WorldWideScience

Sample records for excimer laser irradiation

  1. Excimer laser irradiation of metal surfaces

    Science.gov (United States)

    Kinsman, Grant

    In this work a new method of enhancing CO2 laser processing by modifying the radiative properties of a metal surface is studied. In this procedure, an excimer laser (XeCl) or KrF) exposes the metal surface to overlapping pulses of high intensity, 10(exp 8) - 10(exp 9) W cm(exp -2), and short pulse duration, 30 nsec FWHM (Full Width Half Maximum), to promote structural and chemical change. The major processing effect at these intensities is the production of a surface plasma which can lead to the formation of a laser supported detonation wave (LSD wave). This shock wave can interact with the thin molten layer on the metal surface influencing to a varying degree surface oxidation and roughness features. The possibility of the expulsion, oxidation and redeposition of molten droplets, leading to the formation of micron thick oxide layers, is related to bulk metal properties and the incident laser intensity. A correlation is found between the expulsion of molten droplets and a Reynolds number, showing the interaction is turbulent. The permanent effects of these interactions on metal surfaces are observed through scanning electron microscopy (SEM), transient calorimetric measurements and Fourier transform infrared (FTIR) spectroscopy. Observed surface textures are related to the scanning procedures used to irradiate the metal surface. Fundamental radiative properties of a metal surface, the total hemispherical emissivity, the near-normal spectral absorptivity, and others are examined in this study as they are affected by excimer laser radiation. It is determined that for heavily exposed Al surface, alpha' (10.6 microns) can be increased to values close to unity. Data relating to material removal rates and chemical surface modification for excimer laser radiation is also discussed. The resultant reduction in the near-normal reflectivity solves the fundamental problem of coupling laser radiation into highly reflective and conductive metals such as copper and aluminum. The

  2. excimer laser

    Indian Academy of Sciences (India)

    2014-01-07

    Jan 7, 2014 ... Excimer laser; krypton chloride; UV pre-ionization; gas circulation. PACS No 42.55.Lt. 1. ... active discharge volume is by spark UV radiation created adjacent to both sides of the. Figure 4. Output ... HV electrode, all along its length and spatially modulated to ensure uniform irradiation of the gas volume.

  3. Scattered UV irradiation during VISX excimer laser keratorefractive surgery.

    Science.gov (United States)

    Hope, R J; Weber, E D; Bower, K S; Pasternak, J P; Sliney, D H

    2008-04-01

    To evaluate the potential occupational health hazards associated with scattered ultraviolet (UV) radiation during photorefractive keratectomy (PRK) using the VISX Star S3 excimer laser. The Laser Vision Center, National Naval Medical Center, Bethesda, Maryland, USA. Intraoperative radiometric measurements were made with the Ophir Power/Energy Meter (LaserStar Model PD-10 with silicon detector) during PRK treatments as well as during required calibration procedures at a distance of 20.3 cm from the left cornea. These measurements were evaluated using a worst-case scenario for exposure, and then compared with the American Conference of Governmental Industrial Hygeinists (ACGIH) Threshold Value Limits (TVL) to perform a risk/hazard analysis. During the PRK procedures, the highest measured value was 248.4 nJ/pulse. During the calibration procedures, the highest measured UV scattered radiation level was 149.6 nJ/pulse. The maximum treatment time was 52 seconds. Using a worst-case scenario in which all treatments used the maximum power and time, the total energy per eye treated was 0.132 mJ/cm2 and the total UV radiation at close range (80 cm from the treated eye) was 0.0085 mJ/cm2. With a workload of 20 patients, the total occupational exposure at 80 cm to actinic UV radiation in an 8-hour period would be 0.425 mJ/cm2. The scattered actinic UV laser radiation from the VISX Star S3 excimer laser did not exceed occupational exposure limits during a busy 8-hour workday, provided that operating room personnel were at least 80 cm from the treated eye. While the use of protective eyewear is always prudent, this study demonstrates that the trace amounts of scattered laser emissions produced by this laser do not pose a serious health risk even without the use of protective eyewear.

  4. Excimer Laser Technology

    CERN Document Server

    Basting, Dirk

    2005-01-01

    This comprehensive survey on Excimer Lasers investigates the current range of the technology, applications and devices of this commonly used laser source, as well as the future of new technologies, such as F2 laser technology. Additional chapters on optics, devices and laser systems complete this compact handbook. A must read for laser technology students, process application researchers, engineers or anyone interested in excimer laser technology. An effective and understandable introduction to the current and future status of excimer laser technology.

  5. Fabrication of SERS Active Surface on Polyimide Sample by Excimer Laser Irradiation

    Directory of Open Access Journals (Sweden)

    T. Csizmadia

    2014-01-01

    Full Text Available A possible application of excimer laser irradiation for the preparation of surface enhanced Raman spectroscopy (SERS substrate is demonstrated. A polyimide foil of 125 μm thickness was irradiated by 240 pulses of focused ArF excimer laser beam (λ = 193 nm, FWHM = 20 ns. The applied fluence was varied between 40 and 80 mJ/cm2. After laser processing, the sample was coated with 40 nm silver by PLD in order to create a conducting layer required for the SERS application. The SERS activity of the samples was tested by Raman microscopy. The Raman spectra of Rhodamine 6G aqueous solution (c=10−3 mol/dm3 were collected from the patterned and metalized areas. For areas prepared at 40–60 mJ/cm2 laser fluences, the measured Raman intensities have shown a linear dependence on the applied laser fluence, while above 60 mJ/cm2 saturation was observed. The morphology of the SERS active surface areas was investigated by scanning electron microscopy. Finite element modeling was performed in order to simulate the laser-absorption induced heating of the polyimide foil. The simulation resulted in the temporal and spatial distribution of the estimated temperature in the irradiated polyimide sample, which are important for understanding the structure formation process.

  6. Effect of open ultraviolet germicidal irradiation lamps on functionality of excimer lasers used in cornea surgery.

    Science.gov (United States)

    Belovickis, Jaroslavas; Kurylenka, Aliaksei; Murashko, Vadim

    2017-01-01

    We report on the impact of direct ultraviolet germicidal irradiation (UVGI) on reflective optics, used in the excimer laser system Allegretto Eye-Q. The aim of our work was to confirm our hypothesis based on long-rate observations of obtained anomalies in post-operative results that are attributed to degradation of reflective optics upon ultraviolet radiation. The presence of direct UVGI coupled with humidity in the operating environment caused merging anomalies and unwanted post-operative correction values. Ultraviolet-A radiation caused a similar effect on the reflective cover of the mirrors.

  7. Excimer Laser Etching

    Energy Technology Data Exchange (ETDEWEB)

    Boatner, Lynn A [ORNL; Longmire, Hu Foster [ORNL; Rouleau, Christopher M [ORNL; Gray, Allison S [ORNL

    2008-04-01

    Excimer laser radiation at a wavelength of = 248 nm represents a new etching method for the preparation of metallographic specimens. The method is shown to be particularly effective for enhancing the contrast between different phases in a multiphase metallographic specimen.

  8. Excimer lasers for refractive surgery

    Science.gov (United States)

    Vartapetov, Serge K.

    2003-10-01

    Over the last decade excimer lasers have been broadly used for technological and medical processes. One of the most widespread applications of excimer laser is the clinical use for refractive surgery. Refractive surgery with excimer lasers is the prevalent method for the eye acuity correction. Operation at 193 nanometers, the excimer laser is able to precisely sculpt the corneal surface to correct refractive errors. Both the increase in the accuracy of sculpturing and the predictability of procedures are the key elements of the excimer laser designed for refractive surgery. The novel excimer laser for refractive surgery is offered for small aberration treatment. The excimer laser with both a full aperture Gaussian beam and fly spot system is described. The comparison of different systems of laser correction is reviewed.

  9. 308-nm excimer laser in endodontics

    Science.gov (United States)

    Liesenhoff, Tim

    1992-06-01

    Root canal preparation was performed on 20 extracted human teeth. After opening the coronal pulp, the root canals were prepared by 308 nm excimer laser only. All root canals were investigated under SEM after separation in the axial direction. By sagittal separation of the mandibles of freshly slaughtered cows, it was possible to get access to the tissues and irradiate under optical control. Under irradiation of excimer laser light, tissue starts to fluoresce. It was possible to demonstrate that each tissue (dentin, enamel, bone, pulpal, and connective tissue) has a characteristic spectral pattern. The SEM analyses showed that it is well possible to prepare root canals safely. All organic soft tissue has been removed by excimer laser irradiation. There was no case of via falsa. The simultaneous spectroscopic identification of the irradiated tissue provides a safe protection from overinstrumentation. First clinical trials on 20 patients suffering of chronical apical parodontitis have been carried out successfully.

  10. Determination of the melting threshold of TiO{sub 2} thin films processed by excimer laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Van Overschelde, O. [Chimie des Interactions Plasma-Surface, Universite de Mons, 23, Place du Parc, 7000 Mons (Belgium); Delsate, T. [Service de Physique Theorique et Mathematique, Universite de Mons, 6 Avenue du champ de Mars, 7000 Mons (Belgium); Snyders, R. [Chimie des Interactions Plasma-Surface, Universite de Mons, 23, Place du Parc, 7000 Mons (Belgium); Materia Nova Research Center, 1 Avenue Copernic, 7000 Mons (Belgium)

    2012-06-15

    Processing surfaces by laser needs an understanding of the mechanisms generated by irradiation. In this work, to gain understanding of the mechanisms occurring during irradiation of TiO{sub 2} thin films by means of KrF excimer laser, we have performed infrared time resolved reflectivity measurements. This experimental investigation revealed modifications of the heating/cooling cycle as a function of the fluence (F). These modifications start appearing for a fluence value of about {approx}0.25 J/cm{sup 2} which is associated with the melting threshold of the film. Additionally, we have solved numerically the heat equation of the system with specific boundary conditions. From these calculations, we have established the thermal history of the film during the 25 ns irradiation pulse. The data reveal that a part of the medium liquefies around a fluence of 0.23 J/cm{sup 2} in good agreement with the experimental data.

  11. Influence of corneal collagen crosslinking with riboflavin and ultraviolet-a irradiation on excimer laser surgery.

    Science.gov (United States)

    Kampik, Daniel; Ralla, Bernhard; Keller, Sabine; Hirschberg, Markus; Friedl, Peter; Geerling, Gerd

    2010-08-01

    Riboflavin/ultraviolet A (UVA) cross-linking (CXL) of corneal collagen is a novel method of stabilizing corneal mechanical properties and preventing progression of keratectasias. This study was conducted to investigate whether CXL influences ablation rate, flap thickness, and refractive results of excimer laser procedures ex vivo. Corneal epithelium was removed from enucleated porcine eyes, and CXL was performed with riboflavin 0.1% and UVA radiation (365 nm, 3 mW/cm(2)) for 30 minutes. Control eyes received epithelial abrasion only. Diffusion of riboflavin through the cornea was assessed by using infrared-excited, two-photon microscopy of riboflavin autofluorescence, combined with second-harmonic generation of fibrillar collagen. During phototherapeutic keratectomy, corneal thickness was measured by optical coherence pachymetry. During LASIK for myopia, the flap thickness of microkeratome cuts was measured and the induced refractive change assessed by Placido topography. Data were analyzed by Shapiro-Wilk test and Student's t-test. Multiphoton imaging showed a rapid (30-minute) and even distribution of riboflavin throughout the corneal stroma. No difference in ablation rate was measured in treated and untreated corneas (P = 0.90). Mean flap thickness was increased by 44% in cross-linked corneas (P refractive change was reduced in CXL-treated eyes by 20.1% (P refractive change after LASIK for myopia. Although the laser ablation rate is unaffected, CXL results in an increased flap thickness. This study suggests the need for adjustment of microkeratome and laser parameters for LASIK after CXL and indirectly endorses the theory of a direct stiffening effect of CXL.

  12. Excimer laser drilling of polymers

    Science.gov (United States)

    Chen, Yihong; Zheng, HongYu; Wong, Terence K. S.; Tam, Siu Chung

    1997-08-01

    Laser micro-drilling technology plays a more and more important role in industry, especially in the fabrication of multi-layer electronic packages. In such applications, non- metals are often used as insulators, in which via holes are formed to provide vertical interconnections for densely packed 3D wiring networks. Mechanical punch tools have been the primary means to form holes in ceramic sheets and in polymer boards since the 1970's. As the cost of fabricating punch heads increases drastically and the demand for quick turn around part build becomes more routine, flexible via forming technologies, such as laser drilling, have become more prevalent. In laser drilling, CO2, Nd:YAG, and excimer lasers are often used. Their drilling capabilities, drilling mechanisms, and hole qualities are different because of the different laser beam characteristics such as wavelength and beam energy distribution. In this paper, the mechanisms of laser drilling are briefly reviewed. The results of the experiments on excimer laser drilling of two types of polymer: polyimide and polyethylene terephthalate, are reported. It is found that the etch rate increases with increase of fluence, an the wall angle of drilled holes is dependent on the fluence. The material removal by a laser pulse is highly controllable. There exists an optimal fluence range to obtain clean and smooth edges of quality holes for a given material at a given laser wavelength.

  13. Corneal wound healing after excimer laser keratectomy.

    Science.gov (United States)

    Kaji, Yuichi; Yamashita, Hidetoshi; Oshika, Tetsuro

    2003-03-01

    Excimer laser keratectomy is widely used to correct refractive errors. Several complications of excimer laser keratectomy are reported including corneal infection, regression, corneal haze formation, glare and halo. Most of the complications are closely related to the corneal stromal wound healing process. In order to perform the excimer laser keratectomy with minimum complications, we should understand the mechanism of the corneal stroma wound healing process. In addition, such knowledge will help us to regulate the corneal stromal wound healing process in the future. In the present article, we discuss the molecular mechanism of the corneal stromal wound healing process after excimer laser keratectomy and its regulation by anti-inflammatory agents.

  14. Terraced copper growth deposited onto Teflon AF1600 by the excimer laser irradiation of Cu(hfac)TMVS

    Energy Technology Data Exchange (ETDEWEB)

    Popovici, D.; Piyakis, K.; Sacher, E.; Meunier, M. [Ecole Polytechnique, Montreal, Quebec (Canada)

    1996-12-31

    The authors are studying the feasibility of constructing Cu/fluoropolymer multilayer devices, in an effort to reduce both metal R and insulator C, a necessary condition in VLSI and GSI microelectronic applications. The laser chemical vapor deposition (LCVD) of the organometallic precursor Cu(hfac)TMVS (hexafluoroacetylacetonate)(trimethylvinylsilane) is used to grow copper films on a Teflon AF1600 substrate. Exposure to excimer laser radiation at 248 nm results in a terraced copper growth. A simple model, based on interference effects in the Teflon and copper layers, is presented to account for this structure.

  15. Photosensitivity and stress changes of Ge-free Bi-Al doped silica optical fibers under ArF excimer laser irradiation.

    Science.gov (United States)

    Ban, Christian; Limberger, Hans G; Mashinsky, Valery; Dianov, Evgeny

    2011-12-19

    The photosensitivity of germanium free Bi-Al-doped silica fibers with different bismuth concentrations was investigated using ArF excimer laser radiation at 193 nm and fiber grating formation. For the fiber with the highest bismuth concentration maximum refractive index changes of 2.2 × 10(-3) and 2.0 × 10(-4) were obtained for hydrogen loaded and unloaded fibers, respectively. Irradiation induced tensile stress changes were observed in the fiber core of H(2)-loaded and unloaded fibers. The results indicate a contribution of compaction to the total refractive index change in both cases.

  16. (308 nm) excimer laser

    Indian Academy of Sciences (India)

    The UV lasers with high quantum energy photons directly break the atomic and molecular bonds within material. The photons in this spectral range are also capable of inducing photo- chemical reactions. Most solid materials have high absorption in the UV. The short pulses result in reducing interaction time between laser ...

  17. Formation of densely populated SiOx microtree-like structures on the Si (100) surface using excimer laser irradiation in air

    Science.gov (United States)

    Yang, De-Quan; Sacher, Edward; Meunier, Michel

    2004-10-01

    SiOx microforest-like structures have been produced on Si (100) surfaces by pulsed excimer laser irradiation in air. Scanning electron microscopic observations have indicated these structures, which are composed of aggregated nanoparticles, to be 1-5 μm in diameter and 10-20 μm high, and to have the appearance of trees. XPS analysis has shown them to be composed of a-SiOx (1laser irradiation, our microforest-like trees have many sharp nanoscale branches, which may require lower emission voltages in application such as field-emission sources in plasma displays.

  18. Excimer laser etching of polyimide

    Science.gov (United States)

    Brannon, J. H.; Lankard, J. R.; Baise, A. I.; Burns, F.; Kaufman, J.

    1985-09-01

    It is reported that thin films of polyimide are efficiently etched in air at pulsed excimer laser wavelengths of 248, 308, and 351 nm. Etch rate versus incident fluence data are found to obey a Beer-Lambert etching relation. Sharp laser fluence thresholds for significant etching are found to correlate with the wavelength-dependent absorption coefficient. The absorbed energy density required to initiate significant etching is found, within experimental error, to be independent of the wavelengths examined. It is felt that this information demonstrates the predominantly thermal nature of the laser etching mechanism. Additionally, infrared spectroscopy and coupled gas chromatography/mass spectroscopy were used to identify several gases evolved during pulsed laser etching of polyimide in both air and vacuum.

  19. Applications of the Excimer Laser: A Review.

    Science.gov (United States)

    Beggs, Sarah; Short, Jack; Rengifo-Pardo, Monica; Ehrlich, Alison

    2015-11-01

    The 308-nm excimer laser has been approved by the Food and Drug Administration for the treatment of psoriasis and vitiligo. Its ability to treat localized areas has led to many studies determining its potential in the treatment of focal diseases with inflammation or hypopigmentation. To review the different applications of the 308-nm excimer laser for treating dermatologic conditions. An extensive literature review was conducted by searching PubMed, MEDLINE, and ClinicalKey to find articles pertaining to dermatologic conditions treated with the 308-nm excimer laser. Articles published that contributed to new applications of the excimer laser were included, as well as initial studies utilizing the excimer laser. The outcomes and results were compiled for different dermatologic conditions treated with the excimer laser. The 308-nm excimer laser has a wide range of uses for focal inflammatory and hypopigmented conditions. Treatment is generally well tolerated, with few adverse reactions. Larger studies and studies evaluating the long-term effects of the 308-nm excimer laser are needed.

  20. Influence of chemical polymer composition on integrated waveguide formation induced by excimer laser surface irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hessler, S.; Rosenberger, M.; Belle, S. [Applied Laser and Photonics Group, University of Applied Sciences Aschaffenburg, Wuerzburger Strasse 45, 63743 Aschaffenburg (Germany); Schmauss, B. [Institute of Microwaves and Photonics, University of Erlangen-Nuremberg, Cauerstrasse 9, 91058 Erlangen (Germany); Hellmann, R. [Applied Laser and Photonics Group, University of Applied Sciences Aschaffenburg, Wuerzburger Strasse 45, 63743 Aschaffenburg (Germany)

    2015-11-30

    Graphical abstract: - Highlights: • Optical analysis of two different PMMA materials. • Determination of the chemical polymer compositions via {sup 1}H NMR spectroscopy. • Comparison of UV induced refractive index profiles using phase-shifting interferometry. • Optical characterization of the irradiated surface: average roughness, surface compaction. • Cut-back attenuation measurements confirm superior light guiding performance. - Abstract: We show that the chemical composition and the amount of residual monomers in polymethylmethacrylate significantly affect the evolution of optical waveguide formation induced by UV surface irradiation. We employ an interferometric approach in Mach-Zehnder configuration to determine the refractive index depth profile in different planar polymethylmethacrylate materials. Our results reveal a distinctive different surface and buried waveguide formation for materials having different monomer content. In particular, we find that for smaller residual monomer content buried waveguide formation is less pronounced, which is in turn preferential for a selective light guidance in planar polymer structures. Attenuation measurements confirm a difference in attenuation coefficient of 0.5 dB/cm.

  1. Mitomicina C e "Excimer laser" Mitomycin C and Excimer Laser

    Directory of Open Access Journals (Sweden)

    Anelise Dutra Wallau

    2005-12-01

    Full Text Available A mitomicina C é um antimetabólito que atua em nível celular bloqueando a replicação de DNA e RNA e inibindo a síntese protéica. Utilizada em diversas áreas da oftalmologia, recentemente vem sendo empregada como moduladora da resposta cicatricial corneana em cirurgias ópticas/refrativas por "excimer laser". A aplicação única de mitomicina C associada à cirurgia fotoablativa de superfície corneana tem se mostrado opção segura e eficiente para fins terapêuticos em olhos com opacidade corneana pré-existente e/ou profiláticos em olhos com alto risco de desenvolvimento de opacificação corneana pós-operatória. O uso da droga em cirurgia fotoablativa deve ser cauteloso até que seguimento de longo prazo avalie sua inocuidade tardia. O presente texto faz revisão dos principais estudos sobre modulação da resposta cicatricial corneana com uso de mitomicina C em cirurgias ópticas/refrativas de superfície.Mitomycin C is an antimetabolite agent that blocks DNA and RNA replication and protein synthesis. It has been used in several ophthalmologic areas, and recently as a modulator of corneal wound healing in excimer laser surgeries. A single application of mitomycin C during surface corneal photoablative surgery seems a safe and efficient therapeutic option for eyes with corneal opacity and/or as prophylaxis in eyes with high risk for corneal opacity development. The use of this drug in photoablative surgery should be cautious until long-term safety results have been reported. The present text presents a review about corneal wound healing with the use of mitomycin C.

  2. Overview on the high power excimer laser technology

    Science.gov (United States)

    Liu, Jingru

    2013-05-01

    High power excimer laser has essential applications in the fields of high energy density physics, inertial fusion energy and industry owing to its advantages such as short wavelength, high gain, wide bandwidth, energy scalable and repetition operating ability. This overview is aimed at an introduction and evaluation of enormous endeavor of the international high power excimer laser community in the last 30 years. The main technologies of high power excimer laser are reviewed, which include the pumping source technology, angular multiplexing and pulse compressing, beam-smoothing and homogenous irradiation, high efficiency and repetitive operation et al. A high power XeCl laser system developed in NINT of China is described in detail.

  3. Comparative shock wave analysis during corneal ablation with an excimer laser, picosecond laser, and femtosecond laser

    Science.gov (United States)

    Krueger, Ronald R.; Juhasz, Tibor

    1995-05-01

    With the event of topographic steep central islands following excimer laser surgery and the potential damage to the corneal endothelium, shock waves are playing an increasingly important role in laser refractive surgery. With this in mind, we performed a comparative shock wave analysis in corneal tissue using an excimer laser, picosecond laser, and femtosecond laser. We used a Lambda Physik excimer laser at 308 nm wavelength, a Nd:YLF picosecond laser at 1053 nm wavelength and a synchronously pumped linear cavity femtosecond laser at 630 nm wavelength. The pulse widths of the corresponding lasers were 8 ns, 18 ps, 150 fs, respectively. The energy density of irradiation was 2.5 to 8 times the threshold level being 2 J/cm2 (excimer laser), 86 J/cm2 (picosecond laser) and 10.3 J/cm2 (femtosecond laser). Shock wave dynamics were analyzed using time-resolved photography on a nanosecond time scale using the picosecond laser in corneal tissue, water and air. Shock wave dynamics using the femtosecond laser were studied in water only while the excimer laser induced shock wave during corneal ablation was studied in air only. We found the dynamics of shock waves to be similar in water and corneal tissue indicating that water is a good model to investigate shock wave effects in the cornea. The magnitude of the shock wave velocity and pressure decays over time to that of a sound wave. The distance over which it decays is 3 mm in air with the excimer laser and 600 - 700 micrometers in air with the picosecond laser. In water, the picosecond laser shock wave decays over a distance of 150 micrometers compared to the femtosecond laser shock wave which decays over a distance of 30 micrometers . Overall the excimer laser shock wave propagates 5 times further than that of the picosecond laser and the picosecond laser shock wave propagates 5 times further than that of the femtosecond laser. In this preliminary comparison, the time and distance for shock wave decay appears to be directly

  4. Excimer laser assisted chemical machining of SiC ceramic

    Science.gov (United States)

    Hibi, Yuko; Enomoto, Yuji; Kikuchi, Kaoru; Shikata, Nobuo; Ogiso, Hisato

    1995-02-01

    A highly effective method of machining ceramic has been newly developed using a krypton fluoride (KrF) excimer laser with a 248 nm wavelength. The laser was irradiated on SiC in water to form a soft hydrous oxide layer by photochemical reaction. The softened layer was then cut with a diamond tool to form a mirror surface finish. The optimum conditions were found for both high machining rate and better surface integrity of SiC.

  5. Corrosion resistance improvement of metals by excimer laser surface treatment

    Science.gov (United States)

    Autric, Michel L.; Perrais, Jacqueline; Barreau, Gerard

    2000-02-01

    KrF excimer laser has been used for physical and chemical transformations of metallic materials and coated metal samples. Aluminum alloys, steels and chromium coated mild steel have been treated under excimer laser radiation in order to improve their mechanical properties and their corrosion and oxidation resistance. The laser surface treatment leads, after surface remelting process, to important changes in the topography, the microstructure, the phases and the chemical composition of the near-surface region resulting in different hardness, wear properties and corrosion/oxidation behavior. We focus this paper on aluminum alloys (2000 and 6000 type) and steels irradiated using a krypton fluoride laser (20 ns, 0.5 - 10 J/cm2, up to 200 Hz) in laboratory air. The analysis were carried out by means of scanning electron microscopy, energy dispersive spectroscopy, coupled and low incidence angle X-ray diffraction, microhardness tester and electrochemical test equipments.

  6. Controlling the parameters of YBa2Cu3O(7-delta) high-temperature superconductors through excimer laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Dovgii, IA.O.; Kityk, I.V.; Lutsiv, R.V.; Malinich, S.Z.; Nosan, A.V.

    1991-02-01

    Single crystals (2x3 sq mm) of YBa2Cu3O(7{minus}{delta}) high-temperature superconductors were irradiated by an XeCl laser pumped by a gas discharge with a voltage of 35 kW and a frequency of 5 Hz. The formation of the superconducting phase was observed at oxygen pressures of 4-8 kbar. With an increase in oxygen pressure to 20 kbar, the transition temperature increased to 90 K. A possible mechanism of the observed phenomenon is examined.

  7. Controlling the parameters of YBa2Cu3O(7-delta) high-temperature superconductors through excimer laser irradiation

    Science.gov (United States)

    Dovgii, Ia. O.; Kityk, I. V.; Lutsiv, R. V.; Malinich, S. Z.; Nosan, A. V.

    1991-02-01

    Single crystals (2x3 sq mm) of YBa2Cu3O(7-delta) high-temperature superconductors were irradiated by an XeCl laser pumped by a gas discharge with a voltage of 35 kW and a frequency of 5 Hz. The formation of the superconducting phase was observed at oxygen pressures of 4-8 kbar. With an increase in oxygen pressure to 20 kbar, the transition temperature increased to 90 K. A possible mechanism of the observed phenomenon is examined.

  8. Suppressed intermixing in InAlGaAs/AlGaAs/GaAs and AlGaAs/GaAs quantum well heterostructures irradiated with a KrF excimer laser

    Energy Technology Data Exchange (ETDEWEB)

    Genest, J.; Dubowski, J.J.; Aimez, V. [Universite de Sherbrooke, Centre de recherche en Nanofabrication et Nanocaracteriasation (CRN2), Departement de Genie Electrique et Genie Informatique, Sherbrooke, Quebec (Canada)

    2007-11-15

    The influence of gallium arsenide surface modification induced by irradiation with a KrF excimer laser on the magnitude of the quantum well (QW) intermixing effect has been investigated in InAlGaAs/AlGaAs/GaAs QW heterostructures. The irradiation in an air environment with laser pulses of fluences between 60 and 100 mJ/cm{sup 2} has resulted in the formation of a gallium oxide-rich film at the surface. Following the annealing at 900 C, up to 35 nm suppression of the band gap blue shift was observed in all the laser irradiated samples when compared to the non-irradiated samples. The origin of suppression has been discussed in terms of stress controlled diffusion. (orig.)

  9. Investigation of excimer laser ablation of iron

    Science.gov (United States)

    Jordan, R.; Lunney, J. G.

    1998-05-01

    The excimer ablation of iron at 248 nm has been investigated by measuring the ablation depth and average ion energy as a function of laser fluence. Measurements have also been made of the laser transmission through the ablated vapour above the target. The absolute spectral intensity of the emission from the ablation plasma has been measured in both the vacuum ultraviolet and the visible. All results were compared with a simple numerical model describing the main physical processes involved in laser ablation of metal targets.

  10. Automatic alignment of double optical paths in excimer laser amplifier

    Science.gov (United States)

    Wang, Dahui; Zhao, Xueqing; Hua, Hengqi; Zhang, Yongsheng; Hu, Yun; Yi, Aiping; Zhao, Jun

    2013-05-01

    A kind of beam automatic alignment method used for double paths amplification in the electron pumped excimer laser system is demonstrated. In this way, the beams from the amplifiers can be transferred along the designated direction and accordingly irradiate on the target with high stabilization and accuracy. However, owing to nonexistence of natural alignment references in excimer laser amplifiers, two cross-hairs structure is used to align the beams. Here, one crosshair put into the input beam is regarded as the near-field reference while the other put into output beam is regarded as the far-field reference. The two cross-hairs are transmitted onto Charge Coupled Devices (CCD) by image-relaying structures separately. The errors between intersection points of two cross-talk images and centroid coordinates of actual beam are recorded automatically and sent to closed loop feedback control mechanism. Negative feedback keeps running until preset accuracy is reached. On the basis of above-mentioned design, the alignment optical path is built and the software is compiled, whereafter the experiment of double paths automatic alignment in electron pumped excimer laser amplifier is carried through. Meanwhile, the related influencing factors and the alignment precision are analyzed. Experimental results indicate that the alignment system can achieve the aiming direction of automatic aligning beams in short time. The analysis shows that the accuracy of alignment system is 0.63μrad and the beam maximum restoration error is 13.75μm. Furthermore, the bigger distance between the two cross-hairs, the higher precision of the system is. Therefore, the automatic alignment system has been used in angular multiplexing excimer Main Oscillation Power Amplification (MOPA) system and can satisfy the requirement of beam alignment precision on the whole.

  11. Preparation of periodic surface structures on doped poly(methyl metacrylate) films by irradiation with KrF excimer laser

    Science.gov (United States)

    Kalachyova, Yevgeniya; Lyutakov, Oleksiy; Slepicka, Petr; Elashnikov, Roman; Svorcik, Vaclav

    2014-10-01

    In this work, we describe laser modification of poly(methyl methacrylate) films doped with Fast Red ITR, followed by dopant exclusion from the bulk polymer. By this procedure, the polymer can be modified under extremely mild conditions. Creation of surface ordered structure was observed already after application of 15 pulses and 12 mJ cm-2 fluence. Formation of grating begins in the hottest places and tends to form concentric semi-circles around them. The mechanism of surface ordered structure formation is attributed to polymer ablation, which is more pronounced in the place of higher light intensity. The smoothness of the underlying substrate plays a key role in the quality of surface ordered structure. Most regular grating structures were obtained on polymer films deposited on atomically `flat' Si substrates. After laser patterning, the dopant was removed from the polymer by soaking the film in methanol.

  12. Subpicosecond, high-brightness excimer laser systems

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, A.J.; Gosnell, T.R.; Roberts, J.P.; Lester, C.S.; Gibson, R.B.; Harper, S.E.; Tallman, C.R.

    1988-01-01

    Subpicosecond, high-brightness excimer laser systems are being used to explore the interaction of intense coherent ultraviolet radiation with matter. Applications of current systems include generation of picosecond x-ray pulses, investigation of possible x-ray laser pumping schemes, studies of multiphoton phenomena in atomic species, and time-resolved photochemistry. These systems, based on the amplification of subpicosecond pulses in small aperture (/approximately/1 cm/sup 2/) XeCl or KrF amplifiers, deliver focal spot intensities of /approximately/10/sup 17/ W/cm/sup 2/. Scaling to higher intensities, however, will require an additional large aperture amplifier which preserves near-diffraction-limited beam quality and subpicosecond pulse duration. We describe here both a small aperture KrF system which routinely provides intensities >10/sup 17/ W/cm/sup 2/ to several experiments, and a large aperture XeCl system designed to deliver /approximately/1 J subpicosecond pulses and yield intensities on target in excess of 10/sup 19/W/cm/sup 2/. We also discuss the effects of two-photon absorption on large-aperture, high-brightness excimer lasers. 4 refs., 2 figs.

  13. Electrodeless excimer laser; Laser a eccimeri senza elettrodi

    Energy Technology Data Exchange (ETDEWEB)

    Lisi, N. [ENEA, Divisione Nuovi Materiali, Centro Ricerche Casaccia, Rome (Italy)

    2001-07-01

    In this paper it is proposed how to build an excimer laser based on an electrodeless discharge (or Dielectric Barrier Discharge). Such laser could operate with a low energy per pulse (<100 mJ) and a high repetition rate (<100 kHz). The most relevant advantage an electrodeless DBD laser is the much longer gas mixture lifetime. This feature could allow the operation of a sealed laser emitting higher average power with respect to commercially available excimer lasers. Such discharge scheme could be advantageous in order to excite the F{sub 2} excimer molecule, whose emission wavelength in the VUV range (157 nm) at high reprate is particularly interesting in the micro-lithography field. [Italian] In questo documento viene proposto come costruire un laser a eccimeri basato su una scarica priva di elettrodi, o Dielectric Barrier Discharge. Tale laser puo' funzionare con una bassa energia per impulso (<100 mJ) ad alta frequenza di ripetizione (<100 kHz). Il vantaggio fondamentale di un laser a DBD e quindi privo di elettrodi e' la vita media della miscela gassosa molto piu' alta che potrebbe permettere alla camera laser di operare sigillata ad una potenza media superiore a quella dei laser a eccimeri attuali. Tale schema di pompaggio potrebbe essere particolarmente vantaggioso per eccitare la molecola eccimero F{sub 2} la cui lunghezza di emissione nel VUV (157 nm) ad elevata frequenza di ripetizione presenta un notevole interesse nel campo della produzione di microcircuiti.

  14. Excimer laser phototherapeutic keratectomy for keratoconus nodules.

    Science.gov (United States)

    Elsahn, Ahmed F; Rapuano, Christopher J; Antunes, Victor A; Abdalla, Yasmine F; Cohen, Elisabeth J

    2009-02-01

    To report the outcomes of contact lens-intolerant patients with keratoconus (KCN) with subepithelial nodules treated with excimer laser phototherapeutic keratectomy (PTK). The charts of all contact lens-intolerant patients with KCN who underwent excimer laser PTK for subepithelial nodules were identified using a computer database and were retrospectively reviewed. Preoperative and postoperative visual acuity and method of correction, surgical treatment, epithelial healing, complications, and KCN nodule recurrence were all analyzed. Fifteen eyes of 15 patients with a minimum follow-up of 3 months were reviewed. Mean follow-up time was 23.1 months (SD +/- 42.5 months, range 3-143 months). In 9 eyes, the epithelial defect healed by postoperative day 3 and all eyes healed by postoperative day 6. There was no infection or corneal melting in any of the eyes. After PTK, 11 patients were refit successfully with rigid gas-permeable contact lenses and 4 wore glasses. Three patients had a recurrence of the KCN nodule at 3, 8, and 23 months postoperatively. One of them had a repeat PTK 23 months after the initial surgery, improving to 20/40 with contact lenses at 55 months postoperatively. Another patient decided to have a penetrating keratoplasty, and the third patient is considering repeat PTK or penetrating keratoplasty. PTK effectively removed KCN nodules without recurrences in most patients and can be a successful modality to improve contact lens tolerance and delay or avoid more invasive surgery.

  15. Excimer Lasers With Capacitively Excited Tubular Discharges

    Science.gov (United States)

    Eichler, Hans J.; Herweg, Helmut; de la Rosa, Jose

    1989-04-01

    The excitation of excimer lasers in tubular discharges results in simple and compact devices needing no preionization. Optical output energies are in the millijoule range. We investigated XeF, KrF and ArF lasers for various operating conditions. The lasers consist of capillary glass tubes with two internal electrodes at the ends and an aluminium-foil wrapped around the tube as capacitive electrode. A maximum output energy of 0.3 mJ has been achieved for the XeF laser. The good quality of the discharge is indicated by the observation of spontaneous mode locking. The detailed study of the discharge for different polarities of the electrodes has shown that efficient operation with a high gas lifetime can be obtained by a purely capacitively excited discharge. A gas lifetime of about 10,000 pulses for 3 litres gas mixture has been observed. Using a two stage Marx generator to generate 100 kV excitation voltage a maximum output energy of 0.7 mJ was obtained for a gas mixture of Kr, F2 and He with an efficiency of 0.17%. The KrF laser operates also without the buffer gas. Laser action in ArF has been achieved with 15 μJ pulse energy and 10 ns duration.

  16. Refractive microlenses produced by excimer laser machining of poly(methyl methacrylate)

    DEFF Research Database (Denmark)

    Jensen, Martin Frøhling; Krühne, Ulrich; H., L.

    2005-01-01

    A method has been developed whereby refractive microlenses can be produced in poly (methyl methacrylate) by excimer laser irradiation at λ = 248 nm. The lenses are formed by a combined photochemical and thermal process. The lenses are formed as depressions in the substrate material (negative foca...

  17. Development mechanism of high pressure argon plasma produced by irradiation of excimer laser. Ekishima reza ni yori seiseishita koatsuryoku arugon purazuma no seicho kiko

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, J.; Tsuda, N.; Uchida, Y.; Furuhashi, H. (Aichi Inst. of Technology, Aichi (Japan)); Sahashi, T. (Daido Inst. of Technology, Aichi (Japan))

    1994-04-20

    The studies of a high temperature and high density laser plasma are being carried out centering around solid targets, but a high density plasma can be generated also by focused irradiation of a laser light onto a high pressure gas target. However, in this case, studies on a high pressure laser plasma using the ultra-violet beam are seldom conducted. In this paper, the generation mechanism of a plasma generated mainly behind the focal point of the lens is mentioned in case when the ultra violet laser beam is focused and irradiated onto a high pressure argon gas, and it has been compared for study with the plasma generated by a ruby laser. Part of the obtained results is as follows; it has been elucidated that the plasma generated behind the focal point by focusing and irradiating an ultra violet laser beam onto a high pressure argon gas is growing simultaneously by the radiation supported shock wave and the breakdown wave, same as the case of a visible laser beam. When the ultra violet beam with frequency higher than the plasma frequency is irradiated, a plasma grows in front of the focal point too. 6 refs., 9 figs.

  18. [Glycosaminoglycans in subepithelial opacity after excimer laser keratectomy].

    Science.gov (United States)

    Nakayasu, K; Gotoh, T; Ishikawa, T; Kanai, A

    1996-05-01

    We evaluated histochemically the characteristics of glycosaminoglycans and proteoglycans in the corneal subepithelial opacity after excimer laser keratectomy on rabbit corneas. We also performed the same evaluations on the cornea after mechanical keratectomy. Twenty days after the operations, the area immediately subjacent to the epithelium showed strong staining with toluidine blue, alcian blue, and colloidal iron. However, after treatment with chondroitinase ABC or chondroitinase AC, alcian blue staining in this area decreased dramatically. Antilarge proteoglycan antibody also reacted strongly in this area. Histochemical and immunohistochemical examination of the cornea where mechanical keratectomy was done showed basically similar findings with the cornea of excimer laser keratectomy. These results suggest that large-molecula proteoglycans with chondroitine sulfate side chains become localized in the subepithelial area after two different kinds of keratectomies. We presume from histochemical and immunohistochemical observations that the subepithelial opacity observed after excimer laser keratectomy is not a special reaction to excimer laser but simply a corneal scar formed after stromal resection.

  19. Selective irradiation of radicals for biomedical treatment using vacuum ultraviolet light from an excimer lamp

    Science.gov (United States)

    Ono, Ryo; Tokumitsu, Yusuke; Zen, Shungo; Yonemori, Seiya

    2014-10-01

    In plasma medicine, radicals are considered to play important roles. However, the medical effect of each radical, such as OH and O, is unknown. To examine the effect of each radical, selective production of radicals is needed. We developed selective production of radicals for biomedical treatment using a vacuum ultraviolet (VUV) light emitted from an excimer lamp. Selective irradiation of OH radicals can be achieved by irradiating the 172-nm VUV light from a Xe2 excimer lamp to a humid helium flow in a quartz tube. The water molecules are strongly photodissociated by the VUV light to produce OH radicals. A photochemical simulation for the selective OH production is developed to calculate the OH density. The calculated OH density is compared with OH density measured using laser-induced fluorescence (LIF). Selective production of other radicals than OH is also discussed.

  20. Ignition by excimer laser photolysis of ozone

    Science.gov (United States)

    Lucas, D.; Dunn-Rankin, D.; Hom, K.; Brown, N. J.

    1986-10-01

    We have ignited mixtures of hydrogen, oxygen, and ozone in closed cells with 248 nm radiation from a KrF excimer laser. Ozone, the only significant absorber in this system, absorbs a single photon and produces oxygen atoms which initiate combustion. A discretized, time-dependent Beer's law model is used to demonstrate that the radical concentration immediately after photolysis is a function of laser power, ozone concentration, focal length, and separation between the lens and reaction cell. Spark schileren photographs are used to visualize the ignition events and identify the ignition sites. The effects of equivalence ratio, pressure, and the initial gas temperature on the minimum ozone concentration needed to produce ignition are presented, and only the initial temperature has a significant effect. Modelling studies of the ignition process aid in the interpretation of the experimental results, and show that the ignition we observe is not due solely to thermal effects, but is strongly dependent on the number and type of radicals present initially after photolysis. Ignition using other hydrocarbons as fuels was also demonstrated.

  1. The Excimer Laser: Its Impact on Science and Industry

    Science.gov (United States)

    Basting, Dirk

    2010-03-01

    After the laser was demonstrated in 1960, 15 years were required to develop a practical method for extending laser emission into the UV: the Excimer laser. This historical review will describe the challenges with the new medium and provide an insight into the technological achievements. In the transition from Science to Industry it will be shown how start-ups successfully commercialized laboratory prototypes. The pioneers in this rapidly expanding field will be identified and the influence of government-funded research as well as the role of venture capital will be discussed. In scientific applications, the fields of photochemistry and material research were particularly stimulated by the advent of a reliable UV light source. Numerous industrial applications and worldwide research in novel applications were fueled In the early and mid 80's by progress in excimer laser performance and technology. The discovery of ablative photocomposition of polymer materials by Srinivasan at IBM opened the door to a multitude of important excimer applications. Micromachining with extreme precision with an excimer laser enabled the success of the inkjet printer business. Biological materials such as the human cornea can also be ``machined'' at 193nm, as proposed in 1983 by Trokel and Srinivasan. This provided the foundation of a new medical technology and an industry relying on the excimer laser to perform refractive surgery to correct vision Today, by far the largest use of the excimer laser is in photolithography to manufacture semiconductor chips, an application discovered by Jain at IBM in the early 80's. Moore's law of shrinking the size of the structure to multiply the number of transistors on a chip could not have held true for so long without the deep UV excimer laser as a light source. The presentation will conclude with comments on the most recent applications and latest market trends.

  2. ArF excimer laser modulation of TNF-alpha and gelatinase B in NIH 3T3 cells; Modulation de l`expression du TNF-alpha et de la gelatinase B, apres irradiation de fibroblastes NIH 3T3 par un laser a excimeres a 193 NM

    Energy Technology Data Exchange (ETDEWEB)

    Naudy-Vives, C.; Courant, D.; Perot, J.C.; Garcia, J.; Fretier, P.; Court, L.; Dormont, D.

    1995-12-31

    The effects on TNF-alpha and gelatinase B activity in mammalian cells induced by 193 nm argon fluoride excimer laser have been investigated. The data show that a secretion of 92 kDa type IV collagenase and TNF-alpha were increased in cell culture supernatants. Moreover, the 193 nm laser radiation produces a decrease of cell proliferation and an increase of cell activation 8 hours after irradiation. The total protein amount increases with the delivered dose. Same, but less effects were obtained after exposure to a conventional UV lamp at 254 nm. (author). 8 refs.

  3. New Class of Excimer-Pumped Atomic Lasers (XPALS)

    Science.gov (United States)

    2017-01-27

    AFRL-AFOSR-VA-TR-2017-0019 New Class of Excimer-Pumped Atomic Lasers (XPALS) James Eden UNIVERSITY OF ILLINOIS CHAMPAIGN 506 S WRIGHT ST 364 HENRY...TITLE AND SUBTITLE New Class of Excimer-Pumped Atomic Lasers (XPALS) 5a. CONIKA\\.INUMBER FA9550-13- 1-0006 5b.GRANT NUMBER Sc. f’ftOGRAM ELEMENT...cxcitcd state-excited state reaction rates. We ore pleased to report that the main goal orthis program, the viability of nn atomic laser having a

  4. Mechanism of injurious effect of excimer (308 nm) laser on the cell

    Science.gov (United States)

    Nevorotin, Alexey J.; Kallikorm, A. P.; Zeltzer, Gregory L.; Kull, Mart M.; Mihkelsoo, Virgo T.

    1991-06-01

    A Lameta 22710 excimer laser operating at 70 mJ/mm2 per pulse, with pulse duration of 70 nsec, and pulse repetition rate of 10 Hz, equipped with a quartz filament as energy conductor was used to make incisions on rat liver. 2 to 5 sec after irradiation the specimens were fixed and further processed for electron microscopy and histochemical visualization of the endoplasmic reticulum (ER) marker enzyme glucose-6- phosphatase at the ultrastructural level. The additional series were: fixation before irradiation-(A); lasing with Nd:YAG laser (1064 nm, continuous wave mode, 40 J/mm2)-(B); incision with a white-hot steel needle-(C); and incision with an Esto-Rex ultrasound scalpel (66 kHz, 6 Wt, vibration amplitude of 15 micrometers )-(D). The results showed that unlike Series C and B, in which high temperature caused severe damage to all cellular organellae, the excimer action was much more specific. It caused vesiculation of ER without significant injuries to other cellular structures. The analogous effect was noted after US scalpel cutting, thereby allowing a conclusion that a kind of dynamic rather than thermal factor is responsible for the observed phenomenon of vesiculation. The time schedule of vesicle formation and molecular background of membrane transformation is considered in the light of the data of Series A and D, and also on the basis of available information of membrane behavior. Photoablative effect of pulsed excimer laser is thought to be based on chemical decomposition of organic molecules and their ejection from the tissue to the action of high energy photons. Pressure waves (either acoustic or shock) are presumably generated powerful enough to cause tissue and cell damage beyond the site of ablation. Some thermal and fluorescence events are also implicative in biological targets irradiated with excimer lasers. In our previous studies electron histochemistry was employed for the analysis of cellular alterations caused with a continuous wave mode

  5. Excimer laser interaction with dentin of the human tooth

    Science.gov (United States)

    Hammond, Ernest C., Jr.; Gilliam, Ruth L.; Baker, George R.

    1989-01-01

    The use an excimer laser produced many unusual conical structures within the dentin of the inner part of the human tooth. By varying the frequency of the laser one can disperse the energy and cause more bleeding in laser surgery, but not destroy the cells associated with the incision. Therefore, the healing process will virtually be without scarring. Whereas, using the infrared laser the blood loss would be less, but the healing process would tend to be longer because cells are being destroyed due to the cauterization effect of the laser. The question is, are these structures produced as an interaction with the laser or are they an intrinsic part of the structure. The effects of the laser interaction upon dentin was studied, and in using electron microscopy the interaction of the excimer laser upon the tooth dentin and other various biological tissue is more clearly understood.

  6. Transformation of microcrystalline silicon films by excimer-laser-induced crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, I.-C. [Department of Electrical Engineering, Da-Yeh University, Changhua 515, Taiwan (China); Lien, S.-Y. [Department of Materials Engineering, National Chung Hsing University, 250 Kuo Kuang Rd., Taichung Taiwan 402, (China); Wuu, D.-S. [Department of Materials Engineering, National Chung Hsing University, 250 Kuo Kuang Rd., Taichung Taiwan 402 (China)]. E-mail: dsw@dragon.nchu.edu.tw

    2005-02-01

    We describe the excimer-laser-induced crystallization of microcrystalline silicon films deposited by plasma-enhanced chemical vapor deposition (PECVD). Microcrystalline silicon films containing 2 at.% hydrogen can be used as precursor films for the laser recrystallization process without a dehydrogenation step, and provide a wider laser energy fluence process window than the previous explosive recrystallization for low temperature polysilicon (poly-Si) thin-film transistor (TFT) fabrication. Ellipsometry, transmission electron microscopy (TEM), and atomic force microscopy (AFM) are used to evaluate the laser irradiated films. Specially, we describe using atomic force microscopy to obtain plane-view grain microstructure images.

  7. Topographic steep central islands following excimer laser photorefractive keratectomy

    Science.gov (United States)

    Krueger, Ronald R.; McDonnell, Peter J.

    1994-06-01

    The purpose of this study is to demonstrate that topographic irregularities in the form of central islands of higher refractive power can be seen following excimer laser refractive surgery. We reviewed the computerized corneal topographic maps of 35 patients undergoing excimer laser PRK for compound myopic astigmatism or anisometropia from 8/91 to 8/93 at the USC/Doheny Eye Institute. The topographic maps were generated by the Computed Anatomy Corneal Modeling System, and central islands were defined as topographic areas of steepening of at least 3 diopters and 3 mm in diameter. A grading system was developed based on the presence of central islands during the postoperative period. Visually significant topographic steep central islands may be seen in over 50% of patients at 1 month following excimer laser PRK, and persist at 3 months in up to 24% of patients without nitrogen gas blowing. Loss of best corrected visual acuity or ghosting is associated with island formation, and may prolong visual rehabilitation after excimer laser PRK.

  8. HSP47 expression in cornea after excimer laser photoablation.

    Science.gov (United States)

    Kasagi, Yasuo; Yamashita, Hidetoshi

    2002-01-01

    The expression of heat shock protein 47 (HSP47) was observed histologically to investigate the spatial and chronological effects of excimer laser photoablation. HSP47 expression after radial keratotomy (RK) was also investigated and compared with the effects after excimer laser photoablation. Twenty-eight male rabbits were used. The rabbits were divided with two groups and treated with either excimer laser photoablation or four radial incisions to simulate corneal refractive surgery. The chronological and spatial changes in the expression of HSP47 were observed immunohistochemically. In eyes that underwent excimer laser photoablation, HSP47 was detected in the basal layer of the epithelial cells and in the superficial stromal layer 3 days after surgery. After 5 and 7 days, HSP47 expression extended to the deep layer of the stroma and to the endothelial cells. After 14 days, HSP47 was detected only in the deep layer of the stroma and in the endothelial cells. After 28 days, HSP47 expression was reduced. In eyes that underwent RK, HSP47 was detected in the basal layer of the epithelial cells and in the stroma surrounding the wound 1 day after surgery. After 3 and 7 days, HSP47 expression did not expand further. After 28 days, HSP47 expression diminished. Excimer laser photoablation affects the whole layer of the cornea, and may be caused by the shock wave that occurs as a result of photoablation. In addition, interaction among the keratocytes may propagate the stress-induced response to the whole layer of the cornea. With RK, the wound is smaller and deeper. HSP47 expression occurs earlier, but is limited to the area surrounding the wound.

  9. Coloring linens with excimer lasers to simulate the body image of the Turin Shroud

    Science.gov (United States)

    Baldacchini, Giuseppe; di Lazzaro, Paolo; Murra, Daniele; Fanti, Giulio

    2008-03-01

    The body image of the Turin Shroud has not yet been explained by traditional science; so a great interest in a possible mechanism of image formation still exists. We present preliminary results of excimer laser irradiation (wavelength of 308 nm) of a raw linen fabric and of a linen cloth. The permanent coloration of both linens is a threshold effect of the laser beam intensity, and it can be achieved only in a narrow range of irradiation parameters, which are strongly dependent on the pulse width and time sequence of laser shots. We also obtained the first direct evidence of latent images impressed on linen that appear in a relatively long period (one year) after laser irradiation that at first did not generate a clear image. The results are compared with the characteristics of the Turin Shroud, reflecting the possibility that a burst of directional ultraviolet radiation may have played a role in the formation of the Shroud image.

  10. Effects of excimer laser irradiation on the expression of Th17, Treg, TGF-beta1, and IL-6 in patients with psoriasis vulgaris

    Science.gov (United States)

    Xiong, Guo-Xin; Li, Xin-Zhong

    2017-11-01

    The effects of laser irradiation on the expression of T helper 17 (Th17) and regulatory T (Treg) cells and their related cytokines, transforming growth factor beta 1 (TGF-β1) and interleukin-6 (IL-6), respectively, in the peripheral blood of patients with psoriasis vulgaris were investigated. 38 patients with psoriasis vulgaris in the stable state were selected as the treatment group that was treated twice a week for eight weeks. Another 38 healthy persons were chosen as the control group. Before and after treatment, the percentages of Th17 cells and Treg cells in the patients’ peripheral blood were detected using flow cytometry, the content of TGF-β1 and IL-6 in the patients’ sera were detected using enzyme-linked immunosorbent assay, and the extent and severity of lesions were determined by weighing the psoriasis area and severity index (PASI). After laser treatment, the percentage of Th17 cells, the Th17/Treg cell ratio and the level of IL-6 in the peripheral blood of patients with psoriasis in the treatment group were significantly lower than those of the same patients before the treatment (P  psoriasis vulgaris was 84.21%, and the PASI score was significantly lower (P  psoriasis vulgaris.

  11. Impacts of excimer laser annealing on Ge epilayer on Si

    Science.gov (United States)

    Huang, Zhiwei; Mao, Yichen; Yi, Xiaohui; Lin, Guangyang; Li, Cheng; Chen, Songyan; Huang, Wei; Wang, Jianyuan

    2017-02-01

    The impacts of excimer laser annealing on the crystallinity of Ge epilayers on Si substrate grown by low- and high-temperature two-step approach in an ultra-high vacuum chemical vapor deposition system were investigated. The samples were treated by excimer laser annealing (ELA) at various laser power densities with the temperature above the melting point of Ge, while below that of Si, resulting in effective reduction of point defects and dislocations in the Ge layer with smooth surface. The full-width at half-maximum (FWHM) of X-ray diffraction patterns of the low-temperature Ge epilayer decreases with the increase in laser power density, indicating the crystalline improvement and negligible effect of Ge-Si intermixing during ELA processes. The short laser pulse time and large cooling rate cause quick melting and recrystallization of Ge epilayer on Si in the non-thermal equilibrium process, rendering tensile strain in Ge epilayer as calculated quantitatively with thermal mismatch between Si and Ge. The FWHM of X-ray diffraction patterns is significantly reduced for the two-step grown samples after treated by a combination of ELA and conventional furnace thermal annealing, indicating that the crystalline of Ge epilayer is improved more effectively with pre- annealing by excimer laser.

  12. Lead extraction experience with high frequency excimer laser.

    Science.gov (United States)

    Tanawuttiwat, Tanyanan; Gallego, Daniel; Carrillo, Roger G

    2014-09-01

    A higher frequency Excimer laser sheath using an 80-Hz pulse repetitive rate was approved by the Food and Drug Administration in April 2012. We reported our initial clinical experience with a high-frequency Excimer laser sheath and compared it with lower-frequency laser sheaths which have been previously used. In this single center, retrospective cohort study, we evaluated patients who underwent lead extraction from December 2008 to May 2013. Those who underwent lead removal without using a laser sheath or with approaches other than subclavian were excluded. Primary endpoints included total laser time, number of pulses, and complications. Data on clinical characteristics, lead type, indications, and outcomes were prospectively collected and analyzed. A total of 427 patients were included in the study (72.6% male; age 67.9 ± 15.23 years). Lower frequency and higher frequency laser sheaths were used in 315 and 112 patients, respectively. A total of 821 leads were removed with 765 leads (93.2%) extracted using the Excimer laser sheath. Lead age was 5.71 ± 4.96 years. Complete extraction was seen in all patients. A higher-frequency laser sheath was associated with a lower laser time and a lower total number of laser pulses even after adjustments for the number of leads, type of leads, and lead age. In the higher frequency group, mortality rate was 0.9% and minor complication rate was 3.6%. When compared with the lower-frequency laser sheath, the higher-frequency laser sheath requires less laser times and more efficient amount of pulses for lead extraction with comparable success rate. Due to the rarity of major and minor complications, no statistical significance was found between the two groups. ©2014 Wiley Periodicals, Inc.

  13. Colouring fabrics with excimer lasers to simulate encoded images: the case of the Shroud of Turin

    Science.gov (United States)

    Di Lazzaro, P.; Baldacchini, G.; Fanti, G.; Murra, D.; Santoni, A.

    2008-10-01

    The faint body image embedded into the Turin Shroud has not yet explained by traditional science. We present experimental results of excimer laser irradiation (wavelengths 308 nm and 193 nm) of a raw linen fabric and of a linen cloth, seeking for a possible mechanism of image formation. The permanent coloration of both linens is a threshold effect on the laser beam intensity and it can be achieved only in a surprisingly narrow range of irradiation parameters: the shorter the wavelength, the narrower the range. We also obtained the first direct evidence of latent images impressed on linen that appear in a relatively long period (one year) after a laser irradiation that at first did not generate a clear image. The results are compared to the characteristics of the Turin Shroud, commenting the possibility that a burst of directional ultraviolet radiation may have played a role in the formation of the Shroud image.

  14. Triggering Excimer Lasers by Photoionization from Corona Discharges

    Science.gov (United States)

    Xiong, Zhongmin; Duffey, Thomas; Brown, Daniel; Kushner, Mark

    2009-10-01

    High repetition rate ArF (192 nm) excimer lasers are used for photolithography sources in microelectronics fabrication. In highly attaching gas mixtures, preionization is critical to obtaining stable, reproducible glow discharges. Photoionization from a separate corona discharge is one technique for preionization which triggers the subsequent electron avalanche between the main electrodes. Photoionization triggering of an ArF excimer laser sustained in multi-atmosphere Ne/Ar/F2/Xe gas mixtures has been investigated using a 2-dimensional plasma hydrodynamics model including radiation transport. Continuity equations for charged and neutral species, and Poisson's equation are solved coincident with the electron temperature with transport coefficients obtained from solutions of Boltzmann's equation. Photoionizing radiation is produced by a surface discharge which propagates along a corona-bar located adjacent to the discharge electrodes. The consequences of pulse power waveform, corona bar location, capacitance and gas mixture on uniformity, symmetry and gain of the avalanche discharge will be discussed.

  15. Subjective results of excimer laser correction of myopia. Review

    Directory of Open Access Journals (Sweden)

    V. N. Trubilin

    2012-01-01

    Full Text Available In review presents data of various authors regarding the subjective results excimer laser correction of myopia by LASIK. It was revealed that a group of patients with a high degree of dissatisfaction amounts to 4.6% of the total in all studies. High subjective results are confirmed by the positive dynamics of the «quality of life» of the patient.

  16. Penetrating Keratoplasty for Keratoconus – Excimer Versus Femtosecond Laser Trephination

    Science.gov (United States)

    Seitz, Berthold; Langenbucher, Achim; Hager, Tobias; Janunts, Edgar; El-Husseiny, Moatasem; Szentmáry, Nora

    2017-01-01

    Background: In case of keratoconus, rigid gas-permeable contact lenses as the correction method of first choice allow for a good visual acuity for quite some time. In a severe stage of the disease with major cone-shaped protrusion of the cornea, even specially designed keratoconus contact lenses are no more tolerated. In case of existing contraindications for intrastromal ring segments, corneal transplantation typically has a very good prognosis. Methods: In case of advanced keratoconus – especially after corneal hydrops due to rupture of Descemet’s membrane – penetrating keratoplasty (PKP) still is the surgical method of first choice. Noncontact excimer laser trephination seems to be especially beneficial for eyes with iatrogenic keratectasia after LASIK and those with repeat grafts in case of “keratoconus recurrences” due to small grafts with thin host cornea. For donor trephination from the epithelial side, an artificial chamber is used. Wound closure is achieved with a double running cross-stitch suture according to Hoffmann. Graft size is adapted individually depending on corneal size („as large as possible – as small as necessary“). Limbal centration will be preferred intraoperatively due to optical displacement of the pupil. During the last 10 years femtosecond laser trephination has been introduced from the USA as a potentially advantageous approach. Results: Prospective clinical studies have shown that the technique of non-contact excimer laser PKP improves donor and recipient centration, reduces “vertical tilt” and “horizontal torsion” of the graft in the recipient bed, thus resulting in significantly less “all-sutures-out” keratometric astigmatism (2.8 vs. 5.7 D), higher regularity of the topography (SRI 0.80 vs. 0.98) and better visual acuity (0.80 vs. 0.63) in contrast to the motor trephine. The stage of the disease does not influence functional outcome after excimer laser PKP. Refractive outcomes of femtosecond laser

  17. Excimer laser cleaning of mud stained paper and parchment

    Directory of Open Access Journals (Sweden)

    Duarte, J. P.

    1998-04-01

    Full Text Available The main advantage of excimer lasers when processing materials, its the emission of a radiation with wavelength in the ultraviolet region. This characteristic allows an extremely accurate and very well defined shape of material removal as well as total absence of heat affected zone and alterations in the material structure. In excimer laser paper and parchment cleaning, the mud is removed by breaking the physicalchemical bonding between this last one and the material to be cleaned not affecting neither its structure nor the chromatic pigment existing in some samples.

    A principal vantagem dos lasers de excímeros, no processamento de materiais, é a emissão de um feixe luminoso com comprimento de onda compreendido na região do ultravioleta, permitindo urna remoçao do material com precisão muito elevada e excelente definição de bordos, ausência de zona térmicamente afectada e ausência de alterações da estrutura. Na limpeza dos papéis e pergaminhos a lama é removida por quebra das ligações fisico-químicas entre a lama e o papel não se afectando a estrutura deste, assim como não se afectaram os pigmentos cromáticos existentes em algumas amostras.

  18. Recent developments on microablation of glass materials using excimer lasers

    Science.gov (United States)

    Tseng, Ampere A.; Chen, Ying-Tung; Chao, Choung-Lii; Ma, Kung-Jeng; Chen, T. P.

    2007-10-01

    For many years, the development of effective laser machining techniques for making glass-based microcomponents and devices has been a critical factor in the birth of new photonic and biomedical microsystems. In this article, the characteristics and abilities of excimer lasers for micromachining of a wide range of glass materials are reviewed and studied. Following the introduction, the special features of excimer lasers are discussed. The typical micromachining system used for glass materials is presented. Then, the fundamental micromachining parameters and the associated morphologies of machined surfaces are evaluated. The approaches by controlling the ablation rate for making the curve surfaces are specifically formulated. Although a wide range of commercially available glasses is covered in this article, two types of the most widely used glasses, borosilicate glass and fused silica, are thoroughly examined to illustrate the complexity in micromachining the glass materials. The procedures to machine single, arrayed, curved microstructures are described. The utilizations of these procedures for making microneedles, optical waveguides, submicron grating, and microlenses are specifically demonstrated. Finally, recommendations for future efforts are presented.

  19. Vitreoretinal surgery with the 193-nm excimer laser

    Science.gov (United States)

    Palanker, Daniel V.; Hemo, Itzhak; Turovets, Igor; Zauberman, Hanan; Lewis, Aaron

    1994-06-01

    The 193-nm excimer laser is known for its ability to precisely ablate soft biological tissues in the air environment with sub- micron depth control and sub-micron damage zones in the surrounding. The lack of a convenient delivery system and strong absorption of this radiation by biological liquids prevented, until recently, microsurgical applications of this laser. We have constructed special tips that are capable of delivering enough energy for effective removal of soft tissues in a strongly absorbing liquid environment. These tips attach to an articulated arm-based delivery system. This instrument was applied to vitreoretinal membranes removal. The accepted technique for these membranes removal is mechanical peeling and cutting which is associated with strong traction of the retina and this occasionally results in retinal damage. It was demonstrated in this study that the 193-nm excimer laser is capable of safely and precisely cutting and ablating these membranes which enable their removal without exerting any tractional forces on the retina. The effective cutting regime of retina and vitreoretinal membranes occurred at energy fluence of about 250- to 350-mJ/cm2/pulse with a corresponding cutting depth of 50 to 150 micrometers /pulse. The results obtained in this study suggest that this technology could be applicable to a wide variety of intraocular procedures.

  20. Changes in gene expression by 193- and 248-nm excimer laser radiation in cultured human fibroblasts.

    Science.gov (United States)

    Rimoldi, D; Flessate, D M; Samid, D

    1992-09-01

    Tissue ablation by ultraviolet excimer lasers results in exposure of viable cells to subablative doses of radiation. To understand the potential biological consequences better, we have studied changes in gene expression in cultured human skin fibroblasts exposed to either 193- or 248-nm laser light. Northern blot analyses revealed that both treatments up-regulate a common set of genes, including interstitial collagenase, tissue inhibitor of metalloprotease, metallothionein, and the proto-oncogene c-fos. Dose-response and kinetic studies of collagenase induction by 193-nm radiation showed a maximal effect with 60 J/m2 and at approximately 24 h. The induction was still persistent 96 h later. In addition to the commonly affected genes, known to be activated also by conventional UV light (254 nm) and tumor-promoting phorbol esters, other genes were found to be selectively induced by the 193-nm radiation. The heat-shock hsp70 mRNA, undetectable in controls and in cultures irradiated at 248 nm, was transiently induced 8 h after exposure to 193-nm radiation. Furthermore, a selective up-regulation of collagen type I expression was observed. The results indicate that the 193- and 248-nm radiations by excimer lasers elicit specific and different cellular responses, in addition to an overlapping pathway of gene activation common also to UV radiation by germicidal lamps. The laser-induced genes could serve as molecular markers in evaluating cell injury in situ.

  1. Laser drilling of metals with a XeCl excimer laser

    NARCIS (Netherlands)

    Schoonderbeek, A.

    2005-01-01

    This thesis is about laser drilling with a unique excimer laser with a nearly diffraction-limited beam and relatively long optical pulse duration of 175 ns. The combination of high processing speed and high processing quality suitable for industrial applications can be obtained because the excellent

  2. EXCIMER-LASER ABLATION OF SOFT-TISSUE - A STUDY OF THE CONTENT OF RAPIDLY EXPANDING AND COLLAPSING BUBBLES

    NARCIS (Netherlands)

    van Leeuwen, T. G.; Jansen, E. D.; Motamedi, M.; Welch, A. J.; Borst, C.

    1994-01-01

    Both holmium (lambda = 2.09 mum) and excimer (lambda = 308 nm) lasers are used for ablation of tissue. In a previous study, excimer laser ablation of aorta produced rapidly expanding and collapsing vapor bubbles. To investigate whether the excimer-induced bubble is caused by vaporization of (tissue)

  3. The effect on the ultrastructure of dental enamel of excimer-dye, argon-ion and CO2 lasers.

    Science.gov (United States)

    Palamara, J; Phakey, P P; Orams, H J; Rachinger, W A

    1992-12-01

    This study aimed to investigate the ultrastructural changes that occur in dental enamel irradiated with pulsed excimer-dye, continuous-wave (CW) argon-ion and CW CO2 lasers. The pulsed excimer-dye laser produced deep craters, rough damaged surfaces with underlying porosity and amorphous vitrified material. The vitrification of the enamel indicated that the temperature in these areas must have been at least in the range 1280 to 1600 degrees C. The CW argon-ion laser irradiation produced a changed non-cratered surface with inter-crystalline porosity and a mixture of small and some large irregularly packed recrystallized enamel crystals. The CW CO2 laser produced shallow craters, surface crazing and lifting off the removal of the surface layer to expose the underlying roughened enamel. The ultrastructure revealed inter- and intra-crystalline porosity, a mixture of small but variable size irregularly packed recrystallized enamel crystals and also well packed large crystals which indicated further grain growth. The porosity in lased enamel was overall very similar to that seen in enamel heated in an electric furnace to a temperature of 600 degrees C. The presence of recrystallized enamel crystals indicated a temperature rise of approximately 1000 degrees C and the grain growth indicated that a temperature > or = 1000 degrees C existed for some time after the laser irradiation. In general the excimer-dye laser produced most surface destruction because of its higher power density and shorter interaction time and the argon-ion laser produced least damage. These results indicated that the lasers used in this study require much more refinement before they can find therapeutic application to dental enamel, and this may well be the case for other lasers being investigated for clinical dental practise.

  4. Low threshold buried-heterostructure quantum well lasers by excimer laser assisted disordering

    Energy Technology Data Exchange (ETDEWEB)

    Epler, J.E.; Thornton, R.L.; Mosby, W.J.; Paoli, T.L.

    1988-10-17

    Laser assisted disordering based upon a direct-write Ar/sup +/ laser beam has been established as a fabrication technique for high quality optoelectronic devices. In this letter, we report a new form of laser assisted disordering in which an excimer laser beam, photolithographically patterned, is used to define the incorporation of Si impurity into GaAs-AlGaAs heterostructure crystals. During a subsequent thermal anneal the diffusing Si induces layer disordering to a depth of approx.1 ..mu..m. The excimer laser assisted disordering process is characterized as a function of the energy density of the laser beam. Also, this technique is used to fabricate high quality buried-heterostructure lasers. With a reflective rear facet, the typical cw threshold current is 4 mA and the maximum power output is 27 mW. The devices exhibit single fundamental mode operation with subsidiary longitudinal side modes suppressed by 34 dB.

  5. Combination treatment with excimer laser and narrowband UVB light in vitiligo patients.

    Science.gov (United States)

    Shin, Sungsik; Hann, Seung-Kyung; Oh, Sang Ho

    2016-01-01

    For the treatment of vitiligo, narrowband UVB (NBUVB) light is considered the most effective for nonsegmental vitiligo, while excimer laser treatment is commonly used for localized vitiligo. However, treatment areas may potentially be missed with excimer laser treatment. We aimed to evaluate the effect of combinational treatment with NBUVB light and excimer laser on vitiligo. All patients were first treated with NBUVB; excimer laser was then applied in conjunction with NBUVB phototherapy due to a slow response or no further improvement with continuous NBUVB treatment alone. To minimize adverse effects, a fixed dose of NBUVB was administered, and the dose of excimer laser was increased based on patient response. Among 80 patients, 54 patients showed responses after combination with excimer laser; however, 26 patients (32.5%) showed no remarkable change after combination therapy. Of the 26 patients who showed no further response, 12 patients (46.1%) presented with vitiligo on the acral areas, which are known to the least responsive sites. Our study suggests that combined treatment of NBUVB and excimer laser in vitiligo may enhance the treatment response without remarkable side effects, therefore might also increase the compliance of the patients to the treatment. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Excimer laser ablation of polyimide: a 14-year IBM perspective

    Science.gov (United States)

    Brannon, James H.; Wassick, Thomas A.

    1997-05-01

    IBM introduced the first commercial high-end mainframe computer system incorporating laser ablation technology in 1991. This milestone was the culmination of nearly a decade of scientific, engineering, and manufacturing effort. Extensive research and development on 308 nm laser ablation of polyimide lead to the first IBM prototype ablation tool in 1987 for the production of via-holes in thin film packaging structures. This prototype, similar to step and repeat photolithography systems, evolved into full-scale manufacturing tools which utilize sophisticated beam shaping, beam homogenizing, and projection optics. But the maturity of this technology belies the fact that the scientific understanding of the laser ablation process is still far from complete. This paper briefly reviews the engineering and scientific accomplishments, both within and external to IBM, that lead to the commercial utilization of the laser ablation process. Current technical tissues are discussed, in addition to alternative IBM applications of polyimide ablation. The paper concludes by discussing the relative merits of excimer vs. solid-state lasers, and how each may impact future manufacturing technology.

  7. Study on the excimer laser annealed amorphous hydrogenated silicon carbon films deposited by PECVD

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosone, G. [CNR-INFM CRS-Coherentia, Complesso Universitario MSA, Napoli (Italy); Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' , Complesso Universitario MSA, Napoli (Italy); Basa, D.K. [Utkal University, Bhubaneswar (India); Coscia, U. [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' , Complesso Universitario MSA, Napoli (Italy); CNISM Unita' di Napoli, Complesso Universitario MSA, Napoli (Italy); Tresso, E.; Celasco, E. [Dipartimento di Scienza dei Materiali ed Ingegneria Chimica, Politecnico di Torino (Italy); Chiodoni, A. [Materials and Microsystems Laboratory, chi-LAB, Politecnico di Torino (Italy); Pinto, N.; Murri, R. [Dipartimento di Fisica, Universita' di Camerino (Italy)

    2010-04-15

    Hydrogenated amorphous silicon carbon films of different carbon content were deposited by plasma enhanced chemical vapour deposition at low substrate temperature (200 C) and were subjected to excimer laser annealing. X-ray diffraction spectra and field emission scanning electron microscopy images demonstrate that carbon content plays an important role in facilitating the crystallization process induced by the excimer laser treatment (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Shadowgraphic imaging of metal drilling with a long pulse excimer laser

    NARCIS (Netherlands)

    Schoonderbeek, A.; Biesheuvel, C.A.; Hofstra, R.M.; Boller, Klaus J.; Meijer, J.; Miyamoto, Isamu; Ostendorf, Andreas; Sugioka, Koji; Helvajian, Henry

    2003-01-01

    A shadowgraphic imaging technique is used for studying the interaction between the laser beam and the material during laser drilling. The used laser is a XeCl excimer laser with a nearly diffraction limited beam and 175 ns pulse length. We studied how and when the material is removed. Holes are

  9. Alternatives to excimer laser refractive surgery: UV and mid-infrared laser ablation of intraocular lenses and porcine cornea

    Science.gov (United States)

    Serafetinides, A. A.; Makropoulou, M.; Spyratou, E.; Bacharis, C.

    2007-03-01

    Despite the fact that the laser applications in human ophthalmology are well established, further research is still required, for better and predictable ablation dosimetry on both cornea tissue and intraocular lenses. Further studies for alternative laser sources to the well established excimer lasers, such as UV or mid-infrared solid state lasers, have been proposed for refractive surgery. The precise lens ablation requires the use of laser wavelengths possessing a small optical penetration depth in the cornea and in the synthetic lenses, in order to confine the laser energy deposition to a small volume. In order to eliminate some very well known problems concerning the reshaping of cornea and the modification of the optical properties of the intraocular lenses, ablation experiments of ex vivo porcine cornea, acrylic PMMA and hydrophilic lenses were conducted with an Er:YAG laser (2.94 μm) and the fifth harmonic of a Nd:YAG laser (213 nm). The morphology of cornea was recorded using a cornea topography system before and immediately after the ablation. Histology analysis of the specimens was obtained, in order to examine the microscopic appearance of the ablated craters and the existence of any thermal damage caused by the mid-infrared and UV laser irradiation. The macroscopic morphology of the intraocular lens craters was inspected with an optical transmission microscope. Measurements of the ablation rates of the lenses were performed and simulated by a mathematical model.

  10. Advanced excimer laser technologies enable green semiconductor manufacturing

    Science.gov (United States)

    Fukuda, Hitomi; Yoo, Youngsun; Minegishi, Yuji; Hisanaga, Naoto; Enami, Tatsuo

    2014-03-01

    "Green" has fast become an important and pervasive topic throughout many industries worldwide. Many companies, especially in the manufacturing industries, have taken steps to integrate green initiatives into their high-level corporate strategies. Governments have also been active in implementing various initiatives designed to increase corporate responsibility and accountability towards environmental issues. In the semiconductor manufacturing industry, there are growing concerns over future environmental impact as enormous fabs expand and new generation of equipments become larger and more powerful. To address these concerns, Gigaphoton has implemented various green initiatives for many years under the EcoPhoton™ program. The objective of this program is to drive innovations in technology and services that enable manufacturers to significantly reduce both the financial and environmental "green cost" of laser operations in high-volume manufacturing environment (HVM) - primarily focusing on electricity, gas and heat management costs. One example of such innovation is Gigaphoton's Injection-Lock system, which reduces electricity and gas utilization costs of the laser by up to 50%. Furthermore, to support the industry's transition from 300mm to the next generation 450mm wafers, technologies are being developed to create lasers that offer double the output power from 60W to 120W, but reducing electricity and gas consumption by another 50%. This means that the efficiency of lasers can be improve by up to 4 times in 450mm wafer production environments. Other future innovations include the introduction of totally Heliumfree Excimer lasers that utilize Nitrogen gas as its replacement for optical module purging. This paper discusses these and other innovations by Gigaphoton to enable green manufacturing.

  11. Microencapsulation of silicon cavities using a pulsed excimer laser

    KAUST Repository

    Sedky, Sherif M.

    2012-06-07

    This work presents a novel low thermal-budget technique for sealing micromachined cavities in silicon. Cavities are sealed without deposition, similar to the silicon surface-migration sealing process. In contrast to the 1100°C furnace anneal required for the migration process, the proposed technique uses short excimer laser pulses (24ns), focused onto an area of 23mm 2, to locally heat the top few microns of the substrate, while the bulk substrate remains near ambient temperature. The treatment can be applied to selected regions of the substrate, without the need for special surface treatments or a controlled environment. This work investigates the effect of varying the laser pulse energy from 400 mJ cm 2to 800 mJ cm 2, the pulse rate from 1Hz to 50Hz and the pulse count from 200 to 3000 pulses on sealing microfabricated cavities in silicon. An analytical model for the effect of holes on the surface temperature distribution is derived, which shows that much higher temperatures can be achieved by increasing the hole density. A mechanism for sealing the cavities is proposed, which indicates how complete sealing is feasible. © 2012 IOP Publishing Ltd.

  12. Excimer laser cleaning of encrustation on Pentelic marble: procedure and evaluation of the effects

    Science.gov (United States)

    Maravelaki-Kalaitzaki, P.; Zafiropulos, V.; Fotakis, C.

    1999-06-01

    This work focuses on the use and control of excimer lasers (KrF, λ=248 nm and XeCl, λ=308 nm) for the removal of encrustation (black crusts, soil-dust and biological deposits) from Pentelic marble. A number of surface analytical techniques, such as Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) interfaced with microprobe analysis (energy dispersive X-ray analysis: EDX), X-ray diffraction (XRD), laser-induced breakdown spectroscopy (LIBS) and optical microscopy (OM) were used to detect chemical composition and crust morphology, as well as to monitor the effects induced by the laser treatment. SEM and OM providing structural information about the layers of encrustation, LIBS and SEM-EDX providing information on the elemental composition of the ablated material, XRD and FTIR detecting the changes of minerals appear to be particularly effective in assessing the quality of cleaning process. FTIR and XRD showed removal of pollutants from encrustation and partial transformation of calcium sulfate dihydrate (gypsum) to hemihydrate and anhydrite, which have lower specific surface than gypsum. Irradiation conditions creating minimal damaging effects were defined before treatment through surface analysis, ablation rate studies and optimization of laser parameters. On the basis of structural and analytical examinations, both lasers are shown to be appropriate for achieving sufficient removal of unwanted selected layers without modifying the surface morphology and surpassing by far the effectiveness afforded by traditional cleaning techniques.

  13. LASIK ablation centration: an objective digitized assessment and comparison between two generations of an excimer laser.

    Science.gov (United States)

    Kanellopoulos, Anastasios John; Asimellis, George

    2015-03-01

    To objectively define the effective centration of myopic femtosecond laser-assisted LASIK ablation pattern, evaluate the difference between achieved versus planned excimer laser ablation centration, and compare these results from two different generations of an excimer laser system. The study retrospectively evaluated 280 eyes subjected to myopic LASIK. Digital image analysis was performed on Scheimpflug sagittal curvature maps (difference of preoperative to postoperative). Centration was assessed via proprietary software digital analysis of the coordinate displacement between the achieved ablation geometric center and the planned ablation center, which was the corneal vertex. Results from two different excimer laser generations (Eye-Q 400 [140 eyes] and EX500 [140 eyes]; Alcon/WaveLight, Fort Worth, TX) were compared. Radial displacement was on average 360 ± 220 µm (range: 0 to 1,030 µm) in the Eye-Q 400 laser group and 120 ± 110 µm (range: 0 to 580 µm) in the EX500 laser group (P laser group and 4% in the EX500 laser group. Displacement of ablation pattern may depend on the laser platform used. The improvement in the efficiency of centration indicates that newer generation excimer lasers with faster eye tracking and active centration control appear to achieve a significantly more accurate centration of myopic ablation patterns. The authors propose this novel, objective technique for laser refractive surgeon evaluation may point out significant outcome measures not currently used in standard metrics of refractive laser efficiency. Copyright 2015, SLACK Incorporated.

  14. Microstructures induced by excimer laser surface melting of the SiC{sub p}/Al metal matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Qian, D.S., E-mail: Daishu.qian@postgrad.manchester.ac.uk; Zhong, X.L.; Yan, Y.Z.; Hashimoto, T.; Liu, Z.

    2017-08-01

    Highlights: • Microstructural analysis of the excimer laser-melted SiC{sub p}/AA2124;. • Analytical, FEM, and SPH simulation of the laser-material interaction;. • Mechanism of the formation of the laser-induced microstructure. - Abstract: Laser surface melting (LSM) was carried out on the SiC{sub p}/Al metal matrix composite (MMC) using a KrF excimer laser with a fluence of 7 J/cm{sup 2}. The re-solidification microstructure was characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM) equipped with energy dispersive X-ray detector, and X-ray diffraction (XRD) analysis. It was found that a 2.5 μm thick melted layer was formed in the near-surface region, in which dissolution of the intermetallics and removal of the SiC particles occurred. The thermal and material response upon laser irradiation was simulated using three models, i.e. analytical model, finite element model (FEM) and smoothed-particle hydrodynamics (SPH) model. The effect of SiC particles on the LSM process, the mechanism of the SiC removal and the re-solidification microstructures in the melted layer were discussed. The simulation results were in good agreement with the experimental results and contributed to the generic understanding of the re-solidification microstructures induced by ns-pulsed lasers.

  15. Average power scaling of UV excimer lasers drives flat panel display and lidar applications

    Science.gov (United States)

    Herbst, Ludolf; Delmdahl, Ralph F.; Paetzel, Rainer

    2012-03-01

    Average power scaling of 308nm excimer lasers has followed an evolutionary path over the last two decades driven by diverse industrial UV laser microprocessing markets. Recently, a new dual-oscillator and beam management concept for high-average power upscaling of excimer lasers has been realized, for the first time enabling as much as 1.2kW of stabilized UV-laser average output power at a UV wavelength of 308nm. The new dual-oscillator concept enables low temperature polysilicon (LTPS) fabrication to be extended to generation six glass substrates. This is essential in terms of a more economic high-volume manufacturing of flat panel displays for the soaring smartphone and tablet PC markets. Similarly, the cost-effective production of flexible displays is driven by 308nm excimer laser power scaling. Flexible displays have enormous commercial potential and can largely use the same production equipment as is used for rigid display manufacturing. Moreover, higher average output power of 308nm excimer lasers aids reducing measurement time and improving the signal-to-noise ratio in the worldwide network of high altitude Raman lidar stations. The availability of kW-class 308nm excimer lasers has the potential to take LIDAR backscattering signal strength and achievable altitude to new levels.

  16. Time Evolution of the Excimer State of a Conjugated Polymer Laser

    Directory of Open Access Journals (Sweden)

    Wafa Musa Mujamammi

    2017-11-01

    Full Text Available An excited dimer is an important complex formed in nano- or pico-second time scales in many photophysics and photochemistry applications. The spectral and temporal profile of the excimer state of a laser from a new conjugated polymer, namely, poly (9,9-dioctylfluorenyl-2,7-diyl (PFO, under several concentrations in benzene were investigated. These solutions were optically pumped by intense pulsed third-harmonic Nd:YAG laser (355-nm to obtain the amplified spontaneous emission (ASE spectra of a monomer and an excimer with bandwidths of 6 and 7 nm, respectively. The monomer and excimer ASEs were dependent on the PFO concentration, pump power, and temperature. Employing a sophisticated picosecond spectrometer, the time evolution of the excimer state of this polymer, which is over 400 ps, can be monitored.

  17. Epithelial healing and clinical outcomes in excimer laser photorefractive surgery following three epithelial removal techniques: mechanical, alcohol, and excimer laser.

    Science.gov (United States)

    Lee, Hyung Keun; Lee, Kyung Sub; Kim, Jin Kook; Kim, Hyeon Chang; Seo, Kyung Ryul; Kim, Eung Kweon

    2005-01-01

    To evaluate epithelial healing, postoperative pain, and visual and refractive outcomes after photorefractive keratectomy (PRK) using three epithelial removal techniques. Prospective, nonrandomized, comparative trial. Department of Ophthalmology, Yonsei University College of Medicine and Balgensesang Ophthalmology Clinic, Seoul, Korea. For the PRK procedure, the corneal epithelium was removed in one of three ways: mechanically (conventional PRK [PRK]) in 88 eyes of 44 patients; using excimer laser (transepithelial PRK [tPRK]) in 106 eyes of 53 patients; or using 20% diluted alcohol, laser-assisted subepithelial keratomileusis (LASEK) in 106 eyes of 53 patients. Epithelial healing, postoperative pain, uncorrected visual acuity (UCVA), best spectacle-corrected visual acuity (BSCVA), and remaining refractive error. The mean postoperative pain scores were 4.84 +/- 1.45 for PRK, 4.71 +/- 1.62 for tPRK, and 4.63 +/- 1.52 for LASEK (P = .125). The mean epithelial healing rates were 12.3 +/- 4.6 for PRK, 15.2 +/- 4.9 for tPRK, and 18.1 +/- 5.2 mm2/day for LASEK (P refractive outcomes. Using the same nomogram, tPRK resulted in a slight overcorrection, and LASEK resulted in a slight undercorrection.

  18. All-Solid-State Drivers for High Power Excimer Lasers Used in Projection Gas Immersion Laser Doping

    National Research Council Canada - National Science Library

    Jacob, Jonah

    2001-01-01

    .... P-GILD uses a pulsed, 200-watt-class excimer laser as an illumination source to produce ultra-shallow, low-sheet resistance, box-like and retrograde impurity profiles in silicon without the use...

  19. A comparison of the characteristics of excimer and femtosecond laser ablation of acrylonitrile butadiene styrene (ABS)

    Energy Technology Data Exchange (ETDEWEB)

    See, Tian Long, E-mail: tianlong.see@postgrad.manchester.ac.uk [Corrosion and Protection Centre, School of Materials, The Mill, The University of Manchester, M13 9PL Manchester (United Kingdom); Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, M13 9PL Manchester (United Kingdom); Liu, Zhu [Corrosion and Protection Centre, School of Materials, The Mill, The University of Manchester, M13 9PL Manchester (United Kingdom); Li, Lin [Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, M13 9PL Manchester (United Kingdom); Zhong, Xiang Li [Corrosion and Protection Centre, School of Materials, The Mill, The University of Manchester, M13 9PL Manchester (United Kingdom)

    2016-02-28

    Highlights: • Ablation threshold for excimer laser is lower compared to femtosecond laser. • Effective optical penetration depth for excimer laser is lower compared to femtosecond laser. • Two ablation characteristic regimes are observed for femtosecond laser ablation. • Reduction of C=C bond following excimer or fs laser ablation is observed. • Addition of oxygen- and nitrogen-rich functional groups is observed. - Abstract: This paper presents an investigation on the ablation characteristics of excimer laser (λ = 248 nm, τ = 15 ns) and femtosecond laser (λ = 800 nm, τ = 100 fs) on ABS polymer sheets. The laser–material interaction parameters (ablation threshold, optical penetration depth and incubation factor) and the changes in material chemical properties were evaluated and compared between the two lasers. The work shows that the ablation threshold and effective optical penetration depth values are dependent on the wavelength of laser beam (photon energy) and the pulse width. The ablation threshold value is lower for the excimer laser ablation of ABS (F{sub th} = 0.087 J/cm{sup 2}) than that for the femtosecond laser ablation of ABS (F{sub th} = 1.576 J/cm{sup 2}), demonstrating a more dominating role of laser wavelength than the pulse width in influencing the ablation threshold. The ablation depth versus the logarithmic scale of laser fluence shows two linear regions for the fs laser ablation, not previously known for polymers. The effective optical penetration depth value is lower for excimer laser ablation (α{sup −1} = 223 nm) than that for femtosecond laser ablation (α{sup −1} = 2917 nm). The ablation threshold decreases with increasing number of pulses (NOP) due to the chain scission process that shortens the polymeric chains, resulting in a weaker polymeric configuration and the dependency is governed by the incubation factor. Excimer laser treatment of ABS eliminates the C=C bond completely through the chain scission process whereas

  20. KrF excimer laser precision machining of hard and brittle ceramic biomaterials.

    Science.gov (United States)

    Huang, Yao-Xiong; Lu, Jian-Yi; Huang, Jin-Xia

    2014-06-01

    KrF excimer laser precision machining of porous hard-brittle ceramic biomaterials was studied to find a suitable way of machining the materials into various desired shapes and sizes without distorting their intrinsic structure and porosity. Calcium phosphate glass ceramics (CPGs) and hydroxyapatite (HA) were chosen for the study. It was found that KrF excimer laser can cut both CPGs and HA with high efficiency and precision. The ablation rates of CPGs and HA are respectively 0.081 µm/(pulse J cm(-2)) and 0.048 µm/(pulse  J cm(-2)), while their threshold fluences are individually 0.72 and 1.5 J cm(-2). The cutting quality (smoothness of the cut surface) is a function of laser repetition rate and cutting speed. The higher the repetition rate and lower the cutting speed, the better the cutting quality. A comparison between the cross sections of CPGs and HA cut using the excimer laser and using a conventional diamond cutting blade indicates that those cut by the excimer laser could retain their intrinsic porosity and geometry without distortion. In contrast, those cut by conventional machining had distorted geometry and most of their surface porosities were lost. Therefore, when cutting hard-brittle ceramic biomaterials to prepare scaffold and implant or when sectioning them for porosity evaluation, it is better to choose KrF excimer laser machining.

  1. Formation of periodic microswelling structures on silicone rubber surface using ArF excimer laser to realize superhydrophobic property

    Science.gov (United States)

    Nojiri, Hidetoshi; Setyo Pambudi, Wisnu; Okoshi, Masayuki

    2017-07-01

    Periodic microswelling structures were photochemically induced on a silicone rubber surface using a 193 nm ArF excimer laser. Microspheres made of silica glass (SiO2) of 2.5 µm diameter were aligned on the silicone rubber surface during laser irradiation; the laser beam was focused on the silicone surface underneath each microsphere. The height and diameter of the formed microswelling structures were found to be controllable by changing the Ar gas flow rate, single-pulse laser fluence, and laser irradiation time. The chemical bonding of the laser-irradiated sample did not change and thus remained to be a silicone, as analyzed by X-ray photoelectron spectroscopy. As a result, microswelling structures of approximately 1.3 µm height and 1.3 µm diameter were successfully obtained. The contact angles of water on the microstructured silicone were measured to be 150° and larger, clearly indicating superhydrophobicity. The mechanism by which the microswellings form their shape was discussed on the basis of the changes in the focal point and spot size during laser irradiation through the SiO2 microsphere.

  2. High efficiency metal marking with CO2 laser and glass marking with excimer laser

    DEFF Research Database (Denmark)

    Bastue, Jens; Olsen, Flemmming Ove

    1997-01-01

    with a thoroughly tested ray-tracing model is presented and compared with experimental results. Special emphasis is put on two different applications namely marking in metal with TEA-CO2 laser and marking in glass with excimer laser. The results are evaluated on the basis of the achievable energy enhancement......Today, mask based laser materials processing and especially marking is widely used. However, the energy efficiency in such processes is very low [1].This paper gives a review of the results, that may be obtained using the energy enhancing technique [1]. Results of simulations performed...

  3. Microstructures induced by excimer laser surface melting of the SiCp/Al metal matrix composite

    Science.gov (United States)

    Qian, D. S.; Zhong, X. L.; Yan, Y. Z.; Hashimoto, T.; Liu, Z.

    2017-08-01

    Laser surface melting (LSM) was carried out on the SiCp/Al metal matrix composite (MMC) using a KrF excimer laser with a fluence of 7 J/cm2. The re-solidification microstructure was characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM) equipped with energy dispersive X-ray detector, and X-ray diffraction (XRD) analysis. It was found that a 2.5 μm thick melted layer was formed in the near-surface region, in which dissolution of the intermetallics and removal of the SiC particles occurred. The thermal and material response upon laser irradiation was simulated using three models, i.e. analytical model, finite element model (FEM) and smoothed-particle hydrodynamics (SPH) model. The effect of SiC particles on the LSM process, the mechanism of the SiC removal and the re-solidification microstructures in the melted layer were discussed. The simulation results were in good agreement with the experimental results and contributed to the generic understanding of the re-solidification microstructures induced by ns-pulsed lasers.

  4. Performance characteristics of an excimer laser (XeCl) with single ...

    Indian Academy of Sciences (India)

    Performance characteristics of an excimer laser (XeCl) with single-stage magnetic pulse compression suitable for material processing applications are presented here. The laser incorporates in-built compact gas circulation and gas cooling to ensure fresh gas mixture between the electrodes for repetitive operation.

  5. Performance characteristics of an excimer laser (XeCl) with single ...

    Indian Academy of Sciences (India)

    2017-01-10

    Jan 10, 2017 ... Abstract. Performance characteristics of an excimer laser (XeCl) with single-stage magnetic pulse compres- sion suitable for material processing applications are presented here. The laser incorporates in-built compact gas circulation and gas cooling to ensure fresh gas mixture between the electrodes for ...

  6. Controllable Change of Photoluminescence Spectra of Silicone Rubber Modified by 193 nm ArF Excimer Laser

    Science.gov (United States)

    Okoshi, Masayuki; Iyono, Minako; Inoue, Narumi

    2009-12-01

    Photoluminescence spectra of silicone rubber ([SiO(CH3)2]n) photochemically modified by a 193 nm ArF excimer laser was found to be controllable. Compared with the modification in air, the photoluminescence spectra could be blueshifted by the modification in vacuum or the additional irradiation of ArF excimer laser in vacuum after the modification in air. To redshift, on the other hand, the additional irradiation of a 157 nm F2 laser in air after the modification in air, the modification in oxygen gas, or the postannealing after the modification in oxygen gas was effective. The blue and redshifts of the photoluminescence were essentially due to the acceleration of reduction and oxidation reactions of silicone rubber, respectively, because the photoluminescence derives its origin from oxygen deficiency centers and peroxy centers of the silica structure in the modified silicone rubber. On the basis of the spectra changes, colorful light-guiding sheets made of silicone rubber under illumination of a 375 nm light-emitting diode were successfully fabricated for cellular phone use.

  7. Mesoscale Laser Processing using Excimer and Short-Pulse Ti: Sapphire Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Shirk, M D; Rubenchik, A M; Gilmer, G H; Stuart, B C; Armstrong, J P; Oberhelman, S K; Baker, S L; Nikitin, A J; Mariella, R P

    2003-07-28

    Targets to study high-energy density physics and inertial confinement fusion processes have very specific and precise tolerances that are pushing the state-of-the-art in mesoscale microsculpting technology. A significant effort is required in order to advance the capabilities to make these targets with very challenging geometries. Ultrashort pulsed (USP) Ti:Sapphire lasers and excimer lasers are proving to be very effective tools in the fabrication of the very small pieces that make up these targets. A brief description of the dimensional and structural requirements of these pieces will be presented, along with theoretical and experimental results that demonstrate to what extent these lasers are achieving the desired results, which include sub-{mu}m precision and RMS surface values well below 100 nm. This work indicates that excimer lasers are best at sculpting the polymer pieces and that the USP lasers work quite well on metal and aerogel surfaces, especially for those geometries that cannot be produced using diamond machining and where material removal amounts are too great to do with focused ion beam milling in a cost effective manner. In addition, the USP laser may be used as part of the procedure to fill target capsules with fusion fuel, a mixture of deuterium and tritium, without causing large perturbations on the surface of the target by keeping holes drilled through 125 {micro}m of beryllium below 5 {micro}m in diameter.

  8. Excimer laser-induced metallization for in situ processing on Si and GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Meunier, Michel; Suys, Marc; Tabbal, Maleck; Izquierdo, Ricardo; Yelon, Arthur; Sacher, Edward (Groupe des Couches Minces and Dept. de Genie Physique, Ecole Polytechnique de Montreal, Station ' A' , Montreal, Quebec (Canada))

    1994-05-15

    We have investigated both the large area excimer laser-induced deposition of W and its silicides on GaAs to form thermally stable Schottky contacts, and the reduction of a Cu(I) compound for the deposition of Cu interconnects for Si microelectronics. Using a KrF excimer laser at 25 mJ/cm[sup 2] and a mixture of WF[sub 6], SiH[sub 4] and Ar, metallic W is deposited with an average growth rate of 1 A/pulse. For Cu deposition, the reduction by H[sub 2] of the precursor Cu(hfac)(TMVS) under a KrF excimer laser illumination of 9 mJ/cm[sup 2] gives metallic Cu with a Cu/C ratio of 4.35. For both processes, possible deposition mechanisms are discussed in terms of gas phase and surface reactions

  9. A comparison of the characteristics of excimer and femtosecond laser ablation of acrylonitrile butadiene styrene (ABS)

    Science.gov (United States)

    See, Tian Long; Liu, Zhu; Li, Lin; Zhong, Xiang Li

    2016-02-01

    This paper presents an investigation on the ablation characteristics of excimer laser (λ = 248 nm, τ = 15 ns) and femtosecond laser (λ = 800 nm, τ = 100 fs) on ABS polymer sheets. The laser-material interaction parameters (ablation threshold, optical penetration depth and incubation factor) and the changes in material chemical properties were evaluated and compared between the two lasers. The work shows that the ablation threshold and effective optical penetration depth values are dependent on the wavelength of laser beam (photon energy) and the pulse width. The ablation threshold value is lower for the excimer laser ablation of ABS (Fth = 0.087 J/cm2) than that for the femtosecond laser ablation of ABS (Fth = 1.576 J/cm2), demonstrating a more dominating role of laser wavelength than the pulse width in influencing the ablation threshold. The ablation depth versus the logarithmic scale of laser fluence shows two linear regions for the fs laser ablation, not previously known for polymers. The effective optical penetration depth value is lower for excimer laser ablation (α-1 = 223 nm) than that for femtosecond laser ablation (α-1 = 2917 nm). The ablation threshold decreases with increasing number of pulses (NOP) due to the chain scission process that shortens the polymeric chains, resulting in a weaker polymeric configuration and the dependency is governed by the incubation factor. Excimer laser treatment of ABS eliminates the Cdbnd C bond completely through the chain scission process whereas Cdbnd C bond is partially eliminated through the femtosecond laser treatment due to the difference in photon energy of the two laser beams. A reduction in the Cdbnd C bond through the chain scission process creates free radical carbons which then form crosslinks with each other or react with oxygen, nitrogen and water in air producing oxygen-rich (Csbnd O and Cdbnd O bond) and nitrogen-rich (Csbnd N) functional groups.

  10. Effects of excimer laser annealing on low-temperature solution based indium-zinc-oxide thin film transistor fabrication

    Directory of Open Access Journals (Sweden)

    Chao-Nan Chen

    2015-04-01

    Full Text Available A Solution Based Indium-Zinc-Oxide thin-film transistor (TFT with a field-effect mobility of 0.58 cm2/Vs, a threshold voltage of 2.84 V by using pulse laser annealing processes. Indium-zinc-oxide (IZO films with a low process temperature were deposited by sol-gel solution based method and KrF excimer laser annealing (wavelength of 248 nm. Solution based indium-zinc-oxide (IZO films usually needs high temperature about 500 °C post annealing in a oven. KrF excimer laser annealing shows advantages of low temperature process, the less process time deceases to only few seconds was used to replace the high temperature process. IZO thin films suffering laser irradiation still keeps the amorphous film quality by transmission electron microscopy (TEM diffraction pattern analysis. It could be expected this technology to large-area flexible display, in the future.

  11. Discharge instabilities in high-pressure fluorine based excimer laser gas mixtures

    NARCIS (Netherlands)

    Mathew, D.

    2007-01-01

    Fluorine based excimer lasers such as KrF, ArF and F2 are currently the most powerful sources available in the ultraviolet wavelength range, operating at 248 nm, at 193 nm and at 157 nm, respectively. They are thus of central importance for numerous applications in this range. At these short

  12. A new method for three dimensional excimer laser micromachining, Hole Area Modulation (HAM)

    NARCIS (Netherlands)

    Masuzawa, T.; Olde Benneker, Jeroen; Eindhoven, J.J.C.

    2000-01-01

    A new excimer laser system configuration for three dimensional (3D) micromachining, called Hole Area Modulation (HAM) method, is proposed and the feasibility of the system is experimentally confirmed. In this method, information on the depth of machining is converted to the sizes of small holes in

  13. Saline flush during excimer laser angioplasty: short and long term effects in the rabbit femoral artery

    NARCIS (Netherlands)

    van Leeuwen, T. G.; Velema, E.; Pasterkamp, G.; Post, M. J.; Borst, C.

    1998-01-01

    BACKGROUND AND OBJECTIVE: In this study, the effect of flushing saline on arterial wall damage (medial ruptures and necrosis), intimal hyperplasia, and arterial remodeling was determined. During excimer laser coronary angioplasty saline is flushed to reduce the size of explosive water vapor bubbles

  14. Preionization and gain studies in fluorine based excimer laser gas discharges

    NARCIS (Netherlands)

    Azarov, A.V.

    2008-01-01

    Fluorine-based excimer gas lasers are powerful sources of coherent radiation in the UV and VUV part of the electro-magnetic spectrum. Due to their short wavelengths and high output power they are widely employed in high resolution material processing like micromachining and in lithography. In this

  15. Morphological and structural modifications induced in a-Si{sub 1-x} C{sub x}:H films by excimer laser annealing

    Energy Technology Data Exchange (ETDEWEB)

    Coscia, U. [CNISM Unita' di Napoli, Complesso Universitario MSA, Napoli (Italy); Universita di Napoli ' Federico II' , Dipartimento di Scienze Fisiche, Napoli (Italy); Ambrosone, G. [Universita di Napoli ' Federico II' , Dipartimento di Scienze Fisiche, Napoli (Italy); CNR-SPIN, Napoli (Italy); Basa, D.K. [Utkal University, Department of Physics, Bhubaneswar (India); Tresso, E. [Politecnico di Torino, Dipartimento di Scienza dei Materiali ed Ingegneria Chimica, Turin (Italy); Chiodoni, A. [IIT rate at POLITO - Center for Space Human Robotics, Turin (Italy); Pinto, N.; Murri, R. [Universita' di Camerino, Dipartimento di Fisica, Camerino (Italy)

    2010-09-15

    Hydrogenated amorphous silicon carbon films of different carbon content deposited by plasma enhanced chemical vapour deposition on Corning glass and crystalline silicon substrates have been irradiated by an excimer (KrF) laser. The properties of these samples were investigated by X-ray diffraction, field emission scanning electron microscopy and Fourier transform infrared spectroscopy before and after laser treatment, in order to understand the role of the carbon content as well as the substrate in the structural modifications. It has been demonstrated that the changes induced in the films by the laser treatment are independent of the substrate but depend on the carbon content which facilitates the crystallization process. (orig.)

  16. Insight into excimer laser crystallization exploiting ellipsometry: Effect of silicon film precursor

    Energy Technology Data Exchange (ETDEWEB)

    Losurdo, Maria [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR and INSTM sez. Bari, Via Orabona 4, 70125 Bari (Italy)], E-mail: maria.losurdo@ba.imip.cnr.it; Giangregorio, Maria M.; Sacchetti, Alberto; Capezzuto, Pio; Bruno, Giovanni [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR and INSTM sez. Bari, Via Orabona 4, 70125 Bari (Italy); Mariucci, Luigi; Fortunato, Guglielmo [IFN-CNR, Via Cineto Romano, 42 - 00156 Rome (Italy)

    2007-07-16

    The optical diagnostic of spectroscopic ellipsometry is shown to be an effective tool to investigate the mechanism of excimer laser crystallization (ELC) of silicon thin films. A detailed spectroscopic ellipsometric investigation of the microstructures of polycrystalline Si films obtained on SiO{sub 2}/Si wafers by ELC of a-Si:H and nc-Si films deposited, respectively, by SiH{sub 4} plasma enhanced chemical vapor deposition (PECVD) and SiF{sub 4}-PECVD is presented. It is shown that ellipsometric spectra of the pseudodielectric function of polysilicon thin films allows to discern the three different ELC regimes of partial melting, super lateral growth and complete melting. Exploiting ellipsometry and atomic force microscopy, it is shown that ELC of nc-Si has very low energy density threshold of 95 mJ/cm{sup 2} for complete melting, and that re-crystallization to large grains of {approx} 2 {mu}m can be achieved by multi-shot irradiation at an energy density as low as 260 mJ/cm{sup 2} when using nc-Si when compared to 340 mJ/cm{sup 2} for the ELC of a-Si films.

  17. Preionization and gain studies in fluorine based excimer laser gas discharges

    OpenAIRE

    Azarov, A.V.

    2008-01-01

    Fluorine-based excimer gas lasers are powerful sources of coherent radiation in the UV and VUV part of the electro-magnetic spectrum. Due to their short wavelengths and high output power they are widely employed in high resolution material processing like micromachining and in lithography. In this field pattern sizes several times shorter than the used wavelength can be achieved using an immersion technique. However due to the short duration of the laser pulse (typically of few tens of ns for...

  18. A design of energy detector for ArF excimer lasers

    Science.gov (United States)

    Feng, Zebin; Han, Xiaoquan; Zhou, Yi; Bai, Lujun

    2017-08-01

    ArF excimer lasers with short wavelength and high photon energy are widely applied in the field of integrated circuit lithography, material processing, laser medicine, and so on. Excimer laser single pulse energy is a very important parameter in the application. In order to detect the single pulse energy on-line, one energy detector based on photodiode was designed. The signal processing circuit connected to the photodiode was designed so that the signal obtained by the photodiode was amplified and the pulse width was broadened. The amplified signal was acquired by a data acquisition card and stored in the computer for subsequent data processing. The peak of the pulse signal is used to characterize the single pulse energy of ArF excimer laser. In every condition of deferent pulse energy value levels, a series of data about laser pulses energy were acquired synchronously using the Ophir energy meter and the energy detector. A data set about the relationship between laser pulse energy and the peak of the pulse signal was acquired. Then, by using the data acquired, a model characterizing the functional relationship between the energy value and the peak value of the pulse was trained based on an algorithm of machine learning, Support Vector Regression (SVR). By using the model, the energy value can be obtained directly from the energy detector designed in this project. The result shows that the relative error between the energy obtained by the energy detector and by the Ophir energy meter is less than 2%.

  19. Comparison of femtosecond and excimer laser platforms available for corneal refractive surgery.

    Science.gov (United States)

    Chen, Lisa Y; Manche, Edward E

    2016-07-01

    The evolution of laser technology has left today's refractive surgeon with a choice between multiple laser platforms. The purpose of this review is to compare currently available femtosecond and excimer laser platforms, providing a summary of current evidence. Femtosecond lasers create LASIK flaps with better accuracy, uniformity, and predictability than mechanical microkeratomes. Newer higher-frequency femtosecond platforms elicit less inflammation, producing better visual outcomes. SMILE achieved similar safety, efficacy, and predictability as LASIK with greater preservation of corneal nerves and biomechanical strength. The emergence of wavefront technology has resulted in improved excimer laser treatments. Comparisons of wavefront-guided and wavefront-optimized treatments suggest that there is an advantage to using wavefront-guided platforms in terms of visual acuity and quality of vision. Topography-guided ablations are another well tolerated and effective option, especially in eyes with highly irregular corneas. Advances in femtosecond and excimer laser technology have not only improved the safety and efficacy of refractive procedures, but have also led to the development of promising new treatment modalities, such as SMILE and the use of wavefront-guided and topography-guided ablation. Future studies and continued technological progress will help to better define the optimal use of these treatment platforms.

  20. Excimer laser absorption on PMMA plate and on cornea: a practical approach using volume luminance

    Science.gov (United States)

    Digulescu, Petre P.; Carstocea, Benone D.; Sterian, Livia

    2001-04-01

    Excimer laser refractive surgery used in Ophthalmology in order to treat the human eye refraction problems has been performed over 10 years around the world. However a systematic approach of the physical phenomena and especially of the absorption on the cornea during the laser treatment is missing in the literature and the doctors are usually using empiric nomograms in order to achieve good results. The theoretical approach is difficult because of the complexity of the phenomena interconnected each to the others. The UV excimer laser beam used to controllably ablate the cornea is highly absorbed in the air and also is supplementary absorbed in the plume generated almost instantaneous as consequence of the ablation on the cornea. Because of this non-linear proces the energy of the laser beam delivered to the eye must be calibrated before each intervention on a patient. The purpose of the present work is to develop a mathematical model of the excimer laser absorption on PMMA and on human cornea based on a new physical notion, the Volume Luminance. The Volume Luminance is defined as volume density of the intensity of laser radiation. A brief theory of the Volume Luminance is also presented.

  1. Color-center laser spectroscopy of transient species produced by excimer-laser flash photolysis

    Energy Technology Data Exchange (ETDEWEB)

    Adams, H.; Hall, J.L.; Rusell, L.A.; Kasper, J.V.V.; Tittel, F.K.; Curl, R.F.,JR.

    1985-05-01

    Kinetic spectroscopy based on excimer-laser flash photolysis and color-center-laser (CCL) infrared probing is explored. In simiple absorption, the achievable signal-to-noise ratio (S/N) is not satisfactory even though the signal itself (corresponding to greater than 1 percent absorption) is fairly large. This is due to amplitude fluctuations of the CCL. By using a double-beam detection scheme to balance out these amplitude fluctuations the sensitivity can be improved to the extent that a 1 percent absorption gives a S/N approximately 100. In certain situations transient decreases in absorption of the precursor and transient increases in absorption due to final product formation can produce severe interferinng signals even in simple systems. This problem is overcome without a major loss in sensitivity by a recently developed 45 deg magnetic rotation scheme. These points are illustrated with spectra of Br, OH, and NH2. 21 references.

  2. High Efficiency Mask Based Laser Materials Processing with TEA-CO2 - and Excimer Laser

    DEFF Research Database (Denmark)

    Bastue, Jens; Olsen, Flemmming Ove

    1997-01-01

    In general, mask based laser materials processing techniques suffer from a very low energy efficiency. We have developed a simple device called an energy enhancer, which is capable of increasing the energy efficiency of typical mask based laser materials processing systems. A short review of the ...... line marking with TEA-CO2 laser of high speed canning lines. The second one is manufactured for marking or microdrilling with excimer laser.......In general, mask based laser materials processing techniques suffer from a very low energy efficiency. We have developed a simple device called an energy enhancer, which is capable of increasing the energy efficiency of typical mask based laser materials processing systems. A short review...... of the most widely used applications of these systems is given and the potential advantages of the energy enhancer are discussed.The basic principle behind the energy enhancing technique is explained and two new energy enhancers are presented and evaluated. The first one is designed especially for single text...

  3. Curative effects of excimer laser corneal refractive surgery for hyperopic anisometropic amblyopia

    Directory of Open Access Journals (Sweden)

    Xin-Gang Nie

    2017-07-01

    Full Text Available AIM: To investigate curative effects of excimer laser corneal refractive surgery for adults or older adolescent with hyperopic anisometropic amblyopia. METHODS: From March 2014 to March 2016, we selected 26 cases 26 eyes of adults or older adolescent with hyperopic anisometropic amblyopia in our hospital. All eyes underwent laser in situ keratomileusis, observed for the uncorrected visual acuity(UCVA, best corrected visual acuity(BCVA, diopter and stereopsis. RESULTS: At the end of the follow-up, the patient's spherical equivalent and anisometropia were 1.47±0.51D and 1.15±0.22D, were significantly lower than that before operation(PPPCONCLUSION: In adult or older adolescent with hyperopic anisometropic amblyopia, excimer laser corneal refractive surgery has a certain effect.

  4. Effects of 308 nanometer excimer laser energy on 316 L stainless-steel stents: implications for laser atherectomy of in-stent restenosis.

    Science.gov (United States)

    Burris, N; Lippincott, R A; Elfe, A; Tcheng, J E; O'Shea, J C; Reiser, C

    2000-11-01

    To determine the effects of the incidental exposure of stents to pulsed 308 nanometer ultraviolet excimer laser energy. Five types of 316 L stainless-steel coronary stents were subjected to two types of study. First, for endurance testing, sixty stents were deployed in 3.0Eth 4.0 mm polymer tubes in three geometries. Up to 1,000 laser pulses were delivered while advancing a 2.0 mm eccentric catheter through the lumen of the stent. These stents were next subjected to 400 million simulated heartbeats and then analyzed for metal etching and fatigue. Second, six additional stents were irradiated with 1,000 pulses underwater and then analyzed for particulates, anions and cations liberated from the stent. Photomicroscopy revealed surface etching on a number of stents. Two stent models exhibited multiple strut fractures at the strut joints in both test samples and controls. In no case was a break observed at the site of laser-stent interaction. Breakage frequency was not significantly different between lazed stents and controls. Lazed stents produced a mean of 14 micrograms of sodium and 4 micrograms of iron more than controls. No excess particulates were detected. Under model conditions typical of clinical use, excimer laser treatment does not alter stainless-steel stent endurance or liberate clinically significant material from the stent.

  5. Pigmentation above the constitutive level: an indicator of excimer laser radiation-induced erythema in Koreans.

    Science.gov (United States)

    Choi, Jee-Woong; Na, Se-Young; Chung, Mi-Young; Na, Jung-Im; Huh, Chang-Hun; Youn, Sang-Woong; Kang, Hee-Young; Park, Kyoung-Chan

    2012-07-01

    Ultraviolet (UV) irradiation induces skin erythema, but it is not clear which factors have the greatest effects on UV sensitivity. Six healthy Korean adult men were enrolled and their melanin index (MI) and increment of erythema index (ΔEI) were measured. In each individual, 12 different sites were selected and 36 spots were irradiated with a single shot of monochromatic excimer laser with a dose of 350 mJ/cm(2) . The sites were categorized into three groups based on the cumulative sun exposure: UZ, unexposed zones; FEZ, frequently exposed zones; and IEZ, intermittently exposed zones. The sun exposure indexes (SEI) were also calculated based on previously described methods. ΔEI, MI and SEI were measured and calculated. The ΔEI of UZ was significantly higher than that of FEZ, but lower than that of IEZ. In general, there was a significant relationship between ΔEI and MI (R(2) = 0.135). However, IEZ did not show significant results. In contrast, there was a stronger relationship between ΔEI and SEI (R(2) = 0.344). Overall, the values were significantly higher for the SEI (0.541 [UZ], 0.281 [IEZ] and 0.228 [FEZ]) than for MI (0.311 [UZ], 0.011 [IEZ] and 0.073 [FEZ]). There were significant site variations in UV sensitivity along with skin pigmentation. In addition, significant differences were observed according to the exposure frequency. The SEI was found to be strongly correlated with UV sensitivity. These results suggest that the induced level of pigmentation above the constitutive level will be a better indicator for UV sensitivity than baseline MI. © 2012 Japanese Dermatological Association.

  6. Some optical and electron microscope comparative studies of excimer laser-assisted and nonassisted molecular-beam epitaxically grown thin GaAs films on Si

    Science.gov (United States)

    Lao, Pudong; Tang, Wade C.; Rajkumar, K. C.; Guha, S.; Madhukar, A.; Liu, J. K.; Grunthaner, F. J.

    1990-01-01

    The quality of GaAs thin films grown via MBE under pulsed excimer laser irradiation on Si substrates is examined in both laser-irradiated and nonirradiated areas using Raman scattering, Rayleigh scattering, and by photoluminescence (PL), as a function of temperature, and by TEM. The temperature dependence of the PL and Raman peak positions indicates the presence of compressive stress in the thin GaAs films in both laser-irradiated and nonirradiated areas. This indicates incomplete homogeneous strain relaxation by dislocations at the growth temperature. The residual compressive strain at the growth temperature is large enough such that even with the introduction of tensile strain arising from the difference in thermal expansion coefficients of GaAs and Si, a compressive strain is still present at room temperature for these thin GaAs/Si films.

  7. Application of optical tweezers and excimer laser to study protoplast fusion

    Science.gov (United States)

    Kantawang, Titirat; Samipak, Sompid; Limtrakul, Jumras; Chattham, Nattaporn

    2015-07-01

    Protoplast fusion is a physical phenomenon that two protoplasts come in contact and fuse together. Doing so, it is possible to combine specific genes from one protoplast to another during fusion such as drought resistance and disease resistance. There are a few possible methods to induce protoplast fusion, for example, electrofusion and chemical fusion. In this study, chemical fusion was performed with laser applied as an external force to enhance rate of fusion and observed under a microscope. Optical tweezers (1064 nm with 100X objective N.A. 1.3) and excimer laser (308 nm LMU-40X-UVB objective) were set with a Nikon Ti-U inverted microscope. Samples were prepared by soaking in hypertonic solution in order to induce cell plasmolysis. Elodea Canadensis and Allium cepa plasmolysed leaves were cut and observed under microscope. Concentration of solution was varied to induce difference turgor pressures on protoplasts pushing at cell wall. Free protoplasts in solution were trapped by optical tweezers to study the effect of Polyethylene glycol (PEG) solution. PEG was diluted by Ca+ solution during the process to induced protoplast cell contact and fusion. Possibility of protoplast fusion by excimer laser was investigated and found possible. Here we report a novel tool for plant cell fusion using excimer laser. Plant growth after cell fusion is currently conducted.

  8. Study on the electromagnetic radiation characteristics of discharging excimer laser system

    Science.gov (United States)

    Zhao, Duliang; Liang, Xu; Fang, Xiaodong; Wang, Qingsheng

    2016-10-01

    Excimer laser in condition of high voltage, large current and fast discharge will produce strong electromagnetic pulse radiation and electromagnetic interference on the around electrical equipment. The research on characteristics and distribution of excimer laser electromagnetic radiation could provide important basis for electromagnetic shielding and suppressing electromagnetic interference, and further improving the electromagnetic compatibility of system. Firstly, electromagnetic radiation source is analyzed according to the working principle of excimer laser. The key test points of the electromagnetic radiation, hydrogen thyratron, main discharge circuit and laser outlet, are determined by the mechanical structure and the theory of electromagnetic radiation. Secondly, characteristics of electromagnetic field were tested using a near field probe on the key positions of the vertical direction at 20, 50, and 80 cm, respectively. The main radiation frequencies and the radiation field characteristics in the near field are obtained. The experimental results show that the main radiation frequencies distribute in 47, 65, and 130 MHz for electric field and the main radiation frequencies distribute in 34, 100, and 165 MHz for magnetic field. The intensity of electromagnetic field decreases rapidly with the increase of test distance. The higher the frequency increases, the faster the amplitude attenuate. Finally, several electromagnetic interference suppression measurement methods are proposed from the perspective of electromagnetic compatibility according to the test results.

  9. Excimer laser refractive surgery versus phakic intraocular lenses for the correction of moderate to high myopia.

    Science.gov (United States)

    Barsam, Allon; Allan, Bruce D S

    2014-06-17

    Myopia is a condition in which the focusing power (refraction) of the eye is greater than that required for clear distance vision. There are two main types of surgical correction for moderate to high myopia; excimer laser and phakic intraocular lenses (IOLs). Excimer laser refractive surgery for myopia works by removing corneal stroma to lessen the refractive power of the cornea and to bring the image of a viewed object into focus onto the retina rather than in front of it. Phakic IOLs for the treatment of myopia work by diverging light rays so that the image of a viewed object is brought into focus onto the retina rather than in front of the retina. They can be placed either in the anterior chamber of the eye in front of the iris or in the posterior chamber of the eye between the iris and the natural lens. To compare excimer laser refractive surgery and phakic IOLs for the correction of moderate to high myopia by evaluating postoperative uncorrected visual acuity, refractive outcome, potential loss of best spectacle corrected visual acuity (BSCVA) and the incidence of adverse outcomes. We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (2014, Issue 1), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to February 2014), EMBASE (January 1980 to February 2014), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrials.gov) and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 11 February 2014. We included randomised controlled trials (RCTs) comparing excimer laser refractive surgery and phakic IOLs for the correction of myopia greater than 6.0 diopters (D) spherical equivalent. Two authors independently

  10. Electronic and crystalline structure of Si/SiO 2 interface modified by ArF excimer laser

    Science.gov (United States)

    Cháb, V.; Lukeš, I.; Ondřejček, M.; Jiříček, P.

    The native oxide layers on Si(100) surface were irradiated under UHV conditions by an ArF excimer laser pulses with energy density varied between melting and evaporating thresholds. The resulting changes were studied by LEED, AES and UPS. The increase of the energy density up to evaporation threshold results in the recrystallisation of native oxide layer. The pulses with energy densities just above the evaporation threshold ablate the top layer leaving an ordered and atomicaly clean surface. The observed (1x1) surface reconstruction is probably stabilised by strains introduced during rapid melting and quenching of the topmost layers. The surface electronic structure is dominated by random satisfaction of dangling bonds swearing a well defined surface states observed on (2x1)Si(100) surface.

  11. Discharge instabilities in high-pressure fluorine based excimer laser gas mixtures

    OpenAIRE

    Mathew, D

    2007-01-01

    Fluorine based excimer lasers such as KrF, ArF and F2 are currently the most powerful sources available in the ultraviolet wavelength range, operating at 248 nm, at 193 nm and at 157 nm, respectively. They are thus of central importance for numerous applications in this range. At these short wavelengths, reaching the laser threshold for an efficient operation, F2-based lasers require to be pumped, in a controlled manner, with very high power densities. This can practically be achieved only vi...

  12. Excimer Laser Phototherapeutic Keratectomy for the Treatment of Clinically Presumed Fungal Keratitis

    OpenAIRE

    Liang-Mao Li; Li-Quan Zhao; Ling-Hui Qu; Peng Li

    2014-01-01

    This retrospective study was to evaluate treatment outcomes of excimer laser phototherapeutic keratectomy (PTK) for clinically presumed fungal keratitis. Forty-seven eyes of 47 consecutive patients underwent manual superficial debridement and PTK. All corneal lesions were located in the anterior stroma and were resistant to medication therapy for at least one week. Data were collected by a retrospective chart review with at least six months of follow-up data available. After PTK, infected cor...

  13. Heat generation in laser irradiated tissue.

    Science.gov (United States)

    Welch, A J; Pearce, J A; Diller, K R; Yoon, G; Cheong, W F

    1989-02-01

    Many medical applications involving lasers rely upon the generation of heat within the tissue for the desired therapeutic effect. Determination of the absorbed light energy in tissue is difficult in many cases. Although UV wavelengths of the excimer laser and 10.6 microns wavelength of the CO2 laser are absorbed within the first 20 microns of soft tissue, visible and near infrared wavelengths are scattered as well as absorbed. Typically, multiple scattering is a significant factor in the distribution of light in tissue and the resulting heat source term. An improved model is presented for estimating heat generation due to the absorption of a collimated (axisymmetric) laser beam and scattered light at each point r and z in tissue. Heat generated within tissue is a function of the laser power, the shape and size of the incident beam and the optical properties of the tissue at the irradiation wavelength. Key to the calculation of heat source strength is accurate estimation of the light distribution. Methods for experimentally determining the optical parameters of tissue are discussed in the context of the improved model.

  14. Electron microscopic and immunohistochemical examination of scarred human cornea re-treated by excimer laser.

    Science.gov (United States)

    Bleckmann, Heinrich; Schnoy, Norbert; Kresse, Hans

    2002-04-01

    To elucidate differences, at the macromolecular level, in corneal tissue subjected to repeated argon fluoride excimer treatment. A light microscopic, electron microscopic, and immunohistochemical study was performed on a scarred human cornea. Keratocytes were enlarged with an expanded endoplasmic reticulum and exhibited a fibroblastic appearance. Amorphous material was observed extracellularly. Collagen fibrils exhibited a disordered arrangement while banding patterns and diameter were normal. Immunohistochemical investigation of several collagen types, of collagen-associated proteoglycans, and of basement membrane components demonstrated an enhanced immunoreactivity of all of them in the scarred area. Type V collagen was found as a normal component of the epithelial basement membrane whereas types I and III collagen were present beneath Bowman's layer. Excimer-laser-treated sections revealed considerably stronger subepithelial staining for collagen types I, III, IV, and V. Laminin-1, a typical component of basement membranes, was detectable throughout the scarred tissue. The small proteoglycans decorin and fibromodulin accumulated in a patch-like manner in the scarred tissue below the epithelium, whereas biglycan was expressed by the epithelium and throughout the stroma. Lumican was expressed most strongly by the epithelium and rather equally distributed in the excimer-laser-treated and in the normal stroma. Effects of argon laser treatment of the cornea must be regarded as a process acting over many months. Intra- and extracellular structures and components are involved and influence the unpredictable shape of the corneal architecture.

  15. Comparison of KrF and ArF excimer laser treatment of biopolymer surface

    Energy Technology Data Exchange (ETDEWEB)

    Michaljaničová, I. [Department of Solid State Engineering, University of Chemistry and Technology, 166 28 Prague (Czech Republic); Slepička, P., E-mail: petr.slepicka@vscht.cz [Department of Solid State Engineering, University of Chemistry and Technology, 166 28 Prague (Czech Republic); Heitz, J.; Barb, R.A. [Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Sajdl, P. [Department of Power Engineering, University of Chemistry and Technology, 166 28 Prague (Czech Republic); Švorčík, V. [Department of Solid State Engineering, University of Chemistry and Technology, 166 28 Prague (Czech Republic)

    2015-06-01

    Highlights: • The influence of ArF and KrF laser on biopolymer surface was determined. • ArF laser acts predominantly on biopolymer surface. • PHB roughness is increased similarly for both applied wavelengths. • Roughness of nanostructures can be precisely controlled. • ArF laser introduces nitrogen on PHB surface. - Abstract: The goal of this work was the investigation of the impact of two different excimer lasers on two biocompatible and biodegradable polymers (poly-L-lactide and poly hydroxybutyrate). Both polymers find usage in medical and pharmaceutical fields. The polymers were modified by KrF and ArF excimer lasers. Subsequently the impact on surface morphology, surface chemistry changes, and thermal properties was studied by means of confocal and AFM microscopy, FTIR and XPS spectroscopy and DSC calorimetry. Under the same conditions of laser treatment it was observed that ArF laser causes more significant changes on surface chemistry, surface morphology and pattern formation on the polymers under investigation. The data obtained in this work can be used for a wide range of possible applications, in tissue engineering or in combination with metallization in electronics, e.g. for biosensors.

  16. Surface ablation of PLLA induced by KrF excimer laser

    Energy Technology Data Exchange (ETDEWEB)

    Slepička, P., E-mail: petr.slepicka@vscht.cz [Department of Solid State Engineering, Institute of Chemical Technology Prague, 166 28 Prague (Czech Republic); Michaljaničová, I. [Department of Solid State Engineering, Institute of Chemical Technology Prague, 166 28 Prague (Czech Republic); Sajdl, P. [Department of Power Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic); Fitl, P. [Department of Physics and Measurements, Faculty of Chemical Engineering, Institute of Chemical Technology Prague, 166 28 Prague (Czech Republic); Švorčík, V. [Department of Solid State Engineering, Institute of Chemical Technology Prague, 166 28 Prague (Czech Republic)

    2013-10-15

    The surface characterization of PLLA (poly-L-lactic-acid) and its ablation due to excimer laser treatment is introduced in this paper. The main focus is to determine surface wettability and morphology changes in combination with changes of surface chemistry. The ablation loss and the determination of ablation threshold were used to study the biopolymer stability when treated to different laser fluences and pulse counts. The surface polarity was estimated using goniometry. AFM (atomic force microscopy) was used to determine the polymer surface morphology and roughness. The excimer laser has a strong effect on the polymer ablation. The thickness loss is strongly dependent on the laser fluence and number of pulses. For the fluences up to 30 mJ cm{sup −2} and 6000 pulses achieved ablation about 5 μm. The glass transition temperature and melting point were determined for the pristine and laser treated films. The increasing pulsed laser fluence leads to the major changes in roughness and morphology. The surface chemistry depends strongly on number of laser pulses.

  17. [Retinal detachment after Excimer laser (myopic LASIK or PRK). A retrospective multicentric study: 15 cases].

    Science.gov (United States)

    Feki, J; Trigui, A; Chaabouni, M; Ben Salah, S; Bouacida, B; Chechia, N; Zayani, A; Nouira, F; Daghfous, F; Ayed, S; Kamoun, M

    2005-05-01

    Refractive surgery by LASIK or photorefractive keratectomy (PRK) generaly aims at a myopic population that has a high probability of developing rhegmatogenous retinal detachment (RD). The authors report a multicenter study with 15 cases of RD appearing after refractive surgery by Excimer laser and discuss the role played by the techniques used. Five centers fitted with nine Excimer laser devices took part in this study. Of 22,700 eyes undergoing refractive myopic surgery during the period 1994-2002, 15 eyes developed rhegmatogenous RD. The average age of the patients with RD was 37 years. The average myopia was 13.5 D. RD occurred a mean of 20 months after refractive laser. Fifteen eyes of 13 patients developed a rhegmatogenous RD, two of which were bilateral. Eight of these cases had LASIK surgery and six had photorefractive keratectomy; one of the latter patients was retreated with LASIK because of substantial regression after PRK. RD was total or subtotal in five eyes, partial superior with a temporal tear in six eyes, and nasal in three eyes. One case with inferior RD, two cases with giant retinal tear and one case with posterior tear were also repaired. Fourteen eyes were suitable for operation. The retina was reattached in 12 cases. Mean postoperative visual acuity was 7/10. The occurrence of rhegmatogenous RD in the myopic population is estimated at 2.2%. It is estimated at 0.1% in the emmetropic population. The Excimer laser, through its thermic effects, shock wave, traumatism undergone by the suction ring at the time of LASIK surgery, could increase this risk in myopic patients. A review of the literature cast doubt on the cause and effect hypothesis. Personal and multicenter studies (including ours) show that the frequency rate of rhegmatogenous RD after Excimer laser is equivalent and even lower than that estimated with an emmetropic population. The low percentage of RD after Excimer surgery found in the literature as well as in our study (surgery, the

  18. The development and progress of XeCl Excimer laser system

    Science.gov (United States)

    Zhang, Yongsheng; Ma, Lianying; Wang, Dahui; Zhao, Xueqing; Zhu, Yongxiang; Hu, Yun; Qian, Hang; Shao, Bibo; Yi, Aiping; Liu, Jingru

    2015-05-01

    A large angularly multiplexed XeCl Excimer laser system is under development at the Northwest Institute of Nuclear Technology (NINT). It is designed to explore the technical issues of uniform and controllable target illumination. Short wavelength, uniform and controllable target illumination is the fundamental requirement of high energy density physics research using large laser facility. With broadband, extended light source and multi-beam overlapping techniques, rare gas halide Excimer laser facility will provide uniform target illumination theoretically. Angular multiplexing and image relay techniques are briefly reviewed and some of the limitations are examined to put it more practical. The system consists of a commercial oscillator front end, three gas discharge amplifiers, two electron beam pumped amplifiers and the optics required to relay, encode and decode the laser beam. An 18 lens array targeting optics direct and focus the laser in the vacuum target chamber. The system is operational and currently undergoing tests. The total 18 beams output energy is more than 100J and the pulse width is 7ns (FWHM), the intensities on the target will exceed 1013W/cm2. The aberration of off-axis imaging optics at main amplifier should be minimized to improve the final image quality at the target. Automatic computer controlled alignment of the whole system is vital to efficiency and stability of the laser system, an array of automatic alignment model is under test and will be incorporated in the system soon.

  19. Green synthesis of selenium nanoparticles by excimer pulsed laser ablation in water

    Directory of Open Access Journals (Sweden)

    O. Van Overschelde

    2013-10-01

    Full Text Available Pure selenium nanoparticles were successfully synthesized by Liquid Phase - Pulsed Laser Ablation (LP-PLA in de-ionized water. Excimer laser (248 nm operating at low fluence (F ∼ 1 J/cm2 was used to generate colloidal solutions of selenium nanoparticles. The obtained selenium nanoparticles were characterized by UV-visible spectroscopy, Raman spectroscopy, Dynamic Light Scattering, and Transmission Electron Microscopy. We describe the multi-modal size distributions generated and use the centrifugation method to isolate the smallest nanoparticles (∼60 nm in diameter.

  20. H and Au diffusion in high mobility a-InGaZnO thin-film transistors via low temperature KrF excimer laser annealing

    Science.gov (United States)

    Bermundo, Juan Paolo S.; Ishikawa, Yasuaki; Fujii, Mami N.; Ikenoue, Hiroshi; Uraoka, Yukiharu

    2017-03-01

    We report the fabrication of high mobility amorphous InGaZnO (a-IGZO) thin-film transistors (TFTs) irradiated by a single shot of a 248 nm KrF excimer laser. Very high mobilities (μ) of up to 43.5 cm2/V s were obtained after the low temperature excimer laser annealing (ELA) process. ELA induces high temperatures primarily in the upper layers and maintains very low temperatures of less than 50 °C in the substrate region. Scanning Transmission Electron micrographs show no laser induced damage and clear interfaces after the laser irradiation. In addition, several characterization studies were performed to determine the μ improvement mechanism. The analysis of Secondary Ion Mass Spectrometry and X-ray Photoelectron Spectroscopy suggests incorporation of H mainly from the hybrid passivation layer into the channel. Moreover, Energy-dispersive X-ray Spectroscopy results show that Au diffused into the channel after ELA. Both KrF ELA-induced H and Au diffusion contributed to the higher μ. These results demonstrate that ELA can greatly enhance the electrical properties of a-IGZO TFTs for promising applications in large area, transparent, and flexible electronics.

  1. Effects of excimer laser annealing on low-temperature solution based indium-zinc-oxide thin film transistor fabrication

    OpenAIRE

    Chen,Chao-Nan; Huang, Jung-Jie

    2015-01-01

    A Solution Based Indium-Zinc-Oxide thin-film transistor (TFT) with a field-effect mobility of 0.58 cm2/Vs, a threshold voltage of 2.84 V by using pulse laser annealing processes. Indium-zinc-oxide (IZO) films with a low process temperature were deposited by sol-gel solution based method and KrF excimer laser annealing (wavelength of 248 nm). Solution based indium-zinc-oxide (IZO) films usually needs high temperature about 500 °C post annealing in a oven. KrF excimer laser annealing shows adva...

  2. Fabrication of an integrated optical Mach-Zehnder interferometer based on refractive index modification of polymethylmethacrylate by krypton fluoride excimer laser radiation

    Science.gov (United States)

    Koerdt, Michael; Vollertsen, Frank

    2011-04-01

    It is known that deep ultraviolet (UV) radiation induces a refractive index increase in the surface layer of polymethylmethacrylate (PMMA) samples. This effect can be used for the fabrication of integrated optical waveguides. PMMA is of considerable interest for bio and chemical sensing applications because it is biocompatible and can be micromachined by several methods, e.g. structuring by photolithography, ablation and hot embossing. In the presented work direct UV irradiation of a common PMMA substrate by a krypton fluoride excimer laser beam through a contact mask has been used to write integrated optical Mach-Zehnder interferometers (MZI). MZI are used as sensitive bio and chemical sensors. The aim was to determine contact mask design and laser irradiation parameters for fabricating single-mode MZI for the infrared region from 1.30 μm to 1.62 μm. Straight and curved waveguides have been generated and characterized to determine the optical losses. The generation of channel waveguide structures has been optimized by a two step irradiation process to minimize the lithographic writing time and optical loss. By flood exposure to UV laser radiation in the first step the optical absorption of PMMA can be increased in the irradiated region. The required refractive index profile is then achieved with a second lithographic irradiation. The spectral behaviour of an unbalanced, integrated optical MZI fabricated by this excimer laser based contact mask method is shown for the first time. Further the optical intensity at the output port of a MZI has been measured while the optical path length difference was tuned by creating a temperature difference between the two arms of the MZI.

  3. Fabrication of an integrated optical Mach-Zehnder interferometer based on refractive index modification of polymethylmethacrylate by krypton fluoride excimer laser radiation

    Energy Technology Data Exchange (ETDEWEB)

    Koerdt, Michael, E-mail: koerdt@bias.de [BIAS - Bremer Institut fuer angewandte Strahltechnik GmbH, Klagenfurter Strasse 2, D-28359 Bremen (Germany); Vollertsen, Frank [BIAS - Bremer Institut fuer angewandte Strahltechnik GmbH, Klagenfurter Strasse 2, D-28359 Bremen (Germany)

    2011-04-01

    It is known that deep ultraviolet (UV) radiation induces a refractive index increase in the surface layer of polymethylmethacrylate (PMMA) samples. This effect can be used for the fabrication of integrated optical waveguides. PMMA is of considerable interest for bio and chemical sensing applications because it is biocompatible and can be micromachined by several methods, e.g. structuring by photolithography, ablation and hot embossing. In the presented work direct UV irradiation of a common PMMA substrate by a krypton fluoride excimer laser beam through a contact mask has been used to write integrated optical Mach-Zehnder interferometers (MZI). MZI are used as sensitive bio and chemical sensors. The aim was to determine contact mask design and laser irradiation parameters for fabricating single-mode MZI for the infrared region from 1.30 {mu}m to 1.62 {mu}m. Straight and curved waveguides have been generated and characterized to determine the optical losses. The generation of channel waveguide structures has been optimized by a two step irradiation process to minimize the lithographic writing time and optical loss. By flood exposure to UV laser radiation in the first step the optical absorption of PMMA can be increased in the irradiated region. The required refractive index profile is then achieved with a second lithographic irradiation. The spectral behaviour of an unbalanced, integrated optical MZI fabricated by this excimer laser based contact mask method is shown for the first time. Further the optical intensity at the output port of a MZI has been measured while the optical path length difference was tuned by creating a temperature difference between the two arms of the MZI.

  4. XeCl excimer laser with new prism resonator configurations and its performance characteristics.

    Science.gov (United States)

    Benerji, N S; Singh, A; Varshnay, N; Singh, Bijendra

    2015-07-01

    New resonator cavity configurations, namely, the prism resonator and unstable prism resonator, are demonstrated for the first time in an excimer (XeCl) laser with interesting and novel results. High misalignment tolerance ∼50 mrad is achieved with considerably reduced beam divergence of less than ∼1 mrad without reduction in output power capabilities of the laser. The misalignment tolerance of ∼50 mrad is a dramatic improvement of ∼25 times compared to ∼2 mrad normally observed in standard excimer laser with plane-plane cavity. Increase in depth of focus from 3 mm to 5.5 mm was also achieved in case of prism resonator configuration with an improvement of about 60%. Unstable prism resonator configuration is demonstrated here in this paper with further reduction in beam divergence to about 0.5 mrad using plano-convex lens as output coupler. The misalignment tolerance in case of unstable prism resonator was retained at about 30 mrad which is a high value compared to standard unstable resonators. The output beam spot was completely filled with flat-top profile with prism resonator configurations, which is desired for various material processing applications. Focusing properties and beam divergence in case of prism resonator have been investigated using SEM (scanning electron microscope) images. SEM images of the focused spot size (∼20 μm holes) on metal sheet indicate beam divergence of about 0.05 mrad which is about 1.5 times diffraction limit. Energy contained in this angle is thus sufficient for micro-machining applications. Clean and sharp edges of the micro-holes show high pointing stability with multiple shot exposures. Such characteristics of the excimer laser system will be extremely useful in micro-machining and other field applications.

  5. XeCl excimer laser with new prism resonator configurations and its performance characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Benerji, N. S., E-mail: nsb@rrcat.gov.in, E-mail: bsingh@rrcat.gov.in; Singh, A.; Varshnay, N.; Singh, Bijendra, E-mail: nsb@rrcat.gov.in, E-mail: bsingh@rrcat.gov.in [Excimer Laser Section, LMPD, Raja Ramanna Center for Advanced Technology, Indore 452013 (India)

    2015-07-15

    New resonator cavity configurations, namely, the prism resonator and unstable prism resonator, are demonstrated for the first time in an excimer (XeCl) laser with interesting and novel results. High misalignment tolerance ∼50 mrad is achieved with considerably reduced beam divergence of less than ∼1 mrad without reduction in output power capabilities of the laser. The misalignment tolerance of ∼50 mrad is a dramatic improvement of ∼25 times compared to ∼2 mrad normally observed in standard excimer laser with plane-plane cavity. Increase in depth of focus from 3 mm to 5.5 mm was also achieved in case of prism resonator configuration with an improvement of about 60%. Unstable prism resonator configuration is demonstrated here in this paper with further reduction in beam divergence to about 0.5 mrad using plano-convex lens as output coupler. The misalignment tolerance in case of unstable prism resonator was retained at about 30 mrad which is a high value compared to standard unstable resonators. The output beam spot was completely filled with flat-top profile with prism resonator configurations, which is desired for various material processing applications. Focusing properties and beam divergence in case of prism resonator have been investigated using SEM (scanning electron microscope) images. SEM images of the focused spot size (∼20 μm holes) on metal sheet indicate beam divergence of about 0.05 mrad which is about 1.5 times diffraction limit. Energy contained in this angle is thus sufficient for micro-machining applications. Clean and sharp edges of the micro-holes show high pointing stability with multiple shot exposures. Such characteristics of the excimer laser system will be extremely useful in micro-machining and other field applications.

  6. Reconsidering Sequential Double Running Suture Removal After Penetrating Keratoplasty: A Prospective Randomized Study Comparing Excimer Laser and Motor Trephination.

    Science.gov (United States)

    Seitz, Berthold; Hager, Tobias; Langenbucher, Achim; Naumann, Gottfried O H

    2017-12-14

    We assessed the impact of sequential double running suture removal on corneal curvature after penetrating keratoplasty (PK), comparing mechanical and nonmechanical excimer laser trephination. PK was performed in 134 patients (mean age 51 ± 18 yrs) using either the excimer laser [excimer, n = 60 (37 keratoconus and 23 Fuchs dystrophy)] or motor trephination [control, n = 74 (44 keratoconus and 30 Fuchs dystrophy)] and a double running cross-stitch suture. Refractometry, Zeiss keratometry, and Tomey corneal topography were performed before removal of the first suture (15.2 ± 4.2 mo) and immediately before and at least 6 weeks after removal of the second suture (21.4 ± 5.6 mo). Keratometry before removal of the first (-1.7 ± 2.3 D vs. -3.1 ± 2.8 D) and second (-2.3 ± 2.6 D vs. -3.8 ± 2.8 D) sutures showed that the change in the corneal base curve was significantly smaller in the excimer group than the control group (P control groups, respectively, resulting in significantly lower astigmatism in the excimer (3.1 ± 2.1 D) group compared with the control group (6.2 ± 2.9 D) with "all-sutures-out" (P vector-corrected astigmatism (Jaffe) was significantly smaller in the excimer group (4.3 ± 3.5 D) than in the control group (6.9 ± 4.5 D; P motor trephination.

  7. Plume emission, shock wave and surface wave formation during excimer laser ablation of the cornea.

    Science.gov (United States)

    Bor, Z; Hopp, B; Rácz, B; Szabó, G; Ratkay, I; Süveges, I; Füst, A; Mohay, J

    1993-01-01

    Excimer lasers are now used for corneal surgery; however, the physical processes occurring during photoablation of the cornea are incompletely understood. High speed laser-based photographic arrangement was constructed. The temporal resolution was better than 1 ns. The setup could work as a Schlieren arrangement, which is sensitive to the refractive index change caused by the shock wave propagating in the air above the eye. With minor changes the setup was converted into a shadowgraph, which could detect the ablation plume and the waves propagating on the surface of the eye. Due to the impact of the excimer laser pulse onto the surface of the cornea, a shock wave was generated in the air. The shadowgraph clearly showed the ejection of the ablated cornea. The ejection velocity of the plume was found to be over 600 m/s. It was shown for the first time that the recoil forces of the plume are generating a wave on the surface of the eye. The laser-based high speed photographic arrangement is a powerful arrangement in the study of physical effects occurring during photoablation of the cornea.

  8. Investigation of the effects of LIFT printing with a KrF-excimer laser on thermally sensitive electrically conductive adhesives

    NARCIS (Netherlands)

    Perinchery, S.M.; Smits, E.C.P.; Sridhar, A.; Albert, P.; Brand, J. van den; Mandamparambil, R.; Yakimets, I.; Schoo, H.F.M.

    2014-01-01

    Laser induced forward transfer is an emerging material deposition technology. We investigated the feasibility of this technique for printing thermally sensitive, electrically conductive adhesives with and without using an intermediate dynamic release layer. A 248nm KrF-excimer laser was used to

  9. Excimer laser patterning of PEDOT-PSS thin-films on flexible barrier foils: a surface analysis study

    NARCIS (Netherlands)

    Naithani, S.; Schaubroeck, D.; Vercammen, Y.; Mandamparambil, R.; Yakimets, I.; Vaeck, L. van; Steenberge, G. van

    2013-01-01

    Selective laser patterning of thin organic films is an important aspect in the roll-to-roll production of organic electronic devices such as organic light emitting diodes (OLEDs). An excimer laser is well suited for the patterning and structuring of polymer thin films as their UV absorption is

  10. Excimer laser micromachining of oblique microchannels on thin ...

    Indian Academy of Sciences (India)

    The edge roughness of the channels, machined with a square laser spot of side 100lm, is found to be most affected by the fluence–spot overlap interaction, and the channel width by spot-overlap and the angle of tilt of the traversed path. Polymer coated metal films underwent close to ideal machining, aided by the clamping ...

  11. Preliminary results of VISX excimer laser myopic photorefractive keratectomy at Cedars-Sinai Medical Center

    Science.gov (United States)

    Maguen, Ezra I.; Berlin, Michael S.; Hofbauer, John; Macy, Jonathan I.; Nesburn, Anthony B.; Papaioannou, Thanassis; Salz, James J.

    1992-08-01

    Sixty-two eyes underwent excimer laser photorefractive keratectomy (PRK) for the correction of myopia at Cedars-Sinai-Medical-Center. The first group of 12 patients are presented with follow up data of ten months postoperatively. The second group of 50 patients are presented with follow up data of three months postoperatively. An in-depth comparison of pre and postoperative refractive data is presented. Comparisons between pre and postoperative corrected and uncorrected Snellen visual acuities are provided in order to asses the functional visual result of the procedure.

  12. Generation of large-area microscale manifolds using excimer laser ablation

    Science.gov (United States)

    Zhou, Simon; Kilgo, Marvin M., III; Williams, Charles N.

    1999-08-01

    Excimer laser ablation of polymeric materials is a widely used technology for the generation of nozzles and through- holes. Ablation is also a viable process to create more complex fluidic structures such as channels and manifolds. This paper presents recent results of experiments demonstrating the creation of manifolds in 25 micrometers polyimide films. These structures include cross-over points, and channels of various widths. The results presented include photomicrographs and SEMS, and characterization of channel wall taper and width control as well as an assessment of ablation depth uniformity over large fields. The characteristics of projection ablation systems are reviewed, and the experimental system is described in detail.

  13. Important technological problems with stable operation of electron beam pumped KrF excimer laser amplifier

    CERN Document Server

    Ma Wei Yi; Hu Feng Ming; Shan Yu Sheng; Wang Nai Yan

    2002-01-01

    Some important technological problems with stable operation of the two-side electron beam pumped main amplifier used in the 'Heaven-1' high power KrF excimer laser system are described. They are the problems of the electric breakdown of the insulator support for water dielectric transmission lines, anode foil installation of large area electron beam diode, shape of Hibachi ribs that contact the pressure foil, and formation of diode post pulses and their damage to the anode foil and cathode emitter. Emphasis is put on the effect of different main-switch breakdown times on diode post pulses and the determination of the optimal breakdown time

  14. Excimer laser reactive deposition of vanadium nitride thin films

    Science.gov (United States)

    D'Anna, E.; Di Cristoforo, A.; Fernández, M.; Leggieri, G.; Luches, A.; Majni, G.; Mengucci, P.; Nanai, L.

    2002-01-01

    We report on the deposition of thin vanadium nitride films by ablating vanadium targets in low-pressure N 2 atmosphere, and on their characterization. The targets were vanadium foils (purity 99.8%). 3 in. Si(1 1 1) wafers were used as substrates. Film characteristics (composition and crystalline structure) were studied as a function of N 2 pressure (0.5-200 Pa), KrF laser fluence (4.5-19 J/cm 2), substrate temperature (20-750 °C) and target-to-substrate distance (30-70 mm). Vanadium nitride is already formed at low N 2 ambient pressures (1 Pa) and laser fluences (6 J/cm 2) on substrates at room temperature. At the N 2 pressures of 1-10 Pa, the prevalent phase is VN. At higher pressures (100 Pa) and at relatively high laser fluences (16-19 J/cm 2), the dominant phase is V 2N. The crystallinity of the films improves by increasing the substrate temperature. Well-crystallized films are obtained on substrates heated at 500 °C.

  15. New excimer laser technique for the correction of strabismus and diplopia

    Science.gov (United States)

    Azar, Dimitri T.

    1994-06-01

    We used the ArF excimer laser to determine the feasibility of performing prismatic photoablations in model eyes (plastic spheres simulating the eye), and in rabbit corneas. This would correct diplopia and small angles of deviation, and result in minimal refractive alterations. We modified excimer laser delivery system that achieved the desired corneal contour of prismatic ablations. 193-nm argon fluoride laser was used at fluence of 160 mJ/cm2 and ablation rate 5 Hz. 5.0-mm diameter, 40 um corneal epithelial ablation were followed by 5.0- mm diameter, prismatic photokeratectomy (PPK). We were able to achieve prismatic photoablation of PMMA blocks and lenses. No other refractive changes accompanied the prismatic photoablation of PMMA blocks and lenses. No other refractive changes accompanied the prismatic effect. In rabbits re-epithelialization of the 5-mm ablations was complete by day 3, and corneal haze was not observed by gross examination. Epithelial hyperplasia and subepithelial scarring were noted at the deep edges. PPK holds important therapeutic potential for fine-tuning results of conventional strabismus surgery, and for patients with stable diplopia following nerve palsy and ocular surgery.

  16. Photo-triggering and secondary electron produced ionization in electric discharge ArF* excimer lasers

    Science.gov (United States)

    Xiong, Zhongmin; Kushner, Mark J.

    2011-10-01

    Electric discharge excimer lasers are sustained in multi-atmosphere attaching gas mixtures that are typically preionized to enable a reproducible, uniform glow, which maximizes optical quality and gain. This preionization is often accomplished using UV light produced by a corona discharge within the plasma cavity. To quantify the relationship between corona discharge properties and those of the laser discharge, the triggering of electron avalanche by preionizing UV light in an electric discharge-pumped ArF* excimer laser was numerically investigated using a two-dimensional model. The preionizing UV fluxes were generated by a corona-bar discharge driven by the same voltage pulse as the main discharge sustained in a multi-atmospheric Ne/Ar/Xe/F2 gas mixture. The resulting peak photo-electron density in the inter-electrode spacing is around 108 cm-3, and its distribution is biased toward the UV source. The preionization density increases with increasing dielectric constant and capacitance of the corona bar. The symmetry and uniformity of the discharge are, however, improved significantly once the main avalanche develops. In addition to bulk electron impact ionization, the ionization generated by sheath accelerated secondary electrons was found to be important in sustaining the discharge current at experimentally observed values. At peak current, the magnitude of the ionization by sheath accelerated electrons is comparable to that from bulk electron impact in the vicinity of the cathode.

  17. Applicability of KrF excimer laser induced fluorescence in sooting high-pressure flames

    Energy Technology Data Exchange (ETDEWEB)

    Hildenbrandt, F.; Schulz, C.; Sick, V.; Jander, H.; Wagner, H.G.

    1999-07-01

    Laser-induced emissions obtained after excitation with a tunable KrF excimer laser at 248 nm were measured in well-defined sooting laminar high-pressure flames fueled with methane/air and ethylene/air up to 15 bar. A spectral analysis shows that Mie scattering, Raman scattering and laser-induced fluorescence (LIF) signals can be used for detailed flame studies under sooting high-pressure conditions. Mie scattering is correlated with soot, Raman signals can be used to measure spatially-resolved major species concentrations as well as temperatures. A LIF-scheme to measure NO was found to be applicable even under these conditions. The broadband fluorescence in the range from 270 to 290 nm, usually discarded as background, correlates well with the total concentration of polycyclic aromatic hydrocarbons (PAH) as measured via GC-MS methods. (orig.)

  18. Processing of bioglass coatings by excimer laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Serra, J.; Gonzalez, P.; Chiussi, S.; Leon, B.; Perez-Amor, M. [Vigo Univ. (Spain). Dept. de Fisica Aplicada

    2001-07-01

    Bioglass (BG) coatings have been prepared in different N{sub 2}O atmospheres by pulsed laser deposition (PLD) using a BG target and an ArF laser. Changes in composition and refractive index were observed by Fourier transform infrared spectroscopy (FTIR), energy dispersive spectroscopy (EDS) and single-wavelength ellipsometry. Film thicknesses were measured by profilometry and surface morphology was observed by scanning electron microscopy (SEM). It has been shown that target composition is transferred to the substrate and that films properties can be modified using different N{sub 2}O atmospheres during the growth process. We observed also a gradual variation of the film refractive index with increasing N{sub 2}O pressures and FTIR spectra reveal that the formation of non-bridging oxygen bonds in the coatings can be controlled. It is well-known, that these bond units determine the formation of apatite on the surfaces of bioactive glass coatings (BGCs) after being soaked in simulated body fluid (SBF), which is an essential characteristic of biocompatibility. (orig.)

  19. Numerical study of threshold intensity dependence on gas pressure in the breakdown of molecular hydrogen induced by excimer laser

    Science.gov (United States)

    Gamal, Yosr E. E.-D.; Nassef, O. Aied

    2017-10-01

    In the present work, a numerical analysis is performed to investigate the threshold intensity dependence on gas pressure in laser spark ignition of the H2 plasma. The analysis considered the experimental measurements that were carried out by Yagi and Huo [Appl. Opt. 35, 3183 (1996)]. In their experiment, H2 in a pressure range of 150-3000 Torr is irradiated by a focused excimer laser source using a 96 cm lens at a wavelength of 248 nm and a pulse duration of 20 ns. The study, based on a modified electron cascade model [K. A. Hamam et al., J. Mod. Phys. 4, 311 (2013)], solves numerically a time-dependent energy equation for the distribution of the electron energy as well as a set of rate equations that describe the change in the formed excited molecule population. This model enabled the determination of the threshold intensity as a function of gas pressure. The validity of the model was tested by comparing the calculated thresholds with the experimentally measured ones. Moreover, the calculation of the electron energy distribution function and its parameters justified the role of the electron gain and loss processes in controlling the value of threshold intensity in relation to the gas pressure. The effect of loss processes on the threshold intensity is also presented.

  20. Regression and wound healing after excimer laser PRK: a histopathological study on human corneas.

    Science.gov (United States)

    Lohmann, C P; Patmore, A; O'Brart, D; Reischl, U; Winkler Mohrenfels, C; Marshall, J

    1997-01-01

    The results of excimer laser PRK are promising as more than 80% of eyes with up to -6.0 diopters of attempted correction have refractive results within 1.0 diopter of emmetropia. However, throughout the dioptric range some unexpected results have been observed with individual patients showing an aggressive wound healing response with excessive myopic regression and severe corneal haze. Unfortunately, only limited data are available about the cellular and extracellular responses in human corneas after PRK and this information is important to establish adequate postoperative pharmaceutical treatment. We made a histopathological and immunohistochemical study on 20 human corneal samples from patients with severe corneal haze and myopic regression. The indirect immunofluorescence method was used for demonstration of collagen types I, III, IV laminin, chondroitin sulphate, dermatan sulphate, and keratin. All corneal specimens showed a hyperplastic epithelium. Histologically, most samples (16/20) showed mainly a loose lamination of extracellular material which could be identified as collagen type IV. The remaining four samples had newly synthesised collagen type III. Our histopathological results indicate that corneal wound healing after excimer laser PRK varies among individuals. In some people epithelial basement proteins, such as collagen type IV, are the main wound healing products, whereas in others mainly collagen type III is found postoperatively, which does not effect the synthesis of collagen type IV. This suggests the need for individually-tailored postoperative pharmaceutical treatment regimens.

  1. Immunofluorescence study of corneal wound healing after excimer laser anterior keratectomy in the monkey eye.

    Science.gov (United States)

    Malley, D S; Steinert, R F; Puliafito, C A; Dobi, E T

    1990-09-01

    We performed anterior keratectomies on six monkey eyes, four by excimer laser large-area ablation at 193 nm and two by mechanical keratectomy. Immunofluorescence was used to study the wound healing response histopathologically. The distribution of fibrinogen, fibronectin, laminin, collagen types III, IV, and VI, and keratan sulfate was determined at postoperative intervals of 24 hours, 6 days, and 1 month. At 24 hours, fibrinogen and fibronectin coated the ablated surface, but corneal epithelial cells had not yet migrated over the wound. By 6 days and persisting at 1 month, an epithelial ingrowth of seven to 10 layers, mild stromal hypercellularity, and new collagen formation were present in the repair region. At 1 month, fibrinogen, fibronectin, laminin, and type III collagen were strongly detected in the repair region. Type VI collagen was present in both normal and healed corneal stroma at all intervals, and type IV collagen was present in Descemet's membrane only. Sulfated keratan sulfate was absent from the newly synthesized collagen stroma at all intervals. Slit-lamp photographs demonstrated corneal haze in the ablation zone in all cases at 24 hours, persisting for 1 month. The fluorescence patterns produced by excimer laser ablation and mechanical keratectomy were qualitatively identical.

  2. A new transepithelial phototherapeutic keratectomy mode using the NIDEK CXIII excimer laser.

    Science.gov (United States)

    Buzzonetti, Luca; Petrocelli, Gianni; Laborante, Antonio; Mazzilli, Emilio; Gaspari, Mario; Valente, Paola; Francia, Elisa

    2009-01-01

    To evaluate epithelial healing, postoperative pain, and best spectacle-corrected visual acuity (BSCVA) after transepithelial photorefractive keratectomy (PRK) performed with a new phototherapeutic keratectomy (PTK) mode using the NIDEK CXIII excimer laser. Fifteen eyes from 10 patients with myopia underwent transepithelial PRK using a multistage program to perform PTK followed by PRK. The PTK incorporated Flex Scan, which accounts for the loss of radial ablation efficiency on the peripheral cornea. The epithelium was removed with the excimer laser by monitoring the disappearance of blue fluorescence during the ablation. Epithelial healing was evaluated by taking slit-lamp photographs every 24 hours until complete reepithelialization. Postoperative pain was measured according to the Faces Pain Rating Scale. All outcomes are reported for 3 months postoperatively. Haze was graded by two ophthalmologists, each masked to the other's result. Mean reepithelialization took 3.50+/-0.85 days, mean pain score was 3.00+/-1.20, and BSCVA was 20/20 for 9 eyes, 20/30 for 3 eyes, and 20/40 for 3 eyes. All patients had haze below grade 2. The outcomes of the preliminary study show that the incorporation of the Flex Scan algorithm in the PTK mode is as safe and effective as conventional PTK algorithms. The primary advantage of this new PTK mode may be more consistent epithelial removal. Additional studies are needed to determine long-term outcomes.

  3. Pain after epithelial removal by ethanol-assisted mechanical versus transepithelial excimer laser debridement.

    Science.gov (United States)

    Kanitkar, K D; Camp, J; Humble, H; Shen, D J; Wang, M X

    2000-01-01

    To compare subjective pain responses between two techniques of epithelial removal prior to photorefractive keratectomy (PRK) treatment: ethanol-soaked pledget with mechanical debridement of the epithelium versus excimer laser transepithelial ablation. Nine patients underwent bilateral PRK. Each had the epithelium in one eye debrided by placing a pledget soaked in 20% ethanol on the cornea for 2 minutes followed by gentle scraping with a blade. The epithelium in the other eye was removed by transepithelial phototherapeutic keratectomy (PTK) treatment. For each eye, PRK was initiated immediately after removal of the epithelium. On postoperative day one, each patient was asked to rate the level of pain suffered over the last 24 hours on a scale of 0 (minimal) to 10 (maximal). Data were analyzed in a masked fashion. Postoperative day one average pain level in the ethanol-assisted mechanically debrided eyes was 3.0 +/- 2.5 and in the transepithelial PTK eyes was 6.8 +/- 1.8. The difference was statistically significant by Student's t-test (P < .01). All epithelial defects healed within 3 days with no clinically significant difference in healing time between the two techniques. In preparation for PRK, ethanol-assisted mechanical debridement of the epithelium caused significantly less postoperative pain than epithelial removal using the excimer laser.

  4. Effects of laser irradiation on Trichophyton rubrum growth and ultrastructure.

    Science.gov (United States)

    Xu, Zhi-Li; Xu, Jing; Zhuo, Feng-Lin; Wang, Li; Xu, Wei; Xu, Ying; Zhang, Xiao-Yan; Zhao, Jun-Ying

    2012-10-01

    Trichophyton rubrum (T. rubrum) is the most common causative agent of dermatophytosis worldwide. In this study, we examined the effect of laser irradiation on the growth and morphology of T. rubrum. Colonies of T. rubrum were isolated (one colony per plate), and randomly assigned to 5 treatment groups: Q-switched 694 nm ruby laser treatment, long-pulsed Nd:YAG 1064 nm laser treatment, intense pulsed light (IPL) treatment, 308 nm excimer laser treatment and the blank control group without treatment. Standardized photographs were obtained from grown-up fungal plates prior to treatment. Colonies were then exposed to various wavelengths and fluences of laser light. To compare the growth of colonies, they were re-photographed under identical conditions three and six days post-treatment. To investigate the morphology of T. rubrum, scanning electron microscope (SEM) and transmission electron microscope (TEM) images were obtained from specimens exposed to 24 hours of laser treatment. Growth of T. rubrum colonies was significantly inhibited following irradiation by 694 nm Q-switched and 1064 nm long-pulsed Nd:YAG lasers. Other treatments exerted little or no effect. Q-switched laser irradiation exerted a stronger growth inhibitory effect than long-pulsed Nd:YAG laser irradiation. Following treatment by the Q-switched ruby laser system, T. rubrum hyphae became shrunken and deflated, and SEM images revealed rough, fractured hyphal surfaces, punctured with small destructive holes. TEM images showed that the hyphae were degenerating, as evidenced by the irregular shape of hyphae, rough and loose cell wall, and obscure cytoplasmic texture. Initially high electron density structure was visible in the cell; later, low-density structure appeared as a result of cytoplasmic dissolution. In contrast, the blank control group showed no obvious changes in morphology. The Q-switched 694 nm ruby laser treatment significantly inhibits the growth and changes the morphology of T. rubrum.

  5. Validade da topografia de córnea na cirurgia refrativa com excimer laser Validity of corneal topography in refractive surgery with excimer laser

    Directory of Open Access Journals (Sweden)

    Orlando da Silva Filho

    2003-12-01

    Full Text Available OBJETIVO: Avaliar os resultados refracionais e a segurança do procedimento cirúrgico PRK (ceratectomia fotorrefrativa com base na topografia de córnea no pré-operatório. MÉTODOS: Participantes - 44 sujeitos que tinham realizado cirurgia refrativa, com o procedimento ceratectomia fotorrefrativa, os quais apresentaram topografias irregulares pré-operatórias. O grupo controle consistiu de 44 sujeitos com topografia regular pré-operatória. Os 88 olhos foram submetidos a ceratectomia fotorrefrativa utilizando-se o "Summit Apex plus Excimer Laser". As topografias irregulares e regulares foram obtidas pelo "Corneal Analysis System"(EyeSys, sendo consideradas como topografias irregulares os seguintes achados: ápice deslocado acima de 1,5 D (AD, asfericidade maior que 0,25 D/mm (AS, obliquidade maior que 15 graus (OB, assimetria inferior-superior igual ou maior que 1,5 D (IS, curvatura maior que 47 D (CU e combinação de 2 critérios (CB. Principal efeito medido: perda de uma ou mais linhas que foram definidas com segurança para o prognóstico. RESULTADOS: Todos os pacientes foram acompanhados por 6 meses. Verificou-se perda significativa de acuidade visual corrigida em pacientes submetidos ao procedimento PRK-AD (pPURPOSE: To evaluate the refractive results and safety of PRK (photorefractive keratectomy based on the preoperative corneal topography. METHODS: 44 operated eyes, using the photorefractive keratectomy process, and which presented preoperative topographical abnormalities. The control group consisted of 44 eyes with preoperative normal corneal topography. Eighty-eight eyes were submitted to the photorefractive keratectomy process using the Summit Apex plus Excimer Laser. Corneal topographies were accessed by the EyeSys Analysis system; the topographic abnormalities which were considered are the following: apex displacement above 1.5D (AD, asphericity above 0.25D/mm (AS, obliquity above 15 degrees (OB, inferior-superior asymmetry

  6. Excimer laser texturing of natural composite polymer surfaces for studying cell-to-substrate specific response

    Science.gov (United States)

    Dinca, V.; Alloncle, P.; Delaporte, P.; Ion, V.; Rusen, L.; Filipescu, M.; Mustaciosu, C.; Luculescu, C.; Dinescu, M.

    2015-10-01

    Surface modifications of biocompatible materials are among the main factors used for enhancing and promoting specific cellular activities (e.g. spreading, adhesion, migration, and differentiation) for various types of medical applications such as implants, microfluidic devices, or tissue engineering scaffolds. In this work an excimer laser at 193 nm was used to fabricate chitosan-collagen roughness gradients. The roughness gradients were obtained in one step by applying single laser pulses and sample tilting. Fourier transform infrared spectroscopy measurements, atomic force microscopy (AFM), scanning electron microscopy (SEM), and spectro-ellipsometry (SE) were used for sample characterization. The goal is to determine the optimal morpho-chemical characteristics of these structures for in vitro tailoring of protein adsorption and cell behavior. The response induced by the roughness gradient onto various cell lines (i.e. L 929 fibroblasts, HEP G2 hepatocytes, OLN 93 oligodendrocytes, M63 osteoblasts) and bovine serum albumin (BSA) protein absorption was investigated.

  7. Time-resolved spectroscopy and fluorescence resonance energy transfer in the study of excimer laser damage of chromatin

    Energy Technology Data Exchange (ETDEWEB)

    Radu, L. [Department of Molecular Genetics and Radiobiology, Babes National Institute, Bucharest (Romania)], E-mail: lilianajradu@yahoo.fr; Mihailescu, I. [Department of Lasers, Laser, Plasma and Radiation Physics Institute, Bucharest (Romania); Radu, S. [Department of Computer Science, Polytechnics University, Bucharest (Romania); Gazdaru, D. [Department of Biophysics, Bucharest University (Romania)

    2007-09-21

    The analysis of chromatin damage produced by a 248 nm excimer laser radiation, for doses of 0.3-3 MJ/m{sup 2} was carried out by time-resolved spectroscopy and fluorescence resonance energy transfer (FRET). The chromatin was extracted from a normal and a tumoral tissue of Wistar rats. The decrease with laser dose of the relative contribution of the excited state lifetimes of ethidium bromide (EtBr) bounded to chromatin constitutes an evidence of the reduction of chromatin deoxyribonucleic acid (DNA) double-strand structure. FRET was performed from dansyl chloride to acridine orange, both coupled to chromatin. The increase of the average distance between these ligands, under the action of laser radiation, reflects a loosening of the chromatin structure. The radiosensitivity of tumor tissue chromatin is higher than that of a normal tissue. The determination of the chromatin structure modification in an excimer laser field can be of interest in laser therapy.

  8. Evaluation of the efficacy of excimer laser ablation of cross-linked porcine cornea.

    Directory of Open Access Journals (Sweden)

    Shihao Chen

    Full Text Available BACKGROUND: Combination of riboflavin/UVA cross-linking (CXL and excimer laser ablation is a promising therapy for treating corneal ectasia. The cornea is strengthened by cross-linking, while the irregular astigmatism is reduced by laser ablation. This study aims to compare the efficacy of excimer laser ablation on porcine corneas with and without cross-linking. METHODS AND FINDINGS: The porcine cornea was de-epithelialized and treated with 0.1% riboflavin solution for 30 minutes. A half of the cornea was exposed to UVA-radiation for another 30 minutes while the controlled half of the cornea was protected from the UVA using a metal shield. Photo therapeutic keratectomy (PTK was then performed on the central cornea. Corneal thickness of 5 paired locations on the horizontal line, ± 0.5, ± 1.0, ± 1.5, ± 2.0, and ± 2.5 mm from the central spot, were measured using optical coherence tomography prior to and after PTK. The ablation depth was then determined by the corneal thickness. There was a 9% difference (P<0.001 in the overall ablation depth between the CXL-half corneas (158 ± 22 µm and the control-half corneas (174 ± 26 µm. The ablation depths of all 5 correspondent locations on the CXL-half were significantly smaller (P<0.001. CONCLUSION: The efficacy of the laser ablation seems to be lower in cross-linked cornea. Current ablation algorithms may need to be modified for cross-linked corneas.

  9. Eye-Tracker-Guided Non-Mechanical Excimer Laser Assisted Penetrating Keratoplasty

    Directory of Open Access Journals (Sweden)

    Achim Langenbucher

    2013-03-01

    Full Text Available Purpose: The purpose of the study was to implement a new eye tracking mask which could be used to guide the laser beam in automated non-mechanical excimer laser assisted penetrating keratoplasty. Materials and methods: A new trephination mask design with an elevated surface geometry has been proposed with a step formation between conical and flat interfaces. Two recipient masks of 7.5/8.0 mm have been manufactured and tested. The masks have outer diameter of 12.5 mm, step formation at 10.5 mm, and slope of conical surfaces 15°. Its functionality has been tested in different lateral positions and tilts on a planar surface, and pig eye experiments. After successful validation on porcine eyes, new masks have been produced and tested on two patients. Results: The build-in eye tracking software of the MEL 70 was always able to capture the masks. It has been shown that the unwanted pigmentation/pattern induced by the laser pulses on the mask surface does not influence the eye-tracking efficiency. The masks could be tracked within the 18 × 14 mm lateral displacement and up to 12° tilt. Two patient cases are demonstrated. No complications were observed during the surgery, although it needs some attention for aligning the mask horizontally before trephination. Stability of eye tracking masks is emphasized by inducing on purpose movements of the patient head. Conclusion: Eye-tracking-guided penetrating keratoplasty was successfully applied in clinical practice, which enables robust tracking criteria within an extended range. It facilitates the automated trephination procedure of excimer laser-assisted penetrating keratoplasty.

  10. Effect of preionization, fluorine concentration, and current density on the discharge uniformity in F2 excimer laser gas mixtures

    NARCIS (Netherlands)

    Mathew, D.; Bastiaens, Hubertus M.J.; Boller, Klaus J.; Peters, P.J.M.

    2007-01-01

    The discharge homogeneity in F2-based excimer laser gas mixtures and its dependence on various key parameters, such as the degree of preionization, preionization delay time, F2 concentration and current density, is investigated in a small x-ray preionized discharge chamber. The spatial and temporal

  11. Evaluation and diffusion of excimer laser treatment of myopia in the United States and in the Netherlands

    NARCIS (Netherlands)

    Vondeling, H.; Rosendal, H.; Banta, D.

    1995-01-01

    Excimer laser photorefractive keratectomy (PRK) is an experimental treatment to correct myopia (short-sightedness) that is diffusing into use without convincing evidence of safety and efficacy. It has been claimed that PRK may render conventional methods of correcting myopia, such as wearing glasses

  12. Fabrication of the Long Bragg Grating by Excimer Laser Micro Machining with High-Precision Positioning XXY Platform

    Directory of Open Access Journals (Sweden)

    Jian-Zhong Wu

    2014-03-01

    Full Text Available With the advancement of technology, the application of fiber Bragg grating is widely used as a Bragg grating sensor. Fiber Bragg grating is fabrication using excimer laser machining with the phase masker. The grating length is decided by the width of laser beam. In this paper, we proposed fabrication of the long Bragg grating by excimer Laser micro machining with a high-precision positioning XXY platform. The high-precision positioning XXY platform plays an important role for long FBG. It needs seriously to combine three short FBGs. Therefore, we can obtain a long FBG with 15mm length. This method can provide a solution to fabricate long FBG by using cheap laser with high-precision positioning XXY platform.

  13. Fluorescence imaging inside an internal combustion engine using tunable excimer lasers.

    Science.gov (United States)

    Andresen, P; Meijer, G; Schlüter, H; Voges, H; Koch, A; Hentschel, W; Oppermann, W; Rothe, E

    1990-06-01

    Tunable excimer lasers are used to obtain 2-D images of molecular (and some state-specific) density distributions inside a cylinder of a modified four-cylinder in-line engine that has optical access. Natural fluorescence (i.e., without a laser) is used for some OH pictures, normal laser-induced fluorescence (LIF) for those of NO and of the isooctane fuel, and laser-induced predissociative fluorescence (LIPF) for other OH pictures and for those of O(2). Relevant spectroscopy is done to find the laser and fluorescence frequencies needed to measure isolated species. LIPF works well at high pressures, is state specific, and is ideally suited to follow turbulent processes. No similar measurements in engines have been previously reported. Pictures are taken in succeeding engine cycles. Their sequence is either at a particular point of the engine's cycle to show cyclic fluctuations, or at succeeding portions of the cycle to illustrate the progress of the gasdynamics or of the combustion.

  14. Levels of interleukin-6 in tears before and after excimer laser treatment.

    Science.gov (United States)

    Resan, Mirko; Stanojević, Ivan; Petković, Aleksandra; Pajić, Bojan; Vojvodić, Danilo

    2015-04-01

    Immune response and consequent inflammatory process which originate on ocular surface after a trauma are mediated by cytokines. Photoablation of corneal stroma performed by excimer laser causes surgically induced trauma. Interleukin-6 (IL-6) is mostly known as a proinflammatory cytokine. However, it also has regenerative and anti-inflammatory effects. It is supposed that this cytokine is likely to play a significant role in the process of corneal wound healing response after photoablation of stroma carried out by laser in situ keratomileusis (LASIK) or photorefractive keratectomy (PRK) methods. The aim of this study was to determine and compare the levels of IL-6 in tears before and after treatment with LASIK and PRK methods. The study included 68 shortsighted eyes up to -3.0 diopter sphere, i.e. 198 samples of tears (per three samples taken from each of the eyes), divided into two groups according to the kind of excimer laser intervention performed: the group 1--eyes treated by LASIK method (n=31), and the group 2--eyes treated by the PRK method (n=37). The samples of tears were taken from each eye at the following time points: before excimer laser treatment (0 h, the control group), 1 h after the treatment (1 h) and 24 h after the treatment (24 h). The patients did not use anti-inflammatory therapy 24 h after the intervention. Tear samples were collected using microsurgical sponge. Level of IL-6 in tear fluid was determined by the flow cytometry method, applying a commercial test kit which allowed cytokine detection from a small sample volume. Results. The values of IL-6 were detectable in 16% of samples before LASIK treatment and in 30% of samples before PRK treatment. One h after the treatment IL-6 was detectable in 29% of samples for the LASIK group and 43% of samples for the PRK group, and 24 h after the treatment it was detectable in 19% of samples for the LASIK group and in 57% of samples for the PRK group. When we analyzed the dynamics of IL76 production

  15. Excimer-laser-based multifunctional patterning systems for optoelectronics, MEMS, materials processing, and biotechnology

    Science.gov (United States)

    Jain, Kanti

    2003-07-01

    Over the past few years, there has been an increasing impact of microelectronics fabrication technologies on the realization of structures and spatial patterns necessary for advances in optoelectronics, MEMS, materials processing, and biotechnology. These fabrication technologies accelerate the pace of research by enabling the micro-manipulation and patterning of a variety of organic, inorganic, and biological materials (including new polymers, compound semiconductors, DNA, proteins, and others), developing new synthesis techniques, and producing structures and devices previously not deemed possible. In order to facilitate the exploration of these fields, it is desirable to develop processing techniques and cost-effective, multifunctional systems that can handle a wide variety of substrate materials and geometries, including non-planar surfaces. This paper describes recent advances made in excimer-laser-based patterning, photoablation, and photo-crystallization technologies, focusing on how these technologies address the unique requirements of applications for scientific research and for technology development.

  16. Interaction of 308-nm excimer laser light with temporomandibular joint related structures

    Science.gov (United States)

    Liesenhoff, Tim; Funk, Armin

    1994-02-01

    Arthroscopy of TMJ has become a clinically important and more and more accepted method for diagnosis and treatment of TMJ alteration. This minimal invasive method is clearly limited by the anatomical dimensions of the TMJ. A 308 nm excimer laserlight has already found clinical applications in angioplasty, ophthalmology, and dentistry. The aim of the presented study was to find out if it is possible to ablate TMJ related structures under arthroscopic conditions. It also aims to evaluate the energy-threshold for ablation and the maximal possible rate of ablation. Contrary to other laser systems it offers a unique combination of minimal tissue alteration, precise tissue ablation guidability through optical fibers, and a good transmission through water.

  17. The effect of 193 nm excimer laser radiation on the human corneal endothelial cell density

    Energy Technology Data Exchange (ETDEWEB)

    Isager, P.; Hjortdal, J.Oe.; Ehlers, N. [Aarhus Univ. Hospital, Dept. of Ophthalmology, Aarhus (Denmark)

    1996-06-01

    The effect of 193 nm excimer laser radiation on human corneal endothelial cell density was examined. Fifty-five eyes from 35 patients underwent photorefractive keratectomy for myopia. Photomicrographs of the endothelium were taken a short time before the operation and on an average of 7 months postoperatively with a specular microscope. The average endothelial cell densities were preoperatively 3375 {+-} 266 cells/mm{sup 2} (means {+-} SD) and postoperatively 3348 {+-} 287 cells/mm{sup 2}, corresponding to a fall of 27 cells/mm{sup 2} (N = 55). This fall in endothelial cell density was not statistically significant. A significant correlation between the change in cell density and age of the patient was found, with older patients losing more cells (N = 35, 2p < 0.05). The magnification of the specular microscope was found to change with corneal thickness. The importance of correcting the endothelial cell densities for corneal thickness is discussed. (au) 14 refs.

  18. Pre-operative therapeutic eyelid hygiene in the prevention of complications following excimer laser vision correction

    Directory of Open Access Journals (Sweden)

    V. V. Kurenkov

    2012-01-01

    Full Text Available Purpose: to assess the effectiveness of pre-operative therapeutic eyelid hygiene in the prevention and treatment of dry eye and meibomian glands dysfunction following excimer laser vision surgery.Methods: In enrolled 144 patients (288 eyes, ocular surface and meibomian glands functions were evaluated before and following refractive surgery (LASIK and REIK. In pre- and post-operative period, standard ophthalmological studies were performed, including best-corrected visual acuity determination, biomicroscopy, Schirmer’s test and Norn’s test (tear break-up time. In pre-operative pe- riod, ocular surface microbial profile was assessed. Subjective symptoms of impaired tear production were revealed via questioning. In study group (70 patients, 140 eyes, therapeutic eyelid hygiene using Blefarogel 1 or Blefarogel 2 (Ltd. Heltec-Medica, Moscow, Russia was prescribed one week before surgery. In control group, no therapeutic eyelid hygiene was prescribed. All patients were received antibacterial treatment including Vigamox (Alcon, Fort Worth, tX. In both groups, Natural tears and Systane Ultra (Alcon were used as tear replacement therapy.Results: Complex treatment, including therapeutic eyelid hygiene in study group, significantly improved tear film and ocular sur- face health as well as meibomian glands functions. Inflammatory complications rate was estimated as 5.7% in study group and 10.6% in control group.Conclusion: therapeutic eyelid hygiene is highly effective in the prophylaxis and treatment of post-operative complications duу to ocular surface pathology and meibomian glands dysfunction. the procedure is safe and can be recommended as a part of complex preventive treatment before excimer laser vision correction.

  19. Pre-operative therapeutic eyelid hygiene in the prevention of complications following excimer laser vision correction

    Directory of Open Access Journals (Sweden)

    V. V. Kurenkov

    2014-07-01

    Full Text Available Purpose: to assess the effectiveness of pre-operative therapeutic eyelid hygiene in the prevention and treatment of dry eye and meibomian glands dysfunction following excimer laser vision surgery.Methods: In enrolled 144 patients (288 eyes, ocular surface and meibomian glands functions were evaluated before and following refractive surgery (LASIK and REIK. In pre- and post-operative period, standard ophthalmological studies were performed, including best-corrected visual acuity determination, biomicroscopy, Schirmer’s test and Norn’s test (tear break-up time. In pre-operative pe- riod, ocular surface microbial profile was assessed. Subjective symptoms of impaired tear production were revealed via questioning. In study group (70 patients, 140 eyes, therapeutic eyelid hygiene using Blefarogel 1 or Blefarogel 2 (Ltd. Heltec-Medica, Moscow, Russia was prescribed one week before surgery. In control group, no therapeutic eyelid hygiene was prescribed. All patients were received antibacterial treatment including Vigamox (Alcon, Fort Worth, tX. In both groups, Natural tears and Systane Ultra (Alcon were used as tear replacement therapy.Results: Complex treatment, including therapeutic eyelid hygiene in study group, significantly improved tear film and ocular sur- face health as well as meibomian glands functions. Inflammatory complications rate was estimated as 5.7% in study group and 10.6% in control group.Conclusion: therapeutic eyelid hygiene is highly effective in the prophylaxis and treatment of post-operative complications duу to ocular surface pathology and meibomian glands dysfunction. the procedure is safe and can be recommended as a part of complex preventive treatment before excimer laser vision correction.

  20. THE EXPERIENCE OF TREGALOZA BASED LUBRICANT USAGE FOR PATIENTS WHO UNDERWENT EXCIMER LASER SURGERY

    Directory of Open Access Journals (Sweden)

    E. Eskina

    2016-01-01

    Full Text Available Purpose: to evaluate the tregalose based eye drops effectiveness in patients who underwent PRK or TransPRK surgery. patients and methods: 50 patients with moderate myopia were examined before, 7 days and 1 month after PRK or TransPRK surgery made by SCHWIND Amaris excimer laser by the same surgeon. In addition to conventional diagnostics, Schirmer test and tear break up time were performed as well as ODSI questionare and Oxford index of ocular surface disorders were investigated. Patients were divided in two groups, Study group — “Thealos” group and “Control” group. In both groups patients have started using non preservative eye drops based on tregalosa and hyaluronic acid 4-th day after surgery respectively. results: The tear film breakup time was significantly better in “Thealos” group (7,22±3,61 sec 7 days postop and 9,36±3,68 sec 1 month postop in comparison to «Control” group 5,21±0,25 (р<0,01 sec and 7,21±2,85 sec respectively (р<0,05 as well as ocular surface index score in “Thealos” group post surgery was less (0,26±0,38 и 0,85±0,31 marks 7 days postop (р<0,05 and 0,09±0,19 and 0,21±0,4 (р<0,05 1 month postop respectively. There were no other statistically significant differences found in analysed data. Conclusion: Using of “Thealoz” non-preservative eye drops leads to faster recovery after surface excimer laser ablations in terms of dry eye manifestation, those as tearfilm stability and ocular surface index score, measured using “Oxford” scale. Moistening properties of tregaloze solution could be compared with those of hyaluronic acid solution.

  1. Report on the Study of Radiation Damage in Calcium Fluoride and Magnesium Fluoride Crystals for use in Excimer Laser Applications

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1999-10-04

    A study was performed to investigate the effects of radiation damage in calcium fluoride and magnesium fluoride crystals caused by gamma rays and UV photons from excimer lasers. The purpose was to study and correlate the damage caused by these two different mechanisms in various types of material used for fabricating optical elements in high power excimer lasers and lens systems of lithography tools. These optical systems are easily damaged by the laser itself, and it is necessary to use only the most radiation resistant materials for certain key elements. It was found that a clear correlation exists between the, radiation induced damage caused by high energy gamma rays and that produced by UV photons from the excimer laser. This correlation allows a simple procedure to be developed to select the most radiation resistant material at the ingot level, which would be later used to fabricate various components of the optical system. This avoids incurring the additional cost of fabricating actual optical elements with material that would later be damaged under prolonged use. The result of this screening procedure can result in a considerable savings in the overall cost of the lens and laser system.

  2. Depth-profile investigations of triterpenoid varnishes by KrF excimer laser ablation and laser-induced breakdown spectroscopy

    Science.gov (United States)

    Theodorakopoulos, C.; Zafiropulos, V.

    2009-07-01

    The ablation properties of aged triterpenoid dammar and mastic films were investigated using a Krypton Fluoride excimer laser (248 nm, 25 ns). Ablation rate variations between surface and bulk layers indicated changes of the ablation mechanisms across the depth profiles of the films. In particular, after removal of the uppermost surface varnish layers there was a reduction of the ablation step in the bulk that was in line with a significant reduction of carbon dimer emission beneath the surface layers as detected by laser-induced breakdown spectroscopy. The results are explicable by the generation of condensation, cross-linking and oxidative gradients across the depth profile of triterpenoid varnish films during the aging degradation process, which were recently quantified and established on the molecular level.

  3. Excimer laser texturing of natural composite polymer surfaces for studying cell-to-substrate specific response

    Energy Technology Data Exchange (ETDEWEB)

    Dinca, V., E-mail: dincavalentina@yahoo.com [NILPRP, National Institute for Lasers, Plasma and Radiation Physics, Magurele, Bucharest (Romania); Alloncle, P.; Delaporte, P. [Aix-Marseille University, CNRS, LP3 Laboratory, Campus de Luminy, 13288 Marseille (France); Ion, V. [NILPRP, National Institute for Lasers, Plasma and Radiation Physics, Magurele, Bucharest (Romania); Faculty of Physics, University of Bucharest, 077125 Magurele (Romania); Rusen, L.; Filipescu, M. [NILPRP, National Institute for Lasers, Plasma and Radiation Physics, Magurele, Bucharest (Romania); Mustaciosu, C. [Horia Hulubei National Institute of Physics and Nuclear Engineering – IFIN HH, Magurele, Bucharest (Romania); Luculescu, C.; Dinescu, M. [NILPRP, National Institute for Lasers, Plasma and Radiation Physics, Magurele, Bucharest (Romania)

    2015-10-15

    Highlights: • Roughness gradients are obtained in one step by applying single laser pulses and sample tilting. • BSA protein and cell dependence behavior onto gradient characteristics was studied. • The degradation of the samples by lysozyme was correlated to its ability to access the textured area. - Abstract: Surface modifications of biocompatible materials are among the main factors used for enhancing and promoting specific cellular activities (e.g. spreading, adhesion, migration, and differentiation) for various types of medical applications such as implants, microfluidic devices, or tissue engineering scaffolds. In this work an excimer laser at 193 nm was used to fabricate chitosan–collagen roughness gradients. The roughness gradients were obtained in one step by applying single laser pulses and sample tilting. Fourier transform infrared spectroscopy measurements, atomic force microscopy (AFM), scanning electron microscopy (SEM), and spectro-ellipsometry (SE) were used for sample characterization. The goal is to determine the optimal morpho-chemical characteristics of these structures for in vitro tailoring of protein adsorption and cell behavior. The response induced by the roughness gradient onto various cell lines (i.e. L 929 fibroblasts, HEP G2 hepatocytes, OLN 93 oligodendrocytes, M63 osteoblasts) and bovine serum albumin (BSA) protein absorption was investigated.

  4. Film forming properties of silicon nanoparticles on SixNy coated substrates during excimer laser annealing

    Science.gov (United States)

    Caninenberg, M.; Kiesler, D.; Benson, N.; Schmechel, R.

    2017-05-01

    In this article we investigate the film forming properties of excimer laser annealed silicon nanoparticles on non-silicon substrates. In contrast to their film forming properties on oxide free silicon substrates, the nanoparticle thin film tends to dewet and form a porous μ-structure on the silicon nitrite covered glass model substrates considered for our investigation. This is quantified using a SEM study in conjunction with image processing software, in order to evaluate the μ-structure size and inter μ-structure distance in dependence of the laser energy density. To generalize our results, the film forming process is described using a COMSOL Multiphysics ® fluid dynamics model, which solves the Navier Stokes equation for incompressible Newtonian fluids. To account for the porous nanoparticle thin film structure in the simulation, an effective medium approach is used by applying a conservative level set one phase method to our mesh. This effort allows us to predict the Si melt film formation ranging from a porous Si μ-structure to a compact 100% density Si thin film in dependence of the substrate / thin film interaction, as well as the laser energy used for the nanoparticle processing.

  5. Spectroscopic study of laser irradiated chromatin

    Science.gov (United States)

    Radu, Liliana; Mihailescu, I.; Gazdaru, Doina; Preoteasa, V.

    2013-04-01

    The effects of three UV excimer laser radiations, with wavelengths of 193, 248 and 282 nm respectively, on the structure of chromatin (the complex of deoxyribonucleic acid with proteins that exists in eukaryotic cells nuclei) were investigated. The chromatin was extracted from livers of Winstar rats. The spectroscopic methods used are: fluorescence (Förster) resonance energy transfer (FRET), time resolved fluorescence and steady-state fluorescence. A chromatin deoxyribonucleic acid radiolysis, a chromatin proteins damage and a change of the global chromatin structure on lasers action were indicated by this study. It exists some small differences between the actions of these three laser radiations.

  6. Spectroscopic study of laser irradiated chromatin

    Energy Technology Data Exchange (ETDEWEB)

    Radu, Liliana, E-mail: liliana1radu@gmail.com [V. Babes National Institute, Department of Molecular Genetics and Radiobiology (Romania); Mihailescu, I. [National Institute for Lasers, Plasma and Radiation Physics, Department of Lasers (Romania); Gazdaru, Doina [Faculty of Physics, Bucharest University, Department of Biophysics (Romania); Preoteasa, V. [V. Babes National Institute, Department of Molecular Genetics and Radiobiology (Romania)

    2013-04-15

    The effects of three UV excimer laser radiations, with wavelengths of 193, 248 and 282 nm respectively, on the structure of chromatin (the complex of deoxyribonucleic acid with proteins that exists in eukaryotic cells nuclei) were investigated. The chromatin was extracted from livers of Winstar rats. The spectroscopic methods used are: fluorescence (Foerster) resonance energy transfer (FRET), time resolved fluorescence and steady-state fluorescence. A chromatin deoxyribonucleic acid radiolysis, a chromatin proteins damage and a change of the global chromatin structure on lasers action were indicated by this study. It exists some small differences between the actions of these three laser radiations.

  7. Krypton Gas for High Quality Single Wall Carbon Nanotubes Synthesis by KrF Excimer Laser Ablation

    Directory of Open Access Journals (Sweden)

    Jasim Al-Zanganawee

    2015-01-01

    Full Text Available We report for the first time the production of single wall carbon nanotubes (SWCNTs by KrF excimer laser ablation method under the krypton gas atmosphere. For the ablation experiment 450 mJ energy and 30 Hz repetition rate KrF excimer laser was used, and the target was prepared with the following composition: 0.6% Ni, 0.6% Co, and 98.8% C (atomic percentage. The ablation product was characterized by confocal Raman microspectroscopy, transmission electron microscopy (TEM, scanning electron microscopy (SEM, and thermogravimetric analysis (TGA. The SWCNTs obtained are a mixture of semiconducting and metallic types with narrow diameters distribution of 1.26 to 1.49 nm, are micrometers long, and contain low amount of graphite and amorphous carbon.

  8. Des lasers à excimères pour cristalliser le silicium des écrans plats : pourquoi ? comment ?

    Science.gov (United States)

    Prat, C.

    2003-06-01

    Les contraintes techniques et économiques de la fabrication d'écrans plats à cristaux liquides à matrice active ont suscité de nombreuses études de procédés de cristallisation de couches minces de silicium par laser à excimères, exploitant principalement trois types de phénomènes physiques, dans le but d'obtenir des cristaux micrométriques les plus uniformes possible.

  9. Wettability characteristics of carbon steel modified with CO2, Nd:YAG, Excimer and high power diode lasers

    OpenAIRE

    Lawrence, Jonathan; Li, Lin

    2000-01-01

    Interaction of CO2, Nd:YAG, excimer and high power diode laser (HPDL) radiation with the surface of a common mild steel (EN8) was found to effect changes in the wettability characteristics of the steel, namely changes in the measured contact angle. These modifications are related to changes in the surface roughness, changes in the surface oxygen content and changes in the surface energy of the mild steel. The wettability characteristics of the selected mild steel could be controll...

  10. Excimer laser doping technique for application in an integrated CdTe imaging device

    CERN Document Server

    Mochizuki, D; Aoki, T; Tomita, Y; Nihashi, T; Hatanaka, Y

    1999-01-01

    CdTe is an attractive semiconductor material for applications in solid-state high-energy X-ray and gamma-ray imaging systems because of its high absorption coefficient, large band gap, good mobility lifetime product of holes and stability at normal atmospheric conditions. We propose a new concept for fabricating an integrated CdTe with monolithic circuit configuration for two-dimensional imaging systems suitable for medical, research or industrial applications and operation at room temperature. A new doping technique has been recently developed that employs excimer laser radiation to diffuse impurity atoms into the semiconductor. Accordingly, heavily doped n- and p-type layers with resistivities less than 1 OMEGA cm can be formed on the high resistive CdTe crystals. We have further extended this technique for doping with spatial pattern. We will present the laser doping technique and various results thus obtained. Spatially patterned doping is demonstrated and we propose the use of these doping techniques for...

  11. Excimer laser assisted very fast exfoliation and reduction of graphite oxide at room temperature under air ambient for Supercapacitors electrode

    Science.gov (United States)

    Malek Hosseini, S. M. B.; Baizaee, S. M.; Naderi, Hamid Reza; Dare Kordi, Ali

    2018-01-01

    Excimer laser was used for reduction and exfoliation of graphite oxide (GO) at room temperature under air ambient. The prepared excimer laser reduced graphite oxide (XLRGO) is characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), nitrogen adsorption/desorption (BET method), X-ray diffraction (XRD), X-ray photoemission spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and UV-vis absorption techniques for surface, structural functional groups and band gap analysis. Electrochemical properties are investigated using cyclic voltammetry, galvanostatic charge-discharge, electrochemical impedance spectroscopy (EIS) and continues cyclic voltammetry (CCV) in 0.5 M Na2SO4 as electrolyte. Electrochemical investigations revealed that XLRGO electrode has enhanced supercapacitive performance including specific capacitance of 299 F/g at a scan rate of 2 mV/s. Furthermore, CCV measurement showed that XLRGO electrode kept 97.8% of its initial capacitance/capacity after 4000 cycles. The obtained results from electrochemical investigations confirm that the reduction of GO by using an excimer laser produces high-quality graphene for supercapacitor applications without the need for additional operations.

  12. Combined Excimer Laser Photoablation and Amniotic Membrane Overlay for Relief of Symptomatic Discomfort in Gelatinous Drop-like Corneal Dystrophy.

    Science.gov (United States)

    Alex, Anne F; Eter, Nicole; Uhlig, Constantin E

    2015-10-01

    To describe the efficacy of combined excimer laser photoablation and amniotic overlay membrane in the relief of symptomatic discomfort in a 17-year-old patient who had gelatinous drop-like corneal dystrophy. The best-corrected visual acuity (BCVA) was measured with Snellen letters. Slit-lamp examination of the ocular surface and anterior chamber was performed at baseline. Results were photodocumented. Excimer laser photoablation was performed and subsequently 2 amniotic membranes were transconjunctivally fixated with 10.0 nylon sutures. Investigations and documentation were performed at baseline, every 2 months in the first year, and then every 6 months. The duration of follow-up was 22 months. At baseline, the BCVA was 20/70 in the right eye and 20/200 in the left eye. The patient reported distinct photophobia. Slit-lamp examination was difficult because of blepharospasm. Although gelatinous drops developed again and the BCVA decreased to 2/200, the patient reported significant relief after both microsurgical treatments and remained comfortable at 20 and 22 months. Excimer laser photocoagulation combined with amniotic membrane overlay does not stop the development of gelatinous drop-like corneal dystrophy but may improve subjective comfort. Such treatment does not hinder subsequent lamellar or penetrating grafts and is helpful in providing the necessary time for preparation of matched keratoplasties.

  13. Chitosan- and polypropylene-oriented surface modification using excimer laser and their biocompatibility study.

    Science.gov (United States)

    Khaledian, Mohammad; Jiroudhashemi, Faeze; Biazar, Esmaeil

    2017-02-01

    Surface modification of medical polymers is carried out to improve biocompatibility. In this study, conventional polymers (chitosan and polypropylene) were modified to laser at different features (oriented and non-oriented) to create a vast range of physicochemical characteristics on the surface of polymers and investigate their effects on biocompatibility of treated surfaces. Atomic force microscope (AFM) was applied to study the morphology of treated samples in comparison with those of the untreated PS. Contact angle analyses were used to evaluate the wettability and surface energy of the treated films. AFM studies showed that after laser treatment, some distinctive nanostructures are created on the surface of polymers. The data from contact angle measurements demonstrated that laser irradiation created surfaces with a vast range of properties in the wettability point of view. The cellular results revealed that after surface modification by laser irradiation, biocompatibility of polymeric films, especially oriented films was enhanced.

  14. Development of a Silicon Based Electron Beam Transmission Window for Use in a KrF Excimer Laser System

    CERN Document Server

    Gentile, C A; Hartfield, J W; Hawryluk, R J; Hegeler, F; Heitzenroeder, P J; Jun, C H; Ku, L P; Lamarche, P H; Myers, M C; Parker, J J; Parsells, R F; Payen, M; Raftopoulos, S; Sethian, J D

    2002-01-01

    The Princeton Plasma Physics Laboratory (PPPL), in collaboration with the Naval Research Laboratory (NRL), is currently investigating various novel materials (single crystal silicon, , and ) for use as electron-beam transmission windows in a KrF excimer laser system. The primary function of the window is to isolate the active medium (excimer gas) from the excitation mechanism (field-emission diodes). Chosen window geometry must accommodate electron energy transfer greater than 80% (750 keV), while maintaining structural integrity during mechanical load (1.3 to 2.0 atm base pressure differential, approximate 0.5 atm cyclic pressure amplitude, 5 Hz repetition rate) and thermal load across the entire hibachi area (approximate 0.9 W centre dot cm superscript ''-2''). In addition, the window must be chemically resistant to attack by fluorine free-radicals (hydrofluoric acid, secondary). In accordance with these structural, functional, and operational parameters, a 22.4 mm square silicon prototype window, coated w...

  15. Results of excimer laser photorefractive keratectomy for the correction of myopia at Cedars-Sinai Medical Center: 1993

    Science.gov (United States)

    Maguen, Ezra I.; Salz, James J.; Nesburn, Anthony B.; Warren, Cathy; Macy, Jonathan I.; Papaioannou, Thanassis; Hofbauer, John; Berlin, Michael S.

    1994-06-01

    This report summarizes the authors' 3-year experience with excimer laser photorefractive keratectomy (PRK) on 240 eyes of 161 patients. With constant laser emission parameters, nitrogen (N2) flow across the cornea was used on 79 eyes while 161 eyes had no N2 flow. 74 eyes were operated on without fixation with a suction ring. Postoperative pain management included patching and oral analgesics in 77 eyes and the use of topical Diclofenac or Ketorolac, and a therapeutic soft contact lens in 163 eyes. Follow up ranged from 1 month (206 eyes) to 36 months (10 eyes).

  16. Hydroxyapatite and bioactive glass surfaces for fiber reinforced composite implants via surface ablation by Excimer laser.

    Science.gov (United States)

    Kulkova, Julia; Moritz, Niko; Huhtinen, Hannu; Mattila, Riina; Donati, Ivan; Marsich, Eleonora; Paoletti, Sergio; Vallittu, Pekka K

    2017-11-01

    In skeletal reconstructions, composites, such as bisphenol-A-glycidyldimethacrylate resin reinforced with glass fibers, are potentially useful alternatives to metallic implants. Recently, we reported a novel method to prepare bioactive surfaces for these composites. Surface etching by Excimer laser was used to expose bioactive glass granules embedded in the resin. The purpose of this study was to analyze two types of bioactive surfaces created by this technique. The surfaces contained bioactive glass and hydroxyapatite granules. The selected processing parameters were adequate for the creation of the surfaces. However, the use of porous hydroxyapatite prevented the complete exposure the granules. In cell culture, for bioactive glass coatings, the pattern of proliferation of MG63 cells was comparable to that in the positive control group (Ti6Al4V) while inferior cell proliferation was observed on the surfaces containing hydroxyapatite granules. Scanning electron microscopy revealed osteointegration of implants with both types of surfaces. The technique is suitable for the exposure of solid bioactive glass granules. However, the long-term performance of the surfaces needs further assessment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Excimer laser phototherapeutic keratectomy for the treatment of clinically presumed fungal keratitis.

    Science.gov (United States)

    Li, Liang-Mao; Zhao, Li-Quan; Qu, Ling-Hui; Li, Peng

    2014-01-01

    This retrospective study was to evaluate treatment outcomes of excimer laser phototherapeutic keratectomy (PTK) for clinically presumed fungal keratitis. Forty-seven eyes of 47 consecutive patients underwent manual superficial debridement and PTK. All corneal lesions were located in the anterior stroma and were resistant to medication therapy for at least one week. Data were collected by a retrospective chart review with at least six months of follow-up data available. After PTK, infected corneal lesions were completely removed and the clinical symptoms resolved in 41 cases (87.2%). The mean ablation depth was 114.39 ± 45.51  μ m and diameter of ablation was 4.06 ± 1.07 mm. The mean time for healing of the epithelial defect was 8.8 ± 5.6 days. Thirty-four eyes (82.9%) showed an improvement in best spectacle-corrected visual acuity of two or more lines. PTK complications included mild to moderate corneal haze, hyperopic shift, irregular astigmatism, and thinning cornea. Six eyes (12.8%) still showed progressed infection, and conjunctival flap covering, amniotic membrane transplantation, or penetrating keratoplasty were given. PTK is a valuable therapeutic alternative for superficial infectious keratitis. It can effectively eradicate lesions, hasten reepithelialization, and restore and preserve useful visual function. However, the selection of surgery candidates should be conducted carefully.

  18. Intraoperative videokeratography in penetrating keratoplasty and excimer laser-assisted lamellar keratoplasty for keratoconus.

    Science.gov (United States)

    Spadea, Leopoldo; Fiasca, Arianna; Federici, Simone

    2010-09-01

    To evaluate the usefulness of intraoperative computerized corneal topographic data in excimer laser-assisted lamellar keratoplasty (ELLK) and penetrating keratoplasty (PK). Prospective, comparative, interventional case series. Intra- and postoperative videokeratography (Keratron Scout) evaluation was performed on 30 eyes of 30 consecutive patients affected by keratoconus (16 men and 14 women; mean age 32.63±8.02 years) submitted to ELLK (15 eyes) using 16 interrupted 10-0 nylon stitches or to PK (15 eyes) using a 12-bite 10-0 nylon double-running continuous suture. In the ELLK group, the mean intraoperative keratometric astigmatism was 12.06±4.86 diopters (D), which changed to 5.19±2.51 D after topography-guided intraoperative suture adjustment. In the PK group, intraoperative keratometric astigmatism was 10.18±3.88 D, which changed to 3.49±0.41 D. After 24 months (sutures out), the mean videokeratographic keratometric astigmatism was 3.35±1.96 D in the ELLK group and 3.37±0.92 D in the PK group. The Alpins method of vector analysis showed some significant changes especially in the ELLK group. In keratoplasty surgery, videokeratography is useful for suture adjustment. In the PK group, using a double-running suture technique, the postoperative astigmatism (after all sutures were removed) was similar to the astigmatism measured intraoperatively by videokeratography. Copyright 2010, SLACK Incorporated.

  19. Excimer Laser Phototherapeutic Keratectomy for the Treatment of Clinically Presumed Fungal Keratitis

    Directory of Open Access Journals (Sweden)

    Liang-Mao Li

    2014-01-01

    Full Text Available This retrospective study was to evaluate treatment outcomes of excimer laser phototherapeutic keratectomy (PTK for clinically presumed fungal keratitis. Forty-seven eyes of 47 consecutive patients underwent manual superficial debridement and PTK. All corneal lesions were located in the anterior stroma and were resistant to medication therapy for at least one week. Data were collected by a retrospective chart review with at least six months of follow-up data available. After PTK, infected corneal lesions were completely removed and the clinical symptoms resolved in 41 cases (87.2%. The mean ablation depth was 114.39±45.51 μm and diameter of ablation was 4.06±1.07 mm. The mean time for healing of the epithelial defect was 8.8±5.6 days. Thirty-four eyes (82.9% showed an improvement in best spectacle-corrected visual acuity of two or more lines. PTK complications included mild to moderate corneal haze, hyperopic shift, irregular astigmatism, and thinning cornea. Six eyes (12.8% still showed progressed infection, and conjunctival flap covering, amniotic membrane transplantation, or penetrating keratoplasty were given. PTK is a valuable therapeutic alternative for superficial infectious keratitis. It can effectively eradicate lesions, hasten reepithelialization, and restore and preserve useful visual function. However, the selection of surgery candidates should be conducted carefully.

  20. [193 excimer laser trepanation in perforating keratoplasty. Report of 70 patients].

    Science.gov (United States)

    Naumann, G O; Seitz, B; Lang, G K; Langenbucher, A; Kus, M M

    1993-10-01

    In penetrating keratoplasty, trephination with the 193 nm excimer laser may help avoid the differences in the deformation of the donor and recipient wound margins which occur with the conventional procedure. By varying the shape of the "open metal mask", other cut configurations can be achieved besides circular. Thus, "vertical tilt" and "horizontal torsion", both potential reasons for persistent long-term astigmatism after PK, may be minimized. Following experimental studies, the authors present the results obtained in their first 70 consecutive patients. 38 women and 32 men were treated (mean age 60.6 years, range 17 to 89 years). Indications were corneal processes without vascularization: Fuchs' dystrophy (n = 32), other stromal dystrophies (n = 5), secondary corneal endothelial decompensation (n = 6), keratoconus (n = 15), nonvascularized corneal scars (n = 4) and miscellaneous (n = 8 ). We used elliptical metal masks with/without orientation teeth and circular masks with four and eight orientation teeth, respectively. The HeNe aiming beam was manually controlled by a micromanipulator ("joystick"). The technical data of the laser were as follows: spot mode, 1.5 x 1.5 mm; repetition rate 30/sec and 25/sec, respectively; pulse energy 15-25 mJ; mean number of pulses 6407 (recipient) and 9150 (donor). With an elliptical outline, wound closure was usually achieved with single sutures. With a circular outline with orientation teeth, wound closure was most commonly achieved with a double running suture. Patients were prospectively documented using modified Erlangen record sheets. Follow-up ranged from 3 months to 3.4 years (mean 11.4 months). With two exceptions, penetration of the anterior chamber with the 193 nm excimer laser was accomplished without deformation of the cut edges. The elliptical outline facilitated fitting of the graft into the recipient wound bed, and the orientation teeth made fitting even easier. Initial intraoperative complications due to

  1. Comparison of 3D surfaces produced by 248-nm and 193-nm excimer laser radiation

    Science.gov (United States)

    Toenshoff, Hans K.; Graumann, Christoph; Rinke, Marcus; Hesener, Hanno; Kulik, Christian

    1998-10-01

    Currently there is a strong demand for refractive optical elements made from glass in 21/2D and 3D-structures. Due to the characteristics of brittle materials like glass, only a limited number of manufacturing methods can be used to machine these materials with sub-micron resolution. Thus, current microstructures made out of glass are mainly manufactured by photolithography and etching process. Lithography techniques are only for economic purposes for a series production, but is not suitable for manufacturing prototypes or a small series. Micromachining done with Excimer Lasers in combination with high precision CNC- controlled handling systems offers flexible design possibilities for optical components. Due to the limitations of conventional machining techniques for brittle materials, a new laser machining system for material processing at a wavelength of 193 nm has been designed and built. The better absorption of 193 nm compared to 248 nm or larger wavelengths leads to damage free microstructuring of most glasses. Data generation for the volume to be ablated starts with the mathematical description of the surface shape of the optical component. The contour can be derived from a mathematical function or individual xyz-data point information from any CAD-program. A pre-processor calculates the CNC-data for laser triggering, xyz-table and the CNC- mask control. Each laser pulse leads to a material removal, defined by the illuminated surface on the workpiece as well as the energy density. Superposition or overlapping of pulses allows the creation of the desired surface. The surface roughness is determined by the wavelength as well as the chosen ablation strategy. To achieve best results, the process has to be carefully adjusted for a specific material. This technique is a sufficient method for structuring grooves in ceramics or glass as well as producing aspherical transparent optical surfaces or micro lens arrays. This paper shall describe the potential of 193 nm

  2. Effect of time sequences in scanning algorithms on the surface temperature during corneal laser surgery with high-repetition-rate excimer laser.

    Science.gov (United States)

    Mrochen, Michael; Schelling, Urs; Wuellner, Christian; Donitzky, Christof

    2009-04-01

    To investigate the influence of temporal and spatial spot sequences on the ocular surface temperature increase during corneal laser surgery with a high-repetition-rate excimer laser. Institute for Refractive and Ophthalmic Surgery, Zurich, Switzerland, and WaveLight AG, Erlangen, Germany. An argon-fluoride excimer laser system working at a repetition rate of 1050 Hz was used to photoablate bovine corneas with various myopic, hyperopic, and phototherapeutic ablation profiles. The temporal distribution of ablation profiles was modified by 4 spot sequences: line, circumferential, random, and an optimized scan algorithm. The increase in ocular surface temperature was measured using an infrared camera. The maximum and mean ocular surface temperature increases depended primarily on the spatial and temporal distribution of the spots during photoablation and the amount of refractive correction. The highest temperature increases were with the line and circumferential scan sequences. Significant lower temperature increases were found with the optimized and random scan algorithms. High-repetition-rate excimer laser systems require spot sequences with optimized temporal and spatial spot distribution to minimize the increase in ocular surface temperature. An ocular surface temperature increase will always occur depending on the amount of refractive correction, the type of ablation profile, the radiant exposure, and the repetition rate of the laser system.

  3. Ultraviolet and laser irradiation effects on various batches of CR-39

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Jarad, F.; Islam, M.A.; Abu-Abdoun, I.; Khan, M.A. (King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia))

    1991-01-01

    Different batches of the plastic track detector CR-39 were irradiated with various ultraviolet (UV) sources and an excimer laser ({lambda} = 308). A visible change of color of detectors under heavy doses appeared in both cases. The exposure to ordinary (non-linear) UV light sources resulted in an increase of the track sizes, bulk and track etch rate at two different wavelengths 254 nm and 350 nm. At 300 nm no increase was observed. On the other hand, the exposure to the laser resulted in hardening of the surfaces and therefore a decreasing of track sizes. The laser effect (hardening) was, however, found to saturate above a certain exposure dose. The observed hardening of laser irradiated detectors suggests their possible use in the detection and study of ultra energetic particles without unnecessarily increasing the thickness of the detectors. (author).

  4. Excimer laser-assisted recanalisation of femoral arterial stenosis or occlusion caused by the use of Angio-Seal

    Energy Technology Data Exchange (ETDEWEB)

    Steinkamp, H.J.; Werk, M.; Beck, A.; Teichgraeber, U.; Haufe, M.; Felix, R. [Dept. of Radiology, Humboldt Univ. Berlin (Germany)

    2001-08-01

    The aim of this study was to demonstrate the effect of excimer laser and balloon angioplasty of femoral artery stenosis and occlusion after use of a haemostatic puncture closure device. A haemostatic puncture closure device (Angio-Seal) was used in 6000 patients after diagnostic or therapeutic artery catheterisation. In 34 of those patients symptoms of peripheral artery disease occurred. Sixteen of those 34 cases were transferred to our clinic for excimer laser angioplasty. All 16 patients presented with symptoms of acute peripheral artery disease within 1-14 days: superficial femoral artery (SFA) occlusions (4 cases); superficial femoral artery stenosis (3 cases); high-grade stenosis of the common femoral artery (CFA; 3 cases); high-grade stenosis of CFA; SFA and profund femoral artery (PFA; 3 cases); and occlusions of CFA, SFA and PFA (3 cases). Before any procedure was performed, informed consent was given by the patient, which included the use of the Angio-Seal closure device. Every patient who had to undergo recanalisation procedures gave additional informed consent which especially included the usage of the excimer laser for recanalisation. A measurement of the walking distance, ankle-brachial systolic pressure index (ABI) and diagnostic angiography was performed in 13 cases before and immediate after as well as 3 and 6 months after therapeutic percutaneous transluminal laser angioplasty followed by balloon angioplasty (PTLA/PTA). In 3 patients the risks of PTLA/PTA was considered too high; those patients underwent surgical repair. Angiographic and clinical improvement was achieved in 13 of 13 patients. The mean walking distance increased from 81 to >400 m. The average ankle-brachial systolic pressure index (ABI) increased from 0.47 to 0.84. One patient developed a dissection of the SFA, and in 1 case a peripheral embolisation was seen. The PTLA/PTA technique is a successful therapeutic option for patients with femoral artery occlusion or high-grade stenosis

  5. A comparative study of via drilling and scribing on PEN and PET substrates for flexible electronic applications using excimer and Nd:YAG laser sources

    NARCIS (Netherlands)

    Mandamparambil, R.; Fledderus, H.; Brand, J. van den; Saalmink, M.; Kusters, R.; Podprocky, T.; Steenberge, G. van; Baets, J. de; Dietzel, A.H.

    2009-01-01

    A study on via drilling and channel scribing on PEN and PET substrates for flexible electronic application is discussed in this paper. For the experiments, both KIF excimer laser (248 nm) and frequency tripled Nd:YAG (355 nm) laser are used. Different measurement techniques like optical microscopy,

  6. Corneal haze induced by excimer laser photoablation in rabbits is reduced by preserved human amniotic membrane graft

    Science.gov (United States)

    Wang, Ming X.; Gray, Trevor; Prabhasawat, Pinnita; Ma, Xiong; Culbertson, William; Forster, Richard; Hanna, Khalil; Tseng, Scheffer C. G.

    1998-06-01

    We conducted a study to determine if preserved human amniotic membrane can reduce corneal haze induced by excimer laser photoablation. Excimer photoablation was performed bilaterally on 40 New Zealand white rabbits with a 6 mm ablation zone and 120 micrometer depth (PTK) using the VISX Star. One eye was randomly covered with a preserved human amniotic membrane and secured using four interrupted 10 - 0 nylon sutures; the other eye served as control. The amniotic membranes were removed at one week, and the corneal haze was graded with a slit-lamp biomicroscopy by three masked corneal specialists (WC, KH and RF) biweekly for the ensuing 12 weeks. Histology and in situ TUNEL staining (for fragmented DNA as an index for apoptosis) was performed at days 1, 3 and 7 and at 12 weeks. One week after excimer photoablation, the amniotic membrane-covered corneas showed more anterior stromal edema, which resolved at the second week. A consistent grading of organized reticular corneal haze was noted among the three masked observers. Such corneal haze peaked at the seventh week in both groups. The amniotic membrane-covered group showed statistically significant less corneal haze (0.50 plus or minus 0.15) than the control groups (1.25 plus or minus 0.35) (p less than 0.001). The amniotic membrane-covered corneas had less inflammatory response at days 1 and 3, showing nearly nil DNA fragmentation on keratocytes on the ablated anterior stromal and less stromal fibroblast activation. There is less altered epithelial cell morphology and less epithelial hyperplasia at 1 week in these amniotic membrane-treated eyes. We concluded from this study that amniotic membrane matrix is effective in reducing corneal haze induced by excimer photoablation in rabbits and may have clinical applications.

  7. Single application on iris localization technology in excimer laser for astigmatism

    Directory of Open Access Journals (Sweden)

    Jun-Hua Hao

    2014-06-01

    Full Text Available AIM:To discuss the single application on iris localization technology in excimer laser for the treatment of astigmatism. METHODS:Totally 203 cases(406 eyesof laser in situ keratomileusis(LASIKin the treatment of compound myopic astigmatism patients were operated from November 2011 to November 2012 in our hospital. They were divided into two groups. One was observation group using iris localization and the other was control group using routine operation. Patients in the observation group of 100 cases(200 eyes, aged 18-43 years old, spherical diopter was -1.25 to -8.75D, astigmatism was -1.0 to -3.25D. In control group, 103 patients(206 eyes, aged 19-44 years old, spherical diopter was -1.75-9.50D, astigmatism was -1.0 to -3.25D. The patients in the observation group before the application of WaveScan aberrometer check for iris image, spherical lens, cylindrical lens and astigmatism axis data operation, only single application of iris location, without using wavefront aberration guided technology, laser cutting patterns for conventional LASIK model, spherical, cylindrical mirror and astigmatism axis data source to preoperative wavefront aberration results. The control group received routine LASIK. It was applicated comprehensive optometry optometry respectively to examine astigmatism and axial, based on the computer analysis during the preoperative, 1wk after the operation, and 6mo. Analysis of using SPSS 17 statistical software, it was independent-sample t test between the two groups of residual astigmatism and astigmatism axis. RESULTS:Postoperative residual astigmatism, the observation group was significantly better than the control group. Astigmatism axial measurement after operation, the observation group was significantly less than that of the control group. Postoperative visual acuity at 6mo, the observation group was better than that of the control group. The difference was statistically significant. CONCLUSION: For patients who cannot

  8. Excimer laser micropatterning of freestanding thermo-responsive hydrogel layers for cells-on-chip applications

    Science.gov (United States)

    Santaniello, Tommaso; Martello, Federico; Tocchio, Alessandro; Gassa, Federico; Webb, Patrick; Milani, Paolo; Lenardi, Cristina

    2012-10-01

    We report a novel reliable and repeatable technologic manufacturing protocol for the realization of micro-patterned freestanding hydrogel layers based on thermo-responsive poly-(N-isopropyl)acrylamide (PNIPAAm), which have potential to be employed as temperature-triggered smart surfaces for cells-on-chip applications. PNIPAAm-based films with controlled mechanical properties and different thicknesses (100-300 µm thickness) were prepared by injection compression moulding at room temperature. A 9 × 9 array of 20 µm diameter through-holes is machined by means of the KrF excimer laser on dry PNIPAAm films which are physically attached to flat polyvinyl chloride (PVC) substrates. Machining parameters, such as fluence and number of shots, are optimized in order to achieve highly resolved features. Micro-structured freestanding films are then easily obtained after hydrogels are detached from PVC by gradually promoting the film swelling in ethanol. In the PNIPAAm water-swollen state, the machined holes’ diameter approaches a slight larger value (30 µm) according to the measured hydrogel swelling ratio. Thermo-responsive behaviour and through-hole tapering characterization are carried out by metrology measurements using an optical inverted and confocal microscope setup, respectively. After the temperature of freestanding films is raised above 32 °C, we observe that the shrinkage of the whole through-hole array occurs, thus reducing the holes’ diameter to less than a half its original size (about 15 µm) as a consequence of the film dehydration. Different holes’ diameters (10 and 30 µm) are also obtained on dry hydrogel employing suitable projection masks, showing similar shrinking behaviour when hydrated and undergone thermo-response tests. Thermo-responsive PNIPAAm-based freestanding layers could then be integrated with other suitable micro-fabricated thermoplastic components in order to preliminary test their feasibility in operating as temperature

  9. Influence of laser beam’s image-plane position on geometry of through-holes in percussion-drilled glass using excimer laser

    Directory of Open Access Journals (Sweden)

    Ales Babnik

    2013-01-01

    Full Text Available We study the influence of a laser beam’s image-plane position relative to the processed surface for the deep-hole, laser-microdrilling of soda-lime glass with an excimer 308-nm laser and mask-projection technique. It is demonstrated that the image-plane position has a significant influence on the hole’s tapering and final depth. Holes with exit diameters up to 10 times smaller than the mask-image diameter are produced in the case of perforation during the appropriate process phase determined by the formation of the plasma plume.

  10. Wettability characteristics of a modified mild steel with CO2, Nd:YAG, excimer and high power diode lasers

    OpenAIRE

    Lawrence, Jonathan; Li, Lin

    1999-01-01

    Interaction of CO2, Nd:YAG, excimer and high-power diode laser radiation with the surface of a common mild steel (EN8) was found to effect changes in the wettability characteristics of the steel, namely changes in the measured contact angle of certain liquids. Such changes were identified as being due to modifications to (i) the surface roughness, (ii) changes in the surface oxygen content and (iii) changes in the surface energy of the mild steel. However, it was found that changes in the wet...

  11. Corneal lathing using the excimer laser and a computer-controlled positioning system: Part I--Lathing of epikeratoplasty lenticules.

    Science.gov (United States)

    Altmann, J; Grabner, G; Husinsky, W; Mitterer, S; Baumgartner, I; Skorpik, F; Asenbauer, T

    1991-01-01

    Precise lathing of epikeratoplasty lenticules is difficult to achieve with the cryolathe due to unpredictable expansion of the lathing tools and the corneal tissue during the freezing process. In addition, the procedure destroys all viable cells in the transplant thereby possibly contributing to the prolonged period of visual rehabilitation. Non-freezing techniques using the microkeratome or the rotor-trephine, on the other hand, are technically demanding, can cause mechanical damage during cutting or fixation, and, have not given consistently reproducible refractive results. A new system is presented that allows a variable laser ablation of donor corneas into lenticules for aphakic and myopic epikeratoplasty, as well as for lamellar keratoplasty. With the help of a computer-controlled positioning system that uses high-precision micropositioning elements (both translation and rotational stages) the donor cornea is moved, epithelial side down, in a holding device in front of a focused excimer laser beam (ArF, lambda = 193 nm). This photoablation lathing process assures the viability of the stromal cells in the lenticule in close approximation to the treated surface. The user friendly computer software allows the fast and convenient selection of a variety of parameters, such as the diameter of the optical zone, the shape of the wing zone, the refractive power, the central thickness of the lenticule and the overall contour of the transplant. The first laboratory data of lenticules prepared from human corneas with this "Excimer Laser Corneal Shaping System" are presented.

  12. Corneal lathing using the excimer laser and a computer-controlled positioning system: Part II--Variable trephination of corneal buttons.

    Science.gov (United States)

    Husinsky, W; Mitterer, S; Altmann, J; Grabner, G; Baumgartner, I; Skorpik, F; Asenbauer, T

    1991-01-01

    A new system is presented that allows a variable trephination of donor corneas for the preparation of corneal buttons used in penetrating keratoplasty. With the help of a computer-controlled positioning system that uses high-precision micropositioning elements (both translation and rotational stages) the donor cornea is removed, epithelial side up, in a fixation device in front of a focused excimer laser beam (ArF, lambda = 193 nm). User friendly computer software allows the surgeon to select a variety of parameters (diameter, shape, angle of trephination) of the corneal graft. Histological and electron microscopical data of human corneas trephined with this "Excimer Laser Corneal Shaping System" are presented.

  13. Update on excimer laser photorefractive keratectomy (PRK) at Cedars-Sinai Medical Center: two-year experience

    Science.gov (United States)

    Maguen, Ezra I.; Salz, James J.; Warren, Cathy; Papaioannou, Thanassis; Nesburn, Anthony B.; Macy, Jonathan I.; Hofbauer, John; Grundfest, Warren S.

    1993-06-01

    Our two year experience with excimer laser photorefractive keratectomy for the correction of myopia on 160 eyes of 128 patients is described. All eyes were treated with a VISX Twenty- Twenty excimer laser, with the following parameters: radiant exposure 160 mJ/cm2, frequency 5 Hz, ablation zone diameter 5.0 to 5.5 mm, and stromal ablation rate 0.18 to 0.33 (mu) /pulse. A suction fixation ring was used in all cases either with nitrogen flow (79 eyes) or without nitrogen flow (81 eyes) across the cornea. Follow-up ranged from one month (152 eyes) to 24 months (12 eyes). The results are stable between 3 and 24 months with less than 0.25 D change in the mean postoperative spherical equivalents. In eyes with a follow-up of 6 to 24 months, 77% to 100% were 20/40 or better uncorrected, and 84% to 92% were corrected to within +/- 1 D of emmetropia. Further follow-up is needed to assess the long term safety and efficacy of the procedure.

  14. Thermodynamic response of soft biological tissues to pulsed infrared-laser irradiation.

    Science.gov (United States)

    Venugopalan, V; Nishioka, N S; Mikić, B B

    1996-06-01

    The physical mechanisms that achieve tissue removal through the delivery of short pulses of high-intensity infrared laser radiation, in a process known as laser ablation, remain obscure. The thermodynamic response of biological tissue to pulsed infrared laser irradiation was investigated by measuring and analyzing the stress transients generated by Q-sw Er:YSGG (lambda = 2.79 microns) and TEA CO2 (lambda = 10.6 microns) laser irradiation of porcine dermis using thin-film piezoelectric transducers. For radiant exposures that do not produce material removal, the stress transients are consistent with thermal expansion of the tissue samples. The temporal structure of the stress transients generated at the threshold radiant exposure for ablation indicates that the onset of material removal is delayed with respect to irradiation. Once material removal is achieved, the magnitude of the peak compressive stress and its variation with radiant exposure are consistent with a model that considers this process as an explosive event occurring after the laser pulse. This mechanism is different from ArF- and KrF-excimer laser ablation where absorption of ultraviolet radiation by the collagenous tissue matrix leads to tissue decomposition during irradiation and results in material removal via rapid surface vaporization. It appears that under the conditions examined in this study, explosive boiling of tissue water is the process that mediates the ablation event. This study provides evidence that the dynamics and mechanism of tissue ablation processes can be altered by targeting tissue water rather than the tissue structural matrix.

  15. Scattered ultraviolet emissions during refractive surgery using a high-frequency, wavefront-optimized excimer laser platform.

    Science.gov (United States)

    Bower, Kraig S; Edwards, Jayson D; Ryan, Denise Sediq; Coe, Charles D; Hope, Robert J; Sliney, David H

    2010-08-01

    To evaluate occupational ultraviolet (UV) exposure during photorefractive keratectomy (PRK) and laser in situ keratomileusis (LASIK) with the Allegretto Wave Eye-Q 400 Hz excimer laser. Walter Reed Center for Refractive Surgery, Washington, DC, USA. Intraoperative UV measurements were performed during PRK with epithelial removal using an Amoils brush, PRK with epithelial removal using 20% ethanol, or femtosecond LASIK. A LaserStar power/energy meter with a silicone detector (model PD-10) was used for the measurements. The maximum pulse energy 25.4 cm from the corneal surface was recorded for each surgical procedure. Measurements were evaluated using a worst-case scenario for exposure of operating room personnel, and the results were compared with the occupational exposure limit set by the International Commission on Non-Ionizing Radiation Protection. Measurements were taken during 15 cases of each procedure. The mean maximum exposure was 129.38 nJ/pulse +/- 79.48 (SD) during brush PRK, 69.72 +/- 68.80 nJ/pulse during ethanol PRK, and 29.17 +/- 13.82 nJ/pulse during LASIK. The mean maximum exposure per eye was 0.085 mJ/cm(2), 0.046 mJ/cm(2), and 0.01 mJ/cm(2), respectively. The worst-case cumulative exposure during a heavy workday of 20 patients (40 eyes) was calculated at 3.92 mJ/cm(2), 1.51 mJ/cm(2), and 0.79 mJ/cm(2) for brush PRK, ethanol PRK, and LASIK, respectively. Results indicate that the excimer laser platform used in the study may yield greater UV exposure than previous systems; however, the levels did not exceed occupational exposure limits. No author has a financial or proprietary interest in any material or method mentioned. Published by Elsevier Inc.

  16. Improving the ablation efficiency of excimer laser systems with higher repetition rates through enhanced debris removal and optimized spot pattern.

    Science.gov (United States)

    Arba-Mosquera, Samuel; Klinner, Thomas

    2014-03-01

    To evaluate the reasons for the required increased radiant exposure for higher-repetition-rate excimer lasers and determine experimentally possible compensations to achieve equivalent ablation profiles maintaining the same single-pulse energies and radiant exposures for laser repetition rates ranging from 430 to 1000 Hz. Schwind eye-tech-solutions GmbH and Co. KG, Kleinostheim, Germany. Experimental study. Poly(methyl methacrylate) (PMMA) plates were photoablated. The pulse laser energy was maintained during all experiments; the effects of the flow of the debris removal, the shot pattern for the correction, and precooling the PMMA plates were evaluated in terms of achieved ablation versus repetition rate. The mean ablation performance ranged from 88% to 100%; the variability between the profile measurements ranged from 1.4% to 6.2%. Increasing the laser repetition rate from 430 Hz to 1000 Hz reduced the mean ablation performance from 98% to 91% and worsened the variability from 1.9% to 4.3%. Increasing the flow of the debris removal, precooling the PMMA plates to -18°C, and adapting the shot pattern for the thermal response of PMMA to excimer ablation helped stabilize the variability. Only adapting the shot pattern for the thermal response of PMMA to excimer ablation helped stabilize the mean ablation performance. The ablation performance of higher-repetition-rate excimer lasers on PMMA improved with improvements in the debris removal systems and shot pattern. More powerful debris removal systems and smart shot patterns in terms of thermal response improved the performance of these excimer lasers. Copyright © 2014 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  17. Species-resolved laser-probing investigations of the hydrodynamics of KrF excimer and copper vapor laser ablation processing of materials

    Science.gov (United States)

    Ventzek, Peter L. G.; Gilgenbach, Ronald M.; Ching, Chi H.; Lindley, R. A.

    1993-06-01

    Hydrodynamic phenomena from KrF excimer laser ablation (10-3-20 J/cm2) of polyimide, polyethyleneterephthalate, and aluminum are diagnosed by laser beam deflection, schlieren photography, shadowgraphy, laser-induced-fluorescence and dye-laser- resonance absorption photography (DLRAP). Experiments were performed in vacuum and gaseous environments (10-5 to 760 Torr). In vacuum, the DLRAP diagnostic shows species-resolved plume expansion which is consistent with that of a reflected rarefaction wave. Increasing the background gas pressure reveals the formation of sound/shock compared to CN in the laser-ablated polyimide (Vespel) plume/shock in inert (e.g. argon) and reactive (e.g. air) gases. At low pressures (less than 10 Torr) Al and CN species are in close contact with the shock front. As the pressure increases, the species front tends to recede, until at high pressures (over 200 Torr) the species are restrained to only a few mm above the target surface. After sufficient expansion, Al and CN are no longer detectable; only the shadowgraph of the hot gas plume remains. Since CN is observable in both inert and reactive environments, it can be concluded that CN is not a reaction product between the background gas and the ablated species. By way of comparison to excimer laser ablation processing of materials, copper vapor laser machined polyimide and polymethylmethacrylate (transparent to green and yellow copper vapor laser light) are also investigated. The two polymers are observed to have markedly different machined surfaces. Hydrodynamic effects for the copper vapor laser machined materials are investigated using HeNe laser beam deflection.

  18. Fatigue Testing of Materials by UV Pulsed Laser Irradiation

    CERN Document Server

    Calatroni, S; Taborelli, M

    2004-01-01

    The energy dissipated by the RF currents in the cavities of pulsed high-power linacs induces cycles of the surface temperature. In the case of the CLIC main linac the expected amplitude of the thermal cycles is above fifty degrees, for a total number of pulses reaching 1011. The differential thermal expansion due to the temperature gradient in the material creates a cyclic stress that can result in surface break-up by fatigue. The materials for cavity fabrication must therefore be selected in order to withstand such constraints whilst maintaining an acceptable surface state. The fatigue behaviour of Cu and CuZr alloy has been tested by inducing larger surface peak temperatures, thus reducing the number of cycles to failure, irradiating the surface with 40 ns pulses of UV light (308 nm) from an excimer laser. Surface break-up is observed after different number of laser shots as a function of the peak temperature. CuZr appears to withstand a much larger number of cycles than Cu, for equal peak temperature. The ...

  19. Hyperspectral and gated ICCD imagery for laser irradiated carbon materials

    Science.gov (United States)

    Roberts, Charles D.; Acosta, Roberto A.; Marciniak, Michael A.; Perram, Glen P.

    2013-02-01

    New optical diagnostics for studying laser ablation and induced combustion for carbon materials are key to monitoring the evolving, spatial distribution of the gas plume. We are developing high speed imaging FTIR and gated ICCD imagery for materials processing, manufacture process control, and high energy laser applications. The results from two projects will be discussed. First, an imaging Fourier Transform Spectrometer with a 320 x 256 InSb focal plane array frames at 1.9 kHz with a spatial resolution of 1 mm and spectral resolution of up to 0.25 cm-1. Gas phase plumes above the surface of laser-irradiated black plexiglass, fiberglass and painted thin metals have been spectrally resolved. Molecular emission from CO, CO2, H2O, and hydrocarbons is readily identified. A line-by-line radiative transfer model is used to derive movies for specie concentrations and temperatures. Second, excimer laser pulsed ablation of bulk graphite into low-pressure (0.05 - 1 Torr) argon generates highly ionized, high speed (M>40) plumes. A gated, intensified CCD camera with band pass filtering has been used to generate plume imagery with temporal resolution of 10ns. The Sedov-Taylor shock model characterizes the propagation of the shock front if the dimensionality of the plume is allowed to deviate from ideal spherical expansion. A drag model is more appropriate when the plume approaches extinction (~10 μs) and extends the characterization into the far field. Conversion of laser pulse energy to the shock is efficient.

  20. Excimer laser phototherapeutic keratectomy : Indications, results and its role in the Indian scenario

    Directory of Open Access Journals (Sweden)

    Rao Srinivas

    1999-01-01

    Full Text Available PURPOSE: To report indications, technique, and results of excimer phototherapeutic keratectomy (PTK, and describe possible reasons for the small numbers of such procedures performed in a referral institute in India. METHODS: Retrospective review of case records of 10 patients (11 eyes who underwent excimer PTK at our institute between February 1994 and September 1997. RESULTS: Corneal scars were the most common indication for treatment. Best-corrected visual acuity (BCVA improved in 6 eyes (mean: 2 lines of Snellen acuity. All eyes had BCVA > or = 6/12 after treatment. None of the patients experienced loss of BCVA after treatment. Unaided visual acuity improved in 3 eyes and decreased in 2 eyes. Change in spherical equivalent refraction > or = 1 diopter occurred in 77.8% of eyes after treatment. Treating central corneal scars resulted in a significant hyperopic shift in refraction. CONCLUSIONS: Excimer PTK is a safe and effective procedure for the treatment of superficial corneal opacities. Post-treatment ametropia may require further correction with optical aids. Inappropriate referrals, deep corneal scars, and cost of the procedure could have contributed to the small numbers of PTK performed at our institute. Improved understanding of procedural strengths and limitations could lead to increased use of this procedure, with satisfying results in selected patients.

  1. AFM study of excimer laser patterning of block-copolymer: Creation of ordered hierarchical, hybrid, or recessed structures

    Energy Technology Data Exchange (ETDEWEB)

    Švanda, Jan; Siegel, Jakub; Švorčík, Vaclav; Lyutakov, Oleksiy, E-mail: lyutakoo@vscht.cz

    2016-05-15

    Highlights: • Combination of bottom-up (BCP separation) and top-down (laser patterning) technologies allows obtaining hierarchical structures. • Surface morphologies were determined by the order of patterning steps (laser modification, annealing, surface reconstruction). • Tuning the order of steps enables the reorientation of BCP domain at large scale, fabrication of hierarchical, hybrid or recessed structures. • The obtained structures can find potential applications in nanotechnology, plasmonics, information storage, sensors and smart surfaces. - Abstract: We report fabrication of the varied range of hierarchical structures by combining bottom-up self-assembly of block copolymer poly(styrene-block-vinylpyridine) (PS-b-P4VP) with top-down excimer laser patterning method. Different procedures were tested, where laser treatment was applied before phase separation and after phase separation or phase separation and surface reconstruction. Laser treatment was performed using either polarized laser light with the aim to create periodical pattern on polymer surface or non-polarized light for preferential removing of polystyrene (PS) part from PS-b-P4VP. Additionally, dye was introduced into one part of block copolymer (P4VP) with the aim to modify its response to laser light. Resulting structures were analyzed by XPS, UV–vis and AFM techniques. Application of polarized laser light leads to creation of structures with hierarchical, recessed or hybrid geometries. Non-polarized laser beam allows pronouncing the block copolymer phase separated structure. Tuning the order of steps or individual step conditions enables the efficient reorientation of block-copolymer domain at large scale, fabrication of hierarchical, hybrid or recessed structures. The obtained structures can find potential applications in nanotechnology, photonics, plasmonics, information storage, optical devices, sensors and smart surfaces.

  2. Synthesis and properties of Ag/ZnO core/shell nanostructures prepared by excimer laser ablation in liquid

    Directory of Open Access Journals (Sweden)

    Yan Zhao

    2015-08-01

    Full Text Available Ag/ZnO core/shell nanostructure was synthesised by a 248-nm KrF excimer pulsed laser ablation in a liquid solution for the first time. It was found that the surface plasma resonance absorption of the Ag/ZnO core/shell nanostructures can be tuned by the thickness of the ZnO shell, which is in agreement with the finite difference in the time domain simulation. Furthermore, the ultraviolet emission spectrum of the Ag/ZnO core/shell nanostructures was stronger and blue-shifted compared with that of pure ZnO nanoparticles. This interesting photoluminescent phenomenon is analysed in detail and a possible explanation is proposed.

  3. Efficacy and safety of ab interno excimer laser trabeculotomy in primary open-angle glaucoma: two years of follow-up.

    Science.gov (United States)

    Babighian, Silvia; Rapizzi, Emilio; Galan, Alessandro

    2006-01-01

    Ab interno trabeculotomy was performed using the recently developed XeCl excimer laser in 21 eyes of 21 patients with primary open-angle glaucoma refractory to medical therapy. The patients were followed at the Eye Department of S. Antonio Hospital in Padova, for an average of 25.3 +/- 1.3 months. Intraocular pressure (IOP), visual acuity and ocular complications were evaluated. The laser procedure was quick and relatively easy, with minimal manipulation of tissues; complications were clinically insignificant. At the last follow-up, a marked IOP-lowering effect compared to baseline was observed (from 24.8 +/- 2.0 to 16.9 +/- 2.1 mm Hg; -31.8%, p interno excimer laser trabeculotomy seems effective to decrease IOP, serves to reduce the number of antiglaucoma medications and is relatively safe, proving to be a promising therapeutic option in glaucoma surgery. Copyright 2006 S. Karger AG, Basel.

  4. ArF excimer laser-induced deposition of Ag/C nanocomposite thin films in the presence of n-Hexane

    Energy Technology Data Exchange (ETDEWEB)

    Gondal, Mohammed Ashraf, E-mail: magondal@kfupm.edu.sa [Laser Research Group, Physics Department and Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Fajgar, Radek [Institute of Chemical Process Fundamentals, 16502 Prague (Czech Republic); Chang, Xiaofeng [Laser Research Group, Physics Department and Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Institute of Chemical Process Fundamentals, 16502 Prague (Czech Republic); College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100 (China); Shen, Kai [College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100 (China); Xu, Qingyu [Department of Physics, Southeast University, Nanjing 211189 (China)

    2014-08-30

    Highlights: • A new excimer laser ablation process was proposed to fabricate Ag/C thin film. • The size of Ag nanoparticles is ranging from 5 to 20 nm. • The ratios of Ag to C can be controlled by adjusting the pressure of n-Hexane. • The graphite-like structure of carbonaceous products was confirmed. - Abstract: Ag/C nanocomposite thin films with different Ag/C molar ratios have been prepared using ArF excimer laser-induced ablation process and silver target under n-Hexane atmosphere. The morphology, crystal structure and composition of as-deposited Ag/C nanocomposite thin films were investigated with high resolution electronic microscopic techniques (including scanning electron microscopy and transmission electron microscopy) and energy-dispersive X-ray spectroscopy, respectively. Laser Raman spectroscopy and Fourier transform infrared spectroscopy techniques were also applied to characterize the final carbonaceous products generated from n-Hexane under laser ablation process. The optical emission of the plume caused by the interaction between excimer laser and silver target in the presence of n-Hexane was studied to understand the possible reaction process. The UV–vis absorption of as-deposited Ag/C thin films, which is attributed to the surface plasmonic excitation, was also investigated in the present work.

  5. Surface studies on benzophenone doped PDMS microstructures fabricated using KrF excimer laser direct write lithography

    Energy Technology Data Exchange (ETDEWEB)

    Kant, Madhushree Bute; Shinde, Shashikant D. [Department of Physics, University of Pune, Pune 411007 (India); Bodas, Dhananjay [Centre for Nanobioscience, Agharkar Research Institute, Agharkar road, Pune 411004 (India); Patil, K.R. [Center for Materials Characterization, National Chemical Laboratories, Pune 411008 (India); Sathe, V.G. [UGC DAE Inter University Consortium, Indore 452017 (India); Adhi, K.P. [Department of Physics, University of Pune, Pune 411007 (India); Gosavi, S.W., E-mail: swg@physics.unipune.ac.in [Department of Physics, University of Pune, Pune 411007 (India)

    2014-09-30

    Graphical abstract: - Highlights: • Use of KrF Laser micromachining for Lab-On-Chip applications at lower fluence. • Addition of Benzophenone in PDMS enhances its self development sensitivity. • Benzophenone helps efficient energy transfer for equal density of bond scissioning. • Correlation of chemical composition with laser dose and microstructure. • Microstructures with well defined clean sidewalls. - Abstract: This paper discusses microfabrication process for benzophenone doped polydimethylsiloxane (PDMS) using laser lithography. KrF excimer laser of 248 nm with 20 ns pulse width at repetition rate of 1 Hz was used for microfabrication of undoped and benzophenone doped PDMS. The doped-PDMS shows sensitivity below 365 nm, permitting processing under ambient light. The analysis of etch depth revealed that doped PDMS shows self developable sensitivity at lower fluence of ∼250 mJ/cm{sup 2}. The unexposed and exposed surface was studied using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and Scanning electron microscopy (SEM). Spectrocopic analysis indicated increase in C-O, C=O, Si-O{sub 3} and Si-O{sub 4} bonding at the expense of Si-C and Si-O{sub 2} bonds of PDMS. In case of laser exposed doped-PDMS, removal of benzophenone from probe depth of spectroscopy was observed. Whereas the surface morphology of exposed and unexposed doped-PDMS was observed to be same, indicating clean development of PDMS micropatterns. The present study indicates that addition of 3.0 wt.% benzophenone in PDMS enhance self development sensitivity of PDMS. The self developable results on doped-PDMS are quite encouraging for its potential use in point of care Lab-On-Chip applications, for fabricating micropatterns using direct write laser lithography technology.

  6. Early outcome of high energy Laser (Excimer) facilitated coronary angioplasty ON hARD and complex calcified and balloOn-resistant coronary lesions: LEONARDO Study

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosini, Vittorio; Sorropago, Giovanni; Laurenzano, Eugenio [Montevergine Clinic, Mercogliano (Italy); Golino, Luca, E-mail: lucagolino.jazz@alice.it [Montevergine Clinic, Mercogliano (Italy); Moriggia-Pelascini Hospital, Gravedona, Como (Italy); Casafina, Alfredo; Schiano, Vittorio [Montevergine Clinic, Mercogliano (Italy); Gabrielli, Gabriele [University Hospital Ospedali Riuniti, Ancona (Italy); Ettori, Federica; Chizzola, Giuliano [Spedali Civili University Hospital, Brescia (Italy); Bernardi, Guglielmo; Spedicato, Leonardo [University Hospital S. Maria Misericordia, Udine (Italy); Armigliato, Pietro [Istituto Italiano Ricerche Mediche, Verona (Italy); Spampanato, Carmine [Telethon Institute of Genetics and Medicine (TIGEM), Naples (Italy); Furegato, Martina [Istituto Italiano Ricerche Mediche, Verona (Italy)

    2015-04-15

    Aim: An innovative xenon–chlorine (excimer) pulsed laser catheter (ELCA X80) has been recently used for the treatment of complex coronary lesions, as calcified stenosis, chronic total occlusions and non-compliant plaques. Such complex lesions are difficult to adequately treat with balloon angioplasty and/or intracoronary stenting. The aim of this study was to examine the acute outcome of this approach on a cohort of patients with coronary lesions. Methods and Results: Eighty patients with 100 lesions were enrolled through four centers, and excimer laser coronary angioplasty was performed on 96 lesions (96%). Safety and effectiveness data were compared between patients treated with standard laser therapy and those treated with increased laser therapy. Laser success was obtained in 90 lesions (93.7%), procedural success was reached in 88 lesions (91.7%), and clinical success in was obtained in 87 lesions (90.6%). There was no perforation, major side branch occlusion, spasm, no-reflow phenomenon, dissection nor acute vessel closure. Increased laser parameters were used successfully for 49 resistant lesions without complications. Conclusions: This study suggests that laser-facilitated coronary angioplasty is a simple, safe and effective device for the management of complex coronary lesions. Furthermore, higher laser energy levels delivered by this catheter improved the device performance without increasing complications. - Highlights: • We planned this multicenter study to examine the acute outcome of an innovative xenon–chlorine (excimer) pulsed laser catheter (ELCA X80) for treatment of complex coronary lesions. • We enrolled 80 patients with 100 lesions and performed excimer laser coronary angioplasty in 96 lesions (96%). • Laser success was obtained in 90 lesions (93.7%), procedural success was reached in 88 lesions (91.7%), and clinical success was obtained in 87 lesions (90.6%). • Increased laser parameters were used successfully for 49 resistant

  7. Surface and morphological features of laser-irradiated silicon under vacuum, nitrogen and ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, Asma, E-mail: asmahayat@gcu.edu.pk; Bashir, Shazia; Akram, Mahreen; Mahmood, Khaliq; Iqbal, Muhammad Hassan

    2015-12-01

    Highlights: • Laser irradiation effects on Si surface have been explored. • An Excimer Laser was used as a source. • SEM analysis was performed to explore surface morphology. • Raman spectroscopy analysis was carried out to find crystallographical alterations. - Abstract: Laser-induced surface and structural modification of silicon (Si) has been investigated under three different environments of vacuum, nitrogen (100 Torr) and ethanol. The interaction of 1000 pulses of KrF (λ ≈ 248 nm, τ ≈ 18 ns, repetition rate ≈ 30 Hz) Excimer laser at two different fluences of 2.8 J/cm{sup 2} and 4 J/cm{sup 2} resulted in formation of various kinds of features such as laser induced periodic surface structures (LIPSS), spikes, columns, cones and cracks. Surface morphology has been observed by Scanning Electron Microscope (SEM). Whereas, structural modification of irradiated targets is explored by Raman spectroscopy. SEM analysis exhibits a non-uniform distribution of micro-scale pillars and spikes at the central ablated regime of silicon irradiated at low laser fluence of 2.8 J/cm{sup 2} under vacuum. Whereas cones, pits, cavities and ripples like features are seen at the boundaries. At higher fluence of 4 J/cm{sup 2}, laser induced periodic structures as well as micro-columns are observed. In the case of ablation in nitrogen environment, melting, splashing, self-organized granular structures and cracks along with redeposition are observed at lower fluence. Such types of small scaled structures in nitrogen are attributed to confinement and shielding effects of nitrogen plasma. Whereas, a crater with multiple ablative layers is formed in the case of ablation at higher fluence. Significantly different surface morphology of Si is observed in the case of ablation in ethanol. It reveals the formation of cavities along with small scale pores and less redeposition. These results reveal that the growth of surface and morphological features of irradiated Si are strongly

  8. Argon laser irradiation of the otolithic organ

    Energy Technology Data Exchange (ETDEWEB)

    Okuno, T.; Nomura, Y.; Young, Y.H.; Hara, M. (Univ. of Tokyo (Japan))

    1990-12-01

    An argon laser was used to irradiate the otolithic organs of guinea pigs and cynomolgus monkeys. After stapedectomy, the argon laser (1.5 W x 0.5 sec/shot) irradiated the utricle or saccule without touching the sensory organs. The stapes was replaced over the oval window after irradiation. The animals used for acute observation were killed immediately for morphologic studies; those used for long-term observation were kept alive for 2, 4, or 10 weeks. Acute observation revealed that sensory and supporting cells were elevated from the basement membrane only in the irradiated area. No rupture of the membranous labyrinth was observed. Long-term observation revealed that the otolith of the macula utriculi had disappeared in 2-week specimens. The entire macula utricili had disappeared in 10-week specimens. No morphologic changes were observed in cochlea, semicircular canals, or membranous labyrinth. The saccule showed similar changes.

  9. Measurement of radiation and temperature of cathod spots in excimer laser discharge; Ekishima reza reiki hodennai ni fukumareru inkyoku kiten no kogakuteki kansoku to ondo no sokutei

    Energy Technology Data Exchange (ETDEWEB)

    Minamitani, Y.; Nakatani, H. [Mitsubishi Electric Corp., Tokyo (Japan)

    1996-08-20

    Excimer laser is used in various fields such as luminous source for steppers, annealing treatment, ablation process, nuclear fusion and so on. In this paper, the radiation timing and gas temperature of cathode spots, streamer discharges and glow discharges in KrF excimer are measured by observing the radiating spectra thereof. The following conclusions are obtained from the results of the present study. Cathode spots begin to radiate at about 20ns after the discharge initiation, then the first and second radiation peaks are observed respectively when the discharge current reversing after passing zero point and the reserved discharged current approaching zero point. Streamer discharge makes flashover between electrodes at the second radiation peak of cathode spots, while the glow discharges almost disappear when streamer discharges occurring. The temperatures of cathode spots and glow discharge as 5500K and 2600K respectively are almost constant and independent upon the discharging voltage of laser. 14 refs., 12 figs.

  10. Multifocal Corneal Excimer Femtosecond Laser in situ Keratomileusis following Radial Keratotomy: A Case Report with Six Months of Follow-Up

    Directory of Open Access Journals (Sweden)

    Iraklis Vastardis

    2014-12-01

    Full Text Available We report the case of a 46-year-old female patient who was referred to our clinic (Orasis Eye Clinic, Reinach, Switzerland seeking improvement of her distance and near visual acuity. Radial keratotomy (RK was performed at a younger age on both eyes to correct -5 D myopia. The patient underwent a bilateral same-session multifocal corneal excimer femtosecond laser (Supracor keratomileusis correction. We introduce a new correction approach, possibly suitable for presbyopic patients previously treated with RK, and we present several potential novel advantages such as enhanced near, intermediate vision, and improvement in quality of life. This is the first report of a bilateral excimer laser treatment attempt of presbyopia following RK.

  11. Review of the biocompatibility and blood compatibility properties of polyethersulfone film modified by the excimer and CO2 lasers

    Science.gov (United States)

    Pazokian, H.; Jelvani, S.; Mollabashi, M.; Barzin, J.

    2014-06-01

    In this paper the biocompatibility and blood compatibility changes of polyethersulfone (PES) films following laser irradiation at four different wavelengths of ArF (193 nm), KrF (248 nm), XeCl (308 nm) and CO2 (9.58 µm) lasers are studied. The surface behaviors in contact with platelets and fibroblasts cells are examined and the best irradiation parameters to improve the surface biocompatibility and blood compatibility were found. The biological modifications on the surface were explained by alteration of the surface morphology and chemistry following the irradiation. The results show that a KrF laser is the best choice for treatment of PES film in the biological applications.

  12. Chaînes laser intenses à contraste élevé par amplification directe dans un milieu gazeux à excimères*

    Science.gov (United States)

    Uteza, O.; Tcheremiskine, V.; Clady, R.; Coustillier, G.; Gastaud, M.; Sentis, M.; Mikheev, L. D.; Chambaret, J. P.

    2006-12-01

    Cet article présente l'intérêt du concept de laser hybride (solide/gaz) et de l'amplification directe de puissance dans un milieu à excimères pour les chaînes laser de puissance ultrabrèves à contraste élevé. L'architecture d'une chaîne laser multiterawatt basée sur l'emploi du milieu amplificateur XeF(C-A) pompé par voie photolytique est ensuite détaillée, ainsi que les perspectives de dimensionnement de cette approche au niveau PWetEW.

  13. INDEPENDENT EVALUATION OF THE GAM EX5ALN MINIATURE LINE-NARROWED KRF EXCIMER LASER

    Science.gov (United States)

    2017-06-01

    Bookmark not defined. 2: Ex5ALN KrF laser wavelength study. The laser output was recorded at 248.7 nm relative to the Hg atomic emission at 253.7 nm...Error! Bookmark not defined. 3: Ex5ALN KrF laser pulse width versus accumulated pulses for 14 kV discharge at 100 Hz...Error! Bookmark not defined. 4: Ex5ALN KrF laser timing jitter of laser

  14. NC-controlled production of smooth 3D surfaces in brittle materials with 193-nm excimer laser

    Science.gov (United States)

    Toenshoff, Hans K.; Graumann, Christoph; Hesener, Hanno; Rinke, Marcus

    1998-08-01

    Micromachining performed by Excimer Lasers in conjunction with NC-controlled machines offer flexible production possibilities for 3-D-surfaces. Due to the limitations of conventional micromachining technology for brittle transparent materials in the micro range, a new laser machining beam guiding and data handling system was designed and built. The data handling starts with the mathematical description of the surface shape to be machined. The contour can be derived from a mathematical function or individual xyz-data point information from any CAD-program. A pre-processor calculates the nc-data for laser triggering, xyz-motion and the nc-mask control. Each laser pulse leads to a material removal, defined by the illuminated surface on the work piece as well as the energy density. The principal of superposition of pulses allows the creation of the desired contour. The chosen ablation strategy determines the surface roughness and the process speed. To achieve best results, it has to be carefully adjusted for a specific material. This technique does not require prefabricated tools such as semiconductor masks. This is a sufficient method for structuring grooves in ceramics, diamonds or glass as well as aspherical transparent optical surfaces or micro lens arrays. The excellent absorption of 193 nm compared to 248 nm or larger wavelengths leads to damage free structuring of most brittle materials. The optimized surface ablation process requires spot sizes and energy densities on the work piece which can not be realized with a mirror based beam guidance system. To eliminate these restrictions, a new mirror free machining concept with a gas flushed beam guiding system mounted on a granite vibration reduction table with air bearing positioning system was build. This paper describes the potential of 193 nm treatment of 3-D micro surfaces with a process optimized machine and data handling system.

  15. Strain engineering in graphene by laser irradiation

    Science.gov (United States)

    Papasimakis, N.; Mailis, S.; Huang, C. C.; Al-Saab, F.; Hewak, D. W.; Luo, Z.; Shen, Z. X.

    2015-02-01

    We demonstrate that the Raman spectrum of graphene on lithium niobate can be controlled locally by continuous exposure to laser irradiation. We interpret our results in terms of changes to doping and mechanical strain and show that our observations are consistent with light-induced gradual strain relaxation in the graphene layer.

  16. The variation in surface morphology and hardness of human deciduous teeth samples after laser irradiation

    Science.gov (United States)

    Khalid, Arooj; Bashir, Shazia; Akram, Mahreen; Salman Ahmed, Qazi

    2017-11-01

    The variation in surface morphology and hardness of human deciduous teeth samples has been investigated after laser irradiation at different wavelengths and energies. Nd:YAG was employed as a source of irradiation for IR (1064 nm) and visible (532 nm) radiation, whereas an excimer laser was used as the source of UV (248 nm) radiation. Scanning electron microscope (SEM) analysis was carried out to reveal the surface morphological evolution of teeth samples. Vickers microhardness tester was employed to investigate the modifications in the hardness of the laser-treated samples. It is observed from SEM analysis that IR wavelength is responsible for ablation of collagen matrix and intertubular dentine. For visible radiation, the ablation of collagen along with hydroxypatite is observed. With UV radiation, the ablation of peritubular dentine is dominant and is responsible for the sealing of tubules. The decrease in hardness at lower energy for both wavelengths is due to the evaporation of carbon content. With increasing energy, evaporation of water along with carbon content, and resolidification and re-organization of inorganic content causes the increase in hardness of the treated dentine. SEM as well as microhardness analyses reveal that laser wavelengths and energy of laser radiation significantly influence the surface morphology and hardness of samples.

  17. Application of Laser Irradiation for Restorative Treatments

    Science.gov (United States)

    Davoudi, Amin; Sanei, Maryam; Badrian, Hamid

    2016-01-01

    Nowadays, lasers are widely used in many fields of medicine. Also, they can be applied at many branches of dental practice such as diagnosis, preventive procedures, restorative treatments, and endodontic therapies. Procedures like caries removal, re-mineralization, and vital pulp therapy are the most noticeable effects of laser irradiation which has gained much attention among clinicians. With controlled and appropriate wavelength, they can help stimulating dentinogenesis, controlling pulpal hemorrhage, sterilization, healing of collagenic proteins, formation of a fibrous matrix, and inducing hard tissue barrier. Nevertheless, there are many controversies in literatures regarding their effects on the quality of bonded restorations. It hampered a wide application of lasers in some aspects of restorative dentistry and requirements to identify the best way to use this technology. The aim of this mini review is to explain special characteristics of laser therapy and to introduce the possible applications of laser devices for dental purposes. PMID:27990188

  18. Application of Laser Irradiation for Restorative Treatments.

    Science.gov (United States)

    Davoudi, Amin; Sanei, Maryam; Badrian, Hamid

    2016-01-01

    Nowadays, lasers are widely used in many fields of medicine. Also, they can be applied at many branches of dental practice such as diagnosis, preventive procedures, restorative treatments, and endodontic therapies. Procedures like caries removal, re-mineralization, and vital pulp therapy are the most noticeable effects of laser irradiation which has gained much attention among clinicians. With controlled and appropriate wavelength, they can help stimulating dentinogenesis, controlling pulpal hemorrhage, sterilization, healing of collagenic proteins, formation of a fibrous matrix, and inducing hard tissue barrier. Nevertheless, there are many controversies in literatures regarding their effects on the quality of bonded restorations. It hampered a wide application of lasers in some aspects of restorative dentistry and requirements to identify the best way to use this technology. The aim of this mini review is to explain special characteristics of laser therapy and to introduce the possible applications of laser devices for dental purposes.

  19. Synthesis and characterization of CdSe/ZnS core-shell quantum dots immobilized on solid substrates through laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gyoergy, E. [Centre d' Investigacions en Nanociencia i Nanotecnologia, Institut Catala de Nanotecnologia, Consejo Superior de Investigaciones Cientificas (CIN2, ICN-CSIC), Bellaterra (Spain); National Institute for Lasers, Plasma and Radiation Physics, Bucharest (Romania); Perez del Pino, A. [Instituto de Ciencia de Materiales de Barcelona, Consejo Superior de Investigaciones Cientificas (ICMAB, CSIC), Bellaterra (Spain); Roqueta, J.; Ballesteros, B. [Centre d' Investigacions en Nanociencia i Nanotecnologia, Institut Catala de Nanotecnologia, Consejo Superior de Investigaciones Cientificas (CIN2, ICN-CSIC), Bellaterra (Spain); Miguel, A.S.; Maycock, C.; Oliva, A.G. [Instituto de Tecnologia Quimica e Biologica, Universidade Nova de Lisboa (ITQB-UNL), Oeiras (Portugal)

    2012-11-15

    CdSe/ZnS core-shell quantum dots (QDs) have been immobilized onto solid substrates by matrix assisted pulsed laser evaporation (MAPLE). An UV KrF* ({lambda} = 248 nm, {tau}{sub FWHM} {approx_equal} 25 ns) excimer laser source was used for irradiations of the composite MAPLE targets. The targets were prepared by the dispersion of the CdSe/ZnS QDs in a solvent with high absorption at the incident laser radiation. The dependence of the surface morphology, crystalline structure, chemical composition, and functional properties of the laser transferred CdSe/ZnS QDs on the processing conditions as incident laser fluence value and ambient atmosphere inside the irradiation chamber was investigated. The possible physical mechanisms implied in the laser ablation process were identified. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Radiation effects on poly(methyl methacrylate) induced by pulsed laser irradiations

    Science.gov (United States)

    Torrisi, L.; Italiano, A.; Amato, E.; Caridi, F.; Cutroneo, M.; Squeri, C. A.; Squeri, G.; Roszkowska, A. M.

    2012-09-01

    Poly(methyl methacrylate) (PMMA) was irradiated using a medical UV-ArF excimer laser operating at the fundamental wavelength of 193 nm. Characterized by a beam diameter of 1.8 mm and energy of 180 mJ with a Gaussian energy profile, it operates in a single mode or at 30 Hz repetition rate. Mechanical profilometry was carried out on ablation craters in order to study the rugosity and the ablation yield in the various operative conditions. Optical transmission and reflection measurements at six wavelengths were conducted in order to characterize the optical properties of the irradiated surfaces. Measured crater depths in PMMA were lower with respect to the forecasted ones in corneal tissue, while the lateral crater aperture was maintained. The rugosity produced at the crater bottom after irradiation was about 0.3 μm, and the ablation yield was about 1015 molecules/laser pulse, while etching depth and diameter show a roughly linear dependence on the number of laser shots. These experiments constitute a base for deeper clinical investigations.

  1. Effect of laser irradiation of donor blood on erythrocyte shape.

    Science.gov (United States)

    Baibekov, I M; Ibragimov, A F; Baibekov, A I

    2012-04-01

    Changes in erythrocyte shape in donor blood during storage and after irradiation with He-Ne laser and infrared laser were studied by scanning electron microscopy, thick drop express-method, and morphometry. It was found that laser irradiation delayed the appearance of erythrocytes of pathological shapes (echinocytes, stomatocytes, etc.) in the blood; He-Ne laser produced a more pronounced effect.

  2. Absorption of 308-nm excimer laser radiation by balanced salt solution, sodium hyaluronate, and human cadaver eyes

    Energy Technology Data Exchange (ETDEWEB)

    Keates, R.H.; Bloom, R.T.; Schneider, R.T.; Ren, Q.; Sohl, J.; Viscardi, J.J. (Univ. of California, Irvine (USA))

    1990-11-01

    Absorption of the excimer laser radiations of 193-nm argon fluorine and 308-nm xenon chloride in balanced salt solution, sodium hyaluronate, and human cadaver eyes was measured. The absorption of these materials as considerably different for the two wavelengths; we found that 308-nm light experienced much less absorption than the 193-nm light. The extinction coefficient (k) for 308 nm was k = 0.19/cm for balanced salt solution and k = 0.22/cm for sodium hyaluronate. In contrast to this, the extinction coefficient for 193 nm was k = 140/cm for balanced salt solution and k = 540/cm for sodium hyaluronate. Two 1-day-old human phakic cadaver eyes showed complete absorption with both wavelengths. Using aphakic eyes, incomplete absorption was noted at the posterior pole with 308 nm and complete absorption was noted with 193 nm. The extinction in the anterior part of aphakic eyes (the first 6 mm) was 4.2/cm for 308 nm, meaning that the intensity of the light is reduced by a factor of 10 after traveling the first 5.5 mm. However, we observed that the material in the eye fluoresces, meaning the 308 nm is transformed into other (longer) wavelengths that travel through the total eye with minimal absorption. Conclusions drawn from this experiment are that the use of the 308-nm wavelength may have undesirable side effects, while the use of the 193-nm wavelength should be consistent with ophthalmic use on both the cornea and the lens.

  3. The thermodynamic response of soft biological tissues to pulsed ultraviolet laser irradiation.

    Science.gov (United States)

    Venugopalan, V; Nishioka, N S; Mikić, B B

    1995-10-01

    The physical mechanisms that enable short pulses of high-intensity ultraviolet laser radiation to remove tissue, in a process known as laser ablation, remain obscure. The thermodynamic response of biological tissue to pulsed laser irradiation was investigated by measuring and subsequently analyzing the stress transients generated by pulsed argon fluorine (ArF, lambda = 193 nm) and krypton fluorine (KrF, lambda = 248 nm) excimer laser irradiation of porcine dermis using thin-film piezoelectric transducers. For radiant exposures that do not cause material removal, the stress transients are consistent with rapid thermal expansion of the tissue. At the threshold radiant exposure for ablation, the peak stress amplitude generated by 248 nm irradiation is more than an order of magnitude larger than that produced by 193 nm irradiation. For radiant exposures where material removal is achieved, the temporal structure of the stress transient indicates that the onset of material removal occurs during irradiation. In this regime, the variation of the peak compressive stress with radiant exposure is consistent with laser-induced rapid surface vaporization. For 193 nm irradiation, ionization of the ablated material occurs at even greater radiant exposures and is accompanied by a change in the variation of peak stress with radiant exposure consistent with a plasma-mediated ablation process. These results suggest that absorption of ultraviolet laser radiation by the extracellular matrix of tissue leads to decomposition of tissue on the time scale of the laser pulse. The difference in volumetric energy density at ablation threshold between the two wavelengths indicates that the larger stresses generated by 248 nm irradiation may facilitate the onset of material removal. However, once material removal is achieved, the stress measurements demonstrate that energy not directly responsible for target decomposition contributes to increasing the specific energy of the plume (and plasma

  4. LASEK for the correction of hyperopia with mitomycin C using SCHWIND AMARIS excimer laser: one-year follow-up

    Directory of Open Access Journals (Sweden)

    Khosrow Jadidi

    2015-11-01

    Full Text Available AIM: To evaluate the efficacy, safety and predictability of laser-assisted sub-epithelial keratectomy(LASEKfor the correction of hyperopia using the SCHWIND AMARIS platform.METHODS: This retrospective single-surgeon study includes 66 eyes of 33 patients with hyperopia who underwent LASEK with mitomycin C(MMC. The median age of patients was 35.42±1.12y(ranging 18 to 56y. In each patient LASEK was performed using SCHWIND AMARIS excimer laser. Postoperatively clinical outcomes were evaluated in terms of predictability, safety, efficacy, subjective and objective refractions, uncorrected visual acuity(UCVA, best spectacle-corrected visual acuity(BSCVAand adverse events. RESULTS: The mean baseline refraction was 3.2±1.6 diopters(D(ranging 0 to 7 D. The mean pre-operative and postoperative spherical equivalent(SEwere 2.34±1.76(ranging -1.25 to 7 Dand 0.30±0.84(ranging -0.2 to 0.8 Drespectively(P=0.001. The mean hyperopia was 0.63±0.84 D(ranging -1.75 to 2.76 D6 to 12mo postoperatively. Likewise, the mean astigmatism was 0.68±0.43 D(range 0 to 2 Dwith 51(77.3%and 15(22.7%eyes within ±1 and ±0.50 D respectively. The safety index and efficacy index were 1.08 and 1.6 respectively.CONCLUSION:LASEK using SCHWIND AMARIS with MMC yields good visual and refractive results for hyperopia. Moreover, there were no serious complications.

  5. Mitomycin-C in corneal surface excimer laser ablation techniques: a report by the American Academy of Ophthalmology.

    Science.gov (United States)

    Majmudar, Parag A; Schallhorn, Steven C; Cason, John B; Donaldson, Kendall E; Kymionis, George D; Shtein, Roni M; Verity, Steven M; Farjo, Ayad A

    2015-06-01

    To review the published literature assessing the efficacy and safety of mitomycin-C (MMC) as an adjunctive treatment in corneal surface excimer laser ablation procedures. Literature searches of the PubMed and Cochrane Library databases were last conducted on August 19, 2014, without language or date limitations. The searches retrieved a total of 239 references. Of these, members of the Ophthalmic Technology Assessment Committee Refractive Management/Intervention Panel selected 26 articles that were considered to be of high or medium clinical relevance, and the panel methodologist rated each article according to the strength of evidence. Ten studies were rated as level I evidence, 5 studies were rated as level II evidence, and the remaining 11 studies were rated as level III evidence. The majority of the articles surveyed in this report support the role of MMC as an adjunctive treatment in surface ablation procedures. When MMC is applied in the appropriate concentration and confined to the central cornea, the incidence of post-surface ablation haze is decreased. Although a minority of studies that evaluated endothelial cell density (ECD) reported an MMC-related decrease in ECD, no clinical adverse outcomes were reported. Over the past 15 years, the use of MMC during surgery in surface ablation has become widespread. There is good evidence of the effectiveness of MMC when used intraoperatively as prophylaxis against haze in higher myopic ablations. Although there are reports of decreased endothelial counts after the administration of MMC during surgery, the clinical significance of this finding remains uncertain, because no adverse outcomes were reported with as much as 5 years of follow-up. Optimal dosage, effectiveness as prophylaxis in lower myopic and hyperopic ablations, and long-term safety, particularly in eyes with reduced corneal endothelial cell counts from prior intraocular surgery, have yet to be established. Copyright © 2015 American Academy of

  6. Laser in situ keratomileusis with a scanning excimer laser for the correction of low to moderate myopia with and without astigmatism.

    Science.gov (United States)

    Balazsi, G; Mullie, M; Lasswell, L; Lee, P A; Duh, Y J

    2001-12-01

    To evaluate the safety and effectiveness of and patient satisfaction with laser in situ keratomileusis (LASIK) performed with a scanning excimer laser by experienced surgeons to correct low and moderate levels of myopia and astigmatism. Clinique Laservue, Montreal, Quebec, Canada. A consecutive series of 125 patients (236 eyes) with myopia of -0.5 to -7.0 diopters (D) and cylinder less than 2.5 D were enrolled in this single-center prospective clinical trial. The patients were treated with LASIK and followed for 6 months. The System-ALK Automated Corneal Shaper microkeratome (Bausch & Lomb Surgical) with a 180 microm thickness plate and the Technolas 217 excimer laser (Bausch & Lomb Surgical) with PlanoScan software for the stromal ablation were used in all procedures. Since this version of PlanoScan tended to undercorrect, a mean of 14.7% was added to the standard nomogram. Patient satisfaction was assessed by questionnaires administered preoperatively and 1 and 6 months postoperatively. Retreatments for enhancement were not performed during the 6-month follow-up. Six months after LASIK (86.4% follow-up), the mean postoperative manifest spherical equivalent was +0.02 D +/- 0.64 (SD) compared with a preoperative mean of -4.01 +/- 1.59 D. The uncorrected visual acuity was 20/40 or better in 94.6% of eyes and 20/20 or better in 81.9%. A total of 91.2% were within +/-1.0 D of emmetropia and 73.0% were within +/-0.5 D. Only 2 eyes were overcorrected by >1.0 D. Of the eyes with astigmatic myopia, 86.8% were within +/-1.0 D of the intended cylinder correction (by vector analysis) and 73.0% were within +/-0.5 D. The refractions were generally stable after 1 month, and the change in refraction between postoperative examinations was within +/-0.5 D in 88.0% of eyes. A 1-line decrease in best spectacle-corrected visual acuity was seen in 11.3% of eyes, and no eye lost more than 1 line. An increase of 1 or 2 lines was seen in 45.1%. No intraoperative problems occurred, and

  7. Biomechanical and wound healing characteristics of corneas after excimer laser keratorefractive surgery: is there a difference between advanced surface ablation and sub-Bowman's keratomileusis?

    Science.gov (United States)

    Dawson, Daniel G; Grossniklaus, Hans E; McCarey, Bernard E; Edelhauser, Henry F

    2008-01-01

    To describe the biomechanical and wound healing characteristics of corneas after excimer laser keratorefractive surgery. Histologic, ultrastructural, and cohesive tensile strength evaluations were performed on 25 normal human corneal specimens, 206 uncomplicated LASIK specimens, 17 uncomplicated sub-Bowman's keratomileusis (SBK) specimens, 4 uncomplicated photorefractive keratectomy (PRK) specimens, 2 uncomplicated advanced surface ablation (ASA) specimens, 5 keratoconus specimens, 12 postoperative LASIK ectasia specimens, and 1 postoperative PRK ectasia specimen and compared to previously published studies. Histologic and ultrastructural studies of normal corneas showed significant differences in the direction of collagen fibrils and/or the degree of lamellar interweaving in Bowman's layer, the anterior third of the corneal stroma, the posterior two-thirds of the corneal stroma, and Descemet's membrane. Cohesive tensile strength testing directly supported these morphologic findings as the stronger, more rigid regions of the cornea were located anteriorly and peripherally. This suggests that PRK and ASA, and secondarily SBK, should be biomechanically safer than conventional LASIK with regard to risk for causing keratectasia after surgery. Because adult human corneal stromal wounds heal slowly and incompletely, all excimer laser keratorefractive surgical techniques still have some distinct disadvantages due to inadequate reparative wound healing. Despite reducing some of the risk for corneal haze compared to conventional PRK, ASA cases still can develop corneal haze or breakthrough haze from the hypercellular fibrotic stromal scarring. In contrast, similar to conventional LASIK, SBK still has the short- and long-term potential for interface wound complications from the hypocellular primitive stromal scar. Ophthalmic pathology and basic science research show that SBK and ASA are improvements in excimer laser keratorefractive surgery compared to conventional LASIK or

  8. Surface modification of an Al2O3/SiO2 based ceramic treated with CO2, Nd:YAG, excimer and high power diode lasers for altered wettability characteristics

    OpenAIRE

    Lawrence, Jonathan; Li, Lin; Spencer, Julian T.

    1998-01-01

    Interaction of CO2, Nd:YAG, excimer and high power diode laser (HPDL) radiation with the surface of an Al2O3/SiO2 based ceramic was found to affect significant changes in the wettability characteristics of the material. It was observed that interaction with CO2, Nd:YAG and HPDL radiation reduced the enamel contact angle from 1180 to 310, 340 and 330 respectively. In contrast, interaction with excimer laser radiation resulted an increase in the contact angle to 1210. Such changes were identifi...

  9. Comparison of boron diffusion in silicon during shallow p{sup +}/n junction formation by non-melt excimer and green laser annealing

    Energy Technology Data Exchange (ETDEWEB)

    Aid, Siti Rahmah; Matsumoto, Satoru [Department of Electronics and Electrical Engineering, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama, Kanagawa 223-8522 (Japan); Fuse, Genshu [SEN Corporation, SBS Tower 9F, 4-10-1 Yoga, Setagaya-ku, Tokyo 158-0097 (Japan); Sakuragi, Susumu [Sumitomo Heavy Industries Ltd., 19 Natsushima-cho, Yokosuka, Kanagawa 237-8555 (Japan)

    2011-12-15

    The combination of Ge pre-amorphization implantation, low-energy boron implantation, and non-melt laser annealing is a promising method for forming ultrashallow p{sup +}/n junctions in silicon. In this study, shallow p{sup +}/n junctions were formed by non-melt annealing implanted samples using a green laser (visible laser). The dopant diffusion, activation, and recrystallization of an amorphous silicon layer were compared with those obtained in our previous study in which non-melt annealing was performed using a KrF excimer laser (UV laser). The experimental results reveal that only slight diffusion of boron in the tail region occurred in green-laser-annealed samples. In contrast, remarkable boron diffusion occurred in KrF-laser-annealed samples for very short annealing times. Recrystallization of the amorphous silicon layer was slower in green-laser-annealed samples than in KrF-laser-annealed samples. We consider the penetration depth and the pulse duration are important factors that may affect boron diffusion. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Fabrication of functional fibronectin patterns by nanosecond excimer laser direct write for tissue engineering applications.

    Science.gov (United States)

    Grigorescu, S; Hindié, M; Axente, E; Carreiras, F; Anselme, K; Werckmann, J; Mihailescu, I N; Gallet, O

    2013-07-01

    Laser direct write techniques represent a prospective alternative for engineering a new generation of hybrid biomaterials via the creation of patterns consisting of biological proteins onto practically any type of substrate. In this paper we report on the characterization of fibronectin features obtained onto titanium substrates by UV nanosecond laser transfer. Fourier-transform infrared spectroscopy measurements evidenced no modification in the secondary structure of the post-transferred protein. The molecular weight of the transferred protein was identical to the initial fibronectin, no fragment bands being found in the transferred protein's Western blot migration profile. The presence of the cell-binding domain sequence and the mannose groups within the transferred molecules was revealed by anti-fibronectin monoclonal antibody immunolabelling and FITC-Concanavalin-A staining, respectively. The in vitro tests performed with MC3T3-E1 osteoblast-like cells and Swiss-3T3 fibroblasts showed that the cells' morphology and spreading were strongly influenced by the presence of the fibronectin spots.

  11. High-efficient discharge-pumped ArF (193 nm) excimer laser with a TPI thyratron as a high-voltage switch

    Science.gov (United States)

    Razhev, Alexander M.; Zhupikov, Andrey A.; Churkin, Dmitry S.

    2007-06-01

    The results of using the thyratron of the TPI series (pseudo spark gap) as a high-voltage switch in the excitation system of ArF (193 nm) excimer laser are presented. The excitation system of the LC-inverter type based on TPI 10k/20 thyratron in absence of any non-linear elements was developed. An experimental investigation of the energy and temporal parameters of the pumping and lasing for ArF laser on the He:Ar:F II mixture with excitation system developed was carried out. The comparative analysis of the ArF laser pumping and radiation parameters in dependence of the high-voltage switch type such as a standard spark gap RU-65, and thyratron TPI 10k/20 was performed. The output radiation energy for a laser with thyratron TPI 10k/20 was obtained to be of 1.4 times higher than that with standard spark gap RU-65 at the same pumping conditions. Such increase the output energy was shown to be achieving owing to higher level of the pumping intensity due to higher voltage on the discharge gap that occurs due to lower energy losses into TPI thyratron in comparison with the RU- 65 spark gap and leads to more efficient energy transfer from storage to discharge circuit. As a result for ArF laser with TPI thyratron in He:Ar:F II mixture the output radiation energy of 1.0 J with the total efficiency of 1.7% has been achieved. The advantages of using the TPI thyratron in the excitation system of the ArF excimer laser over spark gap are described.

  12. FEM for modelling 193 nm excimer laser treatment of SiO{sub 2}/Si/Si{sub (1-x)}Ge{sub x} heterostructures on SOI substrates

    Energy Technology Data Exchange (ETDEWEB)

    Conde, J.C.; Chiussi, S.; Gontad, F.; Gonzalez, P. [Dpto. Fisica Aplicada, E.T.S.I.I. University of Vigo, Campus Universitario, Rua Maxwell s/n, 36310 Vigo (Spain); Martin, E. [Dpto. de Mecanica, Maquinas, Motores Termicos y Fluidos, E.T.S.I.I. University of Vigo, Campus Universitario, Rua Maxwell s/n, 36310 Vigo (Spain)

    2011-03-15

    Research on epitaxial crystalline silicon (c-Si) and silicon-germanium (Si{sub 1-x}Ge{sub x}) alloys growth and annealing for microelectronic purposes, such as Micro- or Nano-Electro-Mechanical Systems (MEMS or NEMS) and Silicon-On-Nothing (SON) devices is continuously in progress. Laser assisted annealing techniques using commercial ArF Excimer Laser sources are based on ultra-rapid heating and cooling cycles induced by the 193 nm pulses of 20 ns, which are absorbed in the near surface region of the heterostructures. During and after the absorption of these laser pulses, complex physical processes appear that strongly depend on sample structure and applied laser pulse energy densities. The control of the experimental parameters is therefore a key task for obtaining high quality alloys. The Finite ElementsMethod (FEM) is a powerful tool for the optimization of such treatments, because it provides the spatial and temporal temperature fields that are produced by the laser pulses. In this work, we have used a FEM commercial software, to predict the temperatures gradients induced by ArF excimer laser over a wide energy densities range, 0.1<{phi}<0.4 J/cm{sup 2}, on different SiO{sub 2}/Si/Si{sub (1-x)}Ge{sub (x)} thin films deposited on SOI substrate. These numerical results allow us to predict the threshold energies needed to reach the melting point (MP) of the Si and SiGe alloy without oxidation of the thin films system. Therefore, it is possible to optimize the conditions to achieve high quality epitaxy films. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. XeCl excimer laser-induced autofluorescence spectroscopy for human cerebral tumor diagnosis: preliminary study

    Science.gov (United States)

    Avrillier, Sigrid; Hor, Frederic; Desgeorges, Michel; Ettori, Dominique; Sitbon, Jean R.

    1993-09-01

    Three-hundred-eight nm laser-induced autofluorescence spectra of the normal human brain, astrocytoma grade IV and glioblastoma grade IV specimens, have been recorded in vitro two hours after surgical resection. Typical fluorescence spectra for normal (N) and malignant (M) tissue show 4 maxima at about 352, 362, 383, and 460 nm. These spectra are analyzed in detail. Subtle differences in normalized spectra of N and M tissues appear to be large enough for diagnosis. Several criteria such as maxima and minima absolute intensity and intensity ratios at typical wavelengths are computed and used to classify the tissue. This preliminary study shows that fluorescence spectroscopy with 308 nm UV excitation could be a valid technique for discriminating tumor types. However, it should be noted that these measurements are made in vitro. Living tissues may have different spectral characteristics, therefore future in vivo investigations must be performed.

  14. Low temperature high-mobility InZnO thin-film transistors fabricated by excimer laser annealing

    NARCIS (Netherlands)

    Fujii, M.; Ishikawa, Y.; Ishihara, R.; Van der Cingel, J.; Mofrad, M.R.T.; Horita, M.; Uraoka, Y.

    In this study, we successfully achieved a relatively high field-effect mobility of 37.7?cm2/Vs in an InZnO thin-film transistor (TFT) fabricated by excimer layer annealing (ELA). The ELA process allowed us to fabricate such a high-performance InZnO TFT at the substrate temperature less than 50?°C

  15. Low temperature high-mobility InZnO thin-film transistors fabricated by excimer laser annealing

    NARCIS (Netherlands)

    Fujii, M.; Ishikawa, Y.; Ishihara, R.; Van der Cingel, J.; Mofrad, M.R.T.; Horita, M.; Uraoka, Y.

    2013-01-01

    In this study, we successfully achieved a relatively high field-effect mobility of 37.7?cm2/Vs in an InZnO thin-film transistor (TFT) fabricated by excimer layer annealing (ELA). The ELA process allowed us to fabricate such a high-performance InZnO TFT at the substrate temperature less than 50?°C

  16. Effects of closed immersion filtered water flow velocity on the ablation threshold of bisphenol A polycarbonate during excimer laser machining

    Energy Technology Data Exchange (ETDEWEB)

    Dowding, Colin, E-mail: c.f.dowding@lboro.ac.uk [Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU (United Kingdom); Lawrence, Jonathan [Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU (United Kingdom)

    2010-04-01

    A closed flowing thick film filtered water immersion technique ensures a controlled geometry for both the optical interfaces of the flowing liquid film and allows repeatable control of flow-rate during machining. This has the action of preventing splashing, ensures repeatable machining conditions and allows control of liquid flow velocity. To investigate the impact of this technique on ablation threshold, bisphenol A polycarbonate samples have been machined using KrF excimer laser radiation passing through a medium of filtered water flowing at a number of flow velocities, that are controllable by modifying the liquid flow-rates. An average decrease in ablation threshold of 7.5% when using turbulent flow velocity regime closed thick film filtered water immersed ablation, compared to ablation using a similar beam in ambient air; however, the use of laminar flow velocities resulted in negligible differences between closed flowing thick film filtered water immersion and ambient air. Plotting the recorded threshold fluence achieved with varying flow velocity showed that an optimum flow velocity of 3.00 m/s existed which yielded a minimum ablation threshold of 112 mJ/cm{sup 2}. This is attributed to the distortion of the ablation plume effected by the flowing immersion fluid changing the ablation mechanism: at laminar flow velocities Bremsstrahlung attenuation decreases etch rate, at excessive flow velocities the plume is completely destroyed, removing the effect of plume etching. Laminar flow velocity regime ablation is limited by slow removal of debris causing a non-linear etch rate over 'n' pulses which is a result of debris produced by one pulse remaining suspended over the feature for the next pulse. The impact of closed thick film filtered water immersed ablation is dependant upon beam fluence: high fluence beams achieved greater etch efficiency at high flow velocities as the effect of Bremsstrahlung attenuation is removed by the action of the fluid on

  17. Long-term efficacy of excimer laser in situ keratomileusis in the management of children with high anisometropic amblyopia.

    Science.gov (United States)

    Lin, Xiao-Ming; Yan, Xiao-He; Wang, Zheng; Yang, Bin; Chen, Qi-Wen; Su, Jin-Ai; Ye, Xue-Lian

    2009-04-05

    Children with anisometropic amblyopia are often noncompliant with traditional treatment including spectacules and contact lenses. This study was to evaluate the long-term efficacy of excimer laser in situ keratomileusis (LASIK) for children with high anisometropic amblyopia. A retrospective analysis of 24 children with high unilateral anisometropic amblyopia, who underwent LASIK during the period between August 2000 and September 2005 in our hospital, was conducted. The mean age of these children was (7.4 +/- 1.9) years (range 5 - 14 years) and the mean follow-up period was (33.3 +/- 14.2) months (range 18.5 - 74.2 months). After LASIK, visual acuity, refraction and far or near stereoacuity were analyzed. Near stereoacuity was measured by the random-dot butterfly stereogram and the pre-school random-dot stereogram, while far stereoacuity was measured by the synoptophore with Yan's random-dot stereogram. Mean preoperative uncorrected visual acuity was 0.06 +/- 0.05, while mean postoperative uncorrected visual acuity was elevated to 0.43 +/- 0.33. Mean preoperative best-corrected visual acuity was 0.26 +/- 0.22, while mean postoperative best-corrected visual acuity was elevated to 0.67 +/- 0.40. For patients with myopic anisometropia, preoperative mean spherical equivalent refraction was (-8.01 +/- 2.70) D while postoperative value significantly reduced to (-1.32 +/- 2.47) D. For patients with hyperopic anisometropia, preoperative mean spherical equivalent refraction was (+7.35 +/- 1.55) D while postoperative value significantly reduced to (+3.30 +/- 0.86) D. These results demonstrated that there was statistical difference in these parameters between preoperative and postoperative tests. At the last follow-up, 20 patients had near stereoacuity, and the mean near stereoacuities measured by the random-dot butterfly stereogram and the preschool random-dot stereogram were (149.00 +/- 152.93)'' and (201.05 +/- 235.94)'', respectively. In contrast, 11 patients had far

  18. Agreement between clinical history method, Orbscan IIz, and Pentacam in estimating corneal power after myopic excimer laser surgery.

    Directory of Open Access Journals (Sweden)

    Kaevalin Lekhanont

    Full Text Available The purpose of this study was to investigate the agreement between the clinical history method (CHM, Orbscan IIz, and Pentacam in estimating corneal power after myopic excimer laser surgery. Fifty five patients who had myopic LASIK/PRK were recruited into this study. One eye of each patient was randomly selected by a computer-generated process. At 6 months after surgery, postoperative corneal power was calculated from the CHM, Orbscan IIz total optical power at the 3.0 and 4.0 mm zones, and Pentacam equivalent keratometric readings (EKRs at 3.0, 4.0, and 4.5 mm. Statistical analyses included multilevel models, Pearson's correlation test, and Bland-Altman plots. The Orbscan IIz 3.0-mm and 4.0 mm total optical power, and Pentacam 3.0-mm, 4.0-mm, and 4.5-mm EKR values had strong linear positive correlations with the CHM values (r = 0.90-0.94, P = <0.001, for all comparisons, Pearson's correlation. However, only Pentacam 3.0-mm EKR was not statistically different from CHM (P = 0.17, multilevel models. The mean 3.0- and 4.0-mm total optical powers of the Orbscan IIz were significantly flatter than the values derived from CHM, while the average EKRs of the Pentacam at 4.0 and 4.5 mm were significantly steeper. The mean Orbscan IIz 3.0-mm total optical power was the lowest keratometric reading compared to the other 5 values. Large 95% LoA was observed between each of these values, particularly EKRs, and those obtained with the CHM. The width of the 95% LoA was narrowest for Orbscan IIz 3.0-mm total optical power. In conclusion, the keratometric values extracted from these 3 methods were disparate, either because of a statistically significant difference in the mean values or moderate agreement between them. Therefore, they are not considered equivalent and cannot be used interchangeably.

  19. Topography-guided hyperopic and hyperopic astigmatism femtosecond laser-assisted LASIK: long-term experience with the 400 Hz eye-Q excimer platform

    Directory of Open Access Journals (Sweden)

    Kanellopoulos AJ

    2012-06-01

    Full Text Available Anastasios John KanellopoulosDepartment of Ophthalmology, New York University Medical School, New York, NY, and LaserVision.gr Eye Institute, Athens, GreeceBackground: The purpose of this study was to evaluate the safety and efficacy of topography-guided ablation using the WaveLight 400 Hz excimer laser in laser-assisted in situ keratomileusis (LASIK for hyperopia and/or hyperopic astigmatism.Methods: We prospectively evaluated 208 consecutive LASIK cases for hyperopia with or without astigmatism using the topography-guided platform of the 400 Hz Eye-Q excimer system. The mean preoperative sphere value was +3.04 ± 1.75 (range 0.75–7.25 diopters (D and the mean cylinder value was –1.24 ± 1.41 (–4.75–0 D. Flaps were created either with Intralase FS60 (AMO, Irvine, CA or FS200 (Alcon, Fort Worth, TX femtosecond lasers. Parameters evaluated included age, preoperative and postoperative refractive error, uncorrected distance visual acuity, corrected distance visual acuity, flap diameter and thickness, topographic changes, higher order aberration changes, and low contrast sensitivity. These measurements were repeated postoperatively at regular intervals for at least 24 months.Results: Two hundred and two eyes were available for follow-up at 24 months. Uncorrected distance visual acuity improved from 5.5/10 to 9.2/10. At 24 (8–37 months, 75.5% of the eyes were in the ±0.50 D range and 94.4% were in the ±1.00 D range of the refractive goal. Postoperatively, the mean sphere value was –0.39 ± 0.3 and the cylinder value was –0.35 ± 0.25. Topographic evidence showed that ablation was made in the visual axis and not in the center of the cornea, thus correlating with the angle kappa. No significant complications were encountered in this small group of patients.Conclusion: Hyperopic LASIK utilizing the topography-guided platform of the 400 Hz Eye-Q Allegretto excimer and a femtosecond laser flap appears to be safe and effective for

  20. Picosecond X-ray diffraction from laser-irradiated crystals

    Energy Technology Data Exchange (ETDEWEB)

    Hironaka, Yoichiro; Yazaki, Akio; Kishimura, Hiroaki; Nakamura, Kazutaka G.; Kondo, Ken-ichi

    2002-09-30

    We performed time-resolved X-ray diffraction for laser-irradiated Si(1 1 1) single crystal. A tabletop TW laser system was used for the generation of the ultra-short pulsed X-rays. We discussed the generation of laser induced ultra-short pulsed X-rays concerning about broadening of diffracted signal due to the electron scattering in the pre-plasma. We measured laser induced acoustic wave propagation inside of Si crystal by the laser irradiation, and the maximum lattice strain of -1.05% was measured at the irradiation power density of 4.7x10{sup 9} W/cm{sup 2} with picosecond time resolution. Stress distribution analysis on the observed data under laser irradiation is also dised.

  1. Influence of corneal collagen crosslinking with riboflavin and ultraviolet-a irradiation on excimer laser surgery.

    NARCIS (Netherlands)

    Kampik, D.; Ralla, B.; Keller, S.; Hirschberg, M.; Friedl, P.H.A.; Geerling, G.

    2010-01-01

    PURPOSE: Riboflavin/ultraviolet A (UVA) cross-linking (CXL) of corneal collagen is a novel method of stabilizing corneal mechanical properties and preventing progression of keratectasias. This study was conducted to investigate whether CXL influences ablation rate, flap thickness, and refractive

  2. Excimer Laser Research

    Science.gov (United States)

    1976-10-01

    ORGANIZATION N ATTETSTTF»UUHLJJ* Avco Everett Research Laboratory, Inc. 2385 Revere Beach Parkway Everett, Massachusetts 02149 REPORT...apparently enhanced by a large reactive c -oss section for producing excited species by chemica ’ reactions of the type Xe« I F,-XeF* • F. (1

  3. The applicability of the Sedov - Taylor scaling during material removal of metals and oxide layers with pulsed ? and excimer laser radiation

    Science.gov (United States)

    Aden, M.; Kreutz, E. W.; Schlüter, H.; Wissenbach, K.

    1997-03-01

    For the removal of material with pulsed laser radiation the distance travelled by the shock or blast wave and the amount of energy released in the plasma state due to the absorption of laser radiation are determined experimentally and theoretically. The distance travelled by the blast wave is detected by schlieren photography, the released energy by monitoring the transmitted laser radiation during the removal process. The theoretical evaluation is performed by numerical simulation using a model incorporating the laser-induced vaporization process and the dynamics of the plasma state. The results obtained from the experiments and the model are compared with that of the Sedov - Taylor scaling. The removal of the oxide layer from austenitic steel is investigated with 0022-3727/30/6/011/img8 laser radiation produced by a TEA and a high-power 0022-3727/30/6/011/img8 laser device. For the TEA laser with fluences of 5 and 10 J 0022-3727/30/6/011/img10 50 - 80% of the pulse energy is released into the plasma state and the Sedov - Taylor scaling describes the distance travelled by the blast wave in agreement with data from the experiments and the simulation. For the high-power 0022-3727/30/6/011/img8 laser with a fluence of 50 J 0022-3727/30/6/011/img10, 6% of the pulse energy is released into the plasma state and the Sedov - Taylor scaling does not describe the data of the simulation. The process of removal of copper and aluminium material is simulated for excimer laser radiation with fluences of 15 and 30 J 0022-3727/30/6/011/img10. For copper 15 - 30% of the pulse energy is released into the plasma state and the Sedov - Taylor scaling is applicable. For aluminium, less than 2% of the pulse energy is released into the plasma state and the Sedov - Taylor scaling is only applicable for the higher fluence.

  4. Evaluating the interaction of 308-nm xenon chloride excimer laser with human dentin and enamel hard tissues

    Directory of Open Access Journals (Sweden)

    Mahshid Yaghmaeian-Mahabadi

    2017-11-01

    Full Text Available Background: The pulsed output of the 308 nm XeCl laser and its photoablation action rather than photothermal action offers the ability to remove dental hard tissues with minimal generation of heat in the tissue. Materials and Methods: A total of 20 human molar teeth (ten teeth used as enamel samples and ten teeth used as dentin samples after removing the enamel tissue from their crowns were irradiated by the laser. The crown of each sample was regarded as a cube which its lateral sides were exposed in 2Hz frequency without water cooling. Also, 18 holes for all enamel samples and 18 holes for all dentin samples were obtained. Three different amounts of energy were selected as a variable factor with 6 different numbers of pulses in each energy. The images of these holes were prepared by optic and computer combining, and the amounts of the ablation depth and effective ablation area were calculated using the MATLAB software. Results: The amounts of ablation depth were increased with increasing the number of pulses for both enamel and dentin tissues. The amounts of ablation depth were also increased with increasing the amounts of energy for both enamel and dentin tissues. The greater amounts of ablation depth and effective ablation area were observed in the dentin tissue rather than the enamel tissue. The borders of created holes were reported sharp and clear. Conclusion: The application of the XeCl laser for hard tissue removal and cavity preparation can be possible after some certain modifications.

  5. Assessment of expressions of heat shock protein (HSP 72) and apoptosis after ArF excimer laser ablation of the cornea.

    Science.gov (United States)

    Ishihara, Miya; Sato, Masato; Sato, Shunichi; Arai, Tsunenori; Obara, Minoru; Kikuchi, Makoto

    2004-01-01

    We immunohistochemically studied expressions of inducible heat shock protein 70 (HSP 72) and apoptosis of corneas ablated with an ArF excimer laser. The temperature of corneal surfaces and laser-induced optical emission spectra were measured in real time as direct physical parameters related to the ablation mechanism. To the best of the authors' knowledge, there have been no experimental studies regarding the influence of physical parameters directly related to the ablation mechanism on corneal reactions at the cell level after laser ablation. The expression of HSP 72 was mainly localized in the regenerative epithelium, which was confirmed to be caused by laser ablation. The HSP 72 positive cell ratios had a correlation with thermal dose, which was derived from the measured time courses of temperature. Expressions of both HSP 72 and apoptosis depended on the thermal dose and elapsed time after ablation. HSP 72 and apoptosis could be seen up to a few hundred micrometers into the stroma, only at a fluence with an optical breakdown emission. This could have been caused by shock waves induced by the optical breakdown. (c) 2004 Society of Photo-Optical Instrumentation Engineers.

  6. Backscattering measuring system for optimization of intravenous laser irradiation dose

    Science.gov (United States)

    Rusina, Tatyana V.; Popov, V. D.; Melnik, Ivan S.; Dets, Sergiy M.

    1996-11-01

    Intravenous laser blood irradiation as an effective method of biostimulation and physiotherapy becomes a more popular procedure. Optimal irradiation conditions for each patient are needed to be established individually. A fiber optics feedback system combined with conventional intravenous laser irradiation system was developed to control of irradiation process. The system consists of He-Ne laser, fiber optics probe and signal analyzer. Intravenous blood irradiation was performed in 7 healthy volunteers and 19 patients with different diseases. Measurements in vivo were related to in vitro blood irradiation which was performed in the same conditions with force-circulated venous blood. Comparison of temporal variations of backscattered light during all irradiation procedures has shown a strong discrepancy on optical properties of blood in patients with various health disorders since second procedure. The best cure effect was achieved when intensity of backscattered light was constant during at least five minutes. As a result, the optical irradiation does was considered to be equal 20 minutes' exposure of 3 mW He-Ne laser light at the end of fourth procedure.

  7. Morphological and spectroscopic characterization of laser-ablated tungsten at various laser irradiances

    Energy Technology Data Exchange (ETDEWEB)

    Akram, Mahreen; Bashir, Shazia; Hayat, Asma; Mahmood, Khaliq; Dawood, Asadullah [Government College University, Centre for Advanced Studies in Physics, Lahore (Pakistan); Rafique, Muhammad Shahid [University of Engineering and Technology, Department of Physics, Lahore (Pakistan); Bashir, M.F. [COMSATS Institute of Information Technology, Department of Physics, Lahore (Pakistan)

    2015-06-15

    The variation in surface morphology and plasma parameters of laser irradiated tungsten has been investigated as a function of irradiance. For this purpose, Nd:YAG laser (1064 nm, 10 ns, 10 Hz) is employed. Tungsten targets were exposed to various laser irradiances ranging from 6 to 50 GW/cm{sup 2} under ambient environment of argon at a pressure of 20 Torr. Scanning electron microscope analysis has been performed to analyze the surface modification of irradiated tungsten. It revealed the formation of micro- and nanoscale surface structures. In central ablated area, distinct grains and crack formation are observed, whereas peripheral ablated areas are dominated by cones and pinhole formation. It was observed that at irradiances exceeding a value of 13 GW/cm{sup 2}, the morphological trend of the observed structures has been changed from erosion to melting and re-deposition dominant phase. Ablation efficiency as a function of laser irradiance has also been investigated by measuring the crater depth using surface profilometry analysis. It is found to be maximum at an irradiance of 13 GW/cm{sup 2} and decreases at high laser irradiances. In order to correlate the accumulated effects of plasma parameters with the surface modification, laser-induced breakdown spectroscopy analysis has been performed. The electron temperature and number density of tungsten plasma have been evaluated at various laser irradiances. Initially with the increase of the laser irradiance up to 13 GW/cm{sup 2}, an increasing trend is observed for both plasma parameters due to enhanced energy deposition. Afterward, a decreasing trend is achieved which is attributed to the shielding effect. With further increase in irradiance, a saturation stage comes and insignificant changes are observed in plasma parameters. This saturation is explainable on the basis of the formation of a self-regulating regime near the target surface. Surface modifications of laser irradiated tungsten have been correlated with

  8. Changes in porous materials structure under laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Uglov, A.A.; Grebennikov, V.A.; Panaetov, V.G.

    Change of structure in porous molybdenum and bronze under pulsed irradiation of neodymium laser at q=5x10/sup 5/-5x10/sup 6/ W/cm/sup 2/ current density is considered. Microphotos of craters in molybdenum and bronze are presented. A possibility of strengthening porous products by a laser beam is disclosed.

  9. Advanced targets preparation for TNSA laser irradiation and their characterization

    Science.gov (United States)

    Ceccio, G.; Torrisi, L.; Cutroneo, M.

    2016-04-01

    Thin targets have been investigated at low laser intensity in order to prepare foils for TNSA (Target Normal Sheath Acceleration) laser irradiation at high intensity. Foils were prepared with different techniques, such as deposition of metallic nanoparticles on polymeric substrates. Polymer films were covered by solutions containing nanoparticles or embedded inside or covered by nanostructures. Such advanced targets permit to enhance the laser wavelength absorbance. Thick and thin targets were irradiated using laser radiation at 1010 W/cm2 intensity and prepared to be submitted to laser irradiation at higher intensity. The foils were characterized by optical measurements of absorbance and transmittance as a function of wavelength in the regions UV, VIS and IR. Laser irradiation measurements using a Nd:YAG laser simulate the prepulse of high laser intensity. Accelerated ions were measured with ion collectors using time of flight techniques. The protons and ions acceleration and their yields were measured as a function of the equivalent atomic number of the foils and of other characteristics, as it will be presented and discussed.

  10. Photobiomodulation of wound healing via visible and infrared laser irradiation.

    Science.gov (United States)

    Solmaz, Hakan; Ulgen, Yekta; Gulsoy, Murat

    2017-05-01

    Fibroblast cells are known to be one of the key elements in wound healing process, which has been under the scope of research for decades. However, the exact mechanism of photobiomodulation on wound healing is not fully understood yet. Photobiomodulation of 635 and 809 nm laser irradiation at two different energy densities were investigated with two independent experiments; first, in vitro cell proliferation and then in vivo wound healing. L929 mouse fibroblast cell suspensions were exposed with 635 and 809 nm laser irradiations of 1 and 3 J/cm(2) energy densities at 50 mW output power separately for the investigation of photobiomodulation in vitro. Viabilities of cells were examined by means of MTT assays performed at the 24th, 48th, and 72nd hours following the laser irradiations. Following the in vitro experiments, 1 cm long cutaneous incisional skin wounds on Wistar albino rats (n = 24) were exposed with the same laser sources and doses in vivo. Wound samples were examined on 3rd, 5th, and 7th days of healing by means of mechanical tensile strength tests and histological examinations. MTT assay results showed that 635 nm laser irradiation of both energy densities after 24 h were found to be proliferative. One joule per square centimeter laser irradiation results also had positive effect on cell proliferation after 72 h. However, 809 nm laser irradiation at both energy densities had neither positive nor negative affects on cell viability. In vivo experiment results showed that, 635 nm laser irradiation of both energy densities stimulated wound healing in terms of tensile strength, whereas 809 nm laser stimulation did not cause any stimulative effect. The results of mechanical tests were compatible with the histological evaluations. In this study, it is observed that 635 nm laser irradiations of low energy densities had stimulative effects in terms of cell proliferation in vitro and mechanical strength of incisions in vivo. However, 809 nm laser

  11. O impacto da cirurgia de ceratectomia fotorrefrativa (PRK e ceratomileuse assistida por excimer laser in situ (LASIK na qualidade visual e de vida em pacientes com ametropias The impact of photorefractive excimer laser keratectomy (PRK and laser in situ keratomileusis (LASIK on visual quality and life in patients with ametropias

    Directory of Open Access Journals (Sweden)

    Ricardo Belfort

    2008-02-01

    Full Text Available OBJETIVO: Avaliar a qualidade de vida e de visão e o estresse de pacientes portadores de ametropias submetidos a procedimentos cirúrgicos. MÉTODOS: Estudo longitudinal observacional em que foram estudados 100 pacientes; 54 usuários de óculos, 21 usuários de lentes de contato interessados no procedimento cirúrgico e 25 controles usuários de óculos ou lentes de contato, mas que não desejavam ser operados no período de um ano. Os questionários aplicados foram o National Eye Institute Visual Function Questionnaire (NEI-VFQ-25 de qualidade de vida e o Self Reporting Questionnaire - SRQ-20 para avaliação da saúde mental. Os pacientes que se submeteram à cirurgia responderam aos questionários aplicados por uma observadora antes da mesma, três, seis e doze meses após a intervenção. O grupo controle respondeu de forma auto-aplicada no início do estudo, seis e doze meses após a primeira avaliação. RESULTADOS: No grupo da cirugia dos 54 pacientes que usavam óculos 39 fizeram cirurgia de ceratectomia fotorrefrativa por excimer laser(PRK e 15 fizeram ceratomileuse assistida por excimer laserin situ (LASIK e dos 21 que usavam lentes de contato 12 fizeram cirurgia de ceratectomia fotorrefrativa e nove fizeram ceratomileuse assistida por excimer laser in situ (LASIK. O grupo controle esteve estável durante os 12 meses em relação aos instrumentos aplicados. Três meses após a cirurgia o grupo da cirurgia apresentou melhora significante da qualidade de vida e de visão em relação ao pré-operatório independentemente do tipo de cirurgia realizada. Um ano após a cirurgia os índices de qualidade de vida e de saúde mental, foram semelhantes aos do grupo controle. O Self Reporting Questionnaire - SRQ 20 mostrou diminuição significante do índice de sintomas a partir dos três meses de pós-operatório. CONCLUSÃO: A qualidade de visão e de vida dos pacientes submetidos à cirurgia de correção de ametropia mudou

  12. EFFECT OF OPTICAL FIBER HYDROGEN LOADING ON THE INSCRIPTION EFFICIENCY OF CHIRPED BRAGG GRATINGS BY MEANS OF KrF EXCIMER LASER RADIATION

    Directory of Open Access Journals (Sweden)

    Sergey V. Varzhel

    2016-11-01

    Full Text Available Subject of Research.We present comparative results of the chirped Bragg gratings inscription efficiency in optical fiber of domestic production with and without low-temperature hydrogen loading. Method. Chirped fiber Bragg gratings inscription was made by the Talbot interferometer with chirped phase mask having a chirp rate of 2.3 nm/cm used for the laser beam amplitude separation. The excimer laser system Coherent COMPexPro 150T, working with the gas mixture KrF (248 nm, was used as the radiation source. In order to increase the UV photosensitivity, the optical fiber was placed in a chamber with hydrogen under a pressure of 10 MPa and kept there for 14 days at 40 °C. Main Results. The usage of the chirped phase mask in a Talbot interferometer scheme has made it possible to get a full width at half-maximum of the fiber Bragg grating reflection spectrum of 3.5 nm with induced diffraction structure length of 5 mm. By preliminary hydrogen loading of optical fiber the broad reflection spectrum fiber Bragg gratings with a reflectivity close to 100% has been inscribed. Practical Relevance. The resulting chirped fiber Bragg gratings can be used as dispersion compensators in optical fiber communications, as well as the reflective elements of distributed fiber-optic phase interferometric sensors.

  13. Organelle-specific injury to melanin-containing cells in human skin by pulsed laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, G.F.; Shepard, R.S.; Paul, B.S.; Menkes, A.; Anderson, R.R.; Parrish, J.A.

    1983-12-01

    Physical models predict that ultraviolet laser radiation of appropriately brief pulses can selectively alter melanin-containing cellular targets in human skin. Skin of normal human volunteers was exposed to brief (20 nanosecond) 351-nm wave length pulses from a XeF excimer laser, predicting that those cells containing the greatest quantities of melanized melanosomes (lower half of the epidermis) would be selectively damaged. Transmission electron microscopy revealed the earliest cellular alteration to be immediate disruption of melanosomes, both within melanocytes and basal keratinocytes. This disruption was dose dependent and culminated in striking degenerative changes in these cells. Superficial keratinocytes and Langerhans cells were not affected. It was concluded that the XeF excimer laser is capable of organelle-specific injury to melanosomes. These findings may have important clinical implications in the treatment of both benign and malignant pigmented lesions by laser radiations of defined wave lengths and pulse durations.

  14. Experience in using the excimer laser-assisted nonocclusive anastomosis nonocclusive bypass technique for high-flow revascularization: Mannheim-Helsinki series of 64 patients.

    Science.gov (United States)

    Vajkoczy, Peter; Korja, Miikka; Czabanka, Marcus; Schneider, Ulf C; Reinert, Michael; Lehecka, Martin; Schmiedek, Peter; Hernesniemi, Juha; Kivipelto, Leena

    2012-01-01

    The excimer laser-assisted nonocclusive anastomosis (ELANA) technique enables large-caliber bypass revascularization without temporary occlusion of the parent artery. To present the surgical experience of 2 bypass centers using ELANA in the treatment of complex intracranial lesions. Between July 2002 and December 2007, 64 consecutive patients (37 in Germany and 27 in Finland) were selected for high-flow bypass surgery with ELANA. Modified Rankin Scale, a bypass success rate, and the success rate of the laser arteriotomy were assessed. In 66 surgeries for 64 intent-to-treat patients, 58 ELANA procedures were completed successfully. A favorable outcome (postoperative modified Rankin Scale score less than or equal to preoperative modified Rankin Scale) at 3 months was achieved in 43 of 56 patients (77%) with anterior circulation lesions (37 of the 43 patients had aneurysms, 4 had ischemia, and 2 received a bypass before tumor removal) and only in 2 of 8 patients (25%) with posterior circulation aneurysms. Perioperative (< 7 days) mortality for anterior and posterior circulation aneurysms was 6% and 50%, respectively. At the 3-month follow-up, 12% and 63% of patients with anterior and posterior circulation aneurysms, respectively, were dead. The success rate of the laser arteriotomy was 70%. Another 14% were retrieved manually after a nearly complete laser arteriotomy. The ELANA procedure requires a meticulous and careful operative technique. Morbidity and especially mortality rates, usually unrelated to ELANA, are comparable to those of contemporary series of conventional high-flow revascularization operations. This underscores the overall complexity of treating neurovascular pathologies by high-flow bypasses.

  15. Diode laser irradiation increases microtensile bond strength of dentin

    Directory of Open Access Journals (Sweden)

    Rafael Massunari MAENOSONO

    2015-01-01

    Full Text Available Laser irradiation after the immediate application of dentin bonding systems (DBSs and prior to their polymerization has been proposed to increase bond strength. The objective of this study was to evaluate the effect of diode laser irradiation (λ = 970 nm on simplified DBSs through microtensile bond strength tests. Forty healthy human molars were randomly distributed among four groups (n = 10 according to DBSs used [Adper™ SingleBond 2 (SB and Adper™ EasyOne (EO], and the respective groups were irradiated with a diode laser (SB-L and EO-L. After bonding procedures and composite resin build-ups, teeth were stored in deionized water for 7 days and then sectioned to obtain stick-shaped specimens (1.0 mm2. The microtensile test was performed at 0.5 mm/min, yielding bond strength values in MPa, which were evaluated by two-way ANOVA followed by Tukey’s test (p < 0.05 for individual comparisons. For both adhesive systems, diode laser irradiation promoted significant increases in bond strength values (SB: 33.49 ± 6.77; SB-L: 43.69 ± 8.15; EO: 19.67 ± 5.86; EO-L: 29.87 ± 6.98. These results suggest that diode laser irradiation is a promising technique for achieving better performance of adhesive systems on dentin.

  16. Using laser irradiation for the surgical treatment of periodontal disease

    Science.gov (United States)

    Vieru, Rozana D.; Lefter, Agafita; Herman, Sonia

    2002-10-01

    In the marginal pr ogressive profound periodontities, we associated low level laser therapy (LLLT) to the classical surgical treatment with implant of biovitroceramics. From a total of 50 patients, 37 where irradiated with the laser. We used a diode laser, =830 nm, energy density up to 2 J cm2, in Nogier pulsed mode. The laser treatment is used in a complex of therapeutic procedures: odontal, local anti-inflammatory -- as well as in the cabinet and at home --, prosthetic, and for the morphologic and functional rebalancing. The immediate effects where: an evolution without bleeding and without post-surgical complications, as can appear at the patients who didn't benefit of laser irradiation (hematom, pain, functional alteration in the first post-surgical week). Operated tissue is recovering faster. The percentage of recurrences decreases and the success depends less on the biological potential and the immunity of each individual.

  17. Surface 3D Micro Free Forms: Multifunctional Microstructured Mesoporous α-Alumina by in Situ Slip Casting Using Excimer Laser Ablated Polycarbonate Molds.

    Science.gov (United States)

    Rowthu, Sriharitha; Böhlen, Karl; Bowen, Paul; Hoffmann, Patrik

    2015-11-11

    Ceramic surface microstructuring is a rapidly growing field with a variety of applications in tribology, wetting, biology, and so on. However, there are limitations to large-area microstructuring and fabrication of three-dimensional (3D) micro free forms. Here, we present a route to obtain intricate surface structures through in situ slip casting using polydimethylsiloxane (PDMS) negative molds which are replicated from excimer laser ablated polycarbonate (PC) master molds. PC sheets are ablated with a nanosecond KrF (λ = 248 nm) excimer laser mask projection system to obtain micron-scale 3D surface features over a large area of up to 3 m(2). Complex surface structures that include 3D free forms such as 3D topography of Switzerland, shallow structures such as diffractive optical elements (60 nm step) and conical micropillars have been obtained. The samples are defect-free produced with thicknesses of up to 10 mm and 120 mm diameter. The drying process of the slip cast alumina slurry takes place as a one-dimensional process, through surface evaporation and water permeation through the PDMS membrane. This allows homogeneous one-dimensional shrinkage during the drying process, independent of the sample's lateral dimensions. A linear mass diffusion model has been proposed to predict and explain the drying process of these ceramic colloidal suspensions. The calculated drying time is linearly proportional to the height of the slurry and the thickness of the negatively structured PDMS and is validated by the experimental results. An experimentally observed optimum Sylgard PDMS thickness range of ∼400 μm to 1 mm has achieved the best quality microstructured green compacts. Further, the model predicts that the drying time is independent of the microstructured areas and was validated using experimental observations carried out with microstructured areas of 300 mm(2), 1200 mm(2), and 120 cm(2). Therefore, in principle, the structures can be further replicated in areas up

  18. Progress In Developing Laser Based Post Irradiation Examination Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Smith, James A.; Scott, Clark L.; Benefiel, Brad C.

    2016-09-01

    To be able to understand the performance of reactor fuels and materials, irradiated materials must be characterized effectively and efficiently in a high rad environment. The characterization work must be performed remotely and in an environment hostile to instrumentation. Laser based characterization techniques provide the ability to be remote and robust in a hot-cell environment. Laser based instrumentation also can provide high spatial resolution suitable for scanning and imaging large areas. The INL is currently developing three laser based Post Irradiation Examination (PIE) stations for the Hot Fuel Examination Facility at the INL. These laser based systems will characterize irradiated materials and fuels. The characterization systems are the following: Laser Shock Laser based ultrasonic C-scan system Gas Assay, Sample, and Recharge system (GASR, up-grade to an existing system). The laser shock technique will characterize material properties and failure loads/mechanisms in various materials such as LWR fuel, plate fuel, and next generation fuel forms, for PIE in high radiation areas. The laser shock-technique induces large amplitude shock waves to mechanically characterize interfaces such as the fuel-clad bond. The shock wave travels as a compression wave through the material to the free (unconfined) back surface and reflects back through the material under test as a rarefaction (tensile) wave. This rarefaction wave is the physical mechanism that produces internal de-lamination failure. As part of the laser shock system, a laser-based ultrasonic C-scan system will be used to detect and characterize debonding caused by the laser shock technique. The laser ultrasonic system will be fully capable of performing classical non-destructive evaluation testing and imaging functions such as microstructure characterization, flaw detection and dimensional metrology in complex components. The purpose of the GASR is to measure the pressure/volume of the plenum of an

  19. Submicro foaming in biopolymers by UV pulsed laser irradiation

    Science.gov (United States)

    Oujja, Mohamed; Rebollar, Esther; Gaspard, Solenne; Abrusci, Concepción; Catalina, Fernando; Lazare, Sylvain; Castillejo, Marta

    2006-05-01

    Microstructuring of polymers and biopolymers is of application in medical technology and biotechnology. Using different fabrication techniques three-dimensionally shaped and micro structured constructs can be developed for drug release and tissue engineering. As an alternative method, laser microstructuring offers a series of advantages including high resolution capability, low heat deposition in the substrate and high level of flexibility. In this work we present evidence of laser microfoam formation in collagen and gelatine by nanosecond pulsed laser irradiation in the UV at 248 and 266 nm. Irradiation at 355 nm produces melting followed by resolidification of the substrate, whereas irradiation at 532 and 1064 nm induces the formation of craters of irregular contours. Single pulse irradiation of a collagen film with an homogenized KrF microbeam yields a 20 μm thick expanded layer, which displays the interesting features of a nanofibrous 3-dimensional network with open cells. In gelatine, irradiation at 248 and 266 nm produces similar morphological modifications. The effect of the structural properties of the substrate on the laser induced microfoam is studied by comparing gelatines differing in gel strength (Bloom values 225 and 75) and in crosslinking degree. While results are discussed on the basis of thermal and photomechanical mechanisms and of the role played by the water content of the substrates, it is thought that such structures could have a biomimic function in future 3D cell culture devices for research.

  20. Pulsed-Laser Irradiation Space Weathering Of A Carbonaceous Chondrite

    Science.gov (United States)

    Thompson, M. S.; Keller, L. P.; Christoffersen, R.; Loeffler, M. J.; Morris, R. V.; Graff, T. G.; Rahman, Z.

    2017-01-01

    Grains on the surfaces of airless bodies experience irradiation from solar energetic particles and melting, vaporization and recondensation processes associated with micrometeorite impacts. Collectively, these processes are known as space weathering and they affect the spectral properties, composition, and microstructure of material on the surfaces of airless bodies, e.g. Recent efforts have focused on space weathering of carbonaceous materials which will be critical for interpreting results from the OSIRIS-REx and Hayabusa2 missions targeting primitive, organic-rich asteroids. In addition to returned sample analyses, space weathering processes are quantified through laboratory experiments. For example, the short-duration thermal pulse from hypervelocity micrometeorite impacts have been simulated using pulsed-laser irradiation of target material e.g. Recent work however, has shown that pulsed-laser irradiation has variable effects on the spectral properties and microstructure of carbonaceous chondrite samples. Here we investigate the spectral characteristics of pulsed-laser irradiated CM2 carbonaceous chondrite, Murchison, including the vaporized component. We also report the chemical and structural characteristics of specific mineral phases within the meteorite as a result of pulsed-laser irradiation.

  1. Laser-induced damage threshold of silicon under combined millisecond and nanosecond laser irradiation

    Science.gov (United States)

    Lv, Xueming; Pan, Yunxiang; Jia, Zhichao; Li, Zewen; Zhang, Hongchao; Ni, Xiaowu

    2017-03-01

    The laser-silicon interaction process was investigated with the superposed radiation of two pulsed Nd:YAG lasers. A pulse duration of 1 millisecond (ms) was superposed by 7 nanosecond (ns) pulses, creating a combined pulse laser (CPL). The time-resolved surface temperature of silicon was measured by an infrared radiation pyrometer. The melting thresholds of silicon were attained for a single ms laser and a CPL by infrared radiometry and time-resolved reflectance. The concept of threshold boundary was proposed, and a fitted curve of threshold boundary was obtained. An axisymmetric model was established for laser heating of silicon. The transient temperature fields were obtained for single ms laser and CPL irradiation using finite element analysis. The numerical results were validated experimentally, and an obvious decrease in melting threshold was found under CPL irradiation. That is attributed to pre-heating by the ms laser and the surface damage caused by the ns laser.

  2. Ion exchange in glass using femtosecond laser irradiation

    Science.gov (United States)

    Kanehira, Shingo; Miura, Kiyotaka; Hirao, Kazuyuki

    2008-07-01

    We explain the occurrence of ion exchange and an index profile around the focal point inside a commercial crown glass formed by femtosecond laser irradiation. The index profile in the photoinduced area has a ring-shaped pattern, which indicates that local densification occurred in the glass. An irregular surface reflecting the density distribution is formed around the focal point by dry etching process using a focused ion beam. By the irradiation of femtosecond laser pulses, the effect of ion exchange between the focal point and the surrounding area is also observed in the area in which local densification occurred.

  3. High-performance p-channel thin-film transistors with lightly doped n-type excimer-laser-crystallized germanium films

    Science.gov (United States)

    Liao, Chan-Yu; Huang, Ching-Yu; Huang, Ming-Hui; Huang, Wen-Hsien; Shen, Chang-Hong; Shieh, Jia-Min; Cheng, Huang-Chung

    2017-06-01

    High-performance polycrystalline-germanium (poly-Ge) thin-film transistors (TFTs) fabricated with lightly doped Ge thin films by excimer laser crystallization (ELC) and counter doping (CD) have been demonstrated. High-quality n-type Ge thin films with a grain size as large as 1 µm were fabricated by ELC in the super lateral-growth regime and CD at a dose of 1 × 1013 cm-2 or higher. Consequently, a superior field-effect mobility of 271 cm2 V-1 s-1 and a high on/off current ratio of 2.7 × 103 have been obtained for p-channel Ge TFTs with the channel width and length of both 0.5 µm fabricated by ELC at 300 mJ/cm2 and CD at a dose of 1 × 1013 cm-2. The effects of ELC conditions and CD dose on the electrical characteristics of p-channel Ge TFTs were also investigated.

  4. Electric field enhancement at multiple densities in laser-irradiated ...

    Indian Academy of Sciences (India)

    The electric field enhancement inside a nanotube irradiated by intense ultrashort laser pulse ( ≪ 1 ps) is calculated. The hollowness of the nanotubes determines the field enhancement and the electron density at which such structures exhibit resonance. The electric field in a nanotube plasma is shown to be resonantly ...

  5. Electric field enhancement at multiple densities in laser-irradiated ...

    Indian Academy of Sciences (India)

    The electric field enhancement inside a nanotube irradiated by intense ultrashort laser pulse (≪1 ps) is ... section and the electric field in the vicinity of Mie resonance at 3nc in spherical clusters. Many experimental .... becomes metal-like or plasma-like because of the generation of free electrons [41,42]. The subsequent ...

  6. Bactericidal effect of Nd:YAG laser irradiation in endodontics

    Science.gov (United States)

    Aun, Carlos E.; Barberini, Alexandre F.; Camargo, Selma C. C.; Silva Kfouri, Luciana; Lorenzetti Simionato, Maria R.

    1999-05-01

    The success of endodontic therapy is based on the elimination of bacterial colonization from the endodontic system and periapical tissues. Recent studies have been showing the bactericidal effect of laser in root canal treatment. The propose of the study is to evaluate the effect of Nd:YAG laser irradiation in contaminated root canal treatment. The propose of the study is to evaluate the effect of Nd:YAG laser irradiation in contaminated root canals from upper central incisor. For the experiment 12 teeth were selected, respect at the apical third, sterilized, and 10 μm Streptococcus sanguis liquid culture were inoculated in the root canals. The laser test groups were irradiated with Nd:YAG laser at standard setting of 15Hz, 100mj and 1,5 W for 10, 20 and 30 seconds each in slow helicoidal movements from the apex to the top using a 300 micrometers fiber. After the procedure the specimens were placed in Tryptic Soy Agar, the number of colony forming units was evaluated. The experiment showed a significant reduction on viability of Streptococcus sanguis at the respective time of 20 and 30 seconds.

  7. Optical-Thermal Response of Laser-Irradiated Tissue

    CERN Document Server

    Welch, Ashley J

    2011-01-01

    The second edition of 'Optical-Thermal Response of Laser-Irradiated Tissue' maintains the standard of excellence established in the first edition, while adjusting the content to reflect changes in tissue optics and medical applications since 1995. The material concerning light propagation now contains new chapters devoted to electromagnetic theory for coherent light. The material concerning thermal laser-tissue interactions contains a new chapter on pulse ablation of tissue. The medical applications section now includes several new chapters on Optical Coherent Tomography, acoustic imaging, molecular imaging, forensic optics and nerve stimulation. A detailed overview is provided of the optical and thermal response of tissue to laser irradiation along with diagnostic and therapeutic examples including fiber optics. Sufficient theory is included in the book so that it is suitable for a one or two semester graduate or for senior elective courses. Material covered includes: 1. light propagation and diagnostic appl...

  8. Bio-heat transfer simulation of retinal laser irradiation.

    Science.gov (United States)

    Narasimhan, Arunn; Jha, Kaushal Kumar

    2012-05-01

    Retinopathy is a surgical process in which maladies of the human eye are treated by laser irradiation. A two-dimensional numerical model of the human eye geometry has been developed to investigate transient thermal effects due to laser radiation. In particular, the influence of choroidal pigmentation and that of choroidal blood convection-parameterized as a function of choroidal blood perfusion-are investigated in detail. The Pennes bio-heat transfer equation is invoked as the governing equation, and finite volume formulation is employed in the numerical method. For a 500-μm diameter spot size, laser power of 0.2 W, and 100% absorption of laser radiation in the retinal pigmented epithelium (RPE) region, the peak RPE temperature is observed to be 103 °C at 100 ms of the transient simulation of the laser surgical period. Because of the participation of pigmented layer of choroid in laser absorption, peak temperature is reduced to 94 °C after 100 ms of the laser surgery period. The effect of choroidal blood perfusion on retinal cooling is found to be negligible during transient simulation of retinopathy. A truncated three-dimensional model incorporating multiple laser irradiation of spots is also developed to observe the spatial effect of choroidal blood perfusion and choroidal pigmentation. For a circular array of seven uniformly distributed spots of identical diameter and laser power of 0.2 W, transient temperature evolution using simultaneous and sequential mode of laser surgical process is presented with analysis. Copyright © 2012 John Wiley & Sons, Ltd.

  9. Surface analysis of the selective excimer laser patterning of a thin PEDOT:PSS film on flexible polymer films

    Science.gov (United States)

    Schaubroeck, David; De Smet, Jelle; Willems, Wouter; Cools, Pieter; De Geyter, Nathalie; Morent, Rino; De Smet, Herbert; Van Steenbeerge, Geert

    2016-07-01

    Fast patterning of highly conductive polymers like PEDOT:PSS (poly (3,4-ethylene dioxythiophene): polystyrene sulfonate) with lasers can contribute to the development of industrial production of liquid crystal displays on polymer foils. In this article, the selective UV laser patterning of a PEDOT:PSS film on flexible polymer films is investigated. Based on their optical properties, three polymer films are investigated: polyethylene terephthalate (PET), polymethyl methacrylate (PMMA) and cellulose triacetate (TAC). Ablation parameters for a 110 nm PEDOT:PSS film on these polymer films are optimized. A detailed study of the crater depth, topography and surface composition are provided using optical profilometry, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. The electrical insulation of the lines is measured and correlated to the crater analyses for different laser settings. Finally, potential ablation parameters for each of the polymer films are derived.

  10. The impact of laser irradiation during antimicrobial photodynamic therapy in an artificial biofilm model

    Science.gov (United States)

    Schneider, Martin; Kirfel, Gregor; Berthold, Michael; Brede, Olivier; Frentzen, Matthias; Braun, Andreas

    2011-03-01

    The aim of the study was to assess the impact of laser irradiation during antimicrobial photodynamic therapy. Test chambers containing each a salivary pellicle layer and a Stretococcus mutans culture were analyzed using confocal laser microscopy after adding a photosensitizer. Half of the chambers were irradiated with a diode laser. Comparing baseline fluorescence with the values after laser irradiation, a decrease of fluorescence could be observed. The non-irradiated group showed a slight increase of fluorescence. The present study indicates that laser irradiation is an essential part to reduce bacteria by antimicrobial photodynamic therapy.

  11. FEM numerical analysis of excimer laser induced modification in alternating multi-layers of amorphous and nano-crystalline silicon films

    Energy Technology Data Exchange (ETDEWEB)

    Conde, J.C., E-mail: jconde@uvigo.es [Dpto. Fisica Aplicada, Universidade de Vigo, Rua Maxwell s/n, Campus Universitario Lagoas Marcosende, Vigo (Spain); Martin, E. [Dpto. Mecanica, Maquinas, Motores Termicos y Fluidos, Universidade de Vigo, Rua Maxwell s/n, Campus Universitario Lagoas Marcosende, Vigo (Spain); Stefanov, S. [Dpto. Fisica Aplicada, Universidade de Vigo, Rua Maxwell s/n, Campus Universitario Lagoas Marcosende, Vigo (Spain); Alpuim, P. [Departamento de Fisica, Universidade do Minho, 4800-058 Guimaraes (Portugal); Chiussi, S. [Dpto. Fisica Aplicada, Universidade de Vigo, Rua Maxwell s/n, Campus Universitario Lagoas Marcosende, Vigo (Spain)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer nc-Si:H is a material with growing importance for a large-area of nano-electronic, photovoltaic or biomedical devices. Black-Right-Pointing-Pointer UV-ELA technique causes a rapid heating that provokes the H{sub 2} desorption from the Si surface and bulk material. Black-Right-Pointing-Pointer Next, diffusion of P doped nc-Si films and eventually, for high energy densities would be possible to reach the melting point. Black-Right-Pointing-Pointer These multilayer structures consisting of thin alternating a-Si:H(10 nm) and n-doped nc-Si:H(60 nm) films deposited on SiO{sub 2}. Black-Right-Pointing-Pointer To optimize parameters involved in this processing, FEM numerical analysis of multilayer structures have been performed. Black-Right-Pointing-Pointer The numerical results are compared with exhaustive characterization of the experimental results. - Abstract: UV excimer laser annealing (UV-ELA) is an alternative annealing process that, during the last few years, has gained enormous importance for the CMOS nano-electronic technologies, with the ability to provide films and alloys with electrical and optical properties to fit the desired device performance. The UV-ELA of amorphous (a-) and/or doped nano-crystalline (nc-) silicon films is based on the rapid (nanoseconds) formation of temperature profiles caused by laser radiation that is absorbed in the material and lead to crystallisation, diffusion in solid or even in liquid phase. To achieve the desired temperature profiles and to optimize the parameters involved in the processing of hydrogenated nanocrystalline silicon (nc-Si:H) films with the UV-ELA, a numerical analysis by finite element method (FEM) of a multilayer structure has been performed. The multilayer structures, consisting of thin alternating a-Si:H(10 nm) and n-doped nc-Si:H(60 nm) layers, deposited on a glass substrate, has also been experimentally analyzed. Temperature profiles caused by 193 nm radiation with 25

  12. Surface analysis of the selective excimer laser patterning of a thin PEDOT:PSS film on flexible polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Schaubroeck, David, E-mail: David.Schaubroeck@elis.ugent.be [Center for Microsystems Technology (CMST), imec and Ghent University, Technologiepark 15, B-9052 Ghent (Belgium); De Smet, Jelle; Willems, Wouter [Center for Microsystems Technology (CMST), imec and Ghent University, Technologiepark 15, B-9052 Ghent (Belgium); Cools, Pieter; De Geyter, Nathalie; Morent, Rino [Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering, Ghent University, Sint-Pietersnieuwstraat 41, B-9000 Ghent (Belgium); De Smet, Herbert; Van Steenbeerge, Geert [Center for Microsystems Technology (CMST), imec and Ghent University, Technologiepark 15, B-9052 Ghent (Belgium)

    2016-07-15

    Highlights: • Laser patterning of thin film PEDOT:PSS on polymer foils is characterized in great detail. • PEDOT:PSS does not need to be fully removed to create electrically insulating patterns. • The underlying polymer foil influences the ablation behavior. - Abstract: Fast patterning of highly conductive polymers like PEDOT:PSS (poly (3,4-ethylene dioxythiophene): polystyrene sulfonate) with lasers can contribute to the development of industrial production of liquid crystal displays on polymer foils. In this article, the selective UV laser patterning of a PEDOT:PSS film on flexible polymer films is investigated. Based on their optical properties, three polymer films are investigated: polyethylene terephthalate (PET), polymethyl methacrylate (PMMA) and cellulose triacetate (TAC). Ablation parameters for a 110 nm PEDOT:PSS film on these polymer films are optimized. A detailed study of the crater depth, topography and surface composition are provided using optical profilometry, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. The electrical insulation of the lines is measured and correlated to the crater analyses for different laser settings. Finally, potential ablation parameters for each of the polymer films are derived.

  13. FY 1997 report on the study on cryogenic aggregate target PLD process by multi-laser excitation for using gaseous materials; 1997 nendo chosa hokokusho (kitai genryo riyo no tame no taju laser reiki ni yoru gokuteion gyoshutai target PLD process ni kansuru kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This paper reports the result in fiscal 1995 of the study on PLD (pulse laser deposition) thin film formation process having been made since 1993. In fiscal 1995, the effect of irradiation of excimer laser and YGA(SHG) on ablation of aggregates of N2, CH4, Ar, Kr and Xe, and the effect of time-delayed irradiation of YGA(SHG) and KrF excimer laser on ablation of N2 aggregate were studied aiming at exciting ablation by cryogenic aggregate alone. Experimental results by a newly developed multi-laser excitation experiment equipment are as follows. Ablation was not caused by KrF excimer laser irradiation, while caused by YGA(SHG) irradiation. Ablation was caused by 1mm thick N2 or CH4 aggregate alone. Kr target was the most promising among rare gas solid targets expected as seed of ablation occurrence. Multi-irradiation showed a different ablation behavior as compared with single YGA(SHG) irradiation, and in some cases, multi-irradiation not increased scattering of particles. Time-delayed multi- irradiation (YGA(SHG) excitation after excimer excitation) was effective. 23 figs., 4 tabs.

  14. Monovisión con láser de excímeros en pacientes présbitas Monovision with Excimer laser surgery in presbyopic patients

    Directory of Open Access Journals (Sweden)

    Patricia Andújar Coba

    2010-01-01

    previstos que caracterizan a la cirugía con láser de excímeros.OBJECTIVES: To describe the refractive results achieved with Excimer laser surgery in presbyopic patients, both hyperopic and myopic, with monovision. METHODS: A prospective, longitudinal and descriptive study was performed on 60 presbyopic patients, 18 myopic and 42 hyperopic, who underwent Excimer laser surgery to correct presbyopia based on the monovision method at the Corneal and Refractive Surgery Service of «Ramón Pando Ferrer» Cuban Institute of Ophthalmology from February 2009 to February 2010. The variables used were pre- and post-operative visual acuity with correction, visual acuity without binocular correction, both near and distant, and spheral equivalents. For presenting this information, the mean and standard deviation were used for all variables. RESULTS: In the preoperative phase, it was observed that average visual acuity improved from 0,1 and 0,3 for myopic and hyperopic patients without correction, to 0,94 and 0,97 binocular visual acuity without correction for the same groups in the postoperative phase, thus correcting their average spherical equivalent of 4,63 D and +2,21 D respectively. Average near visual acuity for both groups was Jeager (J 1 - 2 and average spheral equivalents reached for distant vision were 0,02 ± 0, 27 D for myopic and +0.09 ± 0,34 D for hyperopic patients. For near vision, i.e. in the non- dominant eye, the spheral equivalent values were 1.7 ± 0,22 D for myopic and 1.4 ± 0,38 D for hyperopic patients. CONCLUSIONS: After surgery both myopic and hyperopic patients experienced improvement in their visual acuity without correction for distant as well as for near vision. Spheral equivalents were widely modified in both groups for the dominant and non-dominant eyes, in order to facilitate the final visual result in both distances with the foreseen precision in the visual results that characterizes the Excimer laser surgery.

  15. Colour changes by laser irradiation of reddish building limestones

    Energy Technology Data Exchange (ETDEWEB)

    Grossi, C.M., E-mail: c.grossi-sampedro@uea.ac.uk [School of Health Sciences, University of East Anglia, Norwich NR4 7TJ (United Kingdom); Benavente, D. [Department of Earth and Environment Sciences, University of Alicante. 03690 Alicante (Spain)

    2016-10-30

    Highlights: • This is the first time that XPS is used to determine the cause of colour change in coloured stones when cleaned with laser at 1064 nm. • We demonstrate that the colour change in red limestones is due to a reduction in the state of oxidation of iron, in this case present as hematite. • XPS could be routinely used to analyse causes of colour changes during laser cleaning in other types of coloured building stones. - Abstract: We have used X-ray photoelectron spectroscopy (XPS) as a novel method to investigate the causes of colour changes in a reddish limestone under irradiation by a Q-switched Nd:YAG 1064 nm laser. We irradiated clean dry and wet surfaces of Pidramuelle Roja, a building stone frequently used in the Asturian heritage, at fluences ranging from 0.12 to 1.47 J cm{sup −2}. We measured the colour coordinates and undertook XPS analysis of the state of oxidation of iron both before and after irradiation. Visible colour changes and potential aesthetic damage occurred on dry surfaces from a fluence of 0.31 J cm{sup −2}, with the stone showing a greening effect and very intense darkening. The colour change on dry surfaces was considerably higher than on wet surfaces, which at the highest fluence (1.47 J cm{sup −2}) was also above the human visual detection threshold. The use of XPS demonstrated that the change in colour (chroma and hue) is associated with a reduction in the iron oxidation state on dry surfaces during laser irradiation. This points out to a potential routinary use of XPS to analyse causes of colour changes during laser cleaning in other types of coloured building stones.

  16. Role of nitric oxide in the reaction of arterial vessels to laser irradiation.

    Science.gov (United States)

    Chertok, V M; Kotsyuba, A E; Bespalova, E V

    2008-06-01

    Reactivity of arterial vessels in the small intestine mesentery to irradiation with a helium-neon laser before and after NO synthase blockade was studied by means of biomicroscopy. Blood flow velocity and vascular diameter increased under conditions of laser irradiation. During irradiation, arterial vasodilation was inversely related to the initial diameter. After treatment with NO synthase inhibitor, the dilatory response of vessels to laser irradiation was completely abolished (arteries, diameter >80 micro) or decreased by 2 times (arterioles, diameter <50 micro).

  17. Low temperature sputter-deposited ZnO films with enhanced Hall mobility using excimer laser post-processing

    Science.gov (United States)

    Tsakonas, C.; Kuznetsov, V. L.; Cranton, W. M.; Kalfagiannis, N.; Abusabee, K. M.; Koutsogeorgis, D. C.; Abeywickrama, N.; Edwards, P. P.

    2017-12-01

    We report the low temperature (T  ZnO thin films (~140 nm) with Hall mobility of up to 17.3 cm2 V‑1 s‑1 making them suitable for thin film transistor (TFT) applications. The films were deposited by rf magnetron sputtering at T  V‑1 s‑1 at a carrier density of 2.3  ×  1018 cm‑3 was measured from a 1 GΩ as deposited and aged film after the laser treatment. We suggest that the aging of non-processed films reduces structural defects mainly at grain boundaries by air species chemisorption, with concomitant increase in thermal conductivity so that laser processing can have an enhancing effect. Such a processing combination can act synergistically and produce suitable active layers for TFT applications with low temperature processing requirements.

  18. A temperature study of laser-irradiated bone

    Science.gov (United States)

    Winkler, Jon Philip

    A method for predicting the temperature of laser-irradiated bone has been developed. The method uses a numerical model to predict temperature in a bone sample irradiated with a particular wavelength of light. The model was based on the heat conduction equation with the laser radiation accounted for by a volumetric heat generation term based on the absorption coefficient at the wavelength being used and Beer's Law of exponential absorption. Two beam profiles, top hat and Gaussian, were used to model the incident beam, so the effect of beam profile on temperature distribution could be examined. Experimental runs were performed by irradiating samples of bone with two different laser wavelengths and measuring the temperature of the bone at four locations. A COsb2 laser at 10.6 mum and a Nd:YAG laser at 1.06 mum were used at powers from 5 to 40 Watts using approximately a 10 mm diameter beam. Additional experiments were performed to ascertain the accuracy of reported values for the absorption of 1.06 mum wavelength light by bone. The results of the experiments led to a value for the absorption coefficient for bone at 1.06 mum wavelength of 279/m and a reflectivity of 0.18. Using this value for the absorption coefficient, the model results were reconciled to the YAG experimental data. Charts plotting temperature against time for several locations have been generated and included as a reference for further research. Possibilities for laser-bone applications include cutting, drilling, bone shaping, thermal therapy, welding, and diagnostics and this research may enhance the development of such applications.

  19. Standoff spectroscopic interrogation of samples irradiated by high energy lasers

    Science.gov (United States)

    Daigle, Jean-François; Pudo, Dominik; Théberge, Francis

    2017-10-01

    We report on a novel method that shows the potential to provide real-time, standoff forensic analysis of samples being irradiated by a high energy laser (HEL). The interaction of the HEL beam with matter produces specific optical signatures that can be detected from the location of the HEL system. A spectroscopic analysis of these signals can then provide useful information to the operator including the impact the laser has on the sample as well as providing data about the its structure and composition.

  20. Four-year to seven-year outcomes of advanced surface ablation with excimer laser for high myopia

    DEFF Research Database (Denmark)

    Hansen, Rasmus Søgaard; Lyhne, Niels; Grauslund, Jakob

    2015-01-01

    Purpose: To evaluate and compare long-term outcomes ofafter photorefractive keratectomy with cooling (cPRK) and laser-assisted subepithelial keratectomy (LASEK) for high myopia. Methods: Retrospective single-masked follow-up study of patients treated for myopia between 2007 and 2009 with c...... ±1.0 D of intended refraction. Finally, 100% of cPRK patients and 92% of LASEK patients (P=0.87) were satisfied or very satisfied with the surgery at final follow-up. Conclusion: cPRK and LASEK seemed safe and with high patient satisfaction 4 to 7 years after surgery for high myopia. However, c...

  1. Enhancement of the conductivity of nanomaterial layers by laser irradiation

    Science.gov (United States)

    Ichkitidze, Levan P.; Glukhova, Olga E.; Savostyanov, Georgy V.; Gerasimenko, Alexander Yu.; Podgaetsky, Vitaly M.; Selishchev, Sergey V.; Zhurbina, Natalia N.

    2017-07-01

    The conductivity of layers (thickness 0.5 ÷ 50 μm) of composite nanomaterials consisting of bovine serum albumin (BSA) with single-walled carbon nanotubes (SWCNTs) has been studied. The aqueous dispersion of BSA / SWCNT was deposited on different substrates using the silk screening method. Conductivity was increased (30 ÷ 700) % by laser irradiation of the layers when they were in the liquid state. The investigated layers are promising for use in medical practice.

  2. Nonlinear broadband photoluminescence of graphene induced by femtosecond laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei-Tao; Wu, S.W.; Schuck, P.J.; Salmeron, Miquel; Shen, Y.R.; Wang, F.

    2010-07-01

    Upon femtosecond laser irradiation, a bright, broadband photoluminescence is observed from graphene at frequencies well above the excitation frequency. Analyses show that it arises from radiative recombination of a broad distribution of nonequilibrium electrons and holes, generated by rapid scattering between photoexcited carriers within tens of femtoseconds after the optical excitation. Its highly unusual characteristics come from the unique electronic and structural properties of graphene.

  3. Thermal effects investigation on electrical properties of silicon solar cells treated by laser irradiation

    Directory of Open Access Journals (Sweden)

    Ali Pourakbar Saffar

    2014-12-01

    Full Text Available In this paper, we were investigated electrical properties of monocrystalline and polycrystalline silicon solar cells due to laser irradiation with 650 nm wavelength in two states, proximate irradiation and via optics setup. Thermal effect on the cell surface due to laser irradiation was investigated on electrical properties too. Electrical parameters investigation of solar cells illustrates cell excitement via laser irradiation and efficiency decreases due to cell surface temperature increase. Monocrystalline parameters change with uniform shape due to thermal effect and laser irradiation toward polycrystalline cells.

  4. The correlation between the laser energy density and the properties of diamond-like carbon films with Nd:YAG (355 nm) excimer laser

    CERN Document Server

    Jung, H S; Pang, S S; Lee, S Y

    1998-01-01

    Diamond-like carbon (DLC) films were deposited using pulsed laser ablation of graphite target. The deposition process was performed with the change of laser energy density from 8 to 17 J/cm sup 2. collected from analytical results, laser energy density is seen to play an important role in the formation of sp sup 3 carbon bondings in films. Also, the optimal deposition condition for DLC films was proposed and correlated with the laser energy density.

  5. Toxicity of laser irradiated photoactive fluoride PrF3 nanoparticles toward bacteria

    Science.gov (United States)

    Pudovkin, M. S.; Korableva, S. L.; Krasheninnicova, A. O.; Nizamutdinov, A. S.; Semashko, V. V.; Zelenihin, P. V.; Alakshin, E. M.; Nevzorova, T. A.

    2014-11-01

    The article is devoted to exploration of biological effects of crystalline PrF3 nanoparticles toward Salmonella typhimurium TA 98 bacteria under the laser irradiation. Obtained results show bactericidal activity of PrF3 nanoparticles and optimal parameters of laser irradiation (power of laser irradiation, wavelength, diameter of the laser spoil, and exposure time) have been found under which the effects of bactericidal activity become the most significant. Survival of bacterial cells under laser irradiation with wavelength 532 nm in colloidal solution of PrF3 nanoparticles was 39%, 34%, 20% for exposure times 5 minutes, 15 minutes and 30 minutes, correspondingly.

  6. Development and numerical solution of a mechanistic model for corneal tissue ablation with the 193 nm argon fluoride excimer laser

    Science.gov (United States)

    Fisher, Brian T.; Hahn, David W.

    2007-02-01

    We detail the development and implementation of a global ablation model that incorporates a dynamically changing tissue absorption coefficient. Detailed spectroscopic measurements rule out plasma-shielding effects during the laser-tissue interaction and thereby support a photochemical mechanism. The model predicts ablation rate behavior that agrees well with a variety of experimental ablation rate data and that substantially deviates from a static Beer-Lambert model. The dynamic model predicts an enhancement in the tissue absorption coefficient of about 25%-50% as compared with the initial, static value. In addition, the model predicts an increase in the tissue ablation rate as corneal hydration increases, which may provide additional insight into variations in refractive surgery outcome.

  7. Study of the effects of semiconductor laser irradiation on peripheral nerve injury

    Science.gov (United States)

    Xiong, G. X.; Li, P.

    2012-11-01

    In order to study to what extent diode laser irradiation effects peripheral nerve injury, the experimental research was made on rabbits. Experimental results show that low-energy semiconductor laser can promote axonal regeneration and improve nervous function. It is also found that simultaneous exposure of the injured peripheral nerve and corresponding spinal segments to laser irradiation may achieve the most significant results.

  8. Oxidation and sublimation of porous graphite during fiber laser irradiation

    Science.gov (United States)

    Phillips, Grady T.; Bauer, William A.; Gonzales, Ashley E.; Herr, Nicholas C.; Perram, Glen P.

    2017-02-01

    Porous graphite plates, cylinders and cones with densities of 1.55-1.82 g/cm3 were irradiated by a 10 kW fiber laser at 0.075 -3.525 kW/cm2 for 120 s to study mass removal and crater formation. Surface temperatures reached steady state values as high as 3767 K. The total decrease in sample mass ranged from 0.06 to 6.29 g, with crater volumes of 0.52 - 838 mm3, and penetration times for 12.7 mm thick plates as short as 38 s. Minor contaminants in the graphite samples produced calcium and iron oxide to be re-deposited on the graphite surface. Significantly increased porosity of the sample is observed even outside of the laser-irradiated region. Total mass removed increases with deposited laser energy at a rate of 4.83 g/MJ for medium extruded graphite with an apparent threshold of 0.15 MJ. Visible emission spectroscopy reveals C2 Swan and CN red, CN violet bands and Li, Na, and K 2P3/2,1/2 - 2S1/2 doublets. The reacting boundary layer is observed using a mid-wave imaging Fourier transform spectrometer (IFTS) at 2 cm-1 spectral resolution, 0.5 mm/pixel spatial resolution, and 0.75 Hz data cube rate. A two-layer radiative transfer model was used to determine plume temperature, CO, and CO2 concentrations from spectral signatures. The new understanding of graphite combustion and sublimation during laser irradiation is vital to the more complex behavior of carbon composites.

  9. High resolution laser beam induced current images under trichromatic laser radiation: approximation to the solar irradiation.

    Science.gov (United States)

    Navas, F J; Alcántara, R; Fernández-Lorenzo, C; Martín-Calleja, J

    2010-03-01

    A laser beam induced current (LBIC) map of a photoactive surface is a very useful tool when it is necessary to study the spatial variability of properties such as photoconverter efficiency or factors connected with the recombination of carriers. Obtaining high spatial resolution LBIC maps involves irradiating the photoactive surface with a photonic beam with Gaussian power distribution and with a low dispersion coefficient. Laser emission fulfils these characteristics, but against it is the fact that it is highly monochromatic and therefore has a spectral distribution different to solar emissions. This work presents an instrumental system and procedure to obtain high spatial resolution LBIC maps in conditions approximating solar irradiation. The methodology developed consists of a trichromatic irradiation system based on three sources of laser excitation with emission in the red, green, and blue zones of the electromagnetic spectrum. The relative irradiation powers are determined by either solar spectrum distribution or Planck's emission formula which provides information approximate to the behavior of the system if it were under solar irradiation. In turn, an algorithm and a procedure have been developed to be able to form images based on the scans performed by the three lasers, providing information about the photoconverter efficiency of photovoltaic devices under the irradiation conditions used. This system has been checked with three photosensitive devices based on three different technologies: a commercial silicon photodiode, a commercial photoresistor, and a dye-sensitized solar cell. These devices make it possible to check how the superficial quantum efficiency has areas dependent upon the excitation wavelength while it has been possible to measure global incident photon-to-current efficiency values approximating those that would be obtained under irradiation conditions with sunlight.

  10. Terawatt laser system irradiation of carbon/tungsten bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Lungu, C.P.; Marcu, A.; Porosnicu, C.; Jepu, I.; Lungu, A.M.; Chiru, P.; Luculescu, C.; Banici, R.; Ursescu, D.; Dabu, R. [National Institute for Laser, Plasma and Radiation Physics, 077125 Bucharest (Romania); Feraru, I.D.; Grigorescu, C.E.A. [National Institute R and D for Optoelectronics, INOE 2000, 077125 Bucharest (Romania); Iacobescu, G.; Osiac, M. [University of Craiova, Faculty of Physics, Craiova 200585 (Romania); Kovac, J. [Institute (JSI), Jamova 39, 1000 Ljubljana (Slovenia); Center of Excellence for Polymer Materials and Technologies, 1000 Ljubljana (Slovenia); Nemanic, V. [Institute (JSI), Jamova 39, 1000 Ljubljana (Slovenia); Hinkov, I. [Center of Excellence for Polymer Materials and Technologies, 1000 Ljubljana (Slovenia); Farhat, S.; Gicquel, A.; Brinza, O. [Laboratoire des Sciences des Materiaux et des Procedes, LSPM, Universite Paris 13, 93430 Villetaneuse (France)

    2012-09-15

    Using the original thermionic vacuum arc method (TVA), carbon films with the thickness of about 2500 nm were coated on top of 200 nm tungsten films deposited on fine grain graphite substrates. The carbon/tungsten bilayers were irradiated using a terawatt laser system (TEWALAS), 360 ps and 100 fs pulse duration, 110-150 mJ pulse energy. The analysis of the selected area electron diffraction (SAED) pattern allowed the identification of rhomboedral structures corresponding to diamond. The Raman scattering measurements were also performed on the produced craters and the specific peak at 1330 cm{sup -1} corresponding to diamond was observed. The C-C sp{sup 3} bonding content increased to 39.4% in the irradiated region compared to 30.8% in the ''as deposited'' zone, as shown by XPS. The craters produced by the laser irradiation were morphologically studied using optical imaging and scanning electron microscopy. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. [The study of the human complement cascade of proteolysis as a target of laser irradiation].

    Science.gov (United States)

    Galebskaia, L V; Andreeva, L A; Solovtsova, I L; Solov'eva, M A; Petrishchev, N N

    2009-01-01

    Samples of human blood plasma were irradiated with the laser beam (lamda=633 nm, P=13 mW, t=20 min) in vitro. In experimental and control (incubated in the dark) samples the complement hemolytic activity was measured. Laser irradiation had minor influence on the duration of lag-period and the rate of complement-dependent hemolysis via classical and alternative pathways; it also did not alter the functional activity of factor B, components C2 and C3. Nevertheless laser irradiation effect was seen in essential reduction of a bystander lysis coefficient. This new fact can elucidate some aspects of the clinical effectiveness of the blood laser irradiation.

  12. Time Dependent Tunneling in Laser Irradiated Scanning Tunneling Microscope Junction

    Science.gov (United States)

    Park, Sookyung Hur

    A principal motivation for the studies reported in this thesis was to obtain a theoretical explanation for the experimental results obtained by Nguyen et al. (1989) to determine the traversal time of an electron tunneling through a quantum mechanical barrier in a laser irradiated STM junction. The work therefore focused on the calculation of tunneling in a time-dependent oscillating barrier, and more specifically on the inelastic contributions to the tunneling current. To do so the kinetic formalism for tunneling was modified and extended to calculate inelastic processes in an irradiated tunneling junction. Furthermore, there is significant absorption of power from the laser beam in the junction electrodes resulting in thermal effects which can influence the tunneling. Extensive analysis of the spatial and temporal temperature distributions was first done for a realistic model of the diode emitter and anode using the Green function method. Specifically we considered (i) thermal effects due to surface heating of the absorbed laser radiation, (ii) the thermoelectric emf produced in the junction due to differential heating, and (iii) resistive and Thomson heat produced in the junction by laser induced currents. Using first-order time-dependent perturbation theory we also (iv) calculated the inelastic tunneling current due to a time dependent oscillating barrier produced by the antenna geometry of the STM junction. Lastly, we (v) formulated photo-assisted tunneling due to the electron -photon interaction in the junction using the second-quantization formalism. Although quite significant results were obtained for the tunneling current density as a function of frequency, gap distance and other junction parameters which gave insights into important features of the Nguyen et al. experiment (and tunneling characteristics of an irradiated STM in general), no single expression was derived or calculated results obtained which explains or fits all their observed data, or

  13. Degradation of shear stiffness of Nomex honeycomb sandwich panel in laser irradiation

    Science.gov (United States)

    Wang, Jiawei; Jiang, Houman; Wu, Lixiong; Zhu, Yongxiang; Wei, Chenghua; Ma, Zhiliang; Wang, Lijun

    2017-05-01

    Based on the overhanging beam three-point bending method, the experimental system was set up to measure the variety of shear stiffness of Nomex honeycomb sandwich panel in laser irradiation. The shear stiffness of the specimens under different laser power density was measured. The result shows that the thermal effect during the laser irradiation leads to the degradation of mechanical properties of Nomex honeycomb sandwich panel. High temperature rise rate in the specimen is another main reason for the shear stiffness degeneration. This research provides a reference for the degradation of mechanical properties of composite materials in laser irradiation and proposes a new method for the study of laser interaction with matter.

  14. LASER PHYSICS: Formation of XeCl excimer molecules as a result of mixing of gas streams excited by a continuous discharge

    Science.gov (United States)

    Mikhkel'soo, V. T.; Treshchalov, A. B.; Peét, V. É.; Yalviste, É. Kh; Belokon', A. A.; Braĭnin, B. I.; Khritov, K. M.

    1987-07-01

    A longitudinal continuous discharge in two independent supersonic gas streams, which were subsequently mixed, was used for nonequilibrium electronic excitation of components undergoing reactions and emitting chemiluminescence. Formation of XeCl excimer molecules as a result of mixing of excited He:Xe = 95:5 and He:HCl(Cl2) = 99:1 streams was deduced from the XeCl* fluorescence spectra (B→X and C→A bands). The steady-state concentration of the XeCl molecules in B and C states determined in the mixing region was ~1010 cm-3 when the pump power was 50 W, so that the efficiency of conversion of the input electrical energy into the excimer fluorescence was ~1%.

  15. Seven year follow-up after advanced surface ablation with excimer laser for treatment of myopia: Long-term outcomes of cooling PRK and LASEK

    DEFF Research Database (Denmark)

    Hansen, Rasmus Søgaard; Lyhne, Niels; Grauslund, Jakob

    , Odense University Hospital. Inclusion criteria: Age 20-50 years at time of surgery, pre-operative CDVA ≤ 0.10 (logMAR) and no other ocular conditions than myopia with or without astigmatism of maximum 3 D. Exclusion criteria: Pregnancy and eyes having undergone re-treatment. A MEL80 flying-spot excimer......, corneal densitometry and patient satisfaction, although the long-term predictability of cPRK seemed better. Financial Disclosures: None...

  16. The intravenous laser blood irradiation in chronic pain and fibromyalgia.

    Science.gov (United States)

    Momenzadeh, Sirous; Abbasi, Mohammadzaki; Ebadifar, Asghar; Aryani, Mohammadreza; Bayrami, Jafar; Nematollahi, Fatemeh

    2015-01-01

    Intravenous laser blood irradiation was first introduced into therapy by the Soviet scientists EN.Meschalkin and VS.Sergiewski in 1981. Originally this method was developed for the treatment of cardiovascular diseases. Improvement of rheologic properties of the blood as well as improvement of microcirculation and reduction of the area of infarction has been proved. Further, reduction of dysrhythmia and sudden cardiac death was achieved. At first, only the Helium-Neon laser (632.8 nm) was used in this therapy. For that, a power of 1-3mW and a period of exposure of 20-60 minutes were applied. The treatments were carried out once or twice a day up to ten appointments in all1. In the years after, many, and for the most part Russian studies showed that helium-neon laser had various effects on many organs and on the hematologic and immunologic system. The studies were published mainly in Russian which were little known in the West because of decades of political separation, and were regarded with disapproval. Besides clinical research and application for patients, the cell biological basis was developed by the Estonian cell biologist Tiina Karu at the same time. An abstract is to be found in her work "The Science of Low-Power Laser-Therapy"

  17. Wound healing after irradiation of bone tissues by Er:YAG laser

    Science.gov (United States)

    Watanabe, Hisashi; Yoshino, Toshiaki; Aoki, Akira; Ishikawa, Isao

    1997-05-01

    Clinical applications of Er:YAG laser are now developing in periodontics and restorative dentistry. To date, there have been few studies indicating safety criteria for intraoral usage of the Er:YAG laser. The present study examined the effects of the Er:YAG laser on bone tissues, supposing mis- irradiation in the oral cavity during dental application, especially periodontal surgery. The experiments were performed using the newly-developed Er:YAG laser apparatus equipped with a contact probe. In experiment 1, 10 pulses of laser irradiation were administered to the parietal bone of a rat at 50, 150 and 300 mJ/pulse with and without water irrigation, changing the irradiation distance to 0, 5, 10 and 20 mm, respectively. As a control, electric knife was employed. Macroscopic and SEM observations of the wound surface were performed. In experiment 2, laser irradiation in a straight line was performed at 150 mJ/pulse, 1- pps and 0,5, 10 mm irradiation distance without water irrigation. Wound healing was observed histologically at 0, 3, 7, 14 and 28 days after laser irradiation and compared with that of the control. Non-contact irradiation by Er:YAG laser did not cause severe damage to the parietal bone tissue under water irrigation. Contact irradiation induced a limited wound, however, new bone formation was observed 28 days after laser irradiation, while osseous defect with thermal degenerative tissue remained at the control site. In conclusion, irradiation with an Er:YAG laser would not cause severe damage to surrounding bone tissues in the oral cavity when used within the usual power settings for dental treatment. Furthermore, this laser may be applicable for osseous surgery because of its high ablation efficiency and good wound healing after irradiation.

  18. Effects of KTP laser irradiation, diode laser, and LED on tooth bleaching: a comparative study.

    Science.gov (United States)

    Zhang, Chengfei; Wang, Xiaogu; Kinoshita, Jun-Ichiro; Zhao, Baohong; Toko, Teruo; Kimura, Yuichi; Matsumoto, Koukichi

    2007-04-01

    This in vitro study examines the whitening efficacy of a light-emitting diode (LED), a diode laser, and a KTP laser irradiation in dental bleaching by analyzing the change in color achieved from the treatment, the temperature increase induced in the pulpal cavity, as well as enamel microhardness measurement after treatment. Bleaching techniques achieved significant advances with the use of coherent or incoherent radiation sources to activate the bleaching agents. A hydrogen peroxide bleaching agent, Hi-Lite, was stimulated with an LED, a 980-nm diode laser at 0.8 W, or a 532-nm KTP laser at 1.0 W for 30 sec on 64 extracted human incisors. During irradiation, the temperature in the pulpal cavity was monitored. The color change was evaluated using the CIE L*a*b* color space measurement system, and Vikers enamel microhardness was tested after treatment. A mean total color difference value (DeltaE*) greater than 5.0 was obtained in each group. KTP-laser-induced bleaching gave a significantly higher DeltaL* (8.35) after treatment (p 0.01). Mean maximal pulpal temperature rise was 2.95 degrees C for LED, 3.76 degrees C for KTP laser, and 7.72 degrees C for diode laser, respectively. The results of this study suggest that KTP laser is effective at providing brighter teeth. According to the conditions used in this study, the LED and KTP laser induced a safer pulpal temperature increase when assisted with Hi-Lite bleaching gel.

  19. Defects induced in Yb3+/Ce3+ co-doped aluminosilicate fiber glass preforms under UV and γ-ray irradiation

    DEFF Research Database (Denmark)

    Chiesa, Mario; Mattsson, Kent Erik; Taccheo, Stefano

    2014-01-01

    A set of Ce-/Yb-co-doped silica optical fiber preform cores, differing in terms of dopant concentrations are studied by Electron Paramagnetic Resonance (EPR) spectroscopy before and after irradiation of the samples with excimer UV laser light and γ-rays. Evidence of Yb3+ clustering in the case...

  20. An inverse problem in estimating the laser irradiance and thermal damage in laser-irradiated biological tissue with a dual-phase-lag model.

    Science.gov (United States)

    Yang, Yu-Ching; Lee, Haw-Long; Chang, Win-Jin; Chen, Wen-Lih

    2017-03-01

    The aim of this study is to solve an inverse heat conduction problem to estimate the unknown time-dependent laser irradiance and thermal damage in laser-irradiated biological tissue from the temperature measurements taken within the tissue. The dual-phase-lag model is considered in the formulation of heat conduction equation. The inverse algorithm used in the study is based on the conjugate gradient method and the discrepancy principle. The effect of measurement errors and measurement locations on the estimation accuracy is also investigated. Two different examples of laser irradiance are discussed. Results show that the unknown laser irradiance and thermal damage can be predicted precisely by using the present approach for the test cases considered in this study.

  1. Laser Induced Surface Chemical Epitaxy

    Science.gov (United States)

    1990-03-01

    eV was observed in this study for DMTe adlay ,,;s annealed at 423 K, a condition which is likely to produce a metallic Te adlayer , the Cd 3d5 /2...processes were studied by irradiating the adlayer with ultraviolet photons produced by a Questek excimer laser. These were introduced into the deposition...binding energy observed for similarly annealed DMCd adlayers was 405.1 eV. Based on room temperature measurements and ligand shift and electronegativity

  2. Femtosecond laser irradiation of the fluorescent molecules-loaded poly(lactic-co-glycolic acid)

    Science.gov (United States)

    Umemoto, Taiga; Shibata, Akimichi; Terakawa, Mitsuhiro

    2017-09-01

    Molecular release from scaffolds is desired for tailoring cell-compatible tissue engineering. Several methods have been proposed to control molecular release, such as annealing, plasma treatment, and laser processing. In this study, we describe the alteration of Rhodamine B (RhB)-loaded poly(lactic-co-glycolic acid) (PLGA) after femtosecond laser irradiation, which was evaluated on the basis of the water absorption and mass remaining. Fluorescence measurement of released RhB molecules revealed the acceleration of the molecular release upon 400-nm laser irradiation, whereas 800-nm laser irradiation did not induce a comparable degree of change compared with non-irradiated samples. The result of the water absorption measurement indicates that the large amount of water absorption of 400-nm laser-irradiated PLGA sample may accelerate the diffusion of the loaded molecules through absorbing water, which resulted in the faster molecular release.

  3. Evolution of Oxygen Deficiency Center on Fused Silica Surface Irradiated by Ultraviolet Laser and Posttreatment

    Directory of Open Access Journals (Sweden)

    Hai-Bing Lü

    2014-01-01

    Full Text Available Evolution of oxygen deficiency centers (ODCs on a fused silica surface irradiated using a 355 nm ultraviolet (UV laser beam in both vacuum and atmospheric conditions was quantitatively studied using photoluminescence and X-ray photoelectron spectroscopy. When the fusedsilica surface was exposed to the UV laser in vacuum, the laser damage threshold was decreased whereas the concentration of the ODCs was increased. For the fuse silica operated under the high power lasers, creation of ODCs on their surface resulted from the UV laser irradiation, and this is more severe in a high vacuum. The laser fluence and/or laser intensity have significant effects on the increase of the ODCs concentration. The ODCs can be effectively repaired using postoxygen plasma treatment and UV laser irradiation in an excessive oxygen environment. Results also demonstrated that the “gain” and “loss” of oxygen at the silica surface is a reversible and dynamic process.

  4. Charged-particle acceleration through laser irradiation of thin foils at Prague Asterix Laser System

    Science.gov (United States)

    Torrisi, Lorenzo; Cutroneo, Maria; Cavallaro, Salvatore; Musumeci, Paolo; Calcagno, Lucia; Wolowski, Jerzy; Rosinski, Marcin; Zaras-Szydlowska, Agnieszka; Ullschmied, Jiri; Krousky, Eduard; Pfeifer, Miroslav; Skala, Jiri; Velyhan, Andreiy

    2014-05-01

    Thin foils, 0.5-50 μm in thickness, have been irradiated in vacuum at Prague Asterix Laser System in Prague using 1015-16 W cm-2 laser intensity, 1315 nm wavelength, 300 ps pulse duration and different focal positions. Produced plasmas from metals and polymers films have been monitored in the forward and backward directions. Ion and electron accelerations have been investigated by using Thomson parabola spectrometer, x-ray streak camera, ion collectors and SiC semiconductor detectors, the latter employed in time-of-flight configuration. Ion acceleration up to about 3 MeV per charge state was measured in the forward direction. Ion and electron emissions were detected at different angles as a function of the irradiation conditions.

  5. Low-power irradiation of Er: YAG laser using broom-type probe for dentine hypersensitivity

    Science.gov (United States)

    Watanabe, Hisashi; Kataoka, Kenzo; Iwami, Hideo; Shinoki, Takeshi; Okagami, Yoshihide; Ishikawa, Isao

    2003-06-01

    This study was performed to examine the possibility of Er:YAG laser for dentine hypersensitivity treatment using a novel laser probe; broom type probe. The morphological change of dentinal tubules of bovine dentine plate after low power laser irradiation (5 or 10 mJ, 10 pps) or boiling was observed by SEM. Fifty teeth from 13 patients aged 31-54 years with complain of dentine hypersensitivity were treated by laser irradiation at 25-35 mJ, 10 pps using the broomed probe. Clinical effect of laser irradiation was verified by the examination of sensitivity rate to cold water, air blow and mechanical stimuli of explorer at before, immediately after, and 1,3,5 and 12 weeks after laser irradiation. The ratio of blockade and reduction of dentinal tubules after laser irradiation was 16-61%. The accumulation due to vaporization of water in dentinal tubules and degeneration or coagulation of organinc elements at the site of blockade and reduction were superficially described by SEM. Remarkable clinical improvement of dentine hypersensitivity by laser was admitted but relapse was also detected partially. The present study suggests low power irradiation of Er:YAG laser would be effective on dentine hypersensitivity, but a partial limitation of laser treatment for dentine hypersensitivity may be exited.

  6. Microscopic mechanism analysis on rheology and harmful effects by low level laser irradiation of blood

    Science.gov (United States)

    Zhang, Lili; Zhang, Hongwei; Zhang, Canbang; Xu, Lin; Zhou, Lingyun

    2012-03-01

    The microscopic mechanism on rheology and harmful effects of low level laser irradiation of blood were analyzed by Quantum theory. The analyzed results showed that laser may resolve fibrin clot, then the property of rheology of blood is improved; and some bonds of the cholesterol in blood were fractured by low level laser (abbreviate LLL) , hence the ratio of membrane cholesterol/membrane phosp-hatide of red cell were reduced, then blood circulation can be improved. So low level laser irradiated blood possess the action of mending rheology of blood. But our analyses point out that LLL may cut off some bonds of living biomolecule (e.g. Protein molecule) yet, then some normal protein may emerged denaturation, so normal cells in blood may be destroyed, namely low level laser irradiation can produce the harmful effects on blood. This paper criticized the viewpoint intravascular low level laser irradiation (abbreviate ILLLI) have not action.

  7. Low-power laser irradiation enhance macrophage phagocytic capacity through Src activation

    Science.gov (United States)

    Wu, Shengnan; Zhou, Feifan; Xing, Da

    2012-03-01

    Phagocytosis and subsequent degradation of pathogens by macrophages play a pivotal role in host innate immunity in mammals. Laser irradiation has been found to produce photobiological effects with evidence of interference with organic functions. In this study, we focused our attention on the effects of He-Ne laser on the phagocytic activity of macrophages, the regulation mechanism of phagocytosis was also discussed. Our results indicated that Low-power laser irradiation can enhance the phagocytosis of macrophage through activation of Src.

  8. Low power laser irradiation does not affect the generation of signals in a sensory receptor

    Energy Technology Data Exchange (ETDEWEB)

    Lundeberg, T.; Zhou, J.

    1989-01-01

    The effect of low power Helium-Neon (He-Ne) and Gallium-Arsenide (Ga-As) laser on the slowly adapting crustacean stretch receptor was studied. The results showed that low power laser irradiation did not affect the membrane potential of the stretch receptor. These results are discussed in relation to the use of low power laser irradiation on the skin overlaying acupuncture points in treatment of pain syndrome.

  9. HYDROGENATED TARGETS FOR HIGH ENERGY PROTON GENERATION FROM LASER IRRADIATING IN TNSA REGIME

    OpenAIRE

    Lorenzo Torrisi; Mariapompea Cutroneo; Jiri Ullschmied

    2015-01-01

    Polyethylene-based thin targets were irradiated in high vacuum in the TNSA (Target Normal Sheath Acceleration) regime using the PALS laser facility. The plasmais produced in forward direction depending on the laser irradiation conditions, the composition of the target and the geometry. The optical properties of the polymer use nanostructures to increase the laser absorbance. Proton kinetic energies from hundreds keV up to about 3MeV were obtained for optimal conditions enhancing the electric ...

  10. Characterization of thin films for TNSA laser irradiation

    Science.gov (United States)

    Cutroneo, M.; Torrisi, L.; Calcagno, L.; Torrisi, A.

    2014-04-01

    Thin films of hydrogenated materials have been prepared, at Messina University, to be irradiated by high intensity lasers in TNSA conditions in order to accelerate high energetic protons with high yield and directivity. Film composition was based on polymers, metals, multilayers and nanostructures embedded in polymers. The preparation methods were different and based on different deposition techniques. High vacuum condition, nanostructures, carbon nanotubes, metal oxides and hydrates, were employed. Targets were prepared as a sheath with thicknesses ranging between 0.1 and 100 μm and surfaces of the order of some cm2. Targets were characterized in terms of thickness, roughness, surface morphology, colours and absorption coefficient in the wavelength range 250 nm-1300 nm. Peculiar attention is given to samples with high absorption coefficient in order to improve the energy transfer from the coherent light to the generated plasma.

  11. Histological observation on dental hard tissue irradiated by ultrashort-pulsed laser

    Science.gov (United States)

    Uchizono, Takeyuki; Awazu, Kunio; Igarashi, Akihiro; Kato, Junji; Hirai, Yoshito

    2006-04-01

    In the field of dentistry, effectiveness of USPL irradiation is researched because USPL has less thermal side effect to dental hard tissue. In this paper, we observed morphological change and optical change of dental hard tissue irradiated by USPL for discussing the safety and effectiveness of USPL irradiation to dental hard tissues. Irradiated samples were crown enamel and root dentin of bovine teeth. Lasers were Ti:sapphire laser, which had pulse duration (P d)of 130 fsec and pulse repetition rate (f) of 1kHz and wavelength (l) of 800nm, free electron laser (FEL), which had P d of 15 μsec and f of 10Hz and wavelength of 9.6μm, and Er:YAG laser, which had P d of 250 μsec and f of 10Hz and wavelength of 2.94μm. After laser irradiation, the sample surfaces and cross sections were examined with SEM and EDX. The optical change of samples was observed using FTIR. In SEM, the samples irradiated by USPL had sharp and accurate ablation with no crack and no carbonization. But, in FEL and Er:YAG laser, the samples has rough ablation with crack and carbonization. It was cleared that the P/Ca ratio of samples irradiated by USPL had same value as non-irradiated samples. There was no change in the IR absorption spectrum between samples irradiated by USPL and non-irradiated sample. But, they of samples irradiated by FEL and Er:YAG laser, however, had difference value as non-irradiated samples. These results showed that USPL might be effective to ablate dental hard tissue without thermal damage.

  12. Ultraviolet pulsed laser irradiation of multi-walled carbon nanotubes in nitrogen atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Pérez del Pino, Ángel, E-mail: aperez@icmab.es; Cabana, Laura; Tobias, Gerard [Instituto de Ciencia de Materiales de Barcelona, Consejo Superior de Investigaciones Científicas (ICMAB-CSIC), Campus UAB, 08193 Bellaterra (Spain); György, Enikö [Instituto de Ciencia de Materiales de Barcelona, Consejo Superior de Investigaciones Científicas (ICMAB-CSIC), Campus UAB, 08193 Bellaterra (Spain); National Institute for Lasers, Plasma and Radiation Physics, P. O. Box MG 36, 76900 Bucharest V (Romania); Ballesteros, Belén [ICN2—Institut Catala de Nanociencia i Nanotecnologia, Campus UAB, 08193 Bellaterra, Barcelona (Spain)

    2014-03-07

    Laser irradiation of randomly oriented multi-walled carbon nanotube (MWCNT) networks has been carried out using a pulsed Nd:YAG UV laser in nitrogen gas environment. The evolution of the MWCNT morphology and structure as a function of laser fluence and number of accumulated laser pulses has been studied using electron microscopies and Raman spectroscopy. The observed changes are discussed and correlated with thermal simulations. The obtained results indicate that laser irradiation induces very fast, high temperature thermal cycles in MWCNTs which produce the formation of different nanocarbon forms, such as nanodiamonds. Premelting processes have been observed in localized sites by irradiation at low number of laser pulses and low fluence values. The accumulation of laser pulses and the increase in the fluence cause the full melting and amorphization of MWCNTs. The observed structural changes differ from that of conventional high temperature annealing treatments of MWCNTs.

  13. Formation of TiO2 film with lower electrical resistance by aerosol beam and fiber laser irradiation

    Science.gov (United States)

    Shinonaga, T.; Tsukamoto, M.; Takahashi, M.; Fujita, M.; Abe, N.

    2013-07-01

    Titanium dioxide (TiO2) is a functional ceramic with unique photoconductive and photocatalytic properties. In our previous study, a TiO2 film was formed by aerosol beam irradiation. The films were darkened by femtosecond laser irradiation in air. Then electrical resistance of the darkened area on the film decreased. The heating process is also a useful method to vary the TiO2 film property. Local heating can be performed by using a continuous wave (CW) fiber laser. In this study, the film was irradiated with a commercial CW fiber laser in vacuum. Laser irradiated area on the film was also darkened after CW fiber laser irradiation. The electrical resistance of the darkened area on the films was decreased as laser fluence was increased. Electrical resistance of the darkened area after CW fiber laser irradiation in vacuum was much smaller than that after femtosecond laser irradiation.

  14. Effect of laser irradiation on iron carbide nanoparticles produced by laser ablation in ethanol

    Science.gov (United States)

    Amagasa, S.; Nishida, N.; Kobayashi, Y.; Yamada, Y.

    2017-11-01

    Laser ablation in liquid is a useful mean of producing nanoparticles, based on both laser ablation (LA) and laser irradiation (LI) effects. In order to investigate the mechanism by which iron carbide nanoparticles are generated in ethanol, iron carbide nanoparticles were produced by LA of an iron block in a flowing ethanol solvent, which enabled separation and collection of the nanoparticles immediately following the process. These same particles were subsequently subjected to LI while suspended in stagnant ethanol. Both the LA and LA/LI nanoparticles were assessed using Mössbauer spectroscopy, X-ray diffraction and transmission electron microscopy. LA in flowing ethanol was found to produce nanoparticles composed of cementite (Fe3C) and other metastable iron carbides with an average size of 16 nm, dispersed in amorphous carbon. LI of the LA nanoparticles suspended in ethanol increased the particle size to 38 nm and changed the composition to pure Fe3C.

  15. Role of laser fluence in protein synthesis of cultured DRG neurons following low-level laser irradiation

    Science.gov (United States)

    Zheng, Liqin; Qiu, Caimin; Wang, Yuhua; Zeng, Yixiu; Yang, Hongqin; Zhang, Yanding; Xie, Shusen

    2014-11-01

    Low-level lasers have been used to relieve pain in clinical for many years. But the mechanism is not fully clear. In animal models, nitric oxide (NO) has been reported involving in the transmission and modulation of nociceptive signals. So the objective of this study was to establish whether low-level laser with different fluence could stimulate the production of nitric oxide synthese (NOS), which produces NO in cultured primary dorsal root ganglion neurons (DRG neurons). The primary DRG neurons were isolated from healthy Sprague Dawley rats (8-12 weeks of age) and spread on 35 mm culture dishes specially used for confocal microscopy. 24 hours after spreading, cells were irradiated with 658 nm laser for two consecutive days at the energy density of 20, 40, 60 and 80 mJ·cm-2 respectively. Control groups were not exposed to the laser, but were kept under the same conditions as the irradiated ones. The synthesis of NOS after laser irradiation was detected by immunofluorescence assay, and the changes of NOS were evaluated using confocal microscopy and Image J software. The results showed that all the laser fluence could promote the production of NOS in DRG neurons, especially the 60 mJ·cm-2 . These results demonstrated that low-level laser irradiation could modify protein synthesis in a dose- or fluence- dependent manner, and indicated that low-level laser irradiation might achieve the analgesic effect through modulation of NO production.

  16. Low-intensity laser irradiation improves skin circulation in patients with diabetic microangiopathy.

    Science.gov (United States)

    Schindl, A; Schindl, M; Schön, H; Knobler, R; Havelec, L; Schindl, L

    1998-04-01

    Diabetic foot problems due to angiopathy and neuropathy account for 50% of all nontraumatic amputations and constitute a significant economic burden to society. Low-intensity laser irradiation has been shown to induce wound healing in conditions of reduced microcirculation. We investigated the influence of low-intensity laser irradiation by means of infrared thermography on skin blood circulation in diabetic patients with diabetic microangiopathy. Thirty consecutive patients with diabetic ulcers or gangrenes and elevated levels of glycosylated hemoglobin were randomized by blocks of two to receive either a single low-intensity laser irradiation with an energy density of 30 J/cm2 or a sham irradiation over both forefoot regions in a double-blind placebo-controlled clinical study. Skin blood circulation as indicated by temperature recordings over the forefoot region was detected by infrared thermography. After a single transcutaneous low-intensity laser irradiation, a statistically significant rise in skin temperature was noted (P diabetic microangiopathy.

  17. Bactericidal Effects of Diode Laser Irradiation on Enterococcus faecalis Using Periapical Lesion Defect Model

    Science.gov (United States)

    Nagayoshi, Masato; Nishihara, Tatsuji; Nakashima, Keisuke; Iwaki, Shigetsugu; Chen, Ker-Kong; Terashita, Masamichi; Kitamura, Chiaki

    2011-01-01

    Objective. Photodynamic therapy has been expanded for use in endodontic treatment. The aim of this study was to investigate the antimicrobial effects of diode laser irradiation on endodontic pathogens in periapical lesions using an in vitro apical lesion model. Study Design. Enterococcus faecalis in 0.5% semisolid agar with a photosensitizer was injected into apical lesion area of in vitro apical lesion model. The direct effects of irradiation with a diode laser as well as heat produced by irradiation on the viability of microorganisms in the lesions were analyzed. Results. The viability of E. faecalis was significantly reduced by the combination of a photosensitizer and laser irradiation. The temperature caused by irradiation rose, however, there were no cytotoxic effects of heat on the viability of E. faecalis. Conclusion. Our results suggest that utilization of a diode laser in combination with a photosensitizer may be useful for clinical treatment of periapical lesions. PMID:21991489

  18. The effect of green laser light irradiation on whole blood platelets.

    Science.gov (United States)

    Gresner, P; Watała, C; Sikurová, L

    2005-04-04

    Laser light irradiation is assumed to have biostimulating effect in various cell types. However, there is still a lack of information concerning response of blood platelets to laser light irradiation. In our study we used flow cytometry to monitor the effect of a green Nd-YAG laser (532 nm, 30 mW) irradiation on platelet activation and the expression of activated GPIIbIIIa glycoprotein complex (fibrinogen receptor) of whole blood platelets stained with fluorolabelled monoclonal antibody PAC-1. Also the formation of platelet microparticles and aggregates in a population of whole blood platelets following such irradiation was evaluated. Effects of laser light on platelet activation and reactivity were significant over a wide range of applied energies (plaser light energies (18 and 54 J) increased platelet activation, the irradiation with a high-energy laser light (108 J) resulted in depressed platelet reactivity and attenuated platelet response to activators. In addition, laser light irradiation had significant influence on the formation of platelet microparticles in either resting (plaser light irradiation significantly increased the formation of platelet aggregates both in resting (plaser light irradiation of blood platelets can trigger signal transduction, leading to platelet activation, as well as the gradual loss of natural platelet reactivity and platelets' ability to respond to activating agents.

  19. Relevance of laser irradiance threshold in the induction of alkaline phosphatase in human osteoblast cultures.

    Science.gov (United States)

    Haxsen, V; Schikora, D; Sommer, U; Remppis, A; Greten, J; Kasperk, C

    2008-10-01

    Induction of matrix synthesis by low-level laser has been demonstrated extensively. However, the question of dose- or power intensity-dependency is under-investigated. To address this issue we chose human osteoblast cell cultures and measured their alkaline phosphatase (ALP) activity after laser irradiation. The cell cultures were irradiated periodically by 690 nm radiation via optical transmission fiber-based laser needles, reaching into the culture dishes. The osteoblasts showed no induction of ALP activity when we used a single laser needle stimulation with a laser irradiance of 51 mW/cm(2), an increase of approximately 43% at 102 mW/cm(2) irradiance (two needles per well) and a ninefold increase at 204 mW/cm(2) irradiance (four needles per well), leaving the temperature of the culture medium unaffected. We concluded that the osteoblastic response in ALP activity to a laser stimulus shows a logarithmic relationship, with a distinct threshold, rather than a linear dose-dependency. Secondly, the laser irradiance, rather than the dose, is relevant for the impact of the laser.

  20. Protective effect of 940 nm laser on gamma-irradiated mice.

    Science.gov (United States)

    Efremova, Yulia; Sinkorova, Zuzana; Navratil, Leos

    2015-02-01

    The purpose of this study was to investigate the radioprotective features of 940 nm laser on the life span of mice, and absolute counts of blood cells and their proportions in gamma-irradiated mice. An important feature of laser light is activation of mitotic division and differentiation of cells, which may be useful in activation of hematopoiesis in gamma-irradiated organisms. Mice were randomly assigned to 11 groups according to the type(s) of influence. Generally, mice were irradiated in three different ways: with laser at different fluences, with gamma irradiation, or by combination of laser at different fluences and gamma irradiation in a different order. Mice were treated with 940 nm laser at 3, 12, or 18 J/cm(2) and/or a lethal dose of gamma irradiation (8.7 Gy). Each group was randomly subdivided into two subgroups, in which the life span of the mice and blood cell counts (on 12th and 45th day after gamma irradiation) were analyzed. Laser (940 nm) at a fluence of 3 J/cm(2) significantly prolonged the life span of gamma-irradiated mice (pblood cells, lymphocytes, and neutrophils were higher on day 12 than in the gamma group. On day 45 after gamma irradiation, some signs of hematopoiesis repair were found in blood. There were no significant differences in counts of erythrocytes, monocytes, neutrophils, or the proportion of neutrophils between this group and the control group. In summary, 940 nm laser at a fluence of 3 J/cm(2) demonstrates radioprotective features in an experiment with lethally irradiated mice. Mechanisms responsible for this effect will be investigated in further studies.

  1. Effect of semiconductor GaAs laser irradiation on pain perception in mice

    Energy Technology Data Exchange (ETDEWEB)

    Zarkovic, N.; Manev, H.; Pericic, D.; Skala, K.; Jurin, M.; Persin, A.; Kubovic, M.

    1989-01-01

    The influence of subacute exposure (11 exposures within 16 days) of mice to the low power (GaAs) semiconductive laser-stimulated irradiation on pain perception was investigated. The pain perception was determined by the latency of foot-licking or jumping from the surface of a 53 degrees C hot plate. Repeated hot-plate testing resulted in shortening of latencies in both sham- and laser-irradiated mice. Laser treatment (wavelength, 905 nm; frequency, 256 Hz; irradiation time, 50 sec; pulse duration, 100 nsec; distance, 3 cm; peak irradiance, 50 W/cm2 in irradiated area; and total exposure, 0.41 mJ/cm2) induced further shortening of latencies, suggesting its stimulatory influence on pain perception. Administration of morphine (20 mg/kg) prolonged the latency of response to the hot plate in both sham- and laser-irradiated mice. This prolongation tended to be lesser in laser-irradiated animals. Further investigations are required to elucidate the mechanism of the observed effect of laser.

  2. Targeted increase in cerebral blood flow by transcranial near-infrared laser irradiation.

    Science.gov (United States)

    Uozumi, Yoichi; Nawashiro, Hiroshi; Sato, Shunichi; Kawauchi, Satoko; Shima, Katsuji; Kikuchi, Makoto

    2010-08-01

    Brain function is highly dependent on cerebral blood flow (CBF). The precise mechanisms by which blood flow is controlled by NIR laser irradiation on the central nervous system (CNS) have not been elucidated. In this study, we examined the effect of 808 nm laser diode irradiation on CBF in mice. We examined the effect of NIR irradiation on CBF at three different power densities (0.8, 1.6 and 3.2 W/cm(2)) and directly measured nitric oxide (NO) in brain tissue during NIR laser irradiation using an amperometric NO-selective electrode. We also examined the contribution of NO and a neurotransmitter, glutamate, to the regulation of CBF by using a nitric oxide synthase (NOS) inhibitor, N(g)-nitro-L-arginine methyl ester hydrochloride (L-NAME), and an N-methyl-D-aspartate (NMDA) receptor blocker, MK-801, respectively. We examined the change in brain tissue temperature during NIR laser irradiation. We also investigated the protection effect of NIR laser irradiation on transient cerebral ischemia using transient bilateral common carotid artery occlusion (BCCAO) in mice. We showed that NIR laser irradiation (1.6 W/cm(2) for 15-45 minutes) increased local CBF by 30% compared to that in control mice. NIR laser irradiation also induced a significant increase in cerebral NO concentration. In mice that received L-NAME, NIR laser irradiation did not induce any increase in CBF. Mice administered MK-801 showed an immediate increase but did not show a delayed additional increase in local CBF. The increase in brain tissue temperature induced by laser irradiation was estimated to be as low as 0.8 degrees C at 1.6 W/cm(2), indicating that the heating effect is not a main mechanism of the CBF increase in this condition. Pretreatment with NIR laser irradiation improved residual CBF and reduced the numbers of apoptotic cells in the hippocampus. Our data suggest that NIR laser irradiation is a promising experimental and therapeutic tool in the field of cerebral circulation research. (c

  3. [Effects of Nd: YAG laser irradiation on the root surfaces and adhesion of Streptococcus mutans].

    Science.gov (United States)

    Yuanhong, Li; Zhongcheng, Li; Mengqi, Luo; Daonan, Shen; Shu, Zhang; Shu, Meng

    2016-12-01

    This study aimed to evaluate the effects of treatment with different powers of Nd: YAG laser irradiation on root surfaces and Streptococcus mutans (S. mutans) adhesion. Extracted teeth because of severe periodontal disease were divided into the following four groups: control group, laser group 1, laser group 2, and laser group 3. After scaling and root planning, laser group 1, laser group 2, and laser group 3 were separately treated with Nd: YAG laser irradiation (4/6/8 W, 60 s); however, the control group did not receive the treatment. Scanning electron microscopy (SEM) was used to determine the morphology. S. mutans were cultured with root slices from each group. Colony forming unit per mL (CFU·mL⁻¹) was used to count and compare the amounts of bacteria adhesion among groups. SEM was used to observe the difference of bacteria adhesion to root surfaces between control group (scaling) and laser group 2 (6 W, 60 s), thereby indicating the different bacteria adhesions because of different treatments. Morphology alterations indicated that root surfaces in control group contain obvious smear layer, debris, and biofilm; whereas the root surfaces in laser group contain more cracks with less smear layer and debris. The bacteria counting indicated that S. mutans adhesion to laser group was weaker than that of control group (P0.05) was observed. Morphology alterations also verified that S. mutans adhesion to laser group 2 (6 W, 60 s) was weaker than that of control group (scaling). This study demonstrated that Nd: YAG laser irradiation treatment after scaling can reduce smear layer, debris, and biofilm on the root surfaces as compared with conventional scaling. The laser treatment reduces the adhesion of S. mutans as well. However, Nd: YAG laser irradiation can cause cracks on the root surfaces. In this experiment, the optimum laser power of 6 W can thoroughly remove the smear layer and debris, as well as relatively improve the control of thermal damagee.

  4. Nanofoaming in the surface of biopolymers by femtosecond pulsed laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gaspard, S.; Oujja, M.; Nalda, R. de [Rocasolano Institute of Physical Chemistry, CSIC, Serrano 119, 28006 Madrid (Spain); Abrusci, C.; Catalina, F. [Institute of Polymer Science and Technology, CSIC, Juan de la Cierva 3, 28006 Madrid (Spain); Banares, L. [Department of Physical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040 Madrid (Spain); Lazare, S. [Institut des Sciences Moleculaires UMR 5255, Universite de Bordeaux 1, Talence (France); Castillejo, M. [Rocasolano Institute of Physical Chemistry, CSIC, Serrano 119, 28006 Madrid (Spain)], E-mail: marta.castillejo@iqfr.csic.es

    2007-12-15

    In this work, the nanostructuring induced in femtosecond (fs) laser irradiation of biopolymers is examined in self-standing films of collagen and gelatine. Irradiation by single 90 fs pulses at 800, 400 and 266 nm is shown to result in the formation of a modified layer with submicrometric size structures. The size and uniformity of the observed features are strongly dependent on irradiation wavelength and on the characteristics of the biopolymer (water content and mechanical strength). Examination of the films by laser induced fluorescence serves to assess the chemical modifications induced by laser irradiation, revealing changes in the emission bands assigned to the aromatic amino acid tyrosine and its degradation products. The results are discussed in the framework of a mechanism involving the generation of large free-electron densities, through multiphoton and avalanche ionization, which determine the temperature and stress distribution in the irradiated volume.

  5. The Ablation Properties of CO2 Laser Irradiating to Absorption Media: An In Vitro Study

    Directory of Open Access Journals (Sweden)

    Sajee Sattayut

    2012-01-01

    Full Text Available This study aimed to compare histological affected zone of tissue samples irradiated by defocused CO2 laser at 1, 2, and 3W continuous wave with and without absorption media. The in vitro experiment was conducted in 70 tissue blocks. The samples were randomly allocated into 7 groups: 10 samples each group, namely, the groups irradiated with 1, 2, and 3W, defocused CO2 laser for 5 seconds, the groups irradiated with 1, 2, and 3W, defocused CO2 laser to the absorption media, and the media alone group as a control. Then the samples were stained with Masson’s trichrome and measured the affected borders under light microscope at 10 × 10 magnification. There was no histological alteration in the groups irradiated with the defocused CO2 laser to the absorption media while the groups without using the absorption media showed the tissue alteration by photoablation.

  6. Laser irradiation reduces HIV-1 infection in TZM-bl cells

    CSIR Research Space (South Africa)

    Lugongolo, Masixole Y

    2016-10-01

    Full Text Available HIV-1 epidemic remains a major health challenge. This study explores the effects of low level laser therapy on HIV-1 infected cells. Infection is reduced by irradiation and the mechanism needs to be investigated further....

  7. Controlled reshaping of the front surface of the cornea through its full-area ablation outside of the optical zone with a Gaussian ArF excimer laser beam

    Science.gov (United States)

    Semchishen, A. V.; Semchishen, V. A.

    2014-01-01

    We studied in vitro the response of the topography of the cornea to its full-area laser ablation (the laser beam spot diameter is commensurable with the size of the interface) outside of the central zone with an excimer laser having a Gaussian fluence distribution across the beam. Subject to investigation were the topographically controlled surface changes of the anterior cornea in 60 porcine eyes with a 5 ± 1.25-diopter artificially induced astigmatism, the changes being caused by laser ablation of the stromal collagen in two 3.5-mm-dia. circular areas along the weaker astigmatism axis. Experimental relationships are presented between the actual astigmatism correction and the expected correction for the intact optical zones 1, 2, 3, and 4 mm in diameter. The data for each zone were approximated by the least-squares method with the function d = a + bx. The coefficient b is given with the root-mean-square error. The statistical processing of the data yielded the following results: d = (0.14 ± 0.037)x for the 1-mm-dia. optical zone, (1.10 ± 0.036)x for the 2-mm-dia. optical zone, (1.04 ± 0.020)x for the 3-mm-dia. optical zone, and (0.55 ± 0.04)x for the 4-mm-dia. optical zone. Full astigmatism correction was achieved with ablation effected outside of the 3-mm-dia. optical zone. The surface changes of the cornea are shown to be due not only to the removal of the corneal tissue, but also to the biomechanical topographic response of the cornea to its strain caused by the formation of a dense pseudomembrane in the ablation area.

  8. Low energy laser irradiation treatment for second intention wound healing in horses

    Science.gov (United States)

    Fretz, Peter B.; Li, Zhong

    1992-01-01

    Low energy helium-neon laser irradiation was administered to full thickness skin wounds (3 cm × 3 cm) on the dorsal surface of the metacarpophalangeal/metatarsophalangeal joints and cranial surface of the tarsocrural joints of eight horses. The effects on wound healing were analyzed statistically. There were no differences (p > 0.55) observed in the rate of wound healing between the low energy laser irradiated wounds and the control wounds. There was a significant difference (p fetlock wounds. PMID:17424089

  9. Semiconductor laser irradiation improves root canal sealing during routine root canal therapy

    OpenAIRE

    Su, Dandan; Hu, Xingxue; Wang, Dashan; Cui, Ting; Yao, RuYong; Sun, Huibin

    2017-01-01

    Objective To evaluate the effect of semiconductor laser irradiation on root canal sealing after routine root canal therapy (RCT). Methods Sixty freshly extracted single-rooted human teeth were randomly divided into six groups (n = 10). The anatomic crowns were sectioned at the cementoenamel junction and the remaining roots were prepared endodontically with conventional RCT methods. Groups A and B were irradiated with semiconductor laser at 1W for 20 seconds; Groups C and D were ultrasonically...

  10. Chemiluminescence response of human neutrophils to He-Ne laser irradiation (in vivo and in vitro)

    OpenAIRE

    Schepetkin, I.; Udut, V.; Karpov, A.

    1994-01-01

    He-Ne laser irradiation (0.01-6 J/cm3) of the blood and neutrophile suspension in vitrowas shown to modulate reactive oxygen species (ROS) production in healthy donors. Intravascular laser irradiation of the blood (5 mW, 30 minutes, daily) of the patients with chronic gastric ulcer during first 5 days resulted in increasing stimul-induced ROS production in patients with the low initial chemiluminescence response and its decreasing in patients with the high initial chemiluminescence response.

  11. Influence of powerful laser irradiation on impurity-defect structure of CdTe detector material

    Energy Technology Data Exchange (ETDEWEB)

    Medvid' , A. E-mail: medvid@latnet.lv; Korbutyak, D.V.; Krylyuk, S.G.; Kryuchenko, Yu.V.; Kuznetsov, E.I.; Kupchak, I.M.; Fedorenko, L.L.; Hlidek, P

    2004-09-21

    Photoluminescence spectra of CdTe:Cl crystals were measured at 5 K before and after irradiation by the second harmonic of a YAG:Nd laser. It was found that the Huang-Rhys factor for donor-acceptor pair (DAP) recombination increases after irradiation with laser power above the CdTe melting point which is explained by a decrease of the DAP concentration due to Cd evaporation and to the presence of the thermogradient effect.

  12. Bactericidal Effects of Diode Laser Irradiation on Enterococcus faecalis Using Periapical Lesion Defect Model

    OpenAIRE

    Nagayoshi, Masato; Nishihara, Tatsuji; Nakashima, Keisuke; Iwaki, Shigetsugu; Chen, Ker-Kong; TERASHITA, Masamichi; Kitamura, Chiaki

    2011-01-01

    Objective. Photodynamic therapy has been expanded for use in endodontic treatment. The aim of this study was to investigate the antimicrobial effects of diode laser irradiation on endodontic pathogens in periapical lesions using an in vitro apical lesion model. Study Design. Enterococcus faecalis in 0.5% semisolid agar with a photosensitizer was injected into apical lesion area of in vitro apical lesion model. The direct effects of irradiation with a diode laser as well as heat produced by ir...

  13. Surface modification of RuO2 electrodes by laser irradiation and ion ...

    Indian Academy of Sciences (India)

    Administrator

    True electrocatalytic effects are clearly seen to prevail over purely surface area effects. Keywords. Electrocatalysis; surface modification; laser irradiation and ion irradiation. 1. Introduction. RuO2 became popular in electrochemistry as it was introduced into the technology as the active compo- nent of the so-called DSA. ®.

  14. Analysis of irradiation processes for laser-induced periodic surface structures

    NARCIS (Netherlands)

    Eichstädt, J.; Huis in 't Veld, Bert

    2013-01-01

    The influence of errors on the irradiation process for laser-induced periodic surface structures (LIPSS) was studied theoretically with energy density simulations. Therefore an irradiation model has been extended by a selection of technical variations. The influence of errors has been found in a

  15. Simulated Space Weathering of Fe- and Mg-rich Aqueously Altered Minerals Using Pulsed Laser Irradiation

    OpenAIRE

    Kaluna, H. M.; Ishii, H. A.; Bradley, J P; Gillis-Davis, J.J.; Lucey, P. G.

    2016-01-01

    The aim of this work is to investigate contrasting spectral trends observed in carbonaceous chondrites by simulating space weathering effects on a subset of minerals found in these meteorites. We use pulsed laser irradiation to simulate micrometeorite impacts on aqueously altered minerals and observe their spectral and physical evolution as a function of irradiation time. Irradiation of the mineral lizardite, a Mg-phyllosilicate, produces little reddening and darkening, but a pronounced reduc...

  16. Spectrum characteristic study of sodium-ethane excimer pairs

    Science.gov (United States)

    Hu, Shu; Gai, Baodong; Wang, Pengyuan; Li, Hui; Tan, Yannan; Liu, Jinbo; Guo, Jingwei

    2017-01-01

    Excimer pumped sodium laser (XPNaL) can accurately achieve lasing at 589.16 nm without any complicated control system to reduce the wavelength error, so XPNaL will provide a novel technical system for sodium beacon laser. In this paper, we studied the Na-C2H6 system, which was an efficient excimer pair. We excited the Na-C2H6 system using a pulsed dye laser with wavelength of 553 nm, and measured lifetime of sodium D2 line based on the fluorescence spectra. Meanwhile, we have also detected strong amplified spontaneous emission (ASE) signal in Na-C2H6 system, through the experimental study, the Na-C2H6 system is considered to own the potential to be utilized in high power XPNaL.

  17. Wavelength influence on nitrogen insertion into titanium by nanosecond pulsed laser irradiation in air

    Energy Technology Data Exchange (ETDEWEB)

    Torrent, F.; Lavisse, L. [Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS-Université de Bourgogne, 9 Av. A. Savary, BP 47 870, F-21078 Dijon Cedex (France); Berger, P. [CEA/DSM/IRAMIS/SIS2M, CEA-Saclay, F-91191 Gif sur Yvette (France); SIS2M, UMR CEA-CNRS 3299, CEA-Saclay, F-91191 Gif sur Yvette (France); Jouvard, J.-M.; Andrzejewski, H.; Pillon, G.; Bourgeois, S.; Marco de Lucas, M.C. [Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS-Université de Bourgogne, 9 Av. A. Savary, BP 47 870, F-21078 Dijon Cedex (France)

    2013-08-01

    We studied in this work the influence of the wavelength (532 vs. 1064 nm) on the insertion of nitrogen in titanium targets by surface laser treatments in air. The laser pulses were of 5 ns and the irradiance was lower than 25 × 10{sup 12} W/m{sup 2}. Results obtained using a frequency-doubled Nd:YAG laser at 532 nm were compared with those previously reported for laser treatments at 1064 nm. Nuclear reaction analysis and micro-Raman spectroscopy were used for determining the composition and the structure of the surface layers, respectively. Results showed the lower efficiency of irradiation at 532 nm for nitrogen insertion, which is possible only above threshold conditions depending on both the laser irradiance and the number of cumulated impacts per point. This was explained as being due to a higher ablative effect in the visible range. The insertion of oxygen giving rise to the growth of titanium oxynitrides was also discussed.

  18. Pulsed laser irradiation-induced microstructures in the Mn ion implanted Si

    Energy Technology Data Exchange (ETDEWEB)

    Naito, Muneyuki, E-mail: naito22@center.konan-u.ac.jp [Department of Chemistry, Konan University, Okamoto, Higashi-Nada, Kobe, Hyogo 658-8501 (Japan); CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Yamada, Ryo; Machida, Nobuya [Department of Chemistry, Konan University, Okamoto, Higashi-Nada, Kobe, Hyogo 658-8501 (Japan); Koshiba, Yusuke; Sugimura, Akira; Aoki, Tamao; Umezu, Ikurou [Department of Physics, Konan University, Okamoto, Higashi-Nada, Kobe, Hyogo 658-8501 (Japan)

    2015-12-15

    We have examined microstructures induced by pulsed-laser-melting for the Mn ion implanted Si using transmission electron microscopy. Single crystalline Si(0 0 1) wafers were irradiated with 65 keV and 120 keV Mn ions to a fluence of 1.0 × 10{sup 16}/cm{sup 2} at room temperature. The ion beam-induced amorphous layers in the as-implanted samples were melted and resolidified by pulsed YAG laser irradiation. After laser irradiation with appropriate laser fluence, the surface amorphous layers recrystallize into the single crystalline Si. The Mn concentration becomes higher in the near-surface region with increasing the number of laser shots. The migrated Mn atoms react with Si atoms and form the amorphous Mn–Si in the Si matrix.

  19. Bonding of lithium niobate to silicon in ambient air using laser irradiation

    Science.gov (United States)

    Kawano, Hiroki; Takigawa, Ryo; Ikenoue, Hiroshi; Asano, Tanemasa

    2016-08-01

    In this paper, we introduce a bonding method in ambient air using laser irradiation to the face-to-face interface of dissimilar materials. This method is performed while keeping whole wafers of the materials at room temperature. We demonstrate the bonding of LiNbO3 to Si using pulsed nanosecond green laser irradiation. Laser use can minimize thermal stress owing to a large thermal expansion mismatch. The bonding characteristic obtained by an irradiation laser up to 2.5 J/cm2 in fluence is investigated. It is found that a LiNbO3 chip is strongly bonded to a Si chip by setting the laser fluence at the optimum range. A bond strength of over 2 MPa, which may be enough for the device applications, can be obtained.

  20. Implant Surface Temperature Changes during Er:YAG Laser Irradiation with Different Cooling Systems.

    Directory of Open Access Journals (Sweden)

    Abbas Monzavi

    2014-04-01

    Full Text Available Peri-implantitis is one of the most common reasons for implant failure. Decontamination of infected implant surfaces can be achieved effectively by laser irradiation; although the associated thermal rise may cause irreversible bone damage and lead to implant loss. Temperature increments of over 10ºC during laser application may suffice for irreversible bone damage.The purpose of this study was to evaluate the temperature increment of implant surface during Er:YAG laser irradiation with different cooling systems.Three implants were placed in a resected block of sheep mandible and irradiated with Er:YAG laser with 3 different cooling systems namely water and air spray, air spray alone and no water or air spray. Temperature changes of the implant surface were monitored during laser irradiation with a K-type thermocouple at the apical area of the fixture.In all 3 groups, the maximum temperature rise was lower than 10°C. Temperature changes were significantly different with different cooling systems used (P<0.001.Based on the results, no thermal damage was observed during implant surface decontamination by Er:YAG laser with and without refrigeration. Thus, Er:YAG laser irradiation can be a safe method for treatment of periimplantitis.

  1. Transformation of hydroxyapatite to fluorapatite by irradiation with high-energy CO2 laser.

    Science.gov (United States)

    Meurman, J H; Hemmerlé, J; Voegel, J C; Rauhamaa-Mäkinen, R; Luomanen, M

    1997-01-01

    High-energy laser irradiation has been shown to cause crystalline transformations in apatites, which may lead to the formation of tricalcium phosphates with a resulting decrease in acid resistance. Depending on the nature and energy density of laser irradiation used, however, an increase of acid resistance of dental enamel has also been reported after laser irradiation. The aim of the present study was to investigate the phase transformation of hydroxyapatite (HA) to fluorapatite (FA) in a model system that incorporates sodium fluoride (NaF) into apatite structure by using laser irradiation. A CO2 laser was used at energy densities ranging from 21 to 500 J/cm2. Synthetic HA mixed with NaF (10:1) was the target of laser irradiation. The crystalline structures were then investigated using X-ray diffraction analysis. The results showed that a phase transformation of HA to FA could be realized, and that the threshold energy density needed was 38 J/cm2. Not only is the finding crystallographically important, but it also opens new perspectives for future research regarding the development of laser technology for clinical purposes.

  2. Interstitial laser irradiation of metastatic mammary tumors in combination with intratumoral injection of immunoadjuvant

    Science.gov (United States)

    Joshi, Chet; Jose, Jessnie; Figueroa, Daniel; Goddard, Jessica; Li, Xiaosong; Liu, Hong; Nordquist, Robert E.; Hode, Tomas; Chen, Wei R.

    2012-03-01

    Laser immunotherapy (LIT) was developed to treat metastatic cancers using a combination of laser irradiation and immunological stimulation. The original design of LIT employs a non-invasive, selective laser photothermal interaction, using an in situ light-absorbing dye. However, this non-invasive treatment mode faces challenges in treating deep, large tumors. Furthermore, it has difficulties in the cases of highly pigmented skin overlying target tumors. To overcome these limitations, interstitial laser immunotherapy (ILIT) was proposed. In ILIT, a cylindrical, side-fire fiber diffuser is placed inside the target tumor to induce thermal damage. To enhance the interstitial irradiation induced photothermal interaction, an immunological modifier, glycated chitosan (GC), is injected into the tumor after the laser treatment. In this study, a cylindrical diffuser with an active length of 1 cm was used to treat tumors of 1 to 1.5 cm in size. Different laser powers (1 to 3 watts) and different irradiation durations (10 to 30 minutes) were used to test the thermal effects of ILIT. Different doses of the GC (1.0%, 0.1 to 0.6 ml per rat) were used to determine the immunological effects of ILIT. Our results show that the animal survival depends on both laser dose and GC dose. A dose of 0.2 ml per tumor appeared to result in the highest survival rate under interstitial laser irradiation with 2.5 watts and 20 minutes. While the results in this study are not conclusive, they indicate that interstitial laser irradiation can be combined with immunotherapy to treat metastatic cancers. Furthermore, our results suggest that an optimal combination of laser dose and GC dose could be obtained for future clinical protocols using interstitial laser immunotherapy.

  3. Lattice deformation in laser-irradiated silicon crystal studied by picosecond X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Kishimura, Hiroaki; Yazaki, Akio; Hironaka, Yoichiro; Nakamura, Kazutaka G.; Kondo, Ken-ichi

    2003-02-28

    Lattice deformation in laser-irradiated Si(1 1 1) has been studied by picosecond X-ray diffraction at a delay time of 350 ps. The rapid thermal expansion (0.24% at maximum) was observed at 2.0 GW/cm{sup 2} irradiation. By irradiation above dielectric breakdown threshold (10.0 GW/cm{sup 2}), the intense lattice compression (2.1% at maximum) was observed. The compression is caused by the laser ablation due to dielectric breakdown.

  4. Four-color laser irradiation system for laser-plasma interaction experiments

    Energy Technology Data Exchange (ETDEWEB)

    Pennington, D.M.; Henesian, M.A.; Wilcox, R.B. [and others

    1996-06-01

    Since 1986, optical smoothing of the laser irradiance on targets for Inertial Confinement Fusion (ICF) has gained increasing attention. Optical smoothing can significantly reduce wavefront aberrations that produce nonuniformities in the energy distribution of the focal spot. Hot spots in the laser irradiance can induce local self focusing of the light, producing filamentation of the plasma. Filamentation can have detrimental consequences on the hydrodynamics of an ICF plasma, and can affect the growth of parametric instabilities, as well as add to the complexity of the study of such instabilities as stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS). As experiments approach and exceed breakeven (i.e., where driver energy = fusion yield), the likelihood of significant excitation of these processes increases. As a result, the authors are including a scheme for implementing optical-beam smoothing for target experiments in the baseline design for the proposed next-generation ICF facility--the National Ignition Facility (NIF). To verify the efficacy of this design for the suppression of parametric instabilites in NIF-like indirect-drive targets, the authors successfully modified a Nova beamline to simulate the proposed NIF conditions. In this article, they discuss the laser science associated with a four-color target campaign on Nova to test the effect of f-number (ratio of focal length to beam diameter) and temporal smoothing on the scaling of SBS with a four-segment interaction beam using NIF-like parameters. The results of the target series associated with the four-color configuration are discussed elsewhere.

  5. Effects of CO2 laser irradiation on tooth enamel coated with biofilm.

    Science.gov (United States)

    Cohen, Julie; Featherstone, John D B; Le, Charles Q; Steinberg, Doron; Feuerstein, Osnat

    2014-03-01

    CO2 laser irradiation of tooth enamel can inhibit demineralization of tooth enamel, by changing enamel composition and resistance to acid attack. The aim of this work was to examine these effects of CO2 laser irradiation on enamel covered by biofilm. Streptococcus mutans was grown on bovine enamel surfaces for 48 hours to form a mature biofilm. Samples were irradiated by CO2 laser (wavelength of 10.6 µm) at a power of 0.08 W in a super-pulse mode for 1 second and 24 pulses/second, with an energy density of 0.77 J/cm(2) per pulse. Untreated controls and laser treated samples with and without biofilm were examined for the morphology of the biofilm and the enamel surface by scanning electron microscopy (SEM). Structural biofilm viability was assessed using confocal laser scanning microscopy with live/dead staining. The biofilm was removed in a sonication water bath and the non-treated and irradiated enamel samples were chemically analyzed using energy dispersive X-ray spectrometry (EDS) and Fourier transform infrared spectroscopy (FTIR). Irradiated samples showed a melt zone with micro-cracks in the center of the irradiating beam position, which was smaller when irradiated enamel was covered by biofilm. Confocal microscopy images demonstrated higher proportion of dead bacteria at the margins of the irradiated spot area, while at the spot center the bacteria were evaporated exposing the enamel surface to direct laser irradiation. EDS analysis showed an increase in Ca/P ratio after irradiation of enamel covered with biofilm. FTIR analysis showed an approximately 40% carbonate loss in the irradiated enamel samples, including those with biofilms. Biofilms protect enamel surfaces from possible morphological irradiation damage without interfering with the resultant chemical changes that may increase the enamel resistance to acid attack. Therefore, under certain exposure regimens that are thermally and mechanically safe for enamel, CO2 laser irradiation of

  6. Temperature response of biological materials to pulsed non-ablative CO2 laser irradiation

    NARCIS (Netherlands)

    Brugmans, M. J.; Kemper, J.; Gijsbers, G. H.; van der Meulen, F. W.; van Gemert, M. J.

    1991-01-01

    This paper presents surface temperature responses of various tissue phantoms and in vitro and in vivo biological materials in air to non-ablative pulsed CO2 laser irradiation, measured with a thermocamera. We studied cooling off behavior of the materials after a laser pulse, to come to an

  7. Bond strength of an adhesive system irradiated with Nd:YAG laser in dentin treated with Er:YAG laser

    Science.gov (United States)

    Malta, D. A. M. P.; Costa, M. M.; Pelino, J. E. P.; de Andrade, M. F.; Lizarelli, R. F. Z.

    2008-02-01

    The purpose of this in vitro study was to verify through micro tensile bond test the bond strength of an adhesive system irradiated with Nd:YAG laser in dentine previously treated with Er:YAG laser. Twenty caries free extracted human third molars were used. The teeth were divided in four experimental groups (n = 5): (G1) control group; (G2) irradiation of the adhesive system with the Nd:YAG laser; (G3) dentin treatment with Er:YAG laser; (G4) dentin treatment with Er:YAG laser followed by the irradiation of the adhesive system with Nd:YAG laser. The Er:YAG laser fluency parameter for the dentin treatment was of 60 J/cm2. The adhesive system was irradiated with the Nd:YAG laser with fluency of 100 J/cm2. Dental restorations were performed with Adper Single Bond 2/Z250. One tooth from each group was prepared for the evaluation of the adhesive interface under SEM and bond failure tests were also performed and evaluated. The statistical analysis showed statistical significant difference between the groups G1 and G3, G1 and G4, G2 and G3, and G2 and G4; and similarity between the groups G1 and G2, and G3 and G4. The adhesive failures were predominant in all the experimental groups. The SEM analysis showed an adhesive interface with features confirming the results of the mechanical tests. The Nd:YAG laser on the adhesive system did not influence the bond strength in dentin treated or not with the Er:YAG laser.

  8. Experiment and simulation on responses of polymer induced by laser irradiation

    Science.gov (United States)

    Huang, Haiming; Xu, Xiaoliang

    2009-07-01

    With the development of microelectromechanical system (MEMS) technology, the limitations of machining technology for silicon-based materials become more and more distinct. With its abilities on sub-micron structure machining, the pulsed laser micro-fabrication technology has an extensive application prospect in MEMS and many other materials. The thermal interaction process of polymer under laser irradiation is very complex, regularities on polymer target under laser irradiation between displacement and laser energy density can only be obtained through experiments. Based on finite element method (FEM), simulations have been performed and compared with experiment results. Relations among pulsed laser intensity, actuation duration and thermal shock loads were obtained from the comparison, and a formula for calculating the maximum ablation pressure of a carbon fiber epoxy resin polymer composites was proposed. This study provides theoretical basis to the pulsed laser micro-fabrication technology's application in the fields of MEMS.

  9. Theoretical and experimental analysis of the laser irradiation parameters influence on the LIDT of optical coatings

    Science.gov (United States)

    Gallais, Laurent; Capoulade, Jérémie; Natoli, Jean-Yves; Commandré, Mireille

    2008-09-01

    We describe in this paper a model to link laser damage initiators properties (nature, size distribution, density) to measured Laser Induced Damage Threshold (LIDT). It is based on calculation of light absorption in nanoabsorbers and subsequent heating, coupled to laser damage statistics in order to obtain the laser damage probability as a function of laser fluence. Applications to the case of optical coatings are then presented. We study the influence of laser irradiation parameters and coatings properties on LIDT measurements. By coupling this multiscale study to our model, we show that information on the initiating defects properties and the physical damage mechanisms involved can be obtained: discrimination between different defects, estimation of densities, size and nature of defects, evolution of the defects under multiple irradiation. Implication of this approach for physical understanding and metrology applications are discussed.

  10. Effects of speckle-like laser irradiation on growth of bacteria in vitro

    Science.gov (United States)

    Popov, A. Yu.; Popova, N. A.; Tyurin, A. V.; Grimblatov, V.

    2013-03-01

    In this work, for the first time, we have demonstrated the biological effects upon in vitro growth of bacteria and human peripheral blood erythrocytes of the irradiation with speckle-like highly-gradient laser light. Measurements of the growth of Staphylococcus aureus with and without antibiotic irradiated with uniform or interference pattern of intensity spatial distribution have shown strong dependence on the spatial frequency of the irradiation. Maximum inhibition of the bacteria growth was achieved at the frequency 1000 fringes/mm. It was also found that human blood erythrocytes exposure to such radiation at the power density typical for laser phototherapy could damage the erythrocytes. A possible explanation of the photo-biological effects of laser speckle irradiation relying on the electron-ion processes similar to those that occur under inhomogeneous illumination in inorganic media and called photo-stimulated diffusion of ions (Dember effect) is proposed and discussed.

  11. Excimer Ladar Pointer Trackers

    Science.gov (United States)

    Grossman, Jon; Brindley, William E.

    Spaceborne optical pointing and tracking systems have historically used passive sensors. With the advent of space based laser programs ,such as submarine laser communication ( SLC SAT ) and laser atmospheric wind sounder ( LAWS ), it is now possible to conceive of laser based active pointing and tracking systems. In this paper we present some the advantages of going to an active pointer-tracker, the advantages of going to a short wavelength system, and what the performance of this system would be based on current technology.

  12. Transformation of silver nanowires into nanoparticles by Rayleigh instability: Comparison between laser irradiation and heat treatment

    Science.gov (United States)

    Oh, Harim; Lee, Jeeyoung; Lee, Myeongkyu

    2018-01-01

    We comparatively study the morphological evolutions of silver nanowires under nanosecond-pulsed laser irradiation and thermal treatment in ambient air. While single-crystalline, pure Ag nanospheres could be produced by laser-driven Rayleigh instability, the particles produced by heat treatment were subject to oxidation and exhibited polyhedron shapes. The different results are attributed to the significantly different time scales of the two processes. In this article, we also show that bimetallic Ag-Au nanospheres can be synthesized by irradiating Ag nanowires coated with a thin Au film using a pulsed laser beam. This may provide a facile route to tune the plasmonic behavior of metal nanoparticles.

  13. HYDROGENATED TARGETS FOR HIGH ENERGY PROTON GENERATION FROM LASER IRRADIATING IN TNSA REGIME

    Directory of Open Access Journals (Sweden)

    Lorenzo Torrisi

    2015-06-01

    Full Text Available Polyethylene-based thin targets were irradiated in high vacuum in the TNSA (Target Normal Sheath Acceleration regime using the PALS laser facility. The plasmais produced in forward direction depending on the laser irradiation conditions, the composition of the target and the geometry. The optical properties of the polymer use nanostructures to increase the laser absorbance. Proton kinetic energies from hundreds keV up to about 3MeV were obtained for optimal conditions enhancing the electric field driving the ion acceleration.

  14. Magnetic resonance thermometry for monitoring photothermal effects of interstitial laser irradiation

    Science.gov (United States)

    Goddard, Jessica; Jose, Jessnie; Figueroa, Daniel; Le, Kelvin; Liu, Hong; Nordquist, Robert E.; Hode, Tomas; Chen, Wei R.

    2012-03-01

    Selective photothermal interaction using dye-assisted non-invasive laser irradiation has limitations when treating deeper tumors or when the overlying skin is heavily pigmented. We developed an interstitial laser irradiation method to induce the desired photothermal effects. An 805-nm near-infrared laser with a cylindrical diffuser was used to treat rat mammary tumors by placing the active tip of the fiber inside the target tumors. Three different power settings (1.0 to 1.5 watts) were applied to treat animal tumors with an irradiation duration of 10 minutes. The temperature distributions of the treated tumors were measured by a 7.1-Tesla magnetic resonance imager using proton resonance frequency (PRF) method. Three-dimensional temperature profiles were reconstructed and assessed using PRF. This is the first time a 7.1-Tesla magnetic resonance imager has been used to monitor interstitial laser irradiation via PRF. This study provides a basic understanding of the photothermal interaction needed to control the thermal damage inside tumor using interstitial laser irradiation. It also shows that PRF can be used effectively in monitoring photothermal interaction. Our long-term goal is to develop a PRF-guided laser therapy for cancer treatment.

  15. Design of refractive laser beam shapers to generate complex irradiance profiles

    OpenAIRE

    Li, Meijie; Meuret, Youri; Duerr, Fabian; Vervaeke, Michael; Thienpont, Hugo

    2014-01-01

    A Gaussian laser beam is reshaped to have specific irradiance distributions in many applications in order to ensure optimal system performance. Refractive optics are commonly used for laser beam shaping. A refractive laser beam shaper is typically formed by either two plano-aspheric lenses or by one thick lens with two aspherical surfaces. Ray mapping is a general optical design technique to design refractive beam shapers based on geometric optics. This design technique in principle allows to...

  16. LIGHT SOURCE: Terahertz emission in tenuous gases irradiated by ultrashort laser pulses

    Science.gov (United States)

    Wang, Wei-Min; Sheng, Zheng-Ming; Wit, Hui-Chun; Chen, Min; Li, Chun; Zhang, Jie; Mima, K.

    2009-06-01

    Mechanism of terahertz (THz) pulse generation in gases irradiated by ultrashort laser pulses is investigated theoretically. Quasi-static transverse currents produced by laser field ionization of gases and the longitudinal modulation in formed plasmas are responsible for the THz emission at the electron plasma frequency, as demonstrated by particle-in-cell simulations including field ionization. The THz field amplitude scaling with the laser amplitude within a large range is also discussed.

  17. High fluence laser irradiation induces reactive oxygen species generation in human lung adenocarcinoma cells

    Science.gov (United States)

    Wang, Fang; Xing, Da; Chen, Tong-Sheng

    2006-09-01

    Low-power laser irradiation (LPLI) has been used for therapies such as curing spinal cord injury, healing wound et al. Yet, the mechanism of LPLI remains unclear. Our previous study showed that low fluences laser irradiation induces human lung adenocarcinoma cells (ASTC-a-1) proliferation, but high fluences induced apoptosis and caspase-3 activation. In order to study the mechanism of apoptosis induced by high fluences LPLI further, we have measured the dynamics of generation of reactive oxygen species (ROS) using H IIDCFDA fluorescence probes during this process. ASTC-a-1 cells apoptosis was induced by He-Ne laser irradiation at high fluence of 120J/cm2. A confocal laser scanning microscope was used to perform fluorescence imaging. The results demonstrated that high fluence LPLI induced the increase of mitochondria ROS. Our studies contribute to clarify the biological mechanism of high fluence LPLI-induced cell apoptosis.

  18. In vitro effects of helium-neon laser irradiation on human blood: blood viscosity and deformability of erythrocytes.

    Science.gov (United States)

    Mi, Xian-Qiang; Chen, Ji-Yao; Liang, Zi-Jun; Zhou, Lu-Wei

    2004-12-01

    The purpose of this study was to investigate the in vitro effects of He-Ne laser irradiation on some rheological factors of human blood, such as blood viscosity, erythrocyte deformability, and sedimentation rate. The intravascular irradiation of low power laser has been applied in pre-clinical and clinical to treat various pathological processes. However, the mechanism is not fully understood so far. Especially the interaction and related mechanism between the laser and blood are unclear. In this work, by measuring the change of the main rheological factors after laser irradiation, the interaction and mechanism were explored. A30-mW He-Ne laser was used for irradiation with a 4-5-mm-diameter beam spot on blood samples, with a fluence rate of about 150 mW/cm.(2) The irradiation time was 60 min, so the total dose of irradiation was 540 J/cm.(2) The pathological samples of blood were obtained from patients (volunteers), and each sample was divided into two tubes for irradiation and control. The blood viscosity, erythrocyte deformability, and sedimentation rate were measured after laser irradiation and compared with un-irradiated control. The blood samples with poor erythrocyte deformability were prepared by adding Ca(2+) to the normal erythrocytes of a healthy person for investigating the laser effect on erythrocyte deformability further. Laser irradiation reduced the erythrocyte sedimentation rate of blood samples, which had a hyper-sedimentation rate originally. The blood viscosity of samples in hyper-values was lowered by laser irradiation in all shear rates measured (10-110 S(-1)), with a relative variation of approximately 10%. The deformability of erythrocytes from pathological samples and Ca(2+)-treated samples was improved after laser irradiation. The positive effects of laser irradiation on improving the rheological properties of blood were demonstrated in vitro.

  19. Effects of He-Ne laser irradiation on red blood cells in vitro

    Science.gov (United States)

    Ghadage, Vijay H.; Kulkarni, Gauri R.

    2011-03-01

    Laser radiation has many applications in biomedical field, such as wound healing, tissue repairing, heating and ablation processes. Intravenous low power laser radiation is used clinically for skin and vascular disorders. Laser radiation improves microcirculation and modulates the rheological properties of blood. FTIR (Fourier Transform Infra Red Spectra) is used to see the structural changes in erythrocyte membrane. In the present work He Ne laser (λ= 632nm, power=2mW) is used to irradiate human Red blood cells. Red blood cells are separated from human whole blood using centrifugation method (time=10 min., temperature=15°C and RPM=3000) and then exposed to HeNe laser radiation. Laser exposure time is varied from 10 min. to 40min for Red blood cells. Absorption spectrum, FTIR and fluorescence spectra of RBC are compared before and after HeNe laser irradiation. The absorption spectrum of RBC after exposure to HeNe laser shows a significant decrease in absorbance. The FTIR spectrum of non irradiated RBC clearly show the peaks due to O-H (free group), C=O (amide I group), N=O (nitro group), C-O (anhydride group) and C-H (aromatic group). Laser radiation changes in transmittance in FTIR spectra related to C=O group and percentage of transmittance increases for O-H, C=C, N=O, C-O and C-H group.

  20. Effect of LASER Irradiation on the Shear Bond Strength of Zirconia Ceramic Surface to Dentin

    Directory of Open Access Journals (Sweden)

    Sima Shahabi

    2012-09-01

    Full Text Available Background and Aims: Reliable bonding between tooth substrate and zirconia-based ceramic restorations is always of great importance. The laser might be useful for treatment of ceramic surfaces. The aim of the present study was to investigate the effect of laser irradiation on the shear bond strength of zirconia ceramic surface to dentin. Materials and Methods: In this experimental in vitro study, 40 Cercon zirconia ceramic blocks were fabricated. The surface treatment was performed using sandblasting with 50-micrometer Al2O3, CO2 laser, or Nd:YAG laser in each test groups. After that, the specimens were cemented to human dentin with resin cement. The shear bond strength of ceramics to dentin was determined and failure mode of each specimen was analyzed by stereo-microscope and SEM investigations. The data were statistically analyzed by one-way analysis of variance and Tukey multiple comparisons. The surface morphology of one specimen from each group was investigated under SEM. Results: The mean shear bond strength of zirconia ceramic to dentin was 7.79±3.03, 9.85±4.69, 14.92±4.48 MPa for CO2 irradiated, Nd:YAG irradiated, and sandblasted specimens, respectively. Significant differences were noted between CO2 (P=0.001 and Nd:YAG laser (P=0.017 irradiated specimens with sandblasted specimens. No significant differences were observed between two laser methods (P=0.47. The mode of bond failure was predominantly adhesive in test groups (CO2 irradiated specimens: 75%, Nd:YAG irradiated: 66.7%, and sandblasting: 41.7%. Conclusion: Under the limitations of the present study, surface treatment of zirconia ceramics using CO2 and Nd:YAG lasers was not able to produce adequate bond strength with dentin surfaces in comparison to sandblasting technique. Therefore, the use of lasers with the mentioned parameters may not be recommended for the surface treatment of Cercon ceramics.

  1. The dynamics of Al/Pt reactive multilayer ignition via pulsed-laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Ryan D.; Reeves, Robert V.; Yarrington, Cole D.; Adams, David P. [Sandia National Laboratories, Albuquerque, New Mexico 87123 (United States)

    2015-12-07

    Reactive multilayers consisting of alternating layers of Al and Pt were irradiated by single laser pulses ranging from 100 μs to 100 ms in duration, resulting in the initiation of rapid, self-propagating reactions. The threshold intensities for ignition vary with the focused laser beam diameter, bilayer thickness, and pulse length and are affected by solid state reactions and conduction of heat away from the irradiated regions. High-speed photography was used to observe ignition dynamics during irradiation and elucidate the effects of heat transfer into a multilayer foil. For an increasing laser pulse length, the ignition process transitioned from a more uniform to a less uniform temperature profile within the laser-heated zone. A more uniform temperature profile is attributed to rapid heating rates and heat localization for shorter laser pulses, and a less uniform temperature profile is due to slower heating of reactants and conduction during irradiation by longer laser pulses. Finite element simulations of laser heating using measured threshold intensities indicate that micron-scale ignition of Al/Pt occurs at low temperatures, below the melting point of both reactants.

  2. Polycarbonate surface cell's adhesion examination after Nd:YAG laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ramazani, S.A. Ahmad, E-mail: Ramazani@sharif.ir [Polymer Group, Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Mousavi, Seyyed Abbas, E-mail: Musavi@che.sharif.ir [Department of Chemistry, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Seyedjafari, Ehsan [Department of Biotechnology, University College of Science, University of Tehran (Iran, Islamic Republic of); Poursalehi, Reza [Department of Physics, University of Shahed, Tehran (Iran, Islamic Republic of); Sareh, Shohreh [Research Center of Iranian Blood Transfusion Organization, Tehran (Iran, Islamic Republic of); Silakhori, Kaveh [Laser Research Center, Atomic Energy Organization, Tehran (Iran, Islamic Republic of); Poorfatollah, Ali Akbar [Research Center of Iranian Blood Transfusion Organization, Tehran (Iran, Islamic Republic of); Shamkhali, Amir Nasser [Department of Chemistry, Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2009-05-05

    Nd:YAG laser treatment was used in order to increase surface cell adhesion aspects of polycarbonate (PC) films prepared via melt process. The treatment was carried out under different wavelengths and beam diameters. ATR-FTIR and UV spectra obtained from different samples before and after laser treatment in air showed that laser irradiation has induced some chemical and physical changes in surface properties. The irradiated films were also characterized using scanning electron microscopy (SEM) and contact angle measurements. Effect of pulse numbers on the surface properties was also investigated. Cell culture test was used to evaluate cell adhesion property on the PC films before and after treatment. The results obtained from this test showed that after laser treatment, the cells were attached and proliferated extensively on the Nd:YAG laser treated films in comparison with the unmodified PC. Moreover, it was revealed that a decrease in the laser beam diameter and an increase in the irradiated pulse numbers increased surface wettability and caused a better cell attachment on the polymer surface. The obtained results also showed that a decrease in the laser beam diameter and an increase in the irradiated pulse numbers increased surface wettability and caused a better cell attachment on the polymer surface.

  3. Intravenous Laser Blood Irradiation, Interstitial Laser Acupuncture, and Electroacupuncture in an Animal Experimental Setting: Preliminary Results from Heart Rate Variability and Electrocorticographic Recordings

    National Research Council Canada - National Science Library

    He, Wei; Litscher, Gerhard; Wang, Xiaoyu; Jing, Xianghong; Shi, Hong; Shang, Hongyan; Zhu, Bing

    2013-01-01

    ... Intravenous (i.v.) laser blood irradiation was accomplished for the first time approximately 25 years ago in the former Soviet Union [1-3]. Laser light was brought directly into the blood stream throu...

  4. Ablation experiment and threshold calculation of titanium alloy irradiated by ultra-fast pulse laser

    Directory of Open Access Journals (Sweden)

    Buxiang Zheng

    2014-02-01

    Full Text Available The interaction between an ultra-fast pulse laser and a material's surface has become a research hotspot in recent years. Micromachining of titanium alloy with an ultra-fast pulse laser is a very important research direction, and it has very important theoretical significance and application value in investigating the ablation threshold of titanium alloy irradiated by ultra-fast pulse lasers. Irradiated by a picosecond pulse laser with wavelengths of 1064 nm and 532 nm, the surface morphology and feature sizes, including ablation crater width (i.e. diameter, ablation depth, ablation area, ablation volume, single pulse ablation rate, and so forth, of the titanium alloy were studied, and their ablation distributions were obtained. The experimental results show that titanium alloy irradiated by a picosecond pulse infrared laser with a 1064 nm wavelength has better ablation morphology than that of the green picosecond pulse laser with a 532 nm wavelength. The feature sizes are approximately linearly dependent on the laser pulse energy density at low energy density and the monotonic increase in laser pulse energy density. With the increase in energy density, the ablation feature sizes are increased. The rate of increase in the feature sizes slows down gradually once the energy density reaches a certain value, and gradually saturated trends occur at a relatively high energy density. Based on the linear relation between the laser pulse energy density and the crater area of the titanium alloy surface, and the Gaussian distribution of the laser intensity on the cross section, the ablation threshold of titanium alloy irradiated by an ultra-fast pulse laser was calculated to be about 0.109 J/cm2.

  5. Laser ablation and photo-dissociation of solid-nitrogen film by UV ps-laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Niino, Hiroyuki; Sato, Tadatake; Narazaki, Aiko; Kawaguchi, Yoshizo; Yabe, Akira

    2002-09-30

    Nitrogen solid film deposited on a copper plate at 10 K was irradiated with a picosecond UV laser at 263 nm in vacuum. Photo-dissociation of nitrogen molecule in the solid film was confirmed by the optical emissions, which were ascribed to atomic nitrogen, during the laser irradiation at the fluence of 5 J cm{sup -2} pulse{sup -1}. This photolysis was discussed by the comparison with laser-induced breakdown of nitrogen gas. At the fluence over ca. 10 J cm{sup -2} pulse{sup -1}, the ablation of the frozen nitrogen film was observed. Employing the ablation plume including a reactive species such as nitrogen atoms, the surface reaction of a graphite (highly oted pyrolytic graphite (HOPG)) plate and silicon wafer was studied. XPS analysis indicated that nitrides were formed on the surfaces by the treatment. The ps-laser ablation of nitrogen solid film provides a novel technique for surface modification of materials.

  6. Comparison of Nd:YAG and diode laser irradiation during intracoronal bleaching with sodium perborate: color and Raman spectroscopy analysis.

    Science.gov (United States)

    Sağlam, Baran Can; Koçak, Mustafa Murat; Koçak, Sibel; Türker, Sevinç Aktemur; Arslan, Dilara

    2015-02-01

    The aim of this study was to evaluate the color and enamel structure changes after intracoronal bleaching with sodium perborate under neodymium:yttrium-aluminum-garnet (Nd:YAG) and diode laser irradiation. Although some studies investigated the efficacy of laser irradiation during intracoronal bleaching, no study has been conducted to investigate the changes in both color and enamel structure during intracoronal bleaching with laser irradiation. Thirty-six extracted mandibular incisors were used. The root canals were prepared and filled with AH Plus and gutta-percha. Baseline color values and Raman spectra were obtained from all samples. The samples were randomly divided into three groups as follows: group 1, intracoronal bleaching with sodium perborate plus NdYAG laser irradiation; group 2, intracoronal bleaching with sodium perborate plus diode laser irradiation; and group 3, intracoronal bleaching with sodium perborate without any laser irradiation. Following the bleaching procedures, the final baseline color values and Raman spectra were obtained. The baseline and final values were statistically analyzed. Statistical analyses were performed with SPSS 18.0 software using Anova and the Kruskal-Wallis test. There was a significant difference between the Nd:YAG laser and control groups (p0.05). Laser application, especially Nd:YAG laser irradiation, was able to increase the efficacy of intracoronal bleaching with sodium perborate. Laser irradiation significantly increased the bleaching efficacy without any changes in the enamel surface structure.

  7. Safety Irradiation Parameters of Nd:YAP Laser Beam for Endodontic Treatments: An In Vitro Study.

    Science.gov (United States)

    Namour, A; Geerts, S; Zeinoun, T; De Moor, R; Nammour, S

    2016-01-01

    Objective. Nd:YAP laser has several potentialities of clinical applications in endodontics. The aim of our study is to determine the safety range of irradiation parameters during endodontic application of Nd:YAP laser that can be used without damaging and overheating the periodontal tissue. Material and Methods. Twenty-seven caries-free single-rooted extracted human teeth were used. Crowns were sectioned to obtain 11 mm root canal length. Temperature increases at root surfaces were measured by a thermocouple during Nd:YAP laser irradiation of root canals at different energy densities. Canal irradiation was accomplished with a circular and retrograde movement from the apex until the cervical part of the canal during 10 seconds with an axial speed of 1 mm/s. Each irradiation was done in a canal irrigated continuously with 2.25% NaOCl solution. Results. Periodontal temperature increase depends on the value of energy density. Means and standard deviations of temperature increases at root surfaces were below 10°C (safe threshold level) when the average energy densities delivered per second were equal to or below 4981 J/cm(2) and 9554 J/cm(2), respectively, for irradiations using a fiber diameter of 320 μm and 200 μm. Conclusions. Within the limitations of this study and under specific irradiation conditions, Nd:YAP laser beam may be considered harmless for periodontal tissues during endodontic applications.

  8. Safety Irradiation Parameters of Nd:YAP Laser Beam for Endodontic Treatments: An In Vitro Study

    Directory of Open Access Journals (Sweden)

    A. Namour

    2016-01-01

    Full Text Available Objective. Nd:YAP laser has several potentialities of clinical applications in endodontics. The aim of our study is to determine the safety range of irradiation parameters during endodontic application of Nd:YAP laser that can be used without damaging and overheating the periodontal tissue. Material and Methods. Twenty-seven caries-free single-rooted extracted human teeth were used. Crowns were sectioned to obtain 11 mm root canal length. Temperature increases at root surfaces were measured by a thermocouple during Nd:YAP laser irradiation of root canals at different energy densities. Canal irradiation was accomplished with a circular and retrograde movement from the apex until the cervical part of the canal during 10 seconds with an axial speed of 1 mm/s. Each irradiation was done in a canal irrigated continuously with 2.25% NaOCl solution. Results. Periodontal temperature increase depends on the value of energy density. Means and standard deviations of temperature increases at root surfaces were below 10°C (safe threshold level when the average energy densities delivered per second were equal to or below 4981 J/cm2 and 9554 J/cm2, respectively, for irradiations using a fiber diameter of 320 μm and 200 μm. Conclusions. Within the limitations of this study and under specific irradiation conditions, Nd:YAP laser beam may be considered harmless for periodontal tissues during endodontic applications.

  9. Optical property change of blood on an optical window boundary by 660-nm band laser irradiation

    Science.gov (United States)

    Takahashi, Mei; Ito, Arisa; Arai, Tsunenori

    2012-03-01

    We studied an optical interaction on an optical window and blood boundary during the CW laser irradiation in 660 nm band until blood charring occurrence. We previously reported that a pre-charring optical behavior may be detected by diffuse-reflected-light power time-history. The aim of this study is to measure absorption coefficient (μa) and reduced scattering coefficient (μ's) of a blood model to explain this pre-charring optical behavior. The blood model sandwiched between 2 glass slides to simulate the interface between blood and the optical window was used. A double integrating sphere system was constructed. The red laser in 660 nm band was irradiated to the sandwiched blood model. Fourty W/cm2 in irradiance was used as the maximum irradiance during irradiation via the laser catheter in vivo. μa and μ's in the irradiated laser wavelength were measured continuously until blood charring occurrence using inverse adding doubling analysis. Continuous μa increase of 5-10% from the initial value until charring was observed. Decrease of μ's with 8-10% during 15-30 s before charring following broad peak was obtained. We think these μa and μ's changes may explain the pre-charring optical behavior detected by the diffuse-reflected-light power time-history in our reported study.

  10. Changes in surface morphology of enamel after Er:YAG laser irradiation

    Science.gov (United States)

    Rechmann, Peter; Goldin, Dan S.; Hennig, Thomas

    1998-04-01

    Aim of the study was to investigate the surface and subsurface structure of enamel after irradiation with an Er:YAG laser (wavelength 2.94 micrometer, pulse duration 250 - 500 microseconds, free running, beam profile close to tophead, focus diameter 600 micrometer, focus distance 13 mm, different power settings, air-water spray 2 ml/min; KAVO Key Laser 1242, Kavo Biberach, Germany). The surface of more than 40 freshly extracted wisdom teeth were irradiated using a standardized application protocol (pulse repetition rate 4 and 6 Hz, moving speed of the irradiation table 2 mm/sec and 3 mm/sec, respectively). On each surface between 3 and 5 tracks were irradiated at different laser energies (60 - 500 mJ/pulse) while each track was irradiated between one and ten times respectively. For the scanning electron microscope investigation teeth were dried in alcohol and sputtered with gold. For light microscopic examinations following laser impact, samples were fixed in formaldehyde, dried in alcohol and embedded in acrylic resin. Investigations revealed that at subsurface level cracks can not be observed even at application of highest energies. Borders of the irradiated tracks seem to be sharp while melted areas of different sizes are observed on the bottom of the tracks depending on applied energy. Small microcracks can be seen on the surface of these melted areas.

  11. Ridge waveguide lasers in Nd:GGG crystals produced by swift carbon ion irradiation and femtosecond laser ablation.

    Science.gov (United States)

    Jia, Yuechen; Dong, Ningning; Chen, Feng; Vázquez de Aldana, Javier R; Akhmadaliev, Sh; Zhou, Shengqiang

    2012-04-23

    We report on the fabrication of ridge waveguide in Nd:GGG crystal by using swift C(5+) ion irradiation and femtosecond laser ablation. At room temperature continuous wave laser oscillation at wavelength of ~1063 nm has been realized through the optical pump at 808 nm with a slope efficiency of 41.8% and the pump threshold is 71.6 mW. © 2012 Optical Society of America

  12. Chemical Changes Associated with Increased Acid Resistance of Er:YAG Laser Irradiated Enamel

    Directory of Open Access Journals (Sweden)

    Jennifer Manuela Díaz-Monroy

    2014-01-01

    Full Text Available Background. An increase in the acid resistance of dental enamel, as well as morphological and structural changes produced by Er:YAG laser irradiation, has been reported. Purpose. To evaluate the chemical changes associated with acid resistance of enamel treated with Er:YAG laser. Methods. Forty-eight enamel samples were divided into 4 groups (n=12. Group I (control; Groups II, III, and IV were irradiated with Er:YAG at 100 mJ (12.7 J/cm2, 200 mJ (25.5 J/cm2, and 300 mJ (38.2 J/cm2, respectively. Results. There were significant differences in composition of irradiated groups (with the exception of chlorine and in the amount of calcium released. Conclusions. Chemical changes associated with an increase in acid resistance of enamel treated with Er:YAG laser showed a clear postirradiation pattern characterized by a decrease in C at.% and an increase in O, P, and Ca at.% and no changes in Cl at.%. An increased Ca/P ratio after Er:YAG laser irradiation was associated with the use of higher laser energy densities. Chemical changes produced by acid dissolution showed a similar trend among experimental groups. Stable or increased Ca/P ratio after acid dissolution was observed in the irradiated groups, with reduction of Ca released into the acid solution.

  13. Chemical Changes Associated with Increased Acid Resistance of Er:YAG Laser Irradiated Enamel

    Science.gov (United States)

    Olea-Mejía, Oscar Fernando; García-Fabila, María Magdalena; Rodríguez-Vilchis, Laura Emma; Sánchez-Flores, Ignacio; Centeno-Pedraza, Claudia

    2014-01-01

    Background. An increase in the acid resistance of dental enamel, as well as morphological and structural changes produced by Er:YAG laser irradiation, has been reported. Purpose. To evaluate the chemical changes associated with acid resistance of enamel treated with Er:YAG laser. Methods. Forty-eight enamel samples were divided into 4 groups (n = 12). Group I (control); Groups II, III, and IV were irradiated with Er:YAG at 100 mJ (12.7 J/cm2), 200 mJ (25.5 J/cm2), and 300 mJ (38.2 J/cm2), respectively. Results. There were significant differences in composition of irradiated groups (with the exception of chlorine) and in the amount of calcium released. Conclusions. Chemical changes associated with an increase in acid resistance of enamel treated with Er:YAG laser showed a clear postirradiation pattern characterized by a decrease in C at.% and an increase in O, P, and Ca at.% and no changes in Cl at.%. An increased Ca/P ratio after Er:YAG laser irradiation was associated with the use of higher laser energy densities. Chemical changes produced by acid dissolution showed a similar trend among experimental groups. Stable or increased Ca/P ratio after acid dissolution was observed in the irradiated groups, with reduction of Ca released into the acid solution. PMID:24600327

  14. Selectively deposited copper on laser-treated polyimide using electroless plating

    Science.gov (United States)

    Zhao, Gang; Phillips, Harvey M.; Zheng, HongYu; Tam, Siu Chung; Liu, Wen Qing; Wen, Gongling; Gong, Zhiben; Lam, Yee Loy

    2000-06-01

    Many reviews about the interconnection line fabrication by laser processing method were reported recently. UV laser process polyimide has been studied thoroughly during the past decade. In this report, we discussed the utilization of surface potential changing on polyimide film irradiated by excimer KrF laser and metallized the UV laser treated polyimide surface by electroless copper deposition. A new negatively charged polymer stabilized Pd solution was applied as catalyst in this experiment. We also produced pattern-wised fine line on KrF laser induced PI surface using this method.

  15. Infrared spectroscopy of laser-irradiated dental hard tissues using the Advanced Light Source

    Science.gov (United States)

    Fried, Daniel; Breunig, Thomas

    2001-04-01

    FTIR spectroscopy used in the specular reflectance mode is well suited for resolving thermally induced changes in dental hard tissue as a result of laser irradiation. High spatial resolution is achievable with a high brightness synchrotron radiation source such as the ALS at Lawrence Berkeley National Laboratory. IR spectra of modified enamel were acquired after laser ablation using several laser wavelengths from the UV to the mid-IR. Specific areas of laser ablation craters were probed non-destructively with 10-micrometers spatial resolution. The chemical composition of the crater walls deviates markedly from that of hydroxyapatite after Er:YAG and CO2 laser irradiation without added water. New mineral phases were resolved that have not been previously observed using conventional IR spectroscopy.

  16. Cascaded acceleration of proton beams in ultrashort laser-irradiated microtubes

    Science.gov (United States)

    Wang, H. C.; Weng, S. M.; Murakami, M.; Sheng, Z. M.; Chen, M.; Zhao, Q.; Zhang, J.

    2017-09-01

    A cascaded ion acceleration scheme is proposed by use of ultrashort laser-irradiated microtubes. When the electrons of a microtube are blown away by intense laser pulses, strong charge-separation electric fields are formed in the microtube along both the axial and radial directions. By controlling the time delay between the laser pulses and a pre-accelerated proton beam injected along the microtube axis, we demonstrate that this proton beam can be further accelerated by the transient axial electric field in the laser-irradiated microtube. Moreover, the collimation of the injected proton beam can be enhanced by the inward radial electric field. Numerical simulations show that this cascaded ion acceleration scheme works efficiently even at non-relativistic laser intensities, and it can be applied to injected proton beams in the energy range from 1 to 100 MeV. Therefore, it is particularly suitable for cascading acceleration of protons to higher energy.

  17. Thermal and microstructural effects of nanosecond pulsed Nd:YAG laser irradiation on tooth root surface

    Science.gov (United States)

    Wilder-Smith, Petra B. B.; Arrastia-Jitosho, Anna-Marie A.; Grill, G.; Liaw, Lih-Huei L.; Berns, Michael W.

    1995-05-01

    Plaque, calculus and altered cementum removal by scaling and root planing is a fundamental procedure in periodontal treatment. However, the residual smear layer contains cytotoxic and inflammatory mediators which adversely affect healing. Chemical smear layer removal is also problematic. In previous investigations effective smear layer removal was achieved using long pulsed irradiation at 1.06 (mu) . However, laser irradiation was not adequate as an alternative to scaling and root planing procedures and concurrent temperature rises exceeded thermal thresholds for pulpal and periodontal safety. It was the aim of this study to determine whether nanosecond pulsed irradiation at 1.06 (mu) could be used as an alternative or an adjunct to scaling and root planing. Sixty freshly extracted teeth were divided as follows: 5 control, 5 root planed only, 25 irradiated only, 25 root planed and irradiated. Irradiation was performed at fluences of 0.5 - 2.7 J/cm2, total energy densities of 12 - 300 J/cm2, frequencies of 2 - 10 Hz using the Medlite (Continuum) laser. Irradiation-induced thermal events were recorded using a thermocouple within the root canal and a thermal camera to monitor surface temperatures. SEM demonstrated effective smear layer removal with minimal microstructural effects. Surface temperatures increased minimally (< 3 C) at all parameters, intrapulpal temperature rises remained below 4 C at 2 and 5 Hz, F < 0.5 J/cm2. Without prior scaling and root planing, laser effects did not provide an adequately clean root surface.

  18. Effects of low-level laser irradiation on human blood lymphocytes in vitro.

    Science.gov (United States)

    Al Musawi, Mustafa S; Jaafar, M S; Al-Gailani, B; Ahmed, Naser M; Suhaimi, Fatanah M; Suardi, Nursakinah

    2017-02-01

    Low-level laser irradiation (LLLI) has various effects on cultured human lymphocytes in vitro, but little is known about such effects in whole blood. This study investigated whether LLLI affected lymphocyte count in human whole blood in vitro. A total number of 130 blood samples were collected from apparently healthy adult patients through venipuncture into tubes containing EDTA. Each sample was divided into two equal aliquots to be used as a non-irradiated control sample and an irradiated sample. The irradiated aliquot was subjected to laser wavelengths of 405, 589, and 780 nm with different fluences of 36, 54, 72, and 90 J/cm2, at a fixed irradiance of 30 mW/cm2. A paired student t test was used to compare between non-irradiated and irradiated samples. The lymphocyte counts were measured using a computerized hematology analyzer and showed a significant (P irradiated samples. This increase in lymphocyte count upon irradiation was confirmed by flow cytometry. At a wavelength of 589 nm and fluence of 72 J/cm2, irradiation of whole blood samples showed a significant increase in CD45 lymphocytes and natural killer (NK) (CD16, CD56) cells, but no significant changes in CD3 T lymphocytes, T-suppressor (CD3, CD8) cells, T-helper (CD3, CD4) cells, and CD19 B lymphocytes when compared with their non-irradiated counterparts. Our results clearly demonstrate that NK cell count is altered by irradiation, which ultimately affects the whole lymphocyte count significantly.

  19. Time-resolved temperature measurement and numerical simulation of superposed pulsed Nd:YAG laser irradiated silicon

    Science.gov (United States)

    Lv, Xueming; Pan, Yunxiang; Jia, Zhichao; Shen, Zhonghua; Lu, Jian; Ni, Xiaowu

    2017-05-01

    Time-resolved surface temperature of single crystal silicon was measured by an infrared radiation pyrometer. The silicon sample was irradiated by two pulsed Nd:YAG lasers with pulse duration of 1ms superposed by 7ns pulses, referred to as combined pulse laser (CPL). The change of the damage radius with the millisecond (ms) laser energy density was studied, and then compared with that of single ms laser irradiation. An axisymmetric numerical model was established for calculation of the temperature field distribution while silicon was irradiated by single ms laser and CPL, respectively. Compared with experimental results, the CPL-silicon damage mechanism was discussed.

  20. Surface morphological modification of crosslinked hydrophilic co-polymers by nanosecond pulsed laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Primo, Gastón A.; Alvarez Igarzabal, Cecilia I. [IMBIV (CONICET), Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Edificio de Ciencias II, Ciudad Universitaria, Córdoba X5000HUA (Argentina); Pino, Gustavo A.; Ferrero, Juan C. [INFIQC (CONICET), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, and Centro Láser de Ciencias Moleculares, Universidad Nacional de Córdoba, Córdoba X5000IUS (Argentina); Rossa, Maximiliano, E-mail: mrossa@fcq.unc.edu.ar [INFIQC (CONICET), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, and Centro Láser de Ciencias Moleculares, Universidad Nacional de Córdoba, Córdoba X5000IUS (Argentina)

    2016-04-30

    Graphical abstract: - Highlights: • Laser-induced surface modification of crosslinked hydrophilic co-polymers by ns pulses. • Formation of ablation craters observed under most of the single-pulse experimental conditions. • UV laser foaming of dried hydrogel samples resulting from single- and multiple-pulse experiments. • Threshold values of the incident laser fluence reported for the observed surface modifications. • Lower threshold fluences for acrylate-based, compared to acrylamide-based hydrogels. - Abstract: This work reports an investigation of the surface modifications induced by irradiation with nanosecond laser pulses of ultraviolet and visible wavelengths on crosslinked hydrophilic co-polymeric materials, which have been functionalized with 1-vinylimidazole as a co-monomer. A comparison is made between hydrogels differing in the base co-monomer (N,N-dimethylaminoethyl methacrylate and N-[3-(dimethylamino)propyl] methacrylamide) and in hydration state (both swollen and dried states). Formation of craters is the dominant morphological change observed by ablation in the visible at 532 nm, whereas additional, less aggressive surface modifications, chiefly microfoams and roughness, are developed in the ultraviolet at 266 nm. At both irradiation wavelengths, threshold values of the incident laser fluence for the observation of the various surface modifications are determined under single-pulse laser irradiation conditions. It is shown that multiple-pulse irradiation at 266 nm with a limited number of laser shots can be used alternatively for generating a regular microfoam layer at the surface of dried hydrogels based on N,N-dimethylaminoethyl methacrylate. The observations are rationalized on the basis of currently accepted mechanisms for laser-induced polymer surface modification, with a significant contribution of the laser foaming mechanism. Prospective applications of the laser-foamed hydrogel matrices in biomolecule immobilization are suggested.

  1. Low-level laser irradiation stimulates tenocyte migration with up-regulation of dynamin II expression.

    Directory of Open Access Journals (Sweden)

    Wen-Chung Tsai

    Full Text Available Low-level laser therapy (LLLT is commonly used to treat sports-related tendinopathy or tendon injury. Tendon healing requires tenocyte migration to the repair site, followed by proliferation and synthesis of the extracellular matrix. This study was designed to determine the effect of laser on tenocyte migration. Furthermore, the correlation between this effect and expression of dynamin 2, a positive regulator of cell motility, was also investigated. Tenocytes intrinsic to rat Achilles tendon were treated with low-level laser (660 nm with energy density at 1.0, 1.5, and 2.0 J/cm(2. Tenocyte migration was evaluated by an in vitro wound healing model and by transwell filter migration assay. The messenger RNA (mRNA and protein expressions of dynamin 2 were determined by reverse transcription/real-time polymerase chain reaction (real-time PCR and Western blot analysis respectively. Immunofluorescence staining was used to evaluate the dynamin 2 expression in tenocytes. Tenocytes with or without laser irradiation was treated with dynasore, a dynamin competitor and then underwent transwell filter migration assay. In vitro wound model revealed that more tenocytes with laser irradiation migrated across the wound border to the cell-free zone. Transwell filter migration assay confirmed that tenocyte migration was enhanced dose-dependently by laser. Real-time PCR and Western-blot analysis demonstrated that mRNA and protein expressions of dynamin 2 were up-regulated by laser irradiation dose-dependently. Confocal microscopy showed that laser enhanced the expression of dynamin 2 in cytoplasm of tenocytes. The stimulation effect of laser on tenocytes migration was suppressed by dynasore. In conclusion, low-level laser irradiation stimulates tenocyte migration in a process that is mediated by up-regulation of dynamin 2, which can be suppressed by dynasore.

  2. Charged particle and laser irradiation of selected materials

    Energy Technology Data Exchange (ETDEWEB)

    Svendsen, W.E.

    1996-11-01

    The main topics of the present thesis are the processes governing electronic sputtering of insulators and laser ablation of metals and insulators. The sputtering yield for electron bombardment of solid deuterium was investigated using quartz crystal microbalances as the measuring technique. The sputtering yield was measured with varying electron energy and deuterium film thickness. Laser ablation measurements of silver and nickel were carried out using a Nd:YAG laser. The effect of various experimental parameters such as background gas pressure (Ar, N{sub 2}), position of quartz crystals with respect to target position and the optimal number of laser shots for carrying out the experiments were investigated. The deposition rate was measured with varying laser wavelength and laser fluence. The angular distribution of the ablated material was measured for silver as well. A theoretical model based on the thermal properties of laser interaction with metals was applied in the initial phase of ablation. For the non-thermal processes governing laser interaction with the ablated plasma plume, a model developed by Phipps and Dreyfus was used to interpret the results. Laser ablation measurements of water-ice were carried using a Nitrogen laser. Attempts were made to measure the deposition rate for various the laser wavelengths and energies. (au) 8 tabs., 49 ills., 77 refs.

  3. Helium-neon and nitrogen laser irradiation accelerates the phagocytic activity of human monocytes.

    Science.gov (United States)

    Hemvani, Nanda; Chitnis, Dhananjay Sadashiv; Bhagwanani, Nijram Satramdas

    2005-12-01

    Intracellular survival of mycobacteria within monocytes is a crucial stage in the pathogenesis of tuberculosis. The aim was to check intracellular survival of Mycobacterium fortuitum within the human monocytes exposed to He-Ne and nitrogen laser irradiation. Tuberculosis remains one of the most important infectious diseases for developing countries. Low-level laser therapy (LLLT) has been tried to treat tubercular cavitory lung disease with encouraging results. The in vitro photobiological effect of low level laser radiation on the intracellular mycobacteria needs to be evaluated before we could go for large clinical trials. The aliquots of human monocytes from peripheral blood of healthy volunteers and tuberculosis cases were exposed to He-Ne or nitrogen laser beam. The non-irradiated monocytes from the same source served as controls. The monocytes were then challenged with M. fortuitum, and surviving mycobacteria within monocytes were subjected to viable counts. Enhanced killing of mycobacterial cells was seen among monocytes exposed to He-Ne and nitrogen laser irradiation. He-Ne and nitrogen laser irradiation activates the monocytes to increase intracellular killing of mycobacteria.

  4. Crystalline structure of human enamel irradiated with Er,Cr:YSGG laser

    Science.gov (United States)

    Bachmann, L.; Rosa, K.; da Ana, P. A.; Zezell, D. M.; Craievich, A. F.; Kellermann, G.

    2009-02-01

    The Er,Cr:YSGG system is commonly employed in tissue removal, but recently it has also been clinically evaluated for caries prevention. The present work explains the clinical and pre-clinical observations on the basis of the crystallographic changes that this laser can produce in the dental enamel. The analyzed samples were obtained from sound human third molar teeth. The laser irradiation was conducted with a Er,Cr:YSGG laser with 12.5 mJ/pulse, 0.25 W, and 2.8 J/cm2. The laser device operates at a wavelength of 2.79 μm, and the pulse width duration is 140 μs, with a repetition rate of 20 Hz of spot size of 750 μm. The crystalline structure of the samples was evaluated by X-ray diffraction at a synchrotron beamline The X-ray beam was configured at a grazing angle, to maximize the surface diffraction signal and to better detect the possible new crystallographic phase produced after the laser irradiation. It was observed that the crystallographic structure tetracalcium phosphate (TetCP, JCPDF 25-1137) exhibits several peaks that match more precisely with the new experimental peaks of the irradiated enamel. The present results suggesting the coexistence of tetracalcium phosphate with hydroxyapatite in enamel irradiated with Er,Cr:YSGG laser and can be the answer to the clinical and pre-clinical observations reported in the literature.

  5. Enhanced mass removal due to phase explosion during high irradiance nanosecond laser ablation of silicon

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jong Hyun [Univ. of California, Berkeley, CA (United States)

    2000-05-01

    The morphology of craters resulting from high irradiance laser ablation of silicon was measured using a white light interferometry microscope. The craters show a dramatic increase in their depth and volume at a certain irradiance, indicating a change in the primary mechanism for mass removal. Laser shadowgraph imaging was used to characterize and differentiate the mass ejection processes for laser irradiances above and below the threshold value. Time-resolved images show distinct features of the mass ejected at irradiances above the threshold value including the presence of micron-sized particulates; this begins at approximately 300 ~ 400 ns after the start of laser heating. The analysis of the phenomena was carried out by using two models: a thermal evaporation model and a phase explosion model. Estimation of the crater depth due to the thermally evaporated mass led to a large underestimation of the crater depth for irradiances above the threshold. Above the threshold irradiance, the possibility of phase explosion was analyzed. Two important results are the thickness of the superheated liquid layer that is close to the critical temperature and the time for vapor bubbles that are generated in the superheated liquid to achieve a critical size. After reaching the critical size, vapor bubbles can grow spontaneously resulting in a violent ejection of liquid droplets from the superheated volume. The effects of an induced transparency, i.e. of liquid silicon turning into an optically transparent liquid dielectric medium, are also introduced. The estimated time for a bubble to reach the critical size is in agreement with the delay time measured for the initiation of large mass ejection. Also, the thickness of the superheated liquid layer that is close to the critical temperature at the time of the beginning of the large mass ejection is representative of the crater depth at the threshold irradiance. These results suggest that phase explosion is a plausible thermal

  6. Nitrogen/argon diluted acetylene and ethylene blue flames under infrared CO2 laser irradiation

    Directory of Open Access Journals (Sweden)

    Peter V. Pikhitsa

    2011-09-01

    Full Text Available We investigated changes in emission spectra from nitrogen/argon diluted laminar diffusion acetylene and ethylene blue flames irradiated by a powerful cw infrared CO2 laser. The changes in the radical emission bands can be interpreted as an indication of laser-induced decomposition of ethylene (for laser absorbing C2H4 fuel and of laser-absorbing intermediates (for non-absorbing C2H2 fuel. The results indicate that released active hydrogen plays an important role in addition/abstraction reactions without any participation of oxygen.

  7. Shock dynamics induced by double-spot laser irradiation of layered targets

    Directory of Open Access Journals (Sweden)

    Aliverdiev Abutrab A.

    2015-06-01

    Full Text Available We studied the interaction of a double-spot laser beam with targets using the Prague Asterix Laser System (PALS iodine laser working at 0.44 μm wavelength and intensity of about 1015 W/cm2. Shock breakout signals were recorder using time-resolved self-emission from target rear side of irradiated targets. We compared the behavior of pure Al targets and of targets with a foam layer on the laser side. Results have been simulated using hydrodynamic numerical codes.

  8. The effects of low-intensity He-Ne laser irradiation on erythrocyte metabolism.

    Science.gov (United States)

    Luo, Gang-Yue; Sun, Li; Wei, En-Xiu; Tan, Xiaodong; Liu, Timon Cheng-Yi

    2015-12-01

    Low-intensity laser irradiation (LILI) can improve the deformability of red blood cells (RBCs). It might be due to the LILI effects on adenosine triphosphate (ATP) level. However, ATP content may not be a valid surrogate marker for RBC deformability. The LILI effects on RBC glycolysis were studied in this paper. Hypertonic RBCs were used in this study. After 5 min irradiation with low-intensity He-Ne laser irradiation (LHNL) at 632.8 nm and 4.4 mW/cm(2), the concentration of intracellular glucose and the activities of phosphofructokinase (PFK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were measured, respectively. There was no significant change in intracellular glucose concentration. The activity of PFK decreased significantly, but the activity of GAPDH increased significantly. In hypertonic RBCs, LHNL irradiation may decrease the activity of energy-consuming enzymes, but increases the activity of energy-generating enzymes in glycolysis, to improve the RBC deformability.

  9. Photoacoustic spectroscopy applied to the study of the influence of laser irradiation on corn seeds

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez Aguilar, C.; Michtchenko, A. [Instituto Politecnico Nacional (Mexico); Carballo, A. [Colegio de Postgraduados, Programa de Semillas (IREGEP) (Mexico); Cruz-Orea, A. [Centro de Investigacion y de Estudios Avanzados-IPN (Mexico); Ivanov, R. [Universidad Autonoma de Zacatecas, Unidad Academia de Fisica (Mexico); San Martin Martinez, E. [Centro de Investigacion en ciencia Aplicada y Tecnologia Avanzada-IPN (Mexico)

    2005-06-01

    In the present study we were interested in the effects of low intensity laser irradiation on hybrid corn seeds CL{sub 1} x CL{sub 4} when these seeds were exposed to different laser intensities and irradiation times. In order to observe qualitative differences in chlorophyll a and b optical absorption spectra of seedling's leaves, whose seeds were irradiated and non irradiated, were obtained by using photoacoustic spectroscopy (PAS). A randomized complete blocks experimental design with three replications was used. The experimental unit included 10 seeds, from which we randomly choose three seedlings. The variance analysis (ANOVA) for both chlorophylls revealed significant (P < 0.05) differences among treatments. (authors)

  10. Impact of Laser Irradiation on Brain Resistance to Postresuscitative Emotional Stresses (Experimental Study

    Directory of Open Access Journals (Sweden)

    V. V. Moroz

    2009-01-01

    Full Text Available The paper shows how to solve the urgent problem of posthypoxic rat brain resistance to emotional stress. An hour hypovolemic hypotension (mean blood pressure 45 mm Hg served as a model of a terminal condition. The integra-tive activity of the rat brain was evaluated by the elevated cross labyrinth test. Emotional stress was induced by confrontation between the falsely operated and antihypertensive rats within 30 postischemic days. Laser irradiation was carried out an hour after blood reinfusion. Laser irradiation used before emotional stress was shown to increase the resistance of the posthypoxic rat brain to emotional stress and to prevent the development of depression-like states in the late periods after resuscitation. Key words: blood loss, postresuscitative period, emotional stress, laser irradiation.

  11. [The development of method of intravenous laser irradiation of blood with green laser in patients with hyperlipidemia].

    Science.gov (United States)

    Poluéktova, M V; Kharchenko, I L; Kaplan, M A; Sokol, N I; Ershova, L M; Borgul', O V; Chirkova, T V; Vorob'eva, O A

    2011-08-01

    The impact of intravenous laser irradiation of blood with green laser in patients with hyperlipidemia was investigated. The blood of patients was chosen as sample for analysis. The patients were divided in two groups: patients with atherosclerosis of various localization and patients with atherosclerosis associated with diabetes mellitus. The effectiveness of laser impact was evaluated according the blood biochemical indicators. The levels of crude cholesterol, triglycerides, low and very low density lipoproteins, apoproteins A and B, highly sensitive C-reactive protein, atherogenity indicator, glucose content, uric acid content were determined befor and after 1, 3 and 6 months after impact. The study results indicate the occurrence of hypolipedemic and hypoglycemic effects.

  12. Nanosecond pulsed laser nanostructuring of Au thin films: Comparison between irradiation at low and atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez-Aké, C., E-mail: citlali.sanchez@ccadet.unam.mx [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior S/N, C. U., Delegación Coyoacán, C.P. 04510, México D.F. (Mexico); Canales-Ramos, A. [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior S/N, C. U., Delegación Coyoacán, C.P. 04510, México D.F. (Mexico); García-Fernández, T. [Universidad Autónoma de la Ciudad de México (UACM), Prolongación San Isidro 151, Col. San Lorenzo Tezonco, México D.F., C.P. 09790 (Mexico); Villagrán-Muniz, M. [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior S/N, C. U., Delegación Coyoacán, C.P. 04510, México D.F. (Mexico)

    2017-05-01

    Highlights: • Background pressure plays an important role in NPs formation and its characteristics. • The NPs diameter and their size dispersion are smaller when irradiating in vacuum. • The plasmon resonance shifts ∼15 nm to higher frequencies when irradiating in vacuum. • Film partial ablation cannot be neglected for thickness in the range 40–80 nm. • In situ optical techniques monitor the timescale of the process and ablation dynamics. - Abstract: Au thin films with tens of nm in thickness deposited on glass substrates were irradiated with nanosecond UV (355 nm) laser pulses at atmospheric pressure and in vacuum conditions (∼600 and 10{sup −5} Torr). We studied the effect of the laser fluence (200–400 mJ/cm{sup 2}), thickness of the starting film (∼40–80 nm) and surrounding pressure on the partial ablation/evaporation of the films and the morphology of the produced nanoparticles (NPs). The dynamics of NPs formation was studied by measuring in real time the transmission of the samples upon continuous-wave laser exposure, and by means of probe beam deflection technique. The ejection of material from the film as a result of the irradiation was confirmed by time-resolved shadowgraphy technique. Experiments show that the NPs diameter and their size distribution are smaller when the irradiation is performed in vacuum regardless the laser fluence and thickness of the started film. It is also shown that the plasmon band shifts to higher frequencies with lower background pressure. The optical measurements show that the films melt and ablate during the laser pulse, but the transmission of the irradiated areas continues changing during tens of microseconds due to ejection of material and solidification of the remaining gold. Our results indicate that partial ablation cannot be neglected in nanostructuration by ns-pulsed irradiation of thin films when their thickness is in the studied range.

  13. Near-infrared laser irradiation improves the development of mouse pre-implantation embryos.

    Science.gov (United States)

    Yokoo, Masaki; Mori, Miho

    2017-05-27

    The aim of the present study was to assess the effects of near-infrared laser irradiation on the in vitro development of mouse embryos. Female ICR mice were superovulated with pregnant mare serum gonadotropin and human chorionic gonadotropin (hCG), and mated with male mice. Two-cell stage embryos were collected 40 h after administering hCG and cultured in M16 medium. Two-cell embryos (0 h after culture), 8-cell embryos (approx. 30 h after culture), morula (approx. 48 h after culture), and blastocysts (approx. 73 h after culture) were irradiated at 904 nm for 60 s. These embryos were cultured in a time-lapse monitoring system and the timing of blastocyst hatching was evaluated. Some of the irradiated blastocysts were transferred to the uterine horns of pseudopregnant recipients immediately after irradiation. Pregnancy rates, and offspring growth and fertility, were evaluated. Near-infrared laser irradiation increased the speed of in vitro mouse embryo development. In irradiated blastocysts, hatching was faster than in control (non-irradiated) blastocysts (18.4 vs. 28.2 h, P infrared laser irradiation improves the quality of mouse embryo development in vitro, and increases the live birth rate without affecting the normality of the offspring. Thus, the near-infrared laser method may enhance the quality of embryos and contribute to improvements in reproductive technologies in mammals. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Prediction of drilling micro-hole in CO{sub 2} laser irradiated sticking plaster

    Energy Technology Data Exchange (ETDEWEB)

    Rao Zhiming; Lu Yanzhao [Wuhan National Laboratory for Optoelectronic, the College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei (China); Wu Tao [School of Science, Wuhan Institute of Technology, Wuhan 430073 (China); Du Jianqiang, E-mail: raozm24@163.com [Depart of Computer Science, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi (China)

    2011-02-01

    This paper reports a simulation model of drilling micro-hole in sticking plaster heated with a 1064 nm continuous CO{sub 2} laser beam. Laser spot sizes ranged from 0.1 to 0.2mm diameter with axial irradiance power levels of 25-100W. To apply software Ansys, the measured steady-state surface temperature is calculated to rise with both increasing beam power and incident laser irradiance. For temperatures above 450 deg. C, sticking plaster vaporized into ventilation hole, and the size of ventilation hole 0.15mm diameter spent 1.7ms heated with laser power lever of 100W with the size of spot 0.15mm diameter, in good accordance with reported in earlier experiments studies. Similarly, the size of ventilation holes changed with beam power and laser spot diameter. These results show that software Ansys can be used to predict drilling micro-hole in CO{sub 2} laser irradiated sticking plaster and the result of simulation can guide to laser drilling experiments.

  15. Raman spectroscopic studies of CO2 laser-irradiated human dental enamel

    Science.gov (United States)

    Aminzadeh, A.; Shahabi, S.; Walsh, L. J.

    1999-06-01

    While the effects of carbon dioxide (CO2) laser radiation on the physical properties of human dental enamel are well characterized, little is known regarding laser-induced chemical changes. In this study, enamel was exposed to CO2 laser radiation to induce fusion and recrystallization, and the Raman spectra recorded using both dispersive and Fourier-transformed (FT) Raman spectroscopy. Spectra were compared to a heat-treated specimen of hydroxyapatite (HAP) and enamel. Laser irradiation induced chemical changes which differed from those induced by heat treatment. Comparing the Raman spectra of lased enamel to HAP and tricalcium phosphate (TCP), it is evident that CO2 laser irradiation of enamel causes the partial conversion of HAP to TCP. The effect of laser irradiation is not merely a simple local heating effect as previously thought, since simple heating of enamel leads to the formation of both TCP and Ca(OH)2, while laser treatment of enamel results in the formation of TCP but not Ca(OH)2.

  16. Does laser diode irradiation improve the degree of conversion of simplified dentin bonding systems?

    Directory of Open Access Journals (Sweden)

    Leticia Ferreira de Freitas BRIANEZZI

    Full Text Available Abstract Simplified dentin-bonding systems are clinically employed for most adhesive procedures, and they are prone to hydrolytic degradation. Objective This study aimed to investigate the effect of laser diode irradiation on the degree of conversion (DC, water sorption (WS, and water solubility (WSB of these bonding systems in an attempt to improve their physico-mechanical resistance. Material and Methods Two bonding agents were tested: a two-step total-etch system [Adper™ Single Bond 2, 3M ESPE (SB] and a universal system [Adper™ Single Bond Universal, 3M ESPE (SU]. Square-shaped specimens were prepared and assigned into 4 groups (n=5: SB and SU (control groups – no laser irradiation and SB-L and SU-L [SB and SU laser (L – irradiated groups]. DC was assessed using Fourier transform infrared spectroscopy with attenuated total reflectance. Additional uncured resin samples (≈3.0 µL, n=5 of each adhesive were also scanned for final DC calculation. For WS/WSB tests, similar specimens (n=10 were prepared and measured by monitoring the mass changes after dehydration/water storage cycles. For both tests, adhesive fluids were dropped into standardized Teflon molds (6.0×6.0×1.0 mm, irradiated with a 970-nm laser diode, and then polymerized with an LED-curing unit (1 W/cm2. Results Laser irradiation immediately before photopolymerization increased the DC (% of the tested adhesives: SB-L>SB>SU-L>SU. For WS/WSB (μg/mm3, only the dentin bonding system (DBS was a significant factor (pSU. Conclusion Irradiation with a laser diode improved the degree of conversion of all tested simplified dentin bonding systems, with no impact on water sorption and solubility.

  17. Mitochondrial signaling for histamine releases in laser-irradiated RBL-2H3 mast cells.

    Science.gov (United States)

    Wu, Zu-Hui; Zhou, Yu; Chen, Ji-Yao; Zhou, Lu-Wei

    2010-08-01

    The low power laser irradiation (LPLI) can promote the wound healing, but the mechanism is still not fully understood. We have found in our previous work that the LPLI induces mast cells to release the histamine and thus suggested that the increased histamine release is probably one of the causes for promoting the wound healing since mast cells have been found to play positive roles in the process of wound healing. This study aims to explore the mechanism of histamine release in RBL-2H3 mast cells under laser irradiations. The wavelength effect of laser irradiations, the permeability function of mitochondrial membrane, the Bcl-2 effect, the cytosolic alkalinization and the increment of intracellular Ca(2+) ([Ca(2+)](i)), on histamine release in RBL-2H3 cells were studied, respectively, with the corresponding fluorescence probes. The action bands of laser irradiations were consistent with the absorption bands of cytochrome c oxidase, suggesting that cytochrome c oxidase is the photoacceptor. After laser irradiation, (1) the cytochrome c releases from mitochondrial to cytosol reflecting an increased permeability of mitochondrial membrane, (2) the cytosolic alkalinization appears, (3) [Ca(2+)](i) increases, and (4) finally the enhancement of histamine release occurs. When Bcl-2 was used to inhibit the permeability of mitochondrial membrane these cellular signaling from (1) to (4) were all suppressed obviously. As a photoacceptor, cytochrome c oxidase absorbs incident photons and initiates the mitochondrial signaling. When the signals are transferred from the mitochondrial to the cytosol, the cytosolic alkalinization appears leading to the opening of a Ca(2+) channel on the membrane, the transient receptor potential vanilloid (TRPV), and an increment of [Ca(2+)](i). The increased [Ca(2+)](i) consequently mediates an enhanced histamine release. Such a responding chain is a suggested mechanism to understand the histamine release in RBL-2H3 cells under laser irradiations

  18. Effects of pulsed Nd:YAG laser irradiation on root canal wall dentin with different laser initiators.

    Science.gov (United States)

    Zhang, C; Kimura, Y; Matsumoto, K; Harashima, T; Zhou, H

    1998-05-01

    The effects of pulsed Nd:YAG laser irradiation with different laser initiators on the permeability and ultrastructure of the root canal wall dentin were investigated in vitro. Forty extracted human single-rooted teeth were randomly assigned to four groups. Group 1 teeth were not lased as a control. Group 2 specimens received four 10-s duration laser exposures for a total exposure of 40 s/canal. In group 3 specimens, the root canals were painted with black ink and then lased by the same method as group 2 teeth. In group 4 specimens, root canals were treated with 38% Ag(NH3)2F and then lased by the same method as group 2 teeth. Laser parameters were set at 2 W, 20 pps. After being placed in 0.6% rhodamine B solution for 48 h, the teeth were sectioned for study by stereoscope and scanning electron microscopy. Statistical analysis showed there were significant differences (p permeability in the apical areas between groups 3 and 1, 4 and 1, and 4 and 2. Scanning electron microscopic examination showed that laser treatment alone had no obvious effects on the root canal wall. The root canal surfaces prepared for by laser irradiation with black ink or 38% Ag(NH3)2F revealed melting, smear layer evaporation, and open dentinal tubules. Black ink was more effective than 38% Ag(NH3)2F as a Nd:YAG laser initiator.

  19. Surface damages of zirconia by Nd:YAG dental laser irradiation.

    Science.gov (United States)

    Noda, Makoto; Okuda, Yuji; Tsuruki, Jiro; Minesaki, Yoshito; Takenouchi, Yasumi; Ban, Seiji

    2010-10-01

    The purpose of this study was to characterize the surface damages of zirconia by Nd:YAG dental laser irradiation through a systematic evaluation of the associated microstructural changes. Disk specimens of yttria-stabilized tetragonal zirconia polycrystals (Y-TZP) and ceria-stabilized zirconia/alumina nanocomposite (Ce-TZP/Al₂O₃ nanocomposite) were irradiated by Nd:YAG dental laser. The specimens were characterized using scanning electron microscopy, X-ray diffractometry, and wavelength dispersive X-ray spectroscopy. Every single irradiated spot was indicated by a circular black pit surrounded by a circular raised rim with a sunken depression at the center. On surface changes, many cracks were formed inside each irradiated pit. On changes in elemental composition, the concentration of oxygen decreased while that of zirconium increased. After heating in air, the assembly of circular black pits turned white, although the depression and raised rim remained. This study showed that Nd:YAG dental laser irradiation induced cracking and reduced oxygen content on the surface of zirconia. Consequently, these phenomena reduced the mechanical strength of zirconia. Therefore, Nd:YAG dental laser welding should not be performed on tetragonal zirconia.

  20. Syntesis of nitrides and carbides at surface of titanium by Nd-YAG pulsed laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Covelli, L.; Pierdominici, F.; Smurov, I.; Tosto, S.

    1991-12-31

    Microstructural SEM observations were carried out on samples of Ti irradiated with a Nd-YAG pulsed laser in the range of 10-40 J energy and 3-10 msec pulse length. The treatments were carried out on samples exposed to an atmosphere of nitrogen and on samples coated with graphite; it was thus possible to obtain nitrides and carbides as a consequence of laser irradiation. The morphology and distribution of the phases allowed research to obtain information about the fluid dynamics within the melt pool. It was found that the mechanisms of Ti nitride and carbide formation and growth are basically the same.

  1. Protective Effect of 940 nm Laser on Gamma-Irradiated Mice

    OpenAIRE

    Efremova, Yulia; Sinkorova, Zuzana; Navratil, Leos

    2015-01-01

    Objective: The purpose of this study was to investigate the radioprotective features of 940 nm laser on the life span of mice, and absolute counts of blood cells and their proportions in gamma-irradiated mice. Background data: An important feature of laser light is activation of mitotic division and differentiation of cells, which may be useful in activation of hematopoiesis in gamma-irradiated organisms. Materials and methods: Mice were randomly assigned to 11 groups according to the type(s)...

  2. Effect of permittivity on periodic nanostructures by femtosecond laser irradiation on Ti plate

    Science.gov (United States)

    Ooga, T.; Tsukamoto, M.; Sato, Y.; Miyake, M.

    2017-02-01

    Titanium (Ti) is widely used as biomaterial, for example artificial bone, joint etcetera. Femtosecond laser can be used to form periodic nanostructures on Ti surface, and the structures help to control cell elongation. The period of the periodic nanostructures on Ti under atmospheric condition is about 70 to 80% compared with the laser wavelength. However, the mechanism of periodic nanostructure formation by femtosecond laser irradiation has not been clarified yet. Thus, we focused on Surface Plasmon Polariton (SPP) model, which was proposed as a model for formation of periodic nanostructures by femtosecond laser irradiation. In this model, standing waves are generated on the material surface caused by excited electrons on the material surface by laser irradiation. The wavelength of the standing waves depends on the permittivity of the surrounding medium, and the period of the periodic nanostructures also depends on the wavelength of the standing waves. Therefore, it is considered that the period of the nanostructures varies by changing the permittivity at the laser irradiation interface2,3).In this study, a polyethylene terephthalate (PET) films which has permittivity of 3.0, and a polymethyl methacrylate (PMMA) films which has permittivity of 3.4 were contacted on Ti surface by using contact jig and then the femtosecond laser at a wavelength of 800 nm was irradiated to create periodic nanostructures. As a result, periodic nanostructures with a period of 440 nm was formed on Ti under PET adhesion condition, and periodic nanostructures with a period of 380 nm was formed on Ti under PMMA adhesion condition. On the other hand, periodic nanostructures with a period of 600 nm was formed on Ti under atmospheric condition. It was found that the period of periodic nanostructures can be controlled by changing the permittivity of the medium adhered to Ti.

  3. Helium-neon laser irradiation stimulates cell proliferation through photostimulatory effects in mitochondria.

    Science.gov (United States)

    Hu, Wan-Ping; Wang, Jeh-Jeng; Yu, Chia-Li; Lan, Cheng-Che E; Chen, Gow-Shing; Yu, Hsin-Su

    2007-08-01

    Previous reports have shown that cellular functions could be influenced by visual light (400-700 nm). Recent evidence indicates that cellular proliferation could be triggered by the interaction of a helium-neon laser (He-Ne laser, 632.8 nm) with the mitochondrial photoacceptor-cytochrome c oxidase. Our previous studies demonstrated that He-Ne irradiation induced an increase in cell proliferation, but not migration, in the melanoma cell line A2058 cell. The aim of this study was to investigate the underlying mechanisms involved in photostimulatory effects induced by an He-Ne laser. Using the A2058 cell as a model for cell proliferation, the photobiologic effects induced by an He-Ne laser were studied. He-Ne irradiation immediately induced an increase in mitochondrial membrane potential (delta psi(mt)), ATP, and cAMP via enhanced cytochrome c oxidase activity and promoted phosphorylation of Jun N-terminal kinase (JNK)/activator protein-1 (AP-1) expressions. He-Ne irradiation-induced A2058 cell proliferation was significantly abrogated by the addition of delta psi(mt) and JNK inhibitors. Moreover, treatment with an He-Ne laser resulted in delayed effects on IL-8 and transforming growth factor-beta1 release from A2058 cells. These results suggest that He-Ne irradiation elicits photostimulatory effects in mitochondria processes, which involve JNK/AP-1 activation and enhanced growth factor release, and ultimately lead to A2058 cell proliferation.

  4. Low-level laser irradiation induces in vitro proliferation of mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Barboza, Carlos Augusto Galvão; Ginani, Fernanda [Universidade Federal do Rio Grande do Norte, Natal, RN (Brazil); Soares, Diego Moura [Universidade Federal de Pernambuco, Recife, PE (Brazil); Henriques, Águida Cristina Gomes; Freitas, Roseana de Almeida [Universidade Federal do Rio Grande do Norte, Natal, RN (Brazil)

    2014-07-01

    To evaluate the effect of low-level laser irradiation on the proliferation and possible nuclear morphological changes of mouse mesenchymal stem cells. Mesenchymal stem cells derived from bone marrow and adipose tissue were submitted to two applications (T0 and T48 hours) of low-level laser irradiation (660nm; doses of 0.5 and 1.0J/cm{sup 2}). The trypan blue assay was used to evaluate cell viability, and growth curves were used to analyze proliferation at zero, 24, 48, and 72 hours. Nuclear alterations were evaluated by staining with DAPI (4'-6-diamidino-2-phenylindole) at 72 hours. Bone marrow-derived mesenchymal stem cells responded to laser therapy in a dose-dependent manner. Higher cell growth was observed when the cells were irradiated with a dose of 1.0J/cm{sup 2}, especially after 24 hours (p<0.01). Adipose-derived mesenchymal stem cells responded better to a dose of 1.0J/cm{sup 2}, but higher cell proliferation was observed after 48 hours (p<0.05) and 72 hours (p<0.01). Neither nuclear alterations nor a significant change in cell viability was detected in the studied groups. Low-level laser irradiation stimulated the proliferation of mouse mesenchymal stem cells without causing nuclear alterations. The biostimulation of mesenchymal stem cells using laser therapy might be an important tool for regenerative therapy and tissue engineering.

  5. Semiconductor laser irradiation improves root canal sealing during routine root canal therapy.

    Science.gov (United States)

    Su, Dandan; Hu, Xingxue; Wang, Dashan; Cui, Ting; Yao, Ruyong; Sun, Huibin

    2017-01-01

    To evaluate the effect of semiconductor laser irradiation on root canal sealing after routine root canal therapy (RCT). Sixty freshly extracted single-rooted human teeth were randomly divided into six groups (n = 10). The anatomic crowns were sectioned at the cementoenamel junction and the remaining roots were prepared endodontically with conventional RCT methods. Groups A and B were irradiated with semiconductor laser at 1W for 20 seconds; Groups C and D were ultrasonically rinsed for 60 seconds as positive control groups; Groups E and F without treatment of root canal prior to RCT as negative control groups. Root canal sealing of Groups A, C and E were evaluated by measurements of apical microleakage. The teeth from Groups B, D and F were sectioned, and the micro-structures were examined with scanning electron microscopy (SEM). One way ANOVA and LSD-t test were used for statistical analysis (α = .05). The apical sealing of both the laser irradiated group and the ultrasonic irrigated group were significantly different from the control group (p0.5). SEM observation showed that most of the dentinal tubules in the laser irradiation group melted, narrowed or closed, while most of the dentinal tubules in the ultrasonic irrigation group were filled with tooth paste. The application of semiconductor laser prior to root canal obturation increases the apical sealing of the roots treated.

  6. Semiconductor laser irradiation improves root canal sealing during routine root canal therapy.

    Directory of Open Access Journals (Sweden)

    Dandan Su

    Full Text Available To evaluate the effect of semiconductor laser irradiation on root canal sealing after routine root canal therapy (RCT.Sixty freshly extracted single-rooted human teeth were randomly divided into six groups (n = 10. The anatomic crowns were sectioned at the cementoenamel junction and the remaining roots were prepared endodontically with conventional RCT methods. Groups A and B were irradiated with semiconductor laser at 1W for 20 seconds; Groups C and D were ultrasonically rinsed for 60 seconds as positive control groups; Groups E and F without treatment of root canal prior to RCT as negative control groups. Root canal sealing of Groups A, C and E were evaluated by measurements of apical microleakage. The teeth from Groups B, D and F were sectioned, and the micro-structures were examined with scanning electron microscopy (SEM. One way ANOVA and LSD-t test were used for statistical analysis (α = .05.The apical sealing of both the laser irradiated group and the ultrasonic irrigated group were significantly different from the control group (p0.5. SEM observation showed that most of the dentinal tubules in the laser irradiation group melted, narrowed or closed, while most of the dentinal tubules in the ultrasonic irrigation group were filled with tooth paste.The application of semiconductor laser prior to root canal obturation increases the apical sealing of the roots treated.

  7. Surface modification of Ti dental implants by Nd:YVO{sub 4} laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Braga, Francisco J.C. [Materials Science and Technology Center, Institute of Energetic and Nuclear Research, Box 11049 (05422-970), Sao Paulo (Brazil); Marques, Rodrigo F.C. [Magnetic Materials and Colloid Group, Institute of Chemistry, Sao Paulo State University, Box 355, Araraquara (Brazil); Filho, Edson de A. [Biomaterials Group, Institute of Chemistry, Sao Paulo State University, Box 355, Araraquara (Brazil); Guastaldi, Antonio C. [Biomaterials Group, Institute of Chemistry, Sao Paulo State University, Box 355, Araraquara (Brazil)], E-mail: guastald@iq.unesp.br

    2007-09-30

    Surface modifications have been applied in endosteal bone devices in order to improve the osseointegration through direct contact between neoformed bone and the implant without an intervening soft tissue layer. Surface characteristics of titanium implants have been modified by addictive methods, such as metallic titanium, titanium oxide and hydroxyapatite powder plasma spray, as well as by subtractive methods, such as acid etching, acid etching associated with sandblasting by either AlO{sub 2} or TiO{sub 2}, and recently by laser ablation. Surface modification for dental and medical implants can be obtained by using laser irradiation technique where its parameters like repetition rate, pulse energy, scanning speed and fluency must be taken into accounting to the appropriate surface topography. Surfaces of commercially pure Ti (cpTi) were modified by laser Nd:YVO{sub 4} in nine different parameters configurations, all under normal atmosphere. The samples were characterized by SEM and XRD refined by Rietveld method. The crystalline phases {alpha}Ti, {beta}Ti, Ti{sub 6}O, Ti{sub 3}O and TiO were formed by the melting and fast cooling processes during irradiation. The resulting phases on the irradiated surface were correlated with the laser beam parameters. The aim of the present work was to control titanium oxides formations in order to improve implants osseointegration by using a laser irradiation technique which is of great importance to biomaterial devices due to being a clean and reproducible process.

  8. Modification of graphene oxide by laser irradiation: a new route to enhance antibacterial activity

    Science.gov (United States)

    Buccheri, Maria A.; D'Angelo, Daniele; Scalese, Silvia; Spanò, Simon F.; Filice, Simona; Fazio, Enza; Compagnini, Giuseppe; Zimbone, Massimo; Brundo, Maria V.; Pecoraro, Roberta; Alba, Anna; Sinatra, Fulvia; Rappazzo, Giancarlo; Privitera, Vittorio

    2016-06-01

    The antibacterial activity and possible toxicity of graphene oxide and laser-irradiated graphene oxide (iGO) were investigated. Antibacterial activity was tested on Escherichia coli and shown to be higher for GO irradiated for at least three hours, which seems to be correlated to the resulting morphology of laser-treated GO and independent of the kind and amount of oxygen functionalities. X-ray photoelectron spectroscopy, Raman spectroscopy, dynamic light scattering and scanning electron microscopy (SEM) show a reduction of the GO flakes size after visible laser irradiation, preserving considerable oxygen content and degree of hydrophilicity. SEM images of the bacteria after the exposure to the iGO flakes confirm membrane damage after interaction with the laser-modified morphology of GO. In addition, a fish embryo toxicity test on zebrafish displayed that neither mortality nor sublethal effects were caused by the different iGO solutions, even when the concentration was increased up to four times higher than the one effective in reducing the bacteria survival. The antibacterial properties and the absence of toxicity make the visible laser irradiation of GO a promising option for water purification applications.

  9. Risk estimation of skin damage due to ultrashort pulsed, focused near-infrared laser irradiation at 800 nm.

    Science.gov (United States)

    Fischer, Frank; Volkmer, Beate; Puschmann, Stefan; Greinert, Ruediger; Breitbart, Wolfgang; Kiefer, Juergen; Wepf, Roger

    2008-01-01

    New imaging techniques using near-infrared (NIR) femtosecond lasers (fs-lasers) in multiphoton laser scanning microscopy (MPLSM) have great potential for in vivo applications, particularly in human skin. However, little is known about possible risks. In order to evaluate the risk, a "biological dosimeter" was used. We irradiated fresh human skin samples with both an fs-laser and a solar simulator UV source (SSU). DNA damage introduced in the epidermis was evaluated using fluorescent antibodies against cyclobutane-pyrimidin-dimers (CPDs) in combination with immunofluorescence image analysis. Four fs-irradiation regimes (at 800-nm wavelength) were evaluated differing in laser power and step width of horizontal scans. Fs-irradiation did not give CPDs at 15-mW or 30-mW irradiation power using 10 horizontal scans every 5 microns. CPDs could be seen at 60-mW laser power and 5-microm step size and at 35-mW using 1-micron step width. Quantitative comparison of SSU-induced CPDs showed that the 60-mW laser irradiation regime is comparable to UV-irradiation, giving 0.6 minimal erythemal dose (MED). The 1-micron irradiation regime was comparable to 0.45 MED. Under these experimental conditions, the risk of DNA damage due to fs-laser irradiation on skin is in the range of natural UV-exposure.

  10. Pyrolysis responses of kevlar/epoxy composite materials on laser irradiating

    Science.gov (United States)

    Liu, Wei-ping; Wei, Cheng-hua; Zhou, Meng-lian; Ma, Zhi-liang; Song, Ming-ying; Wu, Li-xiong

    2017-05-01

    The pyrolysis responses of kevlar/epoxy composite materials are valuable to study in a case of high temperature rising rate for its widely application. Distinguishing from the Thermal Gravimetric Analysis method, an apparatus is built to research the pyrolysis responses of kevlar/epoxy composite materials irradiated by laser in order to offer a high temperature rising rate of the sample. By deploying the apparatus, a near real-time gas pressure response can be obtained. The sample mass is weighted before laser irradiating and after an experiment finished. Then, the gas products molecular weight and the sample mass loss evolution are derived. It is found that the pressure and mass of the gas products increase with the laser power if it is less than 240W, while the molecular weight varies inversely. The variation tendency is confusing while the laser power is bigger than 240W. It needs more deeper investigations to bring it to light.

  11. A Review of Luminescent Anionic Nano System: d10 Metallocyanide Excimers and Exciplexes in Alkali Halide Hosts

    Directory of Open Access Journals (Sweden)

    Howard H. Patterson

    2013-06-01

    Full Text Available Dicyanoaurate, dicyanoargentate, and dicyanocuprate ions in solution and doped in different alkali halide hosts exhibit interesting photophysical and photochemical behavior, such as multiple emission bands, exciplex tuning, optical memory, and thermochromism. This is attributed to the formation of different sizes of nanoclusters in solution and in doped hosts. A series of spectroscopic methods (luminescence, UV-reflectance, IR, and Raman as well as theoretical calculations have confirmed the existence of excimers and exciplexes. This leads to the tunability of these nano systems over a wide wavelength interval. The population of these nanoclusters varies with temperature and external laser irradiation, which explains the thermochromism and optical memory. DFT calculations indicate an MLCT transition for each nanocluster and the emission energy decreases with increasing cluster size. This is in agreement with the relatively long life-time for the emission peaks and the multiple emission peaks dependence upon cluster concentration.

  12. Analysis of thermodynamic effect in Si irradiated by pulsed-laser

    Science.gov (United States)

    Guo, Ming; Jin, Guangyong; Li, Mingxin; Ma, Yao; Yuan, Boshi; Yu, Huadong

    2014-12-01

    According to the heat conduction equation, thermoelastic equation and boundary conditions of finite, using the finite element method(FEM), established the three-dimensional finite element calculation model of thermal elastic ,numerical simulation the transient temperature field and stress field distribution of the single crystal silicon materials by the pulsing laser irradiation, and analytic solution the temperature distribution and stress distribution of laser irradiation on the silicon material , and analyzes the different parameters such as laser energy, pulse width, pulse number influence on temperature and stress, and the intrinsic damage mechanism of pulsed laser irradiation on silicon were studied. The results show that the silicon material is mainly in hot melt under the action of ablation damage.According to the irradiation of different energy and different pulse laser ,we can obtain the center temperature distribution, then get the law of the change of temperature with the variation of laser energy and pulse width in silicon material; according to the principal stress and shear stress distribution in 110 direction with different energy and different pulse, we can get the law of the change of stress distribution with the variation of laser energy and pulse width ;according to the principal stress distribution of single pulse and pulse train in 110 direction, we can get the law of the change of stress with pulse numbers in silicon.When power density of laser on optical material surface (or energy density) is the damage threshold, the optical material surface will form a spontaneous, periodic, and permanent surface ripple, it is called periodic surface structure laser induced (LIPSS).It is the condensed optical field of work to generate low dimensional quantum structures by laser irradiation on Si samples. The pioneering work of research and development and application of low dimensional quantum system has important academic value.The result of this paper

  13. Effect of force on ablation depth for a XeCl excimer laser beam delivered by an optical fiber in contact with arterial tissue under saline

    NARCIS (Netherlands)

    Gijsbers, G. H.; van den Broecke, D. G.; Sprangers, R. L.; van Gemert, M. J.

    1992-01-01

    The effect of force applied to a 430 micron single fiber, delivering 60 pulses of 308 nm XeCl laser radiation at 20 Hz, on the ablation depth in porcine aortic tissue under saline has been investigated. Energy densities of 8, 15, 25, 28, 31, 37, and 45 mJ/mm2 were used. Force was applied by adding

  14. Investigation of the hydrogen of silica glass being laser-irradiating by 1H MAS NMR

    Science.gov (United States)

    Wang, Hui; Fu, Bo; Gao, Zhixing; Shao, Zhufeng; Xiang, Zaikui; Nie, Lanjian

    2017-08-01

    The occurrence of the damage among the silica glass being laser-irradiation is closed related with the hydrogen. The laser of 248nm lead to the structure collapsing to made the silica glass crystallized. With the crystallized and non- crystallized parts, the 1H MAS NMR result shows that the concentration of the hydrogen are different of the damaged and non-damaged silica glass. Which is the evidence for the damage-delaying by the hydrogen.

  15. Mass removal by oxidation and sublimation of porous graphite during fiber laser irradiation

    Science.gov (United States)

    Phillips, Grady T.; Bauer, William A.; Fox, Charles D.; Gonzales, Ashley E.; Herr, Nicholas C.; Gosse, Ryan C.; Perram, Glen P.

    2017-01-01

    The various effects of laser heating of carbon materials are key to assessing laser weapon effectiveness. Porous graphite plates, cylinders, and cones with densities of 1.55 to 1.82 g/cm3 were irradiated by a 10-kW fiber laser at 0.075 to 3.525 kW/cm2 for 120 s to study mass removal and crater formation. Surface temperatures reached steady state values as high as 3767 K. The total decrease in sample mass ranged from 0.06 to 6.29 g, with crater volumes of 0.52 to 838 mm3, and penetration times for 12.7-mm-thick plates as short as 38 s. Minor contaminants in the graphite samples produced calcium and iron oxide to be redeposited on the graphite surface. Dramatic graphite crystalline structures are also produced at higher laser irradiances. Significantly increased porosity of the sample is observed even outside the laser-irradiated region. Total mass removed increases with deposited laser energy at a rate of 4.83 g/MJ for medium extruded graphite with an apparent threshold of 0.15 MJ. At ˜3.5 kW/cm2, the fractions of the mass removed from the cylindrical samples in the crater, surrounding trench, and outer region of decreased porosity are 38%, 47%, and 15%, respectively. Graphite is particularly resistant to damage by high power lasers. The new understanding of graphite combustion and sublimation during laser irradiation is vital to the more complex behavior of carbon composites.

  16. How Plasmonic excitation influences the LIPSS formation on diamond during multipulse femtosecond laser irradiation ?

    Directory of Open Access Journals (Sweden)

    Abdelmalek Ahmed

    2017-01-01

    Full Text Available A generalized plasmonic model is proposed to calculate the nanostructure period induced by multipulse laser femtosecond on diamond at 800 nm wavelengths. We follow the evolution of LIPSS formation by changing diamond optical parameters in function of electron plasma excitation during laser irradiation. Our calculations shows that the ordered nanostructures can be observed only in the range of surface plasmon polariton excitation.

  17. POLYMERS CONTAINING Cu NANOPARTICLES IRRADIATED BY LASER TO ENHANCE THE ION ACCELERATION

    OpenAIRE

    Mariapompea Cutroneo; Lorenzo Torrisi; Anna Mackova; Andriy Velyhan

    2015-01-01

    Target Normal Sheath Acceleration method was employed at PALS to accelerate ions from laser-generated plasma at intensities above 1015 W/cm2. Laser parameters, irradiation conditions and target geometry and composition control the plasma properties and the electric field driving the ion acceleration. Cu nanoparticles deposited on the polymer promote resonant absorption effects increasing the plasma electron density and enhancing the proton acceleration. Protons can be accelerated in forward d...

  18. Development of Laser Plasma X-ray Microbeam Irradiation System and Radiation Biological Application

    Science.gov (United States)

    Sato, Katsutoshi; Nishikino, Masaharu; Numasaki, Hodaka; Kawachi, Tetsuya; Teshima, Teruki; Nishimura, Hiroaki

    Laser plasma x-ray source has the features such as ultra short pulse, high brilliance, monochromaticity, and focusing ability. These features are excellent compared with conventional x-ray source. In order to apply the laser plasma x-ray source to the biomedical study and to more closely research the radiobilogical responce of the cancer cell such as radiation induced bystander effect, we have developed x-ray microbeam system using laser plasma x-ray source. The absorbed dose of laser plasma x-ray was estimated with Gafchromic EBT film and DNA double strand breaks on the cells were detected by immunofluorescence staining. When the cells were irradiated with laser plasma x-ray, the circular regions existing γ-H2AX positive cells were clearly identified. The usefulness of the laser plasma x-ray on the radiobiological study was proved in this research.

  19. Laser Irradiation of Metal Oxide Films and Nanostructures: Applications and Advances.

    Science.gov (United States)

    Palneedi, Haribabu; Park, Jung Hwan; Maurya, Deepam; Peddigari, Mahesh; Hwang, Geon-Tae; Annapureddy, Venkateswarlu; Kim, Jong-Woo; Choi, Jong-Jin; Hahn, Byung-Dong; Priya, Shashank; Lee, Keon Jae; Ryu, Jungho

    2018-02-07

    Recent technological advances in developing a diverse range of lasers have opened new avenues in material processing. Laser processing of materials involves their exposure to rapid and localized energy, which creates conditions of electronic and thermodynamic nonequilibrium. The laser-induced heat can be localized in space and time, enabling excellent control over the manipulation of materials. Metal oxides are of significant interest for applications ranging from microelectronics to medicine. Numerous studies have investigated the synthesis, manipulation, and patterning of metal oxide films and nanostructures. Besides providing a brief overview on the principles governing the laser-material interactions, here, the ongoing efforts in laser irradiation of metal oxide films and nanostructures for a variety of applications are reviewed. Latest advances in laser-assisted processing of metal oxides are summarized. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Study of anti-laser irradiation performance of shot-peened 40CrNiMoA alloy steel

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhanwei, E-mail: liuzw@bit.edu.cn [School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081 (China); Wu, Ningning; Huang, Xianfu [School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081 (China); Xie, Huimin, E-mail: xiehm@mail.tsinghua.edu.cn [AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China); Lv, Xintao [School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081 (China); He, Guang [School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081 (China)

    2012-12-15

    In this paper, shot-peening treatment was introduced to reinforce an alloy surface to protect it from laser irradiation, and experiments were carried out on 40CrNiMoA alloy steel. Macro-mechanical properties were studied and compared before and after both shot-peening and laser irradiation by conducting tensile and hardness measurements. Experimental results showed that the shot-peened alloy showed better mechanical properties after laser irradiation when compared to the alloy without shot-peening treatment. The enhanced ability of the shot-peened alloy for anti-laser irradiation was explained as due to the large residual compressive stress distributions over the shot-peening layer greatly reducing the thermal shock effect introduced by the laser. On the other hand, the growth of microstructures in specific shape absorbed the thermal energy during irradiation, giving a higher probability for the alloy to resist damage.

  1. Optimal low-energy laser irradiation causes temporal G2/M arrest on rat calvarial osteoblasts.

    Science.gov (United States)

    Fukuhara, E; Goto, T; Matayoshi, T; Kobayashi, S; Takahashi, T

    2006-12-01

    Low-energy laser irradiation (LELI) accelerates wound healing and is thought to accelerate bone formation. However, the mechanism of laser healing is not clear. To clarify the biological mechanism of LELI healing, we investigated the effects of LELI on rat osteoblasts in vitro. Osteoblastic cells from 3-day-old Wistar rat calvaria were irradiated using a low-energy gallium-aluminum-arsenide (Ga-Al-As) diode laser. Bone formation, osteoblast differentiation, and cell proliferation were evaluated by von Kossa staining, reverse-transcription polymerase chain reaction, alkaline phosphatase (ALP) staining, 5-bromo-2'-deoxyuridine (BrdU) uptake, and fluorescence-activated cell sorter (FACS) analysis. At 21 days after LELI, the greatest bone formation was observed with irradiation energy of 3.75 J/cm2 and the first week after seeding. LELI (3.75 J/cm2) induced an increased number of cells at day 3. LELI-stimulated differentiation in osteoblastic cells was demonstrated by the increases of Runx2 expression and ALP-positive colonies. By contrast, at 1 day after laser irradiation, the number of cells in the irradiation group was significantly lower than that in the control group. BrdU uptake indicated lower proliferation 12 and 24 hours after irradiation compared with the control. Furthermore, FACS data demonstrated a higher proportion of cells in the G2/M phase of the cell cycle 12 hours after irradiation compared with the control. G2/M arrest was confirmed by the appearance of G2/M arrest marker 14-3-3-sigma or phospho-p53. These results demonstrate that LELI induces not only acceleration of bone formation but also initial G2/M arrest, which may cause wound healing like tissue repair.

  2. Information biology on low-intensity laser irradiation effects on red blood cells

    Science.gov (United States)

    Liu, Timon C.; Chen, Ying-Hua; Li, Yan; Duan, Rui

    2000-10-01

    The cytochrome absorption makes the photon act as a carrier of biological energy as the cytochrome system in the mitochondria can absorb the photon and stimulate electron transport, which generates bioenergy in the form of ATP from ADP. Many feel that the respiratory chain is at the base of any effects that laser therapy might have. However, there is a kind of effect of He-Ne laser irradiation on red blood cells (RBC) in which there is no mitochondria. In other words, the photon acts also as a carrier of biological information. Recently, Liu et al have studied the information biology on low intensity laser by use of time approach on generation of biological information, and put forward the membrane-receptor-mediated signal transduction mechanism, i.e., the biological information model of low- intensity laser (BIML) and the biological information transformation model (BITML), to explain the biomodulation function. As the frequency of the absorption light of membrane receptors is greater than the one of visible laser irradiation, the membrane absorption of visible light is non-resonant, and its transition rate is extraordinarily small, but can be amplified by the coherent state of the identical and independent membrane receptors of a pathological cell. In this paper, we apply these results to study Information biology on low intensity laser irradiation effects on RBC.

  3. Multiple-pulse irradiation of dental hard tissues at CO2 laser wavelengths

    Science.gov (United States)

    Fried, Daniel; Glena, Richard E.; Featherstone, John D. B.; Seka, Wolf D.

    1995-05-01

    Surface temperatures were monitored using pulsed photothermal radiometry (PPTR) during multiple pulse carbon dioxide laser irradiation ((lambda) equals 9.3, 9.6, 10.3 and 10.6 micrometers ). Permanent changes in the optical properties (reflectance and absorption) were observed at fluences greater than 2 J/cm2 for dentin and 5 J/cm2 for enamel. The laser irradiation changes the thermal and the optical properties of these tissues, substantially changing the energy deposition for subsequent laser pulses. The temperature response of enamel and dentin and the reflectance of dentin changed considerably with successive laser pulses. After 10 to 50 pulses the surface stabilized and no further changes were noted. Scanning electron micrographs of the laser conditioned surfaces showed large crystals of modified hydroxyapatite (approximately equals 500 nm) devoid of the organic matrix. Presumably, the water and the interwoven biopolymer matrix had been carbonized nd vaporized. Caries inhibition measurements after multiple pulse irradiation of enamel indicate that the stable laser conditioned surface is more resistant to acid dissolution than untreated enamel.

  4. Data Fitting to Study Ablated Hard Dental Tissues by Nanosecond Laser Irradiation.

    Directory of Open Access Journals (Sweden)

    Y Al-Hadeethi

    Full Text Available Laser ablation of dental hard tissues is one of the most important laser applications in dentistry. Many works have reported the interaction of laser radiations with tooth material to optimize laser parameters such as wavelength, energy density, etc. This work has focused on determining the relationship between energy density and ablation thresholds using pulsed, 5 nanosecond, neodymium-doped yttrium aluminum garnet; Nd:Y3Al5O12 (Nd:YAG laser at 1064 nanometer. For enamel and dentin tissues, the ablations have been performed using laser-induced breakdown spectroscopy (LIBS technique. The ablation thresholds and relationship between energy densities and peak areas of calcium lines, which appeared in LIBS, were determined using data fitting. Furthermore, the morphological changes were studied using Scanning Electron Microscope (SEM. Moreover, the chemical stability of the tooth material after ablation has been studied using Energy-Dispersive X-Ray Spectroscopy (EDX. The differences between carbon atomic % of non-irradiated and irradiated samples were tested using statistical t-test. Results revealed that the best fitting between energy densities and peak areas of calcium lines were exponential and linear for enamel and dentin, respectively. In addition, the ablation threshold of Nd:YAG lasers in enamel was higher than that of dentin. The morphology of the surrounded ablated region of enamel showed thermal damages. For enamel, the EDX quantitative analysis showed that the atomic % of carbon increased significantly when laser energy density increased.

  5. A clinical efficacy of using CO2 laser irradiating to transparent gel on aphthous stomatitis patients

    Science.gov (United States)

    Trivibulwanich, Juthamanee; Pipithirunkarn, Naruemon; Danvirutai, Nawaporn

    2013-01-01

    Background and aims: Regarding the laser energy delivery with non-tissue alteration when irradiating CO2 laser to the transparent gel, it was worth exploring the clinical efficacy of pain relief on oral ulceration using aphthous stomatitis as a model for painful oral ulcer. The aims of this study were to compare pain scores, daily activity-disturbance scores and sizes of the ulcers between the laser group and the placebo group. Subjects and methods: The double blind- randomized- placebo- controlled trial was conducted in 14 patients with aphthous ulcers. The subjects were allocated into 2 groups; namely, the laser group and the placebo group. The two baselines were measured on the day before and the treatment day. Then the lesions were covered with the transparent gel and irradiated by either 2 W defocused CO2 laser for 5 seconds or the sham laser. The outcomes were collected immediately, on day 1, 3, 5 and 7 after treatment. Results: The means of pain and daily activity-disturbance scores of the laser group were lesser than the placebo group in every episode. A statistically significant difference between the groups was found only the pain score on day 3 after treatment (P-value 0.05). Conclusion: The CO2 laser therapy used in this clinical study was able to relieve pain from aphthous stomatitis compared with the placebo on the day 3 after treatment. PMID:24511206

  6. Data Fitting to Study Ablated Hard Dental Tissues by Nanosecond Laser Irradiation.

    Science.gov (United States)

    Al-Hadeethi, Y; Al-Jedani, S; Razvi, M A N; Saeed, A; Abdel-Daiem, A M; Ansari, M Shahnawaze; Babkair, Saeed S; Salah, Numan A; Al-Mujtaba, A

    2016-01-01

    Laser ablation of dental hard tissues is one of the most important laser applications in dentistry. Many works have reported the interaction of laser radiations with tooth material to optimize laser parameters such as wavelength, energy density, etc. This work has focused on determining the relationship between energy density and ablation thresholds using pulsed, 5 nanosecond, neodymium-doped yttrium aluminum garnet; Nd:Y3Al5O12 (Nd:YAG) laser at 1064 nanometer. For enamel and dentin tissues, the ablations have been performed using laser-induced breakdown spectroscopy (LIBS) technique. The ablation thresholds and relationship between energy densities and peak areas of calcium lines, which appeared in LIBS, were determined using data fitting. Furthermore, the morphological changes were studied using Scanning Electron Microscope (SEM). Moreover, the chemical stability of the tooth material after ablation has been studied using Energy-Dispersive X-Ray Spectroscopy (EDX). The differences between carbon atomic % of non-irradiated and irradiated samples were tested using statistical t-test. Results revealed that the best fitting between energy densities and peak areas of calcium lines were exponential and linear for enamel and dentin, respectively. In addition, the ablation threshold of Nd:YAG lasers in enamel was higher than that of dentin. The morphology of the surrounded ablated region of enamel showed thermal damages. For enamel, the EDX quantitative analysis showed that the atomic % of carbon increased significantly when laser energy density increased.

  7. Low-intensity laser irradiation at 660 nm stimulates cytochrome c oxidase in stressed fibroblast cells.

    Science.gov (United States)

    Houreld, Nicolette N; Masha, Roland T; Abrahamse, Heidi

    2012-07-01

    Low-intensity laser irradiation (LILI) has been used to modulate a variety of biological processes, including diabetic wound healing. The mechanism of action is thought to exist primarily with the mitochondria. This study aimed to determine the effect of irradiation on normal, diabetic, and ischemic mitochondrial electron transport chain (ETC) complexes. Normal, diabetic and ischemic human skin fibroblast mitochondria were irradiated in vitro at a wavelength of 660 nm and a fluence of either 5 or 15 J/cm(2). Non-irradiated mitochondria served as controls. Enzyme activities of mitochondrial complexes I, II, III, and IV were determined immediately post-irradiation. Normal, diabetic, and ischemic cells were irradiated and adenosine triphosphate (ATP) and active mitochondria were determined by luminescence and fluorescent microscopy, respectively. Irradiated diabetic mitochondria at a fluence of 15 J/cm(2) showed a significant decrease in complex III activity (P < 0.05). Normal (P < 0.01) and diabetic (P < 0.05) mitochondria irradiated at either 5 or 15 J/cm(2) showed a significant increase in complex IV activity. ATP results showed a significant increase in irradiated normal cells (5 J/cm(2); P < 0.05) and diabetic cells (15 J/cm(2); P < 0.01). There was a higher accumulation of active mitochondria in irradiated cells than non-irradiated cells. Irradiation at 660 nm has the ability to influence mitochondrial enzyme activity, in particular cytochrome c oxidase. This leads to increased mitochondrial activity and ATP synthesis. Copyright © 2012 Wiley Periodicals, Inc.

  8. Diode Laser Irradiation in Endodontic Therapy through Cycles - in vitro Study

    Directory of Open Access Journals (Sweden)

    Trišić Dijana

    2017-07-01

    Full Text Available Background/Aim: The aim of this in vitro study was to investigate the influence of irradiation cycles and resting periods, on thermal effects on the external root surface during root canal irradiation of two diode laser systems (940 nm and 975 nm, at output powers of 1 W and 2 W in continuous mode. In previous studies the rising of temperature above 7°C has been reported as biologically accepted to avoid periodontal damage on the external root surface. Material and Methods: Twenty human inferior incisors were randomly distributed into four groups, the 940 nm, and the 975 nm diode laser irradiation, both with an output power of 1 W and 2 W, in continuous mode. The thermographic camera was used to detect temperature variations on the external root surface. Digital radiography of the samples was made. Results: After three cycles of irradiation, at apical third of the root, mean temperature variation by 940 nm diode laser irradiation was 2.88°C for output power of 1 W, and 6.52°C for output power of 2 W. The 975 nm laser caused a higher temperature increase in the apical region, with temperature variation of 13.56°C by an output power of 1 W, and 30.60°C at 2 W, with a statistical significance of p ≤ 0.0001 between two laser systems compared for the same power. The resting periods of 20 s between cycles were enough to lower temperature under 7°C in the case of 1 W and 2 W for 940 nm diode laser, while for 975 nm laser, after three irradiation cycles overheating occurred at both output power rates. Conclusion: Three cycles irradiation of 940 nm diode laser, with resting periods of 20 seconds, allowed safe usage of 1 W and 2 W in CW for endodontic treatment. For 975 nm at a power rate of 1 W, the last resting period drop the temperature near the safe limit and it came under 7°C in a period less than a minute, while at the power of 2 W the resting periods were not long enough for the safe temperature decrease.

  9. Effect of residual stress induced by pulsed-laser irradiation on initiation of chloride stress corrosion cracking in stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Shuzo, E-mail: eto@criepi.denken.or.jp; Miura, Yasufumi; Tani, Junichi; Fujii, Takashi

    2014-01-10

    The atmospheric corrosion test and residual stress measurement were performed to evaluate the effect of laser irradiation on stress corrosion cracking (SCC) initiation. Second-harmonic Nd:YAG laser pulses (pulse width: 10 ns) were irradiated on a type-304L stainless-steel plate. The specimens were placed in a chamber at 353 K with RH=35% for the corrosion test. When laser energies were 30 and 300 mJ, cracks caused by SCC or pitting were observed on the surface of the specimens. The cracks were classified into two types on the basis of cumulative probability distribution; one of the types is related to the laser irradiation condition. The mean maximum crack depths were about 27 and 52 μm when laser energies were 30 and 300 mJ, respectively. These values were the same as the depth at which the tensile residual stress was induced from the surface of the specimen by laser irradiation. These results suggest that the maximum stress corrosion crack depth was caused by the tensile residual stress induced by laser irradiation, and that the crack stopped propagating when the crack depth was larger than several dozen μm in this test set. When laser pulses of 300 mJ energy were irradiated on the surface of the specimen by shot peening, the tensile stress was induced up to 20 μm from the surface, and the compressive stress was observed at a larger depth. These results show that the laser irradiation is less effective in obtaining tensile residual stress of the specimen compared to when laser pulses are irradiated on the specimen treated by shot peening. The depth of tensile stress obtained by laser irradiation is much shorter than that of compressive stress obtained by shot peening.

  10. Sustainable Entangled State of Two Qutrits Under Laser Irradiation

    Directory of Open Access Journals (Sweden)

    Biryukov A.А.

    2015-01-01

    Full Text Available We study the evolution of quantum entanglement in the model of two identical qubits interacting with a single-mode laser field. The density matrix and Peres-Horodecki parameter are calculated within the frameworks of path-integral formalism. The quantum entanglement measure is shown to be strongly dependent upon the phase difference between the laser radiation acting on each cubit. This observation may offer the possibility of quantum entanglement stationary control by varying the distance between the qubits.

  11. Trigger effect of infrared femtosecond laser irradiation on neoplasm in experimental cervical cancer

    Science.gov (United States)

    Gening, Tatyana; Voronova, Olga; Zolotovskii, Igor; Sysoliatin, Alexey; Dolgova, Dinara; Abakumova, Tatyana

    2013-02-01

    The present work discusses effect of infrared (IR) femtosecond laser irradiation on neoplasm of white mice with experimental cervical cancer- 5 (CC-5 on the 20th and 30th days after tumor transplantation). Tumor tissue was irradiated by femtosecond erbium doped fiber laser: the wavelength is 1.55 μm, average and peak powers are1,25 mW and 6kW, respectively, irradiation trials n=10. The average energy density (energy dose) on a tissue for two groups of animals was 0,24 J/cm2 and 0,36 J/cm2 for a single trial. Irradiation was followed by biochemical determination of LPO AOS parameters ("Lipid peroxidation-antioxidants" system): malondialdehyde (MDA), activity of superoxide dismutase (SOD), catalase and glutathione-reductase (GR), glutathione-S-transferase (GST). A subsequent morphological study of tumor tissue was performed. Mathematical analysis of data demonstrates a weak dependence of the studied parameters on energy dose. The latter implies the trigger effect of IR femtosecond laser irradiation on redox-dependent processes in neoplasm at experimental cervical cancer.

  12. Imaging Fourier transform spectroscopy of the boundary layer plume from laser irradiated polymers and carbon materials

    Science.gov (United States)

    Acosta, Roberto I.

    The high-energy laser (HEL) lethality community needs for enhanced laser weapons systems requires a better understanding of a wide variety of emerging threats. In order to reduce the dimensionality of laser-materials interaction it is necessary to develop novel predictive capabilities of these events. The objective is to better understand the fundamentals of laser lethality testing by developing empirical models from hyperspectral imagery, enabling a robust library of experiments for vulnerability assessments. Emissive plumes from laser irradiated fiberglass reinforced polymers (FRP), poly(methyl methacrylate) (PMMA) and porous graphite targets were investigated primarily using a mid-wave infrared (MWIR) imaging Fourier transform spectrometer (FTS). Polymer and graphite targets were irradiated with a continuous wave (cw) fiber lasers. Data was acquired with a spectral resolution of 2 cm-1 and spatial resolution as high as 0.52 mm2 per pixel. Strong emission from H2O, CO, CO2 and hydrocarbons were observed in the MWIR between 1900-4000 cm-1. A single-layer radiative transfer model was developed to estimate spatial maps of temperature and column densities of CO and CO2 from the hyperspectral imagery of the boundary layer plume. The spectral model was used to compute the absorption cross sections of CO and CO2, using spectral line parameters from the high temperature extension of the HITRAN. Also, spatial maps of gas-phase temperature and methyl methacrylate (MMA) concentration were developed from laser irradiated carbon black-pigmented PMMA at irradiances of 4-22 W/cm2. Global kinetics interplay between heterogeneous and homogeneous combustion kinetics are shown from experimental observations at high spatial resolutions. Overall the boundary layer profile at steady-state is consistent with CO being mainly produced at the surface by heterogeneous reactions followed by a rapid homogeneous combustion in the boundary layer towards buoyancy.

  13. Microhardness evaluations of CAD/CAM ceramics irradiated with CO2or Nd:YAP laser.

    Science.gov (United States)

    El Gamal, Ahmed; Rocca, Jean Paul; Fornaini, Carlo; Medioni, Etienne; Brulat-Bouchard, Nathalie

    2017-03-31

    The aim of this study was to measure the microhardness values of irradiated computer-aided design/computer-aided manufacturing (CAD/CAM) ceramics surfaces before and after thermal treatment. Sixty CAD/CAM ceramic discs were prepared and grouped by material, i.e. lithium disilicate ceramic (Emax CAD) and zirconia ceramic (Emax ZirCAD). Laser irradiation at the material surface was performed with a carbon dioxide laser at 5 Watt (W) or 10 W power in continuous mode (CW mode), or with a neodymium:yttrium aluminum perovskite (Nd:YAP) laser at 10 W on graphite and non-graphite surfaces. Vickers hardness was tested at 0.3 kg f for lithium disilicate and 1 kg f for zirconia. Emax CAD irradiated with CO 2 at 5 W increased microhardness by 6.32 GPa whereas Emax ZirCAD irradiated with Nd:YAP decreased microhardness by 17.46 GPa. CO 2 laser effectively increases the microhardness of lithium disilicate ceramics (Emax CAD).

  14. Photobiomodulation of breast and cervical cancer stem cells using low-intensity laser irradiation.

    Science.gov (United States)

    Kiro, N E; Hamblin, M R; Abrahamse, H

    2017-06-01

    Breast and cervical cancers are dangerous threats with regard to the health of women. The two malignancies have reached the highest record in terms of cancer-related deaths among women worldwide. Despite the use of novel strategies with the aim to treat and cure advanced stages of cancer, post-therapeutic relapse believed to be caused by cancer stem cells is one of the challenges encountered during tumor therapy. Therefore, further attention should be paid to cancer stem cells when developing novel anti-tumor therapeutic approaches. Low-intensity laser irradiation is a form of phototherapy making use of visible light in the wavelength range of 630-905 nm. Low-intensity laser irradiation has shown remarkable results in a wide range of medical applications due to its biphasic dose and wavelength effect at a cellular level. Overall, this article focuses on the cellular responses of healthy and cancer cells after treatment with low-intensity laser irradiation alone or in combination with a photosensitizer as photodynamic therapy and the influence that various wavelengths and fluencies could have on the therapeutic outcome. Attention will be paid to the biomodulative effect of low-intensity laser irradiation on cancer stem cells.

  15. Absence of 633-nm laser irradiation-induced effects on glucose phosphorylation by hexokinase

    NARCIS (Netherlands)

    Heger, Michal; Heemskerk, Anthonius A. M.; van der Zwan, Gert

    2010-01-01

    In a paper by Amat et al. (Modification of the intrinsic fluorescence and biochemical behavior of adenosine triphosphate ATP after irradiation with visible and near-infrared laser light, J. Photochem. Photobiol. B 81 (2005) 26-32) it was shown that the conversion of glucose to glucose-6-phosphate by

  16. The Advanced Oxidation Process (UV-Ozonation Type) Assisted By Excimer Lamp

    Science.gov (United States)

    Ikematsu, Tomokazu; Hayashi, Nobuya; Ihara, Satoshi; Satoh, Saburoh; Yamabe, Chobei

    2003-10-01

    The advanced oxidation processes utilizing the excimer lamp was developed for water purification. The UV light with the wavelength of 222nm that destructs the hydrogen peroxide to hydroxyl radical realizes the AOPs. In this paper, the KrCl excimer lamp with the wavelength of 222 nm was adopted for UV-ozonation type AOP, in order to treat the water with organic acid (humic acid). The lamp was made of quartz glasses with a coaxial cylindrical shape. The grounded copper electrode was rolled on the outer side of the glass tube. The excimer gas flows in the gap of the glass tube between outer and inner electrodes. The UV light from the discharge was irradiated to ozonated water that flows inside the glass tube. The enhancement of reduction rate of the organic compound dissolved in water was achieved using UV excimer lamp with the wavelength of 222 nm. When the excimer gas pressure was 200 Torr, maximum discharge power was obtained and light emission intensity at 222 nm was highest. The reduction rate of the UV light irradiation (9 kV, 200 Torr) was larger than that of ozonation only, and the reduction rate was improved from 40

  17. Functional assessment of laser irradiation. Annual progress report July 1978-June 1979

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, D.O.

    1979-07-01

    The use of high-resolution, chromatic targets to assess the adverse effects of laser irradiation on rhesus visual acuity provides a much more sensitive measure of the acquired visual deficits than can be observed with achromatic targets. The use of chromatic targets, however, does not appear to indicate a high degree of selectivity in terms of the visible spectrum most affected by laser exposure. This nonselective nature of the acquired deficit was also observed in our electrophysiological studies of changes in spectral sensitivity and receptive field organization following brief and prolonged laser exposures.

  18. Ripple formation on silver after irradiation with radially polarized ultrashort-pulsed lasers

    CERN Document Server

    Tsibidis, George D

    2016-01-01

    We report on the morphological effects induced by the inhomogeneous absorption of cylindrically polarized femtosecond laser irradiation of silver (Ag) in sub-ablation conditions. A theoretical prediction of the role of surface plasmon excitation in the production of self-formed periodic ripples structures is evaluated. Furthermore, a combined hydrodynamical and thermoelastic model is presented to account for the influence of temperature-related lattice movements in laser beam conditions that are sufficient to produce material melting. The ability to control the size of the morphological changes via modulating the beam polarization aims to provide a systematic methodology for controlling and optimizing the outcome of laser micro-processing.

  19. Measurements of laser generated soft X-ray emission from irradiated gold foils

    Energy Technology Data Exchange (ETDEWEB)

    Davis, J. S.; Keiter, P. A.; Klein, S. R.; Drake, R. P.; Shvarts, D. [University of Michigan, 2455 Hayward St., Ann Arbor, Michigan 48109 (United States); Frank, Y.; Raicher, E.; Fraenkel, M. [Soreq Nuclear Research Center, Yavne (Israel)

    2016-11-15

    Soft x-ray emission from laser irradiated gold foils was measured at the Omega-60 laser system using the Dante photodiode array. The foils were heated with 2 kJ, 6 ns laser pulses and foil thicknesses were varied between 0.5, 1.0, and 2.0 μm. Initial Dante analysis indicates peak emission temperatures of roughly 100 eV and 80 eV for the 0.5 μm and 1.0 μm thick foils, respectively, with little measurable emission from the 2.0 μm foils.

  20. Temperature evaluation of dental implant surface irradiated with high-power diode laser.

    Science.gov (United States)

    Rios, F G; Viana, E R; Ribeiro, G M; González, J C; Abelenda, A; Peruzzo, D C

    2016-09-01

    The prevalence of peri-implantitis and the absence of a standard approach for decontamination of the dental implant surface have led to searches for effective therapies. Since the source of diode lasers is portable, has reduced cost, and does not cause damage to the titanium surface of the implant, high-power diode lasers have been used for this purpose. The effect of laser irradiation on the implants is the elevation of the temperature surface. If this elevation exceeds 47 °C, the bone tissue is irreversibly damaged, so for a safety therapy, the laser parameters should be controlled. In this study, a diode laser of GaAsAl was used to irradiate titanium dental implants, for powers 1.32 to 2.64 W (real) or 2.00 to 4.00 W (nominal), in continuous/pulsed mode DC/AC, with exposure time of 5/10 s, with/without air flow for cooling. The elevation of the temperature was monitored in real time in two positions: cervical and apical. The best results for decontamination using a 968-nm diode laser were obtained for a power of 1.65 and 1.98 W (real) for 10 s, in DC or AC mode, with an air flow of 2.5 l/min. In our perspective in this article, we determine a suggested approach for decontamination of the dental implant surface using a 968-nm diode laser.

  1. Changes in the germination process and growth of pea in effect of laser seed irradiation

    Science.gov (United States)

    Podleśna, Anna; Gładyszewska, Bożena; Podleśny, Janusz; Zgrajka, Wojciech

    2015-10-01

    The aim of this study was to determine the effect of pre-sowing helium-neon (He-Ne) laser irradiation of pea seeds on changes in seed biochemical processes, germination rate, seedling emergence, growth rate, and yield. The first experimental factor was exposure to laser radiation: D0 - no irradiation, D3 - three exposures, D5 - five exposures, and the harvest dates were the second factor. Pre-sowing treatment of pea seeds with He-Ne laser light increased the concentrations of amylolytic enzymes and the content of indole-3-acetic acid (IAA) in pea seeds and seedlings. The exposure of seeds to He-Ne laser light improved the germination rate and uniformity and modified growth stages, which caused acceleration of flowering and ripening of pea plants. Laser light stimulation improved the morphological characteristics of plants by increasing plant height and leaf surface area. Irradiation improved the yield of vegetative and reproductive organs of pea, although the effects varied at the different growth stages. The increase in the seed yield resulted from a higher number of pods and seeds per plant, whereas no significant changes were observed in the number of seeds per pod. Both radiation doses exerted similarly stimulating effects on pea growth, development, and yield.

  2. Influence of laser irradiation on the optical and structural properties of poly(ethylene terephthalate) fibres

    Science.gov (United States)

    Wijayathunga, V. N.; Lawrence, C. A.; Blackburn, R. S.; Bandara, M. P. U.; Lewis, E. L. V.; El-Dessouky, H. M.; Cheung, V.

    2007-10-01

    Laser irradiation has been previously investigated for achieving uniform heating of polyethylene terephthalate (PET) fibres in the hot-drawing stage of the production process, so as to obtain better fibre mechanical properties. The optical properties and dye uptake of PET fibres also depend on the polymer chain orientation and crystallinity within the fibre structure. This paper reports an investigation of a concept whereby laser irradiation and interferometry could be used to modify and trace a small change in the optical properties of a PET monofilament fibre, but the corresponding change in the dye uptake would not be detected visually. A copper vapour laser (550-580 nm wavelengths) was used to expose consecutive 4 mm lengths along a running length of monofilament to 39.8 W cm -2, at a pulse rate of 9.89 kHz in order to modify, in a controlled way, the polymer crystallinity and orientation. A 3D finite element simulation, based on uncoupled heat-transfer analysis, indicated that rapid heating and cooling could be obtained with the laser to give the small changes required. Irradiated and untreated samples were analysed by interferometry and a 0.16% change was detected in the birefringence profiles, corresponding to a small reduction in the degree of orientation and crystallinity of the irradiated samples. Density measurements and wide-angle X-ray scattering (WAXS) analysis confirmed the change in crystallinity. Tests conducted for dye adsorption and tensile strength showed a small increase in the former and only a very small decrease in the latter. It was concluded that these changes in property provide the opportunity for a laser-irradiated PET monofilament fibre to be used as a subtle tracer element in brand labels for textile garments as an anti-counterfeit measure.

  3. Particle characteristics of different materials after ultra-short pulsed laser (USPL) irradiation

    Science.gov (United States)

    Meister, Joerg; Schelle, Florian; Kowalczyk, Philip; Frentzen, Matthias

    2012-01-01

    The exposition of nanoparticles caused by laser application in dental health care is an open discussion. Based on the fact that nanoparticles can penetrate through the mucosa, the knowledge about particle characteristics after irradiation with an USPL is of high importance. Therefore, the aim of this study was to investigate the particle characteristics, especially the size of the ablated debris after USPL irradiation. The irradiation was carried out with an USP Nd:YVO4 laser with a center wavelength of 1064 nm. Based on the pulse duration of 8 ps and a pulse repetition rate of 500 kHz the laser emits an average power of 9 W. The materials investigated were dental tissues and dental restorative materials (composite and amalgam), ceramic and different metals (gold and aluminium). The samples were irradiated with a power density in the order of 300 GW/cm2 at distances of 5, 10, 15, and 20 mm. The debris was collected on an object plate. SEM pictures were used for analysis of the ablation debris. Depending on the irradiated material, we observed different kinds of structures: vitreous, flocculent, and pellet-like. The mean particle sizes were 10 x 10 up to 30 x 30 μm2. In addition, a cluster of ablated matter (nanometer range) distributed over the whole irradiated area was found. With increasing distances the cluster structure reduced from multi-layer to mono-layer clusters. Particle sizes in the micrometer and nanometer range were found after irradiation with an USPL. The nanoparticles create a cluster structure which is influenced by increasing distances.

  4. Various effects of the CO2-, the neodymium-YAG-, and the argon-laser irradiation on bladder tissue.

    Science.gov (United States)

    Frank, F; Keiditsch, E; Hofstetter, A; Pensel, J; Rothenberger, K

    1982-01-01

    Application of lasers as cutting or coagulation instruments is based on the conversion of light energy into heat in the irradiated tissue. The extent and degree of the thermal action depends on the beam geometry and the energy of the incident light, as well as on the optic and thermal properties of this tissue. The extinction behavior in the tissue differs for the various laser systems employed in medicine. A comparison of the effects on bladder tissue of rats and rabbits is made with Neodymium-YAG laser and the argon and CO2 lasers to demonstrate the advantages of the Neodymium-YAG laser, especially for the therapeutic irradiation of bladder tumors.

  5. Proton radiography of magnetic field produced by ultra-intense laser irradiating capacity-coil target

    CERN Document Server

    Wang, W W; Chen, J; Cai, H B; He, S K; Zhou, W M; Shan, L Q; Lu, F; Wu, Y C; Hong, W; Liu, D X; Bi, B; Zhang, F; Xue, F B; Li, B Y; Zhang, B; He, Y L; He, W; Jiao, J L; Dong, K G; Zhang, F Q; Deng, Z G; Zhang, Z M; Cui, B; Han, D; Zhou, K N; Wang, X D; Zhao, Z Q; Cao, L F; Zhang, B H; He, X T; Gu, Y Q

    2014-01-01

    Ultra-intense ultra-short laser is firstly used to irradiate the capacity-coil target to generate magnetic field. The spatial structure and temporal evolution of huge magnetic fields were studied with time-gated proton radiography method. A magnetic flux density of 40T was measured by comparing the proton deflection and particle track simulations. Although the laser pulse duration is only 30fs, the generated magnetic field can last for over 100 picoseconds. The energy conversion efficiency from laser to magnetic field can reach as high as ~20%. The results indicate that tens of tesla (T) magnetic field could be produced in many ultra intense laser facilities around the world, and higher magnetic field could be produced by picosecond lasers.

  6. Modification induced by laser irradiation on physical features of plastics materials filled with nanoparticles

    Directory of Open Access Journals (Sweden)

    Scolaro Cristina

    2018-01-01

    Full Text Available The Thermal Laser Welding (TLW process involves localized heating at the interface of two pieces of plastic that will be joined. Polymeric materials of Ultra High Molecular Weight Polyethylene (UHMWPE, both pure and containing nanostructures at different concentrations (titanium and silver nanoparticles, were prepared as thin foils in order to produce an interface between a substrate transparent to the infrared laser wavelength and an highly absorbent substrate, in order to be welded by the laser irradiation. The used diode laser operates at 970 nm wavelength, in continuum, with a maximum energy of 100 mJ, for times of the order of 1 -60 s, with a spot of 300 μm of diameter. The properties of the polymers and of nanocomposite sheets, before and after the laser welding process, were measured in terms of optical characteristics, wetting ability, surface roughness and surface morphology.

  7. Surface-enhanced Raman scattering activity of niobium surface after irradiation with femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Victor G. [Faculty of Physics, Sofia University, 5 James Bourchier Blvd., 1164 Sofia (Bulgaria); Georgi Nadjakov Institute of Solid State Physics, BAS, 72 Tzarigradsko Chaussee, 1784 Sofia (Bulgaria); Vlakhov, Emil S. [Georgi Nadjakov Institute of Solid State Physics, BAS, 72 Tzarigradsko Chaussee, 1784 Sofia (Bulgaria); Stan, George E.; Socol, Marcela [National Institute of Material Physics, 105 bis Atomistilor Street, 077125 Magurele-Ilfov (Romania); Zamfirescu, Marian; Albu, Catalina; Mihailescu, Natalia; Negut, Irina; Luculescu, Catalin; Ristoscu, Carmen; Mihailescu, Ion N., E-mail: ion.mihailescu@inflpr.ro [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele-Ilfov (Romania)

    2015-11-28

    The chemical modification of the niobium (Nb) surface after irradiation with femtosecond laser pulses was investigated by scanning electron microscopy coupled with energy dispersive spectroscopy, atomic force microscopy, grazing incidence X-ray diffraction, and micro-Raman spectroscopy. The physical-chemical analyses indicated that the laser treatment results in oxidation of the Nb surface, as well as in the formation of Nb hydrides. Remarkably, after the samples' washing in ethanol, a strong Surface-Enhanced Raman Scattering (SERS) signal originating from the toluene residual traces was evidenced. Further, it was observed that the laser irradiated Nb surface is able to provide a SERS enhancement of ∼1.3 × 10{sup 3} times for rhodamine 6G solutions. Thus, for the first time it was shown that Nb/Nb oxide surfaces could exhibit SERS functionality, and so one can expect applications in biological/biochemical screening or for sensing of dangerous environmental substances.

  8. Surface-enhanced Raman scattering activity of niobium surface after irradiation with femtosecond laser pulses

    Science.gov (United States)

    Ivanov, Victor G.; Vlakhov, Emil S.; Stan, George E.; Zamfirescu, Marian; Albu, Catalina; Mihailescu, Natalia; Negut, Irina; Luculescu, Catalin; Socol, Marcela; Ristoscu, Carmen; Mihailescu, Ion N.

    2015-11-01

    The chemical modification of the niobium (Nb) surface after irradiation with femtosecond laser pulses was investigated by scanning electron microscopy coupled with energy dispersive spectroscopy, atomic force microscopy, grazing incidence X-ray diffraction, and micro-Raman spectroscopy. The physical-chemical analyses indicated that the laser treatment results in oxidation of the Nb surface, as well as in the formation of Nb hydrides. Remarkably, after the samples' washing in ethanol, a strong Surface-Enhanced Raman Scattering (SERS) signal originating from the toluene residual traces was evidenced. Further, it was observed that the laser irradiated Nb surface is able to provide a SERS enhancement of ˜1.3 × 103 times for rhodamine 6G solutions. Thus, for the first time it was shown that Nb/Nb oxide surfaces could exhibit SERS functionality, and so one can expect applications in biological/biochemical screening or for sensing of dangerous environmental substances.

  9. Methodology for assessment of low level laser therapy (LLLT) irradiation parameters in muscle inflammation treatment

    Science.gov (United States)

    Mantineo, M.; Pinheiro, J. P.; Morgado, A. M.

    2013-11-01

    Several studies in human and animals show the clinical effectiveness of low level laser therapy (LLLT) in reducing some types of pain, treating inflammation and wound healing. However, more scientific evidence is required to prove the effectiveness of LLLT since many aspects of the cellular and molecular mechanisms triggered by irradiation of injured tissue with laser remain unknown. Here, we present a methodology that can be used to evaluate the effect of different LLLT irradiation parameters on the treatment of muscle inflammation on animals, through the quantification of four cytokines (TNF-α, IL-1β, IL-2 and IL-6) in systemic blood and histological analysis of muscle tissue. We have used this methodology to assess the effect of LLLT parameters (wavelength, dose, power and type of illumination) in the treatment of inflammation induced in the gastrocnemius muscle of Wistar rats. Results obtained for laser dose evaluation with continuous illumination are presented.

  10. Low-intensity laser irradiation use for oral and lip precancer treatment

    Science.gov (United States)

    Kunin, Anatoly A.; Podolskaya, Elana E.; Stepanov, Nicolay N.; Petrov, Anatoly; Erina, Stanislava V.; Pankova, Svetlana N.

    1996-09-01

    Precancer and background diseases of the oral mucosa and lips, such as lichen planus, chronic ulcers and fissures, meteorological heilit, lupus erythematosus, after radiation heilit were treated by low-intensity laser irradiation. Laser therapy of the over-mentioned diseases was combined with medicinal treatment. All the patients were selected and treated in the limits of dispensary system. THe choice of diagnostic methods were made according to each concrete nosological form. A great attention was paid to the goal- directly sanitation of the oral cavity and treatment of attended internal diseases. The etiological factors were revealed and statistically analyzed. The results received during our researches demonstrated high effectiveness of laser irradiation combined with medicinal therapy in the treatment of oral mucosa and lips precancer diseases.

  11. Thermal changes in the absorption spectra of blood with supravascular infrared laser irradiation in vivo

    Science.gov (United States)

    Zalesskaya, G. A.; Astaf'eva, L. G.; Batai, L. E.

    2011-09-01

    We have studied the effect of laser radiation (λ = 1960 nm, power density from 6 to 25 W/cm2) on the absorption spectra of rat blood with supravascular irradiation. We have established that absorption of laser radiation leads to a decrease in the degree of oxygen saturation of mixed venous blood due to its heating. We have estimated the initial heating temperatures of venous blood and the surface of the irradiated tissue using an optothermal model, taking into account the characteristics of the laser radiation and the optical and thermal characteristics of the biological tissue. We consider the effect of radiation-induced thermal dissociation of oxyhemoglobin on the oxygen transport characteristics of the blood and metabolic processes.

  12. Low level laser therapy on injured rat muscle: assessment of irradiation parameters

    Science.gov (United States)

    Mantineo, M.; Pinheiro, J. P.; Morgado, A. M.

    2013-11-01

    Although studies show the clinical effectiveness of low level laser therapy (LLLT) in facilitating the muscle healing process, scientific evidence is still required to prove the effectiveness of LLLT and to clarify the cellular and molecular mechanisms triggered by irradiation. Here we evaluate the effect of different LLLT wavelengths, using continuous coherent Laser illumination (830 nm and 980 nm) and non-coherent LED illumination (850 nm), in the treatment of inflammation induced in the gastrocnemius muscle of Wistar rats, through the quantification of cytokines in systemic blood. We verified that all applied doses of coherent radiation produce an effect on reducing the concentration of pro-inflammatory TNF-α and IL-1β cytokines, while no treatment effect was observed after irradiation with non-coherent radiation. The best results were obtained for 40 mW at 830 nm. The results may suggest an important role of coherence properties of laser in LLLT.

  13. Correction of Alcoholic Postcomatose Disorders by Intravenous Laser Blood Irradiation: A Clinicoexperimental Study

    Directory of Open Access Journals (Sweden)

    L. T. Idrisova

    2007-01-01

    Full Text Available The authors studied the impact of intravenous laser hemotherapy on the course of rat alcoholic coma caused by intragastric 40% ethanol administration. Intravenous laser blood irradiation promoted reduced mortality rates, diminished neurological deficit, earlier clinical recovery, and the optimized sympathetic/parasympathetic central nervous system ratio. Clinical and functional studies of changes in the central nervous system and retina were made in patients admitted for alcoholic coma. Intravenous laser blood irradiation as part of complex detoxification therapy positively affected the altered function of the higher nervous activity, contributed to earlier conscious recovery and emergence from coma, diminished neurological deficit in the early postcomatose period — alleviated brain edema, a drastic relief of pyramidal insufficiency and cramps, which was detectable in the visual assessment of electroencephalograms, their spectral coherent analysis, as well in the analysis of systemic and regional electroretinography. 

  14. Laser irradiations of advanced targets promoting absorption resonance for ion acceleration in TNSA regime

    Energy Technology Data Exchange (ETDEWEB)

    Torrisi, L., E-mail: Lorenzo.Torrisi@unime.it [Dipartimento di Fisica e SdT, Università di Messina, Messina (Italy); Calcagno, L. [Dipartimento di Fisica ed Astronomia, Università di Catania (Italy); Giulietti, D. [Dipartimento di Fisica, Università di Pisa, Pisa (Italy); Cutroneo, M. [Nuclear Physics Institute, ASCR, 25068 Rez (Czech Republic); Zimbone, M. [Dipartimento di Fisica ed Astronomia, Università di Catania (Italy); Skala, J. [Institute of Physics, ASCR, v.v.i., 182 21 Prague 8 (Czech Republic)

    2015-07-15

    Advanced targets based on Au nanoparticles embedded in polymers films show high absorption coefficient in the UV–visible and infrared region. They can be employed to enhance the proton and ion acceleration from the laser-generated plasma in TNSA regime. In conditions of “p” polarized laser irradiations at 10{sup 15} W/cm{sup 2} intensity, in these films can be induced resonant absorption due to plasma wave excitation. Plasma on-line diagnostics is based on SiC detectors, Thomson spectrometry and X-ray streak camera imaging. Measurements of kinetic energy of accelerated ions indicate a significant increment using polymer targets containing gold nanoparticles and “p” polarized laser light with respect to pure polymers and unpolarized light irradiation.

  15. Proton driven acceleration by intense laser pulses irradiating thin hydrogenated targets

    Energy Technology Data Exchange (ETDEWEB)

    Torrisi, L., E-mail: lorenzo.torrisi@unime.it [Dip.to di Fisica, Università di Messina, V.le F.S. D’Alcontres 31, 98166 S. Agata, Messina (Italy); INFN-Laboratori Nazionali del Sud, Via S. Sofia 44, 95123 Catania (Italy); Cutroneo, M.; Cavallaro, S.; Giuffrida, L.; Andò, L.; Cirrone, P. [INFN-Laboratori Nazionali del Sud, Via S. Sofia 44, 95123 Catania (Italy); Bertuccio, G.; Puglisi, D. [Dip.to di Ing. Elettronica e Sci. dell’Informaz., Pol. di Milano,V. Ponzio34, 20133 Milano (Italy); Calcagno, L. [Dip.to di Fisica, Università di Catania, Via S. Sofia 44, 95123 Catania (Italy); Verona, C. [Dip.to di Ing. Meccanica, Univ. Roma “Tor Vergata”, V. del Politecnico 1, Roma (Italy); Picciotto, A. [Fondazione Bruno Kessler–IRST, Via Sommarive 18, 38050 Povo, Trento (Italy); Krasa, J.; Margarone, D.; Velyhan, A.; Laska, L.; Krousky, E.; Pfeiffer, M.; Skala, J.; Ullschmied, J. [Institute of Physics, ASCR, v.v.i., 182 21 Prague 8 (Czech Republic); Wolowski, J. [Institute of Plasma Physics and Laser Microfusion, IPPLM,23 Hery Str. 01-497 Warsaw (Poland); and others

    2013-05-01

    The Asterix iodine laser of the PALS laboratory in Prague, operating at 1315 nm fundamental frequency, 300 ps pulse duration, 600 J maximum pulse energy and 10{sup 16} W/cm{sup 2} intensity, is employed to irradiate thin hydrogenated targets placed in high vacuum. Different metallic and polymeric targets allow to generate multi-energetic and multi-specie ion beams showing peculiar properties. The plasma obtained by the laser irradiation is monitored, in terms of properties of the emitted charge particles, by using time-of-flight techniques and Thomson parabola spectrometer (TPS). A particular attention is given to the proton beam production in terms of the maximum energy, emission yield and angular distribution as a function of the laser energy, focal position (FP), target thickness and composition.

  16. Laser irradiations of advanced targets promoting absorption resonance for ion acceleration in TNSA regime

    Science.gov (United States)

    Torrisi, L.; Calcagno, L.; Giulietti, D.; Cutroneo, M.; Zimbone, M.; Skala, J.

    2015-07-01

    Advanced targets based on Au nanoparticles embedded in polymers films show high absorption coefficient in the UV-visible and infrared region. They can be employed to enhance the proton and ion acceleration from the laser-generated plasma in TNSA regime. In conditions of "p" polarized laser irradiations at 1015 W/cm2 intensity, in these films can be induced resonant absorption due to plasma wave excitation. Plasma on-line diagnostics is based on SiC detectors, Thomson spectrometry and X-ray streak camera imaging. Measurements of kinetic energy of accelerated ions indicate a significant increment using polymer targets containing gold nanoparticles and "p" polarized laser light with respect to pure polymers and unpolarized light irradiation.

  17. Proton driven acceleration by intense laser pulses irradiating thin hydrogenated targets

    Science.gov (United States)

    Torrisi, L.; Cutroneo, M.; Cavallaro, S.; Giuffrida, L.; Andò, L.; Cirrone, P.; Bertuccio, G.; Puglisi, D.; Calcagno, L.; Verona, C.; Picciotto, A.; Krasa, J.; Margarone, D.; Velyhan, A.; Laska, L.; Krousky, E.; Pfeiffer, M.; Skala, J.; Ullschmied, J.; Wolowski, J.; Badziak, J.; Rosinski, M.; Ryc, L.; Szydlowski, A.

    2013-05-01

    The Asterix iodine laser of the PALS laboratory in Prague, operating at 1315 nm fundamental frequency, 300 ps pulse duration, 600 J maximum pulse energy and 1016 W/cm2 intensity, is employed to irradiate thin hydrogenated targets placed in high vacuum. Different metallic and polymeric targets allow to generate multi-energetic and multi-specie ion beams showing peculiar properties. The plasma obtained by the laser irradiation is monitored, in terms of properties of the emitted charge particles, by using time-of-flight techniques and Thomson parabola spectrometer (TPS). A particular attention is given to the proton beam production in terms of the maximum energy, emission yield and angular distribution as a function of the laser energy, focal position (FP), target thickness and composition.

  18. Investigations of ultrafast charge dynamics in laser-irradiated targets by a self probing technique employing laser driven protons

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, H. [School of Mathematics and Physics, Queen' s University Belfast, BT7 1NN (United Kingdom); Kar, S., E-mail: s.kar@qub.ac.uk [School of Mathematics and Physics, Queen' s University Belfast, BT7 1NN (United Kingdom); Cantono, G. [School of Mathematics and Physics, Queen' s University Belfast, BT7 1NN (United Kingdom); Department of Physics “E. Fermi”, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica, Research Unit Adriano Gozzini, via G. Moruzzi 1, Pisa 56124 (Italy); Nersisyan, G. [School of Mathematics and Physics, Queen' s University Belfast, BT7 1NN (United Kingdom); Brauckmann, S. [Institut für Laser-und Plasmaphysik, Heinrich-Heine-Universität, Düsseldorf (Germany); Doria, D.; Gwynne, D. [School of Mathematics and Physics, Queen' s University Belfast, BT7 1NN (United Kingdom); Macchi, A. [Department of Physics “E. Fermi”, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica, Research Unit Adriano Gozzini, via G. Moruzzi 1, Pisa 56124 (Italy); Naughton, K. [School of Mathematics and Physics, Queen' s University Belfast, BT7 1NN (United Kingdom); Willi, O. [Institut für Laser-und Plasmaphysik, Heinrich-Heine-Universität, Düsseldorf (Germany); Lewis, C.L.S.; Borghesi, M. [School of Mathematics and Physics, Queen' s University Belfast, BT7 1NN (United Kingdom)

    2016-09-01

    The divergent and broadband proton beams produced by the target normal sheath acceleration mechanism provide the unique opportunity to probe, in a point-projection imaging scheme, the dynamics of the transient electric and magnetic fields produced during laser-plasma interactions. Commonly such experimental setup entails two intense laser beams, where the interaction produced by one beam is probed with the protons produced by the second. We present here experimental studies of the ultra-fast charge dynamics along a wire connected to laser irradiated target carried out by employing a ‘self’ proton probing arrangement – i.e. by connecting the wire to the target generating the probe protons. The experimental data shows that an electromagnetic pulse carrying a significant amount of charge is launched along the wire, which travels as a unified pulse of 10s of ps duration with a velocity close to speed of light. The experimental capabilities and the analysis procedure of this specific type of proton probing technique are discussed. - Highlights: • Prompt charging of laser irradiated target generates ultra-short EM pulses. • Its ultrafast propagation along a wire was studied by self-proton probing technique. • Self-proton probing technique is the proton probing with one laser pulse. • Pulse temporal profile and speed along the wire were measured with high resolution.

  19. Ultrafast X-ray diffraction of laser-irradiated crystals

    CERN Document Server

    Heimann, P A; Kang, I; Johnson, S; Missalla, T; Chang, Z; Falcone, R W; Schönlein, R W; Glover, T E; Padmore, H A

    2001-01-01

    Coherent acoustic phonons have been observed in the X-ray diffraction of a laser-excited InSb crystal. Modeling based on time-dependent dynamical diffraction theory has allowed the extraction of fundamental constants, such as the electron-acoustic phonon coupling time. A dedicated beamline for time-resolved studies has been developed at the Advanced Light Source with special considerations toward high transmission, low scattering and a wide photon energy range. The facility combines a bend magnet beamline, time-resolved detectors and a femtosecond laser system.

  20. Energy balance in laser-irradiated vaporizing droplets.

    Science.gov (United States)

    Zardecki, A; Armstrong, R L

    1988-09-01

    The interactions of vaporizing aerosols with a high energy laser beam are analyzed in the diffusive vaporization regime. This is the regime in which diffusive mass transport and conductive energy transport dominate the aerosol-beam interactions. A numerical analysis of the coupled aerosol-beam equations allows us to compute the energy conversion of the incident laser pulse. The plots showing the functional form of the pulse shape and the fractional energy conversion are given to illustrate the interactions for a wide range of pulse energies. A new term describing the droplet radius shrinking in time, similar in form to that recently analyzed by Davies and Brock, is included.

  1. Platelet derived growth factor secretion and bone healing after Er:YAG laser bone irradiation.

    Science.gov (United States)

    Kesler, Gavriel; Shvero, Dana Kesler; Tov, Yariv Siman; Romanos, George

    2011-03-01

    Er:YAG laser irradiation has been reported to enhance wound healing. However, no studies have evaluated the synthesis of growth factors after laser irradiation. The present study investigated the effects of laser irradiation on the amount of secretion of platelet derived growth factor (PDGF) in the wound, clarifying the effects of the Er:YAG laser on the bone healing. Osteotomies were prepared in the tibiae of 28 rats using an Er:YAG laser (test group). Maximum power of 8 watts, energy per pulse of 700 mJ, and frequency up to 50 Hz were used. The laser was used with external water irrigation, a spot size of 2 mm, energy per pulse of 500 to 1000 mJ/pulse, and energy density of 32 J/cm(2). Twenty eight additional rats served as a control group and their osteotomies were prepared with a drill 1.3 mm in diameter at 1000 rpm, with simultaneous saline irrigation. Two rats from the tested group and 2 from the control group were sacrificed on each day following surgery (1-14 days), and the tissue specimens were prepared for histologic evaluation. Immunohistochemical staining with anti-PDGF was performed after histologic examination. The difference between the PDGF staining intensities of the 2 treatment groups was analyzed using a multivariate logistic regression test. A significant rise in PDGF staining occurred in both groups 2-3 days following surgery. However, while high PDGF counts remained for the 2-week experimental period in the laser group, PDGF levels in the control group returned to baseline levels 8 days post surgery. The 2 groups (laser and control) were found to be different throughout the experiment, and the rat type was found to be a significant predictor (P  =  .000011). The present study demonstrated that Er:YAG laser irradiation seems to stimulate the secretion of PDGF in osteotomy sites in a rat model. It is possible that the high levels of PDGF are part of the mechanism that Er:YAG irradiation enhances and improves the healing of

  2. Factors affecting color strength of printing on film-coated tablets by UV laser irradiation: TiO2 particle size, crystal structure, or concentration in the film, and the irradiated UV laser power.

    Science.gov (United States)

    Hosokawa, Akihiro; Kato, Yoshiteru

    2011-08-01

    The purpose of this article is to study factors affecting color strength of printing on film-coated tablets by ultraviolet (UV) laser irradiation: particle size, crystal structure, or concentration of titanium dioxide (TiO2) in film, and irradiated UV laser power. Hydroxypropylmethylcellulose films containing 4.0% of TiO2, of which BET particle sizes were ranging from 126.1 to 219.8 nm, were irradiated 3.14W of UV laser at a wavelength 355 nm to study effects of TiO2 particle size and crystal structure on the printing. The films containing TiO2 concentration ranging from 1.0 to 7.7% were irradiated 3.14 or 5.39W of the UV laser to study effect of TiO2 concentration on the printing. The film containing 4.0% of TiO2, was irradiated the UV laser up to 6.42W to study effect of the UV laser power on the printing. The color strength of the printed films was estimated by a spectrophotometer as total color difference (dE). Particle size, crystal structure, and concentration of TiO2 in the films did not affect the printing. In the relationship between the irradiated UV laser power and dE, there found an inflection point (1.6W). When the UV laser power was below 1.6W, the films were not printed. When it was beyond the point, total color difference increased linearly in proportion with the irradiated laser power. The color strength of the printing on film was not changed by TiO2 particle size, crystal structure, and concentration, but could be controlled by regulating the irradiated UV laser power beyond the inflection point.

  3. Effect of laser irradiation conditions on the laser welding strength of cobalt-chromium and gold alloys.

    Science.gov (United States)

    Kikuchi, Hisaji; Kurotani, Tomoko; Kaketani, Masahiro; Hiraguchi, Hisako; Hirose, Hideharu; Yoneyama, Takayuki

    2011-09-01

    Using tensile tests, this study investigated differences in the welding strength of casts of cobalt-chromium and gold alloys resulting from changes in the voltage and pulse duration in order to clarify the optimum conditions of laser irradiation for achieving favorable welding strength. Laser irradiation was performed at voltages of 150 V and 170 V with pulse durations of 4, 8, and 12 ms. For cobalt-chromium and gold alloys, it was found that a good welding strength could be achieved using a voltage of 170 V, a pulse duration of 8 ms, and a spot diameter of 0.5 mm. However, when the power density was set higher than this, defects tended to occur, suggesting the need for care when establishing welding conditions.

  4. The influence of low-power helium-neon laser irradiation on function of selected peripheral blood cells.

    Science.gov (United States)

    Wasik, M; Gorska, E; Modzelewska, M; Nowicki, K; Jakubczak, B; Demkow, U

    2007-11-01

    The effects of low-level laser light irradiation are debatable and the mechanisms of its action are still unclear. This study was conducted to test the effects of low-level laser irradiation on human blood cells: erythrocytes, granulocytes, and lymphocytes. Whole blood obtained by phlebotomy was irradiated at 632.8 nm by using energy fluences 0.6 J/cm2. An analysis of blood gases revealed an increase in PO2 and SaO2 (Pirradiated blood. No shifts in PCO2 and pH were recorded. Spontaneous synthesis of DNA in T and B blood lymphocytes decreased significantly after laser irradiation (Pirradiated than in non-irradiated blood (Pirradiated blood increased in comparison with non-irradiated samples (Pirradiated samples were observed. These results reveal the influence of photodynamic reactions on the ability of blood to transport oxygen and on immunomodulatory effects on leukocytes.

  5. Irradiation of nuclear materials with laser-plasma filaments produced in air and deuterium by terrawatt (TW) laser pulses

    Science.gov (United States)

    Avotina, Liga; Lungu, Mihail; Dinca, Paul; Butoi, Bogdan; Cojocaru, Gabriel; Ungureanu, Razvan; Marcu, Aurelian; Luculescu, Catalin; Hapenciuc, Claudiu; Ganea, Paul C.; Petjukevics, Aleksandrs; Lungu, Cristian P.; Kizane, Gunta; Ticos, C. M.; Antohe, Stefan

    2018-01-01

    Be–C–W mixed materials with variable atomic ratios were exposed to high power (TW) laser induced filamentation plasma in air in normal conditions and in deuterium at a reduced pressure of 20 Torr. Morphological and structural investigations were performed on the irradiated zones for both ambient conditions. The presence of low-pressure deuterium increased the overall ablation rate for all samples. From the elemental concentration point of view, the increase of the carbon percentage has led to an increase in the ablation rate. An increase of the tungsten percentage had the opposite effect. From structural spectroscopic investigations using XPS, Raman and FT-IR of the irradiated and non-irradiated sample surfaces, we conclude that deuterium-induced enhancement of the ablation process could be explained by preferential amorphous carbon removal, possibly by forming deuterated hydrocarbons which further evaporated, weakening the layer structure.

  6. Fracture mode for porous materials under laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Uglov, A.A.; Grebennikov, V.A.

    Specific features of the fracture processes of porous materials prepared by the methods of powder metallurgy, laser radiation (LR) are considered. Qualitatively analysed is the role of separate factors (flux density, porosity and others), exerting influence on zone parameters of LR interaction on porous materials. The comparison of the results of the process analysis with experimental data for nickel and molybdenum is given.

  7. Measurement of Irradiated Pyroprocessing Samples via Laser Induced Breakdown Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Phongikaroon, Supathorn [Virginia Commonwealth Univ., Richmond, VA (United States)

    2016-10-31

    The primary objective of this research is to develop an applied technology and provide an assessment to remotely measure and analyze the real time or near real time concentrations of used nuclear fuel (UNF) dissolute in electrorefiners. Here, Laser-Induced Breakdown Spectroscopy (LIBS), in UNF pyroprocessing facilities will be investigated. LIBS is an elemental analysis method, which is based on the emission from plasma generated by focusing a laser beam into the medium. This technology has been reported to be applicable in the media of solids, liquids (includes molten metals), and gases for detecting elements of special nuclear materials. The advantages of applying the technology for pyroprocessing facilities are: (i) Rapid real-time elemental analysis|one measurement/laser pulse, or average spectra from multiple laser pulses for greater accuracy in < 2 minutes; (ii) Direct detection of elements and impurities in the system with low detection limits|element specific, ranging from 2-1000 ppm for most elements; and (iii) Near non-destructive elemental analysis method (about 1 g material). One important challenge to overcome is achieving high-resolution spectral analysis to quantitatively analyze all important fission products and actinides. Another important challenge is related to accessibility of molten salt, which is heated in a heavily insulated, remotely operated furnace in a high radiation environment with an argon atmosphere.

  8. Gamma irradiation of Fabry–Perot interband cascade lasers

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Tanya L. [Pacific Northwest National Laboratory, Richland, Washington; Cannon, Bret D. [Pacific Northwest National Laboratory, Richland, Washington; Brauer, Carolyn S. [Pacific Northwest National Laboratory, Richland, Washington; Canedy, Chadwick L. [Naval Research Laboratory, Washington, DC; Kim, Chul Soo [Naval Research Laboratory, Washington, DC; Kim, Mijin [Sotera Defense Solutions, Inc., Columbia, Maryland; Merritt, Charles D. [Naval Research Laboratory, Washington, DC; Bewley, William W. [Naval Research Laboratory, Washington, DC; Vurgaftman, Igor [Naval Research Laboratory, Washington, DC; Meyer, Jerry R. [Naval Research Laboratory, Washington, DC

    2017-09-20

    Two Fabry-Perot interband cascade lasers (ICLs) were exposed to Cobalt-60 gamma rays for a dosage of 500 krad(Si) each, which is higher than is typically encountered in space applications. The ICLs do not show any significant changes in threshold current or slope efficiency, suggesting the suitability of ICLs for use in radiation environments.

  9. Characterization of advanced polymethylmethacrylate (PMMA) targets for TNSA laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Torrisi, L., E-mail: Lorenzo.Torrisi@unime.it [Department of Physics and Earth Science, Messina University, V.le F.S. d’Alcontres 31, 98166 S. Agata, Messina (Italy); Cutroneo, M.; Semian, V. [Nuclear Physics Institute, ASCR, 250 68 Rez (Czech Republic); Ceccio, G. [Department of Physics and Earth Science, Messina University, V.le F.S. d’Alcontres 31, 98166 S. Agata, Messina (Italy)

    2015-10-01

    Highlights: • The manuscript presents the procedure to prepare thin advanced targets based on PMMA polymer in order to obtain high ion acceleration in laser-generated plasma. • The manuscript is original for the procedures of polymer preparation and preliminary techniques used. - Abstract: Characterization of advanced micrometric foils suitable for TNSA regime were performed using optical spectroscopy, microscopy and Nd:YAG low laser intensity. Micrometric acrylic beads were produced in polymethylmethacrylate foils through complex physical and technical procedures in order to enhance the absorption coefficient in the IR region. Moreover, Au nanoparticles were embedded in the polymer in order to induce surface plasmon resonance absorption and plasma electron density enhancement. The suitably prepared polymers were investigated at low laser intensity to have evidence of their capability to absorb IR wavelength radiations and promote enhancement of the plasma temperature and density. Results indicate that the high transparence of PMMA foils can be strongly reduced by the presences of the micrometric acrylic beads and that the obtainable laser-generated plasma improves the ion acceleration when high beads density and high Au nanoparticles concentrations are employed.

  10. INTERACTION OF LASER RADIATION WITH MATTER AND OTHER LASER APPLICATIONS: Changes in the emission properties of metal targets during pulse-periodic laser irradiation

    Science.gov (United States)

    Konov, Vitalii I.; Pimenov, S. M.; Prokhorov, A. M.; Chapliev, N. I.

    1988-02-01

    A scanning electron microscope was used with a pulse-periodic CO2 laser to discover the laws governing the correlation of the modified microrelief of metal surfaces, subjected to the action of multiple laser pulses, with the emission of charged particles and the luminescence of the irradiated zone. It was established that the influence of sorption and laser-induced desorption on the emission signals may be manifested differently depending on the regime of current generation in the "target-vacuum chamber" circuit.

  11. Effect of Diode Laser Irradiation Combined with Topical Fluoride on Enamel Microhardness of Primary Teeth.

    Science.gov (United States)

    Bahrololoomi, Zahra; Lotfian, Malihe

    2015-02-01

    Laser irradiation has been suggested as an adjunct to traditional caries prevention methods. But little is known about the cariostatic effect of diode laser and most studies available are on permanent teeth.The purpose of the present study was to investigate the effect of diode laser irradiation combined with topical fluoride on enamel surface microhardness. Forty-five primary teeth were used in this in vitro study. The teeth were sectioned to produce 90 slabs. The baseline Vickers microhardness number of each enamel surface was determined. The samples were randomly divided into 3 groups. Group 1: 5% NaF varnish, group 2: NaF varnish+ diode laser at 5 W power and group 3: NaF varnish+ diode laser at 7 W power. Then, the final microhardness number of each surface was again determined. The data were statistically analyzed by repeated measures ANOVA at 0.05 level of significance. In all 3 groups, microhardness number increased significantly after surface treatment (P0.05). The combined application of diode laser and topical fluoride varnish on enamel surface did not show any significant additional effect on enamel resistance to caries.

  12. Effect of Diode Laser Irradiation Combined with Topical Fluoride on Enamel Microhardness of Primary Teeth.

    Directory of Open Access Journals (Sweden)

    Zahra Bahrololoomi

    2015-04-01

    Full Text Available Laser irradiation has been suggested as an adjunct to traditional caries prevention methods. But little is known about the cariostatic effect of diode laser and most studies available are on permanent teeth.The purpose of the present study was to investigate the effect of diode laser irradiation combined with topical fluoride on enamel surface microhardness.Forty-five primary teeth were used in this in vitro study. The teeth were sectioned to produce 90 slabs. The baseline Vickers microhardness number of each enamel surface was determined. The samples were randomly divided into 3 groups. Group 1: 5% NaF varnish, group 2: NaF varnish+ diode laser at 5 W power and group 3: NaF varnish+ diode laser at 7 W power. Then, the final microhardness number of each surface was again determined. The data were statistically analyzed by repeated measures ANOVA at 0.05 level of significance.In all 3 groups, microhardness number increased significantly after surface treatment (P0.05.The combined application of diode laser and topical fluoride varnish on enamel surface did not show any significant additional effect on enamel resistance to caries.

  13. Ablation and cone formation mechanism on CR-39 by ArF laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Shakeri Jooybari, B., E-mail: baninshakery@gmail.com, E-mail: hafarideh@aut.ac.ir [Department of Energy Engineering and Physics, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Islamic Republic of Iran (Iran, Islamic Republic of); Nuclear Science and Technology Research Institute NSRT, Tehran (Iran, Islamic Republic of); Afarideh, H., E-mail: baninshakery@gmail.com, E-mail: hafarideh@aut.ac.ir [Department of Energy Engineering and Physics, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Islamic Republic of Iran (Iran, Islamic Republic of); Lamehi-Rachti, M. [Nuclear Science and Technology Research Institute NSRT, Tehran (Iran, Islamic Republic of); Ghergherehchi, M. [Department of Energy Engineering and Physics, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Islamic Republic of Iran (Iran, Islamic Republic of); College of Information and Communication Engineering, Sungkyunkwan University, Suwon (Korea, Republic of)

    2015-03-07

    In this work, chemical properties, surface modification, and micro structures formation on ablated polyallyl di-glycol carbonate (CR-39) polymer by ArF laser irradiation (λ = 193 nm) at various fluences and pulse number were investigated. CR-39 samples have been irradiated with an ArF laser (193 nm) at a repetition rate of 1 Hz. Threshold fluence of ablation and effective absorption coefficient of CR-39 were determined. Conical microstructures (Taylor cone) formed on laser-ablated CR-39 exhibit: smooth, Taylor cone shape walls and sharp tips together with interference and well defined fringe-structure with a period of 230 nm, around cone base. Mechanism of cone formation and cone evolution of CR-39 ablated surface were investigated by change of fluences (at a given pulse number) and pulse number (at a given fluence). Cone height, cone base, and region of interface were increased in micrometer steps by increasing the total fluence. Depression on the base of the cone and the circular fringe were simulated. FTIR spectra were measured and energy dispersive x-ray analysis of irradiated and un-irradiated samples was performed.

  14. Infrared radiometry of dental enamel during Er:YAG and Er:YSGG laser irradiation

    Science.gov (United States)

    Fried, Daniel; Visuri, Steven R.; Featherstone, John D.; Walsh, Joseph T.; Seka, Wolf D.; Glena, Richard E.; McCormack, Sandra M.; Wigdor, Harvey A.

    1996-10-01

    Time-resolved infrared radiometry was used to measure surface temperatures during pulsed Er:YSGG and Er:YAG laser irradiation of dental enamel. Scanning electron microscopy (SEM) was used to determine the melting and vaporization thresholds and to characterize other changes in the surface morphology. The magnitude and temporal evolution of the surface temperature during multiple-pulse irradiation of the tissue was dependant on the wavelength, fluence, and pre- exposure to laser pulses. Radiometry and SEM micrographs indicate that ablation is initiated at temperatures well below the melting and vaporization temperatures of the carbonated hydroxyapatite mineral component. Ablation occurred at lower surface temperatures and at a lower fluences for Er:YAG than for Er:YSGG laser irradiation: 400 degrees C versus 800 degrees C and above 7 J/cm2 versus 18/Jcm2, respectively. However, the measured surface temperatures were higher at (lambda) equals 2.79 (Mu) m than at (lambda) equals 2.94 during low fluence irradiation. Spatially dependent absorption in the enamel matrix is proposed to explain this apparent contradiction.

  15. Single session of Nd:YAG laser intracanal irradiation neutralizes endotoxin in dental root dentin

    Science.gov (United States)

    Archilla, José R. F.; Moreira, Maria S. N. A.; Miyagi, Sueli P. H.; Bombana, Antônio C.; Gutknecht, Norbert; Marques, Márcia M.

    2012-11-01

    Endotoxins released in the dental root by Gram-negative microorganisms can be neutralized by calcium hydroxide, when this medication is applied inside the root canal for at least seven days. However, several clinical situations demand faster root canal decontamination. Thus, for faster endotoxin neutralization, endodontists are seeking additional treatments. The in vitro study tested whether or not intracanal Nd:YAG laser irradiation would be able to neutralize endotoxin within the human dental root canal in a single session. Twenty-four human teeth with one root were mounted between two chambers. After conventional endodontic treatment, root canals were contaminated with Escherichia coli endotoxin. Then they were irradiated or not (controls) in contact mode with an Nd:YAG laser (1.5 W, 15 Hz, 100 mJ and pulse fluency of 124 J/cm2). The endotoxin activity was measured using the limulus lysate technique and data were statistically compared (p≤0.05). The concentration of active endotoxin measured in the negative control group was significantly lower than that of the positive control group (p=0.04). The concentrations of endotoxin in both irradiated groups were significantly lower than that of the positive control group (p=0.027) and similar to that of negative control group (p=0.20). A single session of intracanal Nd:YAG laser irradiation is able to neutralize endotoxin in the dental root tissues.

  16. Femtosecond Laser Irradiation of Plasmonic Nanoparticles in Polymer Matrix: Implications for Photothermal and Photochemical Material Alteration

    Directory of Open Access Journals (Sweden)

    Anton A. Smirnov

    2014-11-01

    Full Text Available We analyze the opportunities provided by the plasmonic nanoparticles inserted into the bulk of a transparent medium to modify the material by laser light irradiation. This study is provoked by the advent of photo-induced nano-composites consisting of a typical polymer matrix and metal nanoparticles located in the light-irradiated domains of the initially homogeneous material. The subsequent irradiation of these domains by femtosecond laser pulses promotes a further alteration of the material properties. We separately consider two different mechanisms of material alteration. First, we analyze a photochemical reaction initiated by the two-photon absorption of light near the plasmonic nanoparticle within the matrix. We show that the spatial distribution of the products of such a reaction changes the symmetry of the material, resulting in the appearance of anisotropy in the initially isotropic material or even in the loss of the center of symmetry. Second, we analyze the efficiency of a thermally-activated chemical reaction at the surface of a plasmonic particle and the distribution of the product of such a reaction just near the metal nanoparticle irradiated by an ultrashort laser pulse.

  17. Caries inhibition in vital teeth using 9.6-μm CO2-laser irradiation

    Science.gov (United States)

    Rechmann, Peter; Fried, Daniel; Le, Charles Q.; Nelson, Gerald; Rapozo-Hilo, Marcia; Rechmann, Beate M. T.; Featherstone, John D. B.

    2011-07-01

    The aim of this study was to test the hypothesis that in a short-term clinical pilot trial short-pulsed 9.6 μm CO2-laser irradiation significantly inhibits demineralization in vivo. Twenty-four subjects scheduled for extraction of bicuspids for orthodontic reasons (age 14.9 +/- 2.2 years) were recruited. Orthodontic brackets were placed on bicuspids (Transbond XT, 3M). An area next to the bracket was irradiated with a CO2-laser (Pulse System Inc, Los Alamos, New Mexico), wavelength 9.6 μm, pulse duration 20 μs, pulse repetition rate 20 Hz, beam diameter 1100 μm, average fluence 4.1 +/- 0.3J/cm2, 20 laser pulses per spot. An adjacent nonirradiated area served as control. Bicuspids were extracted after four and twelve weeks, respectively, for a quantitative assessment of demineralization by cross-sectional microhardness testing. For the 4-week arm the mean relative mineral loss ΔZ (vol% × μm) for the laser treated enamel was 402 +/- 85 (mean +/- SE), while the control showed significantly higher mineral loss (ΔZ 738 +/- 131; P = 0.04, t-test). The difference was even larger after twelve weeks (laser arm ΔZ 135 +/- 98; control 1067 +/- 254; P = 0.002). The laser treatment produced 46% demineralization inhibition for the 4-week and a marked 87% inhibition for the 12-week arm. This study shows, for the first time in vivo, that the short-pulsed 9.6 μm CO2-laser irradiation successfully inhibits demineralization of tooth enamel in humans.

  18. Synthesis of TiO2 nanoscale rods with MHz femtosecond laser irradiation of single crystal surface and characterisation

    Directory of Open Access Journals (Sweden)

    M. Sivakumar

    2011-06-01

    Full Text Available Growth of nanoscale rods on single crystal rutile TiO2 surface irradiated by MHz pulse repetition rate femtosecond laser in nitrogen environment without a catalyst or template is reported. The rods are of 100 nm in width to 1 micron length. Microraman analysis of the laser irradiated surface shows only a decrease in the intensity of active modes as compared to untreated surface. The growth of TiO2 nanorods can be explained by a method combining nanoparticles formation due to expulsion of molten material from laser irradiated spot and their subsequent growth by vapor-liquid-solid process.

  19. Optical coherence tomography in material deformation by using short pulse laser irradiation

    Science.gov (United States)

    Choi, Eun Seo; Kwak, Wooseop; Shin, Yongjin; Kim, Youngseop; Jung, Woonggyu; Ahn, Yeh-Chan; Chen, Zhongping; Jeong, Eun Joo; Kim, Chang-Seok

    2008-02-01

    We demonstrate the feasibility of OCT imaging for the investigation of samples, which are processed by the short pulse laser. The use of short pulse lasers in various material processing have provided the advantages such as a high peak power and a small heat affected zone over conventional methods based on mechanical treatment. However, due to the improper application of the lasers, the unwanted surface or structural deformation of materials and the thermal damages around an irradiation spot can be caused. Thus, the real-time monitoring/evaluation of laser processing performance in-situ is needed to prevent the excessive deformation of the material and to determine optimal processing conditions. As a standard method to investigation of the material processing by using the lasers, the scanning electron microscopy (SEM) or the transmission electron microscopy (TEM) observation of a physically cleaved surface is used although sample damages are given during the cleaving and polishing process. In this paper, we utilized the OCT advantages such as high resolution and non-invasive investigation to evaluate the laser processing performance. OCT images for the deformation monitoring of the ABS plastic present correlation with images obtained from conventional investigation methods. OCT images of the maxillary bone clearly show the difference in the pit formation of the biological sample at different irradiation conditions. We prove the potential of OCT for the evaluation of laser-processed various samples. Integrating OCT system into a laser processing system, we can visualize the effect of laser-based treatments in clinical and industrial fields.

  20. Is there a stimulation of blood microcirculation at low level laser irradiation

    Science.gov (United States)

    Rogatkin, Dmitry; Dunaev, Andrey

    2014-05-01

    In 1980-2000 besides the laser surgery an intensive evolution of Low Level Laser Therapy (LLLT) had started in medicine, especially in Russia as well as in several other East-European countries. At the same time the biophysical mechanisms of LLLT are still the subject of disputes. One of the most popular clinical effects at Low Level Laser Irradiation (LLLI) being mentioned in medical publications for justification of the LLLT healing outcome is a stimulation of blood microcirculation in irradiated area. It was declared a priori at a dawn of LLLT and is now a basis of medical interpretation of healing mechanisms of LLLT at least in Russia. But in past 20 years a lot of investigation was carried out on optical registration of microhaemodynamic parameters in vivo as well as a number of noninvasive diagnostic tools was created for that. So, today it is possible to experimentally check the blood microcirculation stimulation hypothesis. Our study was aimed on that during the past 10 years. The most precision and accurate experiments we have carried out recently using simultaneously three different noninvasive diagnostic techniques: Laser Doppler Flowmetry, Tissue Reflectance Oximetry and Infrared Thermography. All these methods didn't confirm the effect on the blood microcirculation stimulation in skin or mucosa at irradiation with the power density below 50 mW/cm2 and irradiation time up to 5-6 minutes. Above this threshold the heating on 0,8…1 °C of tissue in the field of irradiation and the corresponding synchronous increase of all parameters of microhemodynamics were observed.

  1. Biochemical and topological analysis of bovine sperm cells induced by low power laser irradiation

    Science.gov (United States)

    Dreyer, T. R.; Siqueira, A. F. P.; Magrini, T. D.; Fiorito, P. A.; Assumpção, M. E. O. A.; Nichi, M.; Martinho, H. S.; Milazzotto, M. P.

    2011-07-01

    Low-level laser irradiation (LLLI) increases ATP production and energy supply to the cell which could increase sperm motility, acrossomal reaction and consequently the fertilizing potential. The aim of this study was to characterize the biochemical and topological changes induced by low power laser irradiation on bull sperm cells. Post-thawing sperm were irradiated with a 633nm laser with fluence rates of 30, 150 and 300mJ.cm-2 (power of 5mW for 1, 5 and 10minutes, respectively); 45, 230, and 450mJ.cm-2 (7.5mW for 1, 5 and 10 minutes); and 60, 300 and 600mJ.cm-2 (10mW for 1, 5 and 10 minutes). Biochemical and metabolical changes were analyzed by FTIR and flow cytometry; oxygen reactive species production was assessed by TBARS and the morphological changes were evaluated by AFM. Motility had no difference among times or powers of irradiation. Increasing in ROS generation was observed with power of 5mW compared to 7.5 and 10mW, and with 10min of irradiation in comparison with 5 and 1min of irradiation. This higher ROS generation was related to an increase in acrossomal and plasma membrane damage. FTIR results showed that the amount of lipids was inversely proportional to the quantity of ROS generated. AFM images showed morphological differences in plasma/acrossomal membrane, mainly on the equatorial region. We conclude that LLLI is an effective method to induce changes on sperm cell metabolism but more studies are necessary to establish an optimal dose to increase the fertility potential of these cells.

  2. High-irradiance effects in femosecond laser fabrication

    Directory of Open Access Journals (Sweden)

    Buividas Ričardas

    2013-11-01

    Full Text Available Laser micro-fabrication and micro-structuring of materials is usually carried out at the conditions close to the dielectric breakdown. Interplay between multi-photon and avalanche generation of electrons and thermal relaxation become critically important at those conditions in photo-polymerization, waveguide writing in glasses and for creation of new materials at the focal region. Relevant mechanisms of structuring are reviewed and discussed.

  3. Ablation from metals induced by visible and UV laser irradiation

    DEFF Research Database (Denmark)

    Svendsen, Winnie Edith; Schou, Jørgen; Thestrup Nielsen, Birgitte

    1996-01-01

    The deposition rate of laser-ablated silver has been determined for fluences between 0.5 and 15 J/cm2 at the wavelengths 532 and 355 nm for a beam spot area of around 0.01 cm2. The ablated metal was collected on a quartz crystal microbalance. The rate at 5 J/cm2 was about 4 × 1013 Ag/cm2 per puls...

  4. Irradiation conditions for fiber laser bonding of HAp-glass ceramics with bovine cortical bone.

    Science.gov (United States)

    Tadano, Shigeru; Yamada, Satoshi; Kanaoka, Masaru

    2014-01-01

    Orthopedic implants are widely used to repair bones and to replace articulating joint surfaces. It is important to develop an instantaneous technique for the direct bonding of bone and implant materials. The aim of this study was to develop a technique for the laser bonding of bone with an implant material like ceramics. Ceramic specimens (10 mm diameter and 1 mm thickness) were sintered with hydroxyapatite and MgO-Al2O3-SiO2 glass powders mixed in 40:60 wt% proportions. A small hole was bored at the center of a ceramic specimen. The ceramic specimen was positioned onto a bovine bone specimen and a 5 mm diameter area of the ceramic specimen was irradiated using a fiber laser beam (1070-1080 nm wavelength). As a result, the bone and the ceramic specimens bonded strongly under the irradiation conditions of a 400 W laser power and a 1.0 s exposure time. The maximum shear strength was 5.3 ± 2.3 N. A bonding substance that penetrated deeply into the bone specimen was generated around the hole in the ceramic specimen. On using the fiber laser, the ceramic specimen instantaneously bonded to the bone specimen. Further, the irradiation conditions required for the bonding were investigated.

  5. The Effect of Laser Irradiation on Adipose Derived Stem Cell Proliferation and Differentiation

    Science.gov (United States)

    Abrahamse, H.; de Villiers, J.; Mvula, B.

    2009-06-01

    There are two fundamental types of stem cells: Embryonic Stem cells and Adult Stem cells. Adult Stem cells have a more restricted potential and can usually differentiate into a few different cell types. In the body these cells facilitate the replacement or repair of damaged or diseased cells in organs. Low intensity laser irradiation was shown to increase stem cell migration and stimulate proliferation and it is thought that treatment of these cells with laser irradiation may increase the stem cell harvest and have a positive effect on the viability and proliferation. Our research is aimed at determining the effect of laser irradiation on differentiation of Adipose Derived Stem Cells (ADSCs) into different cell types using a diode laser with a wavelength of 636 nm and at 5 J/cm2. Confirmation of stem cell characteristics and well as subsequent differentiation were assessed using Western blot analysis and cellular morphology supported by fluorescent live cell imaging. Functionality of subsequent differentiated cells was confirmed by measuring adenosine triphosphate (ATP) production and cell viability.

  6. Nanocrystal formation using laser irradiation on Nd{sup 3+} doped barium titanium silicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Martin, L.L., E-mail: lmartin@ull.es [Dpto. Física Fundamental y Experimental, Electrónica y Sistemas, Instituto de Materiales y Nanotecnología, Universidad de La Laguna, Av. Astrofísico Francisco Sánchez, s/n, E-38206 La Laguna, Tenerife (Spain); Ríos, S. [Dpto. de Física Básica, Universidad de La Laguna, Av. Astrofísico Francisco Sánchez, s/n, E-38206 La Laguna, Tenerife (Spain); Martín, I.R. [Dpto. Física Fundamental y Experimental, Electrónica y Sistemas, Instituto de Materiales y Nanotecnología, Universidad de La Laguna, Av. Astrofísico Francisco Sánchez, s/n, E-38206 La Laguna, Tenerife (Spain); MALTA Consolider Team (Spain); Haro-González, P. [Dpto. Física Fundamental y Experimental, Electrónica y Sistemas, Instituto de Materiales y Nanotecnología, Universidad de La Laguna, Av. Astrofísico Francisco Sánchez, s/n, E-38206 La Laguna, Tenerife (Spain); Cáceres, J.M. [Dpto. Edafología y geología, Universidad de La Laguna, Av. Astrofísico Francisco Sánchez, s/n, E-38206 La Laguna, Tenerife (Spain); and others

    2013-03-15

    Highlights: ► We compare two methods to produce glass–ceramic, furnace and laser irradiation. ► We study the spectroscopic properties of the glass ceramic created by both methods. ► A spectral mapping shows the area converted from glass to glass–ceramic by the laser. ► XRD, electronic microscopy and AFM confirm the spectral mapping conclusions. -- Abstract: Two different thermal treatments were used to create nanocrystals from a precursor glass. The glass whose composition is Ba{sub 2}TiSi{sub 2}O{sub 8} and doped with 3% of Nd{sup 3+} was prepared using the melt quenching method. A conventional thermal treatment in an electrical furnace was used to obtain transparent glass ceramic samples, which contain Fresnoite nanocrystals with an average size of 35 nm. Moreover, these nanocrystals were obtained in a localized area of the precursor glass by irradiating with a continuous Ar{sup +} laser. Evidence of the changes induced by laser irradiation was confirmed by optical spectroscopic, X-ray diffraction, scanning electron and atomic force microscopy.

  7. Antimicrobial effect of Er:YAG laser irradiation in infected root canals: an in vitro study

    Science.gov (United States)

    Sampaio Moura, Marcelo; Zanin, Fatima A. A.; Brugnera, Aldo, Jr.; Rodrigues de Araujo Estrela, Cyntia; Estrela, Carlos; Djalma Pecora, Jesus

    2003-06-01

    This study evaluated in vitro the antimicrobial action of Er:YAG laser in infected root canals. A total of 36 human anterior teeth were prepared, sterilized and inoculated with suspensions of S. aureus, E. faecalis, P aeruginosa, B. subtilis and C. albicans. After the contamination period (28 days), the teeth were irrigated with sterile distilled water or 1% sodium hypochlorite and, then,