

  9. Vibronic coupling explains the ultrafast carotenoid-to-bacteriochlorophyll energy transfer in natural and artificial light harvesters

    CERN Document Server

    Perlík, Václav; Cranston, Laura J; Cogdell, Richard J; Lincoln, Craig N; Savolainen, Janne; Šanda, František; Mančal, Tomáš; Hauer, Jürgen


    The initial energy transfer in photosynthesis occurs between the light-harvesting pigments and on ultrafast timescales. We analyze the carotenoid to bacteriochlorophyll energy transfer in LH2 Marichromatium purpuratum as well as in an artificial light-harvesting dyad system by using transient grating and two-dimensional electronic spectroscopy with 10 fs time resolution. We find that F\\"orster-type models reproduce the experimentally observed 60 fs transfer times, but overestimate coupling constants, which leads to a disagreement with both linear absorption and electronic 2D-spectra. We show that a vibronic model, which treats carotenoid vibrations on both electronic ground and excited state as part of the system's Hamiltonian, reproduces all measured quantities. Importantly, the vibronic model presented here can explain the fast energy transfer rates with only moderate coupling constants, which are in agreement with structure based calculations. Counterintuitively, the vibrational levels on the carotenoid el...

  10. Ultrafast energy transfer within the photosystem II core complex. (United States)

    Pan, Jie; Gelzinis, Andrius; Chorošajev, Vladimir; Vengris, Mikas; Senlik, S Seckin; Shen, Jian-Ren; Valkunas, Leonas; Abramavicius, Darius; Ogilvie, Jennifer P


    We report 2D electronic spectroscopy on the photosystem II core complex (PSII CC) at 77 K under different polarization conditions. A global analysis of the high time-resolution 2D data shows rapid, sub-100 fs energy transfer within the PSII CC. It also reveals the 2D spectral signatures of slower energy equilibration processes occurring on several to hundreds of picosecond time scales that are consistent with previous work. Using a recent structure-based model of the PSII CC [Y. Shibata, S. Nishi, K. Kawakami, J. R. Shen and T. Renger, J. Am. Chem. Soc., 2013, 135, 6903], we simulate the energy transfer in the PSII CC by calculating auxiliary time-resolved fluorescence spectra. We obtain the observed sub-100 fs evolution, even though the calculated electronic energy shows almost no dynamics at early times. On the other hand, the electronic-vibrational interaction energy increases considerably over the same time period. We conclude that interactions with vibrational degrees of freedom not only induce population transfer between the excitonic states in the PSII CC, but also reshape the energy landscape of the system. We suggest that the experimentally observed ultrafast energy transfer is a signature of excitonic-polaron formation.

  11. Production and transfer of energy and information in Hamiltonian systems. (United States)

    Antonopoulos, Chris G; Bianco-Martinez, Ezequiel; Baptista, Murilo S


    We present novel results that relate energy and information transfer with sensitivity to initial conditions in chaotic multi-dimensional Hamiltonian systems. We show the relation among Kolmogorov-Sinai entropy, Lyapunov exponents, and upper bounds for the Mutual Information Rate calculated in the Hamiltonian phase space and on bi-dimensional subspaces. Our main result is that the net amount of transfer from kinetic to potential energy per unit of time is a power-law of the upper bound for the Mutual Information Rate between kinetic and potential energies, and also a power-law of the Kolmogorov-Sinai entropy. Therefore, transfer of energy is related with both transfer and production of information. However, the power-law nature of this relation means that a small increment of energy transferred leads to a relatively much larger increase of the information exchanged. Then, we propose an "experimental" implementation of a 1-dimensional communication channel based on a Hamiltonian system, and calculate the actual rate with which information is exchanged between the first and last particle of the channel. Finally, a relation between our results and important quantities of thermodynamics is presented.

  12. Production and transfer of energy and information in Hamiltonian systems.

    Directory of Open Access Journals (Sweden)

    Chris G Antonopoulos

    Full Text Available We present novel results that relate energy and information transfer with sensitivity to initial conditions in chaotic multi-dimensional Hamiltonian systems. We show the relation among Kolmogorov-Sinai entropy, Lyapunov exponents, and upper bounds for the Mutual Information Rate calculated in the Hamiltonian phase space and on bi-dimensional subspaces. Our main result is that the net amount of transfer from kinetic to potential energy per unit of time is a power-law of the upper bound for the Mutual Information Rate between kinetic and potential energies, and also a power-law of the Kolmogorov-Sinai entropy. Therefore, transfer of energy is related with both transfer and production of information. However, the power-law nature of this relation means that a small increment of energy transferred leads to a relatively much larger increase of the information exchanged. Then, we propose an "experimental" implementation of a 1-dimensional communication channel based on a Hamiltonian system, and calculate the actual rate with which information is exchanged between the first and last particle of the channel. Finally, a relation between our results and important quantities of thermodynamics is presented.

  13. Beyond Förster resonance energy transfer in biological and nanoscale systems. (United States)

    Beljonne, David; Curutchet, Carles; Scholes, Gregory D; Silbey, Robert J


    After photoexcitation, energy absorbed by a molecule can be transferred efficiently over a distance of up to several tens of angstroms to another molecule by the process of resonance energy transfer, RET (also commonly known as electronic energy transfer, EET). Examples of where RET is observed include natural and artificial antennae for the capture and energy conversion of light, amplification of fluorescence-based sensors, optimization of organic light-emitting diodes, and the measurement of structure in biological systems (FRET). Forster theory has proven to be very successful at estimating the rate of RET in many donor-acceptor systems, but it has also been of interest to discover when this theory does not work. By identifying these cases, researchers have been able to obtain, sometimes surprising, insights into excited-state dynamics in complex systems. In this article, we consider various ways that electronic energy transfer is promoted by mechanisms beyond those explicitly considered in Forster RET theory. First, we recount the important situations when the electronic coupling is not accurately calculated by the dipole-dipole approximation. Second, we examine the related problem of how to describe solvent screening when the dipole approximation fails. Third, there are situations where we need to be careful about the separability of electronic coupling and spectral overlap factors. For example, when the donors and/or acceptors are molecular aggregates rather than individual molecules, then RET occurs between molecular exciton states and we must invoke generalized Forster theory (GFT). In even more complicated cases, involving the intermediate regime of electronic energy transfer, we should consider carefully nonequilibrium processes and coherences and how bath modes can be shared. Lastly, we discuss how information is obscured by various forms of energetic disorder in ensemble measurements and we outline how single molecule experiments continue to be

  14. Nanophotonic control of Forster Resonance Energy Transfer

    CERN Document Server

    Zijlstra, Niels; Vos, Willem L; Subramaniam, Vinod; Blum, Christian


    Here we report on the experimental details of a study on the influence of the photonic environment on the emission of a FRET system. We modified the local density of optical states (LDOS) by placing the FRET system at precisely defined distances to a metallic mirror. We measured the energy donor lifetime in the presence of the FRET acceptor and the lifetime of an identical sample lacking an acceptor fluorophore for different LDOS. From the lifetimes we determined the FRET rate as well as the FRET efficiency for each sampled LDOS.

  15. Large impact of reorganization energy on photovoltaic conversion due to interfacial charge-transfer transitions. (United States)

    Fujisawa, Jun-ichi


    Interfacial charge-transfer (ICT) transitions are expected to be a novel charge-separation mechanism for efficient photovoltaic conversion featuring one-step charge separation without energy loss. Photovoltaic conversion due to ICT transitions has been investigated using several TiO2-organic hybrid materials that show organic-to-inorganic ICT transitions in the visible region. In applications of ICT transitions to photovoltaic conversion, there is a significant problem that rapid carrier recombination is caused by organic-inorganic electronic coupling that is necessary for the ICT transitions. In order to solve this problem, in this work, I have theoretically studied light-to-current conversions due to the ICT transitions on the basis of the Marcus theory with density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations. An apparent correlation between the reported incident photon-to-current conversion efficiencies (IPCE) and calculated reorganization energies was clearly found, in which the IPCE increases with decreasing the reorganization energy consistent with the Marcus theory in the inverted region. This activation-energy dependence was systematically explained by the equation formulated by the Marcus theory based on a simple excited-state kinetic scheme. This result indicates that the reduction of the reorganization energy can suppress the carrier recombination and enhance the IPCE. The reorganization energy is predominantly governed by the structural change in the chemical-adsorption moiety between the ground and ICT excited states. This work provides crucial knowledge for efficient photovoltaic conversion due to ICT transitions.

  16. Survey of nuclei for low-energy nuclear excitation in laser-produced plasma

    Energy Technology Data Exchange (ETDEWEB)

    Granja, C. [Institute of Experimental and Applied Physics, Czech Technical University, 128 00 Prague 2 (Czech Republic)]. E-mail:; Kuba, J. [Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, 115 19 Prague 1 (Czech Republic); Haiduk, A. [Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, 115 19 Prague 1 (Czech Republic); Renner, O. [Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague 8 (Czech Republic)


    We present a survey of stable and long-lived nuclei as well as nuclear isomers looking for candidates of studies of low-energy (1-30 keV) nuclear excitation by laser-produced plasma radiation. We concentrate on medium-size high-power lasers with pulse duration of hundreds of ps providing energy up to 1000 J and subrelativistic intensity of 10{sup 16}-10{sup 17} Wcm{sup -2}. Screening criteria are primarily the transition energy and the half-life, spin and parity of nuclear levels. Ta181 is suggested as first candidate for which an estimation of reaction efficiency is included.

  17. Vibrational Excitation of H2 Scattering from Cu(111): Effects of Surface Temperature and of Allowing Energy Exchange with the Surface. (United States)

    Kroes, Geert-Jan; Juaristi, J I; Alducin, M


    In scattering of H2 from Cu(111), vibrational excitation has so far defied an accurate theoretical description. To expose the causes of the large discrepancies with experiment, we investigate how the feature due to vibrational excitation (the "gain peak") in the simulated time-of-flight spectrum of (v = 1, j = 3) H2 scattering from Cu(111) depends on the surface temperature (Ts) and the possibility of energy exchange with surface phonons and electron-hole pairs (ehp's). Quasi-classical dynamics calculations are performed on the basis of accurate semiempirical density functionals for the interaction with H2 + Cu(111). The methods used include the quasi-classical trajectory method within the Born-Oppenheimer static surface model, the generalized Langevin oscillator (GLO) method incorporating energy transfer to surface phonons, the GLO + friction (GLO+F) method also incorporating energy exchange with ehp's, and ab initio molecular dynamics with electronic friction (AIMDEF). Of the quasi-classical methods tested, comparison with AIMDEF suggests that the GLO+F method is accurate enough to describe vibrational excitation as measured in the experiments. The GLO+F calculations also suggest that the promoting effect of raising Ts on the measured vibrational excitation is due to an electronically nonadiabatic mechanism. However, by itself, enabling energy exchange with the surface by modeling surface phonons and ehp's leads to reduced vibrational excitation, further decreasing the agreement with experiment. The simulated gain peak is quite sensitive to energy shifts in calculated vibrational excitation probabilities and to shifts in a specific experimental parameter (the chopper opening time). While the GLO+F calculations allow important qualitative conclusions, comparison to quantum dynamics results suggests that, with the quasi-classical way of describing nuclear motion and the present box quantization method for assigning the final vibrational state, the gain peak is not

  18. Excited state intramolecular proton transfer (ESIPT) in the Photoresponsive Prototropic Schiff-Base N‧-(2-hydroxybenzylidene)-4-hydroxybenzohydrazide: Computational Modeling Study (United States)

    Abdel-Mottaleb, M. S. A.


    Computations within Density Functional Theory (DFT) and its Time-Dependent (TD) extension at the B3LYP/6-31G(d) level are performed for both S0 and S1 states to obtain the optimum molecular geometry of the keto-enol photochromic material of the title molecule and to explain the photo-induced ESIPT to generate the corresponding enol tautomer. The choice of the compound is interesting, and deserves attention due to geometrical changes in the electronic structure of the Nsbnd N linkage during the proton transfer (PT) reaction coordinate. In particular, PT path is followed by relaxed scan technique for computing potential energy surface (PES) to identify the transition state and to obtain barrier heights in S0 and S1 states. The photoresponsive H-transfer tautomerism is discussed in terms of different computational parameters including enthalpies and free energies. Both electronic reactivity as well as the thermodynamic stability plays together to facilitate proton transfer in the excited- and ground states of the tautomeric forms.


    African Journals Online (AJOL)

    Abstract. Quenching of curcumine fluorescence by thionine, both immobilised in cellulose acetate occurs in accordance with the Forster mechanism of energy transfer. The rate constant of energy transfer for this donor - acceptor pair is found to be 9.4 x 109 L ' mol S1 with R0 = 37±1 Б. When this donor - acceptor pair is ...

  20. Diphenylacrylonitrile-connected BODIPY dyes: fluorescence enhancement based on dark and AIE resonance energy transfer. (United States)

    Lin, Liangbin; Lin, Xiaoru; Guo, Hongyu; Yang, Fafu


    This study focuses on the construction of novel diphenylacrylonitrile-connected BODIPY dyes with high fluorescence in both solution and an aggregated state by combining DRET and FRET processes in a single donor-acceptor system. The first BODIPY derivatives with one, two, or three AIE-active diphenylacrylonitrile groups were designed and synthesized in moderate yields. Strong fluorescence emissions were observed in the THF solution under excitation at the absorption wavelength of non-emissive diphenylacrylonitrile chromophores, implying the existence of the DRET process between the dark diphenylacrylonitrile donor and the emissive BODIPY acceptor. In the THF/H2O solution, the fluorescence intensity of the novel BODIPY derivatives gradually increased under excitation at the absorption wavelength of diphenylacrylonitrile chromophores, suggesting a FRET process between diphenylacrylonitrile and BODIPY moieties. A greater number of diphenylacrylonitrile units led to higher energy-transfer efficiencies. The pseudo-Stokes shift for both DRET and FRET processes was as large as 190 nm.

  1. Carbazole-based organogel as a scaffold to construct energy transfer arrays with controllable fluorescence emission. (United States)

    Yang, Xinchun; Lu, Ran; Xue, Pengchong; Li, Bin; Xu, Defang; Xu, Tinghua; Zhao, Yingying


    A diaryldiketopyrrolopyrrole derivative functionalized with phenothiazine moieties (DPPP) was synthesized and introduced into the ordered 4-(3,6-di-tert-butyl-9H-carbazol-9-yl)benzamide (TBCB) organogel system. It was found that TBCB-based gel became a scaffold to make DPPP molecules line up along the gel fibers, resulting in new self-assembled arrays, whose XRD patterns were quite different from those of the neat TBCB gel and DPPP crystal. In the composite gel, the occurrence of a partial energy transfer from the excited light-harvesting antenna of TBCB to the DPPP acceptor was confirmed on the basis of time-dependent and time-resolved fluorescence investigations. Remarkably, the composite gel could emit intense red light or purplish white light by tuning the excitation wavelength. Such ordered soft materials with color-tunable emission may possess potential applications in sensor and photonic devices.

  2. A proposal for fs-electron microscopy experiments on high-energy excitations in solids. (United States)

    Piazza, L; Musumeci, P; Luiten, O J; Carbone, Fabrizio


    Recent advances in ultrafast technology enable both the study and the control of materials properties thanks to the ability to record high temporal resolution movies of their transformations, or the ability to generate new states of matter by selecting ad hoc an excitation to drive the system out of equilibrium. The holy grail of this type of experiments is to combine a high tuneability of the excitation with a wide observation window. For example, this is achieved in multidimensional optical spectroscopy where the response to several excitation energies is monitored in a broad energy range by a large bandwidth optical pulse. In this article, the possibility to combine the chemical sensitivity of intense tuneable X-rays pulses from a free electron laser, with the wide range of observables available in an ultrafast transmission electron microscope is discussed. The requirements for such experiments are quantified via estimates based on state of the art experiments and simulations, and it is proposed that ultrafast electron imaging, diffraction and spectroscopy experiments can be performed in combination with a chemically selective X-ray excitation of materials. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Superconducting qubit in a nonstationary transmission line cavity: Parametric excitation, periodic pumping, and energy dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Zhukov, A.A. [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); National Research Nuclear University (MEPhI), 115409 Moscow (Russian Federation); Shapiro, D.S., E-mail: [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); V.A. Kotel' nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 125009 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700 (Russian Federation); National University of Science and Technology MISIS, 119049 Moscow (Russian Federation); Remizov, S.V. [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); V.A. Kotel' nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 125009 Moscow (Russian Federation); Pogosov, W.V. [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700 (Russian Federation); Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412 Moscow (Russian Federation); Lozovik, Yu.E. [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); National Research Nuclear University (MEPhI), 115409 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700 (Russian Federation); Institute of Spectroscopy, Russian Academy of Sciences, 142190 Moscow Region, Troitsk (Russian Federation)


    We consider a superconducting qubit coupled to the nonstationary transmission line cavity with modulated frequency taking into account energy dissipation. Previously, it was demonstrated that in the case of a single nonadiabatical modulation of a cavity frequency there are two channels of a two-level system excitation which are due to the absorption of Casimir photons and due to the counterrotating wave processes responsible for the dynamical Lamb effect. We show that the parametric periodical modulation of the resonator frequency can increase dramatically the excitation probability. Remarkably, counterrotating wave processes under such a modulation start to play an important role even in the resonant regime. Our predictions can be used to control qubit-resonator quantum states as well as to study experimentally different channels of a parametric qubit excitation. - Highlights: • Coupled qubit-resonator system under the modulation of a resonator frequency is considered. • Counterrotating terms of the Hamiltonian are of importance even in the resonance. • Qubit excited state population is highest if driving frequency matches dressed-state energy.

  4. Electronic energy transfer from molecules to metal and semiconductor surfaces, and chemisorption-induced changes in optical response of the nickel (111) surface

    Energy Technology Data Exchange (ETDEWEB)

    Whitmore, P.M.


    The evolution of molecular excited states near solid surfaces is investigated. The mechanisms through which energy is transferred to the surface are described within a classical image dipole picture of the interaction. More sophisticated models for the dielectric response of the solid surface add important new decay channels for the energy dissipation. The predictions and applicability of three of these refined theories are discussed.

  5. Significance of a Recurring Function in Energy Transfer (United States)

    Mishra, Subodha


    The appearance of a unique function in the energy transfer from one system to the other in different physical situations such as electrical, mechanical, optical, and quantum mechanical processes is established in this work. Though the laws governing the energy transformation and its transfer from system to system are well known, here we notice a unity in diversity; a unique function appears in various cases of energy transfer whether it is a classical or a quantum mechanical process. We consider four examples, well known in elementary physics, from the fields of electricity, mechanics, optics, and quantum mechanics. We find that this unique function is in fact the transfer function corresponding to all these physical situations, and the interesting and intriguing finding is that the inverse Laplace transform of this transfer function, which is the impulse-response function of the systems when multiplied by a factor of -½, is the solution of a linear differential equation for an "instantly forced critically damped harmonic oscillator." It is important to note that though the physical phenomena considered are quite distinct, the underlying process in the language of impulse-response of the system in the time domain is a unique one. To the best of our knowledge we have not seen anywhere the above analysis of determining the unique function or its description as a transfer function in literature.

  6. Dissipation of excess excitation energy by drought-induced nonphotochemical quenching in two species of drought-tolerant moss: desiccation-induced acceleration of photosystem II fluorescence decay. (United States)

    Yamakawa, Hisanori; Itoh, Shigeru


    Drought-tolerant mosses survive with their green color intact even after long periods of dehydration that would kill ordinary plants. The mechanism of dissipation of excitation energy under drought stress was studied in two species of drought-tolerant moss, Rhytidium rugosum and Ceratodon purpureus. They showed severe quenching of photosystem II chlorophyll fluorescence (PSII) after being dehydrated in the dark. Quenching was induced by the acceleration of the fluorescence decay rate. This drought-induced nonphotochemical quenching (designated d-NPQ) was fully reversed by rehydration. Global analysis of fluorescence decay at 77 K indicated rapid 46 ps transfer of excitation energy from the 680-690 nm PSII bands to a 710 nm band, and to 740-760 nm bands. The latter bands decayed to the ground state with the same time constant showing the rapid dissipation of excitation energy into heat. The quenching by d-NPQ in dry moss was stronger than that by PSII charge separation or nonphotochemical quenching (NPQ), which operates under hydrating conditions. Drought-tolerant mosses, thus, dissipate excess excitation energy into heat. The d-NPQ mechanism in moss resembles that reported in lichens, suggesting their common origin.

  7. A new energy transfer model for turbulent free shear flow (United States)

    Liou, William W.-W.


    A new model for the energy transfer mechanism in the large-scale turbulent kinetic energy equation is proposed. An estimate of the characteristic length scale of the energy containing large structures is obtained from the wavelength associated with the structures predicted by a weakly nonlinear analysis for turbulent free shear flows. With the inclusion of the proposed energy transfer model, the weakly nonlinear wave models for the turbulent large-scale structures are self-contained and are likely to be independent flow geometries. The model is tested against a plane mixing layer. Reasonably good agreement is achieved. Finally, it is shown by using the Liapunov function method, the balance between the production and the drainage of the kinetic energy of the turbulent large-scale structures is asymptotically stable as their amplitude saturates. The saturation of the wave amplitude provides an alternative indicator for flow self-similarity.

  8. Plasmon-Exciton Resonant Energy Transfer: Across Scales Hybrid Systems

    Directory of Open Access Journals (Sweden)

    Mohamed El Kabbash


    Full Text Available The presence of an excitonic element in close proximity of a plasmonic nanostructure, under certain conditions, may lead to a nonradiative resonant energy transfer known as Exciton Plasmon Resonant Energy Transfer (EPRET process. The exciton-plasmon coupling and dynamics have been intensely studied in the last decade; still many relevant aspects need more in-depth studies. Understanding such phenomenon is not only important from fundamental viewpoint, but also essential to unlock many promising applications. In this review we investigate the plasmon-exciton resonant energy transfer in different hybrid systems at the nano- and mesoscales, in order to gain further understanding of such processes across scales and pave the way towards active plasmonic devices.

  9. Sequential energy and charge transfer processes in mixed host-guest complexes of subphthalocyanine, porphyrin and phthalocyanine chromophores. (United States)

    Menting, Roel; Ng, Dennis K P; Röder, Beate; Ermilov, Eugeny A


    Porphyrins, phthalocyanines and subphthalocyanines are three attractive classes of chromophores with intriguing properties making them suitable for the design of artificial photosynthetic systems. The assembly of these components by a supramolecular approach is of particular interest as it provides a facile means to build multi-chromophoric arrays with various architectures and tuneable photophysical properties. In this paper, we show the formation of mixed host-guest supramolecular complexes that consist of a β-cyclodextrin-conjugated subphthalocyanine, a tetrasulfonated porphyrin and a series of silicon(IV) phthalocyanines substituted axially with two β-cyclodextrins via different spacers. We found that the three components form supramolecular complexes held by host-guest interactions in aqueous solution. Upon excitation of the subphthalocyanine part of the complex, the excitation energy is delivered to the phthalocyanine unit via excitation energy transfer and the porphyrin chromophore acts as an energy transfer bridge enabling this process. It was shown that photo-induced charge transfer also takes place. A sequential electron transfer process from the porphyrin unit to the phthalocyanine moiety and subsequently from the subphthalocyanine moiety to the porphyrin unit takes place, and the probability of this process is controlled by the linker between β-cyclodextrin and phthalocyanine. The lifetime of the charge-separated state was found to be 1.7 ns by transient absorption spectroscopy.

  10. Unusual characteristics of electromagnetic waves excited by cometary newborn ions with large perpendicular energies (United States)

    Brinca, A. L.; Tsurutani, B. T.


    The characteristics of electromagnetic waves excited by cometary newborn ions with large perpendicular energies are examined using a model of solar wind permeated by dilute drifting ring distributions of electrons and oxygen ions with finite thermal spreads. The model has parameters compatible with the ICE observations at the Giacobini-Zinner comet. It is shown that cometary newborn ions with large perpendicular energies can excite a wave mode with rest frame frequencies in the order of the heavy ion cyclotron frequency, Omega(i), and unusual propagation characteristics at small obliquity angles. For parallel propagation, the mode is left-hand circularly polarized, might be unstable in a frequency range containing Omega(i), and moves in the direction of the newborn ion drift along the static magnetic field.

  11. Excitation functions of proton-proton elastic scattering at intermediate energies (United States)

    Scobel, W.; Dohrmann, F.; Bisplinghoff, J.; Hinterberger, F.; Scobel, W.; Altmeier, M.; Bauer, F.; Bisplinghoff, J.; Bissel, T.; Bollmann, R.; Busch, M.; Büßer, K.; Cloth, P.; Danie, R.; Diehl, O.; Dohrmann, F.; Engelhardt, H. P.; Ernst, J.; Eversheim, P. D.; Felden, O.; Flammer, J.; Gasthuber, M.; Gebel, R.; Greiff, J.; Groß, A.; Groß-Hardt, R.; Hebbel, K.; Hinterberger, F.; Hüskes, T.; Jahn, R.; Koch, I.; Langkau, R.; Lindemann, T.; Lindlein, J.; Maier, R.; Maschuw, R.; Mayer-Kuckuk, T.; Pfuff, M.; Prasuhn, D.; Rohdjeß, H.; Rosendaal, D.; von Rossen, P.; Schirm, N.; Schulz-Rojahn, M.; Schwarz, V.; Scobel, W.; Steinbeck, S.; Sterzenbach, G.; Thomas, S.; Trelle, H. J.; Walker, M.; Weise, E.; Wellinghausen, A.; Woller, K.; Ziegler, R.; EDDA Collaboration at COSY; EDDA Collaboration


    Excitation functions of proton-proton elastic cross sections have been measured in narrow momentum steps Δp = 28 MeV/c in the kinetic energy range from 0.5 to 2.5 GeV and the angular range 35° ≤ Θcm ≤ 90° with a detector providing ΔΘcm ≈ 1.4° resolution and 82% solid angle coverage. Measurements have been performed continuously during projectile acceleration in the Cooler Synchrotron COSY with an internal CH 2 fiber target; background corrections were derived from measurements with a carbon fiber target and from Monte Carlo simulations of inelastic pp contributions. Particular care was taken to monitor the luminosity as a function of beam energy. The results provide excitation functions and angular distributions of unprecedented precision and internal consistency. The measured cross sections are compared to recent phase shift analyses, and their impact on the present solution SM97 [1] is discussed.

  12. Energy Transfer between U(VI) and Eu(III) Ions Adsorbed on a Silica Surface

    Energy Technology Data Exchange (ETDEWEB)

    Park, K. K.; Cha, W.; Cho, H. R.; Im, H. J.; Jung, E. C.; Song, K. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)


    Understanding of chemical behavior of actinide in a groundwater flow is important for assessing the possibility of their migration with water flows in a radioactive waste disposal site. Uranium is ubiquitous in the environment and a major actinide in a nuclear fuel cycle. Americium and curium having isotopes of long half life are minor actinides in a spent fuel. If a minor actinide coexists with uranium in a groundwater flow, some interactions between them could be expected such as minor actinide adsorption onto uranium precipitates and competition with each other for an adsorption to a mineral surface site. Eu(III) ion is frequently used as a chemical analogue of Am(III) and Cm(III) ions in a migration chemistry. The luminescent spectra of U(VI) and Eu(III) ions show a dependency on the coordination symmetry around them, and the changes in intensity or bandwidth of spectra can yield valuable information on their local environment. The luminescent lifetime also strongly depends on the coordination environment, and its measurement is valuable in probe studies on micro-heterogeneous systems. The excited U(VI) ion can be quenched through Stern.Volmer process, hydrolysis of excited species, exciplex formation, electron transfer or energy transfer. In case of U(VI)-Eu(III) system, the interaction between two ions can be studied by measuring the effect of Eu(III) ion on the quenching of U(VI) ion luminescence. There are only a few investigations on the interaction between an excited U(VI) ion and a lanthanide(III) ion. In perchlorate solution, the energy transfer to Eu(III) ion occurred only in solutions of pH>3.87. In this study, the quenching of U(VI) luminescence by Eu(III) on a silica surface was measured. The results will be discussed on the basis of a chemical interaction between them

  13. Competitive Excimer Formation and Energy Transfer in Zr-Based Heterolinker Metal-Organic Frameworks. (United States)

    Gutiérrez, Mario; Sánchez, Félix; Douhal, Abderrazzak


    The spectroscopy and dynamics of a series of Zr-based MOFs in dichloromethane suspension are reported. These Zr-NADC MOFs were constructed by using different mixtures of 2,6-naphthalenedicarboxylate (NDC) and 4-amino-2,6-naphthalenedicarboxylate (NADC) as organic linkers. The fraction of NADC relative to NDC in these heterolinker MOFs ranges from 2 to 35 %. The results indicate two competitive photoprocesses: NDC excimer formation and an energy transfer (ET) from excited NDC linkers to NADC linkers. Increasing the fraction of NADC linkers in the Zr-NADC nanostructure decreases the mean time constant of NDC excimer formation, while the NADC emission intensity experiences a drop at the highest fraction of this linker in the MOF. The first observation is explained by an increase in the energy-transfer probability between the two linkers, and the second by emission quenching in the NADC linkers due to ultrafast charge transfer assisted by the amino group. Femtosecond time-resolved emission studies showed that the ET process (recorded as decaying and rising components) from excited NDC to NADC takes place in 1.2 ps. Direct excitation of the NADC linkers (at 410 nm) shows a decaying, but not rising, component of 250-480 fs, which could reflect the formation of a nonemissive charge-separation state. The results show that by using MOFs having heterolinkers it is possible to trigger and tune excimer formation and ET processes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Current status of free radicals and electronically excited metastable species as high energy propellants (United States)

    Rosen, G.


    A survey is presented of free radicals and electronically excited metastable species as high energy propellants for rocket engines. Nascent or atomic forms of diatomic gases are considered free radicals as well as the highly reactive diatomic triatomic molecules that posess unpaired electrons. Manufacturing and storage problems are described, and a review of current experimental work related to the manufacture of atomic hydrogen propellants is presented.

  15. Frontiers in propulsion research: Laser, matter-antimatter, excited helium, energy exchange thermonuclear fusion (United States)

    Papailiou, D. D. (Editor)


    Concepts are described that presently appear to have the potential for propulsion applications in the post-1990 era of space technology. The studies are still in progress, and only the current status of investigation is presented. The topics for possible propulsion application are lasers, nuclear fusion, matter-antimatter annihilation, electronically excited helium, energy exchange through the interaction of various fields, laser propagation, and thermonuclear fusion technology.

  16. Nanoscale heat transfer and thermoelectrics for alternative energy (United States)

    Robinson, Richard


    In the area of alternative energy, thermoelectrics have experienced an unprecedented growth in popularity because of their ability to convert waste heat into electricity. Wired in reverse, thermoelectrics can act as refrigeration devices, where they are promising because they are small in size and lightweight, have no moving parts, and have rapid on/off cycles. However, due to their low efficiencies bulk thermoelectrics have historically been a niche market. Only in the last decade has thermoelectric efficiency exceeded ~ 20 % due to fabrication of nanostructured materials. Nanoscale materials have this advantage because electronic and acoustic confinement effects can greatly increase thermoelectric efficiency beyond bulk values. In this talk, I will introduce our work in the area of nanoscale heat transfer with the goal of more efficient thermoelectrics. I will discuss our experiments and methods to study acoustic confinement in nanostructures and present some of our new nanostructured thermoelectric materials. To study acoustic confinement we are building a nanoscale phonon spectrometer. The instrument can excite phonon modes in nanostructures in the ~ 100 s of GHz. Ballistic phonons from the generator are used to probe acoustic confinement and surface scattering effects. Transmission studies using this device will help optimize materials and morphologies for more efficient nanomaterial-based thermoelectrics. For materials, our group has synthesized nano-layer superlattices of Na x Co O2 . Sodium cobaltate was recently discovered to have a high Seebeck coeficent and is being studied as an oxide thermoelectric material. The thickness of our nano-layers ranges from 5 nm to 300 nm while the lengths can be varied between 10 μ m and 4 mm. Typical aspect ratios are 40 nm: 4 mm, or 1:100,000. Thermoelectric characterization of samples with tilted multiple-grains along the measurement axis indicate a thermoelectric efficiency on par with current polycrystalline samples

  17. Rotational Energy Transfer of N2 Gas Determined Using a New Ab Initio Potential Energy Surface (United States)

    Huo, Winifred M.; Stallcop, James R.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)


    Rotational energy transfer between two N2 molecules is a fundamental process of some importance. Exchange is expected to play a role, but its importance is somewhat uncertain. Rotational energy transfer cross sections of N2 also have applications in many other fields including modeling of aerodynamic flows, laser operations, and linewidth analysis in nonintrusive laser diagnostics. A number of N2-N2 rigid rotor potential energy surface (PES) has been reported in the literature.

  18. LoFEx — A local framework for calculating excitation energies: Illustrations using RI-CC2 linear response theory (United States)

    Baudin, Pablo; Kristensen, Kasper


    We present a local framework for the calculation of coupled cluster excitation energies of large molecules (LoFEx). The method utilizes time-dependent Hartree-Fock information about the transitions of interest through the concept of natural transition orbitals (NTOs). The NTOs are used in combination with localized occupied and virtual Hartree-Fock orbitals to generate a reduced excitation orbital space (XOS) specific to each transition where a standard coupled cluster calculation is carried out. Each XOS is optimized to ensure that the excitation energies are determined to a predefined precision. We apply LoFEx in combination with the RI-CC2 model to calculate the lowest excitation energies of a set of medium-sized organic molecules. The results demonstrate the black-box nature of the LoFEx approach and show that significant computational savings can be gained without affecting the accuracy of CC2 excitation energies.

  19. The back and forth of energy transfer between carotenoids and chlorophylls and its role in the regulation of light harvesting. (United States)

    Holleboom, Christoph-Peter; Walla, Peter J


    Many aspects in the regulation of photosynthetic light-harvesting of plants are still quite poorly understood. For example, it is still a matter of debate which physical mechanism(s) results in the regulation and dissipation of excess energy in high light. Many researchers agree that electronic interactions between chlorophylls (Chl) and certain states of carotenoids are involved in these mechanisms. However, in particular, the role of the first excited state of carotenoids (Car S1) is not easily revealed, because of its optical forbidden character. The use of two-photon excitation is an elegant approach to address directly this state and to investigate the energy transfer in the direction Car S1 → Chl. Meanwhile, it has been applied to a large variety of systems starting from simple carotenoid-tetrapyrrole model compounds up to entire plants. Here, we present a systematic summary of the observations obtained by two-photon excitation about Car S1 → Chl energy transfer in systems with increasing complexity and the correlation to fluorescence quenching. We compare these observations directly with the energy transfer in the opposite direction, Chl → Car S1, for the same systems as obtained in pump-probe studies. We discuss what surprising aspects of this comparison led us to the suggestion that quenching excitonic Car-Chl interactions could contribute to the regulation of light harvesting, and how this suggestion can be connected to other models proposed.

  20. Excited-state proton-transfer dynamics of 1-methyl-6-hydroxyquinolinium embedded in a solid matrix of poly(2-hydroxyethyl methacrylate). (United States)

    Park, Sun-Young; Lee, Young-Shin; Jang, Du-Jeon


    The excited-state intrinsic proton transfer and its geminate recombination, as well as the ground-state equilibria, of 1-methyl-6-hydroxyquinolinium embedded in a solid matrix of poly(2-hydroxyethyl methacrylate) have been studied by measuring time-resolved and steady-state fluorescence spectra along with absorption and excitation spectra. Proton transfer takes place within 3.3 ns to form ion pairs while its back-reaction occurs on the time scale of 3.7 ns. The ion pairs in the rigid alcoholic matrix go through neither diffusion to form free ions nor subsequent electronic rearrangement to form the keto species within their excited-state lifetimes.

  1. Low-energy measurements of electron capture by multicharged ions from excited hydrogen atoms

    Energy Technology Data Exchange (ETDEWEB)

    Havener, C.C. (Oak Ridge National Laboratory, Oak Ridge, Tennesse 37831-6372 (United States)); Haque, M.A. (Alcorn State University, Lorman, Mississippi 39096 (United States)); Smith, A.C.H. (University College London, WC1E 6BT (United Kingdom)); Urbain, X. (Universite Catholique de Louvain, Chemin du Cyclotron 2, B-1348 Louvain-la-Neuve (Belgium)); Zeijlmans van Emmichoven, P.A. (Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6372 (United States) Joint Institute for Heavy Ion Research, Holifield Heavy Ion Research Facility, Oak Ridge, Tennessee 37831-6374 (United States))


    For very low collision energies electron capture from excited hydrogen by multicharged ions is characterized by enormous cross sections, the predicted maximum being comparable to the geometric size of the Rydberg atom. The ion-atom merged-beams technique is being used to study these collisions for the variety of charge states and the wide range of energies (0.1 to 1000 eV/amu) accessible to the apparatus. A neutral D beam containing a Rydberg atom population proportional to 1/n[sup 3] is produced by collisional electron detachment of 8 keV D[sup [minus

  2. A Design Study Of A Wireless Power Transfer System For Use To Transfer Energy From A Vibration Energy Harvester (United States)

    Grabham, N. J.; Harden, C.; Vincent, D.; Beeby, S. P.


    A wirelessly powered remote sensor node is presented along with its design process. The purpose of the node is the further expansion of the sensing capabilities of the commercial Perpetuum system used for condition monitoring on trains and rolling stock which operates using vibration energy harvesting. Surplus harvested vibration energy is transferred wirelessly to a remote satellite sensor to allow measurements over a wider area to be made. This additional data is to be used for long term condition monitoring. Performance measurements made on the prototype remote sensor node are reported and advantages and disadvantages of using the same RF frequency for power and data transfer are identified.

  3. Phonon-mediated path-interference in electronic energy transfer. (United States)

    Hossein-Nejad, Hoda; Olaya-Castro, Alexandra; Scholes, Gregory D


    We present a formalism to quantify the contribution of path-interference in phonon-mediated electronic energy transfer. The transfer rate between two molecules is computed by considering the quantum mechanical amplitudes associated with pathways connecting the initial and final sites. This includes contributions from classical pathways, but also terms arising from interference of different pathways. We treat the vibrational modes coupled to the molecules as a non-Markovian harmonic oscillator bath, and investigate the correction to transfer rates due to the lowest-order interference contribution. We show that depending on the structure of the harmonic bath, the correction due to path-interference may have a dominant vibrational or electronic character, and can make a notable contribution to the transfer rate in the steady state.

  4. Ultrafast spin exchange-coupling torque via photo-excited charge-transfer processes

    National Research Council Canada - National Science Library

    Ma, X; Fang, F; Li, Q; Zhu, J; Yang, Y; Wu, Y Z; Zhao, H B; Lüpke, G


    .... Recently developed optical approaches such as ultrafast demagnetization, spin-transfer and spin-orbit torques open new pathways to manipulate spin through its interaction with photon, orbit, charge or phonon...

  5. Magnetic force analysis and performance of a tri-stable piezoelectric energy harvester under random excitation (United States)

    Leng, Yonggang; Tan, Dan; Liu, Jinjun; Zhang, Yuyang; Fan, Shengbo


    Recently, harvesting energy from environment has attracted lots of researchers' interests. Ambient vibrations are deemed as a promising power supply since it can be found almost everywhere. Piezoelectric effect has been exploited to convert mechanical energy to electricity. Nonlinearity techniques are favorable for improving the performance of piezoelectric energy harvesters. This paper focuses on a tri-stable piezoelectric energy harvester (TPEH) with two fixed external magnets. The lumped-parameter method is used to investigate the large-amplitude and broadband voltage response. A method based on equivalent magnetizing current theory is first applied to calculate the magnetic force and the potential function with triple wells. We find that this calculation method for magnetic force is more applicable for different magnet intervals compared with the magnetic dipoles method used before. Once the system parameters are chosen appropriately, large-amplitude interwell motion among three wells can be achieved. In our study, a filtered Gaussian noise within the frequency of 0-120 Hz is selected as harvester's excitation, which is similar with the realistic low-frequency vibration in environment. Simulation and experimental results demonstrate that the TPEH enhances the output voltage significantly compared to the conventional bi-stable piezoelectric energy harvester (BPEH). Also, the TPEH's frequency bandwidth is further broadened. Besides, it has been proved that the corresponding optimum magnet interval only changes slightly when the excitation intensity varies, therefore there is no need of adjusting the system parameters to meet practical conditions.

  6. The energy structure and decay channels of the 4p6-shell excited states in Sr (United States)

    Kupliauskienė, A.; Kerevičius, G.; Borovik, V.; Shafranyosh, I.; Borovik, A.


    The ejected-electron spectra arising from the decay of the 4p{}5{{nln}}{\\prime }{l}{\\prime }{n}{\\prime\\prime }{l}{\\prime\\prime } autoionizing states in Sr atoms have been studied precisely at the incident-electron energies close to excitation and ionization thresholds of the 4{{{p}}}6 subshell. The excitation behaviors for 58 lines observed between 12 and 21 eV ejected-electron kinetic energy have been investigated. Also, the ab initio calculations of excitation energies, autoionization probabilities and electron-impact excitation cross sections of the states 4p{}5{{nln}}{\\prime }{l}{\\prime }{n}{\\prime\\prime }{l}{\\prime\\prime } (nl = 4d, 5s, 5p; {n}{\\prime }{l}{\\prime } = 4d, 5s, 5p; {n}{\\prime\\prime }{l}{\\prime\\prime } = 5s, 6s, 7s, 8s, 9s, 5p, 6p, 5d, 6d, 7d, 8d, 4f, 5g) have been performed by employing the large-scale configuration-interaction method in the basis of the solutions of Dirac–Fock–Slater equations. The obtained experimental and theoretical data have been used for the accurate identification of the 60 lines in ejected-electron spectra and the 68 lines observed earlier in photoabsorption spectra. The excitation and decay processes for 105 classified states in the 4p55s{}2{nl}, 4p54d{}2{nl} and 4p55s{{nln}}{\\prime }{l}{\\prime } configurations have been considered in detail. In particular, most of the states lying below the ionization threshold of the 4p6 subshell at 26.92 eV possess up to four decay channels with formation of Sr+ in 5s{}1/2, 4d{}3/{2,5/2} and 5p{}1/{2,3/2} states. Two-step autoionization and two-electron Auger transitions with formation of Sr2+ in the 4p6 {}1{{{S}}}0 ground state are the main decay paths for high-lying autoionizing states. The excitation threshold of the 4{{{p}}}6 subshell in Sr has been established at 20.98 ± 0.05 eV.

  7. Dynamics of Excited State Proton Transfer in Nitro Substituted 10-Hydroxybenzo[h]quinolines

    DEFF Research Database (Denmark)

    Marciak, H; Hristova, S.; Deneva, V


    of the ground state enol–keto tautomeric equilibrium (ΔG values of 1.03 and 0.62 kcal mol−1 respectively for 2 and 3). The fluorescence stems from the keto form even if the enol form is optically excited as proven by the shape of the excitation spectra indicating that ESIPT takes place. The Stokes shift...... of the substituted compounds is substantially lower compared to HBQ, which follows from the fact that the substitution occurs in the formal cyclohexa-2,4-dienone moiety and leads to a decrease of the HOMO level of the keto tautomer. The pump–probe experiments show that in the nitro substituted HBQs 2 and 3 ESIPT...

  8. Energy transfer and thermal studies of Pr doped cerium oxalate ...

    Indian Academy of Sciences (India)


    School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam, India. MS received 7 December 2009; revised 12 August 2010. Abstract. Energy transfer process at room temperature for cerium (sensitizer) oxalate single crystals doped with different concentrations (10, 13, 15, 17 and 20%) of praseodymium ions ...

  9. Metaphors Describing Energy Transfer through Ecosystems: Helpful or Misleading? (United States)

    Wernecke, Ulrike; Schwanewedel, Julia; Harms, Ute


    Energy transfer in ecosystems is an abstract and challenging topic for learners. Metaphors are widely used in scientific and educational discourse to communicate ideas about abstract phenomena. However, although considered valuable teaching tools, metaphors are ambiguous and can be misleading when used in educational contexts. Educational…

  10. Fluorescence resonance energy transfer (FRET) measurement by gradual acceptor photobleaching.

    NARCIS (Netherlands)

    van Munster, E.B.; Kremers, G.J.; Adjobo Hermans, M.J.W.; Gadella, Th.W.J.


    Fluorescence resonance energy transfer (FRET) is an extremely effective tool to detect molecular interaction at suboptical resolutions. One of the techniques for measuring FRET is acceptor photobleaching: the increase in donor fluorescence after complete acceptor photobleaching is a measure of the

  11. Energy transfer in photosynthesis: experimental insights and quantitative models

    NARCIS (Netherlands)

    van Grondelle, R.; Novoderezhkin, V.


    We overview experimental and theoretical studies of energy transfer in the photosynthetic light-harvesting complexes LH1, LH2, and LHCII performed during the past decade since the discovery of high-resolution structure of these complexes. Experimental findings obtained with various spectroscopic

  12. Fluorescence resonance energy transfer from tryptophan in human ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 119; Issue 2. Fluorescence resonance energy transfer from tryptophan in human serum albumin to a bioactive indoloquinolizine system. Paramita Das Arabinda Mallick Basudeb Haldar Alok Chakrabarty Nitin Chattopadhyay. Volume 119 Issue 2 March 2007 pp 77-82 ...

  13. Ultrafast fluorescence resonance energy transfer in a bile salt ...

    Indian Academy of Sciences (India)

    Fluorescence resonance energy transfer (FRET) from Coumarin 153 (C153) to Rhodamine 6G (R6G) in a secondary aggregate of a bile salt (sodium deoxycholate, NaDC) is studied by femtosecond up-conversion. The emission spectrum of C153 in NaDC is analysed in terms of two spectra-one with emission maximum at ...

  14. Photophysical characterization of low-molecular weight organogels for energy transfer and light harvesting (United States)

    Atsbeha, T.; Bussotti, L.; Cicchi, S.; Foggi, P.; Ghini, G.; Lascialfari, L.; Marcelli, A.


    The choice of a donor and an acceptor with suitable optical and self-assembly properties is essential in the design of organogel-based light harvesting systems. Organogels can provide supramolecular structures capable of enhancing energy transfer processes. In this work, we present the characterization of N-(naphthalene-1-carboxyamide)-(3 S,4 S)-pyrrolidin-(3,4)-bisdodecyl-carbamoyldiester ( 1) and N-(4-nitrobenzofurazan-7-amino)-(3 S,4 S)-pyrrolidin-(3,4)-bisdodecyl-carbamoyldiester ( 2) which are used as donor and acceptor moieties, respectively. The donor molecule is hardly capable to form a gelon its own but it can be assembled at reasonable concentrations with the acceptor gelator to form a two-component donor-acceptor organogels in cyclohexane. Stable organogels are formed from cyclohexane for gelator concentrations as low as ≈10 -3 M. UV-vis and steady-state fluorescence spectroscopies were used to provide a characterization of their molecular interactions. The optical changes observed during the cooling of two-component solutions of these systems are indicative of typical sol-gel transitions. The occurrence of excitation energy transfer processes in the gels is confirmed by comparison of their excitation and absorption spectra.

  15. Energy Transfer Kinetics in Photosynthesis as an Inspiration for Improving Organic Solar Cells. (United States)

    Nganou, Collins; Lackner, Gerhard; Teschome, Bezu; Deen, M Jamal; Adir, Noam; Pouhe, David; Lupascu, Doru C; Mkandawire, Martin


    Clues to designing highly efficient organic solar cells may lie in understanding the architecture of light-harvesting systems and exciton energy transfer (EET) processes in very efficient photosynthetic organisms. Here, we compare the kinetics of excitation energy tunnelling from the intact phycobilisome (PBS) light-harvesting antenna system to the reaction center in photosystem II in intact cells of the cyanobacterium Acaryochloris marina with the charge transfer after conversion of photons into photocurrent in vertically aligned carbon nanotube (va-CNT) organic solar cells with poly(3-hexyl)thiophene (P3HT) as the pigment. We find that the kinetics in electron hole creation following excitation at 600 nm in both PBS and va-CNT solar cells to be 450 and 500 fs, respectively. The EET process has a 3 and 14 ps pathway in the PBS, while in va-CNT solar cell devices, the charge trapping in the CNT takes 11 and 258 ps. We show that the main hindrance to efficiency of va-CNT organic solar cells is the slow migration of the charges after exciton formation.

  16. Luminescent properties and energy transfer of Gd{sup 3+}/Eu{sup 3+} co-doped high uniform meso-silica nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chunming; Song, Yanhua; Gao, Fei; Zhou, Xiuqing; Sheng, Ye [College of Chemistry, Jilin University, Changchun 130012 (China); Shi, Zhan [State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (China); Zou, Haifeng, E-mail: [College of Chemistry, Jilin University, Changchun 130012 (China)


    Eu{sup 3+} and Gd{sup 3+} ions co-doped amorphous silica nanorods were prepared using a simple sol–gel method, and their luminescent properties were studied under the excitation of ultraviolet light. X-ray diffraction (XRD), Energy-dispersive X-ray (EDX) spectroscopy, Fourier transform infrared spectrum (FT-IR), Scanning electron microscope (SEM), Transmission electron microscopy (TEM), and Photoluminescence (PL) spectra were employed to characterize the products in detail. The nanorods are uniform and their diameters and lengths are in the range of 200–300 nm and 500–700 nm, respectively. Energy transfer process in Gd{sup 3+} and Eu{sup 3+} co-doped silica, where a ground state of Gd{sup 3+}, {sup 8}S{sub 7/2}, was selectively excited to a {sup 6}I{sub J} state under the excitation of 274 nm, was studied in terms of luminescence spectra, which indict that the energy transfer of Gd{sup 3+}–Eu{sup 3+} is efficient. The mechanism of energy transfer from Gd{sup 3+} to Eu{sup 3+} is a resonant transfer, in which electric dipole–dipole interaction plays a leading role. Furthermore, the doping concentration-dependence of Eu{sup 3+} ions on the energy transfer efficiency was also investigated. - Highlights: • Uniform silica nanorods co-doped with Gd{sup 3+} and Eu{sup 3+} have been prepared using cetyltrimethylammonium bromide (CTAB) as surfactant template by the sol–gel method. • Rare earths doping enhanced the luminescence activity under UV excitation. • Energy transfer from Gd{sup 3+} to Eu{sup 3+} is a resonant transfer, in which electric dipole–dipole interaction plays a leading role. • The effect of doping concentrations of Eu{sup 3+} ions on the energy transfer efficiency was investigated.

  17. Energy transfer model and its applications of ultrasonic gas flow-meter under static and dynamic flow rates. (United States)

    Fang, Min; Xu, Ke-Jun; Zhu, Wen-Jiao; Shen, Zi-Wen


    Most of the ultrasonic gas flow-meters measure the gas flow rate by calculating the ultrasonic transmission time difference between the downstream and upstream. Ultrasonic energy attenuation occurs in the processes of the ultrasonic generation, conversion, transmission, and reception. Additionally, at the same time, the gas flow will also affect the ultrasonic propagation during the measurement, which results in the ultrasonic energy attenuation and the offset of ultrasonic propagation path. Thus, the ultrasonic energy received by the transducer is weaker. When the gas flow rate increases, this effect becomes more apparent. It leads to the measurement accuracy reduced, and the measurement range narrowed. An energy transfer model, where the ultrasonic gas flow-meter under without/with the gas flow, is established by adopting the statistical analysis and curve fitting based on a large amount of experimental data. The static sub model without the gas flow expresses the energy conversion efficiency of ultrasonic gas transducers, and the dynamic sub model with the gas flow reflects the energy attenuation pattern following the flow rate variations. The mathematical model can be used to determine the minimum energy of the excitation signal for meeting the requirement of specific measurement range, and predict the maximum measurable flow rate in the case of fixed energy of excitation signal. Based on the above studies, a method to enhance the excitation signal energy is proposed under the output power of the transmitting circuit being a finite value so as to extend the measurement rage of ultrasonic gas flow-meter.

  18. Synthesis, spectral behaviour and photophysics of donor-acceptor kind of chalcones: Excited state intramolecular charge transfer and fluorescence quenching studies (United States)

    Pannipara, Mehboobali; Asiri, Abdullah M.; Alamry, Khalid A.; Arshad, Muhammad N.; El-Daly, Samy A.


    The spectral and photophysical properties of two chalcones containing electron donating and accepting groups with intramolecular charge transfer characteristics were synthesized and characterized by 1H NMR, 13C NMR and X-ray crystallography. Both compounds show very strong solvent polarity dependent changes in their photophysical characteristics, namely, remarkable red shift in the emission spectra with increasing solvent polarity, large change in Stokes shift, significant reduction in the fluorescence quantum yield; indicating that the fluorescence states of these compounds are of intramolecular charge transfer (ICT) character. The solvent effect on the photophysical parameters such as singlet absorption, molar absorptivity, oscillator strength, dipole moment, fluorescence spectra, and fluorescence quantum yield of both compounds have been investigated comprehensively. For both dyes, Lippert-Mataga and Reichardt's correlations were used to estimate the difference between the excited and ground state dipole moments (Δμ). The interactions of dyes with colloidal silver nanoparticles (Ag NPs) were also studied in ethanol using steady state fluorescence quenching measurements. The fluorescence quenching data reveal that dynamic quenching and energy transfer play a major role in the fluorescence quenching of dyes by Ag NPs.

  19. Complex dynamics of a harmonically excited structure coupled with a nonlinear energy sink (United States)

    Zang, Jian; Chen, Li-Qun


    Nonlinear behaviors are investigated for a structure coupled with a nonlinear energy sink. The structure is linear and subject to a harmonic excitation, modeled as a forced single-degree-of-freedom oscillator. The nonlinear energy sink is modeled as an oscillator consisting of a mass, a nonlinear spring, and a linear damper. Based on the numerical solutions, global bifurcation diagrams are presented to reveal the coexistence of periodic and chaotic motions for varying nonlinear energy sink mass and stiffness. Chaos is numerically identified via phase trajectories, power spectra, and Poincaré maps. Amplitude-frequency response curves are predicted by the method of harmonic balance for periodic steady-state responses. Their stabilities are analyzed. The Hopf bifurcation and the saddle-node bifurcation are determined. The investigation demonstrates that a nonlinear energy sink may create dynamic complexity.

  20. Excited state and ground state proton transfer rates of 3-hydroxyflavone and its derivatives studied by shpol'skii spectroscopy: The influence of redistribution of electron density

    NARCIS (Netherlands)

    Bader, A.N.; Pivovarenko, V.; Demchenko, A.P.; Ariese, F.; Gooijer, C.


    We studied the mechanisms of excited-state intramolecular proton transfer (ESIPT) and ground-state back proton transfer (BPT) in 3-hydroxyflavone (3HF) at cryogenic temperatures. The focus was on substituents that change the distribution of electronic density on the chromophore and their influence

  1. Efficient Vibrational Energy Transfer through Covalent Bond in Indigo Carmine Revealed by Nonlinear IR Spectroscopy. (United States)

    He, Xuemei; Yu, Pengyun; Zhao, Juan; Wang, Jianping


    Ultrafast vibrational relaxation and structural dynamics of indigo carmine in dimethyl sulfoxide were examined using femtosecond pump-probe infrared and two-dimensional infrared (2D IR) spectroscopies. Using the intramolecularly hydrogen-bonded C═O and delocalized C═C stretching modes as infrared probes, local structural and dynamical variations of this blue dye molecule were observed. Energy relaxation of the vibrationally excited C═O stretching mode was found to occur through covalent bond to the delocalized aromatic vibrational modes on the time scale of a few picoseconds or less. Vibrational quantum beating was observed in magic-angle pump-probe, anisotropy, and 2D IR cross-peak dynamics, showing an oscillation period of ca. 1010 fs, which corresponds to the energy difference between the C═O and C═C transition frequency (33 cm-1). This confirms a resonant vibrational energy transfer happened between the two vibrators. However, a more efficient energy-accepting mode of the excited C═O stretching was believed to be a nearby combination and/or overtone mode that is more tightly connected to the C═O species. On the structural aspect, dynamical-time-dependent 2D IR spectra reveal an insignificant inhomogeneous contribution to time-correlation relaxation for both the C═O and C═C stretching modes, which is in agreement with the generally believed structural rigidity of such conjugated molecules.

  2. Persistent high-energy spin excitations in iron-pnictide superconductors. (United States)

    Zhou, Ke-Jin; Huang, Yao-Bo; Monney, Claude; Dai, Xi; Strocov, Vladimir N; Wang, Nan-Lin; Chen, Zhi-Guo; Zhang, Chenglin; Dai, Pengcheng; Patthey, Luc; van den Brink, Jeroen; Ding, Hong; Schmitt, Thorsten


    Motivated by the premise that superconductivity in iron-based superconductors is unconventional and mediated by spin fluctuations, an intense research effort has been focused on characterizing the spin-excitation spectrum in the magnetically ordered parent phases of the Fe pnictides and chalcogenides. For these undoped materials, it is well established that the spin-excitation spectrum consists of sharp, highly dispersive magnons. The fate of these high-energy magnetic modes upon sizable doping with holes is hitherto unresolved. Here we demonstrate, using resonant inelastic X-ray scattering, that optimally hole-doped superconducting Ba(0.6)K(0.4)Fe(2)As(2) retains well-defined, dispersive high-energy modes of magnetic origin. These paramagnon modes are softer than, though as intense as, the magnons of undoped antiferromagnetic BaFe(2)As(2). The persistence of spin excitations well into the superconducting phase suggests that the spin fluctuations in Fe-pnictide superconductors originate from a distinctly correlated spin state. This connects Fe pnictides to cuprates, for which, in spite of fundamental electronic structure differences, similar paramagnons are present.

  3. Correlated natural transition orbitals for core excitation energies in multilevel coupled cluster models (United States)

    Høyvik, Ida-Marie; Myhre, Rolf Heilemann; Koch, Henrik


    In this article, we present a black-box approach for the selection of orbital spaces when computing core excitation energies in the multilevel coupled cluster (MLCC) framework. Information available from the lower level of theory is used to generate correlated natural transition orbitals (CNTOs) for the high-level calculation by including both singles and doubles information in the construction of the transition orbitals. The inclusion of the doubles excitation information is essential to obtain a set of orbitals that all contain physical information, in contrast to the natural transition orbitals where only a small subset of the virtual orbitals contains physical information. The CNTOs may be included in an active space based on a cutoff threshold for the eigenvalues corresponding to the orbitals. We present MLCC results for core excitation energies calculated using coupled cluster singles and doubles (CCSD) in the inactive space and CCSD with perturbative triples (CC3) in the active space. The use of CNTOs results in small errors compared to full CC3.

  4. Ultrafast Excited-State Dynamics of Diketopyrrolopyrrole (DPP)-Based Materials: Static versus Diffusion-Controlled Electron Transfer Process

    KAUST Repository

    Alsulami, Qana


    Singlet-to-triplet intersystem crossing (ISC) and photoinduced electron transfer (PET) of platinum(II) containing diketopyrrolopyrrole (DPP) oligomer in the absence and presence of strong electron-acceptor tetracyanoethylene (TCNE) were investigated using femtosecond and nanosecond transient absorption spectroscopy with broadband capabilities. The role of platinum(II) incorporation in those photophysical properties was evaluated by comparing the excited-state dynamics of DPP with and without the metal centers. The steady-state measurements reveal that platinum(II) incorporation facilitates dramatically the interactions between DPP-Pt(acac) and TCNE, resulting in charge transfer (CT) complex formation. The transient absorption spectra in the absence of TCNE reveal ultrafast ISC of DPP-Pt(acac) followed by their long-lived triplet state. In the presence of TCNE, PET from the excited DPP-Pt(acac) and DPP to TCNE, forming the radical ion pairs. The ultrafast PET which occurs statically from DPP-Pt(acac) to TCNE in picosecond regime, is much faster than that from DPP to TCNE (nanosecond time scale) which is diffusion-controlled process, providing clear evidence that PET rate is eventually controlled by the platinum(II) incorporation.

  5. Wireless energy transfer: Dielectric lens antennas for beam shaping in wireless power-transfer applications (United States)

    Gonçalves, Ricardo; Carvalho, Nuno B.; Pinho, Pedro


    In the current contest of wireless systems, the last frontier remains the cut of the power cord. In that sense, the interest over wireless energy transfer technologies in the past years has grown exponentially. However, there are still many challenges to be overcome in order to enable wireless energy transfer full potential. One of the focus in the development of such systems is the design of very-high-gain, highly efficient, antennas that can compensate for the propagation loss of radio signals over the air. In this paper, we explore the design and manufacturing process of dielectric lenses, fabricated using a professional-grade desktop 3D printer. Lens antennas are used in order to increase beam efficiency and therefore maximize the efficiency of a wireless power-transfer system operating at microwave frequencies in the Ku band. Measurements of two fabricated prototypes showcase a large directivity, as predicted with simulations. xml:lang="fr"

  6. HLE16: A Local Kohn-Sham Gradient Approximation with Good Performance for Semiconductor Band Gaps and Molecular Excitation Energies. (United States)

    Verma, Pragya; Truhlar, Donald G


    Local exchange-correlation functionals have low cost and convenient portability but are known to seriously underestimate semiconductor band gaps and the energies of molecular Rydberg states. Here we present a new local approximation to the exchange-correlation functional called HLE16 that gives good performance for semiconductor band gaps and molecular excitation energies and is competitive with hybrid functionals. By the simultaneous increase of the local exchange and decrease of the local correlation, electronic excitation energies were improved without excessively degrading the ground-state solid-state cohesive energies, molecular bond energies, or chemical reaction barrier heights, although the new functional is not recommended for optimizing lattice constants or molecular bond lengths. The new functional can be useful as-is for calculations on semiconductors or excited states where it is essential to control the cost, and it can also be useful in establishing a starting point for developing even better new functionals that perform well for excited states.

  7. Impact Vibration Attenuation for a Flexible Robotic Manipulator through Transfer and Dissipation of Energy

    Directory of Open Access Journals (Sweden)

    Yushu Bian


    Full Text Available Due to the presence of system flexibility, impact can excite severe large amplitude vibration responses of the flexible robotic manipulator. This impact vibration exhibits characteristics of remarkable nonlinearity and strong energy. The main goal of this study is to put forward an energy-based control method to absorb and attenuate large amplitude impact vibration of the flexible robotic manipulator. The method takes advantage of internal resonance and is implemented through a vibration absorber based on the transfer and dissipation of energy. The addition of the vibration absorber to the flexible arm generates a coupling effect between vibration modes of the system. By means of analysis on 2:1 internal resonance, the exchange of energy is proven to be existent. The impact vibrational energy can be transferred from the arm to the absorber and dissipated through the damping of the absorber. The results of numerical simulations are promising and preliminarily verify that the method is feasible and can be used to combat large amplitude impact vibration of the flexible manipulator undergoing rigid motion.

  8. {beta}-Carotene to bacteriochlorophyll c energy transfer in self-assembled aggregates mimicking chlorosomes

    Energy Technology Data Exchange (ETDEWEB)

    Alster, J. [Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16 Praha (Czech Republic); Polivka, T. [Institute of Physical Biology, University of South Bohemia, Zamek 136, 373 33 Nove Hrady (Czech Republic); Biology Centre, Academy of Sciences of the Czech Republic, Branisovska 31, 370 05 Ceske Budejovice (Czech Republic); Arellano, J.B. [Instituto de Recursos Naturales y Agrobiologia de Salamanca (IRNASA-CSIC), Apdo. 257, 37071 Salamanca (Spain); Chabera, P. [Institute of Physical Biology, University of South Bohemia, Zamek 136, 373 33 Nove Hrady (Czech Republic); Vacha, F. [Institute of Physical Biology, University of South Bohemia, Zamek 136, 373 33 Nove Hrady (Czech Republic); Biology Centre, Academy of Sciences of the Czech Republic, Branisovska 31, 370 05 Ceske Budejovice (Czech Republic); Psencik, J., E-mail: [Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16 Praha (Czech Republic); Institute of Physical Biology, University of South Bohemia, Zamek 136, 373 33 Nove Hrady (Czech Republic)


    Carotenoids are together with bacteriochlorophylls important constituents of chlorosomes, the light-harvesting antennae of green photosynthetic bacteria. Majority of bacteriochlorophyll molecules form self-assembling aggregates inside the chlorosomes. Aggregates of bacteriochlorophylls with optical properties similar to those of chlorosomes can also be prepared in non-polar organic solvents or in aqueous environments when a suitable non-polar molecule is added. In this work, the ability of {beta}-carotene to induce aggregation of bacteriochlorophyll c in aqueous buffer was studied. Excitation relaxation and energy transfer in the carotenoid-bacteriochlorophyll assemblies were measured using femtosecond and nanosecond transient absorption spectroscopy. A fast, {approx}100-fs energy transfer from the S{sub 2} state of {beta}-carotene to bacteriochlorophyll c was revealed, while no evidence for significant energy transfer from the S{sub 1} state was found. Picosecond formation of the carotenoid triplet state (T{sub 1}) was observed, which was likely generated by singlet homo-fission from the S{sub 1} state of {beta}-carotene.

  9. Nanophotonic enhancement of the Förster resonance energy-transfer rate with single nanoapertures. (United States)

    Ghenuche, Petru; de Torres, Juan; Moparthi, Satish Babu; Grigoriev, Victor; Wenger, Jérôme


    Tailoring the light-matter interaction and the local density of optical states (LDOS) with nanophotonics provides accurate control over the luminescence properties of a single quantum emitter. This paradigm is also highly attractive to enhance the near-field Förster resonance energy transfer (FRET) between two fluorescent emitters. Despite the wide applications of FRET in nanosciences, using nanophotonics to enhance FRET has remained a debated and complex challenge. Here we demonstrate enhanced energy transfer within single donor-acceptor fluorophore pairs confined in single gold nanoapertures. Experiments monitoring both the donor and the acceptor emission photodynamics clearly establish a linear dependence of the FRET rate on the LDOS in nanoapertures, demonstrating that nanophotonics can be used to intensify the near-field energy transfer. Strikingly, we observe a significant six-fold increase in the FRET rate for large donor-acceptor separations exceeding 13 nm. Exciting opportunities are opened to investigate biochemical structures with donor-acceptor distances much beyond the classical Förster radius. Importantly, our approach is fully compatible with the detection of single biomolecules freely diffusing in water solution under physiological conditions.

  10. Noise-assisted energy transfer in quantum networks and light-harvesting complexes

    Energy Technology Data Exchange (ETDEWEB)

    Chin, A W; Caruso, F; Huelga, S F; Plenio, M B [Institut fuer Theoretische Physik, Universitaet Ulm, D-89069, Ulm (Germany); Datta, A, E-mail: alex.chin@uni-ulm.d [Institute for Mathematical Sciences, Imperial College London, 53 Exhibition Road, London SW7 2PG (United Kingdom)


    We provide physically intuitive mechanisms for the effect of noise on excitation energy transfer (EET) in networks. Using these mechanisms of dephasing-assisted transport (DAT) in a hybrid basis of both excitons and sites, we develop a detailed picture of how noise enables energy transfer with efficiencies well above 90% across the Fenna-Matthew-Olson (FMO) complex, a type of light-harvesting molecule. We demonstrate explicitly how noise alters the pathways of energy transfer across the complex, suppressing ineffective pathways and facilitating direct ones to the reaction centre. We explain that the fundamental mechanisms underpinning DAT are expected to be robust with respect to the considered noise model but show that the specific details of the exciton-phonon coupling, which remain largely unknown in these type of complexes, and in particular the impact of non-Markovian effects, result in variations of dynamical features that should be amenable to experimental verification with current or planned technology. A detailed understanding of DAT in natural compounds could open up a new paradigm of 'noise-engineering' by which EET can be optimized in artificial light-harvesting structures.

  11. Carotenoids as electron or excited-state energy donors in artificial photosynthesis: an ultrafast investigation of a carotenoporphyrin and a carotenofullerene dyad. (United States)

    Pillai, Smitha; Ravensbergen, Janneke; Antoniuk-Pablant, Antaeres; Sherman, Benjamin D; van Grondelle, Rienk; Frese, Raoul N; Moore, Thomas A; Gust, Devens; Moore, Ana L; Kennis, John T M


    Photophysical investigations of molecular donor-acceptor systems have helped elucidate many details of natural photosynthesis and revealed design principles for artificial photosynthetic systems. To obtain insights into the factors that govern the partition between excited-state energy transfer (EET) and electron transfer (ET) processes among carotenoids and tetrapyrroles and fullerenes, we have designed artificial photosynthetic dyads that are thermodynamically poised to favor ET over EET processes. The dyads were studied using transient absorption spectroscopy with ∼100 femtosecond time resolution. For dyad , a carotenoporphyrin, excitation to the carotenoid S2 state induces ultrafast ET, competing with internal conversion (IC) to the carotenoid S1 state. In addition, the carotenoid S1 state gives rise to ET. In contrast with biological photosynthesis and many artificial photosynthetic systems, no EET at all was detected for this dyad upon carotenoid S2 excitation. Recombination of the charge separated state takes place in hundreds of picoseconds and yields a triplet state, which is interpreted as a triplet delocalized between the porphyrin and carotenoid moieties. In dyad , a carotenofullerene, excitation of the carotenoid in the S2 band results in internal conversion to the S1 state, ET and probably EET to fullerene on ultrafast timescales. From the carotenoid S1 state EET to fullerene occurs. Subsequently, the excited-state fullerene gives rise to ET from the carotenoid to the fullerene. Again, the charge separated state recombines in hundreds of picoseconds. The results illustrate that for a given rate of EET, the ratio of ET to EET can be controlled by adjusting the driving force for electron transfer.

  12. Fluorescence Resonance Energy Transfer in Quantum Dot-Protein Kinase Assemblies

    Directory of Open Access Journals (Sweden)

    Ibrahim Yildiz


    Full Text Available In search of viable strategies to identify selective inhibitors of protein kinases, we have designed a binding assay to probe the interactions of human phosphoinositide-dependent protein kinase-1 (PDK1 with potential ligands. Our protocol is based on fluorescence resonance energy transfer (FRET between semiconductor quantum dots (QDs and organic dyes. Specifically, we have expressed and purified the catalytic kinase domain of PDK1 with an N-terminal histidine tag [His6-PDK1(ΔPH]. We have conjugated this construct to CdSe-ZnS core-shell QDs coated with dihydrolipoic acid (DHLA and tested the response of the resulting assembly to a molecular dyad incorporating an ATP ligand and a BODIPY chromophore. The supramolecular association of the BODIPY-ATP dyad with the His6-PDK1(ΔPH-QD assembly encourages the transfer of energy from the QDs to the BODIPY dyes upon excitation. The addition of ATP results in the displacement of BODIPY-ATP from the binding domain of the His6-PDK1(ΔPH conjugated to the nanoparticles. The competitive binding, however, does not prevent the energy transfer process. A control experiment with QDs, lacking the His6-PDK1(ΔPH, indicates that the BODIPY-ATP dyad adsorbs nonspecifically on the surface of the nanoparticles, promoting the transfer of energy from the CdSe core to the adsorbed BODIPY dyes. Thus, the implementation of FRET-based assays to probe the binding domain of PDK1 with luminescent QDs requires the identification of energy acceptors unable to interact nonspecifically with the surface of the nanoparticles.

  13. Excitation of vibrational quanta in furfural by intermediate-energy electrons

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D. B. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Neves, R. F. C. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, South Australia 5001 (Australia); Instituto Federal do Sul de Minas Gerais, Campus Poços de Caldas, Minas Gerais (Brazil); Departamento de Física, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, MG (Brazil); Lopes, M. C. A. [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, MG (Brazil); Costa, R. F. da [Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, Campinas, 13083-859 São Paulo (Brazil); Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, 09210-580 São Paulo (Brazil); Varella, M. T. do N. [Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970 São Paulo, São Paulo (Brazil); Bettega, M. H. F. [Departamento de Física, Universidade Federal do Paraná, CP 19044, 81531-990 Curitiba, Paraná (Brazil); Lima, M. A. P. [Instituto de Física “Gleb Wataghin,” Universidade Estadual de Campinas, Campinas, 13083-859 São Paulo (Brazil); García, G. [Instituto de Física Fundamental, CSIC, Serrano 113-bis, 28006 Madrid (Spain); and others


    We report cross sections for electron-impact excitation of vibrational quanta in furfural, at intermediate incident electron energies (20, 30, and 40 eV). The present differential cross sections are measured over the scattered electron angular range 10°–90°, with corresponding integral cross sections subsequently being determined. Furfural is a viable plant-derived alternative to petrochemicals, being produced via low-temperature plasma treatment of biomass. Current yields, however, need to be significantly improved, possibly through modelling, with the present cross sections being an important component of such simulations. To the best of our knowledge, there are no other cross sections for vibrational excitation of furfural available in the literature, so the present data are valuable for this important molecule.

  14. Excitation spectrum and high-energy plasmons in single-layer and multilayer graphene (United States)

    Yuan, Shengjun; Roldán, Rafael; Katsnelson, Mikhail I.


    In this paper we study the excitation spectrum of single-layer and multilayer graphene beyond the Dirac cone approximation. The dynamical polarizability of graphene is computed using a full π-band tight-binding model, considering the possibility of interlayer hopping in the calculation. The effect of electron-electron interaction is considered within the random phase approximation. We further discuss the effect of disorder in the spectrum, which leads to a smearing of the absorption peaks. Our results show a redshift of the π-plasmon dispersion of single-layer graphene with respect to graphite, in agreement with experimental results. The inclusion of interlayer hopping in the kinetic Hamiltonian of multilayer graphene is found to be very important to properly capture the low energy region of the excitation spectrum.

  15. Study of the neutron rich sulfure isotope 43S through intermediate energy Coulomb excitation (United States)

    Calinescu, S.; Cáceres, L.; Grévy, S.; Sohler, D.; Stanoiu, M.; Negoita, F.; Borcea, C.; Borcea, R.; Bowry, M.; Catford, W.; Dombradi, Z.; Franchoo, S.; Gillibert, R.; Thomas, J. C.; Kuti, I.; Lukyanov, S.; Lepailleur, A.; Mrazek, J.; Niikura, M.; Podolyak, Z.; Petrone, C.; Penionzhkevich, Y.; Roger, T.; Rotaru, F.; Sorlin, O.; Stefan, I.; Vajta, Z.; Wilson, E.


    The reduced transition probability B(E2: 3/2- 7/2-2) has been measured in 43S using Coulomb excitation at intermediate energy. The nucleus of interest was produced by fragmentation of a 48Ca beam at GANIL. The reaction products were separated in the LISE spectrometer. After Coulomb-excitation of 43S in a 208Pb target, the γ rays emitted inflight were detected by 64 BaF2 detectors of the Chǎteau de Cristal array. The preliminary value deduced for the reduced transition probability B(E2: 3/2-7/2-2) is in agreement with the predictions of the shell model calculations and supports a prolate-spherical shape coexistence in the 43S nucleus.

  16. Fission-like events in the 12C+169Tm system at low excitation energies (United States)

    Sood, Arshiya; Singh, Pushpendra P.; Sahoo, Rudra N.; Kumar, Pawan; Yadav, Abhishek; Sharma, Vijay R.; Shuaib, Mohd.; Sharma, Manoj K.; Singh, Devendra P.; Gupta, Unnati; Kumar, R.; Aydin, S.; Singh, B. P.; Wollersheim, H. J.; Prasad, R.


    Background: Fission has been found to be a dominating mode of deexcitation in heavy-ion induced reactions at high excitation energies. The phenomenon of heavy-ion induced fission has been extensively investigated with highly fissile actinide nuclei, yet there is a dearth of comprehensive understanding of underlying dynamics, particularly in the below actinide region and at low excitation energies. Purpose: Prime objective of this work is to study different aspects of heavy-ion induced fission ensuing from the evolution of composite system formed via complete and/or incomplete fusion in the 12C+169Tm system at low incident energies, i.e., Elab≈6.4 , 6.9, and 7.4 A MeV, as well as to understand charge and mass distributions of fission fragments. Method: The recoil-catcher activation technique followed by offline γ spectroscopy was used to measure production cross sections of fission-like events. The evaporation residues were identified by their characteristic γ rays and vetted by the decay-curve analysis. Charge and mass distributions of fission-like events were studied to obtain dispersion parameters of fission fragments. Results: In the present work, 26 fission-like events (32 ≤Z ≤49 ) were identified at different excitation energies. The mass distribution of fission fragments is found to be broad and symmetric, manifesting their production via compound nuclear processes. The dispersion parameters of fission fragments obtained from the analysis of mass and isotopic yield distributions are found to be in good accord with the reported values obtained for different fissioning systems. A self-consistent approach was employed to determine the isobaric yield distribution. Conclusions: The present work suggests that fission is one of the competing modes of deexcitation of complete and/or incomplete fusion composites at low excitation energies, i.e., E*≈57 , 63, and 69 MeV, where evaporation of light nuclear particle(s) and/or γ rays are assumed to be the sole

  17. Modeling crossed-beam energy transfer for inertial confinement fusion

    Energy Technology Data Exchange (ETDEWEB)

    Marion, D. J. Y. [CEA, DAM, DIF, F-91297 Arpajon Cedex (France); Univ. Bordeaux, CEA, CNRS, CELIA, UMR5107, F-33400 Talence (France); Debayle, A., E-mail:; Masson-Laborde, P.-E.; Loiseau, P.; Casanova, M. [CEA, DAM, DIF, F-91297 Arpajon Cedex (France)


    We developed a numerical code that describes both the energy transfer occurring when two or more laser beams overlap in a weakly non-homogeneous plasma, and the beam energy losses associated with the electron-ion collisions. The numerical solutions are validated with both the exact analytical solutions in homogeneous plasmas, and with new approximate analytical solutions in non-homogeneous plasmas that include the aforementioned inverse bremsstrahlung effect. Comparisons with kinetic particle-in-cell simulations are satisfactory, provided the acoustic wave-breaking limit and the self-focusing regime are not reached. An application of the Cross-Beam Energy Transfer model is shown for a typical case of indirect-drive implosion in a gold hohlraum.

  18. Electron Energy Loss and One- and Two-Photon Excited SERS Probing of “Hot” Plasmonic Silver Nanoaggregates

    DEFF Research Database (Denmark)

    Kadkhodazadeh, Shima; Wagner, Jakob Birkedal; Joseph, Virginia


    between two- and one-photon excited SERS measured at different excitation wavelengths provides information about local fields in the hottest spots and their dependence on the photon energy. Our data verify experimentally the predicted increase of local optical fields in the hot spots with increasing wave...

  19. Tunable excited-state intramolecular proton transfer reactions with Nsbnd H or Osbnd H as a proton donor: A theoretical investigation (United States)

    Li, Yuanyuan; Wen, Keke; Feng, Songyan; Yuan, Huijuan; An, Beibei; Zhu, Qiuling; Guo, Xugeng; Zhang, Jinglai


    Excited-state intramolecular proton transfer (ESIPT) reactions occurring in the S1 state for five molecules, which possess five/six-membered ring intramolecular Nsbnd H···N or Osbnd H···N hydrogen bonds bearing quinoline or 2-phenylpyridine moiety, have been described in detail by the time-dependent density functional theory (TD-DFT) approach using the B3LYP hybrid functional. For the five molecules, the constrained potential energy profiles along the ESIPT reactions show that proton transfer is barrierless in molecules possessing six-membered ring intramolecular H-bonds, which is smoother than that with certain barriers in five-membered ring H-bonding systems. For the latter, chemical modification by a more strong acid group can lower the ESIPT barrier significantly, which harnesses the ESIPT reaction from a difficult type to a fast one. The energy barrier of the ESIPT reaction depends on the intensity of the intramolecular H-bond, which can be measured with the topological descriptors by topology analysis of the bond critical point (BCP) of the intramolecular H-bond. It is found that when the value of electron density ρ(r) at BCP is bigger than 0.025 a.u., the corresponding molecule might go through an ultrafast and barrierless ESIPT process, which opens a new scenario to explore the ESIPT reactions.

  20. Solar-pumped electronic-to-vibrational energy transfer lasers (United States)

    Harries, W. L.; Wilson, J. W.


    The possibility of using solar-pumped lasers as solar energy converters is examined. The absorbing media considered are halogens or halogen compounds, which are dissociated to yield excited atoms, which then hand over energy to a molecular lasing medium. Estimates of the temperature effects for a Br2-CO2-He system with He as the cooling gas are given. High temperatures can cause the lower energy levels of the CO2 laser transition to be filled. The inverted populations are calculated and lasing should be possible. However, the efficiency is less than 0.001. Examination of other halogen-molecular lasant combinations (where the rate coefficients are known) indicate efficiencies in all cases of less than 0.005.

  1. Picosecond Energy Transfer and Multiexciton Transfer Outpaces Auger Recombination in Binary CdSe Nano-Platelet Solids

    Energy Technology Data Exchange (ETDEWEB)

    Rowland, Clare E.; Fedin, Igor; Zhang, Hui; Gray, Stephen K.; Govorov, Alexander (Sasha); Talapin, Dimitri V.; Schaller, Richard D.


    Fluorescence resonance energy transfer (FRET) enables photosynthetic light harvesting1, wavelength down-conversion in light-emitting diodes (LEDs)2, and optical bio-sensing schemes3. The rate and efficiency of this donor to acceptor transfer of excitation between chromophores dictates the utility of FRET and can unlock new device operation motifs including quantum-funnel solar cells4, non-contact chromophore pumping from a proximal LED5, and drastically reduced gain thresholds6. However, the fastest reported FRET time constants involving spherical quantum dots (QDs) (0.12-1 ns7-9), do not outpace biexciton Auger recombination (0.01-0.1 ns)10, which impedes multiexciton-driven applications including electrically-pumped lasers11 and carrier-multiplication-enhanced photovoltaics.12,13 Few-monolayer thick semiconductor nano-platelets (NPLs) with tens-of-nanometer diameters14 exhibit intense optical transitions14 and hundreds-of-picosecond Auger recombination15,16, but heretofore lack FRET characterizations. We examine binary CdSe NPL solids and show that inter-plate FRET (~6-23 ps, presumably for co-facial arrangements) can occur 15-50 times faster than Auger recombination15,16 and demonstrate multiexcitonic FRET, making such materials ideal candidates for advanced technologies.

  2. State-of-the-Art Developments of Acoustic Energy Transfer

    Directory of Open Access Journals (Sweden)

    Md Rabiul Awal


    Full Text Available Acoustic energy transfer (AET technology has drawn significant industrial attention recently. This paper presents the reviews of the existing AETs sequentially, preferably, from the early stage. From the review, it is evident that, among all the classes of wireless energy transfer, AET is the safest technology to adopt. Thus, it is highly recommended for sensitive area and devices, especially implantable devices. Though, the efficiency for relatively long distances (i.e., >30 mm is less than that of inductive or capacitive power transfer; however, the trade-off between safety considerations and performances is highly suitable and better than others. From the presented statistics, it is evident that AET is capable of transmitting 1.068 kW and 5.4 W of energy through wall and in-body medium (implants, respectively. Progressively, the AET efficiency can reach up to 88% in extension to 8.6 m separation distance which is even superior to that of inductive and capacitive power transfer.

  3. Rates of mass, momentum, and energy transfer at the magnetopause (United States)

    Hill, T. W.


    Empirical estimates of the global rates of transfer of solar wind mass, tangential momentum, and energy at the Earth's magnetopause are presented for comparison against model estimates based on the four principal mechanisms that have been proposed to explain such transfer. The comparisons, although not quite conclusive, strongly favor a model that incorporates some combination of direct magnetic connection and anomalous cross field diffusion. An additional global constraint, the rate at which magnetic flux is cycled through the magnetospheric convection system, strongly suggests that direct magnetic connection plays a significant if not dominant role in the solar wind/magnetosphere interaction.

  4. Evidence for a long-lived excited state of CH 4+ from a beam scattering study of the collision-induced dissociation of CH 4+ to CH 2+ at low energy (United States)

    Biggerstaff, Julie; Qian, Kuangnan; Howard, Stephen; Shukla, Anil; Futrell, Jean


    A crossed-beam study of the collision-induced dissociation of CH 4+ by Ar was carried out at a center-of-mass (c.m.) collision energy of 5.5 eV. The scattering shows three patterns for the formation of CH 2+, (1) large-angle scattering at preferred impact parameters with little internal excitation of the products, (2) scattering near the c.m. with nearly all collision energy transferred into products internal energy and (3) superelastic scattering, i.e. conversion of internal energy to translational energy, implying the reaction is initiated by a long-lived excited state of CH 4+ generated by electron impact ionization of methane. No previous evidence exists, to our knowledge, that excited states of CH 4+ thus generated may have microsecond lifetimes.

  5. Temperature effect on first excited state energy and transition frequency of a strong-coupling polaron in a symmetry RbCl quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yong; Ding, Zhao-Hua; Xiao, Jing-Lin, E-mail:


    The first excited state energy, excitation energy and transition frequency of a strong-coupling polaron in a symmetric RbCl quantum dot (SRQD) are obtained by employing the linear combination operator and unitary transformation methods. Effects of temperature and confinement strength are taken into account. It is found that the first excited state energy, excitation energy and transition frequency are increasing functions of temperature and confinement strength.

  6. Temperature effect on first excited state energy and transition frequency of a strong-coupling polaron in a symmetry RbCl quantum dot (United States)

    Sun, Yong; Ding, Zhao-Hua; Xiao, Jing-Lin

    The first excited state energy, excitation energy and transition frequency of a strong-coupling polaron in a symmetric RbCl quantum dot (SRQD) are obtained by employing the linear combination operator and unitary transformation methods. Effects of temperature and confinement strength are taken into account. It is found that the first excited state energy, excitation energy and transition frequency are increasing functions of temperature and confinement strength.

  7. Excited-state proton transfer from pyranine to acetate in methanol

    Indian Academy of Sciences (India)

    trisulphonate, HPTS) to acetate in methanol has been studied by steady-state and time-resolved fluorescence spectroscopy. The rate constant of direct proton transfer from pyranine to acetate (1) is calculated to be ∼ 1 × 109 M-1 s-1. This is slower by ...

  8. Spin-transfer-driven spin-waves excitation in a finite-size magnetic waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Consolo, Giancarlo, E-mail:; Currò, Carmela; Valenti, Giovanna


    The current-driven excitation of spin-waves in a one-dimensional magnetic waveguide is examined analytically and numerically. The proposed model accounts for the interference between incident and reflected waves caused by the finite sizes of the physical domain. This effect is relevant in experiments where the demand of miniaturization leads the spin-wave decay length to be of the same scale as the extents of the structures. Particular analytical solutions of the linearized equation for the spin-wave amplitude are found for elongated and contracted nanocontacts. These solutions are compared to those of an infinite waveguide and are also successfully validated through micromagnetic simulations. - Highlights: • We characterize spin-waves in a one-dimensional magnetic waveguide. • Finite-size effects are investigated numerically and analytically. • Spin-waves are excited via a spin-polarized current flowing through a nanocontact. • The model accounts for the interference between incident and reflected waves. • Particular analytical solutions are found in two different ranges of the control parameter.


    Energy Technology Data Exchange (ETDEWEB)

    Reid, Scott A. [Marquette University


    Sessions covered all areas of molecular energy transfer, with 10 sessions of talks and poster sessions covering the areas of :  Energy Transfer in Inelastic and Reactive Scattering  Energy Transfer in Photoinitiated and Unimolecular Reactions  Non-adiabatic Effects in Energy TransferEnergy Transfer at Surfaces and Interfaces  Energy Transfer in Clusters, Droplets, and Aerosols  Energy Transfer in Solution and Solid  Energy Transfer in Complex Systems  Energy Transfer: New vistas and horizons  Molecular Energy Transfer: Where Have We Been and Where are We Going?

  10. Reduced density matrix hybrid approach: Application to electronic energy transfer

    Energy Technology Data Exchange (ETDEWEB)

    Berkelbach, Timothy C.; Reichman, David R. [Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027 (United States); Markland, Thomas E. [Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California 94305 (United States)


    Electronic energy transfer in the condensed phase, such as that occurring in photosynthetic complexes, frequently occurs in regimes where the energy scales of the system and environment are similar. This situation provides a challenge to theoretical investigation since most approaches are accurate only when a certain energetic parameter is small compared to others in the problem. Here we show that in these difficult regimes, the Ehrenfest approach provides a good starting point for a dynamical description of the energy transfer process due to its ability to accurately treat coupling to slow environmental modes. To further improve on the accuracy of the Ehrenfest approach, we use our reduced density matrix hybrid framework to treat the faster environmental modes quantum mechanically, at the level of a perturbative master equation. This combined approach is shown to provide an efficient and quantitative description of electronic energy transfer in a model dimer and the Fenna-Matthews-Olson complex and is used to investigate the effect of environmental preparation on the resulting dynamics.

  11. Microscopic unitary description of tidal excitations in high-energy string-brane collisions

    CERN Document Server

    D'Appollonio, Giuseppe; Russo, Rodolfo; Veneziano, Gabriele


    The eikonal operator was originally introduced to describe the effect of tidal excitations on higher-genus elastic string amplitudes at high energy. In this paper we provide a precise interpretation for this operator through the explicit tree-level calculation of generic inelastic transitions between closed strings as they scatter off a stack of parallel Dp-branes. We perform this analysis both in the light-cone gauge, using the Green-Schwarz vertex, and in the covariant formalism, using the Reggeon vertex operator. We also present a detailed discussion of the high energy behaviour of the covariant string amplitudes, showing how to take into account the energy factors that enhance the contribution of the longitudinally polarized massive states in a simple way.

  12. Model Property Based Material Balance and Energy Conservation Analysis for Process Industry Energy Transfer Systems


    Fumin Ma; Gregory M. P. O’Hare; Tengfei Zhang; Michael J. O’Grady


    Conventional historical data based material and energy balance analyses are static and isolated computations. Such methods cannot embody the cross-coupling effect of energy flow, material flow and information flow in the process industry; furthermore, they cannot easily realize the effective evaluation and comparison of different energy transfer processes by alternating the model module. In this paper, a novel method for material balance and energy conservation analysis of process industry en...

  13. A wireless energy transfer platform, integrated at the bedside. (United States)

    De Clercq, Hans; Puers, Robert


    This paper presents the design of a wireless energy transfer platform, integrated at the bedside. The system contains a matrix of identical inductive power transmitters, which are optimised to provide power to a wearable sensor network, with the purpose of wirelessly recording vital signals over an extended period of time. The magnetic link, operates at a transfer frequency of 6.78MHz and is able to transfer a power of 3.3mW to the remote side at an inter-coil distance of 100mm. The total efficiency of the power link is 26%. Moreover, the platform is able to dynamically determine the position of freely moving sensor nodes and selectively induce a magnetic field in the area where the sensor nodes are positioned. As a result, the patient will not be subjected to unnecessary radiation and the specific absorption rate standards are met more easily.

  14. Regulation control and energy management scheme for wireless power transfer (United States)

    Miller, John M.


    Power transfer rate at a charging facility can be maximized by employing a feedback scheme. The state of charge (SOC) and temperature of the regenerative energy storage system (RESS) pack of a vehicle is monitored to determine the load due to the RESS pack. An optimal frequency that cancels the imaginary component of the input impedance for the output signal from a grid converter is calculated from the load of the RESS pack, and a frequency offset f* is made to the nominal frequency f.sub.0 of the grid converter output based on the resonance frequency of a magnetically coupled circuit. The optimal frequency can maximize the efficiency of the power transfer. Further, an optimal grid converter duty ratio d* can be derived from the charge rate of the RESS pack. The grid converter duty ratio d* regulates wireless power transfer (WPT) power level.

  15. Impact-Based Electromagnetic Energy Harvester with High Output Voltage under Low-Level Excitations

    Directory of Open Access Journals (Sweden)

    Qian Luo


    Full Text Available To expand the applications of vibrational energy harvesters (VEHs as power sources of wireless sensor nodes, it is of significance to improve the scavenging efficiency for the broadband, low-frequency, and low-level vibrational energy. The output voltages of electromagnetic vibrational energy harvesters (EMVEHs are usually low, which complicates the power management circuit by an indispensable voltage boosting element. To this end, an impact-based non-resonant EMVEH mainly composed of an outer frame and an inner frame on rollers is proposed. Numerical simulations based on a mathematical model of the harvester are conducted to analyze the effects of structural parameters on the output performance. Under base excitation of 0.1 and 0.3 (where g is the gravitational acceleration, 1 g = 9.8 m · s − 2 , the experimental maximum root mean square voltages of a harvester prototype across a resistor of 11 kΩ are as high as 7.6 and 16.5 V at 6.0 and 8.5 Hz, respectively, with the maximum output powers of 5.3 and 24.8 mW, or the power densities of 54.6 and 256 μW cm−3. By using a management circuit without a voltage boosting element, a wireless sensor node driven by the prototype can measure and transmit the temperature and humidity every 20 s under base excitation of 0.1 g at 5.4 Hz.

  16. Spectroscopic properties and energy transfer parameters of Er3+-doped fluorozirconate and oxyfluoroaluminate glasses. (United States)

    Huang, Feifei; Liu, Xueqiang; Hu, Lili; Chen, Danping


    Er3+-doped fluorozirconate (ZrF4-BaF2-YF3-AlF3) and oxyfluoroaluminate glasses are successfully prepared here. These glasses exhibit significant superiority compared with traditional fluorozirconate glass (ZrF4-BaF2-LaF3-AlF3-NaF) because of their higher temperature of glass transition and better resistance to water corrosion. Judd-Ofelt (J-O) intensity parameters are evaluated and used to compute the radiative properties based on the VIS-NIR absorption spectra. Broad emission bands located at 1535 and 2708 nm are observed, and large calculated emission sections are obtained. The intensity of 2708 nm emission closely relates to the phonon energy of host glass. A lower phonon energy leads to a more intensive 2708 nm emission. The energy transfer processes of Er3+ ions are discussed and lifetime of Er3+:4I13/2 is measured. It is the first time to observe that a longer lifetime of the 4I13/2 level leads to a less intensive 1535 nm emission, because the lifetime is long enough to generate excited state absorption (ESA) and energy transfer (ET) processes. These results indicate that the novel glasses possess better chemical and thermal properties as well as excellent optical properties compared with ZBLAN glass. These Er3+-doped ZBYA and oxyfluoroaluminate glasses have potential applications as laser materials.

  17. Interglobular Diffusion of an Energy Donor in Triplet-Triplet Energy Transfer in Proteins

    Directory of Open Access Journals (Sweden)

    Andrey G. Melnikov


    Full Text Available The triplet-triplet energy transfer between polar molecules of luminescent probe (eosin as an energy donor and nonpolar molecules of energy acceptor (anthracene is studied. Both the donor and the acceptor are bound to human serum albumin by noncovalent bonds. A dependence of rate constant of triplet-triplet energy transfer on human serum albumin concentration is revealed. A rate constant of eosin output from protein globules is determined. It is shown that the energy transfer occurs as a result of interglobular diffusion of eosin. The obtained results indicate that a protein-luminescent probe based sensor can be used for testing a concentration of polycyclic aromatic hydrocarbons in proteins.

  18. Energies and Landé factors for some excited levels in Lu I (Z = 71) (United States)

    Karaçoban, Betül; Özdemir, Leyla


    We have calculated relativistic energies and Landé factors for 5d6s 2, 5d 26s, 6s6p 2, 6s 27s, 5d 3, 5d6s7s, 6s 26p, 5d6s6p, 5d 26p and 6s 27p excited levels outside the core [Xe]4f 14 in neutral lutetium (Lu I, Z = 71). These calculations are based on the multiconfiguration Hartree-Fock (MCHF) method, within the framework of the Breit-Pauli relativistic corrections. Moreover, the results obtained have been compared with other works.

  19. Low energy magnetic excitations in superconducting YbSnPd{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Giudicelli, P. E-mail:; Roessli, B.; Stunault, A.; Ollivier, J.; Amato, A.; Sugawara, H.; Bernhoeft, N


    The Heusler compound YbSnPd{sub 2} exhibits singular thermodynamic and transport properties, with coexistence of superconductivity and antiferromagnetism at low temperature (T<220 mK). The field and temperature dependencies of the low energy magnetic fluctuations have been studied by inelastic neutron scattering, for temperatures down to 60 mK and magnetic fields up to 2.5 T. We report the observation of a novel excitation characteristic of a magnetic-fluid in addition to the anticipated Zeeman doublet of a {gamma}{sub 7} crystalline electric field ground state.

  20. Excitation of the 3p states in electron-sodium scattering at intermediate energies (United States)

    Kamali, M. Z. M.; Wong, B. R.; Chin, J. H.; Ratnavelu, K.


    A coupled-channel-optical method (CCOM), to investigate the excitation of the 3p states for e--Na scattering at intermediate energies, is reported. Nine atomic states( Na(3s), Na(3p), Na(4s), Na(3d), Na(4p), Na(5s), Na(4d), Na(5p), Na(5d) ) together with three optical potentials are used in this work. The inelastic differential cross sections (DCS) as well as the reduced Stokes parameters are compared with latest theoretical data and experimental measurements.

  1. Picosecond laser studies of the charge-transfer reaction of excited triplet diphenylcarbene with electron donors (United States)

    Sitzmann, E. V.; Langan, J.; Eisenthal, K. B.


    Evidence of a one-electron transfer process in a carbene reaction has been observed for the first time. The example is the quenching of the photoexcited triplet state of diphenylcarbene ( 3*DPC) by electron donors. Measurement of the fluorescence lifetime as a function of donor concentration yielded the bimolecular rate constant, 3* k. An explanation is offered as to why 3* and 1DPC react efficiently with amines as well as alcohols, whereas the ground triplet, 3DPC, does not.

  2. Testing two-nucleon transfer reaction mechanism with elementary modes of excitation in exotic nuclei

    CERN Document Server

    Broglia, R A; Idini, A; Barranco, F; Vigezzi, E


    Nuclear Field Theory of structure and reactions is confronted with observations made on neutron halo dripline nuclei, resulting in the prediction of a novel (symbiotic) mode of nuclear excitation, and on the observation of the virtual effect of the halo phenomenon in the apparently non-halo nucleus $^7$Li. This effect is forced to become real by intervening the virtual process with an external (t,p) field which, combined with accurate predictive abilities concerning the absolute differential cross section, reveals an increase of a factor 2 in the cross section due to the presence of halo ground state correlations, and is essential to reproduce the value of the observed $d \\sigma(^7$Li(t,p)$^9$Li)/d$\\Omega$.

  3. Mid-infrared spectroscopic properties and energy transfer of Er3+/Yb3+ co-doped bismuth germanate glass. (United States)

    Zhao, Guoying; Wang, Shikai; Fan, Huiyan; Hu, Lili


    An Er3+/Yb3+ co-doped bismuth germanate glass is synthesized and analyzed. The radiative characteristics and mid-infrared spectroscopic properties are investigated under excitation of a conventional 980 nm laser diode. The prepared glass possesses higher spontaneous transition probability (68.82 s(-1)) and larger calculated emission cross-section (7.73×10(-21) cm2) corresponding to the 4I11/2→4I13/2 transition. The calculated energy migration coefficient (CDD) among Yb3+ ions is larger than the energy transfer coefficient (CDA) from Yb3+ to Er3+, indicating the energy transfer process assisted with energy migration. The excellent spectroscopic properties along with the outstanding thermal stability suggest that this glass may become an attractive host for developing solid state lasers operating in the mid-infrared range. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  4. Quantum dot-dye hybrid systems for energy transfer applications

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Ting


    In this thesis, we focus on the preparation of energy transfer-based quantum dot (QD)-dye hybrid systems. Two kinds of QD-dye hybrid systems have been successfully synthesized: QD-silica-dye and QD-dye hybrid systems. In the QD-silica-dye hybrid system, multishell CdSe/CdS/ZnS QDs were adsorbed onto monodisperse Stoeber silica particles with an outer silica shell of thickness 2-24 nm containing organic dye molecules (Texas Red). The thickness of this dye layer has a strong effect on the total sensitized acceptor emission, which is explained by the increase in the number of dye molecules homogeneously distributed within the silica shell, in combination with an enhanced surface adsorption of QDs with increasing dye amount. Our conclusions were underlined by comparison of the experimental results with Monte-Carlo simulations, and by control experiments confirming attractive interactions between QDs and Texas Red freely dissolved in solution. New QD-dye hybrid system consisting of multishell QDs and organic perylene dyes have been synthesized. We developed a versatile approach to assemble extraordinarily stable QD-dye hybrids, which uses dicarboxylate anchors to bind rylene dyes to QD. This system yields a good basis to study the energy transfer between QD and dye because of its simple and compact design: there is no third kind of molecule linking QD and dye; no spacer; and the affinity of the functional group to the QD surface is strong. The FRET signal was measured for these complexes as a function of both dye to QD ratio and center-to-center distance between QD and dye by controlling number of covered ZnS layers. Data showed that fluorescence resonance energy transfer (FRET) was the dominant mechanism of the energy transfer in our QD-dye hybrid system. FRET efficiency can be controlled by not only adjusting the number of dyes on the QD surface or the QD to dye distance, but also properly choosing different dye and QD components. Due to the strong stability, our QD

  5. An analytical approach for predicting the energy capture and conversion by impulsively-excited bistable vibration energy harvesters (United States)

    Harne, R. L.; Zhang, Chunlin; Li, Bing; Wang, K. W.


    Impulsive energies are abundant throughout the natural and built environments, for instance as stimulated by wind gusts, foot-steps, or vehicle-road interactions. In the interest of maximizing the sustainability of society's technological developments, one idea is to capture these high-amplitude and abrupt energies and convert them into usable electrical power such as for sensors which otherwise rely on less sustainable power supplies. In this spirit, the considerable sensitivity to impulse-type events previously uncovered for bistable oscillators has motivated recent experimental and numerical studies on the power generation performance of bistable vibration energy harvesters. To lead to an effective and efficient predictive tool and design guide, this research develops a new analytical approach to estimate the electroelastic response and power generation of a bistable energy harvester when excited by an impulse. Comparison with values determined by direct simulation of the governing equations shows that the analytically predicted net converted energies are very accurate for a wide range of impulse strengths. Extensive experimental investigations are undertaken to validate the analytical approach and it is seen that the predicted estimates of the impulsive energy conversion are in excellent agreement with the measurements, and the detailed structural dynamics are correctly reproduced. As a result, the analytical approach represents a significant leap forward in the understanding of how to effectively leverage bistable structures as energy harvesting devices and introduces new means to elucidate the transient and far-from-equilibrium dynamics of nonlinear systems more generally.

  6. Excitation function measurements and integral yields estimation for {sup nat}Zn(p,x) reactions at low energies

    Energy Technology Data Exchange (ETDEWEB)

    Al-Saleh, F.S. [Physics Department, Girls College of Education in Riyadh, P.O. Box 27329, Riyadh 11417 (Saudi Arabia)], E-mail:; Al Mugren, K.S. [Physics Department, Girls College of Education in Riyadh, P.O. Box 27329, Riyadh 11417 (Saudi Arabia); Azzam, A. [Nuclear Physics Department, Nuclear Research Center, AEA, Cairo (Egypt)


    Excitation functions have been measured for a number of proton-induced nuclear reactions on natural zinc in the energy range from 27.5 MeV down to their threshold energy, using the activation method on stacked foils. Excitation functions and thick target yield for the reactions leading to the formation of {sup 67}Ga,{sup 66}Ga,{sup 68}Ga,{sup 62}Zn and {sup 65}Zn are presented and compared with earlier reported experimental data. The experimental cross-sections and the production yields are tabulated; the excitation functions and the thick target yield curves are plotted in graphs.

  7. Modelling excitonic-energy transfer in light-harvesting complexes

    CERN Document Server

    Kramer, Tobias


    The theoretical and experimental study of energy transfer in photosynthesis has revealed an interesting transport regime, which lies at the borderline between classical transport dynamics and quantum-mechanical interference effects. Dissipation is caused by the coupling of electronic degrees of freedom to vibrational modes and leads to a directional energy transfer from the antenna complex to the target reaction-center. The dissipative driving is robust and does not rely on fine-tuning of specific vibrational modes. For the parameter regime encountered in the biological systems new theoretical tools are required to directly compare theoretical results with experimental spectroscopy data. The calculations require to utilize massively parallel graphics processor units (GPUs) for efficient and exact computations.

  8. Electromagnetic Energy Absorption due to Wireless Energy Transfer: A Brief Review

    Directory of Open Access Journals (Sweden)

    Syafiq A.


    Full Text Available This paper reviews an implementation of evaluating compliance of wireless power transfer systems with respect to human electromagnetic exposure limits. Methods for both numerical analysis and measurements are discussed. The objective is to evaluate the rate of which energy is absorbed by the human body when exposed to a wireless energy transfer, although it can be referred to the absorption of other forms of energy by tissue. An exposure assessment of a representative wireless power transfer system, under a limited set of operating conditions, is provided in order to estimate the maximum SAR levels. The aim of this review is to conclude the possible side effect to the human body when utilizing wireless charging in daily life so that an early severe action can be taken when using wireless transfer.

  9. Determination of the excitation energy and angular momentum of the quasi-projectiles produced in the heavy ion collisions Xe + Sn; Determination de l'energie d'excitation et du moment angulaire des quasi-projectiles produits dans les collisions d'ions lourds Xe + Sn

    Energy Technology Data Exchange (ETDEWEB)

    Genouin-Duhamel, Emmanuel [Lab. de Physique Corpusculaire, Caen Univ., 14 Caen (France)


    This work is a contribution to the study of properties of hot nuclei formed in heavy ion collisions at intermediate energies. The experiment has been performed with the INDRA multidetector. It is shown that most of the reaction cross section is associated with binary dissipative collisions, accompanied by the production of particles from a region between the two reaction partners. This study is focussed on excitation energy and angular momentum of projectile-like fragment (PLF) in {sup 129}Xe + {sup nat}Sn reactions from 25 to 50 MeV per nucleon. Several methods are used to characterize hot nuclei (velocity, charge, mass and excitation energy). All these methods are compared between them and indicate that high energies are deposited in the nuclei during collision (it may exceed the nucleus binding energy). The angular momentum transferred into intrinsic spin to PLF in the peripheral collisions has been deduced from angular distributions and kinetic energies of the emitted light charged particles (atomic number smaller ar equal to 2). Both methods agree qualitatively. The spin values decrease with the violence of the collision. These values correspond to values averaged over the whole deexcitation chain of nuclei. The predictions of transport models reproduce qualitatively the most peripheral collisions and suggest that high spins are transferred to PLF (from 30 to 50 {Dirac_h}). Larger angular momentum values are observed at the lowest incident energy. The time hierarchy in the evaporation process and the role of mid-rapidity emission are also discussed.

  10. Excited-State Dynamics of Biological Molecules in Solution: Photoinduced Charge Transfer in Oxidatively Damaged DNA and Deactivation of Violacein in Viscous Solvents (United States)

    Beckstead, Ashley Ann

    UV radiation from the sun is strongly absorbed by DNA, and the resulting electronic excited states can lead to the formation of mutagenic photoproducts. Decades of research have brought to light the excited-state dynamics of single RNA and DNA nucleobases, but questions remain about the nature of excited states accessed in DNA strands. In this thesis, I present ultrafast spectroscopic observations of photoinduced electron transfer from the oxidatively damaged bases, 8-oxo-7,8-dihydro-2'-deoxyguanosine, 5-hydroxy-2'-deoxycytidine and 5-hydroxy-2'-deoxyuridine, to adenine in three dinucleotides. The results reveal that charge transfer states are formed on a timescale faster than our instrumental resolution (electron transfer efficiently returns the excited-state population to the ground state on timescales from tens to hundreds of ps. In addition to recent spectroscopic observations of charge transfer state species in DNA by other groups, our results have augmented understanding of the long-lived transient signals observed in DNA strands. The observation of photoinduced electron transfer in these oxidatively damaged nucleobases also supports a recent proposal regarding the role of oxidative products in pre-RNA catalysis. I discuss these observations in the contexts of fundamental DNA excited-state dynamics and prebiotic chemical evolution. In this thesis, I also present the first ultrafast spectroscopic investigation of violacein, a pigment isolated from Antarctic bacteria. Despite claims for the photoprotective role of this pigment, there has never been a spectroscopic analysis of excited-state deactivation in violacein. Emission spectra, fluorescence quantum yields and excited-state lifetimes of violacein in various solvents were measured for the first time. Both the fluorescence quantum yield and excited-state lifetime of violacein increase in increasingly viscous solvents, suggesting a large-scale motion mediates excited-state deactivation. I compare these

  11. Determination of dihydralazine based on chemiluminescence resonance energy transfer of hollow carbon nanodots (United States)

    Han, Suqin; Fan, Zheyan; Chen, Xiaoxia; Wu, Yunfang; Wang, Jianbo


    The famous weak chemiluminescence (CL) system of potassium permanganate and sodium bisulfite (KMnO4-HSO3-) was enhanced by the hollow fluorescent carbon nanodots (HCNs). The investigation of mechanism revealed that the enhanced CL was induced by the excited-state HCNs (HCNs*), which could be produced from the electron-transfer annihilation of positively charged HCNs (HCNsrad +) and negatively charged HCNs (HCNsrad -) as well as by CL resonance energy transfer (CRET) from excited SO2 (SO2*)/1O2 to HCNs. The dihydralazine sulfate (DHZS) had a diminishing effect on the CL of HCNs-KMnO4-HSO3- system due to the competitive consumption of rad O2-. Under the optimal conditions, the reduced CL signal with the concentration of DHZS was linear in the range of 1.0 × 10- 7-7.0 × 10- 5 mol/L with a detection limit of 3.0 × 10- 8 mol/L. The relative standard deviation for seven repeated determination of 5.0 × 10- 6 mol/L DHZS was 2.1%. The established method was applied to the determination of DHZS in pharmaceutical preparations, human urine and plasma samples with good precision and accuracy.

  12. Enhanced luminescence via energy transfer from Ag+ to RE ions (Dy3+, Sm3+, Tb3+) in glasses. (United States)

    Li, JingJing; Wei, RongFei; Liu, XueYun; Guo, Hai


    Oxyfluoride glasses containing Ag species and rare earth (RE) ions (Dy(3+), Sm(3+), Tb(3+)) were prepared by melt-quenching technique. The type of luminescent species of novel excitation band (230-300 nm peaked at 255 nm) and emission band (300-600 nm peaked at 350 nm) were investigated by absorption, excitation, emission spectra, as well as decay lifetime measurements and can be ascribed to isolated Ag(+) ions. Owing to energy transfer from Ag(+) to RE ions, significant enhancements of RE ions emission (76 times for Sm(3+), 41 times for Dy(3+)) were observed for non-resonant UV excitation (255 nm). Our research may extend the understanding of interactions between RE ions and Ag species. © 2012 Optical Society of America

  13. Model Property Based Material Balance and Energy Conservation Analysis for Process Industry Energy Transfer Systems

    Directory of Open Access Journals (Sweden)

    Fumin Ma


    Full Text Available Conventional historical data based material and energy balance analyses are static and isolated computations. Such methods cannot embody the cross-coupling effect of energy flow, material flow and information flow in the process industry; furthermore, they cannot easily realize the effective evaluation and comparison of different energy transfer processes by alternating the model module. In this paper, a novel method for material balance and energy conservation analysis of process industry energy transfer system is developed based on model property. Firstly, a reconfigurable energy transfer process model, which is independent of energy types and energy-consuming equipment, is presented from the viewpoint of the cross-coupling effect of energy flow, material flow and information flow. Thereafter the material balance determination is proposed based on both a dynamic incidence matrix and dynamic balance quantity. Moreover, the model-weighted conservation determination theorem is proved, and the energy efficiency analysis method is also discussed. Results confirmed the efficacy of the proposed methods, confirming its potential for use by process industry in energy efficiency analyses.

  14. Photoluminescence and energy transfer in PVK/DCM blends (United States)

    Bruno, Annalisa; Del Mauro, Anna De Girolamo; Nenna, Giuseppe; Maglione, Maria Grazia; Minarini, Carla


    In this work, the photophysical proprieties of 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran (DCM) dye in the poly-vinylcarbazole (PVK) matrix are analyzed with a particular attention to the energy transfer processes between the matrix and the dye. PVP films with varying weight percent (from 1 to 8 wt%) of DCM have been fabricated. The presence of DCM induces a red shift in the emission spectra of the blend and a quenching effect in the excitons lifetime increasing the concentration of the dopants. These two phenomena have been studied in terms of energy processes inside the blends.

  15. State-to-state dynamics of molecular energy transfer

    Energy Technology Data Exchange (ETDEWEB)

    Gentry, W.R.; Giese, C.F. [Univ. of Minnesota, Minneapolis (United States)


    The goal of this research program is to elucidate the elementary dynamical mechanisms of vibrational and rotational energy transfer between molecules, at a quantum-state resolved level of detail. Molecular beam techniques are used to isolate individual molecular collisions, and to control the kinetic energy of collision. Lasers are used both to prepare specific quantum states prior to collision by stimulated-emission pumping (SEP), and to measure the distribution of quantum states in the collision products by laser-induced fluorescence (LIF). The results are interpreted in terms of dynamical models, which may be cast in a classical, semiclassical or quantum mechanical framework, as appropriate.

  16. Resonant energy transfer based biosensor for detection of multivalent proteins.

    Energy Technology Data Exchange (ETDEWEB)

    Song, X. (Xuedong); Swanson, Basil I.


    We have developed a new fluorescence-based biosensor for sensitive detection of species involved in a multivslent interaction. The biosensor system utilizes specific interactions between proteins and cell surface receptors, which trigger a receptor aggregation process. Distance-dependent fluorescence self-quenching and resonant energy transfer mechanisms were coupled with a multivalent interaction to probe the receptor aggregation process, providing a sensitive and specific signal transduction method for such a binding event. The fluorescence change induced by the aggregation process can be monitored by different instrument platforms, e.g. fluorimetry and flow cytometry. In this article, a sensitive detection of pentavalent cholera toxin which recognizes ganglioside GM1 has been demonstrated through the resonant energy transfer scheme, which can achieve a double color change simultaneously. A detection sensitivity as high as 10 pM has been achieved within a few minutes (c.a. 5 minutes). The simultaneous double color change (an increase of acceptor fluorescence and a decrease of donor fluorescence intensity) of two similar fluorescent probes provides particularly high detection reliability owing to the fact that they act as each other's internal reference. Any external perturbation such as environmental temperature change causes no significant change in signal generation. Besides the application for biological sensing, the method also provides a useful tool for investigation of kinetics and thermodynamics of a multivalent interaction. Keywords: Biosensor, Fluorescence resonant energy transfer, Multivalent interaction, Cholera Toxin, Ganglioside GM1, Signal Transduction

  17. Symmetry constraints and variational principles in diffusion quantum Monte Carlo calculations of excited-state energies (United States)

    Foulkes, W. M. C.; Hood, Randolph Q.; Needs, R. J.


    Fixed-node diffusion Monte Carlo (DMC) is a stochastic algorithm for finding the lowest energy many-fermion wave function with the same nodal surface as a chosen trial function. It has proved itself among the most accurate methods available for calculating many-electron ground states, and is one of the few approaches that can be applied to systems large enough to act as realistic models of solids. In attempts to use fixed-node DMC for excited-state calculations, it has often been assumed that the DMC energy must be greater than or equal to the energy of the lowest exact eigenfunction with the same symmetry as the trial function. We show that this assumption is not justified unless the trial function transforms according to a one-dimensional irreducible representation of the symmetry group of the Hamiltonian. If the trial function transforms according to a multidimensional irreducible representation, corresponding to a degenerate energy level, the DMC energy may lie below the energy of the lowest eigenstate of that symmetry. Weaker variational bounds may then be obtained by choosing trial functions transforming according to one-dimensional irreducible representations of subgroups of the full symmetry group.

  18. Förster resonance energy transfer: Role of diffusion of fluorophore orientation and separation in observed shifts of FRET efficiency.

    Directory of Open Access Journals (Sweden)

    Bram Wallace

    Full Text Available Förster resonance energy transfer (FRET is a widely used single-molecule technique for measuring nanoscale distances from changes in the non-radiative transfer of energy between donor and acceptor fluorophores. For macromolecules and complexes this observed transfer efficiency is used to infer changes in molecular conformation under differing experimental conditions. However, sometimes shifts are observed in the FRET efficiency even when there is strong experimental evidence that the molecular conformational state is unchanged. We investigate ways in which such discrepancies can arise from kinetic effects. We show that significant shifts can arise from the interplay between excitation kinetics, orientation diffusion of fluorophores, separation diffusion of fluorophores, and non-emitting quenching.

  19. Investigation of the charge-transfer in photo-excited nanoparticles for CO2 reduction in non-aqueous media

    Directory of Open Access Journals (Sweden)

    Dimitrijević Nada M.


    Full Text Available Photoinduced charge separation in TiO2 and Cu2O semiconductor nanoparticles was examined using Electron Paramagnetic Resonance spectroscopy in order to get insight into the photocatalytic reduction of CO2 in nonaqueous media. For dissolution/grafting of CO2 we have used carboxy-PEG4-amine, and as a solvent poly(ethylene glycol 200. We have found that, in this system, reduction of CO2 starts at potential of -0.5 V vs Ag/AgCl, which is significantly more positive than the potential for electrochemical reduction of CO2 in most organic solvents and water (-2.0 V vs. Ag/AgCl. The electron transfer from excited nanoparticles to CO2 is governed both by thermodynamic and kinetic parameters, namely by the redox potential of conduction band electrons and adsorption/binding of CO2 on the surface of nanoparticles.

  20. Heat transfer and flow in solar energy and bioenergy systems (United States)

    Xu, Ben

    The demand for clean and environmentally benign energy resources has been a great concern in the last two decades. To alleviate the associated environmental problems, reduction of the use of fossil fuels by developing more cost-effective renewable energy technologies becomes more and more significant. Among various types of renewable energy sources, solar energy and bioenergy take a great proportion. This dissertation focuses on the heat transfer and flow in solar energy and bioenergy systems, specifically for Thermal Energy Storage (TES) systems in Concentrated Solar Power (CSP) plants and open-channel algal culture raceways for biofuel production. The first part of this dissertation is the discussion about mathematical modeling, numerical simulation and experimental investigation of solar TES system. First of all, in order to accurately and efficiently simulate the conjugate heat transfer between Heat Transfer Fluid (HTF) and filler material in four different solid-fluid TES configurations, formulas of an e?ective heat transfer coe?cient were theoretically developed and presented by extending the validity of Lumped Capacitance Method (LCM) to large Biot number, as well as verifications/validations to this simplified model. Secondly, to provide design guidelines for TES system in CSP plant using Phase Change Materials (PCM), a general storage tank volume sizing strategy and an energy storage startup strategy were proposed using the enthalpy-based 1D transient model. Then experimental investigations were conducted to explore a novel thermal storage material. The thermal storage performances were also compared between this novel storage material and concrete at a temperature range from 400 °C to 500 °C. It is recommended to apply this novel thermal storage material to replace concrete at high operating temperatures in sensible heat TES systems. The second part of this dissertation mainly focuses on the numerical and experimental study of an open-channel algae

  1. Driving Force Dependence of Electron Transfer from Electronically Excited [Ir(COD)(μ-Me2pz)]2 to Photo-Acid Generators. (United States)

    Sattler, Wesley; Rachford, Aaron A; LaBeaume, Paul J; Coley, Suzanne M; Thackeray, James W; Cameron, James F; Müller, Astrid M; Winkler, Jay R; Gray, Harry B


    We report the rates of electron transfer (ET) reactions of electronically excited [Ir(COD)(μ-Me2pz)]2 with onium salt photoacid generators (PAGs). The reduction potentials of the PAGs span a large electrochemical window that allows determination of the driving force dependence of the ET reactions. Rate constants of ET from electronically excited [Ir(COD)(μ-Me2pz)]2 to onium PAGs are determined by the reaction driving force until the diffusion limit in acetonitrile is reached.

  2. Highly Emitting Near-Infrared Lanthanide “Encapsulated Sandwich” Metallacrown Complexes with Excitation Shifted Toward Lower Energy (United States)


    Near-infrared (NIR) luminescent lanthanide complexes hold great promise for practical applications, as their optical properties have several complementary advantages over organic fluorophores and semiconductor nanoparticles. The fundamental challenge for lanthanide luminescence is their sensitization through suitable chromophores. The use of the metallacrown (MC) motif is an innovative strategy to arrange several organic sensitizers at a well-controlled distance from a lanthanide cation. Herein we report a series of lanthanide “encapsulated sandwich” MC complexes of the form Ln3+[12-MCZn(II),quinHA-4]2[24-MCZn(II),quinHA-8] (Ln3+[Zn(II)MCquinHA]) in which the MC framework is formed by the self-assembly of Zn2+ ions and tetradentate chromophoric ligands based on quinaldichydroxamic acid (quinHA). A first-generation of luminescent MCs was presented previously but was limited due to excitation wavelengths in the UV. We report here that through the design of the chromophore of the MC assembly, we have significantly shifted the absorption wavelength toward lower energy (450 nm). In addition to this near-visible inter- and/or intraligand charge transfer absorption, Ln3+[Zn(II)MCquinHA] exhibits remarkably high quantum yields, long luminescence lifetimes (CD3OD; Yb3+, QLnL = 2.88(2)%, τobs = 150.7(2) μs; Nd3+, QLnL = 1.35(1)%, τobs = 4.11(3) μs; Er3+, QLnL = 3.60(6)·10–2%, τobs = 11.40(3) μs), and excellent photostability. Quantum yields of Nd3+ and Er3+ MCs in the solid state and in deuterated solvents, upon excitation at low energy, are the highest values among NIR-emitting lanthanide complexes containing C–H bonds. The versatility of the MC strategy allows modifications in the excitation wavelength and absorptivity through the appropriate design of the ligand sensitizer, providing a highly efficient platform with tunable properties. PMID:24432702

  3. Clarification of the Hall effect as an energy transfer mechanism in a theory of the Earth’s magnetic field and sunspots

    Directory of Open Access Journals (Sweden)

    A. de Paor


    Full Text Available Clarification is offered of the energy transfer role played by the Hall effect in a recent paper: de Paor, A., A theory of the Earth's magnetic field and of sunspots, based on a self-excited dynamo incorporating the Hall effect, Nonlinear Processes in Geophysics, 8, 265-279, 2001.

  4. Effect of bridge on energy transfer and photoinduced charge separation in perylene-diimide-naphthalene-bisimide-hexathiophene based donor-bridge-acceptor triads

    Directory of Open Access Journals (Sweden)

    Tilley T.D.


    Full Text Available Femtosecond transient absorption spectroscopy is performed to assess bridge effects on energy transfer and charge separation in molecular junctions. A short, conjugated bridge can facilitate charge separation from both donor and acceptor, whereas in longer bridges charge separation only occurs from the excited donor.

  5. Energy transfer (In3+ → Eu3+) based Polyvinyl Alcohol polymer composites for bright red luminescence (United States)

    Kumar, K. Naveen; Vijayalakshmi, L.; Kim, Jong Su; Shim, Jaesool; Cho, Migyung; Kang, Misook; Gupta, Bipin Kumar


    A prominent sensitization effect of In3+ ions is observed in In3++Eu3+: PVA polymer composites under UV excitation. Consequently, it enhances the red emission performance of Eu3+ ions in PVA system. We have successfully synthesized Eu3+: PVA, In3+: PVA and In3++Eu3+: PVA polymer films by traditional solution casting method. The structural and ion-polymer interaction studies have been analyzed from XRD and FTIR spectral profiles. Eu3+ doped PVA polymer composites are exhibited a red emission at 619 nm (5D0→7F2) under 396 nm (7F0→5L6) of excitation. Upon co-doping with In3+ ions in different concentrations to the Eu3+: PVA polymer film, it exhibits predominant red emission than singly doped Eu3+: PVA under 396 nm of excitation due to energy migration from In3+ to Eu3+. Successful emission photons of In3+ ions are collectively absorbed by the Eu3+ ions which lead the improvement of red emission. Optimized sensitization concentration of the In3+ ions has been found to be 0.01 wt%. Possible energy migration phenomenon is elucidated by several fluorescent dynamics. The energy transfer process is substantiated by lifetime decay analysis and overlapped spectral studies. The Commission International de I-Eclairage chromaticity coordinates were calculated. The quantum efficiencies of the Eu3+ ions and In3+ ions in singly doped and co-doped polymer systems have been evaluated. From these results, these co-doped In3++Eu3+: PVA composite polymer films might be proposed as encouraging candidates for bright red fluorescent materials for several photonic applications.

  6. Distributed parameter model and experimental validation of a compressive-mode energy harvester under harmonic excitations

    Energy Technology Data Exchange (ETDEWEB)

    Li, H.T. [Department of Engineering Mechanics, Northwestern Polytechnical University, Xian (China); Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Ontario (Canada); Yang, Z.; Zu, J. [Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Ontario (Canada); Qin, W. Y., E-mail: [Department of Engineering Mechanics, Northwestern Polytechnical University, Xian (China)


    This paper presents the modeling and parametric analysis of the recently proposed nonlinear compressive-mode energy harvester (HC-PEH) under harmonic excitation. Both theoretical and experimental investigations are performed in this study over a range of excitation frequencies. Specially, a distributed parameter electro-elastic model is analytically developed by means of the energy-based method and the extended Hamilton’s principle. An analytical formulation of bending and stretching forces are derived to gain insight on the source of nonlinearity. Furthermore, the analytical model is validated against with experimental data and a good agreement is achieved. Both numerical simulations and experiment illustrate that the harvester exhibits a hardening nonlinearity and hence a broad frequency bandwidth, multiple coexisting solutions and a large-amplitude voltage response. Using the derived model, a parametric study is carried out to examine the effect of various parameters on the harvester voltage response. It is also shown from parametric analysis that the harvester’s performance can be further improved by selecting the proper length of elastic beams, proof mass and reducing the mechanical damping.

  7. Photochemical transformations. 37. Electron-transfer requirements for photosolvolysis and photo-Wagner-Meerwein reactions of some dichlorodibenzobicyclo(2. 2. 2)octadienes in singlet and triplet excited states

    Energy Technology Data Exchange (ETDEWEB)

    Cristol, S.J.; Bindel, T.H.; Hoffmann, D.; Aeling, E.O.


    Substituted trans-7,8-dichloro-10-X-2,3:5,6-dibenzobicyclo(2.2.2)octa-2,5-dienes (X = COCH/sub 3/, CN, and NO/sub 2/) and corresponding dinitro-substituted compounds (10,15-dinitro) were solvolyzed with silver acetate in acetic acid and were irradiated in glacial acetic acid or acetonitrile with 254- and 300-nm light. The structures of the monoring-substituted diastereoisomeric dichlorides were demonstrated by proof of structures of the daughter solvolysis products. Unlike compounds previously studied, these compounds were either photochemically inert or photoinactive with respect to Wagner-Meerwein rearrangement or to solvolysis. These results have been rationalized in terms of the inability of the excited states of the light-absorbing chromophores in these compounds to transfer electrons to the carbon-chlorine bonds remote from these chromophores. While triplet states of a variety of cis- and trans-7,8-dichloro-2,3:5,6-dibenzobicyclo(2.2.2)octa-2,5-dienes are reported to be similarly inert, the 10,11-dimethoxy derivatives all were photoactive with acetone sensitization. The migration stereochemistries of the sensitized reactions were quite different from those of direct irradiations or of ground-state reactions. Estimations of the free energies of electron transfer were consistent with these and previously reported results. 26 references, 1 table.

  8. Hybrid lead halide perovskites for light energy conversion: Excited state properties and photovoltaic applications (United States)

    Manser, Joseph S.

    travel 220 nm over the course of 2 ns after photoexcitation, with an extrapolated diffusion length greater than one micrometer over the full excited state lifetime. The solution-processability of metal halide perovskites necessarily raises questions as to the properties of the solvated precursors and their connection to the final solid-state perovskite phase. Through structural and steady-state and time-resolved absorption studies, the important link between the excited state properties of the precursor components, composed of solvated and solid-state halometallate complexes, and CH3NH3PbI3 is evinced. This connection provides insight into optical nonlinearities and electronic properties of the perovskite phase. Fundamental studies of CH 3NH3PbI3 ultimately serve as a foundation for application of this and other related materials in high-performance devices. In the final chapter, the operation of CH3NH3PbI 3 solar cells in a tandem architecture is presented. The quest for economic, large scale hydrogen production has motivated the search for new materials and device designs capable of splitting water using only energy from the sun. In light of this, we introduce an all solution-processed tandem water splitting assembly composed of a BiVO4 photoanode and a single-junction CH3NH3PbI3 hybrid perovskite solar cell. This unique configuration allows efficient solar photon management, with the metal oxide photoanode selectively harvesting high energy visible photons and the underlying perovskite solar cell capturing lower energy visible-near IR wavelengths in a single-pass excitation. Operating without external bias under standard terrestrial one sun illumination, the photoanode-photovoltaic architecture, in conjunction with an earthabundant cobalt phosphate catalyst, exhibits a solar-to-hydrogen conversion efficiency of 2.5% at neutral pH. The design of low-cost tandem water splitting assemblies employing single-junction hybrid perovskite materials establishes a potentially

  9. Ultrafast energy transfer in oligofluorene-aluminum bis(8-hydroxyquinoline)acetylacetone coordination polymers. (United States)

    Montes, Victor A; Zyryanov, Grigory V; Danilov, Evgeny; Agarwal, Neeraj; Palacios, Manuel A; Anzenbacher, Pavel


    Understanding the excited-state dynamics in conjugated systems can lead to their better utilization in optical sensors, organic photovoltaics (OPVs), and organic light-emitting diodes (OLEDs). We present the synthesis of self-assembled coordination polymers comprising two types of fluorescent moieties: discrete fluorene oligomers of a well-defined length (n = 1-9) connected via aluminum(III) bis(8-quinolinolate)acetylacetone joints. Due to their well-defined structure, these materials allowed for a detailed study of energy migration processes within the materials. Thus, femtosecond transient spectroscopy was used to study the ultrafast energy transfer from the oligofluorene to the quinolinolate moieties, which was found to proceed at a rate of 10(11) s(-1). The experimental results were found to be in agreement with the behavior predicted according to the Beljonne's improved Forster model of energy transfer. In addition, the solid-state and semiconductor properties of these coordination polymers allowed for the fabrication of OLEDs. Preliminary experiments with simple two- and three-layer devices fabricated by spin-coating yield bright yellow electroluminescence with maximum brightness of 6000 cd/m(2), with a turn-on voltage of approximately 6 V and a maximum external quantum efficiency of up to 1.2%, suggesting their potential for use in PLED applications.

  10. Energy Transfer Highway in Nd3+-Sensitized Nanoparticles for Efficient near-Infrared Bioimaging. (United States)

    Cao, Cong; Xue, Meng; Zhu, Xingjun; Yang, Pengyuan; Feng, Wei; Li, Fuyou


    Despite the large absorption cross-section of Nd3+ dopant as a sensitizer in lanthanide doped luminescence system, the strong cross-relaxation effect of it impedes the promotion of doping concentration and thus reduces the utilization of excitation light. In this work, we introduce a highly efficient acceptor, Yb3+ ion, which can quickly receive energy from Nd3+ ions, to construct an energy transfer highway for the enhancement of near-infrared emission. By using the energy transfer highway, the doping amount of Nd3+ ions in our NaYF4:Yb,Nd@CaF2 core/shell nanoparticles (CSNPs) can be markedly elevated to 60%. The quantum yield of CSNPs was determined to be 20.7%, which provides strong near-infrared luminescence for further bioimaging application. Remarkably, deep tissue penetration depth (∼10 mm) in in vitro imaging and high spatial resolution of blood vessel (∼0.19 mm) in in vivo imaging were detected clearly with weak autofluorescence, demonstrating that probes can be used as excellent NIR biosensors.

  11. Dynamics of transfer of electron excitation in a donor-acceptor system with a carbon chain and ways of its relaxation

    Directory of Open Access Journals (Sweden)

    M.M. Sevryukova


    Full Text Available The optical properties and dynamics of transport of electron excitation and the ways of its relaxation in the supramolecular D–π–A complex on the basis of merocyanines have been investigated. There have been found two components in the transfer of charge: fast and slow, which correspond to different conformational states of the carbon chain in merocyanines. It was found that the main photoluminescence of the studied molecular solutions of merocyanines by its nature is similar to the exciplex luminescence, as a manifestation of resonant and charge transfer interaction in an excited state. The lifetime in this state is about 2000 ps.

  12. A unified model for simulating liquid and gas phase, intermolecular energy transfer: N₂ + C₆F₆ collisions. (United States)

    Paul, Amit K; Kohale, Swapnil C; Pratihar, Subha; Sun, Rui; North, Simon W; Hase, William L


    Molecular dynamics simulations were used to study relaxation of a vibrationally excited C6F6* molecule in a N2 bath. Ab initio calculations were performed to develop N2-N2 and N2-C6F6 intermolecular potentials for the simulations. Energy transfer from "hot" C6F6 is studied versus the bath density (pressure) and number of bath molecules. For the large bath limit, there is no heating of the bath. As C6F6* is relaxed, the average energy of C6F6* is determined versus time, i.e., ⟨E(t)⟩, and for each bath density ⟨E(t)⟩ is energy dependent and cannot be fit by a single exponential. In the long-time limit C6F6 is fully equilibrated with the bath. For a large bath and low pressures, the simulations are in the fixed temperature, independent collision regime and the simulation results may be compared with gas phase experiments of collisional energy transfer. The derivative d[⟨E(t)⟩]/dt divided by the collision frequency ω of the N2 bath gives the average energy transferred from C6F6* per collision ⟨ΔE(c)⟩, which is in excellent agreement with experiment. For the ~100-300 ps simulations reported here, energy transfer from C6F6* is to N2 rotation and translation in accord with the equipartition model, with no energy transfer to N2 vibration. The energy transfer dynamics from C6F6* is not statistically sensitive to fine details of the N2-C6F6 intermolecular potential. Tests, with simulation ensembles of different sizes, show that a relatively modest ensemble of only 24 trajectories gives statistically meaningful results.

  13. Synthesis and systematic evaluation of dark resonance energy transfer (DRET)-based library and its application in cell imaging. (United States)

    Su, Dongdong; Teoh, Chai Lean; Kang, Nam-Young; Yu, Xiaotong; Sahu, Srikanta; Chang, Young-Tae


    In this paper, we report a new strategy for constructing a dye library with large Stokes shifts. By coupling a dark donor with BODIPY acceptors of tunable high quantum yield, a novel dark resonance energy transfer (DRET)-based library, named BNM, has been synthesized. Upon excitation of the dark donor (BDN) at 490 nm, the absorbed energy is transferred to the acceptor (BDM) with high efficiency, which was tunable in a broad range from 557 nm to 716 nm, with a high quantum yield of up to 0.8. It is noteworthy to mention that the majority of the non-radiative energy loss of the donor was converted into the acceptor's fluorescence output with a minimum leak of donor emission. Fluorescence imaging tested in live cells showed that the BNM compounds are cell-permeable and can also be employed for live-cell imaging. This is a new library which can be excited through a dark donor allowing for strong fluorescence emission in a wide range of wavelengths. Thus, the BNM library is well suited for high-throughput screening or multiplex experiments in biological applications by using a single laser excitation source. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A radiative transfer model to treat infrared molecular excitation in cometary atmospheres (United States)

    Debout, V.; Bockelée-Morvan, D.; Zakharov, V.


    The exospheres of small Solar System bodies are now observed with high spatial resolution from space missions. Interpreting infrared spectra of cometary gases obtained with the VIRTIS experiment onboard the Rosetta cometary mission requires detailed modeling of infrared fluorescence emission in optically thick conditions. Efficient computing methods are required since numerous ro-vibrational lines excited by the Sun need to be considered. We propose a new model working in a 3-D environment to compute numerically the local incoming radiation. It uses a new algorithm using pre-defined directions of ray propagation and ray grids to reduce the CPU cost in time with respect to Monte Carlo methods and to treat correctly the sunlight direction. The model is applied to the ν3 bands of CO2 and H2O at 4.3 μ m and 2.7 μ m respectively, and to the CO ∨ (1 → 0) band at 4.7 μ m. The results are compared to the ones obtained by a 1-D algorithm which uses the Escape Probability (EP) method, and by a 3-D ;Coupled Escape Probability; (CEP) model, for different levels of optical thickness. Our results suggest that the total band flux may vary strongly with azimuth for optically thick cases whereas the azimuth average total band flux computed is close to the one obtained with EP. Our model globally predicts less intensity reduction from opacity than the CEP model of Gersch and A'Hearn (Gersch, A.M., A'Hearn, M.F. [2014]. Astrophys. J. 787, 36-56). An application of the model to the observation of CO2, CO and H2O bands in 67/P atmosphere with VIRTIS is presented to predict the evolution of band optical thickness along the mission.

  15. Optimal aeroassisted coplanar orbital transfer using an energy model (United States)

    Halyo, Nesim; Taylor, Deborah B.


    The atmospheric portion of the trajectories for the aeroassisted coplanar orbit transfer was investigated. The equations of motion for the problem are expressed using reduced order model and total vehicle energy, kinetic plus potential, as the independent variable rather than time. The order reduction is achieved analytically without an approximation of the vehicle dynamics. In this model, the problem of coplanar orbit transfer is seen as one in which a given amount of energy must be transferred from the vehicle to the atmosphere during the trajectory without overheating the vehicle. An optimal control problem is posed where a linear combination of the integrated square of the heating rate and the vehicle drag is the cost function to be minimized. The necessary conditions for optimality are obtained. These result in a 4th order two-point-boundary-value problem. A parametric study of the optimal guidance trajectory in which the proportion of the heating rate term versus the drag varies is made. Simulations of the guidance trajectories are presented.

  16. Femtosecond insights into direct electron injection in dye anchored ZnO QDs following charge transfer excitation. (United States)

    Kumar, Pushpendra; Kumar, Sunil; Ghosh, Subrata; Pal, Suman Kalyan


    The role of the charge transfer (CT) state in interfacial electron transfer in dye-sensitized semiconductor nanocrystals is still poorly understood. To address this problem, femtosecond transient absorption (TA) spectroscopy is used as a probe to investigate the electron injection across a newly synthesized coumarin dye (8-hydroxy-2-oxo-4-phenyl-2 benzo[h]chromene-3-carbonitrile, coded BC5) and ZnO quantum dots (QDs). Steady state and time-resolved spectroscopic measurements reveal that BC5 dye interacts strongly with ZnO QDs in the ground state forming a CT complex. The BC5-ZnO QD complex absorbs more towards red compared to only the dye and QDs, and emits fluorescence due to radiative recombination of photogenerated charges. The formation of charges following the excitation of the CT complex has been demonstrated by observing the signature of dye radical cations and electrons in the conduction band (CB) of the QDs in the TA spectra. The TA signals of these charges grow sharply as a result of ultrafast direct electron injection into the QD. We have monitored the complete dynamics of photogenerated charges by measuring the TA signals of the charges up to a couple of nanoseconds. The injected electrons that are free or shallowly trapped recombine with a time constant of 625 fs, whereas deeply trapped electrons disappear slowly (526 ps) via radiative recombination. Furthermore, theoretical studies based on ab initio calculations have been carried out to complement the experimental findings.

  17. Rotational dependence of the proton-transfer reaction HBr+ + CO2-->HOCO+ + Br. I. Energy versus angular momentum effects. (United States)

    Paetow, Lisa; Unger, Franziska; Beichel, Witali; Frenking, Gernot; Weitzel, Karl-Michael


    Cross sections for the endothermic proton-transfer reactions of rotationally state-selected HBr(+) and DBr(+) ions with CO(2) were measured in a guided ion beam apparatus in order to determine the influence of rotational excitation and collision energy in the center of mass (c.m.) system on the cross section. Ab initio calculations were performed to obtain energetic information about reactants, intermediates, and products. In the experiment HBr(+) and DBr(+) ions were prepared with the same mean rotational quantum number but different mean rotational energies as the rotational constants differ by about a factor of two. The mean rotational energy was varied from 1.4 to 66.3 meV for HBr(+) and from 0.7 to 43.0 meV for DBr(+). Collision energies (E(c.m.)) ranged from 0.32 to 1.00 eV. Under all conditions considered, an increase in the rotational excitation leads to a decrease in the cross section for both reactions. However, the effect is more pronounced for the higher collision energies. For E(c.m.)=1.00 and 0.85 eV; a comparison between the results for HBr(+) and DBr(+) indicates that the cross section is dominated by effects of rotational energy rather than angular momentum. For lower collision energies the cross sections for the deuteron transfer and the proton transfer are in best agreement if not compared for the same c.m. collision energy but for the same value of the difference between the collision energy and the reaction enthalpy.

  18. Assistance of molecular vibrations on coherent energy transfer in photosynthesis from the view of a quantum heat engine. (United States)

    Zhang, Zhedong; Wang, Jin


    Recently, the quantum nature in the energy transport in solar cells and light-harvesting complexes has attracted much attention as being triggered by the experimental observations. We model the light-harvesting complex (i.e., PEB50 dimer) as a quantum heat engine (QHE) and study the effect of the undamped intramolecule vibrational modes on the coherent energy-transfer process and quantum transport. We find that the exciton-vibration interaction has nontrivial contribution to the promotion of quantum yield as well as transport properties of the QHE at steady state by enhancing the quantum coherence quantified by entanglement entropy. The perfect quantum yield over 90% has been obtained, with the exciton-vibration coupling. We attribute these improvements to the renormalization of the electronic couplings effectively induced by exciton-vibration interaction and the subsequent delocalization of excitons. Finally, we demonstrate that the thermal relaxation and dephasing can help the excitation energy transfer in the PEB50 dimer.

  19. Excited singlet (S1) state interactions of 2,2'- and 4,4'-biphenyldiols with chloroalkanes: Photoinduced dissociative electron transfer (United States)

    Mohanty, J.; Pal, H.; Sapre, A. V.


    Interactions of the excited singlet (S1) state of 2,2'- and 4,4'-biphenyldiols with a number of chloroalkanes (CA) have been investigated in acetonitrile solutions using fluorescence quenching measurements. For any particular diol-CA pair, the bimolecular quenching constants kq obtained from steady-state and time-resolved measurements are found to be the same, indicating the dynamic nature of the interaction. The kq values for different diol-CA pairs are seen to increase as the oxidation potential of the diol becomes less positive or the reduction potential of the CA becomes less negative, indicating the electron transfer (ET) type of interaction for the observed quenching. Following Marcus' outer-sphere ET theory, the correlation of the observed kq values with the free-energy changes for such reactions (ΔG0) results in the recovery of an unusually higher intramolecular reorganization energy (λin), indicating that the ET in the systems studied might not be of outer sphere in nature. Since the CAs are prone to undergo C-Cl bond cleavage following their reduction, a dissociative ET (DET) mechanism has been proposed for the observed fluorescence quenching. The evidence for the DET mechanism has been obtained by characterizing and estimating the Cl- ions in the photolyzed diol-CA solutions. Following a suitable theory for concerted DET reactions, it is seen that the observed kq values correlate well with the free-energy changes (ΔGDET0) for such reactions. It is seen that the reorganization energy recovered from such correlation accounts well for the C-Cl bond dissociation energy of the CAs, supporting a concerted DET mechanism in these systems.

  20. Analytic model for low energy excitation states and phase transitions in spin-ice systems (United States)

    López-Bara, F. I.; López-Aguilar, F.


    Low energy excitation states in magnetic structures of the so-called spin-ices are produced via spin flips among contiguous tetrahedra of their crystal structure. These spin flips generate entities which mimic magnetic dipoles in every two tetrahedra according to the dumbbell model. When the temperature increases, the spin-flip processes are transmitted in the lattice, generating so-called Dirac strings, which constitute structural entities that can present mimetic behavior similar to that of magnetic monopoles. In recent studies of both specific heat and ac magnetic susceptibility, two (even possibly three) phases have been shown to vary the temperature. The first of these phases presents a sharp peak in the specific heat and another phase transition occurs for increasing temperature whose peak is broader than that of the former phase. The sharp peak occurs when there are no free individual magnetic charges and temperature of the second phase transition coincides with the maximum proliferation of free deconfined magnetic charges. In the present paper, we propose a model for analyzing the low energy excitation many-body states of these spin-ice systems. We give analytical formulas for the internal energy, specific heat, entropy and their temperature evolution. We study the description of the possible global states via the nature and structure of their one-body components by means of the thermodynamic functions. Below 0.37 K, the Coulomb-like magnetic charge interaction can generate a phase transition to a condensation of pole-antipole pairs, possibly having Bose-Einstein structure which is responsible for the sharp peak of the first phase transition. When there are sufficient free positive and negative charges, the system tends to behave as a magnetic plasma, which implies the broader peak in the specific heat appearing at higher temperature than the sharper experimental peak.