WorldWideScience

Sample records for excimer laser deposition

  1. Excimer Laser Deposition of PLZT Thin Films

    National Research Council Canada - National Science Library

    Petersen, GAry

    1991-01-01

    .... In order to integrate these devices into optical systems, the production of high quality thin films with high transparency and perovskite crystal structure is desired. This requires development of deposition technologies to overcome the challenges of depositing and processing PLZT thin films.

  2. excimer laser

    Indian Academy of Sciences (India)

    2014-01-07

    Jan 7, 2014 ... is necessary to deposit one order higher input electric power into gas medium than ... cross-sectional view of the laser system is shown in figure 2A. The system mainly consists ... Considering the simplicity and reliability of the.

  3. Excimer Laser Technology

    CERN Document Server

    Basting, Dirk

    2005-01-01

    This comprehensive survey on Excimer Lasers investigates the current range of the technology, applications and devices of this commonly used laser source, as well as the future of new technologies, such as F2 laser technology. Additional chapters on optics, devices and laser systems complete this compact handbook. A must read for laser technology students, process application researchers, engineers or anyone interested in excimer laser technology. An effective and understandable introduction to the current and future status of excimer laser technology.

  4. Excimer laser applications

    International Nuclear Information System (INIS)

    Fantoni, R.

    1988-01-01

    This lecture deals with laser induced material photoprocessing, especially concerning those processes which are initiated by u.v. lasers (mostly excimer laser). Advantages of using the u.v. radiation emitted by excimer lasers, both in photophysical and photochemical processes of different materials, are discussed in detail. Applications concerning microelectronics are stressed with respect to other applications in different fields (organic chemistry, medicine). As further applications of excimer lasers, main spectroscopic techniques for ''on line'' diagnostics which employ excimer pumped dye lasers, emitting tunable radiation in the visible and near u.v. are reviewed

  5. Electrodeless excimer laser

    International Nuclear Information System (INIS)

    Lisi, N.

    2001-01-01

    In this paper it is proposed how to build an excimer laser based on an electrodeless discharge (or Dielectric Barrier Discharge). Such laser could operate with a low energy per pulse ( 2 excimer molecule, whose emission wavelength in the VUV range (157 nm) at high reprate is particularly interesting in the micro-lithography field [it

  6. Deposition of high Tc superconductor thin films by pulsed excimer laser ablation and their post-synthesis processing

    International Nuclear Information System (INIS)

    Ogale, S.B.

    1992-01-01

    This paper describes the use of pulsed excimer laser ablation technique for deposition of high quality superconductor thin films on different substrate materials such as Y stabilized ZrO 2 , SrTiO 3 , LiNbO 3 , Silicon and Stainless Steels, and dopant incorporation during the film depositions. Processing of deposited films using ion and laser beams for realisation of device features are presented. 28 refs., 16 figs

  7. Excimer laser recrystallization of nanocrystalline-Si films deposited by inductively coupled plasma chemical vapour deposition at 150 deg. C

    International Nuclear Information System (INIS)

    Park, Joong-Hyun; Han, Sang-Myeon; Park, Sang-Geun; Han, Min-Koo; Shin, Moon-Young

    2006-01-01

    Polycrystalline silicon thin film transistors (poly-Si TFTs) fabricated at low temperature (under 200 deg. C) have been widely investigated for flexible substrate applications such as a transparent plastic substrate. Unlike the conventional TFT process using glass substrate, the maximum process temperature should be kept less than 200 deg. C in order to avoid thermal damage on flexible substrates. We report the characteristics of nanocrystalline silicon (nc-Si) irradiated by an excimer laser. Nc-Si precursors were deposited on various buffer layers by inductively coupled plasma chemical vapour deposition (ICP-CVD) at 150 deg. C. We employed various buffer layers, such as silicon nitride (SiN X ) and silicon dioxide (SiO 2 ), in order to report recrystallization characteristics in connection with a buffer layer of a different thermal conductivity. The dehydrogenation and recrystallization was performed by step-by-step excimer laser annealing (ELA) (XeCl,λ=308 nm) in order to prevent the explosive release of hydrogen atoms. The grain size of the poly-Si film, which was recrystallized on the various buffer layers, was measured by scanning electron microscopy (SEM) at each laser energy density. The process margin of step-by-step ELA employing the SiN X buffer layer is wider than SiO 2 and the maximum grain size slightly increased

  8. Tunable excimer lasers

    International Nuclear Information System (INIS)

    Sze, R.C.

    1990-01-01

    The wide bandwidth nature of the rare-gas halide excimer transitions allow reasonable tuning of the laser oscillation wavelength that makes it useful for a number of applications. At the same time this wide bandwidth makes narrow band operation difficult and special techniques are needed to insure narrow frequency lasing as well as absolute frequency resettability. The author discusses briefly some of the classical frequency narrowing techniques and then goes on to some recent work that require lasers of special frequency characteristics for special applications including KrF laser fusion

  9. High power excimer laser

    International Nuclear Information System (INIS)

    Oesterlin, P.; Muckenheim, W.; Basting, D.

    1988-01-01

    Excimer lasers emitting more than 200 W output power are not commercially available. A significant increase requires new technological efforts with respect to both the gas circulation and the discharge system. The authors report how a research project has yielded a laser which emits 0.5 kW at 308 nm when being UV preionized and operated at a repetition rate of 300 Hz. The laser, which is capable of operating at 500 Hz, can be equipped with an x-ray preionization module. After completing this project 1 kW output power will be available

  10. Excimer laser decontamination

    Science.gov (United States)

    Sentis, Marc L.; Delaporte, Philippe C.; Marine, Wladimir; Uteza, Olivier P.

    2000-04-01

    The application of excimer laser ablation process to the decontamination of radioactive surfaces is discussed. This technology is very attractive because it allows to efficiently remove the contaminated particles without secondary waste production. To demonstrate the capability of such technology to efficiently decontaminate large area, we studied and developed a prototype which include a XeCl laser, an optical fiber delivery system and an ablated particles collection cell. The main physical processes taking place during UV laser ablation will be explained. The influence of laser wavelength, pulse duration and absorption coefficient of material will be discussed. Special studies have been performed to understand the processes which limit the transmission of high average power excimer laser through optical fiber, and to determine the laser conditions to optimize the value of this transmission. An in-situ spectroscopic analysis of laser ablation plasma allows the real time control of the decontamination. The results obtained for painting or metallic oxides removal from stainless steel surfaces will be presented.

  11. Time-resolved diagnostics of excimer laser-generated ablation plasmas used for pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Geohegan, D.B.

    1994-09-01

    Characteristics of laser plasmas used for pulsed laser deposition (PLD) of thin films are examined with four in situ diagnostic techniques: Optical emission spectroscopy, optical absorption spectroscopy, ion probe studies, and gated ICCD (intensified charge-coupled-device array) fast photography. These four techniques are complementary and permit simultaneous views of the transport of ions, excited states, ground state neutrals and ions, and hot particulates following KrF laser ablation of YBCO, BN, graphite and Si in vacuum and background gases. The implementation and advantages of the four techniques are first described in order to introduce the key features of laser plasmas for pulsed laser deposition. Aspects of the interaction of the ablation plume with background gases (i.e., thermalization, attenuation, shock formation) and the collision of the plasma plume with the substrate heater are then summarized. The techniques of fast ICCD photography and gated photon counting are then applied to investigate the temperature, velocity, and spatial distribution of hot particles generated during KrF ablation of YBCO, BN, Si and graphite. Finally, key features of fast imaging of the laser ablation of graphite into high pressure rare gases are presented in order to elucidate internal reflected shocks within the plume, redeposition of material on a surface, and formation of hot nanoparticles within the plume.

  12. Time-resolved diagnostics of excimer laser-generated ablation plasmas used for pulsed laser deposition

    International Nuclear Information System (INIS)

    Geohegan, D.B.

    1994-01-01

    Characteristics of laser plasmas used for pulsed laser deposition (PLD) of thin films are examined with four in situ diagnostic techniques: Optical emission spectroscopy, optical absorption spectroscopy, ion probe studies, and gated ICCD (intensified charge-coupled-device array) fast photography. These four techniques are complementary and permit simultaneous views of the transport of ions, excited states, ground state neutrals and ions, and hot particulates following KrF laser ablation of YBCO, BN, graphite and Si in vacuum and background gases. The implementation and advantages of the four techniques are first described in order to introduce the key features of laser plasmas for pulsed laser deposition. Aspects of the interaction of the ablation plume with background gases (i.e., thermalization, attenuation, shock formation) and the collision of the plasma plume with the substrate heater are then summarized. The techniques of fast ICCD photography and gated photon counting are then applied to investigate the temperature, velocity, and spatial distribution of hot particles generated during KrF ablation of YBCO, BN, Si and graphite. Finally, key features of fast imaging of the laser ablation of graphite into high pressure rare gases are presented in order to elucidate internal reflected shocks within the plume, redeposition of material on a surface, and formation of hot nanoparticles within the plume

  13. Excimer laser technology

    International Nuclear Information System (INIS)

    Mace, P.N.

    1980-01-01

    Scaling presently available excimer laser systems to lasers designed to operate at high average power and high pulse repetition rates for long periods of time requires advances in many areas of engineering technology. For economical application to industrial processes, the efficiency must be increased. This leads to more stringent requirements on preionization techniques, energy delivery systems, and system chemistry. Long life operation (> 10 9 to 10 10 pulses) requires development of new pulse power components, optical elements and flow system components. A broad-based program underway at the Los Alamos Scientific Laboratory is addressing these key technology issues, with the help of advanced component and systems development programs in industry. A prototype XeCl laser meeting all requirements for efficiency, system performance and life is scheduled for completion in 1984

  14. The argon excimer laser

    International Nuclear Information System (INIS)

    Wrobel, W.G.

    1981-02-01

    The electron-beam-pumped argon eximer laser is investigated and tuned for the first time. The electron beam is generated by means of an improved coaxial field emmision diode in which argon gas is excited with power densities of 0.3 GW/cm 3 for 18 ns. The processes in the excited gas of 20 to 65 bar are described in the context of a kinetic model as a sequence of stationary states. Investigations of the amplified spontaneous emission (superfluorescence) confirm the predictions of this model. Only the absorption due to the excited Ar atoms is anomalously high. Reproducible operation of the argon eximer laser was achieved in a wide pressure range with various resonator arrangements. The wavelength of this shortest wavelength of this shortest wavelength excimer laser is 126 nm, the laser line width approx. 1.7 nm, the pulse length 7 to 13 ns, and the laser power 250 kW. The laser emission is tuned from 123.2 nm to 128.4 nm by two different methods (diffraction grating and prism). This tunable laser is thus the one with the shortest wavelength at present. Its line width is 0.25 to 0.4 nm, and the power ue 1.7 kW. (orig.)

  15. ArF Excimer Laser-induced Deposition of Ag/C Nanocomposite Thin Films in the Presence of n-Hexane

    Czech Academy of Sciences Publication Activity Database

    Gondal, M.A.; Fajgar, Radek; Chang, X.; Shen, K.; Xu, Q.

    2014-01-01

    Roč. 311, AUG 30 (2014), s. 95-100 ISSN 0169-4332 Grant - others:NNSFCH(CN) 51172044; NSFJP(CN) BK2011617; KFUPM(CN) RG 1311-1 Institutional support: RVO:67985858 Keywords : ArF excimer laser * nanocomposite * laser deposition Subject RIV: CH - Nuclear ; Quantum Chemistry Impact factor: 2.711, year: 2014

  16. Excimer laser phototherapeutic keratectomy.

    Science.gov (United States)

    Ayres, Brandon D; Rapuano, Christopher J

    2006-10-01

    Anterior corneal pathology, such as corneal scars and corneal stromal dystrophies, can be visually devastating. Over the past decade, there was a shift in treatment of these conditions from corneal transplantation to phototherapeutic keratectomy (PTK) using the 193 nm excimer laser for visual restoration. We have reviewed the recent literature on techniques for performing and refining PTK and also on various pathologic conditions that can be treated with PTK. The primary indications for PTK include anterior corneal dystrophies, such as lattice, granular, and Reis-Bückler's dystrophy. PTK can produce significant visual improvement in these patients, and corneal transplantation or retransplantation can be delayed. Corneal degenerations, such as Salzmann's nodular degeneration, keratoconus nodules, and climatic droplet keratopathy, also can be successfully treated with PTK. Additionally, anterior corneal scars from such etiologies as trauma, corneal ulcers, and prior refractive surgery can have visual improvement with PTK. In summary, PTK is a powerful tool for the management of anterior corneal pathology. In a properly selected and well-counseled patient, PTK can significantly improve vision and quality of life.

  17. Excimer laser processing of inkjet-printed and sputter-deposited transparent conducting SnO2:Sb for flexible electronics

    International Nuclear Information System (INIS)

    Cranton, Wayne M.; Wilson, Sharron L.; Ranson, Robert; Koutsogeorgis, Demosthenes C.; Chi Kuangnan; Hedgley, Richard; Scott, John; Lipiec, Stephen; Spiller, Andrew; Speakman, Stuart

    2007-01-01

    The feasibility of low-temperature fabrication of transparent electrode elements from thin films of antimony-doped tin oxide (SnO 2 :Sb, ATO) has been investigated via inkjet printing, rf magnetron sputtering and post-deposition excimer laser processing. Laser processing of thin films on both glass and plastic substrates was performed using a Lambda Physik 305i excimer laser, with fluences in the range 20-100 mJ cm -2 reducing sheet resistance from as-deposited values by up to 3 orders of magnitude. This is consistent with TEM analysis of the films that shows a densification of the upper 200 nm of laser-processed regions

  18. The study of metal-alloy targets and excimer laser deposition technology

    International Nuclear Information System (INIS)

    Xu Hua; Wu Weidong; Tang Xiaohong; Zhang Jicheng; Tang Yongjian

    2002-01-01

    Pulsed Laser Deposition (PLD) technology is described. Design and manufacture of the PLD installation is illustrated in detail. The Cu films and Cu/Fe multi-layers are produced by PLD method. The production of the Mg/Si films using magnetron sputtering method is investigated in detail. The percent of Si on Mg/Si film surface is measured by using conductivity method

  19. Excimer pulsed laser deposition and annealing of YSZ nanometric films on Si substrates

    International Nuclear Information System (INIS)

    Caricato, A.P.; Barucca, G.; Di Cristoforo, A.; Leggieri, G.; Luches, A.; Majni, G.; Martino, M.; Mengucci, P.

    2005-01-01

    We report experimental results obtained for electrical and structural characteristics of yttria-stabilised zirconia (YSZ) thin films deposited by pulsed laser deposition (PLD) on Si substrates at room temperature. Some samples were submitted to thermal treatments in different ambient atmospheres (vacuum, N 2 and O 2 ) at a moderate temperature. The effects of thermal treatments on the film electrical properties were studied by C-V and I-V measurements. Structural characteristics were obtained by X-ray diffraction (XRD), X-ray reflectivity (XRR) and transmission electron microscopy (TEM) analyses. The as-deposited film was amorphous with an in-depth non-uniform density. The annealed films became polycrystalline with a more uniform density. The sample annealed in O 2 was uniform over all the thickness. Electrical characterisation showed large hysteresis, high leakage current and positive charges trapped in the oxide in the as-deposited film. Post-deposition annealing, especially in O 2 atmosphere, improved considerably the electrical properties of the films

  20. Semiconductor processing with excimer lasers

    International Nuclear Information System (INIS)

    Young, R.T.; Narayan, J.; Christie, W.H.; van der Leeden, G.A.; Rothe, D.E.; Cheng, L.J.

    1983-01-01

    The advantages of pulsed excimer lasers for semiconductor processing are reviewed. Extensive comparisons of the quality of annealing of ion-implanted Si obtained with XeCl and ruby lasers have been made. The results indicate that irrespective of the large differences in the optical properties of Si at uv and visible wavelengths, the efficiency of usage of the incident energy for annealing is comparable for the two lasers. However, because of the excellent optical beam quality, the XeCl laser can provide superior control of the surface melting and the resulting junction depth. Furthermore, the concentrations of electrically active point defects in the XeCl laser annealed region are 2 to 3 orders of magnitude lower than that obtained from ruby or Nd:YAG lasers. All these results seem to suggest that XeCl lasers should be suitable for fabricating not only solar cells but also the more advanced device structures required for VLSI or VHSIC applications

  1. Decontamination by excimer laser

    International Nuclear Information System (INIS)

    2001-01-01

    The process developed in collaboration with the C.N.R.S. has reached the industrial stage. The transport by optical fibre beam has been perfected and allows to work from a distance of 20 m from the source. Demonstration has been made with a laser of a 500 watt power which allows a 5 to 10 m 2 /hour etching efficiency. This process is in the course of qualification in collaboration with the different organisations: C.E.A., COGEMA and E.D.F. This qualification concerns 25 different materials and zircaloy fuel claddings. (author)

  2. Surface processing by high power excimer laser

    Energy Technology Data Exchange (ETDEWEB)

    Stehle, M [SOPRA, 92 - Bois-Colombes (France)

    1995-03-01

    Surface processing with lasers is a promising field of research and applications because lasers bring substantial advantages : laser beams work at distance, laser treatments are clean in respect of environment consideration and they offer innovative capabilities for surface treatment which cannot be reached by other way. Excimer lasers are pulsed, gaseous lasers which emit in UV spectral range - the most common are XeCl (308 nm), KrF (248 nm), ArF (193 nm). From 1980 up to 1994, many of them have been used for research, medical and industrial applications such as spectroscopy, PRK (photo-refractive keratotomy) and micro-machining. In the last six years, from 1987 up to 1993, efforts have been done in order to jump from 100 W average power up to 1 kW for XeCl laser at {lambda} = 308 nm. It was the aim of AMMTRA project in Japan as EU205 and EU213 Eureka projects in Europe. In this framework, SOPRA developed VEL (Very large Excimer Laser). In 1992, 1 kW (10 J x 100 Hz) millstone has been reached for the first time, this technology is based on X-Ray preionization and large laser medium (5 liters). Surface treatments based on this laser source are the main purpose of VEL Lasers. Some of them are given for instance : (a) Turbine blades made with metallic substrate and ceramic coatings on the top, are glazed in order to increase corrosion resistance of ceramic and metal sandwich. (b) Selective ablation of organic coatings deposited on fragile composite material is investigated in Aerospace industry. (c) Chock hardening of bulk metallic materials or alloys are investigated for automotive industry in order to increase wear resistance. (d) Ablation of thin surface oxides of polluted steels are under investigation in nuclear industry for decontamination. (J.P.N.).

  3. Surface processing by high power excimer laser

    International Nuclear Information System (INIS)

    Stehle, M.

    1995-01-01

    Surface processing with lasers is a promising field of research and applications because lasers bring substantial advantages : laser beams work at distance, laser treatments are clean in respect of environment consideration and they offer innovative capabilities for surface treatment which cannot be reached by other way. Excimer lasers are pulsed, gaseous lasers which emit in UV spectral range - the most common are XeCl (308 nm), KrF (248 nm), ArF (193 nm). From 1980 up to 1994, many of them have been used for research, medical and industrial applications such as spectroscopy, PRK (photo-refractive keratotomy) and micro-machining. In the last six years, from 1987 up to 1993, efforts have been done in order to jump from 100 W average power up to 1 kW for XeCl laser at λ = 308 nm. It was the aim of AMMTRA project in Japan as EU205 and EU213 Eureka projects in Europe. In this framework, SOPRA developed VEL (Very large Excimer Laser). In 1992, 1 kW (10 J x 100 Hz) millstone has been reached for the first time, this technology is based on X-Ray preionization and large laser medium (5 liters). Surface treatments based on this laser source are the main purpose of VEL Lasers. Some of them are given for instance : a) Turbine blades made with metallic substrate and ceramic coatings on the top, are glazed in order to increase corrosion resistance of ceramic and metal sandwich. b) Selective ablation of organic coatings deposited on fragile composite material is investigated in Aerospace industry. c) Chock hardening of bulk metallic materials or alloys are investigated for automotive industry in order to increase wear resistance. d) Ablation of thin surface oxides of polluted steels are under investigation in nuclear industry for decontamination. (J.P.N.)

  4. 308nm Excimer Laser in Dermatology

    Science.gov (United States)

    Mehraban, Shadi

    2014-01-01

    308nm xenon-chloride excimer laser, a novel mode of phototherapy, is an ultraviolet B radiation system consisting of a noble gas and halide. The aim of this systematic review was to investigate the literature and summarize all the experiments, clinical trials and case reports on 308-nm excimer laser in dermatological disorders. 308-nm excimer laser has currently a verified efficacy in treating skin conditions such as vitiligo, psoriasis, atopic dermatitis, alopecia areata, allergic rhinitis, folliculitis, granuloma annulare, lichen planus, mycosis fungoides, palmoplantar pustulosis, pityriasis alba, CD30+ lympho proliferative disorder, leukoderma, prurigo nodularis, localized scleroderma and genital lichen sclerosus. Although the 308-nm excimer laser appears to act as a promising treatment modality in dermatology, further large-scale studies should be undertaken in order to fully affirm its safety profile considering the potential risk, however minimal, of malignancy, it may impose. PMID:25606333

  5. Numerical analysis of temperature profile and thermal-stress during excimer laser induced heteroepitaxial growth of patterned amorphous silicon and germanium bi-layers deposited on Si(100)

    Energy Technology Data Exchange (ETDEWEB)

    Conde, J.C., E-mail: jconde@uvigo.e [Dpto. Fisica Aplicada, E.T.S.I.I. University of Vigo, Campus Universitario, Rua Maxwell s/n, E-36310 Vigo (Spain); Martin, E. [Dpto. de Mecanica, Maquinas y Motores Termicos y Fluidos, E.T.S.I.I. University of Vigo, Campus Universitario, Rua Maxwell s/n, E-36310 Vigo (Spain); Gontad, F.; Chiussi, S. [Dpto. Fisica Aplicada, E.T.S.I.I. University of Vigo, Campus Universitario, Rua Maxwell s/n, E-36310 Vigo (Spain); Fornarini, L. [Enea-Frascati, Via Enrico Fermi 45, I-00044 Frascati (Roma) (Italy); Leon, B. [Dpto. Fisica Aplicada, E.T.S.I.I. University of Vigo, Campus Universitario, Rua Maxwell s/n, E-36310 Vigo (Spain)

    2010-02-26

    A Finite Element Method (FEM) study of the coupled thermal-stress during the heteroepitaxial growth induced by excimer laser radiation of patterned amorphous hydrogenated silicon (a-Si:H) and germanium (a-Ge:H) bi-layers deposited on a Si(100) wafer is presented. The ArF (193 nm) excimer laser provides high energy densities during very short laser pulse (20 ns) provoking, at the same time, melting and solidification phenomena in the range of several tenths of nanoseconds. These phenomena play an important role during the growth of heteroepitaxial SiGe structures characterized by high Ge concentration buried under a Si rich surface. In addition, the thermal-stresses that appear before the melting and after the solidification processes can also affect to the epitaxial growth of high quality SiGe alloys in these patterned structures and, in consequence, it is necessary to predict their effects. The aim of this work is to estimate the energy threshold and the corresponding thermal-stresses in the interfaces and the borders of these patterned structures.

  6. Numerical analysis of temperature profile and thermal-stress during excimer laser induced heteroepitaxial growth of patterned amorphous silicon and germanium bi-layers deposited on Si(100)

    International Nuclear Information System (INIS)

    Conde, J.C.; Martin, E.; Gontad, F.; Chiussi, S.; Fornarini, L.; Leon, B.

    2010-01-01

    A Finite Element Method (FEM) study of the coupled thermal-stress during the heteroepitaxial growth induced by excimer laser radiation of patterned amorphous hydrogenated silicon (a-Si:H) and germanium (a-Ge:H) bi-layers deposited on a Si(100) wafer is presented. The ArF (193 nm) excimer laser provides high energy densities during very short laser pulse (20 ns) provoking, at the same time, melting and solidification phenomena in the range of several tenths of nanoseconds. These phenomena play an important role during the growth of heteroepitaxial SiGe structures characterized by high Ge concentration buried under a Si rich surface. In addition, the thermal-stresses that appear before the melting and after the solidification processes can also affect to the epitaxial growth of high quality SiGe alloys in these patterned structures and, in consequence, it is necessary to predict their effects. The aim of this work is to estimate the energy threshold and the corresponding thermal-stresses in the interfaces and the borders of these patterned structures.

  7. Excimer laser decomposition of silicone

    International Nuclear Information System (INIS)

    Laude, L.D.; Cochrane, C.; Dicara, Cl.; Dupas-Bruzek, C.; Kolev, K.

    2003-01-01

    Excimer laser irradiation of silicone foils is shown in this work to induce decomposition, ablation and activation of such materials. Thin (100 μm) laminated silicone foils are irradiated at 248 nm as a function of impacting laser fluence and number of pulsed irradiations at 1 s intervals. Above a threshold fluence of 0.7 J/cm 2 , material starts decomposing. At higher fluences, this decomposition develops and gives rise to (i) swelling of the irradiated surface and then (ii) emission of matter (ablation) at a rate that is not proportioned to the number of pulses. Taking into consideration the polymer structure and the foil lamination process, these results help defining the phenomenology of silicone ablation. The polymer decomposition results in two parts: one which is organic and volatile, and another part which is inorganic and remains, forming an ever thickening screen to light penetration as the number of light pulses increases. A mathematical model is developed that accounts successfully for this physical screening effect

  8. 308-nm excimer laser in endodontics

    Science.gov (United States)

    Liesenhoff, Tim

    1992-06-01

    Root canal preparation was performed on 20 extracted human teeth. After opening the coronal pulp, the root canals were prepared by 308 nm excimer laser only. All root canals were investigated under SEM after separation in the axial direction. By sagittal separation of the mandibles of freshly slaughtered cows, it was possible to get access to the tissues and irradiate under optical control. Under irradiation of excimer laser light, tissue starts to fluoresce. It was possible to demonstrate that each tissue (dentin, enamel, bone, pulpal, and connective tissue) has a characteristic spectral pattern. The SEM analyses showed that it is well possible to prepare root canals safely. All organic soft tissue has been removed by excimer laser irradiation. There was no case of via falsa. The simultaneous spectroscopic identification of the irradiated tissue provides a safe protection from overinstrumentation. First clinical trials on 20 patients suffering of chronical apical parodontitis have been carried out successfully.

  9. Excimer laser corneal surgery and free oxygen radicals.

    Science.gov (United States)

    Bilgihan, K; Bilgihan, A; Akata, F; Hasanreisoğlu, B; Türközkan, N

    1996-01-01

    Corneal photoablation with 193 nm argon fluoride excimer laser is a new technique for the treatment of refractive errors and for removing corneal opacities and irregularities. Ultraviolet radiation and thermal injury induce free radical formation in the tissues. The aim of this study was to confirm the production of free radicals by excimer laser photoablation in rabbits. The thermal changes of the posterior corneal surface were recorded during excimer laser photoablation. The lipid peroxide (LPO) levels and superoxide dismutase (SOD) activities of aqueous humour were measured after excimer laser keratectomy. The aqueous LPO levels were not changed after excimer laser ablation, but both the thermal increase in the cornea during the photoablation and the decreased aqueous SOD activities suggest that free radicals are formed in the cornea during excimer laser keratectomy, and that they may be responsible for some of the complications of excimer laser corneal surgery.

  10. Excimer Laser Curing Of Polymer Coatings

    Science.gov (United States)

    Klick, David; Akerman, M. Alfred; Paul, George L.; Supurovic, Darko; Tsuda, Haruki

    1988-12-01

    The use of the excimer laser as a source of energy for photo-assisted curing of industrial polymeric coatings was investigated. Presently, UV lamps are sometimes used to excite a photoinitiating molecule mixed with the starting monomers and oligomers of a coating. The resulting polymeric chain reaction multiplies the effect of the initial photons, making economical use of the light source. The high cost of laser photons may thus be justifiable if lasers provide advantages over lamps. A series of visibly transparent 7 μm coatings (a typical thickness for 'slick' magazine coatings) with various photoinitiators, monomers, and oligomers was illuminated with excimer laser light of various wavelengths, fluences, and pulse repetition rates. For the optimum parameters, it was found that the laser had large advantages in curing speed over existing UV lamp processes, due to its monochromaticity. Pigmented coatings (20 μm TiO2 mixtures typical of appliance or automotive finishes) are not easily cured with UV lamps due to the inability of light to penetrate the absorbing and scattering pigmented layer. However, economically-viable cure rates were achieved with certain photoinitiators using a tunable excimer-pumped dye laser. A prototype of such a laser suitable for factory use was built and used to cure these coatings. Results are scaled to a factory situation, and costs are calculated to show the advantages of the laser method over currently used processes.

  11. Prototype of an excimer laser for microprocessing

    Science.gov (United States)

    Iwanejko, Leszek; Pokora, Ludwik J.; Wolinski, Wieslaw L.

    1991-08-01

    The paper presents a brief description of a prototype of a XeC1 excimer laser for micraprocessing of materials. The planned main parameters of the laserare as follows: wavelength . . . . . . . . . . . . . . . . . . . . . . . . . 308 nm -''energyofapulse. . . . . . . . . . . . . lOOmJ -pulseduration (FWHM) . . . . . . . . . . . . . . . 2Ons repetition frequency . . . . . . . . . . . . . . 1O Hz peak power of a pulse . . . . . . . . . . . . . . . 5 MW With respect to currently carrried works with the prototype we show only preliminary results of testing of a laser head. The obtained maximum laser pulse energy exceeded 90 ml. However it should be pointed out that this value was obtained without any opt i mi z at i on of the 1 aser.

  12. Excimer laser irradiation of metal surfaces

    Science.gov (United States)

    Kinsman, Grant

    In this work a new method of enhancing CO2 laser processing by modifying the radiative properties of a metal surface is studied. In this procedure, an excimer laser (XeCl) or KrF) exposes the metal surface to overlapping pulses of high intensity, 10(exp 8) - 10(exp 9) W cm(exp -2), and short pulse duration, 30 nsec FWHM (Full Width Half Maximum), to promote structural and chemical change. The major processing effect at these intensities is the production of a surface plasma which can lead to the formation of a laser supported detonation wave (LSD wave). This shock wave can interact with the thin molten layer on the metal surface influencing to a varying degree surface oxidation and roughness features. The possibility of the expulsion, oxidation and redeposition of molten droplets, leading to the formation of micron thick oxide layers, is related to bulk metal properties and the incident laser intensity. A correlation is found between the expulsion of molten droplets and a Reynolds number, showing the interaction is turbulent. The permanent effects of these interactions on metal surfaces are observed through scanning electron microscopy (SEM), transient calorimetric measurements and Fourier transform infrared (FTIR) spectroscopy. Observed surface textures are related to the scanning procedures used to irradiate the metal surface. Fundamental radiative properties of a metal surface, the total hemispherical emissivity, the near-normal spectral absorptivity, and others are examined in this study as they are affected by excimer laser radiation. It is determined that for heavily exposed Al surface, alpha' (10.6 microns) can be increased to values close to unity. Data relating to material removal rates and chemical surface modification for excimer laser radiation is also discussed. The resultant reduction in the near-normal reflectivity solves the fundamental problem of coupling laser radiation into highly reflective and conductive metals such as copper and aluminum. The

  13. Excimer laser development for fusion

    International Nuclear Information System (INIS)

    Giovanielli, D.

    1985-01-01

    The future utility of inertial confinement fusion requires a new driver. Successful experiments coupling laser energy to targets, and our understanding of fuel capsule behavior strongly suggest that a laboratory thermonuclear source is attainable and power production may be considered if a suitable driver with high efficiency, high repetition rate, and most importantly, low capital cost, can be identified. No adequate driver exists today; however, the krypton fluoride laser holds great promise. By the end of this decade, driver development can be brought to the point that a technically justifiable choice can be made for the future direction of ICF

  14. Electrodeless excimer laser; Laser a eccimeri senza elettrodi

    Energy Technology Data Exchange (ETDEWEB)

    Lisi, N. [ENEA, Divisione Nuovi Materiali, Centro Ricerche Casaccia, Rome (Italy)

    2001-07-01

    In this paper it is proposed how to build an excimer laser based on an electrodeless discharge (or Dielectric Barrier Discharge). Such laser could operate with a low energy per pulse (<100 mJ) and a high repetition rate (<100 kHz). The most relevant advantage an electrodeless DBD laser is the much longer gas mixture lifetime. This feature could allow the operation of a sealed laser emitting higher average power with respect to commercially available excimer lasers. Such discharge scheme could be advantageous in order to excite the F{sub 2} excimer molecule, whose emission wavelength in the VUV range (157 nm) at high reprate is particularly interesting in the micro-lithography field. [Italian] In questo documento viene proposto come costruire un laser a eccimeri basato su una scarica priva di elettrodi, o Dielectric Barrier Discharge. Tale laser puo' funzionare con una bassa energia per impulso (<100 mJ) ad alta frequenza di ripetizione (<100 kHz). Il vantaggio fondamentale di un laser a DBD e quindi privo di elettrodi e' la vita media della miscela gassosa molto piu' alta che potrebbe permettere alla camera laser di operare sigillata ad una potenza media superiore a quella dei laser a eccimeri attuali. Tale schema di pompaggio potrebbe essere particolarmente vantaggioso per eccitare la molecola eccimero F{sub 2} la cui lunghezza di emissione nel VUV (157 nm) ad elevata frequenza di ripetizione presenta un notevole interesse nel campo della produzione di microcircuiti.

  15. Excimer Pumped Pulsed Tunable Dye Laser

    Science.gov (United States)

    Littman, Michael G.

    1988-06-01

    It has been recently shown and reported for the first time at this meeting, that Excimer pumping of a single-mode, short-cavity, grazing-incidence, longitudinally-pumped pulsed dye laser is feasible. In this paper the key concepts upon which this latest development is based are presented and are in a somewhat unusual form. This manuscript describes five specific dye laser examples. The five examples represent a progression from the simplest type of dye laser to the single-mode version mentioned above. The examples thus serve as a tutorial introduction to potential users of dye lasers. The article is organized into five sections or STEPS, each of which describes a different pulsed dye laser. Since the subtle points about dye lasers are best appreciated only after one actually attempts to build a working model, a PROCEDURES category is included in which details about the construction of the particular form of laser are given. As one reads through this category, think of it as looking over the shoulder of the laser builder. The NOTES category which follows is a brief but essential discussion explaining why various components and procedures are used, as well as how laser performance specifications are obtained. This subsection can he viewed as a discussion with the laser builder concerning the reasons for specific actions and choices made in the assembly of the example laser. The last category contains COMMENTS which provide additional related information pertaining to the example laser that goes beyond the earlier annotated discussion. If you like, these are the narrator's comments. At the end of the article, after the five sequential forms of the laser have been presented, there is a brief summation.

  16. Krypton excimer laser oscillation by discharge pumping

    International Nuclear Information System (INIS)

    Shirai, Takahiro; Tabe, Yoshitaka; Kubodera, Shoichi; Sasaki, Wataru; Kawanaka, Junji

    2001-01-01

    We have demonstrated vacuum ultraviolet (VUV) laser oscillation of the krypton excimer (Kr 2 *) excited by a compact self-sustained discharge device. We have observed a spectral narrowing of the Kr 2 * emission centered at 147.8 nm. A deconvoluted spectral width is 0.5 nm (FWHM), which reveals a contrast to a 13 nm spectral width of the spontaneous emission. The Kr 2 * intensity has increased one order of magnitude when a charging voltage was increased larger than 29 kV. The success of the lasing in the VUV spectral region has been attributed to the success of a stable glow discharge of Kr at 10 atm. The pulse width of the VUV laser radiation is 400 ns (FWHM). The maximum output energy measured is as large as 150 μJ. (author)

  17. Preparation of the La0.8Sr0.2MnO3 films on STO and LAO substrates by excimer laser-assisted metal organic deposition using the KrF laser

    International Nuclear Information System (INIS)

    Tsuchiya, T.; Daoudi, K.; Manabe, T.; Yamaguchi, I.; Kumagai, T.

    2007-01-01

    La 0.8 Sr 0.2 MnO 3 films were prepared on SrTiO 3 (STO) and LaAlO 3 (LAO) substrates using excimer laser-assisted metal organic deposition (ELAMOD). For the LAO substrate, no epitaxial La 0.8 Sr 0.2 MnO 3 film was obtained by laser irradiation in the fluence range from 60 to 110 mJ/cm 2 with heating at 500 deg. C. On the other hand, an epitaxial La 0.8 Sr 0.2 MnO 3 film on the STO substrate was formed by laser irradiation in the fluence range from 60 to 100 mJ/cm 2 with heating at 500 deg. C. To optimize the electrical properties for an IR sensor, the effects of the laser fluence, the irradiation time and the film thickness on the temperature dependence of the resistance and temperature coefficient of resistance (TCR: defined as 1/R.(dR/dT)) of the LSMO films were investigated. An LSMO film on the STO substrate that showed the maximum TCR of 3.9% at 265 K was obtained by the ELAMOD process using the KrF laser

  18. [Glycosaminoglycans in subepithelial opacity after excimer laser keratectomy].

    Science.gov (United States)

    Nakayasu, K; Gotoh, T; Ishikawa, T; Kanai, A

    1996-05-01

    We evaluated histochemically the characteristics of glycosaminoglycans and proteoglycans in the corneal subepithelial opacity after excimer laser keratectomy on rabbit corneas. We also performed the same evaluations on the cornea after mechanical keratectomy. Twenty days after the operations, the area immediately subjacent to the epithelium showed strong staining with toluidine blue, alcian blue, and colloidal iron. However, after treatment with chondroitinase ABC or chondroitinase AC, alcian blue staining in this area decreased dramatically. Antilarge proteoglycan antibody also reacted strongly in this area. Histochemical and immunohistochemical examination of the cornea where mechanical keratectomy was done showed basically similar findings with the cornea of excimer laser keratectomy. These results suggest that large-molecula proteoglycans with chondroitine sulfate side chains become localized in the subepithelial area after two different kinds of keratectomies. We presume from histochemical and immunohistochemical observations that the subepithelial opacity observed after excimer laser keratectomy is not a special reaction to excimer laser but simply a corneal scar formed after stromal resection.

  19. Recent advances in excimer laser technology at Los Alamos

    International Nuclear Information System (INIS)

    Bigio, I.J.; Czuchlewski, S.; McCown, A.W.; Taylor, A.J.

    1991-01-01

    This paper reports that current research in excimer laser technology at Los Alamos progresses in two major areas: In the Bright Source program, the development of ultra-high brightness (sub-piosecond) laser systems, based on discharge -pumped excimer laser amplifiers, continues Recently the authors have completed rigorous measurements of the saturation parameter for ultra-short pulses. In the laser fusion program, implementation of the large KrF laser fusion amplifiers have been accompanied by numerous studies of the laser physics and kinetics of large e-beam pumped devices

  20. Excimer laser surface modification: Process and properties

    Energy Technology Data Exchange (ETDEWEB)

    Jervis, T.R.; Nastasi, M. [Los Alamos National Lab., NM (United States); Hirvonen, J.P. [Technical Research Institute, Espoo (Finland). Metallurgy Lab.

    1992-12-01

    Surface modification can improve materials for structural, tribological, and corrosion applications. Excimer laser light has been shown to provide a rapid means of modifying surfaces through heat treating, surface zone refining, and mixing. Laser pulses at modest power levels can easily melt the surfaces of many materials. Mixing within the molten layer or with the gas ambient may occur, if thermodynamically allowed, followed by rapid solidification. The high temperatures allow the system to overcome kinetic barriers found in some ion mixing experiments. Alternatively, surface zone refinement may result from repeated melting-solidification cycles. Ultraviolet laser light couples energy efficiently to the surface of metallic and ceramic materials. The nature of the modification that follows depends on the properties of the surface and substrate materials. Alloying from both gas and predeposited layer sources has been observed in metals, semiconductors, and ceramics as has surface enrichment of Cr by zone refinement of stainless steel. Rapid solidification after melting often results in the formation of nonequilibrium phases, including amorphous materials. Improved surface properties, including tribology and corrosion resistance, are observed in these materials.

  1. Excimer laser: a module of the alopecia areata common protocol.

    Science.gov (United States)

    McMichael, Amy J

    2013-12-01

    Alopecia areata (AA) is an autoimmune condition characterized by T cell-mediated attack of the hair follicle. The inciting antigenic stimulus is unknown. A dense perbulbar lymphocytic infiltrate and reproducible immunologic abnormalities are hallmark features of the condition. The cellular infiltrate primarily consists of activated T lymphocytes and antigen-presenting Langerhans cells. The xenon chloride excimer laser emits its total energy at the wavelength of 308 nm and therefore is regarded as a "super-narrowband" UVB light source. Excimer laser treatment is highly effective in psoriasis, another T cell-mediated disorder that shares many immunologic features with AA. The excimer laser is superior in inducing T cell apoptosis in vitro compared with narrowband UVB, with paralleled improved clinical efficacy. The excimer laser has been used successfully in patients with AA. In this context, evaluation of the potential benefit of 308-nm excimer laser therapy in the treatment of AA is clinically warranted. Herein, the use of a common treatment protocol with a specifically designed module to study the outcome of excimer laser treatment on moderate-to-severe scalp AA in adults is described.

  2. The Excimer Laser: Its Impact on Science and Industry

    Science.gov (United States)

    Basting, Dirk

    2010-03-01

    After the laser was demonstrated in 1960, 15 years were required to develop a practical method for extending laser emission into the UV: the Excimer laser. This historical review will describe the challenges with the new medium and provide an insight into the technological achievements. In the transition from Science to Industry it will be shown how start-ups successfully commercialized laboratory prototypes. The pioneers in this rapidly expanding field will be identified and the influence of government-funded research as well as the role of venture capital will be discussed. In scientific applications, the fields of photochemistry and material research were particularly stimulated by the advent of a reliable UV light source. Numerous industrial applications and worldwide research in novel applications were fueled In the early and mid 80's by progress in excimer laser performance and technology. The discovery of ablative photocomposition of polymer materials by Srinivasan at IBM opened the door to a multitude of important excimer applications. Micromachining with extreme precision with an excimer laser enabled the success of the inkjet printer business. Biological materials such as the human cornea can also be ``machined'' at 193nm, as proposed in 1983 by Trokel and Srinivasan. This provided the foundation of a new medical technology and an industry relying on the excimer laser to perform refractive surgery to correct vision Today, by far the largest use of the excimer laser is in photolithography to manufacture semiconductor chips, an application discovered by Jain at IBM in the early 80's. Moore's law of shrinking the size of the structure to multiply the number of transistors on a chip could not have held true for so long without the deep UV excimer laser as a light source. The presentation will conclude with comments on the most recent applications and latest market trends.

  3. Matrix metalloproteinase expression in excimer laser wounded rabbit corneas

    Science.gov (United States)

    Hahn, Taewon; Chamon, Wallace; Akova, Yonja; Stark, Walter J.; Stetler-Stevenson, William G.; Azar, Dimitri T.

    1994-06-01

    This study was performed to obtain information about matrix metalloproteinase (MMP) expression in excimer-wounded corneas and to determine whether MMPs expression correlates with the depth of the ablation. 6-mm excimer keratectomy (60 or 180 micrometers ) was performed using the 193-mm ArF excimer laser on 12 NZW rabbits. Corneas treated with mechanical epithelial debridement and untreated corneas served as controls. Rabbits were killed at 20 and 30 hr after laser ablation. Zymography after SDS extraction was performed on regenerated central epithelium and the central stroma to determine MMPs expression. We observed enzymatic activity of a 92 KDa band in the epithelium of excimer-ablated corneas but not in that following debridement wounds and untreated controls. The expression of the 92 KDa MMP was most pronounced with the deeper excimer ablation. A 72 KDa band of enzymatic activity present in the stroma of all treated and control eyes was also seen in the epithelium of excimer-ablated corneas. These proteolytic enzymes may play an important role in wound healing and remodelling after excimer keratectomy.

  4. Improvement of corrosion resistance of carbon steel using chemical vapor deposition from Cr(CO)6 and Mo(CO)6 with an ArF-excimer laser

    International Nuclear Information System (INIS)

    Okada, Naotada; Katsumura, Yosuke; Ishigure, Kenkichi

    1995-01-01

    The corrosion resistance of carbon steel has been improved by the deposition from the mixture of Mo(CO) 6 and Cr(CO) 6 as well as from each carbonyl alone with an ArF-excimer (193nm). The corrosion resistance evaluated by multi sweep cyclic voltammetry attained by coating with the films from the mixture is higher than from Mo(CO) 6 alone, while lower than from Cr(CO) 6 alone. While the corrosion resistance increases with beam intensity monotonically over the range 4-25 MWcm -2 for the deposition from Mo(CO) 6 alone, it tends to decrease slightly above 15 MWcm -2 for the deposition from Mo(CO) 6 alone and from the mixture. SEM photographs show that the films from each carbonyl and their mixture consist of small grains that are more densely packed at higher beam intensities. The comparison of the film thickness evaluated from sputtering time to remove the films with that from direct observation with SEM suggests that the density of the film increases with beam intensity. In the films deposited from the mixture, molybdenum is preferentially incorporated from the gas phase. In addition, a model of gas-phase processes including photolysis of Cr(CO) 6 , transportation of photofragments to the substrate surface, and elimination of photofragments through chemical reactions during transportation, is proposed and simulated. Applications of the model will be discussed. (author)

  5. Alkali-vapor laser-excimer pumped alkali laser

    International Nuclear Information System (INIS)

    Yue Desheng; Li Wenyu; Wang Hongyan; Yang Zining; Xu Xiaojun

    2012-01-01

    Based on the research internal and overseas, the principle of the excimer pumped alkali laser (XPAL) is explained, and the advantages and disadvantages of the XPAL are analyzed. Taking into consideration the difficulties that the diode pumped alkali laser (DPAL) meets on its development, the ability to solve or avoid these difficulties of XPAL is also analyzed. By summing up the achievements of the XPAL, the possible further prospect is proposed. The XPAL is of possibility to improve the performance of the DPAL. (authors)

  6. Latest result of PRK with excimer laser

    Science.gov (United States)

    Okamoto, Shinseiro; Okamoto, Michika

    1996-05-01

    We have in the last two years, performed PRK operation on over 300 human myopic eyes using ArF excimer laser with a Summit 'Omnimed' machine. For the initial 53 myopic eyes we treated, results were very good for those with correction less than minus 6 diopters. However, as previously reported, we also witnessed some regression for those eyes exceeding correction of more than minus 6 diopters. To counter such ill results of PRK we devised and suggested many new procedures for PRK with very good results. One such invention is the 'Okamoto-type' cooling machine for the cornea which reduces and stabilizes cornea temperature at 0 degrees Celsius while simultaneously bathing the cornea with special cooling fluid. After the operation, EGF, fibronectin and hexapeptide were administered using eyedrops. Soft contact lenses were used to protect the cornea, improve delivery of medication to the operated area, prevent infection and inflammation and also promote uniform and faster ephiterium regrowth. We were able to document very good post-operative results using this method, thereby giving us strong assurance that we have reached a significant milestone in PRK operation. Our report today covers post operative results of the 52 eyes we operated on and tracked for more than one year.

  7. Overview on the high power excimer laser technology

    Science.gov (United States)

    Liu, Jingru

    2013-05-01

    High power excimer laser has essential applications in the fields of high energy density physics, inertial fusion energy and industry owing to its advantages such as short wavelength, high gain, wide bandwidth, energy scalable and repetition operating ability. This overview is aimed at an introduction and evaluation of enormous endeavor of the international high power excimer laser community in the last 30 years. The main technologies of high power excimer laser are reviewed, which include the pumping source technology, angular multiplexing and pulse compressing, beam-smoothing and homogenous irradiation, high efficiency and repetitive operation et al. A high power XeCl laser system developed in NINT of China is described in detail.

  8. Optical design of high power excimer laser system

    International Nuclear Information System (INIS)

    Zhang Yongsheng; Zhao Jun; Ma Lianying; Yi Aiping; Liu Jingru

    2011-01-01

    Image relay and angular multiplexing,which should be considered together in the design of high power excimer laser system, is reviewed. It's important to select proper illumination setup and laser beam shaping techniques. Given the complex and special angular multiplexing scheme in high power excimer laser systems, some detailed conceptual layout schemes are given in the paper. After a brief description of lens array and reflective telescope objective, which combine the incoming beams to a common focus, a new schematic layout which uses the final targeting optics and one optical delay line array, to realize multiplexing and de-multiplexing simultaneously is first proposed in the paper. (authors)

  9. Advances in 193 nm excimer lasers for mass spectrometry applications

    Science.gov (United States)

    Delmdahl, Ralph; Esser, Hans-Gerd; Bonati, Guido

    2016-03-01

    Ongoing progress in mass analysis applications such as laser ablation inductively coupled mass spectrometry of solid samples and ultraviolet photoionization mediated sequencing of peptides and proteins is to a large extent driven by ultrashort wavelength excimer lasers at 193 nm. This paper will introduce the latest improvements achieved in the development of compact high repetition rate excimer lasers and elaborate on the impact on mass spectrometry instrumentation. Various performance and lifetime measurements obtained in a long-term endurance test over the course of 18 months will be shown and discussed in view of the laser source requirements of different mass spectrometry tasks. These sampling type applications are served by excimer lasers delivering pulsed 193 nm output of several mJ as well as fast repetition rates which are already approaching one Kilohertz. In order to open up the pathway from the laboratory to broader market industrial use, sufficient component lifetimes and long-term stable performance behavior have to be ensured. The obtained long-term results which will be presented are based on diverse 193 nm excimer laser tube improvements aiming at e.g. optimizing the gas flow dynamics and have extended the operational life the laser tube for the first time over several billion pulses even under high duty-cycle conditions.

  10. Modification of BSCCO surface by excimer laser annealing

    International Nuclear Information System (INIS)

    Ibi, A.; Akitsu, T.; Matsuzawa, H.

    2002-01-01

    Irradiation of Kr-F excimer laser onto the BSCCO calcined pellets changed their surface to be amorphous. SEM micrographs showed that sintering of the irradiated pellets recrystallized the surface layer and much reduced the intergrain gaps as compared with only sintered pellets, whereas the internal structure of the irradiated pellets remained unchanged. This processing made the surface-layer grains be tightly connected, resulting in the higher critical temperature than the conventionally sintered samples. We can say that excimer laser annealing process is a novel scheme to reduce the surface weak-link of the high Tc superconductors. (author)

  11. Excimer laser beam profile recording based on electrochemical etched polycarbonate

    International Nuclear Information System (INIS)

    Parvin, P.; Jaleh, B.; Zangeneh, H.R.; Zamanipour, Z.; Davoud-Abadi, Gh.R.

    2008-01-01

    There is no polymeric detector used to register the beam profile of UV lasers. Here, a method is proposed for the measurement of intensive UV beam pattern of the excimer lasers based on the photoablated polycarbonate detector after coherent UV exposure and the subsequent electrochemical etching. UV laser induced defects in the form of self-microstructuring on polycarbonate are developed to replicate the spatial intensity distribution as a beam profiler

  12. Excimer laser beam profile recording based on electrochemical etched polycarbonate

    Energy Technology Data Exchange (ETDEWEB)

    Parvin, P. [Physics Department, Amirkabir University of Technology, P.O. Box 15875-4413, Hafez Ave, Tehran (Iran, Islamic Republic of); Laser Research Center, AEOI, P.O. Box 1165-8486, Tehran (Iran, Islamic Republic of)], E-mail: parvin@aut.ac.ir; Jaleh, B. [Physics Department, Bu-Ali Sina University, Postal Code 65174, Hamedan (Iran, Islamic Republic of); Zangeneh, H.R. [Physics Department, Amirkabir University of Technology, P.O. Box 15875-4413, Hafez Ave, Tehran (Iran, Islamic Republic of); Zamanipour, Z. [Laser Research Center, AEOI, P.O. Box 1165-8486, Tehran (Iran, Islamic Republic of); Davoud-Abadi, Gh.R. [Physics Department, Amirkabir University of Technology, P.O. Box 15875-4413, Hafez Ave, Tehran (Iran, Islamic Republic of)

    2008-08-15

    There is no polymeric detector used to register the beam profile of UV lasers. Here, a method is proposed for the measurement of intensive UV beam pattern of the excimer lasers based on the photoablated polycarbonate detector after coherent UV exposure and the subsequent electrochemical etching. UV laser induced defects in the form of self-microstructuring on polycarbonate are developed to replicate the spatial intensity distribution as a beam profiler.

  13. Treatment of onychomycosis using radiation of excimer laser

    Czech Academy of Sciences Publication Activity Database

    Urzová, J.; Jelínek, Miroslav; Mikšovský, Jan; Kymplová, J.

    2013-01-01

    Roč. 647, JAN (2013), s. 636-641 ISSN 1022-6680 R&D Projects: GA MŠk LD12069 Institutional support: RVO:68378271 Keywords : excimer laser * UV-C radiation * nails * onychomycosis Subject RIV: BM - Solid Matter Physics ; Magnetism

  14. Microencapsulation of silicon cavities using a pulsed excimer laser

    KAUST Repository

    Sedky, Sherif M.

    2012-06-07

    This work presents a novel low thermal-budget technique for sealing micromachined cavities in silicon. Cavities are sealed without deposition, similar to the silicon surface-migration sealing process. In contrast to the 1100°C furnace anneal required for the migration process, the proposed technique uses short excimer laser pulses (24ns), focused onto an area of 23mm 2, to locally heat the top few microns of the substrate, while the bulk substrate remains near ambient temperature. The treatment can be applied to selected regions of the substrate, without the need for special surface treatments or a controlled environment. This work investigates the effect of varying the laser pulse energy from 400 mJ cm 2to 800 mJ cm 2, the pulse rate from 1Hz to 50Hz and the pulse count from 200 to 3000 pulses on sealing microfabricated cavities in silicon. An analytical model for the effect of holes on the surface temperature distribution is derived, which shows that much higher temperatures can be achieved by increasing the hole density. A mechanism for sealing the cavities is proposed, which indicates how complete sealing is feasible. © 2012 IOP Publishing Ltd.

  15. Treatment of oral lichen planus using 308-nm excimer laser.

    Science.gov (United States)

    Liu, Wei-Bing; Sun, Li-Wei; Yang, Hua; Wang, Yan-Fei

    2017-09-01

    Oral lichen planus (OLP) is a chronic inflammatory disease, has prolonged courses, repeated attacks and resistance to treatment. The traditional narrow spectrum UVB treatment has an established efficacy on skin lichen planus, and high safety. However, most of ultraviolet phototherapy devices have a huge volume, thereby cannot be used in the treatment of OLP. Lymphocytic infiltration is evident in the lesions of lichen planus, and the direct irradiation of 308-nm excimer laser can induce apoptosis of the T lymphocytes in skin lesions, thereby has a unique therapeutic effect on the diseases involving T lymphocytes. This study aims to investigate the efficacy of 308-nm excimer laser in the treatment of OLP. A total of six OLP patients were enrolled into this study, and further pathological diagnosis was conducted, then 308-nm excimer laser was used in the treatment. The efficacy of 308-nm excimer laser in the treatment of OLP was satisfactory. The clinical symptoms of five patients were significantly improved. In two patients, the erosion surface based on congestion and the surrounding white spots completely disappeared, and clinical recovery was achieved. Three patients achieved partial remission, that is, the erosion surface healed, congestion and white spot area shrunk by more than 1/2 of the primary skin lesions. In the remaining one patient, the erosion surface had not completely healed after treatment, and congestion and white spot area shrunk by less than 1/2 of the primary skin lesions. Only one patients had developed mild pain during the treatment, and this symptom alleviated by itself. The 308-nm excimer laser therapy can serve as a safe and effective treatment for OLP. © 2017 Wiley Periodicals, Inc.

  16. 308-nm excimer laser for the treatment of alopecia areata.

    Science.gov (United States)

    Al-Mutairi, Nawaf

    2007-12-01

    Alopecia areata is loss of hair from localized or diffuse areas of hair-bearing area of the skin. Recently there are reports of efficacy of the 308-nm excimer radiation for this condition. To study the effect of the 308-nm excimer laser in the treatment of alopecia areata. Eighteen patients with 42 recalcitrant patches (including 1 adult with alopecia totalis) were enrolled in this study. The lesions were treated with the 308-nm excimer laser twice a week for a period of 12 weeks; one lesion on each patient was left as a control for comparison. There were 7 males and 11 females in this study. Regrowth of hair was observed in 17 (41.5%) patches. Thirteen of the 18 lesions in scalp showed a complete regrowth of hair. The extremity regions failed to show a response. Atopic diatheses had an unfavorable effect on the outcome in our patients. The 308-nm excimer laser is an effective therapeutic option for patchy alopecia areata of the scalp and for some cases with patchy alopecia areata of the beard area. It does not work for patchy alopecia areata of the extremities.

  17. Laser spectroscopy of the products of photoevaporation with a short-wavelength (λ = 193 nm) excimer laser

    International Nuclear Information System (INIS)

    Gochelashvili, K S; Zemskov, M E; Evdokimova, O N; Mikhkel'soo, V T; Prokhorov, A M

    1999-01-01

    An excimer laser spectrometer was designed and constructed. It consists of a high-vacuum interaction chamber, a short-wavelength (λ = 193 nm) excimer ArF laser used for evaporation, a probe dye laser pumped by an XeCl excimer laser, and a system for recording a laser-induced fluorescence signal. This spectrometer was used to investigate nonthermal mechanisms of photoevaporation of a number of wide-gap dielectrics. (laser applications and other topics in quantum electronics)

  18. Excimer-laser-irradiation-induced effects in C60 films for photovoltaic applications

    International Nuclear Information System (INIS)

    Narayanan, K.L.; Yamaguchi, M.; Azuma, H.

    2002-01-01

    Thin films of fullerene C 60 deposited by the molecular-beam epitaxy method have been subjected to a 248 nm excimer laser for various timings. Reduction in the electrical resistance of the films and the spectral evolution of the D and G bands in the Raman spectra, due to the sharp tendency towards graphitization accompanied by an increasing level of structural disorder, are observed during laser irradiation. Based on the above results, an attempt has been carried out on these irradiated C 60 films to make a device sandwiched with n-type Si, and the photovoltaic parameters are reported as a function of the laser exposure times

  19. Triggering Excimer Lasers by Photoionization from Corona Discharges

    Science.gov (United States)

    Xiong, Zhongmin; Duffey, Thomas; Brown, Daniel; Kushner, Mark

    2009-10-01

    High repetition rate ArF (192 nm) excimer lasers are used for photolithography sources in microelectronics fabrication. In highly attaching gas mixtures, preionization is critical to obtaining stable, reproducible glow discharges. Photoionization from a separate corona discharge is one technique for preionization which triggers the subsequent electron avalanche between the main electrodes. Photoionization triggering of an ArF excimer laser sustained in multi-atmosphere Ne/Ar/F2/Xe gas mixtures has been investigated using a 2-dimensional plasma hydrodynamics model including radiation transport. Continuity equations for charged and neutral species, and Poisson's equation are solved coincident with the electron temperature with transport coefficients obtained from solutions of Boltzmann's equation. Photoionizing radiation is produced by a surface discharge which propagates along a corona-bar located adjacent to the discharge electrodes. The consequences of pulse power waveform, corona bar location, capacitance and gas mixture on uniformity, symmetry and gain of the avalanche discharge will be discussed.

  20. X-ray photoelectron spectroscopy study of excimer laser treated alumina films

    Science.gov (United States)

    Georgiev, D. G.; Kolev, K.; Laude, L. D.; Mednikarov, B.; Starbov, N.

    1998-01-01

    Amorphous alumina layers are deposited on a single crystal Si substrate by a e-gun evaporation technique. These films are then thermally annealed in oxygen to be crystallized and, further, irradiated with an excimer laser beam. At each stage of the film preparation, an x-ray photoelectron spectroscopy analysis is performed at the film surface and in depth, upon ion beam grinding. Results give evidence for the formation of an aluminosilicate upon thermal annealing of the film in oxygen. At the surface itself, this compound is observed to decompose upon excimer laser irradiation at energy densities exceeding 1.75 J/cm2, giving rise to free Si atoms and SiO2, however with complete disappearance of Al atoms. Model photochemical reactions are proposed to explain such transformations.

  1. Photochemical and Spectroscopic Effects Resulting from Excimer Laser Excitation.

    Science.gov (United States)

    Wang, Xuan Xiao

    I. Photochemical production of ozone from pure oxygen using excimer lasers. Production of ozone was observed from experiments when oxygen was under a broadband pulsed KrF laser radiation. The production process was found to be autocatalytic. Mechanisms for the ozone formation were proposed. Experimental results over a range of oxygen pressure and laser pulse energy (irradiance) provided evidences in favor of the proposed mechanisms. Experiments were also numerically modeled. Good agreement between the experimental and the numerical results were observed, which provided further evidence to support the proposed mechanisms. Cross sections for some photochemical processes in the mechanisms were estimated. Production of ozone from pure oxygen under a ArF excimer laser radiation (193 nm) was also studied and numerically modeled. Effects of ambient water vapor on ozone production were investigated. Experimental results showed a fast ozone destruction when water vapor was present in the cell. However, numerical results obtained from the well-known OH and HO _2 chain ozone destruction mechanism predicted a slower ozone destruction. Possible reasons for the discrepancy are discussed. II. Resonance-enhanced multiphoton ionization of N_2 at 193 and 248 nm detected by N_sp{2}{+} fluorescence. Using a broadband excimer laser operating at 193 and 248 nm multiphoton ionization at high pressures in air and pure nitrogen has been detected by fluorescence from N_sp{2}{+} in the B-X firstnegative system. Measurements of the fluorescence intensity as a function of beam irradiance indicate resonance in N_2 at the energy of two 193 nm photons (2 + 1 REMPI) and three 248 nm photons (3 + 1 REMPI). Possible intermediate states are discussed. III. Excimer laser-induced fluorescence from some organic solvents. Fluorescence was observed from vapor phase benzene, toluene, p-xylene, benzyl chloride, methyl benzoate, acetic anhydride, ether, methanol, ethyl acetone, acetone, and 2-butanone using

  2. Nebulae at keratoconus--the result after excimer laser removal.

    Science.gov (United States)

    Fagerholm, P; Fitzsimmons, T; Ohman, L; Orndahl, M

    1993-12-01

    Ten patients underwent excimer laser ablation due to nebula formation at keratoconus. The nebulae interfered significantly with contact lens fit or wearing time. The mean follow-up time in these patients was 16.5 months. Following surgery all patients could be successfully fitted with a contact lens and thereby obtain good visual acuity. Furthermore, contact lens wearing time was 8 hours or more in all cases. In 2 patients the nebulae recurred but were successfully retreated.

  3. Subjective results of excimer laser correction of myopia. Review

    Directory of Open Access Journals (Sweden)

    V. N. Trubilin

    2012-01-01

    Full Text Available In review presents data of various authors regarding the subjective results excimer laser correction of myopia by LASIK. It was revealed that a group of patients with a high degree of dissatisfaction amounts to 4.6% of the total in all studies. High subjective results are confirmed by the positive dynamics of the «quality of life» of the patient.

  4. Myopic keratomileusis by excimer laser on a lathe.

    Science.gov (United States)

    Ganem, S; Aron-Rosa, D; Gross, M; Rosolen, S

    1994-01-01

    We designed an excimer laser keratomileusis delivery system to increase the regularity of the refractive cut surface and allow greater precision in the level and shape of the ablated zone. A parallel faced corneal disc was produced by microkeratectomy from six human eyes and surgical keratectomy in 12 beagle corneas. A 193-nanometer excimer laser that was used to project an oval beam onto the corneal disc was rotated on a flat surface to ensure overlapping of the ovally ablated areas between pulses. Electron microscopy of eye bank lenticules demonstrated a circular smooth regularly concave ablation zone. Histological examination of nine clear corneas confirmed thinning of the stroma without fibroblastic reaction and no epithelial hypertrophy. Mean preoperative corneal power of 43.15 +/- 2.18 decreased postoperatively to 33.61 +/- 2.34. The new technique of excimer laser keratomileusis has the advantage of a cut surface smoother and the clear zone is devoid of the stepwise concavity and irregularity seen in diaphragm based photoablation delivery systems.

  5. Assessment of the suitability of excimer lasers in treating onychomycosis

    International Nuclear Information System (INIS)

    Kymplová, Jaroslava; Dušek, Karel; Jelínek, Miroslav; Urzová, Jana; Mikšovský, Jan; Bauerová, Lenka

    2014-01-01

    Since it is known that UV-C radiation kills fungus, we wanted to verify the hypothesis that the use of excimer laser could be an alternative method for treating onychomycosis - nail fungus. The aim of the first stage of this work was to determine the transmission, reflection and absorption of nails. In the following stage we focused on irradiation of fungi. Our final task is to assess whether it is possible to determine the parameters of radiation (a total dose,a dose per pulse frequency, a repetition rate, a number of pulses) for which the elimination of fungi would be the most effective but without damaging the nail and soft tissue underneath it. The results so far have showed that UV-C radiation does not pass through a fingernail to such an extent that it could damage the soft tissue beneath it. Fungi are destroyed by the application of only small doses of radiation using the excimer laser. Additional measurements will be required to determine the modulation parameters of the excimer laser radiation for the treatment of onychomycosis.

  6. Automatic alignment of double optical paths in excimer laser amplifier

    Science.gov (United States)

    Wang, Dahui; Zhao, Xueqing; Hua, Hengqi; Zhang, Yongsheng; Hu, Yun; Yi, Aiping; Zhao, Jun

    2013-05-01

    A kind of beam automatic alignment method used for double paths amplification in the electron pumped excimer laser system is demonstrated. In this way, the beams from the amplifiers can be transferred along the designated direction and accordingly irradiate on the target with high stabilization and accuracy. However, owing to nonexistence of natural alignment references in excimer laser amplifiers, two cross-hairs structure is used to align the beams. Here, one crosshair put into the input beam is regarded as the near-field reference while the other put into output beam is regarded as the far-field reference. The two cross-hairs are transmitted onto Charge Coupled Devices (CCD) by image-relaying structures separately. The errors between intersection points of two cross-talk images and centroid coordinates of actual beam are recorded automatically and sent to closed loop feedback control mechanism. Negative feedback keeps running until preset accuracy is reached. On the basis of above-mentioned design, the alignment optical path is built and the software is compiled, whereafter the experiment of double paths automatic alignment in electron pumped excimer laser amplifier is carried through. Meanwhile, the related influencing factors and the alignment precision are analyzed. Experimental results indicate that the alignment system can achieve the aiming direction of automatic aligning beams in short time. The analysis shows that the accuracy of alignment system is 0.63μrad and the beam maximum restoration error is 13.75μm. Furthermore, the bigger distance between the two cross-hairs, the higher precision of the system is. Therefore, the automatic alignment system has been used in angular multiplexing excimer Main Oscillation Power Amplification (MOPA) system and can satisfy the requirement of beam alignment precision on the whole.

  7. Excimer laser ablation of the cornea

    Science.gov (United States)

    Pettit, George H.; Ediger, Marwood N.; Weiblinger, Richard P.

    1995-03-01

    Pulsed ultraviolet laser ablation is being extensively investigated clinically to reshape the optical surface of the eye and correct vision defects. Current knowledge of the laser/tissue interaction and the present state of the clinical evaluation are reviewed. In addition, the principal findings of internal Food and Drug Administration research are described in some detail, including a risk assessment of the laser-induced-fluorescence and measurement of the nonlinear optical properties of cornea during the intense UV irradiation. Finally, a survey is presented of the alternative laser technologies being explored for this ophthalmic application.

  8. Effect of volatile compounds on excimer laser power delivery.

    Science.gov (United States)

    Van Horn, Stewart D; Hovanesian, John A; Maloney, Robert K

    2002-01-01

    To determine whether vapors from perfume, hairspray, oil-based paint, or water-based paint affect excimer laser beam power delivery at the corneal surface. We measured the power delivery of an Apex Plus laser before, during, and after exposure to vapors from the following volatile compounds: three types of perfume, hair spray, an oil-based paint, and a water-based paint. A digital calorimeter was used to measure the steady-state beam power of the laser during laser discharge at the corneal plane. Multiple trials were run with each compound, and the change in laser energy over time was examined to determine if any of the compounds caused degradation of the laser optics. The presence of a volatile compound in the room caused no change in mean laser energy in comparison to before and after the compound was present. However, perfumes caused a progressive decline in laser beam power throughout the trials. Controlling for this progressive decline, there was no significant difference from perfume to perfume. None of the compounds tested caused a decline in laser beam power while present in the room. However, the presence of any perfume caused a deterioration in beam power over time, suggesting a degradation of the laser optics for all perfumes. Laser centers should consider advising their patients and staff to not wear perfumes in the laser suite.

  9. Optical and electronic properties of HWCVD and PECVD silicon films irradiated using excimer and Nd:Yag lasers

    International Nuclear Information System (INIS)

    Shaikh, M.Z.; O'Neill, K.A.; Anthony, S.; Persheyev, S.K.; Rose, M.J.

    2006-01-01

    Thin silicon film samples were deposited using HWCVD and PECVD techniques to study the influence of laser annealing on their optical and electronic properties. Samples were annealed in air using a XeCl excimer and Nd:Yag lasers. Excimer laser annealing (ELA) at 50 to 222 mJ/cm 2 increased conductivity in PECVD films by 2 to 3 orders of magnitude and in HWCVD films by 1 to 2 orders of magnitude. ELA was also seen to decrease the optical gap in PECVD films by 0.5 eV and HWCVD films by 0.15 eV. Silicon-oxygen bond content was higher in as-deposited HWCVD films than PECVD films. Hydrogen content (at.%) in PECVD films was higher than HWCVD for higher H dilution ratios. A Nd:Yag laser 3-beam interference pattern was used to produce a periodic array of crystals in both PECVD and HWCVD films

  10. Excimer laser superficial keratectomy for proud nebulae in keratoconus.

    Science.gov (United States)

    Moodaley, L; Liu, C; Woodward, E G; O'Brart, D; Muir, M K; Buckley, R

    1994-06-01

    Contact lens intolerance in keratoconus may be due to the formation of a proud nebula at or near the apex of the cone. Excimer laser superficial keratectomy was performed as an outpatients with proud nebulae as treatment patients with proud nebulae as treatment for their contact lens intolerance. The mean period of contact lens wear before the development of intolerance was 13.4 years (range 2 to 27 years). Following the development of intolerance, three patients abandoned contact lens wear in the affected eye while the remainder experienced a reduction in comfortable wearing time (mean = 3.75 hours; range: 0-14 hours). All patients had good potential Snellen visual acuity with a contact lens of 6/9 (nine eyes) and 6/12 (one eye). The proud nebulae were directly ablated with a 193 nm ArF excimer laser using a 1 mm diameter beam. Between 100-150 pulses were sufficient to ablate the raised area. Patients experienced no pain during the procedure and reported minimal discomfort postoperatively. In all cases flattening of the proud nebulae was achieved. Seven patients were able to resume regular contact lens wear (mean wearing time = 10.17 hours; range 8 to 16 hours). In three patients, resumption of contact lens wear was unsuccessful because of cone steepness. All patients achieved postoperative Snellen visual acuity of 6/12 or better with a contact lens. Four patients experienced a loss of one line in Snellen acuity. The mean follow up period was 8.3 months (range 2 to 17 months). Excimer laser superficial keratectomy is a useful technique for the treatment of contact lens intolerance caused by proud nebulae in patients with keratoconus. Penetrating keratoplasty is thus avoided.

  11. Excimer laser processing of Ti-6Al-4V

    International Nuclear Information System (INIS)

    Folkes, J.A.; Shibata, K.

    1994-01-01

    The effect of the excimer laser on the surface of Ti-6Al-4V is reported. Particular concentration is given to surface modification for potential materials processing applications. Results showed that: (1) there is an optimum energy for smoothing titanium; (2) at this energy density increasing the number of pulses has some, but not a significant, effect on the smoothing process; and (3) relatively smooth surfaces could be achieved at higher energy densities if the sample was processed in a helium atmosphere. Other typical surface modifications and features are also reported, including the effect of different gases on the process

  12. Keratomodelling with low-intensity ultraviolet radiation of excimer laser

    International Nuclear Information System (INIS)

    Vitrishchak, I.B.; Vorontsov, V.V.; Murzin, A.G.; Polikarpov, S.S.; Soms, L.N.

    1990-01-01

    A study was made on possibility of keratomodelling with low-intensive UV-radiation of excimer laser with subablation energy density in a pulse. Model specimens of polymers and cornea tissue were used. It is shown that the range of threshold energy density in a pulse expands with increase of UV-radiation wave length and contracts with increase of pulse repetition frequency. This range appeared to be different for polymers and cornea tissue. It was revealed that cornea tissue represented a complex high-molecular bipolymer with high water content

  13. Scattered UV irradiation during VISX excimer laser keratorefractive surgery.

    Science.gov (United States)

    Hope, R J; Weber, E D; Bower, K S; Pasternak, J P; Sliney, D H

    2008-04-01

    To evaluate the potential occupational health hazards associated with scattered ultraviolet (UV) radiation during photorefractive keratectomy (PRK) using the VISX Star S3 excimer laser. The Laser Vision Center, National Naval Medical Center, Bethesda, Maryland, USA. Intraoperative radiometric measurements were made with the Ophir Power/Energy Meter (LaserStar Model PD-10 with silicon detector) during PRK treatments as well as during required calibration procedures at a distance of 20.3 cm from the left cornea. These measurements were evaluated using a worst-case scenario for exposure, and then compared with the American Conference of Governmental Industrial Hygeinists (ACGIH) Threshold Value Limits (TVL) to perform a risk/hazard analysis. During the PRK procedures, the highest measured value was 248.4 nJ/pulse. During the calibration procedures, the highest measured UV scattered radiation level was 149.6 nJ/pulse. The maximum treatment time was 52 seconds. Using a worst-case scenario in which all treatments used the maximum power and time, the total energy per eye treated was 0.132 mJ/cm2 and the total UV radiation at close range (80 cm from the treated eye) was 0.0085 mJ/cm2. With a workload of 20 patients, the total occupational exposure at 80 cm to actinic UV radiation in an 8-hour period would be 0.425 mJ/cm2. The scattered actinic UV laser radiation from the VISX Star S3 excimer laser did not exceed occupational exposure limits during a busy 8-hour workday, provided that operating room personnel were at least 80 cm from the treated eye. While the use of protective eyewear is always prudent, this study demonstrates that the trace amounts of scattered laser emissions produced by this laser do not pose a serious health risk even without the use of protective eyewear.

  14. Laser dentistry: A new application of excimer laser in root canal therapy

    International Nuclear Information System (INIS)

    Pini, R.; Salimbeni, R.; Vannini, M.; Barone, R.; Clauser, C.

    1989-01-01

    We report the first study of the application of excimer lasers in dentistry for the treatment of dental root canals. High-energy ultraviolet (UV) radiation emitted by an XeCl excimer laser (308 nm) and delivered through suitable optical fibers can be used to remove residual organic tissue from the canals. To this aim, UV ablation thresholds of dental tissues have been measured, showing a preferential etching of infiltrated dentin in respect to healthy dentin, at laser fluences of 0.5-1.5 J/cm 2 . This technique has been tested on extracted tooth samples, simulating a clinical procedure. Fibers of decreasing core diameters have been used to treat different sections of the root canal down to its apical portion, resulting in an effective, easy, and fast cleaning action. Possible advantages of excimer laser clinical applications in respect to usual procedures are also discussed

  15. Excimer laser beam delivery systems for medical applications

    Science.gov (United States)

    Kubo, Uichi; Hashishin, Yuichi; Okada, Kazuyuki; Tanaka, Hiroyuki

    1993-05-01

    We have been doing the basic experiments of UV laser beams and biotissue interaction with both KrF and XeCl lasers. However, the conventional optical fiber can not be available for power UV beams. So we have been investigating about UV power beam delivery systems. These experiments carry on with the same elements doped quartz fibers and the hollow tube. The doped elements are OH ion, chlorine and fluorine. In our latest work, we have tried ArF excimer laser and biotissue interactions, and the beam delivery experiments. From our experimental results, we found that the ArF laser beam has high incision ability for hard biotissue. For example, in the case of the cow's bone incision, the incision depth by ArF laser was ca.15 times of KrF laser. Therefore, ArF laser would be expected to harden biotissue therapy as non-thermal method. However, its beam delivery is difficult to work in this time. We will develop ArF laser beam delivery systems.

  16. Laser drilling of metals with a XeCl excimer laser

    NARCIS (Netherlands)

    Schoonderbeek, A.

    2005-01-01

    This thesis is about laser drilling with a unique excimer laser with a nearly diffraction-limited beam and relatively long optical pulse duration of 175 ns. The combination of high processing speed and high processing quality suitable for industrial applications can be obtained because the excellent

  17. High Efficiency Mask Based Laser Materials Processing with TEA-CO2 - and Excimer Laser

    DEFF Research Database (Denmark)

    Bastue, Jens; Olsen, Flemmming Ove

    1997-01-01

    In general, mask based laser materials processing techniques suffer from a very low energy efficiency. We have developed a simple device called an energy enhancer, which is capable of increasing the energy efficiency of typical mask based laser materials processing systems. A short review of the ...... line marking with TEA-CO2 laser of high speed canning lines. The second one is manufactured for marking or microdrilling with excimer laser....

  18. Boron distribution in silicon after multiple pulse excimer laser annealing

    International Nuclear Information System (INIS)

    Monakhov, E.V.; Svensson, B.G.; Linnarsson, M.K.; La Magna, A.; Italia, M.; Privitera, V.; Fortunato, G.; Cuscuna, M.; Mariucci, L.

    2005-01-01

    We have studied B redistribution in Si after excimer laser annealing (ELA) with multiple laser pulses. B was implanted with energies of 1 and 10 keV and doses of 1x10 14 and 1x10 15 cm -2 . ELA with the number of pulses from 1 to 100 was performed at room temperature and 450 deg. C in vacuum. Irrespective of the implantation parameters and the ELA conditions used, a pile-up in the B concentration is observed near the maximum melting depth after ten pulses of ELA. Moreover, a detailed study has revealed that B accumulates at the maximum melt depth gradually with the number of ELA pulses. Besides, an increase in the carrier concentration is observed at the maximum melt depth, suggesting electrical activity of the accumulated B. Formation of Si-B complexes and vacancy accumulation during multiple ELA are discussed as possible mechanisms for the B build-up

  19. The application of excimer lasers for corneal sculpturing

    International Nuclear Information System (INIS)

    King, M.C.

    1990-01-01

    Of the broad selection of lasers available for surgery, the argon fluoride excimer laser offers a set of attributes that make it uniquely suited for the removal of corneal tissue. With ultraviolet radiation at 193mm, the energy of an individual photon (6.3 electron volts) is sufficient to break bonds in protein molecules without generating molecular vibration (heat). A single laser pulse is capable of removing 0.25 microns of corneal tissue over a well defined area 80 mm 2 in extent. This excision with a lateral precision to a fraction of a micron causes no discernible damage to neighboring cells. The smooth surface left after the tissue is removed promotes a quick and predictable regrowth of the epithelium. The penetration of radiation into the underlying tissue is the order of a micron so there is no potential harm to the lens or retinal tissue. Insignificant mutagenesis or unscheduled DNA synthesis has been detected as a result of tissue irradiation at this wavelength. In the past few years major progress has been made towards developing ophthalmic procedures which utilize the unique properties of this laser. To date there are FDA IDE's (Investigational Device Exemptions) for the following procedures: Photorefractive Keratectomy (PRK) or corneal reshaping for correcting near-sightedness, far-sightedness and astigmatism without the need for eye glasses, contact lenses or conventional refractive surgery (Radial Keratotomy); Partial Excimer Trabeculectomy for relieving the pressure build-up caused by glaucoma; T-Excisons for reducing astigmatism; Myopic Keratomileusis (MKM) for the refractive correction of severe myopia; superficial Keratectomy (corneal smoothing) for treating various corneal scars, dystrophies, recurrent corneal erosion etc. In this paper the fundamentals of beam tissue interaction at 193nm will be discussed

  20. Outcomes for Myopic LASIK With the MEL 90 excimer laser.

    Science.gov (United States)

    Reinstein, Dan Z; Carp, Glenn I; Lewis, Tariq A; Archer, Timothy J; Gobbe, Marine

    2015-05-01

    To evaluate the visual outcomes of myopic LASIK performed with the MEL 90 excimer laser (Carl Zeiss Meditec AG, Jena, Germany) using the Triple-A profile with a 500-Hz pulse rate. Retrospective analysis of the first 286 myopic LASIK procedures (147 patients) by two experienced surgeons in which the VisuMax femtosecond laser and MEL 90 excimer laser (Carl Zeiss Meditec) were used following a standardized surgical technique. Inclusion criteria were preoperative spherical equivalent refraction (SEQ) up to -10.38 diopters (D), cylinder up to 5.00 D, and corrected distance visual acuity (CDVA) of 20/25 or better. No nomogram adjustments were made. Patients were observed for 3 months. Flap thickness was between 80 and 110 µm and optical zone was between 6 and 7 mm. Standard outcomes analysis was performed. Preoperatively, mean SEQ was -3.83 ± 1.83 D (range: -0.13 to -10.38 D) and mean cylinder was -0.94 ± 0.86 D (range: 0.00 to -5.00 D). Mean age was 36.4 years (range: 18.2 to 74.1 years) with 50% female patients. Of this population, 138 eyes were treated by one surgeon and 148 eyes by another. The mean predictability of SEQ was -0.13 ± 0.34 D (range: -1.00 to +1.00 D). Postoperative SEQ was ± 0.50 D in 88% and ± 1.00 D in 100% of eyes. Preoperative CDVA was 20/20 or better in 97% of eyes. Postoperative uncorrected distance visual acuity was 20/20 or better in 92% and 20/25 or better in 99% of eyes. One line of CDVA was lost in 6% of eyes and no eyes lost two or more lines. There was statistically significant improvement in mesopic contrast sensitivity (CSV-1000) at 3 (P = .021), 6, 12, and 18 (all P ≤.001) cycles per degree. The MEL 90 excimer laser using the Triple-A ablation profile with a 500-Hz pulse rate was found to achieve a small but real increase in contrast sensitivity and high efficacy for myopia up to -10.00 D and cylinder up to 5.00 D without the need for a nomogram adjustment. Copyright 2015, SLACK Incorporated.

  1. Combination treatment with excimer laser and narrowband UVB light in vitiligo patients.

    Science.gov (United States)

    Shin, Sungsik; Hann, Seung-Kyung; Oh, Sang Ho

    2016-01-01

    For the treatment of vitiligo, narrowband UVB (NBUVB) light is considered the most effective for nonsegmental vitiligo, while excimer laser treatment is commonly used for localized vitiligo. However, treatment areas may potentially be missed with excimer laser treatment. We aimed to evaluate the effect of combinational treatment with NBUVB light and excimer laser on vitiligo. All patients were first treated with NBUVB; excimer laser was then applied in conjunction with NBUVB phototherapy due to a slow response or no further improvement with continuous NBUVB treatment alone. To minimize adverse effects, a fixed dose of NBUVB was administered, and the dose of excimer laser was increased based on patient response. Among 80 patients, 54 patients showed responses after combination with excimer laser; however, 26 patients (32.5%) showed no remarkable change after combination therapy. Of the 26 patients who showed no further response, 12 patients (46.1%) presented with vitiligo on the acral areas, which are known to the least responsive sites. Our study suggests that combined treatment of NBUVB and excimer laser in vitiligo may enhance the treatment response without remarkable side effects, therefore might also increase the compliance of the patients to the treatment. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Calculation of high-pressure argon plasma parameters produced by excimer laser

    International Nuclear Information System (INIS)

    Tsuda, Norio; Yamada, Jun

    2000-01-01

    When a XeCl excimer laser light was focused in a high-pressure argon gas up to 150 atm, a dense plasma developed not only backward but also forward. It is important to study on the electron density and temperature of the laser-induced plasma in the high-pressure gas. The electron density and temperature in high-pressure argon plasma produced by XeCl excimer laser has been calculated and compared with the experimental data. (author)

  3. 3-D ASE calculation for high power output XeCl excimer lasers

    International Nuclear Information System (INIS)

    Tu Qinfen; Zhang Jianquan; Wu Baosheng

    1996-01-01

    The 3-dimensional ASE calculation for electron beam pumping XeCl excimer laser is presented by M-C method. In the model wall-reflected ASE is included. This calculation also includes non-saturable absorption and mirror that reflect ASE flux back into the active gain medium. Results show optimum scaling of injected flux. It can provide theoretical basis and experimental references for experiments on excimer lasers, and be extrapolated to any other type of laser

  4. Excimer laser processing of ZnO thin films prepared by the sol-gel process

    International Nuclear Information System (INIS)

    Winfield, R.J.; Koh, L.H.K.; O'Brien, Shane; Crean, Gabriel M.

    2007-01-01

    ZnO thin films were prepared on soda-lime glass from a single spin-coating deposition of a sol-gel prepared with anhydrous zinc acetate [Zn(C 2 H 3 O 2 ) 2 ], monoethanolamine [H 2 NC 2 H 4 OH] and isopropanol. The deposited films were dried at 50 and 300 deg. C. X-ray analysis showed that the films were amorphous. Laser annealing was performed using an excimer laser. The laser pulse repetition rate was 25 Hz with a pulse energy of 5.9 mJ, giving a fluence of 225 mJ cm -2 on the ZnO film. Typically, five laser pulses per unit area of the film were used. After laser processing, the hexagonal wurtzite phase of zinc oxide was observed from X-ray diffraction pattern analysis. The thin films had a transparency of greater than 70% in the visible region. The optical band-gap energy was 3.454 eV. Scanning electron microscopy and profilometry analysis highlighted the change in morphology that occurred as a result of laser processing. This comparative study shows that our sol-gel processing route differs significantly from ZnO sol-gel films prepared by conventional furnace annealing which requires temperatures above 450 deg. C for the formation of crystalline ZnO

  5. Excimer laser annealing of shallow As and B doped layers

    International Nuclear Information System (INIS)

    Monakhov, E.V.; Svensson, B.G.; Linnarsson, M.K.; Magna, A. La; Privitera, V.; Camalleri, M.; Fortunato, G.; Mariucci, L.

    2004-01-01

    Excimer laser annealing (ELA) of As-, B- and BF 2 -implanted Si has been studied by secondary ion mass spectrometry (SIMS), spreading resistance probe (SRP) and transmission electron microscopy (TEM). The implantations have been performed in the energy range from 1 to 30 keV with doses of 10 15 -10 16 cm -2 . ELA has been carried out with the energy densities in the range of 600-1200 mJ/cm 2 and the number of laser pulses from 1 to 10. It is shown that ELA results in a more uniform dopant distribution over the doped region with a more abrupt profile edge as compared to those after rapid thermal annealing (RTA). Besides, in contrast to RTA, ELA demonstrates a highly confined annealing effect, where the distribution of dopants below the melting region is not affected. SRP measurements demonstrate almost complete activation of the implanted dopants after ELA, and TEM does not reveal extended defects in the ELA-treated samples. The depth of the doped layers, abruptness of the profiles and the total doping dose as a function of ELA energy density and number of laser pulses are investigated. Computer simulations of ELA show a good agreement with the experimental data

  6. Gasochromic performance of WO3-nanorod thin films fabricated with an ArF excimer laser

    International Nuclear Information System (INIS)

    Yaacob, M. H.; Ou, J. Z.; Wlodarski, W.; Kim, C. S.; Lee, J. Y.; Kim, Y. H.; Oh, C. M.; Dhakal, K. P.; Kim, J. Y.; Kang, J. H.

    2012-01-01

    Thin films with tungsten trioxide (WO 3 ) nanorods were fabricated by using an ArF pulsed laser deposition system. Because the ArF excimer laser operates at a very short wavelength of 193 nm, short enough to expect strong absorption of the photons in the semiconductor oxide targets, and because the clusters incoming to the substrates have high momentum, we could build thin films with good surface morphology. Highly homogeneous arrays of nanorods with sizes mostly in the range of 30 - 40 nm were observed. The absorbance response towards hydrogen (H 2 ) gas was investigated for a WO 3 film coated with 25-A-thick palladium (Pd). The Pd/WO 3 -nanorod thin films exhibited excellent gasochromic response when measured in the visible-NIR range (400 - 1000 nm). As low as 0.06% H 2 concentration was clearly sensed. A significant reversible absorbance change and fast recovery ( 2 at different concentrations.

  7. Measurements of barium photocathode quantum yields at four excimer laser wavelengths

    International Nuclear Information System (INIS)

    Van Loy, M.D.; Young, A.T.; Leung, K.N.

    1992-06-01

    The electron quantum yields from barium cathodes excited by excimer laser radiation at 193, 248, 308, and 351 nm have been determined. Experiments with different cathode surface preparation techniques reveal that deposition of barium film a few microns thick on a clean copper surface under moderate vacuum conditions achieves relatively high quantum efficiencies. Quantum yields measured from surfaces prepared in this manner are 2.3 x 10 -3 at 193 nm, 7.6 x 10 - 4 at 248 nm, 6.1 x 10 -4 at 308 nm, and 4.0 x 10 -4 at 351 nm. Other preparation techniques, such as laser cleaning of a solid barium surface, produced quantum yields that were at least an order of magnitude lower than these values

  8. Advanced excimer laser technologies enable green semiconductor manufacturing

    Science.gov (United States)

    Fukuda, Hitomi; Yoo, Youngsun; Minegishi, Yuji; Hisanaga, Naoto; Enami, Tatsuo

    2014-03-01

    "Green" has fast become an important and pervasive topic throughout many industries worldwide. Many companies, especially in the manufacturing industries, have taken steps to integrate green initiatives into their high-level corporate strategies. Governments have also been active in implementing various initiatives designed to increase corporate responsibility and accountability towards environmental issues. In the semiconductor manufacturing industry, there are growing concerns over future environmental impact as enormous fabs expand and new generation of equipments become larger and more powerful. To address these concerns, Gigaphoton has implemented various green initiatives for many years under the EcoPhoton™ program. The objective of this program is to drive innovations in technology and services that enable manufacturers to significantly reduce both the financial and environmental "green cost" of laser operations in high-volume manufacturing environment (HVM) - primarily focusing on electricity, gas and heat management costs. One example of such innovation is Gigaphoton's Injection-Lock system, which reduces electricity and gas utilization costs of the laser by up to 50%. Furthermore, to support the industry's transition from 300mm to the next generation 450mm wafers, technologies are being developed to create lasers that offer double the output power from 60W to 120W, but reducing electricity and gas consumption by another 50%. This means that the efficiency of lasers can be improve by up to 4 times in 450mm wafer production environments. Other future innovations include the introduction of totally Heliumfree Excimer lasers that utilize Nitrogen gas as its replacement for optical module purging. This paper discusses these and other innovations by Gigaphoton to enable green manufacturing.

  9. XeCl Excimer Laser For Micro - Machining Of Materials: Preliminary Theoretical And Experimental Works.

    Science.gov (United States)

    Iwanejko, Leszek; Pokora, Ludwik; Stefanski, Miroslaw; Ujda, Zbigniew

    1987-10-01

    The paper presents the results of preliminary investigations, both theoretical and experimental, of XeC1 excimer laser pumped by transverse electric discharge with UU preionization. The medium was a mixture of gases He-Xe-HC1. A theoretical model of the XeC1 laser was worked out and a lot of laser parameters calculations were done. In the same time an excimer laser operating on the mixture He-Xe-HC1 was started, the generation of laser radiation was of energy about 20mJ.

  10. 308-nm excimer laser ablation of human cartilage

    Science.gov (United States)

    Prodoehl, John A.; Rhodes, Anthony L.; Meller, Menachem M.; Sherk, Henry H.

    1993-07-01

    The XeCl excimer laser was investigated as an ablating tool for human fibrocartilage and hyaline cartilage. Quantitative measurements were made of tissue ablation rates as a function of fluence in meniscal fibrocartilage and articular hyaline cartilage. A force of 1.47 Newtons was applied to an 800 micrometers fiber with the laser delivering a range of fluences (40 to 190 mj/mm2) firing at a frequency of 5 Hz. To assess the effect of repetition rate on ablation rate, a set of measurements was made at a constant fluence of 60 mj/mm2, with the repetition rate varying from 10 to 40 Hz. Histologic and morphometric analysis was performed using light microscopy. The results of these studies revealed that the ablation rate was directly proportional to fluence over the range tested. Fibrocartilage was ablated at a rate 2.56 times faster than hyaline cartilage at the maximum fluence tested. Repetition rate had no effect on the penetration per pulse. Adjacent tissue damage was noted to be minimal (10 - 70 micrometers ).

  11. Investigation on gas medium parameters for an ArF excimer laser through orthogonal experimental design

    Science.gov (United States)

    Song, Xingliang; Sha, Pengfei; Fan, Yuanyuan; Jiang, R.; Zhao, Jiangshan; Zhou, Yi; Yang, Junhong; Xiong, Guangliang; Wang, Yu

    2018-02-01

    Due to complex kinetics of formation and loss mechanisms, such as ion-ion recombination reaction, neutral species harpoon reaction, excited state quenching and photon absorption, as well as their interactions, the performance behavior of different laser gas medium parameters for excimer laser varies greatly. Therefore, the effects of gas composition and total gas pressure on excimer laser performance attract continual research studies. In this work, orthogonal experimental design (OED) is used to investigate quantitative and qualitative correlations between output laser energy characteristics and gas medium parameters for an ArF excimer laser with plano-plano optical resonator operation. Optimized output laser energy with good pulse to pulse stability can be obtained effectively by proper selection of the gas medium parameters, which makes the most of the ArF excimer laser device. Simple and efficient method for gas medium optimization is proposed and demonstrated experimentally, which provides a global and systematic solution. By detailed statistical analysis, the significance sequence of relevant parameter factors and the optimized composition for gas medium parameters are obtained. Compared with conventional route of varying single gas parameter factor sequentially, this paper presents a more comprehensive way of considering multivariables simultaneously, which seems promising in striking an appropriate balance among various complicated parameters for power scaling study of an excimer laser.

  12. The spatial thickness distribution of metal films produced by large area pulsed laser deposition

    DEFF Research Database (Denmark)

    Pryds, Nini; Schou, Jørgen; Linderoth, Søren

    2007-01-01

    Thin films of metals have been deposited in the large-area Pulsed Laser Deposition (PLD) Facility at Riso National Laboratory. Thin films of Ag and Ni were deposited with laser pulses from an excimer laser at 248 nm with a rectangular beam spot at a fluence of 10 J/cm(2) on glass substrates of 127...

  13. Time Evolution of the Excimer State of a Conjugated Polymer Laser

    Directory of Open Access Journals (Sweden)

    Wafa Musa Mujamammi

    2017-11-01

    Full Text Available An excited dimer is an important complex formed in nano- or pico-second time scales in many photophysics and photochemistry applications. The spectral and temporal profile of the excimer state of a laser from a new conjugated polymer, namely, poly (9,9-dioctylfluorenyl-2,7-diyl (PFO, under several concentrations in benzene were investigated. These solutions were optically pumped by intense pulsed third-harmonic Nd:YAG laser (355-nm to obtain the amplified spontaneous emission (ASE spectra of a monomer and an excimer with bandwidths of 6 and 7 nm, respectively. The monomer and excimer ASEs were dependent on the PFO concentration, pump power, and temperature. Employing a sophisticated picosecond spectrometer, the time evolution of the excimer state of this polymer, which is over 400 ps, can be monitored.

  14. Treatment of alopecia areata with the 308-nm xenon chloride excimer laser: case report of two successful treatments with the excimer laser.

    Science.gov (United States)

    Gundogan, Cuneyt; Greve, Bärbel; Raulin, Christian

    2004-01-01

    Alopecia areata is a common disease of unknown etiology; it causes significant cosmetic and psycho-social distress for most of the people it affects. We report on an innovative form of treatment in two patients with typical alopecia areata on the capillitium. We successfully treated two patients whose alopecia areata had worsened progressively for 3 and 14 weeks. The treatment involved the use of a 308 nm xenon chloride excimer laser (dosage 300-2,300 mJ/cm(2) per session). After 11 and 12 sessions within a 9-week and 11-week period, the entire affected focus showed homogenous and thick regrowth. No relapse was observed during the follow-up period of 5 and 18 months. The use of the excimer laser is an effective, elegant, and safe means of treatment and has good tolerability. Analogous to topical treatment of alopecia areata, the immunosuppressive mechanism of the excimer laser can be interpreted as an induction of T-cell apoptosis. This new means of treatment has yet to be discussed in medical literature. Further studies with greater numbers are needed to assess its potential more precisely and evaluate the excimer laser in treating alopecia areata. Copyright 2004 Wiley-Liss, Inc.

  15. Excimer laser for the treatment of psoriasis: safety, efficacy, and patient acceptability

    Directory of Open Access Journals (Sweden)

    Abrouk M

    2016-12-01

    Full Text Available Michael Abrouk,1 Ethan Levin,2 Merrick Brodsky,1 Jessica R Gandy,1 Mio Nakamura,2 Tian Hao Zhu,3 Benjamin Farahnik,4 John Koo,2 Tina Bhutani2 1Irvine School of Medicine, Irvine, 2Department of Dermatology, Psoriasis and Skin Treatment Center, University of California, San Francisco, 3Department of Dermatology, University of Southern California Keck School of Medicine, Los Angeles, CA, 4Department of Dermatology, University of Vermont College of Medicine, Burlington, VT, USA Introduction: The 308 nm excimer laser is a widely used device throughout the field of dermatology for many diseases including psoriasis. Although the laser has demonstrated clinical efficacy, there is a lack of literature outlining the safety, efficacy, and patient acceptability of the excimer laser. Methods: A literature search on PubMed was used with combinations of the terms “excimer”, “excimer laser”, “308 nm”, “psoriasis”, “protocol”, “safety”, “efficacy”, acceptability”, “side effects”, and “dose”. The search results were included if they contained information pertaining to excimer laser and psoriasis treatment and description of the safety, efficacy, and patient acceptability of the treatment. Results: The 308 nm excimer laser is generally safe and well tolerated with minimal side effects including erythema, blistering, and pigmentary changes. It has a range of efficacies depending on the protocol used with several different treatment protocols, including the induration protocol, the minimal erythema dose protocol, and the newer minimal blistering dose protocol. Conclusion: Although the excimer laser is not a first-line treatment, it remains an excellent treatment option for psoriasis patients and has been demonstrated to be an effective treatment with little to no side effects. Keywords: excimer, laser, 308 nm, psoriasis, safety, efficacy

  16. A comparison of the characteristics of excimer and femtosecond laser ablation of acrylonitrile butadiene styrene (ABS)

    International Nuclear Information System (INIS)

    See, Tian Long; Liu, Zhu; Li, Lin; Zhong, Xiang Li

    2016-01-01

    Highlights: • Ablation threshold for excimer laser is lower compared to femtosecond laser. • Effective optical penetration depth for excimer laser is lower compared to femtosecond laser. • Two ablation characteristic regimes are observed for femtosecond laser ablation. • Reduction of C=C bond following excimer or fs laser ablation is observed. • Addition of oxygen- and nitrogen-rich functional groups is observed. - Abstract: This paper presents an investigation on the ablation characteristics of excimer laser (λ = 248 nm, τ = 15 ns) and femtosecond laser (λ = 800 nm, τ = 100 fs) on ABS polymer sheets. The laser–material interaction parameters (ablation threshold, optical penetration depth and incubation factor) and the changes in material chemical properties were evaluated and compared between the two lasers. The work shows that the ablation threshold and effective optical penetration depth values are dependent on the wavelength of laser beam (photon energy) and the pulse width. The ablation threshold value is lower for the excimer laser ablation of ABS (F_t_h = 0.087 J/cm"2) than that for the femtosecond laser ablation of ABS (F_t_h = 1.576 J/cm"2), demonstrating a more dominating role of laser wavelength than the pulse width in influencing the ablation threshold. The ablation depth versus the logarithmic scale of laser fluence shows two linear regions for the fs laser ablation, not previously known for polymers. The effective optical penetration depth value is lower for excimer laser ablation (α"−"1 = 223 nm) than that for femtosecond laser ablation (α"−"1 = 2917 nm). The ablation threshold decreases with increasing number of pulses (NOP) due to the chain scission process that shortens the polymeric chains, resulting in a weaker polymeric configuration and the dependency is governed by the incubation factor. Excimer laser treatment of ABS eliminates the C=C bond completely through the chain scission process whereas C=C bond is partially

  17. A comparison of the characteristics of excimer and femtosecond laser ablation of acrylonitrile butadiene styrene (ABS)

    Energy Technology Data Exchange (ETDEWEB)

    See, Tian Long, E-mail: tianlong.see@postgrad.manchester.ac.uk [Corrosion and Protection Centre, School of Materials, The Mill, The University of Manchester, M13 9PL Manchester (United Kingdom); Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, M13 9PL Manchester (United Kingdom); Liu, Zhu [Corrosion and Protection Centre, School of Materials, The Mill, The University of Manchester, M13 9PL Manchester (United Kingdom); Li, Lin [Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, M13 9PL Manchester (United Kingdom); Zhong, Xiang Li [Corrosion and Protection Centre, School of Materials, The Mill, The University of Manchester, M13 9PL Manchester (United Kingdom)

    2016-02-28

    Highlights: • Ablation threshold for excimer laser is lower compared to femtosecond laser. • Effective optical penetration depth for excimer laser is lower compared to femtosecond laser. • Two ablation characteristic regimes are observed for femtosecond laser ablation. • Reduction of C=C bond following excimer or fs laser ablation is observed. • Addition of oxygen- and nitrogen-rich functional groups is observed. - Abstract: This paper presents an investigation on the ablation characteristics of excimer laser (λ = 248 nm, τ = 15 ns) and femtosecond laser (λ = 800 nm, τ = 100 fs) on ABS polymer sheets. The laser–material interaction parameters (ablation threshold, optical penetration depth and incubation factor) and the changes in material chemical properties were evaluated and compared between the two lasers. The work shows that the ablation threshold and effective optical penetration depth values are dependent on the wavelength of laser beam (photon energy) and the pulse width. The ablation threshold value is lower for the excimer laser ablation of ABS (F{sub th} = 0.087 J/cm{sup 2}) than that for the femtosecond laser ablation of ABS (F{sub th} = 1.576 J/cm{sup 2}), demonstrating a more dominating role of laser wavelength than the pulse width in influencing the ablation threshold. The ablation depth versus the logarithmic scale of laser fluence shows two linear regions for the fs laser ablation, not previously known for polymers. The effective optical penetration depth value is lower for excimer laser ablation (α{sup −1} = 223 nm) than that for femtosecond laser ablation (α{sup −1} = 2917 nm). The ablation threshold decreases with increasing number of pulses (NOP) due to the chain scission process that shortens the polymeric chains, resulting in a weaker polymeric configuration and the dependency is governed by the incubation factor. Excimer laser treatment of ABS eliminates the C=C bond completely through the chain scission process whereas

  18. Boron-enhanced diffusion in excimer laser annealed Si

    International Nuclear Information System (INIS)

    Monakhov, E.V.; Svensson, B.G.; Linnarsson, M.K.; La Magna, A.; Privitera, V.; Fortunato, G.; Mariucci, L.

    2004-01-01

    The effect of excimer laser annealing (ELA) and rapid thermal annealing (RTA) on B redistribution in B-implanted Si has been studied by secondary ion mass spectrometry (SIMS) and spreading resistance probe (SRP). B has been implanted with an energy of 1 keV and a dose of 10 16 cm -2 forming a distribution with a width of 20-30 nm and a peak concentration of ∼5 x 10 21 cm -3 . It has been found that ELA with 10 pulses of the energy density of 850 mJ/cm 2 results in a uniform B distribution over the ELA-molten region with an abrupt profile edge. SRP measurements demonstrate good activation of the implanted B after ELA, with the concentration of the activated fraction (∼10 21 cm -3 ) exceeding the solid solubility level. RTA (30 s at 1100 deg. C) of the as-implanted and ELA-treated samples leads to a diffusion of B with diffusivities exceeding the equilibrium one and the enhancement is similar for both of the samples. It is also found that RTA decreases the activated B in the ELA-treated sample to the solid solubility limit (2 x 10 20 cm -3 ). The similarity of the B diffusivity for the as-implanted and ELA-treated samples suggests that the enhancement of the B diffusivity is due to the so-called boron-enhanced diffusion (BED). Possible mechanisms of BED are discussed

  19. High efficiency metal marking with CO2 laser and glass marking with excimer laser

    DEFF Research Database (Denmark)

    Bastue, Jens; Olsen, Flemmming Ove

    1997-01-01

    with a thoroughly tested ray-tracing model is presented and compared with experimental results. Special emphasis is put on two different applications namely marking in metal with TEA-CO2 laser and marking in glass with excimer laser. The results are evaluated on the basis of the achievable energy enhancement......Today, mask based laser materials processing and especially marking is widely used. However, the energy efficiency in such processes is very low [1].This paper gives a review of the results, that may be obtained using the energy enhancing technique [1]. Results of simulations performed...

  20. KrF excimer laser precision machining of hard and brittle ceramic biomaterials

    International Nuclear Information System (INIS)

    Huang, Yao-Xiong; Lu, Jian-Yi; Huang, Jin-Xia

    2014-01-01

    KrF excimer laser precision machining of porous hard–brittle ceramic biomaterials was studied to find a suitable way of machining the materials into various desired shapes and sizes without distorting their intrinsic structure and porosity. Calcium phosphate glass ceramics (CPGs) and hydroxyapatite (HA) were chosen for the study. It was found that KrF excimer laser can cut both CPGs and HA with high efficiency and precision. The ablation rates of CPGs and HA are respectively 0.081 µm/(pulse ⋅ J cm −2 ) and 0.048 µm/(pulse ⋅ J cm −2 ), while their threshold fluences are individually 0.72 and 1.5 J cm −2 . The cutting quality (smoothness of the cut surface) is a function of laser repetition rate and cutting speed. The higher the repetition rate and lower the cutting speed, the better the cutting quality. A comparison between the cross sections of CPGs and HA cut using the excimer laser and using a conventional diamond cutting blade indicates that those cut by the excimer laser could retain their intrinsic porosity and geometry without distortion. In contrast, those cut by conventional machining had distorted geometry and most of their surface porosities were lost. Therefore, when cutting hard–brittle ceramic biomaterials to prepare scaffold and implant or when sectioning them for porosity evaluation, it is better to choose KrF excimer laser machining. (paper)

  1. Analyses of surface coloration on TiO2 film irradiated with excimer laser

    International Nuclear Information System (INIS)

    Zheng, H.Y.; Qian, H.X.; Zhou, W.

    2008-01-01

    TiO 2 film of around 850 nm in thickness was deposited on a soda-lime glass by PVD sputtering and irradiated using one pulse of krypton-fluorine (KrF) excimer laser (wavelength of 248 nm and pulse duration of 25 ns) with varying fluence. The color of the irradiated area became darker with increasing laser fluence. Irradiated surfaces were characterized using optical microscopy, scanning electron microscopy, Raman spectroscopy and atomic force microscopy. Surface undergoes thermal annealing at low laser fluence of 400 and 590 mJ/cm 2 . Microcracks at medium laser fluence of 1000 mJ/cm 2 are attributed to surface melting and solidification. Hydrodynamic ablation is proposed to explain the formation of micropores and networks at higher laser fluence of 1100 and 1200 mJ/cm 2 . The darkening effect is explained in terms of trapping of light in the surface defects formed rather than anatase to rutile phase transformation as reported by others. Controlled darkening of TiO 2 film might be used for adjustable filters

  2. Laser-driven hydrothermal process studied with excimer laser pulses

    Science.gov (United States)

    Mariella, Raymond; Rubenchik, Alexander; Fong, Erika; Norton, Mary; Hollingsworth, William; Clarkson, James; Johnsen, Howard; Osborn, David L.

    2017-08-01

    Previously, we discovered [Mariella et al., J. Appl. Phys. 114, 014904 (2013)] that modest-fluence/modest-intensity 351-nm laser pulses, with insufficient fluence/intensity to ablate rock, mineral, or concrete samples via surface vaporization, still removed the surface material from water-submerged target samples with confinement of the removed material, and then dispersed at least some of the removed material into the water as a long-lived suspension of nanoparticles. We called this new process, which appears to include the generation of larger colorless particles, "laser-driven hydrothermal processing" (LDHP) [Mariella et al., J. Appl. Phys. 114, 014904 (2013)]. We, now, report that we have studied this process using 248-nm and 193-nm laser light on submerged concrete, quartzite, and obsidian, and, even though light at these wavelengths is more strongly absorbed than at 351 nm, we found that the overall efficiency of LDHP, in terms of the mass of the target removed per Joule of laser-pulse energy, is lower with 248-nm and 193-nm laser pulses than with 351-nm laser pulses. Given that stronger absorption creates higher peak surface temperatures for comparable laser fluence and intensity, it was surprising to observe reduced efficiencies for material removal. We also measured the nascent particle-size distributions that LDHP creates in the submerging water and found that they do not display the long tail towards larger particle sizes that we had observed when there had been a multi-week delay between experiments and the date of measuring the size distributions. This is consistent with transient dissolution of the solid surface, followed by diffusion-limited kinetics of nucleation and growth of particles from the resulting thin layer of supersaturated solution at the sample surface.

  3. The effect of excimer laser keratectomy on corneal glutathione-related enzymes in rabbits.

    Science.gov (United States)

    Bilgihan, Ayşe; Bilgihan, Kamil; Yis, Ozgür; Yis, Nilgün Safak; Hasanreisoglu, Berati

    2003-04-01

    Glutathione related enzymes are involved in the metabolism and detoxification of cytotoxic and carcinogenic compounds as well as reactive oxygen species. Excimer laser is a very useful tool for the treatment of refractive errors and removing superficial corneal opacities. Previous studies have shown that excimer laser may initiate free radical formation in the cornea. In the present study, we evaluated the effect of excimer laser keratectomy on corneal glutathione-related enzyme activities in rabbits. Animals were divided into five groups, and all groups were compared with the controls (group 1), after epithelial scraping (group 2), transepithelial photorefractive keratectomy (PRK) (group 3), traditional PRK (group 4) and deep traditional PRK (group 5). Corneal glutathione peroxidase (GPx), glutathione S-transferase (GST) and glutathione reductase (GR) activities were measured after 24h. Corneal GPx and GR activities significantly decreased only in group 5 (p < 0.05) but GST activities significantly decreased in all groups when compared with the control group (p < 0.05). In conclusion, excimer laser inhibits the glutathione dependent defense system in the cornea, this effect becomes more prominent after high doses of excimer laser energy and antioxidants may be useful to reduce free radical mediated complications.

  4. XeCl Excimer Laser with Three- and Four-Component Mixture of Active Gases

    International Nuclear Information System (INIS)

    Iwanejko, L.; Pokora, L.

    1998-01-01

    Selected results of investigations of a XeCl excimer laser employing a new type (four-component)of mixture of gases, He-Kr:Xe-HCl, are presented. The mixture includes, instead of Xe, a mixture of not-separated Kr and Xe gases, much less expensive than pure xenon. A comparison of durations and energies of pulses generated in the XeCl excimer laser using three- or four-component gaseous active medium (He-Xe-HCl or He-Kr:Xe-HCl) is made. The investigations have been carried out with the use of a laser system with UV preionization and self sustained pumping discharge. (author)

  5. Stability of a 1-kW excimer laser with long optical pulses

    NARCIS (Netherlands)

    Timmermans, J.C.M.; Hofmann, T.; Hofmann, Th.; van Goor, F.A.; Witteman, W.J.

    1996-01-01

    For high repetition operation of excimer-lasers care has to be taken of the changing performance of the electrical circuit, gas dynamic effects and contamination of the gas mixture to avoid deterioration of the laser performance. The parameters that influence the stability of the discharge are

  6. Surface modification of polyethylene terephthalate using excimer and CO2 laser

    International Nuclear Information System (INIS)

    Mirzadeh, H.; Dadsetan, M.

    2002-01-01

    Complete text of publication follows. Attempts have been made to evaluate microstructuring which affects cell behaviour, physical and chemical changes produced by laser irradiation onto the polyethylene terephthalate (PET) surface. The surfaces of PET were irradiated using the CO 2 laser and KrF excimer pulsed laser. The changes in chemical and physical properties of the irradiated PET surface were investigated by attenuated total reflectance infrared spectroscopy (ATR-IR) and contact angle measurements. ATR-IR Spectra showed that the crystallinity in the surface region decreased due to the CO 2 laser and excimer laser irradiation. Scanning electron microscopy observations showed that the morphology of the laser irradiated PET surface changed due to laser irradiation. The results obtained from the cell behaviour studies revealed that changes of physico-chemical properties of the laser treated PET film have significantly changed in comparison with the unmodified PET

  7. Comparing laser induced plasmas formed in diode and excimer pumped alkali lasers.

    Science.gov (United States)

    Markosyan, Aram H

    2018-01-08

    Lasing on the D 1 transition (6 2 P 1/2 → 6 2 S 1/2 ) of cesium can be reached in both diode and excimer pumped alkali lasers. The first uses D 2 transition (6 2 S 1/2 → 6 2 P 3/2 ) for pumping, whereas the second is pumped by photoexcitation of ground state Cs-Ar collisional pairs and subsequent dissociation of diatomic, electronically-excited CsAr molecules (excimers). Despite lasing on the same D 1 transition, differences in pumping schemes enables chemical pathways and characteristic timescales unique for each system. We investigate unavoidable plasma formation during operation of both systems side by side in Ar/C 2 H 6 /Cs.

  8. Physical and optical limitations using ArF-excimer and Er:YAG lasers for PRK

    Science.gov (United States)

    Semchishen, Vladimir A.; Mrochen, Michael; Seiler, Theo

    1998-06-01

    The Erbium:YAG laser emitting at a wavelength of 2,94 micrometer have been promised as an alternative laser for the ArF-excimer laser (193 nm) in photorefractive keratectomy (PRK). This report discusses the limitations of laser parameters such as wavelength, energy density and pulse duration for the ablation of the cornea. In addition, the melting process during ablation on the corneal surface roughness may play a role.

  9. Deposition and characterization of ITO films produced by laser ablation at 355 nm

    DEFF Research Database (Denmark)

    Holmelund, E.; Thestrup Nielsen, Birgitte; Schou, Jørgen

    2002-01-01

    Indium tin oxide (ITO) films have been deposited by pulsed laser deposition (PLD) at 355 nm. Even though the absorption of laser light at the wavelength 355 nm is much smaller than that of the standard excimer lasers for PLD at 248 nm and 193 nm, high-quality films can be produced. At high fluence...

  10. [The 308 nm Excimer laser for the treatment of psoriasis and inflammatory skin diseases].

    Science.gov (United States)

    Fritz, K; Salavastru, C

    2018-01-01

    Overall, the 308 nm Excimer laser enables not only a more effective and safer UVB therapy than classical UV phototherapy, but also targeted irradiation in higher doses with a lower cumulative load, which results in faster healing of mainly circumscribed skin changes. This also applies to therapy-resistant residual lesions which, despite systemic therapy, did not diminish. Combination therapies usually improve the result and enable the dose of UVB and systemic medication to be reduced. Excimer laser therapy can be used for an increasing number of skin diseases, especially those that respond to phototherapy or photochemotherapy.

  11. Investigation of excimer laser ablation threshold of polymers using a microphone

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, Joerg; Niino, Hiroyuki; Yabe, Akira

    2002-09-30

    KrF excimer laser ablation of polyethylene terephthalate (PET), polyimide (PI) and polycarbonate (PC) in air was studied by an in situ monitoring technique using a microphone. The microphone signal generated by a short acoustic pulse represented the etch rate of laser ablation depending on the laser fluence, i.e., the ablation 'strength'. From a linear relationship between the microphone output voltage and the laser fluence, the single-pulse ablation thresholds were found to be 30 mJ cm{sup -2} for PET, 37 mJ cm{sup -2} for PI and 51 mJ cm{sup -2} for PC (20-pulses threshold). The ablation thresholds of PET and PI were not influenced by the number of pulses per spot, while PC showed an incubation phenomenon. A microphone technique provides a simple method to determine the excimer laser ablation threshold of polymer films.

  12. Excimer laser coronary atherectomy in septal collaterals during retrograde recanalization of a chronic total occlusion

    Directory of Open Access Journals (Sweden)

    Bernward Lauer

    2011-09-01

    Full Text Available Management of chronic total occlusions has been refined through the development of a retrograde approach via collateral pathways. We describe the use of Excimer Laser Coronary Atherectomy in the septal collaterals. This appraoch was not yet described in the literature.

  13. A pulsed electron injector using a metal photocathode irradiated by an excimer laser

    International Nuclear Information System (INIS)

    Kauppila, T.J.; Builta, L.A.; Crutcher, J.K.; Elliott, J.C.; Moir, D.C.

    1987-01-01

    The hot cathode of an electron gun is replaced by a metallic photocathode driven by an excimer laser. The current, current density, and emittance of the 500-kV electron beam produced by the photoelectron source are presented. In addition, the temperature of the photocathode is varied to study the possibility of a hybrid source

  14. Refractive microlenses produced by excimer laser machining of poly(methyl methacrylate)

    DEFF Research Database (Denmark)

    Jensen, Martin Frøhling; Krühne, Ulrich; H., L.

    2005-01-01

    A method has been developed whereby refractive microlenses can be produced in poly (methyl methacrylate) by excimer laser irradiation at λ = 248 nm. The lenses are formed by a combined photochemical and thermal process. The lenses are formed as depressions in the substrate material (negative foca...

  15. Collagen crosslinking for ectasia following PRK performed in excimer laser-assisted keratoplasty for keratoconus.

    Science.gov (United States)

    Spadea, Leopoldo

    2012-01-01

    To report the results of corneal collagen crosslinking (CXL) in a patient with corneal ectasia developed after excimer laser-assisted lamellar keratoplasty for keratoconus and a secondary photorefractive keratectomy (PRK) for residual refractive error. A 33-year-old woman, who had originally been treated for keratoconus in the right eye by excimer laser-assisted lamellar keratoplasty, subsequently had her residual ametropia treated by topographically guided, transepithelial excimer laser PRK. Five years after PRK, the patient developed corneal ectasia showing concomitant visual changes of best spectacle-corrected visual acuity (BSCVA) reduced to 20/33 with a refraction of -6.00 +6.00 × 30. The minimum corneal thickness at the ectasia apex was 406 µm. A treatment of riboflavin-UVA-induced corneal CXL was performed on the right eye. Two years after the CXL treatment, the right eye improved to 20/20 BSCVA with a refraction of plano +1.00 × 50 while exhibiting a clear lamellar graft. Corneal CXL provided safe and effective management of ectasia developed after excimer laser-assisted lamellar keratoplasty and PRK.

  16. Excimer laser crystallization of InGaZnO4 on SiO2 substrate

    NARCIS (Netherlands)

    Chen, T.; Wu, M.Y.; Ishihara, R.; Nomura, K.; Kamiya, T.; Hosono, H.; Beenakker, C.I.M.

    2011-01-01

    In this paper, we were able to crystallize InGaZnO4 (IGZO) by excimer laser on SiO2 substrate. It was observed that uniform [0001] textured polycrystalline IGZO film has been obtained without any grain boundaries and oxygen vacancies on SiO2 substrate. This process is very promising in fabricating

  17. Performance characteristics of an excimer laser (XeCl) with single ...

    Indian Academy of Sciences (India)

    2017-01-10

    Jan 10, 2017 ... Performance characteristics of an excimer laser (XeCl) with single-stage magnetic ... the stress can increase the lifetime of the switches and ..... work. References. [1] Ying-Tung Chen, Kris Naessens, Roel Bates, Yunn-Shiuan.

  18. Putative photoacoustic damage in skin induced by pulsed ArF excimer laser

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, S.; Flotte, T.J.; McAuliffe, D.J.; Jacques, S.L.

    1988-05-01

    Argon-fluoride excimer laser ablation of guinea pig stratum corneum causes deeper tissue damage than expected for thermal or photochemical mechanisms, suggesting that photoacoustic waves have a role in tissue damage. Laser irradiation (193 nm, 14-ns pulse) at two different radiant exposures, 62 and 156 mJ/cm2 per pulse, was used to ablate the 15-microns-thick stratum corneum of the skin. Light and electron microscopy of immediate biopsies demonstrated damage to fibroblasts as deep as 88 and 220 microns, respectively, below the ablation site. These depths are far in excess of the optical penetration depth of 193-nm light (1/e depth = 1.5 micron). The damage is unlikely to be due to a photochemical mechanism because (a) the photons will not penetrate to these depths, (b) it is a long distance for toxic photoproducts to diffuse, and (c) damage is proportional to laser pulse intensity and not the total dose that accumulates in the residual tissue; therefore, reciprocity does not hold. Damage due to a thermal mechanism is not expected because there is not sufficient energy deposited in the tissue to cause significant heating at such depths. The damage is most likely due to a photoacoustic mechanism because (a) photoacoustic waves can propagate deep into tissue, (b) the depth of damage increases with increasing laser pulse intensity rather than with increasing total residual energy, and (c) the effects are immediate. These effects should be considered in the evaluation of short pulse, high peak power laser-tissue interactions.

  19. Insight into excimer laser crystallization exploiting ellipsometry: Effect of silicon film precursor

    Energy Technology Data Exchange (ETDEWEB)

    Losurdo, Maria [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR and INSTM sez. Bari, Via Orabona 4, 70125 Bari (Italy)], E-mail: maria.losurdo@ba.imip.cnr.it; Giangregorio, Maria M.; Sacchetti, Alberto; Capezzuto, Pio; Bruno, Giovanni [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR and INSTM sez. Bari, Via Orabona 4, 70125 Bari (Italy); Mariucci, Luigi; Fortunato, Guglielmo [IFN-CNR, Via Cineto Romano, 42 - 00156 Rome (Italy)

    2007-07-16

    The optical diagnostic of spectroscopic ellipsometry is shown to be an effective tool to investigate the mechanism of excimer laser crystallization (ELC) of silicon thin films. A detailed spectroscopic ellipsometric investigation of the microstructures of polycrystalline Si films obtained on SiO{sub 2}/Si wafers by ELC of a-Si:H and nc-Si films deposited, respectively, by SiH{sub 4} plasma enhanced chemical vapor deposition (PECVD) and SiF{sub 4}-PECVD is presented. It is shown that ellipsometric spectra of the pseudodielectric function of polysilicon thin films allows to discern the three different ELC regimes of partial melting, super lateral growth and complete melting. Exploiting ellipsometry and atomic force microscopy, it is shown that ELC of nc-Si has very low energy density threshold of 95 mJ/cm{sup 2} for complete melting, and that re-crystallization to large grains of {approx} 2 {mu}m can be achieved by multi-shot irradiation at an energy density as low as 260 mJ/cm{sup 2} when using nc-Si when compared to 340 mJ/cm{sup 2} for the ELC of a-Si films.

  20. Excimer lasers utilizing XeF and XeCl molecules

    Energy Technology Data Exchange (ETDEWEB)

    Bychkov, Yu I; Konovalov, I N; Losev, V F; Mesyats, G A; Ryzhov, V V; Tarasenko, V F; Fedorov, A I; Shemyakina, S B; Yastremskii, A G

    1978-12-01

    The results are given of an experimental and theoretical study of XeF (wavelength approx. 350 nm) and XeCl (wavelength approx. 308 nm) lasers excited by an electron beam, a discharge stabilized by an electron beam, and a rapid discharge. These lasers are representative of ones employing halides of noble gases, which are the most powerful sources of stimulated emission in the uv region. The XeCl laser is shown to have good emission characteristics with various methods of excitation. An analysis of the kinetics of processes in the plasma of lasers utilizing halides of noble gases showed that the main channel for the transfer of the beam's energy to the formation of excimer molecules is the ionic channel. An efficiency of about 2.6 percent and a specific radiant energy of 10 J.l/sup -1/ showed that XeCl* is one of the most effective excimer molecules.

  1. Excimer laser sintering of indium tin oxide nanoparticles for fabricating thin films of variable thickness on flexible substrates

    International Nuclear Information System (INIS)

    Park, Taesoon; Kim, Dongsik

    2015-01-01

    Technology to fabricate electrically-conducting, transparent thin-film patterns on flexible substrates has possible applications in flexible electronics. In this work, a pulsed-laser sintering process applicable to indium tin oxide (ITO) thin-film fabrication on a substrate without thermal damage to the substrate was developed. A nanosecond pulsed laser was used to minimize thermal penetration into the substrate and to control the thickness of the sintered layer. ITO nanoparticles (NPs) of ~ 20 nm diameter were used to lower the process temperature by exploiting their low melting point. ITO thin film patterns were fabricated by first spin coating the NPs onto a surface, then sintering them using a KrF excimer laser. The sintered films were characterized using field emission scanning electron microscopy. The electrical resistivity and transparency of the film were measured by varying the process parameters. A single laser pulse could generate the polycrystalline structure (average grain size ~ 200 nm), reducing the electrical resistivity of the film by a factor of ~ 1000. The sintering process led to a minimum resistivity of 1.1 × 10 −4 Ω·m without losing the transparency of the film. The thickness of the sintered layer could be varied up to 150 nm by adjusting the laser fluence. Because the estimated thermal penetration depth in the ITO film was less than 200 nm, no thermal damage was observed in the substrate. This work suggests that the proposed process, combined with various particle deposition methods, can be an effective tool to form thin-film ITO patterns on flexible substrates. - Highlights: • Excimer laser sintering can fabricate ITO thin films on flexible substrates. • The laser pulse can form a polycrystalline structure without thermal damage. • The laser sintering process can reduce the electrical resistivity substantially. • The thickness of the sintered layer can be varied effectively

  2. Excimer laser sintering of indium tin oxide nanoparticles for fabricating thin films of variable thickness on flexible substrates

    Energy Technology Data Exchange (ETDEWEB)

    Park, Taesoon; Kim, Dongsik, E-mail: dskim87@postech.ac.kr

    2015-03-02

    Technology to fabricate electrically-conducting, transparent thin-film patterns on flexible substrates has possible applications in flexible electronics. In this work, a pulsed-laser sintering process applicable to indium tin oxide (ITO) thin-film fabrication on a substrate without thermal damage to the substrate was developed. A nanosecond pulsed laser was used to minimize thermal penetration into the substrate and to control the thickness of the sintered layer. ITO nanoparticles (NPs) of ~ 20 nm diameter were used to lower the process temperature by exploiting their low melting point. ITO thin film patterns were fabricated by first spin coating the NPs onto a surface, then sintering them using a KrF excimer laser. The sintered films were characterized using field emission scanning electron microscopy. The electrical resistivity and transparency of the film were measured by varying the process parameters. A single laser pulse could generate the polycrystalline structure (average grain size ~ 200 nm), reducing the electrical resistivity of the film by a factor of ~ 1000. The sintering process led to a minimum resistivity of 1.1 × 10{sup −4} Ω·m without losing the transparency of the film. The thickness of the sintered layer could be varied up to 150 nm by adjusting the laser fluence. Because the estimated thermal penetration depth in the ITO film was less than 200 nm, no thermal damage was observed in the substrate. This work suggests that the proposed process, combined with various particle deposition methods, can be an effective tool to form thin-film ITO patterns on flexible substrates. - Highlights: • Excimer laser sintering can fabricate ITO thin films on flexible substrates. • The laser pulse can form a polycrystalline structure without thermal damage. • The laser sintering process can reduce the electrical resistivity substantially. • The thickness of the sintered layer can be varied effectively.

  3. Green synthesis of selenium nanoparticles by excimer pulsed laser ablation in water

    OpenAIRE

    O. Van Overschelde; G. Guisbiers; R. Snyders

    2013-01-01

    Pure selenium nanoparticles were successfully synthesized by Liquid Phase - Pulsed Laser Ablation (LP-PLA) in de-ionized water. Excimer laser (248 nm) operating at low fluence (F ∼ 1 J/cm2) was used to generate colloidal solutions of selenium nanoparticles. The obtained selenium nanoparticles were characterized by UV-visible spectroscopy, Raman spectroscopy, Dynamic Light Scattering, and Transmission Electron Microscopy. We describe the multi-modal size distributions generated and use the cen...

  4. A design of energy detector for ArF excimer lasers

    Science.gov (United States)

    Feng, Zebin; Han, Xiaoquan; Zhou, Yi; Bai, Lujun

    2017-08-01

    ArF excimer lasers with short wavelength and high photon energy are widely applied in the field of integrated circuit lithography, material processing, laser medicine, and so on. Excimer laser single pulse energy is a very important parameter in the application. In order to detect the single pulse energy on-line, one energy detector based on photodiode was designed. The signal processing circuit connected to the photodiode was designed so that the signal obtained by the photodiode was amplified and the pulse width was broadened. The amplified signal was acquired by a data acquisition card and stored in the computer for subsequent data processing. The peak of the pulse signal is used to characterize the single pulse energy of ArF excimer laser. In every condition of deferent pulse energy value levels, a series of data about laser pulses energy were acquired synchronously using the Ophir energy meter and the energy detector. A data set about the relationship between laser pulse energy and the peak of the pulse signal was acquired. Then, by using the data acquired, a model characterizing the functional relationship between the energy value and the peak value of the pulse was trained based on an algorithm of machine learning, Support Vector Regression (SVR). By using the model, the energy value can be obtained directly from the energy detector designed in this project. The result shows that the relative error between the energy obtained by the energy detector and by the Ophir energy meter is less than 2%.

  5. Change of wettability of PTFE surface by sputter etching and excimer laser. Sputter etching oyobi excimer laser ni yoru PTFE hyomen no shinsuika

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, S. (Nitto Denko Corp., Osaka (Japan)); Kubo, U. (Kinki University, Osaka (Japan))

    1994-06-20

    The wettability of PTFE (polytetrafluoroethylene) surfaces was improved by sputter etching and excimer laser irradiation. In sputter etching, the PTFE surface was treated by reactive sputter etching with H2O gas to give active groups on the surface. In laser irradiation, the surface was irradiated in pure water by high-energy KrF excimer laser. As the surface wettability was evaluated with a contact angle to water, the contact angle decreased remarkably in both treatments resulting in a good improvement effect. In sputter etching, various new chemical bonds such as F-C=O, F2C-FC-O, F2C-C-O and C-O were observed because of a decrease in F and incorporation of oxygen. Such chemical bonds could be eliminated by ultraviolet ray irradiation, and the treated surface condition approached the initial condition after irradiation of 200 hours. In laser irradiation, it was suggested that C-F bonds were broken, and OH groups were added to the surface by dissociation of H2O to H and OH. 7 refs., 8 figs., 1 tab.

  6. Influence of Selected Parameters of XeCl Excimer Laser System on Characteristics of Radiation Pulses

    International Nuclear Information System (INIS)

    Pokora, L.; Iwanejko, L.

    1998-01-01

    We present the dependences of energy and duration of radiation pulses as well as efficiency of XeCl laser on selected parameters of the laser system such as: C 2 capacitance, the separating inductance, L S , the distance between electrodes in laser's chamber, d K and also the supply voltage, U 0 , composition, and pressure of the active-medium mixture of gases. Results of numerical computations relate to a three-component mixture of gases, He-Xe-HCl, of the active medium of the excimer laser. (author)

  7. Comparative study of excimer and erbium:YAG lasers for ablation of structural components of the knee

    Science.gov (United States)

    Vari, Sandor G.; Shi, Wei-Qiang; van der Veen, Maurits J.; Fishbein, Michael C.; Miller, J. M.; Papaioannou, Thanassis; Grundfest, Warren S.

    1991-05-01

    This study was designed to compare the efficiency and thermal effect of a 135 ns pulsed-stretched XeCl excimer laser (308 nm) and a free-running Erbium:YAG laser (2940 nm) with 200 microsecond(s) pulse duration for ablation of knee joint structures (hyaline and fibrous cartilage, tendon and bone). The radiant exposure used for tissue ablation ranged from 2 to 15 J/cm2 for the XeCl excimer and from 33 to 120 J/cm2 for Er:YAG. The excimer and Er:YAG lasers were operated at 4 and 5 Hz respectively. The ablative laser energy was delivered to tissue through fibers. Ablation rates of soft tissues (hyaline and fibrous cartilage, tendon) varied from 8.5 to 203 micrometers /pulse for excimer and from 8.2 to 273 micrometers /pulse for Er:YAG lasers. Ablation rates of soft tissues are linearly dependent on the radiant exposure. Within the range of parameters tested all the tissues except the bone could be rapidly ablated by both lasers. Bone ablation was much less efficient, requiring 15 J/cm2 and 110 J/cm2 radiant exposure for excimer and Er:YAG lasers to ablate 9.5 and 8.2 micrometers tissue per pulse. However, excimer laser ablation produced less thermal damage in the tissues studied compared to Er:YAG at the same laser parameters. The authors conclude that both lasers are capable of efficient knee joint tissue ablation. XeCl excimer laser requires an order of magnitude less energy than Er:YAG laser for comparable tissue ablation.

  8. Preparation of PZT/YBCO/YAlO heterostructure thin films by KrF excimer laser ablation

    International Nuclear Information System (INIS)

    Ebihara, Kenji; Kurogi, Hiromitsu; Yamagata, Yukihiko; Ikegami, Tomoaki; Grishin, A.M.

    1998-01-01

    The perovskite oxide YBa 2 Cu 3 O 7-x (YBCO) and Pb(Zr x Ti 1-x )O 3 (PZT) thin films have been deposited for superconducting-ferroelectric devices. KrF excimer laser ablation technique was used at the deposition conditions of 200--600 mTorr O 2 , 2-3J/cm 2 and 5--10 Hz operation frequency. Heterostructures of PZT-YBCO-YAlO 3 :Nd show the zero resistivity critical temperature of 82 K and excellent ferroelectric properties of remnant polarization 32 microC/cm 2 , coercive force of 80 kV/cm and dielectric constant 800. Cycling fatigue characteristics and leakage current are also discussed

  9. Application of optical tweezers and excimer laser to study protoplast fusion

    Science.gov (United States)

    Kantawang, Titirat; Samipak, Sompid; Limtrakul, Jumras; Chattham, Nattaporn

    2015-07-01

    Protoplast fusion is a physical phenomenon that two protoplasts come in contact and fuse together. Doing so, it is possible to combine specific genes from one protoplast to another during fusion such as drought resistance and disease resistance. There are a few possible methods to induce protoplast fusion, for example, electrofusion and chemical fusion. In this study, chemical fusion was performed with laser applied as an external force to enhance rate of fusion and observed under a microscope. Optical tweezers (1064 nm with 100X objective N.A. 1.3) and excimer laser (308 nm LMU-40X-UVB objective) were set with a Nikon Ti-U inverted microscope. Samples were prepared by soaking in hypertonic solution in order to induce cell plasmolysis. Elodea Canadensis and Allium cepa plasmolysed leaves were cut and observed under microscope. Concentration of solution was varied to induce difference turgor pressures on protoplasts pushing at cell wall. Free protoplasts in solution were trapped by optical tweezers to study the effect of Polyethylene glycol (PEG) solution. PEG was diluted by Ca+ solution during the process to induced protoplast cell contact and fusion. Possibility of protoplast fusion by excimer laser was investigated and found possible. Here we report a novel tool for plant cell fusion using excimer laser. Plant growth after cell fusion is currently conducted.

  10. 308-nm excimer laser for the treatment of alopecia areata in children.

    Science.gov (United States)

    Al-Mutairi, Nawaf

    2009-01-01

    Alopecia areata (AA) is a common skin disease which is characterized by nonscarring localized or diffused hair loss. In this study we assessed the efficacy of 308-nm Excimer laser in the treatment of alopecia areata in children. A total of 9 children with 30 recalcitrant patches alopecia areata and two children with alopecia areata totalis were enrolled in this study which included seven male and four female patients, aged between 4 and 14 years and the durations of their disease were between 7 and 25 months. All of these patients had more than one lesion of alopecia areata and at least one of them was left as a control for comparison. The lesions were treated with the 308-nm Excimer laser twice a week for a period of 12 weeks. Regrowth of hair was observed in 18 (60%) alopecia patches in the scalp, while there was no response in the control patches and over the extremities. Only four patients with scalp lesions showed a recurrence of alopecia after 6 months post laser therapy. So, 308-nm Excimer laser is considered an effective safe therapeutic option for patchy alopecia areata in children.

  11. Clinical results of PRK touch-up using Chiron/Technolas Keracor 116 excimer laser

    Science.gov (United States)

    Davidian, Mary E.; Keates, Richard H.; Ren, Qiushi

    1995-05-01

    Regression of effect as well as undercorrection are well established complications of excimer photorefractive keratectomy for the correction of myopia. In thirteen eyes initially treated with the VISX Taunton excimer laser and then retreated with the Chiron Technolas laser, the minimum follow-up time was six months. The mean postoperative refraction at six months was -0.442 +/- 0.996 D (diopters), significantly different from the pretreatment mean of -1.904 +/- 1.297 D. At six months after retreatment (10/13 eyes) 76.9% had an uncorrected visual acuity greater than or equal to 20/40 and (10/13 eyes) 76.9% were within 1 diopter of emmetropia. Only one eye had a significant increase in postoperative haze. The results of this study indicate that the majority of photorefractive keratectomy regressions and undercorrections can be successfully retreated.

  12. Levels of interleukin-6 in tears before and after excimer laser treatment

    OpenAIRE

    Resan Mirko; Stanojević Ivan; Petković-Ćurčin Aleksandra; Pajić Bojan; Vojvodić Danilo

    2015-01-01

    Background/Aim. Immune response and consequent inflammatory process which originate on ocular surface after a trauma are mediated by cytokines. Photoablation of corneal stroma performed by excimer laser causes surgically induced trauma. Interleukin-6 (IL-6) is mostly known as a proinflammatory cytokine. However, it also has regenerative and anti-inflammatory effects. It is supposed that this cytokine is likely to play a significant role in the process of co...

  13. Periodic morphological modification developed on the surface of polyethersulfone by XeCl excimer laser photoablation

    International Nuclear Information System (INIS)

    Niino, H.; Nakano, M.; Nagano, S.; Yabe, A.; Miki, T.; Center for Structure Analyses, Teijin Limited, Asahigaoka, Hino, Tokyo, 191 Japan)

    1989-01-01

    Periodic and stable micropatterns appeared on the surface of amorphous polyethersulfone etched with an excimer laser at 308 nm in ambient air and a vacuum. The control of such radiative conditions as fluence and incident angle enables us to modify the spacing and pattern of the microstructures. A topographical investigation with scanning electron microscopy and an experiment with x-ray photoelectron spectroscopy to determine its composition is reported

  14. Improved model for the angular dependence of excimer laser ablation rates in polymer materials

    Science.gov (United States)

    Pedder, J. E. A.; Holmes, A. S.; Dyer, P. E.

    2009-10-01

    Measurements of the angle-dependent ablation rates of polymers that have applications in microdevice fabrication are reported. A simple model based on Beer's law, including plume absorption, is shown to give good agreement with the experimental findings for polycarbonate and SU8, ablated using the 193 and 248 nm excimer lasers, respectively. The modeling forms a useful tool for designing masks needed to fabricate complex surface relief by ablation.

  15. LASIK for myopia and astigmatism using the SCHWIND AMARIS excimer laser: an international multicenter trial.

    Science.gov (United States)

    Arbelaez, Maria Clara; Aslanides, Ioannis M; Barraquer, Carmen; Carones, Francesco; Feuermannova, Alena; Neuhann, Tobias; Rozsival, Pavel

    2010-02-01

    To assess the efficacy, predictability, and safety of LASIK for the surgical correction of low to moderate myopia with astigmatism using the SCHWIND AMARIS excimer laser. Six international study sites enrolled 358 eyes with a manifest refraction spherical equivalent (MRSE) from -0.50 to -7.38 diopters (D) (mean sphere: -3.13+/-1.58 D) with up to -5.00 D of astigmatism (mean: -0.69+/-0.67 D). All eyes underwent treatment with the nonwavefront-guided aspheric algorithm of the SCHWIND AMARIS excimer laser. All eyes were targeted for emmetropia. Refractive outcomes and corneal higher order aberrations were analyzed pre- and postoperatively. Visual quality was assessed using photopic and mesopic contrast sensitivity. Six-month postoperative outcomes are reported. At 6 months postoperative, the MRSE for all eyes was -0.21+/-0.20 D, and 96% (343/358) of eyes had MRSE within +/-0.50 D. Uncorrected visual acuity was 20/20 or better in 98% (351/358) of eyes, and no eyes lost 2 or more lines of best spectacle-corrected visual acuity. The total corneal higher order aberrations root-mean-square increased by 0.09 microm, spherical aberration increased by 0.08 microm, and coma increased by 0.04 microm postoperatively. Photopic and mesopic contrast sensitivity did not change 6 months postoperatively. Treatment of myopia with astigmatism using the SCHWIND AMARIS excimer laser is safe, efficacious, predictable, and maintains visual quality.

  16. Corneal aldehyde dehydrogenase and glutathione S-transferase activity after excimer laser keratectomy in guinea pigs.

    Science.gov (United States)

    Bilgihan, K; Bilgihan, A; Hasanreisoğlu, B; Turkozkan, N

    1998-03-01

    The free radical balance of the eye may be changed by excimer laser keratectomy. Previous studies have demonstrated that excimer laser keratectomy increases the corneal temperature, decreases the superoxide dismutase activity of the aqueous, and induces lipid peroxidation in the superficial corneal stroma. Aldehyde dehydrogenase (ALDH) and glutathione S-transferase (GST) are known to play an important role in corneal metabolism, particularly in detoxification of aldehydes, which are generated from free radical reactions. In three groups of guinea pigs mechanical corneal de-epithelialisation was performed in group I, superficial corneal photoablation in group II, and deep corneal photoablation in group III, and the corneal ALDH and GST activities measured after 48 hours. The mean ALDH and GST activities of group I and II showed no differences compared with the controls (p > 0.05). The corneal ALDH activities were found to be significantly decreased (p < 0.05) and GST activities increased (p < 0.05) in group III. These results suggest that excimer laser treatment of high myopia may change the ALDH and GST activities, metabolism, and free radical balance of the cornea.

  17. Comparison of KrF and ArF excimer laser treatment of biopolymer surface

    Energy Technology Data Exchange (ETDEWEB)

    Michaljaničová, I. [Department of Solid State Engineering, University of Chemistry and Technology, 166 28 Prague (Czech Republic); Slepička, P., E-mail: petr.slepicka@vscht.cz [Department of Solid State Engineering, University of Chemistry and Technology, 166 28 Prague (Czech Republic); Heitz, J.; Barb, R.A. [Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Sajdl, P. [Department of Power Engineering, University of Chemistry and Technology, 166 28 Prague (Czech Republic); Švorčík, V. [Department of Solid State Engineering, University of Chemistry and Technology, 166 28 Prague (Czech Republic)

    2015-06-01

    Highlights: • The influence of ArF and KrF laser on biopolymer surface was determined. • ArF laser acts predominantly on biopolymer surface. • PHB roughness is increased similarly for both applied wavelengths. • Roughness of nanostructures can be precisely controlled. • ArF laser introduces nitrogen on PHB surface. - Abstract: The goal of this work was the investigation of the impact of two different excimer lasers on two biocompatible and biodegradable polymers (poly-L-lactide and poly hydroxybutyrate). Both polymers find usage in medical and pharmaceutical fields. The polymers were modified by KrF and ArF excimer lasers. Subsequently the impact on surface morphology, surface chemistry changes, and thermal properties was studied by means of confocal and AFM microscopy, FTIR and XPS spectroscopy and DSC calorimetry. Under the same conditions of laser treatment it was observed that ArF laser causes more significant changes on surface chemistry, surface morphology and pattern formation on the polymers under investigation. The data obtained in this work can be used for a wide range of possible applications, in tissue engineering or in combination with metallization in electronics, e.g. for biosensors.

  18. Composition of the excimer laser-induced plume produced during LASIK refractive surgery

    Science.gov (United States)

    Glickman, Randolph D.; Liu, Yun; Mayo, George L.; Baribeau, Alan D.; Starck, Tomy; Bankhead, Tom

    2003-07-01

    Because of concerns about potential hazards to surgical personnel of the plume associated with laser refractive surgery, this study was performed to characterize the composition of such plumes. Filter elements were removed from the smoke evacuator of a VISX S3 excimer laser (filter pore size ~0.3 microns) and from a Mastel Clean Room ( filter pore size ~0.2 microns) used with a LADARVISION excimer laser. The filters from both laser systems captured the laser-induced plumes from multiple, routine, LASIK patient procedures. Some filters were processed for scanning electron microscopy, while others were extracted with methanol and chloroform for biochemical analysis. Both the VISX "Final Air" filter and the Mastel "Clean Room" filter captured material that was not observed in filters that had clean operating room air only passed through them. In the VISX system, air flows through the filter unit parallel to the filter matrix. SEM analysis showed these filters captured discrete particles of 0.3 to 3.0 microns in size. In the Mastel Clean Room unit, air flows orthogonally through the filter, and the filter matrix was heavily layered with captured debris so that individual particles were not readily distinguished. Amino acid analysis and gel electrophoresis of extracted material revealed proteinaceous molecules as large as 5000 molecular weight. Such large molecules in the laser plume are not predicted by the existing theory of photochemical ablation. The presence of relatively large biomolecules may constitute a risk of allergenic reactions in personnel exposed to the plume, and also calls into question the precise mechanism of excimer laser photochemical ablation. Supported by the RMG Research Endowment, and Research to Prevent Blindness

  19. Excimer laser correction of hyperopia, hyperopic and mixed astigmatism: past, present, and future.

    Science.gov (United States)

    Lukenda, Adrian; Martinović, Zeljka Karaman; Kalauz, Miro

    2012-06-01

    The broad acceptance of "spot scanning" or "flying spot" excimer lasers in the last decade has enabled the domination of corneal ablative laser surgery over other refractive surgical procedures for the correction of hyperopia, hyperopic and mixed astigmatism. This review outlines the most important reasons why the ablative laser correction of hyperopia, hyperopic and mixed astigmatism for many years lagged behind that of myopia. Most of today's scanning laser systems, used in the LASIK and PRK procedures, can safely and effectively perform low, moderate and high hyperopic and hyperopic astigmatic corrections. The introduction of these laser platforms has also significantly improved the long term refractive stability of hyperopic treatments. In the future, further improvements in femtosecond and nanosecond technology, eye-tracker systems, and the development of new customized algorithms, such as the ray-tracing method, could additionally increase the upper limit for the safe and predictable corneal ablative laser correction ofhyperopia, hyperopic and mixed astigmatism.

  20. Ultraviolet excimer laser ablation: the effect of wavelength and repetition rate on in vivo guinea pig skin

    Energy Technology Data Exchange (ETDEWEB)

    Morelli, J.; Kibbi, A.G.; Farinelli, W.; Boll, J.; Tan, O.T.

    1987-06-01

    Multiple dermatologic conditions that are currently treated with traditional cold-knife surgery are amenable to laser therapy. The ideal surgical treatment would be precise and total removal of abnormal tissue with maximal sparing of remaining structures. The ultraviolet (UV) excimer laser is capable of such precise tissue removal due to the penetration depth of 193 nm and 248 nm irradiation of 1 micron per pulse. This type of ablative tissue removal requires a high repetition rate for efficient lesional destruction. Excimer laser radiation at 193 nm is capable of high repetition rates, which are necessary while 248 nm radiation causes increasing nonspecific thermal injury as the laser repetition rate is increased.

  1. Fabrication of SERS Active Surface on Polyimide Sample by Excimer Laser Irradiation

    Directory of Open Access Journals (Sweden)

    T. Csizmadia

    2014-01-01

    Full Text Available A possible application of excimer laser irradiation for the preparation of surface enhanced Raman spectroscopy (SERS substrate is demonstrated. A polyimide foil of 125 μm thickness was irradiated by 240 pulses of focused ArF excimer laser beam (λ = 193 nm, FWHM = 20 ns. The applied fluence was varied between 40 and 80 mJ/cm2. After laser processing, the sample was coated with 40 nm silver by PLD in order to create a conducting layer required for the SERS application. The SERS activity of the samples was tested by Raman microscopy. The Raman spectra of Rhodamine 6G aqueous solution (c=10−3 mol/dm3 were collected from the patterned and metalized areas. For areas prepared at 40–60 mJ/cm2 laser fluences, the measured Raman intensities have shown a linear dependence on the applied laser fluence, while above 60 mJ/cm2 saturation was observed. The morphology of the SERS active surface areas was investigated by scanning electron microscopy. Finite element modeling was performed in order to simulate the laser-absorption induced heating of the polyimide foil. The simulation resulted in the temporal and spatial distribution of the estimated temperature in the irradiated polyimide sample, which are important for understanding the structure formation process.

  2. The development and progress of XeCl Excimer laser system

    Science.gov (United States)

    Zhang, Yongsheng; Ma, Lianying; Wang, Dahui; Zhao, Xueqing; Zhu, Yongxiang; Hu, Yun; Qian, Hang; Shao, Bibo; Yi, Aiping; Liu, Jingru

    2015-05-01

    A large angularly multiplexed XeCl Excimer laser system is under development at the Northwest Institute of Nuclear Technology (NINT). It is designed to explore the technical issues of uniform and controllable target illumination. Short wavelength, uniform and controllable target illumination is the fundamental requirement of high energy density physics research using large laser facility. With broadband, extended light source and multi-beam overlapping techniques, rare gas halide Excimer laser facility will provide uniform target illumination theoretically. Angular multiplexing and image relay techniques are briefly reviewed and some of the limitations are examined to put it more practical. The system consists of a commercial oscillator front end, three gas discharge amplifiers, two electron beam pumped amplifiers and the optics required to relay, encode and decode the laser beam. An 18 lens array targeting optics direct and focus the laser in the vacuum target chamber. The system is operational and currently undergoing tests. The total 18 beams output energy is more than 100J and the pulse width is 7ns (FWHM), the intensities on the target will exceed 1013W/cm2. The aberration of off-axis imaging optics at main amplifier should be minimized to improve the final image quality at the target. Automatic computer controlled alignment of the whole system is vital to efficiency and stability of the laser system, an array of automatic alignment model is under test and will be incorporated in the system soon.

  3. Excimer-laser-induced activation of Mg-doped GaN layers

    International Nuclear Information System (INIS)

    Lin, Y.-J.; Liu, W.-F.; Lee, C.-T.

    2004-01-01

    In this study, we investigated the 248 nm excimer-laser-induced activation of the Mg-doped GaN layers. According to the observed photoluminescence results and the x-ray photoelectron spectroscopy measurements, we found that the dissociation of the Mg-H complexes and the formation of hydrogenated Ga vacancies (i.e., V Ga H 2 ) and/or the Ga vacancies occupied by interstitial Mg during the laser irradiation process, led to an increase in the hole concentration

  4. Green synthesis of selenium nanoparticles by excimer pulsed laser ablation in water

    Directory of Open Access Journals (Sweden)

    O. Van Overschelde

    2013-10-01

    Full Text Available Pure selenium nanoparticles were successfully synthesized by Liquid Phase - Pulsed Laser Ablation (LP-PLA in de-ionized water. Excimer laser (248 nm operating at low fluence (F ∼ 1 J/cm2 was used to generate colloidal solutions of selenium nanoparticles. The obtained selenium nanoparticles were characterized by UV-visible spectroscopy, Raman spectroscopy, Dynamic Light Scattering, and Transmission Electron Microscopy. We describe the multi-modal size distributions generated and use the centrifugation method to isolate the smallest nanoparticles (∼60 nm in diameter.

  5. Perspectives and advantages of the use of excimer laser annealing for MOS technology

    International Nuclear Information System (INIS)

    Privitera, V.; Alippi, P.; Camalleri, M.

    2006-01-01

    The integration of excimer laser annealing (ELA) into the MOS device technology has been studied and evaluated within the frame of the IST project FLASH (Fundamentals and applications of laser processing for highly innovative MOS technology), funded by the European Commission. The final aim of the project was to demonstrate that ELA can be applied as a reliable, effective and advantageous process in the context of semiconductor device fabrication. Some of the results of this activity are summarised, relative to the experimental characterization and theoretical modelling. The electrical characterization of the transistor fabricated by ELA is also presented, showing a device yield of 90% on wafer

  6. Pulse repetition frequency effects in a high average power x-ray preionized excimer laser

    International Nuclear Information System (INIS)

    Fontaine, B.; Forestier, B.; Delaporte, P.; Canarelli, P.

    1989-01-01

    Experimental study of waves damping in a high repetition rate excimer laser is undertaken. Excitation of laser active medium in a subsonic loop is achieved by means of a classical discharge, through transfer capacitors. The discharge stability is controlled by a wire ion plasma (w.i.p.) X-rays gun. The strong acoustic waves induced by the active medium excitation may lead to a decrease, at high PRF, of the energy per pulse. First results of the influence of a damping of induced density perturbations between two successive pulses are presented

  7. Offset-gated poly-Si TFTs using in-situ fluorine passivation and excimer laser doping

    International Nuclear Information System (INIS)

    Jung, Sang Hoon; Kim, Cheon Hong; Yoo, Juhn Suk; Han, Min Koo

    2000-01-01

    A new low-temperature poly-Si thin film transistor (TFT) fabrication method employing in-situ fluorine passivation and excimer-laser doping is proposed to fabricate offset-gated poly-Si TFTs. In the new process, the crystallization, the in-situ fluorine passivation of the active layer, and the doping of the source/drain region are performed simultaneously with only one step of excimer laser annealing while the conventional fabrication method requires two laser annealing steps. Employing phosphosilicate glass (PSG) films as a diffusion source, we successfully accomplished excimer laser doping. The subthreshold and the on-state characteristics of the device with in-situ fluorine passivation were considerably improved. This improvement was due to the fluorine passivation effects, which cured dangling bonds and strained bonds in the poly-Si channel, the offset region, and the SiO 2 /poly-Si interface

  8. Offset-gated poly-Si TFTs using in-situ fluorine passivation and excimer laser doping

    CERN Document Server

    Jung, S H; Yoo, J S; Han, M K

    2000-01-01

    A new low-temperature poly-Si thin film transistor (TFT) fabrication method employing in-situ fluorine passivation and excimer-laser doping is proposed to fabricate offset-gated poly-Si TFTs. In the new process, the crystallization, the in-situ fluorine passivation of the active layer, and the doping of the source/drain region are performed simultaneously with only one step of excimer laser annealing while the conventional fabrication method requires two laser annealing steps. Employing phosphosilicate glass (PSG) films as a diffusion source, we successfully accomplished excimer laser doping. The subthreshold and the on-state characteristics of the device with in-situ fluorine passivation were considerably improved. This improvement was due to the fluorine passivation effects, which cured dangling bonds and strained bonds in the poly-Si channel, the offset region, and the SiO sub 2 /poly-Si interface.

  9. Microencapsulation of silicon cavities using a pulsed excimer laser

    KAUST Repository

    Sedky, Sherif M.; Tawfik, Hani H.; Ashour, Mohamed; Graham, Andrew B.; Provine, John W.; Wang, Qingxiao; Zhang, Xixiang; Howe, Roger T.

    2012-01-01

    This work presents a novel low thermal-budget technique for sealing micromachined cavities in silicon. Cavities are sealed without deposition, similar to the silicon surface-migration sealing process. In contrast to the 1100°C furnace anneal

  10. XeCl excimer laser with new prism resonator configurations and its performance characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Benerji, N. S., E-mail: nsb@rrcat.gov.in, E-mail: bsingh@rrcat.gov.in; Singh, A.; Varshnay, N.; Singh, Bijendra, E-mail: nsb@rrcat.gov.in, E-mail: bsingh@rrcat.gov.in [Excimer Laser Section, LMPD, Raja Ramanna Center for Advanced Technology, Indore 452013 (India)

    2015-07-15

    New resonator cavity configurations, namely, the prism resonator and unstable prism resonator, are demonstrated for the first time in an excimer (XeCl) laser with interesting and novel results. High misalignment tolerance ∼50 mrad is achieved with considerably reduced beam divergence of less than ∼1 mrad without reduction in output power capabilities of the laser. The misalignment tolerance of ∼50 mrad is a dramatic improvement of ∼25 times compared to ∼2 mrad normally observed in standard excimer laser with plane-plane cavity. Increase in depth of focus from 3 mm to 5.5 mm was also achieved in case of prism resonator configuration with an improvement of about 60%. Unstable prism resonator configuration is demonstrated here in this paper with further reduction in beam divergence to about 0.5 mrad using plano-convex lens as output coupler. The misalignment tolerance in case of unstable prism resonator was retained at about 30 mrad which is a high value compared to standard unstable resonators. The output beam spot was completely filled with flat-top profile with prism resonator configurations, which is desired for various material processing applications. Focusing properties and beam divergence in case of prism resonator have been investigated using SEM (scanning electron microscope) images. SEM images of the focused spot size (∼20 μm holes) on metal sheet indicate beam divergence of about 0.05 mrad which is about 1.5 times diffraction limit. Energy contained in this angle is thus sufficient for micro-machining applications. Clean and sharp edges of the micro-holes show high pointing stability with multiple shot exposures. Such characteristics of the excimer laser system will be extremely useful in micro-machining and other field applications.

  11. Excimer laser-assisted anterior lamellar keratoplasty for keratoconus, corneal problems after laser in situ keratomileusis, and corneal stromal opacities.

    Science.gov (United States)

    Bilgihan, Kamil; Ozdek, Sengül C; Sari, Ayça; Hasanreisoğlu, Berati

    2006-08-01

    To evaluate excimer laser-assisted anterior lamellar keratoplasty to augment thin corneas as in keratoconus ( .05). This technique presents a different modality for the treatment of keratoconus, post-LASIK corneal problems, and other corneal stromal opacities with anterior lamellar keratoplasty. Additional studies with more patients and longer follow-up will help determine the role of this technique as a substitute for penetrating keratoplasty in these patients.

  12. Random noise can help to improve synchronization of excimer laser pulses.

    Science.gov (United States)

    Mingesz, Róbert; Barna, Angéla; Gingl, Zoltán; Mellár, János

    2016-02-01

    Recently, we have reported on a compact microcontroller-based unit developed to accurately synchronize excimer laser pulses (Mingesz et al. 2012 Fluct. Noise Lett. 11, 1240007 (doi:10.1142/S021947751240007X)). We have shown that dithering based on random jitter noise plus pseudorandom numbers can be used in the digital control system to radically reduce the long-term drift of the laser pulse from the trigger and to improve the accuracy of the synchronization. In this update paper, we present our new experimental results obtained by the use of the delay-controller unit to tune the timing of a KrF excimer laser as an addition to our previous numerical simulation results. The hardware was interfaced to the laser using optical signal paths in order to reduce sensitivity to electromagnetic interference and the control algorithm tested by simulations was applied in the experiments. We have found that the system is able to reduce the delay uncertainty very close to the theoretical limit and performs well in real applications. The simple, compact and flexible system is universal enough to also be used in various multidisciplinary applications.

  13. Structural and morphological transformations of TiO2 nanotube arrays induced by excimer laser treatment

    International Nuclear Information System (INIS)

    Hsu, Ming-Yi; Thang, Nguyen Van; Wang Chih; Leu Jihperng

    2012-01-01

    The structural and morphological transformations of TiO 2 nanotube arrays (TNAs) treated by excimer laser annealing (ELA) were investigated as a function of the laser fluence using parallel and tilted modes. Results showed that the crystallinity of the ELA-treated TNAs reached only about 50% relative to that of TNAs treated by furnace anneal at 400 °C for 1 h. The phase transformation starts from the top surface of the TNAs with surface damage resulting from short penetration depth and limited one-dimensional heat transport from the surface to the bottom under extremely short pulse duration (25 ns) of the excimer laser. When a tilted mode was used, the crystallinity of TNAs treated by ELA at 85° was increased to 90% relative to that by the furnace anneal. This can be attributed to the increased area of the laser energy interaction zone and better heat conduction to both ends of the TNAs. - Highlights: ► We examined the morphology and microstructure of TNAs treated by ELA. ► Crystallinity of parallel ELA-treated TNAs reached ∼50% of furnace anneal. ► Tilted ELA at 85o enhanced the degree of crystallization in TNAs to 90%.

  14. Excimer-laser-induced permanent electrical conductivity in solid C60 films

    International Nuclear Information System (INIS)

    Ning, D.; Lou, Q.H.; Dong, J.X.; Wei, Y.R.

    1996-01-01

    After being irradiated in air by a XeCl (308 nm) excimer laser, the electrical conductivity of solid thin-film C 60 has been improved by more than six orders of magnitudes. The products resulting from laser irradiation of C 60 films have been investigated by Raman scattering and the onset of conductivity can be attributed to laser-induced oxygenation and disintegration of the fullerene. Irradiated by ∼40 ns laser pulses with different fluence, products with different microstructure were observed. At lower fluence, the Raman features of microcrystalline graphite and fullerene polymer were observed. At a fluence just below the ablation threshold (36 mJ/cm 2 ), the fullerene molecules in the film were disintegrated completely and transformed to amorphous graphite. (orig.). With 5 figs

  15. A 223-nm KrCl excimer laser on a He-Kr-HCl mixture

    International Nuclear Information System (INIS)

    Razhev, A M; Zhupikov, A A; Kargapol'tsev, E S

    2004-01-01

    The results of experimental studies of the parameters of a 223-nm electric-discharge KrCl excimer laser on a He-Kr-HCl mixture depending on the excitation conditions and the composition of the active gaseous medium are presented. To achieve the maximum values of the output energy and the efficiency of the KrCl laser on mixtures with buffer gaseous helium, an excitation system was used that included a circuit with an LC inverter with a high-voltage switch based on an RU-65 spark gap. An output energy of 320 mJ with an efficiency of 0.5% relative to the energy stored in the capacitors is obtained in a KrCl laser with an active medium based on the buffer He gas at a charging voltage of 30 kV. Radiation pulses with a duration of 22±1 ns and a pulse power of 15 MW are obtained. (lasers)

  16. Pulsed Laser Deposition of Tungsten Thin Films on Graphite

    International Nuclear Information System (INIS)

    Kassem, W.; Tabbal, M.; Roumie, M.

    2011-01-01

    Thin coatings of Tungsten were deposited on substrates fabricated by pre-depositing graphite thin layers on Si(100) wafers. We ablate pure W target using a 20 ns KrF excimer laser (248 nm) in an Ar ambient. The effect of background gas pressure, substrate temperature, and laser fluence, on the properties of the deposited W layers is studied using several techniques including X-Ray Diffraction, Atomic Force Microscopy, surface profilometry, and Rutherford Back-Scattering spectrometry. Our results indicate that the deposited layers consist of the well-crystallized body-centered-cubic α-W phase with bulk-like properties, particularly for films deposited at a substrate temperature of 450 0 C, laser fluence greater than 400mJ, and pressure of about 10mTorr. (author)

  17. Deposition of tantalum carbide coatings on graphite by laser interactions

    Science.gov (United States)

    Veligdan, James; Branch, D.; Vanier, P. E.; Barietta, R. E.

    1994-01-01

    Graphite surfaces can be hardened and protected from erosion by hydrogen at high temperatures by refractory metal carbide coatings, which are usually prepared by chemical vapor deposition (CVD) or chemical vapor reaction (CVR) methods. These techniques rely on heating the substrate to a temperature where a volatile metal halide decomposes and reacts with either a hydrocarbon gas or with carbon from the substrate. For CVR techniques, deposition temperatures must be in excess of 2000 C in order to achieve favorable deposition kinetics. In an effort to lower the bulk substrate deposition temperature, the use of laser interactions with both the substrate and the metal halide deposition gas has been employed. Initial testing involved the use of a CO2 laser to heat the surface of a graphite substrate and a KrF excimer laser to accomplish a photodecomposition of TaCl5 gas near the substrate. The results of preliminary experiments using these techniques are described.

  18. Polycrystalline diamond film UV detectors for excimer lasers

    International Nuclear Information System (INIS)

    Ralchenko, V G; Savel'ev, A V; Konov, Vitalii I; Mazzeo, G; Spaziani, F; Conte, G; Polyakov, V I

    2006-01-01

    Photoresistive metal-semiconductor-metal detectors based on polycrystalline diamond films are fabricated for recording cw and pulsed UV radiation. The detectors have a high spectral selectivity (the UV-to-VIS response ratio is ∼10 5 ) and a temporal resolution of the order of 10 9 s. 'Solar-blind' photostable diamond detectors are promising for applications in UV lithography, laser micromachining, medicine, and space research. (letters)

  19. Optical coherence tomography following percutaneous coronary intervention with Excimer laser coronary atherectomy

    Energy Technology Data Exchange (ETDEWEB)

    Rawlins, John, E-mail: john.rawlins@doctors.net.uk; Talwar, Suneel; Green, Mark; O’Kane, Peter

    2014-01-15

    The indications for Excimer laser coronary atherectomy (ELCA) have been refined in modern interventional practice. With the expanding role for optical coherence tomography (OCT) providing high-resolution intra-coronary imaging, this article examines the appearance of the coronary lumen after ELCA. Each indication for ELCA is discussed and illustrated with a clinical case, followed by detailed analysis of the OCT imaging pre and post ELCA. The aim of the article is to provide information to interventional cardiologists to facilitate decision making during PCI, when ELCA has been used as part of the interventional strategy.

  20. Impact of Angioscopic Evaluation for Femoropopliteal In-Stent Restenosis Before and After Excimer Laser Atherectomy.

    Science.gov (United States)

    Idemoto, Akiko; Okamoto, Naotaka; Tanaka, Akihiro; Mori, Naoki; Nakamura, Daisuke; Yano, Masamichi; Makino, Nobuhiko; Egami, Yasuyuki; Shutta, Ryu; Tanouchi, Jun; Nishino, Masami

    2017-07-01

    In-stent restenosis (ISR) is a prevalent problem following stenting of femoropopliteal lesions. A potential novel treatment modality for ISR including excimer laser atherectomy (ELA) has become available. We performed ELA for in-stent chronic total occlusion (CTO) of femoropopliteal lesions and evaluated lesion morphology before and after ELA by angioscopy in 2 patients. The angioscopic findings clearly showed removal of in-stent thrombi after ELA. Thus, ELA may be effective for in-stent CTO of femoropopliteal lesions. This is the first report describing the direct visualization of ELA effect for vaporization of thrombi in femoropopliteal in-stent lesions by angioscopy.

  1. Photo-triggering and secondary electron produced ionization in electric discharge ArF* excimer lasers

    Science.gov (United States)

    Xiong, Zhongmin; Kushner, Mark J.

    2011-10-01

    Electric discharge excimer lasers are sustained in multi-atmosphere attaching gas mixtures that are typically preionized to enable a reproducible, uniform glow, which maximizes optical quality and gain. This preionization is often accomplished using UV light produced by a corona discharge within the plasma cavity. To quantify the relationship between corona discharge properties and those of the laser discharge, the triggering of electron avalanche by preionizing UV light in an electric discharge-pumped ArF* excimer laser was numerically investigated using a two-dimensional model. The preionizing UV fluxes were generated by a corona-bar discharge driven by the same voltage pulse as the main discharge sustained in a multi-atmospheric Ne/Ar/Xe/F2 gas mixture. The resulting peak photo-electron density in the inter-electrode spacing is around 108 cm-3, and its distribution is biased toward the UV source. The preionization density increases with increasing dielectric constant and capacitance of the corona bar. The symmetry and uniformity of the discharge are, however, improved significantly once the main avalanche develops. In addition to bulk electron impact ionization, the ionization generated by sheath accelerated secondary electrons was found to be important in sustaining the discharge current at experimentally observed values. At peak current, the magnitude of the ionization by sheath accelerated electrons is comparable to that from bulk electron impact in the vicinity of the cathode.

  2. Fabrication of biosynthetic vascular prostheses by 193-nm excimer laser radiation

    Science.gov (United States)

    Husinsky, Wolfgang; Csek, Ch.; Bartel, A.; Grabenwoeger, M.; Fitzal, F.; Wolner, Ernst

    1998-05-01

    This study was undertaken to investigate the feasibility of transmural capillary ingrowth into the inner surface of biosynthetic vascular prostheses (OmniflowTM) through perforations created by an excimer-laser, thus inducing an endothelial cell coverage. The biosynthetic vascular prostheses (10 cm length, 6 mm (phi) ) were perforated with an excimer laser ((phi) of the holes 50 - 100 micrometer, distance 4 mm) and implanted into the carotid arteries of 8 sheep. The laser tissue interaction process of 193 nm radiation ensures minimal thermal damage to the prostheses. They were compared to untreated OmniflowTM prostheses implanted at the contralateral side. Three months after implantation the prostheses were explanted and evaluated by gross morphology, histological examination and scanning electron microscopy. Scanning electron microscopy showed endothelial cells in the midgraft portion of all perforated prostheses, whereas collagen fibers, fibrin meshwork and activated platelets formed the inner layer in 6 out of 8 untreated OmniflowTM prostheses. It can be concluded, that spontaneous endothelialization of biosynthetic vascular prostheses can be achieved by transmural capillary ingrowth through perforations in the wall of the prostheses in an experimental sheep model.

  3. Agglomeration of amorphous silicon film with high energy density excimer laser irradiation

    International Nuclear Information System (INIS)

    He Ming; Ishihara, Ryoichi; Metselaar, Wim; Beenakker, Kees

    2007-01-01

    In this paper, agglomeration phenomena of amorphous Si (α-Si) films due to high energy density excimer laser irradiation are systematically investigated. The agglomeration, which creates holes or breaks the continuous Si film up into spherical beads, is a type of serious damage. Therefore, it determines an upper energy limit for excimer laser crystallization. It is speculated that the agglomeration is caused by the boiling of molten Si. During this process, outbursts of heterogeneously nucleated vapor bubbles are promoted by the poor wetting property of molten silicon on the SiO 2 layer underneath. The onset of the agglomeration is defined by extrapolating the hole density as a function of the energy density of the laser pulse. A SiO 2 capping layer (CL) is introduced on top of the α-Si film to investigate its influence on the agglomeration. It is found that effects of the CL depend on its thickness. The CL with a thickness less than 300 nm can be used to suppress the agglomeration. A thin CL acts as a confining layer and puts a constraint on bubble burst, and hence suppresses the agglomeration

  4. The European answer to the integration issues of excimer laser annealing in MOS technology

    International Nuclear Information System (INIS)

    Privitera, V.; La Magna, A.; Fortunato, G.; Camalleri, M.; Magri, A.; Simon, F.; Svensson, B.G.

    2004-01-01

    Excimer laser annealing (ELA) of MOSFET devices is currently studied and evaluated within the frame of the IST project 'Fundamentals and applications of laser processing for highly innovative MOS technology' (FLASH), funded by the European Commission. This European consortium aim to demonstrate that ELA can be industrialized in the context of semiconductor device fabrication. The technical achievement of homogeneous irradiation of entire wafers by industrial line beam system set up has been combined with device design solutions, in order to avoid the detrimental effects of the laser beam on device structures and tackle the integration issues, main obstacles for the use of ELA in the semiconductor industry. The launch of ELA, to open a new market segment in the semiconductor industry, implies also the availability of reliable process simulation tools. Therefore, a simulation program based on the phase-field method was produced, fully working and available

  5. Effect of laser-plasma X-ray irradiation on crystallization of amorphous silicon film by excimer laser annealing

    International Nuclear Information System (INIS)

    Matsuo, Naoto; Uejukkoku, Kazuya; Heya, Akira; Takanashi, Yasuyuki; Amano, Sho; Miyamoto, Shuji; Mochizuki, Takayasu

    2007-01-01

    The effect of laser plasma soft X-ray (LPX) irradiation on crystallization by excimer laser annealing (ELA) was investigated at low ELA energy densities. The crystalline fraction at energy densities of 50 and 60 mJ/cm 2 for LPX followed by ELA is nearly equal to that at 80 to 100 mJ/cm 2 for the ELA method with non-LPX irradiation. The results obtained indicate that LPX irradiation before ELA reduces the critical energy density for the start of crystallization. The combined method of LPX irradiation and ELA will enable us to realize a low-temperature process for ELA crystallization. (author)

  6. The effect of microarc oxidation and excimer laser processing on the microstructure and corrosion resistance of Zr–1Nb alloy

    International Nuclear Information System (INIS)

    Yang, Jiaoxi; Wang, Xin; Wen, Qiang; Wang, Xibing; Wang, Rongshan; Zhang, Yanwei; Xue, Wenbin

    2015-01-01

    The main purpose of this research was to investigate the effect of microarc oxidation (MAO) and excimer laser processing on the corrosion resistance of Zr–1Nb alloy in service environment. The pre-oxide film was fabricated on the surface of Zr–1Nb cladding tubes by MAO processing, and then subjected to KrF excimer laser irradiation. The surface morphology of the pre-oxide film was observed using a scanning electron microscope; phase compositions and quantities were determined using an X-ray diffraction; surface roughness was determined using a profilometer; and thermal expansion coefficient was measured using a dilatometer. Autoclave experiments were conducted for 94 days in an aqueous condition of 360 °C under 18.6 MPa in 0.01 mol/L LiOH solutions. The results showed that MAO + laser treatment resulted in a significant increase in the corrosion resistance of Zr–1Nb cladding tubes at high temperatures, because laser melting and etching could lead to a reduction in surface roughness and an increase in compactness of the pre-oxide film, and laser processing could promote the transformation of m-ZrO 2 phase to t-ZrO 2 phase. The best corrosion resistance was obtained when the pulse energy was 500 mJ, scanning speed was 0.13 mm/s, and pulse number was 2400. - Highlights: • Pre-oxide film was fabricated on Zr–1Nb cladding tube by MAO+ excimer laser processing. • Excimer laser processing induced the transformation of m-ZrO 2 to t-ZrO 2 . • The Rietveld quantitative analysis of the pre-oxide film was made. • We investigated the high temperature corrosion and corrosion mechanism of the oxide film. • The parameters of MAO+ excimer laser processing were optimized.

  7. The effect of microarc oxidation and excimer laser processing on the microstructure and corrosion resistance of Zr–1Nb alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jiaoxi, E-mail: yangjiaoxi@bjut.edu.cn [Institute of Laser Engineering, Beijing University of Technology, Beijing 100124 (China); Wang, Xin; Wen, Qiang; Wang, Xibing [Institute of Laser Engineering, Beijing University of Technology, Beijing 100124 (China); Wang, Rongshan; Zhang, Yanwei [Suzhou Nuclear Power Research Institute, Suzhou 215004 (China); Xue, Wenbin [College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2015-12-15

    The main purpose of this research was to investigate the effect of microarc oxidation (MAO) and excimer laser processing on the corrosion resistance of Zr–1Nb alloy in service environment. The pre-oxide film was fabricated on the surface of Zr–1Nb cladding tubes by MAO processing, and then subjected to KrF excimer laser irradiation. The surface morphology of the pre-oxide film was observed using a scanning electron microscope; phase compositions and quantities were determined using an X-ray diffraction; surface roughness was determined using a profilometer; and thermal expansion coefficient was measured using a dilatometer. Autoclave experiments were conducted for 94 days in an aqueous condition of 360 °C under 18.6 MPa in 0.01 mol/L LiOH solutions. The results showed that MAO + laser treatment resulted in a significant increase in the corrosion resistance of Zr–1Nb cladding tubes at high temperatures, because laser melting and etching could lead to a reduction in surface roughness and an increase in compactness of the pre-oxide film, and laser processing could promote the transformation of m-ZrO{sub 2} phase to t-ZrO{sub 2} phase. The best corrosion resistance was obtained when the pulse energy was 500 mJ, scanning speed was 0.13 mm/s, and pulse number was 2400. - Highlights: • Pre-oxide film was fabricated on Zr–1Nb cladding tube by MAO+ excimer laser processing. • Excimer laser processing induced the transformation of m-ZrO{sub 2} to t-ZrO{sub 2}. • The Rietveld quantitative analysis of the pre-oxide film was made. • We investigated the high temperature corrosion and corrosion mechanism of the oxide film. • The parameters of MAO+ excimer laser processing were optimized.

  8. Micro flow-through PCR in a PMMA chip fabricated by KrF excimer laser.

    Science.gov (United States)

    Yao, Liying; Liu, Baoan; Chen, Tao; Liu, Shibing; Zuo, Tiechuan

    2005-09-01

    As the third PCR technology, micro flow-through PCR chip can amplify DNA specifically in an exponential fashion in vitro. Nowadays many academies in the world have successfully amplified DNA using their own-made flow-through PCR chip. In this paper, the ablation principle of PMMA at 248 nm excimer laser was studied, then a PMMA based flow-through PCR chip with 20 cycles was fabricated by excimer laser at 19 kv and 18 mm/min. The chip was bonded together with another cover chip at 105( composite function)C, 160 N and 20 minutes. In the end, it was integrated with electrical thermal thin films and Pt 100 temperature sensors. The temperature controllers was built standard PID digital temperature controller, the temperature control precision was +/- 0.2( composite function)C. The temperature grads between the three temperature zones were 16.5 and 22.2( composite function)C respectively, the gaps between the temperature zones could realize heat insulation.

  9. Visual and refractive outcomes following myopic laser-assisted subepithelial keratectomy with a flying-spot excimer laser.

    Science.gov (United States)

    McAlinden, Colm; Skiadaresi, Eirini; Moore, Jonathan E

    2011-05-01

    To investigate the visual and refractive outcomes following laser-assisted subepithelial keratectomy (LASEK) surgery with a flying-spot excimer laser. Private practice, Ireland. Case series. In this prospective study, the mean manifest spherical equivalent (SE), sphere, and cylinder were measured preoperatively. All eyes had LASEK surgery with an aberration-free algorithm with the Schwind Amaris excimer laser. Outcomes measured at 1 month, 6 months, and 1 year were uncorrected distance visual acuity (UDVA), manifest refraction, corrected distance visual acuity, contrast sensitivity, aberrometry, and complications. Accuracy, efficacy, and safety were evaluated at 1 year. Preoperatively, the mean SE, sphere, and cylinder in the 80 eyes (48 patients) were -3.58 diopters (D) ± 2.00 (SD), -3.23 ± 1.93 D, and -0.85 ± 0.65 D, respectively. One year postoperatively, the mean SE was -0.00 ± 0.22 D; 57 eyes (71%) were within -0.13 to +0.13 D of the SE, and 71 eyes (98%) were within ±0.50 D. The mean UDVA was -0.06 ± 0.07 logMAR, with an efficacy index of 1.04. The postoperative SE was stable between 1 month, 3 months, and 1 year. One eye (1%) had a change in SE by more than 0.50 D at 6 months and 1 year. There were no statistically significant differences in any aberrations at 1 year. The contrast sensitivity improved from 1.66 ± 0.17 log units preoperatively to 1.72 ± 0.15 log units at 1 month postoperatively (P=.0003), which was unchanged at 6 months and 1 year. This study demonstrated the effectiveness of LASEK for the treatment of myopia with this flying-spot excimer laser. Copyright © 2011 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  10. Laser assisted modification and chemical metallization of electron-beam deposited ceria thin films

    International Nuclear Information System (INIS)

    Krumov, E.; Starbov, N.; Starbova, K.; Perea, A.; Solis, J.

    2009-01-01

    Excimer laser processing is applied for tailoring the surface morphology and phase composition of CeO 2 ceramic thin films. E-beam evaporation technique is used to deposit samples on stainless steel and silicate glass substrates. The films are then irradiated with ArF* excimer laser pulses under different exposure conditions. Scanning electron microscopy, optical spectrophotometry, X-ray diffractometry and EDS microanalysis are used to characterize the non-irradiated and laser-processed films. Upon UV laser exposure there is large increase of the surface roughness that is accompanied by photo-darkening and ceria reduction. It is shown that the laser induced changes in the CeO 2 films facilitate the deposition of metal nano-aggregates in a commercial copper electroless plating bath. The significance of laser modification as a novel approach for the production of CeO 2 based thin film catalysts is discussed.

  11. Laser assisted modification and chemical metallization of electron-beam deposited ceria thin films

    Energy Technology Data Exchange (ETDEWEB)

    Krumov, E., E-mail: emodk@clf.bas.bg [Central Laboratory of Photoprocesses ' Acad. Jordan Malinowski' , Bulgarian Academy of Sciences, Acad. Georgy Bonchev Str., bl. 109, 1113 Sofia (Bulgaria); Starbov, N.; Starbova, K. [Central Laboratory of Photoprocesses ' Acad. Jordan Malinowski' , Bulgarian Academy of Sciences, Acad. Georgy Bonchev Str., bl. 109, 1113 Sofia (Bulgaria); Perea, A.; Solis, J. [Instituto de Optica ' Daza de Valdes' , CSIC, 28006 Madrid (Spain)

    2009-11-15

    Excimer laser processing is applied for tailoring the surface morphology and phase composition of CeO{sub 2} ceramic thin films. E-beam evaporation technique is used to deposit samples on stainless steel and silicate glass substrates. The films are then irradiated with ArF* excimer laser pulses under different exposure conditions. Scanning electron microscopy, optical spectrophotometry, X-ray diffractometry and EDS microanalysis are used to characterize the non-irradiated and laser-processed films. Upon UV laser exposure there is large increase of the surface roughness that is accompanied by photo-darkening and ceria reduction. It is shown that the laser induced changes in the CeO{sub 2} films facilitate the deposition of metal nano-aggregates in a commercial copper electroless plating bath. The significance of laser modification as a novel approach for the production of CeO{sub 2} based thin film catalysts is discussed.

  12. Structuring of poly ether ether ketone by ArF excimer laser radiation in different atmospheres

    International Nuclear Information System (INIS)

    Feng, Y.; Gottmann, J.; Kreutz, E.W.

    2003-01-01

    Structuring of poly ether ether ketone (PEEK) by 193 nm ArF excimer laser radiation has been investigated. Experiments were carried out in different atmospheres (air, vacuum, Ar, O 2 ) in order to study its influence on the quality of the structures and the formation of the debris. Repetition rate makes little effect on the ablation rate and roughness of the structure in presence of any kind of atmosphere, indicating for the structuring of PEEK by ArF laser radiation a large window of processing. The roughness at the bottom of the structures and the morphology of the side walls are strongly affected by the properties of the atmosphere. The smallest roughness is achieved at 0.6 J/cm 2 for all kinds of processing gases. Debris around the structures can be diminished by structuring in vacuum. Plasma expansion speed has been measured by using high speed photography

  13. Unscheduled DNA synthesis in human skin after in vitro ultraviolet-excimer laser ablation

    International Nuclear Information System (INIS)

    Green, H.A.; Margolis, R.; Boll, J.; Kochevar, I.E.; Parrish, J.A.; Oseroff, A.R.

    1987-01-01

    DNA damage repaired by the excision repair system and measured as unscheduled DNA synthesis (UDS) was assessed in freshly excised human skin after 193 and 248 nm ultraviolet (UV)-excimer laser ablative incisions. Laser irradiation at 248 nm induced DNA damage throughout a zone of cells surrounding the ablated and heat-damaged area. In contrast, with 193 nm irradiation UDS was not detected in cells adjacent to the ablated area, even though DNA strongly absorbs this wavelength. Our results suggest that the lack of UDS after 193 nm irradiation is due to: ''shielding'' of DNA by the cellular interstitium, membrane, and cytoplasm, DNA damage that is not repaired by excision repair, or thermal effects that either temporarily or permanently inhibit the excision repair processes

  14. Unscheduled DNA synthesis in human skin after in vitro ultraviolet-excimer laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Green, H.A.; Margolis, R.; Boll, J.; Kochevar, I.E.; Parrish, J.A.; Oseroff, A.R.

    1987-08-01

    DNA damage repaired by the excision repair system and measured as unscheduled DNA synthesis (UDS) was assessed in freshly excised human skin after 193 and 248 nm ultraviolet (UV)-excimer laser ablative incisions. Laser irradiation at 248 nm induced DNA damage throughout a zone of cells surrounding the ablated and heat-damaged area. In contrast, with 193 nm irradiation UDS was not detected in cells adjacent to the ablated area, even though DNA strongly absorbs this wavelength. Our results suggest that the lack of UDS after 193 nm irradiation is due to: ''shielding'' of DNA by the cellular interstitium, membrane, and cytoplasm, DNA damage that is not repaired by excision repair, or thermal effects that either temporarily or permanently inhibit the excision repair processes.

  15. In-vitro ablation of fibrocartilage by XeCl excimer laser

    Science.gov (United States)

    Buchelt, Martin; Papaioannou, Thanassis; Fishbein, Michael C.; Peters, Werner; Beeder, Clain; Grundfest, Warren S.

    1991-07-01

    A 308 nm excimer laser was employed for ablation of human fibrocartilage. Experiments were conducted in vitro. The tissue response was investigated with respect to dosimetry (ablation rate versus radiant exposure) and thermal effect (thermographic analysis). Irradiation was performed via a 600 um fiber, with radiant exposures ranging between 20mj/mm2 and 80mj/mm2, at 20Hz. The ablation rates were found to range from 3um/pulse to 80um/pulse depending on the radiant exposure and/or the applied pressure on the delivery system. Thermographic analysis, during ablation, revealed maximum average temperatures of about 65 degree(s)C. Similar measurements performed, for the purpose of comparison, with a CW Nd:YAG and a CW CO2 laser showed higher values, of the order of 200 degree(s)C.

  16. Boron distribution in silicon after excimer laser annealing with multiple pulses

    International Nuclear Information System (INIS)

    Monakhov, E.V.; Svensson, B.G.; Linnarsson, M.K.; La Magna, A.; Italia, M.; Privitera, V.; Fortunato, G.; Cuscuna, M.; Mariucci, L.

    2005-01-01

    We have studied B re-distribution in Si after excimer laser annealing (ELA) with multiple laser pulses. B was implanted using both B and BF 2 ions with energies from 1 to 20 keV and doses of 1 x 10 14 and 1 x 10 15 cm -2 . ELA with the number of pulses from 1 to 100 was performed in vacuum with the sample kept at room temperature and 450 deg. C. Independently of the implantation parameters and the ELA conditions used, a peak in the B concentration is observed near the maximum melting depth after 10 pulses of ELA. A detailed study has revealed that B accumulates at the maximum melt depth gradually with the number of ELA pulses. An increase in the carrier concentration at the maximum melt depth is observed after ELA with 100 pulses. No structural defects have been detected by transmission electron microscopy in the region of the B accumulation

  17. Time-resolved spectroscopy and fluorescence resonance energy transfer in the study of excimer laser damage of chromatin

    Energy Technology Data Exchange (ETDEWEB)

    Radu, L. [Department of Molecular Genetics and Radiobiology, Babes National Institute, Bucharest (Romania)], E-mail: lilianajradu@yahoo.fr; Mihailescu, I. [Department of Lasers, Laser, Plasma and Radiation Physics Institute, Bucharest (Romania); Radu, S. [Department of Computer Science, Polytechnics University, Bucharest (Romania); Gazdaru, D. [Department of Biophysics, Bucharest University (Romania)

    2007-09-21

    The analysis of chromatin damage produced by a 248 nm excimer laser radiation, for doses of 0.3-3 MJ/m{sup 2} was carried out by time-resolved spectroscopy and fluorescence resonance energy transfer (FRET). The chromatin was extracted from a normal and a tumoral tissue of Wistar rats. The decrease with laser dose of the relative contribution of the excited state lifetimes of ethidium bromide (EtBr) bounded to chromatin constitutes an evidence of the reduction of chromatin deoxyribonucleic acid (DNA) double-strand structure. FRET was performed from dansyl chloride to acridine orange, both coupled to chromatin. The increase of the average distance between these ligands, under the action of laser radiation, reflects a loosening of the chromatin structure. The radiosensitivity of tumor tissue chromatin is higher than that of a normal tissue. The determination of the chromatin structure modification in an excimer laser field can be of interest in laser therapy.

  18. Time-resolved spectroscopy and fluorescence resonance energy transfer in the study of excimer laser damage of chromatin

    International Nuclear Information System (INIS)

    Radu, L.; Mihailescu, I.; Radu, S.; Gazdaru, D.

    2007-01-01

    The analysis of chromatin damage produced by a 248 nm excimer laser radiation, for doses of 0.3-3 MJ/m 2 was carried out by time-resolved spectroscopy and fluorescence resonance energy transfer (FRET). The chromatin was extracted from a normal and a tumoral tissue of Wistar rats. The decrease with laser dose of the relative contribution of the excited state lifetimes of ethidium bromide (EtBr) bounded to chromatin constitutes an evidence of the reduction of chromatin deoxyribonucleic acid (DNA) double-strand structure. FRET was performed from dansyl chloride to acridine orange, both coupled to chromatin. The increase of the average distance between these ligands, under the action of laser radiation, reflects a loosening of the chromatin structure. The radiosensitivity of tumor tissue chromatin is higher than that of a normal tissue. The determination of the chromatin structure modification in an excimer laser field can be of interest in laser therapy

  19. Preparation of PZT thin films on YBCO electrodes by KrF excimer laser ablation technique

    International Nuclear Information System (INIS)

    Kurogi, H.; Yamagata, Y.; Ebihara, K.

    1998-01-01

    Pb(Zr X Ti 1-X )O 3 (PZT) films have excellent ferroelectric, optical, piezoelectric, and pyroelectric properties. We prepared PZT thin films by the excimer laser ablation technique. A pulsed KrF excimer laser (Lambda Physik LPX305icc, pulse duration of 25 ns, λ=248 nm, 850 mJ Max.) was used to ablate the bulk targets. We investigated the influence of bottom electrode materials on the characteristics of the PZT thin films prepared on Pt and YBCO underlayers. The X-ray diffraction (XRD) patterns showed that the PZT films prepared with a laser fluence of 2 Jcm -2 on YBCO/MgO(100) substrate at a wide temperature range of 550-680 C have a perovskite (001) structure. At the same laser fluence, the PZT films prepared on Pt/MgO(100) substrate have a perovskite (001) structure only at 650 C. The polarization-electric field (P-E) characteristics and fatigue properties of PZT thin films were measured by the Sawyer-Tower circuit. The remnant polarization and coercive field have been found to be P r =15 μC cm -2 , 30 μC cm -2 and E c =200 kV cm -1 , 100 kV cm -1 for Au/PZT/Pt/MgO and Au/PZT/YBCO/MgO correspondingly. The remnant polarization of Au/PZT/YBCO/MgO thin film was reduced to one-half after about 10 8 cycles of switching. (orig.)

  20. Preparation of PZT thin films on YBCO electrodes by KrF excimer laser ablation technique

    Energy Technology Data Exchange (ETDEWEB)

    Kurogi, H; Yamagata, Y; Ebihara, K [Kumamoto Univ. (Japan). Dept. of Electr. Eng. and Comput. Sci.; Inoue, N [Kyushu Electric Power Co., Inc., Suizenji, 1-6-36, Kumamoto 862 (Japan)

    1998-03-01

    Pb(Zr{sub X}Ti{sub 1-X})O{sub 3} (PZT) films have excellent ferroelectric, optical, piezoelectric, and pyroelectric properties. We prepared PZT thin films by the excimer laser ablation technique. A pulsed KrF excimer laser (Lambda Physik LPX305icc, pulse duration of 25 ns, {lambda}=248 nm, 850 mJ Max.) was used to ablate the bulk targets. We investigated the influence of bottom electrode materials on the characteristics of the PZT thin films prepared on Pt and YBCO underlayers. The X-ray diffraction (XRD) patterns showed that the PZT films prepared with a laser fluence of 2 Jcm{sup -2} on YBCO/MgO(100) substrate at a wide temperature range of 550-680 C have a perovskite (001) structure. At the same laser fluence, the PZT films prepared on Pt/MgO(100) substrate have a perovskite (001) structure only at 650 C. The polarization-electric field (P-E) characteristics and fatigue properties of PZT thin films were measured by the Sawyer-Tower circuit. The remnant polarization and coercive field have been found to be P{sub r}=15 {mu}C cm{sup -2}, 30 {mu}C cm{sup -2} and E{sub c}=200 kV cm{sup -1}, 100 kV cm{sup -1} for Au/PZT/Pt/MgO and Au/PZT/YBCO/MgO correspondingly. The remnant polarization of Au/PZT/YBCO/MgO thin film was reduced to one-half after about 10{sup 8} cycles of switching. (orig.) 7 refs.

  1. Effect of excimer laser (Arf, 193 nm) on aqueous humor during photorefractive keratectomy biophysical and biochemical study

    International Nuclear Information System (INIS)

    Mahmoud, S.S.; Mahmoud, A.A.

    2004-01-01

    Ultraviolet light (193 nm) produced by an excimer laser has been used to produce precise tissue ablation with minimal thermal damage to adjacent tissue. The present study was designed to investigate the effect of excimer laser during photo refractive keratectomy (PRK) on aqueous humor constituents and also the effect of antioxidant enzyme superoxide dismutase (SOD)- applied topically- on these changes if exist. Five groups of schenchilla rabbits were involved in this study, where four groups underwent corneal stromal ablation using argon fluoride excimer laser (Ar F, 193 nm). Two of these four groups were treated with superoxide dismutase intra operatively. The fifth group was used as control one. The obtained results revealed depletion of aqueous humor ascorbate and glutathione contents. Aqueous humor refractive index, cholesterol, phospholipids, malondialdehyde (MDA) and total protein were measured. In conclusion, the excimer laser can induce changes in aqueous humor constituents during PRK. These changes lasted at least for 24 hours and as the time increased to 4 weeks, these changes became limited. The use of exogenous SOD seems to exert beneficial effect on aqueous humor refractive index and total protein

  2. Evaluation and diffusion of excimer laser treatment of myopia in the United States and in the Netherlands

    NARCIS (Netherlands)

    Vondeling, H.; Rosendal, H.; Banta, D.

    1995-01-01

    Excimer laser photorefractive keratectomy (PRK) is an experimental treatment to correct myopia (short-sightedness) that is diffusing into use without convincing evidence of safety and efficacy. It has been claimed that PRK may render conventional methods of correcting myopia, such as wearing glasses

  3. Gasochromic performance of WO{sub 3}-nanorod thin films fabricated with an ArF excimer laser

    Energy Technology Data Exchange (ETDEWEB)

    Yaacob, M. H. [RMIT University, Melbourne (Australia); Universiti Putra Malaysia, Selangor (Malaysia); Ou, J. Z.; Wlodarski, W. [RMIT University, Melbourne (Australia); Kim, C. S.; Lee, J. Y. [KAIST, Daejon (Korea, Republic of); Kim, Y. H. [KIST, Seoul (Korea, Republic of); Oh, C. M.; Dhakal, K. P.; Kim, J. Y.; Kang, J. H. [University of Incheon, Incheon (Korea, Republic of)

    2012-02-15

    Thin films with tungsten trioxide (WO{sub 3}) nanorods were fabricated by using an ArF pulsed laser deposition system. Because the ArF excimer laser operates at a very short wavelength of 193 nm, short enough to expect strong absorption of the photons in the semiconductor oxide targets, and because the clusters incoming to the substrates have high momentum, we could build thin films with good surface morphology. Highly homogeneous arrays of nanorods with sizes mostly in the range of 30 - 40 nm were observed. The absorbance response towards hydrogen (H{sub 2}) gas was investigated for a WO{sub 3} film coated with 25-A-thick palladium (Pd). The Pd/WO{sub 3}-nanorod thin films exhibited excellent gasochromic response when measured in the visible-NIR range (400 - 1000 nm). As low as 0.06% H{sub 2} concentration was clearly sensed. A significant reversible absorbance change and fast recovery (<2 min) were observed when the films were exposed to H{sub 2} at different concentrations.

  4. Improvement of physical properties of IGZO thin films prepared by excimer laser annealing of sol–gel derived precursor films

    International Nuclear Information System (INIS)

    Tsay, Chien-Yie; Huang, Tzu-Teng

    2013-01-01

    Indium gallium zinc oxide (IGZO) transparent semiconductor thin films were prepared by KrF excimer laser annealing of sol–gel derived precursor films. Each as-coated film was dried at 150 °C in air and then annealed using excimer laser irradiation. The influence of laser irradiation energy density on surface conditions, optical transmittances, and electrical properties of laser annealed IGZO thin films were investigated, and the physical properties of the excimer laser annealed (ELA) and the thermally annealed (TA) thin films were compared. Experimental results showed that two kinds of surface morphology resulted from excimer laser annealing. Irradiation with a lower energy density (≤250 mJ cm −2 ) produced wavy and irregular surfaces, while irradiation with a higher energy density (≥350 mJ cm −2 ) produced flat and dense surfaces consisting of uniform nano-sized amorphous particles. The explanation for the differences in surface features and film quality is that using laser irradiation energy to form IGZO thin films improves the film density and removes organic constituents. The dried IGZO sol–gel films irradiated with a laser energy density of 350 mJ/cm 2 had the best physical properties of all the ELA IGZO thin films. The mean resistivity of the ELA 350 thin films (4.48 × 10 3 Ω cm) was lower than that of TA thin films (1.39 × 10 4 Ω cm), and the average optical transmittance in the visible range (90.2%) of the ELA 350 thin films was slightly higher than that of TA thin films (89.7%). - Highlights: • IGZO semiconductor films were prepared by laser annealing of sol–gel derived films. • Surface roughness and resistivity of ELA samples were affected by energy density. • The ELA 350 IGZO film exhibited the best properties among all of ELA IGZO films. • Transmittance and resistivity of ELA 350 films are greater than those of TA films

  5. excimer laser

    Indian Academy of Sciences (India)

    This gas then passes through a set of water-cooled aluminum finned tube heat exchangers. ... been made leak tight better than 10. −5 ... The excitation circuit primarily consists of a high voltage power supply, a thyratron (CX 3608). Figure 4.

  6. Hydrophilicity and morphological investigation of polycarbonate irradiated by ArF excimer laser

    Energy Technology Data Exchange (ETDEWEB)

    Jaleh, B. [Bu-Ali-Sina University, Physics Department, Postal Code 65174, Hamedan (Iran, Islamic Republic of)], E-mail: jaleh@basu.ac.ir; Parvin, P. [Amir Kabir University of Technology, Physics Department, P.O. Box: 15875-4413, Tehran (Iran, Islamic Republic of); Laser Research Center, AEOI, P.O. Box: 11365-8486, Tehran (Iran, Islamic Republic of); Sheikh, N. [Nuclear Science and Technology Research Institute, Radiation Applications Research School, Tehran (Iran, Islamic Republic of); Zamanipour, Z. [Laser Research Center, AEOI, P.O. Box: 11365-8486, Tehran (Iran, Islamic Republic of); Sajad, B. [Azzahra University, Physics Department, Tehran (Iran, Islamic Republic of)

    2007-12-15

    Lasers are used to modify polymeric materials. In this work, a number of polycarbonate (PC) pieces were exposed by ArF excimer laser, 193 nm, at various UV doses from 10 to 100 J/cm{sup 2} with 50-500 mJ/pulse at 10 Hz pulse repetition rate. Morphology of PC has been investigated by scanning electron microscope (SEM) at three regimes pre-ablation, slow and fast ablation. SEM identifies that the conical defects are created on the polymer surface to grow opposite to the direction of laser irradiation. It increases the superficial absorptivity of the material dependent on the ArF laser induced conical microstructure geometry. The contact angle measurement was performed here, in order to determine the hydrophilicity of the irradiated polymer at various coherent doses. It is shown that the contact angle of PC samples which are exposed to the ArF laser significantly alters with UV dose below 7 J/cm{sup 2}.

  7. DNA damage in cultured human skin fibroblasts exposed to excimer laser radiation

    Energy Technology Data Exchange (ETDEWEB)

    Rimoldi, D.; Miller, A.C.; Freeman, S.E.; Samid, D. (Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD (USA))

    1991-06-01

    Ultraviolet excimer lasers are being considered for use in a variety of refractive and therapeutic procedures, the long-term biologic consequences of which are unknown. The effect of sublethal doses of 193-nm laser radiation on cellular DNA was examined in cultured human skin fibroblasts. In contrast to 248 nm, treatments with the 193-nm laser radiation below 70 J/m2 did not cause significant pyrimidine dimer formation in the skin cells. This was indicated by the lack of excision repair activities (unscheduled DNA synthesis assay), and further demonstrated by direct analysis of pyrimidine dimers in DNA from irradiated cells. However, a low level of unscheduled DNA synthesis could be detected following irradiation at 193 nm with 70 J/m2. Both the 193-nm and 248-nm radiation were able to induce chromosomal aberrations, as indicated by a micronucleus assay. A dose-dependent increase in micronuclei frequency was observed 48 and 72 h after laser irradiation. These results indicate that exposure of actively replicating human skin fibroblasts to sublethal doses of either 193- or 248-nm laser radiation can result in genotoxicity.

  8. Levels of interleukin-6 in tears before and after excimer laser treatment

    Directory of Open Access Journals (Sweden)

    Resan Mirko

    2015-01-01

    Full Text Available Background/Aim. Immune response and consequent inflammatory process which originate on ocular surface after a trauma are mediated by cytokines. Photoablation of corneal stroma performed by excimer laser causes surgically induced trauma. Interleukin-6 (IL-6 is mostly known as a proinflammatory cytokine. However, it also has regenerative and anti-inflammatory effects. It is supposed that this cytokine is likely to play a significant role in the process of corneal wound healing response after photoablation of stroma carried out by laser in situ keratomileusis (LASIK or photorefractive keratectomy (PRK methods. The aim of this study was to determine and compare the levels of IL-6 in tears before and after treatment with LASIK and PRK methods. Methods. The study included 68 shortsighted eyes up to -3.0 diopter sphere, i.e. 198 samples of tears (per three samples taken from each of the eyes, divided into two groups according to the kind of excimer laser intervention performed: the group 1 - eyes treated by LASIK method (n = 31, and the group 2 - eyes treated by the PRK method (n = 37. The samples of tears were taken from each eye at the following time points: before excimer laser treatment (0 h, the control group, 1 h after the treatment (1 h and 24 h after the treatment (24 h. The patients did not use anti-inflammatory therapy 24 h after the intervention. Tear samples were collected using microsurgical sponge. Level of IL-6 in tear fluid was determined by the flow cytometry method, applying a commercial test kit which allowed cytokine detection from a small sample volume. Results. The values of IL-6 were detectable in 16% of samples before LASIK treatment and in 30% of samples before PRK treatment. One h after the treatment IL-6 was detectable in 29% of samples for the LASIK group and 43% of samples for the PRK group, and 24 h after the treatment it was detectable in 19% of samples for the LASIK group and in 57% of samples for the PRK group. When we

  9. Levels of interleukin-6 in tears before and after excimer laser treatment.

    Science.gov (United States)

    Resan, Mirko; Stanojević, Ivan; Petković, Aleksandra; Pajić, Bojan; Vojvodić, Danilo

    2015-04-01

    Immune response and consequent inflammatory process which originate on ocular surface after a trauma are mediated by cytokines. Photoablation of corneal stroma performed by excimer laser causes surgically induced trauma. Interleukin-6 (IL-6) is mostly known as a proinflammatory cytokine. However, it also has regenerative and anti-inflammatory effects. It is supposed that this cytokine is likely to play a significant role in the process of corneal wound healing response after photoablation of stroma carried out by laser in situ keratomileusis (LASIK) or photorefractive keratectomy (PRK) methods. The aim of this study was to determine and compare the levels of IL-6 in tears before and after treatment with LASIK and PRK methods. The study included 68 shortsighted eyes up to -3.0 diopter sphere, i.e. 198 samples of tears (per three samples taken from each of the eyes), divided into two groups according to the kind of excimer laser intervention performed: the group 1--eyes treated by LASIK method (n=31), and the group 2--eyes treated by the PRK method (n=37). The samples of tears were taken from each eye at the following time points: before excimer laser treatment (0 h, the control group), 1 h after the treatment (1 h) and 24 h after the treatment (24 h). The patients did not use anti-inflammatory therapy 24 h after the intervention. Tear samples were collected using microsurgical sponge. Level of IL-6 in tear fluid was determined by the flow cytometry method, applying a commercial test kit which allowed cytokine detection from a small sample volume. Results. The values of IL-6 were detectable in 16% of samples before LASIK treatment and in 30% of samples before PRK treatment. One h after the treatment IL-6 was detectable in 29% of samples for the LASIK group and 43% of samples for the PRK group, and 24 h after the treatment it was detectable in 19% of samples for the LASIK group and in 57% of samples for the PRK group. When we analyzed the dynamics of IL76 production

  10. Comparative study on Pulsed Laser Deposition and Matrix Assisted Pulsed Laser Evaporation of urease thin films

    International Nuclear Information System (INIS)

    Smausz, Tomi; Megyeri, Gabor; Kekesi, Renata; Vass, Csaba; Gyoergy, Eniko; Sima, Felix; Mihailescu, Ion N.; Hopp, Bela

    2009-01-01

    Urease thin films were produced by Matrix Assisted Pulsed Laser Evaporation (MAPLE) and Pulsed Laser Deposition from two types of targets: frozen water solutions of urease with different concentrations (1-10% m/v) and pure urease pellets. The fluence of the ablating KrF excimer laser was varied between 300 and 2200 mJ/cm 2 . Fourier transform infrared spectra of the deposited films showed no difference as compared to the original urease. Morphologic studies proved that the films consist of a smooth 'base' layer with embedded micrometer-sized droplets. Absorption-coefficient measurements contradicted the traditional 'absorptive matrix' model for MAPLE deposition. The laser energy was absorbed by urease clusters leading to a local heating-up and evaporation of the frozen matrix from the uppermost layer accompanied by the release of dissolved urease molecules. Significant enzymatic activity of urease was preserved only during matrix assisted transfer.

  11. Surface modification of Al–Si alloy by excimer laser pulse processing

    Energy Technology Data Exchange (ETDEWEB)

    Mahanty, S., E-mail: soumitro@iitk.ac.in; Gouthama

    2016-04-15

    The laser irradiation on Al-Si alloy sample is carried out by excimer laser in ambient conditions for 30 or 45 pulses. Microstructural investigation of laser treated sample is done by OM, SEM and TEM and the surface hardness is evaluated by Vickers micro indentation. Laser treated, samples suggested the dissolution of coarse primary Si and β-AlFeSi particle in α-Al matrix. The SEM/EDS study shows the enhancement of retained Si in α-Al matrix. The interface analysis of laser treated sample suggested the effected modified depth is ∼6 μm. TEM investigation shows the formation of nanocrystalline Si in size ∼2–15 nm. The cellular structures of size range ∼30–50 nm are observed after 45 pulses. The α-Al cells and Si precipitates sizes were considerably refined at higher number of pulses. The fine Si precipitates are found to be dispersed in the intercellular boundaries. An improvement in surface hardness from ∼1.6 to 1.8 is observed 30 and 45 pulse treatment, respectively. The mechanism involves for improvement in surface properties are non-equilibrium solidification, metastable phase formation and microstructural refinement. - Highlights: • Coarse Si and β phase intermetallic are melted and the constituent elements dispersed into the matrix during re-solidification. • The solid solubility of the Si at the surface enhanced after the laser treatment. • The Cellular structure with the size range ∼30–50 nm observed in α-Al after 45 laser pulses. • Si nano particles in size ∼ 2–15 nm were observed in the intercellular region. • Surface hardness increased after laser processing.

  12. Simulation of beam pointing stability on targeting plane of high power excimer laser system

    International Nuclear Information System (INIS)

    Wang Dahui; Zhao Xueqing; Zhang Yongsheng; Zheng Guoxin; Hu Yun; Zhao Jun

    2011-01-01

    Based on characteristics of image-relaying structure in high power excimer MOPA laser system, simulation and analysis software of targeting beam's barycenter stability was designed by using LABVIEW and MATLAB. Simulation was made to measured results of every optical component in laboratory environment. Simulation and validation of budget values for optical components was and optimization of error budget of system was accomplished via post-allocation for several times. It is shown that targeting beam's barycenter stability in the condition of current laboratory environment can't satisfy needs and index of high demand optical components can be allotted to 1.7 μrad when index of low demand optical components have some stability margin. These results can provide a guide to construction of system and design and machining of optical components and optimization of system. Optical components of laboratory on work can satisfy optimized distributed index, which reduce the demand of structure to some extent. (authors)

  13. [Excimer laser therapy of alopecia areata--side-by-side evaluation of a representative area].

    Science.gov (United States)

    Raulin, Christian; Gündogan, Cüneyt; Greve, Bärbel; Gebert, Susanne

    2005-07-01

    We report for the first time on hair regrowth in alopecia areata of the scalp achieved with the 308-nm xenon-chloride excimer laser in a prospective side-by-side trial. The alopecia areata had shown progression over a period of three years, and various treatments had not been effective. Out of a number of affected areas, one representative lesion was chosen; one half of it was treated, the other half remained untreated. After 27 sessions (200 - 4000 mJ/cm2, cumulative dose 52.6 J/cm2) over 3 months, only the treated area showed hair growth; which suggests that this was most probably not a spontaneous remission.

  14. The effect of excimer laser pretreatment on diffusion and activation of boron implanted in silicon

    International Nuclear Information System (INIS)

    Monakhov, E.V.; Svensson, B.G.; Linnarsson, M.K.; La Magna, A.; Italia, M.; Privitera, V.; Fortunato, G.; Cuscuna, M.; Mariucci, L.

    2005-01-01

    We have investigated the effect of excimer laser annealing (ELA) on transient enhanced diffusion (TED) and activation of boron implanted in Si during subsequent rapid thermal annealing (RTA). It is observed that ELA with partial melting of the implanted region causes reduction of TED in the region that remains solid during ELA, where the diffusion length of boron is reduced by a factor of ∼4 as compared to the as-implanted sample. This is attributed to several mechanisms such as liquid-state annealing of a fraction of the implantation induced defects, introduction of excess vacancies during ELA, and solid-state annealing of the defects beyond the maximum melting depth by the heat wave propagating into the Si wafer. The ELA pretreatment provides a substantially improved electrical activation of boron during subsequent RTA

  15. Aqueous transforming growth factor-beta-I levels in rabbit eyes after excimer laser photoablation.

    Science.gov (United States)

    Bilgihan, K; Gürelik, G; Okur, H; Bilgihan, A; Hasanreisoglu, B; Imir, T

    1997-01-01

    Transforming growth factor beta (TGF-beta) plays an important role in anterior segment wound healing, by controlling the cell proliferation and differentiation, angiogenesis, extracellular matrix composition and mediating the immunosuppressive properties of the aqueous humor. The present study was undertaken to clarify the possible changes of aqueous humor TGF-betaI levels after excimer laser photoablation. Twenty-eight New Zealand rabbits were divided into four groups of 7 rabbits each. Group 1 served as control, the central 7 mm of corneal epithelium was removed in groups 2, 3 and 4. We performed 50-microm corneal photoablation in group 3, and 100-microm ablation in group 4. After 48 h we measured the TGF-betaI levels of the aqueous humor by ELISA method. The mean TGF-betaI value of the aqueous humor was found to be 162.94+/-13.73 pg/ml in the control group. Mechanical deepithelialization did not change the TGF-betaI levels of the aqueous humor (p > 0.05). There was no significant difference between the 50-microm photoablated group and the controls (p > 0.05), but the TGF-betaI levels of the 100-microm photoablated group were found to be significantly higher than those of both the control group and 50-microm photoablated group (p < 0.05). Many factors and cytokines may induce corneal haze and myopic regression after excimer laser photoablation; our study demonstrated that TGF-betaI is one of these factors and there is a positive correlation between the depth of corneal photoablation and aqueous TGF-betaI concentrations.

  16. Analysis of excimer laser radiant exposure effect toward corneal ablation volume at LASIK procedure

    Science.gov (United States)

    Adiati, Rima Fitria; Rini Rizki, Artha Bona; Kusumawardhani, Apriani; Setijono, Heru; Rahmadiansah, Andi

    2016-11-01

    LASIK (Laser Asissted In Situ Interlamelar Keratomilieusis) is a technique for correcting refractive disorders of the eye such as myopia and astigmatism using an excimer laser. This procedure use photoablation technique to decompose corneal tissues. Although preferred due to its efficiency, permanency, and accuracy, the inappropriate amount radiant exposure often cause side effects like under-over correction, irregular astigmatism and problems on surrounding tissues. In this study, the radiant exposure effect toward corneal ablation volume has been modelled through several processes. Data collecting results is laser data specifications with 193 nm wavelength, beam diameter of 0.065 - 0.65 cm, and fluence of 160 mJ/cm2. For the medical data, the myopia-astigmatism value, cornea size, corneal ablation thickness, and flap data are taken. The first modelling step is determining the laser diameter between 0.065 - 0.65 cm with 0.45 cm increment. The energy, power, and intensity of laser determined from laser beam area. Number of pulse and total energy is calculated before the radiant exposure of laser is obtained. Next is to determine the parameters influence the ablation volume. Regression method used to create the equation, and then the spot size is substituted to the model. The validation used is statistic correlation method to both experimental data and theory. By the model created, it is expected that any potential complications can be prevented during LASIK procedures. The recommendations can give the users clearer picture to determine the appropriate amount of radiant exposure with the corneal ablation volume necessary.

  17. Excimer laser texturing of natural composite polymer surfaces for studying cell-to-substrate specific response

    Energy Technology Data Exchange (ETDEWEB)

    Dinca, V., E-mail: dincavalentina@yahoo.com [NILPRP, National Institute for Lasers, Plasma and Radiation Physics, Magurele, Bucharest (Romania); Alloncle, P.; Delaporte, P. [Aix-Marseille University, CNRS, LP3 Laboratory, Campus de Luminy, 13288 Marseille (France); Ion, V. [NILPRP, National Institute for Lasers, Plasma and Radiation Physics, Magurele, Bucharest (Romania); Faculty of Physics, University of Bucharest, 077125 Magurele (Romania); Rusen, L.; Filipescu, M. [NILPRP, National Institute for Lasers, Plasma and Radiation Physics, Magurele, Bucharest (Romania); Mustaciosu, C. [Horia Hulubei National Institute of Physics and Nuclear Engineering – IFIN HH, Magurele, Bucharest (Romania); Luculescu, C.; Dinescu, M. [NILPRP, National Institute for Lasers, Plasma and Radiation Physics, Magurele, Bucharest (Romania)

    2015-10-15

    Highlights: • Roughness gradients are obtained in one step by applying single laser pulses and sample tilting. • BSA protein and cell dependence behavior onto gradient characteristics was studied. • The degradation of the samples by lysozyme was correlated to its ability to access the textured area. - Abstract: Surface modifications of biocompatible materials are among the main factors used for enhancing and promoting specific cellular activities (e.g. spreading, adhesion, migration, and differentiation) for various types of medical applications such as implants, microfluidic devices, or tissue engineering scaffolds. In this work an excimer laser at 193 nm was used to fabricate chitosan–collagen roughness gradients. The roughness gradients were obtained in one step by applying single laser pulses and sample tilting. Fourier transform infrared spectroscopy measurements, atomic force microscopy (AFM), scanning electron microscopy (SEM), and spectro-ellipsometry (SE) were used for sample characterization. The goal is to determine the optimal morpho-chemical characteristics of these structures for in vitro tailoring of protein adsorption and cell behavior. The response induced by the roughness gradient onto various cell lines (i.e. L 929 fibroblasts, HEP G2 hepatocytes, OLN 93 oligodendrocytes, M63 osteoblasts) and bovine serum albumin (BSA) protein absorption was investigated.

  18. Surface morphologies of excimer-laser annealed BF2+ implanted Si diodes

    International Nuclear Information System (INIS)

    Burtsev, A.; Schut, H.; Nanver, L.K.; Veen, A. van; Slabbekoorn, J.; Scholtes, T.L.M.

    2004-01-01

    Laser-induced surface roughness and damage formation in ultra-shallow n + -p and p + -n junctions, formed by low energy (5 keV) As + and BF 2 + implantations in Si, respectively, with a dose of 1 x 10 15 cm -2 have been investigated by atomic force microscopy (AFM) and Positron Annihilation Doppler Broadening (PADB) technique. The Si surface roughness is found to increase with laser energy density, and reaches a value of 3.5 nm after excimer-laser annealing (ELA) at 1100 mJ/cm 2 . However, anomalous behavior is witnessed for BF 2 + -implanted Si sample at 800 mJ/cm 2 , at which energy very high surface protrusions up to 9 nm high are observed. By PADB this behavior is correlated to extensive deep microcavity formation in the Si whereby the volatile F 2 fraction can accumulate and evaporate/out-diffuse, leading to Si surface roughening. The consequences for the diode characteristics and contact resistivity are examined

  19. FEM for modelling 193 nm excimer laser treatment of SiO{sub 2}/Si/Si{sub (1-x)}Ge{sub x} heterostructures on SOI substrates

    Energy Technology Data Exchange (ETDEWEB)

    Conde, J.C.; Chiussi, S.; Gontad, F.; Gonzalez, P. [Dpto. Fisica Aplicada, E.T.S.I.I. University of Vigo, Campus Universitario, Rua Maxwell s/n, 36310 Vigo (Spain); Martin, E. [Dpto. de Mecanica, Maquinas, Motores Termicos y Fluidos, E.T.S.I.I. University of Vigo, Campus Universitario, Rua Maxwell s/n, 36310 Vigo (Spain)

    2011-03-15

    Research on epitaxial crystalline silicon (c-Si) and silicon-germanium (Si{sub 1-x}Ge{sub x}) alloys growth and annealing for microelectronic purposes, such as Micro- or Nano-Electro-Mechanical Systems (MEMS or NEMS) and Silicon-On-Nothing (SON) devices is continuously in progress. Laser assisted annealing techniques using commercial ArF Excimer Laser sources are based on ultra-rapid heating and cooling cycles induced by the 193 nm pulses of 20 ns, which are absorbed in the near surface region of the heterostructures. During and after the absorption of these laser pulses, complex physical processes appear that strongly depend on sample structure and applied laser pulse energy densities. The control of the experimental parameters is therefore a key task for obtaining high quality alloys. The Finite ElementsMethod (FEM) is a powerful tool for the optimization of such treatments, because it provides the spatial and temporal temperature fields that are produced by the laser pulses. In this work, we have used a FEM commercial software, to predict the temperatures gradients induced by ArF excimer laser over a wide energy densities range, 0.1<{phi}<0.4 J/cm{sup 2}, on different SiO{sub 2}/Si/Si{sub (1-x)}Ge{sub (x)} thin films deposited on SOI substrate. These numerical results allow us to predict the threshold energies needed to reach the melting point (MP) of the Si and SiGe alloy without oxidation of the thin films system. Therefore, it is possible to optimize the conditions to achieve high quality epitaxy films. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Ablation, surface activation, and electroless metallization of insulating materials by pulsed excimer laser irradiation

    International Nuclear Information System (INIS)

    Lowndes, D.H.; Godbole, M.J.; Pedraza, A.J.

    1993-01-01

    Pulsed-laser irradiation of wide bandgap ceramic substrates, using photons with sub-bandgap energies, activates the ceramic surface for subsequent electroless copper deposition. The copper deposit is confined within the irradiated region when the substrate is subsequently immersed in an electroless copper bath. However, a high laser fluence (typically several j/cm 2 ) and repeated laser shots are needed to obtain uniform copper coverage by this direct-irradiation process. In contrast, by first applying an evaporated SiO x thin film (with x ∼1), laser ablation at quite low energy density (∼0.5 J/cm 2 ) results in re-deposition on the ceramic substrate of material that is catalytic for subsequent electroless copper deposition. Experiments indicate that the re-deposited material is on silicon, on which copper nucleates. Using an SiO x film on a laser-transparent substrate, quite fine (∼12 μm) copper lines can be formed at the boundary of the region that is laser-etched in SiO x . Using SiO x with an absorbing (polycrystalline) ceramic substrate, more-or-less uniform activation and subsequent copper deposition are obtained. In the later case, interactions with the ceramic substrate also may be important for uniform deposition

  1. UV excimer laser and low temperature plasma treatments of polyamide materials

    Science.gov (United States)

    Yip, Yiu Wan Joanne

    Polyamides have found widespread application in various industrial sectors, for example, they are used in apparel, home furnishings and similar uses. However, the requirements for high quality performance products are continually increasing and these promote a variety of surface treatments for polymer modification. UV excimer laser and low temperature plasma treatments are ideally suited for polyamide modification because they can change the physical and chemical properties of the material without affecting its bulk features. This project aimed to study the modification of polyamides by UV excimer laser irradiation and low temperature plasma treatment. The morphological changes in the resulting samples were analysed by scanning electron microscopy (SEM) and tapping mode atomic force microscopy (TM-AFM). The chemical modifications were studied by x-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and chemical force microscopy (CFM). Change in degree of crystallinity was examined by differential scanning calorimetry (DSC). After high-fluence laser irradiation, topographical results showed that ripples of micrometer size form on the fibre surface. By contrast, sub-micrometer size structures form on the polyamide surface when the applied laser energy is well below its ablation threshold. After high-fluence laser irradiation, chemical studies showed that the surface oxygen content of polyamide is reduced. A reverse result is obtained with low-fluence treatment. The DSC result showed no significant change in degree of crystallinity in either high-fluence or low-fluence treated samples. The same modifications in polyamide surfaces were studied after low temperature plasma treatment with oxygen, argon or tetrafluoromethane gas. The most significant result was that the surface oxygen content of polyamide increased after oxygen and argon plasma treatments. Both treatments induced many hydroxyl (-OH) and carboxylic acid (-COOH

  2. Characterization of superconducting thin films deposited by laser ablation. Caracterisation de films minces supraconducteurs deposes par ablation laser

    Energy Technology Data Exchange (ETDEWEB)

    Sentis, M; Delaporte, P [I.M.F.M., 13 - Marseille (FR); Gerri, M; Marine, W [Aix-Marseille-2 Univ., 13-Marseille (FR). Centre Universitaire de Luminy

    1991-05-01

    Thin films of YBa{sub 2}Cu{sub 3}O{sub 7} are deposited by laser ablation on MgO and YSZ substrates. Deposits by infrared (I.R.) Nd: YAG are non stoechiometric. The films having the best superconductor qualities are deposited by ablation with an excimer U.V. laser ({lambda} = 308 nm). These films are epitaxiated with the c axis perpendicular to the substrate. The film quality depends on the substrate temperature, oxygen pressure and cooling speed.

  3. Safety, efficacy, predictability and stability of laser in situ keratomileusis (LASIK) with a 1000-Hz scanning spot excimer laser.

    Science.gov (United States)

    Khoramnia, Ramin; Salgado, Josefina P; Wuellner, Christian; Donitzky, Christof; Lohmann, Chris P; Winkler von Mohrenfels, Christoph

    2012-09-01

    To evaluate the safety, efficacy, predictability and stability of laser in situ keratomileusis (LASIK) with a 1000-Hz scanning spot excimer laser (Concept System 1000; WaveLight GmbH, Erlangen, Germany). LASIK was performed on twenty eyes with myopia or myopic astigmatism (mean spherical equivalent refraction: -3.97±1.72 dioptres (D); mean cylinder: -0.84±0.77 D) using a microkeratome for flap creation and the Concept System 1000 for photoablation. Patients were examined preoperatively as well as 1, 3 and 6 months after the treatment. Manifest sphere and cylinder, uncorrected (UCDVA) and best corrected (BCDVA) distance visual acuity, corneal topography and pachymetry were analysed. We observed no adverse events that might have been associated with the use of a repetition rate of 1000 Hz. All eyes maintained or had improved BCDVA at 6 months after treatment when compared to preoperative values. Six months after LASIK, UCDVA was 20/20 or better in 85% and 20/25 or better in 100% of the eyes. The spherical equivalent refraction was within ±0.50 D in 95% of the eyes at 6 months after surgery. The refraction stayed stable over time; 95% of the eyes changedLASIK with the prototype 1000-Hz excimer laser was safe, efficient and predictable. The postoperative refraction was stable over time. There were no specific clinical side-effects that might be associated with the use of such a high repetition rate. © 2011 The Authors. Acta Ophthalmologica © 2011 Acta Ophthalmologica Scandinavica Foundation.

  4. Krypton Gas for High Quality Single Wall Carbon Nanotubes Synthesis by KrF Excimer Laser Ablation

    Directory of Open Access Journals (Sweden)

    Jasim Al-Zanganawee

    2015-01-01

    Full Text Available We report for the first time the production of single wall carbon nanotubes (SWCNTs by KrF excimer laser ablation method under the krypton gas atmosphere. For the ablation experiment 450 mJ energy and 30 Hz repetition rate KrF excimer laser was used, and the target was prepared with the following composition: 0.6% Ni, 0.6% Co, and 98.8% C (atomic percentage. The ablation product was characterized by confocal Raman microspectroscopy, transmission electron microscopy (TEM, scanning electron microscopy (SEM, and thermogravimetric analysis (TGA. The SWCNTs obtained are a mixture of semiconducting and metallic types with narrow diameters distribution of 1.26 to 1.49 nm, are micrometers long, and contain low amount of graphite and amorphous carbon.

  5. Outcomes of excimer laser enhancements in pseudophakic patients with multifocal intraocular lens

    Directory of Open Access Journals (Sweden)

    Schallhorn SC

    2016-04-01

    Full Text Available Steven C Schallhorn,1–3 Jan A Venter,2 David Teenan,2 Julie M Schallhorn,3 Keith A Hettinger,2 Stephen J Hannan,2 Martina Pelouskova2 1Department of Ophthalmology, University of California, San Francisco, CA, USA; 2Optical Express, Glasgow, UK; 3Department of Ophthalmology, University of Southern California, Los Angeles, CA, USA Purpose: The aim of this study was to assess visual and refractive outcomes of laser vision correction (LVC to correct residual refraction after multifocal intraocular lens (IOL implantation. Patients and methods: In this retrospective study, 782 eyes that underwent LVC to correct unintended ametropia after multifocal IOL implantation were evaluated. Of all multifocal lenses implanted during primary procedure, 98.7% were refractive and 1.3% had a diffractive design. All eyes were treated with VISX STAR S4 IR excimer laser using a convectional ablation profile. Refractive outcomes, visual acuities, patient satisfaction, and quality of life were evaluated at the last available visit. Results: The mean time between enhancement and last visit was 6.3±4.4 months. Manifest spherical equivalent changed from -0.02±0.83 D (-3.38 D to +2.25 D pre-enhancement to 0.00±0.34 D (-1.38 D to +1.25 D post-enhancement. At the last follow-up, the percentage of eyes within 0.50 D and 1.00 D of emmetropia was 90.4% and 99.5%, respectively. Of all eyes, 74.9% achieved monocular uncorrected distance visual acuity 20/20 or better. The mean corrected distance visual acuity remained the same before (-0.04±0.06 logMAR [logarithm of the minimum angle of resolution] and after LVC procedure (-0.04±0.07 logMAR; P=0.70. There was a slight improvement in visual phenomena (starburst, halo, glare, ghosting/double vision following the enhancement. No sight-threatening complications related to LVC occurred in this study. Conclusion: LVC in pseudophakic patients with multifocal IOL was safe, effective, and predictable in a large cohort of

  6. Topography-guided treatment of irregular astigmatism with the wavelight excimer laser.

    Science.gov (United States)

    Jankov, Mirko R; Panagopoulou, Sophia I; Tsiklis, Nikolaos S; Hajitanasis, Georgos C; Aslanides, loannis M; Pallikaris, loannis G

    2006-04-01

    To evaluate the feasibility, safety, and predictability of correcting high irregular astigmatism in symptomatic eyes with the use of topography-guided photoablation. In a prospective, non-comparative case series, 16 consecutive symptomatic eyes of 11 patients with small hyperopic and myopic excimer laser optical zones, decentered and irregular ablation after corneal graft, and corneal scars were operated. Uncorrected visual acuity (UCVA), best spectacle-corrected visual acuity (BSCVA), manifest and cycloplegic refraction, and corneal topography, with asphericity and regularity, were analyzed. LASIK (n = 10) and photorefractive keratectomy (n = 6) were performed using the ALLEGRETTO WAVE excimer laser and T-CAT software (Topography-guided Customized Ablation Treatment; WaveLight Laser Technologie AG, Erlangen, Germany). In the LASIK group, UCVA improved from 0.81 +/- 0.68 IogMAR (20/130) (range: 0.2 to 2.0) to 0.29 +/- 0.21 logMAR (20/39) (range: 0.1 to 0.7) at 6 months. In the PRK group, mean UCVA improved from 0.89 +/- 0.87 IogMAR (20/157) (range: 0.1 to 2.0) to 0.42 +/- 0.35 logMAR (20/53) (range: 0.1 to 1.0) at 6 months. Best spectacle-corrected visual acuity did not change significantly in either group. One PRK patient lost one line of BSCVA. Refractive cylinder for the LASIK group improved from -2.53 +/- 1.71 diopters (D) (range: -0.75 to -5.75 D) to -1.28 +/- 0.99 D (range: 0 to -2.50 D) at 6 months. Refractive cylinder in the PRK group improved from -2.21 +/- 2.11 D (range: -0.25 to -5.50 D) to -1.10 +/- 0.42 D (range: -0.50 to -1.50 D). Index of surface irregularity showed a decrease from 60 +/- 12 (range: 46 to 89) to 50 +/- 9 (range: 32 to 63) at 6 months in the LASIK group whereas no significant change was noted in the PRK group. Subjective symptoms, such as glare, halos, ghost images, starbursts, and monocular diplopia, were not present postoperatively. Topography-guided LASIK and PRK resulted in a significant reduction of refractive cylinder and

  7. Excimer laser doping technique for application in an integrated CdTe imaging device

    CERN Document Server

    Mochizuki, D; Aoki, T; Tomita, Y; Nihashi, T; Hatanaka, Y

    1999-01-01

    CdTe is an attractive semiconductor material for applications in solid-state high-energy X-ray and gamma-ray imaging systems because of its high absorption coefficient, large band gap, good mobility lifetime product of holes and stability at normal atmospheric conditions. We propose a new concept for fabricating an integrated CdTe with monolithic circuit configuration for two-dimensional imaging systems suitable for medical, research or industrial applications and operation at room temperature. A new doping technique has been recently developed that employs excimer laser radiation to diffuse impurity atoms into the semiconductor. Accordingly, heavily doped n- and p-type layers with resistivities less than 1 OMEGA cm can be formed on the high resistive CdTe crystals. We have further extended this technique for doping with spatial pattern. We will present the laser doping technique and various results thus obtained. Spatially patterned doping is demonstrated and we propose the use of these doping techniques for...

  8. Modeling of excimer laser radiation induced defect generation in fluoride phosphate glasses

    International Nuclear Information System (INIS)

    Natura, U.; Ehrt, D.

    2001-01-01

    Fluoride phosphate (FP) glasses with low phosphate content are high-transparent in the deep ultraviolet (UV) range and attractive candidates for UV-optics. Their optical properties are complementary to fluoride crystals. The anomalous partial dispersion makes them desirable for optical lens designs to reduce the secondary spectrum. Their UV transmission is limited by trace impurities introduced by raw materials and decreases when exposed to UV-radiation (lamps, lasers). The experiments of the paper published previously in this journal were used in order to separate radiation induced absorption bands in the fluoride phosphate glass FP10. In this paper the generation mechanism of the phosphorus-oxygen related hole center POHC 2 is investigated in detail in glasses of various compositions (various phosphate and impurity contents) in order to predict the transmission loss in case of long-time irradiation. Experiments were carried out using ArF- and KrF-excimer lasers (ns-pulses). POHC 2 generation strongly depends on the phosphate content and on the content of Pb 2+ . A model was developed on these terms. Rate equations are formulated, incorporating the influence of the Pb 2+ -content on the defect generation, a two-step creation term including an energy transfer process and a one-photon bleaching term. This results in a set of coupled nonlinear differential equations. Absorption coefficients and lifetimes of the excited states were calculated as well. Experimental results compared well with the numerical analysis of the theoretical rate equations

  9. Excimer laser assisted very fast exfoliation and reduction of graphite oxide at room temperature under air ambient for Supercapacitors electrode

    Science.gov (United States)

    Malek Hosseini, S. M. B.; Baizaee, S. M.; Naderi, Hamid Reza; Dare Kordi, Ali

    2018-01-01

    Excimer laser was used for reduction and exfoliation of graphite oxide (GO) at room temperature under air ambient. The prepared excimer laser reduced graphite oxide (XLRGO) is characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), nitrogen adsorption/desorption (BET method), X-ray diffraction (XRD), X-ray photoemission spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and UV-vis absorption techniques for surface, structural functional groups and band gap analysis. Electrochemical properties are investigated using cyclic voltammetry, galvanostatic charge-discharge, electrochemical impedance spectroscopy (EIS) and continues cyclic voltammetry (CCV) in 0.5 M Na2SO4 as electrolyte. Electrochemical investigations revealed that XLRGO electrode has enhanced supercapacitive performance including specific capacitance of 299 F/g at a scan rate of 2 mV/s. Furthermore, CCV measurement showed that XLRGO electrode kept 97.8% of its initial capacitance/capacity after 4000 cycles. The obtained results from electrochemical investigations confirm that the reduction of GO by using an excimer laser produces high-quality graphene for supercapacitor applications without the need for additional operations.

  10. Does imiquimod pretreatment optimize 308-nm excimer laser (UVB) therapy in psoriasis patients?

    Science.gov (United States)

    Tacastacas, Joselin D; Oyetakin-White, Patricia; Soler, David C; Young, Andrew; Groft, Sarah; Honda, Kord; Cooper, Kevin D; McCormick, Thomas S

    2017-07-01

    Psoriasis continues to be a debilitating skin disease affecting 1-3% of the United States population. Although the effectiveness of several current biologic therapies have described this pathology as a IL-23, TNF-a and Th17-mediated disease, less invasive approaches are still in use and in need of refinement. One of these is the usage of narrow band-UVB (NB-UVB) therapy to deplete specifically intra-epidermal CD3+, CD4+ and CD8+ cells to clear psoriatic plaques. In order to improve NB-UVB therapy, we sought to determine whether skin pre-treatment with the TLR7 agonist imiquimod (IMQ) would help increase the efficiency of the former at resolving psoriatic plaques. Eucerin ® Original Moisturizing Lotion (topical vehicle) or Aldara ® (imiquimod 5% topical cream) were applied for 5 days once daily to a maximum contiguous area of 25 cm 2 (5 cm × 5 cm area). Patients were provided with sachets containing 12.5 mg of imiquimod each and were instructed to apply imiquimod (I) to two psoriasis plaques (5 sachets of imiquimod allotted to each plaque). A PHAROS excimer Laser EX-308 (Ra Medical Systems, Inc. Carlsbad, CA, USA) with an output of monochromatic 308-nm light and pulse width of 20-50 ns was used for all patients. Punch biopsies of psoriatic lesions (6 mm) were taken at 4 and 48 h after final application of topical treatment with or without excimer laser treatment. Real-time quantitative RT-PCR was performed according to manufacturer's instructions and Inmunohistochemistry was used as described before. Our results suggests that although IMQ seemed to activate the type I interferon pathway as previously described, its concomitant usage with NB-UVB for clearing psoriatic skin was ineffective. Although upregulation of genes MxA, GRAMD1A and DMXL2 suggested that IMQ treatment did induce skin changes in psoriasis patients, more optimal dosing of IMQ and NB-UVB might be necessary to achieve desired treatment responses. The observation that psoriasis involvement was not

  11. Pulsed laser deposition of Tl-Ca-Ba-Cu-O films

    International Nuclear Information System (INIS)

    Ianno, N.J.; Liou, S.H.; Woollam, J.A.; Thompson, D.; Johs, B.

    1990-01-01

    Pulsed laser deposition is a technique commonly used to deposit high quality thin films of high temperature superconductors. This paper discusses the results obtained when this technique is applied to the deposition of Tl-Ca-Ba-Cu-O thin films using a frequency doubled Nd:YAG laser operating at 532 nm and an excimer laser operating at 248 nm. Films with onset temperatures of 125 K and zero resistance temperatures of 110 K deposited on (100) oriented MgO from a composite Tl2Ca2Ba2Cu3Ox target were obtained at both wavelengths upon appropriate post deposition annealing. Films deposited at 532 nm exhibit a rough surface, while those deposited at 248 nm are smooth and homogeneous. Upon annealing, films deposited at both wavelengths are single phase Tl2Ca2Ba2Cu3Ox. 12 refs

  12. Microstructures induced by excimer laser surface melting of the SiC{sub p}/Al metal matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Qian, D.S., E-mail: Daishu.qian@postgrad.manchester.ac.uk; Zhong, X.L.; Yan, Y.Z.; Hashimoto, T.; Liu, Z.

    2017-08-01

    Highlights: • Microstructural analysis of the excimer laser-melted SiC{sub p}/AA2124;. • Analytical, FEM, and SPH simulation of the laser-material interaction;. • Mechanism of the formation of the laser-induced microstructure. - Abstract: Laser surface melting (LSM) was carried out on the SiC{sub p}/Al metal matrix composite (MMC) using a KrF excimer laser with a fluence of 7 J/cm{sup 2}. The re-solidification microstructure was characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM) equipped with energy dispersive X-ray detector, and X-ray diffraction (XRD) analysis. It was found that a 2.5 μm thick melted layer was formed in the near-surface region, in which dissolution of the intermetallics and removal of the SiC particles occurred. The thermal and material response upon laser irradiation was simulated using three models, i.e. analytical model, finite element model (FEM) and smoothed-particle hydrodynamics (SPH) model. The effect of SiC particles on the LSM process, the mechanism of the SiC removal and the re-solidification microstructures in the melted layer were discussed. The simulation results were in good agreement with the experimental results and contributed to the generic understanding of the re-solidification microstructures induced by ns-pulsed lasers.

  13. UV and RIR matrix assisted pulsed laser deposition of organic MEH-PPV films

    International Nuclear Information System (INIS)

    Toftmann, B.; Papantonakis, M.R.; Auyeung, R.C.Y.; Kim, W.; O'Malley, S.M.; Bubb, D.M.; Horwitz, J.S.; Schou, J.; Johansen, P.M.; Haglund, R.F.

    2004-01-01

    A comparative study of thin film production based on gentle laser-ablation techniques has been carried out with the luminescent polymer poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylene vinylene]. Using a free-electron laser films were made by resonant infrared pulsed laser deposition (RIR-PLD). For the first time resonant infrared matrix assisted pulsed laser evaporation (RIR-MAPLE) was successfully demonstrated on a luminescent polymer system. In addition to this, an excimer laser has been used for UV-MAPLE depositions at 193 and 248-nm irradiation. Films deposited onto NaCl and quartz substrates were analyzed by Fourier transform infrared spectroscopy, UV-visible absorbance and photoluminescence. Photoluminescent material was deposited by RIR-MAPLE and 248-nm MAPLE, while the RIR-PLD and 193-nm-MAPLE depositions displayed the smoothest surfaces but did not show photoluminescence

  14. UV and RIR matrix assisted pulsed laser deposition of organic MEH-PPV films

    DEFF Research Database (Denmark)

    Christensen, Bo Toftmann; Papantonalis, M.R.; Auyeung, R.C.Y.

    2004-01-01

    -PLD). For the first time resonant infrared matrix assisted pulsed laser evaporation (RIR-MAPLE) was successfully demonstrated on a luminescent polymer system. In addition to this, an excimer laser has been used for UV-MAPLE depositions at 193 and 248-nm irradiation. Films deposited onto NaCl and quartz substrates......A comparative study of thin film production based on gentle laser-ablation techniques has been carried out with the luminescent polymer poly [2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylene vinylene]. Using a free-electron laser films were made by resonant infrared pulsed laser deposition (RIR...... were analyzed by Fourier transform infrared spectroscopy, UV-visible absorbance and photoluminescence. Photoluminescent material was deposited by RIR-MAPLE and 248-nm MAPLE, while the RIR-PLD and 193-nm-MAPLE depositions displayed the smoothest surfaces but did not show photoluminescence. (C) 2003...

  15. Improvement of physical properties of IGZO thin films prepared by excimer laser annealing of sol–gel derived precursor films

    Energy Technology Data Exchange (ETDEWEB)

    Tsay, Chien-Yie, E-mail: cytsay@fcu.edu.tw; Huang, Tzu-Teng

    2013-06-15

    Indium gallium zinc oxide (IGZO) transparent semiconductor thin films were prepared by KrF excimer laser annealing of sol–gel derived precursor films. Each as-coated film was dried at 150 °C in air and then annealed using excimer laser irradiation. The influence of laser irradiation energy density on surface conditions, optical transmittances, and electrical properties of laser annealed IGZO thin films were investigated, and the physical properties of the excimer laser annealed (ELA) and the thermally annealed (TA) thin films were compared. Experimental results showed that two kinds of surface morphology resulted from excimer laser annealing. Irradiation with a lower energy density (≤250 mJ cm{sup −2}) produced wavy and irregular surfaces, while irradiation with a higher energy density (≥350 mJ cm{sup −2}) produced flat and dense surfaces consisting of uniform nano-sized amorphous particles. The explanation for the differences in surface features and film quality is that using laser irradiation energy to form IGZO thin films improves the film density and removes organic constituents. The dried IGZO sol–gel films irradiated with a laser energy density of 350 mJ/cm{sup 2} had the best physical properties of all the ELA IGZO thin films. The mean resistivity of the ELA 350 thin films (4.48 × 10{sup 3} Ω cm) was lower than that of TA thin films (1.39 × 10{sup 4} Ω cm), and the average optical transmittance in the visible range (90.2%) of the ELA 350 thin films was slightly higher than that of TA thin films (89.7%). - Highlights: • IGZO semiconductor films were prepared by laser annealing of sol–gel derived films. • Surface roughness and resistivity of ELA samples were affected by energy density. • The ELA 350 IGZO film exhibited the best properties among all of ELA IGZO films. • Transmittance and resistivity of ELA 350 films are greater than those of TA films.

  16. Excimer laser phototherapeutic keratectomy in conjunction with mitomycin C in corneal macular and granular dystrophies

    Directory of Open Access Journals (Sweden)

    Erdem Yuksel

    2016-04-01

    Full Text Available ABSTRACT Purpose: To evaluate the visual outcomes, recurrence patterns, safety, and efficacy of excimer laser phototherapeutic keratectomy (PTK in conjunction with mitomycin C (MMC for corneal macular and granular diystrophies. Methods: The patients were divided into two groups. Group 1 included patients with macular corneal dystrophy (MCD that caused superficial corneal plaque opacities, and Group 2 included patients with granular corneal dystrophy (GCD. Patients in both groups were pre-, peri-, and postoperatively evaluated. The groups were compared in terms of uncorrected visual acuity (VA, best spectacle-corrected VA, presence of mild or significant recurrence, and time of recurrence. Results: Eighteen eyes (nine with MCD and nine with GCD of 18 patients (10 men and eight women were included. PTK was performed for each eye that was included in this study. The mean ablation amount was 117.8 ± 24.4 µm and 83.5 ± 45.7 µm in MCD and GCD, respectively, (p=0.18. The postoperative improvement of the mean VA was similar between the two groups before recurrences (p>0.43 and after recurrences (p>0.71. There were no statistically significant differences in the recurrence rate and the recurrence-free period for any recurrence type. Conclusion: PTK was an effective, safe, and minimally invasive procedure for patients with MCD and GCD. PTK in conjunction with MMC was similarly effective for both groups in terms of recurrence and visual outcomes.

  17. Excimer laser phototherapeutic keratectomy in conjunction with mitomycin C in corneal macular and granular dystrophies.

    Science.gov (United States)

    Yuksel, Erdem; Cubuk, Mehmet Ozgur; Eroglu, Hulya Yazıcı; Bilgihan, Kamil

    2016-04-01

    To evaluate the visual outcomes, recurrence patterns, safety, and efficacy of excimer laser phototherapeutic keratectomy (PTK) in conjunction with mitomycin C (MMC) for corneal macular and granular diystrophies. The patients were divided into two groups. Group 1 included patients with macular corneal dystrophy (MCD) that caused superficial corneal plaque opacities, and Group 2 included patients with granular corneal dystrophy (GCD). Patients in both groups were pre-, peri-, and postoperatively evaluated. The groups were compared in terms of uncorrected visual acuity (VA), best spectacle-corrected VA, presence of mild or significant recurrence, and time of recurrence. Eighteen eyes (nine with MCD and nine with GCD) of 18 patients (10 men and eight women) were included. PTK was performed for each eye that was included in this study. The mean ablation amount was 117.8 ± 24.4 µm and 83.5 ± 45.7 µm in MCD and GCD, respectively, (p=0.18). The postoperative improvement of the mean VA was similar between the two groups before recurrences (p>0.43) and after recurrences (p>0.71). There were no statistically significant differences in the recurrence rate and the recurrence-free period for any recurrence type. PTK was an effective, safe, and minimally invasive procedure for patients with MCD and GCD. PTK in conjunction with MMC was similarly effective for both groups in terms of recurrence and visual outcomes.

  18. Excimer Laser Surgery: Biometrical Iris Eye Recognition with Cyclorotational Control Eye Tracker System.

    Science.gov (United States)

    Pajic, Bojan; Cvejic, Zeljka; Mijatovic, Zoran; Indjin, Dragan; Mueller, Joerg

    2017-05-25

    A prospective comparative study assessing the importance of the intra-operative dynamic rotational tracking-especially in the treatment of astigmatisms in corneal refractive Excimer laser correction-concerning clinical outcomes is presented. The cyclotorsion from upright to supine position was measured using iris image comparison. The Group 1 of patients was additionally treated with cyclorotational control and Group 2 only with X-Y control. Significant differences were observed between the groups regarding the mean postoperative cylinder refraction ( p < 0.05). The mean cyclotorsion can be calculated to 3.75° with a standard deviation of 3.1°. The total range of torsion was from -14.9° to +12.6°. Re-treatment rate was 2.2% in Group 1 and 8.2% in Group 2, which is highly significant ( p < 0.01). The investigation confirms that the dynamic rotational tracking system used for LASIK results in highly predictable refraction quality with significantly less postoperative re-treatments.

  19. Post-growth annealing of germanium-tin alloys using pulsed excimer laser

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lanxiang; Wang, Wei; Zhou, Qian; Yeo, Yee-Chia, E-mail: yeo@ieee.org [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117582 (Singapore); Pan, Jisheng; Zhang, Zheng [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 117602 (Singapore); Tok, Eng Soon [Department of Physics, National University of Singapore, Singapore 117551 (Singapore)

    2015-07-14

    We investigate the impact of pulsed excimer laser anneal on fully strained germanium-tin alloys (Ge{sub 1−x}Sn{sub x}) epitaxially grown on Ge substrate by molecular beam epitaxy. Using atomic force microscopy, X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy, the morphological and compositional evolution of Ge{sub 1−x}Sn{sub x} with Sn content up to 17% after annealing using various conditions is studied. Ge{sub 0.83}Sn{sub 0.17} samples annealed at 80 mJ/cm{sup 2} or 150 mJ/cm{sup 2} have no observable changes with respect to the as-grown sample. However, Ge{sub 0.83}Sn{sub 0.17} samples annealed at 250 mJ/cm{sup 2} or 300 mJ/cm{sup 2} have Sn-rich islands on the surface, which is due to Sn segregation in the compressively strained epitaxial film. For Ge{sub 0.89}Sn{sub 0.11}, significant Sn redistribution occurs only when annealed at 300 mJ/cm{sup 2}, indicating that it has better thermal stability than Ge{sub 0.83}Sn{sub 0.17}. A mechanism is proposed to explain the formation of Sn-rich islands and Sn-depleted regions.

  20. Excimer Laser Phototherapeutic Keratectomy for the Treatment of Clinically Presumed Fungal Keratitis

    Directory of Open Access Journals (Sweden)

    Liang-Mao Li

    2014-01-01

    Full Text Available This retrospective study was to evaluate treatment outcomes of excimer laser phototherapeutic keratectomy (PTK for clinically presumed fungal keratitis. Forty-seven eyes of 47 consecutive patients underwent manual superficial debridement and PTK. All corneal lesions were located in the anterior stroma and were resistant to medication therapy for at least one week. Data were collected by a retrospective chart review with at least six months of follow-up data available. After PTK, infected corneal lesions were completely removed and the clinical symptoms resolved in 41 cases (87.2%. The mean ablation depth was 114.39±45.51 μm and diameter of ablation was 4.06±1.07 mm. The mean time for healing of the epithelial defect was 8.8±5.6 days. Thirty-four eyes (82.9% showed an improvement in best spectacle-corrected visual acuity of two or more lines. PTK complications included mild to moderate corneal haze, hyperopic shift, irregular astigmatism, and thinning cornea. Six eyes (12.8% still showed progressed infection, and conjunctival flap covering, amniotic membrane transplantation, or penetrating keratoplasty were given. PTK is a valuable therapeutic alternative for superficial infectious keratitis. It can effectively eradicate lesions, hasten reepithelialization, and restore and preserve useful visual function. However, the selection of surgery candidates should be conducted carefully.

  1. ArF excimer laser modulation of TNF-alpha and gelatinase B in NIH 3T3 cells

    International Nuclear Information System (INIS)

    Naudy-Vives, C.; Courant, D.; Perot, J.C.; Garcia, J.; Fretier, P.; Court, L.; Dormont, D.

    1995-01-01

    The effects on TNF-alpha and gelatinase B activity in mammalian cells induced by 193 nm argon fluoride excimer laser have been investigated. The data show that a secretion of 92 kDa type IV collagenase and TNF-alpha were increased in cell culture supernatants. Moreover, the 193 nm laser radiation produces a decrease of cell proliferation and an increase of cell activation 8 hours after irradiation. The total protein amount increases with the delivered dose. Same, but less effects were obtained after exposure to a conventional UV lamp at 254 nm. (author)

  2. Properties of the ablation process for excimer laser ablation of Y1Ba2Cu3O7

    International Nuclear Information System (INIS)

    Neifeld, R.A.; Potenziani, E.; Sinclair, W.R.; Hill III, W.T.; Turner, B.; Pinkas, A.

    1991-01-01

    The process of excimer laser ablation has been studied while varying the laser fluence from 0.237 to 19.1 J/cm 2 . Ion time-of-flight, total charge, target etch depth per pulse, and etch volume per pulse have been measured. Results indicate a maximum ablation volume and minimum ionization fraction occur near 5 J/cm 2 . Several of the parameters measured vary rapidly in the 1--5 J/cm 2 range. Variation in these parameters strongly influences the properties of films grown by this technique

  3. Development of a Silicon Based Electron Beam Transmission Window for Use in a KrF Excimer Laser System

    CERN Document Server

    Gentile, C A; Hartfield, J W; Hawryluk, R J; Hegeler, F; Heitzenroeder, P J; Jun, C H; Ku, L P; Lamarche, P H; Myers, M C; Parker, J J; Parsells, R F; Payen, M; Raftopoulos, S; Sethian, J D

    2002-01-01

    The Princeton Plasma Physics Laboratory (PPPL), in collaboration with the Naval Research Laboratory (NRL), is currently investigating various novel materials (single crystal silicon, , and ) for use as electron-beam transmission windows in a KrF excimer laser system. The primary function of the window is to isolate the active medium (excimer gas) from the excitation mechanism (field-emission diodes). Chosen window geometry must accommodate electron energy transfer greater than 80% (750 keV), while maintaining structural integrity during mechanical load (1.3 to 2.0 atm base pressure differential, approximate 0.5 atm cyclic pressure amplitude, 5 Hz repetition rate) and thermal load across the entire hibachi area (approximate 0.9 W centre dot cm superscript ''-2''). In addition, the window must be chemically resistant to attack by fluorine free-radicals (hydrofluoric acid, secondary). In accordance with these structural, functional, and operational parameters, a 22.4 mm square silicon prototype window, coated w...

  4. Influence of laser fluence in ArF-excimer laser assisted crystallisation of a-SiGe:H films

    International Nuclear Information System (INIS)

    Chiussi, S.; Lopez, E.; Serra, J.; Gonzalez, P.; Serra, C.; Leon, B.; Fabbri, F.; Fornarini, L.; Martelli, S.

    2003-01-01

    Polycrystalline silicon germanium (poly-SiGe) coatings are drawing increasing attention as active layers in solar cells, bolometers and various microelectronic devices. As a consequence, alternative low-cost production techniques, capable to produce such alloys with uniform and controlled grain size, become more and more attractive. Excimer laser assisted crystallisation, already assessed in thin film transistor production, has proved to be a valuable 'low-thermal budget' technique for the crystallisation of amorphous silicon. Main advantages are the high process quality and reproducibility as well as the possibility of tailoring the grain size in both, small selected regions and large areas. The feasibility of this technique for producing poly-SiGe films has been studied irradiating hydrogenated amorphous SiGe films with spatially uniform ArF-laser pulses of different fluences. Surface morphology, structure and chemical composition have been extensively characterised, demonstrating the need of using a 'step-by-step' process and a careful adjustment of both, total number of shots and laser fluence at each 'step' in order to diminish segregation effects and severe damages of the film surface and of segregation effects

  5. Laser deposition of HTSC films

    International Nuclear Information System (INIS)

    Sobol', Eh.N.; Bagratashvili, V.N.; Zherikhin, A.N.; Sviridov, A.P.

    1990-01-01

    Studies of the high-temperature superconducting (HTSC) films fabrication by the laser deposition are reviewed. Physical and chemical processes taking place during laser deposition are considered, such as the target evaporation, the material transport from the target to the substrate, the film growth on the substrate, thermochemical reactions and mass transfer within the HTSC films and their stability. The experimental results on the laser deposition of different HTSC ceramics and their properties investigations are given. The major technological issues are discussed including the deposition schemes, the oxygen supply, the target compositions and structure, the substrates and interface layers selection, the deposition regimes and their impact on the HTSC films properties. 169 refs.; 6 figs.; 2 tabs

  6. Clinical results of excimer laser photorefractive keratectomy: a multicenter study of 265 eyes.

    Science.gov (United States)

    Aron-Rosa, D S; Colin, J; Aron, B; Burin, N; Cochener, B; Febraro, J L; Gallinaro, C; Ganem, S; Valdes, R

    1995-11-01

    Efficacy, predictability, and safety of excimer laser photorefractive keratectomy were evaluated at centers in Paris and Brest, France. Photoablation was performed with the VISX laser on 265 eyes (151 at the Paris center and 114 at the Brest center). The eyes were clinically and statistically evaluated over a six month follow-up. Initial myopia ranged from -0.7 to -19.4 diopters (D) (mean spherical equivalent [SE] -5.9 D) in the Paris center and from -0.9 to -14.5 D (SE -4.5 D) in the Brest center. At both centers, the mean uncorrected visual acuity was worse than 20/200; over 90% of cases in each center had a best uncorrected visual acuity of 20/100 or worse. Results are reported globally and for subgroups of myopia: Group A, SE better than or equal to -3.0 D; Group B, SE worse than -3.0 D and better than or equal to -7.0 D; Group C, SE worse than -7.0 D. Uncorrected visual acuity was significantly improved in the patients followed for six months; 64% of Paris cases and 62% of Brest cases obtained an uncorrected visual acuity of 20/40 or better. Predictability of the treatment was good; 67% of Paris eyes and 74% of Brest eyes were less than 1.0 D from the intended correction after six months. The data suggest that the initial myopia affected the efficacy and predictability of the treatment; results in the mild to moderate myopia eyes were significantly better than results in the severe myopia eyes. One case of visual acuity regression (less than one line) was observed in the two groups. This was associated with corneal haze of moderate intensity.

  7. Effectiveness of 308-nm Excimer Laser Therapy in Treating Alopecia Areata, Determined by Examining the Treated Sides of Selected Alopecic Patches.

    Science.gov (United States)

    Byun, Ji Won; Moon, Jong Hyuk; Bang, Chan Yl; Shin, Jeonghyun; Choi, Gwang Seong

    2015-01-01

    Some studies have reported the use of 308-nm excimer laser therapy for treating alopecia areata (AA); however, the effectiveness of this therapy on a theoretical basis has not yet been comparatively analyzed. To determine the therapeutic effect of excimer laser therapy on AA. One alopecic patch was divided into control and treated sides in 10 patients with AA. Then, 308-nm excimer laser therapy was administered twice a week for 12 weeks. Photograph and phototrichogram analyses were performed. Photographic assessments by both dermatologists and individuals of the general population showed objective improvements after excimer laser therapy. On the treated side, the hair count and hair diameter had statistically increased after treatment. However, only the hair diameter was found to be significantly high in the treated half when it was compared with the control side. The 308-nm excimer laser has a therapeutic effect on AA, which is proven by photograph and phototrichogram analysis by a side-by-side comparison. © 2015 S. Karger AG, Basel.

  8. Excimer laser assisted re-oxidation of BaTiO3 thin films on Ni metal foils

    International Nuclear Information System (INIS)

    Bharadwaja, S. S. N.; Ko, S. W.; Qu, W.; Clark, T.; Rajashekhar, A.; Motyka, M.; Podraza, N.; Randall, C. A.; Trolier-McKinstry, S.

    2016-01-01

    Excimer laser assisted re-oxidation for reduced, crystallized BaTiO 3 thin films on Ni-foils was investigated. It was found that the BaTiO 3 can be re-oxidized at an oxygen partial pressure of ∼50 mTorr and substrate temperature of 350 °C without forming a NiO x interface layer between the film and base metal foil. The dielectric permittivity of re-oxidized films was >1000 with loss tangent values <2% at 100 Hz, 30 mV rms excitation signal. Electron Energy Loss Spectroscopy indicated that BaTiO 3 thin films can be re-oxidized to an oxygen stoichiometry close to ∼3 (e.g., stoichiometric). High resolution cross sectional transmission electron microscopy showed no evidence of NiO x formation between the BaTiO 3 and the Ni foil upon excimer laser re-oxidation. Spectroscopic ellipsometry studies on laser re-oxidized [001] C and [111] C BaTiO 3 single crystals indicate that the re-oxidation of BaTiO 3 single crystals is augmented by photo-excitation of the ozone, as well as laser pulse induced temperature and local stress gradients

  9. A comparative study of via drilling and scribing on PEN and PET substrates for flexible electronic applications using excimer and Nd:YAG laser sources

    NARCIS (Netherlands)

    Mandamparambil, R.; Fledderus, H.; Brand, J. van den; Saalmink, M.; Kusters, R.; Podprocky, T.; Steenberge, G. van; Baets, J. de; Dietzel, A.H.

    2009-01-01

    A study on via drilling and channel scribing on PEN and PET substrates for flexible electronic application is discussed in this paper. For the experiments, both KIF excimer laser (248 nm) and frequency tripled Nd:YAG (355 nm) laser are used. Different measurement techniques like optical microscopy,

  10. Single application on iris localization technology in excimer laser for astigmatism

    Directory of Open Access Journals (Sweden)

    Jun-Hua Hao

    2014-06-01

    Full Text Available AIM:To discuss the single application on iris localization technology in excimer laser for the treatment of astigmatism. METHODS:Totally 203 cases(406 eyesof laser in situ keratomileusis(LASIKin the treatment of compound myopic astigmatism patients were operated from November 2011 to November 2012 in our hospital. They were divided into two groups. One was observation group using iris localization and the other was control group using routine operation. Patients in the observation group of 100 cases(200 eyes, aged 18-43 years old, spherical diopter was -1.25 to -8.75D, astigmatism was -1.0 to -3.25D. In control group, 103 patients(206 eyes, aged 19-44 years old, spherical diopter was -1.75-9.50D, astigmatism was -1.0 to -3.25D. The patients in the observation group before the application of WaveScan aberrometer check for iris image, spherical lens, cylindrical lens and astigmatism axis data operation, only single application of iris location, without using wavefront aberration guided technology, laser cutting patterns for conventional LASIK model, spherical, cylindrical mirror and astigmatism axis data source to preoperative wavefront aberration results. The control group received routine LASIK. It was applicated comprehensive optometry optometry respectively to examine astigmatism and axial, based on the computer analysis during the preoperative, 1wk after the operation, and 6mo. Analysis of using SPSS 17 statistical software, it was independent-sample t test between the two groups of residual astigmatism and astigmatism axis. RESULTS:Postoperative residual astigmatism, the observation group was significantly better than the control group. Astigmatism axial measurement after operation, the observation group was significantly less than that of the control group. Postoperative visual acuity at 6mo, the observation group was better than that of the control group. The difference was statistically significant. CONCLUSION: For patients who cannot

  11. 25 years of pulsed laser deposition

    Science.gov (United States)

    Lorenz, Michael; Ramachandra Rao, M. S.

    2014-01-01

    decade, large-area PLD grown YBa2Cu3O7-δ thin films became a reality for applications in microwave filters for satellite and mobile communication. The material systems that could be covered under the PLD gamut extended to almost all oxides, nitrides and even organics. A second textbook exclusively dedicated to PLD was edited by Rob Eason in 2007 [4], reviewing many possible modifications and extensions of the method. To celebrate 25 years of pulsed laser deposition, Venkatesan organized a symposium on 'Recent Advances in the Pulsed Laser Deposition of Thin Films and Nanostructures' in 2013 [5]. Besides dielectric, ferroelectric and magnetic oxides, the wide-bandgap group II-VI semiconductor ZnO is among the most intensively researched compounds during the last decade. Therefore, this material has become the subject of two introductory reviews in this issue by Opel et al and Tsukazaki et al , to show the state-of-the-art work carried out on ZnO thin films to 2013. The detailed insights into growth parameter control and their impact on the ZnO film performance make both reviews highly instructional not only for specialists, but also for beginners in PLD. The perspective of PLD towards industrial applications largely depends, first, on the ability of the excimer laser suppliers to further increase the laser power and, second, on the deposition schemes to distribute the ablated material homogeneously on technologically relevant substrate areas (8-inch diameter). These developments are explained here by the leading companies dealing with high-power excimer lasers and large-area PLD equipment, such as Coherent Laser Systems GmbH, PVD Products, Inc., and SolMateS B.V. It is also important to note the efforts made by Blank and Rijnders for atomic layer control of PLD by in situ high-pressure reflection high-energy electron diffraction (RHEED), which is now adopted by many groups worldwide. The potential of multi-beam PLD for advanced optical waveguides and of advanced design

  12. Excimer laser micropatterning of freestanding thermo-responsive hydrogel layers for cells-on-chip applications

    International Nuclear Information System (INIS)

    Santaniello, Tommaso; Milani, Paolo; Lenardi, Cristina; Martello, Federico; Tocchio, Alessandro; Gassa, Federico; Webb, Patrick

    2012-01-01

    We report a novel reliable and repeatable technologic manufacturing protocol for the realization of micro-patterned freestanding hydrogel layers based on thermo-responsive poly-(N-isopropyl)acrylamide (PNIPAAm), which have potential to be employed as temperature-triggered smart surfaces for cells-on-chip applications. PNIPAAm-based films with controlled mechanical properties and different thicknesses (100–300 µm thickness) were prepared by injection compression moulding at room temperature. A 9 × 9 array of 20 µm diameter through-holes is machined by means of the KrF excimer laser on dry PNIPAAm films which are physically attached to flat polyvinyl chloride (PVC) substrates. Machining parameters, such as fluence and number of shots, are optimized in order to achieve highly resolved features. Micro-structured freestanding films are then easily obtained after hydrogels are detached from PVC by gradually promoting the film swelling in ethanol. In the PNIPAAm water-swollen state, the machined holes’ diameter approaches a slight larger value (30 µm) according to the measured hydrogel swelling ratio. Thermo-responsive behaviour and through-hole tapering characterization are carried out by metrology measurements using an optical inverted and confocal microscope setup, respectively. After the temperature of freestanding films is raised above 32 °C, we observe that the shrinkage of the whole through-hole array occurs, thus reducing the holes’ diameter to less than a half its original size (about 15 µm) as a consequence of the film dehydration. Different holes’ diameters (10 and 30 µm) are also obtained on dry hydrogel employing suitable projection masks, showing similar shrinking behaviour when hydrated and undergone thermo-response tests. Thermo-responsive PNIPAAm-based freestanding layers could then be integrated with other suitable micro-fabricated thermoplastic components in order to preliminary test their feasibility in operating as temperature

  13. The effect of excimer laser keratectomy on corneal glutathione peroxidase activities and aqueous humor selenium levels in rabbits.

    Science.gov (United States)

    Yis, Ozgür; Bilgihan, Ayşe; Bilgihan, Kamil; Yis, Nilgün Safak; Hasanreisoğlu, Berati

    2002-06-01

    The formation of free oxygen radicals has been demonstrated in the corneal tissue after 193 nm laser irradiation. Cornea has several defense mechanisms that protect against oxidative damage. One of them, glutathione peroxidase (GPx), catalyzes the destruction of hydrogen peroxide and lipid hydroperoxide. Selenium is a trace element which is incorporated into the selenoenzyme GPx. In the present study, the effect of excimer laser keratectomy on corneal GPx activities and aqueous humor selenium concentrations in rabbits was evaluated. Animals were divided into five groups, and all groups were compared: controls (group 1), after epithelial scraping (group 2), transepithelial photorefractive keratectomy(PRK; group 3), superficial traditional PRK (50 microm; group 4) and deep traditional PRK (100 microm; group 5). Corneal GPx activities were measured by a modification of the coupled assay procedure. Aqueous humor selenium concentrations were determined using hydride generation atomic absorption spectrometry. Corneal GPx activities were significantly lower only in group 5 ( P<0.05), and the selenium concentration in the aqueous humor did not change in any group. Deep corneal photoablation inhibits GPx enzyme activities in the cornea. Therefore, antioxidants may be useful in reducing free radical-mediated complications after excimer laser corneal photoablation.

  14. Study on excimer laser irradiation for controlled dehydrogenation and crystallization of boron doped hydrogenated amorphous/nanocrystalline silicon multilayers

    International Nuclear Information System (INIS)

    Gontad, F.; Conde, J.C.; Filonovich, S.; Cerqueira, M.F.; Alpuim, P.; Chiussi, S.

    2013-01-01

    We report on the excimer laser annealing (ELA) induced temperature gradients, allowing controlled crystallization and dehydrogenation of boron-doped a-Si:H/nc-Si:H multilayers. Depth of the dehydrogenation and crystallization process has been studied numerically and experimentally, showing that temperatures below the monohydride decomposition can be used and that significant changes of the doping profile can be avoided. Calculation of temperature profiles has been achieved through numerical modeling of the heat conduction differential equation. Increase in the amount of nano-crystals, but not in their size, has been demonstrated by Raman spectroscopy. Effective dehydrogenation and shape of the boron profile have been studied by time of flight secondary ion mass spectroscopy. The relatively low temperature threshold for dehydrogenation, below the monohydride decomposition temperature, has been attributed to both, the large hydrogen content of the original films and the partial crystallization during the ELA process. The results of this study show that UV-laser irradiation is an effective tool to improve crystallinity and dopant activation in p + -nc-Si:H films without damaging the substrate. - Highlights: • An efficient dehydrogenation is possible through excimer laser annealing. • 140 mJ/cm 2 is enough for dehydrogenation without significant changes in doping profile. • Fluences up to 300 mJ/cm 2 promote partial crystallization of the amorphous structures

  15. Study on excimer laser irradiation for controlled dehydrogenation and crystallization of boron doped hydrogenated amorphous/nanocrystalline silicon multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Gontad, F., E-mail: fran_gontad@yahoo.es [Applied Physics Department, University of Vigo, E.I. Industrial, Campus de As Lagoas, Marcosende, E-36310, Vigo (Spain); Conde, J.C. [Applied Physics Department, University of Vigo, E.I. Industrial, Campus de As Lagoas, Marcosende, E-36310, Vigo (Spain); Filonovich, S.; Cerqueira, M.F.; Alpuim, P. [Department of Physics, University of Minho, Campus de Azurém, 4800-058 Guimarães (Portugal); Chiussi, S. [Applied Physics Department, University of Vigo, E.I. Industrial, Campus de As Lagoas, Marcosende, E-36310, Vigo (Spain)

    2013-06-01

    We report on the excimer laser annealing (ELA) induced temperature gradients, allowing controlled crystallization and dehydrogenation of boron-doped a-Si:H/nc-Si:H multilayers. Depth of the dehydrogenation and crystallization process has been studied numerically and experimentally, showing that temperatures below the monohydride decomposition can be used and that significant changes of the doping profile can be avoided. Calculation of temperature profiles has been achieved through numerical modeling of the heat conduction differential equation. Increase in the amount of nano-crystals, but not in their size, has been demonstrated by Raman spectroscopy. Effective dehydrogenation and shape of the boron profile have been studied by time of flight secondary ion mass spectroscopy. The relatively low temperature threshold for dehydrogenation, below the monohydride decomposition temperature, has been attributed to both, the large hydrogen content of the original films and the partial crystallization during the ELA process. The results of this study show that UV-laser irradiation is an effective tool to improve crystallinity and dopant activation in p{sup +}-nc-Si:H films without damaging the substrate. - Highlights: • An efficient dehydrogenation is possible through excimer laser annealing. • 140 mJ/cm{sup 2} is enough for dehydrogenation without significant changes in doping profile. • Fluences up to 300 mJ/cm{sup 2} promote partial crystallization of the amorphous structures.

  16. Tritium decontamination from co-deposited layer on tungsten substrate by ultra violet lamp and laser

    International Nuclear Information System (INIS)

    Oya, Yasuhisa; Tadokoro, Takahiro; Shu, Wataru; Hayashi, Takumi; O'hira, Shigeru; Nishi, Masataka

    2001-01-01

    Tritium decontamination using ultra violet (UV) lamp and laser was performed. Simulated co-deposited layer on tungsten substrate was deposited by C 2 H 2 or C 2 D 2 glow discharge. The co-deposited layer was irradiated to UV lights from a xenon excimer lamp (172 nm) or ArF excimer laser (193 nm) and the in-situ decontamination behavior was evaluated by a mass spectrometer. After the UV irradiation, the hydrogen concentration in the co-deposited layer was evaluated by elastic recoil detection analysis (ERDA) and the depth profile was analyzed by secondary ion mass spectrometry (SIMS). For the co-deposited layer formed by C 2 D 2 glow discharge, it was found that M/e 3 (HD) gas was released mainly during the UV lamp irradiation while both M/e 3 (HD) and M/e 4 (D 2 ) gases were detected during the UV laser irradiation. Though the co-deposited layer was not removed by UV lamp irradiation, almost all the co-deposited layer was removed by UV laser irradiation within 1 min. The ratio of hydrogen against carbon in the co-deposited layer was estimated to be 0.53 by ERDA and the number of photon needed for removing 1 μm thick co-deposited layer was calculated to be 3.7x10 18 cm -2 for the UV laser by SIMS measurement. It is concluded that C-H (C-D) bond on the co-deposited layer were dissociated by irradiation of UV lamp while the co-deposited layer itself was removed by the UV laser irradiation. (author)

  17. SF{sub 6} decomposition and layer formation due to excimer laser photoablation of SiO{sub 2} surface at gas-solid system

    Energy Technology Data Exchange (ETDEWEB)

    Sajad, Batool [Physics Department, Amirkabir University, PO Box 15875-4413, Tehran (Iran, Islamic Republic of); Parvin, Parviz [Physics Department, Amirkabir University, PO Box 15875-4413, Tehran (Iran, Islamic Republic of); Bassam, Mohamad Amin [Excimer Laser Lab, Emam Hussain University, PO Box 16575-4347, Tehrann (Iran, Islamic Republic of)

    2004-12-21

    In this work, the effect of an excimer laser has been studied for presenting a method for SF{sub 6} decomposition and simultaneous formation of a SiF{sub 2} layer on amorphous SiO{sub 2}. Though the excimer laser did not establish a gas phase photodissociation, we have shown that UV photoablation leads strongly to molecular decomposition in the SF{sub 6}-SiO{sub 2} system. Moreover, the dependence of the decomposition process on the exposure parameters such as the wavelength and intensity as well as the gas pressure and the focal point distance from the gas-solid interface has been investigated.

  18. Endobronchial Forceps-Assisted and Excimer Laser-Assisted Inferior Vena Cava Filter Removal: The Data, Where We Are, and How It Is Done.

    Science.gov (United States)

    Chen, James X; Montgomery, Jennifer; McLennan, Gordon; Stavropoulos, S William

    2018-06-01

    The recognition of inferior vena cava filter related complications has motivated increased attentiveness in clinical follow-up of patients with inferior vena cava filters and has led to development of multiple approaches for retrieving filters that are challenging or impossible to remove using conventional techniques. Endobronchial forceps and excimer lasers are tools for designed to aid in complex inferior vena cava filter removals. This article discusses endobronchial forceps-assisted and excimer laser-assisted inferior vena cava filter retrievals. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Spectroscopic and imaging diagnostics of pulsed laser deposition laser plasmas

    International Nuclear Information System (INIS)

    Thareja, Raj K.

    2002-01-01

    An overview of laser spectroscopic techniques used in the diagnostics of laser ablated plumes used for thin film deposition is given. An emerging laser spectroscopic imaging technique for the laser ablation material processing is discussed. (author)

  20. Deposition and modification of tantalum carbide coatings on graphite by laser interactions

    International Nuclear Information System (INIS)

    Veligdan, J.; Branch, D.; Vanier, P.E.; Barletta, R.E.

    1992-01-01

    Graphite surfaces can be hardened and protected from erosion by hydrogen at high temperatures by refractory metal carbide coatings, which are usually prepared by chemical vapor deposition (CVD) or chemical vapor reaction (CVR) methods. These techniques rely on heating the substrate to a temperature where a volatile metal halide decomposes and reacts with either a hydrocarbon gas or with carbon from the substrate. For CVR techniques, deposition temperatures must be in excess of 2000 degrees C in order to achieve favorable deposition kinetics. In an effort to lower the bulk substrate deposition temperature, the use of laser interactions with both the substrate and the metal halide deposition gas has been employed. Initial testing, involved the use of a CO 2 laser to heat the surface of a graphite substrate and a KrF excimer laser to accomplish a photodecomposition of TaCl 5 gas near the substrate. Results of preliminary experiments using these techniques are described

  1. Hydroxyapatite thin films grown by pulsed laser deposition and matrix assisted pulsed laser evaporation: Comparative study

    Science.gov (United States)

    Popescu-Pelin, G.; Sima, F.; Sima, L. E.; Mihailescu, C. N.; Luculescu, C.; Iordache, I.; Socol, M.; Socol, G.; Mihailescu, I. N.

    2017-10-01

    Pulsed Laser Deposition (PLD) and Matrix Assisted Pulsed Laser Evaporation (MAPLE) techniques were applied for growing hydroxyapatite (HA) thin films on titanium substrates. All experiments were conducted in a reaction chamber using a KrF* excimer laser source (λ = 248 nm, τFWHM ≈ 25 ns). Half of the samples were post-deposition thermally treated at 500 °C in a flux of water vapours in order to restore crystallinity and improve adherence. Coating surface morphologies and topographies specific to the deposition method were evidenced by scanning electron, atomic force microscopy investigations and profilometry. They were shown to depend on deposition technique and also on the post-deposition treatment. Crystalline structure of the coatings evaluated by X-ray diffraction was improved after thermal treatment. Biocompatibility of coatings, cellular adhesion, proliferation and differentiation tests were conducted using human mesenchymal stem cells (MSCs). Results showed that annealed MAPLE deposited HA coatings were supporting MSCs proliferation, while annealed PLD obtained films were stimulating osteogenic differentiation.

  2. Ellipsometric study of nanostructured carbon films deposited by pulsed laser deposition

    International Nuclear Information System (INIS)

    Bereznai, M.; Budai, J.; Hanyecz, I.; Kopniczky, J.; Veres, M.; Koos, M.; Toth, Z.

    2011-01-01

    When depositing carbon films by plasma processes the resulting structure and bonding nature strongly depends on the plasma energy and background gas pressure. To produce different energy plasma, glassy carbon targets were ablated by laser pulses of different excimer lasers: KrF (248 nm) and ArF (193 nm). To modify plume characteristics argon atmosphere was applied. The laser plume was directed onto Si substrates, where the films were grown. To evaluate ellipsometric measurements first a combination of the Tauc-Lorentz oscillator and the Sellmeier formula (TL/S) was applied. Effective Medium Approximation models were also used to investigate film properties. Applying argon pressures above 10 Pa the deposits became nanostructured as indicated by high resolution scanning electron microscopy. Above ∼ 100 and ∼ 20 Pa films could not be deposited by KrF and ArF laser, respectively. Our ellipsometric investigations showed, that with increasing pressure the maximal refractive index of both series decreased, while the optical band gap starts with a decrease, but shows a non monotonous course. Correlation between the size of the nanostructures, bonding structure, which was followed by Raman spectroscopy and optical properties were also investigated.

  3. Update on excimer laser photorefractive keratectomy (PRK) at Cedars-Sinai Medical Center: two-year experience

    Science.gov (United States)

    Maguen, Ezra I.; Salz, James J.; Warren, Cathy; Papaioannou, Thanassis; Nesburn, Anthony B.; Macy, Jonathan I.; Hofbauer, John; Grundfest, Warren S.

    1993-06-01

    Our two year experience with excimer laser photorefractive keratectomy for the correction of myopia on 160 eyes of 128 patients is described. All eyes were treated with a VISX Twenty- Twenty excimer laser, with the following parameters: radiant exposure 160 mJ/cm2, frequency 5 Hz, ablation zone diameter 5.0 to 5.5 mm, and stromal ablation rate 0.18 to 0.33 (mu) /pulse. A suction fixation ring was used in all cases either with nitrogen flow (79 eyes) or without nitrogen flow (81 eyes) across the cornea. Follow-up ranged from one month (152 eyes) to 24 months (12 eyes). The results are stable between 3 and 24 months with less than 0.25 D change in the mean postoperative spherical equivalents. In eyes with a follow-up of 6 to 24 months, 77% to 100% were 20/40 or better uncorrected, and 84% to 92% were corrected to within +/- 1 D of emmetropia. Further follow-up is needed to assess the long term safety and efficacy of the procedure.

  4. How predictable are the results of excimer laser photorefractive keratectomy? A review.

    Science.gov (United States)

    Grosvenor, T

    1995-10-01

    At the close of 1994, the AOA News reported that at least 14 companies were preparing to market equipment for excimer laser photorefractive keratectomy (PRK). More than a dozen PRK centers had been formed for the purpose of recruiting optometrists to co-manage PRK patients. Because the surgery is a "no-touch" computer-driven procedure whose duration is measured in seconds, the preoperative and postoperative care of PRK patients will assume major importance. Optometrists who will be asked to take part in the management of PRK patients must be able to counsel patients on matters such as the predictability of the procedure in terms of postoperative refractive error and visual acuity, as well as the possibility of unintended consequences such as difficulty in night driving. Information currently available, mainly as a result of studies conducted in other countries, shows that the results of PRK are highly predictable for preoperative myopia up to about -3.00 D and somewhat less predictable for myopia between -3.00 and -6.00 D, whereas for myopia greater than -6.00 D the probability of achieving a full correction decreases rapidly with increasing amounts of myopia. As compared to radial keratotomy (RK) in which the postoperative refractive error drifts relentlessly in the hyperopic direction, PRK brings about an initial hyperopic shift followed by regression leading to increasing myopia. Researchers disagree on the cause of the postoperative hyperopic shift and regression, and on the value of various methods of controlling regression including the use of wider and deeper ablation profiles and the postoperative use of corticosteroids and nonsteroid anti-inflammatory drugs. It is too early to determine whether the myopic creep in PRK will be as persistent as the hyperopic creep in RK, but it is likely that whereas presbyopic post-RK patients may have adequate distance vision but require corrective lenses for reading, presbyopic post-PRK patients may be sufficiently myopic

  5. Study on the surface chemical properties of UV excimer laser irradiated polyamide by XPS, ToF-SIMS and CFM

    International Nuclear Information System (INIS)

    Yip, Joanne; Chan, Kwong; Sin, Kwan Moon; Lau, Kai Shui

    2002-01-01

    Polyamide (nylon 6) was irradiated by a pulsed ultraviolet (UV) excimer laser with a fluence below its ablation threshold. Chemical modifications on laser treated nylon were studied by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (Tof-SIMS) and chemical force microscopy (CFM). XPS study provides information about changes in chemical composition and the chemical-state of atom types on the fiber surface. The high sensitivity of ToF-SIMS to the topmost layers was used to detect crosslinking after the laser treatment. Gold-coated AFM tips modified with -COOH terminated self-assembled alkanethiol monolayers (SAMs) were used to measure adhesion forces on the untreated and laser treated samples. XPS results revealed that the irradiated samples have higher oxygen content than prior to laser irradiation. Tof-SIMS analysis illustrated that carbonyl groups in nylon 6 decrease significantly but hydroxyl groups increase after low-fluence laser irradiation. The adhesion force measurements by CFM showed spatial distribution of hydroxyl groups on nylon 6 after the laser treatment

  6. Applications of interface controlled pulsed-laser deposited polymer films in field-effect transistors

    Science.gov (United States)

    Adil, Danish; Ukah, Ndubuisi; Guha, Suchi; Gupta, Ram; Ghosh, Kartik

    2010-03-01

    Matrix assisted pulsed laser evaporation, a derivative of pulsed laser deposition (PLD), is an alternative method of depositing polymer and biomaterial films that allows homogeneous film coverage of high molecular weight organic materials for layer-by-layer growth without any laser induced damage. Polyfluorene (PF)-based conjugated polymers have attracted considerable attention in organic field-effect transistors (FETs). A co-polymer of PF (PFB) was deposited as a thin film using matrix assisted PLD employing a KrF excimer laser. Electrical characteristics of FETs fabricated using these PLD grown films were compared to those of FETs using spin-coated films. We show that threshold voltages, on/off ratios, and charge carrier motilities are significantly improved in PLD grown films. This is attributed to an improved dielectric-polymer interface.

  7. One-kilohertz eye tracker and active intraoperative torsion detection in the NIDEK CXIII and Quest excimer lasers.

    Science.gov (United States)

    Waring, George O

    2009-10-01

    To describe recent technological additions to the NIDEK CXIII and Quest excimer lasers. A summary article with data from previous published studies outlining the benefits of newer technology. The addition of a 1-kHz infrared eye tracker decreased the spread of laser spot placement from a mean of 228.79 microm without a tracker to 38.47 microm with the eye tracker. The addition of real-time torsion error correction produced a statistically significantly lower cylinder dispersion, mean manifest refractive cylinder, and error of angle postoperatively in eyes that underwent LASIK. The incorporation of an ultrahigh speed eye tracker and active cyclotorsion correction surpasses the minimal technology criteria required for accurate wavefront-based ablations. Copyright 2009, SLACK Incorporated.

  8. Excimer laser forward transfer of mammalian cells using a novel triazene absorbing layer

    International Nuclear Information System (INIS)

    Doraiswamy, A.; Narayan, R.J.; Lippert, T.; Urech, L.; Wokaun, A.; Nagel, M.; Hopp, B.; Dinescu, M.; Modi, R.; Auyeung, R.C.Y.; Chrisey, D.B.

    2006-01-01

    We present a novel laser-based approach for developing tissue engineered constructs and other cell-based assembly's. We have deposited mesoscopic patterns of viable B35 neuroblasts using a soft direct approach of the matrix assisted pulsed laser evaporation direct write (MAPLE DW) process. As a development of the conventional direct write process, an intermediate layer of absorbing triazene polymer is used to provide gentler and efficient transfers. Transferred cells were examined for viability and proliferation and compared with that of as-seeded cells to determine the efficacy of the process. Results suggest that successful transfers can be achieved at lower fluences than usual by the incorporation of the intermediate absorbing layer thus avoiding any damage to cells and other delicate materials. MAPLE DW offers rapid computer-controlled deposition of mesoscopic voxels at high spatial resolutions, with extreme versatility in depositing combinations of natural/synthetic, living/non-living, organic/inorganic and hard/soft materials. Our approach offers a gentle and efficient transfer of viable cells which when combined with a variety of matrix materials allows development of constructs and bioactive systems in bioengineering

  9. Improving the ablation efficiency of excimer laser systems with higher repetition rates through enhanced debris removal and optimized spot pattern.

    Science.gov (United States)

    Arba-Mosquera, Samuel; Klinner, Thomas

    2014-03-01

    To evaluate the reasons for the required increased radiant exposure for higher-repetition-rate excimer lasers and determine experimentally possible compensations to achieve equivalent ablation profiles maintaining the same single-pulse energies and radiant exposures for laser repetition rates ranging from 430 to 1000 Hz. Schwind eye-tech-solutions GmbH and Co. KG, Kleinostheim, Germany. Experimental study. Poly(methyl methacrylate) (PMMA) plates were photoablated. The pulse laser energy was maintained during all experiments; the effects of the flow of the debris removal, the shot pattern for the correction, and precooling the PMMA plates were evaluated in terms of achieved ablation versus repetition rate. The mean ablation performance ranged from 88% to 100%; the variability between the profile measurements ranged from 1.4% to 6.2%. Increasing the laser repetition rate from 430 Hz to 1000 Hz reduced the mean ablation performance from 98% to 91% and worsened the variability from 1.9% to 4.3%. Increasing the flow of the debris removal, precooling the PMMA plates to -18°C, and adapting the shot pattern for the thermal response of PMMA to excimer ablation helped stabilize the variability. Only adapting the shot pattern for the thermal response of PMMA to excimer ablation helped stabilize the mean ablation performance. The ablation performance of higher-repetition-rate excimer lasers on PMMA improved with improvements in the debris removal systems and shot pattern. More powerful debris removal systems and smart shot patterns in terms of thermal response improved the performance of these excimer lasers. Copyright © 2014 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  10. Development of a Silicon Based Electron Beam Transmission Window for Use in a KrF Excimer Laser System

    International Nuclear Information System (INIS)

    Gentile, C.A.; Fan, H.M.; Hartfield, J.W.; Hawryluk, R.J.; Hegeler, F.; Heitzenroeder, P.J.; Jun, C.H.; Ku, L.P.; LaMarche, P.H.; Myers, M.C.; Parker, J.J.; Parsells, R.F.; Payen, M.; Raftopoulos, S.; Sethian, J.D.

    2002-01-01

    The Princeton Plasma Physics Laboratory (PPPL), in collaboration with the Naval Research Laboratory (NRL), is currently investigating various novel materials (single crystal silicon, , and ) for use as electron-beam transmission windows in a KrF excimer laser system. The primary function of the window is to isolate the active medium (excimer gas) from the excitation mechanism (field-emission diodes). Chosen window geometry must accommodate electron energy transfer greater than 80% (750 keV), while maintaining structural integrity during mechanical load (1.3 to 2.0 atm base pressure differential, approximate 0.5 atm cyclic pressure amplitude, 5 Hz repetition rate) and thermal load across the entire hibachi area (approximate 0.9 W · cm superscript ''-2''). In addition, the window must be chemically resistant to attack by fluorine free-radicals (hydrofluoric acid, secondary). In accordance with these structural, functional, and operational parameters, a 22.4 mm square silicon prototype window, coated with 500 nm thin-film silicon nitride (Si 3 N 4 ), has been fabricated. The window consists of 81 square panes with a thickness of 0.019 mm ± 0.001 mm. Stiffened (orthogonal) sections are 0.065 mm in width and 0.500 mm thick (approximate). Appended drawing (Figure 1) depicts the window configuration. Assessment of silicon (and silicon nitride) material properties and CAD modeling and analysis of the window design suggest that silicon may be a viable solution to inherent parameters and constraints

  11. Excimer laser phototherapeutic keratectomy : Indications, results and its role in the Indian scenario

    Directory of Open Access Journals (Sweden)

    Rao Srinivas

    1999-01-01

    Full Text Available PURPOSE: To report indications, technique, and results of excimer phototherapeutic keratectomy (PTK, and describe possible reasons for the small numbers of such procedures performed in a referral institute in India. METHODS: Retrospective review of case records of 10 patients (11 eyes who underwent excimer PTK at our institute between February 1994 and September 1997. RESULTS: Corneal scars were the most common indication for treatment. Best-corrected visual acuity (BCVA improved in 6 eyes (mean: 2 lines of Snellen acuity. All eyes had BCVA > or = 6/12 after treatment. None of the patients experienced loss of BCVA after treatment. Unaided visual acuity improved in 3 eyes and decreased in 2 eyes. Change in spherical equivalent refraction > or = 1 diopter occurred in 77.8% of eyes after treatment. Treating central corneal scars resulted in a significant hyperopic shift in refraction. CONCLUSIONS: Excimer PTK is a safe and effective procedure for the treatment of superficial corneal opacities. Post-treatment ametropia may require further correction with optical aids. Inappropriate referrals, deep corneal scars, and cost of the procedure could have contributed to the small numbers of PTK performed at our institute. Improved understanding of procedural strengths and limitations could lead to increased use of this procedure, with satisfying results in selected patients.

  12. Photochemically induced deposition of protective alumina coatings onto UV emitting phosphors for Xe excimer discharge lamps

    International Nuclear Information System (INIS)

    Broxtermann, Mike; Jüstel, Thomas

    2016-01-01

    Highlights: • A UV-reactor for the pH induced precipitation of inorganic material is described. • The photolysis of Azide (N_3"−) leads to a steady pH increase used for precipitation. • A UV induced Al(OH)_3 precipitation is used to craft Al_2O_3 coatings onto YPO_4:Bi. • The influence of Al_2O_3 coated onto YPO_4:Bi with different thicknesses is discussed. • SEM, VUV-spectroscopy and ESA measurements were performed on Al_2O_3 coated samples. - Abstract: This work concerns the particle coating of the UV-C emitting phosphor YPO_4:Bi, targeting a stability enhancement of the phosphor material for Xe excimer lamp operation. To this end, the material is coated by the wide band gap material Al_2O_3. In order to obtain a thin and homogeneous coating layer, a novel process based on the photochemical cleavage of NaN_3 in water was developed. This results in a slow and continuous enhancement of the pH value due to ongoing NaOH formation, which results in the precipitation of Al(OH)_3 from an Al_2(SO_4)_3 _× 18H_2O solution. It turned out that the obtained particle coatings are of much better quality, i.e. homogeneity, compared to coatings made from a wet-chemical homogeneous precipitation process. The morphology and electrochemical properties of Al_2O_3 coated YPO_4:Bi are discussed on the basis of optical spectroscopy, ESA measurements, and SEM/EDX investigations.

  13. Photochemically induced deposition of protective alumina coatings onto UV emitting phosphors for Xe excimer discharge lamps

    Energy Technology Data Exchange (ETDEWEB)

    Broxtermann, Mike, E-mail: mike.b@fh-muenster.de; Jüstel, Thomas, E-mail: tj@fh-muenster.de

    2016-08-15

    Highlights: • A UV-reactor for the pH induced precipitation of inorganic material is described. • The photolysis of Azide (N{sub 3}{sup −}) leads to a steady pH increase used for precipitation. • A UV induced Al(OH){sub 3} precipitation is used to craft Al{sub 2}O{sub 3} coatings onto YPO{sub 4}:Bi. • The influence of Al{sub 2}O{sub 3} coated onto YPO{sub 4}:Bi with different thicknesses is discussed. • SEM, VUV-spectroscopy and ESA measurements were performed on Al{sub 2}O{sub 3} coated samples. - Abstract: This work concerns the particle coating of the UV-C emitting phosphor YPO{sub 4}:Bi, targeting a stability enhancement of the phosphor material for Xe excimer lamp operation. To this end, the material is coated by the wide band gap material Al{sub 2}O{sub 3}. In order to obtain a thin and homogeneous coating layer, a novel process based on the photochemical cleavage of NaN{sub 3} in water was developed. This results in a slow and continuous enhancement of the pH value due to ongoing NaOH formation, which results in the precipitation of Al(OH){sub 3} from an Al{sub 2}(SO{sub 4}){sub 3} {sub ×} 18H{sub 2}O solution. It turned out that the obtained particle coatings are of much better quality, i.e. homogeneity, compared to coatings made from a wet-chemical homogeneous precipitation process. The morphology and electrochemical properties of Al{sub 2}O{sub 3} coated YPO{sub 4}:Bi are discussed on the basis of optical spectroscopy, ESA measurements, and SEM/EDX investigations.

  14. Investigations of an excimer laser working with a four-component gaseous mixture He-Kr:Xe-HCl

    Science.gov (United States)

    Iwanejko, Leszek; Pokora, Ludwik J.

    1991-08-01

    The paper presnts working conditions of an XCI excimer laser untypical gas mixture based on KrzXe instead of pure Xe. Such a choice was influenced by the necessity of Findin9 the way to replace imported and expensive Xe by gaseous components accesible in Poland. Determining the range of changes of laser extrnal parameters which enables its proper work with the new gas mixture was the aim of same investigations results of which are presented in this paper. The laser pulse output energy and the pulse duration as a Function of supply voltage and the mixture composition are presented. The range of proper conditions for the laser working with the new mixture He-Kr:Xe--HC1 was determined. The analysis of experimental results showed that using the new mixture ensures value of energy and pulse duration comparable with the ones obtained for the mixture He-''Xe--HCl. Spectral investigations showed the lack of influence of Kr presence in the mixture on the generation spectrum of the laser. L.

  15. AFM study of excimer laser patterning of block-copolymer: Creation of ordered hierarchical, hybrid, or recessed structures

    International Nuclear Information System (INIS)

    Švanda, Jan; Siegel, Jakub; Švorčík, Vaclav; Lyutakov, Oleksiy

    2016-01-01

    Highlights: • Combination of bottom-up (BCP separation) and top-down (laser patterning) technologies allows obtaining hierarchical structures. • Surface morphologies were determined by the order of patterning steps (laser modification, annealing, surface reconstruction). • Tuning the order of steps enables the reorientation of BCP domain at large scale, fabrication of hierarchical, hybrid or recessed structures. • The obtained structures can find potential applications in nanotechnology, plasmonics, information storage, sensors and smart surfaces. - Abstract: We report fabrication of the varied range of hierarchical structures by combining bottom-up self-assembly of block copolymer poly(styrene-block-vinylpyridine) (PS-b-P4VP) with top-down excimer laser patterning method. Different procedures were tested, where laser treatment was applied before phase separation and after phase separation or phase separation and surface reconstruction. Laser treatment was performed using either polarized laser light with the aim to create periodical pattern on polymer surface or non-polarized light for preferential removing of polystyrene (PS) part from PS-b-P4VP. Additionally, dye was introduced into one part of block copolymer (P4VP) with the aim to modify its response to laser light. Resulting structures were analyzed by XPS, UV–vis and AFM techniques. Application of polarized laser light leads to creation of structures with hierarchical, recessed or hybrid geometries. Non-polarized laser beam allows pronouncing the block copolymer phase separated structure. Tuning the order of steps or individual step conditions enables the efficient reorientation of block-copolymer domain at large scale, fabrication of hierarchical, hybrid or recessed structures. The obtained structures can find potential applications in nanotechnology, photonics, plasmonics, information storage, optical devices, sensors and smart surfaces.

  16. Tritium recovery from co-deposited layers using 193-nm laser

    Science.gov (United States)

    Shu, W. M.; Kawakubo, Y.; Nishi, M. F.

    Recovery of tritium from co-deposited layers formed in deuterium-tritium plasma operations of the TFTR (Tokamak Fusion Test Reactor) was investigated by the use of an ArF excimer laser operating at the wavelength of 193 nm. At the laser energy density of 0.1 J/cm2, a transient spike of the tritium-release rate was observed at initial irradiation. Hydrogen isotopes were released in the form of hydrogen-isotope molecules during the laser irradiation in vacuum, suggesting that tritium can be recovered readily from the released gases. In a second experiment, hydrogen (tritium) recovery from the co-deposited layers on JT-60 tiles that had experienced hydrogen-plasma operations was investigated by laser ablation with a focused beam of the excimer laser. The removal rate of the co-deposited layers was quite low when the laser energy density was smaller than the ablation threshold (1.0 J/cm2), but reached 1.1 μm/pulse at the laser energy density of 7.6 J/cm2. The effective absorption coefficient in the co-deposited layers at the laser wavelength was determined to be 1.9 μm-1. The temperature of the surface during the irradiation at the laser energy density of 0.5 J/cm2 was measured on the basis of Planck's law of radiation, and the maximum temperature during the irradiation decreased from 3570 K at the initial irradiation to 2550 K at the 1000th pulse of the irradiation.

  17. Suppression of dewetting phenomena during excimer laser melting of thin metal films on SiO2

    International Nuclear Information System (INIS)

    Kline, J.E.; Leonard, J.P.

    2005-01-01

    Pulsed excimer laser irradiation has been used to fully melt 200 nm films of elemental Au and Ni on SiO 2 substrates. With the use of a capping layer of SiO 2 and line irradiation via projection optics, the typical liquid-phase dewetting processes associated with these metals on SiO 2 has been suppressed. In a series of experiments varying line widths and fluence, a process region is revealed immediately above the complete melting threshold for which the films remain continuous and smooth after melting and resolidification. Simple energetic arguments for mechanisms leading to initiation of dewetting support these observations, and a gas-mediated model is proposed to describe the process conditions that are necessary for the suppression of dewetting

  18. Dopant redistribution and electrical activation in silicon following ultra-low energy boron implantation and excimer laser annealing

    International Nuclear Information System (INIS)

    Whelan, S.; La Magna, A.; Privitera, V.; Mannino, G.; Italia, M.; Bongiorno, C.; Fortunato, G.; Mariucci, L.

    2003-01-01

    Excimer laser annealing (ELA) of ultra-low-energy (ULE) B-ion implanted Si has been performed. High-resolution transmission electron microscopy has been used to assess the as-implanted damage and the crystal recovery following ELA. The electrical activation and redistribution of B in Si during ELA has been investigated as a function of the laser energy density (melted depth), the implant dose, and the number of laser pulses (melt time). The activated and retained dose has been evaluated with spreading resistance profiling and secondary ion mass spectrometry. A significant amount of the implanted dopant was lost from the sample during ELA. However, the dopant that was retained in crystal material was fully activated following rapid resolidification. At an atomic concentration below the thermodynamic limit, the activation efficiency (dose activated/dose implanted into Si material) was a constant for a fixed melt depth, irrespective of the dose implanted and hence the total activated dose was raised as the implant dose was increased. The electrical activation was increased for high laser energy density annealing when the dopant was redistributed over a deeper range

  19. Screening for psychiatric distress and low self-esteem in patients presenting for excimer laser surgery for myopia.

    Science.gov (United States)

    Kidd, B; Stark, C; McGhee, C N

    1997-01-01

    Patients presenting for photorefractive keratectomy (PRK) may have unusual psychological profiles. Certain psychological variables may impact treatment outcome, making early identification crucial. We report a controlled questionnaire study of psychiatric "anxiety/distress" and self-esteem in myopic patients who presented for excimer laser treatment. Ninety consecutive myopic individuals (patients) who presented for excimer laser PRK and 50 consecutive myopic individuals who presented to an optometrist for contact lens fitting (controls) were assessed using two self-completion questionnaires-the GHQ30 and Hudson Index of Self-Esteem ISE. The questionnaires were distributed during assessment for treatment. PRK patients had a 90% response rate for both questionnaires and control patients, 98% for GHQ30 and 100% for Hudson ISE. PRK patients were significantly older (p = 0.000003), had a greater myopic spherical equivalent refraction (p = 0.012) and had better spectacle-corrected visual acuity (p = 0.0096). No significant differences were demonstrated with regard to anxiety/distress in terms of absolute scores (p = 0.07), or the proportion of patients being positive or negative (p = 0.10). Similarly, self-esteem was not significantly different between the two groups (absolute scores p = 0.69; positive/negative p = 0.29). The high response rate shows that the GHQ30 and Hudson ISE are easy to use and well tolerated by myopes in a busy clinic setting. The fact that the patients were older, with a greater refractive error, may partly reflect the onset of contact lens intolerance. The psychological findings suggest that PRK patients cannot be considered more distressed or anxious than other myopic individuals. There is no evidence that their decision to undergo surgery is driven by abnormally low self-esteem.

  20. Nano-crystallization in ZnO-doped In{sub 2}O{sub 3} thin films via excimer laser annealing for thin-film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Mami N., E-mail: f-mami@ms.naist.jp; Ishikawa, Yasuaki; Bermundo, Juan Paolo Soria; Uraoka, Yukiharu [Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192 (Japan); Ishihara, Ryoichi; Cingel, Johan van der; Mofrad, Mohammad R. T. [Delft University of Technology, Feldmannweg 17, P.O. Box 5053, 2600 GB Delft (Netherlands); Kawashima, Emi; Tomai, Shigekazu; Yano, Koki [Idemitsu Kosan Co., Ltd., 1280 Kami-izumi, Sodegaura, Chiba, 299-0293 (Japan)

    2016-06-15

    In a previous work, we reported the high field effect mobility of ZnO-doped In{sub 2}O{sub 3} (IZO) thin film transistors (TFTs) irradiated by excimer laser annealing (ELA) [M. Fujii et al., Appl. Phys. Lett. 102, 122107 (2013)]. However, a deeper understanding of the effect of ELA on the IZO film characteristics based on crystallinity, carrier concentrations, and optical properties is needed to control localized carrier concentrations for fabricating self-aligned structures in the same oxide film and to adequately explain the physical characteristics. In the case of as-deposited IZO film used as the channel, a high carrier concentration due to a high density of oxygen vacancies was observed; such a film does not show the required TFT characteristics but can act as a conductive film. We achieved a decrease in the carrier concentration of IZO films by crystallization using ELA. This means that ELA can form localized conductive or semi-conductive areas on the IZO film. We confirmed that the reason for the carrier concentration decrease was the decrease of oxygen-deficient regions and film crystallization. The annealed IZO films showed nano-crystalline phase, and the temperature at the substrate was substantially less than the temperature limit for flexible films such as plastic, which is 50°C. This paves the way for the formation of self-aligned structures and separately formed conductive and semi-conductive regions in the same oxide film.

  1. Nano-crystallization in ZnO-doped In_2O_3 thin films via excimer laser annealing for thin-film transistors

    International Nuclear Information System (INIS)

    Fujii, Mami N.; Ishikawa, Yasuaki; Bermundo, Juan Paolo Soria; Uraoka, Yukiharu; Ishihara, Ryoichi; Cingel, Johan van der; Mofrad, Mohammad R. T.; Kawashima, Emi; Tomai, Shigekazu; Yano, Koki

    2016-01-01

    In a previous work, we reported the high field effect mobility of ZnO-doped In_2O_3 (IZO) thin film transistors (TFTs) irradiated by excimer laser annealing (ELA) [M. Fujii et al., Appl. Phys. Lett. 102, 122107 (2013)]. However, a deeper understanding of the effect of ELA on the IZO film characteristics based on crystallinity, carrier concentrations, and optical properties is needed to control localized carrier concentrations for fabricating self-aligned structures in the same oxide film and to adequately explain the physical characteristics. In the case of as-deposited IZO film used as the channel, a high carrier concentration due to a high density of oxygen vacancies was observed; such a film does not show the required TFT characteristics but can act as a conductive film. We achieved a decrease in the carrier concentration of IZO films by crystallization using ELA. This means that ELA can form localized conductive or semi-conductive areas on the IZO film. We confirmed that the reason for the carrier concentration decrease was the decrease of oxygen-deficient regions and film crystallization. The annealed IZO films showed nano-crystalline phase, and the temperature at the substrate was substantially less than the temperature limit for flexible films such as plastic, which is 50°C. This paves the way for the formation of self-aligned structures and separately formed conductive and semi-conductive regions in the same oxide film.

  2. Remarkable enhancement on elimination reaction of side groups in excimer laser ablation of mixture targets of perylene derivatives with metal powder

    International Nuclear Information System (INIS)

    Nishio, Satoru; Tamura, Kazuyuki; Tsujine, Yukari; Fukao, Tomoko; Nakano, Masayoshi; Matsuzaki, Akiyoshi; Sato, Hiroyasu

    2002-01-01

    Films are deposited on substrates at 20 deg.C by excimer laser ablation (ELA) of mixture targets of 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) with metal powder, PTCDA/M (M=Co, Ni, Fe, W, Cu and Ag) using XeCl and ArF beams. Large amount of fragments with ''naked'' perylene skeletons can be produced owing to effective elimination of carboxylic dianhydride groups by ELA of PTCDA/Co both with XeCl and ArF beams under optimized ablation conditions. Elimination reaction of side groups of PTCDA is observed for ELA of the targets with metal powder of the iron group, Co, Fe and Ni, especially remarkable for Co and Fe. The film from PTCDA/Ni consists of small particles with the various diameters ranging from 10 to 100 nm as well as that from PTCDA/Co. Morphology like petal of rose can be seen everywhere for the film from PTCDA/Fe

  3. Surface studies on benzophenone doped PDMS microstructures fabricated using KrF excimer laser direct write lithography

    Energy Technology Data Exchange (ETDEWEB)

    Kant, Madhushree Bute; Shinde, Shashikant D. [Department of Physics, University of Pune, Pune 411007 (India); Bodas, Dhananjay [Centre for Nanobioscience, Agharkar Research Institute, Agharkar road, Pune 411004 (India); Patil, K.R. [Center for Materials Characterization, National Chemical Laboratories, Pune 411008 (India); Sathe, V.G. [UGC DAE Inter University Consortium, Indore 452017 (India); Adhi, K.P. [Department of Physics, University of Pune, Pune 411007 (India); Gosavi, S.W., E-mail: swg@physics.unipune.ac.in [Department of Physics, University of Pune, Pune 411007 (India)

    2014-09-30

    Graphical abstract: - Highlights: • Use of KrF Laser micromachining for Lab-On-Chip applications at lower fluence. • Addition of Benzophenone in PDMS enhances its self development sensitivity. • Benzophenone helps efficient energy transfer for equal density of bond scissioning. • Correlation of chemical composition with laser dose and microstructure. • Microstructures with well defined clean sidewalls. - Abstract: This paper discusses microfabrication process for benzophenone doped polydimethylsiloxane (PDMS) using laser lithography. KrF excimer laser of 248 nm with 20 ns pulse width at repetition rate of 1 Hz was used for microfabrication of undoped and benzophenone doped PDMS. The doped-PDMS shows sensitivity below 365 nm, permitting processing under ambient light. The analysis of etch depth revealed that doped PDMS shows self developable sensitivity at lower fluence of ∼250 mJ/cm{sup 2}. The unexposed and exposed surface was studied using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and Scanning electron microscopy (SEM). Spectrocopic analysis indicated increase in C-O, C=O, Si-O{sub 3} and Si-O{sub 4} bonding at the expense of Si-C and Si-O{sub 2} bonds of PDMS. In case of laser exposed doped-PDMS, removal of benzophenone from probe depth of spectroscopy was observed. Whereas the surface morphology of exposed and unexposed doped-PDMS was observed to be same, indicating clean development of PDMS micropatterns. The present study indicates that addition of 3.0 wt.% benzophenone in PDMS enhance self development sensitivity of PDMS. The self developable results on doped-PDMS are quite encouraging for its potential use in point of care Lab-On-Chip applications, for fabricating micropatterns using direct write laser lithography technology.

  4. Surface studies on benzophenone doped PDMS microstructures fabricated using KrF excimer laser direct write lithography

    International Nuclear Information System (INIS)

    Kant, Madhushree Bute; Shinde, Shashikant D.; Bodas, Dhananjay; Patil, K.R.; Sathe, V.G.; Adhi, K.P.; Gosavi, S.W.

    2014-01-01

    Graphical abstract: - Highlights: • Use of KrF Laser micromachining for Lab-On-Chip applications at lower fluence. • Addition of Benzophenone in PDMS enhances its self development sensitivity. • Benzophenone helps efficient energy transfer for equal density of bond scissioning. • Correlation of chemical composition with laser dose and microstructure. • Microstructures with well defined clean sidewalls. - Abstract: This paper discusses microfabrication process for benzophenone doped polydimethylsiloxane (PDMS) using laser lithography. KrF excimer laser of 248 nm with 20 ns pulse width at repetition rate of 1 Hz was used for microfabrication of undoped and benzophenone doped PDMS. The doped-PDMS shows sensitivity below 365 nm, permitting processing under ambient light. The analysis of etch depth revealed that doped PDMS shows self developable sensitivity at lower fluence of ∼250 mJ/cm 2 . The unexposed and exposed surface was studied using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and Scanning electron microscopy (SEM). Spectrocopic analysis indicated increase in C-O, C=O, Si-O 3 and Si-O 4 bonding at the expense of Si-C and Si-O 2 bonds of PDMS. In case of laser exposed doped-PDMS, removal of benzophenone from probe depth of spectroscopy was observed. Whereas the surface morphology of exposed and unexposed doped-PDMS was observed to be same, indicating clean development of PDMS micropatterns. The present study indicates that addition of 3.0 wt.% benzophenone in PDMS enhance self development sensitivity of PDMS. The self developable results on doped-PDMS are quite encouraging for its potential use in point of care Lab-On-Chip applications, for fabricating micropatterns using direct write laser lithography technology

  5. Surface Finish after Laser Metal Deposition

    Science.gov (United States)

    Rombouts, M.; Maes, G.; Hendrix, W.; Delarbre, E.; Motmans, F.

    Laser metal deposition (LMD) is an additive manufacturing technology for the fabrication of metal parts through layerwise deposition and laser induced melting of metal powder. The poor surface finish presents a major limitation in LMD. This study focuses on the effects of surface inclination angle and strategies to improve the surface finish of LMD components. A substantial improvement in surface quality of both the side and top surfaces has been obtained by laser remelting after powder deposition.

  6. Randomized controlled study of excimer laser atherectomy for treatment of femoropopliteal in-stent restenosis: initial results from the EXCITE ISR trial (EXCImer Laser Randomized Controlled Study for Treatment of FemoropopliTEal In-Stent Restenosis).

    Science.gov (United States)

    Dippel, Eric J; Makam, Prakash; Kovach, Richard; George, Jon C; Patlola, Raghotham; Metzger, D Christopher; Mena-Hurtado, Carlos; Beasley, Robert; Soukas, Peter; Colon-Hernandez, Pedro J; Stark, Matthew A; Walker, Craig

    2015-01-01

    The purpose of this study was to evaluate the safety and efficacy of excimer laser atherectomy (ELA) with adjunctive percutaneous transluminal angioplasty (PTA) versus PTA alone for treating patients with chronic peripheral artery disease with femoropopliteal bare nitinol in-stent restenosis (ISR). Femoropopliteal stenting has shown superiority to PTA for lifestyle-limiting claudication and critical limb ischemia, although treating post-stenting artery reobstruction, or ISR, remains challenging. The multicenter, prospective, randomized, controlled EXCITE ISR (EXCImer Laser Randomized Controlled Study for Treatment of FemoropopliTEal In-Stent Restenosis) trial was conducted across 40 U.S. centers. Patients with Rutherford Class 1 to 4 and lesions of target lesion length ≥4 cm, vessel diameter 5 to 7 mm were enrolled and randomly divided into ELA + PTA and PTA groups by a 2:1 ratio. The primary efficacy endpoint was target lesion revascularization (TLR) at 6-month follow up. The primary safety endpoint was major adverse event (death, amputation, or TLR) at 30 days post-procedure. Study enrollment was stopped at 250 patients due to early efficacy demonstrated at a prospectively-specified interim analysis. A total of 169 ELA + PTA subjects (62.7% male; mean age 68.5 ± 9.8 years) and 81 PTA patients (61.7% male; mean age 67.8 ± 10.3 years) were enrolled. Mean lesion length was 19.6 ± 12.0 cm versus 19.3 ± 11.9 cm, and 30.5% versus 36.8% of patients exhibited total occlusion. ELA + PTA subjects demonstrated superior procedural success (93.5% vs. 82.7%; p = 0.01) with significantly fewer procedural complications. ELA + PTA and PTA subject 6-month freedom from TLR was 73.5% versus 51.8% (p < 0.005), and 30-day major adverse event rates were 5.8% versus 20.5% (p < 0.001), respectively. ELA + PTA was associated with a 52% reduction in TLR (hazard ratio: 0.48; 95% confidence interval: 0.31 to 0.74). The EXCITE ISR trial is the first large, prospective, randomized study

  7. Early outcome of high energy Laser (Excimer) facilitated coronary angioplasty ON hARD and complex calcified and balloOn-resistant coronary lesions: LEONARDO Study

    International Nuclear Information System (INIS)

    Ambrosini, Vittorio; Sorropago, Giovanni; Laurenzano, Eugenio; Golino, Luca; Casafina, Alfredo; Schiano, Vittorio; Gabrielli, Gabriele; Ettori, Federica; Chizzola, Giuliano; Bernardi, Guglielmo; Spedicato, Leonardo; Armigliato, Pietro; Spampanato, Carmine; Furegato, Martina

    2015-01-01

    Aim: An innovative xenon–chlorine (excimer) pulsed laser catheter (ELCA X80) has been recently used for the treatment of complex coronary lesions, as calcified stenosis, chronic total occlusions and non-compliant plaques. Such complex lesions are difficult to adequately treat with balloon angioplasty and/or intracoronary stenting. The aim of this study was to examine the acute outcome of this approach on a cohort of patients with coronary lesions. Methods and Results: Eighty patients with 100 lesions were enrolled through four centers, and excimer laser coronary angioplasty was performed on 96 lesions (96%). Safety and effectiveness data were compared between patients treated with standard laser therapy and those treated with increased laser therapy. Laser success was obtained in 90 lesions (93.7%), procedural success was reached in 88 lesions (91.7%), and clinical success in was obtained in 87 lesions (90.6%). There was no perforation, major side branch occlusion, spasm, no-reflow phenomenon, dissection nor acute vessel closure. Increased laser parameters were used successfully for 49 resistant lesions without complications. Conclusions: This study suggests that laser-facilitated coronary angioplasty is a simple, safe and effective device for the management of complex coronary lesions. Furthermore, higher laser energy levels delivered by this catheter improved the device performance without increasing complications. - Highlights: • We planned this multicenter study to examine the acute outcome of an innovative xenon–chlorine (excimer) pulsed laser catheter (ELCA X80) for treatment of complex coronary lesions. • We enrolled 80 patients with 100 lesions and performed excimer laser coronary angioplasty in 96 lesions (96%). • Laser success was obtained in 90 lesions (93.7%), procedural success was reached in 88 lesions (91.7%), and clinical success was obtained in 87 lesions (90.6%). • Increased laser parameters were used successfully for 49 resistant

  8. Early outcome of high energy Laser (Excimer) facilitated coronary angioplasty ON hARD and complex calcified and balloOn-resistant coronary lesions: LEONARDO Study

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosini, Vittorio; Sorropago, Giovanni; Laurenzano, Eugenio [Montevergine Clinic, Mercogliano (Italy); Golino, Luca, E-mail: lucagolino.jazz@alice.it [Montevergine Clinic, Mercogliano (Italy); Moriggia-Pelascini Hospital, Gravedona, Como (Italy); Casafina, Alfredo; Schiano, Vittorio [Montevergine Clinic, Mercogliano (Italy); Gabrielli, Gabriele [University Hospital Ospedali Riuniti, Ancona (Italy); Ettori, Federica; Chizzola, Giuliano [Spedali Civili University Hospital, Brescia (Italy); Bernardi, Guglielmo; Spedicato, Leonardo [University Hospital S. Maria Misericordia, Udine (Italy); Armigliato, Pietro [Istituto Italiano Ricerche Mediche, Verona (Italy); Spampanato, Carmine [Telethon Institute of Genetics and Medicine (TIGEM), Naples (Italy); Furegato, Martina [Istituto Italiano Ricerche Mediche, Verona (Italy)

    2015-04-15

    Aim: An innovative xenon–chlorine (excimer) pulsed laser catheter (ELCA X80) has been recently used for the treatment of complex coronary lesions, as calcified stenosis, chronic total occlusions and non-compliant plaques. Such complex lesions are difficult to adequately treat with balloon angioplasty and/or intracoronary stenting. The aim of this study was to examine the acute outcome of this approach on a cohort of patients with coronary lesions. Methods and Results: Eighty patients with 100 lesions were enrolled through four centers, and excimer laser coronary angioplasty was performed on 96 lesions (96%). Safety and effectiveness data were compared between patients treated with standard laser therapy and those treated with increased laser therapy. Laser success was obtained in 90 lesions (93.7%), procedural success was reached in 88 lesions (91.7%), and clinical success in was obtained in 87 lesions (90.6%). There was no perforation, major side branch occlusion, spasm, no-reflow phenomenon, dissection nor acute vessel closure. Increased laser parameters were used successfully for 49 resistant lesions without complications. Conclusions: This study suggests that laser-facilitated coronary angioplasty is a simple, safe and effective device for the management of complex coronary lesions. Furthermore, higher laser energy levels delivered by this catheter improved the device performance without increasing complications. - Highlights: • We planned this multicenter study to examine the acute outcome of an innovative xenon–chlorine (excimer) pulsed laser catheter (ELCA X80) for treatment of complex coronary lesions. • We enrolled 80 patients with 100 lesions and performed excimer laser coronary angioplasty in 96 lesions (96%). • Laser success was obtained in 90 lesions (93.7%), procedural success was reached in 88 lesions (91.7%), and clinical success was obtained in 87 lesions (90.6%). • Increased laser parameters were used successfully for 49 resistant

  9. Measurement of radiation and temperature of cathod spots in excimer laser discharge; Ekishima reza reiki hodennai ni fukumareru inkyoku kiten no kogakuteki kansoku to ondo no sokutei

    Energy Technology Data Exchange (ETDEWEB)

    Minamitani, Y.; Nakatani, H. [Mitsubishi Electric Corp., Tokyo (Japan)

    1996-08-20

    Excimer laser is used in various fields such as luminous source for steppers, annealing treatment, ablation process, nuclear fusion and so on. In this paper, the radiation timing and gas temperature of cathode spots, streamer discharges and glow discharges in KrF excimer are measured by observing the radiating spectra thereof. The following conclusions are obtained from the results of the present study. Cathode spots begin to radiate at about 20ns after the discharge initiation, then the first and second radiation peaks are observed respectively when the discharge current reversing after passing zero point and the reserved discharged current approaching zero point. Streamer discharge makes flashover between electrodes at the second radiation peak of cathode spots, while the glow discharges almost disappear when streamer discharges occurring. The temperatures of cathode spots and glow discharge as 5500K and 2600K respectively are almost constant and independent upon the discharging voltage of laser. 14 refs., 12 figs.

  10. Influence of pulse width and target density on pulsed laser deposition of thin YBaCuO film

    International Nuclear Information System (INIS)

    Vikram, S.

    1999-01-01

    We have studied the effects of temporal pulse width and target density on the deposition of thin films of YBaCuO. A 248nm excimer laser and an 825nm Ti-sapphire laser were used to conduct the experiments with pulse widths of 27 ns, 16 ns, and 150 fs, and target densities of 80% and 90%. Scanning electron microscope photomicrographs and profilometer traces show a striking difference between nanosecond and femtosecond laser irradiation. Shortening the pulse width reduced particulate formation, provided stoichiometry, and improved the film properties. Decreasing the target density raised the ablation rate, produced thicker but nonuniform films, and reduced particulate formation

  11. Influence of pulse width and target density on pulsed laser deposition of thin YBaCuO film.

    Energy Technology Data Exchange (ETDEWEB)

    Vikram, S.

    1999-01-20

    We have studied the effects of temporal pulse width and target density on the deposition of thin films of YBaCuO. A 248nm excimer laser and an 825nm Ti-sapphire laser were used to conduct the experiments with pulse widths of 27 ns, 16 ns, and 150 fs, and target densities of 80% and 90%. Scanning electron microscope photomicrographs and profilometer traces show a striking difference between nanosecond and femtosecond laser irradiation. Shortening the pulse width reduced particulate formation, provided stoichiometry, and improved the film properties. Decreasing the target density raised the ablation rate, produced thicker but nonuniform films, and reduced particulate formation.

  12. Four-year to seven-year outcomes of advanced surface ablation with excimer laser for high myopia

    DEFF Research Database (Denmark)

    Hansen, Rasmus Søgaard; Lyhne, Niels; Grauslund, Jakob

    2015-01-01

    Purpose: To evaluate and compare long-term outcomes ofafter photorefractive keratectomy with cooling (cPRK) and laser-assisted subepithelial keratectomy (LASEK) for high myopia. Methods: Retrospective single-masked follow-up study of patients treated for myopia between 2007 and 2009 with cPRK...... or LASEK, using a high-frequency flying-spot excimer laser with eye-tracker (MEL80; Carl Zeiss, Jena, Germany). One eye of each patient was randomly chosen for analysis. Re-treated eyes were excluded. Results: Forty-six cPRK patients and 35 LASEK patients were included. Spherical equivalent averaged -7.......69 ± 1.47 diopters (D) in cPRK eyes and -7.98 ± 2.06 D in LASEK eyes (P=0.31) before surgery. Average follow-up time was 4.6 years in cPRK patients and 6.0 years in LASEK patients (PPRK eyes and 1 LASEK eye (P=0.46) had lost 2 lines of corrected distance visual acuity...

  13. Studies of free radicals by ultraviolet excimer laser photolysis. Progress report, 1 April 1980-1 November 1980

    International Nuclear Information System (INIS)

    Leone, S.R.

    1980-01-01

    An experimental technique has been developed to produce and directly study vibrationally excited free radicals. Pulses of light from an ultraviolet excimer laser are used to photodissociate small molecules to generate free radicals with high internal excitation. The radicals are detected directly by the technique of time and wavelength-resolved infrared emission spectroscopy using a background-limited copper-doped germanium infrared detector. New results have been obtained on the CH 3 radical. A complete spectrum of the CH 3 umbrella band reveals for the first time accurate positions of the vibrational progression in this band. Photofragmentation of (CH 3 ) 2 Hg has yielded detailed information on the vibrational distribution, rotational temperature, and deactivation rates of the CH 3 stretch mode. A technique to study chemical chain reactions using low power, radical-specific, laser initiation and realtime kinetics detection had previously been demonstrated. The results provide a general method to study a large number of chain reaction combustion systems in greater detail. New results on more complex chain reactions such as Cl 2 /butane reveal that highly detailed infrared emission spectra of various products of the chain and their time evolution is possible. Partitioning of energy between vibrational degrees of freedom and translational heating is obtained over the course of the combustion

  14. Applying low-energy multipulse excimer laser annealing to improve charge retention of Au nanocrystals embedded MOS capacitors

    International Nuclear Information System (INIS)

    Shen, Kuan-Yuan; Chen, Hung-Ming; Liao, Ting-Wei; Kuan, Chieh-Hsiung

    2015-01-01

    The low-energy multipulse excimer laser annealing (LEM-ELA) is proposed to anneal the nanostructure of nanocrystal (NC) embedded in a SiO 2 thin film without causing atomic diffusion and damaging the NCs, since the LEM-ELA combining the advantages of laser annealing and UV curing features rapid heating and increasing oxide network connectivity. A Fourier transform infrared spectroscopy (FTIR) characterization of SiO 2 thin films annealed using LEM-ELA indicated that the quality was improved through the removal of water-related impurities and the reconstruction of the network Si–O–Si bonds. Then, LEM-ELA was applied to a SiO 2 thin film embedded with Au NCs, which were fabricated as MOS capacitors. The charge retention was greatly improved and the percentage of retained charges was about 10% after 3  ×  10 8  s. To investigate and differentiate the effects of LEM-ELA on charges stored in both oxide traps and in the Au NCs, a double-mechanism charge relaxation analysis was performed. The results indicated that the oxide traps were removed and the confinement ability of Au NCs was enhanced. The separated memory windows contributed from the charges in Au NCs and those in oxide traps were obtained and further confirmed that the LEM-ELA removed oxide traps without damaging the Au NCs. (paper)

  15. An experimental study on laser drilling and cutting of composite materials for the aerospace industry using excimer and CO2 sources

    Science.gov (United States)

    dell'Erba, M.; Galantucci, L. M.; Miglietta, S.

    This paper reports on the results of research which investigated the potential for the application of an excimer laser in the field of composite material drilling and cutting, by comparing this technology with that using CO2 sources. In particular, the scope of the work was to check whether the interaction between excimer lasers and composite materials, whose characteristic feature is the absence of thermal transfer, could yield better results than those obtainable with CO2 sources once heat transfer-induced difficulties had been eliminated. The materials selected for the experiments were multilayer composites having an epoxy resin matrix (65 percent in volume), with aramid fiber (Kevlar), carbon fiber and glass fiber as reinforcing materials, all of considerable interest for the aerospace industry. Optimal operational parameters were identified in relation to each source with a view to obtaining undersize holes or through cuts exhibiting severed areas of good quality. A comparison between the two types of processing carried out show that rims processed by excimer lasers are of better quality - particularly so with Kevlar - whereas the ablation rate is undoubtedly rather low compared with the CO2 technology.

  16. Laser vapor phase deposition of semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Karlov, N.V.; Luk' ianchuk, B.S.; Sisakian, E.V.; Shafeev, G.A.

    1987-06-01

    The pyrolytic effect of IR laser radiation is investigated with reference to the initiation and control of the vapor phase deposition of semiconductor films. By selecting the gas mixture composition and laser emission parameters, it is possible to control the deposition and crystal formation processes on the surface of semiconductors, with the main control action achieved due to the nonadiabatic kinetics of reactions in the gas phase and high temperatures in the laser heating zone. This control mechanism is demonstrated experimentally during the laser vapor deposition of germanium and silicon films from tetrachlorides on single-crystal Si and Ge substrates. 5 references.

  17. A retrospective comparison of efficacy and safety of 680 consecutive lasik treatments for high myopia performed with two generations of flying-spot excimer lasers.

    Science.gov (United States)

    Gazieva, Lola; Beer, Mette Hjuler; Nielsen, Kim; Hjortdal, Jesper

    2011-12-01

    To compare the visual refractive outcome and complication of laser in situ keratomileusis (LASIK) carried out with a Carl Zeiss-Meditec MEL-70 Excimer laser and a MEL-80 laser for treatment of high myopia. Journal records of 680 consecutive eyes that underwent LASIK with a Schwind Supratome microkeratome and a MEL-70 Excimer laser (Group A), or a Moria M2 microkeratome and a MEL-80 Excimer laser (Group B) were reviewed. Manifest refraction, uncorrected and best spectacle-corrected visual acuity (BSCVA), corneal topography and central corneal thickness (CCT) were recorded before and 3 months after treatment. Pre- and postoperative complications, visual and refractive outcome and frequency of retreatments were registered. Mean preoperative spherical equivalent refraction was -8.52 dioptres (-5.50- -18 dioptres), and the mean attempted laser correction was -8.02 dioptres (-5.50- -11 dioptres). Three months after LASIK, the average treatment error (difference between achieved and attempted correction) was 1.20 (SD=1.19) dioptres of under correction in Group A and 0.52 (SD=1.00) dioptres in Group B. Four eyes lost more than two lines of BSCVA (0.6%). In 110 eyes (16%), a re-LASIK procedure was performed to reduce remaining myopia after the primary procedure. Laser in situ keratomileusis treatment for high myopia can effectively reduce high degrees of myopia. Under correction was observed in both treatment groups but Group B has a slightly better predictability. Significant loss of BSCVA occurs infrequently after LASIK for even considerable grades of myopia (0.6% in each group). © 2010 The Authors. Journal compilation © 2010 Acta Ophthalmol.

  18. FEM numerical analysis of excimer laser induced modification in alternating multi-layers of amorphous and nano-crystalline silicon films

    Energy Technology Data Exchange (ETDEWEB)

    Conde, J.C., E-mail: jconde@uvigo.es [Dpto. Fisica Aplicada, Universidade de Vigo, Rua Maxwell s/n, Campus Universitario Lagoas Marcosende, Vigo (Spain); Martin, E. [Dpto. Mecanica, Maquinas, Motores Termicos y Fluidos, Universidade de Vigo, Rua Maxwell s/n, Campus Universitario Lagoas Marcosende, Vigo (Spain); Stefanov, S. [Dpto. Fisica Aplicada, Universidade de Vigo, Rua Maxwell s/n, Campus Universitario Lagoas Marcosende, Vigo (Spain); Alpuim, P. [Departamento de Fisica, Universidade do Minho, 4800-058 Guimaraes (Portugal); Chiussi, S. [Dpto. Fisica Aplicada, Universidade de Vigo, Rua Maxwell s/n, Campus Universitario Lagoas Marcosende, Vigo (Spain)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer nc-Si:H is a material with growing importance for a large-area of nano-electronic, photovoltaic or biomedical devices. Black-Right-Pointing-Pointer UV-ELA technique causes a rapid heating that provokes the H{sub 2} desorption from the Si surface and bulk material. Black-Right-Pointing-Pointer Next, diffusion of P doped nc-Si films and eventually, for high energy densities would be possible to reach the melting point. Black-Right-Pointing-Pointer These multilayer structures consisting of thin alternating a-Si:H(10 nm) and n-doped nc-Si:H(60 nm) films deposited on SiO{sub 2}. Black-Right-Pointing-Pointer To optimize parameters involved in this processing, FEM numerical analysis of multilayer structures have been performed. Black-Right-Pointing-Pointer The numerical results are compared with exhaustive characterization of the experimental results. - Abstract: UV excimer laser annealing (UV-ELA) is an alternative annealing process that, during the last few years, has gained enormous importance for the CMOS nano-electronic technologies, with the ability to provide films and alloys with electrical and optical properties to fit the desired device performance. The UV-ELA of amorphous (a-) and/or doped nano-crystalline (nc-) silicon films is based on the rapid (nanoseconds) formation of temperature profiles caused by laser radiation that is absorbed in the material and lead to crystallisation, diffusion in solid or even in liquid phase. To achieve the desired temperature profiles and to optimize the parameters involved in the processing of hydrogenated nanocrystalline silicon (nc-Si:H) films with the UV-ELA, a numerical analysis by finite element method (FEM) of a multilayer structure has been performed. The multilayer structures, consisting of thin alternating a-Si:H(10 nm) and n-doped nc-Si:H(60 nm) layers, deposited on a glass substrate, has also been experimentally analyzed. Temperature profiles caused by 193 nm radiation with 25

  19. FEM numerical analysis of excimer laser induced modification in alternating multi-layers of amorphous and nano-crystalline silicon films

    International Nuclear Information System (INIS)

    Conde, J.C.; Martín, E.; Stefanov, S.; Alpuim, P.; Chiussi, S.

    2012-01-01

    Highlights: ► nc-Si:H is a material with growing importance for a large-area of nano-electronic, photovoltaic or biomedical devices. ► UV-ELA technique causes a rapid heating that provokes the H 2 desorption from the Si surface and bulk material. ► Next, diffusion of P doped nc-Si films and eventually, for high energy densities would be possible to reach the melting point. ► These multilayer structures consisting of thin alternating a-Si:H(10 nm) and n-doped nc-Si:H(60 nm) films deposited on SiO 2 . ► To optimize parameters involved in this processing, FEM numerical analysis of multilayer structures have been performed. ► The numerical results are compared with exhaustive characterization of the experimental results. - Abstract: UV excimer laser annealing (UV-ELA) is an alternative annealing process that, during the last few years, has gained enormous importance for the CMOS nano-electronic technologies, with the ability to provide films and alloys with electrical and optical properties to fit the desired device performance. The UV-ELA of amorphous (a-) and/or doped nano-crystalline (nc-) silicon films is based on the rapid (nanoseconds) formation of temperature profiles caused by laser radiation that is absorbed in the material and lead to crystallisation, diffusion in solid or even in liquid phase. To achieve the desired temperature profiles and to optimize the parameters involved in the processing of hydrogenated nanocrystalline silicon (nc-Si:H) films with the UV-ELA, a numerical analysis by finite element method (FEM) of a multilayer structure has been performed. The multilayer structures, consisting of thin alternating a-Si:H(10 nm) and n-doped nc-Si:H(60 nm) layers, deposited on a glass substrate, has also been experimentally analyzed. Temperature profiles caused by 193 nm radiation with 25 ns pulse length and energy densities ranging from 50 mJ/cm 2 to 400 mJ/cm 2 have been calculated. Numerical results allowed us to estimate the dehydrogenation

  20. The Improvement of Electrical Characteristics of Pt/Ti Ohmic Contacts to Ga-Doped ZnO by Homogenized KrF Pulsed Excimer Laser Treatment

    Science.gov (United States)

    Oh, Min-Suk

    2018-04-01

    We investigated the effect of KrF excimer laser surface treatment on Pt/Ti ohmic contacts to Ga-doped n-ZnO ( N d = 4.3 × 1017 cm-3). The treatment of the n-ZnO surfaces by laser irradiation greatly improved the electrical characteristics of the metal contacts. The Pt/Ti ohmic layer on the laser-irradiated n-ZnO showed specific contact resistances of 2.5 × 10-4 ˜ 4.8 × 10-4 Ω cm2 depending on the laser energy density and gas ambient, which were about two orders of magnitude lower than that of the as-grown sample, 8.4 × 10-2 Ω cm2. X-ray photoelectron spectroscopy and photoluminescence measurements showed that the KrF excimer laser treatments increased the electron concentration near the surface region of the Ga-doped n-ZnO due to the preferential evaporation of oxygen atoms from the ZnO surface by the laser-induced dissociation of Zn-O bonds.

  1. Pulsed Laser Deposition: passive and active waveguides

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Miroslav; Flory, F.; Escoubas, L.

    2009-01-01

    Roč. 34, č. 4 (2009), s. 438-449 ISSN 0268-1900 R&D Projects: GA ČR GA202/06/0216 Institutional research plan: CEZ:AV0Z10100522 Keywords : PLD * pulsed laser deposition * laser ablation * passive waveguides * active waveguides * waveguide laser * sensors * thin films * butane detection Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.384, year: 2009

  2. Reactive pulsed laser deposition with gas jet

    International Nuclear Information System (INIS)

    Rakowski, R.; Bartnik, A.; Fiedorowicz, H.; Jarocki, R.; Kostecki, J.; Szczurek, M.

    2001-01-01

    Different metal (Sn, Al, steel, Cu, W) thin films were synthesized by reactive pulsed laser deposition on steel, copper and glass wafers. In our work pulsed Nd:glass (10 J, 800μs) laser system was used. Jet of gas was created by electromagnetic valve perpendicularly to the laser beam. Nitrogen, oxygen and argon were used. We used several to tens laser shots to obtain visible with the naked eye layers. Thin layers were observed under an optical microscope. (author)

  3. Effects of DC gate and drain bias stresses on the degradation of excimer laser crystallized polysilicon thin film transistors

    International Nuclear Information System (INIS)

    Kouvatsos, D N; Michalas, L; Voutsas, A T; Papaioannou, G J

    2005-01-01

    The effects of gate and drain bias stresses on thin film transistors fabricated in polysilicon films crystallized using the advanced sequential lateral solidification excimer laser annealing (SLS ELA) process, which yields very elongated polysilicon grains and allows the fabrication of TFTs without grain boundary barriers to current flow, are investigated as a function of the active layer thickness and of the TFT orientation relative to the grains. The application of hot carrier stress, with a condition of V GS = V DS /2, was determined to induce threshold voltage, subthreshold swing and transconductance degradation for TFTs in thicker polysilicon films and the associated stress-induced increase in the active layer trap density was evaluated. However, this device degradation was drastically reduced for TFTs fabricated in ultra-thin films. Furthermore, the application of the same stress condition to TFTs oriented vertically to the elongated grains resulted in similar threshold voltage shift but in substantially decreased subthreshold swing and transconductance degradation. The immunity of ultra-thin active layer devices to degradation under hot carrier stress clearly suggests the implementation of ultra thin SLS ELA polysilicon films for the fabrication of TFTs exhibiting not only high performance but, especially, the high reliability needed for integrated systems on panel

  4. Properties of the ablation process for excimer laser ablation of Y sub 1 Ba sub 2 Cu sub 3 O sub 7

    Energy Technology Data Exchange (ETDEWEB)

    Neifeld, R.A.; Potenziani, E. (United States Army, Electronics Technology and Devices Laboratory, Fort Monmouth, New Jersey 07703-5000 (US)); Sinclair, W.R. (Martin Goffman Associates, 3 Dellview Drive, Edison, New Jersey 08820-2545 (US)); Hill III, W.T.; Turner, B.; Pinkas, A. (Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742 (US))

    1991-01-15

    The process of excimer laser ablation has been studied while varying the laser fluence from 0.237 to 19.1 J/cm{sup 2}. Ion time-of-flight, total charge, target etch depth per pulse, and etch volume per pulse have been measured. Results indicate a maximum ablation volume and minimum ionization fraction occur near 5 J/cm{sup 2}. Several of the parameters measured vary rapidly in the 1--5 J/cm{sup 2} range. Variation in these parameters strongly influences the properties of films grown by this technique.

  5. Formation of copper tin sulfide films by pulsed laser deposition at 248 and 355 nm

    DEFF Research Database (Denmark)

    Ettlinger, Rebecca Bolt; Crovetto, Andrea; Canulescu, Stela

    2016-01-01

    The influence of the laser wavelength on the deposition of copper tin sulfide (CTS) and SnS-rich CTS with a 248-nm KrF excimer laser (pulse length τ = 20 ns) and a 355-nm frequency-tripled Nd:YAG laser (τ = 6 ns) was investigated. A comparative study of the two UV wavelengths shows that the CTS...... film growth rate per pulse was three to four times lower with the 248-nm laser than the 355-nm laser. SnS-rich CTS is more efficiently ablated than pure CTS. Films deposited at high fluence have submicron and micrometer size droplets, and the size and area density of the droplets do not vary significantly...

  6. INDEPENDENT EVALUATION OF THE GAM EX5ALN MINIATURE LINE-NARROWED KRF EXCIMER LASER

    Science.gov (United States)

    2017-06-01

    reliant on digital communication, perhaps a simple downloadable video ( YouTube ) could be prepared to facilitate the installation procedures. At a...prolonged use influenced the laser output. The stability of the laser under conditions of high discharge voltages and rapid firing rates was examined

  7. Characteristics of thin-film transistors based on silicon nitride passivation by excimer laser direct patterning

    International Nuclear Information System (INIS)

    Chen, Chao-Nan; Huang, Jung-Jie

    2013-01-01

    This study explored the removal of silicon nitride using KrF laser ablation technology with a high threshold fluence of 990 mJ/cm 2 . This technology was used for contact hole patterning to fabricate SiN x -passivation-based amorphous-silicon thin films in a transistor device. Compared to the photolithography process, laser direct patterning using KrF laser ablation technology can reduce the number of process steps by at least three. Experimental results showed that the mobility and threshold voltages of thin film transistors patterned using the laser process were 0.16 cm 2 /V-sec and 0.2 V, respectively. The device performance and the test results of gate voltage stress reliability demonstrated that laser direct patterning is a promising alternative to photolithography in the panel manufacturing of thin-film transistors for liquid crystal displays. - Highlights: ► KrF laser ablation technology is used to remove silicon nitride. ► A simple method for direct patterning contact-hole in thin-film-transistor device. ► Laser technology reduced processing by at least three steps

  8. Study of titania nanorod films deposited by matrix-assisted pulsed laser evaporation as a function of laser fluence

    Science.gov (United States)

    Caricato, A. P.; Belviso, M. R.; Catalano, M.; Cesaria, M.; Cozzoli, P. D.; Luches, A.; Manera, M. G.; Martino, M.; Rella, R.; Taurino, A.

    2011-11-01

    Chemically synthesized brookite titanium dioxide (TiO2) nanorods with average diameter and length dimensions of 3-4 nm and 35-50 nm, respectively, were deposited by the matrix-assisted pulsed laser evaporation technique. A toluene nanorod solution was frozen at the liquid-nitrogen temperature and irradiated with a KrF excimer laser ( λ=248 nm, τ=20 ns) at the repetition rate of 10 Hz, at different fluences (25 to 350 mJ/cm2). The deposited films were structurally characterized by high-resolution scanning and transmission electron microscopy. single-crystal Si wafers and carbon-coated Cu grids were used as substrates. Structural analyses evidenced the occurrence of brookite-phase crystalline nanospheres coexisting with individually distinguishable TiO2 nanorods in the films deposited at fluences varying from 50 to 350 mJ/cm2. Nanostructured TiO2 films comprising only nanorods were deposited by lowering the laser fluence to 25 mJ/cm2. The observed shape and phase transitions of the nanorods are discussed taking into account the laser-induced heating effects, reduced melting temperature and size-dependent thermodynamic stability of nanoscale TiO2.

  9. LASEK for the correction of hyperopia with mitomycin C using SCHWIND AMARIS excimer laser: one-year follow-up

    Directory of Open Access Journals (Sweden)

    Khosrow Jadidi

    2015-11-01

    Full Text Available AIM: To evaluate the efficacy, safety and predictability of laser-assisted sub-epithelial keratectomy(LASEKfor the correction of hyperopia using the SCHWIND AMARIS platform.METHODS: This retrospective single-surgeon study includes 66 eyes of 33 patients with hyperopia who underwent LASEK with mitomycin C(MMC. The median age of patients was 35.42±1.12y(ranging 18 to 56y. In each patient LASEK was performed using SCHWIND AMARIS excimer laser. Postoperatively clinical outcomes were evaluated in terms of predictability, safety, efficacy, subjective and objective refractions, uncorrected visual acuity(UCVA, best spectacle-corrected visual acuity(BSCVAand adverse events. RESULTS: The mean baseline refraction was 3.2±1.6 diopters(D(ranging 0 to 7 D. The mean pre-operative and postoperative spherical equivalent(SEwere 2.34±1.76(ranging -1.25 to 7 Dand 0.30±0.84(ranging -0.2 to 0.8 Drespectively(P=0.001. The mean hyperopia was 0.63±0.84 D(ranging -1.75 to 2.76 D6 to 12mo postoperatively. Likewise, the mean astigmatism was 0.68±0.43 D(range 0 to 2 Dwith 51(77.3%and 15(22.7%eyes within ±1 and ±0.50 D respectively. The safety index and efficacy index were 1.08 and 1.6 respectively.CONCLUSION:LASEK using SCHWIND AMARIS with MMC yields good visual and refractive results for hyperopia. Moreover, there were no serious complications.

  10. [Reduction of decentration after LASIK using a modified eye tracker ring for the MEL-70 excimer laser].

    Science.gov (United States)

    Schulze, S; Nietgen, G; Sekundo, W

    2004-07-01

    The aim of this study was to determine and compare the rate of eccentric laser ablation after LASIK depending on the eye tracker ring used. All LASIK treatments were carried out using the MEL-70 flying spot excimer laser (Zeiss-Meditec, Jena). The flap was produced using a Corneal Shaper trade mark or Hansatome trade mark Microkeratome (B and L Surgical, Heidelberg). Initially we used an 11 mm eye tracker ring without hinge protector. At the end of February 2001 this ring was replaced by a 10 mm and a 9.5 mm ring with built-in hinge protector. An additional modification was introduced by us: at 1 mm separations little teeth-like spikes were engraved into the eyeward side of the ring, thus stabilising the position of the ring on the globe and allowing free liquid to flow through the spaces between each spike. The built-in calibration system of the corneal topography (TMS 3, Tomey, Erlangen) from patients with a follow-up of one month or longer was used to determine the distance between the centre of the ablation zone from the fixation point. In group I patients (old ring) 42 eyes were treated. In 4 eyes ablation was perfect, in 21 eyes the ablation centre was located 0.1 to 0.49 mm from the fixation point, in 11 eyes 0.51 to 0.99 mm and in 5 eyes 1.1 to 1.49 mm whereas one eye showed a decentred ablation of 1.53 mm. In group II (new ring) 42 eyes were investigated also. In 11 eyes ablation was perfect, in 20 eyes the ablation centre was located 0.1 to 0.49 mm from the fixation point, in 10 eyes 0.5 to 0.99 mm and one eye had an eccentric ablation of 1.28 mm from the fixation point. The further development of our eye tracker ring for the MEL-70 laser considerably reduced the rate of decentred ablations. An enhanced grip of the ring onto the globe reduces a slow slide during the laser procedure.

  11. Laser-induced chemical vapor deposition reactions

    International Nuclear Information System (INIS)

    Teslenko, V.V.

    1990-01-01

    The results of investigation of chemical reactions of deposition of different substances from the gas phase when using the energy of pulse quasicontinuous and continuous radiation of lasers in the wave length interval from 0.193 to 10.6 μm are generalized. Main attetion is paid to deposition of inorganic substances including nonmetals (C, Si, Ge and others), metals (Cu, Au, Zn, Cd, Al, Cr, Mo, W, Ni) and some simple compounds. Experimental data on the effect of laser radiation parameters and reagent nature (hydrides, halogenides, carbonyls, alkyl organometallic compounds and others) on the deposition rate and deposit composition are described in detail. Specific features of laser-chemical reactions of deposition and prospects of their application are considered

  12. Optical and mechanical properties of nanocrystalline ZrC thin films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Craciun, D., E-mail: doina.craciun@inflpr.ro [Laser Department, National Institute for Laser, Plasma, and Radiation Physics, Magurele (Romania); Socol, G. [Laser Department, National Institute for Laser, Plasma, and Radiation Physics, Magurele (Romania); Lambers, E. [Major Analytical Instrumentation Center, College of Engineering, University of Florida, Gainesville, FL 32611 (United States); McCumiskey, E.J.; Taylor, C.R. [Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611 (United States); Martin, C. [Ramapo College of New Jersey (United States); Argibay, N. [Materials Science and Engineering Center, Sandia National Laboratories, Albuquerque, NM 87123 (United States); Tanner, D.B. [Physics Department, University of Florida, Gainesville, FL 32611 (United States); Craciun, V. [Laser Department, National Institute for Laser, Plasma, and Radiation Physics, Magurele (Romania)

    2015-10-15

    Highlights: • Nanocrystalline ZrC thin film were grown on Si by pulsed laser deposition technique. • Structural properties weakly depend on the CH{sub 4} pressure used during deposition. • The optimum deposition pressure for low resistivity is around 2 × 10{sup −5} mbar CH{sub 4}. • ZrC films exhibited friction coefficients around 0.4 and low wear rates. - Abstract: Thin ZrC films (<500 nm) were grown on (100) Si substrates at a substrate temperature of 500 °C by the pulsed laser deposition (PLD) technique using a KrF excimer laser under different CH{sub 4} pressures. Glancing incidence X-ray diffraction showed that films were nanocrystalline, while X-ray reflectivity studies found out films were very dense and exhibited a smooth surface morphology. Optical spectroscopy data shows that the films have high reflectivity (>90%) in the infrared region, characteristic of metallic behavior. Nanoindentation results indicated that films deposited under lower CH{sub 4} pressures exhibited slightly higher nanohardness and Young modulus values than films deposited under higher pressures. Tribological characterization revealed that these films exhibited relatively high wear resistance and steady-state friction coefficients on the order of μ = 0.4.

  13. X-ray spectral line shapes for the excimer-laser-produced high density plasma diagnostics

    International Nuclear Information System (INIS)

    Magunov, A.; Faenov, A.; Skobelev, I.; Pikuz, T.; Batani, D.; Milani, M.; Conti, A.; Masini, A.; Costato, M.; Pozzi, A.; Turcu, E.; Allot, R.; Lisi, N.; Koenig, M.; Benuzzi, A.; Flora, F.; Letardi, T.; Palladino, L.; Reale, A.

    1997-01-01

    The time and space-integrated emission spectra measurements have been performed in plasma produced by 308 nm wavelength XeCl laser radiation (I L =(4-10)·10 12 W/cm 2 , τ=10 ns) and by 248 nm wavelength KrF laser pulse train radiation (I L =5·10 15 W/cm 2 , τ=7 ps, 16 pulses in train) on CF n plane target. The lines' shapes and intensities modeling of Lyman series and He-like ion resonance series of fluorine up to n=7 by fitting experimental data shows the considerable difference of plasma formation features for these two sets of the laser pulse parameters

  14. Modeling of solid-state and excimer laser processes for 3D micromachining

    Science.gov (United States)

    Holmes, Andrew S.; Onischenko, Alexander I.; George, David S.; Pedder, James E.

    2005-04-01

    An efficient simulation method has recently been developed for multi-pulse ablation processes. This is based on pulse-by-pulse propagation of the machined surface according to one of several phenomenological models for the laser-material interaction. The technique allows quantitative predictions to be made about the surface shapes of complex machined parts, given only a minimal set of input data for parameter calibration. In the case of direct-write machining of polymers or glasses with ns-duration pulses, this data set can typically be limited to the surface profiles of a small number of standard test patterns. The use of phenomenological models for the laser-material interaction, calibrated by experimental feedback, allows fast simulation, and can achieve a high degree of accuracy for certain combinations of material, laser and geometry. In this paper, the capabilities and limitations of the approach are discussed, and recent results are presented for structures machined in SU8 photoresist.

  15. Ultrashort pulse laser deposition of thin films

    Science.gov (United States)

    Perry, Michael D.; Banks, Paul S.; Stuart, Brent C.

    2002-01-01

    Short pulse PLD is a viable technique of producing high quality films with properties very close to that of crystalline diamond. The plasma generated using femtosecond lasers is composed of single atom ions with no clusters producing films with high Sp.sup.3 /Sp.sup.2 ratios. Using a high average power femtosecond laser system, the present invention dramatically increases deposition rates to up to 25 .mu.m/hr (which exceeds many CVD processes) while growing particulate-free films. In the present invention, deposition rates is a function of laser wavelength, laser fluence, laser spot size, and target/substrate separation. The relevant laser parameters are shown to ensure particulate-free growth, and characterizations of the films grown are made using several diagnostic techniques including electron energy loss spectroscopy (EELS) and Raman spectroscopy.

  16. 80 A/cm2 electron beams from metal targets irradiated by KrCl and XeCl excimer lasers

    Science.gov (United States)

    Beloglazov, A.; Martino, M.; Nassisi, V.

    1996-05-01

    Due to the growing demand for high-current and long-duration electron-beam devices, laser electron sources were investigated in our laboratory. Experiments on electron-beam generation and propagation from aluminium and copper targets illuminated by XeCl (308 nm) and KrCl (222 nm) excimer lasers, were carried out under plasma ignition due to laser irradiation. This plasma supplied a spontaneous accelerating electric field of about 370 kV/m without an external accelerating voltage. By applying the modified one-dimensional Poisson equation, we computed the expected current and we also estimated the plasma concentration during the accelerating process. At 40 kV of accelerating voltage, an output current pulse of about 80 A/cm2 was detected from an Al target irradiated by the shorter wavelength laser.

  17. Single photon excimer laser photodissociation of highly vibrationally excited polyatomic molecules

    International Nuclear Information System (INIS)

    Tiee, J.J.; Wampler, F.B.; Rice, W.W.

    1980-01-01

    The ir + uv photodissociation of SF 6 has been performed using CO 2 and ArF lasers. The two-color photolysis significantly enhances the photodissociation process over ArF irradiation alone and is found to preserve the initial isotopic specificity of the ir excitation process

  18. Diode laser probe of CO2 vibrational excitation produced by collisions with hot deuterium atoms from the 193 nm excimer laser photolysis D2S

    International Nuclear Information System (INIS)

    O'Neill, J.A.; Cai, J.Y.; Flynn, G.W.; Weston, R.E. Jr.

    1986-01-01

    The 193 nm excimer laser photolysis of D 2 S in D 2 S/CO 2 mixtures produces fast deuterium atoms (E/sub TR/approx.2.2 eV) which vibrationally excite CO 2 molecules via inelastic translation--vibration/rotation (T--V/R) energy exchange processes. A high resolution (10 -3 cm -1 ) cw diode laser probe was used to monitor the excitation of ν 3 (antisymmetric stretch) and ν 2 (bend) vibrations in CO 2 . The present results are compared with previous experiments involving hot hydrogen atom excitation of CO 2 in H 2 S/CO 2 mixtures as well as with theoretical calculations of the excitation probability. The probability for excitation of a ν 3 quantum in CO 2 is about 1%--2% per gas kinetic D/CO 2 collision. Bending (ν 2 ) quanta are produced about eight times more efficiently than antisymmetric stretching (ν 3 ) quanta. The thermalization rate for cooling hot D atoms below the threshold for production of a ν 3 vibrational quantum corresponds to less than 2 D*/D 2 S collisions or 15 D*/CO 2 collisions

  19. Comparison of boron diffusion in silicon during shallow p{sup +}/n junction formation by non-melt excimer and green laser annealing

    Energy Technology Data Exchange (ETDEWEB)

    Aid, Siti Rahmah; Matsumoto, Satoru [Department of Electronics and Electrical Engineering, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama, Kanagawa 223-8522 (Japan); Fuse, Genshu [SEN Corporation, SBS Tower 9F, 4-10-1 Yoga, Setagaya-ku, Tokyo 158-0097 (Japan); Sakuragi, Susumu [Sumitomo Heavy Industries Ltd., 19 Natsushima-cho, Yokosuka, Kanagawa 237-8555 (Japan)

    2011-12-15

    The combination of Ge pre-amorphization implantation, low-energy boron implantation, and non-melt laser annealing is a promising method for forming ultrashallow p{sup +}/n junctions in silicon. In this study, shallow p{sup +}/n junctions were formed by non-melt annealing implanted samples using a green laser (visible laser). The dopant diffusion, activation, and recrystallization of an amorphous silicon layer were compared with those obtained in our previous study in which non-melt annealing was performed using a KrF excimer laser (UV laser). The experimental results reveal that only slight diffusion of boron in the tail region occurred in green-laser-annealed samples. In contrast, remarkable boron diffusion occurred in KrF-laser-annealed samples for very short annealing times. Recrystallization of the amorphous silicon layer was slower in green-laser-annealed samples than in KrF-laser-annealed samples. We consider the penetration depth and the pulse duration are important factors that may affect boron diffusion. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Four-year to seven-year outcomes of advanced surface ablation with excimer laser for high myopia.

    Science.gov (United States)

    Hansen, Rasmus Søgaard; Lyhne, Niels; Grauslund, Jakob; Grønbech, Keea Treu; Vestergaard, Anders Højslet

    2015-07-01

    We aimed to evaluate and compare outcomes after photorefractive keratectomy with cooling (cPRK) and laser-assisted subepithelial keratectomy (LASEK) for high myopia. This was a retrospective, single-masked follow-up study of patients treated for myopia between 2007 and 2009 with cPRK or LASEK, using a high-frequency flying-spot excimer laser with eye-tracker (MEL80; Carl Zeiss, Jena, Germany). One eye of each patient was randomly chosen for analysis. Re-treated eyes were excluded. Forty-six cPRK patients and 35 LASEK patients were included. Spherical equivalent averaged -7.69 ± 1.47 diopters (D) in cPRK eyes and -7.98 ± 2.06 D in LASEK eyes (p = 0.31) before surgery. The average follow-up time was 4.6 years in cPRK patients and 6.0 years in LASEK patients (p < 0.05). At final follow-up, no cPRK eyes and one LASEK eye (p = 0.46) had lost two lines of corrected distance visual acuity (CDVA). No eyes had significant haze at final follow-up, although trace haze was found in four cPRK eyes and six LASEK eyes (p = 0.44). However, at 6 weeks after surgery, zero cPRK eyes and nine LASEK eyes (p < 0.05) had significant haze. At final follow-up, 63 % of cPRK eyes and 35 % of LASEK eyes (p = 0.17) were within ±1.0 D of intended refraction. Finally, 100 % of cPRK patients and 92 % of LASEK patients (p = 0.87) were satisfied or very satisfied with the surgery at final follow-up. cPRK and LASEK seemed safe and with high patient satisfaction 4 to 7 years after surgery for high myopia. However, cPRK was more effective than LASEK in reducing initial significant corneal haze.

  1. High-speed photography of plasma during excimer laser-tissue interaction

    International Nuclear Information System (INIS)

    Murray, Andrea K; Dickinson, Mark R

    2004-01-01

    During high fluence laser-tissue interaction, ablation of tissue occurs, debris is removed from the ablation site and is then ejected at high velocity. This debris may be observed as a combination of luminous plasma and non-luminous plume, both of which have the potential to shield the ablation site. This study examined the role of ablation debris in shielding the tissue and determined its effects on the ablation rate over a range of laser pulse energies, pulse repetition rates and pulse numbers for dentine; the velocity differences between hard and soft tissues were also examined. High-speed photography was carried out at up to 1 x 10 8 frames per second. A maximum velocity of 2.58 ± 0.52 x 10 4 m s -1 was recorded for dentine debris within the first 10 ns following ejection. The maximum duration of tissue shielding due to a single pulse, determined by attenuation of a probe beam, was found to be ∼7 ms, ∼80 μs of which was due to luminous plasma and the remainder due to the non-luminous plume

  2. Some optical and electron microscope comparative studies of excimer laser-assisted and nonassisted molecular-beam epitaxically grown thin GaAs films on Si

    Science.gov (United States)

    Lao, Pudong; Tang, Wade C.; Rajkumar, K. C.; Guha, S.; Madhukar, A.; Liu, J. K.; Grunthaner, F. J.

    1990-01-01

    The quality of GaAs thin films grown via MBE under pulsed excimer laser irradiation on Si substrates is examined in both laser-irradiated and nonirradiated areas using Raman scattering, Rayleigh scattering, and by photoluminescence (PL), as a function of temperature, and by TEM. The temperature dependence of the PL and Raman peak positions indicates the presence of compressive stress in the thin GaAs films in both laser-irradiated and nonirradiated areas. This indicates incomplete homogeneous strain relaxation by dislocations at the growth temperature. The residual compressive strain at the growth temperature is large enough such that even with the introduction of tensile strain arising from the difference in thermal expansion coefficients of GaAs and Si, a compressive strain is still present at room temperature for these thin GaAs/Si films.

  3. Two-photon equivalent weighting of spatial excimer laser beam profiles

    Science.gov (United States)

    Eva, Eric; Bauer, Harry H.; Metzger, K.; Pfeiffer, A.

    2001-04-01

    Damage in optical materials for semiconductor lithography applications caused by exposure to 248 or 193 nm light is usually two-photon driven, hence it is a nonlinear function of incident intensity. Materials should be tested with flat- topped temporal and spatial laser beam profiles to facilitate interpretation of data, but in reality this is hard to achieve. Sandstrom provided a formula that approximates any given temporal pulse shape with a two- photon equivalent rectangular pulse (Second Symposium on 193 nm Lithography, Colorado Springs 1997). Known as the integral-square pulse duration, this definition has been embraced as an industry standard. Originally faced with the problem of comparing results obtained with pseudo-Gaussian spatial profiles to literature data, we found that a general solution for arbitrarily inhomogeneous spatial beam profiles exists which results in a definition much similar to Sandstrom's. In addition, we proved the validity of our approach in experiments with intentionally altered beam profiles.

  4. Excimer laser produced plasmas in copper wire targets and water droplets

    Science.gov (United States)

    Song, Kyo-Dong; Alexander, D. R.

    1994-01-01

    Elastically scattered incident radiation (ESIR) from a copper wire target illuminated by a KrF laser pulse at lambda = 248 nm shows a dinstinct two-peak structure which is dependent on the incident energy. The time required to reach the critical electron density (n(sub c) approximately = 1.8 x 10(exp 22) electrons/cu cm) is estimated at 11 ns based on experimental results. Detailed ESIR characteristics for water have been reported previously by the authors. Initiation of the broadband emission for copper plasma begins at 6.5 +/- 1.45 ns after the arrival of the laser pulse. However, the broadband emission occurs at 11 +/- 0.36 ns for water. For a diatomic substance such as water, the electron energy rapidly dissipates due to dissociation of water molecules, which is absent in a monatomic species such as copper. When the energy falls below the excitation energy of the lowest electron state for water, it becomes a subexcitation electron. Lifetimes of the subexcited electrons to the vibrational states are estimated to be of the order of 10(exp -9) s. In addition, the ionization potential of copper (440-530 nm) is approximately 6 eV, which is about two times smaller than the 13 eV ionization potential reported for water. The higher ionization potential contributes to the longer observed delay time for plasma formation in water. After initiation, a longer time is required for copper plasma to reach its peak value. This time delay in reaching the maximum intensity is attributed to the energy loss during the interband transition in copper.

  5. Fast iterative technique for the calculation of frequency dependent gain in excimer laser amplifiers

    International Nuclear Information System (INIS)

    Sze, R.C.

    1991-01-01

    The motivation in initiating these calculations is to allow us to observe the frequency evolution of a laser pulse as it propagates through an amplifier and then through a sequence of amplifiers. The question we seek to answer is what pulse shape do we need to produce out of a front-end oscillator so that after it propagates through the whole Aurora KrF fusion amplifier chain will result in high energy, broad-band laser fields of a given bandwidth that can be focussed onto a fusion target. The propagation of a single frequency source through an amplifier with distributed loss was considered by Rigrod and was significantly expanded by Hunter and Hunter. The latter included amplified spontaneous emission [ASE] considerations both in the direction of and transverse to the coherent field. Analytic solutions that include forward and backward prapagating fields and ASE were derived which were transcendental in nature but allowed for fairly easy computer calculations. Transverse ASE were calculated using the unsaturated gain resulting from longitudinal fields and were used to compare this with the longitudinal field equations. Large computer programs are now available at LANL which include the influence of transverse ASE on the longitudinal fields. However, none of these considerations have worried about the changes in the frequency characteristics of the propagating field or of how each of the frequency field components contributes to the saturation of the gain. The inclusion of full frequency characteristics to the analytic solutions of Hunter and Hunter proved impossible at least for this author and a new calculational technique was developed and is the subject of this talk

  6. Growth of superconducting MgB2 films by pulsed-laser deposition using a Nd-YAG laser

    International Nuclear Information System (INIS)

    Badica, P; Togano, K; Awaji, S; Watanabe, K

    2006-01-01

    Thin films of MgB 2 on r-cut Al 2 O 3 substrates have been grown by pulsed-laser deposition (PLD) using a Nd-YAG laser (fourth harmonic-266 nm) instead of the popular KrF excimer laser. The growth window to obtain superconducting films is laser energy 350-450 mJ and vacuum pressure with Ar-buffer gas of 1-8/10 Pa (initial background vacuum 0.5-1 x 10 -3 Pa). Films were deposited at room temperature and post-annealed in situ and ex situ at temperatures of 500-780 0 C and up to 1 h. Films are randomly oriented with maximum critical temperature (offset of resistive transition) of 27 K. SEM/TEM/EDS investigations show that they are mainly composed of small sphere-like particles (≤20 nm), and contain oxygen and some carbon, uniformly distributed in the flat matrix, but the amount of Mg and/or oxygen is higher in the aggregates-droplets (100-1000 nm) observed on the surface of the film's matrix. Some aspects of the processing control and dependences on film characteristics are discussed. The technique is promising for future development of coated conductors

  7. Possibilities and limitations of optical fibers for the transmission of excimer laser radiation

    International Nuclear Information System (INIS)

    Klein, K.F.; Hillrichs, G.; Karlitschek, P.; Mann, K.

    1997-01-01

    For fiber-delivery systems with UV-lasers the candidates are mainly optical fibers with an undoped high-OH silica core and a F-doped silica cladding. However, there are three important limits to UV-applications: surface damage, two-photon-absorption and defect-generation during operation. In the last two years, UV-improved fibers with significantly reduced defects have been developed. This improvement is most pronounced at 248 and 193 nm, because at these critical wavelengths the induced losses are strongly influenced by the main broadband UV-defects with absorption maxima at 165 nm and 215 nm. We will summarize the results including the influence of the main parameters. In addition, the transmission capacity for the 308 nm wavelength is of interest due to medical and industrial applications. At this wavelength the influence of the nonlinearities is much lower; however, the induced losses in standard fibers are still an important factor. To show the advantages of the UV-improved fibers, the transmission characteristics at 308 nm wavelength will be described in more detail, for the first time

  8. Low temperature high-mobility InZnO thin-film transistors fabricated by excimer laser annealing

    NARCIS (Netherlands)

    Fujii, M.; Ishikawa, Y.; Ishihara, R.; Van der Cingel, J.; Mofrad, M.R.T.; Horita, M.; Uraoka, Y.

    2013-01-01

    In this study, we successfully achieved a relatively high field-effect mobility of 37.7?cm2/Vs in an InZnO thin-film transistor (TFT) fabricated by excimer layer annealing (ELA). The ELA process allowed us to fabricate such a high-performance InZnO TFT at the substrate temperature less than 50?°C

  9. Synthesis of functionally graded bioactive glass-apatite multistructures on Ti substrates by pulsed laser deposition

    International Nuclear Information System (INIS)

    Tanaskovic, D.; Jokic, B.; Socol, G.; Popescu, A.; Mihailescu, I.N.; Petrovic, R.; Janackovic, Dj.

    2007-01-01

    Functionally graded glass-apatite multistructures were synthesized by pulsed laser deposition on Ti substrates. We used sintered targets of hydroxyapatite Ca 10 (PO 4 ) 6 (OH) 2 , or bioglasses in the system SiO 2 -Na 2 O-K 2 O-CaO-MgO-P 2 O 5 with SiO 2 content of either 57 wt.% (6P57) or 61 wt.% (6P61). A UV KrF* (λ = 248 nm, τ > 7 ns) excimer laser source was used for the multipulse laser ablation of the targets. The hydroxyapatite thin films were obtained in H 2 O vapors, while the bioglass layers were deposited in O 2 . Thin films of 6P61 were deposited in direct contact with Ti, because Ti and this glass have similar thermal expansion behaviors, which ensure good bioglass adhesion to the substrate. This glass, however, is not bioactive, so yet more depositions of 6P57 bioglass and/or hydroxyapatite thin films were performed. All structures with hydroxyapatite overcoating were post-treated in a flux of water vapors. The obtained multistructures were characterized by various techniques. X-ray investigations of the coatings found small amounts of crystalline hydroxyapatite in the outer layers. The scanning electron microscopy analyses revealed homogeneous coatings with good adhesion to the Ti substrate. Our studies showed that the multistructures we had obtained were compatible with further use in biomimetic metallic implants with glass-apatite coating applications

  10. Design and spectroscopic reflectometry characterization of pulsed laser deposition combinatorial libraries

    International Nuclear Information System (INIS)

    Schenck, Peter K.; Bassim, Nabil D.; Otani, Makoto; Oguchi, Hiroyuki; Green, Martin L.

    2007-01-01

    The goal of the design of pulsed laser deposition (PLD) combinatorial library films is to optimize the compositional coverage of the films while maintaining a uniform thickness. The deposition pattern of excimer laser PLD films can be modeled with a bimodal cos n distribution. Deposited films were characterized using a spectroscopic reflectometer (250-1000 nm) to map the thickness of both single composition calibration films and combinatorial library films. These distribution functions were used to simulate the composition and thickness of multiple target combinatorial library films. The simulations were correlated with electron-probe microanalysis wavelength-dispersive spectroscopy (EPMA-WDS) composition maps. The composition and thickness of the library films can be fine-tuned by adjusting the laser spot size, fluence, background gas pressure, target geometry and other processing parameters which affect the deposition pattern. Results from compositionally graded combinatorial library films of the ternary system Al 2 O 3 -HfO 2 -Y 2 O 3 are discussed

  11. Simultaneous determinations of U-Pb age and REE abundances for zircons using AfF excimer laser ablation-ICPMS

    International Nuclear Information System (INIS)

    Iizuka, Tsuyoshi; Hirata, Takafumi

    2004-01-01

    Using a laser-ablation-inductively coupled plasma mass spectrometer (LA-ICPMS), U-Pb age and rare earth element (REE) abundances have been determined simultaneously from a single 20 μm ablation pit of zircon. The laser ablation system utilizing 193 nm wave-length ArF excimer laser produces stable and reproducible signal intensities resulted in good precisions on measurements of element concentrations and isotopic ratios. Because of the higher energy density of the deep ultra-violet laser beam, ablation fractionation between Pb and U were reduced even with the prolonged ablation, and thus accuracy of Pb-U age was improved significantly. A chicane-type ion lens system was applied to a quadrupole-based ICPMS instrument. With the chicane ion lens, higher elemental sensitivity (4 times or light mass range and 3 times for mid to heavy mass range) and lower white background ( 238 U- 206 Pb ages for Nancy standard zircon (Nancy 91500), SHRIMP calibration standard zircon (SL13) and Antarctic zircon (PMA7) obtained in this study were 1064 ± 24 Ma, 569 ± 78 Ma and 2438 ± 101 Ma (2-sigma), respectively. Relative age differences from previous reports were 0.2%, 0.4% and 3.2% respectively, demonstrative of high reliability of the method. The REE abundances in zircon samples were calibrated using a NIST 610 glass standard reference material. The resulting REE abundance data for zircons (Nancy 91500 and SL13) show good agreement with those for literature values within the analytical precision of ∼20%. The matrix effect that may occur between the synthetic glass standard and zircon crystals is obviously smaller than the precision and thus negligible for this precision levels. The data presented here demonstrate clearly that the combination of ArF excimer laser an ICPMS equipped with the chicane ion lens has a potential to become a significant tool for zircon geochemistry. (author)

  12. Micromachining of Al2O3-TiC ceramics by excimer laser

    Directory of Open Access Journals (Sweden)

    Oliveira, V.

    1998-04-01

    Full Text Available Micromachining of Al2O3-TiC ceramic using a KrF excimer laser was studied in the fluence range 2 to 8 J/cm2 . The ablation rate decreases and the roughness increases with the first pulses but after about 200 pulses the process reaches a stationary stage where both roughness and ablation rate become constant. Observation of the processed areas by scanning electron microscopy showed that a globular topography is formed during the first stage and that the surface topography remains unchanged with further pulses. This globular topography is responsible for the variation of roughness and ablation rate observed during the first stage. EDS analysis showed that the globular features present an external region with higher titanium content and a core formed of unaffected material.

    Se estudia el micromecanizado de cerámicas Al2O3-TiC mediante un láser de excímero de KrF con un rango de fluencia de 2 a 8 J/cm2 . La velocidad de ablación disminuye y la rugosidad aumenta con los primeros pulsos. Sin embargo, después de 200 pulsos, el proceso alcanza el régimen estacionario, donde tanto la rugosidad como la velocidad de ablación permanecen constantes. La observación mediante SEM de determinadas áreas mostraban una topografía globular formada durante la primera etapa, mientras que con los siguientes pulsos permanece in cambios. Esta topografía globular es responsable de la variación de rugosidad y de la velocidad de ablación observada durante las primeras etapas del proceso. Los análisis de EDS sobre las zonas globulares mostraron la existencia de una región externa rica en titanio y un núcleo formado por el material sin afectar.

  13. Effects of closed immersion filtered water flow velocity on the ablation threshold of bisphenol A polycarbonate during excimer laser machining

    International Nuclear Information System (INIS)

    Dowding, Colin; Lawrence, Jonathan

    2010-01-01

    A closed flowing thick film filtered water immersion technique ensures a controlled geometry for both the optical interfaces of the flowing liquid film and allows repeatable control of flow-rate during machining. This has the action of preventing splashing, ensures repeatable machining conditions and allows control of liquid flow velocity. To investigate the impact of this technique on ablation threshold, bisphenol A polycarbonate samples have been machined using KrF excimer laser radiation passing through a medium of filtered water flowing at a number of flow velocities, that are controllable by modifying the liquid flow-rates. An average decrease in ablation threshold of 7.5% when using turbulent flow velocity regime closed thick film filtered water immersed ablation, compared to ablation using a similar beam in ambient air; however, the use of laminar flow velocities resulted in negligible differences between closed flowing thick film filtered water immersion and ambient air. Plotting the recorded threshold fluence achieved with varying flow velocity showed that an optimum flow velocity of 3.00 m/s existed which yielded a minimum ablation threshold of 112 mJ/cm 2 . This is attributed to the distortion of the ablation plume effected by the flowing immersion fluid changing the ablation mechanism: at laminar flow velocities Bremsstrahlung attenuation decreases etch rate, at excessive flow velocities the plume is completely destroyed, removing the effect of plume etching. Laminar flow velocity regime ablation is limited by slow removal of debris causing a non-linear etch rate over 'n' pulses which is a result of debris produced by one pulse remaining suspended over the feature for the next pulse. The impact of closed thick film filtered water immersed ablation is dependant upon beam fluence: high fluence beams achieved greater etch efficiency at high flow velocities as the effect of Bremsstrahlung attenuation is removed by the action of the fluid on the plume; low

  14. Influence of spatial and temporal spot distribution on the ocular surface quality and maximum ablation depth after photoablation with a 1050 Hz excimer laser system.

    Science.gov (United States)

    Mrochen, Michael; Schelling, Urs; Wuellner, Christian; Donitzky, Christof

    2009-02-01

    To investigate the effect of temporal and spatial distributions of laser spots (scan sequences) on the corneal surface quality after ablation and the maximum ablation of a given refractive correction after photoablation with a high-repetition-rate scanning-spot laser. IROC AG, Zurich, Switzerland, and WaveLight AG, Erlangen, Germany. Bovine corneas and poly(methyl methacrylate) (PMMA) plates were photoablated using a 1050 Hz excimer laser prototype for corneal laser surgery. Four temporal and spatial spot distributions (scan sequences) with different temporal overlapping factors were created for 3 myopic, 3 hyperopic, and 3 phototherapeutic keratectomy ablation profiles. Surface quality and maximum ablation depth were measured using a surface profiling system. The surface quality factor increased (rough surfaces) as the amount of temporal overlapping in the scan sequence and the amount of correction increased. The rise in surface quality factor was less for bovine corneas than for PMMA. The scan sequence might cause systematic substructures at the surface of the ablated material depending on the overlapping factor. The maximum ablation varied within the scan sequence. The temporal and spatial distribution of the laser spots (scan sequence) during a corneal laser procedure affected the surface quality and maximum ablation depth of the ablation profile. Corneal laser surgery could theoretically benefit from smaller spot sizes and higher repetition rates. The temporal and spatial spot distributions are relevant to achieving these aims.

  15. Topography-guided hyperopic and hyperopic astigmatism femtosecond laser-assisted LASIK: long-term experience with the 400 Hz eye-Q excimer platform

    Directory of Open Access Journals (Sweden)

    Kanellopoulos AJ

    2012-06-01

    Full Text Available Anastasios John KanellopoulosDepartment of Ophthalmology, New York University Medical School, New York, NY, and LaserVision.gr Eye Institute, Athens, GreeceBackground: The purpose of this study was to evaluate the safety and efficacy of topography-guided ablation using the WaveLight 400 Hz excimer laser in laser-assisted in situ keratomileusis (LASIK for hyperopia and/or hyperopic astigmatism.Methods: We prospectively evaluated 208 consecutive LASIK cases for hyperopia with or without astigmatism using the topography-guided platform of the 400 Hz Eye-Q excimer system. The mean preoperative sphere value was +3.04 ± 1.75 (range 0.75–7.25 diopters (D and the mean cylinder value was –1.24 ± 1.41 (–4.75–0 D. Flaps were created either with Intralase FS60 (AMO, Irvine, CA or FS200 (Alcon, Fort Worth, TX femtosecond lasers. Parameters evaluated included age, preoperative and postoperative refractive error, uncorrected distance visual acuity, corrected distance visual acuity, flap diameter and thickness, topographic changes, higher order aberration changes, and low contrast sensitivity. These measurements were repeated postoperatively at regular intervals for at least 24 months.Results: Two hundred and two eyes were available for follow-up at 24 months. Uncorrected distance visual acuity improved from 5.5/10 to 9.2/10. At 24 (8–37 months, 75.5% of the eyes were in the ±0.50 D range and 94.4% were in the ±1.00 D range of the refractive goal. Postoperatively, the mean sphere value was –0.39 ± 0.3 and the cylinder value was –0.35 ± 0.25. Topographic evidence showed that ablation was made in the visual axis and not in the center of the cornea, thus correlating with the angle kappa. No significant complications were encountered in this small group of patients.Conclusion: Hyperopic LASIK utilizing the topography-guided platform of the 400 Hz Eye-Q Allegretto excimer and a femtosecond laser flap appears to be safe and effective for

  16. ITO thin films deposited by advanced pulsed laser deposition

    International Nuclear Information System (INIS)

    Viespe, Cristian; Nicolae, Ionut; Sima, Cornelia; Grigoriu, Constantin; Medianu, Rares

    2007-01-01

    Indium tin oxide thin films were deposited by computer assisted advanced PLD method in order to obtain transparent, conductive and homogeneous films on a large area. The films were deposited on glass substrates. We studied the influence of the temperature (room temperature (RT)-180 deg. C), pressure (1-6 x 10 -2 Torr), laser fluence (1-4 J/cm 2 ) and wavelength (266-355 nm) on the film properties. The deposition rate, roughness, film structure, optical transmission, electrical conductivity measurements were done. We deposited uniform ITO thin films (thickness 100-600 nm, roughness 5-10 nm) between RT and 180 deg. C on a large area (5 x 5 cm 2 ). The films have electrical resistivity of 8 x 10 -4 Ω cm at RT, 5 x 10 -4 Ω cm at 180 deg. C and an optical transmission in the visible range, around 89%

  17. Bioactive glass and hydroxyapatite thin films obtained by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gyorgy, E. [National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG 36, 77125 Bucharest (Romania) and Consejo Superior de Investigaciones Cientificas, Instituto de Ciencia de Materiales de Barcelona, Campus UAB, 08193 Bellaterra (Spain)]. E-mail: egyorgy@icmab.es; Grigorescu, S. [National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG 36, 77125 Bucharest (Romania); Socol, G. [National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG 36, 77125 Bucharest (Romania); Mihailescu, I.N. [National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG 36, 77125 Bucharest (Romania); Janackovic, D. [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade (Serbia); Dindune, A. [Institute of Inorganic Chemistry of the Riga Technical University (Latvia); Plasma and Ceramic Technologies Ltd. (PCT Ltd.) (Latvia); Kanepe, Z. [Institute of Inorganic Chemistry of the Riga Technical University (Latvia); Plasma and Ceramic Technologies Ltd. (PCT Ltd.) (Latvia); Palcevskis, E. [Plasma and Ceramic Technologies Ltd. (PCT Ltd.) (Latvia); Zdrentu, E.L. [Institute of Biochemistry, Splaiul Independentei 296, Bucharest (Romania); Petrescu, S.M. [Institute of Biochemistry, Splaiul Independentei 296, Bucharest (Romania)

    2007-07-31

    Bioactive glass (BG), calcium hydroxyapatite (HA), and ZrO{sub 2} doped HA thin films were grown by pulsed laser deposition on Ti substrates. An UV KrF{sup *} ({lambda} = 248 nm, {tau} {>=} 7 ns) excimer laser was used for the multi-pulse irradiation of the targets. The substrates were kept at room temperature or heated during the film deposition at values within the (400-550 deg. C) range. The depositions were performed in oxygen and water vapor atmospheres, at pressure values in the range (5-40 Pa). The HA coatings were heat post-treated for 6 h in a flux of hot water vapors at the same temperature as applied during deposition. The surface morphology, chemical composition, and crystalline quality of the obtained thin films were studied by scanning electron microscopy, atomic force microscopy, and X-ray diffractometry. The films were seeded for in vitro tests with Hek293 (human embryonic kidney) cells that revealed a good adherence on the deposited layers. Biocompatibility tests showed that cell growth was better on HA than on BG thin films.

  18. Corneal ablation depth readout of the MEL 80 excimer laser compared to Artemis three-dimensional very high-frequency digital ultrasound stromal measurements.

    Science.gov (United States)

    Reinstein, Dan Z; Archer, Timothy J; Gobbe, Marine

    2010-12-01

    To evaluate the accuracy of the ablation depth readout for the MEL 80 excimer laser (Carl Zeiss Meditec). Artemis 1 very high-frequency digital ultrasound measurements were obtained before and at least 3 months after LASIK in 121 eyes (65 patients). The Artemis-measured ablation depth was calculated as the maximum difference in stromal thickness before and after treatment. Laser in situ keratomileusis was performed using the MEL 80 excimer laser and the Hansatome microkeratome (Bausch & Lomb). The Aberration Smart Ablation profile was used in 56 eyes and the Tissue Saving Ablation profile was used in 65 eyes. All ablations were centered on the corneal vertex. Comparative statistics and linear regression analysis were performed between the laser readout ablation depth and Artemis-measured ablation depth. The mean maximum myopic meridian was -6.66±2.40 diopters (D) (range: -1.50 to -10.00 D) for Aberration Smart Ablation-treated eyes and -6.50±2.56 D (range: -1.34 to -11.50 D) for Tissue Saving Ablation-treated eyes. The MEL 80 readout was found to overestimate the Artemis-measured ablation depth by 20±12 μm for Aberration Smart Ablation and by 21±12 μm for Tissue Saving Ablation profiles. The accuracy of ablation depth measurement was improved by using the Artemis stromal thickness profile measurements before and after surgery to exclude epithelial changes. The MEL 80 readout was found to overestimate the achieved ablation depth. The linear regression equations could be used by MEL 80 users to adjust the ablation depth for predicted residual stromal thickness calculations without increasing the risk of ectasia due to excessive keratectomy depth as long as a suitable flap thickness bias is included. Copyright 2010, SLACK Incorporated.

  19. Pulsed laser deposition of hydroxyapatite thin films

    Czech Academy of Sciences Publication Activity Database

    Koch, C.F.; Johnson, S.; Kumar, D.; Jelínek, Miroslav; Chrisey, D.B.; Doraiswamy, A.; Jin, C.; Narayan, R.J.; Mihailescu, I. N.

    2007-01-01

    Roč. 27, - (2007), s. 484-494 ISSN 0928-4931 Institutional research plan: CEZ:AV0Z10100522 Keywords : hydroxyapatite * pulsed laser deposition * bioactive ceramic s Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.486, year: 2007

  20. Pulsed Er:YAG- and 308 nm UV-excimer laser: an in vitro and in vivo study of skin-ablative effects

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, R.; Hibst, R.

    1989-01-01

    Using a pulsed XeCl excimer laser (308 nm) and a pulsed Er:YAG laser (2,940 nm), we investigated skin ablation as a function of pulse number, radiant energy, and repetition rate. In vitro analysis of lesions performed in freshly excised human skin were consistent with in vivo results obtained from experiments on pig skin. Pulsed 308 nm laser radiation caused considerable nonspecific thermal tissue injury followed by an inflammatory reaction and impaired healing of lesions in vivo. These findings were especially pronounced with higher repetition rates, which would be required for efficient destruction of larger lesions. On the other hand, the 2.94 microns Er:YAG laser radiation produced clean and precise lesions with only minimal adjacent injury. In vivo skin ablation caused intraoperative bleeding with deeper penetration. The Er:YAG laser offers a promising surgical tool for careful removal of superficial epidermal lesions, if higher repetition rates, and an appropriate laser beam delivery system are available for clinical use.

  1. Excimers of organic molecules

    Science.gov (United States)

    Barashkov, Nikolai N.; Sakhno, T. V.; Nurmukhametov, Ravil'N.; Khakhel', O. A.

    1993-06-01

    Studies devoted to excimers in organic systems are surveyed. Processes leading to the excitation of the excimer luminescence are examined. Examples of the excimer-like glow of dimers are described. The relation between the structure of the complexes and their fluorescence properties is demonstrated. The bibliography includes 218 references.

  2. Preparation, characterization and optical properties of Gadolinium doped ceria thin films by pulsed laser deposition technique

    International Nuclear Information System (INIS)

    Nagaraju, P.; Vijaya Kumar, Y.; Vishnuvardhan Reddy, C.; Ramana Reddy, M.V.; Phase, D.M; Raghavendra Reddy, V.

    2013-01-01

    The growth of Gadolinium doped ceria thin films with controlled surface structure for device quality applications presents a significant problem for experimental investigation. In the present study gadolinium doped cerium oxide thin films were prepared by pulsed laser deposition (PLD) and were studied for their surface structure evaluation in relation to the optimized operating conditions during the stage of film preparation. The deposition was made with gadolinium concentration of 10 mole% to ceria pellets. The films were deposited on quartz substrate in the presence of oxygen partial pressure of 1.5 x 10 -3 torr using KrF Excimer laser with laser energy 220 mJ at a substrate temperature 700℃. The effect of annealing temperature on 10 mole% GDC thin film was investigated. The film thickness was measured by using AMBIOS make XP-l stylus profiler. As prepared and annealed thin films were characterized for crystallinity, particle size and orientation by using G.I.XRD. The films were characterized using atomic force microscopy (AFM). The AFM results gave a consistent picture of the evolution of GDC film surface morphologies and microstructures in terms of surface roughness, grain distribution and mean grain size. The optical transmittance spectra was used to determine the optical constants such as optical band gap, refractive index, extinction coefficient of as prepared and annealed thin films. (author)

  3. Consistent comparison of angle Kappa adjustment between Oculyzer and Topolyzer Vario topography guided LASIK for myopia by EX500 excimer laser.

    Science.gov (United States)

    Sun, Ming-Shen; Zhang, Li; Guo, Ning; Song, Yan-Zheng; Zhang, Feng-Ju

    2018-01-01

    To evaluate and compare the uniformity of angle Kappa adjustment between Oculyzer and Topolyzer Vario topography guided ablation of laser in situ keratomileusis (LASIK) by EX500 excimer laser for myopia. Totally 145 cases (290 consecutive eyes )with myopia received LASIK with a target of emmetropia. The ablation for 86 cases (172 eyes) was guided manually based on Oculyzer topography (study group), while the ablation for 59 cases (118 eyes) was guided automatically by Topolyzer Vario topography (control group). Measurement of adjustment values included data respectively in horizontal and vertical direction of cornea. Horizontally, synclastic adjustment between manually actual values (dx manu ) and Oculyzer topography guided data (dx ocu ) accounts 35.5% in study group, with mean dx manu /dx ocu of 0.78±0.48; while in control group, synclastic adjustment between automatically actual values (dx auto ) and Oculyzer topography data (dx ocu ) accounts 54.2%, with mean dx auto /dx ocu of 0.79±0.66. Vertically, synclastic adjustment between dy manu and dy ocu accounts 55.2% in study group, with mean dy manu /dy ocu of 0.61±0.42; while in control group, synclastic adjustment between dy auto and dy ocu accounts 66.1%, with mean dy auto /dy ocu of 0.66±0.65. There was no statistically significant difference in ratio of actual values/Oculyzer topography guided data in horizontal and vertical direction between two groups ( P =0.951, 0.621). There is high consistency in angle Kappa adjustment guided manually by Oculyzer and guided automatically by Topolyzer Vario topography during corneal refractive surgery by WaveLight EX500 excimer laser.

  4. Pulsed laser deposition and characterization of multilayer metal-carbon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Siraj, K., E-mail: khurram.uet@gmail.com [Advance Physics Laboratory, Department of Physics, University of Engineering and Technology, Lahore (Pakistan); Khaleeq-ur-Rahman, M.; Rafique, M.S.; Munawar, M.Z. [Advance Physics Laboratory, Department of Physics, University of Engineering and Technology, Lahore (Pakistan); Naseem, S.; Riaz, S. [Center for Solid State Physics, University of Punjab, Lahore (Pakistan)

    2011-05-15

    Cobalt-DLC multilayer films were deposited with increasing content of cobalt, keeping carbon content constant by pulsed laser deposition technique. A cobalt free carbon film was also deposited for comparison. Excimer laser was employed to ablate the materials onto silicon substrate, kept at 250 deg. C, while post-deposition annealing at 400 deg. C was also performed in situ. The formation of cobalt grains within the carbon matrix in Co-DLC films can be seen through scanning electron and atomic force micrographs while no grains on the surface of the cobalt-free DLC film were observed. Raman spectra of all the films show D- and G-bands, which is a confirmation that the films are DLC in nature. According to Vibrating sample magnetometer (VSM) measurements, the DLC films with cobalt revealed ferromagnetic behaviour whereas the cobalt free DLC film exhibited diamagnetic behaviour. The pure DLC film also shows ferromagnetic nature when diamagnetic background is subtracted. Spectroscopic Ellipsometry (SE) analysis showed that the optical band gaps, refractive indices and extinction coefficients of Co-DLC films can be effectively tuned with increasing content of cobalt.

  5. Pulsed laser deposition and characterization of multilayer metal-carbon thin films

    International Nuclear Information System (INIS)

    Siraj, K.; Khaleeq-ur-Rahman, M.; Rafique, M.S.; Munawar, M.Z.; Naseem, S.; Riaz, S.

    2011-01-01

    Cobalt-DLC multilayer films were deposited with increasing content of cobalt, keeping carbon content constant by pulsed laser deposition technique. A cobalt free carbon film was also deposited for comparison. Excimer laser was employed to ablate the materials onto silicon substrate, kept at 250 deg. C, while post-deposition annealing at 400 deg. C was also performed in situ. The formation of cobalt grains within the carbon matrix in Co-DLC films can be seen through scanning electron and atomic force micrographs while no grains on the surface of the cobalt-free DLC film were observed. Raman spectra of all the films show D- and G-bands, which is a confirmation that the films are DLC in nature. According to Vibrating sample magnetometer (VSM) measurements, the DLC films with cobalt revealed ferromagnetic behaviour whereas the cobalt free DLC film exhibited diamagnetic behaviour. The pure DLC film also shows ferromagnetic nature when diamagnetic background is subtracted. Spectroscopic Ellipsometry (SE) analysis showed that the optical band gaps, refractive indices and extinction coefficients of Co-DLC films can be effectively tuned with increasing content of cobalt.

  6. Production of porous PTFE-Ag composite thin films by pulsed laser deposition

    International Nuclear Information System (INIS)

    Kecskeméti, Gabriella; Hopp, Béla; Smausz, Tomi; Tóth, Zsolt; Szabó, Gábor

    2012-01-01

    The suitability of pulsed laser deposition technique for preparation of polytetrafluoroethylene (PTFE) and silver (Ag) composite thin films was demonstrated. Disk-shaped targets combined from silver and Teflon with various percentages were ablated with pulses of an ArF excimer laser. The chemical composition of the deposited layers was estimated based on deposition rates determined for the pure PTFE and Ag films. EDX and SEM analyses using secondary electron and backscattered electron images proved that the morphology of the layers is determined by the PTFE which is the main constituent and it is transferred mostly in form of grains and clusters forming a sponge-like structure with high specific surface. The Ag content is distributed over the surface of the PTFE structure. Contact angle measurements showed that with increasing the amount of Ag in the deposited layers the surface significantly enhanced the wetting properties. Conductivity experiments demonstrated that when the average silver content of the layers was increased from 0.16 to 3.28 wt% the resistance of our PTFE-Ag composite films decreased with about three orders of magnitudes (from ∼10 MΩ to ∼10 kΩ). The properties of these films suggest as being a good candidate for future electrochemical sensor applications.

  7. Characterization of laser metal deposited 316L stainless steel

    CSIR Research Space (South Africa)

    Bayode, A

    2016-06-01

    Full Text Available investigates the effects of laser power on the structural integrity, microstructure and microhardness of laser deposited 316L stainless steel. The result showed that the laser power has much influence on the evolving microstructure and microhardness...

  8. Application of fluoridated hydroxyapatite thin film coatings using KrF pulsed laser deposition.

    Science.gov (United States)

    Hashimoto, Yoshiya; Ueda, Mamoru; Kohiga, Yu; Imura, Kazuki; Hontsu, Shigeki

    2018-06-08

    Fluoridated hydroxyapatite (FHA) was investigated for application as an implant coating for titanium bone substitute materials in dental implants. A KrF pulsed excimer deposition technique was used for film preparation on a titanium plate. The compacts were ablated by laser irradiation at an energy density of 1 J/cm 2 on an area 1×1 mm 2 with the substrate at room temparature. Energydispersive spectrometric analysis of the FHA film revealed peaks of fluorine in addition to calcium and phosphorus. X-ray diffraction revealed the presence of crystalline FHA on the FHA film after a 10 h post annealing treatment at 450°C. The FHA film coating exhibited significant dissolution resistance to sodium phosphate buffer for up to 21 days, and favorable cell attachment of human mesenchymal stem cells compared with HA film. The results of this study suggest that FHA coatings are suitable for real-world implantation applications.

  9. Transformation of medical grade silicone rubber under Nd:YAG and excimer laser irradiation: First step towards a new miniaturized nerve electrode fabrication process

    International Nuclear Information System (INIS)

    Dupas-Bruzek, C.; Robbe, O.; Addad, A.; Turrell, S.; Derozier, D.

    2009-01-01

    Medical grade silicone rubber, poly-dimethylsiloxane (PDMS) is a widely used biomaterial. Like for many polymers, its surface can be modified in order to change one or several of its properties which further allow this surface to be functionalized. Laser-induced surface modification of PDMS under ambient conditions is an easy and powerful method for the surface modification of PDMS without altering its bulk properties. In particular, we profit from both UV laser inducing surface modification and of UV laser micromachining to develop a first part of a new process aiming at increasing the number of contacts and tracks within the same electrode surface to improve the nerve selectivity of implantable self sizing spiral cuff electrodes. The second and last part of the process is to further immerse the engraved electrode in an autocatalytic Pt bath leading in a selective Pt metallization of the laser irradiated tracks and contacts and thus to a functionalized PDMS surface. In the present work, we describe the different physical and chemical transformations of a medical grade PDMS as a function of the UV laser and of the irradiation conditions used. We show that the ablation depths, chemical composition, structure and morphology vary with (i) the laser wavelength (using an excimer laser at 248 nm and a frequency-quadrupled Nd:YAG laser at 266 nm), (ii) the conditions of irradiation and (iii) the pulse duration. These different modified properties are expected to have a strong influence on the nucleation and growth rates of platinum which govern the adhesion and the thickness of the Pt layer on the electrodes and thus the DC resistance of tracks.

  10. Comparison of Placido disc and Scheimpflug image-derived topography-guided excimer laser surface normalization combined with higher fluence CXL: the Athens Protocol, in progressive keratoconus

    Directory of Open Access Journals (Sweden)

    Kanellopoulos AJ

    2013-07-01

    Full Text Available Anastasios John Kanellopoulos,1,2 George Asimellis11Laservision.gr Eye Institute, Athens, Greece; 2New York University School of Medicine, Department of Opthalmology, NY, NY, USABackground: The purpose of this study was to compare the safety and efficacy of two alternative corneal topography data sources used in topography-guided excimer laser normalization, combined with corneal collagen cross-linking in the management of keratoconus using the Athens protocol, ie, a Placido disc imaging device and a Scheimpflug imaging device.Methods: A total of 181 consecutive patients with keratoconus who underwent the Athens protocol between 2008 and 2011 were studied preoperatively and at months 1, 3, 6, and 12 postoperatively for visual acuity, keratometry, and anterior surface corneal irregularity indices. Two groups were formed, depending on the primary source used for topoguided photoablation, ie, group A (Placido disc and group B (Scheimpflug rotating camera. One-year changes in visual acuity, keratometry, and seven anterior surface corneal irregularity indices were studied in each group.Results: Changes in visual acuity, expressed as the difference between postoperative and preoperative corrected distance visual acuity were +0.12 ± 0.20 (range +0.60 to -0.45 for group A and +0.19 ± 0.20 (range +0.75 to -0.30 for group B. In group A, K1 (flat keratometry changed from 45.202 ± 3.782 D to 43.022 ± 3.819 D, indicating a flattening of -2.18 D, and K2 (steep keratometry changed from 48.670 ± 4.066 D to 45.865 ± 4.794 D, indicating a flattening of -2.805 D. In group B, K1 (flat keratometry changed from 46.213 ± 4.082 D to 43.190 ± 4.398 D, indicating a flattening of -3.023 D, and K2 (steep keratometry changed from 50.774 ± 5.210 D to 46.380 ± 5.006 D, indicating a flattening of -4.394 D. For group A, the index of surface variance decreased to -5.07% and the index of height decentration to -26.81%. In group B, the index of surface variance

  11. One-pot synthesis and transfer of PMMA/Ag photonic nanocomposites by pulsed laser deposition

    Science.gov (United States)

    Karoutsos, V.; Koutselas, I.; Orfanou, P.; Mpatzaka, Th.; Vasileiadis, M.; Vassilakopoulou, A.; Vainos, N. A.; Perrone, A.

    2015-08-01

    Nanocomposite films comprising metallic nanoparticles in polymer matrices find increasing use in emerging photonic, electronic and microsystem applications owing to their tailored advanced functionalities. The versatile development of such films based on poly-methyl-methacrylate (PMMA) matrix having embedded Ag nanoparticles is addressed here. Two low-cost one-pot chemical methods for the synthesis of bulk target nanocomposite materials are demonstrated. These nanocomposites are subsequently transferred via pulsed laser deposition using 193 nm ArF excimer laser radiation, producing films maintaining the structural and functional properties. Both target- and laser-deposited materials have been thoroughly characterized using microscopic, spectroscopic and thermal analysis methods. Infrared spectra demonstrated the close molecular PMMA chain similarity for both target and film materials, though structural alterations identified by thermal analysis proved the enhanced characteristics of films grown. High-resolution electron microscopy proved the transfer of Ag nanoparticles sized 10-50 nm. Visible absorption peaked in the spectral range of 430-440 nm and attributed to the Ag nanocomposite plasmonic response verifying the transfer of the functional performance from target to film.

  12. Structural characterization of AlN films synthesized by pulsed laser deposition

    International Nuclear Information System (INIS)

    Szekeres, A.; Fogarassy, Zs.; Petrik, P.; Vlaikova, E.; Cziraki, A.; Socol, G.; Ristoscu, C.; Grigorescu, S.; Mihailescu, I.N.

    2011-01-01

    We obtained AlN thin films by pulsed laser deposition (PLD) from a polycrystalline AlN target using a pulsed KrF* excimer laser source (248 nm, 25 ns, intensity of ∼4 x 10 8 W/cm 2 , repetition rate 3 Hz, 10 J/cm 2 laser fluence). The target-Si substrate distance was 5 cm. Films were grown either in vacuum (10 -4 Pa residual pressure) or in nitrogen at a dynamic pressure of 0.1 and 10 Pa, using a total of 20,000 subsequent pulses. The films structure was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and spectral ellipsometry (SE). Our TEM and XRD studies showed a strong dependence of the film structure on the nitrogen content in the ambient gas. The films deposited in vacuum exhibited a high quality polycrystalline structure with a hexagonal phase. The crystallite growth proceeds along the c-axis, perpendicular to the substrate surface, resulting in a columnar and strongly textured structure. The films grown at low nitrogen pressure (0.1 Pa) were amorphous as seen by TEM and XRD, but SE data analysis revealed ∼1.7 vol.% crystallites embedded in the amorphous AlN matrix. Increasing the nitrogen pressure to 10 Pa promotes the formation of cubic (≤10 nm) crystallites as seen by TEM but their density was still low to be detected by XRD. SE data analysis confirmed the results obtained from the TEM and XRD observations.

  13. A short review on the pulsed laser deposition of Er3+ ion doped oxide glass thin films for integrated optics

    International Nuclear Information System (INIS)

    Irannejad, M.; Zhao, Z.; Jose, G.; Steenson, D.P.; Jha, A.

    2010-01-01

    Short pulsed (ns) excimer laser was employed as a technique for the deposition of more than 2 μm thick glassy films from phosphorous pentoxide and tungsten lanthanum modified tellurite bulk glasses. High quality glass thin films with measured propagation loss less than 0.15, 0.71 and 2.3 dB.cm -1 were obtained after optimization of deposition parameters for silica, siloxane and semiconductor substrates. The optical, spectroscopic and microstructural properties of deposited thin films were compared with bulk glass materials for demonstrating the differences in the properties, which must be optimized for device engineering. Channel waveguides were fabricated after using reactive ion etching technique, up to 2 μm thickness by using CHF 3 and Ar gas mixture

  14. Optimal properties for coated titanium implants with the hydroxyapatite layer formed by the pulsed laser deposition technique

    Science.gov (United States)

    Himmlova, Lucia; Dostalova, Tatjana; Jelinek, Miroslav; Bartova, Jirina; Pesakova, V.; Adam, M.

    1999-02-01

    Pulsed laser deposition technique allow to 'tailor' bioceramic coat for metal implants by the change of deposition conditions. Each attribute is influenced by the several deposition parameters and each parameter change several various properties. Problem caused that many parameters has an opposite function and improvement of one property is followed by deterioration of other attribute. This study monitor influence of each single deposition parameter and evaluate its importance form the point of view of coat properties. For deposition KrF excimer laser in stainless-steel deposition chamber was used. Deposition conditions (ambient composition and pressures, metallic substrate temperature, energy density and target-substrate distance) were changed according to the film properties. A non-coated titanium implant was used as a control. Films with promising mechanical quality underwent an in vitro biological tests -- measurement of proliferation activity, observing cell interactions with macrophages, fibroblasts, testing toxicity of percolates, observing a solubility of hydroxyapatite (HA) coat. Deposition conditions corresponding with the optimal mechanical and biochemical properties are: metal temperature 490 degrees Celsius, ambient-mixture of argon and water vapor, energy density 3 Jcm-2, target-substrate distance 7.5 cm.

  15. F2 excimer laser (157 nm) radiation modification and surface ablation of PHEMA hydrogels and the effects on bioactivity: Surface attachment and proliferation of human corneal epithelial cells

    International Nuclear Information System (INIS)

    Zainuddin; Chirila, Traian V.; Barnard, Zeke; Watson, Gregory S.; Toh, Chiong; Blakey, Idriss; Whittaker, Andrew K.; Hill, David J.T.

    2011-01-01

    Physical and chemical changes at the surface of poly(2-hydroxyethyl methacrylate) (PHEMA) hydrogels modified by ablation with an F 2 excimer laser were investigated experimentally. An important observation was that only the outer exposed surface layers of the hydrogel were affected by the exposure to 157 nm radiation. The effect of the surface changes on the tendency of cells to adhere to the PHEMA was also investigated. A 0.5 cm 2 area of the hydrogel surfaces was exposed to laser irradiation at 157 nm to fluences of 0.8 and 4 J cm -2 . The changes in surface topography were analysed by light microscopy and atomic force microscopy, while the surface chemistry was characterized by attenuated total reflection infrared and X-ray photoelectron spectroscopies. Cell-interfacial interactions were examined based on the proliferation of human corneal limbal epithelial (HLE) cells cultured on the laser-modified hydrogels, and on the unexposed hydrogels and tissue culture plastic for comparison. It was observed that the surface topography of laser-exposed hydrogels showed rippled patterns with a surface roughness increasing at the higher exposure dose. The changes in surface chemistry were affected not only by an indirect effect of hydrogen and hydroxyl radicals, formed by water photolysis, on the PHEMA, but also by the direct action of laser radiation on PHEMA if the surface layers of the gel become depleted of water. The laser treatment led to a change in the surface characteristics, with a lower concentration of ester side-chains and the formation of new oxygenated species at the surface. The surface also became more hydrophobic. Most importantly, the surface chemistry and the newly created surface topographical features were able to improve the attachment, spreading and growth of HLE cells.

  16. Visual and refractive outcomes of LASIK with the SCHWIND ESIRIS and WaveLight ALLEGRETTO WAVE Eye-q excimer lasers: a prospective, contralateral study.

    Science.gov (United States)

    Mearza, Ali A; Muhtaseb, Mohammed; Aslanides, Ioannis M

    2008-11-01

    To compare the safety, efficacy, and predictability of LASIK with the SCHWIND ESIRIS and WaveLight ALLEGRETTO WAVE Eye-Q excimer laser platforms. This prospective study comprised 44 eyes of 22 consecutive patients who were treated with LASIK using the Moria M2 microkeratome. One eye was treated with the SCHWIND ESIRIS laser and the fellow eye treated with the WaveLight ALLEGRETTO WAVE Eye-Q laser. All eyes operated with the SCHWIND ESIRIS were treated with standard aspheric ablation, whereas the eyes operated with the WaveLight ALLEGRETTO WAVE Eye-Q received treatment with three different ablation types according to the common practice at our clinic. Outcome measures were uncorrected visual acuity (UCVA), best spectacle-corrected visual acuity (BSCVA), manifest refraction, and proximity to target refraction at 6-month follow-up. At 6 months postoperative, mean decimal UCVA was 0.96+/-0.22 (range: 0.3 to 1.2) for ESIRIS eyes and 0.98+/-0.17 (range: 0.6 to 1.2) for ALLEGRETTO eyes (P=.57). Mean postoperative spherical equivalent refraction was -0.02+/-0.28 diopters (D) (range: -0.75 to +0.75 D) for ESIRIS eyes and 0.11+/-0.91 D (range: -1.00 to +3.88 D) for ALLEGRETTO eyes (P=.49). Of the ESIRIS eyes, 20/22 (91%) were within +/-1.00 D of target refraction and 20/22 (91%) were within +/-0.50 D of target refraction. Of the ALLEGRETTO eyes, 20/22 (91%) and 19/22 (86%) were within +/-1.00 D and +/-0.50 D, respectively, of target refraction. No patient lost > or =2 lines of BSCVA in either group. No differences were seen in safety and efficacy outcome parameters between the SCHWIND ESIRIS and WaveLight ALLEGRETTO WAVE Eye-Q excimer lasers when used according to a previously established treatment algorithm at our clinic in the treatment of refractive error.

  17. Effect of KrF excimer laser irradiation on the surface changes and photoelectric properties of ZnO single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Yong [Institute of Laser Engineering, Beijing University of Technology, Beijing 100124 (China); Beijing Engineering Research Center of 3D Printing for Digital Medical Health, Beijing International Cooperation Base of 3D Printing for Digital MedicalHealth, Beijing University of Technology, Beijing 100124 (China); Zhao, Yan [Institute of Laser Engineering, Beijing University of Technology, Beijing 100124 (China); Jiang, Yijian, E-mail: yjjiang@bjut.edu.cn [Institute of Laser Engineering, Beijing University of Technology, Beijing 100124 (China); Beijing Engineering Research Center of 3D Printing for Digital Medical Health, Beijing International Cooperation Base of 3D Printing for Digital MedicalHealth, Beijing University of Technology, Beijing 100124 (China)

    2016-06-25

    In this paper, the effect of KrF pulsed excimer laser irradiation on the structural, surface morphology, photoluminescence and electrical properties of ZnO single crystal was investigated. Compared to the as-grown sample, at an irradiation energy density of 257 mJ/cm{sup 2}, the ZnO single crystal exhibits a series of phenomenon: XRD and Raman results show that the crystallization of ZnO quality change slightly, resistivity is decreased by two orders of magnitude, carrier concentration is increased by one order of magnitude. After laser irradiation, the surface shows some strip lines and no cracks. Formula calculation and simulation results show that the stripes are not caused by surface melting. We speculate that these stripes are caused by the precipitation of ZnO material inside to the surface. Due to the reduction of oxygen vacancies, UV emission has been enhanced and visible emission has been declined after irradiation. After the laser irradiation, the visible light of ZnO surface can be regulated. The experimental results show that KrF laser irradiation could effectively improve the optical and electrical properties of ZnO single crystal, which is important for the application of high performance of emitting optoelectronic devices. - Highlights: • After laser irradiation, the surface shows some strip lines and no cracks. • The visible light of as-irradiated ZnO surface can be regulated to four colors. • The electrical properties of as-irradiated ZnO has been improved greatly.

  18. O impacto da cirurgia de ceratectomia fotorrefrativa (PRK e ceratomileuse assistida por excimer laser in situ (LASIK na qualidade visual e de vida em pacientes com ametropias The impact of photorefractive excimer laser keratectomy (PRK and laser in situ keratomileusis (LASIK on visual quality and life in patients with ametropias

    Directory of Open Access Journals (Sweden)

    Ricardo Belfort

    2008-02-01

    Full Text Available OBJETIVO: Avaliar a qualidade de vida e de visão e o estresse de pacientes portadores de ametropias submetidos a procedimentos cirúrgicos. MÉTODOS: Estudo longitudinal observacional em que foram estudados 100 pacientes; 54 usuários de óculos, 21 usuários de lentes de contato interessados no procedimento cirúrgico e 25 controles usuários de óculos ou lentes de contato, mas que não desejavam ser operados no período de um ano. Os questionários aplicados foram o National Eye Institute Visual Function Questionnaire (NEI-VFQ-25 de qualidade de vida e o Self Reporting Questionnaire - SRQ-20 para avaliação da saúde mental. Os pacientes que se submeteram à cirurgia responderam aos questionários aplicados por uma observadora antes da mesma, três, seis e doze meses após a intervenção. O grupo controle respondeu de forma auto-aplicada no início do estudo, seis e doze meses após a primeira avaliação. RESULTADOS: No grupo da cirugia dos 54 pacientes que usavam óculos 39 fizeram cirurgia de ceratectomia fotorrefrativa por excimer laser(PRK e 15 fizeram ceratomileuse assistida por excimer laserin situ (LASIK e dos 21 que usavam lentes de contato 12 fizeram cirurgia de ceratectomia fotorrefrativa e nove fizeram ceratomileuse assistida por excimer laser in situ (LASIK. O grupo controle esteve estável durante os 12 meses em relação aos instrumentos aplicados. Três meses após a cirurgia o grupo da cirurgia apresentou melhora significante da qualidade de vida e de visão em relação ao pré-operatório independentemente do tipo de cirurgia realizada. Um ano após a cirurgia os índices de qualidade de vida e de saúde mental, foram semelhantes aos do grupo controle. O Self Reporting Questionnaire - SRQ 20 mostrou diminuição significante do índice de sintomas a partir dos três meses de pós-operatório. CONCLUSÃO: A qualidade de visão e de vida dos pacientes submetidos à cirurgia de correção de ametropia mudou

  19. 准分子激光角膜表层切削术后的止痛措施%Pain control after excimer laser corneal surface ablation

    Institute of Scientific and Technical Information of China (English)

    曾原; 黄一飞; 高建华

    2014-01-01

    准分子激光角膜表层切削术因降低角膜膨隆的风险和避免准分子激光原位角膜磨镶术( LASIK)角膜瓣相关的并发症而受到青睐。但术后严重疼痛不适为表层切削的主要缺陷,因此表层切削术后疼痛不适的控制显得尤其重要。我们总结了表层切削术后疼痛的机制以及降低术后疼痛的措施的进展。%By reshaping the cornea without the creation of a stromal flap, excimer laser corneal surface ablation eliminates flap-related complications and avoids the risk of ectasia that may occur after laser assisted in situ keratomileusis ( LASIK ) . Post-operative pain is one of the most significant disadvantages of surface ablation and thus the management of pain and discomfort following surface ablation is of great importance. We summarize mechanism of corneal pain and current approaches to pain management after surface ablation.

  20. Effect of excimer laser annealing on a-InGaZnO thin-film transistors passivated by solution-processed hybrid passivation layers

    International Nuclear Information System (INIS)

    Bermundo, Juan Paolo; Ishikawa, Yasuaki; Fujii, Mami N; Uraoka, Yukiharu; Nonaka, Toshiaki; Ishihara, Ryoichi; Ikenoue, Hiroshi

    2016-01-01

    We demonstrate the use of excimer laser annealing (ELA) as a low temperature annealing alternative to anneal amorphous InGaZnO (a-IGZO) thin-film transistors (TFTs) passivated by a solution-processed hybrid passivation layer. Usually, a-IGZO is annealed using thermal annealing at high temperatures of up to 400 °C. As an alternative to high temperature thermal annealing, two types of ELA, XeCl (308 nm) and KrF (248 nm) ELA, are introduced. Both ELA types enhanced the electrical characteristics of a-IGZO TFTs leading to a mobility improvement of ∼13 cm 2 V −1 s −1 and small threshold voltage which varied from ∼0–3 V. Furthermore, two-dimensional heat simulation using COMSOL Multiphysics was used to identify possible degradation sites, analyse laser heat localization, and confirm that the substrate temperature is below 50 °C. The two-dimensional heat simulation showed that the substrate temperature remained at very low temperatures, less than 30 °C, during ELA. This implies that any flexible material can be used as the substrate. These results demonstrate the large potential of ELA as a low temperature annealing alternative for already-passivated a-IGZO TFTs. (paper)

  1. EFFECT OF OPTICAL FIBER HYDROGEN LOADING ON THE INSCRIPTION EFFICIENCY OF CHIRPED BRAGG GRATINGS BY MEANS OF KrF EXCIMER LASER RADIATION

    Directory of Open Access Journals (Sweden)

    Sergey V. Varzhel

    2016-11-01

    Full Text Available Subject of Research.We present comparative results of the chirped Bragg gratings inscription efficiency in optical fiber of domestic production with and without low-temperature hydrogen loading. Method. Chirped fiber Bragg gratings inscription was made by the Talbot interferometer with chirped phase mask having a chirp rate of 2.3 nm/cm used for the laser beam amplitude separation. The excimer laser system Coherent COMPexPro 150T, working with the gas mixture KrF (248 nm, was used as the radiation source. In order to increase the UV photosensitivity, the optical fiber was placed in a chamber with hydrogen under a pressure of 10 MPa and kept there for 14 days at 40 °C. Main Results. The usage of the chirped phase mask in a Talbot interferometer scheme has made it possible to get a full width at half-maximum of the fiber Bragg grating reflection spectrum of 3.5 nm with induced diffraction structure length of 5 mm. By preliminary hydrogen loading of optical fiber the broad reflection spectrum fiber Bragg gratings with a reflectivity close to 100% has been inscribed. Practical Relevance. The resulting chirped fiber Bragg gratings can be used as dispersion compensators in optical fiber communications, as well as the reflective elements of distributed fiber-optic phase interferometric sensors.

  2. Effect of excimer laser annealing on a-InGaZnO thin-film transistors passivated by solution-processed hybrid passivation layers

    Science.gov (United States)

    Bermundo, Juan Paolo; Ishikawa, Yasuaki; Fujii, Mami N.; Nonaka, Toshiaki; Ishihara, Ryoichi; Ikenoue, Hiroshi; Uraoka, Yukiharu

    2016-01-01

    We demonstrate the use of excimer laser annealing (ELA) as a low temperature annealing alternative to anneal amorphous InGaZnO (a-IGZO) thin-film transistors (TFTs) passivated by a solution-processed hybrid passivation layer. Usually, a-IGZO is annealed using thermal annealing at high temperatures of up to 400 °C. As an alternative to high temperature thermal annealing, two types of ELA, XeCl (308 nm) and KrF (248 nm) ELA, are introduced. Both ELA types enhanced the electrical characteristics of a-IGZO TFTs leading to a mobility improvement of ~13 cm2 V-1 s-1 and small threshold voltage which varied from ~0-3 V. Furthermore, two-dimensional heat simulation using COMSOL Multiphysics was used to identify possible degradation sites, analyse laser heat localization, and confirm that the substrate temperature is below 50 °C. The two-dimensional heat simulation showed that the substrate temperature remained at very low temperatures, less than 30 °C, during ELA. This implies that any flexible material can be used as the substrate. These results demonstrate the large potential of ELA as a low temperature annealing alternative for already-passivated a-IGZO TFTs.

  3. Pulsed laser deposition in Twente: from research tool towards industrial deposition

    NARCIS (Netherlands)

    Blank, David H.A.; Dekkers, Jan M.; Rijnders, Augustinus J.H.M.

    2014-01-01

    After the discovery of the perovskite high Tc superconductors in 1986, a rare and almost unknown deposition technique attracted attention. Pulsed laser deposition (PLD), or laser ablation as it was called in the beginning, became popular because of the possibility to deposit complex materials, like

  4. Necessary conditions for the homogeneous formation of a volume avalanche discharge with specific applications to rare gas-halide excimer laser discharges

    International Nuclear Information System (INIS)

    Levatter, J.I.

    1979-01-01

    Self-sustained/avalanche discharges are an efficient method of rare gas-halide excimer laser excitation in small systems. However, with the exceptions of the work reported here, experiments attempting to increase the laser energy output by scaling up the discharge volume and/or pulse duration have not been successful. The major problem encountered in scaling experiments has been the formation of arc channels in the discharge volume. The presence of arcing can totally disrupt proper laser operation. This problem stems from a general lack of understanding of high pressure avalanche discharge phenomena. Therefore, clarifying the basic discharge formation process and establishing a set of criteria under which a homogeneous avalanche discharge can be obtained is of central importance in defining the scaling limits of avalanche discharge lasers. The work presented here reviews the phenomena involved in high E/n (electric field to gas number density ratio) breakdown and its relationship to the formation of spatially homogeneous discharges. This relationship was first explored by A.J. Palmer in 1974. The basic requirement of his model was that the preionization density be large enough to cause an appreciable overlap of the primary electron avalanches and hence smooth out the ensuing space-charge fields to the extent that individual streamer formation would be prevented. This is the same basic model used in the more detailed discharge formation analysis developed here except that the effects of a time varying electric field caused by a finite voltage rise time and the effects due to the various electrochemical properties of the gas mixture are property taken into consideration

  5. Pulsed laser deposition of semiconductor-ITO composite films on electric-field-applied substrates

    International Nuclear Information System (INIS)

    Narazaki, Aiko; Sato, Tadatake; Kawaguchi, Yoshizo; Niino, Hiroyuki; Yabe, Akira; Sasaki, Takeshi; Koshizaki, Naoto

    2002-01-01

    The DC electric-field effect on the crystallinity of II-VI semiconductor in composite systems has been investigated for CdS-ITO films fabricated via alternative pulsed laser deposition (PLD) of CdS and indium tin oxide (ITO) on electric-field-applied substrates. The alternative laser ablation was performed under irradiation of ArF excimer laser in mixture gas of helium and oxygen. The application of electric-field facilitated the preferential crystal-growth of CdS in nanometer scale at low pressure, whereas all the films grown without the field were amorphous. There is a large difference in the crystallization between the films grown on field-applied and heated substrates; the latter showed the crystal-growth with random orientations. This difference indicates that the existence of electric-field has an influence on the transformation from amorphous to crystalline phase of CdS. The driving force for the field-induced crystallization is also discussed in the light of the Joule heat

  6. Effect of basic fibroblast growth factor and cytochrome c peroxidase combination in transgenic mice corneal epithelial healing process after excimer laser photoablation

    Directory of Open Access Journals (Sweden)

    Sergio Zaccaria Scalinci

    2011-02-01

    Full Text Available Sergio Zaccaria Scalinci1, Lucia Scorolli1, Alessandro Meduri2, Pier Luigi Grenga3, Giulia Corradetti1, Cristian Metrangolo11Low Vision Center – University of Bologna, Bologna, Italy; 2Department of Surgical Specialities, Ophthalmology Clinic, University of Messina, Messina, Italy; 3Department of Ophthalmology, University of Rome "La Sapienza", Rome, ItalyPurpose: To evaluate the role of prepared basic fibroblast growth factor (bFGF and cytochrome c peroxidase (CCP combination eyedrops in corneal epithelial healing of transgenic mice (B6(A-Rperd12/J after excimer laser photoablation. Materials and methods: In this prospective study, 216 eyes of 108 mice underwent bilateral photorefractive keratectomy. We considered 4 groups: A, B, C, and D. Group A received standard topical postoperative therapy with tobramycin, diclofenac, and dexamethasone eyedrops plus CCP at 3 drops per day for a week or until corneal re-epithelialization was achieved. Group B received standard topical postoperative therapy plus bFGF eyedrops and phosphate-buffered saline (PBS 3 drops per day for a week or until corneal re-epithelialization was complete. In group C, 1 eye received standard topical postoperative therapy plus CCP eyedrops, bFGF eyedrops, and PBS 3 drops per day for a week or until corneal re-epithelialization was complete. Control eyes (group D received a standard topical postoperative therapy plus placebo eyedrops. Mice were followed-up for a week from the day after the surgery to evaluate the rate of corneal re-epithelialization.Results: Data were analyzed by ANOVA using the XLSTAT 2010 software. Eyes in group A, B, and C healed completely before the fifth postoperative day, achieving, respectively, a re-epithelialization time of 92 hours ± 10 SD, 90 hours ± 12 SD, and 86 hours ± 12 SD. Group D had a re-epithelialization time of 121 hours ± 8 SD (P < 0.05. No side effects or toxic effects were documented.Conclusions: Results suggest that re

  7. CTS and CZTS for solar cells made by pulsed laser deposition and pulsed electron deposition

    DEFF Research Database (Denmark)

    Ettlinger, Rebecca Bolt

    This thesis concerns the deposition of thin films for solar cells using pulsed laser deposition (PLD) and pulsed electron deposition (PED). The aim was to deposit copper tin sulfide (CTS) and zinc sulfide (ZnS) by pulsed laser deposition to learn about these materials in relation to copper zinc tin...... time. We compared the results of CZTS deposition by PLD at DTU in Denmark to CZTS made by PED at IMEM-CNR, where CIGS solar cells have successfully been fabricated at very low processing temperatures. The main results of this work were as follows: Monoclinic-phase CTS films were made by pulsed laser...... deposition followed by high temperature annealing. The films were used to understand the double band gap that we and other groups observed in the material. The Cu-content of the CTS films varied depending on the laser fluence (the laser energy per pulse and per area). The material transfer from...

  8. Stabilizing laser energy density on a target during pulsed laser deposition of thin films

    Science.gov (United States)

    Dowden, Paul C.; Jia, Quanxi

    2016-05-31

    A process for stabilizing laser energy density on a target surface during pulsed laser deposition of thin films controls the focused laser spot on the target. The process involves imaging an image-aperture positioned in the beamline. This eliminates changes in the beam dimensions of the laser. A continuously variable attenuator located in between the output of the laser and the imaged image-aperture adjusts the energy to a desired level by running the laser in a "constant voltage" mode. The process provides reproducibility and controllability for deposition of electronic thin films by pulsed laser deposition.

  9. Growth and etching characteristics of gallium oxide thin films by pulsed laser deposition

    International Nuclear Information System (INIS)

    Ou, Sin-Liang; Wuu, Dong-Sing; Fu, Yu-Chuan; Liu, Shu-Ping; Horng, Ray-Hua; Liu, Lei; Feng, Zhe-Chuan

    2012-01-01

    Highlights: ► The β-Ga2O3 thin films are prepared by pulsed laser deposition. ► The substrate temperature affects the structural, optical and etching properties of the grown films. ► The optical transmittance and band gap of the films increased with increasing the substrate temperature. ► The etching treatments for gallium oxide are performed in 49 mol% HF solution at room temperature. ► The gallium oxide thin film grown at 400 °C has the highest etching rate of 490 nm s −1 . - Abstract: The gallium oxide films were deposited on (0 0 1) sapphire at various substrate temperatures from 400 to 1000 °C by pulsed laser deposition using a KrF excimer laser. The etching treatments for as-grown gallium oxide were performed in a 49 mol% HF solution at room temperature. The structural, optical and etching properties of the grown films were investigated in terms of high resolution X-ray diffraction, optical transmittance, atomic force microscopy, and X-ray photoelectron spectroscopy. The phase transition from amorphous to polycrystalline β-Ga 2 O 3 structure was observed with increasing growth temperature. From the optical transmittance measurements, the films grown at 550–1000 °C exhibit a clear absorption edge at deep ultraviolet region around 250–275 nm wavelength. It was found that the optical band gap of gallium oxide films increased from 4.56 to 4.87 eV when the substrate temperature increased from 400 to 1000 °C. As the substrate temperature increases, the crystallinity of gallium oxide film is enhanced and the etching rate is decreased. The high etching rate of 490 nm s −1 for gallium oxide film grown at 400 °C could be due to its amorphous phase, which is referred to higher void ratio and looser atomic structure.

  10. Comparison of Immediate and 2-Year Outcomes between Excimer Laser-Assisted Angioplasty with Spot Stent and Primary Stenting in Intermediate to Long Femoropopliteal Disease

    Directory of Open Access Journals (Sweden)

    Tien-Yu Wu

    2013-01-01

    Full Text Available Background. To compare the clinical outcomes between excimer laser-assisted angioplasty (ELA with spot stent (group A and primary stenting (group B in intermediate to long femoropopliteal disease. Methods. Outcomes of 105 patients totaling 119 legs treated with two different strategies were analyzed retrospectively in a prospectively maintained database. Results. Baseline characteristics were similar in both groups. Better angiographic results and lesser increase of serum C-reactive protein levels (0.60 ± 0.72 versus 2.98 ± 0.97 mg/dL, P<0.001 after the intervention were obtained in Group B. Group A had inferior 1-year outcomes due to higher rate of binary restenosis (67% versus 32%, P=0.001 and lower rate of primary patency (40% versus 58%, P=0.039. Rates of amputation-free survival, target vessel revascularization, assisted primary patency, and stent fracture at 24 months were similar in both groups (80% versus 82%, P=0.979, 65% versus 45%, P=0.11, 78% versus 80%, P=0.75 and 6.3% versus 6.8%, P=0.71, resp.. Conclusion. Greater vascular inflammation after ELA with spot stent resulted in earlier restenosis and inferior 1-year clinical outcomes than primary stenting. This benefit was lost in the primary stenting group at 2 years due to late catch-up restenosis. Active surveillance with prompt intervention was required to maintain the vessel patency.

  11. Cool excimer laser-assisted angioplasty (CELA) and tibial balloon angioplasty (TBA) in management of infragenicular arterial occlusion in critical lower limb ischemia (CLI).

    Science.gov (United States)

    Sultan, Sherif; Tawfick, Wael; Hynes, Niamh

    2013-04-01

    We aim to compare cool excimer laser-assisted angioplasty (CELA) versus tibial balloon angioplasty (TBA) in patients with critical limb ischemia (CLI) with tibial artery occlusive disease. The primary end point is sustained clinical improvement (SCI) and amputation-free survival (AFS). The secondary end points are binary restenosis, target extremity revascularization (TER), and cost-effectiveness. From June 2005 to October 2010, 1506 patients were referred with peripheral vascular disease and 572 with CLI. A total of 80 patients underwent 89 endovascular revascularizations (EVRs) for tibial occlusions, 47 using TBA and 42 using CELA. All patients were Rutherford category 4 to 6. Three-year SCI was enhanced with CELA (81%) compared to TBA (63.8%; P = .013). Three-year AFS significantly improved with CELA (95.2%) versus TBA (89.4%; P = .0165). Three-year freedom from TER was significantly improved with CELA (92.9%) versus 78.7% TBA (P = .026). Three-year freedom from MACE was comparable in both the groups (P = .455). Patients with CELA had significantly improved quality time without symptoms of disease or toxicity of treatment (Q-TWiST) at 3 years (10.5 months; P = .048) with incremental cost of €2073.19 per quality-adjusted life year gained. Tibial EVR provides exceptional outcome in CLI. The CELA has superior SCI, AFS, and freedom from TER, with improved Q-TWiST and cost-effectiveness.

  12. Preliminary results of tracked photorefractive keratectomy (T-PRK) for mild to moderate myopia with the autonomous technologies excimer laser at Cedars-Sinai Medical Center

    Science.gov (United States)

    Maguen, Ezra I.; Salz, James J.; Nesburn, Anthony B.

    1997-05-01

    Preliminary results of the correction of myopia up to -7.00 D by tracked photorefractive keratectomy (T-PRK) with a scanning and tracking excimer laser by Autonomous Technologies are discussed. 41 eyes participated (20 males). 28 eyes were evaluated one month postop. At epithelization day mean uncorrected vision was 20/45.3. At one month postop, 92.8 of eyes were 20/40 and 46.4% were 20/20. No eye was worse than 20/50. 75% of eyes were within +/- 0.5 D of emmetropia and 82% were within +/- 1.00 D of emmetropia. Eyes corrected for monovision were included. One eye lost 3 lines of best corrected vision, and had more than 1.00 D induced astigmatism due to a central corneal ulcer. Additional complications included symptomatic recurrent corneal erosions which were controlled with topical hypertonic saline. T-PRK appears to allow effective correction of low to moderate myopia. Further study will establish safety and efficacy of the procedure.

  13. Differences in optical coherence tomographic findings and clinical outcomes between excimer laser and cutting balloon angioplasty for focal in-stent restenosis lesions.

    Science.gov (United States)

    Nishino, Masami; Lee, Yasuharu; Nakamura, Daisuke; Yoshimura, Takahiro; Taniike, Masayuki; Makino, Nobuhiko; Kato, Hiroyasu; Egami, Yasuyuki; Shutta, Ryu; Tanouchi, Jun; Yamada, Yoshio

    2012-10-01

    In-stent restenosis (ISR), especially focal ISR, after percutaneous coronary intervention (PCI) remains one of the major clinical problems in the drug-eluting stent (DES) era. Several reports have revealed that excimer laser coronary angioplasty (ELCA) is useful for ISR; however, detailed findings after ELCA are unknown. Therefore, we investigated the condition of the neointima after ELCA for ISR with optical coherence tomography (OCT) and compared the OCT findings and clinical outcome between ELCA and cutting-balloon angioplasty (CBA). Twenty-one consecutive patients with focal ISR who underwent ELCA or CBA were enrolled. All patients underwent 12- to 15-month follow-up coronary angiography. OCT was performed immediately after successful PCI to evaluate the neointimal condition in the ISR lesion. We compared the following OCT parameters between ELCA and CBA groups: maximal thickness of remaining in-stent neointima (MTN), number of tears, minimum lumen dimension (MLD), and minimum lumen area (MLA). We also evaluated clinical outcomes, including target vessel revascularization, acute myocardial infarction, death, and stent thrombosis. MLA in the ELCA group (n = 10) was significantly larger than in the CBA group, and number of tears in the ELCA group was significantly lower than in the CBA group. A trend was shown toward lower TLR with ELCA versus CBA (10.0% vs 45.5%). OCT immediately after ELCA for ISR lesions revealed larger lumen area and smaller number of tears compared with CBA, which may support favorable effects of ELCA for focal ISR.

  14. Role of temperature and energy density in the pulsed laser deposition of zirconium oxide thin film

    International Nuclear Information System (INIS)

    Mittra, Joy; Abraham, G.J.; Viswanadham, C.S.; Kulkarni, U.D.; Dey, G.K.

    2011-01-01

    Present work brings out the effects of energy density and substrate temperature on pulsed laser deposition of zirconium oxide thin film on Zr-base alloy substrates. The ablation of sintered zirconia has been carried out using a KrF excimer laser having 30 ns pulse width and 600 mJ energy at source at 10 Hz repetition rate. To comprehend effects of these parameters on the synthesized thin film, pure zirconia substrate has been ablated at two different energy densities, 2 J.cm -2 and 5 J.cm -2 , keeping the substrate at 300 K, 573 K and 873 K, respectively. After visual observation, deposited thin films have been examined using Raman Spectroscopy (RS) and X-ray Photo-electron Spectroscopy (XPS). It has been found that the oxide deposited at 300 K temperature does not show good adherence with the substrate and deteriorates further with the reduction in energy density of the incident laser. The oxide films, deposited at 573 K and 873 K, have been found to be adherent with the substrate and appear lustrous black. These indicate that the threshold for adherence of the zirconia film on the Zr-base alloy substrate lies in between 300 K and 573 K. Analysis of Raman spectra has indicated that thin films of zirconia, deposited using pulsed laser, on the Zr-base metallic substrate are initially in amorphous state. Experimental evidence has indicated a strong link among the degree of crystallinity of the deposited oxide film, the substrate temperature and the energy density. It also has shown that the crystallization of the oxide film is dependent on the substrate temperature and the duration of holding at high temperature. The O:Zr ratios of the films, analyzed from the XPS data, have been found to be close to but less than 2. This appears to explain the reason for the transformation of amorphous oxide into monoclinic and tetragonal phases, below 573 K, and not into cubic phase, which is reported to be more oxygen deficient. (author)

  15. Spectroscopic monitoring of metallic bonding in laser metal deposition

    NARCIS (Netherlands)

    Ya, Wei; Konuk, A.R.; Aarts, Ronald G.K.M.; Pathiraj, B.; Huis in 't Veld, Bert

    2015-01-01

    A new approach is presented in this paper to link optical emission spectrum analysis to the quality of clad layers produced with laser metal deposition (LMD). A Nd:YAG laser (λ = 1.064 μm) was used to produce clad tracks with Metco 42C powder on AISI 4140 steel substrate. The laser power was ramped

  16. Influence of laser power on microstructure of laser metal deposited 17-4 ph stainless steel

    CSIR Research Space (South Africa)

    Adeyemi, AA

    2017-09-01

    Full Text Available The influence of laser power on the microstructure of 17-4 PH stainless steel produced by laser metal deposition was investigated. Multiple-trackof 17-4 stainless steel powder was deposited on 316 stainless steel substrate using laser metal...

  17. Ultra-Smooth ZnS Films Grown on Silicon via Pulsed Laser Deposition

    Science.gov (United States)

    Reidy, Christopher; Tate, Janet

    2011-10-01

    Ultra-smooth, high quality ZnS films were grown on (100) and (111) oriented Si wafers via pulsed laser deposition with a KrF excimer laser in UHV (10-9 Torr). The resultant films were examined with optical spectroscopy, electron diffraction, and electron probe microanalysis. The films have an rms roughness of ˜1.5 nm, and the film stoichiometry is approximately Zn:S :: 1:0.87. Additionally, each film exhibits an optical interference pattern which is not a function of probing location on the sample, indicating excellent film thickness uniformity. Motivation for high-quality ZnS films comes from a proposed experiment to measure carrier amplification via impact ionization at the boundary between a wide-gap and a narrow-gap semiconductor. If excited charge carriers in a sufficiently wide-gap harvester can be extracted into a narrow-gap host material, impact ionization may occur. We seek near-perfect interfaces between ZnS, with a direct gap between 3.3 and 3.7 eV, and Si, with an indirect gap of 1.1 eV.

  18. Structural, morphological and optical properties of pulsed laser deposited ZnSe/ZnSeO3 thin films

    Science.gov (United States)

    Hassan, Syed Ali; Bashir, Shazia; Zehra, Khushboo; Salman Ahmed, Qazi

    2018-04-01

    The effect of varying laser pulses on structural, morphological and optical behavior of Pulsed Laser Deposited (PLD) ZnSe/ZnSeO3 thin films has been investigated. The films were grown by employing Excimer laser (100 mJ, 248 nm, 18 ns, 30 Hz) at various number of laser pulses i.e. 3000, 4000, 5000 and 6000 with elevated substrate temperature of 300 °C. One film was grown at Room Temperature (RT) by employing 3000 number of laser pulses. In order to investigate the structural analysis of deposited films, XRD analysis was performed. It was observed that the room temperature is not favorable for the growth of crystalline film. However, elevated substrate temperature to 300°C, two phases with preferred orientation of ZnSeO3 (2 1 2) and ZnSe (3 3 1) were identified. AFM and SEM analysis were performed to explore the surface morphology of grown films. Morphological analysis also confirmed the non-uniform film growth at room temperature. At elevated substrate temperature (300 °C), the growth of dendritic rods and cubical crystalline structures are observed for lower number of laser pulses i.e. 3000 and 4000 respectively. With increased number of pulses i.e. 5000 and 6000, the films surface morphology becomes smooth which is confirmed by measurement of surface RMS roughness. Number of grains, skewness, kurtosis and other parameters have been evaluated by statistical analysis. In order to investigate the thickness, and optical properties of deposited films, ellipsometery and UV–Vis spectroscopy techniques were employed. The estimated band gap energy is 2.67 eV for the film grown at RT, whereas band gap values varies from 2.80 eV to 3.01 eV for the films grown at 300 °C with increasing number of laser pulses.

  19. Femtosecond and nanosecond pulsed laser deposition of silicon and germanium

    Energy Technology Data Exchange (ETDEWEB)

    Reenaas, Turid Worren [Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim (Norway); Lee, Yen Sian [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Chowdhury, Fatema Rezwana; Gupta, Manisha; Tsui, Ying Yin [Department of Electrical and Computer Engineering, University of Alberta (Canada); Tou, Teck Yong [Faculty of Engineering, Multimedia University, 63100 Cyberjaya, Selangor (Malaysia); Yap, Seong Ling [Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Kok, Soon Yie [Faculty of Engineering, Multimedia University, 63100 Cyberjaya, Selangor (Malaysia); Yap, Seong Shan, E-mail: seongshan@gmail.com [Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-11-01

    Highlights: • Ge and Si were deposited by fs and ns laser at room temperature and at vacuum. • Ion of 10{sup 4} ms{sup −1} and 30–200 eV was obtained for ns ablation for Ge and Si. • Highly energetic ions of 10{sup 5} ms{sup −1} with 2–7 KeV were produced in fs laser ablation. • Nanocrystalline Si and Ge were deposited by using fs laser. • Nanoparticles < 10 nm haven been obtained by fs laser. - Abstract: 150 fs Ti:Sapphire laser pulsed laser deposition of Si and Ge were compared to a nanosecond KrF laser (25 ns). The ablation thresholds for ns lasers were about 2.5 J cm{sup −2} for Si and 2.1 J cm{sup −2} for Ge. The values were about 5–10 times lower when fs laser were used. The power densities were 10{sup 8}–10{sup 9} W cm{sup −2} for ns but 10{sup 12} W cm{sup −2} for fs. By using an ion probe, the ions emission at different fluence were measured where the emitting ions achieving the velocity in the range of 7–40 km s{sup −1} and kinetic energy in the range of 30–200 eV for ns laser. The ion produced by fs laser was measured to be highly energetic, 90–200 km s{sup −1}, 2–10 KeV. Two ion peaks were detected above specific laser fluence for both ns and fs laser ablation. Under fs laser ablation, the films were dominated by nano-sized crystalline particles, drastically different from nanosecond pulsed laser deposition where amorphous films were obtained. The ions characteristics and effects of pulse length on the properties of the deposited films were discussed.

  20. Arthroscopic cartilage debridement by excimer laser in chondromalacia of the knee joint. A prospective randomized clinical study.

    Science.gov (United States)

    Raunest, J; Löhnert, J

    1990-01-01

    A new operative technique in arthroscopic treatment of chondromalacia using ultraviolet laser systems is introduced. The postoperative results are evaluated in a prospective and randomized clinical trial. One hundred and forty patients stage II or III chondromalacia according to Outerbridge were randomly assigned to arthroscopic operation using either laser or mechanical instruments. After a 6-month follow-up period the clinical results were compared, guided by a specially designed modification of the Lysholm scoring scale. In the short-term follow-up laser surgery gave superior results in regard to reducing pain (P less than 0.05) and leading to a lower incidence of reactive synovitis (P less than 0.01). No difference was found in respect of disability and functional impairment. Our results lead to the conclusion that arthroscopic laser application seems to be a successful procedure in the treatment of degenerative cartilage disorders, providing precise ablation of tissue without significant thermal damage to the remaining cartilage.

  1. Optical performance of thin films produced by the pulsed laser deposition of SiAlON and Er targets

    Energy Technology Data Exchange (ETDEWEB)

    Camps, I., E-mail: camps@io.cfmac.csic.es [Laser Processing Group, Instituto de Óptica, CSIC, C/Serrano 121, 28006 Madrid (Spain); Ramírez, J.M. [MIND-IN2UB, Departament d’Electrònica, Universitat de Barcelona, c/Martí i Franqués 1, 08028 Barcelona (Spain); Mariscal, A.; Serna, R. [Laser Processing Group, Instituto de Óptica, CSIC, C/Serrano 121, 28006 Madrid (Spain); Garrido, B. [MIND-IN2UB, Departament d’Electrònica, Universitat de Barcelona, c/Martí i Franqués 1, 08028 Barcelona (Spain); Perálvarez, M.; Carreras, J. [IREC, Fundació Privada Institut de Recerca en Energia de Catalunya (Spain); Barradas, N.P.; Alves, L.C. [C" 2TN, Instituto Superior Técnico, Universidade de Lisboa, E.N. 10, 2695-066 Bobadela (Portugal); Alves, E. [IPFN, Instituto Superior Técnico, Universidade de Lisboa, E.N. 10, 2695-066 Bobadela (Portugal)

    2015-05-01

    Highlights: • PLD production of Er-doped thin films from a low cost commercial SiAlON target. • The role of the ablation fluence on the composition, optical properties as well as on the light emission performance at 1.5 μm. • The optimized performance is obtained for the samples deposited at the higher used ablation energy density. Further improvement was achieved through annealing. - Abstract: We report the preparation and optical performance of thin films produced by pulsed laser deposition in vacuum at room temperature, by focusing an ArF excimer laser onto two separate targets: a commercial ceramic SiAlON and a metallic Er target. As a result of the alternate deposition Er:SiAlON films were formed. The as grown films exhibited an Er-related emission peaking at 1532 nm. The role of the PLD energy density during deposition on the final matrix film was investigated, in order to achieve an optimized matrix composition with enhanced optical properties, and its effect on the light emission performance.

  2. Atmospheric pulsed laser deposition of plasmonic nanoparticle films of silver with flowing gas and flowing atmospheric plasma

    Science.gov (United States)

    Khan, T. M.; Pokle, A.; Lunney, J. G.

    2018-04-01

    Two methods of atmospheric pulsed laser deposition of plasmonic nanoparticle films of silver are described. In both methods the ablation plume, produced by a 248 nm, 20 ns excimer laser in gas, is strongly confined near the target and forms a nanoparticle aerosol. For both the flowing gas, and the atmospheric plasma from a dielectric barrier discharge plasma source, the aerosol is entrained in the flow and carried to a substrate for deposition. The nanoparticle films produced by both methods were examined by electron microscopy and optical absorption spectroscopy. With plasma assistance, the deposition rate was significantly enhanced and the film morphology altered. With argon gas, isolated nanoparticles of 20 nm size were obtained, whereas in argon plasma, the nanoparticles are aggregated in clusters of 90 nm size. Helium gas also leads to the deposition of isolated nanoparticles, but with helium plasma, two populations of nanoparticles are observed: one of rounded particles with a mean size of 26 nm and the other of faceted particles with a mean size 165 nm.

  3. Electron microscopy studies of octa-calcium phosphate thin films obtained by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Iliescu, Monica; Nelea, V.; Werckmann, J.; Mihailescu, I.N.; Socol, G.; Bigi, Adriana; Bracci, Barbara

    2004-04-01

    Octa-calcium phosphate (OCP), Ca{sub 8}(HPO{sub 4}){sub 2}(PO{sub 4}){sub 4}{center_dot}5H{sub 2}O, is present as transient compound in the precipitation of hydroxyapatite (HA) and biological apatites. Because of these characteristics, OCP plays a crucial role in the in-vivo mineralization of human bones and teeth. The use of OCP in developing new generations of bone prosthesis stands therefore for an innovative challenge. This paper reports studies of OCP structures grown in the form of thin films by pulsed laser deposition (PLD) with emphasis on electron microscopy investigations. OCP films were grown on etched Ti substrates, using an UV KrF* excimer laser source ({lambda}=248 nm, {tau}{>=}20 ns). Films were deposited in low-pressure (50 Pa) water vapors environment on substrates heated at 20-180 deg. C. We performed annealing treatments in water vapors and ambient pressure at substrate temperatures identical to those used during deposition. Comprehensive structural and morphological investigations were carried out with different based-electron microscopy procedures. Grazing incidence X-ray diffraction (GIXRD) and white light confocal microscopy were also applied to characterize the films. Ca/P atomic ratio of films was determined by energy dispersive X-ray spectrometry, electron energy loss spectroscopy and X-ray photoelectron spectroscopy. The obtained films generally exhibit an amorphous structure, as evidenced by GIXRD. Nevertheless, cross-section transmission electron microscopy investigations provide supplementary information about the film characteristics and material crystallization in small domains. OCP nanoparticles coalesce and grow perpendicular to the substrate in a tree-like structure, comparable to a coral reef.

  4. Lipase biofilm deposited by Matrix Assisted Pulsed Laser Evaporation technique

    International Nuclear Information System (INIS)

    Aronne, Antonio; Bloisi, Francesco; Calabria, Raffaela; Califano, Valeria; Depero, Laura E.; Fanelli, Esther; Federici, Stefania; Massoli, Patrizio; Vicari, Luciano R.M.

    2015-01-01

    Highlights: • A lipase film was deposited with Matrix Assisted Pulsed Laser Evaporation technique. • FTIR spectra show that laser irradiation do not damage lipase molecule. • Laser fluence controls the characteristics of complex structure generated by MAPLE. - Abstract: Lipase is an enzyme that finds application in biodiesel production and for detection of esters and triglycerides in biosensors. Matrix Assisted Pulsed Laser Evaporation (MAPLE), a technique derived from Pulsed Laser Deposition (PLD) for deposition of undamaged biomolecules or polymers, is characterized by the use of a frozen target obtained from a solution/suspension of the guest material (to be deposited) in a volatile matrix (solvent). The presence of the solvent avoids or at least reduces the potential damage of guest molecules by laser radiation but only the guest material reaches the substrate in an essentially solvent-free deposition. MAPLE can be used for enzymes immobilization, essential for industrial application, allowing the development of continuous processes, an easier separation of products, the reuse of the catalyst and, in some cases, enhancing enzyme properties (pH, temperature stability, etc.) and catalytic activity in non-aqueous media. Here we show that MAPLE technique can be used to deposit undamaged lipase and that the complex structure (due to droplets generated during extraction from target) of the deposited material can be controlled by changing the laser beam fluence

  5. Lipase biofilm deposited by Matrix Assisted Pulsed Laser Evaporation technique

    Energy Technology Data Exchange (ETDEWEB)

    Aronne, Antonio [Department of Chemical Engineering, Materials and Industrial Production, University of Naples “Federico II”, Napoli (Italy); Bloisi, Francesco, E-mail: bloisi@na.infn.it [SPIN – CNR, Naples (Italy); Department of Physics, University of Naples “Federico II”, Napoli (Italy); Calabria, Raffaela; Califano, Valeria [Istituto Motori – CNR, Naples (Italy); Depero, Laura E. [Department of Mechanical and Industrial Engineering, University of Brescia, Brescia (Italy); Fanelli, Esther [Department of Chemical Engineering, Materials and Industrial Production, University of Naples “Federico II”, Napoli (Italy); Federici, Stefania [Department of Mechanical and Industrial Engineering, University of Brescia, Brescia (Italy); Massoli, Patrizio [Istituto Motori – CNR, Naples (Italy); Vicari, Luciano R.M. [SPIN – CNR, Naples (Italy); Department of Physics, University of Naples “Federico II”, Napoli (Italy)

    2015-05-01

    Highlights: • A lipase film was deposited with Matrix Assisted Pulsed Laser Evaporation technique. • FTIR spectra show that laser irradiation do not damage lipase molecule. • Laser fluence controls the characteristics of complex structure generated by MAPLE. - Abstract: Lipase is an enzyme that finds application in biodiesel production and for detection of esters and triglycerides in biosensors. Matrix Assisted Pulsed Laser Evaporation (MAPLE), a technique derived from Pulsed Laser Deposition (PLD) for deposition of undamaged biomolecules or polymers, is characterized by the use of a frozen target obtained from a solution/suspension of the guest material (to be deposited) in a volatile matrix (solvent). The presence of the solvent avoids or at least reduces the potential damage of guest molecules by laser radiation but only the guest material reaches the substrate in an essentially solvent-free deposition. MAPLE can be used for enzymes immobilization, essential for industrial application, allowing the development of continuous processes, an easier separation of products, the reuse of the catalyst and, in some cases, enhancing enzyme properties (pH, temperature stability, etc.) and catalytic activity in non-aqueous media. Here we show that MAPLE technique can be used to deposit undamaged lipase and that the complex structure (due to droplets generated during extraction from target) of the deposited material can be controlled by changing the laser beam fluence.

  6. Surface analysis of the selective excimer laser patterning of a thin PEDOT:PSS film on flexible polymer films

    Science.gov (United States)

    Schaubroeck, David; De Smet, Jelle; Willems, Wouter; Cools, Pieter; De Geyter, Nathalie; Morent, Rino; De Smet, Herbert; Van Steenbeerge, Geert

    2016-07-01

    Fast patterning of highly conductive polymers like PEDOT:PSS (poly (3,4-ethylene dioxythiophene): polystyrene sulfonate) with lasers can contribute to the development of industrial production of liquid crystal displays on polymer foils. In this article, the selective UV laser patterning of a PEDOT:PSS film on flexible polymer films is investigated. Based on their optical properties, three polymer films are investigated: polyethylene terephthalate (PET), polymethyl methacrylate (PMMA) and cellulose triacetate (TAC). Ablation parameters for a 110 nm PEDOT:PSS film on these polymer films are optimized. A detailed study of the crater depth, topography and surface composition are provided using optical profilometry, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. The electrical insulation of the lines is measured and correlated to the crater analyses for different laser settings. Finally, potential ablation parameters for each of the polymer films are derived.

  7. SBS pulse compression for excimer inertial fusion energy drivers

    Energy Technology Data Exchange (ETDEWEB)

    Linford, G.J. [TRW Space and Electronics Group, Redondo Beach, CA (United States). Space and Technology Div.

    1994-12-31

    A key requirement for the development of commercial fusion power plants utilizing inertial confinement fusion (ICF) as a source of thermonuclear power is the availability of reliable, efficient laser drivers. These laser drivers must be capable of delivering UV optical pulses having energies of the order of 5MJ to cryogenic deuterium-tritium (D/T) ICF targets. The current requirements for laser ICF target irradiation specify the laser wavelength, {lambda} ca. 250 nm, pulse duration, {tau}{sub p} ca. 6 ns, bandwidth, {Delta}{lambda} ca. 0.1 nm, polarization state, etc. Excimer lasers are a leading candidate to fill these demanding ICF driver requirements. However, since excimer lasers are not storage lasers, the excimer laser pulse duration, {tau}{sub pp}, is determined primarily by the length of the excitation pulse delivered to the excimer laser amplifier. Pulsed power associated with efficiently generating excimer laser pulses has a time constant, {tau}{sub pp} which falls in the range, 30 {tau}{sub p}<{tau}{sub pp}<100{tau}{sub p}. As a consequence, pulse compression is needed to convert the long excimer laser pulses to pulses of duration {tau}{sub p}. These main ICF driver pulses require, in addition, longer, lower power precursor pulses delivered to the ICF target before the arrival of the main pulse. Although both linear and non-linear optical (NLO) pulse compression techniques have been developed, computer simulations have shown that a ``chirped,`` self-seeded, stimulated Brillouin scattering (SBS) pulse compressor cell using SF{sub 6} at a density, {rho} ca. 1 amagat can efficiently compress krypton fluoride (KrF) laser pulses at {lambda}=248 nm. In order to avoid the generation of output pulses substantially shorter than {tau}{sub p}, the optical power in the chirped input SBS ``seed`` beams was ramped. Compressed pulse conversion efficiencies of up to 68% were calculated for output pulse durations of {tau}{sub p} ca. ns.

  8. SBS pulse compression for excimer inertial fusion energy drivers

    International Nuclear Information System (INIS)

    Linford, G.J.

    1994-01-01

    A key requirement for the development of commercial fusion power plants utilizing inertial confinement fusion (ICF) as a source of thermonuclear power is the availability of reliable, efficient laser drivers. These laser drivers must be capable of delivering UV optical pulses having energies of the order of 5MJ to cryogenic deuterium-tritium (D/T) ICF targets. The current requirements for laser ICF target irradiation specify the laser wavelength, λ ca. 250 nm, pulse duration, τ p ca. 6 ns, bandwidth, Δλ ca. 0.1 nm, polarization state, etc. Excimer lasers are a leading candidate to fill these demanding ICF driver requirements. However, since excimer lasers are not storage lasers, the excimer laser pulse duration, τ pp , is determined primarily by the length of the excitation pulse delivered to the excimer laser amplifier. Pulsed power associated with efficiently generating excimer laser pulses has a time constant, τ pp which falls in the range, 30 τ p pp p . As a consequence, pulse compression is needed to convert the long excimer laser pulses to pulses of duration τ p . These main ICF driver pulses require, in addition, longer, lower power precursor pulses delivered to the ICF target before the arrival of the main pulse. Although both linear and non-linear optical (NLO) pulse compression techniques have been developed, computer simulations have shown that a ''chirped,'' self-seeded, stimulated Brillouin scattering (SBS) pulse compressor cell using SF 6 at a density, ρ ca. 1 amagat can efficiently compress krypton fluoride (KrF) laser pulses at λ=248 nm. In order to avoid the generation of output pulses substantially shorter than τ p , the optical power in the chirped input SBS ''seed'' beams was ramped. Compressed pulse conversion efficiencies of up to 68% were calculated for output pulse durations of τ p ca. ns

  9. Surface analysis of the selective excimer laser patterning of a thin PEDOT:PSS film on flexible polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Schaubroeck, David, E-mail: David.Schaubroeck@elis.ugent.be [Center for Microsystems Technology (CMST), imec and Ghent University, Technologiepark 15, B-9052 Ghent (Belgium); De Smet, Jelle; Willems, Wouter [Center for Microsystems Technology (CMST), imec and Ghent University, Technologiepark 15, B-9052 Ghent (Belgium); Cools, Pieter; De Geyter, Nathalie; Morent, Rino [Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering, Ghent University, Sint-Pietersnieuwstraat 41, B-9000 Ghent (Belgium); De Smet, Herbert; Van Steenbeerge, Geert [Center for Microsystems Technology (CMST), imec and Ghent University, Technologiepark 15, B-9052 Ghent (Belgium)

    2016-07-15

    Highlights: • Laser patterning of thin film PEDOT:PSS on polymer foils is characterized in great detail. • PEDOT:PSS does not need to be fully removed to create electrically insulating patterns. • The underlying polymer foil influences the ablation behavior. - Abstract: Fast patterning of highly conductive polymers like PEDOT:PSS (poly (3,4-ethylene dioxythiophene): polystyrene sulfonate) with lasers can contribute to the development of industrial production of liquid crystal displays on polymer foils. In this article, the selective UV laser patterning of a PEDOT:PSS film on flexible polymer films is investigated. Based on their optical properties, three polymer films are investigated: polyethylene terephthalate (PET), polymethyl methacrylate (PMMA) and cellulose triacetate (TAC). Ablation parameters for a 110 nm PEDOT:PSS film on these polymer films are optimized. A detailed study of the crater depth, topography and surface composition are provided using optical profilometry, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. The electrical insulation of the lines is measured and correlated to the crater analyses for different laser settings. Finally, potential ablation parameters for each of the polymer films are derived.

  10. Study of temperature dependence and angular distribution of poly(9,9-dioctylfluorene) polymer films deposited by matrix-assisted pulsed laser evaporation (MAPLE)

    International Nuclear Information System (INIS)

    Caricato, A.P.; Anni, M.; Manera, M.G.; Martino, M.; Rella, R.; Romano, F.; Tunno, T.; Valerini, D.

    2009-01-01

    Poly(9,9-dioctylfluorene) (PFO) polymer films were deposited by matrix-assisted pulsed laser evaporation (MAPLE) technique. The polymer was diluted (0.5 wt%) in tetrahydrofuran and, once cooled to liquid nitrogen temperature, it was irradiated with a KrF excimer laser. 10,000 laser pulses were used to deposit PFO films on Si substrates at different temperatures (-16, 30, 50 and 70 deg. C). One PFO film was deposited with 16,000 laser pulses at a substrate temperature of 50 deg. C. The morphology, optical and structural properties of the films were investigated by SEM, AFM, PL and FTIR spectroscopy. SEM inspection showed different characteristic features on the film surface, like deflated balloons, droplets and entangled polymer filaments. The roughness of the films was, at least partially, controlled by substrate heating, which however had the effect to reduce the deposition rate. The increase of the laser pulse number modified the target composition and increased the surface roughness. The angular distribution of the material ejected from the target confirmed the forward ejection of the target material. PFO films presented negligible modification of the chemical structure respect to the bulk material.

  11. La{sub 0.7}Sr{sub 0.3}MnO{sub 3} thin films deposited by pulsed laser ablation for spintronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Martino, Maurizio; Cesaria, Maura; Caricato, Anna Paola [Physics Department, University of Salento, Via Arnesano, 73100 Lecce (Italy); Maruccio, Giuseppe [Physics Department, University of Salento, Via Arnesano, 73100 Lecce (Italy); NNL CNR-Istituto di Nanoscienze, Via Arnesano, 73100 Lecce (Italy); Cola, Adriano; Farella, Isabella [Institute for Microelectronics and Microsystems, IMM-CNR, 73100 Lecce (Italy)

    2011-08-15

    Among spintronic materials, mixed-valence manganite La{sub 0.7}Sr{sub 0.3}MnO{sub 3} (LSMO) is widely investigated due to its half-metal nature. LSMO thin films were grown by pulsed laser deposition (PLD) onto amorphous silica substrates heated at nearly 600 C. An ArF excimer laser was chosen to induce ablation due to its more energetic photons compared to the other quoted excimer laser sources. Different oxygen pressures were considered in order to study the influence of oxygen on the LSMO optical and electrical properties. In this respect, the visible transparency percentage of the deposited films is found good enough for spin-OLED applications. The absorption coefficient shows an absorption band tunable as a function of the oxygen content. Its energetic location and evolution with the oxygen content demonstrate it originates from radiative transitions between the spin-majority bands separated by the Jahn-Teller distortion. All of this lets relate the deposition oxygen pressure to the Mn{sup 3+} ion content in each film and interpret electrical data. The 200 and 100 nm thick samples exhibit weak metallic transport behavior at room temperature with a resistivity of 4.8 and 6.9 {omega} cm, respectively. Concerning the resistivity response versus temperature, the measured low metal-insulator transition temperature (150 K) is related to the sample structural features as involved by the depositions. Two different transport mechanisms describe the conductivity regime of the deposited samples, namely the small polaron variable range hopping (VRH) and the Arrhenius law. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Nanometer sized structures grown by pulsed laser deposition

    KAUST Repository

    ElZein, Basma

    2015-10-01

    Nanometer sized materials can be produced by exposing a target to a laser source to remove material from the target and deposit the removed material onto a surface of a substrate to grow a thin film in a vacuum chamber

  13. Application of laser assisted cold spraying process for metal deposition

    CSIR Research Space (South Africa)

    Tlotleng, Monnamme

    2014-02-01

    Full Text Available Laser assisted cold spraying (LACS) process is a hybrid technique that uses laser and cold spray to deposit solid powders on metal substrates. For bonding to occur, the particle velocities must be supersonic which are achieved by entraining...

  14. Laser cleaning of pulsed laser deposited rhodium films for fusion diagnostic mirrors

    International Nuclear Information System (INIS)

    Uccello, A.; Maffini, A.; Dellasega, D.; Passoni, M.

    2013-01-01

    Highlights: ► Pulsed laser deposition is exploited to produce Rh films for first mirrors. ► Pulsed laser deposition is exploited to produce tokamak-like C contaminants. ► Rh laser damage threshold has been evaluated for infrared pulses. ► Laser cleaning of C contaminated Rh films gives promising results. -- Abstract: In this paper an experimental investigation on the laser cleaning process of rhodium films, potentially candidates to be used as tokamak first mirrors (FMs), from redeposited carbon contaminants is presented. A relevant issue that lowers mirror's performance during tokamak operations is the redeposition of sputtered material from the first wall on their surface. Among all the possible techniques, laser cleaning, in which a train of laser pulses is launched to the surface that has to be treated, is a method to potentially mitigate this problem. The same laser system (Q-switched Nd:YAG laser with a fundamental wavelength of 1064-nm and 7-ns pulses) has been employed with three aims: (i) production by pulsed laser deposition (PLD) of Rh film mirrors, (ii) production by PLD of C deposits with controlled morphology, and (iii) investigation of the laser cleaning method onto C contaminated Rh samples. The evaluation of Rh films laser damage threshold, as a function of fluence and number of pulses, is discussed. Then, the C/Rh films have been cleaned by the laser beam. The exposed zones have been characterized by visual inspection and scanning electron microscopy (SEM), showing promising results

  15. One-step in-diffusion as a result of multipulse laser irradiation of LiNbO3 single-crystalline substrates covered with thin Ti deposits on the effect of the radiation wavelength

    International Nuclear Information System (INIS)

    Ferrari, A.; Schirone, L.; Maiello, G.

    1994-05-01

    We studied Ti in-diffusion as an effect of multiple laser irradiation, in either visible of ultraviolet (u.v.) spectral ranges, of LiNbO 3 single-crystalline structures with Ti coatings of two different thickness. It is shown that while u.v. (excimer, λ approx. 308 nm) laser irradiation causes a complete expulsion of the Ti deposit, the visible (ruby, λ approx. 694.3 nm) laser irradiation at intermediate incident laser fluence (up to approx. 0.7J cm -2 ) promotes efficient Ti in-diffusion from the thin (400 A width) Ti deposit down to a micrometre range implantation depth. (author). 7 refs, 6 figs

  16. RHEED study of titanium dioxide with pulsed laser deposition

    DEFF Research Database (Denmark)

    Rasmussen, Inge Lise; Pryds, Nini; Schou, Jørgen

    2009-01-01

    Reflection high-energy electron diffraction (RHEED) operated at high pressure has been used to monitor the growth of thin films of titanium dioxide (TiO2) on (1 0 0) magnesium oxide (MgO) substrates by pulsed laser deposition (PLD). The deposition is performed with a synthetic rutile TiO2 target...

  17. 308-nm excimer lamp for the treatment of alopecia areata: Clinical trial on 16 cases

    Directory of Open Access Journals (Sweden)

    Akiko Ohtsuki

    2013-01-01

    Full Text Available Background: Alopecia areata (AA is considered as a T-cell mediated autoimmune disorder. The 308-nm excimer laser is thought to be capable of inducing T-cell apoptosis in vitro, suggesting that the 308-nm excimer lamp (not laser might be effective for the treatment of AA. We examined the effectiveness of the 308-nm excimer lamp for treating AA. Materials and Methods: We treated 16 patients with single AA and multiple AA (MAA. The lesions were irradiated with a 308-nm excimer lamp at 2-week intervals. Results: Hair regrowth was observed in 14 patients. Among them, 10 patients showed more than 50% hair re-growth. Our results suggested that the 308-nm excimer lamp system is effective and safe for the treatment of single AA and MAA. Conclusion: Our results suggest that the 308-nm excimer lamp is a good therapeutic alternative without serious side effect for treating AA.

  18. Pulsed laser ablation and deposition of niobium carbide

    International Nuclear Information System (INIS)

    Sansone, M.; De Bonis, A.; Santagata, A.; Rau, J.V.; Galasso, A.; Teghil, R.

    2016-01-01

    Highlights: • We have deposited in vacuum niobium carbide films by fs and ns PLD. • We have compared PLD performed by ultra-short and short laser pulses. • The films deposited by fs PLD of NbC are formed by nanoparticles. • The structure of the films produced by fs PLD at 500 °C corresponds to NbC. - Abstract: NbC crystalline films have been deposited in vacuum by ultra-short pulsed laser deposition technique. The films have been characterized by transmission and scanning electron microscopies and by X-ray diffraction. To clarify the ablation–deposition mechanism, the plasma produced by the ablation process has been characterized by optical emission spectroscopy and fast imaging. A comparison of the results with those obtained by ns pulsed deposition of the same target has been carried out.

  19. Enhancement of surface integrity of titanium alloy with copper by means of laser metal deposition process

    CSIR Research Space (South Africa)

    Erinosho, MF

    2016-04-01

    Full Text Available The laser metal deposition process possesses the combination of metallic powder and laser beam respectively. However, these combinations create an adhesive bonding that permanently solidifies the laser-enhanced-deposited powders. Titanium alloys (Ti...

  20. Ultraviolet laser deposition of graphene thin films without catalytic layers

    KAUST Repository

    Sarath Kumar, S. R.

    2013-01-09

    In this letter, the formation of nanostructured graphene by ultraviolet laser ablation of a highly ordered pyrolytic graphite target under optimized conditions is demonstrated, without a catalytic layer, and a model for the growth process is proposed. Previously, graphene film deposition by low-energy laser (2.3 eV) was explained by photo-thermal models, which implied that graphene films cannot be deposited by laser energies higher than the C-C bond energy in highly ordered pyrolytic graphite (3.7 eV). Here, we show that nanostructured graphene films can in fact be deposited using ultraviolet laser (5 eV) directly over different substrates, without a catalytic layer. The formation of graphene is explained by bond-breaking assisted by photoelectronic excitation leading to formation of carbon clusters at the target and annealing out of defects at the substrate.

  1. Ultraviolet laser deposition of graphene thin films without catalytic layers

    KAUST Repository

    Sarath Kumar, S. R.; Alshareef, Husam N.

    2013-01-01

    In this letter, the formation of nanostructured graphene by ultraviolet laser ablation of a highly ordered pyrolytic graphite target under optimized conditions is demonstrated, without a catalytic layer, and a model for the growth process is proposed. Previously, graphene film deposition by low-energy laser (2.3 eV) was explained by photo-thermal models, which implied that graphene films cannot be deposited by laser energies higher than the C-C bond energy in highly ordered pyrolytic graphite (3.7 eV). Here, we show that nanostructured graphene films can in fact be deposited using ultraviolet laser (5 eV) directly over different substrates, without a catalytic layer. The formation of graphene is explained by bond-breaking assisted by photoelectronic excitation leading to formation of carbon clusters at the target and annealing out of defects at the substrate.

  2. Evaluation of intraocular pressure according to corneal thickness before and after excimer laser corneal ablation for myopia.

    Science.gov (United States)

    Hamed-Azzam, Shirin; Briscoe, Daniel; Tomkins, Oren; Shehedeh-Mashor, Raneen; Garzozi, Hanna

    2013-08-01

    Intraocular pressure is affected by corneal thickness and biomechanics. Following ablative corneal refractive surgery, corneal structural changes occur. The purpose of the study is to determine the relationship between the mean central corneal thickness (CCT) and the change in intraocular pressure measurements following various corneal ablation techniques, using different measurement methods. Two hundred myopic eyes undergoing laser in situ keratomileusis (LASIK) or photorefractive keratectomy (PRK) were enrolled into a prospective, non-randomized study. Corneal parameters examined included full ocular examination, measurement of CCT, corneal topography, corneal curvature and ocular refractivity. Intraocular pressure measurements were obtained using three different instruments-non-contact tonometer, Goldmann applanation tonometer and TonoPen XL (TonoPen-Central and TonoPen-Peripheral). All measurements were performed pre-operatively and 4 months post-operatively. Post-operative intraocular pressure was significantly lower than pre-operative values, with all instruments (p value tonometer and non-contact tonometer (p value < 0.001, ANOVA). Intraocular pressure readings are significantly reduced following corneal ablation surgery. We determined in our myopic patient cohort that the TonoPen XL intraocular pressure measurement method is the least affected following PRK and LASIK as compared to other techniques.

  3. Exploring the deposition of oxides on silicon for photovoltaic cells by pulsed laser deposition

    NARCIS (Netherlands)

    Doeswijk, L.M.; de Moor, Hugo H.C.; Rogalla, Horst; Blank, David H.A.

    2002-01-01

    Since most commercially available solar cells are still made from silicon, we are exploring the introduction of passivating qualities in oxides, with the potential to serve as an antireflection coating. Pulsed laser deposition (PLD) was used to deposit TiO2 and SrTiO3 coatings on silicon substrates.

  4. Contralateral comparison of wavefront-guided LASIK surgery with iris recognition versus without iris recognition using the MEL80 Excimer laser system.

    Science.gov (United States)

    Wu, Fang; Yang, Yabo; Dougherty, Paul J

    2009-05-01

    To compare outcomes in wavefront-guided LASIK performed with iris recognition software versus without iris recognition software in different eyes of the same patient. A randomised, prospective study of 104 myopic eyes of 52 patients undergoing LASIK surgery with the MEL80 excimer laser system was performed. Iris recognition software was used in one eye of each patient (study group) and not used in the other eye (control group). Higher order aberrations (HOAs), contrast sensitivity, uncorrected vision (UCV), visual acuity (VA) and corneal topography were measured and recorded pre-operatively and at one month and three months post-operatively for each eye. The mean post-operative sphere and cylinder between groups was similar, however the post-operative angles of error (AE) by refraction were significantly smaller in the study group compared to the control group both in arithmetic and absolute means (p = 0.03, p = 0.01). The mean logMAR UCV was significantly better in the study group than in the control group at one month (p = 0.01). The mean logMAR VA was significantly better in the study group than in control group at both one and three months (p = 0.01, p = 0.03). In addition, mean trefoil, total third-order aberration, total fourth-order aberration and the total scotopic root-mean-square (RMS) HOAs were significantly less in the study group than those in the control group at the third (p = 0.01, p = 0.05, p = 0.04, p = 0.02). By three months, the contrast sensitivity had recovered in both groups but the study group performed better at 2.6, 4.2 and 6.6 cpd (cycles per degree) than the control group (p = 0.01, p iris recognition results in better VA, lower mean higher-order aberrations, lower refractive post-operative angles of error and better contrast sensitivity at three months post-operatively than LASIK performed without iris recognition.

  5. Effects of laser fluence on the structural properties of pulsed laser deposited ruthenium thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wai-Keat; Wong, Hin-Yong; Chan, Kah-Yoong; Tou, Teck-Yong [Multimedia University, Centre for Advanced Devices and Systems (CADS), Faculty of Engineering, Cyberjaya, Selangor (Malaysia); Yong, Thian-Khok [Universiti Tunku Abdul Rahman, Faculty of Engineering and Science, Setapak, Kuala Lumpur (Malaysia); Yap, Seong-Shan [Norwegian University of Science and Technology, Institute of Physics, Trondheim (Norway)

    2010-08-15

    Ruthenium (Ru) has received great interest in recent years for applications in microelectronics. Pulsed laser deposition (PLD) enables the growth of Ru thin films at low temperatures. In this paper, we report for the first time the characterization of pulsed laser deposited Ru thin films. The deposition processes were carried out at room temperature in vacuum environment for different durations with a pulsed Nd:YAG laser of 355-nm laser wavelength, employing various laser fluences ranging from 2 J/cm{sup 2} to 8 J/cm{sup 2}. The effect of the laser fluence on the structural properties of the deposited Ru films was investigated using surface profilometry, scanning electron microscopy (SEM), and X-ray diffraction (XRD). Ru droplets, some spherical in shape and some flattened into round discs were found on the deposited Ru. The droplets were correlated to ripple formations on the target during the laser-induced ejection from the target. In addition, crystalline Ru with orientations of (100), (101), and (002) was observed in the XRD spectra and their intensities were found to increase with increasing laser fluence and film thickness. Grain sizes ranging from 20 nm to 35 nm were deduced using the Scherrer formula. Optical emission spectroscopy (OES) and energy-dispersive X-ray spectroscopy (EDS) show that the composition of the plume and the deposited Ru film was of high purity. (orig.)

  6. Effects of laser fluence on the structural properties of pulsed laser deposited ruthenium thin films

    International Nuclear Information System (INIS)

    Lee, Wai-Keat; Wong, Hin-Yong; Chan, Kah-Yoong; Tou, Teck-Yong; Yong, Thian-Khok; Yap, Seong-Shan

    2010-01-01

    Ruthenium (Ru) has received great interest in recent years for applications in microelectronics. Pulsed laser deposition (PLD) enables the growth of Ru thin films at low temperatures. In this paper, we report for the first time the characterization of pulsed laser deposited Ru thin films. The deposition processes were carried out at room temperature in vacuum environment for different durations with a pulsed Nd:YAG laser of 355-nm laser wavelength, employing various laser fluences ranging from 2 J/cm 2 to 8 J/cm 2 . The effect of the laser fluence on the structural properties of the deposited Ru films was investigated using surface profilometry, scanning electron microscopy (SEM), and X-ray diffraction (XRD). Ru droplets, some spherical in shape and some flattened into round discs were found on the deposited Ru. The droplets were correlated to ripple formations on the target during the laser-induced ejection from the target. In addition, crystalline Ru with orientations of (100), (101), and (002) was observed in the XRD spectra and their intensities were found to increase with increasing laser fluence and film thickness. Grain sizes ranging from 20 nm to 35 nm were deduced using the Scherrer formula. Optical emission spectroscopy (OES) and energy-dispersive X-ray spectroscopy (EDS) show that the composition of the plume and the deposited Ru film was of high purity. (orig.)

  7. Particulate generation during pulsed laser deposition of superconductor thin films

    International Nuclear Information System (INIS)

    Singh, R.K.

    1993-01-01

    The nature of evaporation/ablation characteristics during pulsed laser deposition strongly controls the quality of laser-deposited films. To understand the origin of particulates in laser deposited films, the authors have simulated the thermal history of YBa 2 Cu 3 O 7 targets under intense nanosecond laser irradiation by numerically solving the heat flow equation with appropriate boundary conditions. During planar surface evaporation of the target material, the sub-surface temperatures were calculated to be higher than the surface temperatures. While the evaporating surface of the target is constantly being cooled due to the latent heat of vaporization, subsurface superheating occurs due to the finite absorption depth of the laser beam. Sub-surface superheating was found to increase with decreasing absorption coefficient and thermal conductivity of the target, and with increasing energy density. The superheating may lead to sub-surface nucleation and growth of the gaseous phase which can expand rapidly leading to microexplosions and ''volume expulsion'' of material from the target. Experiments conducted by the authors and other research groups suggest a strong relation between degree of sub-surface superheating and particle density in laser-deposited films

  8. Growth of centimeter-scale atomically thin MoS2 films by pulsed laser deposition

    Directory of Open Access Journals (Sweden)

    Gene Siegel

    2015-05-01

    Full Text Available We are reporting the growth of single layer and few-layer MoS2 films on single crystal sapphire substrates using a pulsed-laser deposition technique. A pulsed KrF excimer laser (wavelength: 248 nm; pulse width: 25 ns was used to ablate a polycrystalline MoS2 target. The material thus ablated was deposited on a single crystal sapphire (0001 substrate kept at 700 °C in an ambient vacuum of 10−6 Torr. Detailed characterization of the films was performed using atomic force microscopy (AFM, Raman spectroscopy, UV-Vis spectroscopy, and photoluminescence (PL measurements. The ablation of the MoS2 target by 50 laser pulses (energy density: 1.5 J/cm2 was found to result in the formation of a monolayer of MoS2 as shown by AFM results. In the Raman spectrum, A1g and E12g peaks were observed at 404.6 cm−1 and 384.5 cm−1 with a spacing of 20.1 cm−1, confirming the monolayer thickness of the film. The UV-Vis absorption spectrum exhibited two exciton absorption bands at 672 nm (1.85 eV and 615 nm (2.02 eV, with an energy split of 0.17 eV, which is in excellent agreement with the theoretically predicted value of 0.15 eV. The monolayer MoS2 exhibited a PL peak at 1.85 eV confirming the direct nature of the band-gap. By varying the number of laser pulses, bi-layer, tri-layer, and few-layer MoS2 films were prepared. It was found that as the number of monolayers (n in the MoS2 films increases, the spacing between the A1g and E12g Raman peaks (Δf increases following an empirical relation, Δ f = 26 . 45 − 15 . 42 1 + 1 . 44 n 0 . 9 cm − 1 .

  9. Comparación de la medición del grosor corneal central medido con el paquímetro incluido en el Wavelight® Ex500 Excimer Laser y el tomógrafo de cámara de Scheimpflug Pentacam® en sujetos sanos

    Directory of Open Access Journals (Sweden)

    Manuel Garza León

    2017-01-01

    Conclusiones: Nuestros resultados demuestran que el paquímetro incluido en el Wavelight® Ex500 Excimer Laser es una buena alternativa para la medición del grosor corneal central al Pentacam® en pacientes sanos.

  10. TiO2 nanoparticle thin film deposition by matrix assisted pulsed laser evaporation for sensing applications

    International Nuclear Information System (INIS)

    Caricato, A.P.; Capone, S.; Ciccarella, G.; Martino, M.; Rella, R.; Romano, F.; Spadavecchia, J.; Taurino, A.; Tunno, T.; Valerini, D.

    2007-01-01

    The MAPLE technique has been used for the deposition of nanostructured titania (TiO 2 ) nanoparticles thin films to be used for gas sensors applications. An aqueous solution of TiO 2 nanoparticles, synthesised by a novel chemical route, was frozen at liquid nitrogen temperature and irradiated with a pulsed ArF excimer laser in a vacuum chamber. A uniform distribution of TiO 2 nanoparticles with an average size of about 10 nm was deposited on Si and interdigitated Al 2 O 3 substrates as demonstrated by high resolution scanning electron microscopy-field emission gun inspection (SEM-FEG). Energy dispersive X-ray (EDX) analysis revealed the presence of only the titanium and oxygen signals and FTIR (Fourier transform infra-red) revealed the TiO 2 characteristic composition and bond. A comparison with a spin coated thin film obtained from the same solution of TiO 2 nanoparticles is reported. The sensing properties of the films deposited on interdigitated substrates were investigated, too

  11. Materials testing using laser energy deposition

    International Nuclear Information System (INIS)

    Wilcox, W.W.; Calder, C.A.

    1977-01-01

    A convenient method for determining the elastic constants of materials has been devised using the energy from a Q-switched neodymium-glass laser. Stress waves are induced in materials having circular rod or rectangular bar geometries by the absorption of energy from the laser. The wave transit times through the material are recorded with a piezoelectric transducer. Both dilatation and shear wave velocities are determined in a single test using an ultrasonic technique and these velocities are used to calculate the elastic constants of the material. A comparison of the constants determined for ten common engineering materials using this method is made with constants derived using the conventional ultrasonic pulse technique and agreement is shown to be about one percent in most cases. Effects of material geometry are discussed and surface damage to the material caused by laser energy absorption is shown

  12. Laser-deposited thin films for butane detection

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Miroslav; Kocourek, Tomáš; Flory, F.; Escoubas, L.; Mazingue, T.; Myslík, V.; Vrňata, M.; Fryček, R.; Vysloužil, F.

    2006-01-01

    Roč. 16, č. 2 (2006), s. 217-222 ISSN 1054-660X R&D Projects: GA AV ČR(CZ) IAA1010110; GA ČR(CZ) GA104/03/0406 Grant - others:NANOPHOS(XE) IST-2001-39112 Institutional research plan: CEZ:AV0Z10100522 Keywords : laser deposition * gas sensor * mode spectroscopy Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.516, year: 2006

  13. Laser ablation deposition measurements from silver and nickel

    DEFF Research Database (Denmark)

    Svendsen, Winnie Edith; Ellegaard, Ole; Schou, Jørgen

    1996-01-01

    The deposition rate for laser ablated metals has been studied in a standard geometry for fluences up to 20 J/cm(2). The rate for silver and nickel is a few percent of a monolayer per pulse at the laser wavelengths 532 nm and 355 nm. The rate for nickel is significantly higher than that for silver...... at 532 nm, whereas the rate for the two metals is similar at 355 nm. This behaviour disagrees with calculations based on the thermal properties at low intensities as well as predictions based on formation of an absorbing plasma at high intensities. The deposition rate falls strongly with increasing...

  14. Laser-assisted deposition of thin C60 films

    DEFF Research Database (Denmark)

    Schou, Jørgen; Canulescu, Stela; Fæster, Søren

    Metal and metal oxide films with controlled thickness from a fraction of a monolayer up more than 1000 nm and known stoichiometry can be produced by pulsed laser deposition (PLD) relatively easily, and (PLD) is now a standard technique in all major research laboratories within materials science...... of the matrix material, anisole, with a concentration of 0.67 wt% C60. At laser fluences below 1.5 J/cm2, a dominant fraction of the film molecules are C60 transferred to the substrate without any fragmentation. High-resolution SEM images of MAPLE deposited films reveal large circular features on the surface...

  15. Material efficiency of laser metal deposited Ti6Al4V: Effect of laser power

    CSIR Research Space (South Africa)

    Mahamood, RM

    2013-02-01

    Full Text Available The economy of using Laser Metal Deposition (LMD) process in the manufacturing of aerospace parts depends on the right processing parameters. LMD is an additive manufacturing technology capable of producing complex parts directly from the CAD model...

  16. Lasers '89

    International Nuclear Information System (INIS)

    Harris, D.G.; Shay, T.M.

    1990-01-01

    This book covers the following topics: XUV, X-Ray and Gamma-Ray Lasers, excimer lasers, chemical lasers, nuclear pumped lasers, high power gas lasers, solid state lasers, laser spectroscopy. The paper presented include: Development of KrF lasers for fusion and Nuclear driven solid-state lasers

  17. UV laser deposition of metal films by photogenerated free radicals

    Science.gov (United States)

    Montgomery, R. K.; Mantei, T. D.

    1986-01-01

    A novel photochemical method for liquid-phase deposition of metal films is described. In the liquid phase deposition scheme, a metal containing compound and a metal-metal bonded carbonyl complex are dissolved together in a polar solvent and the mixture is irradiated using a UV laser. The optical arrangement consists of a HeCd laser which provides 7 mW of power at a wavelength of 325 nm in the TEM(OO) mode. The beam is attenuated and may be expanded to a diameter of 5-20 mm. Experiments with photochemical deposition of silver films onto glass and quartz substrates are described in detail. Mass spectrometric analysis of deposited silver films indicated a deposition rate of about 1 A/s at incident power levels of 0.01 W/sq cm. UV laser-induced copper and palladium films have also been obtained. A black and white photograph showing the silver Van Der Pauw pattern of a solution-deposited film is provided.

  18. Chromium carbide thin films deposited by ultra-short pulse laser deposition

    International Nuclear Information System (INIS)

    Teghil, R.; Santagata, A.; De Bonis, A.; Galasso, A.; Villani, P.

    2009-01-01

    Pulsed laser deposition performed by a laser with a pulse duration of 250 fs has been used to deposit films from a Cr 3 C 2 target. Due to the different processes involved in the laser ablation when it is performed by an ultra-short pulse source instead of a conventional short pulse one, it has been possible to obtain in vacuum films containing only one type of carbide, Cr 3 C 2 , as shown by X-ray photoelectron spectroscopy. On the other hand, Cr 3 C 2 is not the only component of the films, since a large amount of amorphous carbon is also present. The films, deposited at room temperature, are amorphous and seem to be formed by the coalescence of a large number of particles with nanometric size. The film composition can be explained in terms of thermal evaporation from particles ejected from the target.

  19. Laser deposition and analysis of biocompatible ceramic films - experiences andoverview

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Miroslav; Dostálová, T.; Fotakis, C.; Studnička, Václav; Jastrabík, Lubomír; Havránek, V.; Grivas, C.; Pospíchal, M.; Kadlec, J.; Peřina, Vratislav

    1996-01-01

    Roč. 6, č. 1 (1996), s. 144-149 ISSN 1054-660X Institutional research plan: CEZ:A02/98:Z1-010-914 Keywords : laser deposition * hydroxyapatite * ceramic films Subject RIV: BM - Solid Matter Physics ; Magnetism

  20. Pulsed-laser deposited ZnO for device applications

    NARCIS (Netherlands)

    King, S.L.; Gardeniers, Johannes G.E.; Boyd, I.W.

    1996-01-01

    The study investigates the growth by pulsed-laser deposition (PLD) of ZnO thin films for the eventual incorporation into piezo-electric actuators and other sensors being developed at the University of Twente. All films are purely c-axis oriented, and results are presented which suggest the

  1. Direct Patterning of Oxides by Pulsed Laser Stencil Deposition

    NARCIS (Netherlands)

    te Riele, P.M.

    2008-01-01

    This thesis describes a detailed study of the application of stencil technology in the patterning of epitaxial oxide thin films by pulsed laser deposition (PLD). Stencil patterning has been applied in thin film sub-micron patterning of metals successfully for decades since it has several advantages

  2. Role of atomic oxygen in the low-temperature growth of YBa2Cu3O/sub 7-//sub δ/ thin films by laser ablation deposition

    International Nuclear Information System (INIS)

    Koren, G.; Gupta, A.; Baseman, R.J.

    1989-01-01

    Thin films of YBa 2 Cu 3 O/sub 7-//sub δ/ were deposited on (100) SrTiO 3 substrates held at 600 and 700 0 C in N 2 O and O 2 ambients using 355 nm Nd-YAG laser pulses for ablation of the target. The experiments were done either in the presence or absence of 193 nm excimer laser irradiation of the ambient gas between the target and the substrate. Results without the excimer irradiation show that in 0.2 Torr of both N 2 O and O 2 , at 700 0 C substrate surface temperature, excellent smooth films with T/sub c/ (R = 0) of 93 K and J/sub c/ (88 K) of 1.3 x 10 6 A/cm 2 were obtained. At 600 0 C, semiconducting films with no superconducting transition were obtained in O 2 ambient, whereas in N 2 O, semiconducting normal state behavior with broad superconducting transition was found. With the 193 nm irradiation, no change was observed in the electrical properties of the films deposited in O 2 at 600 0 C, whereas in N 2 O reasonably good superconducting films with normal metallic behavior and T/sub c/ (R = 0) of 84 K were found. Since the 193 nm photons hardly dissociate O 2 molecules, but very efficiently photodissociate the N 2 O molecules to form N 2 and O( 1 D), it is concluded that the atomic oxygen produced by photodissociation of N 2 O is responsible for the superconducting film deposition at 600 0 C

  3. ArF excimer laser modulation of TNF-alpha and gelatinase B in NIH 3T3 cells; Modulation de l`expression du TNF-alpha et de la gelatinase B, apres irradiation de fibroblastes NIH 3T3 par un laser a excimeres a 193 NM

    Energy Technology Data Exchange (ETDEWEB)

    Naudy-Vives, C.; Courant, D.; Perot, J.C.; Garcia, J.; Fretier, P.; Court, L.; Dormont, D.

    1995-12-31

    The effects on TNF-alpha and gelatinase B activity in mammalian cells induced by 193 nm argon fluoride excimer laser have been investigated. The data show that a secretion of 92 kDa type IV collagenase and TNF-alpha were increased in cell culture supernatants. Moreover, the 193 nm laser radiation produces a decrease of cell proliferation and an increase of cell activation 8 hours after irradiation. The total protein amount increases with the delivered dose. Same, but less effects were obtained after exposure to a conventional UV lamp at 254 nm. (author). 8 refs.

  4. The role of transverse speed on deposition height and material efficiency in laser deposited titanium alloy

    CSIR Research Space (South Africa)

    Mahamood, RM

    2013-03-01

    Full Text Available The most commonly used aerospace titanium alloy, Ti6Al4V, was deposited on Ti6Al4V plate of dimension 72 x 72 x5mm. The laser power of 3 kW, powder flow rate of 1.44 g/min and gas flow rate of 4 l/min were used throughout the deposition process...

  5. Vertically aligned carbon nanotube growth by pulsed laser deposition and thermal chemical vapor deposition methods

    International Nuclear Information System (INIS)

    Sohn, Jung Inn; Nam, Chunghee; Lee, Seonghoon

    2002-01-01

    We have grown vertically aligned carbon nanotubes on the various substrates such as a planar p-type Si(1 0 0) wafer, porous Si wafer, SiO 2 , Si 3 N 4 , Al 2 O 3 , and Cr by thermal chemical vapor deposition (CVD) at 800 deg.C, using C 2 H 2 gas as a carbon source and Fe catalyst films deposited by a pulsed laser on the substrates. The Fe films were deposited for 5 min by pulsed laser deposition (PLD). The advantage of Fe deposition by PLD over other deposition methods lies in the superior adhesion of Fe to a Si substrate due to high kinetic energies of the generated Fe species. Scanning electron microscopy (SEM) images show that vertically well-aligned carbon nanotubes are grown on Fe nanoparticles formed from the thermal annealing of the Fe film deposited by PLD on the various substrates. Atomic force microscopy (AFM) images show that the Fe film annealed at 800 deg.C is broken to Fe nanoparticles of 10-50 nm in size. We show that the appropriate density of Fe nanoparticles formed from the thermal annealing of the film deposited by PLD is crucial in growing vertically aligned carbon nanotubes. Using a PLD and a lift-off method, we developed the selective growth of carbon nanotubes on a patterned Fe-coated Si substrate

  6. Powder Flux Regulation in the Laser Material Deposition Process

    Science.gov (United States)

    Arrizubieta, Jon Iñaki; Wegener, Maximiliam; Arntz, Kristian; Lamikiz, Aitzol; Ruiz, Jose Exequiel

    In the present research work a powder flux regulation system has been designed, developed and validated with the aim of improving the Laser Material Deposition (LMD) process. In this process, the amount of deposited material per substrate surface unit area depends on the real feed rate of the nozzle. Therefore, a regulation system based on a solenoid valve has been installed at the nozzle entrance in order to control the powder flux. The powder flux control has been performed based on the machine real feed rate, which is compared with the programmed feed rate. An instantaneous velocity error is calculated and the powder flow is controlled as a function of this variation using Pulse Width Modulation (PWM) signals. Thereby, in zones where the Laser Material Deposition machine reduces the feed rate due to a trajectory change, powder accumulation can be avoided and the generated clads would present a homogeneous shape.

  7. Growth modes of pentacene films obtained by pulsed laser deposition

    International Nuclear Information System (INIS)

    Wisz, G.; Kuzma, M.; Virt, I.; Sagan, P.; Rudyj, I.

    2011-01-01

    Thin pentacene films were deposited on KCl and ITO/glass substrates by the pulsed laser deposition method (PLD) using a YAG:Nd 3+ laser with a second harmonic (λ = 532 nm). We compared the structure of the layer on differently oriented substrates with respect to the pentacene plasma plume - vertical and parallel orientation. The structure of the layers formed was examined using SEM, RHEED and THEED methods. The lattice parameters of the layer deposited on KCl were determined from THEED pattern (a = 5.928 A, b 7.874 A, c = 14,98 A, α = 76.54 o , β 75.17 o , γ = 89.20 o ). The preferred direction [11-bar 0] of the layer growth on KCl substrate was addressed. The effect of the substrate orientation results in a different growth mode of the layers.

  8. Growth and characterization of nitrogen-doped TiO2 thin films prepared by reactive pulsed laser deposition

    International Nuclear Information System (INIS)

    Sauthier, G.; Ferrer, F.J.; Figueras, A.; Gyoergy, E.

    2010-01-01

    Nitrogen-doped titanium dioxide (TiO 2 ) thin films were grown on (001) SiO 2 substrates by reactive pulsed laser deposition. A KrF* excimer laser source (λ = 248 nm, τ FWHM ≅ 10 ns, ν = 10 Hz) was used for the irradiations of pressed powder targets composed by both anatase and rutile phase TiO 2 . The experiments were performed in a controlled reactive atmosphere consisting of oxygen or mixtures of oxygen and nitrogen gases. The obtained thin film crystal structure was investigated by X-ray diffraction, while their chemical composition as well as chemical bonding states between the elements were studied by X-ray photoelectron spectroscopy. An interrelation was found between nitrogen concentration, crystalline structure, bonding states between the elements, and the formation of titanium oxinitride compounds. Moreover, as a result of the nitrogen incorporation in the films a continuous red-shift of the optical absorption edge accompanied by absorption in the visible spectral range between 400 and 500 nm wavelength was observed.

  9. RBS characterisation of SrxBa1-xNb2O6 (SBN) thin films obtained by laser deposition

    International Nuclear Information System (INIS)

    Pantelica, D.; Petris, M.; Negoita, F.; Dinescu, M.; Dinu, R.; Bauerle, D.; Pedarnig, J.; Bauer-Gogonea, S.; Bauer, S.

    1999-01-01

    Sr x Ba 1-x Nb 2 O 6 (SBN) is an attractive material for many applications such as nonvolatile ferroelectric random-access memories. SBN thin films have been grown by different techniques, such as solid source metalorganic chemical vapor deposition, liquid phase epitaxy, sol-gel synthesis and rf-sputter deposition. Pulsed laser deposition (PLD) is a relatively new growth technique which is ideally suited to the epitaxial growth of multicomponent oxides, because complex target compositions can be stoichiometrically reproduced at the substrate. Multilayer SBN/LSCO/TiN/MgO was prepared as follows: the (100) MgO substrate was glued onto a Ni holder with silver paint and the whole assembly was heated radiatively to the deposition temperatures in the range 450-800 deg. C. MgO substrates were annealed in oxygen at 1050 deg. C for 12 hours prior to the deposition of films. A UV-excimer laser (KrF, λ = 248 nm, t(FWHM) = 25 ns) operating at a repetition rate of 5 Hz was used for ablation. The laser fluence was varied between 0.8-2.6 J/cm 2 ; 4000 pulses were given for the deposition of LSCO film and 8000 pulses for the deposition of SBN film. The composition of the film was analysed using RBS. The measurements were conducted using a 7 Li ++ beam at 4.5 MeV provided by the Van de Graaff Tandem accelerator of IFIN-HH. An ordinary backscattering setup was used. The backscattered particles were detected using a passivated ion implanted silicon detector, placed at 145 angle with respect with the beam. The energy resolution for 7 Li at 4 MeV was about 30 keV. The sample surface was perpendicular to the beam direction. For the quantitative analysis of RBS spectra we used the code RUMP. A typical RBS spectrum of a SBN/LSCO/TiN/MgO sample is shown. A simulation is plotted on the same graph. The simulation curve fit well the experimental data. The profiles for different element are flat topped, indicating that the composition is constant with depth. The sharp high and low energy

  10. Laser deposition of carbide-reinforced coatings

    International Nuclear Information System (INIS)

    Cerri, W.; Martinella, R.; Mor, G.P.; Bianchi, P.; D'Angelo, D.

    1991-01-01

    CO 2 laser cladding with blown powder presents many advantages: fusion bonding with the substrate with low dilution, metallurgical continuity in the metallic matrix, high solidification rates, ease of automation, and reduced environmental contamination. In the present paper, laser cladding experimental results using families of carbides (tungsten and titanium) mixed with metallic alloys are reported. As substrates, low alloy construction steel (AISI 4140) (austenitic stainless steel) samples have been utilized, depending on the particular carbide reinforcement application. The coating layers obtained have been characterized by metallurgical examination. They show low dilution, absence of cracks, and high abrasion resistance. The WC samples, obtained with different carbide sizes and percentages, have been characterized with dry and rubber wheel abrasion tests and the specimen behaviour has been compared with the behaviour of materials used for similar applications. The abrasion resistance proved to be better than that of other widely used hardfacing materials and the powder morphology have a non-negligible influence on the tribological properties. (orig.)

  11. Gas Sensing Properties of Metal Doped WO3 Thin Film Sensors Prepared by Pulsed Laser Deposition and DC Sputtering Process

    Science.gov (United States)

    Bhuiyan, Md. Mosharraf Hossain; Ueda, Tsuyoshi; Ikegami, Tomoaki; Ebihara, Kenji

    2006-10-01

    Tungsten trioxide (WO3) thin films gas sensors were prepared by the KrF excimer pulsed laser deposition (PLD) method. The films were prepared on the quartz glass, silicon and also on the Al2O3 sensor substrates with platinum interdigitated electrodes. The effect of doping of the platinum (Pt), palladium (Pd) or gold (Au) on the WO3 thin film was also investigated. These metals were doped to the WO3 thin film by the DC sputtering process during the PLD. The substrate temperature and the oxygen pressure were 400 °C and 100 mTorr, respectively, during the deposition. The films were characterized by atomic force microscopy (AFM) and X-ray diffraction (XRD). The sensitivity of the prepared sensors to 60 ppm NO gas was examined using the two terminal resistance method in a chamber at atmospheric pressure and operating temperatures of 25-350 °C. The sensitivity of the WO3 thin films doped with Pt, Pd, or Au was found to be higher than that of the undoped WO3 thin film.

  12. Laser ablation studies of Deposited Silver Colloids Active in SERS

    International Nuclear Information System (INIS)

    La Porte, R.T.; Moreno, D.S.; Striano, M.C.; Munnoz, M.M.; Garcia-Ramos, J.V.; Cortes, S.S.; Koudoumas, E.

    2002-01-01

    Laser ablation of deposited silver colloids, active in SERS, is carried out at three different laser wavelengths (KrF, XeCl and Nd:YAG at λ = 248, 308 and 532 nm respectively). Emission form excited neutral Ag and Na atoms, present in the ablation plume, is detected with spectral and temporal resolution. The expansion velocity of Ag in the plume is estimated in ∼1x104m s-1, Low-fluence laser ablation of the colloids yields ionized species that are analyzed by time-of-flight mass spectroscopy. Na+ and Agn+(n≤3) are observed. Composition of the mass spectra and widths of the mass peaks are found to be dependent on laser wavelength, suggesting that the dominant ablation mechanisms are different at the different wavelenghts.

  13. Chromium-doped diamond-like carbon films deposited by dual-pulsed laser deposition

    Czech Academy of Sciences Publication Activity Database

    Písařík, Petr; Jelínek, Miroslav; Kocourek, Tomáš; Zezulová, M.; Remsa, Jan; Jurek, Karel

    2014-01-01

    Roč. 117, č. 1 (2014), s. 83-88 ISSN 0947-8396 R&D Projects: GA MŠk LD12069 Institutional support: RVO:68378271 Keywords : diamond like carbon * chromium * contact angle * surface free energy * dual laser deposition * zeta potential Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.704, year: 2014

  14. Microstructural and mechanical characterization of laser deposited advanced materials

    Science.gov (United States)

    Sistla, Harihar Rakshit

    Additive manufacturing in the form of laser deposition is a unique way to manufacture near net shape metallic components from advanced materials. Rapid solidification facilitates the extension of solid solubility, compositional flexibility and decrease in micro-segregation in the melt among other advantages. The current work investigates the employment of laser deposition to fabricate the following: 1. Functionally gradient materials: This allows grading dissimilar materials compositionally to tailor specific properties of both these materials into a single component. Specific compositions of the candidate materials (SS 316, Inconel 625 and Ti64) were blended and deposited to study the brittle intermetallics reported in these systems. 2. High entropy alloys: These are multi- component alloys with equiatomic compositions of 5 or more elements. The ratio of Al to Ni was decreased to observe the transition of solid solution from a BCC to an FCC crystal structure in the AlFeCoCrNi system. 3. Structurally amorphous alloys: Zr-based metallic glasses have been reported to have high glass forming ability. These alloys have been laser deposited so as to rapidly cool them from the melt into an amorphous state. Microstructural analysis and X-ray diffraction were used to study the phase formation, and hardness was measured to estimate the mechanical properties.

  15. Matrix shaped pulsed laser deposition: New approach to large area and homogeneous deposition

    Energy Technology Data Exchange (ETDEWEB)

    Akkan, C.K.; May, A. [INM – Leibniz Institute for New Materials, CVD/Biosurfaces Group, Campus D2 2, 66123 Saarbrücken (Germany); Hammadeh, M. [Department for Obstetrics, Gynecology and Reproductive Medicine, IVF Laboratory, Saarland University Medical Center and Faculty of Medicine, Building 9, 66421 Homburg, Saar (Germany); Abdul-Khaliq, H. [Clinic for Pediatric Cardiology, Saarland University Medical Center and Faculty of Medicine, Building 9, 66421 Homburg, Saar (Germany); Aktas, O.C., E-mail: cenk.aktas@inm-gmbh.de [INM – Leibniz Institute for New Materials, CVD/Biosurfaces Group, Campus D2 2, 66123 Saarbrücken (Germany)

    2014-05-01

    Pulsed laser deposition (PLD) is one of the well-established physical vapor deposition methods used for synthesis of ultra-thin layers. Especially PLD is suitable for the preparation of thin films of complex alloys and ceramics where the conservation of the stoichiometry is critical. Beside several advantages of PLD, inhomogeneity in thickness limits use of PLD in some applications. There are several approaches such as rotation of the substrate or scanning of the laser beam over the target to achieve homogenous layers. On the other hand movement and transition create further complexity in process parameters. Here we present a new approach which we call Matrix Shaped PLD to control the thickness and homogeneity of deposited layers precisely. This new approach is based on shaping of the incoming laser beam by a microlens array and a Fourier lens. The beam is split into much smaller multi-beam array over the target and this leads to a homogenous plasma formation. The uniform intensity distribution over the target yields a very uniform deposit on the substrate. This approach is used to deposit carbide and oxide thin films for biomedical applications. As a case study coating of a stent which has a complex geometry is presented briefly.

  16. Defect control in room temperature deposited cadmium sulfide thin films by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Como, N. [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX, 75080 (United States); Martinez-Landeros, V. [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX, 75080 (United States); Centro de Investigación en Materiales Avanzados, Monterrey, Nuevo Leon, 66600, México (Mexico); Mejia, I. [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX, 75080 (United States); Aguirre-Tostado, F.S. [Centro de Investigación en Materiales Avanzados, Monterrey, Nuevo Leon, 66600, México (Mexico); Nascimento, C.D.; Azevedo, G. de M; Krug, C. [Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, 91509-900 (Brazil); Quevedo-Lopez, M.A., E-mail: mquevedo@utdallas.edu [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX, 75080 (United States)

    2014-01-01

    The control of defects in cadmium sulfide thin films and its impact on the resulting CdS optical and electrical characteristics are studied. Sulfur vacancies and cadmium interstitial concentrations in the CdS films are controlled using the ambient pressure during pulsed laser deposition. CdS film resistivities ranging from 10{sup −1} to 10{sup 4} Ω-cm are achieved. Hall Effect measurements show that the carrier concentration ranges from 10{sup 19} to 10{sup 13} cm{sup −3} and is responsible for the observed resistivity variation. Hall mobility varies from 2 to 12 cm{sup 2}/V-s for the same pressure regime. Although the energy bandgap remains unaffected (∼ 2.42 eV), the optical transmittance is reduced due to the increase of defects in the CdS films. Rutherford back scattering spectroscopy shows the dependence of the CdS films stoichiometry with deposition pressure. The presence of CdS defects is attributed to more energetic species reaching the substrate, inducing surface damage in the CdS films during pulsed laser deposition. - Highlights: • CdS thin films deposited by pulsed laser deposition at room temperature. • The optical, electrical and structural properties were evaluated. • Carrier concentration ranged from 10{sup 19} to 10{sup 13} cm{sup −3}. • The chemical composition was studied by Rutherford back scattering. • The density of sulfur vacancies and cadmium interstitial was varied.

  17. Defect control in room temperature deposited cadmium sulfide thin films by pulsed laser deposition

    International Nuclear Information System (INIS)

    Hernandez-Como, N.; Martinez-Landeros, V.; Mejia, I.; Aguirre-Tostado, F.S.; Nascimento, C.D.; Azevedo, G. de M; Krug, C.; Quevedo-Lopez, M.A.

    2014-01-01

    The control of defects in cadmium sulfide thin films and its impact on the resulting CdS optical and electrical characteristics are studied. Sulfur vacancies and cadmium interstitial concentrations in the CdS films are controlled using the ambient pressure during pulsed laser deposition. CdS film resistivities ranging from 10 −1 to 10 4 Ω-cm are achieved. Hall Effect measurements show that the carrier concentration ranges from 10 19 to 10 13 cm −3 and is responsible for the observed resistivity variation. Hall mobility varies from 2 to 12 cm 2 /V-s for the same pressure regime. Although the energy bandgap remains unaffected (∼ 2.42 eV), the optical transmittance is reduced due to the increase of defects in the CdS films. Rutherford back scattering spectroscopy shows the dependence of the CdS films stoichiometry with deposition pressure. The presence of CdS defects is attributed to more energetic species reaching the substrate, inducing surface damage in the CdS films during pulsed laser deposition. - Highlights: • CdS thin films deposited by pulsed laser deposition at room temperature. • The optical, electrical and structural properties were evaluated. • Carrier concentration ranged from 10 19 to 10 13 cm −3 . • The chemical composition was studied by Rutherford back scattering. • The density of sulfur vacancies and cadmium interstitial was varied

  18. Structural comparison between La{sub 0.60}Y{sub 0.07}Ca{sub 0.33}MnO{sub 3-{delta}} bulk and pulsed laser deposited thin films

    Energy Technology Data Exchange (ETDEWEB)

    Teodorescu, V.S. E-mail: teoval@alpha1.infim.ro; Nistor, L.C.; Valeanu, M.; Ghica, C.; Sandu, C.; Mihailescu, I.N.; Ristoscu, C.; Deville, J.P.; Werckmann, J

    2000-03-01

    This work is a comparative study of the structural and magneto-transport properties of La{sub 0.60}Y{sub 0.07}Ca{sub 0.33}MnO{sub 3-{delta}} (LYCMO) as bulk and thin film. The bulk samples were prepared by solid-state reaction between the corresponding metallic oxides mixed in stoichiometric ratios. The thin film was deposited by pulsed laser deposition on an MgO single crystal using an excimer laser. We show that the structure and stoichiometry of the bulk target are perfectly reproduced in the thin film. We measured the magnetoresistive effect on both the LYCMO pellet and the thin film by using the four-probe technique. The maximum of the MR effect is 680% on the polycrystalline thin film in a 2 T magnetic field.

  19. Characterizing the Effect of Laser Power on Laser Metal Deposited Titanium Alloy and Boron Carbide

    Science.gov (United States)

    Akinlabi, E. T.; Erinosho, M. F.

    2017-11-01

    Titanium alloy has gained acceptance in the aerospace, marine, chemical, and other related industries due to its excellent combination of mechanical and corrosion properties. In order to augment its properties, a hard ceramic, boron carbide has been laser cladded with it at varying laser powers between 0.8 and 2.4 kW. This paper presents the effect of laser power on the laser deposited Ti6Al4V-B4C composites through the evolving microstructures and microhardness. The microstructures of the composites exhibit the formation of α-Ti phase and β-Ti phase and were elongated towards the heat affected zone. These phases were terminated at the fusion zone and globular microstructures were found growing epitaxially just immediately after the fusion zone. Good bondings were formed in all the deposited composites. Sample A1 deposited at a laser power of 0.8 kW and scanning speed of 1 m/min exhibits the highest hardness of HV 432 ± 27, while sample A4 deposited at a laser power of 2.0 kW and scanning speed of 1 m/min displays the lowest hardness of HV 360 ± 18. From the hardness results obtained, ceramic B4C has improved the mechanical properties of the primary alloy.

  20. Amorphous Terfenol-D films using nanosecond pulsed laser deposition

    International Nuclear Information System (INIS)

    Ma, James; O'Brien, Daniel T.; Kovar, Desiderio

    2009-01-01

    Thin films of Terfenol-D were produced by nanosecond pulsed laser deposition (PLD) at two fluences. Electron dispersive spectroscopy conducted using scanning electron and transmission electron microscopes showed that the film compositions were similar to that of the PLD target. Contrary to previous assertions that suggested that nanosecond PLD results in crystalline films, X-ray diffraction and transmission electron microscopy analysis showed that the films produced at both fluences were amorphous. Splatters present on the film had similar compositions to the overall film and were also amorphous. Magnetic measurements showed that the films had high saturation magnetization and magnetostriction, similar to high quality films produced using other physical vapor deposition methods.

  1. Pulsed laser deposition and characterization of cellulase thin films

    Science.gov (United States)

    Cicco, N.; Morone, A.; Verrastro, M.; Viggiano, V.

    2013-08-01

    Thin films of cellulase were obtained by pulsed laser deposition (PLD) on an appropriate substrate. Glycoside hydrolase cellulase has received our attention because it emerges among the antifouling enzymes (enzymes being able to remove and prevent the formation of micro-organism biofilms) used in industry and medicine field. Pressed cellulase pellets, used as target material, were ablated with pulses of a Nd-YAG laser working at wavelength of 532 nm. In this work, we evaluated the impact of PLD technique both on molecular structure and hydrolytic activity of cellulase. Characteristic chemical bonds and morphology of deposited layers were investigated by FTIR spectroscopy and SEM respectively. The hydrolytic activity of cellulase thin films was detected by a colorimetric assay.

  2. Pulsed laser deposition of high Tc superconducting thin films

    International Nuclear Information System (INIS)

    Singh, R.K.; Narayan, J.

    1990-01-01

    This paper reports on the pulsed laser evaporation (PLE) technique for deposition of thin films characterized by a number of unique properties. Based on the experimental characteristics, a theoretical model is developed which considers the formation and anisotropic three dimensional expansion of the laser generated plasma. This model explains most of the experimental features observed in PLE. We have also employed the PLE technique for in-situ fabrication of YBa 2 Cu 3 O 7 superconducting thin films on different substrates in the temperature range of 500--650 degrees C. At temperatures below 600 degrees C, a biased interposing ring between the substrate and the target was found to significantly improve the superconducting properties. The minimum ion channeling yields were between 3--3.5% for films deposited on (100) SrTiO 3 and (100) LaAlO 3 substrates

  3. Pulsed laser deposition and characterisation of thin superconducting films

    Energy Technology Data Exchange (ETDEWEB)

    Morone, A [CNR, zona industriale di Tito Scalo, Potenza (Italy). Istituto per i Materiali Speciali

    1996-09-01

    Same concepts on pulsed laser deposition of thin films will be discussed and same examples of high transition temperature (HTc) BiSrCaCuO (BISCO) and low transition temperature NbN/MgO/NbN multilayers will be presented. X-ray and others characterizations of these films will be reported and discussed. Electrical properties of superconducting thin films will be realized as a function of structural and morphological aspect.

  4. Numerical modelling of laser rapid prototyping by fusion wire deposit

    OpenAIRE

    Arbaoui , Larbi; Masse , J.E.; Barrallier , Laurent; Mocellin , Katia

    2010-01-01

    International audience; A finite element model has been developed to simulate an innovative laser rapid prototyping process. Several numerical developments have been implemented in order to simulate the main steps of the rapid prototyping process: injection, heating, phase change and deposit. The numerical model also takes into account different phenomena: surface tension in the liquid state, asborptivity and plasma effects during materiallaser interaction. The threedimensional model is based...

  5. Residual stresses in laser direct metal deposited Waspaloy

    International Nuclear Information System (INIS)

    Moat, R.J.; Pinkerton, A.J.; Li, L.; Withers, P.J.; Preuss, M.

    2011-01-01

    Research highlights: → Neutron diffraction and the contour method show good agreement. → Tensile stresses found parallel to the surfaces. → Compressive stresses within the bulk of the structures. → Residual stress weakly dependent on the laser pulse parameters. → Maximum tensile residual stress unaffected across range of pulse parameters used. - Abstract: This paper reports a study into the effect of laser pulse length and duty cycle on the residual stress distributions in multi-track laser direct metal deposits of Waspaloy onto an Inconel 718 substrate. The residual stresses have been evaluated using neutron diffraction and the contour method, while electron microscopy and micro hardness indentation have been used to map the concomitant microstructural variation. In all cases, near the tops of the deposited walls, the longitudinal stresses are tensile towards the mid-length of the wall, while the stresses perpendicular to the substrate are negligible. By contrast near the base of the walls, the stresses along the direction of deposition are small, while the stresses perpendicular to the substrate are compressive at the centre and tensile towards the ends. Consistent with previous observations, the stresses parallel to free surfaces are tensile, balanced by compressive stresses in the interior (an inverse quench stress profile). These profiles have been found to be weakly dependent on the laser pulse parameters, most notably an increase in tensile stress gradient with increasing duty cycle, but the maximum residual stresses are largely unaffected. Furthermore, microstructural analysis has shown that the effect of laser pulse parameters on grain morphology in multi-track thick walls is less marked than previously reported for single-track wall structures.

  6. Residual stresses in laser direct metal deposited Waspaloy

    Energy Technology Data Exchange (ETDEWEB)

    Moat, R.J., E-mail: richard.moat@manchester.ac.uk [School of Materials, University of Manchester, Grosvenor Street, Manchester M1 7HS (United Kingdom); Pinkerton, A.J.; Li, L. [Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, University of Manchester, M60 1QD (United Kingdom); Withers, P.J.; Preuss, M. [School of Materials, University of Manchester, Grosvenor Street, Manchester M1 7HS (United Kingdom)

    2011-03-15

    Research highlights: {yields} Neutron diffraction and the contour method show good agreement. {yields} Tensile stresses found parallel to the surfaces. {yields} Compressive stresses within the bulk of the structures. {yields} Residual stress weakly dependent on the laser pulse parameters. {yields} Maximum tensile residual stress unaffected across range of pulse parameters used. - Abstract: This paper reports a study into the effect of laser pulse length and duty cycle on the residual stress distributions in multi-track laser direct metal deposits of Waspaloy onto an Inconel 718 substrate. The residual stresses have been evaluated using neutron diffraction and the contour method, while electron microscopy and micro hardness indentation have been used to map the concomitant microstructural variation. In all cases, near the tops of the deposited walls, the longitudinal stresses are tensile towards the mid-length of the wall, while the stresses perpendicular to the substrate are negligible. By contrast near the base of the walls, the stresses along the direction of deposition are small, while the stresses perpendicular to the substrate are compressive at the centre and tensile towards the ends. Consistent with previous observations, the stresses parallel to free surfaces are tensile, balanced by compressive stresses in the interior (an inverse quench stress profile). These profiles have been found to be weakly dependent on the laser pulse parameters, most notably an increase in tensile stress gradient with increasing duty cycle, but the maximum residual stresses are largely unaffected. Furthermore, microstructural analysis has shown that the effect of laser pulse parameters on grain morphology in multi-track thick walls is less marked than previously reported for single-track wall structures.

  7. Laser deposition of coatings for aeronautical and industrials turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Teleginski, V. [Instituto Federal de Sao Paulo (IFSP), SP (Brazil); Silva, S.A.; Riva, R.; Vasconcelos, G. [Instituto de Estudos Avancados (IEAv), Sao Jose dos Campos, SP (Brazil); Silva Pita, G.R. [Universidade Braz Cubas, Mogi das Cruzes, SP (Brazil); Yamin, L.S. [Escola Tecnica Everardo Passos (ETEP), Sao Jose dos Campos, DP (Brazil)

    2016-07-01

    Full text: Zirconium-based ceramic materials are widely employed as Thermal Barrier Coatings (TBC), due to its excellent wear and corrosion resistance at high temperatures. The application of TBC includes aeronautical and industrials turbine blades. The working conditions include oxidizing environments and temperatures above 1000°C. The zirconium-based ceramics are developed in such a way that the microstructural control is possible through the control of chemical composition, fabrication route and, thermal treatment. The present paper proposes a laser route to deposit the TBC coating, where the microstructural control is a function of power density and interaction time between the laser beam and the material. The main objective of this work is to study the influence of the CO2 laser beam (Synrad Evolution 125) parameters: power density and interaction time, on the deposition process of yttria-stabilized zirconia (YSZ) powders on NiCrAlY/AISI 316L substrates. The resulting coating surface and interface were characterized by scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. The results indicate that is possible to match laser parameters of scanning speed and intensity to produce homogenous coatings. The X-Ray analyses show that the obtained ceramic coating has reduced number of phases, with prevalence of tetragonal phase.(author)

  8. History and current status of commercial pulsed laser deposition equipment

    International Nuclear Information System (INIS)

    Greer, James A

    2014-01-01

    This paper will review the history of the scale-up of the pulsed laser deposition (PLD) process from small areas ∼1 cm 2 up to 10 m 2 starting in about 1987. It also documents the history of commercialization of PLD as various companies become involved in selling fully integrated laser deposition tools starting in 1989. The paper will highlight the current state of the art of commercial PLD equipment for R and D that is available on the market today from mainstream vendors as well as production-oriented applications directed at piezo-electric materials for microelectromechanical systems and high-temperature superconductors for coated-conductor applications. The paper clearly demonstrates that considerable improvements have been made to scaling this unique physical vapour deposition process to useful substrate sizes, and that commercial deposition equipment is readily available from a variety of vendors to address a wide variety of technologically important thin-film applications. (paper)

  9. Picosecond and subpicosecond pulsed laser deposition of Pb thin films

    Directory of Open Access Journals (Sweden)

    F. Gontad

    2013-09-01

    Full Text Available Pb thin films were deposited on Nb substrates by means of pulsed laser deposition (PLD with UV radiation (248 nm, in two different ablation regimes: picosecond (5 ps and subpicosecond (0.5 ps. Granular films with grain size on the micron scale have been obtained, with no evidence of large droplet formation. All films presented a polycrystalline character with preferential orientation along the (111 crystalline planes. A maximum quantum efficiency (QE of 7.3×10^{-5} (at 266 nm and 7 ns pulse duration was measured, after laser cleaning, demonstrating good photoemission performance for Pb thin films deposited by ultrashort PLD. Moreover, Pb thin film photocathodes have maintained their QE for days, providing excellent chemical stability and durability. These results suggest that Pb thin films deposited on Nb by ultrashort PLD are a noteworthy alternative for the fabrication of photocathodes for superconductive radio-frequency electron guns. Finally, a comparison with the characteristics of Pb films prepared by ns PLD is illustrated and discussed.

  10. UV pulsed laser deposition of magnetite thin films

    International Nuclear Information System (INIS)

    Parames, M.L.; Mariano, J.; Rogalski, M.S.; Popovici, N.; Conde, O.

    2005-01-01

    Magnetite thin films were grown by pulsed laser deposition in O 2 reactive atmosphere from Fe 3 O 4 targets. The ablated material was deposited onto Si(1 0 0) substrates at various temperatures up to 623 K. The temperature dependence of structure and stoichiometry was investigated by X-ray diffraction (XRD) and conversion electron Moessbauer spectroscopy (CEMS). The XRD results show that films grown between 483 and 623 K are obtained as pure phase magnetite with an estimated average crystallite size increasing from 14 to 35 nm, respectively. This is in agreement with the CEMS spectra analysis, indicating isomer shift and internal field values for both the T d and O h sites close to those reported for the bulk material and a random orientation of the magnetic moments. The influence of the deposition temperature on the estimated Fe (9-x)/3 O 4 stoichiometry is related to an increase in the vacancy concentration from 483 to 623 K

  11. Resonant infrared pulsed laser deposition of a polyimide precursor

    Energy Technology Data Exchange (ETDEWEB)

    Dygert, N L; Schriver, K E; Jr, R F Haglund [Department of Physics and Astronomy and W M Keck Foundation Free-Electron Laser Centre, Vanderbilt University, Nashville TN 37235 (United States)

    2007-04-15

    Poly(amic acid) (PAA), a precursor to polyimide, was successfully deposited on substrates without reaching curing temperature, by resonant infrared pulsed laser ablation. The PAA was prepared by dissolving pyromellitic dianhydride and 4, 4' oxidianiline in the polar solvent Nmethyl pyrrolidinone (NMP). The PAA was deposited in droplet-like morphologies when ablation occurred in air, and in string-like moieties in the case of ablation in vacuum. In the as-deposited condition, the PAA was easily removed by washing with NMP; however, once cured thermally for thirty minutes, the PAA hardened, indicating the expected thermosetting property. Plume shadowgraphy showed very clear contrasts in the ablation mechanism between ablation of the solvent alone and the ablation of the PAA, even at low concentrations. A Wavelength dependence in plume velocity was also observed.

  12. Aluminosilicate glass thin films elaborated by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Carlier, Thibault [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille (France); Saitzek, Sébastien [Univ. Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille, UMR 8181, Unité de Catalyse et de Chimie du Solide (UCCS), F-62300 Lens (France); Méar, François O., E-mail: francois.mear@univ-lille1.fr [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille (France); Blach, Jean-François; Ferri, Anthony [Univ. Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille, UMR 8181, Unité de Catalyse et de Chimie du Solide (UCCS), F-62300 Lens (France); Huvé, Marielle; Montagne, Lionel [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille (France)

    2017-03-01

    Highlights: • Successfully deposition of a glassy thin film by PLD. • A good homogeneity and stoichiometry of the coating. • Influence of the deposition temperature on the glassy thin-film structure. - Abstract: In the present work, we report the elaboration of aluminosilicate glass thin films by Pulsed Laser Deposition at various temperatures deposition. The amorphous nature of glass thin films was highlighted by Grazing Incidence X-Ray Diffraction and no nanocristallites were observed in the glassy matrix. Chemical analysis, obtained with X-ray Photoelectron Spectroscopy and Time of Flight Secondary Ion Mass Spectroscopy, showed a good transfer and homogeneous elementary distribution with of chemical species from the target to the film a. Structural studies performed by Infrared Spectroscopy showed that the substrate temperature plays an important role on the bonding configuration of the layers. A slight shift of Si-O modes to larger wavenumber was observed with the synthesis temperature, assigned to a more strained sub-oxide network. Finally, optical properties of thins film measured by Spectroscopic Ellipsometry are similar to those of the bulk aluminosilicate glass, which indicate a good deposition of aluminosilicate bulk glass.

  13. Novel doped hydroxyapatite thin films obtained by pulsed laser deposition

    International Nuclear Information System (INIS)

    Duta, L.; Oktar, F.N.; Stan, G.E.; Popescu-Pelin, G.; Serban, N.; Luculescu, C.; Mihailescu, I.N.

    2013-01-01

    Highlights: ► HA coatings synthesized by pulsed laser deposition. ► Comparative study of commercial vs. animal origin materials. ► HA coatings of animal origin were rougher and more adherent to substrates. ► Animal origin films can be considered as promising candidates for implant coatings. - Abstract: We report on the synthesis of novel ovine and bovine derived hydroxyapatite thin films on titanium substrates by pulsed laser deposition for a new generation of implants. The calcination treatment applied to produce the hydroxyapatite powders from ovine/bovine bones was intended to induce crystallization and to prohibit the transmission of diseases. The deposited films were characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and energy dispersive X-ray spectroscopy. Pull-off adherence and profilometry measurements were also carried out. X-ray diffraction ascertained the polycrystalline hydroxyapatite nature of the powders and films. Fourier transform infrared spectroscopy evidenced the vibrational bands characteristic to a hydroxyapatite material slightly carbonated. The micrographs of the films showed a uniform distribution of spheroidal particulates with a mean diameter of ∼2 μm. Pull-off measurements demonstrated excellent bonding strength values between the hydroxyapatite films and the titanium substrates. Because of their physical–chemical properties and low cost fabrication from renewable resources, we think that these new coating materials could be considered as a prospective competitor to synthetic hydroxyapatite used for implantology applications.

  14. The influences of target properties and deposition times on pulsed laser deposited hydroxyapatite films

    International Nuclear Information System (INIS)

    Bao Quanhe; Chen Chuanzhong; Wang Diangang; Liu Junming

    2008-01-01

    Hydroxyapatite films were produced by pulsed laser deposition from three kinds of hydroxyapatite targets and with different deposition times. A JXA-8800R electron probe microanalyzer (EPMA) with a Link ISIS300 energy spectrum analyzer was used to give the secondary electron image (SE) and determine the element composition of the films. The phases of thin film were analyzed by a D/max-γc X-ray diffractometer (XRD). The Fourier-transform infrared spectroscopy (FT-IR) was used to characterize the hydroxyl, phosphate and other functional groups. The results show that deposited films were amorphous which mainly composed of droplet-like particles and vibration of PO 4 3- groups. With the target sintering temperature deposition times increasing, the density of droplets is decreased. While with deposition times increasing, the density of droplets is increased. With the target sintering temperature and deposition time increasing, the ratio of Ca/P is increasing and higher than that of theoretical value of HA

  15. Laser ablation and deposition of wide bandgap semiconductors: plasma and nanostructure of deposits diagnosis

    Science.gov (United States)

    Sanz, M.; López-Arias, M.; Rebollar, E.; de Nalda, R.; Castillejo, M.

    2011-12-01

    Nanostructured CdS and ZnS films on Si (100) substrates were obtained by nanosecond pulsed laser deposition at the wavelengths of 266 and 532 nm. The effect of laser irradiation wavelength on the surface structure and crystallinity of deposits was characterized, together with the composition, expansion dynamics and thermodynamic parameters of the ablation plume. Deposits were analyzed by environmental scanning electron microscopy, atomic force microscopy and X-ray diffraction, while in situ monitoring of the plume was carried out with spectral, temporal and spatial resolution by optical emission spectroscopy. The deposits consist of 25-50 nm nanoparticle assembled films but ablation in the visible results in larger aggregates (150 nm) over imposed on the film surface. The aggregate free films grown at 266 nm on heated substrates are thicker than those grown at room temperature and in the former case they reveal a crystalline structure congruent with that of the initial target material. The observed trends are discussed in reference to the light absorption step, the plasma composition and the nucleation processes occurring on the substrate.

  16. Study of liquid deposition during laser printing of liquids

    Energy Technology Data Exchange (ETDEWEB)

    Duocastella, M.; Patrascioiu, A. [Universitat de Barcelona, Departament de Fisica Aplicada i Optica, Marti i Franques 1, E-08028 Barcelona (Spain); Dinca, V. [Universitat de Barcelona, Departament de Fisica Aplicada i Optica, Marti i Franques 1, E-08028 Barcelona (Spain); National Institute for Lasers, Plasma and Radiation Physics, Atomistilor No. 409, PO Box MG 16, 077125 Bucharest (Romania); Fernandez-Pradas, J.M.; Morenza, J.L. [Universitat de Barcelona, Departament de Fisica Aplicada i Optica, Marti i Franques 1, E-08028 Barcelona (Spain); Serra, P., E-mail: pserra@ub.edu [Universitat de Barcelona, Departament de Fisica Aplicada i Optica, Marti i Franques 1, E-08028 Barcelona (Spain)

    2011-04-01

    Laser-induced forward transfer (LIFT) is a direct-writing technique which can be used to successfully print various complex and sensitive materials with a high degree of spatial resolution. However, the optimization of its performances requires a deep understanding of the LIFT dynamics. Such understanding should allow correlating the phenomena underlying the liquid transfer process with the morphology of the obtained deposits. To this end, in this work it is presented a study related to two aspects: first, the correlation of the morphological characteristics of the transferred droplets with the variation of the film thickness combined with laser fluence; and second, a correlation of the dependences observed with the dynamics of the transfer process. The work is focused on the understanding of the observed dependences for which the information provided by time-resolved analysis on liquid transfer dynamics has proved to be crucial.

  17. Study of liquid deposition during laser printing of liquids

    International Nuclear Information System (INIS)

    Duocastella, M.; Patrascioiu, A.; Dinca, V.; Fernandez-Pradas, J.M.; Morenza, J.L.; Serra, P.

    2011-01-01

    Laser-induced forward transfer (LIFT) is a direct-writing technique which can be used to successfully print various complex and sensitive materials with a high degree of spatial resolution. However, the optimization of its performances requires a deep understanding of the LIFT dynamics. Such understanding should allow correlating the phenomena underlying the liquid transfer process with the morphology of the obtained deposits. To this end, in this work it is presented a study related to two aspects: first, the correlation of the morphological characteristics of the transferred droplets with the variation of the film thickness combined with laser fluence; and second, a correlation of the dependences observed with the dynamics of the transfer process. The work is focused on the understanding of the observed dependences for which the information provided by time-resolved analysis on liquid transfer dynamics has proved to be crucial.

  18. Pulsed laser deposition of ITO thin films and their characteristics

    International Nuclear Information System (INIS)

    Zuev, D. A.; Lotin, A. A.; Novodvorsky, O. A.; Lebedev, F. V.; Khramova, O. D.; Petuhov, I. A.; Putilin, Ph. N.; Shatohin, A. N.; Rumyanzeva, M. N.; Gaskov, A. M.

    2012-01-01

    The indium tin oxide (ITO) thin films are grown on quartz glass substrates by the pulsed laser deposition method. The structural, electrical, and optical properties of ITO films are studied as a function of the substrate temperature, the oxygen pressure in the vacuum chamber, and the Sn concentration in the target. The transmittance of grown ITO films in the visible spectral region exceeds 85%. The minimum value of resistivity 1.79 × 10 −4 Ω cm has been achieved in the ITO films with content of Sn 5 at %.

  19. Functionally Graded Materials by Laser Metal Deposition (PREPRINT)

    Science.gov (United States)

    2010-03-01

    composition of Fe-82 wt% V (powder-1) and Inconel - 625 (powder-2) powders are listed in Table 1. The substrate materials used for the experiment were cold...like laser power, travel speed and powder feed rate is yet to be determined to obtain a successful FGM. Inconel - 625 deposits showed macro-cracks...Composition (wt%) Powder-1: Fe-82 wt% V V (82), Al (0.68), Si (0.9), C (0.07), S (0.01), P (0.02), Fe (18) Powder-2: Inconel - 625 Ni (58), Cr (20-23

  20. WOx cluster formation in radio frequency assisted pulsed laser deposition

    International Nuclear Information System (INIS)

    Filipescu, M.; Ossi, P.M.; Dinescu, M.

    2007-01-01

    The influence of oxygen gas pressure and radio-frequency power on the characteristics of the WO x films produced by laser ablation of a W target at room temperature in oxygen reactive atmosphere were investigated. Changing buffer gas pressure in the hundreds of Pa range affects the bond coordination, roughness and morphology of the deposited films, as investigated by micro-Raman spectroscopy, atomic force microscopy and scanning electron microscopy. The combination of radio-frequency discharge and buffer gas pressure on film nanostructure, as reflected by bond coordination, surface morphology and roughness is discussed

  1. Thin solid films deposited by pulsed laser ablating spray

    International Nuclear Information System (INIS)

    Song Guangle

    2002-01-01

    The fabricating technique of thin solid films deposited by pulsed laser ablating spray is a new technique. The background from which it came into being and the process of its evolution were briefly described. According to relative documents, basic principle of the technique was dwelt on. Based on the latest documents, the status quo, including the studying abroad and home, was discussed in detail. The advantages, shortcomings, prospect of its utility, the significance of studying as well as critic problems were summarized. Some proposal was suggested

  2. Defects in zinc oxide grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Francis C.C., E-mail: ccling@hku.hk [Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Wang, Zilan; Ping Ho, Lok; Younas, M. [Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Anwand, W.; Wagner, A. [Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden (Germany); Su, S.C. [Institute of Optoelectronic Material and Technology, South China Normal University, Guangzhou 510631 (China); Shan, C.X. [State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China)

    2016-01-01

    ZnO films are grown on c-plane sapphire using the pulsed laser deposition method. Systematic studies on the effects of annealing are performed to understand the thermal evolutions of the defects in the films. Particular attention is paid to the discussions of the ZnO/sapphire interface thermal stability, the Zn-vacancy related defects having different microstructures, the origins of the green luminescence (∼2.4–2.5 eV) and the near band edge (NBE) emission at 3.23 eV.

  3. Roughness evolution in Ga doped ZnO films deposited by pulsed laser deposition

    International Nuclear Information System (INIS)

    Liu Yunyan; Cheng Chuanfu; Yang Shanying; Song Hongsheng; Wei Gongxiang; Xue Chengshan; Wang Yongzai

    2011-01-01

    We analyze the morphology evolution of the Ga doped ZnO(GZO) films deposited on quartz substrates by a laser deposition system. The surface morphologies of the film samples grown with different times are measured by the atomic force microscope, and they are analyzed quantitatively by using the image data. In the initial stage of the growth time shorter than 8 min, our analysis shows that the GZO surface morphologies are influenced by such factors as the random fluctuations, the smoothening effects in the deposition, the lateral strain and the substrate. The interface width uw(t) and the lateral correlation length ξ(t) at first decrease with deposition time t. For the growth time larger than 8 min, w(t) and ξ(t) increase with time and it indicates the roughening of the surface and the surface morphology exhibits the fractal characteristics. By fitting data of the roughness w(t) versus deposition time t larger than 4 min to the power-law function, we obtain the growth exponent β is 0.3; and by the height-height correlation functions of the samples to that of the self-affine fractal model, we obtain the value of roughness exponent α about 0.84 for all samples with different growth time t.

  4. In-situ CdS/CdTe Heterojuntions Deposited by Pulsed Laser Deposition

    KAUST Repository

    Avila-Avendano, Jesus

    2016-04-09

    In this paper pulsed laser deposition (PLD) methods are used to study p-n CdTe/CdS heterojunctions fabricated in-situ. In-situ film deposition allows higher quality p-n interfaces by minimizing spurious contamination from the atmosphere. Morphologic and structural analyses were carried for CdTe films deposited on various substrates and different deposition conditions. The electrical characteristics and performance of the resulting p-n heterojunctions were studied as function of substrate and post-deposition anneal temperature. In-situ growth results on diodes with a rectification factor of ~ 105, an ideality factor < 2, and a reverse saturation current ~ 10-8 A. The carrier concentration in the CdTe film was in the range of ~ 1015 cm-3, as measured by C-V methods. The possible impact of sulfur diffusion from the CdS into the CdTe film is also investigated using High Resolution Rutherford Back-Scattering.

  5. In-situ CdS/CdTe Heterojuntions Deposited by Pulsed Laser Deposition

    KAUST Repository

    Avila-Avendano, Jesus; Mejia, Israel; Alshareef, Husam N.; Guo, Zaibing; Young, Chadwin; Quevedo-Lopez, Manuel

    2016-01-01

    In this paper pulsed laser deposition (PLD) methods are used to study p-n CdTe/CdS heterojunctions fabricated in-situ. In-situ film deposition allows higher quality p-n interfaces by minimizing spurious contamination from the atmosphere. Morphologic and structural analyses were carried for CdTe films deposited on various substrates and different deposition conditions. The electrical characteristics and performance of the resulting p-n heterojunctions were studied as function of substrate and post-deposition anneal temperature. In-situ growth results on diodes with a rectification factor of ~ 105, an ideality factor < 2, and a reverse saturation current ~ 10-8 A. The carrier concentration in the CdTe film was in the range of ~ 1015 cm-3, as measured by C-V methods. The possible impact of sulfur diffusion from the CdS into the CdTe film is also investigated using High Resolution Rutherford Back-Scattering.

  6. Excimer UV curing in printing

    International Nuclear Information System (INIS)

    Mehnert, R.

    1999-01-01

    It is the aim of this study to investigate the potential of 308 run excimer UV curing in web and sheet fed offset printing and to discuss its present status. Using real-time FTIR-ATR and stationary or pulsed monochromatic (313 nm) irradiation chemical and physical factors affecting the curing speed of printing inks such as nature and concentration of photo-initiators, reactivity of the ink binding system, ink thickness and pigmentation, irradiance in the curing plane, oxygen concentration and nitrogen inerting, multiple pulse exposure, the photochemical dark reaction and temperature dependence were studied. The results were used to select optimum conditions for excimer UV curing in respect to ink reactivity, nitrogen inerting and UV exposure and to build an excimer UV curing unit consisting of two 50 W/cm 308 run excimer lamps, power supply, cooling and inerting unit. The excimer UV curing devices were tested under realistic conditions on a web offset press zirkon supra forte and a sheet fed press Heidelberg GTO 52. Maximum curing speeds of 300 m/min in web offset and 8000 sheets per hour in sheet fed offset were obtained

  7. Growth of centimeter-scale atomically thin MoS{sub 2} films by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Siegel, Gene; Venkata Subbaiah, Y. P.; Prestgard, Megan C.; Tiwari, Ashutosh, E-mail: tiwari@eng.utah.edu [Nanostructured Materials Research Laboratory, Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112 (United States)

    2015-05-01

    We are reporting the growth of single layer and few-layer MoS{sub 2} films on single crystal sapphire substrates using a pulsed-laser deposition technique. A pulsed KrF excimer laser (wavelength: 248 nm; pulse width: 25 ns) was used to ablate a polycrystalline MoS{sub 2} target. The material thus ablated was deposited on a single crystal sapphire (0001) substrate kept at 700 °C in an ambient vacuum of 10{sup −6} Torr. Detailed characterization of the films was performed using atomic force microscopy (AFM), Raman spectroscopy, UV-Vis spectroscopy, and photoluminescence (PL) measurements. The ablation of the MoS{sub 2} target by 50 laser pulses (energy density: 1.5 J/cm{sup 2}) was found to result in the formation of a monolayer of MoS{sub 2} as shown by AFM results. In the Raman spectrum, A{sub 1g} and E{sup 1}{sub 2g} peaks were observed at 404.6 cm{sup −1} and 384.5 cm{sup −1} with a spacing of 20.1 cm{sup −1}, confirming the monolayer thickness of the film. The UV-Vis absorption spectrum exhibited two exciton absorption bands at 672 nm (1.85 eV) and 615 nm (2.02 eV), with an energy split of 0.17 eV, which is in excellent agreement with the theoretically predicted value of 0.15 eV. The monolayer MoS{sub 2} exhibited a PL peak at 1.85 eV confirming the direct nature of the band-gap. By varying the number of laser pulses, bi-layer, tri-layer, and few-layer MoS{sub 2} films were prepared. It was found that as the number of monolayers (n) in the MoS{sub 2} films increases, the spacing between the A{sub 1g} and E{sup 1}{sub 2g} Raman peaks (Δf) increases following an empirical relation, Δf=26.45−(15.42)/(1+1.44 n{sup 0.9}) cm{sup −1}.

  8. Depositing laser-generated nanoparticles on powders for additive manufacturing of oxide dispersed strengthened alloy parts via laser metal deposition

    Science.gov (United States)

    Streubel, René; Wilms, Markus B.; Doñate-Buendía, Carlos; Weisheit, Andreas; Barcikowski, Stephan; Henrich Schleifenbaum, Johannes; Gökce, Bilal

    2018-04-01

    We present a novel route for the adsorption of pulsed laser-dispersed nanoparticles onto metal powders in aqueous solution without using any binders or surfactants. By electrostatic interaction, we deposit Y2O3 nanoparticles onto iron-chromium based powders and obtain a high dispersion of nano-sized particles on the metallic powders. Within the additively manufactured component, we show that the particle spacing of the oxide inclusion can be adjusted by the initial mass fraction of the adsorbed Y2O3 particles on the micropowder. Thus, our procedure constitutes a robust route for additive manufacturing of oxide dispersion-strengthened alloys via oxide nanoparticles supported on steel micropowders.

  9. Films of brookite TiO2 nanorods/nanoparticles deposited by matrix-assisted pulsed laser evaporation as NO2 gas-sensing layers

    Science.gov (United States)

    Caricato, A. P.; Buonsanti, R.; Catalano, M.; Cesaria, M.; Cozzoli, P. D.; Luches, A.; Manera, M. G.; Martino, M.; Taurino, A.; Rella, R.

    2011-09-01

    Titanium dioxide (TiO2) nanorods in the brookite phase, with average dimensions of 3-4 nm × 20-50 nm, were synthesized by a wet-chemical aminolysis route and used as precursors for thin films that were deposited by the matrix-assisted pulsed laser evaporation (MAPLE) technique. A nanorod solution in toluene (0.016 wt% TiO2) was frozen at the liquid-nitrogen temperature and irradiated with a KrF excimer laser at a fluence of 350 mJ/cm2 and repetition rate of 10 Hz. Single-crystal Si wafers, silica slides, carbon-coated Cu grids and alumina interdigitated slabs were used as substrates to allow performing different characterizations. Films fabricated with 6000 laser pulses had an average thickness of ˜150 nm, and a complete coverage of the selected substrate as achieved. High-resolution scanning and transmission electron microscopy investigations evidenced the formation of quite rough films incorporating individually distinguishable TiO2 nanorods and crystalline spherical nanoparticles with an average diameter of ˜13 nm. Spectrophotometric analysis showed high transparency through the UV-Vis spectral range. Promising resistive sensing responses to 1 ppm of NO2 mixed in dry air were obtained.

  10. Films of brookite TiO{sub 2} nanorods/nanoparticles deposited by matrix-assisted pulsed laser evaporation as NO{sub 2} gas-sensing layers

    Energy Technology Data Exchange (ETDEWEB)

    Caricato, A.P.; Cesaria, M.; Luches, A.; Martino, M. [University of Salento, Department of Physics, Lecce (Italy); Buonsanti, R. [Istituto di Nanoscienze del CNR, National Nanotechnology Laboratory (NNL), Lecce (Italy); Catalano, M.; Manera, M.G.; Taurino, A.; Rella, R. [IMM-CNR, Institute for Microelectronics and Microsystems, Lecce (Italy); Cozzoli, P.D. [Istituto di Nanoscienze del CNR, National Nanotechnology Laboratory (NNL), Lecce (Italy); University of Salento, Department of Innovation Engineering, Lecce (Italy)

    2011-09-15

    Titanium dioxide (TiO{sub 2}) nanorods in the brookite phase, with average dimensions of 3-4 nm x 20-50 nm, were synthesized by a wet-chemical aminolysis route and used as precursors for thin films that were deposited by the matrix-assisted pulsed laser evaporation (MAPLE) technique. A nanorod solution in toluene (0.016 wt% TiO{sub 2}) was frozen at the liquid-nitrogen temperature and irradiated with a KrF excimer laser at a fluence of 350 mJ/cm{sup 2} and repetition rate of 10 Hz. Single-crystal Si wafers, silica slides, carbon-coated Cu grids and alumina interdigitated slabs were used as substrates to allow performing different characterizations. Films fabricated with 6000 laser pulses had an average thickness of {proportional_to}150 nm, and a complete coverage of the selected substrate as achieved. High-resolution scanning and transmission electron microscopy investigations evidenced the formation of quite rough films incorporating individually distinguishable TiO{sub 2} nanorods and crystalline spherical nanoparticles with an average diameter of {proportional_to}13 nm. Spectrophotometric analysis showed high transparency through the UV-Vis spectral range. Promising resistive sensing responses to 1 ppm of NO{sub 2} mixed in dry air were obtained. (orig.)

  11. Surface ablation with iris recognition and dynamic rotational eye tracking-based tissue saving treatment with the Technolas 217z excimer laser.

    Science.gov (United States)

    Prakash, Gaurav; Agarwal, Amar; Kumar, Dhivya Ashok; Jacob, Soosan; Agarwal, Athiya; Maity, Amrita

    2011-03-01

    To evaluate the visual and refractive outcomes and expected benefits of Tissue Saving Treatment algorithm-guided surface ablation with iris recognition and dynamic rotational eye tracking. This prospective, interventional case series comprised 122 eyes (70 patients). Pre- and postoperative assessment included uncorrected distance visual acuity (UDVA), corrected distance visual acuity (CDVA), refraction, and higher order aberrations. All patients underwent Tissue Saving Treatment algorithm-guided surface ablation with iris recognition and dynamic rotational eye tracking using the Technolas 217z 100-Hz excimer platform (Technolas Perfect Vision GmbH). Follow-up was performed up to 6 months postoperatively. Theoretical benefit analysis was performed to evaluate the algorithm's outcomes compared to others. Preoperative spherocylindrical power was sphere -3.62 ± 1.60 diopters (D) (range: 0 to -6.75 D), cylinder -1.15 ± 1.00 D (range: 0 to -3.50 D), and spherical equivalent -4.19 ± 1.60 D (range: -7.75 to -2.00 D). At 6 months, 91% (111/122) of eyes were within ± 0.50 D of attempted correction. Postoperative UDVA was comparable to preoperative CDVA at 1 month (P=.47) and progressively improved at 6 months (P=.004). Two eyes lost one line of CDVA at 6 months. Theoretical benefit analysis revealed that of 101 eyes with astigmatism, 29 would have had cyclotorsion-induced astigmatism of ≥ 10% if iris recognition and dynamic rotational eye tracking were not used. Furthermore, the mean percentage decrease in maximum depth of ablation by using the Tissue Saving Treatment was 11.8 ± 2.9% over Aspheric, 17.8 ± 6.2% over Personalized, and 18.2 ± 2.8% over Planoscan algorithms. Tissue saving surface ablation with iris recognition and dynamic rotational eye tracking was safe and effective in this series of eyes. Copyright 2011, SLACK Incorporated.

  12. Comparison of lanthanum substituted bismuth titanate (BLT) thin films deposited by sputtering and pulsed laser deposition

    International Nuclear Information System (INIS)

    Besland, M.P.; Djani-ait Aissa, H.; Barroy, P.R.J.; Lafane, S.; Tessier, P.Y.; Angleraud, B.; Richard-Plouet, M.; Brohan, L.; Djouadi, M.A.

    2006-01-01

    Bi 4-x La x Ti 3 O 12 (BLT x ) (x = 0 to 1) thin films were grown on silicon (100) and platinized substrates Pt/TiO 2 /SiO 2 /Si using RF diode sputtering, magnetron sputtering and pulsed laser deposition (PLD). Stoichiometric home-synthesized targets were used. Reactive sputtering was investigated in argon/oxygen gas mixture, with a pressure ranging from 0.33 to 10 Pa without heating the substrate. PLD was investigated in pure oxygen, at a chamber pressure of 20 Pa for a substrate temperature of 400-440 deg. C. Comparative structural, chemical, optical and morphological characterizations of BLT thin films have been performed by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), X-Ray Photoelectron Spectroscopy (XPS), Spectro-ellipsometric measurements (SE) and Atomic Force Microscopy (AFM). Both sputtering techniques allow to obtain uniform films with thickness ranging from 200 to 1000 nm and chemical composition varying from (Bi,La) 2 Ti 3 O 12 to (Bi,La) 4.5 Ti 3 O 12 , depending on deposition pressure and RF power. In addition, BLT films deposited by magnetron sputtering, at a pressure deposition ranging from 1.1 to 5 Pa, were well-crystallized after a post-deposition annealing at 650 deg. C in oxygen. They exhibit a refractive index and optical band gap of 2.7 and 3.15 eV, respectively. Regarding PLD, single phase and well-crystallized, 100-200 nm thick BLT films with a stoichiometric (Bi,La) 4 Ti 3 O 12 chemical composition were obtained, exhibiting in addition a preferential orientation along (200). It is worth noting that BLT films deposited by magnetron sputtering are as well-crystallized than PLD ones

  13. Laser-induced ion emission during polymer deposition from a flash-frozen water ice matrix

    DEFF Research Database (Denmark)

    Rodrigo, K.; Toftmann, Bo; Schou, Jørgen

    2004-01-01

    Flash-frozen water solutions of 1% weight PEG (polyethylene glycol) at -50 degreesC were used as targets at a laser wavelength of 355 nm for polymer deposition with Matrix-Assisted Pulsed Laser Evaporation (MAPLE). For medium laser fluences the transfer of PEG material to the substrate was accomp......Flash-frozen water solutions of 1% weight PEG (polyethylene glycol) at -50 degreesC were used as targets at a laser wavelength of 355 nm for polymer deposition with Matrix-Assisted Pulsed Laser Evaporation (MAPLE). For medium laser fluences the transfer of PEG material to the substrate...

  14. Influence of laser irradiation on deposition characteristics of cold sprayed Stellite-6 coatings

    Science.gov (United States)

    Li, Bo; Jin, Yan; Yao, Jianhua; Li, Zhihong; Zhang, Qunli; Zhang, Xin

    2018-03-01

    Depositing hard materials such as Stellite-6 solely by cold spray (CS) is challengeable due to limited ability of plastic deformation. In this study, the deposition of Stellite-6 powder was achieved by supersonic laser deposition (SLD) which combines CS with synchronous laser irradiation. The surface morphology, deposition efficiency, track shape of Stellite-6 coatings produced over a range of laser irradiation temperatures were examined so as to reveal the effects of varying laser energy inputting on the deposition process of high strength material. The microstructure, phase composition and wear/corrosion resistant properties of the as-deposited Stellite-6 coatings were also investigated. The experimental results demonstrate that the surface flatness and deposition efficiency increase with laser irradiation temperature due to the softening effect induced by laser heating. The as-deposited Stellite-6 tracks show asymmetric shapes which are influenced by the relative configuration of powder stream and laser beam. The SLD coatings can preserve the original microstructure and phase of the feedstock material due to relatively low laser energy inputting, which result in the superior wear/corrosion resistant properties as compared to the counterpart prepared by laser cladding.

  15. Impact of laser power density on tribological properties of Pulsed Laser Deposited DLC films

    Science.gov (United States)

    Gayathri, S.; Kumar, N.; Krishnan, R.; AmirthaPandian, S.; Ravindran, T. R.; Dash, S.; Tyagi, A. K.; Sridharan, M.

    2013-12-01

    Fabrication of wear resistant and low friction carbon films on the engineered substrates is considered as a challenging task for expanding the applications of diamond-like carbon (DLC) films. In this paper, pulsed laser deposition (PLD) technique is used to deposit DLC films on two different types of technologically important class of substrates such as silicon and AISI 304 stainless steel. Laser power density is one of the important parameter used to tailor the fraction of sp2 bonded amorphous carbon (a-C) and tetrahedral amorphous carbon (ta-C) made by sp3 domain in the DLC film. The I(D)/I(G) ratio decreases with the increasing laser power density which is associated with decrease in fraction of a-C/ta-C ratio. The fraction of these chemical components is quantitatively analyzed by EELS which is well supported to the data obtained from the Raman spectroscopy. Tribological properties of the DLC are associated with chemical structure of the film. However, the super low value of friction coefficient 0.003 is obtained when the film is predominantly constituted by a-C and sp2 fraction which is embedded within the clusters of ta-C. Such a particular film with super low friction coefficient is measured while it was deposited on steel at low laser power density of 2 GW/cm2. The super low friction mechanism is explained by low sliding resistance of a-C/sp2 and ta-C clusters. Combination of excellent physical and mechanical properties of wear resistance and super low friction coefficient of DLC films is desirable for engineering applications. Moreover, the high friction coefficient of DLC films deposited at 9GW/cm2 is related to widening of the intergrain distance caused by transformation from sp2 to sp3 hybridized structure.

  16. Nanostructured high valence silver oxide produced by pulsed laser deposition

    International Nuclear Information System (INIS)

    Dellasega, D.; Facibeni, A.; Di Fonzo, F.; Russo, V.; Conti, C.; Ducati, C.; Casari, C.S.; Li Bassi, A.; Bottani, C.E.

    2009-01-01

    Among silver oxides, Ag 4 O 4 , i.e. high valence Ag(I)Ag(III) oxide, is interesting for applications in high energy batteries and for the development of antimicrobial coatings. We here show that ns UV pulsed laser deposition (PLD) in an oxygen containing atmosphere allows the synthesis of pure Ag 4 O 4 nanocrystalline thin films, permitting at the same time to control the morphology of the material at the sub-micrometer scale. Ag 4 O 4 films with a crystalline domain size of the order of tens of nm can be deposited provided the deposition pressure is above a threshold (roughly 4 Pa pure O 2 or 20 Pa synthetic air). The formation of this particular high valence silver oxide is explained in terms of the reactions occurring during the expansion of the ablated species in the reactive atmosphere. In particular, expansion of the PLD plasma plume is accompanied by formation of low stability Ag-O dimers and atomic oxygen, providing reactive species at the substrate where the film grows. Evidence of reactive collisions in the expanding ablation plume is obtained by analysis of the plume visible shape in inert and reactive atmospheres. In addition, we show how the dimensionless deposition parameter L, relating the target-to-substrate distance to the ablation plume maximum expansion length, can be used to classify different growth regimes. It is thus possible to vary the stoichiometry and the morphology of the films, from compact and columnar to foam-like, by controlling both the gas pressure and the target-to-substrate distance

  17. Properties of pulsed laser deposited NiO/MWCNT thin films

    CSIR Research Space (South Africa)

    Yalisi, B

    2011-05-01

    Full Text Available Pulsed laser deposition (PLD) is a thin-film deposition technique, which uses short and intensive laser pulses to evaporate target material. The technique has been used in this work to produce selective solar absorber (SSA) thin film composites...

  18. Effects of an external magnetic field in pulsed laser deposition

    Science.gov (United States)

    García, T.; de Posada, E.; Villagrán, M.; Ll, J. L. Sánchez; Bartolo-Pérez, P.; Peña, J. L.

    2008-12-01

    Thin films were grown by pulsed laser deposition, PLD, on Si (1 0 0) substrates by the ablation of a sintered ceramic SrFe 12O 19 target with and without the presence of a nonhomogeneous magnetic field of μ0H = 0.4 T perpendicular to substrate plane and parallel to the plasma expansion axis. The field was produced by a rectangular-shaped Nd-Fe-B permanent magnet and the substrate was just placed on the magnet surface (Aurora method). An appreciable increment of optical emission due to the presence of the magnetic field was observed, but no film composition change or thickness increment was obtained. It suggests that the increment of the optical emission is due mainly to the electron confinement rather than confinement of ionic species.

  19. Effects of an external magnetic field in pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, T. [Universidad Autonoma de la Ciudad de Mexico (UACM), Prolongacion San Isidro 151, Col. San Lorenzo Tezonco, C.P. 09790, Mexico DF (Mexico)], E-mail: tupacgarcia@yahoo.com; Posada, E. de [CINVESTAV-IPN Unidad Merida, Applied Physics Department, A.P. 73, Cordemex, C.P. 97130 Merida, Yuc. (Mexico); Villagran, M. [CCADET, Universidad Nacional Autonoma de Mexico (UNAM), A.P. 70-186, C.P. 04510, Mexico DF (Mexico); Ll, J.L. Sanchez [Laboratorio de Magnetismo, Facultad de Fisica-IMRE, Universidad de La Habana, La Habana 10400 (Cuba); Bartolo-Perez, P.; Pena, J.L. [CINVESTAV-IPN Unidad Merida, Applied Physics Department, A.P. 73, Cordemex, C.P. 97130 Merida, Yuc. (Mexico)

    2008-12-30

    Thin films were grown by pulsed laser deposition, PLD, on Si (1 0 0) substrates by the ablation of a sintered ceramic SrFe{sub 12}O{sub 19} target with and without the presence of a nonhomogeneous magnetic field of {mu}{sub 0}H = 0.4 T perpendicular to substrate plane and parallel to the plasma expansion axis. The field was produced by a rectangular-shaped Nd-Fe-B permanent magnet and the substrate was just placed on the magnet surface (Aurora method). An appreciable increment of optical emission due to the presence of the magnetic field was observed, but no film composition change or thickness increment was obtained. It suggests that the increment of the optical emission is due mainly to the electron confinement rather than confinement of ionic species.

  20. Morphology and structural studies of WO_3 films deposited on SrTiO_3 by pulsed laser deposition

    International Nuclear Information System (INIS)

    Kalhori, Hossein; Porter, Stephen B.; Esmaeily, Amir Sajjad; Coey, Michael; Ranjbar, Mehdi; Salamati, Hadi

    2016-01-01

    Highlights: • Highly oriented WO_3 stoichiometric films were determined using pulsed laser deposition method. • Effective parameters on thin films including temperature, oxygen partial pressure and laser energy fluency was studied. • A phase transition was observed in WO_3 films at 700 °C from monoclinic to tetragonal. - Abstract: WO_3 films have been grown by pulsed laser deposition on SrTiO_3 (001) substrates. The effects of substrate temperature, oxygen partial pressure and energy fluence of the laser beam on the physical properties of the films were studied. Reflection high-energy electron diffraction (RHEED) patterns during and after growth were used to determine the surface structure and morphology. The chemical composition and crystalline phases were obtained by XPS and XRD respectively. AFM results showed that the roughness and skewness of the films depend on the substrate temperature during deposition. Optimal conditions were determined for the growth of the highly oriented films.

  1. Excimer PRK testing in the clinic

    Science.gov (United States)

    Forrest, Gary T.

    1994-06-01

    Testing of the excimer lasers used in PRK requires special considerations in terms of ease of use, day-to-day reliability, and high resolution to see details of beam interference effects. SensorPhysics employs a patented photochromic material on a polyester substrate to record permanent, instant records of the laser and laser system output. Since each SensorCard is used only once concerns about detection device deterioration are not an issue. The SensorCards have a demonstrated resolving power on the order of 0.1 micrometers . A small, portable reading device is used to convert the SensorCard optical density to a mJ/cm2 value. Special software also measures beam uniformity to +/- 1% to provide both qualitative and quantitative analysis. Results of use in clinic environments will be presented. In particular detection of exposure `islands' will be demonstrated. The techniques employed are similar to those we developed for UV laser micromachining and lithography four years ago.

  2. Performance characterization of Ni60-WC coating on steel processed with supersonic laser deposition

    Directory of Open Access Journals (Sweden)

    Fang Luo

    2015-03-01

    Full Text Available Ni60-WC particles are used to improve the wear resistance of hard-facing steel due to their high hardness. An emerging technology that combines laser with cold spraying to deposit the hard-facing coatings is known as supersonic laser deposition. In this study, Ni60-WC is deposited on low-carbon steel using SLD. The microstructure and performance of the coatings are investigated through SEM, optical microscopy, EDS, XRD, microhardness and pin-on-disc wear tests. The experimental results of the coating processed with the optimal parameters are compared to those of the coating deposited using laser cladding.

  3. The properties of Ge quantum rings deposited by pulsed laser deposition.

    Science.gov (United States)

    Ma, Xiying

    2010-07-01

    SiGe ring-shape nanostructures have attracted much research interest because of the interesting morphology, mechanical, and electromagnetic properties. In this paper, we present the planar Ge nanorings with well-defined sharp edges self-assembled on Si (100) matrix prepared with pulsed laser deposition (PLD) in the present of Ar gas. The transforming mechanism of the droplets is discussed, which a dynamic deformation model has been developed to simulate the self-transforming process of the droplets. The rings were found to be formed in two steps: from droplets to cones and from cones to rings via an elastic self-deforming process, which were likely to be driven by the lateral strain of Ge/Si layers and the surface tension.

  4. Seven year follow-up after advanced surface ablation with excimer laser for treatment of myopia: Long-term outcomes of cooling PRK and LASEK

    DEFF Research Database (Denmark)

    Hansen, Rasmus Søgaard; Lyhne, Niels; Grauslund, Jakob

    Purpose: To evaluate and compare refractive predictability, uncorrected and corrected distance visual acuity (UDVA and CDVA), corneal haze, corneal densitometry and patient satisfaction up to 7 years after Photorefractive Keratectomy with cooling (cPRK) and Laser-Assisted Sub-epithelial Keratectomy...... (LASEK) for all degrees of myopia, but in particular high myopia. Setting: Department of Ophthalmology, Odense University Hospital, Odense, Denmark. Methods: Retrospective follow-up study of eyes treated with cPRK or LASEK for all degrees of myopia from 2007 to 2009 at the Department of Ophthalmology...... laser with eye-tracker (Carl Zeiss Meditec AG, Jena, Germany) was used for photoablation in both procedures. Optical zone size ranged from 5.50 to 6.00 mm in both procedures, and maximum attempted spherical correction was -8.50 D. cPRK was performed as a standard PRK procedure, but with immediately...

  5. Seven year follow-up after advanced surface ablation with excimer laser for treatment of myopia: Long-term outcomes of cooling PRK and LASEK.

    OpenAIRE

    Hansen, Rasmus Søgaard; Lyhne, Niels; Grauslund, Jakob; Vestergaard, Anders Højslet

    2014-01-01

    Purpose: To evaluate and compare refractive predictability, uncorrected and corrected distance visual acuity (UDVA and CDVA), corneal haze, corneal densitometry and patient satisfaction up to 7 years after Photorefractive Keratectomy with cooling (cPRK) and Laser-Assisted Sub-epithelial Keratectomy (LASEK) for all degrees of myopia, but in particular high myopia. Setting: Department of Ophthalmology, Odense University Hospital, Odense, Denmark. Methods: Retrospective follow-up study of eyes t...

  6. Numerical studies of temperature profile and hydrodynamic phenomena during excimer laser assisted heteroepitaxial growth of patterned silicon and germanium bi-layers

    Energy Technology Data Exchange (ETDEWEB)

    Conde, J.C., E-mail: jconde@uvigo.e [Dpto. Fisica Aplicada, E.T.S.I.I. University of Vigo, Campus Universitario, Rua Maxwell s/n, E-36310 Vigo (Spain); Chiussi, S. [Dpto. Fisica Aplicada, E.T.S.I.I. University of Vigo, Campus Universitario, Rua Maxwell s/n, E-36310 Vigo (Spain); Martin, E. [Dpto. de Mecanica, Maquinas Motores Termicos y Fluidos, E.T.S.I.I. University of Vigo, Campus Universitario, Rua Maxwell s/n, E-36310 Vigo (Spain); Gontad, F. [Dpto. Fisica Aplicada, E.T.S.I.I. University of Vigo, Campus Universitario, Rua Maxwell s/n, E-36310 Vigo (Spain); Fornarini, L. [Enea-Frascati, Via Enrico Fermi 45, I-00044 Frascati Roma (Italy); Leon, B. [Dpto. Fisica Aplicada, E.T.S.I.I. University of Vigo, Campus Universitario, Rua Maxwell s/n, E-36310 Vigo (Spain)

    2010-01-01

    In this manuscript, a 3-D axisymmetric model for the heteroepitaxial growth induced by irradiating thin patterned amorphous hydrogenated silicon (a-Si:H) and germanium (a-Ge:H) bi-layers on Si (100) with pulsed UV-laser radiation, is presented. For reducing optimization steps, an efficient simulation of the laser induced processes that include rapid heating and solidification phenomena in the range of several tenth of nanoseconds, must be performed, if alloy composition and quality has to be adjusted. In this study, the effects of various laser energy densities on different amorphous Si/Ge bi-layer structures has been predicted and adjusted to obtain the desired Ge concentration profiles for applications as sacrificial layers, i.e. a Ge containing film buried under a Si rich surface layer. The numerical model includes the temperature dependent variations of the thermophysical properties and takes the coupled effects of temperature and hydrodynamic phenomena for a Boussinesq fluid, to estimate the element interdiffusion during the process and predicting the concentration profiles.

  7. Deposition of superconducting (Cu, C)-Ba-O films by pulsed laser deposition at moderate temperature

    International Nuclear Information System (INIS)

    Yamamoto, Tetsuro; Kikunaga, Kazuya; Obara, Kozo; Terada, Norio; Kikuchi, Naoto; Tanaka, Yasumoto; Tokiwa, Kazuyasu; Watanabe, Tsuneo; Sundaresan, Athinarayanan; Shipra

    2007-01-01

    Superconducting (Cu, C)-Ba-O thin films have been epitaxially grown on (100) SrTiO 3 at a low growth temperature of 500-600 deg. C by pulsed laser deposition. The dependences of their crystallinity and transport properties on preparation conditions have been investigated in order to clarify the dominant parameters for carbon incorporation and the emergence of superconductivity. It has been revealed that the CO 3 content in the films increases with increasing both the parameters of partial pressure of CO 2 during film growth and those of growth rate and enhancement of superconducting properties. The present study has also revealed that the structural and superconducting properties of the (Cu, C)-Ba-O films are seriously deteriorated by the irradiation of energetic particles during deposition. Suppression of the radiation damage is another key for a high and uniform superconducting transition. By these optimizations, a superconducting onset temperature above 50 K and a zero-resistance temperature above 40 K have been realized

  8. Au nanostructure fabrication by pulsed laser deposition in open air: Influence of the deposition geometry

    Directory of Open Access Journals (Sweden)

    Rumen G. Nikov

    2017-11-01

    Full Text Available We present a fast and flexible method for the fabrication of Au nanocolumns. Au nanostructures were produced by pulsed laser deposition in air at atmospheric pressure. No impurities or Au compounds were detected in the resulting samples. The nanoparticles and nanoaggregates produced in the ablated plasma at atmospheric pressure led to the formation of chain-like nanostructures on the substrate. The dependence of the surface morphology of the samples on the deposition geometry used in the experimental set up was studied. Nanocolumns of different size and density were produced by varying the angle between the plasma plume and the substrate. The electrical, optical, and hydrophobic properties of the samples were studied and discussed in relation to their morphology. All of the nanostructures were conductive, with conductivity increasing with the accumulation of ablated material on the substrate. The modification of the electrical properties of the nanostructures was demonstrated by irradiation by infrared light. The Au nanostructures fabricated by the proposed technology are difficult to prepare by other methods, which makes the simple implementation and realization in ambient conditions presented in this work more ideal for industrial applications.

  9. X-ray absorption study of silicon carbide thin film deposited by pulsed laser deposition

    International Nuclear Information System (INIS)

    Monaco, G.; Suman, M.; Garoli, D.; Pelizzo, M.G.; Nicolosi, P.

    2011-01-01

    Silicon carbide (SiC) is an important material for several applications ranging from electronics to Extreme UltraViolet (EUV) space optics. Crystalline cubic SiC (3C-SiC) has a wide band gap (near 2.4 eV) and it is a promising material to be used in high frequency and high energetic electronic devices. We have deposited, by means of pulsed laser deposition (PLD), different SiC films on sapphire and silicon substrates both at mild (650 o C) and at room temperature. The resulted films have different structures such as: highly oriented polycrystalline, polycrystalline and amorphous which have been studied by means of X-ray absorption spectroscopy (XAS) near the Si L 2,3 edge and the C K edge using PES (photoemission spectroscopy) for the analysis of the valence bands structure and film composition. The samples obtained by PLD have shown different spectra among the grown films, some of them showing typical 3C-SiC absorption structure, but also the presence of some Si-Si and graphitic bonds.

  10. Au nanostructure fabrication by pulsed laser deposition in open air: Influence of the deposition geometry.

    Science.gov (United States)

    Nikov, Rumen G; Dikovska, Anna Og; Nedyalkov, Nikolay N; Avdeev, Georgi V; Atanasov, Petar A

    2017-01-01

    We present a fast and flexible method for the fabrication of Au nanocolumns. Au nanostructures were produced by pulsed laser deposition in air at atmospheric pressure. No impurities or Au compounds were detected in the resulting samples. The nanoparticles and nanoaggregates produced in the ablated plasma at atmospheric pressure led to the formation of chain-like nanostructures on the substrate. The dependence of the surface morphology of the samples on the deposition geometry used in the experimental set up was studied. Nanocolumns of different size and density were produced by varying the angle between the plasma plume and the substrate. The electrical, optical, and hydrophobic properties of the samples were studied and discussed in relation to their morphology. All of the nanostructures were conductive, with conductivity increasing with the accumulation of ablated material on the substrate. The modification of the electrical properties of the nanostructures was demonstrated by irradiation by infrared light. The Au nanostructures fabricated by the proposed technology are difficult to prepare by other methods, which makes the simple implementation and realization in ambient conditions presented in this work more ideal for industrial applications.

  11. Spatio-selective surface modification of glass assisted by laser-induced deposition of gold nanoparticles

    International Nuclear Information System (INIS)

    Takahashi, Hironobu; Niidome, Yasuro; Hisanabe, Hideyuki; Kuroiwa, Keita; Kimizuka, Nobuo; Yamada, Sunao

    2006-01-01

    Using pulsed laser irradiation (532 nm), dodecanethiol-capped gold nanoparticles (DT-Au) were deposited on the laser-irradiated region of a hydrophobic glass substrate modified with dimethyloctadecylchlorosilane (DMOS). After removal of deposited DT-Au, the laser-deposited region on the substrate was hydrophilic, as verified by static water contact angles. X-ray photoelectron spectroscopy suggested that the naked glass surface was not exposed at the hydrophilic region. Immersion of the substrate into gold nanorod (NR) solution selectively immobilized NRs on the hydrophilic surface via electrostatic interactions, indicating that the hydrophilic region was an anionic surface. From these results, it is expected that some immobilized DMOS groups on the laser-irradiated region of the substrate were oxidized during DT-Au deposition and fragmentation of the deposited DT-Au

  12. Laser chemical vapor deposition of millimeter scale three-dimensional shapes

    Science.gov (United States)

    Shaarawi, Mohammed Saad

    2001-07-01

    Laser chemical vapor deposition (LCVD) has been successfully developed as a technique to synthesize millimeter-scale components directly from the gas phase. Material deposition occurs when heat generated by the interaction of a laser beam with a substrate thermally decomposes the gas precursor. Selective illumination or scanning the laser beam over portions of a substrate forms the single thin layer of material that is the building block of this process. Sequential scanning of the laser in a pre-defined pattern on the substrate and subsequent deposit causes the layers to accumulate forming the three-dimensional shape. The primary challenge encountered in LCVD shape forming is the synthesis of uniform layers. Three deposition techniques are studied to address this problem. The most successful technique, Active Surface Deposition, is based on the premise that the most uniform deposits are created by measuring the deposition surface topology and actively varying the deposition rate in response to features at the deposition surface. Defects observed in the other techniques were significantly reduced or completely eliminated using Active Surface Deposition. The second technique, Constant Temperature Deposition, maintains deposit uniformity through the use of closed-loop modulation of the laser power to sustain a constant surface temperature during deposition. The technique was successful in depositing high quality graphite tubes >2 mm tall from an acetylene precursor and partially successful in depositing SiC + C composite tubes from tetramethylsilane (TMS). The final technique, Constant Power Deposition, is based on the premise that maintaining a uniform power output throughout deposition would result in the formation of uniform layers. Constant Power Deposition failed to form coherent shapes. Additionally, LCVD is studied using a combination of analytic and numerical models to gain insight into the deposition process. Thermodynamic modeling is used to predict the

  13. Wafer-scale laser lithography. I. Pyrolytic deposition of metal microstructures

    International Nuclear Information System (INIS)

    Herman, I.P.; Hyde, R.A.; McWilliams, B.M.; Weisberg, A.H.; Wood, L.L.

    1982-01-01

    Mechanisms for laser-driven pyrolytic deposition of micron-scale metal structures on crystalline silicon have been studied. Models have been developed to predict temporal and spatial propeties of laser-induced pyrolytic deposition processes. An argon ion laser-based apparatus has been used to deposit metal by pyrolytic decomposition of metal alkyl and carbonyl compounds, in order to evaluate the models. These results of these studies are discussed, along with their implications for the high-speed creation of micron-scale metal structures in ultra-large scale integrated circuit systems. 4 figures

  14. Electronic properties of p-GaAs deposited on n-Si with pulsed-laser deposition

    International Nuclear Information System (INIS)

    Ullrich, B; Erlacher, A; Smith, H E; Mitchel, W C; Brown, G J

    2008-01-01

    By means of nanosecond laser pulses at 355, 532, and 1064 nm, p(Zn)-type GaAs was ablated and deposited on n-type Si. The samples showed rectification and Hall measurements established that the deposited material was p-type, but the active-doping concentration was six orders of magnitude below the target value. Because secondary-ion mass spectroscopy results indicated stoichiometric material transfer, we concluded that most of the Zn atoms do not act as acceptors because of the amorphous film texture. The work further showed indications that pulsed-laser deposition at 355 nm causes enhanced Si diffusion into the deposited film, compared to the ablations done at 532 and 1064 nm

  15. Effects of excimer laser irradiation on the expression of Th17, Treg, TGF-beta1, and IL-6 in patients with psoriasis vulgaris

    Science.gov (United States)

    Xiong, Guo-Xin; Li, Xin-Zhong

    2017-11-01

    The effects of laser irradiation on the expression of T helper 17 (Th17) and regulatory T (Treg) cells and their related cytokines, transforming growth factor beta 1 (TGF-β1) and interleukin-6 (IL-6), respectively, in the peripheral blood of patients with psoriasis vulgaris were investigated. 38 patients with psoriasis vulgaris in the stable state were selected as the treatment group that was treated twice a week for eight weeks. Another 38 healthy persons were chosen as the control group. Before and after treatment, the percentages of Th17 cells and Treg cells in the patients’ peripheral blood were detected using flow cytometry, the content of TGF-β1 and IL-6 in the patients’ sera were detected using enzyme-linked immunosorbent assay, and the extent and severity of lesions were determined by weighing the psoriasis area and severity index (PASI). After laser treatment, the percentage of Th17 cells, the Th17/Treg cell ratio and the level of IL-6 in the peripheral blood of patients with psoriasis in the treatment group were significantly lower than those of the same patients before the treatment (P  psoriasis vulgaris was 84.21%, and the PASI score was significantly lower (P  psoriasis vulgaris.

  16. Laser wavelength dependent properties of YBa2Cu3O7-δ thin films deposited by laser ablation

    International Nuclear Information System (INIS)

    Koren, G.; Gupta, A.; Baseman, R.J.; Lutwyche, M.I.; Laibowitz, R.B.

    1989-01-01

    YBa 2 Cu 3 O 7-δ thin films were deposited onto (100) SrTiO 3 substrates using 1064, 532, 355, 248, and 193 nm laser ablation. Transport measurements show lower normal-state resistivities and higher critical currents in films deposited by the shorter wavelength lasers. The surface morphology of the films was rough with large particulates when the 1064 nm laser was used whereas much smoother surfaces with fewer and smaller particulates were obtained with the UV lasers. It is suggested that the better film quality obtained when the UV lasers are used is due to a small absorption depth of the UV photons in the ceramic target and to higher absorption by the ablated fragments. This leads to smaller ablated species and further fragmentation in the hotter plume and, therefore, to smoother and denser films

  17. Studies of the Influence of Beam Profile and Cooling Conditions on the Laser Deposition of a Directionally-Solidified Superalloy

    Directory of Open Access Journals (Sweden)

    Shuo Yang

    2018-02-01

    Full Text Available In the laser deposition of single crystal and directionally-solidified superalloys, it is desired to form laser deposits with high volume fractions of columnar grains by suppressing the columnar-to-equiaxed transition efficiently. In this paper, the influence of beam profile (circular and square shapes and cooling conditions (natural cooling and forced cooling on the geometric morphology and microstructure of deposits were experimentally studied in the laser deposition of a directionally-solidified superalloy, IC10, and the mechanisms of influence were revealed through a numerical simulation of the thermal processes during laser deposition. The results show that wider and thinner deposits were obtained with the square laser beam than those with the circular laser beam, regardless of whether natural or forced cooling conditions was used. The heights and contact angles of deposits were notably increased due to the reduced substrate temperatures by the application of forced cooling for both laser beam profiles. Under natural cooling conditions, columnar grains formed epitaxially at both the center and the edges of the deposits with the square laser beam, but only at the center of the deposits with the circular laser beam; under forced cooling conditions, columnar grains formed at both the center and the edges of deposits regardless of the laser beam profile. The high ratios of thermal gradient and solidification velocity in the height direction of the deposits were favorable to forming deposits with higher volume fractions of columnar grains.

  18. Surface electronic and structural properties of nanostructured titanium oxide grown by pulsed laser deposition

    NARCIS (Netherlands)

    Fusi, M.; Maccallini, E.; Caruso, T.; Casari, C. S.; Bassi, A. Li; Bottani, C. E.; Rudolf, P.; Prince, K. C.; Agostino, R. G.

    Titanium oxide nanostructured thin films synthesized by pulsed laser deposition (PLD) were here characterized with a multi-technique approach to investigate the relation between surface electronic, structural and morphological properties. Depending on the growth parameters, these films present

  19. Pulsed laser deposition of lysozyme: the dependence on shot numbers and the angular distribution

    DEFF Research Database (Denmark)

    Constantinescu, C.; Matei, A.; Schou, Jørgen

    2013-01-01

    The ejection of molecules from a pressed solid target of lysozyme induced by laser ablation in the UV-regime at a wavelength of 355 nm was investigated. The ablation studies were carried out in vacuum at a laser fluence of 2 J/cm2 for which a significant fraction of proteins remains intact....... This was verified by matrix-assisted laser desorption ionization (MALDI) spectrometry of thin films deposited on silicon substrates. The deposition rate of lysozyme was found to decrease with the number of shots and was correlated with increasing thermal damage of the lysozyme. This was monitored by measurements...... of the optical reflectivity of dry lysozyme. The angular distribution of the mass deposition can be fitted well by Anisimov’s hydrodynamic model. The total deposited yield over the entire hemisphere from direct laser ablation of lysozyme was estimated from this model and found to be three orders of magnitude...

  20. New results in pulsed laser deposition of poly-methyl-methacrylate thin films

    International Nuclear Information System (INIS)

    Cristescu, R.; Socol, G.; Mihailescu, I.N.; Popescu, M.; Sava, F.; Ion, E.; Morosanu, C.O.; Stamatin, I.

    2003-01-01

    Thin organic films based on poly-methyl-methacrylate (PMMA) polymer have been obtained by pulsed laser deposition (PLD) on silicon substrates. The films were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and Raman spectroscopy (RS). We observed that the film composition and structure depend on the laser fluence and on the temperature of the substrate during deposition

  1. Laser diagnostics of a diamond depositing chemical vapour deposition gas-phase environment

    Energy Technology Data Exchange (ETDEWEB)

    Smith, James Anthony

    2002-07-01

    Studies have been carried out to understand the gas-phase chemistry underpinning diamond deposition in hot filament and DC-arcjet chemical vapour deposition (CVD) systems. Resonance enhanced Multiphoton lonisation (REMPI) techniques were used to measure the relative H atom and CH{sub 3} radical number densities and local gas temperatures prevalent in a hot filament reactor, operating on Ch{sub 4}/H{sub 2} and C{sub 2}H{sub 2}/H{sub 2} gas mixtures. These results were compared to a 3D-computer simulation, and hence provided an insight into the nature of the gas-phase chemistry with particular reference to C{sub 2}{yields}C{sub 1} species conversion. Similar experimental and theoretical studies were also carried out to explain the chemistry involved in NH{sub 3}/CH{sub 4}/H{sub 2} and N{sub 2}/CH{sub 4}/H{sub 2} gas mixtures. It was demonstrated that the reactive nature of the filament surface was dependent on the addition of NH{sub 3}, influencing atomic hydrogen production, and thus the H/C/N gas-phase chemistry. Studies of the DC-arcjet diamond CVD reactor consisted of optical emission spectroscopic studies of the plume during deposition from an Ar/H{sub 2}/CH{sub 4}/N{sub 2} gas mixture. Spatially resolved species emission intensity maps were obtained for C{sub 2}(d{yields}a), CN(B{yields}X) and H{sub {beta}} from Abel-inverted datasets. The C{sub 2}(d{yields}a) and CN(B{yields}X) emission intensity maps both show local maxima near the substrate surface. SEM and Laser Raman analyses indicate that N{sub 2} additions lead to a reduction in film quality and growth rate. Photoluminescence and SIMS analyses of the grown films provide conclusive evidence of nitrogen incorporation (as chemically bonded CN). Absolute column densities of C{sub 2}(a) in a DC-arcjet reactor operating on an Ar/H{sub 2}/CH{sub 4} gas mixture, were measured using Cavity ring down spectroscopy. Simulations of the measured C{sub 2}(v=0) transition revealed a rotational temperature of {approx

  2. Laser diagnostics of a diamond depositing chemical vapour deposition gas-phase environment

    International Nuclear Information System (INIS)

    Smith, James Anthony

    2002-01-01

    Studies have been carried out to understand the gas-phase chemistry underpinning diamond deposition in hot filament and DC-arcjet chemical vapour deposition (CVD) systems. Resonance enhanced Multiphoton lonisation (REMPI) techniques were used to measure the relative H atom and CH 3 radical number densities and local gas temperatures prevalent in a hot filament reactor, operating on Ch 4 /H 2 and C 2 H 2 /H 2 gas mixtures. These results were compared to a 3D-computer simulation, and hence provided an insight into the nature of the gas-phase chemistry with particular reference to C 2 →C 1 species conversion. Similar experimental and theoretical studies were also carried out to explain the chemistry involved in NH 3 /CH 4 /H 2 and N 2 /CH 4 /H 2 gas mixtures. It was demonstrated that the reactive nature of the filament surface was dependent on the addition of NH 3 , influencing atomic hydrogen production, and thus the H/C/N gas-phase chemistry. Studies of the DC-arcjet diamond CVD reactor consisted of optical emission spectroscopic studies of the plume during deposition from an Ar/H 2 /CH 4 /N 2 gas mixture. Spatially resolved species emission intensity maps were obtained for C 2 (d→a), CN(B→X) and H β from Abel-inverted datasets. The C 2 (d→a) and CN(B→X) emission intensity maps both show local maxima near the substrate surface. SEM and Laser Raman analyses indicate that N 2 additions lead to a reduction in film quality and growth rate. Photoluminescence and SIMS analyses of the grown films provide conclusive evidence of nitrogen incorporation (as chemically bonded CN). Absolute column densities of C 2 (a) in a DC-arcjet reactor operating on an Ar/H 2 /CH 4 gas mixture, were measured using Cavity ring down spectroscopy. Simulations of the measured C 2 (v=0) transition revealed a rotational temperature of ∼3300 K. This gas temperature is similar to that deduced from optical emission spectroscopy studies of the C 2 (d→a) transition. (author)

  3. Stiffness management of sheet metal parts using laser metal deposition

    Science.gov (United States)

    Bambach, Markus; Sviridov, Alexander; Weisheit, Andreas

    2017-10-01

    Tailored blanks are established solutions for the production of load-adapted sheet metal components. In the course of the individualization of production, such semi-finished products are gaining importance. In addition to tailored welded blanks and tailored rolled blanks, patchwork blanks have been developed which allow a local increase in sheet thickness by welding, gluing or soldering patches onto sheet metal blanks. Patchwork blanks, however, have several limitations, on the one hand, the limited freedom of design in the production of patchwork blanks and, on the other hand, the fact that there is no optimum material bonding with the substrate. The increasing production of derivative and special vehicles on the basis of standard vehicles, prototype production and the functionalization of components require solutions with which semi-finished products and sheet metal components can be provided flexibly with local thickenings or functional elements with a firm metallurgical bond to the substrate. An alternative to tailored and patchwork blanks is, therefore, a free-form reinforcement applied by additive manufacturing via laser metal deposition (LMD). By combining metal forming and additive manufacturing, stiffness can be adapted to the loads based on standard components in a material-efficient manner and without the need to redesign the forming tools. This paper details a study of the potential of stiffness management by LMD using a demonstrator part. Sizing optimization is performed and part distortion is taken into account to find an optimal design for the cladding. A maximum stiffness increase of 167% is feasible with only 4.7% additional mass. Avoiding part distortion leads to a pareto-optimal design which achieves 95% more stiffness with 6% added mass.

  4. Numerical study on increasing mass flow ratio by energy deposition of high frequency pulsed laser

    International Nuclear Information System (INIS)

    Wang Diankai; Hong Yanji; Li Qian

    2013-01-01

    The mass flow ratio (MFR) of air breathing ramjet inlet would be decreased, when the Mach number is lower than the designed value. High frequency pulsed laser energy was deposited upstream of the cowl lip to reflect the stream so as to increase the MFR. When the Mach number of the flow was 5.0, and the static pressure and temperature of the flow were 2 551.6 Pa and 116.7 K, respectively, two-dimensional non-stationary compressible RANS equations were solved with upwind format to study the mechanisms of increasing MFR by high frequency pulsed laser energy deposition. The laser deposition frequency was 100 kHz and the average power was 500 W. The crossing point of the first forebody oblique shock and extension line of cowl lip was selected as the expected point. Then the deposition position was optimized by searching near the expected point. The results indicate that with the optimization of laser energy deposition position, the MFR would be increased from 63% to 97%. The potential value of increasing MFR by high frequency pulsed laser energy deposition was proved. The method for selection of the energy deposition position was also presented. (authors)

  5. Parameters nanodimensional zinc films deposited by the laser method in vacuum

    International Nuclear Information System (INIS)

    Goncharov, V.K.; Gusakov, G.A.; Puzyrev, M.V.

    2013-01-01

    The investigation of the thickness and structure of a zinc films surface produced by the laser-plasma deposition has been carried out. The dependence of a film thickness and surface structure from laser radiation intensity has been determined. Threshold intensity has been determined when an evaporation of a target material begins. (authors)

  6. High laser-fluence deposition of organic materials in water ice matrices by ''MAPLE''

    DEFF Research Database (Denmark)

    Christensen, Bo Toftmann; Rodrigo, K.; Schou, Jørgen

    2005-01-01

    Matrix assisted pulsed laser evaporation (MAPLE) is a deposition technique for organic material. Water ice was used as a matrix for the biotechnologically important guest material, polyethylene glycol (PEG), for concentrations from 0.5 to 4 wt.%. The target was irradiated with 6 ns laser pulses...

  7. Parameters of nanodimensional aluminium films deposited by the laser method in vacuum

    International Nuclear Information System (INIS)

    Gusakov, G.A.; Ismailov, D.R.; Puzyrev, M.V.

    2011-01-01

    The investigation of the thickness and structure of a aluminium films surface produced by the laser-plasma deposition has been carried out. The dependence of a film thickness from laser radiation intensity has been determined. Threshold intensity has been determined when an evaporation of a target material begins. (authors)

  8. Laser Deposition of Polymer Nanocomposite Thin Films and Hard Materials and Their Optical Characterization

    Science.gov (United States)

    2013-12-05

    visible light on instruments such as microscope tips and micro- surgical tools. Hard carbon known as diamond-like carbon films produced by pulsed laser ...visible (610 nm) LED source and a supplemental infra-red 980-nm laser diode (for the studies of the upconversion fluorescence). The basic package...5/2013 Final Performance Report 15 Sep 2012- 14 Sep 2013 LASER DEPOSITION OF POLYMER NANOCOMPOSITE THIN FILMS AND HARD MATERIALS AND THEIR OPTICAL

  9. SiC.sub.x./sub. layers prepared by hybrid laser deposition and PLD

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Miroslav; Kocourek, Tomáš; Zemek, Josef; Kadlec, J.

    2009-01-01

    Roč. 6, S1 (2009), s. 5366-5369 ISSN 1612-8850 Institutional research plan: CEZ:AV0Z10100521 Keywords : SiC * composites * hybrid deposition * puls laser deposition * magnetron Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.037, year: 2009

  10. Determination of the Young's modulus of pulsed laser deposited epitaxial PZT thin films

    NARCIS (Netherlands)

    Nazeer, H.; Nguyen, Duc Minh; Woldering, L.A.; Abelmann, Leon; Rijnders, Augustinus J.H.M.; Elwenspoek, Michael Curt

    2011-01-01

    We determined the Young’s modulus of pulsed laser deposited epitaxially grown PbZr0.52Ti0.48O3 (PZT) thin films on microcantilevers by measuring the difference in cantilever resonance frequency before and after deposition. By carefully optimizing the accuracy of this technique, we were able to show

  11. Pure and Sn-doped ZnO films produced by pulsed laser deposition

    DEFF Research Database (Denmark)

    Holmelund, E.; Schou, Jørgen; Tougaard, S.

    2002-01-01

    A new technique, metronome doping, has been used for doping of films during pulsed laser deposition (PLD). This technique makes it possible to dope continuously during film growth with different concentrations of a dopant in one deposition sequence. Films of pure and doped ZnO have been produced...

  12. Microstructure of pulsed-laser deposited PZT on polished and annealed MGO substrates

    NARCIS (Netherlands)

    King, S.L.; Coccia, L.G.; Gardeniers, Johannes G.E.; Boyd, I.W.

    1996-01-01

    Thin films of Lead-Zirconate-Titanate (PZT) have been grown by pulsed-laser-deposition (PLD) onto polished MgO substrates both with and without pre-annealing. The surface morphology of polished MgO substrates, which are widely used for deposition, is examined by AFM. Commercially available,

  13. Simulation of pulsed dielectric barrier discharge xenon excimer lamp

    International Nuclear Information System (INIS)

    Bogdanov, E A; Kudryavtsev, A A; Arslanbekov, R R; Kolobov, V I

    2004-01-01

    Recently, it has been shown that the efficiency of excimer lamps can be drastically increased in a pulsed regime. A one-dimensional simulation of pulsed excimer lamps has been performed by Carman and Mildren (2003 J. Phys. D: Appl. Phys. 36 19) (C and M). However, some computational results of the work of C and M are questionable and need to be revisited. In this paper, a dielectric barrier discharge (DBD) in xenon has been simulated for operating conditions similar to those of C and M to better understand plasma dynamics in a pulsed regime. Our simulation results differ considerably from the computational results of C and M. Although these differences do not affect profoundly the plasma macro parameters measured in the C and M experiments, they offer a better understanding of plasma dynamics in pulsed DBDs and form a solid foundation for computational optimization of excimer lamps. It was found that the dynamics of breakdown and the current pulse depend significantly on the initial densities of species after a previous pulse, and so it is important to accurately simulate the plasma evolution in both the afterglow and active stages. It seems possible to modify the power deposition in the plasma by varying external discharge parameters such as the amplitude and the rise time of the applied voltage, and to modify the plasma composition by changing the pulse repetition rate and plasma decay in the afterglow stage

  14. Nanosecond laser ablation and deposition of silver, copper, zinc and tin

    DEFF Research Database (Denmark)

    Cazzaniga, Andrea Carlo; Ettlinger, Rebecca Bolt; Canulescu, Stela

    2014-01-01

    Nanosecond pulsed laser deposition of different metals (Ag, Cu, Sn, Zn) has been studied in high vacuum at a laser wavelength of 355 nm and pulse length of 6 ns. The deposition rate is roughly similar for Sn, Cu and Ag, which have comparable cohesive energies, and much higher for the deposition...... of Zn which has a low cohesive energy. The deposition rate for all metals is strongly correlated with the total ablation yield, i.e., the total mass ablated per pulse, reported in the literature except for Sn, for which the deposition rate is low, but the total ablation yield is high. This may...... be explained by the continuous erosion by nanoparticles during deposition of the Sn films which appear to have a much rougher surface than those of the other metals studied in the present work....

  15. Hot working behavior of selective laser melted and laser metal deposited Inconel 718

    Science.gov (United States)

    Bambach, Markus; Sizova, Irina

    2018-05-01

    The production of Nickel-based high-temperature components is of great importance for the transport and energy sector. Forging of high-temperature alloys often requires expensive dies, multiple forming steps and leads to forged parts with tolerances that require machining to create the final shape and a large amount of scrap. Additive manufacturing offers the possibility to print the desired shapes directly as net-shape components, requiring only little additional effort in machining. Especially for high-temperature alloys carrying a large amount of energy per unit mass, additive manufacturing could be more energy-efficient than forging if the energy contained in the machining scrap exceeds the energy needed for powder production and laser processing. However, the microstructure and performance of 3d-printed parts will not reach the level of forged material unless further expensive processes such as hot-isostatic pressing are used. Using the design freedom and possibilities to locally engineer material, additive manufacturing could be combined with forging operations to novel process chains, offering the possibility to reduce the number of forging steps and to create near-net shape forgings with desired local properties. Some innovative process chains combining additive manufacturing and forging have been patented recently, but almost no scientific knowledge on the workability of 3D printed preforms exists. The present study investigates the flow stress and microstructure evolution during hot working of pre-forms produced by laser powder deposition and selective laser melting (Figure 1) and puts forward a model for the flow stress.

  16. Laser ion deposition and implantation into different substrates

    Czech Academy of Sciences Publication Activity Database

    Cutroneo, Mariapompea

    2017-01-01

    Roč. 25, č. 1 (2017), s. 23-31 ISSN 1213-2705. [Letní vakuová škola vakuové techniky 2017. Topolčianky, 31.05.2017-01.06.2017] R&D Projects: GA MŠk LM2015056 Institutional support: RVO:61389005 Keywords : time-of-flight * laser beams * ion spectrometers Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics)

  17. Modeling the energy deposition in the Aurora KrF laser amplifier chain

    International Nuclear Information System (INIS)

    Comly, J.C.; Czuchlewski, S.J.; Greene, D.P.; Hanson, D.E.; Krohn, B.J.; McCown, A.W.

    1988-01-01

    Monte Carlo calculations model the energy depositions by highly energetic electron beams into the cavities of the four KrF laser amplifiers in the Aurora chain. Deposited energy density distributions are presented and studied as functions of e-beam energy and gas pressure. Results are useful for analyzing small signal gain (SSG) measurements and optimizing deposition in future experiments. 7 refs., 7 figs., 1 tab

  18. Characterization of hydroxyapatite coating by pulse laser deposition technique on stainless steel 316 L by varying laser energy

    International Nuclear Information System (INIS)

    Khandelwal, Himanshu; Singh, Gurbhinder; Agrawal, Khelendra; Prakash, Satya; Agarwal, R.D.

    2013-01-01

    Highlights: ► Hydroxyapatite coating was successfully deposited on stainless steel substrate by pulse laser deposition at different energy levels (i.e. 300 mJ and 500 mJ, respectively). ► Variation in laser energy affects the surface characteristic of hydroxyapatite coating (particle size, surface roughness, uniformity, Ca/P ratio). ► Laser energy between 300 mJ and 500 mJ is the optimal choice for obtaining ideal Ca/P ratio. - Abstract: Hydroxyapatite is an attractive biomaterial mainly used in bone and tooth implants because it closely resembles human tooth and bone mineral and has proven to be biologically compatible with these tissues. In spite of this advantage of hydroxyapatite it has also certain limitation like inferior mechanical properties which do not make it suitable for long term load bearing applications; hence a lot of research is going on in the development of hydroxyapatite coating over various metallic implants. These metallic implants have good biocompatibility and mechanical properties. The aim of the present work is to deposit hydroxyapatite coating over stainless steel grade 316 L by pulse laser deposition technique by varying laser energy. To know the effect of this variation, the coatings were than characterized in detail by X-ray diffraction, finite emission-scanning electron microscope, atomic force microscope and energy dispersive X-ray spectroscopy.

  19. Heating effect of substrate of pulsed laser ablation deposition technique towards the orientation of carbon microstructure

    International Nuclear Information System (INIS)

    Choy, L.S.; Irmawati Ramli; Noorhana Yahya; Abdul Halim Shaari

    2009-01-01

    Full text: Carbon thin film has been successfully deposited by second harmonic Nd:YAG pulsed laser ablation deposition, PLAD. The topology and morphology of the deposited layers was studied by scanning electron microscopy (SEM) whereas emission dispersion X-ray (EDX) was used to determine the existence of elements that constitutes the microstructure. Substrate heated at 500 degree Celsius during the laser ablation showed the most homogenous lollipop microstructure as compared to mainly pillars of microstructure ablated at lower substrate temperature. It is found that this also avoid further diffusion of carbon into catalyst in forming iron carbide. (author)

  20. Thick film laser induced forward transfer for deposition of thermally and mechanically sensitive materials

    International Nuclear Information System (INIS)

    Kattamis, Nicholas T.; Purnick, Priscilla E.; Weiss, Ron; Arnold, Craig B.

    2007-01-01

    Laser forward transfer processes incorporating thin absorbing films can be used to deposit robust organic and inorganic materials but the deposition of more delicate materials has remained elusive due to contamination and stress induced during the transfer process. Here, we present the approach to high resolution patterning of sensitive materials by incorporating a thick film polymer absorbing layer that is able to dissipate shock energy through mechanical deformation. Multiple mechanisms for transfer as a function of incident laser energy are observed and we show viable and contamination-free deposition of living mammalian embryonic stem cells