WorldWideScience

Sample records for exchange saturation transfer

  1. Optimal sampling schedule for chemical exchange saturation transfer.

    Science.gov (United States)

    Tee, Y K; Khrapitchev, A A; Sibson, N R; Payne, S J; Chappell, M A

    2013-11-01

    The sampling schedule for chemical exchange saturation transfer imaging is normally uniformly distributed across the saturation frequency offsets. When this kind of evenly distributed sampling schedule is used to quantify the chemical exchange saturation transfer effect using model-based analysis, some of the collected data are minimally informative to the parameters of interest. For example, changes in labile proton exchange rate and concentration mainly affect the magnetization near the resonance frequency of the labile pool. In this study, an optimal sampling schedule was designed for a more accurate quantification of amine proton exchange rate and concentration, and water center frequency shift based on an algorithm previously applied to magnetization transfer and arterial spin labeling. The resulting optimal sampling schedule samples repeatedly around the resonance frequency of the amine pool and also near to the water resonance to maximize the information present within the data for quantitative model-based analysis. Simulation and experimental results on tissue-like phantoms showed that greater accuracy and precision (>30% and >46%, respectively, for some cases) were achieved in the parameters of interest when using optimal sampling schedule compared with evenly distributed sampling schedule. Hence, the proposed optimal sampling schedule could replace evenly distributed sampling schedule in chemical exchange saturation transfer imaging to improve the quantification of the chemical exchange saturation transfer effect and parameter estimation. Copyright © 2013 Wiley Periodicals, Inc.

  2. Cellular and Molecular Imaging Using Chemical Exchange Saturation Transfer.

    Science.gov (United States)

    McMahon, Michael T; Gilad, Assaf A

    2016-10-01

    Chemical exchange saturation transfer (CEST) is a powerful new tool well suited for molecular imaging. This technology enables the detection of low concentration probes through selective labeling of rapidly exchanging protons or other spins on the probes. In this review, we will highlight the unique features of CEST imaging technology and describe the different types of CEST agents that are suited for molecular imaging studies, including CEST theranostic agents, CEST reporter genes, and CEST environmental sensors.

  3. WAter Saturation Shift Referencing (WASSR) for chemical exchange saturation transfer experiments

    Science.gov (United States)

    Kim, Mina; Gillen, Joseph; Landman, Bennett. A.; Zhou, Jinyuan; van Zijl, Peter C.M.

    2010-01-01

    Chemical exchange saturation transfer (CEST) is a contrast mechanism exploiting exchange-based magnetization transfer (MT) between solute and water protons. CEST effects compete with direct water saturation and conventional MT processes and generally can only be quantified through an asymmetry analysis of the water saturation spectrum (Z-spectrum) with respect to the water frequency, a process that is exquisitely sensitive to magnetic field inhomogeneities. Here, it is shown that direct water saturation imaging allows measurement of the absolute water frequency in each voxel, allowing proper centering of Z-spectra on a voxel-by-voxel basis independent of spatial B0 field variations. Optimal acquisition parameters for this “water saturation shift referencing” or “WASSR” approach were estimated using Monte Carlo simulations and later confirmed experimentally. The optimal ratio of the WASSR sweep width to the linewidth of the direct saturation curve was found to be 3.3–4.0, requiring a sampling of 16–32 points. The frequency error was smaller than 1 Hz at signal to noise ratios of 40 or higher. The WASSR method was applied to study glycogen, where the chemical shift difference between the hydroxyl (OH) protons and bulk water protons at 3T is so small (0.75–1.25 ppm) that the CEST spectrum is inconclusive without proper referencing. PMID:19358232

  4. Water saturation shift referencing (WASSR) for chemical exchange saturation transfer (CEST) experiments.

    Science.gov (United States)

    Kim, Mina; Gillen, Joseph; Landman, Bennett A; Zhou, Jinyuan; van Zijl, Peter C M

    2009-06-01

    Chemical exchange saturation transfer (CEST) is a contrast mechanism that exploits exchange-based magnetization transfer (MT) between solute and water protons. CEST effects compete with direct water saturation and conventional MT processes, and generally can only be quantified through an asymmetry analysis of the water saturation spectrum (Z-spectrum) with respect to the water frequency, a process that is exquisitely sensitive to magnetic field inhomogeneities. Here it is shown that direct water saturation imaging allows measurement of the absolute water frequency in each voxel, allowing proper centering of Z-spectra on a voxel-by-voxel basis independently of spatial B(0) field variations. Optimal acquisition parameters for this "water saturation shift referencing" (WASSR) approach were estimated using Monte Carlo simulations and later confirmed experimentally. The optimal ratio of the WASSR sweep width to the linewidth of the direct saturation curve was found to be 3.3-4.0, requiring a sampling of 16-32 points. The frequency error was smaller than 1 Hz at signal-to-noise ratios of 40 or higher. The WASSR method was applied to study glycogen, where the chemical shift difference between the hydroxyl (OH) protons and bulk water protons at 3T is so small (0.75-1.25 ppm) that the CEST spectrum is inconclusive without proper referencing.

  5. Design and optimization of pulsed Chemical Exchange Saturation Transfer MRI using a multiobjective genetic algorithm.

    Science.gov (United States)

    Yoshimaru, Eriko S; Randtke, Edward A; Pagel, Mark D; Cárdenas-Rodríguez, Julio

    2016-02-01

    Pulsed Chemical Exchange Saturation Transfer (CEST) MRI experimental parameters and RF saturation pulse shapes were optimized using a multiobjective genetic algorithm. The optimization was carried out for RF saturation duty cycles of 50% and 90%, and results were compared to continuous wave saturation and Gaussian waveform. In both simulation and phantom experiments, continuous wave saturation performed the best, followed by parameters and shapes optimized by the genetic algorithm and then followed by Gaussian waveform. We have successfully demonstrated that the genetic algorithm is able to optimize pulse CEST parameters and that the results are translatable to clinical scanners. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Spin-locking vs. chemical exchange saturation transfer MRI for investigating chemical exchange process between water and labile metabolite protons

    Science.gov (United States)

    Jin, Tao; Autio, Joonas; Obata, Takayuki; Kim, Seong-Gi

    2010-01-01

    Chemical exchange saturation transfer (CEST) and spin-locking (SL) experiments were both able to probe the exchange process between protons of non-equivalent chemical environments. To compare the characteristics of the CEST and SL approaches in the study of chemical exchange effects, we performed CEST and SL experiments at varied pH and concentrated metabolites with exchangeable amide, amine, and hydroxyl protons at 9.4 T. Our results show that: i) On-resonance SL is most sensitive to chemical exchanges in the intermediate exchange regime and is able to detect hydroxyl and amine protons on a millimolar concentration scale. Off-resonance SL and CEST approaches are sensitive to slow-exchanging protons when an optimal SL or saturation pulse power matches the exchanging rate, respectively. ii) Offset frequency-dependent SL and CEST spectra are very similar, and can be explained well with an SL model recently developed by Trott and Palmer. iii) The exchange rate and population of metabolite protons can be determined from offset-dependent SL or CEST spectra or from on-resonance SL relaxation dispersion measurements. iv) The asymmetry of the magnetization transfer ratio (MTRasym) is highly dependent on the choice of saturation pulse power. In the intermediate exchange regime, MTRasym becomes complicated and should be interpreted with care. PMID:21500270

  7. Spin-locking versus chemical exchange saturation transfer MRI for investigating chemical exchange process between water and labile metabolite protons.

    Science.gov (United States)

    Jin, Tao; Autio, Joonas; Obata, Takayuki; Kim, Seong-Gi

    2011-05-01

    Chemical exchange saturation transfer (CEST) and spin-locking (SL) experiments were both able to probe the exchange process between protons of nonequivalent chemical environments. To compare the characteristics of the CEST and SL approaches in the study of chemical exchange effects, we performed CEST and SL experiments at varied pH and concentrated metabolite phantoms with exchangeable amide, amine, and hydroxyl protons at 9.4 T. Our results show that: (i) on-resonance SL is most sensitive to chemical exchanges in the intermediate-exchange regime and is able to detect hydroxyl and amine protons on a millimolar concentration scale. Off-resonance SL and CEST approaches are sensitive to slow-exchanging protons when an optimal SL or saturation pulse power matches the exchanging rate, respectively. (ii) Offset frequency-dependent SL and CEST spectra are very similar and can be explained well with an SL model recently developed by Trott and Palmer (J Magn Reson 2002;154:157-160). (iii) The exchange rate and population of metabolite protons can be determined from offset-dependent SL or CEST spectra or from on-resonance SL relaxation dispersion measurements. (iv) The asymmetry of the magnetization transfer ratio (MTR(asym)) is highly dependent on the choice of saturation pulse power. In the intermediate-exchange regime, MTR(asym) becomes complicated and should be interpreted with care. Copyright © 2010 Wiley-Liss, Inc.

  8. Application of chemical exchange saturation transfer (CEST) MRI for endogenous contrast at 7 Tesla.

    Science.gov (United States)

    Dula, Adrienne N; Smith, Seth A; Gore, John C

    2013-10-01

    Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) indirectly images exchangeable solute protons resonating at frequencies different than bulk water. These solute protons are selectively saturated using low bandwidth RF irradiation and saturation is transferred to bulk water protons via chemical exchange, resulting in an attenuation of the measured water proton signal. CEST MRI is an advanced MRI technique with wide application potential due to the ability to examine complex molecular contributions. CEST MRI at high field (7 Tesla [7 T]) will improve the overall results due to increase in signal, T1 relaxation time, and chemical shift dispersion. Increased field strength translates to enhanced quantification of the metabolite of interest, allowing more fundamental studies on underlying pathophysiology. CEST contrast is affected by several tissue properties, such as the concentrations of exchange partners and their rate of proton exchange, whose effects have been examined and explored in this review. We have highlighted the background of CEST MRI, typical implementation strategy, and complications at 7 T. Copyright © 2013 by the American Society of Neuroimaging.

  9. Glycosaminoglycan chemical exchange saturation transfer in human lumbar intervertebral discs: Effect of saturation pulse and relationship with low back pain.

    Science.gov (United States)

    Wada, Tatsuhiro; Togao, Osamu; Tokunaga, Chiaki; Funatsu, Ryohei; Yamashita, Yasuo; Kobayashi, Kouji; Nakamura, Yasuhiko; Honda, Hiroshi

    2017-03-01

    To evaluate the dependence of saturation pulse power and duration on glycosaminoglycan chemical exchange saturation transfer (gagCEST) imaging and assess the degeneration of human lumbar intervertebral discs (IVDs) using this method. All images were acquired on a 3T magnetic resonance imaging (MRI) scanner. The CEST effects were measured in the glycosaminoglycan (GAG) phantoms with different concentrations. In the human study, CEST effects were measured in the nucleus pulposus of IVD. We compared the CEST effects among the different saturation pulse powers (0.4, 0.8, and 1.6 μT) or durations (0.5, 1.0, and 2.0 sec) at each Pfirrmann grade (I-V). The relationship between the CEST effects and low back pain was also evaluated. The phantom study showed high correlations between the CEST effects and GAG concentration (R 2  = 0.863, P low back pain were significantly lower than those in the groups without pain (P pain (P = 0.0216). The contrast of gagCEST imaging in the lumbar IVDs varied with saturation pulse power and duration. GagCEST imaging may serve as a tool for evaluating IVD degeneration in the lumbar spine. 2 J. Magn. Reson. Imaging 2017;45:863-871. © 2016 International Society for Magnetic Resonance in Medicine.

  10. Transfer Rate Edited experiment for the selective detection of Chemical Exchange via Saturation Transfer (TRE-CEST).

    Science.gov (United States)

    Friedman, Joshua I; Xia, Ding; Regatte, Ravinder R; Jerschow, Alexej

    2015-07-01

    Chemical Exchange Saturation Transfer (CEST) magnetic resonance experiments have become valuable tools in magnetic resonance for the detection of low concentration solutes with far greater sensitivity than direct detection methods. Accurate measures of rates of chemical exchange provided by CEST are of particular interest to biomedical imaging communities where variations in chemical exchange can be related to subtle variations in biomarker concentration, temperature and pH within tissues using MRI. Despite their name, however, traditional CEST methods are not truly selective for chemical exchange and instead detect all forms of magnetization transfer including through-space NOE. This ambiguity crowds CEST spectra and greatly complicates subsequent data analysis. We have developed a Transfer Rate Edited CEST experiment (TRE-CEST) that uses two different types of solute labeling in order to selectively amplify signals of rapidly exchanging proton species while simultaneously suppressing 'slower' NOE-dominated magnetization transfer processes. This approach is demonstrated in the context of both NMR and MRI, where it is used to detect the labile amide protons of proteins undergoing chemical exchange (at rates⩾30s(-1)) while simultaneously eliminating signals originating from slower (∼5s(-1)) NOE-mediated magnetization transfer processes. TRE-CEST greatly expands the utility of CEST experiments in complex systems, and in-vivo, in particular, where it is expected to improve the quantification of chemical exchange and magnetization transfer rates while enabling new forms of imaging contrast. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Europium(III) Macrocyclic Complexes with Alcohol Pendant Groups as Chemical Exchange Saturation Transfer Agents

    Science.gov (United States)

    Woods, Mark; Woessner, Donald E.; Zhao, Piyu; Pasha, Azhar; Yang, Meng-Yin; Huang, Ching-Hui; Vasalitiy, Olga; Morrow, Janet R.; Sherry, A. Dean

    2009-01-01

    Paramagnetic lanthanide(III) complexes that contain hyperfine-shifted exchangeable protons offer considerable advantages over diamagnetic molecules as chemical exchange saturation transfer (CEST) agents for MRI. As part of a program to investigate avenues to improve the sensitivity of such agents, the CEST characteristics of europium(III) macrocyclic complexes having appended hydroxyethyl groups were investigated. The CEST spectrum of the asymmetrical complex, EuCNPHC3+, shows five distinct peaks for each magnetically nonequivalent exchangeable proton in the molecule. The CEST spectra of this complex were fitted to NMR Bloch theory to yield exchange rates between each of six exchanging proton pools (five on the agent plus bulk water). Exchange between the Eu3+-bound hydroxyl protons and bulk water protons was slow in dry acetonitrile but accelerated incrementally upon stepwise addition of water. In pure water, exchange was too fast to observe a CEST effect. The utility of this class of europium(III) complex for CEST imaging applications is ultimately limited by the small chemical shifts induced by the hydroxyl-appended ligands of this type and the resulting small Δω values for the exchangeable hydroxyl protons. PMID:16881645

  12. Improvement of water saturation shift referencing by sequence and analysis optimization to enhance chemical exchange saturation transfer imaging.

    Science.gov (United States)

    Müller-Lutz, Anja; Matuschke, Felix; Schleich, Christoph; Wickrath, Frithjof; Boos, Johannes; Schmitt, Benjamin; Wittsack, Hans-Jörg

    2016-07-01

    To optimize B0-field inhomogeneity correction for chemical exchange saturation transfer (CEST) imaging by investigating different water saturation shift referencing (WASSR) Z-spectrum shapes and different frequency correction techniques. WASSR Z-spectra were simulated for different B1-fields and pulse durations (PD). Two parameter settings were used for further simulations and experiments (WASSR1: B1=0.1 μT, PD=50ms; WASSR2: B1=0.3 μT, PD=40ms). Four frequency correction techniques were investigated: 1) MinW: Minimum of the spline-interpolated WASSR-spectrum; 2) MSCF: maximum symmetry center frequency algorithm; 3) PMSCF: further development of MSCF algorithm; 4) BFit: fit with Bloch equations. Performance of frequency correction was assessed with Monte-Carlo simulations and in-vivo MR examinations in the brain and intervertebral disks. Different shapes of WASSR-Z-spectra were obtained by changing B1 and PD including spectra with one (1-Peak) or two (2-Peak) minima. WASSR1 resulted in 1-Peak WASSR-spectrum, whereas WASSR2 resulted in 2-Peak WASSR-spectrum. Both Monte-Carlo simulations and in-vivo MR examinations revealed highest accuracy of field-inhomogeneity correction with WASSR1 combined with PMSCF or BFit. Using a WASSR sequence, which results in a Z-spectrum with a single absorption peak, in combination with advanced postprocessing algorithms enables improved B0-field inhomogeneity correction for CEST imaging. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Nuclear overhauser enhancement mediated chemical exchange saturation transfer imaging at 7 Tesla in glioblastoma patients.

    Directory of Open Access Journals (Sweden)

    Daniel Paech

    Full Text Available BACKGROUND AND PURPOSE: Nuclear Overhauser Enhancement (NOE mediated chemical exchange saturation transfer (CEST is a novel magnetic resonance imaging (MRI technique on the basis of saturation transfer between exchanging protons of tissue proteins and bulk water. The purpose of this study was to evaluate and compare the information provided by three dimensional NOE mediated CEST at 7 Tesla (7T and standard MRI in glioblastoma patients. PATIENTS AND METHODS: Twelve patients with newly diagnosed histologically proven glioblastoma were enrolled in this prospective ethics committee-approved study. NOE mediated CEST contrast was acquired with a modified three-dimensional gradient-echo sequence and asymmetry analysis was conducted at 3.3 ppm (B1 = 0.7 µT to calculate the magnetization transfer ratio asymmetry (MTR(asym. Contrast enhanced T1 (CE-T1 and T2-weighted images were acquired at 3T and used for data co-registration and comparison. RESULTS: Mean NOE mediated CEST signal based on MTR(asym values over all patients was significantly increased (p<0.001 in CE-T1 tumor (-1.99 ± 1.22%, tumor necrosis (-1.36 ± 1.30% and peritumoral CEST hyperintensities (PTCH within T2 edema margins (-3.56 ± 1.24% compared to contralateral normal appearing white matter (-8.38 ± 1.19%. In CE-T1 tumor (p = 0.015 and tumor necrosis (p<0.001 mean MTR(asym values were significantly higher than in PTCH. Extent of the surrounding tumor hyperintensity was smaller in eight out of 12 patients on CEST than on T2-weighted images, while four displayed at equal size. In all patients, isolated high intensity regions (0.40 ± 2.21% displayed on CEST within the CE-T1 tumor that were not discernible on CE-T1 or T2-weighted images. CONCLUSION: NOE mediated CEST Imaging at 7 T provides additional information on the structure of peritumoral hyperintensities in glioblastoma and displays isolated high intensity regions within the CE-T1 tumor that cannot be acquired on CE-T1 or T2

  14. Chemical exchange saturation transfer MR imaging of Parkinson's disease at 3 Tesla

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chunmei; Peng, Shuai; Wang, Rui; Chen, Min [Beijing Hospital, Department of Radiology, Beijing (China); Chen, Haibo; Su, Wen [Beijing Hospital, Department of Neurology, Beijing (China); Zhao, Xuna [Peking University, Center for MRI Research and Beijing City Key Lab for Medical Physics and Engineering, Beijing (China); Zhou, Jinyuan [Johns Hopkins University, Department of Radiology, Baltimore, MD (United States)

    2014-10-15

    To demonstrate the feasibility of using chemical exchange saturation transfer (CEST) imaging to detect Parkinson's disease (PD) in patients at 3 Tesla. Twenty-seven PD patients (17 men and 10 women; age range, 54-77 years) and 22 age-matched normal controls (13 men and 9 women; age range, 55-73 years) were examined on a 3-Tesla MRI system. Magnetization transfer spectra with 31 different frequency offsets (-6 to 6 ppm) were acquired at two transverse slices of the head, including the basal ganglia and midbrain. One-way analysis of variance tests was used to compare the differences in CEST imaging signals between PD patients and normal controls. Total CEST signal between the offsets of 0 and 4 ppm in the substantia nigra was significantly lower in PD patients than in normal controls (P = 0.006), which could be associated with the loss of dopaminergic neurons. Protein-based CEST imaging signals at the offset of 3.5 ppm in the globus pallidus, putamen and caudate were significantly increased in PD patients, compared to normal controls (P < 0.001, P = 0.003, P < 0.001, respectively). CEST imaging signals could potentially serve as imaging biomarkers to aid in the non-invasive molecular diagnosis of PD. (orig.)

  15. Glycosaminoglycan chemical exchange saturation transfer of lumbar intervertebral discs in patients with spondyloarthritis.

    Science.gov (United States)

    Schleich, Christoph; Müller-Lutz, Anja; Matuschke, Felix; Sewerin, Philipp; Sengewein, Ruben; Schmitt, Benjamin; Ostendorf, Benedikt; Wittsack, Hans-Jörg; Stanke, Karolin; Antoch, Gerald; Miese, Falk

    2015-10-01

    To assess glycosaminoglycan (GAG) content of lumbar intervertebral discs (IVD) in patients with spondyloarthritis (SpA) using glycosaminoglycan chemical exchange saturation transfer (gagCEST). Ninety lumbar intervertebral discs of nine patients with SpA and nine age-matched healthy controls (eight patients with ankylosing spondylitis; one patient with spondylitis related to inflammatory bowel disease; mean age: 44.1 ± 14.0 years; range: 27-72 years) were examined with a 3T magnetic resonance imaging (MRI) scanner in this prospective study. The MRI protocol included standard morphological, sagittal T2 -weighted (T2 w) images to assess Pfirrmann score of the five lumbar IVDs (L1 to S1) and biochemical imaging with gagCEST to calculate a region of interest analysis of nucleus pulposus (NP) and annulus fibrosus (AF). Prior to statistical testing of gagCEST effects (MTRasym values in percent) in patients and controls, IVDs were classified according to the Pfirrmann score. Significantly lower gagCEST values of NP and AF were found in SpA patients compared with healthy volunteers (NP: 1.41% ± 0.41%, P = 0.001; 95% confidence interval, CI [0.600%-2.226%]; AF: 1.19% ± 0.32%, P < 0.001; CI [0.560%-1.822%]) by comparing the differences of the means. Pooled nondegenerative IVDs (Pfirrmann 1 and 2) had significantly lower gagCEST effects in patients suffering from SpA compared with healthy controls in NP (P < 0.001; CI [1.176%-2.337%]) and AF (P < 0.001; CI [0.858%-1.779%]). No significant difference of MTRasym values was found in degenerative IVDs between patients and controls in NP (P = 0.204; CI [-0.504%-2.170%]). GagCEST analysis of morphologically nondegenerative IVDs (Pfirrmann score 1 and 2) in T2 w images demonstrated significantly lower GAG values in patients with spondyloarthritis in NP and AF, possibly representing a depletion of GAG in spondyloarthritis in the absence of morphologic degeneration. © 2015 Wiley Periodicals, Inc.

  16. Imaging in Vivo Extracellular pH with a Single Paramagnetic Chemical Exchange Saturation Transfer Magnetic Resonance Imaging Contrast Agent

    Directory of Open Access Journals (Sweden)

    Guanshu Liu

    2012-01-01

    Full Text Available The measurement of extracellular pH (pHe has potential utility for cancer diagnoses and for assessing the therapeutic effects of pH-dependent therapies. A single magnetic resonance imaging (MRI contrast agent that is detected through paramagnetic chemical exchange saturation transfer (PARACEST was designed to measure tumor pHe throughout the range of physiologic pH and with magnetic resonance saturation powers that are not harmful to a mouse model of cancer. The chemical characterization and modeling of the contrast agent Yb3+-1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid, 10-o-aminoanilide (Yb-DO3A-oAA suggested that the aryl amine of the agent forms an intramolecular hydrogen bond with a proximal carboxylate ligand, which was essential for generating a practical chemical exchange saturation transfer (CEST effect from an amine. A ratio of CEST effects from the aryl amine and amide was linearly correlated with pH throughout the physiologic pH range. The pH calibration was used to produce a parametric pH map of a subcutaneous flank tumor on a mouse model of MCF-7 mammary carcinoma. Although refinements in the in vivo CEST MRI methodology may improve the accuracy of pHe measurements, this study demonstrated that the PARACEST contrast agent can be used to generate parametric pH maps of in vivo tumors with saturation power levels that are not harmful to a mouse model of cancer.

  17. Science to Practice: Monitoring Oncolytic Virus Therapy with Chemical Exchange Saturation Transfer MR Imaging--Wishful Thinking?

    Science.gov (United States)

    Choyke, Peter L

    2015-06-01

    Farrar et al demonstrate that modifying an oncolytic virus (OV) so that it produces excess protein when it infects a cancer cell is a process that can be detected both in vitro and in vivo in infected cancer cells by using chemical exchange saturation transfer (CEST) magnetic resonance (MR) imaging. The effect is at the limits of MR imaging detection (approximately 1%), but experience with functional MR imaging of the brain, with comparably small effects, should give pause to anyone who immediately writes this observation off as an exercise in wishful thinking. OVs are improving in their specificity, virulence, and ability to induce immune responses. Now, they have been modified to express proteins that are detectable with CEST MR imaging early after delivery into a tumor. This is clearly a surprising and hopeful development in the long road of OVs from the laboratory to the clinic.

  18. Chemical exchange saturation transfer (CEST) MR technique for in-vivo liver imaging at 3.0 tesla

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shu-Zhong; Deng, Min; Wang, Yi-Xiang J. [Chinese University of Hong Kong, Prince of Wales Hospital, Department of Imaging and Interventional Radiology, Faculty of Medicine (China); Yuan, Jing [Hong Kong Sanatorium and Hospital, Medical Physics and Research Department, Happy Valley, Hong Kong (China); Wei, Juan [Philips Healthcare Asia, Shanghai (China); Zhou, Jinyuan [Johns Hopkins University, Department of Radiology, Baltimore, MD (United States); Kennedy Krieger Institute, F.M. Kirby Research Center for Functional Brain Imaging, Baltimore, MD (United States)

    2016-06-15

    To evaluate Chemical Exchange Saturation Transfer (CEST) MRI for liver imaging at 3.0-T. Images were acquired at offsets (n = 41, increment = 0.25 ppm) from -5 to 5 ppm using a TSE sequence with a continuous rectangular saturation pulse. Amide proton transfer-weighted (APTw) and GlycoCEST signals were quantified as the asymmetric magnetization transfer ratio (MTR{sub asym}) at 3.5 ppm and the total MTR{sub asym} integrated from 0.5 to 1.5 ppm, respectively, from the corrected Z-spectrum. Reproducibility was assessed for rats and humans. Eight rats were devoid of chow for 24 hours and scanned before and after fasting. Eleven rats were scanned before and after one-time CCl4 intoxication. For reproducibility, rat liver APTw and GlycoCEST measurements had 95 % limits of agreement of -1.49 % to 1.28 % and -0.317 % to 0.345 %. Human liver APTw and GlycoCEST measurements had 95 % limits of agreement of -0.842 % to 0.899 % and -0.344 % to 0.164 %. After 24 hours, fasting rat liver APTw and GlycoCEST signals decreased from 2.38 ± 0.86 % to 0.67 ± 1.12 % and from 0.34 ± 0.26 % to -0.18 ± 0.37 % respectively (p < 0.05). After CCl4 intoxication rat liver APTw and GlycoCEST signals decreased from 2.46 ± 0.48 % to 1.10 ± 0.77 %, and from 0.34 ± 0.23 % to -0.16 ± 0.51 % respectively (p < 0.05). CEST liver imaging at 3.0-T showed high sensitivity for fasting as well as CCl4 intoxication. (orig.)

  19. Synthesis of a probe for monitoring HSV1-tk reporter gene expression using chemical exchange saturation transfer MRI.

    Science.gov (United States)

    Bar-Shir, Amnon; Liu, Guanshu; Greenberg, Marc M; Bulte, Jeff W M; Gilad, Assaf A

    2013-12-01

    In experiments involving transgenic animals or animals treated with transgenic cells, it is important to have a method to monitor the expression of the relevant genes longitudinally and noninvasively. An MRI-based reporter gene enables monitoring of gene expression in the deep tissues of living subjects. This information can be co-registered with detailed high-resolution anatomical and functional information. We describe here the synthesis of the reporter probe, 5-methyl-5,6-dihydrothymidine (5-MDHT), which can be used for imaging of the herpes simplex virus type 1 thymidine kinase (HSV1-tk) reporter gene expression in rodents by MRI. The protocol also includes data acquisition and data processing routines customized for chemical exchange saturation transfer (CEST) contrast mechanisms. The dihydropyrimidine 5-MDHT is synthesized through a catalytic hydrogenation of the 5,6-double bond of thymidine to yield 5,6-dihydrothymidine, which is methylated on the C-5 position of the resulting saturated pyrimidine ring. The synthesis of 5-MDHT can be completed within 5 d, and the compound is stable for more than 1 year.

  20. A new contrast in MR mammography by means of chemical exchange saturation transfer (CEST) imaging at 3 Tesla: preliminary results.

    Science.gov (United States)

    Schmitt, B; Zamecnik, P; Zaiss, M; Rerich, E; Schuster, L; Bachert, P; Schlemmer, H P

    2011-11-01

    To evaluate the feasibility to detect and delineate malignant breast lesions in human patients by chemical exchange saturation transfer (CEST) as an MR imaging technique without the need for contrast agent administration. Six female patients referred for pre-surgical staging due to histologically confirmed breast cancer were examined with MR at 3 T. The routine breast protocol included T (2w), STIR, T (1w)-DCE and contrast-enhanced T (1w) imaging with SPAIR fat suppression. For CEST imaging, a 3D RF-spoiled gradient echo (GRE) sequence with an optimized saturation pulse train was applied. To assess the diagnostic value of the technique, CEST effects observed between frequency offsets of 1.2 to 1.8 ppm from the bulk water resonance were compared to pharmacokinetic parameter maps (k (ep)) obtained by DCE-MRI. In 3 of 6 patients, regions with high CEST signal intensity correlated well with tumor areas as determined by DCE-MRI. Analysis of signal intensities from ROIs in tumor, fibroglandular, adipose, and muscle tissue revealed significantly higher CEST values in tumor tissue compared to fibroglandular tissue. The detection of lesions was equally well possible with DCE-MRI and CEST-MRI. In the three other patients, the tumor regions could not be delineated based on the CEST image due to artifacts, which were most likely caused by a high content of fat tissue within the ROIs. The results of this initial feasibility study indicate a significant potential of CEST-MRI to discriminate cancer from fibroglandular tissue in the human breast by a CEST contrast generated by endogenous solute molecules. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Cardio-chemical exchange saturation transfer magnetic resonance imaging reveals molecular signatures of endogenous fibrosis and exogenous contrast media.

    Science.gov (United States)

    Vandsburger, Moriel; Vandoorne, Katrien; Oren, Roni; Leftin, Avigdor; Mpofu, Senzeni; Delli Castelli, Daniela; Aime, Silvio; Neeman, Michal

    2015-01-01

    Application of emerging molecular MRI techniques, including chemical exchange saturation transfer (CEST)-MRI, to cardiac imaging is desirable; however, conventional methods are poorly suited for cardiac imaging, particularly in small animals with rapid heart rates. We developed a CEST-encoded steady state and retrospectively gated cardiac cine imaging sequence in which the presence of fibrosis or paraCEST contrast agents was directly encoded into the steady-state myocardial signal intensity (cardioCEST). Development of cardioCEST: A CEST-encoded cardiac cine MRI sequence was implemented on a 9.4T small animal scanner. CardioCEST of fibrosis was serially performed by acquisition of a series of CEST-encoded cine images at multiple offset frequencies in mice (n=7) after surgically induced myocardial infarction. Scar formation was quantified using a spectral modeling approach and confirmed with histological staining. Separately, circulatory redistribution kinetics of the paramagnetic CEST agent Eu-HPDO3A were probed in mice using cardioCEST imaging, revealing rapid myocardial redistribution, and washout within 30 minutes (n=6). Manipulation of vascular tone resulted in heightened peak CEST contrast in the heart, but did not alter redistribution kinetics (n=6). At 28 days after myocardial infarction (n=3), CEST contrast kinetics in infarct zone tissue were altered, demonstrating gradual accumulation of Eu-HPDO3A in the increased extracellular space. cardioCEST MRI enables in vivo imaging of myocardial fibrosis using endogenous contrast mechanisms, and of exogenously delivered paraCEST agents, and can enable multiplexed imaging of multiple molecular targets at high-resolution coupled with conventional cardiac MRI scans. © 2013 American Heart Association, Inc.

  2. A Potential Magnetic Resonance Imaging Technique Based on Chemical Exchange Saturation Transfer for In Vivo γ-Aminobutyric Acid Imaging.

    Directory of Open Access Journals (Sweden)

    Gen Yan

    Full Text Available We developed a novel magnetic resonance imaging (MRI technique based on chemical exchange saturation transfer (CEST for GABA imaging and investigated the concentration-dependent CEST effect ofGABA in a rat model of brain tumor with blood-brain barrier (BBB disruption.All MRI studies were performed using a 7.0-T Agilent MRI scanner. Z-spectra for GABA were acquired at 7.0 T, 37°C, and a pH of 7.0 using varying B1 amplitudes. CEST images of phantoms with different concentrations of GABA solutions (pH, 7.0 and other metabolites (glutamine, myoinositol, creatinine, and choline were collected to investigate the concentration-dependent CEST effect of GABA and the potential contribution from other brain metabolites. CEST maps for GABA in rat brains with tumors were collected at baseline and 50 min, 1.5 h, and 2.0 h after the injection of GABA solution.The CEST effect of GABA was observed at approximately 2.75 parts per million(ppm downfield from bulk water, and this effect increased with an increase in the B1 amplitude and remained steady after the B1 amplitude reached 6.0 μT (255 Hz. The CEST effect of GABA was proportional to the GABA concentration in vitro. CEST imaging of GABA in a rat brain with a tumor and compromised BBB showed a gradual increase in the CEST effect after GABA injection.The findings of this study demonstrate the feasibility and potential of CEST MRI with the optimal B1 amplitude, which exhibits excellent spatial and temporal resolutions, to map changes in GABA.

  3. Biochemical imaging of cervical intervertebral discs with glycosaminoglycan chemical exchange saturation transfer magnetic resonance imaging: feasibility and initial results

    Energy Technology Data Exchange (ETDEWEB)

    Schleich, Christoph; Mueller-Lutz, Anja; Zimmermann, Lisa; Boos, Johannes; Wittsack, Hans-Joerg; Antoch, Gerald; Miese, Falk [Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, Dusseldorf (Germany); Schmitt, Benjamin [Siemens Ltd. Australia, Healthcare Sector, Macquarie Park, NSW (Australia)

    2016-01-15

    To evaluate glycosaminoglycan chemical exchange saturation transfer (gagCEST) imaging at 3T in the assessment of the GAG content of cervical IVDs in healthy volunteers. Forty-two cervical intervertebral discs of seven healthy volunteers (four females, three males; mean age: 21.4 ± 1.4 years; range: 19-24 years) were examined at a 3T MRI scanner in this prospective study. The MRI protocol comprised standard morphological, sagittal T2 weighted (T2w) images to assess the magnetic resonance imaging (MRI) based grading system for cervical intervertebral disc degeneration (IVD) and biochemical imaging with gagCEST to calculate a region-of-interest analysis of nucleus pulposus (NP) and annulus fibrosus (AF). GagCEST of cervical IVDs was technically successful at 3T with significant higher gagCEST values in NP compared to AF (1.17 % ± 1.03 % vs. 0.79 % ± 1.75 %; p = 0.005). We found topological differences of gagCEST values of the cervical spine with significant higher gagCEST effects in lower IVDs (r = 1; p = 0). We could demonstrate a significant, negative correlation between gagCEST values and cervical disc degeneration of NP (r = -0.360; p = 0.019). Non-degenerated IVDs had significantly higher gagCEST effects compared to degenerated IVDs in NP (1.76 % ± 0.92 % vs. 0.52 % ± 1.17 %; p < 0.001). Biochemical imaging of cervical IVDs is feasible at 3T. GagCEST analysis demonstrated a topological GAG distribution of the cervical spine. The depletion of GAG in the NP with increasing level of morphological degeneration can be assessed using gagCEST imaging. (orig.)

  4. Kinetics of intramolecular chemical exchange by initial growth rates of spin saturation transfer difference experiments (SSTD NMR).

    Science.gov (United States)

    Quirós, M Teresa; Angulo, Jesús; Muñoz, María Paz

    2015-06-25

    We report here the Initial Growth Rates SSTD NMR method, as a new powerful tool to obtain the kinetic parameters of intramolecular chemical exchange in challenging small organic and organometallic molecules.

  5. Analytical solution for the depolarization of hyperpolarized nuclei by chemical exchange saturation transfer between free and encapsulated xenon (HyperCEST).

    Science.gov (United States)

    Zaiss, Moritz; Schnurr, Matthias; Bachert, Peter

    2012-04-14

    We present an analytical solution of the Bloch-McConnell equations for the case of chemical exchange saturation transfer between hyperpolarized nuclei in cavities and in solvent (HyperCEST experiment). This allows quantitative investigation of host-guest interactions by means of nuclear magnetic resonance spectroscopy and, due to the strong HyperCEST signal enhancement, even NMR imaging. Hosts of interest can be hydrophobic cavities in macromolecules or artificial cages like cryptophane-A which was proposed as a targeted biosensor. Relevant system parameters as exchange rate and host concentration can be obtained from the monoexponential depolarization process which is shown to be governed by the smallest eigenvalue in modulus. For this dominant eigenvalue we present a useful approximation leading to the depolarization rate for the case of on- and off-resonant irradiation. It is shown that this rate is a generalization of the longitudinal relaxation rate in the rotating frame. We demonstrate for the free and cryptophane-A-encapsulated xenon system, by comparison with numerical simulations, that HyperCEST experiments are precisely described in the valid range of this widely applicable analytical approximation. Altogether, the proposed analytical solution allows optimization and quantitative analysis of HyperCEST experiments but also characterization and optimal design of possible biosensors.

  6. Determination of an optimally sensitive and specific chemical exchange saturation transfer MRI quantification metric in relevant biological phantoms.

    Science.gov (United States)

    Ray, Kevin J; Larkin, James R; Tee, Yee K; Khrapitchev, Alexandre A; Karunanithy, Gogulan; Barber, Michael; Baldwin, Andrew J; Chappell, Michael A; Sibson, Nicola R

    2016-11-01

    The purpose of this study was to develop realistic phantom models of the intracellular environment of metastatic breast tumour and naïve brain, and using these models determine an analysis metric for quantification of CEST MRI data that is sensitive to only labile proton exchange rate and concentration. The ability of the optimal metric to quantify pH differences in the phantoms was also evaluated. Novel phantom models were produced, by adding perchloric acid extracts of either metastatic mouse breast carcinoma cells or healthy mouse brain to bovine serum albumin. The phantom model was validated using 1 H NMR spectroscopy, then utilized to determine the sensitivity of CEST MRI to changes in pH, labile proton concentration, T1 time and T2 time; six different CEST MRI analysis metrics (MTRasym , APT*, MTRRex , AREX and CESTR* with and without T1 /T2 compensation) were compared. The new phantom models were highly representative of the in vivo intracellular environment of both tumour and brain tissue. Of the analysis methods compared, CESTR* with T1 and T2 time compensation was optimally specific to changes in the CEST effect (i.e. minimal contamination from T1 or T2 variation). In phantoms with identical protein concentrations, pH differences between phantoms could be quantified with a mean accuracy of 0.6 pH units. We propose that CESTR* with T1 and T2 time compensation is the optimal analysis method for these phantoms. Analysis of CEST MRI data with T1 /T2 time compensated CESTR* is reproducible between phantoms, and its application in vivo may resolve the intracellular alkalosis associated with breast cancer brain metastases without the need for exogenous contrast agents. © 2016 The Authors NMR in Biomedicine Published by John Wiley & Sons Ltd.

  7. Chemical Exchange Saturation Transfer MR Imaging Is Superior to Diffusion Tensor Imaging in the Diagnosis and Severity Evaluation of Parkinson's Disease: a Study on Substantia Nigra and Striatum

    Directory of Open Access Journals (Sweden)

    Chunmei eLi

    2015-10-01

    Full Text Available Parkinson’s disease (PD is a neurodegenerative disorder characterized by nigrostriatal cell loss. To date the diagnosis of PD is still based primarily on the clinical manifestations which may be typical and obvious only in advanced-stage PD. Thus, it is crucial to find a reliable marker for the diagnosis of PD. We conducted this study to assess the diagnostic efficiency of chemical-exchange-saturation-transfer (CEST imaging and diffusion-tensor imaging (DTI in PD at 3 Tesla by evaluating changes on substantia nigra and striatum. Twenty-three PD patients and twenty-three age-matched normal controls were recruited. All patients and controls were imaged on a 3 Tesla MR system, using an 8-channel head coil. CEST imaging was acquired in two transverse slices of the head, including substantia nigra and striatum. The magnetization-transfer-ratio asymmetry at 3.5 ppm, MTRasym(3.5ppm, and the total CEST signal intensity between 0 and 4 ppm were calculated. Multi-slice DTI was acquired for all the patients and normal controls. Quantitative analysis was performed on the substantia nigra, globus pallidus, putamen and caudate. The MTRasym(3.5ppm value, the total CEST signal intensity and fractional anisotropy (FA value of the substantia nigra were all significantly lower in PD patients than in normal controls (P = 0.003, P = 0.004 and P < 0.001, respectively. The MTRasym(3.5ppm values of the putamen and the caudate were significantly higher in PD patients than in normal controls (P = 0.010 and P = 0.009, respectively. There were no significant differences for the mean diffusivity (MD in these four regions between PD patients and normal controls. In conclusion, CEST MR imaging provided multiple CEST image contrasts in the substantia nigra and the striatum in PD and may be superior to DTI in the diagnosis of PD.

  8. Chemical-exchange-saturation-transfer magnetic resonance imaging to map gamma-aminobutyric acid, glutamate, myoinositol, glycine, and asparagine: Phantom experiments

    Science.gov (United States)

    Oh, Jang-Hoon; Kim, Hyug-Gi; Woo, Dong-Cheol; Jeong, Ha-Kyu; Lee, Soo Yeol; Jahng, Geon-Ho

    2017-03-01

    The physical and technical development of chemical-exchange-saturation-transfer (CEST) magnetic resonance imaging (MRI) using clinical 3 T MRI was explored with the goal of mapping asparagine (Asn), gamma-aminobutyric acid (GABA), glutamate (Glu), glycine (Gly), and myoinositol (MI), which exist in the brain. Phantoms with nine different conditions at concentrations of 10, 30, and 50 mM and pH values of 5.6, 6.2, and 7.4 were prepared for the five target molecules to evaluate the dependence of the CEST effect in the concentration, the pH, and the amplitude of the applied radiofrequency field B1. CEST images in the offset frequency range of ±6 parts per million (ppm) were acquired using a pulsed radio-frequency saturation scheme with a clinical 3 T MRI system. A voxel-based main magnetic field B0 inhomogeneity correction, where B0 is the center frequency offset at zero ppm, was performed by using the spline interpolation method to fit the full Z-spectrum to estimate the center frequency. A voxel-based CEST asymmetry map was calculated to evaluate amide (-NH), amine (-NH2), and hydroxyl (-OH) groups for the five target molecules. The CEST effect for Glu, GABA, and Gly clearly increased with increasing concentrations. The CEST effect for MI was minimal, with no noticeable differences at different concentrations. The CEST effect for Glu and Gly increased with increasing acidity. The highest CEST asymmetry for GABA was observed at pH 6.2. The CEST effect for Glu, GABA, and Gly increased with increasing B1 amplitude. For all target molecules, the CEST effect for the human 3 T MRI system increased with increasing concentration and B1 amplitude, but varied with pH, depending on the characteristics of the molecules. The CEST effect for MI may be not suitable with clinical MRI systems. These results show that CEST imaging in the brain with the amine protons by using 3 T MRI is possible for several neuronal diseases.

  9. 7T Magnetization Transfer and Chemical Exchange Saturation Transfer MRI of Cortical Gray Matter: Can We Detect Neurochemical and Macromolecular Abnormalities?

    Science.gov (United States)

    2014-10-21

    Gochberg DF, Hirtle JA, Gore JC , Smith SA. Quantitative magnetization transfer imaging of human brain at 7 T. NeuroImage 2013;64:640-649.3625658 11. Jones...tions (M0f and M0m), spin– lattice relaxation rates (R1f and R1m), and spin–spin relaxation rates (R2f and R2m) for each pool as well as an

  10. Observing and preventing rubidium runaway in a direct-infusion xenon-spin hyperpolarizer optimized for high-resolution hyper-CEST (chemical exchange saturation transfer using hyperpolarized nuclei) NMR.

    Science.gov (United States)

    Witte, C; Kunth, M; Rossella, F; Schröder, L

    2014-02-28

    Xenon is well known to undergo host-guest interactions with proteins and synthetic molecules. As xenon can also be hyperpolarized by spin exchange optical pumping, allowing the investigation of highly dilute systems, it makes an ideal nuclear magnetic resonance probe for such host molecules. The utility of xenon as a probe can be further improved using Chemical Exchange Saturation Transfer using hyperpolarized nuclei (Hyper-CEST), but for highly accurate experiments requires a polarizer and xenon infusion system optimized for such measurements. We present the design of a hyperpolarizer and xenon infusion system specifically designed to meet the requirements of Hyper-CEST measurements. One key element of this design is preventing rubidium runaway, a chain reaction induced by laser heating that prevents efficient utilization of high photon densities. Using thermocouples positioned along the pumping cell we identify the sources of heating and conditions for rubidium runaway to occur. We then demonstrate the effectiveness of actively cooling the optical cell to prevent rubidium runaway in a compact setup. This results in a 2-3-fold higher polarization than without cooling, allowing us to achieve a polarization of 25% at continuous flow rates of 9 ml/min of (129)Xe. The simplicity of this design also allows it to be retrofitted to many existing polarizers. Combined with a direction infusion system that reduces shot-to-shot noise down to 0.56% we have captured Hyper-CEST spectra in unprecedented detail, allowing us to completely resolve peaks separated by just 1.62 ppm. Due to its high polarization and excellent stability, our design allows the comparison of underlying theories of host-guest systems with experiment at low concentrations, something extremely difficult with previous polarizers.

  11. Correcting reaction rates measured by saturation-transfer magnetic resonance spectroscopy

    Science.gov (United States)

    Gabr, Refaat E.; Weiss, Robert G.; Bottomley, Paul A.

    2008-04-01

    Off-resonance or spillover irradiation and incomplete saturation can introduce significant errors in the estimates of chemical rate constants measured by saturation-transfer magnetic resonance spectroscopy (MRS). Existing methods of correction are effective only over a limited parameter range. Here, a general approach of numerically solving the Bloch-McConnell equations to calculate exchange rates, relaxation times and concentrations for the saturation-transfer experiment is investigated, but found to require more measurements and higher signal-to-noise ratios than in vivo studies can practically afford. As an alternative, correction formulae for the reaction rate are provided which account for the expected parameter ranges and limited measurements available in vivo. The correction term is a quadratic function of experimental measurements. In computer simulations, the new formulae showed negligible bias and reduced the maximum error in the rate constants by about 3-fold compared to traditional formulae, and the error scatter by about 4-fold, over a wide range of parameters for conventional saturation transfer employing progressive saturation, and for the four-angle saturation-transfer method applied to the creatine kinase (CK) reaction in the human heart at 1.5 T. In normal in vivo spectra affected by spillover, the correction increases the mean calculated forward CK reaction rate by 6-16% over traditional and prior correction formulae.

  12. Pump-to-Signal Intensity Modulation Transfer in Saturated- Gain Fiber Optical Parametric Amplifiers

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Lund-Hansen, Toke; Rottwitt, Karsten

    2011-01-01

    The pump-to-signal intensity modulation transfer in saturated degenerate FOPAs is numerically investigated over the whole gain bandwidth. The intensity modulation transfer decreases and the OSNR improves when the amplifier operates in the saturation regime.......The pump-to-signal intensity modulation transfer in saturated degenerate FOPAs is numerically investigated over the whole gain bandwidth. The intensity modulation transfer decreases and the OSNR improves when the amplifier operates in the saturation regime....

  13. Lanthanide ion (III) complexes of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaminophosphonate (DOTA-4AmP8−) for dual biosensing of pH with CEST (chemical exchange saturation transfer) and BIRDS (biosensor imaging of redundant deviation in shifts)

    Science.gov (United States)

    Huang, Yuegao; Coman, Daniel; Ali, Meser M.; Hyder, Fahmeed

    2014-01-01

    Relaxivity based magnetic resonance of phosphonated ligands chelated with gadolinium (Gd3+) shows promise for pH imaging. However instead of monitoring the paramagnetic effect of lanthanide complexes on the relaxivity of water protons, biosensor (or molecular) imaging with magnetic resonance is also possible by detecting either the non-exchangeable or the exchangeable protons on the lanthanide complexes themselves. The non-exchangeable protons (e.g., –CHx, where 3≥x≥1) are detected using a three-dimensional chemical shift imaging method called Biosensor Imaging of Redundant Deviation in Shifts (BIRDS), whereas the exchangeable protons (e.g., –OH or –NHy, where 2≥y≥1) are measured with Chemical Exchange Saturation Transfer (CEST) contrast. Here we tested the feasibility of BIRDS and CEST for pH imaging of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaminophosphonate (DOTA-4AmP8−) chelated with thulium (Tm3+) and ytterbium (Yb3+). BIRDS and CEST experiments show that both complexes are responsive to pH and temperature changes. Higher pH and temperature sensitivities are obtained with BIRDS for either complex when using the chemical shift difference between two proton resonances vs. using the chemical shift of a single proton resonance, thereby eliminating the need to use water resonance as reference. While CEST contrast for both agents is linearly dependent on pH within a relatively large range (i.e., 6.3-7.9), much stronger CEST contrast is obtained with YbDOTA-4AmP5− than with TmDOTA-4AmP5−. In addition, we demonstrate the prospect of using BIRDS to calibrate CEST as new platform for quantitative pH imaging. PMID:24801742

  14. Ligand screening by saturation-transfer difference (STD) NMR spectroscopy.

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, V V

    2005-04-26

    NMR based methods to screen for high-affinity ligands have become an indispensable tool for designing rationalized drugs, as these offer a combination of good experimental design of the screening process and data interpretation methods, which together provide unprecedented information on the complex nature of protein-ligand interactions. These methods rely on measuring direct changes in the spectral parameters, that are often simpler than the complex experimental procedures used to study structure and dynamics of proteins. The goal of this review article is to provide the basic details of NMR based ligand-screening methods, with particular focus on the saturation transfer difference (STD) experiment. In addition, we provide an overview of other NMR experimental methods and a practical guide on how to go about designing and implementing them.

  15. Solubility and cation exchange in phosphate rock and saturated clinoptilolite mixtures

    Science.gov (United States)

    Allen, E. R.; Hossner, L. R.; Ming, D. W.; Henninger, D. L.

    1993-01-01

    Mixtures of zeolite and phosphate rock (PR) have the potential to provide slow-release fertilization of plants in synthetic soils by dissolution and ion-exchange reactions. This study was conducted to examine solubility and cation-exchange relationships in mixtures of PR and NH4- and K-saturated clinoptilolite (Cp). Batch-equilibration experiments were designed to investigate the effect of PR source, the proportion of exchangeable K and NH4, and the Cp to PR ratio on solution N, P, K, and Ca concentrations. The dissolution and cation-exchange reactions that occurred after mixing NH4- and K-saturated Cp with PR increased the solubility of the PR and simultaneously released NH4 and K into solution. The more reactive North Carolina (NC) PR rendered higher solution concentrations of NH4 and K when mixed with Cp than did Tennessee (TN) PR. Solution P concentrations for the Cp-NC PR mixture and the Cp-TN PR mixture were similar. Solution concentrations of N, P, K, and Ca and the ratios of these nutrients in solution varied predictably with the type of PR, the Cp/PR ratio, and the proportions of exchangeable K and NH4 on the Cp. Our research indicated that slow-release fertilization using Cp/PR media may provide adequate levels of N, P, and K to support plant growth. Solution Ca concentrations were lower than optimum for plant growth.

  16. A REVIEW ON HEAT TRANSFER THROUGH HELICAL COIL HEAT EXCHANGERS

    OpenAIRE

    Surendra Vishvakarma*, Sanjay Kumbhare, K. K. Thakur

    2016-01-01

    This study presents a brief review of heat transfer through helical coil heat exchangers. Helical coils of circular cross section have been used in wide variety of applications due to simplicity in manufacturing. Enhancement in heat transfer due to helical coils has been reported by many researchers. While the heat transfer characteristics of double pipe helical heat exchangers are available in the literature, there exists no published experimental or theoretical analysis of a helically coile...

  17. Pump-To-Signal Intensity Modulation Transfer Characteristics in FOPAs: Modulation Frequency and Saturation Effect

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Cristofori, Valentina; Lund-Hansen, Toke

    2012-01-01

    This paper reports a comprehensive study of pump- to-signal intensity modulation transfer (IMT) in single-pump fiber optic parametric amplifiers (FOPAs). In particular, the IMT is studied for the first time for high-frequency fluctuations of the pump as well as in the saturated gain regime. The IMT......% in the gain saturation regime with respect to the linear gain operation. Experimental results confirm the validity of the numerical study....

  18. Modification of the saturation magnetization of exchange bias thin film systems upon light-ion bombardment.

    Science.gov (United States)

    Huckfeldt, Henning; Gaul, Alexander; David Müglich, Nicolas; Holzinger, Dennis; Nissen, Dennis; Albrecht, Manfred; Emmrich, Daniel; Beyer, André; Gölzhäuser, Armin; Ehresmann, Arno

    2017-03-29

    The magnetic modification of exchange bias materials by 'ion bombardment induced magnetic patterning' has been established more than a decade ago. To understand these experimental findings several theoretical models were introduced. Few investigations, however, did focus on magnetic property modifications caused by effects of ion bombardment in the ferromagnetic layer. In the present study, the structural changes occurring under ion bombardment were investigated by Monte-Carlo simulations and in experiments. A strong reduction of the saturation magnetization scaling linearly with increasing ion doses is observed and our findings suggest that it is correlated to the swelling of the layer material based on helium implantation and vacancy creation.

  19. The effect of Sinabung volcanic ash and rock phosphate nanoparticle on CEC (cation exchange capacity) base saturation exchange (K, Na, Ca, Mg) and base saturation at Andisol soils Ciater, West Java

    Science.gov (United States)

    Yuniarti, Anni; Arifin, Mahfud; Sofyan, Emma Trinurasi; Natalie, Betty; Sudirja, Rija; Dahliani, Dewi

    2018-02-01

    Andisol, soil orders which covers an upland area dominantly. The aim of this research is to know the effect between the ameliorant of Sinabung volcanic ashes with the ameliorant of rock phosphatenanoparticle towards CEC and base saturation exchange (K, Na, Ca, Mg) and the base saturation on Ciater's Andisols, West Java. A randomized complete block design (RCBD) factorial with two factors was used in this research. The first factor is the volcanic ash and the second factor is rock phosphate which consists of four levels each amount of 0%, 2.5%, 5%, 7.5% with three replications. The result showed that there was no interaction between volcanic ash and rock phosphate nanoparticle formed in first month and fourth month towards the improvement of CEC and saturation base exchange rate unless magnesium cation exchange increased in fourth month. There was independent effect of volcanic ash formed nanoparticles towards base saturation exchange increased for 5% dose. There was independent effect of rock phosphate formed nanoparticles towards base saturation exchange and increased for 5% dose. The dose combination of volcanic ashes 7.5% with phosphate rock, 5% increased the base saturation in the first month incubation.

  20. Conjugate heat and mass transfer in heat mass exchanger ducts

    CERN Document Server

    Zhang, Li-Zhi

    2013-01-01

    Conjugate Heat and Mass Transfer in Heat Mass Exchanger Ducts bridges the gap between fundamentals and recent discoveries, making it a valuable tool for anyone looking to expand their knowledge of heat exchangers. The first book on the market to cover conjugate heat and mass transfer in heat exchangers, author Li-Zhi Zhang goes beyond the basics to cover recent advancements in equipment for energy use and environmental control (such as heat and moisture recovery ventilators, hollow fiber membrane modules for humidification/dehumidification, membrane modules for air purification, desi

  1. Heat exchanger device and method for heat removal or transfer

    Science.gov (United States)

    Koplow, Jeffrey P

    2013-12-10

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  2. Influence on Heat Transfer Coefficient of Heat Exchanger by Velocity and Heat Transfer Temperature Difference

    Directory of Open Access Journals (Sweden)

    WANG Fang

    2017-04-01

    Full Text Available Aimed to insufficient heat transfer of heat exchanger, research the influence on the heat transfer coefficient impacted by velocity and heat transfer temperature difference of tube heat exchanger. According to the different heat transfer temperature difference and gas velocity,the experimental data were divided into group. Using the control variable method,the above two factors were analyzed separately. K一△T and k一:fitting curve were clone to obtain empirical function. The entire heat exchanger is as the study object,using numerical simulation methods,porous media,k一£model,second order upwind mode,and pressure一velocity coupling with SIMPLE algorithm,the entire heat exchanger temperature field and the heat transfer coefficient distribution were given. Finally the trend of the heat transfer coefficient effected by the above two factors was gotten.

  3. Private transfers with incomplete information: A contribution to the "altruism-exchange motivation for transfers" debate

    OpenAIRE

    Eli Feinerman; Edward J. Seiler

    2002-01-01

    We examine the role of altruism in determining optimal transfers from a principal (a mother) to selfish agents (her children) in return for attention services. Transfer-attention contracts are studied in a setting in which informational asymmetries arise from the inability of a parent to determine the extent of her children's selfishness. We find a predominating exchange motive for transfers in the symmetric informational regime we study. However, both altruism and exchange are important moti...

  4. Proton-Transfer-Driven Water Exchange Mechanism in the Na+ Solvation Shell.

    Science.gov (United States)

    Hellström, Matti; Behler, Jörg

    2017-04-27

    Ligand exchange plays an important role for organic and inorganic chemical reactions. We demonstrate the existence of a novel water exchange mechanism, the "proton transfer pathway" (PTP), around Na+(aq) in basic (high pH) solution, using reactive molecular dynamics simulations employing a high-dimensional neural network potential. An aqua ligand in the first solvation (hydration) shell around a sodium ion is only very weakly acidic, but if a hydroxide ion is present in the second solvation shell, thermal fluctuations can cause the aqua ligand to transfer a proton to the neighboring OH-, resulting in a transient direct-contact ion pair, Na+-OH-, which is only weakly bound and easily dissociates. The extent to which water exchange events follow the PTP is pH-dependent: in dilute NaOH(aq) solutions, only very few exchanges occur, whereas in saturated NaOH(aq) solutions up to a third of water self-exchange events are induced by proton transfer. The principles and results outlined here are expected to be relevant for chemical synthesis involving bases and alkali metal cations.

  5. Resonant electronic excitation energy transfer by exchange mechanism in the quantum dot system

    Science.gov (United States)

    Chikalova-Luzina, O. P.; Samosvat, D. M.; Vyatkin, V. M.; Zegrya, G. G.

    2017-11-01

    A microscopic theory of nonradiative resonance energy transfer between spherical A3B5 semiconductor quantum dots by the exchange mechanism is suggested. The interdot Coulomb interaction is taken into consideration. It is assumed that the quantum dot-donor and the quantum dot-acceptor are made from the same A3B5 compound and are embedded in the matrix of another material that produces potential barriers for electrons and holes. The dependences of the energy transfer rate on the quantum-dot system parameters are found in the frame of the Kane model that provides the most adequate description of the real spectra of A3B5 semiconductors. The analytical treatment is carried out with using the density matrix method, which enabled us to perform an energy transfer analysis both in the weak-interaction approximation and in the strong-interaction approximation. The numerical calculations showed the saturation of the energy transfer rate at the distances between the donor and the acceptor approaching the contact one. The contributions of the exchange and direct Coulomb intractions can be of the same order at the small distances and can have the same value in the saturation range.

  6. Heat transfer and pressure drop during hydrocarbon refrigerant condensation inside a brazed plate heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Longo, Giovanni A. [University of Padova, Department of Management and Engineering, Str.lla S.Nicola 3, I-36100 Vicenza (Italy)

    2010-08-15

    This paper presents the heat transfer coefficients and pressure drop measured during HC-600a, HC-290 and HC-1270 saturated vapour condensation inside a brazed plate heat exchanger: the effects of refrigerant mass flux, saturation temperature (pressure) and fluid properties are investigated. The heat transfer coefficients show weak sensitivity to saturation temperature (pressure) and great sensitivity to refrigerant mass flux and fluid properties. A transition point between gravity controlled and forced convection condensation has been found for a refrigerant mass flux around 15-18 kg m{sup -2} s{sup -1}. In the forced convection condensation region the heat transfer coefficients show a 35-40% enhancement for a 60% increase of the refrigerant mass flux. The frictional pressure drop shows a linear dependence on the kinetic energy per unit volume of the refrigerant flow. HC-1270 shows heat transfer coefficients 5% higher than HC-600a and 10-15% higher than HC-290, together with frictional pressure drop 20-25% lower than HC-290 and 50-66% lower than HC-600a. (author)

  7. Flow and heat transfer enhancement in tube heat exchangers

    Science.gov (United States)

    Sayed Ahmed, Sayed Ahmed E.; Mesalhy, Osama M.; Abdelatief, Mohamed A.

    2015-11-01

    The performance of heat exchangers can be improved to perform a certain heat-transfer duty by heat transfer enhancement techniques. Enhancement techniques can be divided into two categories: passive and active. Active methods require external power, such as electric or acoustic field, mechanical devices, or surface vibration, whereas passive methods do not require external power but make use of a special surface geometry or fluid additive which cause heat transfer enhancement. The majority of commercially interesting enhancement techniques are passive ones. This paper presents a review of published works on the characteristics of heat transfer and flow in finned tube heat exchangers of the existing patterns. The review considers plain, louvered, slit, wavy, annular, longitudinal, and serrated fins. This review can be indicated by the status of the research in this area which is important. The comparison of finned tubes heat exchangers shows that those with slit, plain, and wavy finned tubes have the highest values of area goodness factor while the heat exchanger with annular fin shows the lowest. A better heat transfer coefficient ha is found for a heat exchanger with louvered finned and thus should be regarded as the most efficient one, at fixed pumping power per heat transfer area. This study points out that although numerous studies have been conducted on the characteristics of flow and heat transfer in round, elliptical, and flat tubes, studies on some types of streamlined-tubes shapes are limited, especially on wing-shaped tubes (Sayed Ahmed et al. in Heat Mass Transf 50: 1091-1102, 2014; in Heat Mass Transf 51: 1001-1016, 2015). It is recommended that further detailed studies via numerical simulations and/or experimental investigations should be carried out, in the future, to put further insight to these fin designs.

  8. Exchange kinetics by inversion transfer: integrated analysis of the phosphorus metabolite kinetic exchanges in resting human skeletal muscle at 7 T.

    Science.gov (United States)

    Ren, Jimin; Yang, Baolian; Sherry, A Dean; Malloy, Craig R

    2015-04-01

    To develop an inversion pulse-based, chemical exchange saturation transfer-like method for detection of (31) P magnetization exchanges among all nuclear magnetic resonance visible metabolites suitable for providing an integrated kinetic analysis of phosphorus exchange reactions in vivo. The exchange kinetics by inversion transfer (EKIT) sequence includes application of a frequency-selective inversion pulse arrayed over the range of relevant (31) P frequencies, followed by a constant delay and a hard readout pulse. A series of EKIT spectra, each given by a plot of Z-magnetization for each metabolite of interest versus frequency of the inversion pulse, can be generated from this single data set. EKIT spectra reflect chemical exchange due to known biochemical reactions, cross-relaxation effects, and relayed magnetization transfers due to both processes. The rate constants derived from EKIT data collected on resting human skeletal muscle were: ATP synthesis via ATP synthase (0.050 ± 0.016 s(-1) ), ATP synthesis via creatine kinase (0.264 ± 0.023 s(-1) ), and cross-relaxation between neighboring spin pairs within ATP (0.164 ± 0.022 s(-1) ). EKIT provides a simple, alternative method to detect chemical exchange, cross relaxation, and relayed magnetization transfer effects in human skeletal muscle at 7 T. © 2014 Wiley Periodicals, Inc.

  9. Various methods to improve heat transfer in exchangers

    Science.gov (United States)

    Pavel, Zitek; Vaclav, Valenta

    2015-05-01

    The University of West Bohemia in Pilsen (Department of Power System Engineering) is working on the selection of effective heat exchangers. Conventional shell and tube heat exchangers use simple segmental baffles. It can be replaced by helical baffles, which increase the heat transfer efficiency and reduce pressure losses. Their usage is demonstrated in the primary circuit of IV. generation MSR (Molten Salt Reactors). For high-temperature reactors we consider the use of compact desk heat exchangers, which are small, which allows the integral configuration of reactor. We design them from graphite composites, which allow up to 1000°C and are usable as exchangers: salt-salt or salt-acid (e.g. for the hydrogen production). In the paper there are shown thermo-physical properties of salts, material properties and principles of calculations.

  10. Heat Transfer of Nanofluid in a Double Pipe Heat Exchanger.

    Science.gov (United States)

    Aghayari, Reza; Maddah, Heydar; Zarei, Malihe; Dehghani, Mehdi; Kaskari Mahalle, Sahar Ghanbari

    2014-01-01

    This paper investigates the enhancement of heat transfer coefficient and Nusselt number of a nanofluid containing nanoparticles (γ-AL2O3) with a particle size of 20 nm and volume fraction of 0.1%-0.3% (V/V). Effects of temperature and concentration of nanoparticles on Nusselt number changes and heat transfer coefficient in a double pipe heat exchanger with counter turbulent flow are investigated. Comparison of experimental results with valid theoretical data based on semiempirical equations shows an acceptable agreement. Experimental results show a considerable increase in heat transfer coefficient and Nusselt number up to 19%-24%, respectively. Also, it has been observed that the heat transfer coefficient increases with the operating temperature and concentration of nanoparticles.

  11. Technology transfer personnel exchange at the Boeing Company

    Energy Technology Data Exchange (ETDEWEB)

    Antoniak, Z.I.

    1993-03-01

    The objective of the exchange was to transfer Pacific Northwest Laboratory (PNL) technology and expertise in advanced ceramic fabric composites (ACFC) to the Boeing Defense Space Group (Boeing Aerospace). Boeing Aerospace was especially interested in applying PNL-developed ACFC technology to its current and future spacecraft and space missions. Boeing has on-going independent research and development (R D) programs on advanced radiators and heat pipes, therefore, PNL research in ceramic fabric heat pipes was of particular interest to Boeing. Thus, this exchange assisted in the transfer of PNL's ACFC heat pipe technology and other, related research capabilities to private industrial application. The project was proposed as an initial step in building a long-term collaborative relationship between Boeing and PNL that may result in future Cooperative Research and Development Agreements (CRADAs) and/or other types of collaborative efforts.

  12. Technology transfer personnel exchange at the Boeing Company

    Energy Technology Data Exchange (ETDEWEB)

    Antoniak, Z.I.

    1993-03-01

    The objective of the exchange was to transfer Pacific Northwest Laboratory (PNL) technology and expertise in advanced ceramic fabric composites (ACFC) to the Boeing Defense & Space Group (Boeing Aerospace). Boeing Aerospace was especially interested in applying PNL-developed ACFC technology to its current and future spacecraft and space missions. Boeing has on-going independent research and development (R&D) programs on advanced radiators and heat pipes, therefore, PNL research in ceramic fabric heat pipes was of particular interest to Boeing. Thus, this exchange assisted in the transfer of PNL`s ACFC heat pipe technology and other, related research capabilities to private industrial application. The project was proposed as an initial step in building a long-term collaborative relationship between Boeing and PNL that may result in future Cooperative Research and Development Agreements (CRADAs) and/or other types of collaborative efforts.

  13. Evaluation of water transfer from saturated lightweight aggregate to cement paste matrix by neutron radiography

    Science.gov (United States)

    Maruyama, I.; Kanematsu, M.; Noguchi, T.; Iikura, H.; Teramoto, A.; Hayano, H.

    2009-06-01

    In high-strength concrete with low water-cement ratio, self-desiccation occurs due to cement hydration and causes shrinkage and an increased risk of cracking. While high-strength concrete has a denser matrix than normal-strength concrete, resulting in lower permeability, early-age cracks would cancel out this advantage. For the mitigation of this self-desiccation and resultant shrinkage, water-saturated porous aggregate, such as artificial lightweight aggregate, may be used in high-strength concrete. In this contribution, for the purpose of clarification of the volume change of high-strength concrete containing water-saturated lightweight aggregate, water transfer from the lightweight aggregate to cement paste matrix is visualized by neutron radiography. As a result, it is clear that water was supplied to the cement paste matrix in the range 3-8 mm from the surface of the aggregate, and the osmotic forces may yield water transfer around lightweight aggregate in a few hours after mixing.

  14. Convective heat transfer between a fluid-saturated porous medium and a permeable wall with fluid injection or withdrawal

    NARCIS (Netherlands)

    Brouwers, Jos

    1994-01-01

    The present paper addresses heat and mass transfer between a permeable wall and a fluid-saturated porous medium. To assess the effect of wall suction or injection on sensible heat transfer, a stagnant film model is developed. The model yields a thermal correction factor accounting for the effect of

  15. Low heat transfer oxidizer heat exchanger design and analysis

    Science.gov (United States)

    Kanic, P. G.; Kmiec, T. D.; Peckham, R. J.

    1987-01-01

    The RL10-IIB engine, a derivative of the RLIO, is capable of multi-mode thrust operation. This engine operates at two low thrust levels: tank head idle (THI), which is approximately 1 to 2 percent of full thrust, and pumped idle (PI), which is 10 percent of full thrust. Operation at THI provides vehicle propellant settling thrust and efficient engine thermal conditioning; PI operation provides vehicle tank pre-pressurization and maneuver thrust for log-g deployment. Stable combustion of the RL10-IIB engine at THI and PI thrust levels can be accomplished by providing gaseous oxygen at the propellant injector. Using gaseous hydrogen from the thrust chamber jacket as an energy source, a heat exchanger can be used to vaporize liquid oxygen without creating flow instability. This report summarizes the design and analysis of a United Aircraft Products (UAP) low-rate heat transfer heat exchanger concept for the RL10-IIB rocket engine. The design represents a second iteration of the RL10-IIB heat exchanger investigation program. The design and analysis of the first heat exchanger effort is presented in more detail in NASA CR-174857. Testing of the previous design is detailed in NASA CR-179487.

  16. Heat transfer studies on spiral plate heat exchanger

    Directory of Open Access Journals (Sweden)

    Rajavel Rangasamy

    2008-01-01

    Full Text Available In this paper, the heat transfer coefficients in a spiral plate heat exchanger are investigated. The test section consists of a plate of width 0.3150 m, thickness 0.001 m and mean hydraulic diameter of 0.01 m. The mass flow rate of hot water (hot fluid is varying from 0.5 to 0.8 kg/s and the mass flow rate of cold water (cold fluid varies from 0.4 to 0.7 kg/s. Experiments have been conducted by varying the mass flow rate, temperature, and pressure of cold fluid, keeping the mass flow rate of hot fluid constant. The effects of relevant parameters on spiral plate heat exchanger are investigated. The data obtained from the experimental study are compared with the theoretical data. Besides, a new correlation for the Nusselt number which can be used for practical applications is proposed.

  17. Radial variations in cation exchange capacity and base saturation rate in the wood of pedunculate oak and European beech

    Energy Technology Data Exchange (ETDEWEB)

    Herbauts, J.; Penninckx, V.; Gruber, W.; Meerts, P. [Universite Libre de Bruxelles, Laboratoire de genetique et d' ecologie vegetales, Brussels (Belgium)

    2002-10-01

    Visual observation of pedunculate oak trees and European beech trees in a mixed forest stand in the Belgian Ardennes revealed decreasing cation concentration profiles in wood. In order to determine whether these profiles are attributable to endogenous factors or to decreased availability of cations in the soil, radial profiles of water-soluble, exchangeable and total cations were investigated. Cation exchange capacity of wood was also determined. Results showed wood cation exchange capacity to decrease from pith to bark in European beech and from pith to outer heartwood in pedunculate oak. Decreasing profiles of exchangeable calcium and magnesium in peduncular oak and exchangeable calcium in European beech were found to be strongly constrained by cation exchange capacity, and thus not related to environmental change. Base cation saturation rate showed no consistent radial change in either species. It was concluded that the results did not provide convincing evidence to attribute the decrease in divalent cation concentration in pedunculate oak and European beech in this location to be due to atmospheric pollution. 42 refs., 1 tab., 4 figs.

  18. Stress transfer from pile group in saturated and unsaturated soil using theoretical and experimental approaches

    Directory of Open Access Journals (Sweden)

    al-Omari Raid R.

    2017-01-01

    Full Text Available Piles are often used in groups, and the behavior of pile groups under the applied loads is generally different from that of single pile due to the interaction of neighboring piles, therefore, one of the main objectives of this paper is to investigate the influence of pile group (bearing capacity, load transfer sharing for pile shaft and tip in comparison to that of single piles. Determination of the influence of load transfer from the pile group to the surrounding soil and the mechanism of this transfer with increasing the load increment on the tip and pile shaft for the soil in saturated and unsaturated state (when there is a negative pore water pressure. Different basic properties are used that is (S = 90%, γd = 15 kN / m3, S = 90%, γd = 17 kN / m3 and S = 60%, γd =15 kN / m3. Seven model piles were tested, these was: single pile (compression and pull out test, 2×1, 3×1, 2×2, 3×2 and 3×3 group. The stress was measured with 5 cm diameter soil pressure transducer positioned at a depth of 5 cm below the pile tip for all pile groups. The measured stresses below the pile tip using a soil pressure transducer positioned at a depth of 0.25L (where L is the pile length below the pile tip are compared with those calculated using theoretical and conventional approaches. These methods are: the conventional 2V:1H method and the method used the theory of elasticity. The results showed that the method of measuring the soil stresses with soil pressure transducer adopted in this study, gives in general, good results of stress transfer compared with the results obtained from the theoretical and conventional approaches.

  19. Mass Transfer From Nonaqueous Phase Organic Liquids in Water-Saturated Porous Media

    Science.gov (United States)

    Geller, J. T.; Hunt, J. R.

    2010-01-01

    Results of dissolution experiments with trapped nonaqueous phase liquids (NAPLs) are modeled by a mass transfer analysis. The model represents the NAPL as isolated spheres that shrink with dissolution and uses a mass transfer coefficient correlation reported in the literature for dissolving spherical solids. The model accounts for the reduced permeability of a region of residual NAPL relative to the permeability of the surrounding clean media that causes the flowing water to partially bypass the residual NAPL. The dissolution experiments with toluene alone and a benzene-toluene mixture were conducted in a water-saturated column of homogeneous glass beads over a range of Darcy velocities from 0.5 to 10 m d−1. The model could represent the observed effluent concentrations as the NAPL underwent complete dissolution. The changing pressure drop across the column was predicted following an initial period of NAPL reconfiguration. The fitted NAPL sphere diameters of 0.15 to 0.40 cm are consistent with the size of NAPL ganglia observed by others and are the smallest at the largest flow velocity. PMID:20336189

  20. Heat transfer with freezing in a scraped surface heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Lakhdar, M.B. [LGL France Refrigerating Division, Genas (France); Cerecero, R.; Alvarez, G.; Guilpart, J. [Cemagref, Antony cedex (France). Food Process Engineering; Flick, D. [Institut National Agronomique, Paris (France); Lallemand, A. [Institut National des Sciences Appliquees de Lyon (France). Centre de Thermique

    2005-01-01

    An experimental study was carried out on a scraped surface heat exchanger used for freezing of water-ethanol mixture and aqueous sucrose solution. The influence of various parameters on heat transfer intensity was established: product type and composition, flow rate, blade rotation speed, distance between blades and wall. During starting (transient period) the solution is first supercooled, then ice crystals appear on the scraped surface (heterogeneous nucleation) and no more supercooling is observed. It seems that, when blades are 3 mm far from the surface, a constant ice layer is formed having this thickness and acting as a thermal resistance. But when the blades rotate at 1 mm from the surface, periodically all the ice layer is removed despite the surface is not really scraped. This could simplify ice generator technology. An internal heat transfer coefficient was defined; it depends mainly on rotation speed. Correlations were proposed for its prediction, which could be applied, at least as a first approach, for the most common freezing applications of scraped surface heat exchanger i.e. ice creams (which are derived from sucrose solutions) and two-phase secondary refrigerants (which are principally ethanol solutions). (author)

  1. Slip-Flow and Heat Transfer in a Porous Microchannel Saturated with Power-Law Fluid

    Directory of Open Access Journals (Sweden)

    Yazan Taamneh

    2013-01-01

    Full Text Available This study aims to numerically examine the fluid flow and heat transfer in a porous microchannel saturated with power-law fluid. The governing momentum and energy equations are solved by using the finite difference technique. The present study focuses on the slip flow regime, and the flow in porous media is modeled using the modified Darcy-Brinkman-Forchheimer model for power-law fluids. Parametric studies are conducted to examine the effects of Knudsen number, Darcy number, power law index, and inertia parameter. Results are given in terms of skin friction and Nusselt number. It is found that when the Knudsen number and the power law index decrease, the skin friction on the walls decreases. This effect is reduced slowly while the Darcy number decreases until it reaches the Darcy regime. Consequently, with a very low permeability the effect of power law index vanishes. The numerical results indicated also that when the power law index decreases the fully-developed Nusselt number increases considerably especially, in the limit of high permeability, that is, nonDarcy regime. As far as Darcy regime is concerned the effects of the Knudsen number and the power law index of the fully-developed Nusselt number is very little.

  2. Acid precipitation effects on soil pH and base saturation of exchange sites

    Science.gov (United States)

    W. W. McFee; J. M. Kelly; R. H. Beck

    1976-01-01

    The typical values and probable ranges of acid-precipitation are evaluated in terms of their theoretical effects on pH and cation exchange equilibrium of soils characteristic of the humid temperature region. The extent of probable change in soil pH and the time required to cause such a change are calculated for a range of common soils. Hydrogen ion input by acid...

  3. Two on exchange : Transferring Goods or Splitting a Resource Pool

    NARCIS (Netherlands)

    Dijkstra, Jacob; Van Assen, Marcel A. L. M.

    We investigated the consequences for exchange outcomes of the violation of an assumption underlying most social psychological research on exchange. This assumption is that the negotiated direct exchange of commodities between two actors (pure exchange) can be validly represented as two actors

  4. Saturation transfer difference NMR and computational modeling of a sialoadhesin-sialyl lactose complex.

    Science.gov (United States)

    Bhunia, Anirban; Jayalakshmi, V; Benie, Andrew J; Schuster, Oliver; Kelm, Sørge; Rama Krishna, N; Peters, Thomas

    2004-01-22

    The siglecs are a family of I-type lectins binding to sialic acids on the cell surface. Sialoadhesin (siglec-1) is expressed at much higher levels in inflammatory macrophages and specifically binds to alpha-2,3-sialylated N-acetyl lactosamine residues of glycan chains. The terminal disaccharide alpha-D-Neu5Ac-(2-->3)-beta-D-Gal is thought to be the main epitope recognized by sialoadhesin. To understand the basis of this biological recognition reaction we combined NMR experiments with a molecular modeling study. We employed saturation transfer difference (STD) NMR experiments to characterize the binding epitope of alpha-2,3-sialylated lactose, alpha-D-Neu5Ac-(2-->3)-beta-D-Gal-(1-->4)-D-Glc 1 to sialoadhesin at atomic resolution. The experimental results were compared to a computational docking model and to X-ray data of a complex of sialyl lactose and sialoadhesin. The data reveal that sialoadhesin mainly recognizes the N-acetyl neuraminic acid and a small part of the galactose moiety of 1. The crystal structure of a complex of sialoadhesin with sialyl lactose 1 was used as a basis for a modeling study using the FlexiDock algorithm. The model generated was very similar to the original crystal structure. Therefore, the X-ray data were used to predict theoretical STD values utilizing the CORCEMA-STD protocol. The good agreement between experimental and theoretical STD values indicates that a combined modeling/STD NMR approach yields a reliable structural model for the complex of sialoadhesin with alpha-D-Neu5Ac-(2-->3)-beta-D-Gal-(1-->4)-D-Glc 1 in aqueous solution.

  5. Using a hybrid model to predict solute transfer from initially saturated soil into surface runoff with controlled drainage water.

    Science.gov (United States)

    Tong, Juxiu; Hu, Bill X; Yang, Jinzhong; Zhu, Yan

    2016-06-01

    The mixing layer theory is not suitable for predicting solute transfer from initially saturated soil to surface runoff water under controlled drainage conditions. By coupling the mixing layer theory model with the numerical model Hydrus-1D, a hybrid solute transfer model has been proposed to predict soil solute transfer from an initially saturated soil into surface water, under controlled drainage water conditions. The model can also consider the increasing ponding water conditions on soil surface before surface runoff. The data of solute concentration in surface runoff and drainage water from a sand experiment is used as the reference experiment. The parameters for the water flow and solute transfer model and mixing layer depth under controlled drainage water condition are identified. Based on these identified parameters, the model is applied to another initially saturated sand experiment with constant and time-increasing mixing layer depth after surface runoff, under the controlled drainage water condition with lower drainage height at the bottom. The simulation results agree well with the observed data. Study results suggest that the hybrid model can accurately simulate the solute transfer from initially saturated soil into surface runoff under controlled drainage water condition. And it has been found that the prediction with increasing mixing layer depth is better than that with the constant one in the experiment with lower drainage condition. Since lower drainage condition and deeper ponded water depth result in later runoff start time, more solute sources in the mixing layer are needed for the surface water, and larger change rate results in the increasing mixing layer depth.

  6. Human Regional Pulmonary Gas Exchange with Xenon Polarization Transfer (XTC)

    Science.gov (United States)

    Muradian, Iga; Butler, James; Hrovat, Mirko; Topulos, George; Hersman, Elizabeth; Ruset, Iulian; Covrig, Silviu; Frederick, Eric; Ketel, Stephen; Hersman, F. W.; Patz, Samuel

    2007-03-01

    Xenon Transfer Contrast (XTC) is an existing imaging method (Ruppert et al, Magn Reson Med, 51:676-687, 2004) that measures the fraction F of ^129Xe magnetization that diffuses from alveolar gas spaces to septal parenchymal tissue in lungs in a specified exchange time. As previously implemented, XTC is a 2-breath method and has been demonstrated in anesthetized animals. To use XTC in humans and to avoid issues associated with obtaining identical gas volumes on subsequent breath-hold experiments as well as precise image registration in post-processing, a single breath XTC method was developed that acquires three consecutive gradient echo images in an 8s acquisition. We report here initial measurements of the mean and variance of F for 5 normal healthy subjects as well as 7 asymptomatic smokers. The experiments were performed at two lung volumes (˜45 and 65% of TLC). We found that both the mean and variance of F increased with smoking history. In comparison, standard pulmonary function tests such as DLCO FEV1 showed no correlation with smoking history.

  7. Axial flow heat exchanger devices and methods for heat transfer using axial flow devices

    Science.gov (United States)

    Koplow, Jeffrey P.

    2016-02-16

    Systems and methods described herein are directed to rotary heat exchangers configured to transfer heat to a heat transfer medium flowing in substantially axial direction within the heat exchangers. Exemplary heat exchangers include a heat conducting structure which is configured to be in thermal contact with a thermal load or a thermal sink, and a heat transfer structure rotatably coupled to the heat conducting structure to form a gap region between the heat conducting structure and the heat transfer structure, the heat transfer structure being configured to rotate during operation of the device. In example devices heat may be transferred across the gap region from a heated axial flow of the heat transfer medium to a cool stationary heat conducting structure, or from a heated stationary conducting structure to a cool axial flow of the heat transfer medium.

  8. Enhanced signal dispersion in saturation transfer difference experiments by conversion to a 1D-STD-homodecoupled spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Pastor, Manuel; Vega-Vazquez, Marino [Universidade de Santiago de Compostela, Laboratorio Integral de Dinamica e Estructura de Biomoleculas Jose R. Carracido, Unidade de Resonancia Magnetica, Edificio CACTUS, RIAIDT (Spain); Capua, Antonia De [Seconda Universita degli Studi di Napoli, Dipartimento di Scienze Ambientali (Italy); Canales, Angeles [Centro de Investigaciones Biologicas, CSIC, Departamento de Estructura y funcion de proteinas (Spain); Andre, Sabine; Gabius, Hans-Joachim [Ludwig-Maximilians-Universitaet, Institut fuer Physiologische Chemie, Tieraerztliche Fakultaet (Germany); Jimenez-Barbero, Jesus [Centro de Investigaciones Biologicas, CSIC, Departamento de Estructura y funcion de proteinas (Spain)], E-mail: JJbarbero@cib.csic.es

    2006-10-15

    The saturation transfer difference (STD) experiment is a rich source of information on topological aspects of ligand binding to a receptor. The epitope mapping is based on a magnetization transfer after signal saturation from the receptor to the ligand, where interproton distances permit this process. Signal overlap in the STD spectrum can cause difficulties to correctly assign and/or quantitate the measured enhancements. To address this issue we report here a modified version of the routine experiment and a processing scheme that provides a 1D-STD homodecoupled spectrum (i.e. an experiment in which all STD signals appear as singlets) with line widths similar to those in original STD spectrum. These refinements contribute to alleviate problems of signal overlap. The experiment is based on 2D-J-resolved spectroscopy, one of the fastest 2D experiments under conventional data sampling in the indirect dimension, and provides excellent sensitivity, a key factor for the difference experiments.

  9. Amide Proton Transfer Imaging of Diffuse Gliomas: Effect of Saturation Pulse Length in Parallel Transmission-Based Technique.

    Directory of Open Access Journals (Sweden)

    Osamu Togao

    Full Text Available In this study, we evaluated the dependence of saturation pulse length on APT imaging of diffuse gliomas using a parallel transmission-based technique. Twenty-two patients with diffuse gliomas (9 low-grade gliomas, LGGs, and 13 high-grade gliomas, HGGs were included in the study. APT imaging was conducted at 3T with a 2-channel parallel transmission scheme using three different saturation pulse lengths (0.5 s, 1.0 s, 2.0 s. The 2D fast spin-echo sequence was used for imaging. Z-spectrum was obtained at 25 frequency offsets from -6 to +6 ppm (step 0.5 ppm. A point-by-point B0 correction was performed with a B0 map. Magnetization transfer ratio (MTRasym and ΔMTRasym (contrast between tumor and normal white matter at 3.5 ppm were compared among different saturation lengths. A significant increase in MTRasym (3.5 ppm of HGG was found when the length of saturation pulse became longer (3.09 ± 0.54% at 0.5 s, 3.83 ± 0.67% at 1 s, 4.12 ± 0.97% at 2 s, but MTRasym (3.5 ppm was not different among the saturation lengths in LGG. ΔMTRasym (3.5 ppm increased with the length of saturation pulse in both LGG (0.48 ± 0.56% at 0.5 s, 1.28 ± 0.56% at 1 s, 1.88 ± 0.56% at 2 s and HGG (1.72 ± 0.54% at 0.5 s, 2.90 ± 0.49% at 1 s, 3.83 ± 0.88% at 2 s. In both LGG and HGG, APT-weighted contrast was enhanced with the use of longer saturation pulses.

  10. Heat transfer, condensation and fog formation in crossflow plastic heat exchangers

    NARCIS (Netherlands)

    Brouwers, Jos; van der Geld, C.W.M.

    1996-01-01

    In this paper heat transfer of air-water-vapour mixtures in plastic crossflow heat exchangers is studied theoretically and experimentally. First, a model for heat transfer without condensation is derived, resulting in a set of classical differential equations. Subsequently, heat transfer with wall

  11. Distributive Conjugal Transfer: New Insights into Horizontal Gene Transfer and Genetic Exchange in Mycobacteria

    Science.gov (United States)

    Derbyshire, Keith M.; Gray, Todd A.

    2014-01-01

    The last decade has seen an explosion in the application of genomic tools across all biological disciplines. This is also true for mycobacteria, where whole genome sequences are now available for pathogens and non-pathogens alike. Genomes within the Mycobacterium tuberculosis Complex (MTBC) bear the hallmarks of horizontal gene transfer (HGT). Conjugation is the form of HGT with the highest potential capacity and evolutionary influence. Donor and recipient strains of Mycobacterium smegmatis actively conjugate upon co-culturing in biofilms and on solid media. Whole genome sequencing of the transconjugant progeny demonstrated the incredible scale and range of genomic variation that conjugation generates. Transconjugant genomes are complex mosaics of the parental strains. Some transconjugant genomes are up to one-quarter donor-derived, distributed over 30 segments. Transferred segments range from ~50 bp to ~225,000 bp in length, and are exchanged with their recipient orthologs all around the genome. This unpredictable genome-wide infusion of DNA sequences is called Distributive Conjugal Transfer (DCT), to distinguish it from traditional oriT-based conjugation. The mosaicism generated in a single transfer event resembles that seen from meiotic recombination in sexually reproducing organisms, and contrasts with traditional models of HGT. This similarity allowed the application of a GWAS-like approach to map the donor genes that confer a donor mating identity phenotype. The mating identity genes map to the esx1 locus, expanding the central role of ESX-1 function in conjugation. The potential for DCT to instantaneously blend genomes will affect how we view mycobacterial evolution, and provide new tools for the facile manipulation of mycobacterial genomes. PMID:25505644

  12. Analysis of Exchange Interaction and Electron Delocalization as Intramolecular Determinants of Intermolecular Electron-Transfer Kinetics.

    Science.gov (United States)

    Bominaar, E. L.; Achim, C.; Borshch, S. A.; Girerd, J.-J.; Münck, E.

    1997-08-13

    During the past decades, spectroscopic characterization of exchange interactions and electron delocalization has developed into a powerful tool for the recognition of metal clusters in metalloproteins. By contrast, the biological relevance of these interactions has received little attention thus far. This paper presents a theoretical study in which this problem is addressed. The rate constant for intermolecular electron-transfer reactions which are essential in many biological processes is investigated. An expression is derived for the dependence of the rate constant for self-exchange on the delocalization degree of the mixed-valence species. This result allows us to rationalize published kinetic data. In the simplest case of electron transfer from an exchange-coupled binuclear mixed-valence donor to a diamagnetic acceptor, the rate constant is evaluated, taking into account spin factors and exchange energies in the initial and final state. The theoretical analysis indicates that intramolecular spin-dependent electron delocalization (double exchange) and Heisenberg-Dirac-van Vleck (HDvV) exchange have an important impact on the rate constant for intermolecular electron transfer. This correlation reveals a novel relationship between magnetochemistry and electrochemistry. Contributions to the electron transfer from the ground and excited states of the exchange-coupled dimer have been evaluated. For clusters in which these states have different degrees of delocalization, the excited-state contributions to electron transfer may become dominant at potentials which are less reductive than the potential at which the rate constant for the transfer from the ground state is maximum. The rate constant shows a steep dependence on HDvV exchange, which suggests that an exchange-coupled cluster can act as a molecular switch for exchange-controlled electron gating. The relevance of this result is discussed in the context of substrate specificity of electron-transfer reactions in

  13. A study of heat-transfer processes in a countercurrent cyclone heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    M.G. Abuov; P.A. Kovgan [TOO Gornoe Byuro (Mining Bureau), Alma Aty (Kazakhstan)

    2009-07-01

    Heat-transfer processes in a countercurrent cyclone heat exchanger are investigated on a pilot installation. Volumetric coefficients of heat transfer from gases to a flow of solid particles are determined during operation with tangentially swirled flow of gas suspension, separation of solid particles on the heat-exchanger walls, and deceleration of flue gas flows as they collide with the charge mixture fed to the apparatus.

  14. Laminar fluid flow and heat transfer in a fin-tube heat exchanger with vortex generators

    Energy Technology Data Exchange (ETDEWEB)

    Yanagihara, J.I.; Rodriques, R. Jr. [Polytechnic School of Univ. of Sao Paolo, Sao Paolo (Brazil). Dept. of Mechanical Engineering

    1996-12-31

    Development of heat transfer enhancement techniques for fin-tube heat exchangers has great importance in industry. In recent years, heat transfer augmentation by vortex generators has been considered for use in plate fin-tube heat exchangers. The present work describes a numerical investigation about the influence of delta winglet pairs of vortex generators on the flow structure and heat transfer of a plate fin-tube channel. The Navier-Stokes and Energy equations are solved by the finite volume method using a boundary-fitted coordinate system. The influence of vortex generators parameters such as position, angle of attack and aspect ratio were investigated. Local and global influences of vortex generators in heat transfer and flow losses were analyzed by comparison with a model using smooth fin. The results indicate great advantages of this type of geometry for application in plate fin-tube heat exchangers, in terms of large heat transfer enhancement and small pressure loss penalty. (author)

  15. Numerical and Experimental Investigation for Heat Transfer Enhancement by Dimpled Surface Heat Exchanger in Thermoelectric Generator

    Science.gov (United States)

    Wang, Yiping; Li, Shuai; Yang, Xue; Deng, Yadong; Su, Chuqi

    2016-03-01

    For vehicle thermoelectric exhaust energy recovery, the temperature difference between the heat exchanger and the coolant has a strong influence on the electric power generation, and ribs are often employed to enhance the heat transfer of the heat exchanger. However, the introduction of ribs will result in a large unwanted pressure drop in the exhaust system which is unfavorable for the engine's efficiency. Therefore, how to enhance the heat transfer and control the pressure drop in the exhaust system is quite important for thermoelectric generators (TEG). In the current study, a symmetrical arrangement of dimpled surfaces staggered in the upper and lower surfaces of the heat exchanger was proposed to augment heat transfer rates with minimal pressure drop penalties. The turbulent flow characteristics and heat transfer performance of turbulent flow over the dimpled surface in a flat heat exchanger was investigated by numerical simulation and temperature measurements. The heat transfer capacity in terms of Nusselt number and the pressure loss in terms of Fanning friction factors of the exchanger were compared with those of the flat plate. The pressure loss and heat transfer characteristics of dimples with a depth-to-diameter ratio ( h/D) at 0.2 were investigated. Finally, a quite good heat transfer performance with minimal pressure drop heat exchanger in a vehicle TEG was obtained. And based on the area-averaged surface temperature of the heat exchanger and the Seeback effect, the power generation can be improved by about 15% at Re = 25,000 compared to a heat exchanger with a flat surface.

  16. The two-photon exchange contribution to elastic electron-nucleon scattering at large momentum transfer

    Energy Technology Data Exchange (ETDEWEB)

    Andrei V. Afanasev; Stanley J. Brodsky; Carl E. Carlson; Yu-Chun Chen; Marc Vanderhaeghen

    2005-01-01

    We estimate the two-photon exchange contribution to elastic electron-proton scattering at large momentum transfer by using a quark-parton representation of virtual Compton scattering. We thus can relate the two-photon exchange amplitude to the generalized parton distributions which also enter in other wide angle scattering processes. We find that the interference of one- and two-photon exchange contribution is able to substantially resolve the difference between electric form factor measurements from Rosenbluth and polarization transfer experiments.

  17. A one-dimensional heat transfer model for parallel-plate thermoacoustic heat exchangers

    NARCIS (Netherlands)

    de Jong, Anne; Wijnant, Ysbrand H.; de Boer, Andries

    2014-01-01

    A one-dimensional (1D) laminar oscillating flow heat transfer model is derived and applied to parallel-plate thermoacoustic heat exchangers. The model can be used to estimate the heat transfer from the solid wall to the acoustic medium, which is required for the heat input/output of thermoacoustic

  18. Is It True Love? Altruism Versus Exchange in Time and Money Transfers

    NARCIS (Netherlands)

    Alessie, Rob; Angelini, Viola; Pasini, Giacomo

    2014-01-01

    This paper investigates what motivates intergenerational inter-vivos time and money transfers. We consider a model in which transfers may be driven not only by altruism, but also by exchange considerations. We use data from the Survey of Health, Ageing and Retirement in Europe to discriminate

  19. Heat transfer characteristics of various kinds of ground heat exchangers for ground source heat pump system

    Science.gov (United States)

    Miyara, A.; Kariya, K.; Ali, Md. H.; Selamat, S. B.; Jalaluddin

    2017-01-01

    Three kinds of vertical-type ground heat exchangers, U-tube; double-tube; multi-tube, and two kinds of horizontal-type ground heat exchangers, standing Slinky; reclined Slinky, were experimentally and numerically investigated in order to clarify their heat transfer characteristics. Experiments and simulations were carried out under two operation conditions which are continuous operation mode and discontinuous operation mode and effects of temperature recovery and thermal storage on the heat transfer rate were shown. Differences of the heat transfer rate between standing Slinky and reclined Slinky were also indicated.

  20. Reduced dimension model for heat transfer of ground heat exchanger in permafrost

    Science.gov (United States)

    Vasilyeva, M.; Stepanov, S.; Sirditov, I.

    2017-12-01

    In this work, we present reduced dimensional model for heat transfer processes of ground heat exchanger in permafrost. A mathematical model is described by a coupled system of equations for heat transfer in the ground subdomain and in heat exchanger (pipes). Because radius of the pipes is very small compared to the size of surrounding ground, we write heat transfer problem in pipes as reduced dimensional equation, where we consider pipes as one-dimensional lines. We present a computational algorithm and numerical results for model problem.

  1. Improvement of heat transfer by means of ultrasound: Application to a double-tube heat exchanger.

    Science.gov (United States)

    Legay, M; Simony, B; Boldo, P; Gondrexon, N; Le Person, S; Bontemps, A

    2012-11-01

    A new kind of ultrasonically-assisted heat exchanger has been designed, built and studied. It can be seen as a vibrating heat exchanger. A comprehensive description of the overall experimental set-up is provided, i.e. of the test rig and the acquisition system. Data acquisition and processing are explained step-by-step with a detailed example of graph obtained and how, from these experimental data, energy balance is calculated on the heat exchanger. It is demonstrated that ultrasound can be used efficiently as a heat transfer enhancement technique, even in such complex systems as heat exchangers. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Double tube heat exchanger with novel enhancement: part II—single phase convective heat transfer

    Science.gov (United States)

    Tiruselvam, R.; Chin, W. M.; Raghavan, Vijay R.

    2012-08-01

    The study is conducted to evaluate the heat transfer characteristics of two new and versatile enhancement configurations in a double tube heat exchanger annulus. The novelty is that they are usable in single phase forced convection, evaporation and condensation. Heat transfer coefficients are determined by the Wilson Plot technique in laminar and turbulent flow and correlations are proposed for Nusselt numbers. Comparisons are then made between heat transfer and flow friction.

  3. A transfer function approach to the small-signal response of saturated semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Nielsen, Mads Lønstrup; Blumenthal, D. J.; Mørk, Jesper

    2000-01-01

    A theoretical analysis of the small-signal frequency response (SSFR) of a wavelength converter based on cross-gain modulation in a semiconductor optical amplifier with a finite waveguide loss is presented. We use a transfer function formalism to explain the resonant behavior of the frequency...

  4. A simplified transfer function for estimating saturated hydraulic conductivity of porous drainage filters

    DEFF Research Database (Denmark)

    Canga, Eriona; Iversen, Bo Vangsø; Kjærgaard, Charlotte

    2013-01-01

    variables obtained from the grain size distribution and bulk density. The optimal model for predicting Ksat contained two parameters, D20 and D50, which describe respectively the particle diameters, where 20 and 50 % of all particles are finer by weight. The predicted Ksat values were in good agreement......Knowledge of the saturated hydraulic conductivity (Ksat) of porous filters used in water treatment technologies is important for optimizing the retention of nutrients and pollutants. This parameter determines the hydraulic capacity, which together with the Chemical properties of the filter media......, bulk density, uniformity coefficient, particle density, and porosity of 46 porous media fractions. The fractions ranged in grain size from 0.5 to 20 mm and were obtained from seven commercial available coarse filter materials. A backward stepwise regression analysis was performed between Ksat and 10...

  5. Experimental investigation of saturation effect on pump-to-signal intensity modulation transfer in single-pump phase-insensitive fiber optic parametric amplifiers

    DEFF Research Database (Denmark)

    Cristofori, Valentina; Lali-Dastjerdi, Zohreh; Lund-Hansen, Toke

    2013-01-01

    We present an experimental characterization of how signal gain saturation affects the transfer of intensity modulation from the pump to the signal in single-pump, phase-insensitive fiber optic parametric amplifiers (FOPAs). In this work, we demonstrate experimentally for the first time, to our...... knowledge, how gain saturation of a FOPA reduces the noise contribution due to the transfer of pump power fluctuations to the signal. In a particular example, it is shown that the transferred noise is significantly reduced by a factor of 3, while the FOPA gain remains above 10 dB....

  6. Thermal performance analysis for heat exchangers having a variable overall heat transfer coefficient

    Science.gov (United States)

    Conklin, J. C.; Granryd, E.

    The classic, conventional analysis for the thermal performance of heat exchangers is based on three assumptions: constant fluid flow rate, constant specific heat fluids, and constant overall heat transfer coefficient. Our analysis describes a general approach for analyzing the thermal performance of heat exchangers in which the overall heat transfer coefficient varies as a function of enthalpy, with the other two basic assumptions of constant mass flow rates and constant specific heats unchanged. Many heat exchangers have an overall heat transfer coefficient that is not constant. The conventional heat exchanger thermal performance analysis is correct as long as a true, area-weighted mean value is used. In many applications, however, fluids undergo a change in phase, and the heat transfer coefficient is a function of the local quality or enthalpy; hence, the true, area-weighted, mean heat transfer coefficient will be a function of the heat flux distribution. Examples are presented that illustrate the variation in overall heat transfer coefficient for an evaporation process. We present a general method for computing a true, area-weighted mean overall heat transfer coefficient that permits use of a local overall heat transfer coefficient that is an arbitrary function of enthalpy. This method allows a simple yet accurate analysis of the effects of a variable overall heat transfer coefficient to be made without the use of a large mainframe computer. We then investigate: (1) linear variation of local overall heat transfer coefficient with respect to enthalpy; and (2) two heat transfer correlations applicable to flow-boiling inside a tube.

  7. Transfer model of water-soluble material in saturated/unsaturated ground

    Science.gov (United States)

    Nomura, Shun; Kawai, Katsuyuki; Kakui, Shunsuke; Tachibana, Shinya; Kanazawa, Shinichi; Iizuka, Atsushi

    The ground pollution is one of the most serious environmental issues all over the world now. Industrial wastes discharged from various human activities infiltrate to the ground, diffuse and damage to plants and animals indirectly. Therefore, it is strongly requested to know the transfer behavior of contaminant movement in the ground. In this study, continuous equations and advection-dispersion equation are derived from mass conservation laws in soil, water, air and dissolved material phases. These governing equations are applied to the constitutive model for unsaturated soil and formulated in the framework of the initial boundary value problems with the finite element method The soil/water/air coupled analysis program, DACSAR-M_ad, applied mass transfer equation to is coded. Here, the mass within the ground due to loading is simulated with this code.

  8. Boiling heat transfer of refrigerant R-21 in upward flow in plate-fin heat exchanger

    Science.gov (United States)

    Kuznetsov, V. V.; Shamirzaev, A. S.

    2015-11-01

    The article presents the results of experimental investigation of boiling heat transfer of refrigerant R-21 in upward flow in a vertical plate-fin heat exchanger with transverse size of the channels that is smaller than the capillary constant. The heat transfer coefficients obtained in ranges of small mass velocities and low heat fluxes, which are typical of the industry, have been poorly studied yet. The characteristic patterns of the upward liquid-vapor flow in the heat exchanger channels and the regions of their existence are detected. The obtained data show a weak dependence of heat transfer coefficient on equilibrium vapor quality, mass flow rate, and heat flux density and do not correspond to calculations by the known heat transfer models. A possible reason for this behavior is a decisive influence of evaporation of thin liquid films on the heat transfer at low heat flux.

  9. Mass and Heat Transfer in Ion-Exchange Membranes Applicable to Solid Polymer Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Otteroey, M.

    1996-04-01

    In this doctoral thesis, an improved emf method for determination of transference numbers of two counter ions in ion-exchange membranes is presented. Transference numbers were obtained as a continuous function of the composition. The method avoids problems with diffusion by using a stack of membranes. Water transference coefficients in ion-exchange membranes is discussed and reversible and irreversible water transfer is studied by emf methods. Efforts were made to get data relevant to the solid polymer fuel cell. The results support the findings of other researchers that the reversible water transfer is lower than earlier predicted. A chapter on the conductivity of ion-exchange membranes establishes a method to separate the very thin liquid layers surrounding the membranes in a stack. Using the method it was found that the conductivity is obtained with high accuracy and that the liquid layer in a membrane stack can contribute significantly to the total measured resistance. A four point impedance method was tested to measure the conductivity of membranes under fuel cell conditions. Finally, there is a discussion of reversible heat effects and heat transfer in ion-exchange membranes. 155 refs., 45 figs., 13 tabs.

  10. Saturation transfer difference nuclear magnetic resonance titrations reveal complex multistep-binding of l-fucose to norovirus particles.

    Science.gov (United States)

    Mallagaray, Alvaro; Rademacher, Christoph; Parra, Francisco; Hansman, Grant; Peters, Thomas

    2017-01-01

    Recently, combined nuclear magnetic resonance (NMR), native mass spectrometry (MS) and X-ray crystallographic studies have demonstrated that binding of histo-blood group antigens (HBGAs) to norovirus capsid protein (P-dimers) is a cooperative process involving four binding pockets. Here, we show that binding to norovirus virus-like particles (VLPs) is even more complex. We performed saturation transfer difference (STD) NMR titration experiments with two representative genotypes of norovirus VLPs using l-fucose as a minimal HBGA. Compared to titrations with P-dimers, the corresponding binding isotherms reflect at least six distinct binding events. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Dynamics of tropomyosin in muscle fibers as monitored by saturation transfer EPR of bi-functional probe.

    Directory of Open Access Journals (Sweden)

    Roni F Rayes

    Full Text Available The dynamics of four regions of tropomyosin was assessed using saturation transfer electron paramagnetic resonance in the muscle fiber. In order to fully immobilize the spin probe on the surface of tropomyosin, a bi-functional spin label was attached to i,i+4 positions via cysteine mutagenesis. The dynamics of bi-functionally labeled tropomyosin mutants decreased by three orders of magnitude when reconstituted into "ghost muscle fibers". The rates of motion varied along the length of tropomyosin with the C-terminus position 268/272 being one order of magnitude slower then N-terminal domain or the center of the molecule. Introduction of troponin decreases the dynamics of all four sites in the muscle fiber, but there was no significant effect upon addition of calcium or myosin subfragment-1.

  12. Analysis of Heat Transfers inside Counterflow Plate Heat Exchanger Augmented by an Auxiliary Fluid Flow

    Science.gov (United States)

    Khaled, A.-R. A.

    2014-01-01

    Enhancement of heat transfers in counterflow plate heat exchanger due to presence of an intermediate auxiliary fluid flow is investigated. The intermediate auxiliary channel is supported by transverse conducting pins. The momentum and energy equations for the primary fluids are solved numerically and validated against a derived approximate analytical solution. A parametric study including the effect of the various plate heat exchanger, and auxiliary channel dimensionless parameters is conducted. Different enhancement performance indicators are computed. The various trends of parameters that can better enhance heat transfer rates above those for the conventional plate heat exchanger are identified. Large enhancement factors are obtained under fully developed flow conditions. The maximum enhancement factors can be increased by above 8.0- and 5.0-fold for the step and exponential distributions of the pins, respectively. Finally, counterflow plate heat exchangers with auxiliary fluid flows are recommended over the typical ones if these flows can be provided with the least cost. PMID:24719572

  13. Analysis of heat transfers inside counterflow plate heat exchanger augmented by an auxiliary fluid flow.

    Science.gov (United States)

    Khaled, A-R A

    2014-01-01

    Enhancement of heat transfers in counterflow plate heat exchanger due to presence of an intermediate auxiliary fluid flow is investigated. The intermediate auxiliary channel is supported by transverse conducting pins. The momentum and energy equations for the primary fluids are solved numerically and validated against a derived approximate analytical solution. A parametric study including the effect of the various plate heat exchanger, and auxiliary channel dimensionless parameters is conducted. Different enhancement performance indicators are computed. The various trends of parameters that can better enhance heat transfer rates above those for the conventional plate heat exchanger are identified. Large enhancement factors are obtained under fully developed flow conditions. The maximum enhancement factors can be increased by above 8.0- and 5.0-fold for the step and exponential distributions of the pins, respectively. Finally, counterflow plate heat exchangers with auxiliary fluid flows are recommended over the typical ones if these flows can be provided with the least cost.

  14. Spanish and exchange students: an analysis of their transferable skills in marketing modules

    OpenAIRE

    González Gascón, Elena; Juan Vigaray, María Dolores de; Carmona Martínez, Julio; Martínez Mora, Carmen; Vallés Amores, María Luisa; López García, Juan José; Hernández Ricarte, Victoria

    2013-01-01

    The main goal of the present study is to determine whether or not there are differences between Spanish and exchange students when it comes to acquiring several transferable skills. There is an increasing number of international students in our classrooms. Although we are better acquainted with the profile of Spanish students, we know that exchange students come from completely different cultures and education systems, and it is worth exploring if a cross-cultural setting has an effect on the...

  15. Intensification of heat and mass transfer by ultrasound: application to heat exchangers and membrane separation processes.

    Science.gov (United States)

    Gondrexon, N; Cheze, L; Jin, Y; Legay, M; Tissot, Q; Hengl, N; Baup, S; Boldo, P; Pignon, F; Talansier, E

    2015-07-01

    This paper aims to illustrate the interest of ultrasound technology as an efficient technique for both heat and mass transfer intensification. It is demonstrated that the use of ultrasound results in an increase of heat exchanger performances and in a possible fouling monitoring in heat exchangers. Mass transfer intensification was observed in the case of cross-flow ultrafiltration. It is shown that the enhancement of the membrane separation process strongly depends on the physico-chemical properties of the filtered suspensions. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Investigation of heat transfer inside a PCM-air heat exchanger: a numerical parametric study

    Science.gov (United States)

    Herbinger, Florent; Bhouri, Maha; Groulx, Dominic

    2017-07-01

    In this paper, the use of PCMs for thermal storage of energy in HVAC applications was investigated by studying numerically the thermal performance of a PCM-air heat exchanger. The PCM used in this study was dodecanoic acid. A symmetric 3D model, incorporating conductive and convective heat transfer (air only) as well as laminar flow, was created in COMSOL Multiphysics 5.0. Simulations examined the dependence of the heat transfer rate on the temperature and velocity of the incoming air as well as the size of the channels in the heat exchanger. Results indicated that small channels size lead to a higher heat transfer rates. A similar trend was also obtained for high incoming air temperature, whereas the heat transfer rate was less sensitive to the incoming air velocity.

  17. Optimal Allocation of Heat Exchanger Inventory Associated with Fixed Power Output or Fixed Heat Transfer Rate Input

    OpenAIRE

    COSTEA M.; Petrescu, S; K. Le Saos; Michel Feidt

    2010-01-01

    The purpose of this study is to determine the optimal distribution of the heat transfer surface area or conductance among the Stirling engine heat exchangers when the minimum of the total heat transfer surface area of the heat exchangers is sought. The optimization procedure must fulfill one of the following constraints: (1) fixed power output of the engine, (2) fixed heat transfer rate available at the source, or (3) fixed power output and heat transfer rate at the source. Internal and exter...

  18. Creating Sustainable Cities through Knowledge Exchange: A Case Study of Knowledge Transfer partnerships

    Science.gov (United States)

    Hope, Alex

    2016-01-01

    Purpose: The purpose of this paper is to examine the use of knowledge transfer partnership (KTP)as a means for universities to generate and exchange knowledge to foster sustainable cities and societies. Design/methodology/approach: This paper reports on a series of separate yet interrelated KTPs between a university and the local authority in the…

  19. Reactivity of Phenol Allylation Using Phase-Transfer Catalysis in Ion-Exchange Membrane Reactor

    Directory of Open Access Journals (Sweden)

    Ho Shing Wu

    2012-01-01

    Full Text Available This study investigates the reactivity of phenol allylation using quaternary ammonium salt as a phase-transfer catalyst in three types of membrane reactors. Optimum reactivity and turnover of phenol allylation were obtained using a respond surface methodology. The contact angle, water content, and degree of crosslinkage were measured to understand the microenvironment in the ion exchange membrane.

  20. Generator-Absorber heat exchange transfer apparatus and method using an intermediate liquor

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Benjamin A. (Benton Harbor, MI); Zawacki, Thomas S. (St. Joseph, MI)

    1996-11-05

    Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use the working solution of the absorption system for the heat transfer medium where the working solution has an intermediate liquor concentration.

  1. Generator-Absorber heat exchange transfer apparatus and method using an intermediate liquor

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, B.A.; Zawacki, T.S.

    1996-11-05

    Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use the working solution of the absorption system for the heat transfer medium where the working solution has an intermediate liquor concentration. 13 figs.

  2. A one-dimensional heat transfer model for parallel-plate thermoacoustic heat exchangers.

    Science.gov (United States)

    de Jong, J A; Wijnant, Y H; de Boer, A

    2014-03-01

    A one-dimensional (1D) laminar oscillating flow heat transfer model is derived and applied to parallel-plate thermoacoustic heat exchangers. The model can be used to estimate the heat transfer from the solid wall to the acoustic medium, which is required for the heat input/output of thermoacoustic systems. The model is implementable in existing (quasi-)1D thermoacoustic codes, such as DeltaEC. Examples of generated results show good agreement with literature results. The model allows for arbitrary wave phasing; however, it is shown that the wave phasing does not significantly influence the heat transfer.

  3. Dynamics and energetics of the mammalian phosphatidylinositol transfer protein phospholipid exchange cycle

    DEFF Research Database (Denmark)

    Grabon, Aby; Orłowski, Adam; Tripathi, Ashutosh

    2017-01-01

    . However, the details of the PITP-mediated lipid exchange cycle remain entirely obscure. Here, all-atom molecular dynamics simulations of the mammalian StART-like PtdIns/phosphatidylcholine (PtdCho) transfer protein PITPα, both on membrane bilayers and in solvated systems, informed downstream biochemical...... analyses that tested key aspects of the hypotheses generated by the molecular dynamics simulations. These studies provided five key insights into the PITPα lipid exchange cycle: (i) interaction of PITPα with the membrane is spontaneous and mediated by four specific protein substructures; (ii) the ability......Phosphatidylinositol-transfer proteins (PITPs) regulate phosphoinositide signaling in eukaryotic cells. The defining feature of PITPs is their ability to exchange phosphatidylinositol (PtdIns) molecules between membranes, and this property is central to PITP-mediated regulation of lipid signaling...

  4. Conductividad hidráulica en un suelo aluvial en respuesta al porcentaje de sodio intercambiable Saturated hydraulic conductivity of an alluvial soil with different exchangeable sodium percentages

    Directory of Open Access Journals (Sweden)

    Francisco L. Barreto Filho

    2003-08-01

    Full Text Available El efecto del porcentaje de sodio intercambiable (PSI sobre la conductividad hidráulica de un suelo saturado, fue estudiado en condiciones de laboratorio a través de la determinación de las relaciones entre la conductividad hidráulica medida en un suelo normal y las medidas en suelos con diferentes PSI. Los resultados muestran una gran reducción de la conductividad hidráulica con el aumento de sodio en el suelo, llegando esta reducción a ser en las muestras más sodificadas de casi 100%, cuando comparadas con las muestras sin sodio, hecho probablemente acontecido debido al efecto dispersante del sodio sobre las partículas del suelo.The effect of different exchangeable sodium percentages (ESP on the saturated hydraulic conductivity of a soil was studied under laboratory conditions by determining the relationship between the hydraulic conductivity of a normal soil and that measured on soil with different ESP. The results show a great reduction in the saturated hydraulic conductivity with the increase of the exchangeable sodium percentage in the soil, this reduction being as great as 100% on the highly sodified samples when compared with those which did not receive sodium treatment. This fact is explained due to the dispersing effect of the exchangeable sodium on the soil particles.

  5. Effect of Channel Configurations for Tritium Transfer in Printed Circuit Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Chang Oh; Eung Kim; Robert Shrake; Mike Patterson

    2009-05-01

    The Next Generation Nuclear Plant (NGNP), a very High temperature Gas-Cooled Reactor (VHTR) concept, will provide the first demonstration of a closed-loop Brayton cycle at a commercial scale of a few hundred megawatts electric and hydrogen production. The power conversion system (PCS) for the NGNP will take advantage of the significantly higher reactor outlet temperatures of the VHTR to provide higher efficiencies than can be achieved in the current generation of light water reactors. Besides demonstrating a system design that can be used directly for subsequent commercial deployment, the NGNP will demonstrate key technology elements that can be used in subsequent advanced power conversion systems for other Generation IV reactors. In anticipation of the design, development and procurement of an advanced power conversion system for the NGNP, the system integration of the NGNP and hydrogen plant was initiated to identify the important design and technology options that must be considered in evaluating the performance of the proposed NGNP. In the VHTR system, an intermediate heat exchanger (IHX), which transfers heat from the reactor core to the electricity or hydrogen production system is one key component, and its effectiveness is directly related to the system overall efficiency. In the VHTRs, the gas fluids used for coolant generally have poor heat transfer capability, so it requires very large surface area for a given condition. For this reason, a compact heat exchanger (CHE), which is widely used in industry especially for gasto-gas or gas-to-liquid heat exchange is considered as a potential candidate for an IHX replacing the classical shell and tube type heat exchanger. A compact heat exchanger is arbitrary referred to be a heat exchanger having a surface area density greater than 700 m2/m3. The compactness is usually achieved by fins and micro-channels, and leads to the enormous heat transfer enhancement and size reduction. The surface area density is the

  6. Flow boiling heat transfer and pressure drop analysis of R134a in a brazed heat exchanger with offset strip fins

    Science.gov (United States)

    Amaranatha Raju, M.; Ashok Babu, T. P.; Ranganayakulu, C.

    2017-10-01

    The saturated flow boiling heat transfer and friction analysis of R 134a were experimentally analyzed in a brazed plate fin heat exchanger with offset strip fins. Experiments were performed at mass flux range of 50-82 kg/m2 s, heat flux range of 14-22 kW/m2 and quality of 0.32-0.75. The test section consists of three fins, one refrigerant side fin in which the boiling heat transfer was estimated and two water side fins. These three fins are stacked, held together and vacuum brazed to form a plate fin heat exchanger. The refrigerant R134a flowing in middle of the test section was heated using hot water from upper and bottom sides of the test section. The temperature and mass flow rates of water circuit is controlled to get the outlet conditions of refrigerant R134a. Two-phase flow boiling heat transfer and frictional coefficient was estimated based on experimental data for offset strip fin geometry and presented in this paper. The effects of mass flux, heat flux and vapour quality on heat transfer coefficient and pressure drop were investigated. Two-phase local boiling heat transfer coefficient is correlated in terms of Reynolds number factor F, and Martinelli parameter X. Pressure drop is correlated in terms of two-phase frictional multiplier ϕ f , and Martinelli parameter X.

  7. Saturation-recovery metabolic‐exchange rate imaging with hyperpolarized [1‐13C] pyruvate using spectral‐spatial excitation

    DEFF Research Database (Denmark)

    Schulte, Rolf F.; Sperl, Jonathan I.; Weidl, Eliane

    2013-01-01

    ‐recovery” scheme with the detected signal content being determined by forward conversion of the available pyruvate. In case of repetitive excitations, the polarization is preserved using smaller flip angles for pyruvate. Metabolic exchange rates are determined spatially resolved from the metabolite images using...... a simplified two‐site exchange model. This novel contrast is an important step toward more quantitative metabolic imaging. Goal of this work was to derive, analyze, and implement this “saturation‐recovery metabolic exchange rate imaging” and demonstrate its capabilities in four rats bearing subcutaneous tumors...

  8. Syntrophic growth with direct interspecies electron transfer as the primary mechanism for energy exchange

    DEFF Research Database (Denmark)

    Shrestha, Pravin Malla; Rotaru, Amelia-Elena; Aklujkar, Muktak

    2013-01-01

    Direct interspecies electron transfer (DIET) through biological electrical connections is an alternative to interspecies H2 transfer as a mechanism for electron exchange in syntrophic cultures. However, it has not previously been determined whether electrons received via DIET yield energy to supp...... dehydrogenase, the pilus-associated c-type cytochrome OmcS and pili consistent with electron transfer via DIET. These results suggest that electrons transferred via DIET can serve as the sole energy source to support anaerobic respiration....... to support cell growth. In order to investigate this, co-cultures of Geobacter metallireducens, which can transfer electrons to wild-type G. sulfurreducens via DIET, were established with a citrate synthase-deficient G. sulfurreducens strain that can receive electrons for respiration through DIET only...

  9. Heat transfer performance test of PDHRS heat exchangers of PGSFR using STELLA-1 facility

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jonggan, E-mail: hong@kaeri.re.kr; Yeom, Sujin; Eoh, Jae-Hyuk; Lee, Tae-Ho; Jeong, Ji-Young

    2017-03-15

    Highlights: • Heat transfer performance test of heat exchangers of PGSFR PDHRS is conducted using STELLA-1 facility. • Steady-state test results of DHX and AHX show good agreement with theoretical results of design codes. • Design codes for DHX and AHX are validated by STELLA-1 experimental results. • Heat transport capability of DHX and AHX is turned out to be satisfactory for reliable plant operation. - Abstract: The STELLA-1 facility was designed and constructed to carry out separate effect tests of the decay heat exchanger (DHX) and natural draft sodium-to-air heat exchanger (AHX), which are key components of the safety-grade decay heat removal system in PGSFR. The DHX is a sodium-to-sodium heat exchanger with a straight tube arrangement, and the AHX is a sodium-to-air heat exchanger with a helically coiled tube arrangement. The model heat exchangers in STELLA-1 have been designed to meet their own similitude conditions from the prototype ones, of which scale ratios were set to be unity in height (or length) and 1/2.5 in heat transfer rate. Consequently, the overall heat transfer coefficients and log-mean temperature differences of the prototypes have been preserved as well. The steady-state test results for each model heat exchanger obtained from STELLA-1 showed good agreement with the theoretical results of the computer design codes for thermal-sizing and a performance analysis of the DHX and AHX. In the DHX result comparison, the discrepancies in the heat transfer rate ranged from −4.4% to 2.0%, and in the AHX result comparison, they ranged from −11.1% to 12.6%. Therefore, the first step in thermal design codes validation for sodium heat exchangers, e.g., DHX and AHX, has been successfully completed with the experimental database obtained from STELLA-1. In addition, the heat transfer performance of the DHX and AHX was found to be satisfactory enough to secure a reliable decay heat removal performance.

  10. Heat transfer and pressure drop characteristics of nanofluids in a plate heat exchanger.

    Science.gov (United States)

    Kwon, Y H; Kim, D; Li, C G; Lee, J K; Hong, D S; Lee, J G; Lee, S H; Cho, Y H; Kim, S H

    2011-07-01

    In this paper, the heat transfer characteristics and pressure drop of the ZnO and Al2O3 nanofluids in a plate heat exchanger were studied. The experimental conditions were 100-500 Reynolds number and the respective volumetric flow rates. The working temperature of the heat exchanger was within 20-40 degrees C. The measured thermophysical properties, such as thermal conductivity and kinematic viscosity, were applied to the calculation of the convective heat transfer coefficient of the plate heat exchanger employing the ZnO and Al2O3 nanofluids made through a two-step method. According to the Reynolds number, the overall heat transfer coefficient for 6 vol% Al2O3 increased to 30% because at the given viscosity and density of the nanofluids, they did not have the same flow rates. At a given volumetric flow rate, however, the performance did not improve. After the nanofluids were placed in the plate heat exchanger, the experimental results pertaining to nanofluid efficiency seemed inauspicious.

  11. Heat transfer to immiscible liquid mixtures in a spiral plate heat exchanger

    Directory of Open Access Journals (Sweden)

    S. Sathiyan

    2013-06-01

    Full Text Available This work presents new predictive correlations for heat transfer to immiscible liquid-liquid mixtures in a spiral plate heat exchanger. Liquid-liquid heat transfer studies were carried out in spiral plate heat exchangers for the water-octane, water-kerosene, and water-dodecane systems. For each composition of the mixture, the mass flow rate of the cold fluid was varied, keeping that of the hot fluid and the fluid inlet temperatures constant. Two-phase cold flow rates were in the laminar range, while the hot fluid flow was turbulent. Calculations of the LMTD (log mean temperature difference correction factor showed that the flow was countercurrent. Heat transfer coefficients of the two-phase liquids were found to be strongly dependent on the composition of the liquid mixture and exhibited abrupt transitions as a function of the compositions. Given the absence of predictive correlations in the literature that sufficiently capture this compositiondependence, new empirical correlations were developed using part of the experimental data, with the composition of the cold fluid as an explicit variable. Statistical analysis of the regression yielded satisfactory results. The correlations were tested against the rest of the experimental data and were found to predict heat transfer coefficients within ± 15%. These preliminary studies should be useful in designing compact exchangers for handling two-phase water-organics mixtures.

  12. Heat transfer in plate heat exchanger channels: Experimental validation of selected correlation equations

    Directory of Open Access Journals (Sweden)

    Cieśliński Janusz T.

    2016-09-01

    Full Text Available This study is focused on experimental investigation of selected type of brazed plate heat exchanger (PHEx. The Wilson plot approach was applied in order to estimate heat transfer coefficients for the PHEx passages. The main aim of the paper was to experimentally check ability of several correlations published in the literature to predict heat transfer coefficients by comparison experimentally obtained data with appropriate predictions. The results obtained revealed that Hausen and Dittus-Boelter correlations underestimated heat transfer coefficient for the tested PHEx by an order of magnitude. The Aspen Plate code overestimated heat transfer coefficient by about 50%, while Muley-Manglik correlation overestimated it from 1% to 25%, dependent on the value of Reynolds number and hot or cold liquid side.

  13. Analysis of the flow structure and heat transfer in a vertical mantle heat exchanger

    DEFF Research Database (Denmark)

    Knudsen, Søren; Morrison, GL; Behnia, M

    2005-01-01

    The flow structure inside the inner tank and inside the mantle of a vertical mantle heat exchanger was investigated using a full-scale tank designed to facilitate flow visualisation. The flow structure and velocities in the inner tank and in the mantle were measured using a Particle Image...... Velocimetry (PIV) system. A Computational Fluid Dynamics (CFD) model of the vertical mantle heat exchanger was also developed for a detailed evaluation of the heat flux at the mantle wall and at the tank wall. The flow structure was evaluated for both high and low temperature incoming flows and for both...... initially mixed and initially stratified inner tank and mantle. The analysis of the heat transfer showed that the flow in the mantle near the inlet is mixed convection flow and that the heat transfer is dependent on the mantle inlet temperature relative to the core tank temperature at the mantle level. (C...

  14. Heat transfer enhancement by dynamic corrugated heat exchanger wall: Numerical study

    Science.gov (United States)

    Kumar, P.; Schmidmayer, K.; Topin, F.; Miscevic, M.

    2016-09-01

    A new concept of heat exchanger at sub-millimeter scale is proposed for applications in cooling on-board electronics devices, in which the quality of the exchanges between fluid and wall is very critical. In the proposed system, the upper wall of the channel is deformed dynamically to obtain a sinusoidal wave on this surface. The lower wall is exposed to constant heat flux simulating the imprint of an electronic component. A systematic 3-D numerical study in transient regime on the different deformation parameters allowed obtaining both the pumping characteristics and the heat transfer characteristics of the system. It was observed that the dynamic deformation of the wall induces a significant pumping effect. The intensification of the heat transfer is very important even for highly degraded waveforms, although the pumping efficiency is reduced in this case.

  15. Sensitivity Enhancement by Exchange Mediated MagnetizationTransfer of the Xenon Biosensor Signal

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Sandra; Chavez, Lana; Lowery, Thomas J.; Han, Song-I.; Wemmer, David E.; Pines, Alexander

    2006-08-31

    Hyperpolarized xenon associated with ligand derivitized cryptophane-A cages has been developed as a NMR based biosensor. To optimize the detection sensitivity we describe use of xenon exchange between the caged and bulk dissolved xenon as an effective signal amplifier. This approach, somewhat analogous to 'remote detection' described recently, uses the chemical exchange to repeatedly transfer spectroscopic information from caged to bulk xenon, effectively integrating the caged signal. After an optimized integration period, the signal is read out by observation of the bulk magnetization. The spectrum of the caged xenon is reconstructed through use of a variable evolution period before transfer and Fourier analysis of the bulk signal as a function of the evolution time.

  16. Transfer of Profit to Shareholders at Warsaw Stock Exchange in the Period 2009–2013

    Directory of Open Access Journals (Sweden)

    Jabłoński Bartłomiej

    2016-12-01

    Full Text Available The Author of the article presents the results of research devoted to the forms of transfer of profit to shareholders of the companies quoted at Warsaw Stock Exchange in the period 2009–2013. The Author concluded that there are features in the group of dividend companies and another group – that of dividend companies which additionally execute share redemption and cancellation – which make them different.

  17. An Enhanced VOF Method Coupled with Heat Transfer and Phase Change to Characterise Bubble Detachment in Saturated Pool Boiling

    Directory of Open Access Journals (Sweden)

    Anastasios Georgoulas

    2017-02-01

    Full Text Available The present numerical investigation identifies quantitative effects of fundamental controlling parameters on the detachment characteristics of isolated bubbles in cases of pool boiling in the nucleate boiling regime. For this purpose, an improved Volume of Fluid (VOF approach, developed previously in the general framework of OpenFOAM Computational Fluid Dynamics (CFD Toolbox, is further coupled with heat transfer and phase change. The predictions of the model are quantitatively verified against an existing analytical solution and experimental data in the literature. Following the model validation, four different series of parametric numerical experiments are performed, exploring the effect of the initial thermal boundary layer (ITBL thickness for the case of saturated pool boiling of R113 as well as the effects of the surface wettability, wall superheat and gravity level for the cases of R113, R22 and R134a refrigerants. It is confirmed that the ITBL is a very important parameter in the bubble growth and detachment process. Furthermore, for all of the examined working fluids the bubble detachment characteristics seem to be significantly affected by the triple-line contact angle (i.e., the wettability of the heated plate for equilibrium contact angles higher than 45°. As expected, the simulations revealed that the heated wall superheat is very influential on the bubble growth and detachment process. Finally, besides the novelty of the numerical approach, a last finding is the fact that the effect of the gravity level variation in the bubble detachment time and the volume diminishes with the increase of the ambient pressure.

  18. Correlation between charge transfer and exchange coupling in carbon-based magnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Anh Tuan, E-mail: tuanna@hus.edu.vn [Faculty of Physics, VNU University of Science, 334 Nguyen Trai, Thanh Xuan, Ha Noi (Viet Nam); Science and Technology Department, Vietnam National University, Hanoi, 144 Xuan Thuy, Cau Giay, Hanoi (Viet Nam); Japan Advanced Institute of Science and Technology, 1-1, Asahidai, Nomi, Ishikawa, 923-1292 Japan (Japan); Nguyen, Van Thanh; Nguyen, Huy Sinh [Faculty of Physics, VNU University of Science, 334 Nguyen Trai, Thanh Xuan, Ha Noi (Viet Nam); Pham, Thi Tuan Anh [Faculty of Physics, VNU University of Science, 334 Nguyen Trai, Thanh Xuan, Ha Noi (Viet Nam); Faculty of Science, College of Hai Duong, Nguyen Thi Due, Hai Duong (Viet Nam); Do, Viet Thang [Faculty of Physics, VNU University of Science, 334 Nguyen Trai, Thanh Xuan, Ha Noi (Viet Nam); Faculty of Science, Haiphong University, 171 Phan Dang Luu, Kien An, Hai Phong (Viet Nam); Dam, Hieu Chi [Japan Advanced Institute of Science and Technology, 1-1, Asahidai, Nomi, Ishikawa, 923-1292 Japan (Japan)

    2015-10-15

    Several forms of carbon-based magnetic materials, i.e. single radicals, radical dimers, and alternating stacks of radicals and diamagnetic molecules, have been investigated using density-functional theory with dispersion correction and full geometry optimization. Our calculated results demonstrate that the C{sub 31}H{sub 15} (R{sub 4}) radical has a spin of ½. However, in its [R{sub 4}]{sub 2} dimer structure, the net spin becomes zero due to antiferromagnetic spin-exchange between radicals. To avoid antiferromagnetic spin-exchange of identical face-to-face radicals, eight alternating stacks, R{sub 4}/D{sub 2m}/R{sub 4} (with m = 3-10), were designed. Our calculated results show that charge transfer (Δn) between R{sub 4} radicals and the diamagnetic molecule D{sub 2m} occurs with a mechanism of spin exchange (J) in stacks. The more electrons that transfer from R{sub 4} to D{sub 2m}, the stronger the ferromagnetic spin-exchange in stacks. In addition, our calculated results show that Δn can be tailored by adjusting the electron affinity (E{sub a}) of D{sub 2m}. The correlation between Δn, E{sub a}, m, and J is discussed. These results give some hints for the design of new ferromagnetic carbon-based materials.

  19. Correlation between charge transfer and exchange coupling in carbon-based magnetic materials

    Directory of Open Access Journals (Sweden)

    Anh Tuan Nguyen

    2015-10-01

    Full Text Available Several forms of carbon-based magnetic materials, i.e. single radicals, radical dimers, and alternating stacks of radicals and diamagnetic molecules, have been investigated using density-functional theory with dispersion correction and full geometry optimization. Our calculated results demonstrate that the C31H15 (R4 radical has a spin of ½. However, in its [R4]2 dimer structure, the net spin becomes zero due to antiferromagnetic spin-exchange between radicals. To avoid antiferromagnetic spin-exchange of identical face-to-face radicals, eight alternating stacks, R4/D2m/R4 (with m = 3-10, were designed. Our calculated results show that charge transfer (Δn between R4 radicals and the diamagnetic molecule D2m occurs with a mechanism of spin exchange (J in stacks. The more electrons that transfer from R4 to D2m, the stronger the ferromagnetic spin-exchange in stacks. In addition, our calculated results show that Δn can be tailored by adjusting the electron affinity (Ea of D2m. The correlation between Δn, Ea, m, and J is discussed. These results give some hints for the design of new ferromagnetic carbon-based materials.

  20. Exchange of core chromosomes and horizontal transfer of lineage-specific chromosomes in Fusarium oxysporum.

    Science.gov (United States)

    Vlaardingerbroek, Ido; Beerens, Bas; Rose, Laura; Fokkens, Like; Cornelissen, Ben J C; Rep, Martijn

    2016-11-01

    Horizontal transfer of supernumerary or lineage-specific (LS) chromosomes has been described in a number of plant pathogenic filamentous fungi. So far it was not known whether transfer is restricted to chromosomes of certain size or properties, or whether 'core' chromosomes can also undergo horizontal transfer. We combined a directed and a non-biased approach to determine whether such restrictions exist. Selection genes were integrated into the genome of a strain of Fusarium oxysporum pathogenic on tomato, either targeted to specific chromosomes by homologous recombination or integrated randomly into the genome. By testing these strains for transfer of the marker to another strain we could confirm transfer of a previously described mobile pathogenicity chromosome. Surprisingly, we also identified strains in which (parts of) core chromosomes were transferred. Whole genome sequencing revealed that this was accompanied by the loss of the homologous region from the recipient strain. Remarkably, transfer of the mobile pathogenicity chromosome always accompanied this exchange of core chromosomes. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. High heat transfer oxidizer heat exchanger design and analysis. [RL10-2B engine

    Science.gov (United States)

    Kmiec, Thomas D.; Kanic, Paul G.; Peckham, Richard J.

    1987-01-01

    The RL10-2B engine, a derivative of the RL10, is capable of multimode thrust operation. This engine operates at two low thrust levels: tank head idle (THI), which is approximately 1 to 2% of full thrust, and pumped idle (PI), which is 10% of full thrust. Operation at THI provides vehicle propellant settling thrust and efficient engine thermal conditioning; PI operation provides vehicle tank pre-pressurization and maneuver thrust for low-g deployment. Stable combustion of the RL10-2B engine during the low thrust operating modes can be accomplished by using a heat exchanger to supply gaseous oxygen to the propellant injector. The oxidizer heat exchanger (OHE) vaporizes the liquid oxygen using hydrogen as the energy source. The design, concept verification testing and analysis for such a heat exchanger is discussed. The design presented uses a high efficiency compact core to vaporize the oxygen, and in the self-contained unit, attenuates any pressure and flow oscillations which result from unstable boiling in the core. This approach is referred to as the high heat transfer design. An alternative approach which prevents unstable boiling of the oxygen by limiting the heat transfer is referred to as the low heat transfer design and is reported in Pratt & Whitney report FR-19135-2.

  2. Air-side heat transfer characteristics of spiral-type circular fin-tube heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Mooyeon; Kang, Taehyung; Kim, Yongchan [Department of Mechanical Engineering, Korea University, Anam-dong, Sungbuk-ku, Seoul 136-713 (Korea)

    2010-03-15

    The objective of this study is to investigate the air-side heat transfer characteristics of spiral-type circular fin-tube heat exchangers used as evaporators in household refrigerators. The j-factors of the tested heat exchangers under non-frosting conditions were measured by varying the fin pitch, number of tube rows, and fin alignment. The j-factors of the spiral-type circular fin-tube heat exchangers were analyzed as a function of heat exchanger geometries and then compared with those of the flat plate fin-tube heat exchangers with discrete fins. Two empirical correlations of the j-factors were developed separately for the inline and the staggered fin alignment as a function of the Reynolds number, number of tube rows, and dimensionless fin pitch normalized by the hydraulic diameter. The mean deviation of the predictions using the present correlations from the measured data was 4.78% for the inline fin alignment and 6.02% for the staggered fin alignment. (author)

  3. Intensification of heat-transfer and mixing in multifunctional heat exchangers by artificially generated streamwise vorticity

    Energy Technology Data Exchange (ETDEWEB)

    Ferrouillat, S.; Tochon, P.; Garnier, C. [Commissariat of Atomic Energy-GRETh, 17 avenue des Martyrs, F-38054 Grenoble Cedex 9 (France); Peerhossaini, H. [Thermofluids, Complex Flows and Energy Group, Laboratoire de Thermocinetique, CNRS-UMR 6607, Ecole Polytechnique de l' Universite de Nantes, Rue Christian Pauc, BP 50609, F-44306 Nantes Cedex 3 (France)

    2006-11-15

    Compact heat exchangers are well known for their ability to transfer a large amount of heat while retaining low volume and weight. The purpose of this paper is to study the potential of using this device as a mixer as well as a chemical reactor, generally called a multifunctional heat exchanger (MHE). Indeed, the question arises: can these geometries combine heat transfer and mixing in the same device? Such a technology would offer many potential advantages, such as better reaction control (through the thermal aspect [S. Ferrouillat, P. Tochon, H. Peerhossaini, D. Della Valle, Open-loop thermal control of exothermal chemical reactions in multifunctional heat exchangers, Int. J. Heat Mass Transfer, in press]), improved selectivity (through intensified mixing, more isothermal operation and shorter residence time, and sharper residence time distribution (RTD)), byproduct reduction, and enhanced safety. Several geometries of compact heat exchanger based on turbulence generation are available. This paper focuses on one type: vortex generators. The main objective is to contribute to the determination of turbulent flow inside various geometries by computational fluid dynamics methods. These enhanced industrial geometries are studied in terms of their thermal-hydraulic performance and macro-/micro-mixing ability [S. Ferrouillat, P. Tochon, H. Peerhossaini, Micromixing enhancement by turbulence: application to multifunctional heat exchangers, Chem. Eng. Process., in press]. The longitudinal vortices they generate in a channel flow turn the flow perpendicular to the main flow direction and enhance mixing between the fluid close to the fin and that in the middle of the channel. Two kinds of vortex generators are considered: a delta winglet pair and a rectangular winglet pair. For both, good agreement is obtained between numerical results and data in the literature. The vortex generator concept is found to be very efficient in terms of heat-transfer enhancement and macro

  4. AAPB-B - Committee offers revised exchange format for transferring geologic and petroleum data

    Energy Technology Data Exchange (ETDEWEB)

    Waller, H.O.; Guinn, D. (Texaco, Houston, TX (USA)); Herkommer, M. (Petrospec Computer Inc., Garland, TX (USA)); Shaw, B. (AAPG Computer Applications Committee, Houston, TX (USA))

    1990-04-01

    Comments received since the publication of Exchange Format for Transfer of Geologic and Petroleum Data revealed the need for more flexibility with the AAPG-A Format (Shaw and Waller, 1989). This discussion resulted in the proposed AAPG-B version, which has unlimited number of data fields per record and unlimited number of records. Comment lines can appear anywhere, including in data records, to help document data transfer. Data dictionary hooks have been added. The American Petroleum Institute has assisted by supplying an ANSI envelope for this format, which will permit the electronic transfer with verification of data sets between any two ANSI installations. The American Association of Petroleum Geologists Database Standards Subcommittee invites comments on the proposed revisions, and will review the suggestions when it meets June 2 in San Francisco.

  5. Heat Transfer and Pressure Drop Characteristics in Straight Microchannel of Printed Circuit Heat Exchangers

    Directory of Open Access Journals (Sweden)

    Jang-Won Seo

    2015-05-01

    Full Text Available Performance tests were carried out for a microchannel printed circuit heat exchanger (PCHE, which was fabricated with micro photo-etching and diffusion bonding technologies. The microchannel PCHE was tested for Reynolds numbers in the range of 100‒850 varying the hot-side inlet temperature between 40 °C–50 °C while keeping the cold-side temperature fixed at 20 °C. It was found that the average heat transfer rate and heat transfer performance of the countercurrrent configuration were 6.8% and 10%‒15% higher, respectively, than those of the parallel flow. The average heat transfer rate, heat transfer performance and pressure drop increased with increasing Reynolds number in all experiments. Increasing inlet temperature did not affect the heat transfer performance while it slightly decreased the pressure drop in the experimental range considered. Empirical correlations have been developed for the heat transfer coefficient and pressure drop factor as functions of the Reynolds number.

  6. Dynamics and energetics of the mammalian phosphatidylinositol transfer protein phospholipid exchange cycle.

    Science.gov (United States)

    Grabon, Aby; Orłowski, Adam; Tripathi, Ashutosh; Vuorio, Joni; Javanainen, Matti; Róg, Tomasz; Lönnfors, Max; McDermott, Mark I; Siebert, Garland; Somerharju, Pentti; Vattulainen, Ilpo; Bankaitis, Vytas A

    2017-09-01

    Phosphatidylinositol-transfer proteins (PITPs) regulate phosphoinositide signaling in eukaryotic cells. The defining feature of PITPs is their ability to exchange phosphatidylinositol (PtdIns) molecules between membranes, and this property is central to PITP-mediated regulation of lipid signaling. However, the details of the PITP-mediated lipid exchange cycle remain entirely obscure. Here, all-atom molecular dynamics simulations of the mammalian StART-like PtdIns/phosphatidylcholine (PtdCho) transfer protein PITPα, both on membrane bilayers and in solvated systems, informed downstream biochemical analyses that tested key aspects of the hypotheses generated by the molecular dynamics simulations. These studies provided five key insights into the PITPα lipid exchange cycle: (i) interaction of PITPα with the membrane is spontaneous and mediated by four specific protein substructures; (ii) the ability of PITPα to initiate closure around the PtdCho ligand is accompanied by loss of flexibility of two helix/loop regions, as well as of the C-terminal helix; (iii) the energy barrier of phospholipid extraction from the membrane is lowered by a network of hydrogen bonds between the lipid molecule and PITPα; (iv) the trajectory of PtdIns or PtdCho into and through the lipid-binding pocket is chaperoned by sets of PITPα residues conserved throughout the StART-like PITP family; and (v) conformational transitions in the C-terminal helix have specific functional involvements in PtdIns transfer activity. Taken together, these findings provide the first mechanistic description of key aspects of the PITPα PtdIns/PtdCho exchange cycle and offer a rationale for the high conservation of particular sets of residues across evolutionarily distant members of the metazoan StART-like PITP family. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Laboratory simulation of heat exchange for liquids with Pr > 1: Heat transfer

    Science.gov (United States)

    Belyaev, I. A.; Zakharova, O. D.; Krasnoshchekova, T. E.; Sviridov, V. G.; Sukomel, L. A.

    2016-02-01

    Liquid metals are promising heat transfer agents in new-generation nuclear power plants, such as fast-neutron reactors and hybrid tokamaks—fusion neutron sources (FNSs). We have been investigating hydrodynamics and heat exchange of liquid metals for many years, trying to reproduce the conditions close to those in fast reactors and fusion neutron sources. In the latter case, the liquid metal flow takes place in a strong magnetic field and strong thermal loads resulting in development of thermogravitational convection in the flow. In this case, quite dangerous regimes of magnetohydrodynamic (MHD) heat exchange not known earlier may occur that, in combination with other long-known regimes, for example, the growth of hydraulic drag in a strong magnetic field, make the possibility of creating a reliable FNS cooling system with a liquid metal heat carrier problematic. There exists a reasonable alternative to liquid metals in FNS, molten salts, namely, the melt of lithium and beryllium fluorides (Flibe) and the melt of fluorides of alkali metals (Flinak). Molten salts, however, are poorly studied media, and their application requires detailed scientific substantiation. We analyze the modern state of the art of studies in this field. Our contribution is to answer the following question: whether above-mentioned extremely dangerous regimes of MHD heat exchange detected in liquid metals can exist in molten salts. Experiments and numerical simulation were performed in order to answer this question. The experimental test facility represents a water circuit, since water (or water with additions for increasing its electrical conduction) is a convenient medium for laboratory simulation of salt heat exchange in FNS conditions. Local heat transfer coefficients along the heated tube, three-dimensional (along the length and in the cross section, including the viscous sublayer) fields of averaged temperature and temperature pulsations are studied. The probe method for measurements in

  8. Saturation Transfer Difference NMR as an Analytical Tool for Detection and Differentiation of Plastic Explosives on the Basis of Minor Plasticizer Composition

    Science.gov (United States)

    2015-05-01

    HMX); ethylene glycol dinitrate (EGDN); ammonium nitrate (AN); and nitrocellulose (NC).1–4 Alternatively, in one recent study,5 fluorescence-based...green) plastic explosive mixtures. Top trace (red) represents the 1D 1H NMR for all plasticizers present together in the NMR sample (1.0 mM concentration ...saturation transfer difference AN ammonium nitrate BSA bovine serum albumin EGDN ethylene glycol dinitrate HDO partially deuterated water HMX

  9. Chemical reaction and radiation effects on mixed convection heat and mass transfer over a vertical plate in power-law fluid saturated porous medium

    Directory of Open Access Journals (Sweden)

    D. Srinivasacharya

    2016-01-01

    Full Text Available Mixed convection heat and mass transfer along a vertical plate embedded in a power-law fluid saturated Darcy porous medium with chemical reaction and radiation effects is studied. The governing partial differential equations are transformed into ordinary differential equations using similarity transformations and then solved numerically using shooting method. A parametric study of the physical parameters involved in the problem is conducted and a representative set of numerical results is illustrated graphically.

  10. Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Benjamin A. (Benton Harbor, MI); Zawacki, Thomas S. (St. Joseph, MI); Marsala, Joseph (Glen Ellyn, IL)

    1994-11-29

    Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use the working solution of the absorption system for the heat transfer medium.

  11. Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, B.A.; Zawacki, T.S.; Marsala, J.

    1994-11-29

    Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use the working solution of the absorption system for the heat transfer medium. 13 figures.

  12. Intracellular Proton-Transfer Mutants in a CLC Cl-/H+ Exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Lim, H.; Miller, C

    2009-01-01

    CLC-ec1, a bacterial homologue of the CLC family's transporter subclass, catalyzes transmembrane exchange of Cl- and H+. Mutational analysis based on the known structure reveals several key residues required for coupling H+ to the stoichiometric countermovement of Cl-. E148 (Gluex) transfers protons between extracellular water and the protein interior, and E203 (Gluin) is thought to function analogously on the intracellular face of the protein. Mutation of either residue eliminates H+ transport while preserving Cl- transport. We tested the role of Gluin by examining structural and functional properties of mutants at this position. Certain dissociable side chains (E, D, H, K, R, but not C and Y) retain H+/Cl- exchanger activity to varying degrees, while other mutations (V, I, or C) abolish H+ coupling and severely inhibit Cl- flux. Transporters substituted with other nonprotonatable side chains (Q, S, and A) show highly impaired H+ transport with substantial Cl- transport. Influence on H+ transport of side chain length and acidity was assessed using a single-cysteine mutant to introduce non-natural side chains. Crystal structures of both coupled (E203H) and uncoupled (E203V) mutants are similar to wild type. The results support the idea that Gluin is the internal proton-transfer residue that delivers protons from intracellular solution to the protein interior, where they couple to Cl- movements to bring about Cl-/H+ exchange.

  13. Fluid flow and heat transfer in an air-to-water double-pipe heat exchanger

    Science.gov (United States)

    Sheikholeslami, M.; Gorji-Bandpy, M.; Ganji, D. D.

    2015-11-01

    This paper reports experimental and numerical investigations on flow and heat transfer in an air-to-water double-pipe heat exchanger. The working fluids are air and water. To achieve fully developed conditions, the heat exchanger was built with additional lengths before and after the test section. The inner and outer tube was made from copper and Plexiglas, respectively. The experiments are conducted in the range of air flow Reynolds number for various cases with different water flow rate and water inlet temperature. Correlations for the Nusselt number and friction factor are presented according to experimental data. Also the commercial code ANSYS 15 is used for numerical simulation. Results show that the Nusselt number is an increasing function of Reynolds number and Prandtl number which are calculated at bulk temperature.

  14. Heat Transfer Enhancement for Finned-tube Heat Exchangers with Winglets

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, James Edward; Sohal, Manohar Singh

    2000-11-01

    This paper presents the results of an experimental study of forced convection heat transfer in a narrow rectangular duct fitted with a circular tube and/or a delta-winglet pair. The duct was designed to simulate a single passage in a fin-tube heat exchanger. Heat transfer measurements were obtained using a transient technique in which a heated airflow is suddenly introduced to the test section. High-resolution local fin-surface temperature distributions were obtained at several times after initiation of the transient using an imaging infrared camera. Corresponding local fin-surface heat transfer coefficient distributions were then calculated from a locally applied one-dimensional semi-infinite inverse heat conduction model. Heat transfer results were obtained over an airflow rate ranging from 1.51 x 10-3 to 14.0 x 10-3 kg/s. These flow rates correspond to a duct-height Reynolds number range of 670 – 6300 with a duct height of 1.106 cm and a duct width-toheight ratio, W/H, of 11.25. The test cylinder was sized such that the diameter-to-duct height ratio, D/H is 5. Results presented in this paper reveal visual and quantitative details of local fin-surface heat transfer distributions in the vicinity of a circular tube, a delta-winglet pair, and a combination of a circular tube and a delta-winglet pair. Comparisons of local and average heat transfer distributions for the circular tube with and without winglets are provided. Overall mean finsurface Nusselt-number results indicate a significant level of heat transfer enhancement associated with the deployment of the winglets with the circular cylinder. At the lowest Reynolds numbers (which correspond to the laminar operating conditions of existing geothermal air-cooled condensers), the enhancement level is nearly a factor of two. At higher Reynolds numbers, the enhancement level is close to 50%.

  15. Heat transfer of alumina-deionized water nanofluids in concentric tube heat exchanger

    Science.gov (United States)

    Alias, Hajar; Ani, Muhamad Fahmi Che; Sa'ad, Siti Fatimah; Ngadi, Norzita

    2017-12-01

    This research studied the characteristics of nanofluids in a concentric tube heat exchanger. The objectives of this research are to prepare the stable nanofluids with addition of surfactant and to investigate the stability, properties, and heat transfer of nanofluids in concentric tube heat exchanger. Aluminium oxide (Al2O3) was added to base fluid deionized water (DW) with addition of polyvinylpyrrolidone (PVP) as surfactant by two-step method. First, the best stability ratio of nanofluids to surfactant PVP was determined by preparing several samples of 0.50 wt% nanofluids with addition of different weight fraction of surfactant. Thus, each sample has different ratio and being observed for one week by visual observation. Then, nanofluids samples (0.25, 0.50, 0.75 and 1.00 wt%) were prepared based on the best stability ratio. The properties and heat transfer of nanofluids were analyzed at different concentration of nanofluids and at different temperatures (room temperature, 40 °C, 50 °C, 60 °C and 70 °C). From the observation, the alumina nanofluids was stable with the addition of surfactant at ratio 1:2. The thermal conductivity of nanofluids are higher than base fluid and increased as the temperature and concentration increased. Viscosity of nanofluids was highest at 1.00 wt% and at room temperature. The heat transfer performance of heat exchanger increased by using nanofluids. Nanofluids absorbed more heat than base fluid and the highest percentage drop of hot stream is 120% at 70 °C by using 1.00 wt% nanofluids.

  16. Concurrent studies of enhanced heat transfer and materials for ocean thermal exchangers. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Bonewitz, R.A.

    1976-10-29

    Aluminum alloys 1100, 3003, 5052, and 6063 were examined for their compatibility with the proposed working fluids for Ocean Thermal Energy Conversion (OTEC), anhydrous ammonia, Freon 22 and propane, and mixtures of these with sea water. Such mixtures would occur if leaks develop in evaporator or condenser heat exchangers. These aluminum alloys are compatible with the anhydrous working fluids. In ammonia-sea water solutions only limited general corrosion is found in 0 to 30 percent ammonia, no corrosion in 30 to 90 percent ammonia, and ''self limiting'' pits in 90 to 100 percent ammonia so rapid deterioration of the exchangers would not occur. No corrosion was observed in sea water saturated with Freon 22 or propane. No differences in alloy performance were evident in any of these tests so selection can be made on the basis of compatibility with sea water. A review of the available literature indicates that 5052 shows the best performance in surface sea water followed by 1100, 3003 and then 6063 alloy. In deep sea water only 5052 and 1100 alloys appear suitable although more data is required. In both surface and deep sea waters, alcladding offers the best protection against tube perforation; few instances of penetration into the core alloy have been observed for the alclad alloys examined in this study.

  17. Heat transfer and flow studies of the liquid droplet heat exchanger

    Science.gov (United States)

    Bruckner, A. P.; Shariatmadar, A.

    1987-01-01

    This paper describes a lightweight, highly effective liquid droplet heat exchanger (LDHX) concept for thermal management in space. Heat is transferred by direct contact between fine droplets (100 to 300 micron diameter) of a low vapor pressure liquid and an inert working gas. Complete separation of the droplet and gas media in the microgravity environment is accomplished by configuring the LDHX as a vortex chamber. A quasi-one-dimensional, two-phase heat transfer model of the LDHX is developed and used to investigate the potential use of the LDHX for both heating and cooling the working gas in a 100-k W(e) Braytoan cycle. Experimental studies on a small scale LDHX chamber, using air and water as the two media, show excellent agreement with the theoretical model.

  18. Heat Transfer Analysis of Passive Residual Heat Removal Heat Exchanger under Natural Convection Condition in Tank

    Directory of Open Access Journals (Sweden)

    Qiming Men

    2014-01-01

    Full Text Available Aiming at the heat transfer calculation of the Passive Residual Heat Removal Heat Exchanger (PRHR HX, experiments on the heat transfer of C-shaped tube immerged in a water tank were performed. Comparisons of different correlation in literatures with the experimental data were carried out. It can be concluded that the Dittus-Boelter correlation provides a best-estimate fit with the experimental results. The average error is about 0.35%. For the tube outside, the McAdams correlations for both horizontal and vertical regions are best-estimated. The average errors are about 0.55% for horizontal region and about 3.28% for vertical region. The tank mixing characteristics were also investigated in present work. It can be concluded that the tank fluid rose gradually which leads to a thermal stratification phenomenon.

  19. Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, B.A.; Zawacki, T.S.

    1996-12-03

    Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use the working solution of the absorption system for the heat transfer medium. A combination of weak and rich liquor working solution is used as the heat transfer medium. 7 figs.

  20. Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Benjamin A. (Benton Harbor, MI); Zawacki, Thomas S. (St. Joseph, MI)

    1996-12-03

    Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use the working solution of the absorption system for the heat transfer medium. A combination of weak and rich liquor working solution is used as the heat transfer medium.

  1. Experimental study on heat transfer performance of fin-tube exchanger and PSHE for waste heat recovery

    Science.gov (United States)

    Chen, Ting; Bae, Kyung Jin; Kwon, Oh Kyung

    2018-02-01

    In this paper, heat transfer characteristics of fin-tube heat exchanger and primary surface heat exchanger (PSHE) used in waste heat recovery were investigated experimentally. The flow in the fin-tube heat exchanger is cross flow and in PSHE counter flow. The variations of friction factor and Colburn j factor with air mass flow rate, and Nu number with Re number are presented. Various comparison methods are used to evaluate heat transfer performance, and the results show that the heat transfer rate of the PSHE is on average 17.3% larger than that of fin-tube heat exchanger when air mass flow rate is ranging from 1.24 to 3.45 kg/min. However, the PSHE causes higher pressure drop, and the fin-tube heat exchanger has a wider application range which leads to a 31.7% higher value of maximum heat transfer rate compared to that of the PSHE. Besides, under the same fan power per unit frontal surface, a higher heat transfer rate value is given in the fin-tube heat exchanger.

  2. Lipid exchange and transfer on nanoparticle supported lipid bilayers: effect of defects, ionic strength, and size.

    Science.gov (United States)

    Drazenovic, Jelena; Ahmed, Selver; Tuzinkiewicz, Nicole-Marie; Wunder, Stephanie L

    2015-01-20

    Lipid exchange/transfer has been compared for zwitterionic 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dimyristoyl-d54-sn-glycero-3-phosphocholine (DMPC) small unilamellar vesicles (SUVs) and for the same lipids on silica (SiO2) nanoparticle supported lipid bilayers (NP-SLBs) as a function of ionic strength, temperature, temperature cycling, and NP size, above the main gel-to-liquid crystal phase transition temperature, Tm, using d- and h-DMPC and DPPC. Increasing ionic strength decreases the exchange kinetics for the SUVs, but more so for the NP-SLBs, due to better packing of the lipids and increased attraction between the lipid and support. When the NP-SLBs (or SUVs) are cycled above and below Tm, the exchange rate increases compared with exchange at the same temperature without cycling, for similar total times, suggesting that defects provide sites for more facile removal and thus exchange of lipids. Defects can occur: (i) at the phase boundaries between coexisting gel and fluid phases at Tm; (ii) in bare regions of exposed SiO2 that form during NP-SLB formation due to mismatched surface areas of lipid and NPs; and (iii) during cycling as the result of changes in area of the lipids at Tm and mismatched thermal expansion coefficient between the lipids and SiO2 support. Exchange rates are faster for NP-SLBs prepared with the nominal amount of lipid required to form a NP-SLB compared with NP-SLBs that have been prepared with excess lipids to minimize SiO2 patches. Nanosystems prepared with equimolar mixtures of NP-SLBs composed of d-DMPC (d(DMPC)-NP-SLB) and SUVs composed of h-DMPC (h(DMPC)-SUV) show that the calorimetric transition of the "donor" h(DMPC)-SUV decreases in intensity without an initial shift in Tm, indicating that the "acceptor" d(DMPC)-NP-SLB can accommodate more lipids, through either further fusion or insertion of lipids into the distal monolayer. Exchange for d/h(DMPC)-NP-SLB is in the order 100 nm SiO2 > 45 nm SiO2 > 5 nm SiO2.

  3. Investigating the impact of the gluon saturation effects on the momentum transfer distributions for the exclusive vector meson photoproduction in hadronic collisions

    Directory of Open Access Journals (Sweden)

    V.P. Gonçalves

    2017-05-01

    Full Text Available The exclusive vector meson production cross section is one of the most promising observables to probe the high energy regime of the QCD dynamics. In particular, the squared momentum transfer (t distributions are an important source of information about the spatial distribution of the gluons in the hadron and about fluctuations of the color fields. In this paper we complement previous studies on exclusive vector meson photoproduction in hadronic collisions presenting a comprehensive analysis of the t-spectrum measured in exclusive ρ, ϕ and J/Ψ photoproduction in pp and PbPb collisions at the LHC. We compute the differential cross sections taking into account gluon saturation effects and compare the predictions with those obtained in the linear regime of the QCD dynamics. Our results show that gluon saturation suppresses the magnitude of the cross sections and shifts the position of the dips towards smaller values of t.

  4. Heat transfer in thin, compact heat exchangers with circular, rectangular, or pin-fin flow passages

    Science.gov (United States)

    Olson, D. A.

    1992-01-01

    Heat transfer and pressure drop have been measured of three thin, compact heat exchangers in helium gas at 3.5 MPa and higher, with Reynolds numbers of 450 to 36,000. The flow geometries for the three heat exchanger specimens were: circular tube, rectangular channel, and staggered pin fin with tapered pins. The specimens were heated radiatively at heat fluxes up to 77 W/sq cm. Correlations were developed for the isothermal friction factor as a function of Reynolds number, and for the Nusselt number as a function of Reynolds number and the ratio of wall temperature to fluid temperature. The specimen with the pin fin internal geometry had significantly better heat transfer than the other specimens, but it also had higher pressure drop. For certain conditions of helium flow and heating, the temperature more than doubled from the inlet to the outlet of the specimens, producing large changes in gas velocity, density, viscosity, and thermal conductivity. These changes in properties did not affect the correlations for friction factor and Nusselt number in turbulent flow.

  5. Tracers as invisible evidence - The transfer and persistence of flock fibres during a car exchange.

    Science.gov (United States)

    Slot, Ana; van der Weerd, Jaap; Roos, Martin; Baiker, Martin; Stoel, Reinoud D; Zuidberg, Matthijs C

    2017-06-01

    This study assessed the recovery of flock fibres used as a tracer in a car exchange scenario. Flock fibres were deposited onto a car seat (or model thereof) and their transfer and persistence was investigated after a real or simulated car exchange. The overall aim of this study was to achieve an optimal use of flock fibres as tracers, i.e. to be able to select a fit-for-purpose flock fibre, to be able to predict the amount of flock fibres to be recovered from crime related items, and to be able to use these numbers to exclude accidental uptake. The effect of a number of variables on the transfer and persistence of flock fibres was studied, including flock fibre length, car upholstery, and trousers material. Laboratory based experiments were undertaken first, followed by realistic field based experiments. The flock fibres were captured in a non-destructive manner through fluorescence photography. A Matlab algorithm enabled fast automated counting of flock fibres on the images. Results indicate that an initial rapid loss of flock fibres from garments may be expected as a result of moderate movement. Although the amount of flock fibres to be recovered is affected by the flock fibre length, the type of car upholstery, and the type of trousers materials (if frictional force is taken into consideration), large numbers of flock fibres have been recovered from all target materials throughout the transfer route. These numbers are higher than the amount of flock fibres recovered due to accidental uptake. In conclusion, flock fibres can serve as invisible evidence to reconstruct a series of events. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Local Heat Transfer for Finned-Tube Heat Exchangers using Oval Tubes

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, James Edward; Sohal, Manohar Singh

    2000-08-01

    This paper presents the results of an experimental study of forced convection heat transfer in a narrow rectangular duct fitted with either a circular tube or an elliptical tube in crossflow. The duct was designed to simulate a single passage in a fin-tube heat exchanger. Heat transfer measurements were obtained using a transient technique in which a heated airflow is suddenly introduced to the test section. High-resolution local fin-surface temperature distributions were obtained at several times after initiation of the transient using an imaging infrared camera. Corresponding local fin-surface heat transfer coefficient distributions were then calculated from a locally applied one-dimensional semi-infinite inverse heat conduction model. Heat transfer results were obtained over an airflow rate ranging from 1.56 x 10-3 to 15.6 x 10-3 kg/s. These flow rates correspond to a duct-height Reynolds number range of 630 – 6300 with a duct height of 1.106 cm and a duct width-toheight ratio, W/H, of 11.25. The test cylinder was sized such that the diameter-to-duct height ratio, D/H is 5. The elliptical tube had an aspect ratio of 3:1 and a/H equal to 4.33. Results presented in this paper reveal visual and quantitative details of local fin-surface heat transfer distributions in the vicinity of circular and oval tubes and their relationship to the complex horseshoe vortex system that forms in the flow stagnation region. Fin surface stagnation-region Nusselt numbers are shown to be proportional to the square-root of Reynolds number.

  7. Heat transfer augmentation in double pipe heat exchanger using mechanical turbulators

    Science.gov (United States)

    Kamboj, Kushal; Singh, Gurjeet; Sharma, Rohit; Panchal, Dilbagh; Hira, Jaspreet

    2017-02-01

    The work presented here focuses on heat transfer augmentation by means of divergent-convergent spring turbulator (the enhancement device). Aim of the present work is to find such an optimum pitch at which the augmentation in heat transfer is maximum and the amount of power consumption is minimum, so that an economic design can be created with maximum thermal efficiency. So, the concept of pitch variation is introduced, which is defined as the horizontal distance between two consecutive turbulators. It describes that, the lesser is the pitch the more number of turbulators that can be inserted in inner pipe of double pipe heat exchanger, hence more will be the friction factor. This physics increases convective ability of the heat transfer process from the surface of inner pipe. There is a certain limit to which a pitch can be decreased, lesser the pitch the more the pressure drop and friction factor and hence the more will be the pumping power requirement to maintain a desired mass flow rate of hot water. Analysis of thermal factors such as Nusselts number, friction factor, with different pitches of divergent convergent spring turbulators of circular cross-section 15, 10, and 5 cm at Reynolds's number ranging between 9000 < Re < 40,000 is done graphically.

  8. Experimental studies on the enhanced flow boiling heat transfer and pressure drop of organic fluid with high saturation temperature in vertical porous coated tube

    Science.gov (United States)

    Yang, Dong; Shen, Zhi; Chen, Tingkuan; Zhou, Chenn Q.

    2013-07-01

    The characteristics of flow boiling heat transfer and pressure drop of organic fluid with high saturation temperature in a vertical porous coated tube are experimentally studied in this paper. The experiments are performed at evaporation pressure of 0.16-0.31MPa, mass flux of 390-790kg/m2s, and vapor quality of 0.06-0.58. The variations of heat transfer coefficient and pressure drop with vapor quality are measured and compared to the results of smooth tube. Boiling curves are generated at mass flux of 482 and 675kg/m2s. The experimental results indicate that the heat transfer coefficients of the porous tube are 1.8-3.5 times those of smooth tube, and that the frictional pressure drops of the porous tube are 1.1-2.9 times those of smooth tube. The correlations for heat transfer coefficient and frictional pressure drop are derived, in which the effect of fluid molecular weight is included. The experiments show that significant heat transfer enhancement is accompanied by a little pressure drop penalty, the application of the porous coated tube is promising in the process industries.

  9. Transfer of biosynthesized gold nanoparticles from water into an ionic liquid using alkyltrimethyl ammonium bromide: an anion-exchange process.

    Science.gov (United States)

    Zhou, Yao; Lin, Wenshuang; Wang, Huixuan; Li, Qingbiao; Huang, Jiale; Du, Mingming; Lin, Liqin; Gao, Yixian; Lin, Ling; He, Ning

    2011-01-04

    Biosynthesized gold nanoparticles (GNPs) were transferred from water to a hydrophobic ionic liquid (IL), [Bmim]PF(6), with the assistance of alkyl trimethyl ammonium bromide. The phase transfer mechanism was illustrated through the exemplification of cetyltrimethyl ammonium bromide (CTAB). Interaction between GNPs and CTAB was demonstrated through zeta potential analysis. Moreover, an anion-exchange process was discovered between CTAB and IL. During the process, the hydrophobic CTAPF(6) formed in situ on the GNPs led to the hydrophobization and thus phase transfer of the GNPs. The phase transfer efficiency was found to be size-dependent.

  10. Development of a food-exchange model to replace saturated fat with MUFAs and n-6 PUFAs in adults at moderate cardiovascular risk.

    Science.gov (United States)

    Weech, Michelle; Vafeiadou, Katerina; Hasaj, Marinela; Todd, Susan; Yaqoob, Parveen; Jackson, Kim G; Lovegrove, Julie A

    2014-06-01

    The recommendation to reduce saturated fatty acid (SFA) consumption to ≤10% of total energy (%TE) is a key public health target aimed at lowering cardiovascular disease (CVD) risk. Replacement of SFA with unsaturated fats may provide greater benefit than replacement with carbohydrates, yet the optimal type of fat is unclear. The aim of the DIVAS (Dietary Intervention and Vascular Function) study was to develop a flexible food-exchange model to investigate the effects of substituting SFAs with monounsaturated fatty acids (MUFAs) or n-6 (ω-6) polyunsaturated fatty acids (PUFAs) on CVD risk factors. In this parallel study, UK adults aged 21-60 y with moderate CVD risk (50% greater than the population mean) were identified using a risk assessment tool (n = 195; 56% females). Three 16-wk isoenergetic diets of specific fatty acid (FA) composition (%TE SFA:%TE MUFA:%TE n-6 PUFA) were designed using spreads, oils, dairy products, and snacks as follows: 1) SFA-rich diet (17:11:4; n = 65); 2) MUFA-rich diet (9:19:4; n = 64); and 3) n-6 PUFA-rich diet (9:13:10; n = 66). Each diet provided 36%TE total fat. Dietary targets were broadly met for all intervention groups, reaching 17.6 ± 0.4%TE SFA, 18.5 ± 0.3%TE MUFA, and 10.4 ± 0.3%TE n-6 PUFA in the respective diets, with significant overall diet effects for the changes in SFAs, MUFAs, and n-6 PUFAs between groups (P fat, protein, carbohydrate, and alcohol intake or anthropometric measures between groups. Plasma phospholipid FA composition showed changes from baseline in the proportions of total SFAs, MUFAs, and n-6 PUFAs for each diet group, with the changes in SFAs and MUFAs differing between the groups (P < 0.001). In conclusion, successful implementation of the food-exchange model broadly achieved the dietary target intakes for the exchange of SFAs with MUFAs or n-6 PUFAs with minimal disruption to the overall diet in a free-living population. This trial was registered at clinicaltrials.gov as NCT01478958. © 2014

  11. Application of localized {sup 31}P MRS saturation transfer at 7 T for measurement of ATP metabolism in the liver: reproducibility and initial clinical application in patients with non-alcoholic fatty liver disease

    Energy Technology Data Exchange (ETDEWEB)

    Valkovic, Ladislav [Medical University of Vienna, High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Vienna (Austria); Slovak Academy of Sciences, Department of Imaging Methods, Institute of Measurement Science, Bratislava (Slovakia); Gajdosik, Martin; Chmelik, Marek; Trattnig, Siegfried [Medical University of Vienna, High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Vienna (Austria); Traussnigg, Stefan; Kienbacher, Christian; Trauner, Michael [Medical University of Vienna, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Vienna (Austria); Wolf, Peter; Krebs, Michael [Medical University of Vienna, Division of Endocrinology and Metabolism, Department of Internal Medicine III, Vienna (Austria); Bogner, Wolfgang [Medical University of Vienna, High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Vienna (Austria); Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA (United States); Krssak, Martin [Medical University of Vienna, High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Vienna (Austria); Medical University of Vienna, Division of Endocrinology and Metabolism, Department of Internal Medicine III, Vienna (Austria)

    2014-07-15

    Saturation transfer (ST) phosphorus MR spectroscopy ({sup 31}P MRS) enables in vivo insight into energy metabolism and thus could identify liver conditions currently diagnosed only by biopsy. This study assesses the reproducibility of the localized {sup 31}P MRS ST in liver at 7 T and tests its potential for noninvasive differentiation of non-alcoholic fatty liver (NAFL) and steatohepatitis (NASH). After the ethics committee approval, reproducibility of the localized {sup 31}P MRS ST at 7 T and the biological variation of acquired hepato-metabolic parameters were assessed in healthy volunteers. Subsequently, 16 suspected NAFL/NASH patients underwent MRS measurements and diagnostic liver biopsy. The Pi-to-ATP exchange parameters were compared between the groups by a Mann-Whitney U test and related to the liver fat content estimated by a single-voxel proton ({sup 1}H) MRS, measured at 3 T. The mean exchange rate constant (k) in healthy volunteers was 0.31 ± 0.03 s{sup -1} with a coefficient of variation of 9.0 %. Significantly lower exchange rates (p < 0.01) were found in NASH patients (k = 0.17 ± 0.04 s{sup -1}) when compared to healthy volunteers, and NAFL patients (k = 0.30 ± 0.05 s{sup -1}). Significant correlation was found between the k value and the liver fat content (r = 0.824, p < 0.01). Our data suggest that the {sup 31}P MRS ST technique provides a tool for gaining insight into hepatic ATP metabolism and could contribute to the differentiation of NAFL and NASH. (orig.)

  12. A Numerical Study on Heat Transfer and Flow Characteristics of a Finned Downhole Coaxial Heat Exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chun Dong; Lee, Dong Hyun; Park, Byung-Sik; Choi, Jaejoon [Korea Institute of Energy Research (KIER), Daejeon (Korea, Republic of)

    2017-02-15

    In this study, the flow and heat transfer characteristics of the finned annular passage were investigated numerically. The annular passage simulates co-axial geothermal heat exchanger, and fins are installed on its inner wall to reduce heat loss from the production passage (annulus) to injection passage (inner pipe). A commercial CFD program, Ansys Fluent, was used with SST k-ω turbulence model. The effects of the geometric parameters of the fin on the inner tube were analyzed under the periodic boundary condition. The result indicated that most parameters had a tendency to increase with an increase in the height and angle of the fin. However, it was confirmed that the Nusselt number of the inner tube on the coaxial 15, 5, 0.3 was lower than that of the smooth tube. Additionally, the Nusselt number of the inner tube exhibited a tendency of decreasing with a decrease in the spacing in Coaxial 15, S{sub f}, 0.3.

  13. An automated gas exchange tank for determining gas transfer velocities in natural seawater samples

    Directory of Open Access Journals (Sweden)

    K. Schneider-Zapp

    2014-07-01

    Full Text Available In order to advance understanding of the role of seawater surfactants in the air–sea exchange of climatically active trace gases via suppression of the gas transfer velocity (kw, we constructed a fully automated, closed air–water gas exchange tank and coupled analytical system. The system allows water-side turbulence in the tank to be precisely controlled with an electronically operated baffle. Two coupled gas chromatographs and an integral equilibrator, connected to the tank in a continuous gas-tight system, allow temporal changes in the partial pressures of SF6, CH4 and N2O to be measured simultaneously in the tank water and headspace at multiple turbulence settings, during a typical experimental run of 3.25 h. PC software developed by the authors controls all operations and data acquisition, enabling the optimisation of experimental conditions with high reproducibility. The use of three gases allows three independent estimates of kw for each turbulence setting; these values are subsequently normalised to a constant Schmidt number for direct comparison. The normalised kw estimates show close agreement. Repeated experiments with Milli-Q water demonstrate a typical measurement accuracy of 4% for kw. Experiments with natural seawater show that the system clearly resolves the effects on kw of spatial and temporal trends in natural surfactant activity. The system is an effective tool with which to probe the relationships between kw, surfactant activity and biogeochemical indices of primary productivity, and should assist in providing valuable new insights into the air–sea gas exchange process.

  14. Study on the Influential Factors of Heat Transfer of Ground Heat Exchanger with Orthogonal Test

    Science.gov (United States)

    Su, Shunyu; Yang, Rui; Liu, Lamei; Zhou, Chuanhui; Shi, Lei

    2017-08-01

    Orthogonal test method could decrease experimental times and obtain better test effect. The Taguchi method, as well as mean value response and analysis of variance, were applied in this paper to study the influence of water flow velocity in pipe, diameter and water temperature of pipe inlet on heat transfer of ground heat exchanger. The optimum design parameters and the estimated values of heat flux per meter of well depth for single U-tubes are obtained. The analysis revealed that diameter is the most influential parameter for heat flux per meter of well depth in single U-tubes while water flow velocity within 0.3m/s to 0.5m/s. And water flow velocity and diameter are important influential parameters for heat flux per meter of well depth in single U-tubes while water flow velocity within 0.5m/s to 0.8m/s. Tubes with big diameters are superior to tubes with small diameters in the design of ground source heat exchanger with single U-tubes.

  15. First principles derived, transferable force fields for CO2 adsorption in Na-exchanged cationic zeolites.

    Science.gov (United States)

    Fang, Hanjun; Kamakoti, Preeti; Ravikovitch, Peter I; Aronson, Matthew; Paur, Charanjit; Sholl, David S

    2013-08-21

    The development of accurate force fields is vital for predicting adsorption in porous materials. Previously, we introduced a first principles-based transferable force field for CO2 adsorption in siliceous zeolites (Fang et al., J. Phys. Chem. C, 2012, 116, 10692). In this study, we extend our approach to CO2 adsorption in cationic zeolites which possess more complex structures. Na-exchanged zeolites are chosen for demonstrating the approach. These methods account for several structural complexities including Al distribution, cation positions and cation mobility, all of which are important for predicting adsorption. The simulation results are validated with high-resolution experimental measurements of isotherms and microcalorimetric heats of adsorption on well-characterized materials. The choice of first-principles method has a significant influence on the ability of force fields to accurately describe CO2-zeolite interactions. The PBE-D2 derived force field, which performed well for CO2 adsorption in siliceous zeolites, does not do so for Na-exchanged zeolites; the PBE-D2 method overestimates CO2 adsorption energies on multi-cation sites that are common in cationic zeolites with low Si/Al ratios. In contrast, a force field derived from the DFT/CC method performed well. Agreement was obtained between simulation and experiment not only for LTA-4A on which the force field fitting is based, but for other two common adsorbents, NaX and NaY.

  16. Fluidized-Bed Heat Transfer Modeling for the Development of Particle/Supercritical-CO2 Heat Exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhiwen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Martinek, Janna G [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-06-03

    Concentrating solar power (CSP) technology is moving toward high-temperature and high-performance design. One technology approach is to explore high-temperature heat-transfer fluids and storage, integrated with a high-efficiency power cycle such as the supercritical carbon dioxide (s-CO2) Brayton power cycle. The s-CO2 Brayton power system has great potential to enable the future CSP system to achieve high solar-to-electricity conversion efficiency and to reduce the cost of power generation. Solid particles have been proposed as a possible high-temperature heat-transfer medium that is inexpensive and stable at high temperatures above 1,000 degrees C. The particle/heat exchanger provides a connection between the particles and s-CO2 fluid in the emerging s-CO2 power cycles in order to meet CSP power-cycle performance targets of 50% thermal-to-electric efficiency, and dry cooling at an ambient temperature of 40 degrees C. The development goals for a particle/s-CO2 heat exchanger are to heat s-CO2 to =720 degrees C and to use direct thermal storage with low-cost, stable solid particles. This paper presents heat-transfer modeling to inform the particle/s-CO2 heat-exchanger design and assess design tradeoffs. The heat-transfer process was modeled based on a particle/s-CO2 counterflow configuration. Empirical heat-transfer correlations for the fluidized bed and s-CO2 were used in calculating the heat-transfer area and optimizing the tube layout. A 2-D computational fluid-dynamics simulation was applied for particle distribution and fluidization characterization. The operating conditions were studied from the heat-transfer analysis, and cost was estimated from the sizing of the heat exchanger. The paper shows the path in achieving the cost and performance objectives for a heat-exchanger design.

  17. THE EFFECTS OF SWIRL GENERATOR HAVING WINGS WITH HOLES ON HEAT TRANSFER AND PRESSURE DROP IN TUBE HEAT EXCHANGER

    Directory of Open Access Journals (Sweden)

    Zeki ARGUNHAN

    2006-02-01

    Full Text Available This paper examines the effect of turbulance creators on heat transfer and pressure drop used in concentric heat exchanger experimentaly. Heat exchanger has an inlet tube with 60 mm in diameter. The angle of swirl generators wings is 55º with each wing which has single, double, three and four holes. Swirl generators is designed to easily set to heat exchanger entrance. Air is passing through inner tube of heat exhanger as hot fluid and water is passing outer of inner tube as cool fluid.

  18. Estimation and optimization of heat transfer and overall presure drop for a shell and tube heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Bala Bhaskara [Dept. of Mechanical Engineering, SISTAM College, JNTU, Kakinada (India); Raju, V. Ramachandra [Dept. of Mechanical Engineering, JNTU, Kakinada (India); Deepak, B. B V. L. [Dept. of Industrial Design, National Institute of Technology, Rourkela (India)

    2017-01-15

    Most thermal/chemical industries are equipped with heat exchangers to enhance thermal efficiency. The performance of heat exchangers highly depends on design modifications in the tube side, such as the cross-sectional area, orientation, and baffle cut of the tube. However, these parameters do not exhibit a specific relation to determining the optimum design condition for shell and tube heat exchangers with a maximum heat transfer rate and reduced pressure drops. Accordingly, experimental and numerical simulations are performed for a heat exchanger with varying tube geometries. The heat exchanger considered in this investigation is a single-shell, multiple-pass device. A Generalized regression neural network (GRNN) is applied to generate a relation among the input and output process parameters for the experimental data sets. Then, an Artificial immune system (AIS) is used with GRNN to obtain optimized input parameters. Lastly, results are presented for the developed hybrid GRNN-AIS approach.

  19. Experimental study of heat transfer enhancement due to the surface vibrations in a flexible double pipe heat exchanger

    Science.gov (United States)

    Hosseinian, A.; Meghdadi Isfahani, A. H.

    2017-11-01

    In this study, the heat transfer enhancement due to the surface vibration for a double pipe heat exchanger, made of PVDF, is investigated. In order to create forced vibrations (3-9 m/s2, 100 Hz) on the outer surface of the heat exchanger electro-dynamic vibrators are used. Experiments were performed at inner Reynolds numbers ranging from 2533 to 9960. The effects of volume flow rate and temperature on heat transfer performance are evaluated. Results demonstrated that heat transfer coefficient increases by increasing vibration level and mass flow rate. The most increase in heat transfer coefficient is 97% which is obtained for the highest vibration level (9 m/s2) in the experiment range.

  20. A heat transfer correlation for transient vapor uptake of powdered adsorbent embedded onto the fins of heat exchangers

    KAUST Repository

    Li, Ang

    2015-10-23

    We present a detailed study on the transient heat transfer phenomena of powdered-adsorbent mixed with an organic binder for adherence to the fins of a heat exchangers. The transient performance of such an adsorbent-heat exchanger configuration has significant application potential in the adsorption desalination plants and chillers but seldom addressed in the literature. An experiment is designed to measure the heat transfer for several adsorption temperatures under a single vapor component environment. Analysis on the experimental data indicates that the adsorbent-adsorbate interactions contribute about 75% of the total thermal resistances throughout the uptake processes. It is found that the initial local adsorption heat transfer coefficients are significantly higher than the average values due primarily to the thermal mass effect of the adsorbent–adsorbate interaction layers. From these experiments, a correlation for the transient local adsorption heat transfer coefficients is presented at the sub-atmospheric pressures and assorted application temperatures.

  1. A Numerical Study on Heat Transfer Enhancement and Pressure drop Decrease of Heat Exchanger by Setting Inserted Plates in Duct

    OpenAIRE

    AMBARITA, Himsar; KISHINAMI, Koki; SATO, Kazuhiko; DAIMARUYA, Masashi; SUGIYAMA, Hiromu; SUZUKI, Jun

    2005-01-01

    This present paper attempts to numerically estimate heat transfer enhancement and pressure drop decrease on a duct flow system of heat exchanger. Inserted plates inside the duct flow are proposed in order to enhance heat transfer coefficient, however the inserted plates cause a significant pressure drop, In order to decrease the pressure drop, the inserted plates with slits were employed. Numerical calculations of two-dimensional, laminar, and steady state conditions of duct flow with and wit...

  2. EFFECTS OF BUOYANCY RATIO ON CONVECTIVE HEAT AND SOLUTE TRANSFER IN NEWTONIAN FLUID SATURATED INCLINED POROUS CAVITY

    Directory of Open Access Journals (Sweden)

    A LATRECHE

    2014-12-01

    Full Text Available This paper summarizes a numerical study of the effects of buoyancy ratio on double-diffusive natural convection in square inclined cavity filled with fluid saturated porous media. Transverse gradients of heat and solute are applied on the two horizontal walls of the cavity, while the other two walls are impermeable and adiabatic. The Darcy model with the Boussinesq approximation is used to solve the governing equations. The flow is driven by a combined buoyancy effect due to both temperature and concentration variations. A finite volume approach has been used to solve the non-dimensional governing equations. The results are presented in streamline, isothermal, iso-concentration, Nusselt and Sherwood contours for different values of the non-dimensional governing parameters.

  3. Group epitope mapping considering relaxation of the ligand (GEM-CRL): Including longitudinal relaxation rates in the analysis of saturation transfer difference (STD) experiments

    Science.gov (United States)

    Kemper, Sebastian; Patel, Mitul K.; Errey, James C.; Davis, Benjamin G.; Jones, Jonathan A.; Claridge, Timothy D. W.

    2010-03-01

    In the application of saturation transfer difference (STD) experiments to the study of protein-ligand interactions, the relaxation of the ligand is one of the major influences on the experimentally observed STD factors, making interpretation of these difficult when attempting to define a group epitope map (GEM). In this paper, we describe a simplification of the relaxation matrix that may be applied under specified experimental conditions, which results in a simplified equation reflecting the directly transferred magnetisation rate from the protein onto the ligand, defined as the summation over the whole protein of the protein-ligand cross-relaxation multiplied by with the fractional saturation of the protein protons. In this, the relaxation of the ligand is accounted for implicitly by inclusion of the experimentally determined longitudinal relaxation rates. The conditions under which this "group epitope mapping considering relaxation of the ligand" (GEM-CRL) can be applied were tested on a theoretical model system, which demonstrated only minor deviations from that predicted by the full relaxation matrix calculations (CORCEMA-ST) [7]. Furthermore, CORCEMA-ST calculations of two protein-saccharide complexes (Jacalin and TreR) with known crystal structures were performed and compared with experimental GEM-CRL data. It could be shown that the GEM-CRL methodology is superior to the classical group epitope mapping approach currently used for defining ligand-protein proximities. GEM-CRL is also useful for the interpretation of CORCEMA-ST results, because the transferred magnetisation rate provides an additional parameter for the comparison between measured and calculated values. The independence of this parameter from the above mentioned factors can thereby enhance the value of CORCEMA-ST calculations.

  4. Impact of exact exchange in the description of the electronic structure of organic charge-transfer molecular crystals

    KAUST Repository

    Fonari, Alexandr

    2014-10-21

    We evaluate the impact that the amount of nonlocal Hartree-Fock (%HF) exchange included in a hybrid density functional has on the microscopic parameters (transfer integrals, band gaps, bandwidths, and effective masses) describing charge transport in high-mobility organic crystals. We consider both crystals based on a single molecule, such as pentacene, and crystals based on mixed-stack charge-transfer systems, such as dibenzo-TTF–TCNQ. In the pentacene crystal, the band gap decreases and the effective masses increase linearly with an increase in the amount of %HF exchange. In contrast, in the charge-transfer crystals, while the band gap increases linearly, the effective masses vary only slightly with an increase in %HF exchange. We show that the superexchange nature of the electronic couplings in charge-transfer systems is responsible for this peculiar evolution of the effective masses. We compare the density functional theory results with results obtained within the G0W0 approximation as a way of benchmarking the optimal amount of %HF exchange needed in a given functional.

  5. Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Benjamin A. (Benton Harbor, MI); Zawacki, Thomas S. (St. Joseph, MI)

    1998-07-21

    Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use, as the heat transfer medium, the working fluid of the absorption system taken from the generator at a location where the working fluid has a rich liquor concentration.

  6. Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, B.A.; Zawacki, T.S.

    1998-07-21

    Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use, as the heat transfer medium, the working fluid of the absorption system taken from the generator at a location where the working fluid has a rich liquor concentration. 5 figs.

  7. Numerical investigation of conjugate heat transfer and flow performance of a fin and tube heat exchanger with vortex generators

    DEFF Research Database (Denmark)

    Singh, Shobhana; Sørensen, Kim

    2017-01-01

    type is chosen and investigated at different angles of attack 0 , ??10 and ??20 with the flow direction. Three-dimensional numerical model is developed and simulations are performed for a Reynolds number range 5000 Re 11000 taking conjugate heat transfer into account. The heat transfer and pressure...... loss characteristics are determined and analyzed for an in-line configuration of a fin and tube heat exchanger. In order to evaluate the enhancement in the performance on an equitable basis, the heat exchanger with plain fin surface is considered as a reference design. Results show that the angle...... of attack of a vortex generator has a significant impact on the volume goodness factor, and enhance the thermal performance of a fin and tube heat exchanger in comparison to the design with plain fin. The vortex generator at an angle of attack ??10 is found to perform superior over the Reynolds number range...

  8. Average Natural Convective Heat Transfer of Air-cooled Condensing Heat Exchanger of Emergency Cooldown Tank - Effect of Tube Banks

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Seon Jeong; Lee, Hee Joon [Kookmin University, Seoul (Korea, Republic of); Kim, Myoung Jun; Moon, Joo Hyung; Bae, Youngmin; Kim, Young-In [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Recently emergency cooldown tank(ECT) is a great concern of passive cooling system for the safety of nuclear reactor. After the operation of a conventional passive cooling system for an extended period, however, the water level falls as a result of the evaporation from the ECT, as steam is emitted from the open top of the tank. In this study, the effect of heat transfer area at the air cooled condensing heat exchanger was investigated by changing 5×5 tube banks into 4×4 and 3×3. Moreover, each of air-side natural convective heat transfer coefficient of tube banks was compared to existing correlations. This study presents the effect of heat transfer area at air-cooled condensing heat exchanger. As heat transfer area decreased, the temperature of outlet increased. In other words, the cooling performance got lower with the decrease of heat transfer area. In addition, the average natural convective heat transfer coefficient was 15.3 W/m{sup 2}/K from the 4×4 tube banks, and 4.92 W/m{sup 2}/K from the 3×3 tube banks, which had quite a large error more than 46% especially with the value of 4×4 tube banks compared to the value from correlation equation. Therefore, according to this result, it is needed to measure the local heat transfer coefficient of vertical cylinder more elaborately in further study.

  9. EXACKTE2: Exploiting the clinical consultation as a knowledge transfer and exchange environment: a study protocol

    Directory of Open Access Journals (Sweden)

    Ouimet Mathieu

    2009-03-01

    Full Text Available Abstract Background While the evidence suggests that the way physicians provide information to patients is crucial in helping patients decide upon a course of action, the field of knowledge translation and exchange (KTE is silent about how the physician and the patient influence each other during clinical interactions and decision-making. Consequently, based on a novel relationship-centered model, EXACKTE2 (EXploiting the clinicAl Consultation as a Knowledge Transfer and Exchange Environment, this study proposes to assess how patients and physicians influence each other in consultations. Methods We will employ a cross-sectional study design involving 300 pairs of patients and family physicians from two primary care practice-based research networks. The consultation between patient and physician will be audio-taped and transcribed. Following the consultation, patients and physicians will complete a set of questionnaires based on the EXACKTE2 model. All questionnaires will be similar for patients and physicians. These questionnaires will assess the key concepts of our proposed model based on the essential elements of shared decision-making (SDM: definition and explanation of problem; presentation of options; discussion of pros and cons; clarification of patient values and preferences; discussion of patient ability and self-efficacy; presentation of doctor knowledge and recommendation; and checking and clarifying understanding. Patients will be contacted by phone two weeks later and asked to complete questionnaires on decisional regret and quality of life. The analysis will be conducted to compare the key concepts in the EXACKTE2 model between patients and physicians. It will also allow the assessment of how patients and physicians influence each other in consultations. Discussion Our proposed model, EXACKTE2, is aimed at advancing the science of KTE based on a relationship process when decision-making has to take place. It fosters a new KTE

  10. Energy Transfer in Mixed Convection MHD Flow of Nanofluid Containing Different Shapes of Nanoparticles in a Channel Filled with Saturated Porous Medium.

    Science.gov (United States)

    Aaiza, Gul; Khan, Ilyas; Shafie, Sharidan

    2015-12-01

    Energy transfer in mixed convection unsteady magnetohydrodynamic (MHD) flow of an incompressible nanofluid inside a channel filled with saturated porous medium is investigated. The channel with non-uniform walls temperature is taken in a vertical direction under the influence of a transverse magnetic field. Based on the physical boundary conditions, three different flow situations are discussed. The problem is modelled in terms of partial differential equations with physical boundary conditions. Four different shapes of nanoparticles of equal volume fraction are used in conventional base fluids, ethylene glycol (EG) (C 2 H 6 O 2 ) and water (H 2 O). Solutions for velocity and temperature are obtained discussed graphically in various plots. It is found that viscosity and thermal conductivity are the most prominent parameters responsible for different results of velocity and temperature. Due to higher viscosity and thermal conductivity, C 2 H 6 O 2 is regarded as better convectional base fluid compared to H 2 O.

  11. Binding events of (S )-N -(3-oxo-octanoyl)-homoserine lactone with agrobacterium tumefaciens mutant cells studied by saturation transfer difference NMR

    Energy Technology Data Exchange (ETDEWEB)

    Cabeca, Luis Fernando; Pomini, Armando Mateus; Cruz, Pedro Luiz R.; Marsaioli, Anita J. [University of Campinas (UNICAMP), SP (Brazil). Chemistry Inst.

    2011-07-01

    Quorum-sensing is a widely studied communication phenomenon in bacteria, which involves the production and detection of signaling substances in relation with cell density and colony behavior. Herein, the membrane binding interactions of the signal (S)-N-(3-oxo-octanoyl)-HSL with A. tumefaciens NTL4(pZLR4) cells were studied using saturation transfer difference NMR spectroscopy (STD-NMR). The substance epitope map was obtained showing that the hydrophobic acyl chain is the most important interacting site for the signal and the cell membrane. Results were interpreted upon comparisons with a simpler system, using liposomes as membrane models. Some insights on the use of b-cyclodextrin as acyl-HSL carrier were also provided. (author)

  12. Interaction between Wine Phenolic Acids and Salivary Proteins by Saturation-Transfer Difference Nuclear Magnetic Resonance Spectroscopy (STD-NMR) and Molecular Dynamics Simulations.

    Science.gov (United States)

    Ferrer-Gallego, Raúl; Hernández-Hierro, José Miguel; Brás, Natércia F; Vale, Nuno; Gomes, Paula; Mateus, Nuno; de Freitas, Victor; Heredia, Francisco J; Escribano-Bailón, María Teresa

    2017-08-09

    The interaction between phenolic compounds and salivary proteins is highly related to the astringency perception. Recently, it has been proven the existence of synergisms on the perceived astringency when phenolic acids were tested as mixtures in comparison to individual compounds, maintaining constant the total amount of the stimulus. The interactions between wine phenolic acids and the peptide fragment IB712 have been studied by saturation-transfer difference (STD) NMR spectroscopy. This technique provided the dissociation constants and the percentage of interaction between both individual and mixtures of hydroxybenzoic and hydroxycinnamic acids and the model peptide. It is noteworthy that hydroxybenzoic acids showed higher affinity for the peptide than hydroxycinnamic acids. To obtain further insights into the mechanisms of interaction, molecular dynamics simulations have been performed. Results obtained not only showed the ability of these compounds to interact with salivary proteins but also may justify the synergistic effect observed in previous sensory studies.

  13. Numerical and experimental investigation of enhancement of heat transfer in dimpled rib heat exchanger tube

    Science.gov (United States)

    Kumar, Anil; Maithani, Rajesh; Suri, Amar Raj Singh

    2017-12-01

    In this study, numerical and experimental investigation has been carried out for a range of system and operating parameters in order to analyse the effect of dimpled rib on heat and fluid flow behaviours in heat exchanger tube. Tube has, stream wise spacing ( x/ d d ) range of 15-35, span wise spacing ( y/ d d ) range of 15-35, ratio of dimpled depth to print diameter ( e/ d d ) of 1.0 and Reynolds number ( Re n ) ranges from 4000 to 28,000. Simulations were carried out to obtain heat and fluid flow behaviour of smooth and rough tube, using commercial CFD software, ANSYS 16.0 (Fluent). Renormalization k - ɛ model was employed to assess the influence of dimpled on turbulent flow and velocity field. Simulation results show that, the enhancement of 3.18 times in heat transfer and 2.87 times enhancement in thermal hydraulic performance as a function of stream wise direction ( x/ d d ) of 15 and span wise direction ( y/ d d ) of 15 respectively. Comparison between numerical and experimental simulation results showed that good agreement as the data fell within ±10% error band.

  14. HEAT TRANSFER COEFFICIENT AND FRICTION FACTOR CHARACTERISTICS OF A GRAVITY ASSISTED BAFFLED SHELL AND HEAT-PIPE HEAT EXCHANGER

    Directory of Open Access Journals (Sweden)

    P. Raveendiran

    2015-06-01

    Full Text Available The heat transfer coefficients and friction factors of a baffled shell and heat pipe heat exchanger with various inclination angles were determined experimentally; using methanol as working fluid and water as heat transport fluid were reported. Heat pipe heat exchanger reported in this investigation have inclination angles varied between 15o and 60o for different mass flow rates and temperature at the shell side of the heat exchanger. All the required parameters like outlet temperature of both hot and cold side of heat exchanger and mass flow rate of fluids were measured using an appropriate instrument. Different tests were performed from which condenser side heat transfer coefficient and friction factor were calculated. In all operating conditions it has been found that the heat transfer coefficient increases by increasing the mass flow rate and angle of inclination. The reduction in friction factor occurs when the Reynolds number is increased. The overall optimum experimental effectiveness of GABSHPHE has found to be 42% in all operating conditioning at ψ = 45o.

  15. Development and the Temporality of its Exchange. How an Eastern Yucatec Village Made Cash Transfer Promises Accountable

    Directory of Open Access Journals (Sweden)

    Andrés Dapuez

    2016-09-01

    Full Text Available This paper explores how three temporalities of exchange amend the reception of cash transfers for development in a village in Eastern Yucatan, Mexico. Based on participant observation and in-depth interviews of recipients of cash transfers from Procampo and Oportunidades, this study reveals that ritual promising functions as a means of temporal regulation in most transactions of this sort, and that the recipients hold their government accountable for promises and commitments regarding cash transfers. In assessing the temporal ranges and effectiveness of these transfers by alluding to previous stipulations that sustain the exchange and make it understandable and bearable as a promise, the people in this village consider the objectives of the Procampo and Oportunidades programs to be implausible. Accountability with respect to the long-term effects of these transfers is not, however, based only on local impressions of a state that procrastinates in its “engagement” with peasants. As the timetable established for the accumulation of human capital also exceeds the time limits of responsible promising, these cash transfer programs cannot be evaluated in terms of their fulfilled or unfulfilled promises.

  16. Enhancing Ion Transfer in Overlimiting Electrodialysis of Dilute Solutions by Modifying the Surface of Heterogeneous Ion-Exchange Membranes

    Directory of Open Access Journals (Sweden)

    Natalia Pismenskaya

    2012-01-01

    Full Text Available The desalination of dilute NaCl solutions with heterogeneous Russian commercial and modified ion-exchange membranes was studied in a laboratory cell imitating desalination channels of large-scale electrodialysers. The modification was made by casting a thin film of a Nafion-type material on the surface of cation-exchange membrane, and by processing with a strong polyelectrolyte the surface of anion-exchange membrane. It was shown that the modifications resulted in an increase of mass transfer coefficient and in a decrease in water splitting rate, both by up to 2 times. The effect of mass transfer growth is explained by higher surface hydrophobicity of the modified membrane that enhances electroconvection. The decrease in water splitting rate in the case of cation-exchange membrane is due to homogenization of its surface layer. In the case of anion-exchange membrane the effect is due to grafting of quaternary ammonium bases onto the original membrane surface layer. The suppression of water splitting favors development of electroconvection. In turn, intensive electroconvection contributes to deliver salt ions to membrane surface and thus reduces water splitting.

  17. Community-based knowledge transfer and exchange: Helping community-based organizations link research to action

    Directory of Open Access Journals (Sweden)

    Lavis John N

    2010-04-01

    Full Text Available Abstract Background Community-based organizations (CBOs are important stakeholders in health systems and are increasingly called upon to use research evidence to inform their advocacy, program planning, and service delivery efforts. CBOs increasingly turn to community-based research (CBR given its participatory focus and emphasis on linking research to action. In order to further facilitate the use of research evidence by CBOs, we have developed a strategy for community-based knowledge transfer and exchange (KTE that helps CBOs more effectively link research evidence to action. We developed the strategy by: outlining the primary characteristics of CBOs and why they are important stakeholders in health systems; describing the concepts and methods for CBR and for KTE; comparing the efforts of CBR to link research evidence to action to those discussed in the KTE literature; and using the comparison to develop a framework for community-based KTE that builds on both the strengths of CBR and existing KTE frameworks. Discussion We find that CBR is particularly effective at fostering a climate for using research evidence and producing research evidence relevant to CBOs through community participation. However, CBOs are not always as engaged in activities to link research evidence to action on a larger scale or to evaluate these efforts. Therefore, our strategy for community-based KTE focuses on: an expanded model of 'linkage and exchange' (i.e., producers and users of researchers engaging in a process of asking and answering questions together; a greater emphasis on both producing and disseminating systematic reviews that address topics of interest to CBOs; developing a large-scale evidence service consisting of both 'push' efforts and efforts to facilitate 'pull' that highlight actionable messages from community relevant systematic reviews in a user-friendly way; and rigorous evaluations of efforts for linking research evidence to action. Summary

  18. Nurses' participation in personal knowledge transfer: the role of leader-member exchange (LMX) and structural empowerment.

    Science.gov (United States)

    Davies, Alicia; Wong, Carol A; Laschinger, Heather

    2011-07-01

    The purpose of this study was to test Kanter's theory by examining relationships among structural empowerment, leader-member exchange (LMX) quality and nurses' participation in personal knowledge transfer activities. Despite the current emphasis on evidence-based practice in health care, research suggests that implementation of research findings in everyday clinical practice is unsystematic at best with mixed outcomes. This study was a secondary analysis of data collected using a non-experimental, predictive mailed survey design. A random sample of 400 registered nurses who worked in urban tertiary care hospitals in Ontario yielded a final sample of 234 for a 58.5% response rate. Hierarchical multiple linear regression analysis revealed that the combination of LMX and structural empowerment accounted for 9.1% of the variance in personal knowledge transfer but only total empowerment was a significant independent predictor of knowledge transfer (β=0.291, t=4.012, PTheory, higher levels of empowerment and leader-member exchange quality resulted in increased participation in personal knowledge transfer in practice. The results reinforce the pivotal role of nurse managers in supporting empowering work environments that are conducive to transfer of knowledge in practice to provide evidence-based care. © 2011 The Authors. Journal compilation © 2011 Blackwell Publishing Ltd.

  19. Heat transfer performance of water and Nanoencapsulated n-nonadecane based Nanofluids in a double pipe heat exchanger

    Science.gov (United States)

    Doruk, Semahat; Şara, Osman Nuri; Karaipekli, Ali; Yapıcı, Sinan

    2017-06-01

    The heat transfer and pressure drop characteristics for the flow of water, which is base fluid, and nanoencapsulated n-nonadecane based nanofluids in a double pipe heat exchanger were investigated. The results showed that no improvement in overall heat transfer coefficient was observed for the nanofluids containing 0.42% and 0.84% solid volume ratios with reference to the base fluid, while an improvement of about 10% was obtained for the nanofluids containing 1.68% solid volume ratio. It was found that the friction factors for the nanofluids exhibited a slight increase reference to the base fluid. A performance analysis based on constant pumping power was also performed.

  20. Prediction of the heat transfer rate of a single layer wire-on-tube type heat exchanger using ANFIS

    Energy Technology Data Exchange (ETDEWEB)

    Hayati, Mohsen [Electrical Engineering Department, Faculty of Engineering, Razi University, Tagh-E-Bostan, Kermanshah 67149 (Iran); Computational Intelligence Research Center, Razi University, Tagh-E-Bostan, Kermanshah 67149 (Iran); Rezaei, Abbas; Seifi, Majid [Electrical Engineering Department, Faculty of Engineering, Razi University, Tagh-E-Bostan, Kermanshah 67149 (Iran)

    2009-12-15

    In this paper, we applied an Adaptive Neuro-Fuzzy Inference System (ANFIS) model for prediction of the heat transfer rate of the wire-on-tube type heat exchanger. Limited experimental data was used for training and testing ANFIS configuration with the help of hybrid learning algorithm consisting of backpropagation and least-squares estimation. The predicted values are found to be in good agreement with the actual values from the experiments with mean relative error less than 2.55%. Also, we compared the proposed ANFIS model to an ANN approach. Results show that the ANFIS model has more accuracy in comparison to ANN approach. Therefore, we can use ANFIS model to predict the performances of thermal systems in engineering applications, such as modeling heat exchangers for heat transfer analysis. (author)

  1. A comparison between energy transfer and atmospheric turbulent exchanges over alpine meadow and banana plantation

    Science.gov (United States)

    Ding, Zhangwei; Ma, Yaoming; Wen, Zhiping; Ma, Weiqiang; Chen, Shiji

    2017-07-01

    Banana plantation and alpine meadow ecosystems in southern China and the Tibetan Plateau (TP) are unique in the underlying surfaces they exhibit. In this study, we used eddy covariance and a micrometeorological tower to examine the characteristics of land surface energy exchanges over a banana plantation in southern China and an alpine meadow in the Tibetan Plateau from May 2010 to August 2012. The results showed that the diurnal and seasonal variations in upward shortwave radiation flux and surface soil heat flux were larger over the alpine meadow than over the banana plantation surface. Dominant energy partitioning varied with season. Latent heat flux was the main consumer of net radiation flux in the growing season, whereas sensible heat flux was the main consumer during other periods. The Monin-Obukhov similarity theory was employed for comparative purposes, using sonic anemometer observations of flow over the surfaces of banana plantations in the humid southern China monsoon region and the semi-arid areas of the TP, and was found to be applicable. Over banana plantation and alpine meadow areas, the average surface albedo and surface aerodynamic roughness lengths under neutral atmospheric conditions were ˜0.128 and 0.47 m, and ˜0.223 and 0.01 m, respectively. During the measuring period, the mean annual bulk transfer coefficients for momentum and sensible heat were 1.47 × 10-2 and 7.13 × 10-3, and 2.91 × 10-3 and 1.96 × 10-3, for banana plantation and alpine meadow areas, respectively.

  2. Knowledge transfer & exchange through social networks: building foundations for a community of practice within tobacco control

    Directory of Open Access Journals (Sweden)

    Huerta Tim

    2006-09-01

    Full Text Available Abstract Background Health services and population health innovations advance when knowledge transfer and exchange (KTE occurs among researchers, practitioners, policy-makers and consumers using high-quality evidence. However, few KTE models have been evaluated in practice. Communities of practice (CoP – voluntary, self-organizing, and focused groups of individuals and organizations – may provide one option. This paper outlines an approach to lay the foundation for a CoP within the area of Web-assisted tobacco interventions (WATI. The objectives of the study were to provide a data-driven foundation to inform decisions about organizing a CoP within the geographically diverse, multi-disciplinary WATI group using evaluation and social network methodologies. Methods A single-group design was employed using a survey of expectations, knowledge, and interpersonal WATI-related relationships administered prior to a meeting of the WATI group followed by a 3-week post-meeting Web survey to assess short-term impact on learning and networking outcomes. Results Twenty-three of 27 WATI attendees (85% from diverse disciplinary and practice backgrounds completed the baseline survey, with 21 (91% of those participants completing the three-week follow-up. Participants had modest expectations of the meeting at baseline. A social network map produced from the data illustrated a centralized, yet sparse network comprising of interdisciplinary teams with little trans-sectoral collaboration. Three-week follow-up survey results showed that participants had made new network connections and had actively engaged in KTE activities with WATI members outside their original network. Conclusion Data illustrating both the shape and size of the WATI network as well as member's interests and commitment to KTE, when shared and used to frame action steps, can positively influence the motivation to collaborate and create communities of practice. Guiding KTE planning through

  3. 7T Magnetization Transfer and Chemical Exchange Saturation Transfer MRI of Cortical Gray Matter: Can We Detect Neurochemical and Macromolecular Abnormalities

    Science.gov (United States)

    2015-10-01

    optic nerve , but also have disseminated these methods to collaborators outside of Vanderbilt for application to patients with brain tumors (see...Characterization of the Optic Nerve in vivo using High-resolution APT-CEST), and 1 abstract presented at the annual VUIIS retreat (Conrad B, Dethrage LM...for the quantification of macromolecular and metabolic indices reflective of demyelination and neurotransmitter /protein accumulation. All quantitative

  4. Study of heat transfer and pressure drop characteristics of air heat exchanger using PCM for free cooling applications

    Directory of Open Access Journals (Sweden)

    Kalaiselvam Sivakumar

    2016-01-01

    Full Text Available Free cooling is the process of storing the cool energy available in the night ambient air and using it during the day. The heat exchanger used in this work is a modular type which is similar to the shell and tube heat exchanger. The shell side is filled with Phase Change Materials (PCM and air flow is through the tubes in the module. The modules of the heat exchanger are arranged one over other with air spacers in between each module. The air space provided in between the module in-creases the retention time of the air for better heat transfer. Transient Computational Fluid Dynamics modeling is carried out for single air passage in a modular heat exchanger. It shows that the PCM phase transition time in the module in which different shape of fins is adopted. The module with rectangular fins has 17.2 % reduction in solidification compared with the plain module. Then steady state numerical analysis is accomplished to the whole module having the fin of high heat transfer, so that pressure drop, flow and thermal characteristics across the module and the air spacers are deter-mined for various air inlet velocities of 0.4 to 1.6 m/s. To validate the computational results, experiments are carried out and the agreement was found to be good.

  5. Multiple-exchange-time xenon polarization transfer contrast (MXTC) MRI: initial results in animals and healthy volunteers.

    Science.gov (United States)

    Dregely, Isabel; Ruset, Iulian C; Mata, Jaime F; Ketel, Jeffrey; Ketel, Steve; Distelbrink, Jan; Altes, Talissa A; Mugler, John P; Wilson Miller, G; William Hersman, F; Ruppert, Kai

    2012-04-01

    Hyperpolarized xenon-129 is a noninvasive contrast agent for lung MRI, which upon inhalation dissolves in parenchymal structures, thus mirroring the gas-exchange process for oxygen in the lung. Multiple-exchange-time xenon polarization transfer contrast (MXTC) MRI is an implementation of the XTC MRI technique in four dimensions (three spatial dimensions plus exchange time). The aim of this study was to evaluate the sensitivity of MXTC MRI for the detection of microstructural deformations of the healthy lung in response to gravity-induced tissue compression and the degree of lung inflation. MXTC MRI was performed in four rabbits and in three healthy human volunteers. Two lung function parameters, one related to tissue- to alveolar-volume ratio and the other to average septal-wall thickness, were determined regionally. A significant gradient in MXTC MRI parameters, consistent with gravity-induced lung tissue deformation in the supine imaging position, was found at low lung volumes. At high lung volumes, parameters were generally lower and the gradient in parameter values was less pronounced. Results show that MXTC MRI permits the quantification of subtle changes in healthy lung microstructure. Further, only structures participating in gas exchange are represented in MXTC MRI data, which potentially makes the technique especially sensitive to pathological changes in lung microstructure affecting gas exchange. Copyright © 2011 Wiley Periodicals, Inc.

  6. Effect of Twisted-Tape Turbulators and Nanofluid on Heat Transfer in a Double Pipe Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Heydar Maddah

    2014-01-01

    Full Text Available Heat transfer and overall heat transfer in a double pipe heat exchanger fitted with twisted-tape elements and titanium dioxide nanofluid were studied experimentally. The inner and outer diameters of the inner tube were 8 and 16 mm, respectively, and cold and hot water were used as working fluids in shell side and tube side. The twisted tapes were made from aluminum sheet with tape thickness (d of 1 mm, width (W of 5 mm, and length of 120 cm. Titanium dioxide nanoparticles with a diameter of 30 nm and a volume concentration of 0.01% (v/v were prepared. The effects of temperature, mass flow rate, and concentration of nanoparticles on the overall heat transfer coefficient, heat transfer changes in the turbulent flow regime Re≥2300, and counter current flow were investigated. When using twisted tape and nanofluid, heat transfer coefficient was about 10 to 25 percent higher than when they were not used. It was also observed that the heat transfer coefficient increases with operating temperature and mass flow rate. The experimental results also showed that 0.01% TiO2/water nanofluid with twisted tape has slightly higher friction factor and pressure drop when compared to 0.01% TiO2/water nanofluid without twisted tape. The empirical correlations proposed for friction factor are in good agreement with the experimental data.

  7. Convective heat transfer measurements in a vapour-liquid-liquid three-phase direct contact heat exchanger

    Science.gov (United States)

    Mahood, Hameed B.; Campbell, A. N.; Baqir, Ali Sh.; Sharif, A. O.; Thorpe, R. B.

    2017-12-01

    Energy usage is increasing around the world due to the continued development of technology, and population growth. Solar energy is a promising low-grade energy resource that can be harvested and utilised in different applications, such solar heater systems, which are used in both domestic and industrial settings. However, the implementation of an efficient energy conversion system or heat exchanger would enhance such low-grade energy processes. The direct contact heat exchanger could be the right choice due to its ability to efficiently transfer significant amounts of heat, simple design, and low cost. In this work, the heat transfer associated with the direct contact condensation of pentane vapour bubbles in a three-phase direct contact condenser is investigated experimentally. Such a condenser could be used in a cycle with a solar water heater and heat recovery systems. The experiments on the steady state operation of the three-phase direct contact condenser were carried out using a short Perspex tube of 70 cm in total height and an internal diameter of 4 cm. Only a height of 48 cm was active as the direct contact condenser. Pentane vapour, (the dispersed phase) with three different initial temperatures (40° C, 43.5° C and 47.5° C) was directly contacted with water (the continuous phase) at 19° C. The experimental results showed that the total heat transfer rate per unit volume along the direct contact condenser gradually decreased upon moving higher up the condenser. Additionally, the heat transfer rate increases with increasing mass flow rate ratio, but no significant effect on the heat transfer rate of varying the initial temperature of the dispersed phase was seen. Furthermore, both the outlet temperature of the continuous phase and the void fraction were positively correlated with the total heat transfer rate per unit volume, with no considerable effect of the initial temperature difference between the dispersed and continuous phases.

  8. Performance and cost characteristics of multi-electron transfer, common ion exchange non-aqueous redox flow batteries

    Science.gov (United States)

    Laramie, Sydney M.; Milshtein, Jarrod D.; Breault, Tanya M.; Brushett, Fikile R.; Thompson, Levi T.

    2016-09-01

    Non-aqueous redox flow batteries (NAqRFBs) have recently received considerable attention as promising high energy density, low cost grid-level energy storage technologies. Despite these attractive features, NAqRFBs are still at an early stage of development and innovative design techniques are necessary to improve performance and decrease costs. In this work, we investigate multi-electron transfer, common ion exchange NAqRFBs. Common ion systems decrease the supporting electrolyte requirement, which subsequently improves active material solubility and decreases electrolyte cost. Voltammetric and electrolytic techniques are used to study the electrochemical performance and chemical compatibility of model redox active materials, iron (II) tris(2,2‧-bipyridine) tetrafluoroborate (Fe(bpy)3(BF4)2) and ferrocenylmethyl dimethyl ethyl ammonium tetrafluoroborate (Fc1N112-BF4). These results help disentangle complex cycling behavior observed in flow cell experiments. Further, a simple techno-economic model demonstrates the cost benefits of employing common ion exchange NAqRFBs, afforded by decreasing the salt and solvent contributions to total chemical cost. This study highlights two new concepts, common ion exchange and multi-electron transfer, for NAqRFBs through a demonstration flow cell employing model active species. In addition, the compatibility analysis developed for asymmetric chemistries can apply to other promising species, including organics, metal coordination complexes (MCCs) and mixed MCC/organic systems, enabling the design of low cost NAqRFBs.

  9. In situ measurements of water transfer due to different mechanisms in a proton exchange membrane fuel cell

    Science.gov (United States)

    Husar, Attila; Higier, Andrew; Liu, Hongtan

    Water management is of critical importance in a proton exchange membrane (PEM) fuel cell, in particular, those based on a sulfonic acid polymer, which requires water to conduct protons. Yet there are limited in situ studies of water transfer through the membrane and no data are available for water transfer due to individual mechanisms through the membrane in an operational fuel cell. Thus it is the objective of this study to measure water transfer through the membrane due to each individual mechanism in an operational PEM fuel cell. The three different mechanisms of water transfer, i.e., electro-osmotic drag, diffusion and hydraulic permeation are isolated by specially imposed boundary conditions. Therefore water transfer through the membrane due to each mechanism is measured separately. In this study, all the data is collected in an actual assembled operational fuel cell. The experimental results show that water transfer due to hydraulic permeation, i.e. the pressure difference between the anode and cathode is at least an order of magnitude lower than those due to the other two mechanisms. The data for water transfer due to diffusion through the membrane are in good agreement with some of the ex situ data in the literature. The data for electro-osmosis show that the number of water molecules dragged per proton increases not only with temperature but also with current density, which is different from existing data in the literature. The methodology used in this study is simple and can be easily adopted for in situ water transfer measurement due to different mechanisms in other PEM fuel cells without any cell modifications.

  10. Compound heat transfer enhancement for shell side of double-pipe heat exchanger by helical fins and vortex generators

    Science.gov (United States)

    Zhang, Li; Guo, Hongmei; Wu, Jianhua; Du, Wenjuan

    2012-07-01

    To improve heat transfer performance of shell side of double-pipe heat exchanger with helical fins on its inner tube, some vortex generators (VGs) were installed along the centerline of the helical channel. Heat transfer performance and pressure drop characteristic of the enhanced heat exchangers were investigated using air as the working fluid and steam as the heating medium. The helical fins were in the annulus and span its full width at different helical pitch. Wing-type VGs (delta or rectangular wing) and winglet-type VGs (delta or rectangular winglet pair) were used to combine with helical fins. The friction factor and Nusselt number can be well correlated by power-law correlations in the Reynolds number range studied. In order to evaluate the thermal performance of the shell side enhanced over the shell side without enhancement, comparisons were made under three constraints: (1) identical mass flow rate, IMF; (2) identical pressure drop, IPD and (3) identical pumping power, IPP. The results show the shell side enhanced by the compound heat transfer enhancement has better performance than the shell side only enhanced by helical fins at shorter helical pitch under the three constraints.

  11. Exchange of core chromosomes and horizontal transfer of lineage-specific chromosomes in Fusarium oxysporum

    NARCIS (Netherlands)

    Vlaardingerbroek, I.; Beerens, B.; Rose, L.; Fokkens, L.; Cornelissen, B.J.C.; Rep, M.

    2016-01-01

    Horizontal transfer of supernumerary or lineage-specific (LS) chromosomes has been described in a number of plant pathogenic filamentous fungi. So far it was not known whether transfer is restricted to chromosomes of certain size or properties, or whether 'core' chromosomes can also undergo

  12. Active latent heat storage with a screw heat exchanger - experimental results for heat transfer and concept for high pressure steam

    Science.gov (United States)

    Zipf, Verena; Willert, Daniel; Neuhäuser, Anton

    2016-05-01

    An innovative active latent heat storage concept was invented and developed at Fraunhofer ISE. It uses a screw heat exchanger (SHE) for the phase change during the transport of a phase change material (PCM) from a cold to a hot tank or vice versa. This separates heat transfer and storage tank in comparison to existing concepts. A test rig has been built in order to investigate the heat transfer coefficients of the SHE during melting and crystallization of the PCM. The knowledge of these characteristics is crucial in order to assess the performance of the latent heat storage in a thermal system. The test rig contains a double shafted SHE, which is heated or cooled with thermal oil. The overall heat transfer coefficient U and the convective heat transfer coefficient on the PCM side hPCM both for charging and discharging have been calculated based on the measured data. For charging, the overall heat transfer coefficient in the tested SHE was Uch = 308 W/m2K and for discharging Udis = 210 W/m2K. Based on the values for hPCM the overall heat transfer coefficients for a larger SHE with steam as heat transfer fluid and an optimized geometry were calculated with Uch = 320 W/m2K for charging and Udis = 243 W/m2K for discharging. For pressures as high as p = 100 bar, an SHE concept has been developed, which uses an organic fluid inside the flight of the SHE as working media. With this concept, the SHE can also be deployed for very high pressure, e.g. as storage in solar thermal power plants.

  13. Ultrafast spin exchange-coupling torque via photo-excited charge-transfer processes

    National Research Council Canada - National Science Library

    Ma, X; Fang, F; Li, Q; Zhu, J; Yang, Y; Wu, Y Z; Zhao, H B; Lüpke, G

    2015-01-01

    .... Recently developed optical approaches such as ultrafast demagnetization, spin-transfer and spin-orbit torques open new pathways to manipulate spin through its interaction with photon, orbit, charge or phonon...

  14. Stagnant mobile phase mass transfer in chromatographic media: Intraparticle diffusion and exchange kinetics

    NARCIS (Netherlands)

    Tallarek, U.; Vergeldt, F.J.; As, van H.

    1999-01-01

    Pulsed field gradient nuclear magnetic resonance has been successfully applied to a direct and detailed experimental study of topological and dynamic aspects involved in the exchange of small, nonsorbed fluid molecules between the intraparticle pore network and the interparticle void space in

  15. Experimental Analysis of the Effects of Particulate Fouling on Heat Exchanger Heat Transfer and Air-Side Pressure Drop for a Hybrid Dry Cooler

    OpenAIRE

    Bell, Ian; Groll, Eckhard; Konig, Holger

    2011-01-01

    It is well known that significant fouling by particulate matter can have a deleterious effect on the performance of enhanced surface heat exchangers, and the same is true for hybrid heat exchangers. Hybrid heat exchangers are heat exchangers which are typically run in dry mode to reject heat. When the ambient conditions require more heat rejection than can be provided by sensible heat transfer a water pump is turned on and water flows over the fins and the evaporation of water provides a fu...

  16. Heat transfer analysis of underground U-type heat exchanger of ground source heat pump system.

    Science.gov (United States)

    Pei, Guihong; Zhang, Liyin

    2016-01-01

    Ground source heat pumps is a building energy conservation technique. The underground buried pipe heat exchanging system of a ground source heat pump (GSHP) is the basis for the normal operation of an entire heat pump system. Computational-fluid-dynamics (CFD) numerical simulation software, ANSYS-FLUENT17.0 have been performed the calculations under the working conditions of a continuous and intermittent operation over 7 days on a GSHP with a single-well, single-U and double-U heat exchanger and the impact of single-U and double-U buried heat pipes on the surrounding rock-soil temperature field and the impact of intermittent operation and continuous operation on the outlet water temperature. The influence on the rock-soil temperature is approximately 13 % higher for the double-U heat exchanger than that of the single-U heat exchanger. The extracted energy of the intermittent operation is 36.44 kw·h higher than that of the continuous mode, although the running time is lower than that of continuous mode, over the course of 7 days. The thermal interference loss and quantity of heat exchanged for unit well depths at steady-state condition of 2.5 De, 3 De, 4 De, 4.5 De, 5 De, 5.5 De and 6 De of sidetube spacing are detailed in this work. The simulation results of seven working conditions are compared. It is recommended that the side-tube spacing of double-U underground pipes shall be greater than or equal to five times of outer diameter (borehole diameter: 180 mm).

  17. A comparison between heat transfer correlations obtained from experimental data and numerical simulation of flow of stirred yoghurt during cooling in plate heat exchangers

    OpenAIRE

    Afonso, Isabel M.; Fernandes, Carla S.; Maia, João M.; Luis F. Melo

    2004-01-01

    Thermal processing is widely used in the food industry mainly to improve quality and safety of food products. The investigation of heat transfer problems of non-Newtonian fluids during heating and cooling in heat exchangers is of major interest since the main factor limiting heat transfer is the viscous behaviour of these fluids. Therefore, the knowledge of the interface heat transfer coefficients is important in the design of food processes and processing equipment. In the present work, s...

  18. Flow boiling heat transfer and pressure drop characteristics of R134a, R1234yf and R1234ze in a plate heat exchanger for organic Rankine cycle units

    DEFF Research Database (Denmark)

    Zhang, Ji; Desideri, Adriano; Kærn, Martin Ryhl

    2017-01-01

    . This paper is aimed at obtaining flow boiling heat transfer and pressure drop characteristics in a plate heat exchanger under the working conditions prevailing in the evaporator of organic Rankine cycle units. Two hydrofluoroolefins R1234yf and R1234ze, and one hydrofluorocarbon R134a, were selected......The optimal design of the evaporator is one of the key issues to improve the efficiency and economics of organic Rankine cycle units. The first step in studying the evaporator design is to understand the thermal-hydraulic performance of the working fluid in the evaporator of organic Rankine cycles......, respectively. The working conditions covered relatively high saturation temperatures (corresponding reduced pressures of 0.35-0.74), which are prevailing in organic Rankine cycles yet absent in the open literature. The experimental data were compared with existing correlations, and new correlations were...

  19. Slug-flow dynamics with phase change heat transfer in compact heat exchangers with oblique wavy walls

    Science.gov (United States)

    Morimoto, Kenichi; Kinoshita, Hidenori; Matsushita, Ryo; Suzuki, Yuji

    2017-11-01

    With abundance of low-temperature geothermal energy source, small-scale binary-cycle power generation system has gained renewed attention. Although heat exchangers play a dominant role in thermal efficiency and the system size, the optimum design strategy has not been established due to complex flow phenomena and the lack of versatile heat transfer models. In the present study, the concept of oblique wavy walls, with which high j/f factor is achieved by strong secondary flows in single-phase system, is extended to two-phase exchangers. The present analyses are based on evaporation model coupled to a VOF technique, and a train of isolated bubbles is generated under the controlled inlet quality. R245fa is adopted as a low boiling-point working media, and two types of channels are considered with a hydraulic diameter of 4 mm: (i) a straight circular pipe and (ii) a duct with oblique wavy walls. The focus is on slug-flow dynamics with evaporation under small capillary but moderate Weber numbers, where the inertial effect as well as the surface tension is of significance. A possible direction of the change in thermo-physical properties is explored by assuming varied thermal conductivity. Effects of the vortical motions on evaporative heat transfer are highlighted. This work has been supported by the New Energy and Industrial Technology Development Organization (NEDO), Japan.

  20. Genetic Exchange among Bdelloid Rotifers Is More Likely Due to Horizontal Gene Transfer Than to Meiotic Sex.

    Science.gov (United States)

    Debortoli, Nicolas; Li, Xiang; Eyres, Isobel; Fontaneto, Diego; Hespeels, Boris; Tang, Cuong Q; Flot, Jean-François; Van Doninck, Karine

    2016-03-21

    Although strict asexuality is supposed to be an evolutionary dead end, morphological, cytogenetic, and genomic data suggest that bdelloid rotifers, a clade of microscopic animals, have persisted and diversified for more than 60 Myr in an ameiotic fashion. Moreover, the genome of bdelloids of the genus Adineta comprises 8%-10% of genes of putative non-metazoan origin, indicating that horizontal gene transfers are frequent within this group and suggesting that this mechanism may also promote genetic exchanges among bdelloids as well. To test this hypothesis, we used five independent sequence markers to study the genetic diversity of 576 Adineta vaga individuals from a park in Belgium. Haplowebs and GMYC analyses revealed the existence of six species among our sampled A. vaga individuals, with strong evidence of both intra- and interspecific recombination. Comparison of genomic regions of three allele-sharing individuals further revealed signatures of genetic exchanges scattered among regions evolving asexually. Our findings suggest that bdelloids evolve asexually but exchange DNA horizontally both within and between species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Modeling of Heat Transfer in the Helical-Coil Heat Exchanger for the Reactor Facility "UNITERM"

    Directory of Open Access Journals (Sweden)

    V. I. Solonin

    2014-01-01

    Full Text Available Circuit heat sink plays an important role in the reactor system. Therefore it imposes high requirements for quality of determining thermal-hydraulic parameters. This article is aimed at modeling of heat exchange process of the helical-coil heat exchanger, which is part of the heat sink circuit of the reactor facility "UNITERM."The simulation was performed using hydro-gas-dynamic software package ANSYS CFX. Computational fluid dynamics of this package allows us to perform calculations in a threedimensional setting, giving an idea of the fluid flow nature. The purpose of the simulation was to determine the parameters of the helical-coil heat exchanger (temperature, velocity at the outlet of the pipe and inter-tubular space, pressure drop, and the nature of the fluid flow of primary and intermediate coolants. Geometric parameters of the model were determined using the preliminary calculations performed by the criterion equations. In calculations Turbulence models k-ε RNG, Shear Stress Transport (SST are used. The article describes selected turbulence models, and considers relationship with wall function.The calculation results allow us to give the values obtained for thermal-hydraulic parameters, to compare selected turbulence models, as well as to show distribution patterns of the coolant temperature, pressure, and velocity at the outlet of the intermediate cooler.Calculations have shown that:- maximum values of primary coolant temperature at the outlet of the heat exchanger surface are encountered in the space between the helical-coil tubes;- higher temperatures of intermediate coolant at the outlet of the coils (in space of helicalcoil tubes are observed for the peripheral row;- primary coolant movement in the inter-tubular space of helical-coil surface is formed as a spiral flow, rather than as a in-line tube bank cross flow.

  2. KeySlinger and StarSlinger: Secure Key Exchange and Encrypted File Transfer on Smartphones

    Science.gov (United States)

    2011-05-01

    These include schemes using common passwords [12], [13]; visual string comparison [12], [13], [14]; string comparison via human audio representation...select which fields to share during the exchange (Figure 1). Supported fields include phone numbers, portrait images, e-mail addresses, physical...Tsudik, and E. Uzun, ―Loud and clear: Human- verifiable authentication based on audio ,‖ in International Conference on Distributed Computing (ICDCS

  3. Heat transfer mechanism with thin filaments including ceramic high temperature heat exchanger

    Science.gov (United States)

    Im, Kwan H.; Ahluwalia, Rajesh K.

    1994-01-01

    A radiative heat transfer mechanism in a furnace having burners through which pulverized coal and air are burned producing combustion gases and contaminants. A plurality of elongated conduits are positioned inside the furnace proximate to the burners generally parallel to the flow of combustion gases in the furnace. A plurality of thin filaments are inside each of the elongated hollow conduits, the filaments having diameters in the range of from about 1 micrometer to about 1,000 micrometers and having an infrared radiation cross-section sufficient to cause the filaments to heat upon exposure to infrared radiation. Blower mechanism is associated with the elongated conduits for limiting the amount of soot and ash which deposit on the conduits to preserve the radiative and convective transfer of heat energy from the combustion gases to the conduits.

  4. Methodology of heat transfer and flow resistance measurement for matrices of rotating regenerative heat exchangers

    Directory of Open Access Journals (Sweden)

    Butrymowicz Dariusz

    2016-09-01

    Full Text Available The theoretical basis for the indirect measurement approach of mean heat transfer coefficient for the packed bed based on the modified single blow technique was presented and discussed in the paper. The methodology of this measurement approach dedicated to the matrix of the rotating regenerative gas heater was discussed in detail. The testing stand consisted of a dedicated experimental tunnel with auxiliary equipment and a measurement system are presented. Selected experimental results are presented and discussed for selected types of matrices of regenerative air preheaters for the wide range of Reynolds number of gas. The agreement between the theoretically predicted and measured temperature profiles was demonstrated. The exemplary dimensionless relationships between Colburn heat transfer factor, Darcy flow resistance factor and Reynolds number were presented for the investigated matrices of the regenerative gas heater.

  5. Mathematical Model for Fluid Flow and Heat Transfer Processes in Plate Exchanger

    Directory of Open Access Journals (Sweden)

    Cvete B. Dimitrieska

    2015-11-01

    Full Text Available Within the analytical solution of the system of equations which solve fluid flow and heat transfer processes, the elliptical and parabolic differential equations based on initial and boundary conditions is usually unfamiliar in a closed form. Numerical solution of equation system is necessarily obtained by discretization of equations. When system of equations relate to estimation of two dimensional stationary problems, the applicable method for estimation in basic two – dimensional form is recommended.

  6. Evaluation of heat transfer and exergy loss in a concentric double pipe exchanger equipped with helical wires

    Energy Technology Data Exchange (ETDEWEB)

    Akpinar, Ebru Kavak [Mechanical Engineering Department, Firat University, TR-23119 Elazig (Turkey)

    2006-11-15

    In this study, the effects on heat transfer, friction factor and dimensionless exergy loss were investigated experimentally by mounting helical (spring shaped) wires of different pitch in the inner pipe in a double pipe heat exchanger. In the experiments, hot (air) and cold (water) fluids flowed through the inner pipe and annulus, respectively. The experiments were performed for both parallel and counter current flow modes of the fluids at Reynolds numbers between 6500 and 13,000. An augmentation of up to 2.64 times in Nusselt number compared to the empty pipe was obtained in the helical system. The increase in friction factor was about 2.74 times that of the empty pipe, depending on Reynolds number and the pitch or helical number. An augmentation of up to 1.16 times in the dimensionless exergy loss compared to the empty pipe was obtained in the helical system. Some empirical correlations expressing the results were also derived and discussed. (author)

  7. CFD Simulation and Experimental Analyses of a Copper Wire Woven Heat Exchanger Design to Improve Heat Transfer and Reduce the Size of Adsorption Beds

    Directory of Open Access Journals (Sweden)

    John White

    2016-02-01

    Full Text Available The chief objective of this study is the proposal design and CFD simulation of a new compacted copper wire woven fin heat exchanger and silica gel adsorbent bed used as part of an adsorption refrigeration system. This type of heat exchanger design has a large surface area because of the wire woven fin design. It is estimated that this will help improve the coefficient of performance (COP of the adsorption phase and increase the heat transfer in this system arrangement. To study the heat transfer between the fins and porous adsorbent reactor bed, two experiments were carried out and matched to computational fluid dynamics (CFD results.

  8. Investigation of heat transfer and exergy loss in a concentric double pipe exchanger equipped with swirl generators

    Energy Technology Data Exchange (ETDEWEB)

    Kavak Akpinar, Ebru; Bicer, Yasar [Mechanical Engineering Department, Firat University, 23279 Elazig (Turkey)

    2005-06-01

    In this study, the effect on heat transfer rates, friction factor and exergy loss of swirl generators with holes for the entrance of fluid were investigated by placing them at the entrance section of inner pipe of heat exchanger. Various swirl generators having circular holes at different number and diameter were used. Hot air and cold water were passed through the inner pipe and annulus, respectively. Experiments were carried out for both parallel and counter flow models of the fluids at Reynolds numbers between 8500-17 500. Heat transfer, friction factor and exergy analyses were made for the conditions with and without swirl generators and compared to each other. Some empirical correlations expressing the results were also derived and discussed. It was observed that the Nusselt number could increase up to 130% at a value of about 2.9 times increase in the friction factor by giving rotation to the air with the help of the swirl elements. The increase the dimensionless exergy loss was about 1.25 times in comparison with that for the inner pipe without swirl generators. (authors)

  9. Transaction Costs: Valuation Disputes, Bi-Lateral Monopoly Bargaining and Third-Party Effects in Water Rights Exchanges. The Owens Valley Transfer to Los Angeles

    OpenAIRE

    Gary D. Libecap

    2004-01-01

    Between 1905 and 1934 over 869 farmers in Owens Valley, California sold their land and associated water rights to Los Angeles, 250 miles to the southwest. This agriculture-to-urban water transfer increased Los Angeles' water supply by over 4 times, making the subsequent dramatic growth of the semi-arid city possible, generating large economic returns. The exchange took water from a marginal agricultural area and transferred it via the Los Angeles Aqueduct. No other sources of water became ava...

  10. Performance of multiple mini-tube heat exchangers as an internal heat exchanger of a vapor-injection cycle heat pump

    Science.gov (United States)

    Jang, Jin Yong; Jeong, Ji Hwan

    2016-04-01

    A multiple mini-tube (MMT) heat exchanger was considered as an internal heat exchanger of vapor-injection cycle heat pump. Heat transfer and pressure drop in multiple mini-tube heat exchangers were numerically and experimentally investigated. Results show that the best performance of the MMT heat exchanger can be obtained when the intermediate-pressure two-phase refrigerant is supplied to the shell-side and this refrigerant reaches a saturated vapor state at the exit of the heat exchanger.

  11. Heat transfer in a compact heat exchanger containing rectangular channels and using helium gas

    Science.gov (United States)

    Olson, D. A.

    1991-01-01

    Development of a National Aerospace Plane (NASP), which will fly at hypersonic speeds, require novel cooling techniques to manage the anticipated high heat fluxes on various components. A compact heat exchanger was constructed consisting of 12 parallel, rectangular channels in a flat piece of commercially pure nickel. The channel specimen was radiatively heated on the top side at heat fluxes of up to 77 W/sq cm, insulated on the back side, and cooled with helium gas flowing in the channels at 3.5 to 7.0 MPa and Reynolds numbers of 1400 to 28,000. The measured friction factor was lower than that of the accepted correlation for fully developed turbulent flow, although the uncertainty was high due to uncertainty in the channel height and a high ratio of dynamic pressure to pressure drop. The measured Nusselt number, when modified to account for differences in fluid properties between the wall and the cooling fluid, agreed with past correlations for fully developed turbulent flow in channels. Flow nonuniformity from channel-to-channel was as high as 12 pct above and 19 pct below the mean flow.

  12. Heat transfer and friction characteristics of rotor-assembled strand heat exchanger studied by uniform design experiment

    Directory of Open Access Journals (Sweden)

    Yan Wei

    2015-10-01

    Full Text Available The uniform distribution and experimental design is employed to study the thermo-hydraulic characteristics of a heat exchanger, which consists of the rotor-assembled strands mounted in circular smooth tubes. The uniform distribution and experimental design parameters include multiple rotor parameters such as rotor diameters, rotor lead, and height of blade, with the aim of studying their influence on the PEC, that is, ( ( Nu z / Nu g / ( f g / f z 1 / 3 , which stands for the heat transfer and friction characteristics. The best matching schemes of rotor-assembled strand, which significantly improves PEC to 2.01, are given by the regression analysis of uniform distribution and experimental design table. The single-factor experiments are performed to compare a tube installed with different kinds of rotor-assembled strands with a smooth tube without any strands when the Reynolds number changes between 20,000 and 60,000. The experimental result is in good agreement with the result obtained by the regression analysis of uniform distribution and experimental design. It is shown that the rotor diameters play important role in the heat transfer, and the optimal PEC value is obtained under the case that the rotor diameter is 21 mm. The rotor lead also contributes to the improvement of heat transfer and its optimal value is 700 mm in this study. The Nusselt number, friction factor and PEC increase with the increase in blade height. It shows that the uniform distribution and experimental design is an efficient method to find out the optimal parameters.

  13. Sites involved in intra- and interdomain allostery associated with the activation of factor VIIa pinpointed by hydrogen-deuterium exchange and electron transfer dissociation mass spectrometry

    DEFF Research Database (Denmark)

    Song, Hongjian; Olsen, Ole H; Persson, Egon

    2014-01-01

    enhancement remain elusive. Here we have applied hydrogen/deuterium exchange mass spectrometry coupled to electron transfer dissociation to pinpoint individual residues in the heavy chain of FVIIa whose conformation and/or local interaction pattern changes when the enzyme transitions to the active form...

  14. Token transfers among great apes (Gorilla gorilla, Pongo pygmaeus, Pan paniscus, and Pan troglodytes): species differences, gestural requests, and reciprocal exchange.

    Science.gov (United States)

    Pelé, Marie; Dufour, Valérie; Thierry, Bernard; Call, Josep

    2009-11-01

    Great apes appear to be the nonhuman primates most capable of recognizing trading opportunities and engaging in transfers of commodities with conspecifics. Spontaneous exchange of goods between them has not yet been reported. We tested gorillas (Gorilla gorilla), orangutans (Pongo pygmaeus), bonobos (Pan paniscus), and chimpanzees (Pan troglodytes) in a token-exchange task involving two conspecifics and a human experimenter. Tested in pairs, subjects had to exchange tokens with a partner to obtain food from the experimenter. We observed 4, 5, 264, and 328 transfers of tokens in gorillas, chimpanzees, orangutans, and bonobos, respectively. Most gifts were indirect in gorillas, chimpanzees, and bonobos, whereas most were direct in orangutans. The analysis showed no evidence of calculated reciprocity in interactions. A main finding of the study was the high rate of repeated gifts and begging gestures recorded in orangutans. This raises the question of the meaning of pointing in great apes and their ability to understand the communicative intent of others.

  15. Flows and Heat Exchange in a Geothermal Bed in the Process of Extraction of a Vapor-Water Mixture from It

    Science.gov (United States)

    Ramazanov, M. M.; Alkhasova, D. A.; Abasov, G. M.

    2017-05-01

    With the use of the finite-difference method, a nonstationary nonlinear problem on the heat and mass transfer in a geothermal bed in the process of extraction of a vapor-water mixture from it was solved numerically with regard for the heat exchange between the bed and the surrounding rocks. The results obtained were analyzed and compared with the results of earlier investigations. It was established that the heat exchange between the bed and its roof and bottom influences the heat and mass transfer in the neighborhood of a producing well in it. It is shown that this heat exchange increases somewhat the pressure (temperature) of the phase transition of the heat-transfer medium and changes its saturation with water. At the stage of stationary heat and mass transfer in the bed, this change leads to a decrease in the water saturation of the heat-transfer medium, i.e., to an additional evaporation of water from it. However, at the stage of substantially nonstationary heat and mass transfer in the bed, the pattern is more complex: within certain time intervals, the heat exchange in separate regions of the bed decreases the content of vapor in the heat-transfer medium (increases its saturation with water). Moreover, in both the cases of absence and presence of heat exchange between the bed and the surrounding rocks, the distributions of the water saturation of the heat-transfer medium in the bed executes damped oscillations and, in so doing, approaches the stationary state.

  16. Effects of Movable-Baffle on Heat Transfer and Entropy Generation in a Cavity Saturated by CNT Suspensions: Three-Dimensional Modeling

    Directory of Open Access Journals (Sweden)

    Abdullah A.A.A. Al-Rashed

    2017-04-01

    Full Text Available Convective heat transfer and entropy generation in a 3D closed cavity, equipped with adiabatic-driven baffle and filled with CNT (carbon nanotube-water nanofluid, are numerically investigated for a range of Rayleigh numbers from 103 to 105. This research is conducted for three configurations; fixed baffle (V = 0, rotating baffle clockwise (V+ and rotating baffle counterclockwise (V− and a range of CNT concentrations from 0 to 15%. Governing equations are formulated using potential vector vorticity formulation in its three-dimensional form, then solved by the finite volume method. The effects of motion direction of the inserted driven baffle and CNT concentration on heat transfer and entropy generation are studied. It was observed that for low Rayleigh numbers, the motion of the driven baffle enhances heat transfer regardless of its direction and the CNT concentration effect is negligible. However, with an increasing Rayleigh number, adding driven baffle increases the heat transfer only when it moves in the direction of the decreasing temperature gradient; elsewhere, convective heat transfer cannot be enhanced due to flow blockage at the corners of the baffle.

  17. Exploring conceptualizations of knowledge translation, transfer and exchange across public health in one UK region: a qualitative mapping study.

    Science.gov (United States)

    Visram, S; Goodall, D; Steven, A

    2014-06-01

    Knowledge translation (KT) is becoming common vocabulary, but as a concept it is not clearly defined. Many related terms exist; these are often used interchangeably and given multiple interpretations. While there is a growing body of literature exploring these concepts, using it to inform public health practice, strategy, research and education is challenging given the range of sources and need for local 'contextual fit'. This study explores how various public health stakeholders make sense of, and experience, KT and related concepts. A qualitative mapping study using a phenomenographic approach. Thirty-four academics, students and practitioners working in public health across the north east of England participated in six focus groups and five one-to-one interviews. Discussions were audio-recorded, transcribed and analysed using a thematic framework approach. The framework drew on findings from reviews of the existing literature, whilst allowing unanticipated issues to emerge. Three main themes were identified from the stakeholder discussions: This study has enabled further development of theoretical understandings of the KT discourses at play in public health, and identified the ways in which these may be bound by discipline and context. Ironically, the findings suggest that terms such as knowledge translation, transfer and exchange are seen as themselves requiring translation, or at least debate and discussion. Copyright © 2014 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  18. High-Efficiency Photovoltaic Devices using Trap-Controlled Quantum-Dot Ink prepared via Phase-Transfer Exchange.

    Science.gov (United States)

    Aqoma, Havid; Al Mubarok, Muhibullah; Hadmojo, Wisnu Tantyo; Lee, Eun-Hye; Kim, Tae-Wook; Ahn, Tae Kyu; Oh, Seung-Hwan; Jang, Sung-Yeon

    2017-05-01

    Colloidal-quantum-dot (CQD) photovoltaic devices are promising candidates for low-cost power sources owing to their low-temperature solution processability and bandgap tunability. A power conversion efficiency (PCE) of >10% is achieved for these devices; however, there are several remaining obstacles to their commercialization, including their high energy loss due to surface trap states and the complexity of the multiple-step CQD-layer-deposition process. Herein, high-efficiency photovoltaic devices prepared with CQD-ink using a phase-transfer-exchange (PTE) method are reported. Using CQD-ink, the fabrication of active layers by single-step coating and the suppression of surface trap states are achieved simultaneously. The CQD-ink photovoltaic devices achieve much higher PCEs (10.15% with a certified PCE of 9.61%) than the control devices (7.85%) owing to improved charge drift and diffusion. Notably, the CQD-ink devices show much lower energy loss than other reported high-efficiency CQD devices. This result reveals that the PTE method is an effective strategy for controlling trap states in CQDs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Facts about saturated fats

    Science.gov (United States)

    ... fat diary with low-fat or nonfat milk, yogurt, and cheese. Eat more fruits, vegetables, whole grains, and other foods with low or no saturated fat. Alternative Names Cholesterol - saturated fat; Atherosclerosis - saturated fat; Hardening of the ...

  20. Saturated fat (image)

    Science.gov (United States)

    Saturated fat can raise blood cholesterol and can put you at risk for heart disease and stroke. You should ... limit any foods that are high in saturated fat. Sources of saturated fat include whole-milk dairy ...

  1. Heat transfer and pressure drop characteristics of the tube bank fin heat exchanger with fin punched with flow redistributors and curved triangular vortex generators

    Science.gov (United States)

    Liu, Song; Jin, Hua; Song, KeWei; Wang, LiangChen; Wu, Xiang; Wang, LiangBi

    2017-10-01

    The heat transfer performance of the tube bank fin heat exchanger is limited by the air-side thermal resistance. Thus, enhancing the air-side heat transfer is an effective method to improve the performance of the heat exchanger. A new fin pattern with flow redistributors and curved triangular vortex generators is experimentally studied in this paper. The effects of the flow redistributors located in front of the tube stagnation point and the curved vortex generators located around the tube on the characteristics of heat transfer and pressure drop are discussed in detail. A performance comparison is also carried out between the fins with and without flow redistributors. The experimental results show that the flow redistributors stamped out from the fin in front of the tube stagnation points can decrease the friction factor at the cost of decreasing the heat transfer performance. Whether the combination of the flow redistributors and the curved vortex generators will present a better heat transfer performance depends on the size of the curved vortex generators. As for the studied two sizes of vortex generators, the heat transfer performance is promoted by the flow redistributors for the fin with larger size of vortex generators and the performance is suppressed by the flow redistributors for the fin with smaller vortex generators.

  2. TRANSFER

    African Journals Online (AJOL)

    Abstract. Quenching of curcumine fluorescence by thionine, both immobilised in cellulose acetate occurs in accordance with the Forster mechanism of energy transfer. The rate constant of energy transfer for this donor - acceptor pair is found to be 9.4 x 109 L ' mol S1 with R0 = 37±1 Б. When this donor - acceptor pair is ...

  3. Preparation of a monolithic cation-exchange material with hydrophilic external layers by two-step reversible addition-fragmentation chain transfer polymerization.

    Science.gov (United States)

    Lin, Shen; Zhang, Yingying; Huang, Wei; Dong, Xiangchao

    2017-04-01

    In recent years, the efficient analysis of biological samples has become more important due to the advances of life science and pharmaceutical research and practice. Because biological sample pretreatment is the bottleneck for fast process, material development for efficient sample process in the high-performance liquid chromatography analysis is highly desirable. In this research, a cation-exchange restricted access monolithic column was synthesized by a reversible addition-fragmentation chain transfer polymerization method. Utilizing the controlled/living property of the reversible addition-fragmentation chain transfer method, a monolithic column of cross-linked poly(sulfopropyl methacrylate) was prepared first and then linear poly(glycerol mono-methacrylate) was immobilized covalently on the surface of the polymer. The monolithic material has both functionalities of cation-exchange and protein exclusion. Protein recovery of 94.6% was obtained after grafting of poly(glycerol mono-methacrylate) while the cation-exchange property of the column is still retained. In the study, the relation between the synthetic conditions and properties of the materials was studied. The synthesis conditions including the porogen, monomer concentration, and ratio of monomers/initiator/reversible addition-fragmentation chain transfer agent were optimized. The study provided a method for the preparation of restricted access monolithic columns: a bifunctional material by reversible addition-fragmentation chain transfer polymerization method. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The Influence of the Punched Delta Wings on Flow Pattern and Heat Transfer Characteristic in a Fin-and-Oval-Tube Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Amnart Boonloi

    2015-01-01

    Full Text Available 3D numerical investigations are performed to study the heat transfer, friction factor, and thermal performance of a fin-and-oval heat exchanger with punched delta wings for a range of 500 ≤ Re ≤ 2500 (based on the hydraulic diameter. The influences of the punched angles, 20°, 30°, and 45°, flow directions, wing tips pointing downstream and upstream, and pitch ratios, 2, 3, 4, 5, and 6, are investigated. The results show that the use of the punched delta wings in the fin-and-oval-tube heat exchanger leads to an enhancement in the heat transfer and friction loss as compared to the plain fin for all cases (Nu/Nu0 and f/f0 higher than 1. The enhancements of the heat transfer and friction factor are around 1.01–1.22 and 1.37–2.65 times higher than the base case, respectively. The punched delta wings create the vortex flows through the test section that helps enhance the strength of the impinging flow on the tube walls. The impingement of the fluid flow is an important key to augment the heat transfer rate and thermal performance in the heat exchanger.

  5. Performance testing of a two-phase interface heat exchanger

    Science.gov (United States)

    Mccabe, M. E., Jr.; Swanson, T. D.

    1989-01-01

    This paper describes the design and performance testing of a heat exchanger which interfaces separate two-phase ammonia thermal loops. The basic design involves a tube-in-tube concept, with boiling occurring in the inner tube and condensation in the outer tube. Eight such tubes are arranged in parallel. Testing has demonstrated that up to 8.2 kW of heat may be transferred across the heat exchanger when the saturation temperature difference between the systems is 5 C. Performance of the heat exchanger is affected primarily by the mass flow rate of ammonia in the liquid supply loop.

  6. Computational investigation of heat transfer and pressure drop in a typical louver fin-and-tube heat exchanger for various louver angles and fin pitches

    Directory of Open Access Journals (Sweden)

    Okbaz Abdulkerim

    2017-01-01

    Full Text Available In this study 3-D numerical simulations on heat transfer and pressure drop characteristics for a typical louver fin-and- double-row tube heat exchanger were carried out. The heat transfer improvement and the corresponding pressure drop amounts were investigated depending on louver angles, fin pitch and Reynolds number, and reported in terms of Colburn j-factor and Fanning friction factor f. The heat transfer improvement and the corresponding pressure drop amounts were investigated depending on louver angles between 20° ≤Ө≤ 30°, louver pitch of Lp=3.8 mm and frontal velocities of U between 1.22 m/s - 3 m/s. In addition, flow visualization of detailed flow features results, such as velocity vectors, streamlines and temperature counters have been shown to understand heat transfer enhancement mechanism. The present results indicated that louver angle and fin pitch noticeably affected the thermal and hydraulic performance of heat exchanger. It has been seen that increasing louver angle, increases thermal performance while decreasing hydraulic performance associated to pressure drop for fin pitches of 3.2 mm and 2.5 mm. Fin pitch determines the flow behaviour that for fin pitch of 2 mm, increasing louver angle decreased heat transfer and pressure drop. Velocity vectors and streamlines give considerable information about the flow whether it is duct directed or louver directed. For all conditions the flow is louver directed.

  7. Estimation of bubble-mediated air-sea gas exchange from concurrent DMS and CO2 transfer velocities at intermediate-high wind speeds

    Science.gov (United States)

    Bell, Thomas G.; Landwehr, Sebastian; Miller, Scott D.; de Bruyn, Warren J.; Callaghan, Adrian H.; Scanlon, Brian; Ward, Brian; Yang, Mingxi; Saltzman, Eric S.

    2017-07-01

    Simultaneous air-sea fluxes and concentration differences of dimethylsulfide (DMS) and carbon dioxide (CO2) were measured during a summertime North Atlantic cruise in 2011. This data set reveals significant differences between the gas transfer velocities of these two gases (Δkw) over a range of wind speeds up to 21 m s-1. These differences occur at and above the approximate wind speed threshold when waves begin breaking. Whitecap fraction (a proxy for bubbles) was also measured and has a positive relationship with Δkw, consistent with enhanced bubble-mediated transfer of the less soluble CO2 relative to that of the more soluble DMS. However, the correlation of Δkw with whitecap fraction is no stronger than with wind speed. Models used to estimate bubble-mediated transfer from in situ whitecap fraction underpredict the observations, particularly at intermediate wind speeds. Examining the differences between gas transfer velocities of gases with different solubilities is a useful way to detect the impact of bubble-mediated exchange. More simultaneous gas transfer measurements of different solubility gases across a wide range of oceanic conditions are needed to understand the factors controlling the magnitude and scaling of bubble-mediated gas exchange.

  8. Designing a knowledge transfer and exchange strategy for the Alberta Depression Initiative: contributions of qualitative research with key stakeholders

    Directory of Open Access Journals (Sweden)

    Mitton Craig

    2009-06-01

    Full Text Available Abstract Background Depressive disorders are highly prevalent and of significant societal burden. In fall 2004, the 'Alberta Depression Initiative' (ADI research program was formed with a mission to enhance the mental health of the Alberta population. A key expectation of the ADI is that research findings will be effectively translated to appropriate research users. To help ensure this, one of the initiatives funded through the ADI focused specifically on knowledge transfer and exchange (KTE. The objectives of this project were first to examine the state of the KTE literature, and then based on this review and a set of key informant interviews, design a KTE strategy for the ADI. Methods Face to face interviews were conducted with 15 key informants familiar with KTE and/or mental health policy and programs in Alberta. Interviews were transcribed and analyzed using the constant comparison method. Results This paper reports on findings from the qualitative interviews. Respondents were familiar with the barriers to and facilitators of KTE as identified in the existing literature. Four key themes related to the nature of effective KTE were identified in the data analysis: personal relationships, cultivating champions, supporting communities of practice, and building receptor capacity. These recommendations informed the design of a contextually appropriate KTE strategy for the ADI. The three-phased strategy involves preliminary research, public workshops, on-going networking and linkage activities and rigorous evaluation against pre-defined and mutually agreed outcome measures. Conclusion Interest in KTE on the part of ADI has led to the development of a strategy for engaging decision makers, researchers, and other mental health stakeholders in an on-going network related to depression programs and policy. A similarly engaged process might benefit other policy areas.

  9. A Discussion about the Methodology to Validate the Correlations of Heat Transfer Coefficients and Pressure Drop during the Condensation in a Finned-Tube Heat Exchanger

    OpenAIRE

    Pisano, Alessandro; Martinez-Ballester, Santiago; Corberán, José M.; Hidalgo Monpeán, Fernando; Illán Gómez, Ferdando; García Cascales, J-Ramón

    2014-01-01

    As already demonstrated by others authors, when the performance of a heat exchanger is analyzed, a semi-empirical model allows getting good prediction of the experimental results provided that it is accompanied by the application of the suitable correlations for calculating heat transfer coefficients (HTC) and pressure drop (PD) in both refrigerant and air side. Many correlations for calculating these coefficients are available in literature, therefore choose the more suitable of them turns o...

  10. Experimental investigation of air side heat transfer and fluid flow performances of multi-port serpentine cross-flow mesochannel heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, Faisal A.; Dasgupta, Engr Sarbadaman [Dept. of Mechanical, Automotive, and Materials Engineering (MAME), University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4 (Canada); Fartaj, Amir, E-mail: fartaj@uwindsor.ca [Dept. of Mechanical, Automotive, and Materials Engineering (MAME), University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4 (Canada)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Air side heat transfer and flow characteristics of mesochannel cross-flow heat exchanger are studied experimentally. Black-Right-Pointing-Pointer Hot ethylene glycol-water mixture (50:50) at constant mass flow rate is used against varying air flow. Black-Right-Pointing-Pointer Air side heat transfer and fluid flow key parameters such as Nusselt number, Colburn factor, friction factor are obtained. Black-Right-Pointing-Pointer General correlations are proposed for air side heat transfer and fluid flow parameters. - Abstract: Air side force convective heat transfer and flow characteristics of cross-flow mesochannel heat exchanger are investigated experimentally. A series of experiments representing 36 different operating conditions have been conducted on a finned mesochannel heat exchanger through the fully automated dynamic single-phase experimental facility which is capable of handling a wide variety of working fluids in air-to-liquid cross-flow orientation. The mesochannel heat exchanger is made of 15 aluminum slabs with arrays of wavy fins between slabs; 68 one millimeter circular diameter port located at each slab, and the air side frontal area of 304-mm Multiplication-Sign 304-mm. The ethylene glycol-water mixture as the working fluid in the liquid side was forced to flow through mesochannels maintaining constant inlet temperature and flow rate at 74 Degree-Sign C and 0.0345 kg/s respectively whereas the inlet flowing air into the arrays of wavy fins was changed at four different temperature levels from 28 Degree-Sign C to 43 Degree-Sign C. Frontal air velocity was altered in nine steps from 3 m/s to 11 m/s at each temperature level corresponding range of Reynolds number 752 < Re{sub a} < 3165. The air side heat transfer and flow characteristics of mesochannel heat exchanger were evaluated during air heating, and heat transfer and fluid flow correlations were derived accordingly. The air side Nusselt number (Nu{sub a

  11. Experimental investigation of heat transfer and pressure drop characteristics of water and glycol-water mixture in multi-port serpentine microchannel slab heat exchangers

    Science.gov (United States)

    Khan, Md Mesbah-ul Ghani

    Microchannels have several advantages over traditional large tubes. Heat transfer using microchannels recently have attracted significant research and industrial design interests. Open literatures leave with question on the applicability of classical macroscale theory in microchannels. Better understanding of heat transfer in various microchannel geometries and building experimental database are continuously urged. The purpose of this study is to contribute the findings and data to this emerging area through carefully designed and well controlled experimental works. The commercially important glycol-water mixture heat transfer fluid and multiport slab serpentine heat exchangers are encountered in heating and cooling areas, e.g. in automotive, aircraft, and HVAC industries. For a given heat duty, the large diameter tubes experience turbulent flow whereas the narrow channels face laminar flow and often developing flow. Study of low Reynolds number developing glycol-water mixture laminar flow in serpentine microchannel heat exchanger with parallel multi-port slab is not available in the open literature. Current research therefore experimentally investigates glycol-water mixture and water in simultaneously developing laminar flows. Three multiport microchannel heat exchangers; straight and serpentine slabs, are used for each fluid. Friction factors of glycol-water mixture and water flows in straight slabs are higher than conventional fully developed laminar flow. If a comprehensive pressure balance is introduced, the results are well compared with conventional Poiseuille theory. Similar results are found in serpentine slab. The pressure drop for the straight core is the highest, manifolds are the intermediate, and serpentine is the least; which are beneficial for heat exchangers. The heat transfer results in serpentine slab for glycol-water mixture and water are higher and could not be compared with conventional fully developed and developing flow correlations. New

  12. A numerical investigation of γ-Al2O3-water nanofluids heat transfer and pressure drop in a shell and tube heat exchanger

    Directory of Open Access Journals (Sweden)

    P. Shahmohammadi

    2016-01-01

    Full Text Available The effect of γ-Al2O3 nanoparticles on heat transfer rate, baffle spacing and pressure drop in the shell side of small shell and tube heat exchangers was investigated numerically under turbulent regime. γ-Al2O3-water nanofluids and pure water were used in the shell side and the tube side of heat exchangers, respectively. Since the properties of γ-Al2O3-water nanofluids were variable, they were defined using the user define function. The results revealed that heat transfer and pressure drop were increased with mass flow rate as well as baffle numbers. Adding nanoparticles to the based fluid did not have a significant effect on pressure drop in the shell side. The best heat transfer performance of heat exchangers was for γ-Al2O3-water 1 vol.% and higher nanoparticles concentration was not suitable. The suitable baffle spacing was 43.4% of the shell diameter, showing a good agreement with Bell-Delaware method.

  13. Influence of inlet velocity of air and solid particle feed rate on holdup mass and heat transfer characteristics in cyclone heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Mothilal, T. [T. J. S. Engineering College, Gummidipoond (India); Pitchandi, K. [Sri Venkateswara College of Engineering, Sriperumbudur (India)

    2015-10-15

    Present work elaborates the effect of inlet velocity of air and solid particle feed rate on holdup mass and heat transfer characteristics in a cyclone heat exchanger. The RNG k-ε turbulence model was adopted for modeling high turbulence flow and Discrete phase model (DPM) to track solid particles in a cyclone heat exchanger by ANSYS FLUENT software. The effect of inlet air velocity (5 to 25 m/s) and inlet solid particle feed rate of (0.2 to 2.5 g/s) at different particle diameter (300 to 500 μm) on holdup mass and heat transfer rate in cyclone heat exchanger was studied at air inlet temperature of 473 K. Results show that holdup mass and heat transfer rate increase with increase in inlet air velocity and inlet solid particle feed rate. Influence of solid particle feed rate on holdup mass has more significance. Experimental setup was built for high efficiency cyclone. Good agreement was found between experimental and simulation pressure drop. Empirical correlation was derived for dimensionless holdup mass and Nusselt number based on CFD data by regression technique. Correlation predicts dimensional holdup mass with +5% to -8% errors of experimental data and Nusselt number with +9% to -3%.

  14. Saturation transfer EPR (ST-EPR) for dating biocarbonates containing large amount of Mn{sup 2+}: separation of SO{sub 3}{sup -} and CO{sub 2}{sup -} lines and geochronology of Brazilian fish fossil

    Energy Technology Data Exchange (ETDEWEB)

    Sastry, M.D.; Andrade, M.B.; Watanabe, Shigueo E-mail: watanabe@if.usp.br

    2003-04-01

    A method using saturation transfer EPR (ST-EPR) is shown to be feasible for detecting EPR signal of radiation-induced defects in biocarbonates containing large amount of Mn{sup 2+}. The ST-EPR measurements conducted at room temperature on fish fossil of Brazilian origin, enabled the identification of CO{sub 2}{sup -} and SO{sub 3}{sup -} radical ions, by partially suppressing the intense signal from Mn{sup 2+} when the signal are detected 90 deg. out of phase with magnetic field modulating signal and at high microwave power (50 mW). Using these signals the age of fish fossil is estimated to be (36{+-}5) Ma.

  15. Numerical investigation of conjugate heat transfer and flow performance of a fin and tube heat exchanger with vortex generators

    DEFF Research Database (Denmark)

    Singh, Shobhana; Sørensen, Kim

    2017-01-01

    Vortex generator is considered as an effective device for augmentation of the thermal-hydraulic performance of a heat exchanger. The aim of present study is to examine the influence of vortex generators on a double fin and tube heat exchanger performance. Vortex generator of rectangular winglet...... loss characteristics are determined and analyzed for an in-line configuration of a fin and tube heat exchanger. In order to evaluate the enhancement in the performance on an equitable basis, the heat exchanger with plain fin surface is considered as a reference design. Results show that the angle...... of attack of a vortex generator has a significant impact on the volume goodness factor, and enhance the thermal performance of a fin and tube heat exchanger in comparison to the design with plain fin. The vortex generator at an angle of attack ??10 is found to perform superior over the Reynolds number range...

  16. Experimental investigation of heat transfer and fluid flow behaviour in multiple square perforated twisted tape with square wing inserts heat exchanger tube

    Science.gov (United States)

    Suri, Amar Raj Singh; Kumar, Anil; Maithani, Rajesh

    2018-01-01

    The present work deals with experimental investigation of heat transfer and fluid flow characteristics of multiple square perforated twisted tape with wing inserts in a heat exchanger tube. The range of selected geometrical parameters are, perforation width ratio (a/WT) of 0.083-0.333, twist ratio (TL/WT) of 2.0-3.5, wing depth ratio (Wd/WT) of 0.042-0.167 and number of twisted tapes (TP) of 4. The Reynolds number (Ren) selected for experimentation ranges from 5000 to 27,000. The maximum heat transfer and friction factor enhancement was found to be 6.96 and 8.34 times that of plane tube, respectively. The maximum heat transfer enhancement is observed at a a/WT of 0.250, TL/WT of 2.5, and Wd/WT of 0.167.

  17. Local heat transfer coefficients during the evaporation of 1,1,1,2-tetrafluoroethane (R-134a in a plate heat exchanger

    Directory of Open Access Journals (Sweden)

    EMILA ŽIVKOVIĆ

    2009-04-01

    Full Text Available The evaporation heat transfer coefficient of the refrigerant R-134a in a vertical plate heat exchanger was investigated experimentally. The area of the plate was divided into several segments along the vertical axis. For each of the segments, the local value of the heat transfer coefficient was calculated and presented as a function of the mean vapor quality in the segment. Owing to the thermocouples installed along the plate surface, it was possible to determine the temperature distribution and vapor quality profile inside the plate. The influences of the mass flux, heat flux, pressure of system and the flow configuration on the heat transfer coefficient were also taken into account and a comparison with literature data was performed.

  18. Segmented heat exchanger

    Science.gov (United States)

    Baldwin, Darryl Dean; Willi, Martin Leo; Fiveland, Scott Byron; Timmons, Kristine Ann

    2010-12-14

    A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

  19. Qualitative and quantitative comparison of contrast-enhanced fluid-attenuated inversion recovery, magnetization transfer spin echo, and fat-saturation T1-weighted sequences in infectious meningitis

    Energy Technology Data Exchange (ETDEWEB)

    Azad, Rajiv; Tayal, Mohit; Azad, Sheenam; Sharma, Garima; Srivastava, Rajendra Kumar [SGRR Institute of Medical and Health Sciences, Patel Nagar, Dehradun (India)

    2017-11-15

    To compare the contrast-enhanced fluid-attenuated inversion recovery (CE-FLAIR), the CE T1-weighted (CE-T1W) sequence with fat suppression (FS) and magnetization transfer (MT) for early detection and characterization of infectious meningitis. Fifty patients and 10 control subjects were evaluated with the CE-FLAIR and the CE-T1W sequences with FS and MT. Qualitative assessment was done by two observers for presence and grading of abnormal leptomeningeal enhancement. Quantitative assessment included computation of net meningeal enhancement, using single pixel signal intensity software. A newly devised FLAIR based scoring system, based on certain imaging features including ventricular dilatation, ependymal enhancement, infarcts and subdural effusions was used to indicate the etiology. Data were analysed using the Student's t test, Cohen's Kappa coefficient, Pearson's correlation coefficient, the intraclass correlation coefficient, one way analysis of variance, and Fisher's exact test with Bonferroni correction as the post hoc test. The CE-FLAIR sequence demonstrated a better sensitivity (100%), diagnostic accuracy (95%), and a stronger correlation with the cerebrospinal fluid, total leukocyte count (r = 0.75), protein (r = 0.77), adenosine deaminase (r = 0.81) and blood glucose (r = -0.6) values compared to the CE-T1W sequences. Qualitative grades and quantitative meningeal enhancement on the CE-FLAIR sequence were also significantly greater than those on the other sequences. The FLAIR based scoring system yielded a diagnostic accuracy of 91.6% and a sensitivity of 96%. A strong inverse Pearson's correlation (r = -0.95) was found between the assigned score and patient's Glasgow Coma Scale at the time of admission. The CE-FLAIR sequence is better suited for evaluating infectious meningitis and could be included as a part of the routine MR imaging protocol.

  20. Catalytic role of calix[4]hydroquinone in acetone-water proton exchange: a quantum chemical study of proton transfer via keto-enol tautomerism.

    Science.gov (United States)

    Zakharov, M; Masunov, A E; Dreuw, A

    2008-10-16

    Calix[4]hydroquinone has recently attracted considerable interest since it forms stable tubular aggregates mediated solely by hydrogen bonding and pi-pi-stacking interactions. These aggregates trap specifically various small organic molecules and, in particular, catalyze the proton exchange of water with acetone. Using correlated quantum chemical methods, the mechanism of the observed proton exchange mediated by keto-enol tautomerism of acetone is investigated in detail. Starting with an investigation of keto-enol tautomerism of acetone-water clusters, it appears that four catalytic water molecules are optimal for the catalysis and that additional solvent water molecules lead to a decrease in efficiency. Analyses of the partial charges revealed a decrease of the polarization of the reactive hydrogen bonds due to the additional water molecules. As a next step, hydroquinone-acetone-water complexes were studied as models for the situation in the CHQ moieties. However, the computations revealed that the proton transfer reaction becomes less efficient when one catalytic water molecule is replaced by hydroquinone. Although concerted proton transfer via keto-enol tautomerism of acetone seems to be the predominant mechanism in supercritical water, it is no longer the rate-determining reaction mechanism for the catalyzed acetone-water proton exchange observed in tubular CHQ. Nevertheless, a key feature of the catalytic function of tubular CHQ has been identified to be the stiff hydrogen bonding network and the exclusion of additional solvent water molecules.

  1. An experimental investigation on heat transfer enhancement in the laminar flow of water/TiO2 nanofluid through a tube heat exchanger fitted with modified butterfly inserts

    Science.gov (United States)

    Venkitaraj, K. P.; Suresh, S.; Alwin Mathew, T.; Bibin, B. S.; Abraham, Jisa

    2017-10-01

    Nanofluids are advanced heat transfer fluids that exhibit thermal properties superior than that of the conventional fluids such as water, oil etc. This paper reports the experimental study on convective heat transfer characteristics of water based titanium dioxide nanofluids in fully developed flow through a uniformly heated pipe heat exchanger fitted with modified butterfly inserts. Nanofluids are prepared by dispersing TiO2 nanoparticles of average particle size 29 nm in deionized water. The heat transfer experiments are performed in laminar regime using nanofluids prepared with 0.1% and 0.3% volume fractions of TiO2 nanoparticles. The thermal performance characteristics of conventional butterfly inserts and modified butterfly inserts are also compared using TiO2 nanofluid. The inserts with different pitches 6 cm, 9 cm and 12 cm are tested to determine the effect of pitch distance of inserts in the heat transfer and friction. The experimental results showed that the modification made in the butterfly inserts were able to produce higher heat transfer than conventional butterfly inserts.

  2. Experimental evaluation of heat transfer efficiency of nanofluid in a double pipe heat exchanger and prediction of experimental results using artificial neural networks

    Science.gov (United States)

    Maddah, Heydar; Ghasemi, Nahid

    2017-12-01

    In this study, heat transfer efficiency of water and iron oxide nanofluid in a double pipe heat exchanger equipped with a typical twisted tape is experimentally investigated and impacts of the concentration of nanofluid and twisted tape on the heat transfer efficiency are also studied. Experiments were conducted under the laminar and turbulent flow for Reynolds numbers in the range of 1000 to 6000 and the concentration of nanofluid was 0.01, 0.02 and 0.03 wt%. In order to model and predict the heat transfer efficiency, an artificial neural network was used. The temperature of the hot fluid (nanofluid), the temperature of the cold fluid (water), mass flow rate of hot fluid (nanofluid), mass flow rate of cold fluid (water), the concentration of nanofluid and twist ratio are input data in artificial neural network and heat transfer is output or target. Heat transfer efficiency in the presence of 0.03 wt% nanofluid increases by 30% while using both the 0.03 wt% nanofluid and twisted tape with twist ratio 2 increases the heat transfer efficiency by 60%. Implementation of various structures of neural network with different number of neurons in the middle layer showed that 1-10-6 arrangement with the correlation coefficient 0.99181 and normal root mean square error 0.001621 is suggested as a desirable arrangement. The above structure has been successful in predicting 72% to 97%of variation in heat transfer efficiency characteristics based on the independent variables changes. In total, comparing the predicted results in this study with other studies and also the statistical measures shows the efficiency of artificial neural network.

  3. U.S.-MEXICO TECHNOLOGY TRANSFER; BILATERAL TECHNICAL EXCHANGES FOR SUSTAINABLE ECONOMIC GROWTH IN THE BORDER REGION

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, Richard, D., Dr.

    2007-10-01

    The U.S. Department of Energy (DOE) maintains a strong commitment to transfer the results of its science and technology programs to the private sector. The intent is to apply innovative and sometimes advanced technologies to address needs while simultaneously stimulating new commercial business opportunities. Such focused “technology transfer” was evident in the late 1990s as the results of DOE investments in environmental management technology development led to new tools for characterizing and remediating contaminated sites as well as handling and minimizing the generation of hazardous wastes. The Department’s Office of Environmental Management was attempting to reduce the cost, accelerate the schedule, and improve the efficacy of clean-up efforts in the nuclear weapons complex. It recognized that resulting technologies had broader world market applications and that their commercialization would further reduce costs and facilitate deployment of improved technology at DOE sites. DOE’s Albuquerque Operations Office (now part of the National Nuclear Security Administration) began in 1995 to build the foundation for a technology exchange program with Mexico. Initial sponsorship for this work was provided by the Department’s Office of Environmental Management. As part of this effort, Applied Sciences Laboratory, Inc. (ASL) was contracted by the DOE Albuquerque office to identify Mexico’s priority environmental management needs, identify and evaluate DOE-sponsored technologies as potential solutions for those needs, and coordinate these opportunities with decision makers from Mexico’s federal government. That work led to an improved understanding of many key environmental challenges that Mexico faces and the many opportunities to apply DOE’s technologies to help resolve them. The above results constituted, in large part, the foundation for an initial DOE-funded program to apply the Department’s technology base to help address some of Mexico

  4. Analysis and optimization of the heat transfer coefficient of a finned heat exchanger submitted to natural convection; Analise e otimizacao do coeficiente de transferencia de calor de um trocador aletado submetido a conveccao natural

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Alan Carlos Bueno da

    1997-07-01

    A heat transfer (condenser) of a domestic freezer was tested in a vertical channel in order to study the influence of the chimney effect in the optimization of the heat transfer coefficient. The variation of the opening of the channel, position and the heating power of the heat exchanger in the heat transfer coefficient was considered. The influence of the surface emissivity on the heat transfer by thermal radiation was studied with the heat exchanger testes without paint and with black paint. The air velocity entering the channel was measured with a hot wire anemometer. In order to evaluate the chimney effect, the heat exchanger was testes in a open ambient. This situation simulates its operational conditions when installed on the freezer system. The variables collected in the experimental procedures was gathered in the form of dimensionless parameters as Nusselt, Rayleigh, Grashof and Prandtl numbers, and dimensional parameters of the convection. The results showed that the highest heat transfer value occurred when both a specific position and a specific channel opening were used. The experiments pointed out that the radiation contribution must be considered in heat transfer calculations. The conclusions showed that different channel openings can improve the heat transfer coefficient in this heat transfer exchanger. (author)

  5. Binational Health Care for Migrants: The Health Data Exchange Pilot Project and the Binational Health Data Transfer System.

    Science.gov (United States)

    Velasco Mondragon, Hector Eduardo; And Others

    As the economic integration of Mexico and the United States intensifies, so does the cross-migration of labor forces. Subsequently, when migrant workers or their families become ill, health care is often disjointed and suboptimal. Binational health data exchange among providers of health care becomes essential. GUAPA (incorporating the first three…

  6. Saturated Switching Systems

    CERN Document Server

    Benzaouia, Abdellah

    2012-01-01

    Saturated Switching Systems treats the problem of actuator saturation, inherent in all dynamical systems by using two approaches: positive invariance in which the controller is designed to work within a region of non-saturating linear behaviour; and saturation technique which allows saturation but guarantees asymptotic stability. The results obtained are extended from the linear systems in which they were first developed to switching systems with uncertainties, 2D switching systems, switching systems with Markovian jumping and switching systems of the Takagi-Sugeno type. The text represents a thoroughly referenced distillation of results obtained in this field during the last decade. The selected tool for analysis and design of stabilizing controllers is based on multiple Lyapunov functions and linear matrix inequalities. All the results are illustrated with numerical examples and figures many of them being modelled using MATLAB®. Saturated Switching Systems will be of interest to academic researchers in con...

  7. Elucidation of the CCR1- and CCR5-binding modes of MIP-1α by application of an NMR spectra reconstruction method to the transferred cross-saturation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Yoshiura, Chie; Ueda, Takumi; Kofuku, Yutaka; Matsumoto, Masahiko; Okude, Junya; Kondo, Keita; Shiraishi, Yutaro; Shimada, Ichio, E-mail: shimada@iw-nmr.f.u-tokyo.ac.jp [The University of Tokyo, Graduate School of Pharmaceutical Sciences (Japan)

    2015-12-15

    C–C chemokine receptor 1 (CCR1) and CCR5 are involved in various inflammation and immune responses, and regulate the progression of the autoimmune diseases differently. However, the number of residues identified at the binding interface was not sufficient to clarify the differences in the CCR1- and CCR5-binding modes to MIP-1α, because the NMR measurement time for CCR1 and CCR5 samples was limited to 24 h, due to their low stability. Here we applied a recently developed NMR spectra reconstruction method, Conservation of experimental data in ANAlysis of FOuRier, to the amide-directed transferred cross-saturation experiments of chemokine receptors, CCR1 and CCR5, embedded in lipid bilayers of the reconstituted high density lipoprotein, and MIP-1α. Our experiments revealed that the residues on the N-loop and β-sheets of MIP-1α are close to both CCR1 and CCR5, and those in the C-terminal helix region are close to CCR5. These results suggest that the genetic influence of the single nucleotide polymorphisms of MIP-1α that accompany substitution of residues in the C-terminal helix region, E57 and V63, would provide clues toward elucidating how the CCR5–MIP-1α interaction affects the progress of autoimmune diseases.

  8. Electron transfer and atom exchange between aqueous Fe(II) and structural Fe(III) in clays. Role in U and Hg(II) transformations

    Energy Technology Data Exchange (ETDEWEB)

    Scherer, Michelle [Univ. of Iowa, Iowa City, IA (United States)

    2016-08-31

    During this project, we investigated Fe electron transfer and atom exchange between aqueous Fe(II) and structural Fe(III) in clay minerals. We used selective chemical extractions, enriched Fe isotope tracer experiments, computational molecular modeling, and Mössbauer spectroscopy. Our findings indicate that structural Fe(III) in clay minerals is reduced by aqueous Fe(II) and that electron transfer occurs when Fe(II) is sorbed to either basal planes and edge OH-groups of clay mineral. Findings from highly enriched isotope experiments suggest that up to 30 % of the Fe atoms in the structure of some clay minerals exhanges with aqueous Fe(II). First principles calculations using a small polaron hopping approach suggest surprisingly fast electron mobility at room temperature in a nontronite clay mineral and are consistent with temperature dependent Mössbauer data Fast electron mobility suggests that electrons may be able to conduct through the mineral fast enough to enable exchange of Fe between the aqueous phase and clay mineral structure. over the time periods we observed. Our findings suggest that Fe in clay minerals is not as stable as previously thought.

  9. Numerical Investigation on the Flow and Heat Transfer Characteristics of Supercritical Liquefied Natural Gas in an Airfoil Fin Printed Circuit Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Zhongchao Zhao

    2017-11-01

    Full Text Available As a new kind of highly compact and efficient micro-channel heat exchanger, the printed circuit heat exchanger (PCHE is a promising candidate satisfying the heat exchange requirements of liquefied natural gas (LNG vaporization at low and high pressure. The effects of airfoil fin arrangement on heat transfer and flow resistance were numerically investigated using supercritical liquefied natural gas (LNG as working fluid. The thermal properties of supercritical LNG were tested by utilizing the REFPROF software database. Numerical simulations were performed using FLUENT. The inlet temperature of supercritical LNG was 121 K, and its pressure was 10.5 MPa. The reference mass flow rate of LNG was set as 1.22 g/s for the vertical pitch Lv = 1.67 mm and the staggered pitch Ls = 0 mm, with the Reynolds number of about 3750. The SST k-ω model was selected and verified by comparing with the experimental data using supercritical liquid nitrogen as cold fluid. The airfoil fin PCHE had better thermal-hydraulic performance than that of the straight channel PCHE. Moreover, the airfoil fins with staggered arrangement displayed better thermal performance than that of the fins with parallel arrangement. The thermal-hydraulic performance of airfoil fin PCHE was improved with increasing Ls and Lv. Moreover, Lv affected the Nusselt number and pressure drop of airfoil fin PCHE more obviously. In conclusion, a sparser staggered arrangement of fins showed a better thermal-hydraulic performance in airfoil fin PCHE.

  10. Directional Carrier Transfer in Strongly Coupled Binary Nanocrystal Superlattice Films Formed by Assembly and in Situ Ligand Exchange at a Liquid–Air Interface

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yaoting; Li, Siming; Gogotsi, Natalie; Zhao, Tianshuo; Fleury, Blaise; Kagan, Cherie R.; Murray, Christopher B.; Baxter, Jason B.

    2017-02-16

    Two species of monodisperse nanocrystals (NCs) can self-assemble into a variety of complex 2D and 3D periodic structures, or binary NC superlattice (BNSL) films, based on the relative number and size of the NCs. BNSL films offer great promise for both fundamental scientific studies and optoelectronic applications; however, the utility of as-assembled structures has been limited by the insulating ligands that originate from the synthesis of NCs. Here we report the application of an in situ ligand exchange strategy at a liquid–air interface to replace the long synthesis ligands with short ligands while preserving the long-range order of BNSL films. This approach is demonstrated for BNSL structures consisting of PbSe NCs of different size combinations and ligands of interest for photovoltaic devices, infrared detectors, and light-emitting diodes. To confirm enhanced coupling introduced by ligand exchange, we show ultrafast (~1 ps) directional carrier transfer across the type-I heterojunction formed by NCs of different sizes within ligand-exchanged BNSL films. In conclusion, this approach shows the potential promise of functional BNSL films, where the local and long-range energy landscape and electronic coupling can be adjusted by tuning NC composition, size, and interparticle spacing.

  11. Experimental and Computational Studies of Heat Transfer for Wall-type and Fin-type Heat Exchanger

    Science.gov (United States)

    Feng, Guochao; Xu, Peng; Gong, Linghui; Li, Laifeng; Zhang, Hengcheng; Li, Hongmei

    2017-12-01

    Wall-type heat exchangers (WTHX) and fin-type heat exchangers (FTHX) are attached to the first and second stage cold head of two G-M crycoolers respectively in the simulating experimental platform of the internal purifier (SEPEIP). WTHX and FTHX play a significant role in SEPEIP, WTHX is designed to remove heat from helium and freeze-out extremely few impurities, FTHX is for further cooling the helium. In this study, numerical simulation and experimental results for WTHX and FTHX are carried out. According to the comparison, the numerical results have a little discrepancy with the experimental results. However, the discrepancy is within the acceptable level. Finally, it is observed that the WTHX and FTHX are suitable to apply in the experimental system and are capable of guaranteeing a purifying function.

  12. Umbrella sampling of proton transfer in a creatine-water system

    Science.gov (United States)

    Ivchenko, Olga; Bachert, Peter; Imhof, Petra

    2014-04-01

    Proton transfer reactions are among the most common processes in chemistry and biology. Proton transfer between creatine and surrounding solvent water is underlying the chemical exchange saturation transfer used as a contrast in magnetic resonance imaging. The free energy barrier, determined by first-principles umbrella sampling simulations (EaDFT 3 kcal/mol) is in the same order of magnitude as the experimentally obtained activation energy. The underlying mechanism is a first proton transfer from the guanidinium group to the water pool, followed by a second transition where a proton is "transferred back" from the nearest water molecule to the deprotonated nitrogen atom of creatine.

  13. One dimensional transient numerical study of the mass heat and charge transfer in a proton exchange membrane for PEMFC

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, Djamel; Benmoussa, Hocine [Laboratory (LESEI), Faculty of Engineering, University of Batna (Algeria); Bourmada, Noureddine; Oulmi, Kafia [Laboratory LCCE, Faculty of Science, University of Batna (Algeria); Mahmah, Bouziane; Belhamel, Maiouf [CDER, BP, 62 Avenue-Observatoire, Bouzareah, Alger (Algeria)

    2009-06-15

    The objective of our study is to quantify the mass water transferred by various modes: diffusion, convection and migration. For the water transfer, the principal forces considered in the model are, the convection force, the osmotic force (i.e. diffusion) and the electric force (migration). The first of these forces results from a pressure gradient, the second of a concentration gradient and the third of a protons' migration from the anode to the cathode, which has an effect on the dipole of the water molecules (resistance force to the advancement). The numerical tool used to solve the equations' system is the finite element method. The results obtained numerically considering this method are concentration profiles and concentration variation with time and membrane thickness. These results illustrate the contribution of each mass transfer mode. (author)

  14. Experimental and numerical investigation of the cylindrical blade tube inserts effect on the heat transfer enhancement in the horizontal pipe exchangers

    Science.gov (United States)

    Karagoz, Sendogan; Afshari, Faraz; Yildirim, Orhan; Comakli, Omer

    2017-09-01

    In this experimental and numerical study an attempt to enhance the heat transfer rate by cylindrical blade that form turbulence flow inside the exchanger pipe is carried out. The effects of the blade geometry are also examined to investigate heat transfer rate in experimented tube inserts. Experiments are performed in different blade spacing (Sy1,2,3 = 101-216-340 mm) and various blade angles (α1,2,3 = 0°-45°-90°). The water flow rate inside the tube is adjusted in three different ranges to approach intended Reynolds numbers (Re1,2,3 = 6000-11,000-17,000). Nusselt number, Reynolds number and effect of friction factor are investigated separately. For all experiments, the increase in Nu number due to used tube inserts is recorded and compared to each other and plain tube in the related profiles. It is concluded that installed tube inserts in the heat exchanger tube, led to a significant increase in Nu number and energy saving. Among different experimented cases, using mean value in various Re numbers, the highest Nusselt number was obtained at Sy1 = 101 mm which was 24% more than that of plain tube. This value was 18.7 and 8.3% for Sy2 = 216 and Sy3 = 340 mm respectively. By this way, according results for friction factor were 0.30, 0.19 and 0.14. The presented study has been simulated by ANSYS Fluent 16 software to analyze flow behavior and heat transfer characteristics.

  15. Significance of saturation index of certain clay minerals in shallow ...

    Indian Academy of Sciences (India)

    In reality, a number of kinetic reasons exist that may ..... of SI with increase of pH. This increase of pH reduces the availability of H+ for ion exchange. Group B: The SI of Gibbsite ranges from near saturation to saturation. This may be due to the .... tion of ions in solution which emphasizes increased contribution of species with ...

  16. Coeficientes de transferencia de calor experimental para el enfriamiento de licor en intercambiadores de placas//Experimental heat transfer coefficients for the liquor cooling in plate heat exchanger

    Directory of Open Access Journals (Sweden)

    Enrique Torres‐Tamayo

    2014-01-01

    Full Text Available La pérdida de eficiencia del proceso de enfriamiento del licor amoniacal, mediante el uso de intercambiadores de calor de placas, está asociada a imprecisiones en la estimación de los coeficientes de transferencia de calor y la acumulación de incrustaciones en la superficie de intercambio. El objetivo de la investigación es determinar los coeficientes de transferencia de calor y la influencia de lasincrustaciones en la pérdida de eficiencia de la instalación. Mediante un procedimiento iterativo se estableció la ecuación del número de Nusselt y su relación con el número de Reynolds y Prandtl. Se utilizó un diseño experimental multifactorial. Los resultados predicen el conocimiento de los coeficientespara el cálculo del número de Nusselt en ambos fluidos. Los valores de los coeficientes del licor amoniacal son inferiores, ello se debe a la presencia de componentes gaseosos. La ecuación obtenida muestra correspondencia con el modelo de Buonapane, el error comparativo es del 3,55 %.Palabras claves: intercambiador de calor de placas, coeficientes de transferencia de calor, eficiencia térmica.______________________________________________________________________________AbstractThe loss of efficiency of the ammonia liquor cooling process, by means of the plate heat exchanger, is associated to the incorrect estimate of the heat transfer coefficients and the accumulation of inlays in the exchange surface. The objective of the investigation is to determine the transfer coefficients and the influence of the inlays in the efficiency loss of the installation. By means of an iterative procedure was obtained the Nusselt number equation and the relationship with the Reynolds and Prandtl number, for it was used it a design experimental multifactorial. The results predict the knowledge of the coefficients forthe calculation of the Nusselt number for both fluids. The ammonia liquor coefficients values are inferior, due to the presence of gassy

  17. Exchange-spring like magnetic behavior of the tetragonal Heusler compound Mn2FeGa as a candidate for spin-transfer torque

    Science.gov (United States)

    Gasi, Teuta; Nayak, Ajaya K.; Winterlik, Jürgen; Ksenofontov, Vadim; Adler, Peter; Nicklas, Michael; Felser, Claudia

    2013-05-01

    We report structural, magnetic, and Mössbauer studies of the Heusler compound Mn2FeGa. Theoretical calculations predict that a tetragonal phase in Mn2FeGa could be an interesting candidate for spin torque transfer applications due to the presence of perpendicular magnetic anisotropy. Experimentally, we found that Mn2FeGa crystallizes in a tetragonal structure after annealing at low temperatures (≤400 °C), whereas, it becomes pseudocubic for higher annealing temperatures. The sample annealed at 400 °C shows a high Curie temperature of 650 K and a hard-magnetic behavior. We observed a nonsaturating and exchange-spring type of hysteresis loops, which indicates that the sample contains two different magnetic states. The Mössbauer measurements clearly support the structural and magnetic data. All these properties make the material a potential candidate for spintronic devices, especially in thin films with perpendicular magnetic anisotropy.

  18. Surface polyPEGylation of Eu3+ doped luminescent hydroxyapatite nanorods through the combination of ligand exchange and metal free surface initiated atom transfer radical polymerization

    Science.gov (United States)

    Zeng, Guangjian; Liu, Meiying; Heng, Chunning; Huang, Qiang; Mao, Liucheng; Huang, Hongye; Hui, Junfeng; Deng, Fengjie; Zhang, Xiaoyong; Wei, Yen

    2017-03-01

    The Eu3+ doped luminescent hydroxyapatite (HAp) nanorods with uniform size and morphology can be synthesized by hydrothermal route. However, these HAp nanorods are coated by hydrophobic oleylamine, which makes them difficult to be dispersed in aqueous solution and impede their biomedical applications. In this work, Eu3+ doped luminescent polymers functionalized HAp nanorods were prepared through the combination of ligand exchange reaction and metal free surface initiated atom transfer radical polymerization (ATRP) method. In this procedure, the amino group functionalized HAp nanorods were first prepared by ligand exchange reaction using adenosine monophosphate (AMP) as ligand. Then the Br-containing initiators (HAp-Br) were introduced onto the surface of HAp-AMP nanorods through the amidation reaction. Finally, polymers functionalized HAp nanorods were prepared by metal free ATRP method using poly(ethylene glycol) methacrylate (PEGMA) as monomer and 10-phenylphenothiazine (PTH) as organic photocatalyst. The properties of these obtained HAp nanocomposites (HAP-polyPEGMA nanorods) were characterized by means of transmission electron microscopy, Fourier transformed infrared spectroscopy, X-ray photoelectron spectroscopy and thermogravimetric analysis in detail. The cell imaging of these HAP-polyPEGMA nanorods was examined using laser scanning confocal microscope to evaluate their biomedical applications. We demonstrated for the first time that hydrophobic luminescent HAp nanorods can be functionalized with polyPEGMA through the combination of ligand exchange reaction and metal free surface initiated ATRP. As compared with the traditional ATRP, the metal free ATRP can overcome the toxic and fluorescence quenching effects of metal catalysts such as copper ions. More importantly, the strategy described in this work should also be utilized for fabrications of many other luminescent polymer nanocomposites due to its good monomer adoptability.

  19. Lipid Exchange Mechanism of the Cholesteryl Ester Transfer Protein Clarified by Atomistic and Coarse-grained Simulations

    DEFF Research Database (Denmark)

    Koivuniemi, A.; Vuorela, T.; Kovanen, P. T.

    2012-01-01

    Cholesteryl ester transfer protein (CETP) transports cholesteryl esters, triglycerides, and phospholipids between different lipoprotein fractions in blood plasma. The inhibition of CETP has been shown to be a sound strategy to prevent and treat the development of coronary heart disease. We employed...... change of helix X of CETP to an open state, in which we found the accessibility of cholesteryl esters to the C-terminal tunnel opening of CETP to increase. Furthermore, in the absence of helix X, cholesteryl esters rapidly diffused into CETP through the C-terminal opening. The results provide compelling...

  20. An XML transfer schema for exchange of genomic and genetic mapping data: implementation as a web service in a Taverna workflow.

    Science.gov (United States)

    Paterson, Trevor; Law, Andy

    2009-08-14

    exchange standard we present here provides a useful generic format for transfer and integration of genomic and genetic mapping data. The extensibility of our schema allows for inclusion of additional data and provides a mechanism for typing mapping objects via third party standards. Web services retrieving GMD-compliant mapping data demonstrate that use of this exchange standard provides a practical mechanism for achieving data integration, by facilitating syntactically and semantically-controlled access to the data.

  1. Surface polyPEGylation of Eu{sup 3+} doped luminescent hydroxyapatite nanorods through the combination of ligand exchange and metal free surface initiated atom transfer radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Guangjian; Liu, Meiying [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Heng, Chunning [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R& D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi’an 710069 (China); Huang, Qiang; Mao, Liucheng; Huang, Hongye [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Hui, Junfeng [Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R& D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi’an 710069 (China); Deng, Fengjie, E-mail: fengjiedeng@aliyun.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Zhang, Xiaoyong, E-mail: xiaoyongzhang1980@gmail.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wei, Yen, E-mail: weiyen@tsinghua.edu.cn [Department of Chemistry and The Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084 (China)

    2017-03-31

    Highlights: • Surface modification of HAp nanorods through the combination of ligand exchange reaction and metal free SI-ATRP. • HAp-polyPEGMA displayed high water dispersibility, good biocompatibility and biological imaging capability. • Metal free ATRP can overcome the toxic and fluorescence quenching effects of metal catalysts of conventional ATRP. - Abstract: The Eu{sup 3+} doped luminescent hydroxyapatite (HAp) nanorods with uniform size and morphology can be synthesized by hydrothermal route. However, these HAp nanorods are coated by hydrophobic oleylamine, which makes them difficult to be dispersed in aqueous solution and impede their biomedical applications. In this work, Eu{sup 3+} doped luminescent polymers functionalized HAp nanorods were prepared through the combination of ligand exchange reaction and metal free surface initiated atom transfer radical polymerization (ATRP) method. In this procedure, the amino group functionalized HAp nanorods were first prepared by ligand exchange reaction using adenosine monophosphate (AMP) as ligand. Then the Br-containing initiators (HAp-Br) were introduced onto the surface of HAp-AMP nanorods through the amidation reaction. Finally, polymers functionalized HAp nanorods were prepared by metal free ATRP method using poly(ethylene glycol) methacrylate (PEGMA) as monomer and 10-phenylphenothiazine (PTH) as organic photocatalyst. The properties of these obtained HAp nanocomposites (HAP-polyPEGMA nanorods) were characterized by means of transmission electron microscopy, Fourier transformed infrared spectroscopy, X-ray photoelectron spectroscopy and thermogravimetric analysis in detail. The cell imaging of these HAP-polyPEGMA nanorods was examined using laser scanning confocal microscope to evaluate their biomedical applications. We demonstrated for the first time that hydrophobic luminescent HAp nanorods can be functionalized with polyPEGMA through the combination of ligand exchange reaction and metal free surface

  2. Atmospheric Transference of the Toxic Burden of Atmosphere-Surface Exchangeable Pollutants to the Great Lakes Region

    Science.gov (United States)

    Kumar, A.; Perlinger, J. A.; Giang, A.; Zhang, H.; Selin, N. E.; Wu, S.

    2016-12-01

    Toxic pollutants that share certain chemical properties undergo repeated emission and deposition between Earth's surfaces and the atmosphere. Following their emission through anthropogenic activities, they are transported locally, regionally or globally through the atmosphere, are deposited, and impact local ecosystems, in some cases as a result of bioaccumulation in food webs. We call them atmosphere-surface exchangeable pollutants or "ASEPs", wherein this group is comprised of thousands of chemicals. We are studying potential future contamination in the Great Lakes region by modeling scenarios of the future for three compounds/compound classes, mercury, polychlorinated biphenyl compounds, and polycyclic aromatic hydrocarbons. In this presentation we focus on mercury and future scenarios of contamination of the Great Lake region. The atmospheric transport of mercury under specific scenarios will be discussed. The global 3-D chemical transport model GEOS-Chem has been applied to estimate future atmospheric concentrations and deposition rates of mercury in the Great Lakes region for selected future scenarios of emissions and climate. We find that, assuming no changes in climate, annual mean net deposition flux of mercury to the Great Lakes Region may increase by approximately 50% over 2005 levels by 2050, without global or regional policies addressing mercury, air pollution, and climate. In contrast, we project that the combination of global and North American action on mercury could lead to a 21% reduction in deposition from 2005 levels by 2050. US action alone results in a projected 18% reduction over 2005 levels by 2050. We also find that, assuming no changes in anthropogenic emissions, climate change and biomass burning emissions would, respectively, cause annual mean net deposition flux of mercury to the Great Lakes Region to increase by approximately 5% and decrease by approximately 2% over 2000 levels by 2050.

  3. Live-cell imaging of biothiols via thiol/disulfide exchange to trigger the photoinduced electron transfer of gold-nanodot sensor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ching-Ping; Wu, Te-Haw; Liu, Chia-Yeh; Lin, Shu-Yi, E-mail: shuyi@nhri.org.tw

    2014-11-07

    Highlights: • The ultrasmall size, PAMAM dendrimer-entrapped Au{sub 8}-clusters were synthesized. • Thiol/disulfide exchange with biothiols to release 2-PyT resulted in quenching. • The sensing platform can detect both low and high molecular weight thiols. • Capable of imaging biothiols including protein thiols in living cells. - Abstract: Biothiols have been reported to involve in intracellular redox-homeostasis against oxidative stress. In this study, a highly selective and sensitive fluorescent probe for sensing biothiols is explored by using an ultrasmall gold nanodot (AuND), the dendrimer-entrapped Au{sub 8}-cluster. This strategy relies upon a thiol/disulfide exchange to trigger the fluorescence change through a photoinduced electron transfer (PET) process between the Au{sub 8}-cluster (as an electron donor) and 2-pyridinethiol (2-PyT) (as an electron acceptor) for sensing biothiols. When 2-PyT is released via the cleavage of disulfide bonds by biothiols, the PET process from the Au{sub 8}-cluster to 2-PyT is initiated, resulting in fluorescence quenching. The fluorescence intensity was found to decrease linearly with glutathione (GSH) concentration (0–1500 μM) at physiological relevant levels and the limit of detection for GSH was 15.4 μM. Compared to most nanoparticle-based fluorescent probes that are limited to detect low molecular weight thiols (LMWTs; i.e., GSH and cysteine), the ultrasmall Au{sub 8}-cluster-based probe exhibited less steric hindrance and can be directly applied in selectively and sensitively detecting both LMWTs and high molecular weight thiols (HMWTs; i.e., protein thiols). Based on such sensing platform, the surface-functionalized Au{sub 8}-cluster has significant promise for use as an efficient nanoprobe for intracellular fluorescence imaging of biothiols including protein thiols in living cells whereas other nanoparticle-based fluorescent probes cannot.

  4. SATURATED ZONE IN-SITU TESTING

    Energy Technology Data Exchange (ETDEWEB)

    P.W. REIMUS

    2004-11-08

    The purpose of this scientific analysis is to document the results and interpretations of field experiments that test and validate conceptual flow and radionuclide transport models in the saturated zone (SZ) near Yucca Mountain, Nevada. The test interpretations provide estimates of flow and transport parameters used in the development of parameter distributions for total system performance assessment (TSPA) calculations. These parameter distributions are documented in ''Site-Scale Saturated Zone Flow Model (BSC 2004 [DIRS 170037]), Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]), Saturated Zone Colloid Transport (BSC 2004 [DIRS 170006]), and ''Saturated Zone Flow and Transport Model Abstraction'' (BSC 2004 [DIRS 170042]). Specifically, this scientific analysis contributes the following to the assessment of the capability of the SZ to serve as part of a natural barrier for waste isolation for the Yucca Mountain repository system: (1) The bases for selection of conceptual flow and transport models in the saturated volcanics and the saturated alluvium located near Yucca Mountain. (2) Results and interpretations of hydraulic and tracer tests conducted in saturated fractured volcanics at the C-wells complex near Yucca Mountain. The test interpretations include estimates of hydraulic conductivities, anisotropy in hydraulic conductivity, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, matrix diffusion coefficients, fracture apertures, and colloid transport parameters. (3) Results and interpretations of hydraulic and tracer tests conducted in saturated alluvium at the Alluvial Testing Complex (ATC) located at the southwestern corner of the Nevada Test Site (NTS). The test interpretations include estimates of hydraulic conductivities, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass

  5. Experimental study of heat transfer enhancement in a concentric double pipe heat exchanger with different axial pitch ratio of perforated twisted tape inserts

    Science.gov (United States)

    Yaningsih, Indri; Istanto, Tri; Wijayanta, Agung Tri

    2016-03-01

    In this study, an experimental investigation has been carried out for heat transfer and pressure drop characteristics of a concentric double pipe heat exchanger using the perforated twisted (PT) tape inserts with various axial pitch ratios. The experiments were performed using PT tape inserts with tape-twist ratio of 3.97 and the three axial pitch ratio (Sx/W = 0.56, 0.87 and 1.19) and constant the perforation hole diameter ratio (d/W = 0.16). In the experiments, hot water and cold water flowed through the inner pipe and annulus, respectively. The experiments were performed for counter current flow mode of the fluids in a turbulent flow regime with Reynolds number ranging from 5400 to 17,500. A tube with typical twisted (TT) tape insert and a plain tube were also tested for comparison. The experimental results revealed that both heat transfer rate and friction factor of the heat exchanger equipped with PT tape inserts were significantly higher than those of the plain tube and with TT tape insert. The results showed that the Nusselt number increased with decreasing Sx/W. PT tape inserts with Sx/W = 0.56, 0.87 and 1.19, provided Nusselt number up to 32%, 23% and 14% higher than TT tape insert, respectively. An average friction factor in the inner pipe generated by PT tape inserts with axial pitch ratios (Sx/W) of 0.56, 0.87 and 1.19 is found to be around 47%, 38% and 29% higher than that induced by TT tape insert, respectively. The thermal performance factor of PT tape inserts varies between 0.92 - 1.39, 0.88 - 1.34, and 0.84 - 1.28 for Sx/W = 0.56, 0.87 and 1.19, respectively. In addition, the empirical correlations of Nusselt number, friction factor and thermal performance factor were developed from the experimental results.

  6. Venous oxygen saturation.

    Science.gov (United States)

    Hartog, Christiane; Bloos, Frank

    2014-12-01

    Early detection and rapid treatment of tissue hypoxia are important goals. Venous oxygen saturation is an indirect index of global oxygen supply-to-demand ratio. Central venous oxygen saturation (ScvO2) measurement has become a surrogate for mixed venous oxygen saturation (SvO2). ScvO2 is measured by a catheter placed in the superior vena cava. After results from a single-center study suggested that maintaining ScvO2 values >70% might improve survival rates in septic patients, international practice guidelines included this target in a bundle strategy to treat early sepsis. However, a recent multicenter study with >1500 patients found that the use of central hemodynamic and ScvO2 monitoring did not improve long-term survival when compared to the clinical assessment of the adequacy of circulation. It seems that if sepsis is recognized early, a rapid initiation of antibiotics and adequate fluid resuscitation are more important than measuring venous oxygen saturation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Metamaterial saturable absorber mirror.

    Science.gov (United States)

    Dayal, Govind; Ramakrishna, S Anantha

    2013-02-01

    We propose a metamaterial saturable absorber mirror at midinfrared wavelengths that can show a saturation of absorption with intensity of incident light and switch to a reflecting state. The design consists of an array of circular metallic disks separated by a thin film of vanadium dioxide (VO(2)) from a continuous metallic film. The heating due to the absorption in the absorptive state causes the VO(2) to transit to a metallic phase from the low temperature insulating phase. The metamaterial switches from an absorptive state (R≃0.1%) to a reflective state (R>95%) for a specific threshold intensity of the incident radiation corresponding to the phase transition of VO(2), resulting in the saturation of absorption in the metamaterial. The computer simulations show over 99.9% peak absorbance, a resonant bandwidth of about 0.8 μm at 10.22 μm wavelengths, and saturation intensity of 140 mW cm(-2) for undoped VO(2) at room temperature. We also carried out numerical simulations to investigate the effects of localized heating and temperature distribution by solving the heat diffusion problem.

  8. Cátions trocáveis, capacidade de troca de cátions e saturação por bases em solos brasileiros adubados com composto de lixo urbano Exchangeable cations, cation exchange capacity and base saturation in Brazilian soils amended with urban waste compost

    Directory of Open Access Journals (Sweden)

    Cassio Hamilton Abreu Jr.

    2001-12-01

    +, and Na+, on cation exchangeable capacity (CEC, and on base saturation (BS% of 21 acid and 5 alkaline soils. The organic compost (collected at the São Matheus Plant Treatment, São Paulo, Brazil was applied with or without dolomitic lime and mineral fertilizers. For alkaline soils, lime was substituted by gypsum. The experiment was carried out on a split-plot, completely randomized block design with three replicates. The compost application increased the exchangeable content of potassium, calcium, magnesium, and sodium on average of 195%, 200%, 86%, and 1200%, respectively, and elevated the CEC by 42% in acid soils. Consequently the BS% was increased 39%. A lower, but significant, increase on CEC was observed in alkaline soils in response to the compost application. Average CEC and BS% increases were of 8.4% and 2%, respectively. The highest effects on the evaluated soil properties were verified for compost + fertilizer + lime and compost + fertilizer + gypsum applications in acid and alkaline soils, respectively. It is concluded that the use of urban waste compost in agricultural lands is viable only if its effects on chemical properties are properly monitored.

  9. An experimental study on single phase convection heat transfer and pressure drop in two brazed plate heat exchangers with different chevron shapes and hydraulic diameters

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Man Bae; Park, Chang Yong [Seoul National University of Science and Technology, Seoul (Korea, Republic of)

    2017-05-15

    An experimental study on heat transfer and pressure drop characteristics was performed at single phase flow in two Brazed plate heat exchangers (BPHEs) with different geometries. The corrugation density of one of the BPHE (Type II) was two times as high as that of the other BPHE (Type I). The hydraulic diameter of the type II BPHE was 2.13 mm, which was 38 % smaller than that of the type I BPHE. Also, the cross section shape of the flow channels for the type II BPHE was different from that for conventional BPHEs due to the unusual corrugation patterns and brazing points. The experimental conditions for temperatures were varied from 4.6 °C to 49.1 °C, and for mass flow rates were changed from 0.07 kg/s to 1.24 kg/s. The measured results showed that pressure drop in the type II BPHE was about 110 % higher than that in the type I BPHE. Nu of the type II was higher than that of the type I BPHE and the enhancement became larger with the increase of Re at the ranges above 800. New correlations for fF and Nu were proposed by this study and their prediction accuracy could be improved by considering the surface enlargement factor in the correlations. The performance evaluation of the two BPHEs was performed by (j/f{sub F}1{sup /3}) which represented the ratio of heat transfer and pressure drop performance. Also, a new parameter, the capacity compactness of PHE, was proposed and it presented the PHE capacity per unit volume and unit log mean temperature difference. The comparison showed that the two BPHEs had similar values of the (j/f{sub F}1{sup /3}), whereas they had significantly different values of the capacity compactness. The capacity compactness of the type II BPHE was 1.5 times higher than that for the type I BPHE.

  10. [Pulmonary gas exchange model: influence of the heterogeneity of distribution on the ventilation-perfusion and diffusion-perfusion ratios of oxygen transfer].

    Science.gov (United States)

    Beroff, M J; Lelong, F; Cherruault, Y

    1978-07-01

    The purpose of this pulmonary gas exchange model is to study the effect produced by an inhomogeneous distribution of the ventilation-perfusion (V A/Q) and diffusion-perfusion (D/Q) ratios on the oxygen transfer. We calculate partial pressures of oxygen and carbon dioxide in venous blood, in capillary blood and alveolar gas of each element as the unique solution of a non-linear system, the parameters of which are the local values of ventilation, perfusion and diffusion. We show that an inhomogeneous distribution of any ratio leads to a decrease of the mixed arterial concentration of oxygen and that the greater the inhomogeneity, the greater the decrease. We show by numerical stimulation that if two inhomogeneities (V A/Q) and (D/Q) are associated, the oxygen arterial concentration decrease is rather less important if the diffusion-ventilation ratio has a distribution almost homogeneous, i.e. if the V A/Q and D/Q inhomogeneities are almost identical.

  11. Air-water oxygen exchange in a large whitewater river

    Science.gov (United States)

    Hall, Robert O.; Kennedy, Theodore A.; Rosi-Marshall, Emma J.

    2012-01-01

    Air-water gas exchange governs fluxes of gas into and out of aquatic ecosystems. Knowing this flux is necessary to calculate gas budgets (i.e., O2) to estimate whole-ecosystem metabolism and basin-scale carbon budgets. Empirical data on rates of gas exchange for streams, estuaries, and oceans are readily available. However, there are few data from large rivers and no data from whitewater rapids. We measured gas transfer velocity in the Colorado River, Grand Canyon, as decline in O2 saturation deficit, 7 times in a 28-km segment spanning 7 rapids. The O2 saturation deficit exists because of hypolimnetic discharge from Glen Canyon Dam, located 25 km upriver from Lees Ferry. Gas transfer velocity (k600) increased with slope of the immediate reach. k600 was -1 in flat reaches, while k600 for the steepest rapid ranged 3600-7700 cm h-1, an extremely high value of k600. Using the rate of gas exchange per unit length of water surface elevation (Kdrop, m-1), segment-integrated k600 varied between 74 and 101 cm h-1. Using Kdrop we scaled k600 to the remainder of the Colorado River in Grand Canyon. At the scale corresponding to the segment length where 80% of the O2 exchanged with the atmosphere (mean length = 26.1 km), k600 varied 4.5-fold between 56 and 272 cm h-1 with a mean of 113 cm h-1. Gas transfer velocity for the Colorado River was higher than those from other aquatic ecosystems because of large rapids. Our approach of scaling k600 based on Kdrop allows comparing gas transfer velocity across rivers with spatially heterogeneous morphology.

  12. Saturated and trans fats

    National Research Council Canada - National Science Library

    Shader, Richard I

    2014-01-01

    ... Original Pancake Mix plus ingredients suggested by the recipe: 2 g saturated fat (SF) and no trans fatty acids or trans fat (TFA); bacon, Oscar Mayer Lower Sodium Bacon: 2.5 g SF and no TFA; sausages, Jimmy Dean Original Pork Sausage Links: 8 g SF and no TFA; potatoes, Ore-Ida Mini Tater Tots: 2 g SF and no TFA; and nondairy creamer, Nestlé Coffee-...

  13. Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Michael Batzle; D-h Han; R. Gibson; Huw James

    2006-01-30

    During this last quarter of the ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' project (Grant/Cooperative Agreement DE-FC26-02NT15342), our efforts have become focused on technology transfer. To this end, we completing our theoretical developments, generating recommended processing flows, and perfecting our rock and fluid properties interpretation techniques. Some minor additional data analysis and modeling will complete our case studies. During this quarter we have: Presented findings for the year at the DHI/FLUIDS meeting at UH in Houston; Presented and published eight papers to promote technology transfer; Shown how Rock and fluid properties are systematic and can be predicted; Shown Correct values must be used to properly calibrate deep-water seismic data; Quantified and examined the influence of deep water geometries in outcrop; Compared and evaluated hydrocarbon indicators for fluid sensitivity; Identified and documented inappropriate processing procedures; Developed inversion techniques to better distinguish hydrocarbons; Developed new processing work flows for frequency-dependent anomalies; and Evaluated and applied the effects of attenuation as an indicator. We have demonstrated that with careful calibration, direct hydrocarbon indicators can better distinguish between uneconomic ''Fizz'' gas and economic hydrocarbon reservoirs. Some of this progress comes from better characterization of fluid and rock properties. Other aspects include alternative techniques to invert surface seismic data for fluid types and saturations. We have also developed improved work flows for accurately measuring frequency dependent changes in seismic data that are predicted by seismic models, procedures that will help to more reliably identify anomalies associated with hydrocarbons. We have been prolific in publishing expanded abstracts and presenting results, particularly at the SEG. This year, we had eight such

  14. Condensation heat transfer of pure steam and steam from gas-steam mixture in tubes of AES-2006 PHRS SG heat exchanger

    Science.gov (United States)

    Balunov, B. F.; Il'in, V. A.; Shcheglov, A. A.; Lychakov, V. D.; Alekseev, S. B.; Kuhtevich, V. O.; Svetlov, S. V.; Sidorov, V. G.

    2017-01-01

    Results of experimental determination of the average heat transfer coefficient upon condensation of pure steam αc and steam from air-steam mixture αas.m in tubes of a large-scale model of the emergency cooling heat exchanger in the system of passive heat removal through steam generators of AES-2006 project at Leningrad II NPP are presented. The model contained 16 parallel tubes with a diameter of 16 × 2 mm and a length of 2.9 m connected to the upper steam distributing and lower condensate gathering horizontal collectors; the distance between their axes was 2.28 m. The tube segments were vertical, horizontal, or inclined. The internal diameter of the collectors was 40 or 60 mm. The model was placed in the lower part of a tank with a height of 6.5 m and a volume of 5.85 m3 filled with boiling water at atmospheric pressure. The experimental parameters were as follows: pressure range 0.43-7.77 MPa, condensate Reynolds number Ref = (0.87-9.3) × 103, and average air volume fraction at the segment with air-steam mixture 0.18-0.85. The studies showed that nonuniformity of static pressure distribution along the steam-distributing collector strongly influences the reduction of αc value (ejecting effect). The agreement between experimental and calculated according to statutory guidelines values of αc for vertical tubes is achieved if the dynamic head of the steam flow at the input of the steam-distributing collector does not exceed 1 kPa. Equations for calculation of the diffusion heat transfer coefficient at steam condensation from the air-steam mixture αas.m on the internal tube surface are proposed. In the considered conditions, air is completely displaced by steam flow from the upper to the lower part of the tubes. The boundary between these regions is characterized by an average reduced steam velocity through this cross section of 1.6 ± 0.4 m/s. Above the boundary cross section, it is recommended to calculate αc. according to [1].

  15. Saturation in nuclei

    CERN Document Server

    Lappi, T

    2010-01-01

    This talk discusses some recent studies of gluon saturation in nuclei. We stress the connection between the initial condition in heavy ion collisions and observables in deep inelastic scattering (DIS). The dominant degree of freedom in the small x nuclear wavefunction is a nonperturbatively strong classical gluon field, which determines the initial condition for the glasma fields in the initial stages of a heavy ion collision. A correlator of Wilson lines from the same classical fields, known as the dipole cross section, can be used to compute many inclusive and exclusive observables in DIS.

  16. Transfer of population as a solution to international disputes: population exchanges between Greece and Turkey as a model for plans to solve the Jewish-Arab dispute in Palestine during the 1930s.

    Science.gov (United States)

    Katz, Y

    1992-01-01

    The author explores the reasons for the failure of a plan for population exchanges that took place between Jews and Arabs in Palestine in the 1930s. Special focus is given to the success of previous exchanges between Greece and Turkey that took place during the 1920s and why this model failed in Palestine. The author concludes that "the Zionist plans which assumed that one could encourage voluntary transfer by creating attractive economic conditions in the target areas, did not take into account the factors of nationalism, ties to place of residence, religion, etc. These factors carried no less weight than the economic factor and they could effectively prevent any voluntary transfer of the Arab population." excerpt

  17. Model-Based Investigation on the Mass Transfer and Adsorption Mechanisms of Mono-Pegylated Lysozyme in Ion-Exchange Chromatography.

    Science.gov (United States)

    Morgenstern, Josefine; Wang, Gang; Baumann, Pascal; Hubbuch, Jürgen

    2017-09-01

    Recent studies highlighted the potential of PEGylated proteins to improve stabilities and pharmacokinetics of protein drugs. Ion-exchange chromatography (IEX) is among the most frequently used purification methods for PEGylated proteins. However, the underlying physical mechanisms allowing for a separation of different PEGamers (proteins with a varying number of attached PEG molecules) are not yet fully understood. In this work, mechanistic chromatography modeling is applied to gain a deeper understanding of the mass transfer and adsorption/desorption mechanisms of mono-PEGylated proteins in IEX. Using a combination of the general rate model (GRM) and the steric mass action (SMA) isotherm, simulation results in good agreement with the experimental data are achieved. During linear gradient elution of proteins attached with PEG of different molecular weight, similar peak heights, and peak shapes at constant gradient length are observed. A superimposed effect of increased desorption rate and reduced diffusion rate as a function of the hydrodynamic radius of PEGylated proteins is identified to be the reason of this anomaly. That is why the concept of the diffusion-desorption-compensation effect is proposed. In addition to the altered elution orders, PEGylation results in a considerable decrease of maximum binding capacity. By using the SMA model in a kinetic formulation, the adsorption behavior of PEGylated proteins in the highly concentrated state is described mechanistically. An exponential increase in the steric hindrance effect with increasing PEG molecular weight is observed. This suggests the formation of multiple PEG layers in the interstitial space between bound proteins and an associated shielding of ligands on the adsorber surface to be the cause of the reduced maximum binding capacity. The presented in silico approach thus complements the hitherto proposed theories on the binding mechanisms of PEGylated proteins in IEX. © 2017 The Authors Biotechnology

  18. Nature's Heat Exchangers.

    Science.gov (United States)

    Barnes, George

    1991-01-01

    Discusses the heat-transfer systems of different animals. Systems include heat conduction into the ground, heat transferred by convection, heat exchange in lizards, fish and polar animals, the carotid rete system, electromagnetic radiation from animals and people, and plant and animal fiber optics. (MDH)

  19. From QCD to nuclear matter saturation

    Energy Technology Data Exchange (ETDEWEB)

    Ericson, Magda [Universite de Lyon, Univ. Lyon 1, CNRS/IN2P3, IPN Lyon, F-69622 Villeurbanne Cedex (France)]|[Theory division, CERN, CH-12111 Geneva (Switzerland); Chanfray, Guy [Universite de Lyon, Univ. Lyon 1, CNRS/IN2P3, IPN Lyon, F-69622 Villeurbanne Cedex (France)

    2007-03-15

    We discuss a relativistic chiral theory of nuclear matter with {sigma} and {omega} exchange using a formulation of the {sigma} model in which all the chiral constraints are automatically fulfilled. We establish a relation between the nuclear response to the scalar field and the QCD one which includes the nucleonic parts. It allows a comparison between nuclear and QCD information. Going beyond the mean field approach we introduce the effects of the pion loops supplemented by the short-range interaction. The corresponding Landau-Migdal parameters are taken from spin-isospin physics results. The parameters linked to the scalar meson exchange are extracted from lattice QCD results. These inputs lead to a reasonable description of the saturation properties, illustrating the link between QCD and nuclear physics. We also derive from the corresponding equation of state the density dependence of the quark condensate and of the QCD susceptibilities. (authors)

  20. Experimental investigation of heat transfer and pressure drop characteristics of non-Newtonian nanofluids flowing in the shell-side of a helical baffle heat exchanger with low-finned tubes

    Science.gov (United States)

    Tan, Yunkai; He, Zhenbin; Xu, Tao; Fang, Xiaoming; Gao, Xuenong; Zhang, Zhengguo

    2017-09-01

    An aqueous solution of Xanthan Gum (XG) at a weight fraction as high as 0.2% was used as the base liquid, the stable MWCNTs-dispersed non-Newtonian nanofluids at different weight factions of MWCNTs was prepared. The base fluid and all nanofluids show pseudoplastic (shear-thinning) rheological behavior. Experiments were performed to compare the shell-side forced convective heat transfer coefficient and pressure drop of non-Newtonian nanofluids to those of non-Newtonian base fluid in an integrally helical baffle heat exchanger with low-finned tubes. The experimental results showed that the enhancement of the convective heat transfer coefficient increases with an increase in the Peclet number and the nanoparticle concentration. For nanofluids with 1.0, 0.5 and 0.2 wt% of multi-walled carbon nanotubes (MWCNTs), the heat transfer coefficients respectively augmented by 24.3, 13.2 and 4.7% on average and the pressure drops become larger than those of the base fluid. The comprehensive thermal performance factor is higher than one and increases with an increasing weight fraction of MWCNTs. A remarkable heat transfer enhancement in the shell side of helical baffle heat exchanger with low-finned tubes can be obtained by adding MWCNTs into XG aqueous solution based on thermal resistance analysis. New correlations have been suggested for the shell-side friction coefficient and the Nusselt numbers of non-Newtonian nanofluids and give very good agreement with experimental data.

  1. REVIEW ON SHELL AND TUBE HEAT EXCHANGER USING NANOFLUIDS

    OpenAIRE

    Nitheesh Krishnan M C*, B Suresh Kumar

    2017-01-01

    Different types of heat exchangers are extensively used in various industries to transfer the heat between cold and hot fluids. The key role of the heat exchanger is to transfer heat at maximum rate .Shell and Tube heat exchangers are having special importance in boilers, oil coolers, condensers, pre-heaters. Shell and Tube heat exchanger is one such heat exchanger, provides more area for heat transfer between two fluids in comparison with other type of heat exchanger. To intensify heat trans...

  2. [Fe(III)(F(20)-tpp)Cl] is an effective catalyst for nitrene transfer reactions and amination of saturated hydrocarbons with sulfonyl and aryl azides as nitrogen source under thermal and microwave-assisted conditions.

    Science.gov (United States)

    Liu, Yungen; Che, Chi-Ming

    2010-09-10

    [Fe(III)(F(20)-tpp)Cl] (F(20)-tpp=meso-tetrakis(pentafluorophenyl)porphyrinato dianion) is an effective catalyst for imido/nitrene insertion reactions using sulfonyl and aryl azides as nitrogen source. Under thermal conditions, aziridination of aryl and alkyl alkenes (16 examples, 60-95 % yields), sulfimidation of sulfides (11 examples, 76-96 % yields), allylic amidation/amination of α-methylstyrenes (15 examples, 68-83 % yields), and amination of saturated C--H bonds including that of cycloalkanes and adamantane (eight examples, 64-80 % yields) can be accomplished by using 2 mol % [Fe(III)(F(20)-tpp)Cl] as catalyst. Under microwave irradiation conditions, the reaction time of aziridination (four examples), allylic amination (five examples), sulfimidation (two examples), and amination of saturated C--H bonds (three examples) can be reduced by up to 16-fold (24-48 versus 1.5-6 h) without significantly affecting the product yield and substrate conversion.

  3. Saturated Zone Colloid Transport

    Energy Technology Data Exchange (ETDEWEB)

    H. S. Viswanathan

    2004-10-07

    This scientific analysis provides retardation factors for colloids transporting in the saturated zone (SZ) and the unsaturated zone (UZ). These retardation factors represent the reversible chemical and physical filtration of colloids in the SZ. The value of the colloid retardation factor, R{sub col} is dependent on several factors, such as colloid size, colloid type, and geochemical conditions (e.g., pH, Eh, and ionic strength). These factors are folded into the distributions of R{sub col} that have been developed from field and experimental data collected under varying geochemical conditions with different colloid types and sizes. Attachment rate constants, k{sub att}, and detachment rate constants, k{sub det}, of colloids to the fracture surface have been measured for the fractured volcanics, and separate R{sub col} uncertainty distributions have been developed for attachment and detachment to clastic material and mineral grains in the alluvium. Radionuclides such as plutonium and americium sorb mostly (90 to 99 percent) irreversibly to colloids (BSC 2004 [DIRS 170025], Section 6.3.3.2). The colloid retardation factors developed in this analysis are needed to simulate the transport of radionuclides that are irreversibly sorbed onto colloids; this transport is discussed in the model report ''Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]). Although it is not exclusive to any particular radionuclide release scenario, this scientific analysis especially addresses those scenarios pertaining to evidence from waste-degradation experiments, which indicate that plutonium and americium may be irreversibly attached to colloids for the time scales of interest. A section of this report will also discuss the validity of using microspheres as analogs to colloids in some of the lab and field experiments used to obtain the colloid retardation factors. In addition, a small fraction of colloids travels with the groundwater without any significant

  4. Fault-Tolerant Heat Exchanger

    Science.gov (United States)

    Izenson, Michael G.; Crowley, Christopher J.

    2005-01-01

    A compact, lightweight heat exchanger has been designed to be fault-tolerant in the sense that a single-point leak would not cause mixing of heat-transfer fluids. This particular heat exchanger is intended to be part of the temperature-regulation system for habitable modules of the International Space Station and to function with water and ammonia as the heat-transfer fluids. The basic fault-tolerant design is adaptable to other heat-transfer fluids and heat exchangers for applications in which mixing of heat-transfer fluids would pose toxic, explosive, or other hazards: Examples could include fuel/air heat exchangers for thermal management on aircraft, process heat exchangers in the cryogenic industry, and heat exchangers used in chemical processing. The reason this heat exchanger can tolerate a single-point leak is that the heat-transfer fluids are everywhere separated by a vented volume and at least two seals. The combination of fault tolerance, compactness, and light weight is implemented in a unique heat-exchanger core configuration: Each fluid passage is entirely surrounded by a vented region bridged by solid structures through which heat is conducted between the fluids. Precise, proprietary fabrication techniques make it possible to manufacture the vented regions and heat-conducting structures with very small dimensions to obtain a very large coefficient of heat transfer between the two fluids. A large heat-transfer coefficient favors compact design by making it possible to use a relatively small core for a given heat-transfer rate. Calculations and experiments have shown that in most respects, the fault-tolerant heat exchanger can be expected to equal or exceed the performance of the non-fault-tolerant heat exchanger that it is intended to supplant (see table). The only significant disadvantages are a slight weight penalty and a small decrease in the mass-specific heat transfer.

  5. Saturated Zone In-Situ Testing

    Energy Technology Data Exchange (ETDEWEB)

    P. W. Reimus; M. J. Umari

    2003-12-23

    The purpose of this scientific analysis is to document the results and interpretations of field experiments that have been conducted to test and validate conceptual flow and radionuclide transport models in the saturated zone (SZ) near Yucca Mountain. The test interpretations provide estimates of flow and transport parameters that are used in the development of parameter distributions for Total System Performance Assessment (TSPA) calculations. These parameter distributions are documented in the revisions to the SZ flow model report (BSC 2003 [ 162649]), the SZ transport model report (BSC 2003 [ 162419]), the SZ colloid transport report (BSC 2003 [162729]), and the SZ transport model abstraction report (BSC 2003 [1648701]). Specifically, this scientific analysis report provides the following information that contributes to the assessment of the capability of the SZ to serve as a barrier for waste isolation for the Yucca Mountain repository system: (1) The bases for selection of conceptual flow and transport models in the saturated volcanics and the saturated alluvium located near Yucca Mountain. (2) Results and interpretations of hydraulic and tracer tests conducted in saturated fractured volcanics at the C-wells complex near Yucca Mountain. The test interpretations include estimates of hydraulic conductivities, anisotropy in hydraulic conductivity, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, matrix diffusion coefficients, fracture apertures, and colloid transport parameters. (3) Results and interpretations of hydraulic and tracer tests conducted in saturated alluvium at the Alluvium Testing Complex (ATC), which is located at the southwestern corner of the Nevada Test Site (NTS). The test interpretations include estimates of hydraulic conductivities, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, and

  6. Insertion of apoLp-III into a lipid monolayer is more favorable for saturated, more ordered, acyl-chains

    Energy Technology Data Exchange (ETDEWEB)

    Rathnayake, Sewwandi S. [Kent State Univ., Kent, OH (United States); Mirheydari, Mona [Kent State Univ., Kent, OH (United States); Schulte, Adam [Kent State Univ., Kent, OH (United States); Gillahan, James E. [Kent State Univ., Kent, OH (United States); Gentit, Taylor [Kent State Univ., Kent, OH (United States); Phillips, Ashley N. [Kent State Univ., Kent, OH (United States); Okonkwo, Rose K. [Kent State Univ., Kent, OH (United States); Burger, Koert N.J. [Utrecht Univ. (Netherlands); Mann, Elizabeth K. [Kent State Univ., Kent, OH (United States); Vaknin, David [Ames Lab., Ames, IA (United States); Bu, Wei [Ames Lab., Ames, IA (United States); Agra-Kooijman, Dena Mae [Kent State Univ., Kent, OH (United States); Kooijman, Edgar E. [Kent State Univ., Kent, OH (United States)

    2013-10-04

    Neutral lipid transport in mammals is complicated involving many types of apolipoprotein. The exchangeable apolipoproteins mediate the transfer of hydrophobic lipids between tissues and particles, and bind to cell surface receptors. Amphipathic a-helices form a common structural motif that facilitates their lipid binding and exchangeability. ApoLp-III, the only exchangeable apolipoprotein found in insects, is a model amphipathic a:helix bundle protein and its three dimensional structure and function mimics that of the mammalian proteins apoE and apoAI. Even the intracellular exchangeable lipid droplet protein TIP47/perilipin 3 contains an a-helix bundle domain with high structural similarity to that of apoE and apoLp-III. Here, we investigated the interaction of apoLp-III from Locusta migratoria with lipid monolayers. Consistent with earlier work we find that insertion of apoLp-III into fluid lipid monolayers is highest for diacylglycerol. We observe a preference for saturated and more highly ordered lipids, suggesting a new mode of interaction for amphipathic a-helix bundles. X-ray reflectivity shows that apoLp-III unfolds at a hydrophobic interface and flexible loops connecting the amphipathic cc-helices stay in solution. X-ray diffraction indicates that apoLp-III insertion into diacylglycerol monolayers induces additional ordering of saturated acyl-chains. These results thus shed important new insight into the protein-lipid interactions of a model exchangeable apolipoprotein with significant implications for its mammalian counterparts. (C) 2013 Elsevier B.V. All rights reserved.

  7. Thermal radiation heat transfer

    CERN Document Server

    Howell, John R; Siegel, Robert

    2016-01-01

    Further expanding on the changes made to the fifth edition, Thermal Radiation Heat Transfer, 6th Edition continues to highlight the relevance of thermal radiative transfer and focus on concepts that develop the radiative transfer equation (RTE). The book explains the fundamentals of radiative transfer, introduces the energy and radiative transfer equations, covers a variety of approaches used to gauge radiative heat exchange between different surfaces and structures, and provides solution techniques for solving the RTE.

  8. Brine Distribution after Vacuum Saturation

    DEFF Research Database (Denmark)

    Hedegaard, Kathrine; Andersen, Bertel Lohmann

    1999-01-01

    Experiments with the vacuum saturation method for brine in plugs of chalk showed that a homogeneous distribution of brine cannot be ensured at saturations below 20% volume. Instead of a homogeneous volume distribution the brine becomes concentrated close to the surfaces of the plugs...

  9. Misconceptions in Reporting Oxygen Saturation

    NARCIS (Netherlands)

    Toffaletti, John; Zijlstra, Willem G.

    2007-01-01

    BACKGROUND: We describe some misconceptions that have become common practice in reporting blood gas and cooximetry results. In 1980, oxygen saturation was incorrectly redefined in a report of a new instrument for analysis of hemoglobin (Hb) derivatives. Oxygen saturation (sO(2)) was redefined as the

  10. Application of the two-film theory to the determination of mass transfer coefficients for bovine serum albumin on anion-exchange columns

    DEFF Research Database (Denmark)

    Hansen, Ernst; Mollerup, Jørgen

    1999-01-01

    The paper describes a method of simultaneous determination of the external and the solid phase mass-transfer coefficients from frontal analysis data. The protein flux to the solid particles is determined from the slope of the breakthrough curve and the mass-transfer coefficients are determined...

  11. Mechanical design and fabrication of a heat exchanger. Report of the design and construction of a heat exchanger which will be used in 'Experimental analysis of heat transfer in the boiling in forced convection; Diseno mecanico y fabricacion de un intercambiador de calor. Reporte del diseno y construccion de un intercambiador de calor que sera usado en 'Analisis experimental de transferencia de calor en la ebullicion en conveccion forzada

    Energy Technology Data Exchange (ETDEWEB)

    Mariano H, E

    1991-08-15

    To continue with the equipment of the thermal hydraulics laboratory, it was designed thermal and mechanically an heat exchanger, to satisfy the requirements to have circuit that allows to carry out heat transfer experiments. The heat exchanger was manufactured and proven in the workshops of the Prototypes and Models Management, and it is expected that to obtain the foreseen results once completely installed the circuit, in the laboratory of thermal hydraulics of the Management of Nuclear Systems. (Author)

  12. Amide proton transfer imaging in clinics: Basic concepts and current and future use in brain tumors and stoke

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Eun [Dept. of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of); Jahng, Geon Ho [Dept. of Radiology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul (Korea, Republic of); Jeong, Ha Kyu [Philips Korea, Seoul (Korea, Republic of)

    2016-12-15

    Amide proton transfer (APT) imaging is gaining attention as a relatively new in vivo molecular imaging technique that has higher sensitivity and spatial resolution than magnetic resonance spectroscopy imaging. APT imaging is a subset of the chemical exchange saturation transfer mechanism, which can offer unique image contrast by selectively saturating protons in target molecules that get exchanged with protons in bulk water. In this review, we describe the basic concepts of APT imaging, particularly with regard to the benefit in clinics from the current literature. Clinical applications of APT imaging are described from two perspectives: in the diagnosis and monitoring of the treatment response in brain glioma by reflecting endogenous mobile proteins and peptides, and in the potential for stroke imaging with respect to tissue acidity.

  13. 22 CFR 62.76 - Transfer procedures.

    Science.gov (United States)

    2010-04-01

    ... Foreign Relations DEPARTMENT OF STATE PUBLIC DIPLOMACY AND EXCHANGES EXCHANGE VISITOR PROGRAM Student and Exchange Visitor Information System (SEVIS) § 62.76 Transfer procedures. (a) Program sponsors may, pursuant...) The transfer sponsor shall validate the exchange visitor's participation in its program within 30...

  14. Saturation current spikes eliminated in saturable core transformers

    Science.gov (United States)

    Schwarz, F. C.

    1971-01-01

    Unsaturating composite magnetic core transformer, consisting of two separate parallel cores designed so impending core saturation causes signal generation, terminates high current spike in converter primary circuit. Simplified waveform, demonstrates transformer effectiveness in eliminating current spikes.

  15. Thermal radiation heat transfer.

    Science.gov (United States)

    Siegel, R.; Howell, J. R.

    1972-01-01

    A comprehensive discussion of heat transfer by thermal radiation is presented, including the radiative behavior of materials, radiation between surfaces, and gas radiation. Among the topics considered are property prediction by electromagnetic theory, the observed properties of solid materials, radiation in the presence of other modes of energy transfer, the equations of transfer for an absorbing-emitting gas, and radiative transfer in scattering and absorbing media. Also considered are radiation exchange between black isothermal surfaces, radiation exchange in enclosures composed of diffuse gray surfaces and in enclosures having some specularly reflecting surfaces, and radiation exchange between nondiffuse nongray surfaces. The use of the Monte Carlo technique in solving radiant-exchange problems and problems of radiative transfer through absorbing-emitting media is explained.

  16. An Experience of the Transfer of Appropriate Technology from Fiji to Kenya; The 1987 ISIS-WICCE Exchange Programme on Women and Appropriate Technology.

    Science.gov (United States)

    Bolabola, Cema

    1987-01-01

    The author describes the 1987 exchange program "Women and Appropriate Technology." The program concentrated on appropriate technology in relation to rural women. She also describes a pilot appropriate technology project carried out in Kenya that involved the construction of three community buildings (a laundry and two bathrooms). (CH)

  17. A three-dimensional analysis of the effect of anisotropic gas diffusion layer(GDL) thermal conductivity on the heat transfer and two-phase behavior in a proton exchange membrane fuel cell(PEMFC)

    Science.gov (United States)

    He, Guangli; Yamazaki, Yohtaro; Abudula, Abuliti

    A three-dimensional and two-phase model was employed to investigate the effect of the anisotropic GDL thermal conductivity on the heat transfer and liquid water removal in the PEMFCs with serpentine flow field and semi-counter flow operation. The GDL with different anisotropic thermal conductivity in the three directions (x, y, z) was simulated for four cases. As a result, the water saturation, temperature, species, current, potential distribution and proton conductivity were obtained. According to the comparison between the results of each case, some new conclusions are obtained and listed as below: (1) The anisotropic GDL produces the high temperature difference than that of isotropic case, and the in-plane thermal conductivity perpendicular to the gas channels is more important than that of along channels, which may produce the larger temperature difference. (2) Water saturation decreases due to the large temperature difference in the anisotropic case, but some water vapor may condense in the area neighbor to the channel ribs due to the cool function of the current collector and the great temperature difference. (3) The anisotropic thermal conductivity in the through-plane direction and the in-plane direction perpendicular to the gas channels can lead to the decrease of the membrane conductivity. (4) The isotropic GDL is better than that of anisotropic one for the uniform current density. Also, in-plane thermal conductivity perpendicular to the channels has more negative effect on the current density distribution in the membrane than that of the along channels one.

  18. Barter exchanges

    DEFF Research Database (Denmark)

    Sudzina, Frantisek

    Although barter is often perceived as something that proceeded money, barter is still used. The focus of the paper is on barter exchanges. Barter exchanges are used both in developing countries as well as in developed countries (including the U.S.). They are used by both organizations...... and individuals. They usually allow to exchange good but some include also services. Some exchanges allow only for bi-directional barter, i.e. when only two parties are involved in the exchange. But probably most of the barter exchanges use barter money; this makes it easier to exchange goods and services...

  19. Cryogenic heat transfer

    CERN Document Server

    Barron, Randall F

    2016-01-01

    Cryogenic Heat Transfer, Second Edition continues to address specific heat transfer problems that occur in the cryogenic temperature range where there are distinct differences from conventional heat transfer problems. This updated version examines the use of computer-aided design in cryogenic engineering and emphasizes commonly used computer programs to address modern cryogenic heat transfer problems. It introduces additional topics in cryogenic heat transfer that include latent heat expressions; lumped-capacity transient heat transfer; thermal stresses; Laplace transform solutions; oscillating flow heat transfer, and computer-aided heat exchanger design. It also includes new examples and homework problems throughout the book, and provides ample references for further study.

  20. Balanced Steady-State Free Precession (bSSFP) from an effective field perspective: Application to the detection of chemical exchange (bSSFPX)

    Science.gov (United States)

    Zhang, Shu; Liu, Zheng; Grant, Aaron; Keupp, Jochen; Lenkinski, Robert E.; Vinogradov, Elena

    2017-02-01

    Chemical exchange saturation transfer (CEST) is a novel contrast mechanism and it is gaining increasing popularity as many promising applications have been proposed and investigated. Fast and quantitative CEST imaging techniques are further needed in order to increase the applicability of CEST for clinical use as well as to derive quantitative physiological and biological information. Steady-state methods for fast CEST imaging have been reported recently. Here, we observe that an extreme case of these methods is a balanced steady-state free precession (bSSFP) sequence. The bSSFP in itself is sensitive to the exchange processes; hence, no additional saturation or preparation is needed for CEST-like data acquisition. The bSSFP experiment can be regarded as observation during saturation, without separate saturation and acquisition modules as used in standard CEST and similar experiments. One of the differences from standard CEST methods is that the bSSFP spectrum is an XY-spectrum not a Z-spectrum. As the first proof-of-principle step, we have implemented the steady-state bSSFP sequence for chemical exchange detection (bSSFPX) and verified its feasibility in phantom studies. These studies have shown that bSSFPX can achieve exchange-mediated contrast comparable to the standard CEST experiment. Therefore, the bSSFPX method has a potential for fast and quantitative CEST data acquisition.

  1. Wind Speed and Sea State Dependencies of Air-Sea Gas Transfer: Results From the High Wind Speed Gas Exchange Study (HiWinGS)

    Science.gov (United States)

    Blomquist, B. W.; Brumer, S. E.; Fairall, C. W.; Huebert, B. J.; Zappa, C. J.; Brooks, I. M.; Yang, M.; Bariteau, L.; Prytherch, J.; Hare, J. E.; Czerski, H.; Matei, A.; Pascal, R. W.

    2017-10-01

    A variety of physical mechanisms are jointly responsible for facilitating air-sea gas transfer through turbulent processes at the atmosphere-ocean interface. The nature and relative importance of these mechanisms evolves with increasing wind speed. Theoretical and modeling approaches are advancing, but the limited quantity of observational data at high wind speeds hinders the assessment of these efforts. The HiWinGS project successfully measured gas transfer coefficients (k660) with coincident wave statistics under conditions with hourly mean wind speeds up to 24 m s-1 and significant wave heights to 8 m. Measurements of k660 for carbon dioxide (CO2) and dimethylsulfide (DMS) show an increasing trend with respect to 10 m neutral wind speed (U10N), following a power law relationship of the form: k660 CO2˜U10N1.68 and k660 dms˜U10N1.33. Among seven high wind speed events, CO2 transfer responded to the intensity of wave breaking, which depended on both wind speed and sea state in a complex manner, with k660 CO2 increasing as the wind sea approaches full development. A similar response is not observed for DMS. These results confirm the importance of breaking waves and bubble injection mechanisms in facilitating CO2 transfer. A modified version of the Coupled Ocean-Atmosphere Response Experiment Gas transfer algorithm (COAREG ver. 3.5), incorporating a sea state-dependent calculation of bubble-mediated transfer, successfully reproduces the mean trend in observed k660 with wind speed for both gases. Significant suppression of gas transfer by large waves was not observed during HiWinGS, in contrast to results from two prior field programs.

  2. Counterflow Regolith Heat Exchanger Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The counterflow regolith heat exchanger (CoRHE) is a device that transfers heat from hot regolith to cold regolith. The CoRHE is essentially a tube-in-tube heat...

  3. Optimization of Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Ivan Catton

    2010-10-01

    The objective of this research is to develop tools to design and optimize heat exchangers (HE) and compact heat exchangers (CHE) for intermediate loop heat transport systems found in the very high temperature reator (VHTR) and other Generation IV designs by addressing heat transfer surface augmentation and conjugate modeling. To optimize heat exchanger, a fast running model must be created that will allow for multiple designs to be compared quickly. To model a heat exchanger, volume averaging theory, VAT, is used. VAT allows for the conservation of mass, momentum and energy to be solved for point by point in a 3 dimensional computer model of a heat exchanger. The end product of this project is a computer code that can predict an optimal configuration for a heat exchanger given only a few constraints (input fluids, size, cost, etc.). As VAT computer code can be used to model characteristics )pumping power, temperatures, and cost) of heat exchangers more quickly than traditional CFD or experiment, optimization of every geometric parameter simultaneously can be made. Using design of experiment, DOE and genetric algorithms, GE, to optimize the results of the computer code will improve heat exchanger disign.

  4. Enhancement in charge transfer by non-ligand exchange process for colloidal hybrid organic(MEH-PPV):inorganic(CdSe) nanocomposites

    Science.gov (United States)

    Mehta, Aarti; Sharma, Shailesh N.; Singh, V. N.; Srivastva, A. K.; Chand, S.

    2012-10-01

    In this work, we demonstrate the effect of surface modification of as-synthesized oleylamine-capped spherical CdSe QDs of size (5-7 nm). The as-prepared CdSe QDs are highly luminescent, monodispersive and exhibit energy transfer effects upon their dispersion in MEH-PPV polymer matrix. However, repetitive washing of CdSe QDs upon suitable chemical treatment leads to enhancement in charge transfer process as observed in their corresponding MEH-PPV: CdSe nanocomposites. Here, no evidence of agglomeration effects and surface states were found. This enhancement in charge transfer is mainly due to the partial removal of oleylamine capping ligand, which acts as a hindrance in the interaction between polymer and CdSe QDs. The importance of this study is that as-synthesized CdSe QDs show effective energy transfer whereas after chemical treatment, it shows enhanced charge transfer mechanism which makes their corresponding nanocomposites useful for different applications in organic electronic devices such as efficient electroluminescent (OLED) and photovoltaic (OPV) devices respectively.

  5. Numerical heat transfer studies of the fatty acids for different heat exchanger materials on the performance of a latent heat storage system

    Energy Technology Data Exchange (ETDEWEB)

    Atul Sharma; Lee Dong Won; Jun Un Park [Korea Institute of Energy Research, Daejeon (Korea). Solar Thermal Research Centre; Buddhi, D. [Devi Ahilya University, Indore (India). Thermal Energy Storage Laboratory

    2005-11-01

    Theoretical investigations of fatty acids as a phase change material (PCM) for energy storage system have been conducted in this study. The selected fatty acids were capric acid, lauric acid, myristic acid, palmitic acid and stearic acid. For the two-dimensional simulation model based on the enthalpy approach, calculations have been made for the melt fraction with conduction only. Glass, stainless steel, tin, aluminium mixed, aluminium and copper were used as heat exchanger materials in the numerical calculations. Theoretical results show that capric acid was found good compatibility with latent heat storage system. The large value of thermal conductivity of heat exchanger materials did not make significant contribution on the melt fraction. (author)

  6. Simulation of saturated and unsaturated flow in karst systems at catchment scale using a double continuum approach

    Directory of Open Access Journals (Sweden)

    J. Kordilla

    2012-10-01

    Full Text Available The objective of this work is the simulation of saturated and unsaturated flow in a karstified aquifer using a double continuum approach. The HydroGeoSphere code (Therrien et al., 2006 is employed to simulate spring discharge with the Richards equations and van Genuchten parameters to represent flow in the (1 fractured matrix and (2 conduit continuum coupled by a linear exchange term. Rapid vertical small-scale flow processes in the unsaturated conduit continuum are accounted for by applying recharge boundary conditions at the bottom of the saturated model domain. An extensive sensitivity analysis is performed on single parameters as well as parameter combinations. The transient hydraulic response of the karst spring is strongly controlled by the matrix porosity as well as the van Genuchten parameters of the unsaturated matrix, which determine the head dependent inter-continuum water transfer when the conduits are draining the matrix. Sensitivities of parameter combinations partially reveal a non-linear dependence over the parameter space. This can be observed for parameters not belonging to the same continuum as well as combinations, which involve the exchange parameter, showing that results of the double continuum model may depict a certain degree of ambiguity. The application of van Genuchten parameters for simulation of unsaturated flow in karst systems is critically discussed.

  7. Characteristics of model heat exchanger

    Science.gov (United States)

    Kolínský, Jan

    2017-09-01

    The aim of this paper is thermal analysis of model water to water heat exchanger at different mass flow rates. Experimental study deals with determination of total heat transfer - power of the heat exchanger. Furthermore the paper deals with analysis of heat exchanger charakcteristic using a definition of thermal efficiency. It is demonstrated that it is advisable to monitor the dependence of thermal efficiency and flow ratio.

  8. Introduction to heat transfer

    CERN Document Server

    SUNDÉN, B

    2012-01-01

    Presenting the basic mechanisms for transfer of heat, Introduction to Heat Transfer gives a deeper and more comprehensive view than existing titles on the subject. Derivation and presentation of analytical and empirical methods are provided for calculation of heat transfer rates and temperature fields as well as pressure drop. The book covers thermal conduction, forced and natural laminar and turbulent convective heat transfer, thermal radiation including participating media, condensation, evaporation and heat exchangers.

  9. Liquid/liquid heat exchanger

    Science.gov (United States)

    Miller, C. G.

    1980-01-01

    Conceptual design for heat exchanger, utilizing two immiscible liquids with dissimilar specific gravities in direct contact, is more efficient mechanism of heat transfer than conventional heat exchangers with walls or membranes. Concept could be adapted for collection of heat from solar or geothermal sources.

  10. Use and groundwater risk potential of additives in heat transfer fluids for borehole heat exchangers; Verwendung und Grundwassergefaehrdungspotenzial von Additiven in Waermetraegerfluessigkeiten fuer Erdwaermesonden

    Energy Technology Data Exchange (ETDEWEB)

    Ilieva, Dafina

    2014-02-25

    Ground based heat exchanger systems need to be evaluated in terms of potential effects on groundwater quality due to the risk of leakage of borehole heat exchanger fluids. The aim of this work was to identify the compounds which are present in additive mixtures and to investigate experimentally their biodegradability and effects on the biodegradation of the major organic component in borehole heat exchanger fluids. A data survey was carried out in cooperation with the State Ministry of the Environment Baden-Wuerttemberg, Germany to collect detailed information about the identity and application amounts of additives in borehole heat exchanger fluids. The survey revealed that numerous additives of various chemical classes and properties are used as corrosion inhibitors, alkalis, dyes, organic solvents, flavors, defoamers and surfactants. Furthermore, it was shown that glycols are among the most often applied antifreeze agents, the main component of the heat exchanger fluids. Based on the prioritization criteria (i) abundance in the borehole heat exchanger fluids, (ii) persistence, and (iii) mobility in the subsurface, the additives benzotriazole, tolyltriazole, 2-ethylhexanoate, benzoate and decane dicarboxylate were selected for further biodegradation experiments. The biodegradation experiments were carried out in batch systems with 60- or 70-m-deep sediments (sandstone or marl) as inoculum. The samples were taken during the installation of borehole heat exchanger systems at two different sites. The microcosms were conducted under oxic, denitrifying, iron- and sulfate-reducing as well as fermentative conditions at the presumed aquifer temperature of 12 C. The major component ethylene glycol was degraded under all conditions studied. The fastest biodegradation occurred under oxic and nitrate-reducing conditions (< 15 days). In all anoxic, nitrate free experiments with marl-sediment fermentation was the predominant process involved in the biodegradation of ethylene

  11. Vibration-Assisted Laser Surface Texturing and Electromachining for the Intensification of Boiling Heat Transfer in a Minichannel

    Directory of Open Access Journals (Sweden)

    Piasecka M.

    2017-12-01

    Full Text Available The paper describes applications of the vibration-assisted laser surface texturing and spark erosion process as methods of modifying properties and structures of metal surfaces. Practical aspects of the use of produced surfaces in the heat exchanger with a minichannel have been described. Compared with smooth surfaces, developed metal surfaces obtained by vibration-assisted laser surface texturing and electromachining show more effective heat transfer. The local heat transfer coefficient for the saturated boiling region obtained for developed surfaces had the values significantly higher than those obtained for the smooth plate at the same heat flux. The experimental results are presented as the heated plate temperature (obtained from infrared thermography and relationships between the heat transfer coefficient and the distance along the length of the minichannel for the saturated boiling region.

  12. Theory of graphene saturable absorption

    Science.gov (United States)

    Marini, A.; Cox, J. D.; García de Abajo, F. J.

    2017-03-01

    Saturable absorption is a nonperturbative nonlinear optical phenomenon that plays a pivotal role in the generation of ultrafast light pulses. Here we show that this effect emerges in graphene at unprecedentedly low light intensities, thus opening avenues to new nonlinear physics and applications in optical technology. Specifically, we theoretically investigate saturable absorption in extended graphene by developing a semianalytical nonperturbative single-particle approach, describing electron dynamics in the atomically-thin material using the two-dimensional Dirac equation for massless Dirac fermions, which is recast in the form of generalized Bloch equations. By solving the electron dynamics nonperturbatively, we account for both interband and intraband contributions to the intensity-dependent saturated conductivity and conclude that the former dominates regardless of the intrinsic doping state of the material. We obtain results in qualitative agreement with atomistic quantum-mechanical simulations of graphene nanoribbons including electron-electron interactions, finite-size, and higher-band effects. Remarkably, such effects are found to affect mainly the linear absorption, while the predicted saturation intensities are in good quantitative agreement in the limit of extended graphene. Additionally, we find that the modulation depth of saturable absorption in graphene can be electrically manipulated through an externally applied gate voltage. Our results are relevant for the development of graphene-based optoelectronic devices, as well as for applications in mode-locking and random lasers.

  13. SATURATED-SUBCOOLED STRATIFIED FLOW IN HORIZONTAL PIPES

    Energy Technology Data Exchange (ETDEWEB)

    Richard Schultz

    2010-08-01

    Advanced light water reactor systems are designed to use passive emergency core cooling systems with horizontal pipes that provide highly subcooled water from water storage tanks or passive heat exchangers to the reactor vessel core under accident conditions. Because passive systems are driven by density gradients, the horizontal pipes often do not flow full and thus have a free surface that is exposed to saturated steam and stratified flow is present.

  14. Probing the Conformational and Functional Consequences of Disulfide Bond Engineering in Growth Hormone by Hydrogen-Deuterium Exchange Mass Spectrometry Coupled to Electron Transfer Dissociation

    DEFF Research Database (Denmark)

    Seger, Signe T; Breinholt, Jens; Faber, Johan H

    2015-01-01

    Human growth hormone (hGH), and its receptor interaction, is essential for cell growth. To stabilize a flexible loop between helices 3 and 4, while retaining affinity for the hGH receptor, we have engineered a new hGH variant (Q84C/Y143C). Here, we employ hydrogen-deuterium exchange mass...... spectrometry (HDX-MS) to map the impact of the new disulfide bond on the conformational dynamics of this new hGH variant. Compared to wild type hGH, the variant exhibits reduced loop dynamics, indicating a stabilizing effect of the introduced disulfide bond. Furthermore, the disulfide bond exhibits longer...

  15. Electron exchange between r-keggin tungstoaluminates and a well-defined cluster-anion probe for studies in electron transfer

    Science.gov (United States)

    Yurii V. Geletii; Craig L. Hill; Alan J. Bailey; Kenneth I. Hardcastle; Rajai H. Atalla; Ira A. Weinstock

    2005-01-01

    Fully oxidized [alpha]-AlIIIW12O405-(1ox), and one-electron-reduced [alpha]-AlIIIW12O406-(1red), are well-behaved (stable and free of ion pairing) over a wide range of pH and ionic-strength values at room temperature in water. Having established this, 27Al NMR spectroscopy is used to measure rates of electron exchange between 1ox (27Al NMR: 72.2 ppm relative to Al(H2O)...

  16. Dynamic equilibria in solvent-mediated anion, cation and ligand exchange in transition-metal coordination polymers: solid-state transfer or recrystallisation?

    Science.gov (United States)

    Cui, Xianjin; Khlobystov, Andrei N; Chen, Xinyong; Marsh, Dan H; Blake, Alexander J; Lewis, William; Champness, Neil R; Roberts, Clive J; Schröder, Martin

    2009-09-07

    The solution properties of a series of transition-metal-ligand coordination polymers [ML(X)(n)](infinity) [M=Ag(I), Zn(II), Hg(II) and Cd(II); L=4,4'-bipyridine (4,4'-bipy), pyrazine (pyz), 3,4'-bipyridine (3,4'-bipy), 4-(10-(pyridin-4-yl)anthracen-9-yl)pyridine (anbp); X=NO(3) (-), CH(3)COO(-), CF(3)SO(3) (-), Cl(-), BF(4) (-); n=1 or 2] in the presence of competing anions, metal cations and ligands have been investigated systematically. Providing that the solubility of the starting complex is sufficiently high, all the components of the coordination polymer, namely the anion, the cation and the ligand, can be exchanged on contact with a solution phase of a competing component. The solubility of coordination polymers is a key factor in the analysis of their reactivity and this solubility depends strongly on the physical properties of the solvent and on its ability to bind metal cations constituting the backbone of the coordination polymer. The degree of reversibility of these solvent-induced anion-exchange transformations is determined by the ratio of the solubility product constants for the starting and resultant complexes, which in turn depend upon the choice of solvent and the temperature. The extent of anion exchange is controlled effectively by the ratio of the concentrations of incoming ions to outgoing ions in the liquid phase and the solvation of various constituent components comprising the coordination polymer. These observations can be rationalised in terms of a dynamic equilibrium of ion exchange reactions coupled with Ostwald ripening of crystalline products. The single-crystal X-ray structures of [Ag(pyz)ClO(4)](infinity) (1), {[Ag(4,4'-bipy)(CF(3)SO(3))]CH(3)CN}(infinity) (2), {[Ag(4,4'-bipy)(CH(3)CN)]ClO(4) 0.5 CH(3)CN}(infinity) (3), metal-free anbp (4), [Ag(anbp)NO(3)(H(2)O)](infinity) (5), {[Cd(4,4'-bipy)(2)(H(2)O)(2)](NO(3))(2)4 H(2)O}(infinity) (6) and {[Zn(4,4'-bipy)SO(4)(H(2)O)(3)] 2 H(2)O}(infinity) (7) are reported.

  17. Iridium Cyclooctene Complex That Forms a Hyperpolarization Transfer Catalyst before Converting to a Binuclear C-H Bond Activation Product Responsible for Hydrogen Isotope Exchange.

    Science.gov (United States)

    Iali, Wissam; Green, Gary G R; Hart, Sam J; Whitwood, Adrian C; Duckett, Simon B

    2016-11-21

    [IrCl(COE)2]2 (1) reacts with pyridine (py) and H2 to form crystallographically characterized IrCl(H)2(COE)(py)2 (2). 2 undergoes py loss to form 16-electron IrCl(H)2(COE)(py) (3), with equivalent hydride ligands. When this reaction is studied with parahydrogen, 1 efficiently achieves hyperpolarization of free py (and nicotinamide, nicotine, 5-aminopyrimidine, and 3,5-lutudine) via signal amplification by reversible exchange (SABRE) and hence reflects a simple and readily available precatayst for this process. 2 reacts further over 48 h at 298 K to form crystallographically characterized (Cl)(H)(py)(μ-Cl)(μ-H)(κ-μ-NC5H4)Ir(H)(py)2 (4). This dimer is active in the hydrogen isotope exchange process that is used in radiopharmaceutical preparations. Furthermore, while [Ir(H)2(COE)(py)3]PF6 (6) forms upon the addition of AgPF6 to 2, its stability precludes its efficient involvement in SABRE.

  18. Asymmetric gain-saturated spectrum in fiber optical parametric amplifiers

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Rottwitt, Karsten; Galili, Michael

    2012-01-01

    We demonstrate experimentally and numerically an unexpected spectral asymmetry in the saturated-gain spectrum of single-pump fiber optical parametric amplifiers. The interaction between higher-order four-wave mixing products and dispersive waves radiated as an effect of third-order dispersion...... influences the energy transfer to the signal, depending on its detuning with respect to the pump, and breaks the symmetry of the gain expected from phase-matching considerations in unsaturated amplifiers. The asymmetry feature of the saturated spectrum is shown to particularly depend on the dispersion...... characteristics of the amplifier and shows local maxima for specific dispersion values....

  19. Lipid exchange by ultracentrifugation

    DEFF Research Database (Denmark)

    Drachmann, Nikolaj Düring; Olesen, Claus

    2014-01-01

    Lipids play an important role in maintaining P-type ATPase structure and function, and often they are crucial for ATPase activity. When the P-type ATPases are in the membrane, they are surrounded by a mix of different lipids species with varying aliphatic chain lengths and saturation......, and the complex interplay between the lipids and the P-type ATPases are still not well understood. We here describe a robust method to exchange the majority of the lipids surrounding the ATPase after solubilisation and/or purification with a target lipid of interest. The method is based on an ultracentrifugation...... step, where the protein sample is spun through a dense buffer containing large excess of the target lipid, which results in an approximately 80-85 % lipid exchange. The method is a very gently technique that maintains protein folding during the process, hence allowing further characterization...

  20. Scraped surface heat exchangers.

    Science.gov (United States)

    Rao, Chetan S; Hartel, Richard W

    2006-01-01

    Scraped surface heat exchangers (SSHEs) are commonly used in the food, chemical, and pharmaceutical industries for heat transfer, crystallization, and other continuous processes. They are ideally suited for products that are viscous, sticky, that contain particulate matter, or that need some degree of crystallization. Since these characteristics describe a vast majority of processed foods, SSHEs are especially suited for pumpable food products. During operation, the product is brought in contact with a heat transfer surface that is rapidly and continuously scraped, thereby exposing the surface to the passage of untreated product. In addition to maintaining high and uniform heat exchange, the scraper blades also provide simultaneous mixing and agitation. Heat exchange for sticky and viscous foods such as heavy salad dressings, margarine, chocolate, peanut butter, fondant, ice cream, and shortenings is possible only by using SSHEs. High heat transfer coefficients are achieved because the boundary layer is continuously replaced by fresh material. Moreover, the product is in contact with the heating surface for only a few seconds and high temperature gradients can be used without the danger of causing undesirable reactions. SSHEs are versatile in the use of heat transfer medium and the various unit operations that can be carried out simultaneously. This article critically reviews the current understanding of the operations and applications of SSHEs.

  1. Microchannel Heat Exchangers with Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Y.; Ohadi, M.M.; Radermacher, R.

    2001-09-15

    The objective of the present study was to determine the performance of CO{sub 2} microchannel evaporators and gas coolers in operational conditions representing those of residential heat pumps. A set of breadboard prototype microchannel evaporators and gas coolers was developed and tested. The refrigerant in the heat exchangers followed a counter cross-flow path with respect to the airflow direction. The test conditions corresponded to the typical operating conditions of residential heat pumps. In addition, a second set of commercial microchannel evaporators and gas coolers was tested for a less comprehensive range of operating conditions. The test results were reduced and a comprehensive data analysis, including comparison with the previous studies in this field, was performed. Capacity and pressure drop of the evaporator and gas cooler for the range of parameters studied were analyzed and are documented in this report. A gas cooler performance prediction model based on non-dimensional parameters was also developed and results are discussed as well. In addition, in the present study, experiments were conducted to evaluate capacities and pressure drops for sub-critical CO{sub 2} flow boiling and transcritical CO{sub 2} gas cooling in microchannel heat exchangers. An extensive review of the literature failed to indicate any previous systematic study in this area, suggesting a lack of fundamental understanding of the phenomena and a lack of comprehensive data that would quantify the performance potential of CO{sub 2} microchannel heat exchangers for the application at hand. All experimental tests were successfully conducted with an energy balance within {+-}3%. The only exceptions to this were experiments at very low saturation temperatures (-23 C), where energy balances were as high as 10%. In the case of evaporators, it was found that a lower saturation temperature (especially when moisture condensation occurs) improves the overall heat transfer coefficient

  2. Review of Fractal Heat Exchangers

    OpenAIRE

    Huang, Zhiwei; Hwang, Yunho; Aute, Vikrant; Radermacher, Reinhard

    2016-01-01

    Nature has inspired many scientists and engineers to solve problems through observation and mimicry. One such example is heat transfer enhancement. The enormous natural heat and mass transfer phenomena have led engineers to seek solutions to heat transfer enhancement problems from nature. Fractal geometries are found in respiratory and vascular systems of plants and animals, such as blood vessels, human lungs, leaves, coastlines, etc. Inspired by this, fractal heat exchangers have been develo...

  3. Mechanism for the exchange processes observed in the compounds [M({eta}-C{sub 5}H{sub 5}){sub 2}({eta}-RCH=CH{sub 2})H] (M = Nb, Ta)

    Energy Technology Data Exchange (ETDEWEB)

    Green, M.L.H.; Wong, Luet-Lok [Inorganic Chemistry Lab., Oxford (United Kingdom); Sella, A. [Univ. College, London (United Kingdom)

    1992-07-01

    The fluxional processes in the compounds exo-[M({eta}-C{sub 5}H{sub 5}){sub 2}({eta}CH{sub 3}CH=CH{sub 2})H] (M = Nb, Ta) have been investigated by magnetization and spin-saturation transfer and two-dimensional exchange NMR techniques. Rate constants for three separate processes have been determined. A mechanism involving agostic {eta}{sup 2}-alkyl ligands is proposed. 62 refs., 11 figs., 2 tabs.

  4. Central venous oxygen saturation does not correlate with the venous oxygen saturation at the surgical site during abdominal surgery.

    Science.gov (United States)

    Weinrich, Malte; Scheingraber, Stefan; Stephan, Bernhard; Weiss, Christel; Kayser, Anna; Kopp, Berit; Schilling, Martin K

    2008-01-01

    Measurement of central venous oxygen saturation has become a surrogate parameter for fluid administration, blood transfusions and treatment with catecholamines in (early) goal directed therapy in the treatment of acute septic patients. These strategies are not easily transferred to the postoperative management of abdominal surgery due to the different conditions in surgical patients. A study population of 15 patients (8 females/7 males) underwent elective major abdominal surgery: 6 gastrectomies, 5 major liver resections and 4 lower anterior rectum resections. Surgery was performed for primary or secondary malignancy. The patients' age was 65.4+/-12.7 (mean+/-standard deviation, range 44-84, median 62) years. Blood samples were taken intraoperatively from indwelling central venous lines as well as from draining veins at the surgical site. Blood gas analyses to determine the oxygen saturations were performed immediately. All patients were operated in standardized general anesthesia including epidural analgesia and in a balanced volume status. Central venous oxygen saturations and oxygen saturations in blood from the draining veins of the surgical site showed a wide range with high intra- and interindividual differences intraoperatively. Overall, at most time points no correlation between the two oxygen saturations could be detected in three operation types. A significant correlation was only observed at one time point during liver resections. Our results show a lack of correlation between central venous oxygen saturations and oxygen saturations in the draining veins of the surgical site during major abdominal surgery. Measurement of central venous oxygen saturations does not seem to be a good surrogate for the local oxygen supply in the field of interest in major abdominal surgery even under standardized conditions.

  5. Numerical investigation of boiling heat transfer on hydrocarbon mixture refrigerant in vertical rectangular minichannel

    Directory of Open Access Journals (Sweden)

    Huixing Li

    2016-05-01

    Full Text Available In order to investigate the characteristics of boiling heat transfer for hydrocarbon mixture refrigerant in plate-fin heat exchanger which is used in the petrochemical industry field, a model was established on boiling heat transfer in vertical rectangular channel. The simulated results were compared with the experimental data from literature. The results show that the deviation between the simulated results and experimental data is within ±15%. Meanwhile, the characteristic of boiling heat transfer was investigated in vertical rectangular minichannel of plate-fin heat exchanger. The results show that the boiling heat transfer coefficient increases with the increase in quality and mass flux and is slightly impacted by the heat flux. This is because that the main boiling mechanism is forced convective boiling while the contribution of nucleate boiling is slight. The correlation of Liu and Winterton is in good agreement with the simulation results. The deviation between correlation calculations and simulation results is mostly less than ±15%. These results will provide some constructive instructions for the understanding of saturated boiling mechanism in a vertical rectangular minichannel and the prediction of heat transfer performance in plate-fin heat exchanger.

  6. Electron transfer reactions

    CERN Document Server

    Cannon, R D

    2013-01-01

    Electron Transfer Reactions deals with the mechanisms of electron transfer reactions between metal ions in solution, as well as the electron exchange between atoms or molecules in either the gaseous or solid state. The book is divided into three parts. Part 1 covers the electron transfer between atoms and molecules in the gas state. Part 2 tackles the reaction paths of oxidation states and binuclear intermediates, as well as the mechanisms of electron transfer. Part 3 discusses the theories and models of the electron transfer process; theories and experiments involving bridged electron transfe

  7. Electronic Equipment Cooling by Simultaneous Heat and Mass Transfer,

    Science.gov (United States)

    ELECTRONIC EQUIPMENT, COOLING, HEAT TRANSFER, SUPERSONIC AIRCRAFT, HIGH ALTITUDE, DENSITY, THERMAL STRESSES, AIR, COOLING AND VENTILATING EQUIPMENT, FLUIDS, COOLANTS, HEAT EXCHANGERS, WATER, MASS TRANSFER .

  8. Saturation of the turbulent dynamo.

    Science.gov (United States)

    Schober, J; Schleicher, D R G; Federrath, C; Bovino, S; Klessen, R S

    2015-08-01

    The origin of strong magnetic fields in the Universe can be explained by amplifying weak seed fields via turbulent motions on small spatial scales and subsequently transporting the magnetic energy to larger scales. This process is known as the turbulent dynamo and depends on the properties of turbulence, i.e., on the hydrodynamical Reynolds number and the compressibility of the gas, and on the magnetic diffusivity. While we know the growth rate of the magnetic energy in the linear regime, the saturation level, i.e., the ratio of magnetic energy to turbulent kinetic energy that can be reached, is not known from analytical calculations. In this paper we present a scale-dependent saturation model based on an effective turbulent resistivity which is determined by the turnover time scale of turbulent eddies and the magnetic energy density. The magnetic resistivity increases compared to the Spitzer value and the effective scale on which the magnetic energy spectrum is at its maximum moves to larger spatial scales. This process ends when the peak reaches a characteristic wave number k☆ which is determined by the critical magnetic Reynolds number. The saturation level of the dynamo also depends on the type of turbulence and differs for the limits of large and small magnetic Prandtl numbers Pm. With our model we find saturation levels between 43.8% and 1.3% for Pm≫1 and between 2.43% and 0.135% for Pm≪1, where the higher values refer to incompressible turbulence and the lower ones to highly compressible turbulence.

  9. Slow light in saturable absorbers

    OpenAIRE

    Macke, Bruno; Ségard, Bernard

    2008-01-01

    International audience; In connection with the experiments recently achieved on doped crystals, biological samples, doped optical fibers and semiconductor heterostructures, we revisit the theory of the propagation of a pulse-modulated light in a saturable absorber. Explicit analytical expressions of the transmitted pulse are obtained, enabling us to determine the parameters optimizing the time-delay of the transmitted pulse with respect to the incident pulse. We finally compare the maximum fr...

  10. Saturation of Van Allen's belts

    CERN Document Server

    Le Bel, E

    2002-01-01

    The maximum number of electrons that can be trapped in van Allen's belts has been evaluated at CEA-DAM more precisely than that commonly used in the space community. The modelization that we have developed allows to understand the disagreement (factor 50) observed between the measured and predicted electrons flux by US satellites and theory. This saturation level allows sizing-up of the protection on a satellite in case of energetic events. (authors)

  11. Transition to Turbulent Dynamo Saturation

    Science.gov (United States)

    Seshasayanan, Kannabiran; Gallet, Basile; Alexakis, Alexandros

    2017-11-01

    While the saturated magnetic energy is independent of viscosity in dynamo experiments, it remains viscosity dependent in state-of-the-art 3D direct numerical simulations (DNS). Extrapolating such viscous scaling laws to realistic parameter values leads to an underestimation of the magnetic energy by several orders of magnitude. The origin of this discrepancy is that fully 3D DNS cannot reach low enough values of the magnetic Prandtl number Pm. To bypass this limitation and investigate dynamo saturation at very low Pm, we focus on the vicinity of the dynamo threshold in a rapidly rotating flow: the velocity field then depends on two spatial coordinates only, while the magnetic field consists of a single Fourier mode in the third direction. We perform numerical simulations of the resulting set of reduced equations for Pm down to 2 ×10-5. This parameter regime is currently out of reach to fully 3D DNS. We show that the magnetic energy transitions from a high-Pm viscous scaling regime to a low-Pm turbulent scaling regime, the latter being independent of viscosity. The transition to the turbulent saturation regime occurs at a low value of the magnetic Prandtl number, Pm ≃10-3 , which explains why it has been overlooked by numerical studies so far.

  12. SATURATED PICRIC ACID PREVENTS AUTOPHAGIA

    Directory of Open Access Journals (Sweden)

    V Rahimi-Movaghar

    2008-08-01

    Full Text Available "nThe dysesthesia and paresthesia that occurs in laboratory rats after spinal cord injury (SCI results in autophagia. This self-destructive behavior interferes with functional assessments in designed studies and jeopardizes the health of the injured rat. In this study, we evaluated role of saturated picric acid in the prevention of autophagia and self-mutilation. All rats were anesthetized with an intraperitoneal injection of a mixture of ketamine (100 mg/kg and xylazine (10 mg/kg for the SCI procedures. In the first 39 rats, no solution applied to the hind limbs, but in the next 26 cases, we smeared the saturated picric acid on the tail, lower extremities, pelvic, and abdomen of the rats immediately after SCI. In the rats without picric acid, 23 rats died following autophagia, but in the 26 rats with picric acid, there was no autophagia (P < 0.001. Picric acid side effects in skin and gastrointestinal signs such as irritation, redness and diarrhea were not seen in any rat. Saturated picric acid is a topical solution that if used appropriately and carefully, might be safe and effectively prevents autophagia and self-mutilation. When the solution is applied to the lower abdomen and limbs, we presume that its bitterness effectively prevents the rat from licking and biting the limb.

  13. Experimental Horizontal Gene Transfer of Methylamine Dehydrogenase Mimics Prevalent Exchange in Nature and Overcomes the Methylamine Growth Constraints Posed by the Sub-Optimal N-Methylglutamate Pathway

    Directory of Open Access Journals (Sweden)

    Dipti D. Nayak

    2015-03-01

    Full Text Available Methylamine plays an important role in the global carbon and nitrogen budget; microorganisms that grow on reduced single carbon compounds, methylotrophs, serve as a major biological sink for methylamine in aerobic environments. Two non-orthologous, functionally degenerate routes for methylamine oxidation have been studied in methylotrophic Proteobacteria: Methylamine dehydrogenase and the N-methylglutamate pathway. Recent work suggests the N-methylglutamate (NMG pathway may be more common in nature than the well-studied methylamine dehydrogenase (MaDH, encoded by the mau gene cluster. However, the distribution of these pathways across methylotrophs has never been analyzed. Furthermore, even though horizontal gene transfer (HGT is commonly invoked as a means to transfer these pathways between strains, the physiological barriers to doing so have not been investigated. We found that the NMG pathway is both more abundant and more universally distributed across methylotrophic Proteobacteria compared to MaDH, which displays a patchy distribution and has clearly been transmitted by HGT even amongst very closely related strains. This trend was especially prominent in well-characterized strains of the Methylobacterium extroquens species, which also display significant phenotypic variability during methylamine growth. Strains like Methylobacterium extorquens PA1 that only encode the NMG pathway grew on methylamine at least five-fold slower than strains like Methylobacterium extorquens AM1 that also possess the mau gene cluster. By mimicking a HGT event through the introduction of the M. extorquens AM1 mau gene cluster into the PA1 genome, the resulting strain instantaneously achieved a 4.5-fold increase in growth rate on methylamine and a 11-fold increase in fitness on methylamine, which even surpassed the fitness of M. extorquens AM1. In contrast, when three replicate populations of wild type M. extorquens PA1 were evolved on methylamine as the sole

  14. Heat transfer study of a two-phase refrigerant with liquid-solid phase change inside a smooth plates heat exchanger; Etude des transferts de chaleur d'un fluide frigoporteur diphasique a changement de phase liquide-solide dans un echangeur a plaques lisses

    Energy Technology Data Exchange (ETDEWEB)

    Demasles, H.

    2002-05-15

    The purpose of the work is to study two-phase mixture heat exchange composed of water particles suspended in silicone oil circulating in a closed loop. Water, contained in polymer porous matrix, is freezing by successive passages in plane plate heat exchanger. Thermo-hydraulic literature data analysis about these fluids in exchangers shows important blanks in exchange coefficient and pressure drop forecast methods and in experimental data. Experimental results, issued of global energy balance on a test section specifically conceived and made for this study, show doping effect on exchange coefficient. Before phase change, micro-convective effects of rotating particles improve exchange coefficient of 2,3 factor. Supplementary enhancement included between 2 and 16 appeared during phase change. Trial measured discrepancy are certainly induced by bed layer formation due to low flow speed. At the end of particle freezing, when latent heat is not involved anymore in exchange enhancement, important heat transfer reduction is observed. This is attributed to the cooling suspension rheological evolution and the change of flow particle distribution. Modelling results corroborate heat exchange improvement due to phase change: particles act as sources when discharging there latent heat. They stop fluid temperature dropping and enable to keep a high wall temperature gradient. A deepened suspension rheological study is necessary for a better understanding of observed phenomenon, nevertheless these first results show already an important energetic profit brings by particles in range temperature of 0 and -6 deg C. (author)

  15. Air-side performance of a micro-channel heat exchanger in wet surface conditions

    Directory of Open Access Journals (Sweden)

    Srisomba Raviwat

    2017-01-01

    Full Text Available The effects of operating conditions on the air-side heat transfer, and pressure drop of a micro-channel heat exchanger under wet surface conditions were studied experimentally. The test section was an aluminum micro-channel heat exchanger, consisting of a multi-louvered fin and multi-port mini-channels. Experiments were conducted to study the effects of inlet relative humidity, air frontal velocity, air inlet temperature, and refrigerant temperature on air-side performance. The experimental data were analyzed using the mean enthalpy difference method. The test run was performed at relative air humidities ranging between 45% and 80%; air inlet temperature ranges of 27, 30, and 33°C; refrigerant-saturated temperatures ranging from 18 to 22°C; and Reynolds numbers between 128 and 166. The results show that the inlet relative humidity, air inlet temperature, and the refrigerant temperature had significant effects on heat transfer performance and air-side pressure drop. The heat transfer coefficient and pressure drop for the micro-channel heat exchanger under wet surface conditions are proposed in terms of the Colburn j factor and Fanning f factor.

  16. Nontrivial Effect of the Color-Exchange of a Donor/Acceptor Pair in the Engineering of Förster Resonance Energy Transfer (FRET)-Based Indicators.

    Science.gov (United States)

    Ohta, Yusaku; Kamagata, Takanori; Mukai, Asuka; Takada, Shinji; Nagai, Takeharu; Horikawa, Kazuki

    2016-07-15

    Genetically encoded indicators driven by the Förster resonance energy transfer (FRET) mechanism are reliable tools for live imaging. While the properties of FRET-based indicators have been improved over the years, they often suffer from a poor dynamic range due to the lack of comprehensive understanding about how to apply an appropriate strategy to optimize the FRET parameters. One of the most successful optimizations is the incorporation of circularly permuted fluorescent proteins (cpFPs). To better understand the effects of this strategy, we systematically investigated the properties of the indicators by utilizing a set of FRET backbones consisting of native or one of the most effective cp variants (cp173FPs) with considerations of their order. As a result, the ordering of donor and acceptor FPs, which has been ignored in previous studies, was found to significantly affect the dynamic range of indicators. By utilizing these backbones, we succeeded in improving a cGMP indicator with 3.6-fold increased dynamic range and in generating an ultrasensitive cAMP indicator capable of environmental imaging, demonstrating the practical importance of the ordering of donors and acceptors in the engineering of FRET-based indicators.

  17. Soldering and brazing joints for applications of heat and mass transfer in microstructured heat exchangers; Loetverbindungen fuer Anwendungen der Stoff- und Waermeuebertragung in mikrostrukturbasierten Kuehlsystemen

    Energy Technology Data Exchange (ETDEWEB)

    Letsch, H. [ZEBRAS e.V., Chemnitz (Germany); Matthes, K.J. [Inst. fuer Fertigungstechnik/Schweisstechnik, Chemnitz (Germany); Mueller, J.U. [Saxobraze GmbH, Chemnitz (Germany); Sontowski, U.; Kloeden, A. [Bio Cooling Systems GmbH, Annaberg-Buchholz (Germany)

    2007-07-01

    Efficient active cooling systems for components under high thermal load indicate a solution to the problem of increasing specific loss, which results from increasing integration density of electronic systems. Concepts for effective heat removal must meet the demands of low power consumption of the cooling systems, minimum noise emissions, and low production cost. The common strategy is the removal of lost heat directly at the point of origin by means of microtechnics-based systems. Fabrication of components with complex internal structures for compact cooling systems makes particular demands on the production technology. The basis of the flexible design of the microstructural systems is the integration of generative methods in the design process by combining the additive design of the active structure from single plates using technologies that join the plates into a leaktight, homogeneous component. This way, compact heat transfer units can be constructed in thermodynamically optimised design, enabling removal of large heat volumes in spite of their compact size. In cooperation with an industrial partner, the newly developed technologies for active, microtechnics-based cooling systems as well as their integration in electronic components and systems were tested intensively and were integrated in application-adapted system solutions that provided different cooling capacities for different applications. (orig.)

  18. SITE-SCALE SATURATED ZONE TRANSPORT

    Energy Technology Data Exchange (ETDEWEB)

    S. KELLER

    2004-11-03

    This work provides a site-scale transport model for calculating radionuclide transport in the saturated zone (SZ) at Yucca Mountain, for use in the abstractions model in support of ''Total System Performance Assessment for License Application'' (TSPA-LA). The purpose of this model report is to provide documentation for the components of the site-scale SZ transport model in accordance with administrative procedure AP-SIII.10Q, Models. The initial documentation of this model report was conducted under the ''Technical Work Plan For: Saturated Zone Flow and Transport Modeling and Testing'' (BSC 2003 [DIRS 163965]). The model report has been revised in accordance with the ''Technical Work Plan For: Natural System--Saturated Zone Analysis and Model Report Integration'', Section 2.1.1.4 (BSC 2004 [DIRS 171421]) to incorporate Regulatory Integration Team comments. All activities listed in the technical work plan that are appropriate to the transport model are documented in this report and are described in Section 2.1.1.4 (BSC 2004 [DIRS 171421]). This report documents: (1) the advection-dispersion transport model including matrix diffusion (Sections 6.3 and 6.4); (2) a description and validation of the transport model (Sections 6.3 and 7); (3) the numerical methods for simulating radionuclide transport (Section 6.4); (4) the parameters (sorption coefficient, Kd ) and their uncertainty distributions used for modeling radionuclide sorption (Appendices A and C); (5) the parameters used for modeling colloid-facilitated radionuclide transport (Table 4-1, Section 6.4.2.6, and Appendix B); and (6) alternative conceptual models and their dispositions (Section 6.6). The intended use of this model is to simulate transport in saturated fractured porous rock (double porosity) and alluvium. The particle-tracking method of simulating radionuclide transport is incorporated in the finite-volume heat and mass transfer numerical

  19. The Development of an INL Capability for High Temperature Flow, Heat Transfer, and Thermal Energy Storage with Applications in Advanced Small Modular Reactors, High Temperature Heat Exchangers, Hybrid Energy Systems, and Dynamic Grid Energy Storage C

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiaodong [The Ohio State Univ., Columbus, OH (United States); Zhang, Xiaoqin [The Ohio State Univ., Columbus, OH (United States); Kim, Inhun [The Ohio State Univ., Columbus, OH (United States); O' Brien, James [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-10-01

    The overall goal of this project is to support Idaho National Laboratory in developing a new advanced high temperature multi fluid multi loop test facility that is aimed at investigating fluid flow and heat transfer, material corrosion, heat exchanger characteristics and instrumentation performance, among others, for nuclear applications. Specifically, preliminary research has been performed at The Ohio State University in the following areas: 1. A review of fluoride molten salts’ characteristics in thermal, corrosive, and compatibility performances. A recommendation for a salt selection is provided. Material candidates for both molten salt and helium flow loop have been identified. 2. A conceptual facility design that satisfies the multi loop (two coolant loops [i.e., fluoride molten salts and helium]) multi purpose (two operation modes [i.e., forced and natural circulation]) requirements. Schematic models are presented. The thermal hydraulic performances in a preliminary printed circuit heat exchanger (PCHE) design have been estimated. 3. An introduction of computational methods and models for pipe heat loss analysis and cases studies. Recommendations on insulation material selection have been provided. 4. An analysis of pipe pressure rating and sizing. Preliminary recommendations on pipe size selection have been provided. 5. A review of molten fluoride salt preparation and chemistry control. An introduction to the experience from the Molten Salt Reactor Experiment at Oak Ridge National Laboratory has been provided. 6. A review of some instruments and components to be used in the facility. Flowmeters and Grayloc connectors have been included. This report primarily presents the conclusions drawn from the extensive review of literatures in material selections and the facility design progress at the current stage. It provides some useful guidelines in insulation material and pipe size selection, as well as an introductory review of facility process and components.

  20. 77 FR 24752 - Self-Regulatory Organizations; EDGA Exchange, Inc.; EDGX Exchange, Inc.; International Securities...

    Science.gov (United States)

    2012-04-25

    ... COMMISSION [Release No. 34-66834; File Nos. SR-EDGA-2012-08; SR-EDGX-2012-07; SR- ISE-2012-21] Self... Exchange AG Will Transfer Its Interest in ISE Holdings, Inc. to a Newly Formed Swiss Corporation, Eurex... (``EDGA''), EDGX Exchange, Inc. (``EDGX''), International Securities Exchange, LLC (``ISE'' and, with EDGA...

  1. Promoter analysis by saturation mutagenesis

    Directory of Open Access Journals (Sweden)

    Baliga Nitin

    2001-01-01

    Full Text Available Gene expression and regulation are mediated by DNA sequences, in most instances, directly upstream to the coding sequences by recruiting transcription factors, regulators, and a RNA polymerase in a spatially defined fashion. Few nucleotides within a promoter make contact with the bound proteins. The minimal set of nucleotides that can recruit a protein factor is called a cis-acting element. This article addresses a powerful mutagenesis strategy that can be employed to define cis-acting elements at a molecular level. Technical details including primer design, saturation mutagenesis, construction of promoter libraries, phenotypic analysis, data analysis, and interpretation are discussed.

  2. Semiconductor saturable absorbers for ultrafast terahertz signals

    OpenAIRE

    Hoffmann, Matthias C.; Turchinovich, Dmitry

    2010-01-01

    We demonstrate saturable absorber behavior of n-type semiconductors GaAs, GaP, and Ge in the terahertz THz frequency range at room temperature using nonlinear THz spectroscopy. The saturation mechanism is based on a decrease in electron conductivity of semiconductors at high electron momentum states, due to conduction band onparabolicity and scattering into satellite valleys in strong THz fields. Saturable absorber parameters, such as linear and nonsaturable transmission, and saturation fluen...

  3. Semiconductor saturable absorbers for ultrafast terahertz signals

    OpenAIRE

    Hoffmann, Matthias C.; Turchinovich, Dmitry

    2010-01-01

    We demonstrate saturable absorber behavior of n-type semiconductorsGaAs,GaP, and Ge in the terahertz (THz) frequency range at room temperature using nonlinear THz spectroscopy. The saturation mechanism is based on a decrease in electron conductivity of semiconductors at high electron momentum states, due to conduction band nonparabolicity and scattering into satellite valleys in strong THz fields. Saturable absorber parameters, such as linear and nonsaturable transmission, and saturation flue...

  4. A Review of Industrial Heat Exchange Optimization

    Science.gov (United States)

    Yao, Junjie

    2018-01-01

    Heat exchanger is an energy exchange equipment, it transfers the heat from a working medium to another working medium, which has been wildly used in petrochemical industry, HVAC refrigeration, aerospace and so many other fields. The optimal design and efficient operation of the heat exchanger and heat transfer network are of great significance to the process industry to realize energy conservation, production cost reduction and energy consumption reduction. In this paper, the optimization of heat exchanger, optimal algorithm and heat exchanger optimization with different objective functions are discussed. Then, optimization of the heat exchanger and the heat exchanger network considering different conditions are compared and analysed. Finally, all the problems discussed are summarized and foresights are proposed.

  5. Exchange Network

    Science.gov (United States)

    The Environmental Information Exchange Network (EIEN) is an Internet-based system used by state, tribal and territorial partners to securely share environmental and health information with one another and EPA.

  6. Fluid to fluid contact heat exchanger

    Science.gov (United States)

    Clark, W. E.

    1986-01-01

    Heat transfer and pressure drop test results for a fluid to fluid contact heat exchanger are reported. The heat exchanger, fabricated and tested to demonstrate one method of transferring heat between structures in space, had a total contact area of 0.18 sq m. It utilized contact surfaces which were flexible and conformed to the mating contact surfaces upon pressurization of the fluid circulating within the heat exchanger. During proof-of-concept performance tests, the heat exchanger was operated in a typical earth environment. It demonstrated a contact conductance of 3.8 kW/sq m C at contact pressures in the 15 to 70 kPa range.

  7. Proton transfer pathways, energy landscape, and kinetics in creatine-water systems.

    Science.gov (United States)

    Ivchenko, Olga; Whittleston, Chris S; Carr, Joanne M; Imhof, Petra; Goerke, Steffen; Bachert, Peter; Wales, David J

    2014-02-27

    We study the exchange processes of the metabolite creatine, which is present in both tumorous and normal tissues and has NH2 and NH groups that can transfer protons to water. Creatine produces chemical exchange saturation transfer (CEST) contrast in magnetic resonance imaging (MRI). The proton transfer pathway from zwitterionic creatine to water is examined using a kinetic transition network constructed from the discrete path sampling approach and an approximate quantum-chemical energy function, employing the self-consistent-charge density-functional tight-binding (SCC-DFTB) method. The resulting potential energy surface is visualized by constructing disconnectivity graphs. The energy landscape consists of two distinct regions corresponding to the zwitterionic creatine structures and deprotonated creatine. The activation energy that characterizes the proton transfer from the creatine NH2 group to water was determined from an Arrhenius fit of rate constants as a function of temperature, obtained from harmonic transition state theory. The result is in reasonable agreement with values obtained in water exchange spectroscopy (WEX) experiments.

  8. Counterflow Regolith Heat Exchanger

    Science.gov (United States)

    Zubrin, Robert; Jonscher, Peter

    2013-01-01

    A problem exists in reducing the total heating power required to extract oxygen from lunar regolith. All such processes require heating a great deal of soil, and the heat energy is wasted if it cannot be recycled from processed material back into new material. The counterflow regolith heat exchanger (CoRHE) is a device that transfers heat from hot regolith to cold regolith. The CoRHE is essentially a tube-in-tube heat exchanger with internal and external augers attached to the inner rotating tube to move the regolith. Hot regolith in the outer tube is moved in one direction by a right-hand - ed auger, and the cool regolith in the inner tube is moved in the opposite direction by a left-handed auger attached to the inside of the rotating tube. In this counterflow arrangement, a large fraction of the heat from the expended regolith is transferred to the new regolith. The spent regolith leaves the heat exchanger close to the temperature of the cold new regolith, and the new regolith is pre-heated close to the initial temperature of the spent regolith. Using the CoRHE can reduce the heating requirement of a lunar ISRU system by 80%, reducing the total power consumption by a factor of two. The unique feature of this system is that it allows for counterflow heat exchange to occur between solids, instead of liquids or gases, as is commonly done. In addition, in variants of this concept, the hydrogen reduction can be made to occur within the counterflow heat exchanger itself, enabling a simplified lunar ISRU (in situ resource utilization) system with excellent energy economy and continuous nonbatch mode operation.

  9. HEAT EXCHANGERS IN SEWAGE PIPES

    OpenAIRE

    Podobeková, Veronika; Peráčková, Jana

    2014-01-01

    The article discusses utilization of heat from waste water in sewage. During the year, temperature of water in sewage ranges between 10 °C and 20 °C and the heat from sewage could be used for heating, cooling and hot water preparation in building. The heat is extracted through a transfer surface area of the heat exchanger into the heat pump, which is able to utilize the low–potential energy. Different design and types of the heat exchangers in sewage are dealt with: heat exchangers embedded i...

  10. Heat exchanger leakage problem location

    Directory of Open Access Journals (Sweden)

    Jícha Miroslav

    2012-04-01

    Full Text Available Recent compact heat exchangers are very often assembled from numerous parts joined together to separate heat transfer fluids and to form the required heat exchanger arrangement. Therefore, the leak tightness is very important property of the compact heat exchangers. Although, the compact heat exchangers have been produced for many years, there are still technological problems associated with manufacturing of the ideal connection between the individual parts, mainly encountered with special purpose heat exchangers, e.g. gas turbine recuperators. This paper describes a procedure used to identify the leakage location inside the prime surface gas turbine recuperator. For this purpose, an analytical model of the leaky gas turbine recuperator was created to assess its performance. The results obtained are compared with the experimental data which were acquired during the recuperator thermal performance analysis. The differences between these two data sets are used to indicate possible leakage areas.

  11. Next Generation Microchannel Heat Exchangers

    CERN Document Server

    Ohadi, Michael; Dessiatoun, Serguei; Cetegen, Edvin

    2013-01-01

    In Next Generation Microchannel Heat Exchangers, the authors’ focus on the new generation highly efficient heat exchangers and presentation of novel data and technical expertise not available in the open literature.  Next generation micro channels offer record high heat transfer coefficients with pressure drops much less than conventional micro channel heat exchangers. These inherent features promise fast penetration into many mew markets, including high heat flux cooling of electronics, waste heat recovery and energy efficiency enhancement applications, alternative energy systems, as well as applications in mass exchangers and chemical reactor systems. The combination of up to the minute research findings and technical know-how make this book very timely as the search for high performance heat and mass exchangers that can cut costs in materials consumption intensifies.

  12. The use of saturation in qualitative research.

    Science.gov (United States)

    Walker, Janiece L

    2012-01-01

    Understanding qualitative research is an important component of cardiovascular nurses' practice and allows them to understand the experiences, stories, and perceptions of patients with cardiovascular conditions. In understanding qualitative research methods, it is essential that the cardiovascular nurse understands the process of saturation within qualitative methods. Saturation is a tool used for ensuring that adequate and quality data are collected to support the study. Saturation is frequently reported in qualitative research and may be the gold standard. However, the use of saturation within methods has varied. Hence, the purpose of this column is to provide insight for the cardiovascular nurse regarding the use of saturation by reviewing the recommendations for which qualitative research methods it is appropriate to use and how to know when saturation is achieved. In understanding saturation, the cardiovascular nurse can be a better consumer of qualitative research.

  13. Relation between electric properties and water saturation for hematitic sandstone with frequency

    Directory of Open Access Journals (Sweden)

    M. M. Gomaa

    2008-06-01

    Full Text Available This paper focuses on the effect of water saturation on A. C. electrical conductivity and dielectric constant of fully and partially saturated hematitic sandstone sample (Aswan area, Egypt. The saturation of the sample was changed from partial to full saturation. Complex resistivity measurements at room temperature (~16°C, were performed in the frequency range from 0.1 Hz to 100 KHz. Experimental electrical spectra indicate, generally, that the electrical conductivity and dielectric constant vary strongly with water saturations and frequency. The low frequency electrical conductivity and dielectric constant are mainly controlled by surface conduction and polarization of the electrical double layer. The behaviour of the electrical conductivity and dielectric constant, with increasing water content, were argued to the orientational polarization of bound water for very low saturations, displacement of the excess surface charges for relatively low saturations, and free exchange of excess ions in double layer with the bulk electrolyte and generation of transient diffusion potentials which lag behind the applied field for high saturations.

  14. Hydrogen exchange

    DEFF Research Database (Denmark)

    Jensen, Pernille Foged; Rand, Kasper Dyrberg

    2016-01-01

    Hydrogen exchange (HX) monitored by mass spectrometry (MS) is a powerful analytical method for investigation of protein conformation and dynamics. HX-MS monitors isotopic exchange of hydrogen in protein backbone amides and thus serves as a sensitive method for probing protein conformation...... and dynamics along the entire protein backbone. This chapter describes the exchange of backbone amide hydrogen which is highly quenchable as it is strongly dependent on the pH and temperature. The HX rates of backbone amide hydrogen are sensitive and very useful probes of protein conformation......, as they are distributed along the polypeptide backbone and form the fundamental hydrogen-bonding networks of basic secondary structure. The effect of pressure on HX in unstructured polypeptides (poly-dl-lysine and oxidatively unfolded ribonuclease A) and native folded proteins (lysozyme and ribonuclease A) was evaluated...

  15. HEAT EXCHANGE IN SLOT-HOLE RECUPERATORS

    Directory of Open Access Journals (Sweden)

    L. E. Rovin

    2014-01-01

    Full Text Available At calculation of slot heat exchangers it is necessary to take into account the additional stream of heat transferred by emission from internal wall to an external one and further distributed between heated air and environment.

  16. Material Transfer Agreement (MTA) | FNLCR

    Science.gov (United States)

    Material Transfer Agreements are appropriate for exchange of materials into or out of the Frederick National Labfor research or testing purposes, with no collaborative research by parties involving the materials.

  17. Anomalous solute transport in saturated porous media: Relating transport model parameters to electrical and nuclear magnetic resonance properties

    National Research Council Canada - National Science Library

    Swanson, Ryan D; Binley, Andrew; Keating, Kristina; France, Samantha; Osterman, Gordon; Day‐Lewis, Frederick D; Singha, Kamini

    2015-01-01

    The advection‐dispersion equation (ADE) fails to describe commonly observed non‐Fickian solute transport in saturated porous media, necessitating the use of other models such as the dual‐domain mass‐transfer (DDMT) model...

  18. Heat transfer II essentials

    CERN Document Server

    REA, The Editors of

    1988-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Heat Transfer II reviews correlations for forced convection, free convection, heat exchangers, radiation heat transfer, and boiling and condensation.

  19. Advances in heat transfer

    CERN Document Server

    Hartnett, James P; Cho, Young I; Greene, George A

    2001-01-01

    Heat transfer is the exchange of heat energy between a system and its surrounding environment, which results from a temperature difference and takes place by means of a process of thermal conduction, mechanical convection, or electromagnetic radiation. Advances in Heat Transfer is designed to fill the information gap between regularly scheduled journals and university-level textbooks by providing in-depth review articles over a broader scope than is allowable in either journals or texts.

  20. Convection heat transfer

    CERN Document Server

    Bejan, Adrian

    2013-01-01

    Written by an internationally recognized authority on heat transfer and thermodynamics, this second edition of Convection Heat Transfer contains new and updated problems and examples reflecting real-world research and applications, including heat exchanger design. Teaching not only structure but also technique, the book begins with the simplest problem solving method (scale analysis), and moves on to progressively more advanced and exact methods (integral method, self similarity, asymptotic behavior). A solutions manual is available for all problems and exercises.

  1. The Commodity and its Exchange

    DEFF Research Database (Denmark)

    Høst, Jeppe Engset

    2015-01-01

    and the value of the quota are examined through the concrete exchange of fishing rights, and it is explained why quota trade can give rise to speculation and monopolies. In the final part of the chapter, it is argued that the value of transferable fishing quotas rely on a social relation between owners...... and nonowners of quota, as a form of monopoly rent....

  2. Power flow control using distributed saturable reactors

    Science.gov (United States)

    Dimitrovski, Aleksandar D.

    2016-02-13

    A magnetic amplifier includes a saturable core having a plurality of legs. Control windings wound around separate legs are spaced apart from each other and connected in series in an anti-symmetric relation. The control windings are configured in such a way that a biasing magnetic flux arising from a control current flowing through one of the plurality of control windings is substantially equal to the biasing magnetic flux flowing into a second of the plurality of control windings. The flow of the control current through each of the plurality of control windings changes the reactance of the saturable core reactor by driving those portions of the saturable core that convey the biasing magnetic flux in the saturable core into saturation. The phasing of the control winding limits a voltage induced in the plurality of control windings caused by a magnetic flux passing around a portion of the saturable core.

  3. Exchange Options

    NARCIS (Netherlands)

    Jamshidian, F.

    2007-01-01

    The contract is described and market examples given. Essential theoretical developments are introduced and cited chronologically. The principles and techniques of hedging and unique pricing are illustrated for the two simplest nontrivial examples: the classical Black-Scholes/Merton/Margrabe exchange

  4. Intersite Coulomb interaction and Heisenberg exchange

    NARCIS (Netherlands)

    Eder, R; van den Brink, J.; Sawatzky, G.A

    1996-01-01

    Based on exact diagonalization results for small clusters we discuss the effect of intersite Coulomb repulsion in Mott-Hubbard or charge transfers insulators. Whereas the exchange constant J for direct exchange is enhanced by intersite Coulomb interaction, that for superexchange is suppressed. The

  5. Using X-ray computed tomography to evaluate the initial saturation resulting from different saturation procedures

    DEFF Research Database (Denmark)

    Christensen, Britt Stenhøj Baun; Wildenschild, D; Jensen, K.H.

    2006-01-01

    for saturation. Evaluation of the different enhanced saturation techniques was done with Xray computed tomography (CT) and gravimetrically. The use of CT scanning makes it possible to observe the spatial distribution of wetting and non-wetting phases in the porous medium in a non-destructive way. In this case...... with pressurized nitrogen between each saturation and allowed to saturate for the same length of time for all the different procedures. Both gravimetric measurements and CT attenuation levels showed that venting the sample with carbon dioxide prior to saturation clearly improved initial saturation whereas the use...

  6. Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Michael Batzle

    2006-04-30

    During this last period of the ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' project (Grant/Cooperative Agreement DE-FC26-02NT15342), we finalized integration of rock physics, well log analysis, seismic processing, and forward modeling techniques. Most of the last quarter was spent combining the results from the principal investigators and come to some final conclusions about the project. Also much of the effort was directed towards technology transfer through the Direct Hydrocarbon Indicators mini-symposium at UH and through publications. As a result we have: (1) Tested a new method to directly invert reservoir properties, water saturation, Sw, and porosity from seismic AVO attributes; (2) Constrained the seismic response based on fluid and rock property correlations; (3) Reprocessed seismic data from Ursa field; (4) Compared thin layer property distributions and averaging on AVO response; (5) Related pressures and sorting effects on porosity and their influence on DHI's; (6) Examined and compared gas saturation effects for deep and shallow reservoirs; (7) Performed forward modeling using geobodies from deepwater outcrops; (8) Documented velocities for deepwater sediments; (9) Continued incorporating outcrop descriptive models in seismic forward models; (10) Held an open DHI symposium to present the final results of the project; (11) Relations between Sw, porosity, and AVO attributes; (12) Models of Complex, Layered Reservoirs; and (14) Technology transfer Several factors can contribute to limit our ability to extract accurate hydrocarbon saturations in deep water environments. Rock and fluid properties are one factor, since, for example, hydrocarbon properties will be considerably different with great depths (high pressure) when compared to shallow properties. Significant over pressure, on the other hand will make the rocks behave as if they were shallower. In addition to the physical properties, the scale and

  7. Leaf gas exchange traits of domestic and exotic tree species in Cambodia

    Science.gov (United States)

    Miyazawa, Y.; Tateishi, M.; Kumagai, T.; Otsuki, K.

    2009-12-01

    In forests under the management by community villagers, exotic tree species with rapid growth rate are introduced in wide range of Cambodia. To evaluate the influence of the introduction on the forest gas exchange and water budget, we investigated the leaf gas exchange traits of two domestic (Dipterocarpus obtusifolius and Shorea roxburghii) and exotic tree species (Acasia auriculiformis and Eucalyptus camadilansis). We sampled shoots of each species and measured the leaf gas exchange traits (photosynthetic rates under different CO2 concentrations, transpiration rate and stomatal conductance) (6 leaves x 3 trees x 4 species). We carried out this measurement at 2 months intervals for a year from the beginning of rainy season and compared the obtained traits among species. Light saturated rate of net photosynthesis was higher in E. camadilansis but did not differ among other species both in rainy and dry seasons. Seasonal patter in photosynthetic traits was not obvious. Each species changed stomatal conductance in response to changes in environmental conditions. The response was more sensitive than reported values. In this presentation, we show details about the basic information about the leaf-level gas exchange traits, which are required to run soil- vegetation - atmosphere transfer model.

  8. Ion exchange equilibrium constants

    CERN Document Server

    Marcus, Y

    2013-01-01

    Ion Exchange Equilibrium Constants focuses on the test-compilation of equilibrium constants for ion exchange reactions. The book first underscores the scope of the compilation, equilibrium constants, symbols used, and arrangement of the table. The manuscript then presents the table of equilibrium constants, including polystyrene sulfonate cation exchanger, polyacrylate cation exchanger, polymethacrylate cation exchanger, polysterene phosphate cation exchanger, and zirconium phosphate cation exchanger. The text highlights zirconium oxide anion exchanger, zeolite type 13Y cation exchanger, and

  9. Terahertz saturable absorbers from liquid phase exfoliation of graphite

    OpenAIRE

    Bianchi, Vezio; Carey, Tian; Viti, Leonardo; Li, Lianhe; Linfield, Edmund H.; Davies, A. Giles; Tredicucci, Alessandro; Yoon, Duhee; Karagiannidis, Panagiotis; Lombardi, Lucia; Tomarchio, Flavia; Ferrari, Andrea C.; Torrisi, Felice; Vitiello, Miriam S.

    2017-01-01

    Saturable absorbers (SA) operating at terahertz (THz) frequencies can open new frontiers in the development of passively mode-locked THz micro-sources. Here we report the fabrication of THz SAs by transfer coating and inkjet printing single and few-layer graphene films prepared by liquid phase exfoliation of graphite. Open-aperture z-scan measurements with a 3.5 THz quantum cascade laser show a transparency modulation ∼80%, almost one order of magnitude larger than that reported to date at TH...

  10. Rain-Impact-Entrainment of Chemicals and Soil into Overland Flow in Saturated Areas: Theory and Experiments

    Science.gov (United States)

    Walter, M.; Gao, B.; Parlange, J.; Steenhuis, T. S.

    2004-12-01

    Overland flow from riparian and other frequently saturated areas is a potentially important transport pathway between the landscape and aquatic ecosystems. Both raindrop driven processes and diffusion play important roles in the transfer of chemicals from soil to surface runoff, however, current transport models either do not consider the two processes together, or use "effective" parameters with uncertain physical definitions. We developed a physically based, solute transport model that couples both mechanisms and tested it with experimental data. One unique aspect of this study is that all the parameters needed to apply the model to our experiments were either directly measured or previously published, that is, there was no model "calibration" or "fitting." Our model assumes that chemicals near the surface of the soil are ejected into runoff by raindrop impact and chemicals deeper in the soil diffuse into a surface layer, or "exchange layer," via diffusion. The exchange layer depth and transfer processes are derived from the "shield" concept in the Rose soil erosion model (e.g., Rose, 1985, Adv. Soil Sci. 2,1-63.). The model's governing equations were solved numerically and the results agreed well with experimental data (R2 > 0.90). The model was also successfully tested against previously published experimental data by Leman and Ahuja (1983, J. Environ. Qual. 12(1), 34-40); these data were unique because they provided chemical concentrations in the soil profile as well as in the overland flow. This model provides insights into important processes relevant to landscape-river interactions and water quality protection.

  11. Fundamental basis and implementation of shell and tube heat exchanger project design: condenser and evaporator study

    Science.gov (United States)

    Dalkilic, A. S.; Acikgoz, O.; Tapan, S.; Wongwises, S.

    2016-12-01

    A shell and tube heat exchanger is used as a condenser and an evaporator in this theoretical study. Parametric performance analyses for various actual refrigerants were performed using well-known correlations in open sources. Condensation and evaporation were occurred in the shell side while the water was flowing in the tube side of heat exchanger. Heat transfer rate from tube side was kept constant for condenser and evaporator design. Condensing temperatures were varied from 35 to 60 °C whereas evaporating temperatures were ranging from -15 to 10 °C for the refrigerants of R12, R22, R134a, R32, R507A, R404A, R502, R407C, R152A, R410A and R1234ZE. Variation of convective heat transfer coefficients of refrigerants, total heat transfer coefficients with Reynolds numbers and saturation temperatures were given as validation process considering not only fouling resistance and omission of it but also staggered (triangular) and line (square) arrangements. The minimum tube lengths and necessary pumping powers were calculated and given as case studies for the investigated refrigerants considering validation criteria. It was understood that refrigerant type, fouling resistance and arrangement type are one of the crucial issues regarding the determination of heat exchanger's size and energy consumption. Consequently, R32 and R152a were found to require the shortest tube length and lowest pumping power in the condenser, whereas R507 and R407C have the same advantages in the evaporator. Their heat transfer coefficients were also determined larger than others as expectedly.

  12. Synthesis and characterization of saturated polyester and ...

    Indian Academy of Sciences (India)

    and nanocomposites derived from glycolyzed PET waste with varied compositions. SUNAIN KATOCH. ∗ ... Water vapour transmission (WVT) was determined for saturated polyester nanocomposite sheets according to ... ing the synthesis of saturated polyester (from GPET waste). This has been done for the estimation of the ...

  13. Ultrafast THz Saturable Absorption in Semiconductors

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hoffmann, Matthias C.

    2011-01-01

    We demonstrate THz saturable absorption in n-doped semiconductors GaAs, GaP, and Ge in a nonlinear THz time-domain spectroscopy experiment. Saturable absorption is caused by sample conductivity modulation due to electron heating and satellite valley scattering in the field of a strong THz pulse....

  14. Fault tolerant control of systems with saturations

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    2013-01-01

    This paper presents framework for fault tolerant controllers (FTC) that includes input saturation. The controller architecture known from FTC is based on the Youla-Jabr-Bongiorno-Kucera (YJBK) parameterization is extended to handle input saturation. Applying this controller architecture in connec...

  15. Semiconductor saturable absorbers for ultrafast terahertz signals

    DEFF Research Database (Denmark)

    Hoffmann, Matthias C.; Turchinovich, Dmitry

    2010-01-01

    We demonstrate saturable absorber behavior of n-type semiconductors GaAs, GaP, and Ge in the terahertz THz frequency range at room temperature using nonlinear THz spectroscopy. The saturation mechanism is based on a decrease in electron conductivity of semiconductors at high electron momentum...

  16. Determination of saturation functions and wettability for chalk based on measured fluid saturations

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, D.; Bech, N.; Moeller Nielsen, C.

    1998-08-01

    The end effect of displacement experiments on low permeable porous media is used for determination of relative permeability functions and capillary pressure functions. Saturation functions for a drainage process are determined from a primary drainage experiment. A reversal of the flooding direction creates an intrinsic imbibition process in the sample, which enables determination if imbibition saturation functions. The saturation functions are determined by a parameter estimation technique. Scanning effects are modelled by the method of Killough. Saturation profiles are determined by NMR. (au)

  17. Theory of turbulent saturation in stellarators: identifying mechanisms to reduce turbulent transport

    Science.gov (United States)

    Hegna, C. C.; Terry, P. W.; Faber, B. J.

    2017-10-01

    A theory for ion temperature gradient (ITG) turbulent saturation in stellarators is developed using a three field fluid model that allows for general 3D geometry. The model relies on the paradigm of nonlinear energy transfer from unstable to damped eigenmodes at comparable wavelength as the dominant saturation process. This mechanism is enabled by a three-wave interaction where the third mode primarily regulates the nonlinear energy transfer rate and depends upon the properties of the magnetic geometry. In particular, this work suggests that quasi-helically symmetric configurations may have an intrinsic advantage with regard to turbulent saturation physics relative to other configurations as multiple energy transfer channels can be exploited. Nonlinear energy transfer physics is quantified by the product of a turbulent correlation lifetime as computed from a three-wave frequency mismatch and a geometric coupling coefficient with larger turbulent correlation times denoting larger levels of nonlinear energy transfer and hence smaller turbulent transport. The theory provides an analytic prediction for how 3D shaping can be tuned to lower turbulent transport through saturation processes that can by used in optimization schemes for improved stellarator design. Research supported by U. S. DoE Grants DE-FG02-99ER54546, DE-FG02-93ER54222 and DE-FG02-89ER53291.

  18. An experimental analysis of flow boiling and pressure drop in a brazed plate heat exchanger for organic Rankine cycle power systems

    DEFF Research Database (Denmark)

    Desideri, Adriano; Zhang, Ji; Kærn, Martin Ryhl

    2017-01-01

    Organic Rankine cycle power systems for low quality waste heat recovery applications can play a major role in achieving targets of increasing industrial processes efficiency and thus reducing the emissions of greenhouse gases. Low capacity organic Rankine cycle systems are equipped with brazed...... and pressure drop during vaporization at typical temperatures for low quality waste heat recovery organic Rankine cycle systems are presented for the working fluids HFC-245fa and HFO-1233zd. The experiments were carried out at saturation temperatures of 100°C, 115°C and 130°C and inlet and outlet qualities...... plate heat exchangers which allows for efficient heat transfer with a compact design. Accurate heat transfer correlations characterizing these devices are required from the design phase to the development of model-based control strategies. In this paper, the experimental heat transfer coefficient...

  19. Analysis of a Flooded Heat Exchanger

    Science.gov (United States)

    Fink, Aaron H.; Luyben, William L.

    2015-01-01

    Flooded heat exchangers are often used in industry to reduce the required heat-transfer area and the size of utility control valves. These units involve a condensing vapor on the hot side that accumulates as a liquid phase in the lower part of the vessel. The heat transfer occurs mostly in the vapor space, but the condensate becomes somewhat…

  20. Determination of the Electron Self-Exchange Rates of Blue Copper Proteins by Super-WEFT NMR Spectroscopy

    DEFF Research Database (Denmark)

    Ma, Lixin; Philipp, Else Astrid; Led, Jens J.

    2001-01-01

    Anabaena variabilis plastocyanin, blue copper proteins, electron self-exchange rates, electron transfer, super-WEFT NMR......Anabaena variabilis plastocyanin, blue copper proteins, electron self-exchange rates, electron transfer, super-WEFT NMR...

  1. Custom, contract, and kidney exchange.

    Science.gov (United States)

    Healy, Kieran; Krawiec, Kimberly D

    2012-01-01

    In this Essay, we examine a case in which the organizational and logistical demands of a novel form of organ exchange (the nonsimultaneous, extended, altruistic donor (NEAD) chain) do not map cleanly onto standard cultural schemas for either market or gift exchange, resulting in sociological ambiguity and legal uncertainty. In some ways, a NEAD chain resembles a form of generalized exchange, an ancient and widespread instance of the norm of reciprocity that can be thought of simply as the obligation to “pay it forward” rather than the obligation to reciprocate directly with the original giver. At the same time, a NEAD chain resembles a string of promises and commitments to deliver something in exchange for some valuable consideration--that is, a series of contracts. Neither of these salient "social imaginaries" of exchange--gift giving or formal contract--perfectly meets the practical demands of the NEAD system. As a result, neither contract nor generalized exchange drives the practice of NEAD chains. Rather, the majority of actual exchanges still resemble a simpler form of exchange: direct, simultaneous exchange between parties with no time delay or opportunity to back out. If NEAD chains are to reach their full promise for large-scale, nonsimultaneous organ transfer, legal uncertainties and sociological ambiguities must be finessed, both in the practices of the coordinating agencies and in the minds of NEAD-chain participants. This might happen either through the further elaboration of gift-like language and practices, or through a creative use of the cultural form and motivational vocabulary, but not necessarily the legal and institutional machinery, of contract.

  2. Combinatorics of saturated secondary structures of RNA.

    Science.gov (United States)

    Clote, P

    2006-11-01

    Following Zuker (1986), a saturated secondary structure for a given RNA sequence is a secondary structure such that no base pair can be added without violating the definition of secondary structure, e.g., without introducing a pseudoknot. In the Nussinov-Jacobson energy model (Nussinov and Jacobson, 1980), where the energy of a secondary structure is -1 times the number of base pairs, saturated secondary structures are local minima in the energy landscape, hence form kinetic traps during the folding process. Here we present recurrence relations and closed form asymptotic limits for combinatorial problems related to the number of saturated secondary structures. In addition, Python source code to compute the number of saturated secondary structures having k base pairs can be found at the web servers link of bioinformatics.bc.edu/clotelab/.

  3. Saturated fat, carbohydrate, and cardiovascular disease

    National Research Council Canada - National Science Library

    Siri-Tarino, Patty W; Sun, Qi; Hu, Frank B; Krauss, Ronald M

    2010-01-01

    A focus of dietary recommendations for cardiovascular disease (CVD) prevention and treatment has been a reduction in saturated fat intake, primarily as a means of lowering LDL-cholesterol concentrations...

  4. Saturated thickness, High Plains aquifer, 2009

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This raster data set represents the saturated thickness of the High Plains aquifer of the United States, 2009, in feet. The High Plains aquifer underlies...

  5. Biscarbene palladium(II) complexes. Reactivity of saturated versus unsaturated N-heterocyclic carbenes

    NARCIS (Netherlands)

    Fu, C.F.; Lee, C.C.; Liu, Y.H.; Peng, S.M.; Warsink, S.; Elsevier, C.J.; Chen, J.T.; Liu, S.T.

    2010-01-01

    A series of designed palladium biscarbene complexes including saturated and unsaturated N-heterocyclic carbene (NHC) moieties have been prepared by the carbene transfer methods. All of these complexes have been characterized by 1H and 13C NMR spectroscopy as well as X-ray diffraction analysis. The

  6. Semiconductor saturable absorbers for ultrafast THz signals

    DEFF Research Database (Denmark)

    Hoffmann, Matthias C.; Turchinovich, Dmitry

    We demonstrate saturable absorber behavior of n-type semiconductors in the THz frequency range using nonlinear THz spectroscopy. Further, we observe THz pulse shortening and increase of the group refractive index at high field strengths.......We demonstrate saturable absorber behavior of n-type semiconductors in the THz frequency range using nonlinear THz spectroscopy. Further, we observe THz pulse shortening and increase of the group refractive index at high field strengths....

  7. Ethanol-induced lowering of arterial oxyhemoglobin saturation during hypoxia.

    Science.gov (United States)

    Hansen, J E; Claybaugh, J R

    1975-09-01

    Nine fasting, healthy, adult male volunteers were given oral carbohydrate before exposures to normoxia (PIO2 = 149 torr) and mild hypoxia (PIO2 = 98 torr). Following recovery, they were given oral ethanol before similar exposure to normoxia and mild hypoxia. Repeated measures of arterial blood and expired gases were made. Ethanol diminished respiratory gas exchange (R), causing lower alveolar and arterial oxygen pressures during normoxia and mild hypoxia and a reduction in arterial oxygen saturation from 89.9 to 87.4% during mild hypoxia. It is suggested that carbohydrates are preferable to ethanol and fats as nutrients during limited oxygen transport situations, such as high-altitude, carbon monoxide exposure, or during heavy exertion, and for patients with cardiovascular or pulmonary disease.

  8. No saturation in the accumulation of alien species worldwide

    Science.gov (United States)

    Seebens, Hanno; Blackburn, Tim M.; Dyer, Ellie E.; Genovesi, Piero; Hulme, Philip E.; Jeschke, Jonathan M.; Pagad, Shyama; Pyšek, Petr; Winter, Marten; Arianoutsou, Margarita; Bacher, Sven; Blasius, Bernd; Brundu, Giuseppe; Capinha, César; Celesti-Grapow, Laura; Dawson, Wayne; Dullinger, Stefan; Fuentes, Nicol; Jäger, Heinke; Kartesz, John; Kenis, Marc; Kreft, Holger; Kühn, Ingolf; Lenzner, Bernd; Liebhold, Andrew; Mosena, Alexander; Moser, Dietmar; Nishino, Misako; Pearman, David; Pergl, Jan; Rabitsch, Wolfgang; Rojas-Sandoval, Julissa; Roques, Alain; Rorke, Stephanie; Rossinelli, Silvia; Roy, Helen E.; Scalera, Riccardo; Schindler, Stefan; Štajerová, Kateřina; Tokarska-Guzik, Barbara; van Kleunen, Mark; Walker, Kevin; Weigelt, Patrick; Yamanaka, Takehiko; Essl, Franz

    2017-01-01

    Although research on human-mediated exchanges of species has substantially intensified during the last centuries, we know surprisingly little about temporal dynamics of alien species accumulations across regions and taxa. Using a novel database of 45,813 first records of 16,926 established alien species, we show that the annual rate of first records worldwide has increased during the last 200 years, with 37% of all first records reported most recently (1970–2014). Inter-continental and inter-taxonomic variation can be largely attributed to the diaspora of European settlers in the nineteenth century and to the acceleration in trade in the twentieth century. For all taxonomic groups, the increase in numbers of alien species does not show any sign of saturation and most taxa even show increases in the rate of first records over time. This highlights that past efforts to mitigate invasions have not been effective enough to keep up with increasing globalization. PMID:28198420

  9. No saturation in the accumulation of alien species worldwide.

    Science.gov (United States)

    Seebens, Hanno; Blackburn, Tim M; Dyer, Ellie E; Genovesi, Piero; Hulme, Philip E; Jeschke, Jonathan M; Pagad, Shyama; Pyšek, Petr; Winter, Marten; Arianoutsou, Margarita; Bacher, Sven; Blasius, Bernd; Brundu, Giuseppe; Capinha, César; Celesti-Grapow, Laura; Dawson, Wayne; Dullinger, Stefan; Fuentes, Nicol; Jäger, Heinke; Kartesz, John; Kenis, Marc; Kreft, Holger; Kühn, Ingolf; Lenzner, Bernd; Liebhold, Andrew; Mosena, Alexander; Moser, Dietmar; Nishino, Misako; Pearman, David; Pergl, Jan; Rabitsch, Wolfgang; Rojas-Sandoval, Julissa; Roques, Alain; Rorke, Stephanie; Rossinelli, Silvia; Roy, Helen E; Scalera, Riccardo; Schindler, Stefan; Štajerová, Kateřina; Tokarska-Guzik, Barbara; van Kleunen, Mark; Walker, Kevin; Weigelt, Patrick; Yamanaka, Takehiko; Essl, Franz

    2017-02-15

    Although research on human-mediated exchanges of species has substantially intensified during the last centuries, we know surprisingly little about temporal dynamics of alien species accumulations across regions and taxa. Using a novel database of 45,813 first records of 16,926 established alien species, we show that the annual rate of first records worldwide has increased during the last 200 years, with 37% of all first records reported most recently (1970-2014). Inter-continental and inter-taxonomic variation can be largely attributed to the diaspora of European settlers in the nineteenth century and to the acceleration in trade in the twentieth century. For all taxonomic groups, the increase in numbers of alien species does not show any sign of saturation and most taxa even show increases in the rate of first records over time. This highlights that past efforts to mitigate invasions have not been effective enough to keep up with increasing globalization.

  10. Engineering calculations in radiative heat transfer

    CERN Document Server

    Gray, W A; Hopkins, D W

    1974-01-01

    Engineering Calculations in Radiative Heat Transfer is a six-chapter book that first explains the basic principles of thermal radiation and direct radiative transfer. Total exchange of radiation within an enclosure containing an absorbing or non-absorbing medium is then described. Subsequent chapters detail the radiative heat transfer applications and measurement of radiation and temperature.

  11. High heat flux single phase heat exchanger

    Science.gov (United States)

    Valenzuela, Javier A.; Izenson, Michael G.

    1990-01-01

    This paper presents the results obtained to date in a program to develop a high heat flux, single-phase heat exchanger for spacecraft thermal management. The intended application is a net generation interface heat exchanger to couple the crew module water thermal bus to the two-phase ammonia main thermal bus in the Space Station Freedom. The large size of the interface heat exchanger is dictated by the relatively poor water-side heat transfer characteristics. The objective of this program is to develop a single-phase heat transfer approach which can achieve heat fluxes and heat transfer coefficients comparable to those of the evaporation ammonia side. A new heat exchanger concept has been developed to meet these objecties. The main feature of this heat exchanger is that it can achieve very high heat fluxes with a pressure drop one to two orders of magnitude lower than those of previous microchannel or jet impingement high heat flux heat exchangers. This paper describes proof-of-concept experiments performed in air and water and presents analytical model of the heat exchanger.

  12. τ-MnAl with high coercivity and saturation magnetization

    Directory of Open Access Journals (Sweden)

    J. Z. Wei

    2014-12-01

    Full Text Available In this paper, high purity τ-Mn54Al46 and Mn54−xAl46Cxalloys were successfully prepared using conventional arc-melting, melt-spinning, and heat treatment process. The magnetic and the structural properties were examined using x-ray diffraction (XRD, powder neutron diffraction and magnetic measurements. A room temperature saturation magnetization of 650.5 kAm-1, coercivity of 0.5 T, and a maximum energy product of (BHmax = 24.7 kJm-3 were achieved for the pure Mn54Al46 powders without carbon doping. The carbon substituted Mn54−xAl46Cx, however, reveals a lower Curie temperature but similar saturation magnetization as compared to the carbon-free sample. The electronic structure of MnAl shows that the Mn atom possesses a magnetic moment of 2.454 μB which results from strong hybridization between Mn-Al and Mn-Mn. We also investigated the volume and c/a ratio dependence of the magnetic moments of Mn and Al. The results indicate that an increase in the intra-atomic exchange splitting due to the cell volume expansion, leads to a large magnetic moment for the Mn atom. The Mn magnetic moment can reach a value of 2.9 μB at a volume expansion rate of ΔV/V ≈ 20%.

  13. Synthesis and kinetics of growth of metal nanoparticles inside ion-exchange polymers

    Energy Technology Data Exchange (ETDEWEB)

    Zolotukhina, Ekaterina V., E-mail: ks-chem@mail.r [Voronezh State University of Technology, Moskovsky pr., 14, Voronezh 394026 (Russian Federation); Kravchenko, Tamara A. [Voronezh State University, Universitetskaya pl., 1, Voronezh 394006 (Russian Federation)

    2011-04-01

    Copper and silver nanoparticles have been obtained by means of saturation of a sulfostyrene-divinylbenzene cation-exchange polymer with metal ions and their subsequent chemical reduction. This procedure was repeated several times up to formation of a long-range conducting network (percolating cluster). Another system under study was an ensemble of Ag nanoparticles of various sizes on the silver electrode surface obtained by reduction of anodically formed layers of silver oxide. Recrystallization of deposited metal crystals inside the polymer matrix in contact with metal-ion containing solution is very slow for electrically separated particles. Formation of the electric network results in an enormous acceleration of this process via electron-ion mechanism, with growth of the average particle size, so that their potential will approach that of the compact metal with time. The initial period of the particle growth is well described by the parabolic law (Burke and Turnbull). The values of the particle-growth coefficient in this law, k, are drastically different for particles inside the matrix and on the electrode surface. Particle-to-particle electron transfer is impeded by insulating areas inside the polymer matrix. Besides, ionogenic centers of the matrix restrict the mobility of metal cations, thus slowing down the ion transfer within the recrystallization circuit. These observations have allowed us to establish the conditions resulting in long-term stabilization of metal nanoparticles inside the ion-exchange matrix with respect to their recrystallization.

  14. Hybrid Heat Exchangers

    Science.gov (United States)

    Tu, Jianping Gene; Shih, Wei

    2010-01-01

    A hybrid light-weight heat exchanger concept has been developed that uses high-conductivity carbon-carbon (C-C) composites as the heat-transfer fins and uses conventional high-temperature metals, such as Inconel, nickel, and titanium as the parting sheets to meet leakage and structural requirements. In order to maximize thermal conductivity, the majority of carbon fiber is aligned in the fin direction resulting in 300 W/m.K or higher conductivity in the fin directions. As a result of this fiber orientation, the coefficient of thermal expansion (CTE) of the C-C composite in both non-fiber directions matches well with the CTE of various high-temperature metal alloys. This allows the joining of fins and parting sheets by using high-temperature braze alloys.

  15. Numerical simulation of calcium sulfate (CaSO4) fouling in the plate heat exchanger

    Science.gov (United States)

    Xu, Zhiming; Zhao, Yu; Han, Zhimin; Wang, Jingtao

    2018-01-01

    Plate heat exchanger is a widely used apparatus in the industrial production processes. Through a numerical simulation method, this paper calculates the deposition rate of CaSO4 fouling on heat transfer surfaces of the plate heat exchanger under saturation in the bulk. The effects of CaSO4 concentration in the range 0.7 kg/m3 to 1.5 kg/m3, inlet flow velocity under turbulent flow, and the fluid's inlet temperature from 288 K to 328 K on the deposition rate, removal mass rate and fouling resistance are investigated. The simulation results are compared with the experimental results showing similar trend. The simulation results show that the concentration and the flow velocity affect significantly the fouling characteristics in the plate heat exchanger. The deposition mass rate, removal mass rate, and asymptotic value of fouling resistance all increase with the increase in CaSO4 concentration and the inlet temperature of the hot fluid, while the asymptotic value of fouling resistance decreases with the increasing of inlet flow velocity. The influence of the inlet temperature of cold fluid may be negligible.

  16. Saturated fats and cardiovascular disease risk: A review

    OpenAIRE

    Ishi Khosla; Gayatri C Khosla1

    2017-01-01

    Saturated fats have been in the line of fire for more than three decades. The major mistake in understanding fats was to equate all saturated fatty acids as one. The oversimplification of the relationship of saturated fats with cardiovascular disease (CVD) led to unwarranted removal of some valuable fats from our diets. Recently, the relationship of dietary saturated fats and that of individual saturated fatty acids (SFAs) to CVD risk has been reevaluated. All saturated fats are not equal and...

  17. A model for strong interactions at high energy based on the CGC/saturation approach

    Energy Technology Data Exchange (ETDEWEB)

    Gotsman, E.; Maor, U. [Tel Aviv University, Department of Particle Physics, School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Science, Tel Aviv (Israel); Levin, E. [Tel Aviv University, Department of Particle Physics, School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Science, Tel Aviv (Israel); Universidad Tecnica Federico Santa Maria and Centro Cientifico-Tecnologico de Valparaiso, Departamento de Fisica, Valparaiso (Chile)

    2015-01-01

    We present our first attempt to develop a model for soft interactions at high energy, based on the BFKL Pomeron and the CGC/saturation approach. We construct an eikonal-type model, whose opacity is determined by the exchange of the dressed BFKL Pomeron. The Green function of the Pomeron is calculated in the framework of the CGC/saturation approach. Using five parameters we achieve a reasonable description of the experimental data at high energies (W ≥ 0.546TeV) with overall χ{sup 2}/d.o.f. ∼ 2. The model results in different behavior for the single- and double-diffraction cross sections at high energies.The singlediffraction cross section reaches a saturated value (about 10mb) at high energies, while the double-diffraction cross section continues growing slowly. (orig.)

  18. Current and Noise Saturation in Graphene Superlattice

    Science.gov (United States)

    Yang, Wei; Lu, Xiaobo; Berthou, Simon; Wilmart, Quentin; Boukhicha, Mohamed; Voisin, Christophe; Zhang, Guangyu; Placais, Bernard

    One of the merits of graphene is that the Fermi level can be easily tuned by electrical gating, which render charge carriers n type or p type, or even insulating around the Dirac point (DP). By aligning graphene on top of Boron Nitride (BN), the presence of graphene superlattice makes transport properties even more versatile owning to the emergence of secondary Dirac points (SDPs). Here we present a study of high electric field performance of graphene superlattice obtained from epitaxial approach. By using microwave cavity, noise produced from graphene by joule heating is recorded up to 5GHz. Current and noise saturation are observed and investigated. Depending on Fermi energy, saturation can be attributed to intrinsic optical or remote surface polar phonon scattering at a doping far away from DP, while no saturation are found around DP. Moreover, noise saturation is identified around Fermi energy between DP and SDP, which can be attributed to the influence of van Hove singularity arising from the superlattice. Lastly, saturation due to the bias induced shift of DP, or so called Dirac fermion pinch-off, is well observed by local top gate technique. EU Graphene flagship project (Contract No. 604391).

  19. Lipid order, saturation and surface property relationships: a study of human meibum saturation.

    Science.gov (United States)

    Mudgil, Poonam; Borchman, Douglas; Yappert, Marta C; Duran, Diana; Cox, Gregory W; Smith, Ryan J; Bhola, Rahul; Dennis, Gary R; Whitehall, John S

    2013-11-01

    Tear film stability decreases with age however the cause(s) of the instability are speculative. Perhaps the more saturated meibum from infants may contribute to tear film stability. The meibum lipid phase transition temperature and lipid hydrocarbon chain order at physiological temperature (33 °C) decrease with increasing age. It is reasonable that stronger lipid-lipid interactions could stabilize the tear film since these interactions must be broken for tear break up to occur. In this study, meibum from a pool of adult donors was saturated catalytically. The influence of saturation on meibum hydrocarbon chain order was determined by infrared spectroscopy. Meibum is in an anhydrous state in the meibomian glands and on the surface of the eyelid. The influence of saturation on the surface properties of meibum was determined using Langmuir trough technology. Saturation of native human meibum did not change the minimum or maximum values of hydrocarbon chain order so at temperatures far above or below the phase transition of human meibum, saturation does not play a role in ordering or disordering the lipid hydrocarbon chains. Saturation did increase the phase transition temperature in human meibum by over 20 °C, a relatively high amount. Surface pressure-area studies showing the late take off and higher maximum surface pressure of saturated meibum compared to native meibum suggest that the saturated meibum film is quite molecularly ordered (stiff molecular arrangement) and elastic (molecules are able to rearrange during compression and expansion) compared with native meibum films which are more fluid agreeing with the infrared spectroscopic results of this study. In saturated meibum, the formation of compacted ordered islands of lipids above the surfactant layer would be expected to decrease the rate of evaporation compared to fluid and more loosely packed native meibum. Higher surface pressure observed with films of saturated meibum compared to native meibum

  20. Synthesis, crystal structure, and H/D exchange of the inside protonated form of the cage imine 4,8,12-triaza-1-azoniatricyclo[6.6.3.2(4,12)]nonadec-1(15)-ene. A model for proton transfer through an aliphatic membrane

    DEFF Research Database (Denmark)

    Springborg, Johan; Nielsen, Bente; Olsen, Carl Erik

    2002-01-01

    , which gave K-im = 1.57(1) x 10(-5) M at 25 degreesC, DeltaSdegrees = -83(1) J mol(-1) K-1 and DeltaHdegrees = 2,6(3) kJ mol(-1) at 1 = 1.0 M (NaCl). The inside coordinated proton in 3 is labile in basic solution and the rate for NH/ND exchange was determined by H-1 NMR at three different temperatures....... The reaction followed the expression k(obs) = k(ex)[OD-] with k(ex) = 0.0978(30) dm(3) mol (1) s(-1) at 25 degreesC, DeltaSdegrees = 87(4) J mol(-1) K-1, and DeltaHdegrees = 104.9(11) kJ mol(-1) at I = 1.0 M (NaCl). The exchange rate is more than 5 x 106 times faster than that of the parent saturated cage 1....... In basic solution the imine reacts fast to give a quantitative formation of the inside protonated form of the hemiaminal 1,4,8,12-tetraazatricyclo[6.6.3,2(4.12)]nonadecan-5-ol (3). The equilibrium constant K-im = [3][H+]/[2] was determined at three different temperatures from potentiometric measurements...

  1. Diurnal Cycles of Trace Gas Transfer through Wetland Vegetation

    Science.gov (United States)

    Reid, M. C.; Ho, D. T.; Jaffe, P. R.

    2010-12-01

    Natural and constructed wetlands are major sources of biogeochemical trace gases, and have recently gained attention as tools for passive remediation of discharging groundwater contaminated with volatile organic compounds (VOCs). Wetland plants act as conduits for the volatilization of dissolved compounds from the interstitial pore waters of aquatic sediments to the atmosphere, so clarifying the mechanisms of this vegetation-mediated gas transport is essential to understanding the emissions of compounds including methane and VOCs. The conservative gas tracer sulfur hexafluoride (SF6) was used to examine mechanisms of gas transport through the wetland macrophytes Scirpus acutus and Typha latifolia in greenhouse mesocosm experiments. The results provide novel experimental evidence for the enhancement by light of plant-mediated gas fluxes through S. acutus, a species with no previously documented light-activated gas transport mechanism. A nonlinear saturation model was fit to the tracer flux data using least-squares regression. The mechanism for this light-enhanced flux was investigated in additional experiments in which atmospheric humidity was deliberately manipulated. These results will be discussed with respect to the role of transpiration in enhancing plant-mediated gas transport. The SF6 flux data also quantify inter-species and seasonal variability in gas transfer rates, and capture the dynamics of pressurized gas flows in T. latifolia. A numerical model of gas transport mechanisms in the root and rhizosphere system was calibrated with experimental data and used to further examine mechanisms of gas exchange between saturated wetland sediments, vegetation, and the atmosphere.

  2. Heat exchange fluids and techniques. [US patents

    Energy Technology Data Exchange (ETDEWEB)

    Ranney, M.W.

    1979-01-01

    The detailed, descriptive information presented is based on US patents, issued since January 1975, that deal with heat exchange fluids and techniques, and their potential for energy saving. This book serves a double purpose in that it supplies detailed technical information and can be used as a guide to the US patent literature in this field. By indicating all the information that is significant, and eliminating legal jargon and juristic phraseology, an advanced, technically oriented review of heat exchange fluids and techniques is presented. Information is included on the design and construction of heat exchangers; heat transfer fluids; low temperature processes; heat storage; heat transfer control in buildings; solar and geothermal energy processes; and industrial, medical, and residential uses of heat exchangers. (LCL)

  3. Soil Structure and Saturated Hydraulic Conductivity

    Science.gov (United States)

    Houskova, B.; Nagy, V.

    The role of soil structure on saturated hydraulic conductivity changes is studied in plough layers of texturally different soils. Three localities in western part of Slovakia in Zitny ostrov (Corn Island) were under investigation: locality Kalinkovo with light Calcaric Fluvisol (FAO 1970), Macov with medium heavy Calcari-mollic Fluvisol and Jurova with heavy Calcari-mollic Fluvisol. Soil structure was determined in dry as well as wet state and in size of macro and micro aggregates. Saturated hydraulic conductivity was measured by the help of double ring method. During the period of ring filling the soil surface was protected against aggregates damage by falling water drops. Spatial and temporal variability of studied parameters was evaluated. Cultivated crops were ensilage maize at medium heavy and heavy soil and colza at light soil. Textural composition of soil and actual water content at the beginning of measurement are one of major factor affecting aggregate stability and consequently also saturated hydraulic conductivity.

  4. Perturbative Saturation and the Soft Pomeron

    CERN Document Server

    Kovner, A; Kovner, Alex; Wiedemann, Urs Achim

    2002-01-01

    We show that perturbation theory provides two distinct mechanisms for the power like growth of hadronic cross sections at high energy. One, the leading BFKL effect is due to the growth of the parton density, and is characterized by the leading BFKL exponent. The other mechanism is due to the infrared diffusion, or the long range nature of the Coulomb field of perturbatively massless gluons. When perturbative saturation effects are taken into account, the first mechanism is rendered ineffective but the second one persists. We suggest that these two distinct mechanisms are responsible for the appearance of two pomerons. The density growth effects are responsible for the hard pomeron and manifest themselves in small systems (e.g. gamma^* or small size fluctuations in the proton wave function) where saturation effects are not important. The soft pomeron is the manifestation of the exponential growth of the black saturated regions which appear in typical hadronic systems. We point out that the nonlinear generaliza...

  5. Interger multiplication with overflow detection or saturation

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, M.J.; Balzola, P.I.; Akkas, A.; Brocato, R.W.

    2000-01-11

    High-speed multiplication is frequently used in general-purpose and application-specific computer systems. These systems often support integer multiplication, where two n-bit integers are multiplied to produce a 2n-bit product. To prevent growth in word length, processors typically return the n least significant bits of the product and a flag that indicates whether or not overflow has occurred. Alternatively, some processors saturate results that overflow to the most positive or most negative representable number. This paper presents efficient methods for performing unsigned or two's complement integer multiplication with overflow detection or saturation. These methods have significantly less area and delay than conventional methods for integer multiplication with overflow detection and saturation.

  6. The Danish tax on saturated fat

    DEFF Research Database (Denmark)

    Vallgårda, Signild; Holm, Lotte; Jensen, Jørgen Dejgård

    2015-01-01

    BACKGROUND/OBJECTIVES: Health promoters have repeatedly proposed using economic policy tools, taxes and subsidies, as a means of changing consumer behaviour. As the first country in the world, Denmark introduced a tax on saturated fat in 2011. It was repealed in 2012. In this paper, we present...... on saturated fat had been suggested by two expert committees and was introduced with a majority in parliament, as a part of a larger economic reform package. Many actors, including representatives from the food industry and nutrition researchers, opposed the tax both before and after its introduction, claiming......, research was published showing that consumption of saturated fat had declined in Denmark. CONCLUSIONS: The analysis indicates that the Danish tax on fat was introduced mainly to increase public revenue. As the tax had no strong proponents and many influential adversaries, it was repealed. New research...

  7. Evaluation of Regression and Neuro_Fuzzy Models in Estimating Saturated Hydraulic Conductivity

    Directory of Open Access Journals (Sweden)

    J. Behmanesh

    2015-06-01

    Full Text Available Study of soil hydraulic properties such as saturated and unsaturated hydraulic conductivity is required in the environmental investigations. Despite numerous research, measuring saturated hydraulic conductivity using by direct methods are still costly, time consuming and professional. Therefore estimating saturated hydraulic conductivity using rapid and low cost methods such as pedo-transfer functions with acceptable accuracy was developed. The purpose of this research was to compare and evaluate 11 pedo-transfer functions and Adaptive Neuro-Fuzzy Inference System (ANFIS to estimate saturated hydraulic conductivity of soil. In this direct, saturated hydraulic conductivity and physical properties in 40 points of Urmia were calculated. The soil excavated was used in the lab to determine its easily accessible parameters. The results showed that among existing models, Aimrun et al model had the best estimation for soil saturated hydraulic conductivity. For mentioned model, the Root Mean Square Error and Mean Absolute Error parameters were 0.174 and 0.028 m/day respectively. The results of the present research, emphasises the importance of effective porosity application as an important accessible parameter in accuracy of pedo-transfer functions. sand and silt percent, bulk density and soil particle density were selected to apply in 561 ANFIS models. In training phase of best ANFIS model, the R2 and RMSE were calculated 1 and 1.2×10-7 respectively. These amounts in the test phase were 0.98 and 0.0006 respectively. Comparison of regression and ANFIS models showed that the ANFIS model had better results than regression functions. Also Nuro-Fuzzy Inference System had capability to estimatae with high accuracy in various soil textures.

  8. Two Photon Exchange for Exclusive Pion Electroproduction

    Energy Technology Data Exchange (ETDEWEB)

    Afanaciev, Andrei V. [George Washington U.; Aleksejevs, Aleksandrs G. [Memorial University of Newfoundland, Newfoundland, Canada; Barkanova, Svetlana G. [Acadia University, Nova Scotia, Canada

    2013-09-01

    We perform detailed calculations of two-photon-exchange QED corrections to the cross section of pion electroproduction. The results are obtained with and without the soft-photon approximation; analytic expressions for the radiative corrections are derived. The relative importance of the two-photon correction is analyzed for the kinematics of several experiments at Jefferson Lab. A significant, over 20%, effect due to two-photon exchange is predicted for the backward angles of electron scattering at large transferred momenta.

  9. Tracking Controller for Intrinsic Output Saturated Systems in Presence of Amplitude and Rate Input Saturations

    DEFF Research Database (Denmark)

    Chater, E.; Giri, F.; Guerrero, Josep M.

    2014-01-01

    We consider the problem of controlling plants that are subject to multiple saturation constraints. Especially, we are interested in linear systems whose input is subject to amplitude and rate constraints of saturation type. Furthermore, the considered systems output is also subject to an intrinsi...

  10. Femoral venous oxygen saturation is no surrogate for central venous oxygen saturation

    NARCIS (Netherlands)

    van Beest, Paul A.; van der Schors, Alice; Liefers, Henriette; Coenen, Ludo G. J.; Braam, Richard L.; Habib, Najib; Braber, Annemarije; Scheeren, Thomas W. L.; Kuiper, Michael A.; Spronk, Peter E.

    2012-01-01

    Objective:  The purpose of our study was to determine if central venous oxygen saturation and femoral venous oxygen saturation can be used interchangeably during surgery and in critically ill patients. Design:  Prospective observational controlled study. Setting:  Nonacademic university-affiliated

  11. Saturated poroelastic actuators generated by topology optimization

    DEFF Research Database (Denmark)

    Andreasen, Casper Schousboe; Sigmund, Ole

    2011-01-01

    In this paper the fluid-structure interaction problem of a saturated porous media is considered. The pressure coupling properties of porous saturated materials change with the microstructure and this is utilized in the design of an actuator using a topology optimized porous material. By maximizing...... the coupling of internal fluid pressure and elastic shear stresses a slab of the optimized porous material deflects/deforms when a pressure is imposed and an actuator is created. Several phenomenologically based constraints are imposed in order to get a stable force transmitting actuator....

  12. On the saturation of astrophysical dynamos

    DEFF Research Database (Denmark)

    Dorch, Bertil; Archontis, Vasilis

    2004-01-01

    In the context of astrophysical dynamos we illustrate that the no-cosines flow, with zero mean helicity, can drive fast dynamo action and we study the dynamo's mode of operation during both the linear and non-linear saturation regimes. It turns out that in addition to a high growth rate in the li......In the context of astrophysical dynamos we illustrate that the no-cosines flow, with zero mean helicity, can drive fast dynamo action and we study the dynamo's mode of operation during both the linear and non-linear saturation regimes. It turns out that in addition to a high growth rate...

  13. Site-Scale Saturated Zone Flow Model

    Energy Technology Data Exchange (ETDEWEB)

    G. Zyvoloski

    2003-12-17

    The purpose of this model report is to document the components of the site-scale saturated-zone flow model at Yucca Mountain, Nevada, in accordance with administrative procedure (AP)-SIII.lOQ, ''Models''. This report provides validation and confidence in the flow model that was developed for site recommendation (SR) and will be used to provide flow fields in support of the Total Systems Performance Assessment (TSPA) for the License Application. The output from this report provides the flow model used in the ''Site-Scale Saturated Zone Transport'', MDL-NBS-HS-000010 Rev 01 (BSC 2003 [162419]). The Site-Scale Saturated Zone Transport model then provides output to the SZ Transport Abstraction Model (BSC 2003 [164870]). In particular, the output from the SZ site-scale flow model is used to simulate the groundwater flow pathways and radionuclide transport to the accessible environment for use in the TSPA calculations. Since the development and calibration of the saturated-zone flow model, more data have been gathered for use in model validation and confidence building, including new water-level data from Nye County wells, single- and multiple-well hydraulic testing data, and new hydrochemistry data. In addition, a new hydrogeologic framework model (HFM), which incorporates Nye County wells lithology, also provides geologic data for corroboration and confidence in the flow model. The intended use of this work is to provide a flow model that generates flow fields to simulate radionuclide transport in saturated porous rock and alluvium under natural or forced gradient flow conditions. The flow model simulations are completed using the three-dimensional (3-D), finite-element, flow, heat, and transport computer code, FEHM Version (V) 2.20 (software tracking number (STN): 10086-2.20-00; LANL 2003 [161725]). Concurrently, process-level transport model and methodology for calculating radionuclide transport in the saturated zone at Yucca

  14. Totalization Data Exchange (TDEX)

    Data.gov (United States)

    Social Security Administration — The Totalization Data Exchange (TDEX) process is an exchange between SSA and its foreign country partners to identify deaths of beneficiaries residing abroad. The...

  15. Hexanedioic acid mediated surface-ligand-exchange process for transferring NaYF4:Yb/Er (or Yb/Tm) up-converting nanoparticles from hydrophobic to hydrophilic

    NARCIS (Netherlands)

    Zhang, Q.; Song, K.; Zhao, J.; Kong, X.; Sun, Y.; Liu, X.; Zhang, Y.; Zeng, Q.; Zhang, H.

    2009-01-01

    Water-soluble and carboxyl-functionalized up-converting rare-earth nanoparticles (UCNPs) are obtained via an efficient surface-ligand-exchange procedure. Hexanedioic acid molecules are employed to replace the original hydrophobic ligands in diethylene glycol solvent at high temperature. Various

  16. SEISMIC EVALUATION OF HYDROCARBON SATURATION IN DEEP-WATER RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Michael Batzle; D-h Han; R. Gibson; Huw James

    2005-08-12

    We are now entering the final stages of our ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' project (Grant/Cooperative Agreement DE-FC26-02NT15342). We have now developed several techniques to help distinguish economic hydrocarbon deposits from false ''Fizz'' gas signatures. These methods include using the proper in situ rock and fluid properties, evaluating interference effects on data, and doing better constrained inversions for saturations. We are testing these techniques now on seismic data from several locations in the Gulf of Mexico. In addition, we are examining the use of seismic attenuation as indicated by frequency shifts below potential reservoirs. During this quarter we have: Began our evaluation of our latest data set over the Neptune Field; Developed software for computing composite reflection coefficients; Designed and implemented stochastic turbidite reservoir models; Produced software & work flow to improve frequency-dependent AVO analysis; Developed improved AVO analysis for data with low signal-to-noise ratio; and Examined feasibility of detecting fizz gas using frequency attenuation. Our focus on technology transfer continues, both by generating numerous presentations for the upcoming SEG annual meeting, and by beginning our planning for our next DHI minisymposium next spring.

  17. Phase exposure-dependent exchange

    Science.gov (United States)

    Ginn, T. R.; Schreyer, L. G.; Zamani, K.

    2017-01-01

    Solutes and suspended material often experience delays during exchange between phases one of which may be moving. Consequently transport often exhibits combined effects of advection/dispersion, and delays associated with exchange between phases. Such processes are ubiquitous and include transport in porous/fractured media, watersheds, rivers, forest canopies, urban infrastructure systems, and networks. Upscaling approaches often treat the transport and delay mechanisms together, yielding macroscopic "anomalous transport" models. When interaction with the immobile phase is responsible for the delays, it is not the transport that is anomalous, but the lack of it, due to delays. We model such exchanges with a simple generalization of first-order kinetics completely independent of transport. Specifically, we introduce a remobilization rate coefficient that depends on the time in immobile phase. Memory-function formulations of exchange (with or without transport) can be cast in this framework, and can represent practically all time-nonlocal mass balance models including multirate mass transfer and its equivalent counterparts in the continuous time random walk and time-fractional advection dispersion formalisms, as well as equilibrium exchange. Our model can address delayed single-/multievent remobilizations as in delay-differential equations and periodic remobilizations that may be useful in sediment transport modeling. It is also possible to link delay mechanisms with transport if so desired, or to superpose an additional source of nonlocality through the transport operator. This approach allows for mechanistic characterization of the mass transfer process with measurable parameters, and the full set of processes representable by these generalized kinetics is a new open question.

  18. Exchange fluctuation theorem for correlated quantum systems.

    Science.gov (United States)

    Jevtic, Sania; Rudolph, Terry; Jennings, David; Hirono, Yuji; Nakayama, Shojun; Murao, Mio

    2015-10-01

    We extend the exchange fluctuation theorem for energy exchange between thermal quantum systems beyond the assumption of molecular chaos, and describe the nonequilibrium exchange dynamics of correlated quantum states. The relation quantifies how the tendency for systems to equilibrate is modified in high-correlation environments. In addition, a more abstract approach leads us to a "correlation fluctuation theorem". Our results elucidate the role of measurement disturbance for such scenarios. We show a simple application by finding a semiclassical maximum work theorem in the presence of correlations. We also present a toy example of qubit-qudit heat exchange, and find that non-classical behaviour such as deterministic energy transfer and anomalous heat flow are reflected in our exchange fluctuation theorem.

  19. Fullerene Transport in Saturated Porous Media

    Science.gov (United States)

    We investigated the effects of background solution chemistry and residence time within the soil column on the transport of aqu/C60 through saturated ultrapure quartz sand columns. Aqu/C60 breakthrough curves were obtained under different pore water velocities, solution pHs, and i...

  20. Oxygenation of saturated and unsaturated hydrocarbons with ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 118; Issue 5. Oxygenation of saturated and unsaturated hydrocarbons with sodium periodate catalyzed by manganese(III) tetra-arylporphyrins, to study the axial ligation of imidazole. Reza Tayebee. Volume 118 Issue 5 September 2006 pp 429-433 ...

  1. Nasal pulse oximetry overestimates oxygen saturation

    DEFF Research Database (Denmark)

    Rosenberg, J; Pedersen, M H

    1990-01-01

    Ten surgical patients were monitored with nasal and finger pulse oximetry (Nellcor N-200) for five study periods with alternating mouth and nasal breathing and switching of cables and sensors. Nasal pulse oximetry was found to overestimate arterial oxygen saturation by 4.7 (SD 1.4%) (bias...

  2. Determination of saturated and unsaturated hydraulic conductivity ...

    African Journals Online (AJOL)

    The estimation of hydraulic conductivity indicates how fluids flow through a substance and thus determine the water balance in the soil profile. In determining the saturated and unsaturated hydraulic conductivity of soil, five plots of 5.0 x 4.0 m were prepared with a PVC access tube installed in each plot. The plots were ...

  3. Understanding 'saturation' of radar signals over forests.

    Science.gov (United States)

    Joshi, Neha; Mitchard, Edward T A; Brolly, Matthew; Schumacher, Johannes; Fernández-Landa, Alfredo; Johannsen, Vivian Kvist; Marchamalo, Miguel; Fensholt, Rasmus

    2017-06-14

    There is an urgent need to quantify anthropogenic influence on forest carbon stocks. Using satellite-based radar imagery for such purposes has been challenged by the apparent loss of signal sensitivity to changes in forest aboveground volume (AGV) above a certain 'saturation' point. The causes of saturation are debated and often inadequately addressed, posing a major limitation to mapping AGV with the latest radar satellites. Using ground- and lidar-measurements across La Rioja province (Spain) and Denmark, we investigate how various properties of forest structure (average stem height, size and number density; proportion of canopy and understory cover) simultaneously influence radar backscatter. It is found that increases in backscatter due to changes in some properties (e.g. increasing stem sizes) are often compensated by equal magnitude decreases caused by other properties (e.g. decreasing stem numbers and increasing heights), contributing to the apparent saturation of the AGV-backscatter trend. Thus, knowledge of the impact of management practices and disturbances on forest structure may allow the use of radar imagery for forest biomass estimates beyond commonly reported saturation points.

  4. Wave propagation in thermoelastic saturated porous medium

    Indian Academy of Sciences (India)

    Biot 's theory for wave propagation in saturated porous solid is modified to study the propagation of thermoelastic waves in poroelastic medium. Propagation of plane harmonic waves is considered in isotropic poroelastic medium. Relations are derived among the wave-induced temperature in the medium and the ...

  5. Spontaneous emission from saturated parametric amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Ott, Johan Raunkjær; Steffensen, Henrik

    2009-01-01

    Noise performance of parametric amplifiers is typically calculated assuming un-depleted operation. However, in many applications especially when applied as regenerative amplifiers in systems based on phase shift keyed modulation schemes, this assumption is not valid. Here we show the impact...... on accumulated spontaneous emission for a parametric amplifier operated in saturation....

  6. Elevated transferrin saturation and risk of diabetes

    DEFF Research Database (Denmark)

    Ellervik, Christina; Mandrup-Poulsen, Thomas; Andersen, Henrik Ullits

    2011-01-01

    OBJECTIVE We tested the hypothesis that elevated transferrin saturation is associated with an increased risk of any form of diabetes, as well as type 1 or type 2 diabetes separately. RESEARCH DESIGN AND METHODS We used two general population studies, The Copenhagen City Heart Study (CCHS, N = 9...

  7. Saturated fat, carbohydrates and cardiovascular disease

    NARCIS (Netherlands)

    Kuipers, R. S.; de Graaf, D. J.; Luxwolda, M. F.; Muskiet, M. H. A.; Dijck-Brouwer, D. A. J.; Muskiet, F. A. J.

    The dietary intake of saturated fatty acids (SAFA) is associated with a modest increase in serum total cholesterol, but not with cardiovascular disease (CVD). Replacing dietary SAFA with carbohydrates (CHO), notably those with a high glycaemic index, is associated with an increase in CVD risk in

  8. Two-beam interaction in saturable media

    DEFF Research Database (Denmark)

    Schjødt-Eriksen, Jens; Schmidt, Michel R.; Juul Rasmussen, Jens

    1998-01-01

    The dynamics of two coupled soliton solutions of the nonlinear Schrodinger equation with a saturable nonlinearity is investigated It is shown by means of a variational method and by direct numerical calculations that two well-separated solitons can orbit around each other, if their initial velocity...

  9. Synthesis and characterization of saturated polyester and ...

    Indian Academy of Sciences (India)

    Saturated polyester resin, derived from the glycolysis of polyethyleneterephthalate (PET) was examined as an effective way for PET recycling. The glycolyzed PET (GPET) was reacted with the mixture of phthalic anhydride and ethylene glycol (EG) with varied compositions and their reaction kinetic were studied. During ...

  10. Multi-spectral imaging of oxygen saturation

    Science.gov (United States)

    Savelieva, Tatiana A.; Stratonnikov, Aleksander A.; Loschenov, Victor B.

    2008-06-01

    The system of multi-spectral imaging of oxygen saturation is an instrument that can record both spectral and spatial information about a sample. In this project, the spectral imaging technique is used for monitoring of oxygen saturation of hemoglobin in human tissues. This system can be used for monitoring spatial distribution of oxygen saturation in photodynamic therapy, surgery or sports medicine. Diffuse reflectance spectroscopy in the visible range is an effective and extensively used technique for the non-invasive study and characterization of various biological tissues. In this article, a short review of modeling techniques being currently in use for diffuse reflection from semi-infinite turbid media is presented. A simple and practical model for use with a real-time imaging system is proposed. This model is based on linear approximation of the dependence of the diffuse reflectance coefficient on relation between absorbance and reduced scattering coefficient. This dependence was obtained with the Monte Carlo simulation of photon propagation in turbid media. Spectra of the oxygenated and deoxygenated forms of hemoglobin differ mostly in the red area (520 - 600 nm) and have several characteristic points there. Thus four band-pass filters were used for multi-spectral imaging. After having measured the reflectance, the data obtained are used for fitting the concentration of oxygenated and free hemoglobin, and hemoglobin oxygen saturation.

  11. Material Transfer Agreement (MTA) | FNLCR Staging

    Science.gov (United States)

    Material Transfer Agreements are appropriate for exchange of materials into or out of the Frederick National Labfor research or testing purposes, with no collaborative research by parties involving the materials.

  12. Microscopic analysis of saturable absorbers: Semiconductor saturable absorber mirrors versus graphene

    Energy Technology Data Exchange (ETDEWEB)

    Hader, J.; Moloney, J. V. [Nonlinear Control Strategies, Inc., 3542 N. Geronimo Ave., Tucson, Arizona 85705 (United States); College of Optical Sciences, University of Arizona, Tucson, Arizona 85721 (United States); Yang, H.-J.; Scheller, M. [College of Optical Sciences, University of Arizona, Tucson, Arizona 85721 (United States); Koch, S. W. [Department of Physics and Materials Sciences Center, Philipps Universität Marburg, Renthof 5, 35032 Marburg (Germany)

    2016-02-07

    Fully microscopic many-body calculations are used to study the influence of strong sub-picosecond pulses on the carrier distributions and corresponding optical response in saturable absorbers used for mode-locking—semiconductor (quantum well) saturable absorber mirrors (SESAMs) and single layer graphene based saturable absorber mirrors (GSAMs). Unlike in GSAMs, the saturation fluence and recovery time in SESAMs show a strong spectral dependence. While the saturation fluence in the SESAM is minimal at the excitonic bandgap, the optimal recovery time and least pulse distortion due to group delay dispersion are found for excitation higher in the first subband. For excitation near the SESAM bandgap, the saturation fluence is about one tenth of that in the GSAM. At energies above the bandgap, the fluences in both systems become similar. A strong dependence of the saturation fluence on the pulse width in both systems is caused by carrier relaxation during the pulse. The recovery time in graphene is found to be about two to four times faster than that in the SESAMs. The occurrence of negative differential transmission in graphene is shown to be caused by dopant related carriers. In SESAMs, a negative differential transmission is found when exciting below the excitonic resonance where excitation induced dephasing leads to an enhancement of the absorption. Comparisons of the simulation data to the experiment show a very good quantitative agreement.

  13. Microscopic analysis of saturable absorbers: Semiconductor saturable absorber mirrors versus graphene

    Science.gov (United States)

    Hader, J.; Yang, H.-J.; Scheller, M.; Moloney, J. V.; Koch, S. W.

    2016-02-01

    Fully microscopic many-body calculations are used to study the influence of strong sub-picosecond pulses on the carrier distributions and corresponding optical response in saturable absorbers used for mode-locking—semiconductor (quantum well) saturable absorber mirrors (SESAMs) and single layer graphene based saturable absorber mirrors (GSAMs). Unlike in GSAMs, the saturation fluence and recovery time in SESAMs show a strong spectral dependence. While the saturation fluence in the SESAM is minimal at the excitonic bandgap, the optimal recovery time and least pulse distortion due to group delay dispersion are found for excitation higher in the first subband. For excitation near the SESAM bandgap, the saturation fluence is about one tenth of that in the GSAM. At energies above the bandgap, the fluences in both systems become similar. A strong dependence of the saturation fluence on the pulse width in both systems is caused by carrier relaxation during the pulse. The recovery time in graphene is found to be about two to four times faster than that in the SESAMs. The occurrence of negative differential transmission in graphene is shown to be caused by dopant related carriers. In SESAMs, a negative differential transmission is found when exciting below the excitonic resonance where excitation induced dephasing leads to an enhancement of the absorption. Comparisons of the simulation data to the experiment show a very good quantitative agreement.

  14. Progress Report for Diffusion Welding of the NGNP Process Application Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    R.E. Mizia; D.E. Clark; M.V. Glazoff; T.E. Lister; T.L. Trowbridge

    2011-04-01

    The NGNP Project is currently investigating the use of metallic, diffusion welded, compact heat exchangers to transfer heat from the primary (reactor side) heat transport system to the secondary heat transport system. The intermediate heat exchanger will transfer this heat to downstream applications such as hydrogen production, process heat, and electricity generation. The channeled plates that make up the heat transfer surfaces of the intermediate heat exchanger will have to be assembled into an array by diffusion welding.

  15. Heat and mass transfer

    CERN Document Server

    Karwa, Rajendra

    2017-01-01

    This textbook presents the classical treatment of the problems of heat transfer in an exhaustive manner with due emphasis on understanding of the physics of the problems. This emphasis is especially visible in the chapters on convective heat transfer. Emphasis is laid on the solution of steady and unsteady two-dimensional heat conduction problems. Another special feature of the book is a chapter on introduction to design of heat exchangers and their illustrative design problems. A simple and understandable treatment of gaseous radiation has been presented. A special chapter on flat plate solar air heater has been incorporated that covers thermo-hydraulic modeling and simulation. The chapter on mass transfer has been written looking specifically at the needs of the students of mechanical engineering. The book includes a large number and variety of solved problems with supporting line diagrams. The author has avoided duplicating similar problems, while incorporating more application-based examples. All the end-...

  16. Thermal radiation heat transfer

    CERN Document Server

    Howell, John R; Mengüç, M Pinar

    2011-01-01

    Providing a comprehensive overview of the radiative behavior and properties of materials, the fifth edition of this classic textbook describes the physics of radiative heat transfer, development of relevant analysis methods, and associated mathematical and numerical techniques. Retaining the salient features and fundamental coverage that have made it popular, Thermal Radiation Heat Transfer, Fifth Edition has been carefully streamlined to omit superfluous material, yet enhanced to update information with extensive references. Includes four new chapters on Inverse Methods, Electromagnetic Theory, Scattering and Absorption by Particles, and Near-Field Radiative Transfer Keeping pace with significant developments, this book begins by addressing the radiative properties of blackbody and opaque materials, and how they are predicted using electromagnetic theory and obtained through measurements. It discusses radiative exchange in enclosures without any radiating medium between the surfaces-and where heat conduction...

  17. Biscarbene palladium(II) complexes. reactivity of saturated versus unsaturated N-heterocyclic carbenes.

    Science.gov (United States)

    Fu, Ching-Feng; Lee, Chun-Chin; Liu, Yi-Hung; Peng, Shie-Ming; Warsink, Stefan; Elsevier, Cornelis J; Chen, Jwu-Ting; Liu, Shiuh-Tzung

    2010-03-15

    A series of designed palladium biscarbene complexes including saturated and unsaturated N-heterocyclic carbene (NHC) moieties have been prepared by the carbene transfer methods. All of these complexes have been characterized by (1)H and (13)C NMR spectroscopy as well as X-ray diffraction analysis. The reactivity of Pd-C((saturated NHC)) is distinct from that of Pd-C((unsaturated NHC)). The Pd-C((saturated NHC)) bonds are fairly stable toward reagents such as CF(3)COOH, AgBF(4) and I(2), whereas Pd-C((unsaturated NHC)) bonds are readily cleaved under the similar conditions. Notably, the catalytically activity of these palladium complexes on Suzuki-Miyaura coupling follows the order: (sat-NHC)(2)PdCl(2) > (sat-NHC)(unsat-NHC)PdCl(2 )> (unsat-NHC)(2)PdCl(2).

  18. Largely Enhanced Saturable Absorption of a Complex of Plasmonic and Molecular-Like Au Nanocrystals

    Science.gov (United States)

    Ding, Si-Jing; Nan, Fan; Yang, Da-Jie; Liu, Xiao-Li; Wang, Ya-Lan; Zhou, Li; Hao, Zhong-Hua; Wang, Qu-Quan

    2015-01-01

    A saturable absorber is a nonlinear functional material widely used in laser and photonic nanodevices. Metallic nanostructures have prominent saturable absorption (SA) at the plasmon resonance frequency owing to largely enhanced ground state absorption. However, the SA of plasmonic metal nanostructures is hampered by excited-state absorption processes at very high excitation power, which usually leads to a changeover from SA to reversed SA (SA→RSA). Here, we demonstrate tunable nonlinear absorption behaviours of a nanocomplex of plasmonic and molecular-like Au nanocrystals. The SA→RSA process is efficiently suppressed, and the stepwise SA→SA process is fulfilled owing to energy transfer in the nanocomplex. Our observations offer a strategy for preparation of the saturable absorber complex and have prospective applications in liquid lasers as well as one-photon nonlinear nanodevices. PMID:25875139

  19. Using Noble Gas Measurements to Derive Air-Sea Process Information and Predict Physical Gas Saturations

    Science.gov (United States)

    Hamme, Roberta C.; Emerson, Steven R.; Severinghaus, Jeffrey P.; Long, Matthew C.; Yashayaev, Igor

    2017-10-01

    Dissolved gas distributions are important because they influence oceanic habitats and Earth's climate, yet competing controls by biology and physics make gas distributions challenging to predict. Bubble-mediated gas exchange, temperature change, and varying atmospheric pressure all push gases away from equilibrium. Here we use new noble gas measurements from the Labrador Sea to demonstrate a technique to quantify physical processes. Our analysis shows that water-mass formation can be represented by a quasi steady state in which bubble fluxes and cooling push gases away from equilibrium balanced by diffusive gas exchange forcing gases toward equilibrium. We quantify the rates of these physical processes from our measurements, allowing direct comparison to gas exchange parameterizations, and predict the physically driven saturation of other gases. This technique produces predictions that reasonably match N2/Ar observations and demonstrates that physical processes should force SF6 to be ˜6% more supersaturated than CFC-11 and CFC-12, impacting ventilation age calculations.

  20. Direct-contact closed-loop heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Berry, Gregory F. (Naperville, IL); Minkov, Vladimir (Skokie, IL); Petrick, Michael (Joliet, IL)

    1984-01-01

    A high temperature heat exchanger with a closed loop and a heat transfer liquid within the loop, the closed loop having a first horizontal channel with inlet and outlet means for providing direct contact of a first fluid at a first temperature with the heat transfer liquid, a second horizontal channel with inlet and outlet means for providing direct contact of a second fluid at a second temperature with the heat transfer liquid, and means for circulating the heat transfer liquid.

  1. Meson exchange-current effects in heavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Dehesa, J.S.; Lallena, A. (Granada Univ. (Spain). Dept. de Fisica Nuclear); Krewald, S. (Kernforschungsanlage Juelich G.m.b.H. (Germany, F.R.). Inst. fuer Kernphysik); Donnelly, T.W. (Massachusetts Inst. of Tech., Cambridge (USA). Lab. for Nuclear Science; Massachusetts Inst. of Tech., Cambridge (USA). Dept. of Physics)

    1985-04-15

    Meson exchange-current effects in the electroexcitation of magnetic states are evaluated in /sup 16/O and /sup 208/Pb. A new method is suggested which properly includes the influence of the nuclear mean field on meson exchange-current effects. In addition, an effective meson exchange-current operator is developed which considerably simplifies the evaluation of meson exchange-current effects. Over a wide range of momentum transfers, the magnetic cross sections for the electroexcitation of high-spin, stretched 1 plh states are found to be smoothly enhanced by meson exchange currents.

  2. Replacing foods high in saturated fat by low-saturated fat alternatives: a computer simulation of the potential effects on reduction of saturated fat consumption

    NARCIS (Netherlands)

    Schickenberg, B.; Assema, P.; Brug, J.; Verkaik-Kloosterman, J.; Ocke, M.C.; Vries, de N.

    2009-01-01

    10 en%) increased from 23.3 % to 86.0 %. We conclude that the replacement of relatively few important high-saturated fat products by available lower-saturated fat alternatives can significantly reduce saturated fat intake and increase the proportion of individuals complying with recommended intake

  3. Process heat transfer principles, applications and rules of thumb

    CERN Document Server

    Serth, Robert W

    2014-01-01

    Process Heat Transfer is a reference on the design and implementation of industrial heat exchangers. It provides the background needed to understand and master the commercial software packages used by professional engineers in the design and analysis of heat exchangers. This book focuses on types of heat exchangers most widely used by industry: shell-and-tube exchangers (including condensers, reboilers and vaporizers), air-cooled heat exchangers and double-pipe (hairpin) exchangers. It provides a substantial introduction to the design of heat exchanger networks using pinch technology, the mos

  4. Studi Perhitungan Alat Penukar Kalor Tipe Shell and Tube Dengan Program Heat Transfer Research Inc. ( Htri )

    OpenAIRE

    Bizzy, Irwin; Setiadi, Rachmat

    2013-01-01

    To reduce production costs, the design of heat exchanger is very effective in advance of buying a ready-made exchanger. The design of a calculation of the dimensions of heat exchanger shell and tube type using computerized analysis method Heat Transfer Research Inc.. (HTRI) and manual calculation methods of analysis. Dimensional calculation of heat exchanger is intended to determine the quality of a heat exchanger based on the overall heat transfer coefficient, fouling factors, and pressure d...

  5. Comparison of pulseoximetry oxygen saturation and arterial oxygen saturation in open heart intensive care unit

    Directory of Open Access Journals (Sweden)

    Alireza Mahoori

    2013-08-01

    Full Text Available Background: Pulseoximetry is widely used in the critical care setting, currently used to guide therapeutic interventions. Few studies have evaluated the accuracy of SPO2 (puls-eoximetry oxygen saturation in intensive care unit after cardiac surgery. Our objective was to compare pulseoximetry with arterial oxygen saturation (SaO2 during clinical routine in such patients, and to examine the effect of mild acidosis on this relationship.Methods: In an observational prospective study 80 patients were evaluated in intensive care unit after cardiac surgery. SPO2 was recorded and compared with SaO2 obtained by blood gas analysis. One or serial arterial blood gas analyses (ABGs were performed via a radial artery line while a reliable pulseoximeter signal was present. One hundred thirty seven samples were collected and for each blood gas analyses, SaO2 and SPO2 we recorded.Results: O2 saturation as a marker of peripheral perfusion was measured by Pulseoxim-etry (SPO2. The mean difference between arterial oxygen saturation and pulseoximetry oxygen saturation was 0.12%±1.6%. A total of 137 paired readings demonstrated good correlation (r=0.754; P<0.0001 between changes in SPO2 and those in SaO2 in samples with normal hemoglobin. Also in forty seven samples with mild acidosis, paired readings demonstrated good correlation (r=0.799; P<0.0001 and the mean difference between SaO2 and SPO2 was 0.05%±1.5%.Conclusion: Data showed that in patients with stable hemodynamic and good signal quality, changes in pulseoximetry oxygen saturation reliably predict equivalent changes in arterial oxygen saturation. Mild acidosis doesn’t alter the relation between SPO2 and SaO2 to any clinically important extent. In conclusion, the pulse oximeter is useful to monitor oxygen saturation in patients with stable hemodynamic.

  6. 26 CFR 1.684-1 - Recognition of gain on transfers to certain foreign trusts and estates.

    Science.gov (United States)

    2010-04-01

    ... market value. A transfers property that has a fair market value of 1000X to FT in exchange for 400X of... annuity. A transfers property that has a fair market value of 1000X to FT in exchange for FT's obligation... trust in exchange for qualified obligation. A transfers property that has a fair market value of 1000X...

  7. Mass-charge-heat coupled transfers in a single cell of a proton exchange membrane fuel cell; Transferts couples masse-charge-chaleur dans une cellule de pile a combustible a membrane polymere

    Energy Technology Data Exchange (ETDEWEB)

    Ramousse, J.

    2005-11-15

    Understanding and modelling of coupled mass, charges and heat transfers phenomena are fundamental to analyze the electrical behaviour of the system. The aim of the present model is to describe electrical performances of a PEFMC according to the fluidic and thermal operating conditions. The water content of the membrane and the water distribution in the single cell are estimated according to the coupled simulations of mass transport in the thickness of the single cell and in the feeding channels of the bipolar plates. A microscopic model of a Gas Diffusion Electrode is built up to describe charges transfer phenomena occurring at the electrodes. Completed by a study of heat transfer in the Membrane Electrode Assembly, conditions and preferential sites of water vapor condensation can be highlighted. A set of measurements of the effective thermal conductivity of carbon felts used in fuel cells as porous backing layers have also been performed. Although the value of this parameter is essential for the study of heat transfer, it is still under investigation because of the strong thermal anisotropy of the medium. (author)

  8. [Monitoring of jugular venous oxygen saturation].

    Science.gov (United States)

    Nakamura, Shunsuke

    2011-04-01

    The continuous monitoring of jugular venous oxygen saturation(SjO2) has become a practical method for monitoring global cerebral oxygenation and metabolism. SjO2 reflects the balance between the cerebral blood flow and the cerebral metabolic rate for oxygen (CMRO2), if arterial oxyhemoglobin saturation, hemoglobin concentration remain constant. Normal SjO2 values range between 55% and 75%. Low SjO2 indicates cerebral hypoperfusion or ischemia. Conversely, an increased SjO2 indicates either cerebral hyperemia or a disorder that decreases CMRO2. In minimizing secondary brain damage following resuscitation from cardiopulmonary arrest, SjO2 monitoring is thus considered to be an integral part of multimodality monitoring and can provide important information for the management of patients in neurointensive care.

  9. The danish tax on saturated fat

    DEFF Research Database (Denmark)

    Jensen, Jørgen Dejgård; Smed, Sinne

    Denmark introduced a new tax on saturated fat in food products with effect from October 2011. The objective of this paper is to make an effect assessment of this tax for some of the product categories most significantly affected by the new tax, namely fats such as butter, butter-blends, margarine...... on saturated fat in food products has had some effects on the market for the considered products, in that the level of consumption of fats dropped by 10 – 20%. Furthermore, the analysis points at shifts in demand from high-price supermarkets towards low-price discount stores – a shift that seems to have been...... – and broaden – the analysis at a later stage, when data are available for a longer period after the introduction of the fat tax....

  10. Nonlinear saturation of Weibel-type instabilities

    Science.gov (United States)

    Srinivasan, Bhuvana; Cagas, Petr; Hakim, Ammar

    2017-10-01

    Weibel-type instabilities, which grow in plasmas with anisotropic velocity distribution, have been studied for many years and drawn recent interest due to their broad applicability spanning from laboratory laser plasmas to origins of intergalactic magnetic fields in astrophysical plasmas. Magnetic particle trapping has been considered as the main mechanism of the nonlinear saturation of these instabilities. However, novel continuum kinetic and two-fluid five moment simulations show that there are additional effects - the transverse flow introduced by the magnetic field creates a secondary electrostatic two-stream instability which alters the saturation and is responsible for a quasi-periodic behavior in the nonlinear phase. This research was supported by the Air Force Office of Scientific Research under Grant Number FA9550-15-1-0193.

  11. Sulfonated hydrocarbon graft architectures for cation exchange membranes

    DEFF Research Database (Denmark)

    Nielsen, Mads Møller; Jankova Atanasova, Katja; Hvilsted, Søren

    2013-01-01

    A synthetic strategy to hydrocarbon graft architectures prepared from a commercial polysulfone and aimed as ion exchange membrane material is proposed. Polystyrene is grafted from a polysulfone macroinitiator by atom transfer radical polymerization, and subsequently sulfonated with acetyl sulfate...

  12. Heat exchangers and recuperators for high temperature waste gases

    Science.gov (United States)

    Meunier, H.

    General considerations on high temperature waste heat recovery are presented. Internal heat recovery through combustion air preheating and external heat recovery are addressed. Heat transfer and pressure drop in heat exchanger design are discussed.

  13. 28 CFR 0.96b - Exchange of prisoners.

    Science.gov (United States)

    2010-07-01

    ... Prisons § 0.96b Exchange of prisoners. The Director of the Bureau of Prisons and officers of the Bureau of Prisons designated by him are authorized to receive custody of offenders and to transfer offenders to and...

  14. Gluon saturation beyond (naive) leading logs

    Energy Technology Data Exchange (ETDEWEB)

    Beuf, Guillaume

    2014-12-15

    An improved version of the Balitsky–Kovchegov equation is presented, with a consistent treatment of kinematics. That improvement allows to resum the most severe of the large higher order corrections which plague the conventional versions of high-energy evolution equations, with approximate kinematics. This result represents a further step towards having high-energy QCD scattering processes under control beyond strict Leading Logarithmic accuracy and with gluon saturation effects.

  15. 2D Saturable Absorbers for Fibre Lasers

    Directory of Open Access Journals (Sweden)

    Robert I. Woodward

    2015-11-01

    Full Text Available Two-dimensional (2D nanomaterials are an emergent and promising platform for future photonic and optoelectronic applications. Here, we review recent progress demonstrating the application of 2D nanomaterials as versatile, wideband saturable absorbers for Q-switching and mode-locking fibre lasers. We focus specifically on the family of few-layer transition metal dichalcogenides, including MoS2, MoSe2 and WS2.

  16. Stabilization of Neutral Systems with Saturating Actuators

    Directory of Open Access Journals (Sweden)

    F. El Haoussi

    2012-01-01

    to determine stabilizing state-feedback controllers with large domain of attraction, expressed as linear matrix inequalities, readily implementable using available numerical tools and with tuning parameters that make possible to select the most adequate solution. These conditions are derived by using a Lyapunov-Krasovskii functional on the vertices of the polytopic description of the actuator saturations. Numerical examples demonstrate the effectiveness of the proposed technique.

  17. Saturated Dispersive Extinction Theory of Red Shift

    Science.gov (United States)

    Wang, Ling Jun

    2012-03-01

    The Dispersive Extinction Theory (DET) proposed by WangfootnotetextWang, Ling Jun, Physics Essays, 18, No. 2, (2005). offers an alternative to the Big Bang. According to DET, the cosmic red shift is caused by the dispersive extinction of the star light during the propagation from the stars to the earth, instead of being caused by the Doppler shift due to the expansion of the universe.footnotetextHubble, E., Astrophys. J. 64, 321 (1926).^,footnotetextHubble, E., The Realm of the Nebulae, (Yale University Press, New Haven, 1936). DET allows an infinite, stable, non expanding universe, and is immune of the fundamental problems inherent to the Big Bang such as the horizon problem, the extreme violation of the conservation of mass, energy and charge, and the geocentric nature which violates the principle of relativity.footnotetextWang, Ling Jun, Physics Essays, 20, No. 2, (2007). The scenario dealt with in Reference (1) is a one in which the extinction by the space medium is not saturated. This work deals with a different scenario when the extinction is saturated. The saturated extinction causes limited energy loss, and the star light can travel a much greater distance than in the unsaturated scenario.

  18. Optimal oxygen saturation in premature infants

    Directory of Open Access Journals (Sweden)

    Meayoung Chang

    2011-09-01

    Full Text Available There is a delicate balance between too little and too much supplemental oxygen exposure in premature infants. Since underuse and overuse of supplemental oxygen can harm premature infants, oxygen saturation levels must be monitored and kept at less than 95% to prevent reactive oxygen species-related diseases, such as retinopathy of prematurity and bronchopulmonary dysplasia. At the same time, desaturation below 80 to 85% must be avoided to prevent adverse consequences, such as cerebral palsy. It is still unclear what range of oxygen saturation is appropriate for premature infants; however, until the results of further studies are available, a reasonable target for pulse oxygen saturation (SpO2 is 90 to 93% with an intermittent review of the correlation between SpO2 and the partial pressure of arterial oxygen tension (PaO2. Because optimal oxygenation depends on individuals at the bedside making ongoing adjustments, each unit must define an optimal target range and set alarm limits according to their own equipment or conditions. All staff must be aware of these values and adjust the concentration of supplemental oxygen frequently.

  19. Near-field radiative heat transfer under temperature gradients and conductive transfer

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Weiliang; Rodriguez, Alejandro W. [Princeton Univ., NJ (United States). Dept. of Electrical Engineering; Messina, Riccardo [CNRS-Univ. de Montpellier (France). Lab. Charles Coulomb

    2017-05-01

    We describe a recently developed formulation of coupled conductive and radiative heat transfer (RHT) between objects separated by nanometric, vacuum gaps. Our results rely on analytical formulas of RHT between planar slabs (based on the scattering-matrix method) as well as a general formulation of RHT between arbitrarily shaped bodies (based on the fluctuating-volume current method), which fully captures the existence of temperature inhomogeneities. In particular, the impact of RHT on conduction, and vice versa, is obtained via self-consistent solutions of the Fourier heat equation and Maxwell's equations. We show that in materials with low thermal conductivities (e.g. zinc oxides and glasses), the interplay of conduction and RHT can strongly modify heat exchange, exemplified for instance by the presence of large temperature gradients and saturating flux rates at short (nanometric) distances. More generally, we show that the ability to tailor the temperature distribution of an object can modify the behaviour of RHT with respect to gap separations, e.g. qualitatively changing the asymptotic scaling at short separations from quadratic to linear or logarithmic. Our results could be relevant to the interpretation of both past and future experimental measurements of RHT at nanometric distances.

  20. Transfer Pricing

    DEFF Research Database (Denmark)

    Nielsen, Søren Bo

    2014-01-01

    Against a background of rather mixed evidence about transfer pricing practices in multinational enterprises (MNEs) and varying attitudes on the part of tax authorities, this paper explores how multiple aims in transfer pricing can be pursued across four different transfer pricing regimes. A MNE h...

  1. Thermal Analysis of LANL Ion Exchange Column

    Energy Technology Data Exchange (ETDEWEB)

    Laurinat, J.E.

    1999-06-16

    This document reports results from an ion exchange column heat transfer analysis requested by Los Alamos National Laboratory (LANL). The object of the analysis is to demonstrate that the decay heat from the Pu-238 will not cause resin bed temperatures to increase to a level where the resin significantly degrades.

  2. 17 CFR 256.922 - Administrative expenses transferred-credit.

    Science.gov (United States)

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Administrative expenses transferred-credit. 256.922 Section 256.922 Commodity and Securities Exchanges SECURITIES AND EXCHANGE... transferred—credit. This account shall be credited with administrative expenses recorded in accounts 920 and...

  3. Brayton-cycle heat exchanger technology program

    Science.gov (United States)

    Killackey, J. J.; Coombs, M. G.; Graves, R. F.; Morse, C. J.

    1976-01-01

    The following five tasks designed to advance this development of heat exchanger systems for close loop Brayton cycle power systems are presented: (1) heat transfer and pressure drop data for a finned tubular heat transfer matrix. The tubes are arranged in a triangular array with copper stainless steel laminate strips helically wound on the tubes to form a disk fin geometry; (2) the development of a modularized waste heat exchanger. Means to provide verified double containment are described; (3) the design, fabrication, and test of compact plate fin heat exchangers representative of full scale Brayton cycle recuperators; (4) the analysis and design of bellows suitable for operation at 1600 F and 200 psia for 1,000 cycles and 50,000 hours creep life; and (5) screening tests used to select a low cost braze alloy with the desirable attributes of a gold base alloy. A total of 22 different alloys were investigated; the final selection was Nicrobraz 30.

  4. Utilizing a Water-Soluble Cryptophane with Fast Xenon Exchange Rates for Picomolar Sensitivity NMR Measurements

    Science.gov (United States)

    Bai, Yubin; Hill, P. Aru; Dmochowski, Ivan J.

    2012-01-01

    Hyperpolarized 129Xe chemical exchange saturation transfer (129Xe Hyper-CEST) NMR is a powerful technique for the ultrasensitive, indirect detection of Xe host molecules (e.g., cryptophane-A). Irradiation at the appropriate Xe-cryptophane resonant radio frequency results in relaxation of the bound hyperpolarized 129Xe and rapid accumulation of depolarized 129Xe in bulk solution. The cryptophane effectively ‘catalyzes’ this process by providing a unique molecular environment for spin depolarization to occur, while allowing xenon exchange with the bulk solution during the hyperpolarized lifetime (T1 ≈ 1 min). Following this scheme, a triacetic acid cryptophane-A derivative (TAAC) was indirectly detected at 1.4 picomolar concentration at 320 K in aqueous solution, which is the record for a single-unit xenon host. To investigate this sensitivity enhancement, the xenon binding kinetics of TAAC in water was studied by NMR exchange lifetime measurement. At 297 K, kon ≈ 1.5 × 106 M−1s−1 and koff = 45 s−1, which represent the fastest Xe association and dissociation rates measured for a high-affinity, water-soluble xenon host molecule near rt. NMR linewidth measurements provided similar exchange rates at rt, which we assign to solvent-Xe exchange in TAAC. At 320 K, koff was estimated to be 1.1 × 103 s−1. In Hyper-CEST NMR experiments, the rate of 129Xe depolarization achieved by 14 pM TAAC in the presence of RF pulses was calculated to be 0.17 µM·s−1. On a per cryptophane basis, this equates to 1.2 × 104 129Xe atoms s−1 (or 4.6 × 104 Xe atoms s−1, all Xe isotopes), which is more than an order of magnitude faster than koff, the directly measurable Xe-TAAC exchange rate. This compels us to consider multiple Xe exchange processes for cryptophane-mediated bulk 129Xe depolarization, which provide at least 107-fold sensitivity enhancements over directly detected hyperpolarized 129Xe NMR signals. PMID:23106513

  5. Oxidizer heat exchangers for rocket engine operation in idle modes

    Science.gov (United States)

    Kanic, P. G.; Kmiec, T. D.

    1987-01-01

    The heat exchanger concept is discussed together with its role in rocket engine operation in idle modes. Two heat exchanger designs (low and high heat transfer) utilizing different approaches to achieve stable oxygen vaporization are presented as well as their performance test results. It is concluded that compact and lightweight heat exchangers can be used in a stable manner under the 'idle' operating conditions expected with the RL10 rocket engine.

  6. Heat exchanger with oscillating flow

    Science.gov (United States)

    Scotti, Stephen J. (Inventor); Blosser, Max L. (Inventor); Camarda, Charles J. (Inventor)

    1993-01-01

    Various heat exchange apparatuses are described in which an oscillating flow of primary coolant is used to dissipate an incident heat flux. The oscillating flow may be imparted by a reciprocating piston, a double action twin reciprocating piston, fluidic oscillators or electromagnetic pumps. The oscillating fluid flows through at least one conduit in either an open loop or a closed loop. A secondary flow of coolant may be used to flow over the outer walls of at least one conduit to remove heat transferred from the primary coolant to the walls of the conduit.

  7. A Project to Design and Build Compact Heat Exchangers

    Science.gov (United States)

    Davis, Richard A.

    2005-01-01

    Students designed and manufactured compact, shell-and-tube heat exchangers in a project-based learning exercise integrated with our heat transfer course. The heat exchangers were constructed from common building materials available at home improvement centers. The cost of materials for a device was less than $20. The project gave students…

  8. High temperature heat exchange: nuclear process heat applications

    Energy Technology Data Exchange (ETDEWEB)

    Vrable, D.L.

    1980-09-01

    The unique element of the HTGR system is the high-temperature operation and the need for heat exchanger equipment to transfer nuclear heat from the reactor to the process application. This paper discusses the potential applications of the HTGR in both synthetic fuel production and nuclear steel making and presents the design considerations for the high-temperature heat exchanger equipment.

  9. High Thermal Conductivity Polymer Composites for Low Cost Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-08-01

    This factsheet describes a project that identified and evaluated commercially available and state-of-the-art polymer-based material options for manufacturing industrial and commercial non-metallic heat exchangers. A heat exchanger concept was also developed and its performance evaluated with heat transfer modeling tools.

  10. Investigation of degree of saturation in landfill liners using electrical resistivity imaging.

    Science.gov (United States)

    Kibria, Golam; Hossain, Md Sahadat

    2015-05-01

    During construction of compacted clay liners and evapotranspiration (ET) covers, quality control involves laboratory and field tests in individual lifts. However, the available methods may be inadequate to determine non-uniform compaction conditions, poor bonding of lifts, and/or variable soil composition. Moreover, the applicability of the available methods is restricted, in many instances, when spatial variability of the subsurface is expected. Resistivity Imaging (RI) is a geophysical method employed to investigate a large area in a rapid and non-destructive way. High resistivity of clay liner soil is an indication of a low degree of saturation, high air-filled voids, and poor lift bonding. To utilize RI as a quality control tool in a landfill liner, it is important to determine the saturation condition of the compacted soils because compaction and permeability of liner soil are functions of degrees of saturation. The objective of the present study is to evaluate the degree of saturation of a municipal solid waste (MSW) landfill liner, using RI. Electrical resistivity tests were performed in the laboratory, at varied moisture contents and dry unit weights, on four types of soil samples, i.e., highly plastic clay (CH), low plastic clay (CL), Ca-bentonite, and kaolinite. According to the experimental results, electrical resistivity of the specimens decreased as much as 15.3 times of initial value with increase in the degrees of saturation from 23% to 100%. In addition, cation exchange capacity (CEC) substantially affected resistivity. A multiple linear regression (MLR) model was developed to correlate electrical resistivity with degree of saturation and CEC using experimental results. Additionally, RI tests were conducted on compacted clay liners to determine the degrees of saturation, and predicted degrees of saturation were compared with the in-situ density tests. The study results indicated that the developed model can be utilized for liner soils having CEC

  11. Oxygen general saturation after bronchography anaesthesia . under

    African Journals Online (AJOL)

    1989-08-19

    Aug 19, 1989 ... Katz AS, Michelson EL, Stawicki J, Holford FD. Cardiac arrhythmias, frequency during fiberoptic bronchoscopy and correlation with hypoxemia. Arch Inrern Med 1981; 141: 603-606. 7. Motley HL,Tomashefski JF. Acute effects of lipiodol instillation on respira- tory gas exchange. Am] Physio11951; 167: 812.

  12. {sup 13}CHD{sub 2}–CEST NMR spectroscopy provides an avenue for studies of conformational exchange in high molecular weight proteins

    Energy Technology Data Exchange (ETDEWEB)

    Rennella, Enrico; Huang, Rui; Velyvis, Algirdas; Kay, Lewis E., E-mail: kay@pound.med.utoronto.ca [The University of Toronto, Departments of Molecular Genetics, Biochemistry and Chemistry (Canada)

    2015-10-15

    An NMR experiment for quantifying slow (millisecond) time-scale exchange processes involving the interconversion between visible ground state and invisible, conformationally excited state conformers is presented. The approach exploits chemical exchange saturation transfer (CEST) and makes use of {sup 13}CHD{sub 2} methyl group probes that can be readily incorporated into otherwise highly deuterated proteins. The methodology is validated with an application to a G48A Fyn SH3 domain that exchanges between a folded conformation and a sparsely populated and transiently formed unfolded ensemble. Experiments on a number of different protein systems, including a 360 kDa half-proteasome, establish that the sensitivity of this {sup 13}CHD{sub 2}{sup 13}C–CEST technique can be upwards of a factor of 5 times higher than for a previously published {sup 13}CH{sub 3}{sup 13}C–CEST approach (Bouvignies and Kay in J Biomol NMR 53:303–310, 2012), suggesting that the methodology will be powerful for studies of conformational exchange in high molecular weight proteins.

  13. Heat Transfer Basics and Practice

    CERN Document Server

    Böckh, Peter

    2012-01-01

    The book provides an easy way to understand the fundamentals of heat transfer. The reader will acquire the ability to design and analyze heat exchangers. Without extensive derivation of the fundamentals, the latest correlations for heat transfer coefficients and their application are discussed. The following topics are presented - Steady state and transient heat conduction - Free and forced convection - Finned surfaces - Condensation and boiling - Radiation - Heat exchanger design - Problem-solving After introducing the basic terminology, the reader is made familiar with the different mechanisms of heat transfer. Their practical application is demonstrated in examples, which are available in the Internet as MathCad files for further use. Tables of material properties and formulas for their use in programs are included in the appendix. This book will serve as a valuable resource for both students and engineers in the industry. The author’s experience indicates that students, after 40 lectures and exercises ...

  14. Europium(III) DOTA-derivatives having ketone donor pendant arms display dramatically slower water exchange

    Science.gov (United States)

    Green, Kayla N.; Viswanathan, Subha; Rojas-Quijano, Federico A.; Kovacs, Zoltan; Sherry, A. Dean

    2011-01-01

    A series of new 1,4,7,10-tetraazacyclododecane-derivatives having a combination of amide and ketone donor groups as side-arms were prepared and their complexes with europium(III) studied in detail by high resolution NMR spectroscopy. The chemical shift of the Eu3+-bound water resonance, the chemical exchange saturation transfer (CEST) characteristics of the complexes, and the bound water residence lifetimes (τm) were found to vary dramatically with the chemical structure of the side-arms. Substitution of ketone oxygen donor atoms for amide oxygen donor atoms resulted in an increase in residence water lifetimes (τm) and a decrease in chemical shift of the Eu3+-bound water molecule (Δω). These experimental results along with density functional theory (DFT) calculations demonstrate that introduction of weakly donating oxygen atoms in these complexes results in a much weaker ligand field, more positive charge on the Eu3+ ion and an increased water residence lifetime as expected for a dissociative mechanism. These results provide new insights into the design of paramagnetic CEST agents with even slower water exchange kinetics that will make them more efficient for in vivo imaging applications. PMID:21306137

  15. VT Telephone Exchange Boundaries

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The UtilityTelecom_EXCHANGE represents Vermont Telephone Exchange boundaries as defined by the VT Public Service Board. The original data was...

  16. Brief Report: Randomized Test of the Efficacy of Picture Exchange Communication System on Highly Generalized Picture Exchanges in Children with ASD

    OpenAIRE

    Yoder, Paul J.; Lieberman, Rebecca G.

    2010-01-01

    A randomized control trial comparing two social-communication interventions in young children with autism examined far-transfer of the use of picture exchange to communicate. Thirty-six children were randomly assigned to one of two treatment conditions, one of which was the Picture Exchange Communication System (PECS). All children had access to picture symbols during assessments. Post-treatment measurement of the number of picture exchanges in a far-transfer, assessment context favored the P...

  17. PLD-grown thin film saturable absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Tellkamp, Friedjof

    2012-11-01

    The subject of this thesis is the preparation and characterization of thin films made of oxidic dielectrics which may find their application as saturable absorber in passively Q-switched lasers. The solely process applied for fabrication of the thin films was the pulsed laser deposition (PLD) which stands out against other processes by its flexibility considering the composition of the systems to be investigated. Within the scope of this thesis the applied saturable absorbers can be divided into two fundamentally different kinds of functional principles: On the one hand, saturable absorption can be achieved by ions embedded in a host medium. Most commonly applied bulk crystals are certain garnets like YAG (Y{sub 3}Al{sub 5}O{sub 12}) or the spinel forsterite (Mg{sub 2}SiO{sub 4}), in each case with chromium as dopant. Either of these media was investigated in terms of their behavior as PLD-grown saturable absorber. Moreover, experiments with Mg{sub 2}GeO{sub 4}, Ca{sub 2}GeO{sub 4}, Sc{sub 2}O{sub 3}, and further garnets like YSAG or GSGG took place. The absorption coefficients of the grown films of Cr{sup 4+}:YAG were determined by spectroscopic investigations to be one to two orders of magnitude higher compared to commercially available saturable absorbers. For the first time, passive Q-switching of a Nd:YAG laser at 1064 nm with Cr{sup 4+}:YAG thin films could be realized as well as with Cr:Sc{sub 2}O{sub 3} thin films. On the other hand, the desirable effect of saturable absorption can also be generated by quantum well structures. For this purpose, several layer system like YAG/LuAG, Cu{sub 2}O/MgO, and ZnO/corumdum were investigated. It turned out that layer systems with indium oxide (In{sub 2}O{sub 3}) did not only grew in an excellent way but also showed up a behavior regarding their photo luminescence which cannot be explained by classical considerations. The observed luminescence at roughly 3 eV (410 nm) was assumed to be of excitonic nature and its

  18. Design and fabrication of a 3-D printable counter-low/precipitation heat exchanger for use with a novel off-grid solid state refrigeration system

    Science.gov (United States)

    Ryan, Sean Thomas

    Off-grid refrigeration technologies are currently limited to either vapor-compression cycles driven by photovoltaics or solar thermal absorption cycles. Rebound Technologies has recently developed a novel off-grid refrigeration system called Sunchill(TM) for agricultural applications in humid environments in the developing world. The Sunchill(TM) refrigeration system utilizes the daily high and low temperatures to drive a 24 hour refrigeration cycle. Cooling is provided by the dissolution of an endothermic salt, sodium carbonate decahydrate. Once the salt is solvated and cooling is delivered to freshly harvest crops, the system is "recharged" in a multi-step process that relies on a solar collector, an air-gap membrane unit and a heat exchanger. The heat exchanger, which is the focus of this thesis, is required to remove 36.6 MJ of heat over a twelve hour period in order to "recharge" the system. The heat exchanger is also required to transfer heat from a fresh water stream to a cold brine solution to generate the cold water necessary to submerse and cool harvested crops. To provide a sustainable technology to the target community, the feasibility of fabricating the heat exchanger via the low cost 3-D printing method of fused filament fabrication (FFF) was examined. This thesis presents the design, development, and manufacturing considerations that were performed in support of developing a waterproof, counter-flow, 3-D printable heat exchanger. Initial geometries and performance were modeled by constructing a linear thermal resistance network with truncating temperatures of 30°C (saturated brine temperature) and 18°C (average daily low temperature). The required surface area of the heat exchanger was found to be 20.46 m2 to remove the required 36.6 MJ of heat. Iterative print tests were conducted to arrive at the wall thickness, hexagon shape, and double wall structure of the heat exchanger. A laboratory-scale heat exchanger was fabricated using a Lulzbot Taz 4

  19. Trans Fat Now Listed With Saturated Fat and Cholesterol

    Science.gov (United States)

    ... Trans Fat Now Listed With Saturated Fat and Cholesterol Share Tweet Linkedin Pin it More sharing options ... I Do About Saturated Fat, Trans Fat, and Cholesterol? When comparing foods, look at the Nutrition Facts ...

  20. Calcium phosphate saturation in the western Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Naik, S.; Reddy, C.V.G.

    Temperature, inorganic phosphate concentration and pH seem to be the major factors influencing the degree of saturation of calcium phosphate in sea water. Two water regions can be demarcated in the study area based on the saturation patterns...

  1. Nonmonotone Saturation Profiles for Hydrostatic Equilibrium in Homogeneous Porous Media

    NARCIS (Netherlands)

    Hilfer, R.; Doster, F.; Zegeling, P.A.|info:eu-repo/dai/nl/073634433

    2012-01-01

    Nonmonotonic saturation profiles (saturation overshoot) occur as travelling waves in gravity driven fingering. They seem important for preferential flow mechanisms and have found much attention recently. Here, we predict them even for hydrostatic equilibrium when all velocities vanish. We suggest

  2. Heavy Flavor Production in DGLAP improved Saturation Model

    CERN Document Server

    Sapeta, S

    2007-01-01

    The saturation model with DGLAP evolution is shown to give good description of the production of the charm and beauty quarks in deep inelastic scattering. The modifications of saturation properties caused by the presence of heavy quarks are also discussed.

  3. Rigid aleph_epsilon-saturated models of superstable theories

    OpenAIRE

    Shami, Ziv; Shelah, Saharon

    1999-01-01

    In a countable superstable NDOP theory, the existence of a rigid aleph_epsilon-saturated model implies the existence of 2^lambda rigid aleph_epsilon-saturated models of power lambda for every lambda>2^{aleph_0}.

  4. Silica fractal atomic clusters saturated with OH

    CERN Document Server

    Olivi-Tran, N

    2003-01-01

    We constructed regular fractal SiOH atomic clusters which pending bonds are saturated with OH molecules. We calculated the binding energies of these clusters as well as for sp sup 2 hybridization as for sp sup 3 hybridizations. The result are the following: for the two hybridizations, the total binding energies have a linear dependence on the size of the fractal cluster, which comes directly from the scaling law of the fractal characteristic of the building of the cluster. We related by a scaling law, the number of electronic bonds and the total bonding energy.

  5. Chloride diffusion in partially saturated cementitious material

    DEFF Research Database (Denmark)

    Nielsen, Erik Pram; Geiker, Mette Rica

    2003-01-01

    The paper proposes a combined application of composite theory and Powers' model for microstructural development for the estimation of the diffusion coefficient as a function of the moisture content of a defect-free cementitious material. Measurements of chloride diffusion in mortar samples (440 kg....../m(3) rapid-hardening Portland cement, w/c = 0.5, maturity minimum 6 months) stored at 65% and 85% RH, as well as in vacuum-saturated mortar samples, illustrate the applicability of the method. (C) 2003 Elsevier Science Ltd. All rights reserved....

  6. Simple setup for gas-phase h/d exchange mass spectrometry coupled to electron transfer dissociation and ion mobility for analysis of polypeptide structure on a liquid chromatographic time scale

    DEFF Research Database (Denmark)

    Mistarz, Ulrik Hvid; Brown, Jeffery M; Haselmann, Kim F

    2014-01-01

    with liquid chromatography and a chip-based automated nanoESI interface, allowing for online gas-phase HDX-MS analysis of peptides and proteins separated on a liquid chromatographic time scale at increased throughput. Furthermore, online gas-phase HDX-MS could be performed in tandem with ion mobility......Gas-phase hydrogen/deuterium exchange (HDX) is a fast and sensitive, yet unharnessed analytical approach for providing information on the structural properties of biomolecules, in a complementary manner to mass analysis. Here, we describe a simple setup for ND3-mediated millisecond gas-phase HDX...... gas immediately upstream or downstream of the primary skimmer cone. The approach was implemented on three commercially available mass spectrometers and required no or minor fully reversible reconfiguration of gas-inlets of the ion source. Results from gas-phase HDX-MS of peptides using the aqueous ND3...

  7. Inheritance of reduced saturated fatty acid content in sunflower oil

    OpenAIRE

    Vick Brady A.; Jan C.C.; Miller Jerry F.

    2002-01-01

    In recent years, consumers have become concerned with reducing the saturated fat content of their diet. Studies have indicated that high levels of saturated fat consumption are correlated with increased risk of coronary heart disease. The total saturated fat content of oil from current sunflower hybrids averages about 130 g kg-1. To identify sunflower germplasm with reduced saturated fatty acid composition, a total of 884 cultivated sunflower accessions from the USDA-ARS North Central Regiona...

  8. Venous saturation and blood flow behavior during laser-induced photodissociation of oxyhemoglobin

    Science.gov (United States)

    Mamilov, S. A.; Yesman, S. S.; Asimov, M. M.; Gisbrecht, A. I.

    2013-03-01

    The value of relative oxyhemoglobin concentration (saturation) in arterial (SаO2) and venous blood (SvO2) plays a significant role in the oxygen exchange in tissue and is used as criterion of delivery of oxygen adequate to the needs of tissue cells. Reduction of the volume of blood flows as well as reduction of oxygen concentration in arterial blood causes hypoxia - deficit of oxygen in tissue. One of the main mechanisms of elimination of hypoxia is based on compensation of the oxygen deficit by increasing the oxygen extraction from arterial blood, which leads to reduction of oxygen in the venous blood 1. In this report two optical techniques for measurement of venous blood saturation are presented. The first one is based on the pulseoximetry with artificial mechanical modulation of the tissue volume and the second one on the spectrophotometry of human respiratory rhythm. Good correlation between the results obtained with both techniques is observed.

  9. Test of Scintillometer Saturation Correction Methods Using Field Experimental Data

    NARCIS (Netherlands)

    Kleissl, J.; Hartogensis, O.K.; Gomez, J.D.

    2010-01-01

    Saturation of large aperture scintillometer (LAS) signals can result in sensible heat flux measurements that are biased low. A field study with LASs of different aperture sizes and path lengths was performed to investigate the onset of, and corrections for, signal saturation. Saturation already

  10. A demonstration experiment for studying the properties of saturated vapor

    Science.gov (United States)

    Grebenev, Igor V.; Lebedeva, Olga V.; Polushkina, Svetlana V.

    2017-11-01

    The paper proposes an important demonstration experiment that can be used at secondary schools in physics. The described experiment helps students learn the main concepts of the topic ‘saturated vapor’, namely, evaporation, condensation, dynamic equilibrium, saturation vapor, partial pressure, and the dependence of saturated vapor pressure on temperature.

  11. Matrix-algebra-based calculations of the time evolution of the binary spin-bath model for magnetization transfer.

    Science.gov (United States)

    Müller, Dirk K; Pampel, André; Möller, Harald E

    2013-05-01

    Quantification of magnetization-transfer (MT) experiments are typically based on the assumption of the binary spin-bath model. This model allows for the extraction of up to six parameters (relative pool sizes, relaxation times, and exchange rate constants) for the characterization of macromolecules, which are coupled via exchange processes to the water in tissues. Here, an approach is presented for estimating MT parameters acquired with arbitrary saturation schemes and imaging pulse sequences. It uses matrix algebra to solve the Bloch-McConnell equations without unwarranted simplifications, such as assuming steady-state conditions for pulsed saturation schemes or neglecting imaging pulses. The algorithm achieves sufficient efficiency for voxel-by-voxel MT parameter estimations by using a polynomial interpolation technique. Simulations, as well as experiments in agar gels with continuous-wave and pulsed MT preparation, were performed for validation and for assessing approximations in previous modeling approaches. In vivo experiments in the normal human brain yielded results that were consistent with published data. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Monthly dynamics of carbon dioxide exchange across the sea surface of the Arctic Ocean in response to changes in gas transfer velocity and partial pressure of CO2 in 2010

    Directory of Open Access Journals (Sweden)

    Iwona Wrobel

    2017-10-01

    Full Text Available The Arctic Ocean (AO is an important basin for global oceanic carbon dioxide (CO2 uptake, but the mechanisms controlling air–sea gas fluxes are not fully understood, especially over short and long timescales. The oceanic sink of CO2 is an important part of the global carbon budget. Previous studies have shown that in the AO differences in the partial pressure of CO2 (ΔpCO2 and gas transfer velocity (k both contribute significantly to interannual air–sea CO2 flux variability, but that k is unimportant for multidecadal variability. This study combined Earth Observation (EO data collected in 2010 with the in situ pCO2 dataset from Takahashi et al. (2009 (T09 using a recently developed software toolbox called FluxEngine to determine the importance of k and ΔpCO2 on CO2 budgets in two regions of the AO – the Greenland Sea (GS and the Barents Sea (BS with their continental margins. Results from the study indicate that the variability in wind speed and, hence, the gas transfer velocity, generally play a major role in determining the temporal variability of CO2 uptake, while variability in monthly ΔpCO2 plays a major role spatially, with some exceptions.

  13. Saturated hydraulic conductivity of an alluvial soil with different exchangeable sodium percentages

    OpenAIRE

    Barreto Filho, Francisco L.; Guerra, Hugo O. Carvallo; Gheyi, Hans R.

    2003-01-01

    El efecto del porcentaje de sodio intercambiable (PSI) sobre la conductividad hidráulica de un suelo saturado, fue estudiado en condiciones de laboratorio a través de la determinación de las relaciones entre la conductividad hidráulica medida en un suelo normal y las medidas en suelos con diferentes PSI. Los resultados muestran una gran reducción de la conductividad hidráulica con el aumento de sodio en el suelo, llegando esta reducción a ser en las muestras más sodificadas de casi 100%, cuan...

  14. HFO1234ze(Z) saturated vapour condensation inside a brazed plate heat exchanger

    OpenAIRE

    Longo, Giovanni A.; Zilio, Claudio; Righetti, Giulia; Brown, J. Steven

    2014-01-01

    All commonly used Hydro-Fluoro-Carbon (HFC) refrigerants have a high Global Warming Potential (GWP), higher than 1000, and some countries have already enacted legislative measures towards a limitation in the use or a gradual phase-out of HFCs. HFO1234ze(Z) was identified as a new low GWP refrigerant, which has the potential to be a global sustainable solution particularly for heat pump application. HFO1234ze(Z) is a pure compound which exhibits low pressure and is classified by ANSI / ASHRAE ...

  15. Ideal Heat Exchange System

    Science.gov (United States)

    Tsirlin, A. M.

    2017-09-01

    The requirements with which a heat exchange system should comply in order that at certain values of the total contact surface and heat load the entropy production in it should be minimal have been determined. It has been shown that this system can serve as a standard for real systems of irreversible heat exchange. We have found the conditions for physical realizability of a heat exchange system in which heat exchange occurs by a law linear with respect to the temperature difference between contacting flows. Analogous conditions are given without deriving for the case of heat exchange by the Fourier law.

  16. Resolution exchange simulation.

    Science.gov (United States)

    Lyman, Edward; Ytreberg, F Marty; Zuckerman, Daniel M

    2006-01-20

    We extend replica-exchange simulation in two ways and apply our approaches to biomolecules. The first generalization permits exchange simulation between models of differing resolution--i.e., between detailed and coarse-grained models. Such "resolution exchange" can be applied to molecular systems or spin systems. The second extension is to "pseudoexchange" simulations, which require little CPU usage for most levels of the exchange ladder and also substantially reduce the need for overlap between levels. Pseudoexchanges can be used in either replica or resolution exchange simulations. We perform efficient, converged simulations of a 50-atom peptide to illustrate the new approaches.

  17. Combined Steady-State and Dynamic Heat Exchanger Experiment

    Science.gov (United States)

    Luyben, William L.; Tuzla, Kemal; Bader, Paul N.

    2009-01-01

    This paper describes a heat-transfer experiment that combines steady-state analysis and dynamic control. A process-water stream is circulated through two tube-in-shell heat exchangers in series. In the first, the process water is heated by steam. In the second, it is cooled by cooling water. The equipment is pilot-plant size: heat-transfer areas…

  18. The magic of knowledge exchange

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    “If you have an apple and I have an apple and we exchange these apples then you and I will still each have one apple. But if you have an idea and I have an idea and we exchange these ideas, then each of us will have two ideas”. (George Bernard Shaw). The CERN Global Network is a new, ideal place for past and present members of the CERN community to share ideas and create new links.   On 29 April, CERN’s Knowledge and Technology Transfer (KTT) Group launched the CERN Global Network, a tool whose aim is to facilitate knowledge exchanges inside and outside CERN. "Among the greatest ambassadors of knowledge are people who have been trained and educated at CERN and also at other institutes: here is where the Global Network comes into play", says Rolf Heuer, CERN Director General. “During the first phase, the Network will be open to current and former members of the CERN personnel, that is, staff, fellows, apprentices, associates, students a...

  19. The rate of fall of arterial oxyhemoglobin saturation in obstructive sleep apnea.

    Science.gov (United States)

    Fletcher, E C; Costarangos, C; Miller, T

    1989-10-01

    During breath holding, correlations have been demonstrated between the rate of fall of arterial oxyhemoglobin saturation (dSaO2/dt) and the following: thoracic gas volume at apnea onset, resting oxygen consumption, preapneic arterial oxyhemoglobin saturation (SaO2) and obesity. A key factor influencing dSaO2/dt is mixed venous oxyhemoglobin saturation (SvO2) as recently demonstrated in an animal model of obstructive apnea. The purpose of the present study was to see if dSaO2/dt was related to SvO2 during sleep in a group of subjects with severe obstructive sleep apnea (OSA) and varying levels of SvO2. Eight OSA subjects were studied during sleep with indwelling arterial and central venous catheters. Continuous SaO2 was measured by ear oximetry while continuous SvO2 was measured through the fiberoptic bundle of a Shaw Opticath catheter. Thirty percent or more of all obstructive apneas were scored for duration, preapneic SaO2, SvO2 and dSaO2/dt. Least squares regression was used to examine the relationship between dSaO2/dt and other measured variables. The dSaO2/dt showed a consistent negative correlation with preapneic SvO2 and was not related to duration. Mean dSaO2/dt during sleep correlated to some degree with the degree of gas exchange (Qva/Qt) abnormality prior to sleep. It is concluded that in humans, SvO2 plays a substantial role in determining dSaO2/dt. Potentially, the presence of gas exchange abnormalities (eg, found in intrinsic lung disease) causing hypoxemia and low SvO2 may steepen dSaO2/dt, lowering the nadir level of apneic desaturation for the same duration of apnea found in a patient with more normal gas exchange.

  20. Transfer Pricing

    DEFF Research Database (Denmark)

    Rohde, Carsten; Rossing, Christian Plesner

    trade internally as the units have to decide what prices should be paid for such inter-unit transfers. One important challenge is to uncover the consequences that different transfer prices have on the willingness in the organizational units to coordinate activities and trade internally. At the same time...