WorldWideScience

Sample records for exchange models

  1. Characteristics of model heat exchanger

    Science.gov (United States)

    Kolínský, Jan

    2017-09-01

    The aim of this paper is thermal analysis of model water to water heat exchanger at different mass flow rates. Experimental study deals with determination of total heat transfer - power of the heat exchanger. Furthermore the paper deals with analysis of heat exchanger charakcteristic using a definition of thermal efficiency. It is demonstrated that it is advisable to monitor the dependence of thermal efficiency and flow ratio.

  2. Rethinking exchange market models as optimization algorithms

    Science.gov (United States)

    Luquini, Evandro; Omar, Nizam

    2018-02-01

    The exchange market model has mainly been used to study the inequality problem. Although the human society inequality problem is very important, the exchange market models dynamics until stationary state and its capability of ranking individuals is interesting in itself. This study considers the hypothesis that the exchange market model could be understood as an optimization procedure. We present herein the implications for algorithmic optimization and also the possibility of a new family of exchange market models

  3. Modelling and simulation of a heat exchanger

    Science.gov (United States)

    Xia, Lei; Deabreu-Garcia, J. Alex; Hartley, Tom T.

    1991-01-01

    Two models for two different control systems are developed for a parallel heat exchanger. First by spatially lumping a heat exchanger model, a good approximate model which has a high system order is produced. Model reduction techniques are applied to these to obtain low order models that are suitable for dynamic analysis and control design. The simulation method is discussed to ensure a valid simulation result.

  4. Model Information Exchange System (MIXS).

    Science.gov (United States)

    2013-08-01

    Many travel demand forecast models operate at state, regional, and local levels. While they share the same physical network in overlapping geographic areas, they use different and uncoordinated modeling networks. This creates difficulties for models ...

  5. Modeling foreign exchange risk premium in Armenia

    NARCIS (Netherlands)

    Poghosyan, Tigran; Kocenda, Evnen; Zemcik, Petr

    2008-01-01

    This paper applies stochastic discount factor methodology to modeling the foreign exchange risk premium in Armenia. We use weekly data on foreign and domestic currency deposits, which coexist in the Armenian banking system. This coexistence implies elimination of the cross-country risks and

  6. Modeling the Volatility of Exchange Rates: GARCH Models

    Directory of Open Access Journals (Sweden)

    Fahima Charef

    2017-03-01

    Full Text Available The modeling of the dynamics of the exchange rate at a long time remains a financial and economic research center. In our research we tried to study the relationship between the evolution of exchange rates and macroeconomic fundamentals. Our empirical study is based on a series of exchange rates for the Tunisian dinar against three currencies of major trading partners (dollar, euro, yen and fundamentals (the terms of trade, the inflation rate, the interest rate differential, of monthly data, from jan 2000 to dec-2014, for the case of the Tunisia. We have adopted models of conditional heteroscedasticity (ARCH, GARCH, EGARCH, TGARCH. The results indicate that there is a partial relationship between the evolution of the Tunisian dinar exchange rates and macroeconomic variables.

  7. Double exchange model for magnetic hexaborides.

    Science.gov (United States)

    Pereira, Vitor M; Lopes dos Santos, J M B; Castro, Eduardo V; Neto, A H Castro

    2004-10-01

    A microscopic theory for rare-earth ferromagnetic hexaborides, such as Eu1-xCaxB6, is proposed on the basis of the double-exchange Hamiltonian. In these systems, the reduced carrier concentrations place the Fermi level near the mobility edge, introduced in the spectral density by the disordered spin background. We show that the transport properties such as the Hall effect, magnetoresistance, frequency dependent conductivity, and dc resistivity can be quantitatively described within the model. We also make specific predictions for the behavior of the Curie temperature T(C) as a function of the plasma frequency omega(p).

  8. A Range-Based Multivariate Model for Exchange Rate Volatility

    NARCIS (Netherlands)

    B. Tims (Ben); R.J. Mahieu (Ronald)

    2003-01-01

    textabstractIn this paper we present a parsimonious multivariate model for exchange rate volatilities based on logarithmic high-low ranges of daily exchange rates. The multivariate stochastic volatility model divides the log range of each exchange rate into two independent latent factors, which are

  9. Modeling Exchange Rate Heteroskedasticity in Nigeria (1986-2008 ...

    African Journals Online (AJOL)

    The exchange rate of naira vis-à-vis the U.S dollar has attained varying rates all through different time horizons exhibiting hetroskedasticity pattern in trend since the transition from fixed exchange rate regime to floating exchange rate regime in Nigeria. On this basis, the study modelled the consistency and persistency of ...

  10. A meson exchange model for the YN interaction

    Energy Technology Data Exchange (ETDEWEB)

    J. Haidenbauer; W. Melnitchouk; J. Speth

    2001-09-01

    We present a new model for the hyperon-nucleon (Lambda N, Sigma N) interaction, derived within the meson exchange framework. The model incorporates the standard one boson exchange contributions of the lowest pseudoscalar and vector meson multiplets with coupling constants fixed by SU(6) symmetry relations. In addition - as the main feature of the new model - the exchange of two correlated pions or kaons, both in the scalar-isoscalar (sigma) and vector-isovector (rho) channels, is included.

  11. Analysis Of Building Information Modelling Using Ifc Data Exchange

    National Research Council Canada - National Science Library

    Darius Migilinskas; Liudas Galdikas; Vaidotas Šarka

    2013-01-01

    The paper provides an overview of IFC data exchange standardsfor shortcomings and their solution and considers the current situationin Lithuanian construction sector in implementing buildinginformation modelling (BIM...

  12. A Scale Model of Cation Exchange for Classroom Demonstration.

    Science.gov (United States)

    Guertal, E. A.; Hattey, J. A.

    1996-01-01

    Describes a project that developed a scale model of cation exchange that can be used for a classroom demonstration. The model uses kaolinite clay, nails, plywood, and foam balls to enable students to gain a better understanding of the exchange complex of soil clays. (DDR)

  13. Modeling Philippine Stock Exchange Composite Index Using Time Series Analysis

    Science.gov (United States)

    Gayo, W. S.; Urrutia, J. D.; Temple, J. M. F.; Sandoval, J. R. D.; Sanglay, J. E. A.

    2015-06-01

    This study was conducted to develop a time series model of the Philippine Stock Exchange Composite Index and its volatility using the finite mixture of ARIMA model with conditional variance equations such as ARCH, GARCH, EG ARCH, TARCH and PARCH models. Also, the study aimed to find out the reason behind the behaviorof PSEi, that is, which of the economic variables - Consumer Price Index, crude oil price, foreign exchange rate, gold price, interest rate, money supply, price-earnings ratio, Producers’ Price Index and terms of trade - can be used in projecting future values of PSEi and this was examined using Granger Causality Test. The findings showed that the best time series model for Philippine Stock Exchange Composite index is ARIMA(1,1,5) - ARCH(1). Also, Consumer Price Index, crude oil price and foreign exchange rate are factors concluded to Granger cause Philippine Stock Exchange Composite Index.

  14. STEP - Product Model Data Sharing and Exchange

    DEFF Research Database (Denmark)

    Kroszynski, Uri

    1998-01-01

    - Product Data Representation and Exchange", featuring at present some 30 released parts, and growing continuously. Many of the parts are Application Protocols (AP). This article presents an overview of STEP, based upon years of involvement in three ESPRIT projects, which contributed to the development...

  15. MONETARY MODELS AND EXCHANGE RATE DETERMINATION ...

    African Journals Online (AJOL)

    1.242 percent increase in the nominal exchange rate (depreciation). The empirics of the results are straight forward; a domestic economy that inflates her money supply at a faster rate than does her trading partner can expect to suffer depreciation in the external value of her currency. Consequently, any change in the money ...

  16. EXCHANGE-RATES FORECASTING: EXPONENTIAL SMOOTHING TECHNIQUES AND ARIMA MODELS

    Directory of Open Access Journals (Sweden)

    Dezsi Eva

    2011-07-01

    Full Text Available Exchange rates forecasting is, and has been a challenging task in finance. Statistical and econometrical models are widely used in analysis and forecasting of foreign exchange rates. This paper investigates the behavior of daily exchange rates of the Romanian Leu against the Euro, United States Dollar, British Pound, Japanese Yen, Chinese Renminbi and the Russian Ruble. Smoothing techniques are generated and compared with each other. These models include the Simple Exponential Smoothing technique, as the Double Exponential Smoothing technique, the Simple Holt-Winters, the Additive Holt-Winters, namely the Autoregressive Integrated Moving Average model.

  17. Rasch models with exchangeable rows and columns

    DEFF Research Database (Denmark)

    Lauritzen, Steffen Lilholt

    The article studies distributions of doubly infinite binary matrices with exchangeable rows and columns which satify the further property that the probability of any $m \\times n$ submatrix is a function of the row- and column sums of that matrix. We show that any such distribution is a (unique......) mixture of random Rasch distributions. The non-degenerate elements of these distributions were introduced by Rasch (1960). We investigate the relationship between these random Rasch distributions and a problem in visual perception, the characters of a certain Abelian semigroup, and the problem...

  18. Proton exchange membrane fuel cells modeling

    CERN Document Server

    Gao, Fengge; Miraoui, Abdellatif

    2013-01-01

    The fuel cell is a potential candidate for energy storage and conversion in our future energy mix. It is able to directly convert the chemical energy stored in fuel (e.g. hydrogen) into electricity, without undergoing different intermediary conversion steps. In the field of mobile and stationary applications, it is considered to be one of the future energy solutions.Among the different fuel cell types, the proton exchange membrane (PEM) fuel cell has shown great potential in mobile applications, due to its low operating temperature, solid-state electrolyte and compactness.This book pre

  19. Multiphysics Numerical Modeling of a Fin and Tube Heat Exchanger

    DEFF Research Database (Denmark)

    Singh, Shobhana; Sørensen, Kim; Condra, Thomas Joseph

    2015-01-01

    In the present research work, a modeling effort to predict the performance of a liquid-gas type fin and tube heat exchanger design is made. Three dimensional (3D) steady state numerical model is developed using commercial software COMSOL Multiphysics based on finite element method (FEM). For the ......In the present research work, a modeling effort to predict the performance of a liquid-gas type fin and tube heat exchanger design is made. Three dimensional (3D) steady state numerical model is developed using commercial software COMSOL Multiphysics based on finite element method (FEM...

  20. A stochastic modeling of isotope exchange reactions in glutamine synthetase

    Science.gov (United States)

    Kazmiruk, N. V.; Boronovskiy, S. E.; Nartsissov, Ya R.

    2017-11-01

    The model presented in this work allows simulation of isotopic exchange reactions at chemical equilibrium catalyzed by a glutamine synthetase. To simulate the functioning of the enzyme the algorithm based on the stochastic approach was applied. The dependence of exchange rates for 14C and 32P on metabolite concentration was estimated. The simulation results confirmed the hypothesis of the ascertained validity for preferred order random binding mechanism. Corresponding values of K0.5 were also obtained.

  1. Thermal performance modeling of cross-flow heat exchangers

    CERN Document Server

    Cabezas-Gómez, Luben; Saíz-Jabardo, José Maria

    2014-01-01

    This monograph introduces a numerical computational methodology for thermal performance modeling of cross-flow heat exchangers, with applications in chemical, refrigeration and automobile industries. This methodology allows obtaining effectiveness-number of transfer units (e-NTU) data and has been used for simulating several standard and complex flow arrangements configurations of cross-flow heat exchangers. Simulated results have been validated through comparisons with results from available exact and approximate analytical solutions. Very accurate results have been obtained over wide ranges

  2. MODELING RESULTS FROM CESIUM ION EXCHANGE PROCESSING WITH SPHERICAL RESINS

    Energy Technology Data Exchange (ETDEWEB)

    Nash, C.; Hang, T.; Aleman, S.

    2011-01-03

    Ion exchange modeling was conducted at the Savannah River National Laboratory to compare the performance of two organic resins in support of Small Column Ion Exchange (SCIX). In-tank ion exchange (IX) columns are being considered for cesium removal at Hanford and the Savannah River Site (SRS). The spherical forms of resorcinol formaldehyde ion exchange resin (sRF) as well as a hypothetical spherical SuperLig{reg_sign} 644 (SL644) are evaluated for decontamination of dissolved saltcake wastes (supernates). Both SuperLig{reg_sign} and resorcinol formaldehyde resin beds can exhibit hydraulic problems in their granular (nonspherical) forms. SRS waste is generally lower in potassium and organic components than Hanford waste. Using VERSE-LC Version 7.8 along with the cesium Freundlich/Langmuir isotherms to simulate the waste decontamination in ion exchange columns, spherical SL644 was found to reduce column cycling by 50% for high-potassium supernates, but sRF performed equally well for the lowest-potassium feeds. Reduced cycling results in reduction of nitric acid (resin elution) and sodium addition (resin regeneration), therefore, significantly reducing life-cycle operational costs. These findings motivate the development of a spherical form of SL644. This work demonstrates the versatility of the ion exchange modeling to study the effects of resin characteristics on processing cycles, rates, and cold chemical consumption. The value of a resin with increased selectivity for cesium over potassium can be assessed for further development.

  3. Exchange Rate Forecasting Using Entropy Optimized Multivariate Wavelet Denoising Model

    Directory of Open Access Journals (Sweden)

    Kaijian He

    2014-01-01

    Full Text Available Exchange rate is one of the key variables in the international economics and international trade. Its movement constitutes one of the most important dynamic systems, characterized by nonlinear behaviors. It becomes more volatile and sensitive to increasingly diversified influencing factors with higher level of deregulation and global integration worldwide. Facing the increasingly diversified and more integrated market environment, the forecasting model in the exchange markets needs to address the individual and interdependent heterogeneity. In this paper, we propose the heterogeneous market hypothesis- (HMH- based exchange rate modeling methodology to model the micromarket structure. Then we further propose the entropy optimized wavelet-based forecasting algorithm under the proposed methodology to forecast the exchange rate movement. The multivariate wavelet denoising algorithm is used to separate and extract the underlying data components with distinct features, which are modeled with multivariate time series models of different specifications and parameters. The maximum entropy is introduced to select the best basis and model parameters to construct the most effective forecasting algorithm. Empirical studies in both Chinese and European markets have been conducted to confirm the significant performance improvement when the proposed model is tested against the benchmark models.

  4. Flight Dynamic Model Exchange using XML

    Science.gov (United States)

    Jackson, E. Bruce; Hildreth, Bruce L.

    2002-01-01

    The AIAA Modeling and Simulation Technical Committee has worked for several years to develop a standard by which the information needed to develop physics-based models of aircraft can be specified. The purpose of this standard is to provide a well-defined set of information, definitions, data tables and axis systems so that cooperating organizations can transfer a model from one simulation facility to another with maximum efficiency. This paper proposes using an application of the eXtensible Markup Language (XML) to implement the AIAA simulation standard. The motivation and justification for using a standard such as XML is discussed. Necessary data elements to be supported are outlined. An example of an aerodynamic model as an XML file is given. This example includes definition of independent and dependent variables for function tables, definition of key variables used to define the model, and axis systems used. The final steps necessary for implementation of the standard are presented. Software to take an XML-defined model and import/export it to/from a given simulation facility is discussed, but not demonstrated. That would be the next step in final implementation of standards for physics-based aircraft dynamic models.

  5. Modelling boreal forest CO{sub 2} exchange and seasonality

    Energy Technology Data Exchange (ETDEWEB)

    Thum, T.

    2009-07-01

    Man-induced climate change has raised the need to predict the future climate and its feedback to vegetation. These are studied with global climate models; to ensure the reliability of these predictions, it is important to have a biosphere description that is based upon the latest scientific knowledge. This work concentrates on the modelling of the CO{sub 2} exchange of the boreal coniferous forest, studying also the factors controlling its growing season and how these can be used in modelling. In addition, the modelling of CO{sub 2} gas exchange at several scales was studied. A canopy-level CO{sub 2} gas exchange model was developed based on the biochemical photosynthesis model. This model was first parameterized using CO{sub 2} exchange data obtained by eddy covariance (EC) measurements from a Scots pine forest at Sodankylae. The results were compared with a semi-empirical model that was also parameterized using EC measurements. Both of the models gave satisfactory results. The biochemical canopy-level model was further parameterized at three other coniferous forest sites located in Finland and Sweden. At all the sites, the two most important biochemical model parameters showed seasonal behaviour, i.e., their temperature responses changed according to the season. Modelling results were improved when these changeover dates were related to temperature indices. During summer-time the values of the biochemical model parameters were similar at all the four sites. Different control factors for CO{sub 2} gas exchange were studied at the four coniferous forests, including how well these factors can be used to predict the initiation and cessation of the CO{sub 2} uptake. Temperature indices, atmospheric CO{sub 2} concentration, surface albedo and chlorophyll fluorescence (CF) were all found to be useful and have predictive power. In Finnish Lapland a trend toward an earlier start of the CO{sub 2} uptake in spring was also observed. In addition, a detailed simulation study

  6. Modelling of storage tanks with immersed heat exchangers

    OpenAIRE

    Cadafalch Rabasa, Jordi; Carbonell Sánchez, Daniel; Consul Serracanta, Ricard; Ruiz Mansilla, Rafael

    2015-01-01

    A model of a storage tank with an immersed serpentine heat exchanger is described and validated against experimental data available from the literature. The tank is modelled one dimensionally using the multi-node approach corrected by an energy conservative reversion elimination algorithm to prevent inverse gradient solutions to occur. A one dimensional model in the flow direction is also used for the serpentine based on control volume techniques. The serpentine is discretized in equal sized ...

  7. A Model for Trading the Foreign Exchange Market

    African Journals Online (AJOL)

    PROF. OLIVER OSUAGWA

    Keywords: FOREX, marcov chain, model, neural network, trading robot. Introduction. Electronic currency trading in the. Foreign Exchange (FOREX or FX) market is now a very popular activity. FOREX is the single largest market in the world accessible to anyone. Its volumes are greater than all stock, commodities and debt.

  8. Monetary models and exchange rate determination: The Nigerian ...

    African Journals Online (AJOL)

    The model shows that relative money supplies, income levels and real interest rate differentials provide better forecasts of the naira-US dollar exchange rate. The empirical validity of our MFPM estimates is buttressed by the fact that the coefficient of the difference between the domestic and foreign money supply is close to ...

  9. Modeling canopy CO2 exchange in the European Russian Arctic

    DEFF Research Database (Denmark)

    Kiepe, Isabell; Friborg, Thomas; Herbst, Mathias

    2013-01-01

    In this study, we use the coupled photosynthesis-stomatal conductance model of Collatz et al. (1991) to simulate the current canopy carbon dioxide exchange of a heterogeneous tundra ecosystem in European Russia. For the parameterization, we used data obtained from in situ leaf level measurements...

  10. Stochastic Model of Maturation and Vesicular Exchange in Cellular Organelles

    CERN Document Server

    Vagne, Quentin

    2016-01-01

    The dynamical organization of membrane-bound organelles along intracellular transport pathways relies on vesicular exchange between organelles and on biochemical maturation of the organelle content by specific enzymes. The relative importance of each mechanism in controlling organelle dynamics remains controversial, in particular for transport through the Golgi apparatus. Using a stochastic model, we show that full maturation of membrane-bound compartments can be seen as the stochastic escape from a steady-state in which export is dominated by vesicular exchange. We show that full maturation can contribute a significant fraction of the total out-flux for small organelles such as endosomes and Golgi cisternae.

  11. Effects of perturbative exchanges in a QCD-string model

    Energy Technology Data Exchange (ETDEWEB)

    J. Weda; J. Tjon

    2004-03-01

    The QCD-string model for baryons derived by Simonov and used for the calculation of baryon magnetic moments in a previous paper is extended to include also perturbative gluon and meson exchanges. The mass spectrum of the baryon multiplet is studied. For the meson interaction either the pseudoscalar or pseudovector coupling is used. Predictions are compared with the experimental data. Besides these exchanges the influence of excited quark orbitals on the baryon ground state are considered by performing a multichannel calculation. The nucleon-Delta splitting increases due to the mixing of higher quark states while the baryon magnetic momenta decrease. The multichannel calculation with perturbative exchanges is shown to yield reasonable magnetic moments while the mass spectrum is close to experiment.

  12. Modeling and predicting historical volatility in exchange rate markets

    Science.gov (United States)

    Lahmiri, Salim

    2017-04-01

    Volatility modeling and forecasting of currency exchange rate is an important task in several business risk management tasks; including treasury risk management, derivatives pricing, and portfolio risk evaluation. The purpose of this study is to present a simple and effective approach for predicting historical volatility of currency exchange rate. The approach is based on a limited set of technical indicators as inputs to the artificial neural networks (ANN). To show the effectiveness of the proposed approach, it was applied to forecast US/Canada and US/Euro exchange rates volatilities. The forecasting results show that our simple approach outperformed the conventional GARCH and EGARCH with different distribution assumptions, and also the hybrid GARCH and EGARCH with ANN in terms of mean absolute error, mean of squared errors, and Theil's inequality coefficient. Because of the simplicity and effectiveness of the approach, it is promising for US currency volatility prediction tasks.

  13. Development of models for exchange of electronic documents

    Energy Technology Data Exchange (ETDEWEB)

    Glavev, Victor, E-mail: viktor.glavev@gmail.com [Technical University of Sofia, Faculty of Applied Mathematics and Informatics, 8, Kl.Ohridski Blvd., 1000 Sofia (Bulgaria)

    2014-11-18

    The report presents a model for exchange of electronic documents between different government administrations. It defines electronic messages that are transmitted between them and the way that messages should be processed by software systems. The proposed approach is sufficiently general and allows use of the best applicable information technologies such as data presentation structures and communication protocols. Within the study, a simple implementation of the model is implemented and deployed in various government administrations in Republic of Bulgaria.

  14. A Dealer Model of Foreign Exchange Market with Finite Assets

    Science.gov (United States)

    Hamano, Tomoya; Kanazawa, Kiyoshi; Takayasu, Hideki; Takayasu, Misako

    An agent-based model is introduced to study the finite-asset effect in foreign exchange markets. We find that the transacted price asymptotically approaches an equilibrium price, which is determined by the monetary balance between the pair of currencies. We phenomenologically derive a formula to estimate the equilibrium price, and we model its relaxation dynamics around the equilibrium price on the basis of a Langevin-like equation.

  15. Kinetic model of mass exchange with dynamic Arrhenius transition rates

    Science.gov (United States)

    Hristopulos, Dionissios T.; Muradova, Aliki

    2016-02-01

    We study a nonlinear kinetic model of mass exchange between interacting grains. The transition rates follow the Arrhenius equation with an activation energy that depends dynamically on the grain mass. We show that the activation parameter can be absorbed in the initial conditions for the grain masses, and that the total mass is conserved. We obtain numerical solutions of the coupled, nonlinear, ordinary differential equations of mass exchange for the two-grain system, and we compare them with approximate theoretical solutions in specific neighborhoods of the phase space. Using phase plane methods, we determine that the system exhibits regimes of diffusive and growth-decay (reverse diffusion) kinetics. The equilibrium states are determined by the mass equipartition and separation nullcline curves. If the transfer rates are perturbed by white noise, numerical simulations show that the system maintains the diffusive and growth-decay regimes; however, the noise can reverse the sign of equilibrium mass difference. Finally, we present theoretical analysis and numerical simulations of a system with many interacting grains. Diffusive and growth-decay regimes are established as well, but the approach to equilibrium is considerably slower. Potential applications of the mass exchange model involve coarse-graining during sintering and wealth exchange in econophysics.

  16. ECONOMETRIC APPROACH TO DIFFERENCE EQUATIONS MODELING OF EXCHANGE RATES CHANGES

    Directory of Open Access Journals (Sweden)

    Josip Arnerić

    2010-12-01

    Full Text Available Time series models that are commonly used in econometric modeling are autoregressive stochastic linear models (AR and models of moving averages (MA. Mentioned models by their structure are actually stochastic difference equations. Therefore, the objective of this paper is to estimate difference equations containing stochastic (random component. Estimated models of time series will be used to forecast observed data in the future. Namely, solutions of difference equations are closely related to conditions of stationary time series models. Based on the fact that volatility is time varying in high frequency data and that periods of high volatility tend to cluster, the most successful and popular models in modeling time varying volatility are GARCH type models and their variants. However, GARCH models will not be analyzed because the purpose of this research is to predict the value of the exchange rate in the levels within conditional mean equation and to determine whether the observed variable has a stable or explosive time path. Based on the estimated difference equation it will be examined whether Croatia is implementing a stable policy of exchange rates.

  17. Modeling Of Proton Exchange Membrane Fuel Cell Systems

    DEFF Research Database (Denmark)

    Nielsen, Mads Pagh

    The objective of this doctoral thesis was to develop reliable steady-state and transient component models suitable to asses-, develop- and optimize proton exchange membrane (PEM) fuel cell systems. Several components in PEM fuel cell systems were characterized and modeled. The developed component...... cell systems. Consequences of indirectly fueling PEM stacks with hydrocarbons using reforming technology were investigated using a PEM stack model including CO poisoning kinetics and a transient Simulink steam reforming system model. Aspects regarding the optimization of PEM fuel cell systems......- and system models match experimental data from the literature. However, limited data were available for verification so further work is necessary to confirm detailed aspects of the models. It is nonetheless expected that the developed models will be useful for system modeling and optimization of PEM fuel...

  18. Measuring and Modeling Component and Whole-System Carbon Exchange

    Energy Technology Data Exchange (ETDEWEB)

    Paul Bolstad

    2006-11-01

    We measured ecosystem/atmospheric carbon exchange through a range of methods covering a range of scales. We measured carbon (C) pool and flux for a number of previously poorly quantified ecosystems, developed measurement and modeling methods, and applied these to substantially increase the accuracy and reduce uncertainty in ecosystem/atmospheric C exchange at a range of scales. It appears most upland forests are weak to strong carbon sinks, and status depends largely on disturbance history and age. Net flux from wetland ecosystems appears to be from weak sinks to moderate sources of C to the atmosphere. We found limited evidence for a positive feedback of warming/drying to increased ecosystem C emissions. We further developed multi-source integration and modeling methods, including multiple towers, to scale estimates to landscapes and larger regions.

  19. Electronic circuit model for proton exchange membrane fuel cells

    Science.gov (United States)

    Yu, Dachuan; Yuvarajan, S.

    The proton exchange membrane (PEM) fuel cell is being investigated as an alternate power source for various applications like transportation and emergency power supplies. The paper presents a novel circuit model for a PEM fuel cell that can be used to design and analyze fuel cell power systems. The PSPICE-based model uses bipolar junction transistors (BJTs) and LC elements available in the PSPICE library with some modification. The model includes the phenomena like activation polarization, ohmic polarization, and mass transport effect present in a PEM fuel cell. The static and dynamic characteristics obtained through simulation are compared with experimental results obtained on a commercial fuel cell module.

  20. Generalized Bogoliubov Polariton Model: An Application to Stock Exchange Market

    Science.gov (United States)

    Thuy Anh, Chu; Anh, Truong Thi Ngoc; Lan, Nguyen Tri; Viet, Nguyen Ai

    2016-06-01

    A generalized Bogoliubov method for investigation non-simple and complex systems was developed. We take two branch polariton Hamiltonian model in second quantization representation and replace the energies of quasi-particles by two distribution functions of research objects. Application to stock exchange market was taken as an example, where the changing the form of return distribution functions from Boltzmann-like to Gaussian-like was studied.

  1. Exchange bias of patterned systems: Model and numerical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Griselda [Facultad de Fisica, P. Universidad Catolica de Chile, Casilla 306, Santiago 7820436 (Chile); Centro para el Desarrollo de la Nanociencia y la Nanotecnologia, CEDENNA, Avda. Ecuador 3493, Santiago (Chile); Kiwi, Miguel, E-mail: mkiwi@puc.c [Facultad de Fisica, P. Universidad Catolica de Chile, Casilla 306, Santiago 7820436 (Chile); Centro para el Desarrollo de la Nanociencia y la Nanotecnologia, CEDENNA, Avda. Ecuador 3493, Santiago (Chile); Mejia-Lopez, Jose; Ramirez, Ricardo [Facultad de Fisica, P. Universidad Catolica de Chile, Casilla 306, Santiago 7820436 (Chile); Centro para el Desarrollo de la Nanociencia y la Nanotecnologia, CEDENNA, Avda. Ecuador 3493, Santiago (Chile)

    2010-11-15

    The magnitude of the exchange bias field of patterned systems exhibits a notable increase in relation to the usual bilayer systems, where a continuous ferromagnetic film is deposited on an antiferromagnet insulator. Here we develop a model, and implement a Monte Carlo calculation, to interpret the experimental observations which is consistent with experimental results, on the basis of assuming a small fraction of spins pinned ferromagnetically in the antiferromagnetic interface layer.

  2. Analysis Of Building Information Modelling Using Ifc Data Exchange

    Directory of Open Access Journals (Sweden)

    Darius Migilinskas

    2013-12-01

    Full Text Available The paper provides an overview of IFC data exchange standardsfor shortcomings and their solution and considers the current situationin Lithuanian construction sector in implementing buildinginformation modelling (BIM and demand for classification applicationsin construction and design. Also, the article presents theresults of scientific research on the quality of IFC data exchangestandards. Finally, taking into account the made conclusions,recommendations and proposals for the further development ofdigital construction in Lithuania are put forward.

  3. The Chemistry of Atmosphere-Forest Exchange (CAFE) Model - Part 2: Application to BEARPEX-2007 observations

    National Research Council Canada - National Science Library

    G. M. Wolfe; J. A. Thornton; N. C. Bouvier-Brown; A. H. Goldstein; J.-H. Park; M. McKay; D. M. Matross; J. Mao; W. H. Brune; B. W. LaFranchi; E. C. Browne; K.-E. Min; P. J. Wooldridge; R. C. Cohen; J. D. Crounse; I. C. Faloona; J. B. Gilman; W. C. Kuster; J. A. de Gouw; A. Huisman; F. N. Keutsch

    2011-01-01

    In a companion paper, we introduced the Chemistry of Atmosphere-Forest Exchange (CAFE) model, a vertically-resolved 1-D chemical transport model designed to probe the details of near-surface reactive gas exchange...

  4. A theoretical model of unbalanced exchange flows through openings

    Science.gov (United States)

    Wise, Nicholas; Hunt, Gary

    2017-11-01

    Buoyancy-driven exchange flows through a single horizontal opening, for example through an opening at high level in a room containing warm air, are balanced, as there must be equal volume flux into and out of the opening. If a second, smaller, opening is introduced at low level in the room, air will enter through this opening. The volume flux out of the primary opening will therefore be larger than the volume flux in. This is an unbalanced exchange flow. A theoretical model to predict the volume flux of unbalanced buoyancy-driven exchange flows is developed. The model builds from a linear stability analysis for perturbations on a density interface, between buoyant and ambient fluid, advected out of the primary opening. Following this approach, we predict the criterion for the onset of bi-directional flow across circular openings as has been previously observed experimentally by others. The method developed is extended to non-circular geometries and comparisons are made between the volume fluxes predicted for circular and square openings. EPSRC.

  5. A continuum model for metabolic gas exchange in pear fruit.

    Directory of Open Access Journals (Sweden)

    Q Tri Ho

    2008-03-01

    Full Text Available Exchange of O(2 and CO(2 of plants with their environment is essential for metabolic processes such as photosynthesis and respiration. In some fruits such as pears, which are typically stored under a controlled atmosphere with reduced O(2 and increased CO(2 levels to extend their commercial storage life, anoxia may occur, eventually leading to physiological disorders. In this manuscript we have developed a mathematical model to predict the internal gas concentrations, including permeation, diffusion, and respiration and fermentation kinetics. Pear fruit has been selected as a case study. The model has been used to perform in silico experiments to evaluate the effect of, for example, fruit size or ambient gas concentration on internal O(2 and CO(2 levels. The model incorporates the actual shape of the fruit and was solved using fluid dynamics software. Environmental conditions such as temperature and gas composition have a large effect on the internal distribution of oxygen and carbon dioxide in fruit. Also, the fruit size has a considerable effect on local metabolic gas concentrations; hence, depending on the size, local anaerobic conditions may result, which eventually may lead to physiological disorders. The model developed in this manuscript is to our knowledge the most comprehensive model to date to simulate gas exchange in plant tissue. It can be used to evaluate the effect of environmental stresses on fruit via in silico experiments and may lead to commercial applications involving long-term storage of fruit under controlled atmospheres.

  6. Modeling inflation rates and exchange rates in Ghana: application of multivariate GARCH models.

    Science.gov (United States)

    Nortey, Ezekiel Nn; Ngoh, Delali D; Doku-Amponsah, Kwabena; Ofori-Boateng, Kenneth

    2015-01-01

    This paper was aimed at investigating the volatility and conditional relationship among inflation rates, exchange rates and interest rates as well as to construct a model using multivariate GARCH DCC and BEKK models using Ghana data from January 1990 to December 2013. The study revealed that the cumulative depreciation of the cedi to the US dollar from 1990 to 2013 is 7,010.2% and the yearly weighted depreciation of the cedi to the US dollar for the period is 20.4%. There was evidence that, the fact that inflation rate was stable, does not mean that exchange rates and interest rates are expected to be stable. Rather, when the cedi performs well on the forex, inflation rates and interest rates react positively and become stable in the long run. The BEKK model is robust to modelling and forecasting volatility of inflation rates, exchange rates and interest rates. The DCC model is robust to model the conditional and unconditional correlation among inflation rates, exchange rates and interest rates. The BEKK model, which forecasted high exchange rate volatility for the year 2014, is very robust for modelling the exchange rates in Ghana. The mean equation of the DCC model is also robust to forecast inflation rates in Ghana.

  7. A general model of proton exchange membrane fuel cell

    Science.gov (United States)

    Le, Anh Dinh; Zhou, Biao

    In this study, a general model of proton exchange membrane fuel cell (PEMFC) was constructed, implemented and employed to simulate the fluid flow, heat transfer, species transport, electrochemical reaction, and current density distribution, especially focusing on liquid water effects on PEMFC performance. The model is a three-dimensional and unsteady one with detailed thermo-electrochemistry, multi-species, and two-phase interaction with explicit gas-liquid interface tracking by using the volume-of-fluid (VOF) method. The general model was implemented into the commercial computational fluid dynamics (CFD) software package FLUENT ® v6.2, with its user-defined functions (UDFs). A complete PEMFC was considered, including membrane, gas diffusion layers (GDLs), catalyst layers, gas flow channels, and current collectors. The effects of liquid water on PEMFC with serpentine channels were investigated. The results showed that this general model of PEMFC can be a very useful tool for the optimization of practical engineering designs of PEMFC.

  8. Modeling Inflation Using a Non-Equilibrium Equation of Exchange

    Science.gov (United States)

    Chamberlain, Robert G.

    2013-01-01

    Inflation is a change in the prices of goods that takes place without changes in the actual values of those goods. The Equation of Exchange, formulated clearly in a seminal paper by Irving Fisher in 1911, establishes an equilibrium relationship between the price index P (also known as "inflation"), the economy's aggregate output Q (also known as "the real gross domestic product"), the amount of money available for spending M (also known as "the money supply"), and the rate at which money is reused V (also known as "the velocity of circulation of money"). This paper offers first a qualitative discussion of what can cause these factors to change and how those causes might be controlled, then develops a quantitative model of inflation based on a non-equilibrium version of the Equation of Exchange. Causal relationships are different from equations in that the effects of changes in the causal variables take time to play out-often significant amounts of time. In the model described here, wages track prices, but only after a distributed lag. Prices change whenever the money supply, aggregate output, or the velocity of circulation of money change, but only after a distributed lag. Similarly, the money supply depends on the supplies of domestic and foreign money, which depend on the monetary base and a variety of foreign transactions, respectively. The spreading of delays mitigates the shocks of sudden changes to important inputs, but the most important aspect of this model is that delays, which often have dramatic consequences in dynamic systems, are explicitly incorporated.macroeconomics, inflation, equation of exchange, non-equilibrium, Athena Project

  9. Numerical modeling and analytical modeling of cryogenic carbon capture in a de-sublimating heat exchanger

    Science.gov (United States)

    Yu, Zhitao; Miller, Franklin; Pfotenhauer, John M.

    2017-12-01

    Both a numerical and analytical model of the heat and mass transfer processes in a CO2, N2 mixture gas de-sublimating cross-flow finned duct heat exchanger system is developed to predict the heat transferred from a mixture gas to liquid nitrogen and the de-sublimating rate of CO2 in the mixture gas. The mixture gas outlet temperature, liquid nitrogen outlet temperature, CO2 mole fraction, temperature distribution and de-sublimating rate of CO2 through the whole heat exchanger was computed using both the numerical and analytic model. The numerical model is built using EES [1] (engineering equation solver). According to the simulation, a cross-flow finned duct heat exchanger can be designed and fabricated to validate the models. The performance of the heat exchanger is evaluated as functions of dimensionless variables, such as the ratio of the mass flow rate of liquid nitrogen to the mass flow rate of inlet flue gas.

  10. Spin-density functional for exchange anisotropic Heisenberg model

    Energy Technology Data Exchange (ETDEWEB)

    Prata, G.N.; Penteado, P.H.; Souza, F.C. [Departamento de Fisica e Informatica, Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, CP 369, Sao Carlos - SP (Brazil); Libero, Valter L., E-mail: valter@if.sc.usp.b [Departamento de Fisica e Informatica, Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, CP 369, Sao Carlos - SP (Brazil)

    2009-10-15

    Ground-state energies for antiferromagnetic Heisenberg models with exchange anisotropy are estimated by means of a local-spin approximation made in the context of the density functional theory. Correlation energy is obtained using the non-linear spin-wave theory for homogeneous systems from which the spin functional is built. Although applicable to chains of any size, the results are shown for small number of sites, to exhibit finite-size effects and allow comparison with exact-numerical data from direct diagonalization of small chains.

  11. Extreme value modelling of Ghana stock exchange index.

    Science.gov (United States)

    Nortey, Ezekiel N N; Asare, Kwabena; Mettle, Felix Okoe

    2015-01-01

    Modelling of extreme events has always been of interest in fields such as hydrology and meteorology. However, after the recent global financial crises, appropriate models for modelling of such rare events leading to these crises have become quite essential in the finance and risk management fields. This paper models the extreme values of the Ghana stock exchange all-shares index (2000-2010) by applying the extreme value theory (EVT) to fit a model to the tails of the daily stock returns data. A conditional approach of the EVT was preferred and hence an ARMA-GARCH model was fitted to the data to correct for the effects of autocorrelation and conditional heteroscedastic terms present in the returns series, before the EVT method was applied. The Peak Over Threshold approach of the EVT, which fits a Generalized Pareto Distribution (GPD) model to excesses above a certain selected threshold, was employed. Maximum likelihood estimates of the model parameters were obtained and the model's goodness of fit was assessed graphically using Q-Q, P-P and density plots. The findings indicate that the GPD provides an adequate fit to the data of excesses. The size of the extreme daily Ghanaian stock market movements were then computed using the value at risk and expected shortfall risk measures at some high quantiles, based on the fitted GPD model.

  12. MATHEMATICAL MODELING OF UNSTEADY HEAT EXCHANGE IN A PASSENGER CAR

    Directory of Open Access Journals (Sweden)

    I. Yu. Khomenko

    2013-07-01

    Full Text Available Purpose.Existing mathematicalmodelsofunsteadyheatexchangeinapassengercardonotsatisfytheneedofthedifferentconstructivedecisionsofthelifesupportsystemefficiencyestimation. They also don’t allow comparing new and old life support system constructions influence on the inner environment conditions. Moreoverquite frequently unsteady heat exchange processes were studied at the initial car motion stage. Due to the new competitive engineering decisionsof the lifesupportsystemthe need of a new mathematical instrument that would satisfy the mentioned features and their influence on the unsteadyheatexchangeprocesses during the whole time of the road appeared. The purpose of this work is creation of the mathematicalmodel ofunsteadyheatexchangeinapassengercarthatcan satisfythe above-listed requirements. Methodology. Fortheassigned task realizationsystemofdifferentialequationsthatcharacterizesunsteadyheatexchangeprocessesinapassengercarwascomposed; forthesystemof equationssolution elementary balance method was used. Findings. Computational algorithm was developed andcomputer program for modeling transitional heat processes in the car was designed. It allows comparing different life support system constructions influence on the inner environment conditionsand unsteady heat exchange processes can be studied at every car motion stage. Originality.Mathematicalmodelofunsteadyheatexchangeinapassengercarwasimproved. That is why it can be used for the heat engineering studying of the inner car state under various conditions and for the operation of the different life support systems of passenger cars comparison. Mathematicalmodelingofunsteadyheatexchangeinapassengercarwas made by the elementary balance method. Practical value. Created mathematical model gives the possibility to simulate temperature changes in passenger car on unsteady thermal conditions with enough accuracy and to introduce and remove additional elements to the designed model. Thus different

  13. Modeling Multi-commodity Trade Information Exchange Methods

    CERN Document Server

    Traczyk, Tomasz

    2012-01-01

    Market mechanisms are entering into new fields of economy, in which some constraints of physical world, e.g. Kirchoffs Law in power grid, must be taken into account during trading. On such markets, some of commodities, like telecommunication bandwidth or electrical energy, appear to be non-storable, and must be exchanged in real-time. On the other hand, the markets tend to react at shortest possible time, so an idea to delegate some competency to autonomous software agents is very attractive. Multi-commodity mechanism addresses the aforementioned requirements. Modeling the relationships between the commodities allows to formulate new, more sophisticated models and mechanisms, which reflect decision situations in a better manner. Application of multi-commodity approach requires solving several issues related to data modeling, communication, semantics aspects of communication, reliability, etc. This book answers some of the questions and points out promising paths for implementation and development. Presented s...

  14. Pion-nucleon scattering in a meson-exchange model

    Science.gov (United States)

    Gasparyan, A. M.; Haidenbauer, J.; Hanhart, C.; Speth, J.

    2003-10-01

    The πN interaction is studied within a meson-exchange model and in a coupled-channels approach which includes the channels πN , ηN , as well as three effective ππN channels, namely, ρN , πΔ , and σN . Starting out from an earlier model of the Jülich group systematic improvements in the dynamics and in some technical aspects are introduced. With the new model an excellent quantitative reproduction of the πN phase shifts and inelasticity parameters in the energy region up to 1.9 GeV and for total angular momenta J⩽3/2 is achieved. Simultaneously, good agreement with data for the total and differential πN→ηN transition cross sections is obtained. The connection of the πN dynamics in the S11 partial wave with the reaction πN→ηN is discussed.

  15. Charge Exchange: Velocity Dependent X-ray Emission Modeling

    Science.gov (United States)

    Cumbee, Renata

    2017-06-01

    Atomic collisions play a fundamental role in astrophysics, plasma physics, and fusion physics. Here, we focus on charge exchange (CX) between hot ions and neutral atoms and molecules. Even though charge exchange calculations can provide vital information, including neutral and ion density distributions, ion temperatures, elemental abundances, and ion charge state distributions in the environments considered, both theoretical calculations and laboratory studies of these processes lack the necessary reliability and/or coverage. In order to better understand the spectra we observe in astrophysical environments in which both hot plasma and neutral gas are present, including comets, the heliosphere, supernova remnants, galaxy clusters, star forming galaxies, the outflows of starburst galaxies, and cooling flows of hot gas in the intracluster medium, a thorough CX X-ray model is needed. Included in this model should be a complete set of X-ray line ratios for relevant ion and neutral interactions for a range of energies.In this work, theoretical charge exchange emission spectra are produced using cross sections calculated with widely applied approaches including the quantum mechanical molecular orbital close coupling (QMOCC), atomic orbital close coupling (AOCC), classical trajectory Monte Carlo (CTMC), and the multichannel Landau-Zener (MCLZ) methods. When possible, theoretical data are benchmarked to experiments. Using a comprehensive, but still far from complete, CX database, new models are performed for a variety of X-ray emitting environments. In an attempt to describe the excess emission in X-rays of the starburst galaxy M82, Ne X CX line ratios are compared to line ratios observed in the region. A more complete XSPEC X-ray emission model is produced for H-like and He-like C-Al ions colliding with H and He for a range of energies; 200 to 5000 eV/u. This model is applied to the northeast rim of the Cygnus Loop supernova remnant in an attempt to determine the

  16. A probabilistic model of a porous heat exchanger

    Science.gov (United States)

    Agrawal, O. P.; Lin, X. A.

    1995-01-01

    This paper presents a probabilistic one-dimensional finite element model for heat transfer processes in porous heat exchangers. The Galerkin approach is used to develop the finite element matrices. Some of the submatrices are asymmetric due to the presence of the flow term. The Neumann expansion is used to write the temperature distribution as a series of random variables, and the expectation operator is applied to obtain the mean and deviation statistics. To demonstrate the feasibility of the formulation, a one-dimensional model of heat transfer phenomenon in superfluid flow through a porous media is considered. Results of this formulation agree well with the Monte-Carlo simulations and the analytical solutions. Although the numerical experiments are confined to parametric random variables, a formulation is presented to account for the random spatial variations.

  17. Dynamic friction modelling in heat exchanger tube simulations

    Energy Technology Data Exchange (ETDEWEB)

    Tan, X.; Rogers, R.J. [Univ. of New Brunswick, Fredericton, New Brunswick (Canada). Dept. of Mechanical Engineering

    1996-12-01

    A force-balance friction model has been developed to describe dynamic friction phenomena in multi-degree of freedom vibration systems and validated for a two degree-of-freedom (2dof) lumped mass vibration system. It has been implemented into VIBIC, a finite element code for the vibration of beams with intermittent contact, to improve the prediction of tube wear rate in the simulation of shell-and-tube heat exchangers. The friction model has been tailored for VIBIC for various kinds of supports: circular, semi-circular scallop-bar, and arbitrary flat-bar supports. Simulations for single fuel pin vibration have been compared with experimental data on wear work rate for different test conditions, gaps and preloads.

  18. Testing and modelling of an electric tubular heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Terral, O. [Electricite de France, 77 - Moret sur Loing (France). Direction des Etudes et Recherches; Bandelier, P. [CEA/Grenoble, Dept. de Thermohydraulique et de Physique (DTP-GRETh), 38 (France)

    1999-07-01

    Electric Tubular Heat Exchanger (ETHE) is based on the principle of the Joule effect applied to a metallic tube submitted to a potential difference. It offers many advantages in concentration and evaporation processes. A numerical model (DIMDIPH) has been developed to predict the operating conditions and to design installations of ETHE evaporators. It is based on several correlations to estimate the main parameters: heat transfer coefficient giving the wall temperature, pressure drops along the tube, critical heat flux. The collaboration between the R and D division of EDF and the Greth aims to link the numerical approach with an experimental validation carried out with an evaporating pilot plant: Cannelle. The first experimental results obtained on a SNPE sulphuric acid concentrator pilot and on Cannelle are compared to the model predictions. In spite of some deviations in the subcooled region, the temperature profile trends remain similar with an overestimation from the correlations. (authors)

  19. Nominal and Real Exchange Rate Models in South Africa: How Robust Are They?

    OpenAIRE

    Egert, Balazs

    2012-01-01

    This paper addresses difficulties in modelling exchange rates in South Africa. Real exchange rate models of earlier research seem to be sensitive to the sample period considered, alternative variable definition, data frequency and estimation methods. Alternative exchange rate models proposed in this paper including the stock-flow approach and variants of the monetary model are not fully robust to data frequency and alternative estimation periods, either. Nevertheless, adding openness to the s...

  20. A Laboratory Exercise Using a Physical Model for Demonstrating Countercurrent Heat Exchange

    Science.gov (United States)

    Loudon, Catherine; Davis-Berg, Elizabeth C.; Botz, Jason T.

    2012-01-01

    A physical model was used in a laboratory exercise to teach students about countercurrent exchange mechanisms. Countercurrent exchange is the transport of heat or chemicals between fluids moving in opposite directions separated by a permeable barrier (such as blood within adjacent blood vessels flowing in opposite directions). Greater exchange of…

  1. Conflict measures in cooperative exchange models of collective decision-making

    NARCIS (Netherlands)

    van Assen, Marcel; Stokman, Frans; van Oosten, Reinier

    This study focuses on externalities of exchanges of voting positions in collective decision-making. Exchanges are represented by nonconstant two-person cooperative games. It is assumed that the rate of exchange is specified by the Raiffa-Kalai-Smorodinsky solution, and a model is specified to

  2. Fully-Coupled Dynamical Jitter Modeling of Momentum Exchange Devices

    Science.gov (United States)

    Alcorn, John

    A primary source of spacecraft jitter is due to mass imbalances within momentum exchange devices (MEDs) used for fine pointing, such as reaction wheels (RWs) and variable-speed control moment gyroscopes (VSCMGs). Although these effects are often characterized through experimentation in order to validate pointing stability requirements, it is of interest to include jitter in a computer simulation of the spacecraft in the early stages of spacecraft development. An estimate of jitter amplitude may be found by modeling MED imbalance torques as external disturbance forces and torques on the spacecraft. In this case, MED mass imbalances are lumped into static and dynamic imbalance parameters, allowing jitter force and torque to be simply proportional to wheel speed squared. A physically realistic dynamic model may be obtained by defining mass imbalances in terms of a wheel center of mass location and inertia tensor. The fully-coupled dynamic model allows for momentum and energy validation of the system. This is often critical when modeling additional complex dynamical behavior such as flexible dynamics and fuel slosh. Furthermore, it is necessary to use the fully-coupled model in instances where the relative mass properties of the spacecraft with respect to the RWs cause the simplified jitter model to be inaccurate. This thesis presents a generalized approach to MED imbalance modeling of a rigid spacecraft hub with N RWs or VSCMGs. A discussion is included to convert from manufacturer specifications of RW imbalances to the parameters introduced within each model. Implementations of the fully-coupled RW and VSCMG models derived within this thesis are released open-source as part of the Basilisk astrodynamics software.

  3. Enterprise Networks for Competences Exchange: A Simulation Model

    Science.gov (United States)

    Remondino, Marco; Pironti, Marco; Pisano, Paola

    A business process is a set of logically related tasks performed to achieve a defined business and related to improving organizational processes. Process innovation can happen at various levels: incrementally, redesign of existing processes, new processes. The knowledge behind process innovation can be shared, acquired, changed and increased by the enterprises inside a network. An enterprise can decide to exploit innovative processes it owns, thus potentially gaining competitive advantage, but risking, in turn, that other players could reach the same technological levels. Or it could decide to share it, in exchange for other competencies or money. These activities could be the basis for a network formation and/or impact the topology of an existing network. In this work an agent based model is introduced (E3), aiming to explore how a process innovation can facilitate network formation, affect its topology, induce new players to enter the market and spread onto the network by being shared or developed by new players.

  4. Isotope exchange kinetics in metal hydrides I : TPLUG model.

    Energy Technology Data Exchange (ETDEWEB)

    Larson, Rich; James, Scott Carlton; Nilson, Robert H.

    2011-05-01

    A one-dimensional isobaric reactor model is used to simulate hydrogen isotope exchange processes taking place during flow through a powdered palladium bed. This simple model is designed to serve primarily as a platform for the initial development of detailed chemical mechanisms that can then be refined with the aid of more complex reactor descriptions. The one-dimensional model is based on the Sandia in-house code TPLUG, which solves a transient set of governing equations including an overall mass balance for the gas phase, material balances for all of the gas-phase and surface species, and an ideal gas equation of state. An energy equation can also be solved if thermodynamic properties for all of the species involved are known. The code is coupled with the Chemkin package to facilitate the incorporation of arbitrary multistep reaction mechanisms into the simulations. This capability is used here to test and optimize a basic mechanism describing the surface chemistry at or near the interface between the gas phase and a palladium particle. The mechanism includes reversible dissociative adsorptions of the three gas-phase species on the particle surface as well as atomic migrations between the surface and the bulk. The migration steps are more general than those used previously in that they do not require simultaneous movement of two atoms in opposite directions; this makes possible the creation and destruction of bulk vacancies and thus allows the model to account for variations in the bulk stoichiometry with isotopic composition. The optimization code APPSPACK is used to adjust the mass-action rate constants so as to achieve the best possible fit to a given set of experimental data, subject to a set of rigorous thermodynamic constraints. When data for nearly isothermal and isobaric deuterium-to-hydrogen (D {yields} H) and hydrogen-to-deuterium (H {yields} D) exchanges are fitted simultaneously, results for the former are excellent, while those for the latter show

  5. Self-Service Banking: Value Creation Models and Information Exchange

    Directory of Open Access Journals (Sweden)

    Ragnvald Sannes

    2001-01-01

    Full Text Available This paper argues that most banks have failed to exploit the potential of self-service banking because they base their service design on an incomplete business model for self-service. A framework for evaluation of self-service banking concepts is developed on the basis of Stabell and Fjeldstad's three value configurations. The value network and the value shop are consistent with self-service banking while the value chain is inappropriate. The impact of the value configurations on information exchange and self-service functionality is discussed, and a framework for design of such services proposed. Current self-service banking practices are compared to the framework, and it is concluded that current practice matches the concept of a value network and not the value shop. However, current practices are only a partial implementation of a value network-based self-service banking concept.

  6. Mathematical and Computational Modeling of Polymer Exchange Membrane Fuel Cells

    Science.gov (United States)

    Ulusoy, Sehribani

    results showed that the fuel performance can be improved by using flow field designs alleviating the reactant depletion along the channels and supplying more uniform reactant distribution. Stepped flow field was found to show better performance when compared to straight and tapered ones. ANSYS FLUENT model is evaluated in terms of predicting the two phase flow in the fuel cell components. It is proposed that it is not capable of predicting the entire fuel cell polarization due to the lack of agglomerate catalyst layer modeling and well-established two-phase flow modeling. Along with the comprehensive modeling efforts, also an analytical model has been computed by using MathCAD and it is found that this simpler model is able to predict the performance in a general trend according to the experimental data obtained for a new novel membrane. Therefore, it can be used for robust prediction of the cell performance at different operating conditions such as temperature and pressure, and the electrochemical properties such as the catalyst loading, the exchange current density and the diffusion coefficients of the reactants. In addition to the modeling efforts, this thesis also presents a very comprehensive literature review on the models developed in the literature so far, the modeling efforts in fuel cell sandwich including membrane, catalyst layer and gas diffusion layer and fuel cell model properties. Moreover, a summary of possible directions of research in fuel cell analysis and computational modeling has been presented.

  7. Heat exchange modeling in a multilayered karst aquifer affected by seawater intrusion

    OpenAIRE

    Luca Vettorello; Roberto Pedron; Andrea Sottani; Michele Chieco

    2015-01-01

    A Feflow thermohaline model has been implemented in order to study borehole heat exchangers (BHEs) activity in a coastal aquifer in the South of Italy (Province of Lecce, Puglia Region). The modeled closed-loop system consists of two double u-pipe heat exchangers, installed in 200 meters deep boreholes. The main purpose of numerical modeling was to forecast thermal plume extension in groundwater after a long period of heat exchange, calculating temperature trends in observation points during ...

  8. Modelling and validation of Proton exchange membrane fuel cell (PEMFC)

    Science.gov (United States)

    Mohiuddin, A. K. M.; Basran, N.; Khan, A. A.

    2018-01-01

    This paper is the outcome of a small scale fuel cell project. Fuel cell is an electrochemical device that converts energy from chemical reaction to electrical work. Proton Exchange Membrane Fuel Cell (PEMFC) is one of the different types of fuel cell, which is more efficient, having low operational temperature and fast start up capability results in high energy density. In this study, a mathematical model of 1.2 W PEMFC is developed and simulated using MATLAB software. This model describes the PEMFC behaviour under steady-state condition. This mathematical modeling of PEMFC determines the polarization curve, power generated, and the efficiency of the fuel cell. Simulation results were validated by comparing with experimental results obtained from the test of a single PEMFC with a 3 V motor. The performance of experimental PEMFC is little lower compared to simulated PEMFC, however both results were found in good agreement. Experiments on hydrogen flow rate also been conducted to obtain the amount of hydrogen consumed to produce electrical work on PEMFC.

  9. Quantifying near-surface water exchange to assess hydrometeorological models

    Science.gov (United States)

    Parent, Annie-Claude; Anctil, François; Morais, Anne

    2013-04-01

    Modelling water exchange from the lower atmosphere, crop and soil system using hydrometeorological models allows processing an actual evapotranspiration (ETa) which is a complex but critical value for numerous hydrological purposes e.g. hydrological modelling and crop irrigation. This poster presents a summary of the hydrometeorological research activity conducted by our research group. The first purpose of this research is to quantify ETa and drainage of a rainfed potato crop located in South-Eastern Canada. Then, the outputs of the hydrometeorological models under study are compared with the observed turbulent fluxes. Afterwards, the sensibility of the hydrometeorological models to different inputs is assessed for an environment under a changing climate. ETa was measured from micrometeorological instrumentation (CSAT3, Campbell SCI Inc.; Li7500, LiCor Inc.), and the eddy covariance techniques. Near surface soil heat flux and soil water content at different layers from 10 cm to 100 cm were also measured. Other parameters required by the hydrometeorological models were observed using meteorological standard instrumentation: shortwave and longwave solar radiation, wind speed, air temperature, atmospheric pressure and precipitation. The cumulative ETa during the growth season (123 days) was 331.5 mm, with a daily maximum of 6.5 mm at full coverage; precipitation was 350.6 mm which is rather small compared with the historical mean (563.3 mm). This experimentation allowed calculating crop coefficients that vary among the growth season for a rainfed potato crop. Land surface schemes as CLASS (Canadian Land Surface Scheme) and c-ISBA (a Canadian version of the model Interaction Sol-Biosphère-Atmosphère) are 1-D physical hydrometeorological models that produce turbulent fluxes (including ETa) for a given crop. The schemes performances were assessed for both energy and water balance, based on the resulting turbulent fluxes and the given observations. CLASS showed

  10. The Empirical Research of the Impact of GDP and Exchange Rate on Foreign Exchange Reserve Scale in China-Based on Quantile Regression Model

    OpenAIRE

    Lu Fang-Yuan; Shi Jun-Guo

    2013-01-01

    Based on the relevant data from 1985 to 2010, this thesis uses a quantile regression model to make an empirical research about the effect of GDP and exchange rate on foreign exchange reserve. The findings show that: Both GDP and exchange rate have a remarkable influence on the size of foreign exchange reserve and the effect of exchange rate on foreign exchange reserve is higher than GDP at mean place and middle and lower quantile, smaller than GDP at higher quantile. At all the examined quant...

  11. Have Exchange Rates Become More Closely Tied? Evidence from a New Multivariate GARCH Model

    NARCIS (Netherlands)

    Klaassen, F.J.G.M.

    1999-01-01

    We analyze the time-dependence of exchange rate correlations using a new multivariate GARCH model. This model consists of two parts. First, we transform the exchange rate changes into their principal components and specify univariate GARCH models for all components. Second, we use the inverse of the

  12. A heat exchanger model for air-to-refrigerant fin-and-tube heat exchanger with arbitrary fin sheet

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Varun; Aute, Vikrant; Radermacher, Reinhard [Department of Mechanical Engineering, University of Maryland, 4164 Glenn L Martin Hall, College Park, MD 20742 (United States)

    2009-11-15

    A new model for simulating air-to-refrigerant fin-and-tube heat exchangers, with arbitrary fin sheet which encompasses variable tube diameters, variable tube locations, variable tube pitches, internal as well as external jagged edges, variable number of tubes per bank and variable location of fin cuts, is introduced. This model is based on a segment-by-segment approach and is developed to be a general purpose and flexible simulation tool. To account for fin conduction and air propagation through the heat exchanger, it is spatially modeled on a Cartesian grid. A new methodology for air side propagation, required for arbitrary fin sheets, is introduced. The model prediction is validated against experimental data for a condenser using R410A as the working fluid. The predicted results agree within {+-}5% of overall heat load, and {+-}25% for total refrigerant pressure drop. (author)

  13. Model-free measurement of exchange market pressure

    NARCIS (Netherlands)

    Klaassen, F.J.G.M.; Jager, H.

    2006-01-01

    If there is exchange market pressure (EMP), monetary authorities can use the interest rate and official interventions to offset this depreciation tendency, or they can let the exchange rate change. We introduce a new approach to derive how these three variables should be combined to measure EMP.

  14. Simulating Replica Exchange: Markov State Models, Proposal Schemes, and the Infinite Swapping Limit.

    Science.gov (United States)

    Zhang, Bin W; Dai, Wei; Gallicchio, Emilio; He, Peng; Xia, Junchao; Tan, Zhiqiang; Levy, Ronald M

    2016-08-25

    Replica exchange molecular dynamics is a multicanonical simulation technique commonly used to enhance the sampling of solvated biomolecules on rugged free energy landscapes. While replica exchange is relatively easy to implement, there are many unanswered questions about how to use this technique most efficiently, especially because it is frequently the case in practice that replica exchange simulations are not fully converged. A replica exchange cycle consists of a series of molecular dynamics steps of a set of replicas moving under different Hamiltonians or at different thermodynamic states followed by one or more replica exchange attempts to swap replicas among the different states. How the replica exchange cycle is constructed affects how rapidly the system equilibrates. We have constructed a Markov state model of replica exchange (MSMRE) using long molecular dynamics simulations of a host-guest binding system as an example, in order to study how different implementations of the replica exchange cycle can affect the sampling efficiency. We analyze how the number of replica exchange attempts per cycle, the number of MD steps per cycle, and the interaction between the two parameters affects the largest implied time scale of the MSMRE simulation. The infinite swapping limit is an important concept in replica exchange. We show how to estimate the infinite swapping limit from the diagonal elements of the exchange transition matrix constructed from MSMRE "simulations of simulations" as well as from relatively short runs of the actual replica exchange simulations.

  15. Testing of empirical grounds for theoretical models of real exchange rate: research of real exchange rate between RSD and Euro

    Directory of Open Access Journals (Sweden)

    Predrag Petrović

    2013-04-01

    Full Text Available The focus of this research holds the most important determinants of real exchange rate covered by various theoretical models. The empirical testing was carried out on the real exchange rate between RSD and Euro for the period from January 2007 to December 2010, which was significantly imposed by availability of consistent time series. The research pertains to five basic model specifications and is based on the testing of time series cointegration by applying Johansen and Engle-Granger’s test. The obtained results have shown that the observed models do not have grounds in empirical data. Time series figuring in models are not cointegrated, and besides that, the estimated cointegration coefficients have signs opposite to the expected ones in large number of cases. In our opinion, the reasons for such findings can be found in the fact that used time series are quite short, i.e. they pertain to the period of only four years, as well as that prices of some significant services are still under the administrative control. Still, despite the aforementioned lacks, we think that our findings can be accepted as preliminary knowledge about the ability of the observed models to explain the dynamics of real exchange rate between RSD and Euro.

  16. Bayesian analysis for exponential random graph models using the adaptive exchange sampler

    KAUST Repository

    Jin, Ick Hoon

    2013-01-01

    Exponential random graph models have been widely used in social network analysis. However, these models are extremely difficult to handle from a statistical viewpoint, because of the existence of intractable normalizing constants. In this paper, we consider a fully Bayesian analysis for exponential random graph models using the adaptive exchange sampler, which solves the issue of intractable normalizing constants encountered in Markov chain Monte Carlo (MCMC) simulations. The adaptive exchange sampler can be viewed as a MCMC extension of the exchange algorithm, and it generates auxiliary networks via an importance sampling procedure from an auxiliary Markov chain running in parallel. The convergence of this algorithm is established under mild conditions. The adaptive exchange sampler is illustrated using a few social networks, including the Florentine business network, molecule synthetic network, and dolphins network. The results indicate that the adaptive exchange algorithm can produce more accurate estimates than approximate exchange algorithms, while maintaining the same computational efficiency.

  17. Land-use change arising from rural land exchange : an agent-based simulation model

    NARCIS (Netherlands)

    Bakker, Martha M.; Alam, Shah Jamal; van Dijk, Jerry; Rounsevell, Mark D. A.

    Land exchange can be a major factor driving land-use change in regions with high pressure on land, but is generally not incorporated in land-use change models. Here we present an agent-based model to simulate land-use change arising from land exchange between multiple agent types representing

  18. Land-use change arising from rural land exchange: an agent-based simulation model

    NARCIS (Netherlands)

    Bakker, M.M.; Alam, S.J.; Dijk, van J.; Rounsevell, M.D.A.

    2015-01-01

    Land exchange can be a major factor driving land-use change in regions with high pressure on land, but is generally not incorporated in land-use change models. Here we present an agent-based model to simulate land-use change arising from land exchange between multiple agent types representing

  19. A General Model for Cost Estimation in an Exchange

    Directory of Open Access Journals (Sweden)

    Benzion Barlev

    2014-03-01

    Full Text Available Current Generally Accepted Accounting Principles (GAAP state that the cost of an asset acquired for cash is the fair value (FV of the amount surrendered, and that of an asset acquired in a non-monetary exchange is the FV of the asset surrendered or, if it is more “clearly evident,” the FV of the acquired asset. The measurement method prescribed for a non-monetary exchange ignores valuable information about the “less clearly evident” asset. Thus, we suggest that the FV in any exchange be measured by the weighted average of the exchanged assets’ FV estimations, where the weights are the inverse of the variances’ estimations. This alternative valuation process accounts for the uncertainty involved in estimating the FV of each of the asset in the exchange. The proposed method suits all types of exchanges: monetary and non-monetary. In a monetary transaction, the weighted average equals the cash paid because the variance of its FV is nil.

  20. [Study on the defluoridation of drinking water with model-La cation exchange resin].

    Science.gov (United States)

    Huang, Mingyuan; Lü, Changyin

    2003-11-01

    Model-La cation exchange resin was transformed from strong acid cation exchange resin, which was used for the defluoridation of drinking water. The 001 x 7 strong acid cation exchange resin was transformed into model-La cation exchange by soaking in the La(NO3)3 solution. The F- in the water was removed by model-La cation exchange resin under the optimum condition because it was combined into fluoride with the La3+ in the model-La cation exchange resin. The used resin was regenerated with the La(NO3)3 solution and was used to defluoridate many times. The optimum conditions of transform and defluoridation and regeneration were d(rasin) = 0.315-0.600 mm, V(rasin):V(regeneration) = 1:6, t(transform) = 48 h, T = 298.16 K(25 degrees C). The defluoridation capacity was 5.60 mg/g in column test, and 4.08 mg/g in batch test. The model-La cation exchange resin could be used for defluoridation for 8 times. The results suggest that the model-La cation exchange resin is a novel material of defluoridation. This method is easy to master and the pH value of the solution doesn't need to be regenerated that the cost of defluoridation can be reduced significantly and it can be used for a long time.

  1. Numerical modeling transport phenomena in proton exchange membrane fuel cells

    Science.gov (United States)

    Suh, DongMyung

    To study the coupled phenomena occurring in proton exchange membrane fuel cells, a two-phase, one-dimensional, non-isothermal model is developed in the chapter 1. The model includes water phase change, proton transport in the membrane and electro-osmotic effect. The thinnest, but most complex layer in the membrane electrode assembly, catalyst layer, is considered an interfacial boundary between the gas diffusion layer and the membrane. Mass and heat transfer and electro-chemical reaction through the catalyst layer are formulated into equations, which are applied to boundary conditions for the gas diffusion layer and the membrane. Detail accounts of the boundary equations and the numerical solving procedure used in this work are given. The polarization curve is calculated at different oxygen pressures and compared with the experimental results. When the operating condition is changed along the polarization curve, the change of physicochemical variables in the membrane electrode assembly is studied. In particular, the over-potential diagram presents the usage of the electrochemical energy at each layer of the membrane electrode assembly. Humidity in supplying gases is one of the most important factors to consider for improving the performance of PEMFE. Both high and low humidity conditions can result in a deteriorating cell performance. The effect of humidity on the cell performance is studied in the chapter 2. First, a numerical model based on computational fluid dynamics is developed. Second, the cell performances are simulated, when the relative humidity is changed from 0% to 100% in the anode and the cathode channel. The simulation results show how humidity in the reactant gases affects the water content distribution in the membrane, the over-potential at the catalyst layers and eventually the cell performance. In particular, the rapid enhancement in the cell performance caused by self-hydrating membrane is captured by the simulation. Fully humidifying either H2

  2. Modelling bidirectional fluxes of methanol and acetaldehyde with the FORCAsT canopy exchange model

    Directory of Open Access Journals (Sweden)

    K. Ashworth

    2016-12-01

    Full Text Available The FORCAsT canopy exchange model was used to investigate the underlying mechanisms governing foliage emissions of methanol and acetaldehyde, two short chain oxygenated volatile organic compounds ubiquitous in the troposphere and known to have strong biogenic sources, at a northern mid-latitude forest site. The explicit representation of the vegetation canopy within the model allowed us to test the hypothesis that stomatal conductance regulates emissions of these compounds to an extent that its influence is observable at the ecosystem scale, a process not currently considered in regional- or global-scale atmospheric chemistry models.We found that FORCAsT could only reproduce the magnitude and diurnal profiles of methanol and acetaldehyde fluxes measured at the top of the forest canopy at Harvard Forest if light-dependent emissions were introduced to the model. With the inclusion of such emissions, FORCAsT was able to successfully simulate the observed bidirectional exchange of methanol and acetaldehyde. Although we found evidence that stomatal conductance influences methanol fluxes and concentrations at scales beyond the leaf level, particularly at dawn and dusk, we were able to adequately capture ecosystem exchange without the addition of stomatal control to the standard parameterisations of foliage emissions, suggesting that ecosystem fluxes can be well enough represented by the emissions models currently used.

  3. The Chemistry of Atmosphere-Forest Exchange (CAFE Model – Part 1: Model description and characterization

    Directory of Open Access Journals (Sweden)

    G. M. Wolfe

    2011-01-01

    Full Text Available We present the Chemistry of Atmosphere-Forest Exchange (CAFE model, a vertically-resolved 1-D chemical transport model designed to probe the details of near-surface reactive gas exchange. CAFE integrates all key processes, including turbulent diffusion, emission, deposition and chemistry, throughout the forest canopy and mixed layer. CAFE utilizes the Master Chemical Mechanism (MCM and is the first model of its kind to incorporate a suite of reactions for the oxidation of monoterpenes and sesquiterpenes, providing a more comprehensive description of the oxidative chemistry occurring within and above the forest. We use CAFE to simulate a young Ponderosa pine forest in the Sierra Nevada, CA. Utilizing meteorological constraints from the BEARPEX-2007 field campaign, we assess the sensitivity of modeled fluxes to parameterizations of diffusion, laminar sublayer resistance and radiation extinction. To characterize the general chemical environment of this forest, we also present modeled mixing ratio profiles of biogenic hydrocarbons, hydrogen oxides and reactive nitrogen. The vertical profiles of these species demonstrate a range of structures and gradients that reflect the interplay of physical and chemical processes within the forest canopy, which can influence net exchange.

  4. Multiobjective Optimization of Allocated Exchange Portfolio: Model and Solution—A Case Study in Iran

    Directory of Open Access Journals (Sweden)

    Mostafa Ekhtiari

    2014-01-01

    Full Text Available This paper presents a triobjective model for optimization of allocated exchange portfolio. The objectives of this model are minimizing risk and investment initial cost (by adopting two synchronic policies of buying and selling assets and maximizing return, to optimize allocated portfolios (APs. In an AP, an investor by considering previous investment experiences and market conditions selects the within portfolio assets. Then, considering proposed model, the assets proportion of AP is optimized for a limited time horizon. In optimizing a multiobjective problem of an AP, risk and return objectives are measured on the basis of standard deviation of assets dairy return and dairy return mean within AP assets, respectively. We present a set of interobjectives trade-offs along with an analysis of Iran Melli bank investment in an exchange AP, using Weighted Global Criterion (WGC method with assumption p=1, 2, and ∞ to optimize the proposed model. Results of WGC model (in all p=1, 2 and ∞ represent that US dollar exchange in comparison with other exchanges, was rather the fewest exchange proportion in Iran Melli bank exchange AP which this is consistent with Iran exchange investment policy of more concentration on other exchanges.

  5. A simple and accurate numerical network flow model for bionic micro heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Pieper, M.; Klein, P. [Fraunhofer Institute (ITWM), Kaiserslautern (Germany)

    2011-05-15

    Heat exchangers are often associated with drawbacks like a large pressure drop or a non-uniform flow distribution. Recent research shows that bionic structures can provide possible improvements. We considered a set of such structures that were designed with M. Hermann's FracTherm {sup registered} algorithm. In order to optimize and compare them with conventional heat exchangers, we developed a numerical method to determine their performance. We simulated the flow in the heat exchanger applying a network model and coupled these results with a finite volume method to determine the heat distribution in the heat exchanger. (orig.)

  6. Spin-lattice coupling effects in the Holstein double-exchange model

    Energy Technology Data Exchange (ETDEWEB)

    Weisse, Alexander [School of Physics, University of New South Wales, Sydney NSW 2052 (Australia); Fehske, Holger [Institut fuer Physik, Ernst-Moritz-Arndt Universitaet Greifswald, 17487 Greifswald (Germany); Ihle, Dieter [Institut fuer Theoretische Physik, Universitaet Leipzig, Augustusplatz 10-11, 04109 Leipzig (Germany)]. E-mail: dieter.ihle@itp.uni-leipzig.de

    2005-04-30

    Based on the Holstein double-exchange model and a highly efficient single cluster Monte Carlo approach we study the interplay of double-exchange and polaron effects in doped colossal magneto-resistance (CMR) manganites. The CMR transition is shown to be appreciably influenced by lattice polaron formation.

  7. Modeling the distribution of ammonia across Europe including bi-directional surface-atmosphere exchange

    NARCIS (Netherlands)

    Wichink Kruit, R.J.; Schaap, M.; Sauter, F.J.; Zanten, M.C. van; Pul, W.A.J. van

    2012-01-01

    A large shortcoming of current chemistry transport models (CTM) for simulating the fate of ammonia in the atmosphere is the lack of a description of the bi-directional surface-atmosphere exchange. In this paper, results of an update of the surface-atmosphere exchange module DEPAC, i.e. DEPosition of

  8. Application of models for exchange of electronic documents in complex administrative services

    Science.gov (United States)

    Glavev, Victor

    2015-11-01

    The report presents application of models for exchange of electronic documents between different administrations in government and business sectors. It shows the benefits of implementing electronic exchange of documents between different local offices of one administration in government sector such as a municipality and the way it is useful for implementing complex administrative services.

  9. A Terminology for Control Models at Optical and Internet Exchanges

    NARCIS (Netherlands)

    Dijkstra, F.; van Oudenaarde, B.; Andree, B.; Gommans, L.; Grosso, P.; van der Ham, J.; Koymans, K.; de Laat, C.

    2007-01-01

    Optical or lambda exchanges have emerged to interconnect networks, providing dynamic switching capabilities on OSI layer 1 and layer 2. So far, the only inter-domain dynamics have occurred on layer 3, the IP layer. This new functionality in the data plane has consequences on the control plane. We

  10. Dynamics of heat, water, and soluble gas exchange in the human airways: 1. A model study.

    Science.gov (United States)

    Tsu, M E; Babb, A L; Ralph, D D; Hlastala, M P

    1988-01-01

    In order to provide a means for analysis of heat, water, and soluble gas exchange with the airways during tidal ventilation, a one dimensional theoretical model describing heat and water exchange in the respiratory airways has been extended to include soluble gas exchange with the airway mucosa and water exchange with the mucous layer lining the airways. Not only do heat, water, and gas exchange occur simultaneously, but they also interact. Heating and cooling of the airway surface and mucous lining affects both evaporative water and soluble gas exchange. Water evaporation provides a major source of heat exchange. The model-predicted mean airway temperature profiles agree well with literature data for both oral and nasal breathing validating that part of the model. With model parameters giving the best fit to experimental data, the model shows: (a) substantial heat recovery in the upper airways, (b) minimal respiratory heat and water loss, and (c) low average mucous temperatures and maximal increases in mucous thickness. For resting breathing of room air, heat and water conservation appear to be more important than conditioning efficiency. End-tidal expired partial pressures of very soluble gases eliminated by the lungs are predicted to be lower than the alveolar partial pressures due to the absorption of the expired gases by the airway mucosa. The model may be usable for design of experiments to examine mechanisms associated with the local hydration and dehydration dynamics of the mucosal surface, control of bronchial perfusion, triggering of asthma, mucociliary clearance and deposition of inhaled pollutant gases.

  11. Land-use change arising from rural land exchange: an agent-based simulation model

    OpenAIRE

    Martha M. Bakker; Alam, Shah Jamal; van Dijk, Jerry; Rounsevell, Mark D A

    2015-01-01

    Land exchange can be a major factor driving land-use change in regions with high pressure on land, but is generally not incorporated in land-use change models. Here we present an agent-based model to simulate land-use change arising from land exchange between multiple agent types representing farmers, nature organizations, and estate owners. The RULEX model (Rural Land EXchange) was calibrated and applied to a 300 km(2) case study area in the east of the Netherlands. Decision rules about whic...

  12. An Equivalent Electrical Circuit Model of Proton Exchange Membrane Fuel Cells Based on Mathematical Modelling

    Directory of Open Access Journals (Sweden)

    Dinh An Nguyen

    2012-07-01

    Full Text Available Many of the Proton Exchange Membrane Fuel Cell (PEMFC models proposed in the literature consist of mathematical equations. However, they are not adequately practical for simulating power systems. The proposed model takes into account phenomena such as activation polarization, ohmic polarization, double layer capacitance and mass transport effects present in a PEM fuel cell. Using electrical analogies and a mathematical modeling of PEMFC, the circuit model is established. To evaluate the effectiveness of the circuit model, its static and dynamic performances under load step changes are simulated and compared to the numerical results obtained by solving the mathematical model. Finally, the applicability of our model is demonstrated by simulating a practical system.

  13. Regional cooperation and transportation planning in Alaska : a regional models of cooperation peer exchange summary report.

    Science.gov (United States)

    2017-01-31

    This report summarizes the proceedings of a Regional Models of Cooperation Virtual Peer Exchange Workshop held on March 9 10, 2016 for the State of Alaska. Participants discussed the benefits and challenges of cooperation across jurisdictions and...

  14. Dataset for Probabilistic estimation of residential air exchange rates for population-based exposure modeling

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset provides the city-specific air exchange rate measurements, modeled, literature-based as well as housing characteristics. This dataset is associated with...

  15. Heat exchange modeling in a multilayered karst aquifer affected by seawater intrusion

    National Research Council Canada - National Science Library

    Vettorello, Luca; Pedron, Roberto; Sottani, Andrea; Chieco, Michele

    ...) activity in a coastal aquifer in the South of Italy (Province of Lecce, Puglia Region). The modeled closed-loop system consists of two double u-pipe heat exchangers, installed in 200 meters deep boreholes...

  16. GLAMURS - Green Lifestyles, Alternative Models and Upscaling Regional Sustainability. Case Study Exchange

    National Research Council Canada - National Science Library

    Adela Fofiu; Claudian Dobos

    2015-01-01

      In the period of 17-20 June 2015, the West University of Timisoara hosted the GLAMURS - Green Lifestyles, Alternative Models and Upscaling Regional Sustainability - Case Study Exchange Conference...

  17. AirMOSS: L4 Modeled Net Ecosystem Exchange (NEE), Continental USA, 2012-2014

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides Level 4 estimates of Net Ecosystem Exchange (NEE) of CO2 across the conterminous USA at a spatial resolution of 50 km. Modeled estimates are...

  18. A thermoelectric power generating heat exchanger: Part II – Numerical modeling and optimization

    DEFF Research Database (Denmark)

    Sarhadi, Ali; Bjørk, Rasmus; Lindeburg, N.

    2016-01-01

    In Part I of this study, the performance of an experimental integrated thermoelectric generator (TEG)-heat exchanger was presented. In the current study, Part II, the obtained experimental results are compared with those predicted by a finite element (FE) model. In the simulation of the integrated...... TEG-heat exchanger, the thermal contact resistance between the TEG and the heat exchanger is modeled assuming either an ideal thermal contact or using a combined Cooper–Mikic–Yovanovich (CMY) and parallel plate gap formulation, which takes into account the contact pressure, roughness and hardness...

  19. Density functionals for surface science: Exchange-correlation model development with Bayesian error estimation

    DEFF Research Database (Denmark)

    Wellendorff, Jess; Lundgård, Keld Troen; Møgelhøj, Andreas

    2012-01-01

    A methodology for semiempirical density functional optimization, using regularization and cross-validation methods from machine learning, is developed. We demonstrate that such methods enable well-behaved exchange-correlation approximations in very flexible model spaces, thus avoiding the overfit......A methodology for semiempirical density functional optimization, using regularization and cross-validation methods from machine learning, is developed. We demonstrate that such methods enable well-behaved exchange-correlation approximations in very flexible model spaces, thus avoiding...

  20. Model-based analysis of anion-exchanger positioning in direct methanol fuel cell systems

    Science.gov (United States)

    Kraus, Maik; Schröder, Daniel; Krewer, Ulrike

    2014-09-01

    In this work we present a model based study to investigate the presence of anion exchangers in direct methanol fuel cell (DMFC) systems. It is well known that environmental or fuel impurities lead to accumulation of harmful anions, such as chloride, in the system. However, due to DMFC anodic reaction, a carbonate system is present. These corbanate anions have to be taken into account for the anion exchanger design and placement as well as for the system operation strategy with and without anion exchanger, which is the objective of this study. For this purpose, the expected amount of harmful chloride ions in a DMFC system is estimated, and that of carbonate ions is calculated with a model of the carbonate system in a DMFC system. The predicition of durability and dimensions of an anion exchanger is based on a monovalent anion exchange model. The design of gas liquid separators in the DMFC system has a major influence on the amount of dissolved carbon dioxide, which is crucial for durability and dimension of a system integrated anion exchanger. Finally, feasible positions of anion exchanger in a DMFC system are elaborated to fulfill the needs for long term and stable DMFC operation.

  1. Bi-directional exchange of ammonia in a pine forest ecosystem - a model sensitivity analysis

    Science.gov (United States)

    Moravek, Alexander; Hrdina, Amy; Murphy, Jennifer

    2016-04-01

    Ammonia (NH3) is a key component in the global nitrogen cycle and of great importance for atmospheric chemistry, neutralizing atmospheric acids and leading to the formation of aerosol particles. For understanding the role of NH3 in both natural and anthropogenically influenced environments, the knowledge of processes regulating its exchange between ecosystems and the atmosphere is essential. A two-layer canopy compensation point model is used to evaluate the NH3 exchange in a pine forest in the Colorado Rocky Mountains. The net flux comprises the NH3 exchange of leaf stomata, its deposition to leaf cuticles and exchange with the forest ground. As key parameters the model uses in-canopy NH3 mixing ratios as well as leaf and soil emission potentials measured at the site in summer 2015. A sensitivity analysis is performed to evaluate the major exchange pathways as well as the model's constraints. In addition, the NH3 exchange is examined for an extended range of environmental conditions, such as droughts or varying concentrations of atmospheric pollutants, in order to investigate their influence on the overall net exchange.

  2. Evaluating humidity recovery efficiency of currently available heat and moisture exchangers: a respiratory system model study.

    Science.gov (United States)

    Lucato, Jeanette Janaina Jaber; Adams, Alexander Bernard; Souza, Rogério; Torquato, Jamili Anbar; Carvalho, Carlos Roberto Ribeiro; Marini, John J

    2009-01-01

    To evaluate and compare the efficiency of humidification in available heat and moisture exchanger models under conditions of varying tidal volume, respiratory rate, and flow rate. Inspired gases are routinely preconditioned by heat and moisture exchangers to provide a heat and water content similar to that provided normally by the nose and upper airways. The absolute humidity of air retrieved from and returned to the ventilated patient is an important measurable outcome of the heat and moisture exchangers' humidifying performance. Eight different heat and moisture exchangers were studied using a respiratory system analog. The system included a heated chamber (acrylic glass, maintained at 37 degrees C), a preserved swine lung, a hygrometer, circuitry and a ventilator. Humidity and temperature levels were measured using eight distinct interposed heat and moisture exchangers given different tidal volumes, respiratory frequencies and flow-rate conditions. Recovery of absolute humidity (%RAH) was calculated for each setting. Increasing tidal volumes led to a reduction in %RAH for all heat and moisture exchangers while no significant effect was demonstrated in the context of varying respiratory rate or inspiratory flow. Our data indicate that heat and moisture exchangers are more efficient when used with low tidal volume ventilation. The roles of flow and respiratory rate were of lesser importance, suggesting that their adjustment has a less significant effect on the performance of heat and moisture exchangers.

  3. Stationarity test with a direct test for heteroskedasticity in exchange rate forecasting models

    Science.gov (United States)

    Khin, Aye Aye; Chau, Wong Hong; Seong, Lim Chee; Bin, Raymond Ling Leh; Teng, Kevin Low Lock

    2017-05-01

    Global economic has been decreasing in the recent years, manifested by the greater exchange rates volatility on international commodity market. This study attempts to analyze some prominent exchange rate forecasting models on Malaysian commodity trading: univariate ARIMA, ARCH and GARCH models in conjunction with stationarity test on residual diagnosis direct testing of heteroskedasticity. All forecasting models utilized the monthly data from 1990 to 2015. Given a total of 312 observations, the data used to forecast both short-term and long-term exchange rate. The forecasting power statistics suggested that the forecasting performance of ARIMA (1, 1, 1) model is more efficient than the ARCH (1) and GARCH (1, 1) models. For ex-post forecast, exchange rate was increased from RM 3.50 per USD in January 2015 to RM 4.47 per USD in December 2015 based on the baseline data. For short-term ex-ante forecast, the analysis results indicate a decrease in exchange rate on 2016 June (RM 4.27 per USD) as compared with 2015 December. A more appropriate forecasting method of exchange rate is vital to aid the decision-making process and planning on the sustainable commodities' production in the world economy.

  4. Comparison of Moving Boundary and Finite-Volume Heat Exchanger Models in the Modelica Language

    Directory of Open Access Journals (Sweden)

    Adriano Desideri

    2016-05-01

    Full Text Available When modeling low capacity energy systems, such as a small size (5–150 kWel organic Rankine cycle unit, the governing dynamics are mainly concentrated in the heat exchangers. As a consequence, the accuracy and simulation speed of the higher level system model mainly depend on the heat exchanger model formulation. In particular, the modeling of thermo-flow systems characterized by evaporation or condensation requires heat exchanger models capable of handling phase transitions. To this aim, the finite volume (FV and the moving boundary (MB approaches are the most widely used. The two models are developed and included in the open-source ThermoCycle Modelica library. In this contribution, a comparison between the two approaches is presented. An integrity and accuracy test is designed to evaluate the performance of the FV and MB models during transient conditions. In order to analyze how the two modeling approaches perform when integrated at a system level, two organic Rankine cycle (ORC system models are built using the FV and the MB evaporator model, and their responses are compared against experimental data collected on an 11 kWel ORC power unit. Additionally, the effect of the void fraction value in the MB evaporator model and of the number of control volumes (CVs in the FV one is investigated. The results allow drawing general guidelines for the development of heat exchanger dynamic models involving two-phase flows.

  5. Dynamic Models of Learning That Characterize Parent-Child Exchanges Predict Vocabulary Growth

    Science.gov (United States)

    Ober, David R.; Beekman, John A.

    2016-01-01

    Cumulative vocabulary models for infants and toddlers were developed from models of learning that predict trajectories associated with low, average, and high vocabulary growth rates (14 to 46 months). It was hypothesized that models derived from rates of learning mirror the type of exchanges provided to infants and toddlers by parents and…

  6. Theoretical models for NO decomposition in Cu-exchanged zeolites

    CERN Document Server

    Tsekov, R

    2015-01-01

    A unified description of the catalytic effect of Cu-exchanged zeolites is proposed for the decomposition of NO. A general expression for the rate constant of NO decomposition is obtained by assuming that the rate-determining step consists of the transferring of a single atom associated with breaking of the N-O bond. The analysis is performed on the base of the generalized Langevin equation and takes into account both the potential interactions in the system and the memory effects due to the zeolite vibrations. Two different mechanisms corresponding to monomolecular and bimolecular NO decomposition are discussed. The catalytic effect in the monomolecular mechanism is related to both the Cu+ ions and zeolite O-vacancies, while in the case of the bimolecular mechanism the zeolite contributes through dissipation only. The comparison of the theoretically calculated rate constants with experimental results reveals additional information about the geometric and energetic characteristics of the active centers and con...

  7. Turning Simulation into Estimation: Generalized Exchange Algorithms for Exponential Family Models.

    Directory of Open Access Journals (Sweden)

    Maarten Marsman

    Full Text Available The Single Variable Exchange algorithm is based on a simple idea; any model that can be simulated can be estimated by producing draws from the posterior distribution. We build on this simple idea by framing the Exchange algorithm as a mixture of Metropolis transition kernels and propose strategies that automatically select the more efficient transition kernels. In this manner we achieve significant improvements in convergence rate and autocorrelation of the Markov chain without relying on more than being able to simulate from the model. Our focus will be on statistical models in the Exponential Family and use two simple models from educational measurement to illustrate the contribution.

  8. Turning Simulation into Estimation: Generalized Exchange Algorithms for Exponential Family Models.

    Science.gov (United States)

    Marsman, Maarten; Maris, Gunter; Bechger, Timo; Glas, Cees

    2017-01-01

    The Single Variable Exchange algorithm is based on a simple idea; any model that can be simulated can be estimated by producing draws from the posterior distribution. We build on this simple idea by framing the Exchange algorithm as a mixture of Metropolis transition kernels and propose strategies that automatically select the more efficient transition kernels. In this manner we achieve significant improvements in convergence rate and autocorrelation of the Markov chain without relying on more than being able to simulate from the model. Our focus will be on statistical models in the Exponential Family and use two simple models from educational measurement to illustrate the contribution.

  9. Mathematical modelling of thermal and flow processes in vertical ground heat exchangers

    Directory of Open Access Journals (Sweden)

    Pater Sebastian

    2017-12-01

    Full Text Available The main task of mathematical modelling of thermal and flow processes in vertical ground heat exchanger (BHE-Borehole Heat Exchanger is to determine the unit of borehole depth heat flux obtainable or transferred during the operation of the installation. This assignment is indirectly associated with finding the circulating fluid temperature flowing out from the U-tube at a given inlet temperature of fluid in respect to other operational parameters of the installation.

  10. Modeling and Dimensioning Ground Heat Exchangers Principles: Influence of the soil's thermal proprieties

    OpenAIRE

    Lavoué, Francois; Tourancheau, Bernard

    2010-01-01

    International audience; In the context of energy crisis and global warming, heating buildings with the solar energy stored in the soil rep- resents a very interesting alternative. Moreover, cooling buildings can also use the soil damping capacity. This paper presents our reflexion about the modeling and dimensioning of the ground heat exchanger part of ground-coupled heat pumps (GCHP). After a physical overview of the ground heat exchanger, we extract from analytical solutions practical conse...

  11. Exchange rate pass-through to various price indices: Empirical estimation using vector error correction models

    OpenAIRE

    Bachmann, Andreas

    2012-01-01

    The extent to which exchange rate fluctuations are passed through to domestic prices is of high relevance for open economies and for monetary authorities targeting price stability. Existing empirical studies estimating the exchange rate pass-through for Switzerland are based on either single equation estimation or on VAR models. However, these approaches feature some major drawbacks. The former cannot account for dynamic interactions between the time series and both methods disregard long-run...

  12. The Effects Of Asymmetric Transmission Of Exchange Rate On Inflation In Iran: Application Of Threshold Models

    Directory of Open Access Journals (Sweden)

    Naghdi Yazdan

    2015-08-01

    Full Text Available Given the recent fluctuation in the exchange rate and the presence of several factors such as the various economy-political sanctions (mainly embargos on oil and banking, extreme volatility in different economic fields, and consequently the devaluation of national and public procurement -A landmark that is emanating from exchange rate fluctuation - two points should be noted: First, it is essential to review the effect of exchange rate fluctuation on macro economic variables such as inflation and to provide appropriate policies. Second, the existence of this condition provides the chance to study the relation between exchange rate and inflation in a non-linear and asymmetric method. Hence, the present study seeks to use TAR model and, on the basis of monthly time series data over the period March 2002 to March 2014, to analyze the cross-asymmetric and non-linear exchange rate on consumer price index (CPI in Iran. The results also show the presence of an asymmetric long-term relationship between these variables (exchange rate and CPI. Also, in the Iranian economy, the effect of negative shocks of exchange rate on inflation is more sustainable than the one from positive shocks.

  13. Evaluation of Foreign Exchange Risk Capital Requirement Models

    Directory of Open Access Journals (Sweden)

    Ricardo S. Maia Clemente

    2005-12-01

    Full Text Available This paper examines capital requirement for financial institutions in order to cover market risk stemming from exposure to foreign currencies. The models examined belong to two groups according to the approach involved: standardized and internal models. In the first group, we study the Basel model and the model adopted by the Brazilian legislation. In the second group, we consider the models based on the concept of value at risk (VaR. We analyze the single and the double-window historical model, the exponential smoothing model (EWMA and a hybrid approach that combines features of both models. The results suggest that the Basel model is inadequate to the Brazilian market, exhibiting a large number of exceptions. The model of the Brazilian legislation has no exceptions, though generating higher capital requirements than other internal models based on VaR. In general, VaR-based models perform better and result in less capital allocation than the standardized approach model applied in Brazil.

  14. An Experimentally Validated Numerical Modeling Technique for Perforated Plate Heat Exchangers.

    Science.gov (United States)

    White, M J; Nellis, G F; Kelin, S A; Zhu, W; Gianchandani, Y

    2010-11-01

    Cryogenic and high-temperature systems often require compact heat exchangers with a high resistance to axial conduction in order to control the heat transfer induced by axial temperature differences. One attractive design for such applications is a perforated plate heat exchanger that utilizes high conductivity perforated plates to provide the stream-to-stream heat transfer and low conductivity spacers to prevent axial conduction between the perforated plates. This paper presents a numerical model of a perforated plate heat exchanger that accounts for axial conduction, external parasitic heat loads, variable fluid and material properties, and conduction to and from the ends of the heat exchanger. The numerical model is validated by experimentally testing several perforated plate heat exchangers that are fabricated using microelectromechanical systems based manufacturing methods. This type of heat exchanger was investigated for potential use in a cryosurgical probe. One of these heat exchangers included perforated plates with integrated platinum resistance thermometers. These plates provided in situ measurements of the internal temperature distribution in addition to the temperature, pressure, and flow rate measured at the inlet and exit ports of the device. The platinum wires were deposited between the fluid passages on the perforated plate and are used to measure the temperature at the interface between the wall material and the flowing fluid. The experimental testing demonstrates the ability of the numerical model to accurately predict both the overall performance and the internal temperature distribution of perforated plate heat exchangers over a range of geometry and operating conditions. The parameters that were varied include the axial length, temperature range, mass flow rate, and working fluid.

  15. An Experimentally Validated Numerical Modeling Technique for Perforated Plate Heat Exchangers

    Science.gov (United States)

    Nellis, G. F.; Kelin, S. A.; Zhu, W.; Gianchandani, Y.

    2010-01-01

    Cryogenic and high-temperature systems often require compact heat exchangers with a high resistance to axial conduction in order to control the heat transfer induced by axial temperature differences. One attractive design for such applications is a perforated plate heat exchanger that utilizes high conductivity perforated plates to provide the stream-to-stream heat transfer and low conductivity spacers to prevent axial conduction between the perforated plates. This paper presents a numerical model of a perforated plate heat exchanger that accounts for axial conduction, external parasitic heat loads, variable fluid and material properties, and conduction to and from the ends of the heat exchanger. The numerical model is validated by experimentally testing several perforated plate heat exchangers that are fabricated using microelectromechanical systems based manufacturing methods. This type of heat exchanger was investigated for potential use in a cryosurgical probe. One of these heat exchangers included perforated plates with integrated platinum resistance thermometers. These plates provided in situ measurements of the internal temperature distribution in addition to the temperature, pressure, and flow rate measured at the inlet and exit ports of the device. The platinum wires were deposited between the fluid passages on the perforated plate and are used to measure the temperature at the interface between the wall material and the flowing fluid. The experimental testing demonstrates the ability of the numerical model to accurately predict both the overall performance and the internal temperature distribution of perforated plate heat exchangers over a range of geometry and operating conditions. The parameters that were varied include the axial length, temperature range, mass flow rate, and working fluid. PMID:20976021

  16. MODELING OF AN ADVANCED HEAT EXCHANGE UNIT WITH MICROCHANNELS FOR A COMBINED PHOTOENERGY SYSTEM

    Directory of Open Access Journals (Sweden)

    R. V. Zaitsev

    2017-06-01

    Full Text Available Purpose. Mathematical modeling of the heat exchange unit main parameters for photoenergy system based on general models with forced circulation of heat transfer fluid. Methodology. To determine the coefficient of heat transfer at a given coolant temperature and surfaces temperature necessary to determine the temperature gradient in the wall of the heat exchanger. Temperature gradients can be determined by solving the equation of energy, which depends on the distribution of the flow rate in the flow. In general, a solution of convective heat transfer fluid to flow along the plane comes to solution of the system of differential equations. Results. In the paper features of the selection of theoretical basis and mathematical modeling of thermal processes in the heat exchange unit for combination photoenergy system are presented. As a result of the simulation conducted we improve and develop high-efficiency heat exchange unit with microchannels. Testing of the proposed unit proved its high efficiency through the implementation of turbulent flow of coolant with heat transfer coefficient at 18 kW/(m2×K. Analytical testing of the heat exchanger allowed showing that heat exchanger unit provides a stable operating temperature at less than 50 °C with the coolant flow rate is less than 0.3 m/s. Originality. Novelty of the proposed heat exchanger is in the optimal design of microchannels to improve the heat transfer coefficient. Practical value. The use of this heat exchanger will improve the quality and uniformity of cooling solar panels and reduce energy costs for circulation of fluid.

  17. Making work safer: testing a model of social exchange and safety management.

    Science.gov (United States)

    DeJoy, David M; Della, Lindsay J; Vandenberg, Robert J; Wilson, Mark G

    2010-04-01

    This study tests a conceptual model that focuses on social exchange in the context of safety management. The model hypothesizes that supportive safety policies and programs should impact both safety climate and organizational commitment. Further, perceived organizational support is predicted to partially mediate both of these relationships. Study outcomes included traditional outcomes for both organizational commitment (e.g., withdrawal behaviors) as well as safety climate (e.g., self-reported work accidents). Questionnaire responses were obtained from 1,723 employees of a large national retailer. Using structural equation modeling (SEM) techniques, all of the model's hypothesized relationships were statistically significant and in the expected directions. The results are discussed in terms of social exchange in organizations and research on safety climate. Maximizing safety is a social-technical enterprise. Expectations related to social exchange and reciprocity figure prominently in creating a positive climate for safety within the organization. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. Reduced dimension model for heat transfer of ground heat exchanger in permafrost

    Science.gov (United States)

    Vasilyeva, M.; Stepanov, S.; Sirditov, I.

    2017-12-01

    In this work, we present reduced dimensional model for heat transfer processes of ground heat exchanger in permafrost. A mathematical model is described by a coupled system of equations for heat transfer in the ground subdomain and in heat exchanger (pipes). Because radius of the pipes is very small compared to the size of surrounding ground, we write heat transfer problem in pipes as reduced dimensional equation, where we consider pipes as one-dimensional lines. We present a computational algorithm and numerical results for model problem.

  19. A comprehensive molecular dynamics approach to protein retention modeling in ion exchange chromatography.

    Science.gov (United States)

    Lang, Katharina M H; Kittelmann, Jörg; Dürr, Cathrin; Osberghaus, Anna; Hubbuch, Jürgen

    2015-02-13

    In downstream processing, the underlying adsorption mechanism of biomolecules to adsorbent material are still subject of extensive research. One approach to more mechanistic understanding is simulating this adsorption process and hereby the possibility to identify the parameters with strongest impact. So far this method was applied with all-atom molecular dynamics simulations of two model proteins on one cation exchanger. In this work we developed a molecular dynamics tool to simulate protein-adsorber interaction for various proteins on an anion exchanger and ran gradient elution experiments to relate the simulation results to experimental data. We were able to show that simulation results yield similar results as experimental data regarding retention behavior as well as binding orientation. We could identify arginines in case of cation exchangers and aspartic acids in case of anion exchangers as major contributors to binding. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Mathematical model of a plate fin heat exchanger operating under solid oxide fuel cell working conditions

    Science.gov (United States)

    Kaniowski, Robert; Poniewski, Mieczysław

    2013-12-01

    Heat exchangers of different types find application in power systems based on solid oxide fuel cells (SOFC). Compact plate fin heat exchangers are typically found to perfectly fit systems with power output under 5 kWel. Micro-combined heat and power (micro-CHP) units with solid oxide fuel cells can exhibit high electrical and overall efficiencies, exceeding 85%, respectively. These values can be achieved only when high thermal integration of a system is assured. Selection and sizing of heat exchangers play a crucial role and should be done with caution. Moreover, performance of heat exchangers under variable operating conditions can strongly influence efficiency of the complete system. For that reason, it becomes important to develop high fidelity mathematical models allowing evaluation of heat exchangers under modified operating conditions, in high temperature regimes. Prediction of pressure and temperatures drops at the exit of cold and hot sides are important for system-level studies. Paper presents dedicated mathematical model used for evaluation of a plate fin heat exchanger, operating as a part of micro-CHP unit with solid oxide fuel cells.

  1. A hydrogeomorphic river network model predicts where and why hyporheic exchange is important in large basins

    Science.gov (United States)

    Gomez-Velez, Jesus D.; Harvey, Judson

    2014-01-01

    Hyporheic exchange has been hypothesized to have basin-scale consequences; however, predictions throughout river networks are limited by available geomorphic and hydrogeologic data and by models that can analyze and aggregate hyporheic exchange flows across large spatial scales. We developed a parsimonious but physically based model of hyporheic flow for application in large river basins: Networks with EXchange and Subsurface Storage (NEXSS). We applied NEXSS across a broad range of geomorphic diversity in river reaches and synthetic river networks. NEXSS demonstrates that vertical exchange beneath submerged bed forms rather than lateral exchange through meanders dominates hyporheic fluxes and turnover rates along river corridors. Per kilometer, low-order streams have a biogeochemical potential at least 2 orders of magnitude larger than higher-order streams. However, when biogeochemical potential is examined per average length of each stream order, low- and high-order streams were often found to be comparable. As a result, the hyporheic zone's intrinsic potential for biogeochemical transformations is comparable across different stream orders, but the greater river miles and larger total streambed area of lower order streams result in the highest cumulative impact from low-order streams. Lateral exchange through meander banks may be important in some cases but generally only in large rivers.

  2. A one-dimensional heat transfer model for parallel-plate thermoacoustic heat exchangers

    NARCIS (Netherlands)

    de Jong, Anne; Wijnant, Ysbrand H.; de Boer, Andries

    2014-01-01

    A one-dimensional (1D) laminar oscillating flow heat transfer model is derived and applied to parallel-plate thermoacoustic heat exchangers. The model can be used to estimate the heat transfer from the solid wall to the acoustic medium, which is required for the heat input/output of thermoacoustic

  3. Demonstration of leapfrogging for implementing nonlinear model predictive control on a heat exchanger.

    Science.gov (United States)

    Sridhar, Upasana Manimegalai; Govindarajan, Anand; Rhinehart, R Russell

    2016-01-01

    This work reveals the applicability of a relatively new optimization technique, Leapfrogging, for both nonlinear regression modeling and a methodology for nonlinear model-predictive control. Both are relatively simple, yet effective. The application on a nonlinear, pilot-scale, shell-and-tube heat exchanger reveals practicability of the techniques. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Heat exchanger modeling and identification for control of waste heat recovery systems in diesel engines

    NARCIS (Netherlands)

    Feru, E.; Willems, F.P.T.; Rojer, C.; Jager, B. de; Steinbuch, M.

    2013-01-01

    To meet future CO2 emission targets, Waste Heat Recovery systems have recently attracted much attention for automotive applications, especially for long haul trucks. This paper focuses on the development of a dynamic counter-flow heat exchanger model for control purposes. The model captures the

  5. Model-based fault detection for proton exchange membrane fuel cell ...

    African Journals Online (AJOL)

    In this paper, an intelligent model-based fault detection (FD) is developed for proton exchange membrane fuel cell (PEMFC) dynamic systems using an independent radial basis function (RBF) networks. The novelty is that this RBF networks is used to model the PEMFC dynamic systems and residuals are generated based ...

  6. Numerical Modeling of Fin and Tube Heat Exchanger for Waste Heat Recovery

    DEFF Research Database (Denmark)

    Singh, Shobhana; Sørensen, Kim; Condra, Thomas Joseph

    In the present work, multiphysics numerical modeling is carried out to predict the performance of a liquid-gas fin and tube heat exchanger design. Three-dimensional (3D) steady-state numerical model using commercial software COMSOL based on finite element method (FEM) is developed. The study...

  7. Modeling coupled interactions of carbon, water, and ozone exchange between terrestrial ecosystems and the atmosphere

    Science.gov (United States)

    Ned Nikolova; Karl F. Zeller

    2003-01-01

    A new biophysical model (FORFLUX) is presented to study the simultaneous exchange of ozone, carbon dioxide, and water vapor between terrestrial ecosystems and the atmosphere. The model mechanistically couples all major processes controlling ecosystem flows trace gases and water implementing recent concepts in plant eco-physiology, micrometeorology, and soil hydrology....

  8. Multiphysics Model of Palladium Hydride Isotope Exchange Accounting for Higher Dimensionality

    Energy Technology Data Exchange (ETDEWEB)

    Gharagozloo, Patricia E.; Eliassi, Mehdi; Bon, Bradley Luis

    2015-03-01

    This report summarizes computational model developm ent and simulations results for a series of isotope exchange dynamics experiments i ncluding long and thin isothermal beds similar to the Foltz and Melius beds and a lar ger non-isothermal experiment on the NENG7 test bed. The multiphysics 2D axi-symmetr ic model simulates the temperature and pressure dependent exchange reactio n kinetics, pressure and isotope dependent stoichiometry, heat generation from the r eaction, reacting gas flow through porous media, and non-uniformities in the bed perme ability. The new model is now able to replicate the curved reaction front and asy mmetry of the exit gas mass fractions over time. The improved understanding of the exchange process and its dependence on the non-uniform bed properties and te mperatures in these larger systems is critical to the future design of such sy stems.

  9. Mathematical modeling of salt-gradient ion-exchange simulated moving bed chromatography for protein separations.

    Science.gov (United States)

    Lu, Jian-Gang

    2004-12-01

    The salt-gradient operation mode used in ion-exchange simulated moving bed chromatography (SMBC) can improve the efficiency of protein separations. A detailed model that takes into account any kind of adsorption/ion-exchange equilibrium, salt gradient, size exclusion, mass transfer resistance, and port periodic switching mechanism, was developed to simulate the complex dynamics. The model predictions were verified by the experimental data on upward and downward gradients for protein separations reported in the literature. All design and operating parameters (number, configuration, length and diameter of columns, particle size, switching period, flow rates of feed, raffinate, desorbent and extract, protein concentrations in feed, different salt concentrations in desorbent and feed) can be chosen correctly by numerical simulation. This model can facilitate the design, operation, optimization, control and scale-up of salt-gradient ion-exchange SMBC for protein separations.

  10. Activity systems modeling as a theoretical lens for social exchange studies

    Directory of Open Access Journals (Sweden)

    Ernest Jones

    2016-01-01

    Full Text Available The social exchange perspective seeks to acknowledge, understand and predict the dynamics of social interactions. Empirical research involving social exchange constructs have grown to be highly technical including confirmatory factor analysis to assess construct distinctiveness and structural equation modeling to assess construct causality. Each study seemingly strives to assess how underlying social exchange theoretic constructs interrelate. Yet despite this methodological depth and resultant explanatory and predictive power, a significant number of studies report findings that, once synthesized, suggest an underlying persistent threat of conceptual or construct validity brought about by a search for epistemological parsimony. Further, it is argued that a methodological approach that embraces inherent complexity such as activity systems modeling facilitates the search for simplified models while not ignoring contextual factors.

  11. Modeling surf zone-inner shelf exchange: Interaction of rip currents and stratification

    Science.gov (United States)

    Kumar, N.; Feddersen, F.

    2014-12-01

    Transient rip currents on alongshore uniform beaches develop from the coalescence of surf zone eddies, exchanging tracers between the surf zone and the potentially stratified inner shelf. The interaction of stratification and transient rip currents has not yet been investigated. Surf zone eddies responsible for transient rip currents are generated by short-crested wave breaking, a process included in wave-resolving (WR) Boussinesq models. However, WR models are depth-integrated and cannot account for stratification and vertically sheared flows. Wave-averaged (WA) models can simulate these processes, but cannot create surf zone eddies. A combination of WR and WA models is required to accurately simulate surf zone-inner shelf exchange. Here, WR depth-integrated Boussinessq model funwaveC is coupled to the stratification and depth-resolving WA Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system. The surf zone eddy generation forcing is extracted from a funwaveC simulation of normally incident waves on a planar beach, and provided to COAWST as a depth-uniform surf zone force. COAWST model simulations resolving the surf zone to mid-shelf are conducted with surf zone eddy forcing, idealistic surface heating/cooling, stratification, and Coriolis effects. These simulations provide three-dimensional evolution of velocity and temperature, diagnosed to quantify the role of surf zone eddy forcing in surf zone-inner shelf exchange. The impact of stratification on rip currents and exchange is studied by varying the stratification. Funded by the Office of Naval Research.

  12. Experimental investigations and validation of two dimensional model for multistream plate fin heat exchangers

    Science.gov (United States)

    Goyal, Mukesh; Chakravarty, Anindya; Atrey, M. D.

    2017-03-01

    Experimental investigations are carried out using a specially developed three-layer plate fin heat exchanger (PFHE), with helium as the working fluid cooled to cryogenic temperatures using liquid nitrogen (LN2) as a coolant. These results are used for validation of an already proposed and reported numerical model based on finite volume analysis for multistream (MS) plate fin heat exchangers (PFHE) for cryogenic applications (Goyal et al., 2014). The results from the experiments are presented and a reasonable agreement is observed with the already reported numerical model.

  13. A macro-physics model of depreciation rate in economic exchange

    Science.gov (United States)

    Marmont Lobo, Rui F.; de Sousa, Miguel Rocha

    2014-02-01

    This article aims at a new approach for a known fundamental result: barter or trade increases economic value. It successfully bridges the gap between the theory of value and the exchange process attached to the transition from endowments to the equilibrium in the core and contract curve. First, we summarise the theory of value; in Section 2, we present the Edgeworth (1881) box and an axiomatic approach and in Section 3, we apply our pure exchange model. Finally (in Section 4), using our open econo-physics pure barter (EPB) model, we derive an improvement in value, which means that pure barter leads to a decline in depreciation rate.

  14. Structural Breaks and Long Memory Property in Korean Won Exchange Rates: Adaptive FIGARCH Model

    Directory of Open Access Journals (Sweden)

    Young Wook Han

    2011-06-01

    Full Text Available This paper explores the issue of structural breaks and long memory property in the conditional variance process of the Korean exchange rates. To analyze the above in detail, this paper examines the dynamics of the structural breaks and the long memory in the conditional variance process of the Korean exchange returns by using the daily KRW-USD and KRW-JPY exchange rates for the period from 2000 through 2007. In particular, this paper employs the Adaptive FIGARCH model of Baillie and Morana (2009 which account for the structural breaks and the long memory property together. This paper also finds that the new Adaptive FIGARCH model outperforms the usual FIGARCH model of Baillie et al. (1996 when the structural breaks are present and that the long memory property in the conditional variance process of the Korean exchange returns is significantly reduced after the structural breaks are accounted for. Thus, these results suggest that the upward biased long memory property observed in the conditional variance process of the Korean exchange returns could partially have been imparted as a result of neglecting the structural breaks.

  15. The Exchange rate in a Dynamic-Optimizing Current Account Model with Nominal Rigidities: A Quantitative Investigation

    OpenAIRE

    Kollmann, R.

    1996-01-01

    This paper studies dynamic-optimizing model of a semi-small open economy with sticky nominal prices and wages. The model exhibits exchange rate overshooting in response to money supply shocks. The predicted variability of nominal and real exchange rates is roughly consistent with that of G-7 effective exchange rates during the post-Bretton Woods era. The model predicts that a positive domestic money supply shock lowers the domestic nominal interest rate, that it raises output and that it lead...

  16. Models for the estimation of thermodynamic properties of layered double hydroxides: application to the study of their anion exchange characteristics

    Directory of Open Access Journals (Sweden)

    Bravo-Suárez Juan J.

    2004-01-01

    Full Text Available Several models for the estimation of thermodynamic properties of layered double hydroxides (LDHs are presented. The predicted thermodynamic quantities calculated by the proposed models agree with experimental thermodynamic data. A thermodynamic study of the anion exchange process on LDHs is also made using the described models. Tables for the prediction of monovalent anion exchange selectivities on LDHs are provided. Reasonable agreement is found between the predicted and the experimental monovalent anion exchange selectivities.

  17. Integrated hydrologic and hydrodynamic modeling to assess water exchange in a data-scarce reservoir

    Science.gov (United States)

    Wu, Binbin; Wang, Guoqiang; Wang, Zhonggen; Liu, Changming; Ma, Jianming

    2017-12-01

    Integrated hydrologic and hydrodynamic modeling is useful in evaluating hydrodynamic characteristics (e.g. water exchange processes) in data-scarce water bodies, however, most studies lack verification of the hydrologic model. Here, water exchange (represented by water age) was investigated through integrated hydrologic and hydrodynamic modeling of the Hongfeng Reservoir, a poorly gauged reservoir in southwest China. The performance of the hydrologic model and parameter replacement among sub-basins with hydrological similarity was verified by historical data. Results showed that hydrological similarity based on the hierarchical cluster analysis and topographic index probability density distribution was reliable with satisfactory performance of parameter replacement. The hydrodynamic model was verified using daily water levels and water temperatures from 2009 and 2010. The water exchange processes in the Hongfeng Reservoir are very complex with temporal, vertical, and spatial variations. The temporal water age was primarily controlled by the variable inflow and outflow, and the maximum and minimum ages for the site near the dam were 406.10 d (15th June) and 90.74 d (3rd August), respectively, in 2010. Distinct vertical differences in water age showed that surface flow, interflow, and underflow appeared alternately, depending on the season and water depth. The worst water exchange situation was found in the central areas of the North Lake with the highest water ages in the bottom on both 15th June and 3rd August, in 2010. Comparison of the spatial water ages revealed that the more favorable hydraulic conditions on 3rd August mainly improved the water exchange in the dam areas and most areas of the South Lake, but had little effect on the bottom layers of the other deepest areas in the South and North Lakes. The presented framework can be applied in other data-scarce waterbodies worldwide to provide better understanding of water exchange processes.

  18. Stochastic effects in a discretized kinetic model of economic exchange

    Science.gov (United States)

    Bertotti, M. L.; Chattopadhyay, A. K.; Modanese, G.

    2017-04-01

    Linear stochastic models and discretized kinetic theory are two complementary analytical techniques used for the investigation of complex systems of economic interactions. The former employ Langevin equations, with an emphasis on stock trade; the latter is based on systems of ordinary differential equations and is better suited for the description of binary interactions, taxation and welfare redistribution. We propose a new framework which establishes a connection between the two approaches by introducing random fluctuations into the kinetic model based on Langevin and Fokker-Planck formalisms. Numerical simulations of the resulting model indicate positive correlations between the Gini index and the total wealth, that suggest a growing inequality with increasing income. Further analysis shows, in the presence of a conserved total wealth, a simultaneous decrease in inequality as social mobility increases, in conformity with economic data.

  19. A Model for Trading the Foreign Exchange Market | Nwokorie | West ...

    African Journals Online (AJOL)

    Finally, an application of the model in FOREX trading is demonstrated and implemented with the Meta-Quote scripting Language (MQL) of the meta-Trader platform. The historical test of the robot for the last 12 months resulted in a range of significant profitability with annual returns between 40% to700% and with maximum ...

  20. Comparison of stock valuation models with their intrinsic value in Tehran Stock Exchange

    Directory of Open Access Journals (Sweden)

    Ali Amiri

    2016-06-01

    Full Text Available Stock evaluation is one of the most important and most complex operational processes in the stock exchange. In financial markets, the pricing of tradable assets plays a basic role in resource allocation. After initial stock valuation of listed companies in Tehran Stock Exchange, some changes were observed in prices with the value set by the Stock Exchange. The aim of this study was to determine the model applied in the formation of stock prices in the stock market to find an appropriate market value model among value-based valuation models. To test the models of stock valuation, ordinary least square regression was used. Also, E-Views software was used for further data analysis. The sample included all the companies listed in Tehran Stock Exchange from 2008 till 2013. Based on the stratified random sampling, each industry was selected as a category and using Cochran formula, sample size of 40 participants was determined from each category. The data analysis indicated that the price-to-book ratio (P/B ratio had the highest adjustment factor and had been set as the best stock valuation model.

  1. How can social networks ever become complex? Modelling the emergence of complex networks from local social exchanges

    NARCIS (Netherlands)

    Pujol, Josep M.; Flache, Andreas; Delgado, Jordi; Sangüesa, Ramon; Sanguessa, R.

    2005-01-01

    Small-world and power-law network structures have been prominently proposed as models of large networks. However, the assumptions of these models usually-lack sociological grounding. We present a computational model grounded in social exchange theory. Agents search attractive exchange partners in a

  2. Adaptive Multi-GPU Exchange Monte Carlo for the 3D Random Field Ising Model

    CERN Document Server

    Navarro, C A; Deng, Youjin

    2015-01-01

    The study of disordered spin systems through Monte Carlo simulations has proven to be a hard task due to the adverse energy landscape present at the low temperature regime, making it difficult for the simulation to escape from a local minimum. Replica based algorithms such as the Exchange Monte Carlo (also known as parallel tempering) are effective at overcoming this problem, reaching equilibrium on disordered spin systems such as the Spin Glass or Random Field models, by exchanging information between replicas of neighbor temperatures. In this work we present a multi-GPU Exchange Monte Carlo method designed for the simulation of the 3D Random Field Model. The implementation is based on a two-level parallelization scheme that allows the method to scale its performance in the presence of faster and GPUs as well as multiple GPUs. In addition, we modified the original algorithm by adapting the set of temperatures according to the exchange rate observed from short trial runs, leading to an increased exchange rate...

  3. Towards modeling the economies of personal relationships in dyadic business exchanges

    OpenAIRE

    Davidrajuh, Reggie; Jensen, Øystein

    2007-01-01

    This paper proposes modeling the economies of personal relationship so that its impact on the collective economic outcome in dyadic business exchanges can be measured. Firstly, this paper introduces personal relationship in business environment. Secondly, some of the parameters that are related to the issue of personal relationship are presented. Thirdly, a hybrid approach is proposed for developing a mathematical model; with the mathematical model, a better underst...

  4. Equity and Foreign Exchange Hybrid Models for Pricing Long-Maturity Financial Derivatives

    NARCIS (Netherlands)

    Grzelak, L.A.

    2011-01-01

    Modelling derivative products in Finance usually starts with the specification of a system of Stochastic Differential Equations (SDEs), that corresponds to state variables like stock, interest rate, Foreign Exchange (FX) rate and volatility. By correlating the SDEs for the different asset classes

  5. Numerical Simulation of Different Models of Heat Pipe Heat Exchanger Using AcuSolve

    Directory of Open Access Journals (Sweden)

    Zainal Nurul Amira

    2017-01-01

    Full Text Available In this paper, a numerical simulation of heat pipe heat exchanger (HPHE is computed by using CFD solver program i.e. AcuSolve. Two idealized model of HPHE are created with different variant of entry’s dimension set to be case 1 and case 2. The geometry of HPHE is designed in SolidWorks and imported to AcuSolve to simulate the fluid flow numerically. The design of HPHE is the key to provide a heat exchanger system to work proficient as expected. Finally, the result is used to optimize and improving heat recovery systems of the increasing demand for energy efficiency in industry.

  6. A social exchange-based model of the antecedents of workplace exclusion.

    Science.gov (United States)

    Scott, Kristin L; Restubog, Simon Lloyd D; Zagenczyk, Thomas J

    2013-01-01

    We conducted 2 studies of coworker dyads to test a theoretical model exploring why and under what circumstances employees are the targets of workplace exclusion. Adopting a victim precipitation perspective, we integrate belongingness and social exchange theories to propose that employees who display workplace incivility are distrusted and therefore are targets of workplace exclusion. Highlighting the importance of the context of the perpetrator-target relationship, we also find support for the postulation that this mediated relationship is strengthened when the target employee is perceived to be a weak exchange partner and is attenuated when he or she is viewed as a valuable exchange partner. Theoretical and practical implications are discussed. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  7. Heat exchange modeling in a multilayered karst aquifer affected by seawater intrusion

    Directory of Open Access Journals (Sweden)

    Luca Vettorello

    2015-11-01

    Full Text Available A Feflow thermohaline model has been implemented in order to study borehole heat exchangers (BHEs activity in a coastal aquifer in the South of Italy (Province of Lecce, Puglia Region. The modeled closed-loop system consists of two double u-pipe heat exchangers, installed in 200 meters deep boreholes. The main purpose of numerical modeling was to forecast thermal plume extension in groundwater after a long period of heat exchange, calculating temperature trends in observation points during a 10 years transport simulation. The complex geological structure, including calcarenites, fractured limestones and a deep karst aquifer, has been translated into a multilayered model, with a depth-related parameter distribution, assigning different values of hydraulic, thermal and chemical properties to each layer. In particular saltwater concentration has been taken into account, considering the influence of seawater intrusion on the heat transport density-dependent model. Parameters assignment was based on experimental datasets collected during initial field investigations, including thermal characterization of soil samples and GRTs, together with historical hydrogeological and hydrochemical measures and previous groundwater surveys. After model structure configuration and aquifers parameterization, a sensitivity analysis on porosity and heat dispersivity has been conducted, to evaluate their influence on thermal transport phenomena with a multiple scenarios approach, considering in particular the uncertainty related to secondary porosity in karst systems. Feflow simulation represented the first step in environmental compatibility evaluation for the BHE plant, waiting for the necessary model calibration with groundwater temperature monitoring trends.

  8. Modeling the distribution of ammonia across Europe including bi-directional surface–atmosphere exchange

    Directory of Open Access Journals (Sweden)

    R. J. Wichink Kruit

    2012-12-01

    Full Text Available A large shortcoming of current chemistry transport models (CTM for simulating the fate of ammonia in the atmosphere is the lack of a description of the bi-directional surface–atmosphere exchange. In this paper, results of an update of the surface–atmosphere exchange module DEPAC, i.e. DEPosition of Acidifying Compounds, in the chemistry transport model LOTOS-EUROS are discussed. It is shown that with the new description, which includes bi-directional surface–atmosphere exchange, the modeled ammonia concentrations increase almost everywhere, in particular in agricultural source areas. The reason is that by using a compensation point the ammonia lifetime and transport distance is increased. As a consequence, deposition of ammonia and ammonium decreases in agricultural source areas, while it increases in large nature areas and remote regions especially in southern Scandinavia. The inclusion of a compensation point for water reduces the dry deposition over sea and allows reproducing the observed marine background concentrations at coastal locations to a better extent. A comparison with measurements shows that the model results better represent the measured ammonia concentrations. The concentrations in nature areas are slightly overestimated, while the concentrations in agricultural source areas are still underestimated. Although the introduction of the compensation point improves the model performance, the modeling of ammonia remains challenging. Important aspects are emission patterns in space and time as well as a proper approach to deal with the high concentration gradients in relation to model resolution. In short, the inclusion of a bi-directional surface–atmosphere exchange is a significant step forward for modeling ammonia.

  9. Using a Theory-Consistent CVAR Scenario to Test an Exchange Rate Model Based on Imperfect Knowledge

    DEFF Research Database (Denmark)

    Juselius, Katarina

    2017-01-01

    -state behavior of an an imperfect knowledge based model for exchange rate determination can be formulated as testable hypotheses on common stochastic trends and cointegration. This model obtained a remarkable support for almost every testable hypothesis and was able to adequately account for the long persistent...... swings in the real exchange rate....

  10. Analytical 1D models of the wall thermal resistance of rectangular minichannels applied in heat exchangers

    Directory of Open Access Journals (Sweden)

    Rybiński Witold

    2016-09-01

    Full Text Available The paper presents four 1-dimensional models of thermal resistance of walls in a heat exchanger with rectangular minichannels. The first model is the simplest one, with a single wall separating two fluids. The second model of the so called equivalent wall takes into account total volume of intermediate walls between layers of minichannels and of side walls of minichannels. The next two more complicated models take separately into account thermal resistance of these walls. In these two models side walls are treated as fins. The results of models comparison are presented. It is shown that thermal resistance may be neglected for metal walls but it should be taken into account for the walls made of plastics. For the case of non-neglected wall thermal resistance the optimum wall thickness was derived. Minichannel heat exchangers made of plastic are larger than those built of metal, but are significantly cheaper. It makes possible to use of such exchangers in inexpensive microscale ORC installations.

  11. Dynamic model of counter flow air to air heat exchanger for comfort ventilation with condensation and frost formation

    DEFF Research Database (Denmark)

    Nielsen, Toke Rammer; Rose, Jørgen; Kragh, Jesper

    2009-01-01

    In cold climates heat recovery in the ventilation system is essential to reduce heating energy demand. Condensation and freezing occur often in efficient heat exchangers used in cold climates. To develop efficient heat exchangers and defrosting strategies for cold climates, heat and mass transfer...... must be calculated under conditions with condensation and freezing. This article presents a dynamic model of a counter flow air to air heat exchanger taking into account condensation and freezing and melting of ice. The model is implemented in Simulink and results are compared to measurements...... on a prototype heat exchanger for cold climates....

  12. Interoperability and models for exchange of data between information systems in public administration

    Science.gov (United States)

    Glavev, Victor

    2016-12-01

    The types of software applications used by public administrations can be divided in three main groups: document management systems, record management systems and business process systems. Each one of them generates outputs that can be used as input data to the others. This is the main reason that requires exchange of data between these three groups and well defined models that should be followed. There are also many other reasons that will be discussed in the paper. Interoperability is a key aspect when those models are implemented, especially when there are different manufactures of systems in the area of software applications used by public authorities. The report includes examples of implementation of models for exchange of data between software systems deployed in one of the biggest administration in Bulgaria.

  13. Modelling the Dependence Structure of MUR/USD and MUR/INR Exchange Rates using Copula

    Directory of Open Access Journals (Sweden)

    Vandna Jowaheer

    2012-01-01

    Full Text Available American Dollar (USD and Indian Rupee (INR play an important role in Mauritian economy. It is important to model the pattern of dependence in their co-movement with respect to Mauritian Rupee (MUR, as this may indicate the export-import behavior in Mauritius. However, it is known that distributions of exchange rates are usually non-normal and the use of linear correlation as a dependence measure is inappropriate. Moreover it is quite difficult to obtain the joint distribution of such random variables in order to specify the complete covariance matrix to measure their dependence structure. In this paper, we first identify the marginal distributions of the exchange rates of MUR against USD and INR and then select the best fitting copula model for the bivariate series. It is concluded that both the series are asymmetric and fat-tailed following hyperbolic distribution. Their dependence structure is appropriately modeled by t copula.

  14. Sd-model with strong exchange coupling and a metal-insulator phase transition

    Directory of Open Access Journals (Sweden)

    Yu.A.Izyumov

    2006-01-01

    Full Text Available Sd-exchange model (Kondo lattice model is formulated for strong sd-coupling within the framework of the X-operators technique and the generating functional approach. The X-operators are constructed based on the exact eigen functions of a single-site sd-exchange Hamiltonian. Such representation enables us to develop a perturbation theory near the atomic level. A locator-type representation was derived for the electron Green's function. The electron self-energy includes interaction of electrons and spin fluctuations. An integral equation for the self-energy was obtained in the limit of infinite localized spins. A solution of this equation in the static approximation for spin fluctuations leads to a structure of electron Green's function showing a metal-insulator phase transition. This transition is similar to that in the Hubbard model at half filling.

  15. Energy exchange analysis in droplet dynamics via the Navier–Stokes–Cahn–Hilliard model

    KAUST Repository

    Espath, L. F. R.

    2016-05-23

    We develop the energy budget equation of the coupled Navier-Stokes-Cahn-Hilliard (NSCH) system. We use the NSCH equations to model the dynamics of liquid droplets in a liquid continuum. Buoyancy effects are accounted for through the Boussinesq assumption. We physically interpret each quantity involved in the energy exchange to gain further insight into the model. Highly resolved simulations involving density-driven flows and the merging of droplets allow us to analyse these energy budgets. In particular, we focus on the energy exchanges when droplets merge, and describe flow features relevant to this phenomenon. By comparing our numerical simulations to analytical predictions and experimental results available in the literature, we conclude that modelling droplet dynamics within the framework of NSCH equations is a sensible approach worthy of further research. © 2016 Cambridge University Press.

  16. Simulation model for overloaded monoclonal antibody variants separations in ion-exchange chromatography.

    Science.gov (United States)

    Guélat, Bertrand; Ströhlein, Guido; Lattuada, Marco; Delegrange, Lydia; Valax, Pascal; Morbidelli, Massimo

    2012-08-31

    A model was developed for the design of a monoclonal antibody charge variants separation process based on ion-exchange chromatography. In order to account for a broad range of operating conditions in the simulations, an explicit pH and salt concentration dependence has been included in the Langmuir adsorption isotherm. The reliability of this model was tested using experimental chromatographic retention times as well as information about the structural characteristics of the different charge variants, e.g. C-terminal lysine groups and deamidated groups. Next, overloaded isocratic elutions at various pH and salt concentrations have been performed to determine the saturation capacity of the ion-exchanger. Furthermore, the column simulation model was applied for the prediction of monoclonal antibody variants separations with both pH and salt gradient elutions. A good prediction of the elution times and peak shapes was observed, even though none of the model parameters was adjusted to fit the experimental data. The trends in the separation performance obtained through the simulations were generally sufficient to identify the most promising operating conditions. The predictive column simulation model thus developed in this work, including a set of parameters determined through specific independent experiments, was experimentally validated and offers a useful basis for a rational optimization of monoclonal antibody variants separation processes on ion-exchange chromatography. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Advanced Reactors-Intermediate Heat Exchanger (IHX) Coupling: Theoretical Modeling and Experimental Validation

    Energy Technology Data Exchange (ETDEWEB)

    Utgikar, Vivek [Univ. of Idaho, Moscow, ID (United States); Sun, Xiaodong [The Ohio State Univ., Columbus, OH (United States); Christensen, Richard [The Ohio State Univ., Columbus, OH (United States); Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-12-29

    The overall goal of the research project was to model the behavior of the advanced reactorintermediate heat exchange system and to develop advanced control techniques for off-normal conditions. The specific objectives defined for the project were: 1. To develop the steady-state thermal hydraulic design of the intermediate heat exchanger (IHX); 2. To develop mathematical models to describe the advanced nuclear reactor-IHX-chemical process/power generation coupling during normal and off-normal operations, and to simulate models using multiphysics software; 3. To develop control strategies using genetic algorithm or neural network techniques and couple these techniques with the multiphysics software; 4. To validate the models experimentally The project objectives were accomplished by defining and executing four different tasks corresponding to these specific objectives. The first task involved selection of IHX candidates and developing steady state designs for those. The second task involved modeling of the transient and offnormal operation of the reactor-IHX system. The subsequent task dealt with the development of control strategies and involved algorithm development and simulation. The last task involved experimental validation of the thermal hydraulic performances of the two prototype heat exchangers designed and fabricated for the project at steady state and transient conditions to simulate the coupling of the reactor- IHX-process plant system. The experimental work utilized the two test facilities at The Ohio State University (OSU) including one existing High-Temperature Helium Test Facility (HTHF) and the newly developed high-temperature molten salt facility.

  18. Ion-Exchange Interdiffusion Model with Potential Application to Long-Term Nuclear Waste Glass Performance

    Energy Technology Data Exchange (ETDEWEB)

    Neeway, James J.; Kerisit, Sebastien N.; Liu, Jia; Zhang, Jiandong; Zhu, Zihua; Riley, Brian J.; Ryan, Joseph V.

    2016-05-05

    Abstract: Ion exchange is an integral mechanism influencing the corrosion of glasses. Due to the formation of alteration layers in aqueous conditions, it is difficult to conclusively deconvolute the process of ion exchange from other processes, principally dissolution of the glass matrix. Therefore, we have developed a method to isolate alkali diffusion that involves contacting glass coupons with a solution of 6LiCl dissolved in functionally inert dimethyl sulfoxide. We employ the method at temperatures ranging from 25 to 150 °C with various glass formulations. Glass compositions include simulant nuclear waste glasses, such as SON68 and the international simple glass (ISG), glasses in which the nature of the alkali element was varied, and glasses that contained more than one alkali element. An interdiffusion model based on Fick’s second law was developed and applied to all experiments to extract diffusion coefficients. The model expands established models of interdiffusion to the case where multiple types of alkali sites are present in the glass. Activation energies for alkali ion exchange were calculated and the results are in agreement with those obtained in glass strengthening experiments but are nearly five times higher than values reported for diffusion-controlled processes in nuclear waste glass corrosion experiments. A discussion of the root causes for this apparent discrepancy is provided. The interdiffusion model derived from laboratory experiments is expected to be useful for modeling glass corrosion in a geological repository when the silicon concentration is high.

  19. Geo3DML: A standard-based exchange format for 3D geological models

    Science.gov (United States)

    Wang, Zhangang; Qu, Honggang; Wu, Zixing; Wang, Xianghong

    2018-01-01

    A geological model (geomodel) in three-dimensional (3D) space is a digital representation of the Earth's subsurface, recognized by geologists and stored in resultant geological data (geodata). The increasing demand for data management and interoperable applications of geomodelscan be addressed by developing standard-based exchange formats for the representation of not only a single geological object, but also holistic geomodels. However, current standards such as GeoSciML cannot incorporate all the geomodel-related information. This paper presents Geo3DML for the exchange of 3D geomodels based on the existing Open Geospatial Consortium (OGC) standards. Geo3DML is based on a unified and formal representation of structural models, attribute models and hierarchical structures of interpreted resultant geodata in different dimensional views, including drills, cross-sections/geomaps and 3D models, which is compatible with the conceptual model of GeoSciML. Geo3DML aims to encode all geomodel-related information integrally in one framework, including the semantic and geometric information of geoobjects and their relationships, as well as visual information. At present, Geo3DML and some supporting tools have been released as a data-exchange standard by the China Geological Survey (CGS).

  20. Modeling heat efficiency, flow and scale-up in the corotating disc scraped surface heat exchanger

    DEFF Research Database (Denmark)

    Friis, Alan; Szabo, Peter; Karlson, Torben

    2002-01-01

    A comparison of two different scale corotating disc scraped surface heat exchangers (CDHE) was performed experimentally. The findings were compared to predictions from a finite element model. We find that the model predicts well the flow pattern of the two CDHE's investigated. The heat transfer...... performance predicted by the model agrees well with experimental observations for the laboratory scale CDHE whereas the overall heat transfer in the scaled-up version was not in equally good agreement. The lack of the model to predict the heat transfer performance in scale-up leads us to identify the key...

  1. A one-dimensional heat transfer model for parallel-plate thermoacoustic heat exchangers.

    Science.gov (United States)

    de Jong, J A; Wijnant, Y H; de Boer, A

    2014-03-01

    A one-dimensional (1D) laminar oscillating flow heat transfer model is derived and applied to parallel-plate thermoacoustic heat exchangers. The model can be used to estimate the heat transfer from the solid wall to the acoustic medium, which is required for the heat input/output of thermoacoustic systems. The model is implementable in existing (quasi-)1D thermoacoustic codes, such as DeltaEC. Examples of generated results show good agreement with literature results. The model allows for arbitrary wave phasing; however, it is shown that the wave phasing does not significantly influence the heat transfer.

  2. Testing the Monetary Model for Exchange Rate Determination in South Africa: Evidence from 101 Years of Data

    Directory of Open Access Journals (Sweden)

    Riané de Bruyn

    2013-03-01

    Full Text Available Evidence in favor of the monetary model of exchange rate determination for the South African Rand is, at best, mixed. A co-integrating relationship between the nominal exchange rate and monetary fundamentals forms the basis of the monetary model. With the econometric literature suggesting that the span of the data, not the frequency, determines the power of the co-integration tests and the studies on South Africa primarily using short-span data from the post-Bretton Woods era, we decided to test the long-run monetary model of exchange rate determination for the South African Rand relative to the US Dollar using annual data from 1910 – 2010. The results provide some support for the monetary model in that long-run co-integration is found between the nominal exchange rate and the output and money supply deviations. However, the theoretical restrictions required by the monetary model are rejected. A vector error-correction model identifies both the nominal exchange rate and the monetary fundamentals as the channel for the adjustment process of deviations from the long-run equilibrium exchange rate. A subsequent comparison of nominal exchange rate forecasts based on the monetary model with those of the random walk model suggests that the forecasting performance of the monetary model is superior.

  3. Quasi-steady-state model of a counter flow air-to-air heat exchanger with phase change

    DEFF Research Database (Denmark)

    Rose, Jørgen; Nielsen, Toke Rammer; Kragh, Jesper

    2008-01-01

    Using mechanical ventilation with highly efficient heat-recovery in northern European or arctic climates is a very efficient way of reducing the energy use for heating in buildings. However, it also presents a series of problems concerning condensation and frost formation in the heat-exchanger....... Developing highly efficient heat-exchangers and strategies to avoid/remove frost formation implies the use of detailed models to predict and evaluate different heat-exchanger designs and strategies. This paper presents a quasi-steady-state model of a counter-flow air-to-air heat-exchanger that takes...... into account the effects of condensation and frost formation. The model is developed as an Excel spreadsheet, and specific results are compared with laboratory measurements. As an example, the model is used to determine the most energy-efficient control strategy for a specific heat-exchanger under northern...

  4. Modeling the dynamic operation of a small fin plate heat exchanger – parametric analysis

    Directory of Open Access Journals (Sweden)

    Motyliński Konrad

    2015-09-01

    Full Text Available Given its high efficiency, low emissions and multiple fuelling options, the solid oxide fuel cells (SOFC offer a promising alternative for stationary power generators, especially while engaged in micro-combined heat and power (μ-CHP units. Despite the fact that the fuel cells are a key component in such power systems, other auxiliaries of the system can play a critical role and therefore require a significant attention. Since SOFC uses a ceramic material as an electrolyte, the high operating temperature (typically of the order of 700–900 °C is required to achieve sufficient performance. For that reason both the fuel and the oxidant have to be preheated before entering the SOFC stack. Hot gases exiting the fuel cell stack transport substantial amount of energy which has to be partly recovered for preheating streams entering the stack and for heating purposes. Effective thermal integration of the μ-CHP can be achieved only when proper technical measures are used. The ability of efficiently preheating the streams of oxidant and fuel relies on heat exchangers which are present in all possible configurations of power system with solid oxide fuel cells. In this work a compact, fin plate heat exchanger operating in the high temperature regime was under consideration. Dynamic model was proposed for investigation of its performance under the transitional states of the fuel cell system. Heat exchanger was simulated using commercial modeling software. The model includes key geometrical and functional parameters. The working conditions of the power unit with SOFC vary due to the several factors, such as load changes, heating and cooling procedures of the stack and others. These issues affect parameters of the incoming streams to the heat exchanger. The mathematical model of the heat exchanger is based on a set of equations which are simultaneously solved in the iterative process. It enables to define conditions in the outlets of both the hot and the

  5. Global observations and modeling of atmosphere–surface exchange of elemental mercury: a critical review

    Directory of Open Access Journals (Sweden)

    W. Zhu

    2016-04-01

    Full Text Available Reliable quantification of air–surface fluxes of elemental Hg vapor (Hg0 is crucial for understanding mercury (Hg global biogeochemical cycles. There have been extensive measurements and modeling efforts devoted to estimating the exchange fluxes between the atmosphere and various surfaces (e.g., soil, canopies, water, snow, etc. in the past three decades. However, large uncertainties remain due to the complexity of Hg0 bidirectional exchange, limitations of flux quantification techniques and challenges in model parameterization. In this study, we provide a critical review on the state of science in the atmosphere–surface exchange of Hg0. Specifically, the advancement of flux quantification techniques, mechanisms in driving the air–surface Hg exchange and modeling efforts are presented. Due to the semi-volatile nature of Hg0 and redox transformation of Hg in environmental media, Hg deposition and evasion are influenced by multiple environmental variables including seasonality, vegetative coverage and its life cycle, temperature, light, moisture, atmospheric turbulence and the presence of reactants (e.g., O3, radicals, etc.. However, the effects of these processes on flux have not been fundamentally and quantitatively determined, which limits the accuracy of flux modeling. We compile an up-to-date global observational flux database and discuss the implication of flux data on the global Hg budget. Mean Hg0 fluxes obtained by micrometeorological measurements do not appear to be significantly greater than the fluxes measured by dynamic flux chamber methods over unpolluted surfaces (p = 0.16, one-tailed, Mann–Whitney U test. The spatiotemporal coverage of existing Hg0 flux measurements is highly heterogeneous with large data gaps existing in multiple continents (Africa, South Asia, Middle East, South America and Australia. The magnitude of the evasion flux is strongly enhanced by human activities, particularly at contaminated sites. Hg0

  6. Modeling of Heat Transfer in the Helical-Coil Heat Exchanger for the Reactor Facility "UNITERM"

    Directory of Open Access Journals (Sweden)

    V. I. Solonin

    2014-01-01

    Full Text Available Circuit heat sink plays an important role in the reactor system. Therefore it imposes high requirements for quality of determining thermal-hydraulic parameters. This article is aimed at modeling of heat exchange process of the helical-coil heat exchanger, which is part of the heat sink circuit of the reactor facility "UNITERM."The simulation was performed using hydro-gas-dynamic software package ANSYS CFX. Computational fluid dynamics of this package allows us to perform calculations in a threedimensional setting, giving an idea of the fluid flow nature. The purpose of the simulation was to determine the parameters of the helical-coil heat exchanger (temperature, velocity at the outlet of the pipe and inter-tubular space, pressure drop, and the nature of the fluid flow of primary and intermediate coolants. Geometric parameters of the model were determined using the preliminary calculations performed by the criterion equations. In calculations Turbulence models k-ε RNG, Shear Stress Transport (SST are used. The article describes selected turbulence models, and considers relationship with wall function.The calculation results allow us to give the values obtained for thermal-hydraulic parameters, to compare selected turbulence models, as well as to show distribution patterns of the coolant temperature, pressure, and velocity at the outlet of the intermediate cooler.Calculations have shown that:- maximum values of primary coolant temperature at the outlet of the heat exchanger surface are encountered in the space between the helical-coil tubes;- higher temperatures of intermediate coolant at the outlet of the coils (in space of helicalcoil tubes are observed for the peripheral row;- primary coolant movement in the inter-tubular space of helical-coil surface is formed as a spiral flow, rather than as a in-line tube bank cross flow.

  7. Model simulations of particle aggregation effect on colloid exchange between streams and streambeds.

    Science.gov (United States)

    Areepitak, Trachu; Ren, Jianhong

    2011-07-01

    Colloids found in natural streams have large reactive surface areas, which makes them significant absorbents and carriers for pollutants. Stream-subsurface exchange plays a critical role in regulating the transport of colloids and contaminants in natural streams. Previous process-based multiphase exchange models were developed without consideration of colloid-colloid interaction. However, many studies have indicated that aggregation is a significant process and needs to be considered in stream process analysis. Herein, a new colloid exchange model was developed by including particle aggregation in addition to colloid settling and filtration. Self-preserving size distribution concepts and classical aggregation theory were employed to model the aggregation process. Model simulations indicate that under conditions of low filtration and high degree of particle-particle interaction, aggregation could either decrease or increase the amount of colloids retained in streambeds, depending on the initial particle size. Thus, two possible cases may occur including enhanced colloid deposition and facilitated colloid transport. Also, when the aggregation rate is high and filtration increases, more particles are retained by bed sediments due to filtration, and fewer are aggregated, which reduces the extent of aggregation effect on colloid deposition. The work presented here will contribute to a better understanding and prediction of colloid transport phenomena in natural streams.

  8. Continuous Time Models of Interest Rate: Testing Peso-Dollar Exchange Rate

    Directory of Open Access Journals (Sweden)

    José Antonio Núñez

    2011-06-01

    Full Text Available As an extension of the article by Núñez, De la Cruz and Ortega (2007, different parametric models with jumps are tested with the methodology developed by Ait-Sahalia and Peng (2006, based on the transition function. Data analyzed are the peso-dollar exchange rate. The idea is to implement continuous-time parametric models to the peso-dollar exchange rate. The results confirm that no continuous time model are not accurate enough to explain the behavior that describes the peso-dollar exchange rate, however, considering some continuous time models with Poisson jumps is possible to describe such behavior.Como una extensión del artículo de Núñez, De la Cruz y Ortega (2007, diferentes modelos paramétricos con saltos son probados con la metodología desarrollada por Ait-Sahalia y Peng (2006, basados en la función de transición. Los datos analizados corresponden al tipo de cambio peso-dólar. La idea es implantar modelos paramétricos de tiempo continuo para el tipo de cambio mencionado. Los resultados confirman que los modelos de tiempo continuo propuestos no son suficientemente buenos para explicar el comportamiento del tipo de cambio. Sin embargo, considerando algunos modelos de tiempo continuo con saltos de Poisson, es posible describir tal comportamiento.

  9. Modeling a direct contact heat exchanger for a supercritical water loop

    Energy Technology Data Exchange (ETDEWEB)

    Cascella, F.; Teyssedou, A., E-mail: alberto.teyssedou@polymtl.ca [Ecole Polytechnique de Montreal, Montreal, Quebec (Canada)

    2013-07-01

    In the last thirty years, Direct Contact Heat Exchangers (DCHX) have found a great success in different power engineering applications. In fact, due to the direct contact of hot and cold working fluids, it is possible to reach very high mass and energy transfer efficiencies. Despite their high performance, it is still quite difficult to predict the correct heat transfer as a function of plant operation conditions, which constitutes a fundamental parameter to correctly operate heat exchangers. Therefore, in this work, a DCHX used in the Thermo-Hydraulic Laboratory of Ecole Polytechnique de Montreal, has been studied. It consists of a vessel where superheated steam is cooled by mixing it with sub-cooled water via a nozzle that sprays the water under the form of tiny droplets (i.e., of about 200 μm in diameter). A thermodynamic model that takes into account the statistical distribution of droplets and their temperature evolution is developed. To this aim, the Droplet Distribution Function (DDF) based on Rosin-Rammler's equation is used. In the proposed model, the thermal energy exchange between liquid and steam takes into account both convection and evaporation heat transfer mechanisms. A comparison of model's predictions with experimental data shows very good agreement for steam pressures of 1.6 and 2.1 MPa, however at higher pressures the model over predicts the experimental trends. (author)

  10. Quantifying knowledge exchange in R&D networks: a data-driven model

    CERN Document Server

    Tomasello, Mario Vincenzo; Schweitzer, Frank

    2015-01-01

    We develop an agent-based model to reproduce the process of link formation and to understand the effect of knowledge exchange in collaborative inter-firm networks of Research and Development (R&D) alliances. In our model, agents form links based on their previous alliance history and then exchange knowledge with their partners, thus approaching in a knowledge space. We validate our model against real data using a two-step approach. Through an inter-firm alliance dataset, we estimate the model parameters related to the alliance formation, at the same time reproducing the topology of the resulting collaboration network. Subsequently, using a dataset on firm patents, we estimate the parameters related to the process of knowledge exchange. The underlying knowledge space that we consider in our study is defined by real patent classes, allowing for a precise quantification of every firm's knowledge position. We find that real R&D alliances have a duration of around two years, and that the subsequent knowled...

  11. CFD modelling of shell-side asphaltenes deposition in a shell and tube heat exchanger

    Science.gov (United States)

    Emani, Sampath; Ramasamy, M.; Shaari, Ku Zilati Ku

    2017-07-01

    Asphaltenes are identified as the main cause of crude oil fouling in the shell and tube exchangers. There are occasions where the crude oil flows through the shell side of the heat exchangers and some fouling is reported in the shell side of those heat exchangers. Understanding the fouling phenomena in the shell sides requires the knowledge on the irregular fluid flow paths and most susceptible locations of particles deposition. In the present work, an attempt has been made to investigate the effect of shear stress and surface roughness on shell-side asphaltenes deposition in a shell and tube heat exchanger through Computational Fluid Dynamics approach. The hydrodynamics of asphaltenes particles and the effect of various forces on the asphaltenes deposition on the heat transfer surfaces has been investigated through a Lagrangian based discrete-phase model. From the CFD analysis, the net mass deposition of the asphaltenes particles reduces with an increase in surface roughness from 0 to 0.04 mm and wall shear stress from 0 to 0.04 Pa for flow velocity 1 m/s, respectively. The asphaltenes mass deposition becomes constant with further increase in wall shear stress and surface roughness.

  12. Modeling Philippine Stock Exchange Composite Index Using Weighted Geometric Brownian Motion Forecasts

    Directory of Open Access Journals (Sweden)

    Gayo Willy

    2016-01-01

    Full Text Available Philippine Stock Exchange Composite Index (PSEi is the main stock index of the Philippine Stock Exchange (PSE. PSEi is computed using a weighted mean of the top 30 publicly traded companies in the Philippines, called component stocks. It provides a single value by which the performance of the Philippine stock market is measured. Unfortunately, these weights, which may vary for every trading day, are not disclosed by the PSE. In this paper, we propose a model of forecasting the PSEi by estimating the weights based on historical data and forecasting each component stock using Monte Carlo simulation based on a Geometric Brownian Motion (GBM assumption. The model performance is evaluated and its forecast compared is with the results using a direct GBM forecast of PSEi over different forecast periods. Results showed that the forecasts using WGBM will yield smaller error compared to direct GBM forecast of PSEi.

  13. Modelling gradient elution of bioactive multicomponent systems in non-linear ion-exchange chromatography.

    Science.gov (United States)

    Wiesel, A; Schmidt-Traub, H; Lenz, J; Strube, J

    2003-07-18

    A theoretical framework for the ion-exchange behaviour of bioactive substances in non-linear ion-exchange chromatogaphy is described. The aim of the study was the creation of a model basis to support a process design for production-scale ion-exchange chromatography. The theory can be applied to a whole variety of biological substances, such as amino acids, polysaccharides, peptides and proteins and either isocratic or gradient elution can be carried out. The influence of the eluent concentration on the ion-exchange as well as on the characteristic charge was considered. Experimental measurements showed a strong non-linear ion-exchange equilibrium with a transition from a Langmuir-type to a sigmoidal isotherm at higher eluent concentrations. Hereby, the compound binds to the surface though it is not ionic. Therefore, the model considered the possibility of ion-exchange as well as adsorption. A simplified distribution of the counter-ions based on the Gouy-Chapman theory with a discrete distribution of the counter-ions was used. The theory was extended by a selectivity in the double layer to allow specific adsorption. Calculations of adsorption-elution cycles showed, in agreement with the experimental observations, the development of non-linear elution profiles with a desorption fronting. As a result, the column loading and the eluent concentration were varied. The effect of contaminants, in this case sodium ions, was investigated and included in the model. Finally, the model was extended to multicomponent systems to investigate the effect of side components on the retention behaviour. The development of the characteristic elution profiles and the effect of the column loading on the separation are discussed. Calculated concentration profiles along the column at discrete time steps were used to reveal the influence of side components and the underlying separation mechanism. The simulations provided a new insight into the phenomena involved in biochromatography and make

  14. An Empirical Investigation of the Black-Scholes Model: Evidence from the Australian Stock Exchange

    Directory of Open Access Journals (Sweden)

    Zaffar Subedar

    2007-12-01

    Full Text Available This paper evaluates the probability of an exchange traded European call option beingexercised on the ASX200 Options Index. Using single-parameter estimates of factors withinthe Black-Scholes model, this paper utilises qualitative regression and a maximum likelihoodapproach. Results indicate that the Black-Scholes model is statistically significant at the 1%level. The results also provide evidence that the use of implied volatility and a jump-diffusionapproach, which increases the tail properties of the underlying lognormal distribution,improves the statistical significance of the Black-Scholes model.

  15. MFAML: a standard data structure for representing and exchanging metabolic flux models.

    Science.gov (United States)

    Yun, Hongseok; Lee, Dong-Yup; Jeong, Joonwoo; Lee, Seunghyun; Lee, Sang Yup

    2005-08-01

    MFAML is a standard data structure designed for the formal representation and effective exchange of metabolic flux models. It allows for the explicit description of stationary states of a metabolic system by defining environmental/genetic conditions of the system, e.g. flux measurements, balancing constraints and physiological objectives as well as basic information on metabolites and reactions. In addition, a library of MFAML comprising a model parser and a converter provides an open framework for establishing the pipeline from metabolic modeling to metabolic flux analysis. MFAML (version 1) is fully described and available at http://mbel.kaist.ac.kr/mfaml/.

  16. The Impact of the Tobin Tax in a Heterogeneous Agent Model of the Foreign Exchange Market

    Czech Academy of Sciences Publication Activity Database

    Staněk, F.; Kukačka, Jiří

    (2018) ISSN 0927-7099 R&D Projects: GA ČR(CZ) GBP402/12/G097 Grant - others:GA UK(CZ) 588912; GA MŠk(CZ) SVV260233 Institutional support: RVO:67985556 Keywords : Tobin tax * Foreign exchange market * Agent-based modeling * Walrasian auctioneer Subject RIV: AH - Economics Impact factor: 1.053, year: 2016 http:// library .utia.cas.cz/separaty/2017/E/kukacka-0472380.pdf

  17. Finite element modeling of 129Xe diffusive gas exchange NMR in the human alveoli

    Science.gov (United States)

    Stewart, Neil J.; Parra-Robles, Juan; Wild, Jim M.

    2016-10-01

    Existing models of 129Xe diffusive exchange for lung microstructural modeling with time-resolved MR spectroscopy data have considered analytical solutions to one-dimensional, homogeneous models of the lungs with specific assumptions about the alveolar geometry. In order to establish a model system for simulating the effects of physiologically-realistic changes in physical and microstructural parameters on 129Xe exchange NMR, we have developed a 3D alveolar capillary model for finite element analysis. To account for the heterogeneity of the alveolar geometry across the lungs, we have derived realistic geometries for finite element analysis based on 2D histological samples and 3D micro-CT image volumes obtained from ex vivo biopsies of lung tissue from normal subjects and patients with interstitial lung disease. The 3D alveolar capillary model permits investigation of the impact of alveolar geometrical parameters and diffusion and perfusion coefficients on the in vivo measured 129Xe CSSR signal response. The heterogeneity of alveolar microstructure that is accounted for in image-based models resulted in considerable alterations to the shape of the 129Xe diffusive uptake curve when compared to 1D models. Our findings have important implications for the future design and optimization of 129Xe MR experiments and in the interpretation of lung microstructural changes from this data.

  18. APPLICATION OF DIVIDEND DISCOUNT MODEL VALUATION AT MACEDONIAN STOCK-EXCHANGE

    Directory of Open Access Journals (Sweden)

    Zoran Ivanovski

    2015-06-01

    Full Text Available Dividend discount model (DDM is the simplest model for valuing equities in finance. Many analysts belived that DDM is outmoded, but much of the intuition that drives Discounted Cash Flow (DCF valuation is embedded in the DDM model. There are also specific companies stocks where the DDM model remains a useful tool for estimating value. The basic task of these research is to examine if DDM models offer relevant and safe valuation of long-term securities at Macedonian Stock Exchange (MSE through the process of empirical valuation of random chosen stocks. This research helped us to identify problems in use of DDM valuation models at MSE, to determine causes for differences between the intrinsic values and the stock market prices and to determine basic parameters for implementation of valuation on Macedonian financial market. We find that DDM models are usefull only as additional tool beside relative and DCF stocks valuation at MSE.

  19. Integrated Exchange Rate Model (IERM) & Chinese Yuan & US Dollar : The case of working capital management in logistics

    NARCIS (Netherlands)

    Jan Jansen

    2011-01-01

    With the transportation of goods over long distances not just goods but also an inventory is being shipped. The value of this inventory could change due to the fluctuations in the exchange rates of the involved (international) currencies. This article introduces an integrated exchange rate model to

  20. A Three-Dimensional Multiscale Model for Gas Exchange in Fruit1[C][W][OA

    Science.gov (United States)

    Ho, Quang Tri; Verboven, Pieter; Verlinden, Bert E.; Herremans, Els; Wevers, Martine; Carmeliet, Jan; Nicolaï, Bart M.

    2011-01-01

    Respiration of bulky plant organs such as roots, tubers, stems, seeds, and fruit depends very much on oxygen (O2) availability and often follows a Michaelis-Menten-like response. A multiscale model is presented to calculate gas exchange in plants using the microscale geometry of the tissue, or vice versa, local concentrations in the cells from macroscopic gas concentration profiles. This approach provides a computationally feasible and accurate analysis of cell metabolism in any plant organ during hypoxia and anoxia. The predicted O2 and carbon dioxide (CO2) partial pressure profiles compared very well with experimental data, thereby validating the multiscale model. The important microscale geometrical features are the shape, size, and three-dimensional connectivity of cells and air spaces. It was demonstrated that the gas-exchange properties of the cell wall and cell membrane have little effect on the cellular gas exchange of apple (Malus × domestica) parenchyma tissue. The analysis clearly confirmed that cells are an additional route for CO2 transport, while for O2 the intercellular spaces are the main diffusion route. The simulation results also showed that the local gas concentration gradients were steeper in the cells than in the surrounding air spaces. Therefore, to analyze the cellular metabolism under hypoxic and anoxic conditions, the microscale model is required to calculate the correct intracellular concentrations. Understanding the O2 response of plants and plant organs thus not only requires knowledge of external conditions, dimensions, gas-exchange properties of the tissues, and cellular respiration kinetics but also of microstructure. PMID:21224337

  1. A three-dimensional multiscale model for gas exchange in fruit.

    Science.gov (United States)

    Ho, Quang Tri; Verboven, Pieter; Verlinden, Bert E; Herremans, Els; Wevers, Martine; Carmeliet, Jan; Nicolaï, Bart M

    2011-03-01

    Respiration of bulky plant organs such as roots, tubers, stems, seeds, and fruit depends very much on oxygen (O2) availability and often follows a Michaelis-Menten-like response. A multiscale model is presented to calculate gas exchange in plants using the microscale geometry of the tissue, or vice versa, local concentrations in the cells from macroscopic gas concentration profiles. This approach provides a computationally feasible and accurate analysis of cell metabolism in any plant organ during hypoxia and anoxia. The predicted O2 and carbon dioxide (CO2) partial pressure profiles compared very well with experimental data, thereby validating the multiscale model. The important microscale geometrical features are the shape, size, and three-dimensional connectivity of cells and air spaces. It was demonstrated that the gas-exchange properties of the cell wall and cell membrane have little effect on the cellular gas exchange of apple (Malus×domestica) parenchyma tissue. The analysis clearly confirmed that cells are an additional route for CO2 transport, while for O2 the intercellular spaces are the main diffusion route. The simulation results also showed that the local gas concentration gradients were steeper in the cells than in the surrounding air spaces. Therefore, to analyze the cellular metabolism under hypoxic and anoxic conditions, the microscale model is required to calculate the correct intracellular concentrations. Understanding the O2 response of plants and plant organs thus not only requires knowledge of external conditions, dimensions, gas-exchange properties of the tissues, and cellular respiration kinetics but also of microstructure.

  2. Physicians' acceptance of electronic medical records exchange: an extension of the decomposed TPB model with institutional trust and perceived risk.

    Science.gov (United States)

    Hsieh, Pi-Jung

    2015-01-01

    Electronic medical records (EMRs) exchange improves clinical quality and reduces medical costs. However, few studies address the antecedent factors of physicians' intentions to use EMR exchange. Based on institutional trust and perceived risk integrated with the decomposed theory of planned behavior (TPB) model, we propose a theoretical model to explain the intention of physicians to use an EMR exchange system. We conducted a field survey in Taiwan to collect data from physicians who had experience using the EMR exchange systems. A valid sample of 191 responses was collected for data analysis. To test the proposed research model, we employed structural equation modeling using the partial least squares method. The study findings show that the following five factors have a significant influence on the physicians' intentions to use EMR exchange systems: (a) attitude; (b) subjective norm; (c) perceived behavior control; (d) institutional trust; and (e) perceived risk. These five factors are predictable by perceived usefulness, perceived ease of use, and compatibility, interpersonal and governmental influence, facilitating conditions and self-efficacy, situational normality and structural assurance, and institutional trust, respectively. The results also indicate that institutional trust and perceived risk integrated with the decomposed TPB model improve the prediction of physician's intentions to use EMR exchange. The results of this study indicate that our research model effectively predicts the intention of physicians to use EMR exchange, and provides valuable implications for academics and practitioners. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Model Simulations of a Field Experiment on Cation Exchange-affected Multicomponent Solute Transport in a Sandy Aquifer

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup; Ammentorp, Hans Christian; Christensen, Thomas Højlund

    1993-01-01

    A large-scale and long-term field experiment on cation exchange in a sandy aquifer has been modelled by a three-dimensional geochemical transport model. The geochemical model includes cation-exchange processes using a Gaines-Thomas expression, the closed carbonate system and the effects of ionic...... of 800 days due to a substantially attenuation in the aquifer. The observed and the predicted breakthrough curves showed a reasonable accordance taking the duration of the experiment into account. However, some discrepancies were observed probably caused by the revealed non-ideal exchange behaviour of K+....

  4. Dynamic Model of the High Temperature Proton Exchange Membrane Fuel Cell Stack Temperature

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2009-01-01

    The present work involves the development of a model for predicting the dynamic temperature of a high temperature proton exchange membrane (HTPEM) fuel cell stack. The model is developed to test different thermal control strategies before implementing them in the actual system. The test system...... is managed by running the stack at a high stoichiometric air flow. This is possible because of the polybenzimidazole (PBI) fuel cell membranes used and the very low pressure drop in the stack. The model consists of a discrete thermal model dividing the stack into three parts: inlet, middle, and end....... The temperature is predicted in these three parts, where they also are measured. The heat balance of the system involves a fuel cell model to describe the heat added by the fuel cells when a current is drawn. Furthermore the model also predicts the temperatures when heating the stack with external heating...

  5. Study of a Market Model with Conservative Exchanges on Complex Networks

    CERN Document Server

    Braunstein, L A; Iglesias, J R

    2012-01-01

    Many models of market dynamics make use of the idea of conservative wealth exchanges among economic agents. A few years ago an exchange model using extremal dynamics was developed and a very interesting result was obtained: a self-generated minimum wealth or poverty line. On the other hand, the wealth distribution exhibited an exponential shape as a function of the square of the wealth. These results have been obtained both considering exchanges between nearest neighbors or in a mean field scheme. In the present paper we study the effect of distributing the agents on a complex network. We have considered archetypical complex networks: Erd\\"{o}s-R\\'enyi random networks and scale-free networks. The presence of a poverty line with finite wealth is preserved but spatial correlations are important, particularly between the degree of the node and the wealth. We present a detailed study of the correlations, as well as the changes in the Gini coefficient, that measures the inequality, as a function of the type and av...

  6. Modelling, simulation and geometric optimization of cross flow recuperative heat exchanger based on controllability condition number

    Directory of Open Access Journals (Sweden)

    Stević Dalibor

    2017-01-01

    Full Text Available This paper presents the algebraic mathematical model of cross - flow heat exchanger derived on the basis of transport approach. Theirs operation in the face of variable loads is usually controlled by manipulating inlet fluid temperatures or mass flow rates, where the controlled variable is usually the output temperature of principal flow. The aim of this paper is to optimize the geometry of a tube with the inlet flow of principal incompressible fluid and an external cross - country flow of compressible fluid, based on performance index expressed throughout its controllability characteristics. Thus the condition number has been used to provide the necessary information on the best situation for control of the exchanger under consideration. This concept can also provide us with information about the easiest operating condition to control a particular output. A transient model of a cross-flow heat exchanger is developed, where an implicit formulation is used for transient numerical solutions. The condition number performed throughout the ratio of geometric parameters of tube is optimized, subject to volume constraints, based on the optimum operation in terms of output controllability. The reported optimized aspect ratio, water mass flow rate and output controllability are studied for different external properties of the tube.

  7. Parametrization of a biochemical CO{sub 2} exchange model for birch (Betula pendula Roth.)

    Energy Technology Data Exchange (ETDEWEB)

    Aalto, T. [Finnish Meteorological Institute, Helsinki (Finland); Juurola, E. [Helsinki Univ. (Finland). Dept. of Forest Ecology

    2001-07-01

    Gas exchange of one-year-old silver birch (Betula pendula Roth.) seedlings of boreal habitat was studied in laboratory conditions. Seedlings were exposed to stepwise changes in CO{sub 2} concentration and irradiance in five constant temperatures ranging from 9 to 33 deg C. The Farquhar biochemical model was fitted to the response curves. Values for the photosynthesis parameters J{sub max} and V{sub c(max)} as well as their temperature dependences were derived from the measurements. Following characteristics of the boreal growth conditions, the response curves were determined also at temperatures below 20 deg C. This was, indeed, reflected to photosynthesis parameters, though results showed relatively large variation due to differences among leaves. The gas exchange rates of separate leaves could vary by 40% and also the temperature dependences were slightly different. The slope and curvature of the light response curve were relatively constant above 19 deg C and decreased at low temperatures. (orig.)

  8. Magnetic phase diagram of the anisotropic double-exchange model a Monte Carlo study

    CERN Document Server

    Yi, H S; Hur, N H

    2000-01-01

    The magnetic phase diagram of highly anisotropic double-exchange model systems is investigated as a function of the ratio of the anisotropic hopping integrals, i.e., t sub c /t sub a sub b , on a three-dimensional lattice by using Monte Carlo calculations. The magnetic domain structure at low temperature is found to be a generic property of the strong anisotropy region. Moreover, the t sub c /t sub a sub b ratio is crucial in determining the anisotropic charge transport due to the relative spin orientation of the magnetic domains. As a result, we show the anisotropic hopping integral is the most likely cause of the magnetic domain structure. It is noted that the competition between the reduced interlayer double-exchange coupling and the thermal frustration of the ordered two-dimensional ferromagnetic layer seems to be crucial in understanding the properties of layered manganites.

  9. On the similarity between exchangeable profiles: A psychometric model, analytic strategy, and empirical illustration.

    Science.gov (United States)

    Furr, R Michael; Wood, Dustin

    2013-06-01

    Analyses of profile similarity are widespread in personality psychology, but their apparent simplicity masks difficult psychometric and statistical issues. We present a psychometric framework that addresses an important challenge (i.e., profile normativeness) in examinations of dyadic exchangeable profiles. In addition, we present an analytic strategy accounting for non-independence that often arises in analyses of profile similarity, facilitating integrated examinations of variables at dyadic and individual levels. An empirical analysis of personality similarity and relationship quality demonstrates that the model and analytic strategy can reveal novel psychological insights. These are important advances, as previous work has ignored exchangeable profiles and has failed to present an integrated psychometric and statistical framework for profile similarity.

  10. On the multivariate probit model for exchangeable binary data with covariates.

    Science.gov (United States)

    Stefanescu, Catalina; Turnbull, Bruce W

    2005-04-01

    This paper considers the use of a multivariate binomial probit model for the analysis of correlated exchangeable binary data. The model can naturally accommodate both cluster and individual level covariates, while keeping a fairly flexible intracluster association structure. We discuss Bayesian estimation when a sample of independent clusters of varying sizes are available, and show how Gibbs sampling may be used to derive the posterior densities of parameters. The methodology is illustrated with two examples: the first involves epidemiological data from a study of familial disease aggregation; the second uses teratological data from a developmental toxicity application.

  11. Mathematical Modeling of Cation Contamination in a Proton-exchange Membrane

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Adam; Delacourt, Charles

    2008-09-11

    Transport phenomena in an ion-exchange membrane containing both H+ and K+ are described using multicomponent diffusion equations (Stefan-Maxwell). A model is developed for transport through a Nafion 112 membrane in a hydrogen-pump setup. The model results are analyzed to quantify the impact of cation contamination on cell potential. It is shown that limiting current densities can result due to a decrease in proton concentration caused by the build-up of contaminant ions. An average cation concentration of 30 to 40 percent is required for appreciable effects to be noticed under typical steady-state operating conditions.

  12. Advances in understanding, models and parameterizations of biosphere-atmosphere ammonia exchange

    Directory of Open Access Journals (Sweden)

    C. R. Flechard

    2013-07-01

    Full Text Available Atmospheric ammonia (NH3 dominates global emissions of total reactive nitrogen (Nr, while emissions from agricultural production systems contribute about two-thirds of global NH3 emissions; the remaining third emanates from oceans, natural vegetation, humans, wild animals and biomass burning. On land, NH3 emitted from the various sources eventually returns to the biosphere by dry deposition to sink areas, predominantly semi-natural vegetation, and by wet and dry deposition as ammonium (NH4+ to all surfaces. However, the land/atmosphere exchange of gaseous NH3 is in fact bi-directional over unfertilized as well as fertilized ecosystems, with periods and areas of emission and deposition alternating in time (diurnal, seasonal and space (patchwork landscapes. The exchange is controlled by a range of environmental factors, including meteorology, surface layer turbulence, thermodynamics, air and surface heterogeneous-phase chemistry, canopy geometry, plant development stage, leaf age, organic matter decomposition, soil microbial turnover, and, in agricultural systems, by fertilizer application rate, fertilizer type, soil type, crop type, and agricultural management practices. We review the range of processes controlling NH3 emission and uptake in the different parts of the soil-canopy-atmosphere continuum, with NH3 emission potentials defined at the substrate and leaf levels by different [NH4+] / [H+] ratios (Γ. Surface/atmosphere exchange models for NH3 are necessary to compute the temporal and spatial patterns of emissions and deposition at the soil, plant, field, landscape, regional and global scales, in order to assess the multiple environmental impacts of airborne and deposited NH3 and NH4+. Models of soil/vegetation/atmosphere NH3 exchange are reviewed from the substrate and leaf scales to the global scale. They range from simple steady-state, "big leaf" canopy resistance models, to dynamic, multi-layer, multi-process, multi

  13. Experimental study on the mechanical behaviour of a heat exchanger pile using physical modelling

    OpenAIRE

    Yavari, Neda; Tang, Anh Minh; Pereira, Jean-Michel; Hassen, Ghazi

    2014-01-01

    This study aims to provide knowledge on the thermo-mechanical behaviour of heat exchanger piles, through a laboratory scale model. The model pile (20 mm in external diameter) was embedded in dry sand. The behaviour of the axially loaded pile under thermal cycles was investigated. After applying the axial load on the pile head, the pile's temperature was varied between 5 °C and 30 °C. Seven tests, corresponding to various axial loads ranging from 0 to 70 % of the pile estimated bearing capacit...

  14. Improving evolutionary models for mitochondrial protein data with site-class specific amino acid exchangeability matrices.

    Directory of Open Access Journals (Sweden)

    Katherine A Dunn

    Full Text Available Adequate modeling of mitochondrial sequence evolution is an essential component of mitochondrial phylogenomics (comparative mitogenomics. There is wide recognition within the field that lineage-specific aspects of mitochondrial evolution should be accommodated through lineage-specific amino-acid exchangeability matrices (e.g., mtMam for mammalian data. However, such a matrix must be applied to all sites and this implies that all sites are subject to the same, or largely similar, evolutionary constraints. This assumption is unjustified. Indeed, substantial differences are expected to arise from three-dimensional structures that impose different physiochemical environments on individual amino acid residues. The objectives of this paper are (1 to investigate the extent to which amino acid evolution varies among sites of mitochondrial proteins, and (2 to assess the potential benefits of explicitly modeling such variability. To achieve this, we developed a novel method for partitioning sites based on amino acid physiochemical properties. We apply this method to two datasets derived from complete mitochondrial genomes of mammals and fish, and use maximum likelihood to estimate amino acid exchangeabilities for the different groups of sites. Using this approach we identified large groups of sites evolving under unique physiochemical constraints. Estimates of amino acid exchangeabilities differed significantly among such groups. Moreover, we found that joint estimates of amino acid exchangeabilities do not adequately represent the natural variability in evolutionary processes among sites of mitochondrial proteins. Significant improvements in likelihood are obtained when the new matrices are employed. We also find that maximum likelihood estimates of branch lengths can be strongly impacted. We provide sets of matrices suitable for groups of sites subject to similar physiochemical constraints, and discuss how they might be used to analyze real data. We

  15. Improving Evolutionary Models for Mitochondrial Protein Data with Site-Class Specific Amino Acid Exchangeability Matrices

    Science.gov (United States)

    Dunn, Katherine A.; Jiang, Wenyi; Field, Christopher; Bielawski, Joseph P.

    2013-01-01

    Adequate modeling of mitochondrial sequence evolution is an essential component of mitochondrial phylogenomics (comparative mitogenomics). There is wide recognition within the field that lineage-specific aspects of mitochondrial evolution should be accommodated through lineage-specific amino-acid exchangeability matrices (e.g., mtMam for mammalian data). However, such a matrix must be applied to all sites and this implies that all sites are subject to the same, or largely similar, evolutionary constraints. This assumption is unjustified. Indeed, substantial differences are expected to arise from three-dimensional structures that impose different physiochemical environments on individual amino acid residues. The objectives of this paper are (1) to investigate the extent to which amino acid evolution varies among sites of mitochondrial proteins, and (2) to assess the potential benefits of explicitly modeling such variability. To achieve this, we developed a novel method for partitioning sites based on amino acid physiochemical properties. We apply this method to two datasets derived from complete mitochondrial genomes of mammals and fish, and use maximum likelihood to estimate amino acid exchangeabilities for the different groups of sites. Using this approach we identified large groups of sites evolving under unique physiochemical constraints. Estimates of amino acid exchangeabilities differed significantly among such groups. Moreover, we found that joint estimates of amino acid exchangeabilities do not adequately represent the natural variability in evolutionary processes among sites of mitochondrial proteins. Significant improvements in likelihood are obtained when the new matrices are employed. We also find that maximum likelihood estimates of branch lengths can be strongly impacted. We provide sets of matrices suitable for groups of sites subject to similar physiochemical constraints, and discuss how they might be used to analyze real data. We also discuss how

  16. Modeling of ion exchange expanded-bed chromatography for the purification of C-phycocyanin.

    Science.gov (United States)

    Moraes, Caroline Costa; Mazutti, Marcio A; Maugeri, Francisco; Kalil, Susana Juliano

    2013-03-15

    This work is focused on the experimental evaluation and mathematical modeling of ion exchange expanded-bed chromatography for the purification of C-phycocyanin from crude fermentative broth containing Spirulina platensis cells. Experiments were carried out in different expansion degree to evaluate the process performance. The experimental breakthrough curves were used to estimate the mass transfer and kinetics parameters of the proposed model, using the Particle Swarm Optimization algorithm (PSO). The proposed model satisfactorily fitted the experimental data. The results from the model application pointed out that the increase in the initial bed height does not influence the process efficiency, however enables the operation of expanded-bed column at high volumetric flow rates, improving the productivity. It was also shown that the use of mathematical modeling was a good and promising tool for the optimization of chromatographic processes. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Password-only authenticated three-party key exchange with provable security in the standard model.

    Science.gov (United States)

    Nam, Junghyun; Choo, Kim-Kwang Raymond; Kim, Junghwan; Kang, Hyun-Kyu; Kim, Jinsoo; Paik, Juryon; Won, Dongho

    2014-01-01

    Protocols for password-only authenticated key exchange (PAKE) in the three-party setting allow two clients registered with the same authentication server to derive a common secret key from their individual password shared with the server. Existing three-party PAKE protocols were proven secure under the assumption of the existence of random oracles or in a model that does not consider insider attacks. Therefore, these protocols may turn out to be insecure when the random oracle is instantiated with a particular hash function or an insider attack is mounted against the partner client. The contribution of this paper is to present the first three-party PAKE protocol whose security is proven without any idealized assumptions in a model that captures insider attacks. The proof model we use is a variant of the indistinguishability-based model of Bellare, Pointcheval, and Rogaway (2000), which is one of the most widely accepted models for security analysis of password-based key exchange protocols. We demonstrated that our protocol achieves not only the typical indistinguishability-based security of session keys but also the password security against undetectable online dictionary attacks.

  18. Password-Only Authenticated Three-Party Key Exchange with Provable Security in the Standard Model

    Directory of Open Access Journals (Sweden)

    Junghyun Nam

    2014-01-01

    Full Text Available Protocols for password-only authenticated key exchange (PAKE in the three-party setting allow two clients registered with the same authentication server to derive a common secret key from their individual password shared with the server. Existing three-party PAKE protocols were proven secure under the assumption of the existence of random oracles or in a model that does not consider insider attacks. Therefore, these protocols may turn out to be insecure when the random oracle is instantiated with a particular hash function or an insider attack is mounted against the partner client. The contribution of this paper is to present the first three-party PAKE protocol whose security is proven without any idealized assumptions in a model that captures insider attacks. The proof model we use is a variant of the indistinguishability-based model of Bellare, Pointcheval, and Rogaway (2000, which is one of the most widely accepted models for security analysis of password-based key exchange protocols. We demonstrated that our protocol achieves not only the typical indistinguishability-based security of session keys but also the password security against undetectable online dictionary attacks.

  19. Foundation Heat Exchanger Final Report: Demonstration, Measured Performance, and Validated Model and Design Tool

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Patrick [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Im, Piljae [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)

    2012-01-01

    (FHX) has been coined to refer exclusively to ground heat exchangers installed in the overcut around the basement walls. The primary technical challenge undertaken by this project was the development and validation of energy performance models and design tools for FHX. In terms of performance modeling and design, ground heat exchangers in other construction excavations (e.g., utility trenches) are no different from conventional HGHX, and models and design tools for HGHX already exist. This project successfully developed and validated energy performance models and design tools so that FHX or hybrid FHX/HGHX systems can be engineered with confidence, enabling this technology to be applied in residential and light commercial buildings. The validated energy performance model also addresses and solves another problem, the longstanding inadequacy in the way ground-building thermal interaction is represented in building energy models, whether or not there is a ground heat exchanger nearby. Two side-by-side, three-level, unoccupied research houses with walkout basements, identical 3,700 ft{sup 2} floor plans, and hybrid FHX/HGHX systems were constructed to provide validation data sets for the energy performance model and design tool. The envelopes of both houses are very energy efficient and airtight, and the HERS ratings of the homes are 44 and 45 respectively. Both houses are mechanically ventilated with energy recovery ventilators, with space conditioning provided by water-to-air heat pumps with 2 ton nominal capacities. Separate water-to-water heat pumps with 1.5 ton nominal capacities were used for water heating. In these unoccupied research houses, human impact on energy use (hot water draw, etc.) is simulated to match the national average. At House 1 the hybrid FHX/HGHX system was installed in 300 linear feet of excavation, and 60% of that was construction excavation (needed to construct the home). At House 2 the hybrid FHX/HGHX system was installed in 360 feet of

  20. Foundation Heat Exchanger Final Report: Demonstration, Measured Performance, and Validated Model and Design Tool

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Patrick [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Im, Piljae [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2012-04-01

    (FHX) has been coined to refer exclusively to ground heat exchangers installed in the overcut around the basement walls. The primary technical challenge undertaken by this project was the development and validation of energy performance models and design tools for FHX. In terms of performance modeling and design, ground heat exchangers in other construction excavations (e.g., utility trenches) are no different from conventional HGHX, and models and design tools for HGHX already exist. This project successfully developed and validated energy performance models and design tools so that FHX or hybrid FHX/HGHX systems can be engineered with confidence, enabling this technology to be applied in residential and light commercial buildings. The validated energy performance model also addresses and solves another problem, the longstanding inadequacy in the way ground-building thermal interaction is represented in building energy models, whether or not there is a ground heat exchanger nearby. Two side-by-side, three-level, unoccupied research houses with walkout basements, identical 3,700 ft{sup 2} floor plans, and hybrid FHX/HGHX systems were constructed to provide validation data sets for the energy performance model and design tool. The envelopes of both houses are very energy efficient and airtight, and the HERS ratings of the homes are 44 and 45 respectively. Both houses are mechanically ventilated with energy recovery ventilators, with space conditioning provided by water-to-air heat pumps with 2 ton nominal capacities. Separate water-to-water heat pumps with 1.5 ton nominal capacities were used for water heating. In these unoccupied research houses, human impact on energy use (hot water draw, etc.) is simulated to match the national average. At House 1 the hybrid FHX/HGHX system was installed in 300 linear feet of excavation, and 60% of that was construction excavation (needed to construct the home). At House 2 the hybrid FHX/HGHX system was installed in 360 feet of

  1. Feasibility of 30-day hospital readmission prediction modeling based on health information exchange data.

    Science.gov (United States)

    Swain, Matthew J; Kharrazi, Hadi

    2015-12-01

    Unplanned 30-day hospital readmission account for roughly $17 billion in annual Medicare spending. Many factors contribute to unplanned hospital readmissions and multiple models have been developed over the years to predict them. Most researchers have used insurance claims or administrative data to train and operationalize their Readmission Risk Prediction Models (RRPMs). Some RRPM developers have also used electronic health records data; however, using health informatics exchange data has been uncommon among such predictive models and can be beneficial in its ability to provide real-time alerts to providers at the point of care. We conducted a semi-systematic review of readmission predictive factors published prior to March 2013. Then, we extracted and merged all significant variables listed in those articles for RRPMs. Finally, we matched these variables with common HL7 messages transmitted by a sample of health information exchange organizations (HIO). The semi-systematic review resulted in identification of 32 articles and 297 predictive variables. The mapping of these variables with common HL7 segments resulted in an 89.2% total coverage, with the DG1 (diagnosis) segment having the highest coverage of 39.4%. The PID (patient identification) and OBX (observation results) segments cover 13.9% and 9.1% of the variables. Evaluating the same coverage in three sample HIOs showed data incompleteness. HIOs can utilize HL7 messages to develop unique RRPMs for their stakeholders; however, data completeness of exchanged messages should meet certain thresholds. If data quality standards are met by stakeholders, HIOs would be able to provide real-time RRPMs that not only predict intra-hospital readmissions but also inter-hospital cases. A RRPM derived using HIO data exchanged through may prove to be a useful method to prevent unplanned hospital readmissions. In order for the RRPM derived from HIO data to be effective, hospitals must actively exchange clinical information

  2. Numerical modeling of a 2K J-T heat exchanger used in Fermilab Vertical Test Stand VTS-1

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Prabhat Kumar [Raja Ramanna Centre for Advanced Technology (RRCAT), Indore (MP), India; Rabehl, Roger [FNAL

    2014-07-01

    Fermilab Vertical Test Stand-1 (VTS-1) is in operation since 2007 for testing the superconducting RF cavities at 2 K. This test stand has single layer coiled finned tubes heat exchanger before J-T valve. A finite difference based thermal model has been developed in Engineering Equation Solver (EES) to study its thermal performance during filling and refilling to maintain the constant liquid level of test stand. The model is also useful to predict its performance under other various operating conditions and will be useful to design the similar kind of heat exchanger for future needs. Present paper discusses the different operational modes of this heat exchanger and its thermal characteristics under these operational modes. Results of this model have also been compared with the experimental data gathered from the VTS-1 heat exchanger and they are in good agreement with the present model.

  3. Freight planning and regional cooperation in the Piedmont Atlantic megaregion : a regional models of cooperation peer exchange summary report

    Science.gov (United States)

    2017-09-08

    This report highlights key themes identified at the Freight Planning and Regional Cooperation in the Piedmont Atlantic Megaregion Peer Exchange held on January 31, 2017 and February 1, 2017 in Atlanta, Georgia. The Regional Models of Cooperatio...

  4. Regional cooperation and environmental justice in transportation planning in Ohio : a regional models of cooperation peer exchange summary report

    Science.gov (United States)

    2016-06-07

    This report highlights key themes identified at the Regional Cooperation and Environmental Justice in Transportation Planning in Ohio Peer Exchange held on December 15, 2015 in Columbus, Ohio. The Regional Models of Cooperation Initiative, whic...

  5. Regional cooperation and performance-based planning and programming in Indiana : a regional models of cooperation peer exchange summary report

    Science.gov (United States)

    2016-05-01

    This report highlights key themes identified at the Regional Cooperation and Performance-Based Planning and Programming in Indiana Peer Exchange held on May 25, 2016 in Indianapolis, Indiana. The Regional Models of Cooperation Initiative, which...

  6. Modeling of dual gradient elution in ion exchange and mixed-mode chromatography.

    Science.gov (United States)

    Lee, Yi Feng; Schmidt, Michael; Graalfs, Heiner; Hafner, Mathias; Frech, Christian

    2015-10-23

    Protein retention using dual gradient elution in ion exchange- and mixed-mode chromatography can be modeled using the combination of a modified Yamamoto's LGE model and a conversion term to correlate the elution salt concentration and pH at any given gradient slope. Incorporation of the pH dependence of the binding charges into the model also provides some insights on the dual effects of salt and pH in protein-ligand interaction. The fitted thermodynamic parameters (ΔGP(0)/RT, ΔGS(0)/RT, number of charged amino acids involved in binding) of the dual gradient elution data using lysozyme and mAbs on SP Sepharose(®) FF, Eshmuno(®) HCX, and Capto(®) MMC ImpRes were consistent to the results of mono gradient data. This gives rise to an approach to perform thermodynamic modeling of protein retention in ion exchange- and mixed-mode chromatography by combining both salt and pH gradient into a single run of dual gradient elution which will increase time and cost efficiency. The dual gradients used in this study encompassed a wide range of pH (4-8) and NaCl concentrations (0-1M). Curve fits showed that ΔGP(0)/RT is protein type and ligand dependent. ΔGS(0)/RT is strongly dependent on the stationary phase but not the protein. For mAb04 on mixed-mode resin Capto(®) MMC, ΔGS(0)/RT is 5-6 times higher than the result reported for the same protein on cation exchanger Fractogel(®) EMD SO3(-) (S). Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Modeling Electronic Polarizability Changes in the Course of a Magnesium Ion Water Ligand Exchange Process.

    Science.gov (United States)

    Kurnikov, Igor V; Kurnikova, Maria

    2015-08-13

    This paper introduces explicit dependence of atomic polarizabilities on intermolecular interactions within the framework of a polarizable force field AMOEBA. Polarizable models used in biomolecular simulations often poorly describe molecular electrostatic induction in condensed phase, in part, due to neglect of a strong dependency of molecular electronic polarizability on intermolecular interactions at short distances. Our variable polarizability model parameters are derived from quantum chemical calculations of small clusters of atoms and molecules, and can be applied in simulations in condensed phase without additional scaling factors. The variable polarizability model is applied to simulate a ligand exchange reaction for a Mg(2+) ion solvated in water. Explicit dependence of water polarizability on a distance between a water oxygen and Mg(2+) is derived from in vacuum MP2 calculations of Mg(2+)-water dimer. The simulations yield a consistent description of the energetics of the Mg(2+)-water clusters of different size. Simulations also reproduce thermodynamics of ion solvation as well as kinetics of a water ligand exchange reaction. In contrast, simulations that used the additive force field or that used the constant polarizability models were not able to consistently and quantitatively describe the properties of the solvated Mg(2+) ion.

  8. Heat exchanger modelling in central receiver solar power plant using dense particle suspension

    Science.gov (United States)

    Reyes-Belmonte, Miguel A.; Gómez-García, Fabrisio; González-Aguilar, José; Romero, Manuel; Benoit, Hadrien; Flamant, Gilles

    2017-06-01

    In this paper, a detailed thermodynamic model for a heat exchanger (HX) working with a dense particle suspension (DPS) as heat transfer fluid (HTF) in the solar loop and water-steam as working fluid is presented. HX modelling is based on fluidized bed (FB) technology and its design has been conceived to couple solar plant using DPS as HTF and storage media with Rankine cycle for power generation. Using DPS as heat transfer fluid allows extending operating temperature range what will help to reduce thermal energy storage costs favoring higher energy densities but will also allow running power cycle at higher temperature what will increase its efficiency. Besides HX modelling description, this model will be used to reproduce solar plant performance under steady state and transient conditions.

  9. Performance prediction of a proton exchange membrane fuel cell using the ANFIS model

    Energy Technology Data Exchange (ETDEWEB)

    Vural, Yasemin; Ingham, Derek B.; Pourkashanian, Mohamed [Centre for Computational Fluid Dynamics, University of Leeds, Houldsworth Building, LS2 9JT Leeds (United Kingdom)

    2009-11-15

    In this study, the performance (current-voltage curve) prediction of a Proton Exchange Membrane Fuel Cell (PEMFC) is performed for different operational conditions using an Adaptive Neuro-Fuzzy Inference System (ANFIS). First, ANFIS is trained with a set of input and output data. The trained model is then tested with an independent set of experimental data. The trained and tested model is then used to predict the performance curve of the PEMFC under various operational conditions. The model shows very good agreement with the experimental data and this indicates that ANFIS is capable of predicting fuel cell performance (in terms of cell voltage) with a high accuracy in an easy, rapid and cost effective way for the case presented. Finally, the capabilities and the limitations of the model for the application in fuel cells have been discussed. (author)

  10. Beyond Social Exchange Theory: An Integrative Look at Transcendent Mental Models for Engagement

    Directory of Open Access Journals (Sweden)

    Latha Poonamallee

    2014-03-01

    Full Text Available In this paper, we develop an integrative conceptual framework capturing the underlying mental models that guide engagement in relationships at work and elsewhere. Specifically, we are looking at mental models that go beyond egocentrism and social exchange, which have served as the basis for most frameworks found in research on organizations. The goal of this paper is to present a more complex picture of human cognition and behavior that suggests that egocentrism is not an exclusive motivator. We view this more integrative framework as a set of concentric circles of increasingly inclusive and expansive identities. Although the mental models used by individuals may be static over a shorter time frame, they are thought to be more dynamic over a relatively longer timeframe, in adaptive response to changing conditions. Movement between these mental models can be triggered by changes in cognitions as well as by events that arouse affect.

  11. Streambed Hydraulic Conductivity Structures: Enhanced Hyporheic Exchange and Contaminant Removal in Model and Constructed Stream

    Science.gov (United States)

    Herzog, S.; Higgins, C. P.; McCray, J. E.

    2014-12-01

    Urban- and agriculturally-impacted streams face widespread water quality challenges from excess nutrients, metals, and pathogens from nonpoint sources, which the hyporheic zone (HZ) can capture and treat. However, flow through the HZ is typically small relative to stream flow and thus water quality contributions from the HZ are practically insignificant. Hyporheic exchange is a prominent topic in stream biogeochemistry, but growing understanding of HZ processes has not been translated into practical applications. In particular, existing HZ restoration structures (i.e. cross-vanes) do not exchange water efficiently nor control the residence time (RT) of downwelling streamwater. Here we present subsurface modifications to streambed hydraulic conductivity (K) to drive efficient hyporheic exchange and control RT, thereby enhancing the effectiveness of the HZ. Coordinated high K (i.e. gravel) and low K (i.e. concrete, clay) modifications are termed Biohydrochemical Enhancement structures for Streamwater Treatment (BEST). BEST can simply use native sediments or may also incorporate reactive geomedia to enhance reactions. The contaminant mitigation potentials of BEST were estimated based on hyporheic flow and RT outputs from MODFLOW and MODPATH models and reported nutrient, metal, and pathogen removal rate constants from literature for specific porous media. Reactions of interest include denitrification and removal of phosphate, metals, and E. coli. Simulations showed that BEST structures in series can substantially improve water quality in small streams along reaches of tens of meters. The model results are compared to observed data in tank and constructed stream experiments. Preliminary results with BEST incorporating woodchip geomedia demonstrate rapid denitrification exceeding model predictions. These experiments should establish BEST as a novel stream restoration structure or Best Management Practice (BMP) option to help practitioners achieve stormwater compliance.

  12. A New Cost-Profit Model for Measuring the Optimal Scale of China’s Foreign Exchange Reserve

    Directory of Open Access Journals (Sweden)

    Xing Li

    2016-01-01

    Full Text Available The fast increase of foreign exchange reserve in developing countries has raised a number of important financial questions in recent years. The analysis of the optimal scale of the foreign exchange reserve can provide important indicator to measure the strength and stability of country’s financial standing. In this work we propose a cost-profit model and use the financial data during 2000 to 2008 to analyze the optimal scale of China’s foreign exchange reserve. We identify a number of financial factors to measure the cost and profit of holding the reserves. Our prediction suggested that China’s foreign exchange reserves were still within the moderate range in 1999–2001. However, during 2002–2008 the foreign exchange reserve began to exceed the appropriate scale, and this upward trend was accelerated each year.

  13. Finite line-source model for borehole heat exchangers. Effect of vertical temperature variations

    Energy Technology Data Exchange (ETDEWEB)

    Bandos, Tatyana V.; Fernandez, Esther; Santander, Juan Luis G.; Isidro, Jose Maria; Perez, Jezabel; Cordoba, Pedro J. Fernandez de [Instituto Universitario de Matematica Pura y Aplicada, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain); Montero, Alvaro; Urchueguia, Javier F. [Instituto de Ingenieria Energetica, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain)

    2009-06-15

    A solution to the three-dimensional finite line-source (FLS) model for borehole heat exchangers (BHEs) that takes into account the prevailing geothermal gradient and allows arbitrary ground surface temperature changes is presented. Analytical expressions for the average ground temperature are derived by integrating the exact solution over the line-source depth. A self-consistent procedure to evaluate the in situ thermal response test (TRT) data is outlined. The effective thermal conductivity and the effective borehole thermal resistance can be determined by fitting the TRT data to the time-series expansion obtained for the average temperature. (author)

  14. Modelling and experimental validation for off-design performance of the helical heat exchanger with LMTD correction taken into account

    Energy Technology Data Exchange (ETDEWEB)

    Phu, Nguyen Minh; Trinh, Nguyen Thi Minh [Vietnam National University, Ho Chi Minh City (Viet Nam)

    2016-07-15

    Today the helical coil heat exchanger is being employed widely due to its dominant advantages. In this study, a mathematical model was established to predict off-design works of the helical heat exchanger. The model was based on the LMTD and e-NTU methods, where a LMTD correction factor was taken into account to increase accuracy. An experimental apparatus was set-up to validate the model. Results showed that errors of thermal duty, outlet hot fluid temperature, outlet cold fluid temperature, shell-side pressure drop, and tube-side pressure drop were respectively +-5%, +-1%, +-1%, +-5% and +-2%. Diagrams of dimensionless operating parameters and a regression function were also presented as design-maps, a fast calculator for usage in design and operation of the exchanger. The study is expected to be a good tool to estimate off-design conditions of the single-phase helical heat exchangers.

  15. Predicting residential air exchange rates from questionnaires and meteorology: model evaluation in central North Carolina.

    Science.gov (United States)

    Breen, Michael S; Breen, Miyuki; Williams, Ronald W; Schultz, Bradley D

    2010-12-15

    A critical aspect of air pollution exposure models is the estimation of the air exchange rate (AER) of individual homes, where people spend most of their time. The AER, which is the airflow into and out of a building, is a primary mechanism for entry of outdoor air pollutants and removal of indoor source emissions. The mechanistic Lawrence Berkeley Laboratory (LBL) AER model was linked to a leakage area model to predict AER from questionnaires and meteorology. The LBL model was also extended to include natural ventilation (LBLX). Using literature-reported parameter values, AER predictions from LBL and LBLX models were compared to data from 642 daily AER measurements across 31 detached homes in central North Carolina, with corresponding questionnaires and meteorological observations. Data was collected on seven consecutive days during each of four consecutive seasons. For the individual model-predicted and measured AER, the median absolute difference was 43% (0.17 h(-1)) and 40% (0.17 h(-1)) for the LBL and LBLX models, respectively. Additionally, a literature-reported empirical scale factor (SF) AER model was evaluated, which showed a median absolute difference of 50% (0.25 h(-1)). The capability of the LBL, LBLX, and SF models could help reduce the AER uncertainty in air pollution exposure models used to develop exposure metrics for health studies.

  16. Process-based modelling of NH3 exchange with grazed grasslands

    Science.gov (United States)

    Móring, Andrea; Vieno, Massimo; Doherty, Ruth M.; Milford, Celia; Nemitz, Eiko; Twigg, Marsailidh M.; Horváth, László; Sutton, Mark A.

    2017-09-01

    In this study the GAG model, a process-based ammonia (NH3) emission model for urine patches, was extended and applied for the field scale. The new model (GAG_field) was tested over two modelling periods, for which micrometeorological NH3 flux data were available. Acknowledging uncertainties in the measurements, the model was able to simulate the main features of the observed fluxes. The temporal evolution of the simulated NH3 exchange flux was found to be dominated by NH3 emission from the urine patches, offset by simultaneous NH3 deposition to areas of the field not affected by urine. The simulations show how NH3 fluxes over a grazed field in a given day can be affected by urine patches deposited several days earlier, linked to the interaction of volatilization processes with soil pH dynamics. Sensitivity analysis showed that GAG_field was more sensitive to soil buffering capacity (β), field capacity (θfc) and permanent wilting point (θpwp) than the patch-scale model. The reason for these different sensitivities is dual. Firstly, the difference originates from the different scales. Secondly, the difference can be explained by the different initial soil pH and physical properties, which determine the maximum volume of urine that can be stored in the NH3 source layer. It was found that in the case of urine patches with a higher initial soil pH and higher initial soil water content, the sensitivity of NH3 exchange to β was stronger. Also, in the case of a higher initial soil water content, NH3 exchange was more sensitive to the changes in θfc and θpwp. The sensitivity analysis showed that the nitrogen content of urine (cN) is associated with high uncertainty in the simulated fluxes. However, model experiments based on cN values randomized from an estimated statistical distribution indicated that this uncertainty is considerably smaller in practice. Finally, GAG_field was tested with a constant soil pH of 7.5. The variation of NH3 fluxes simulated in this way

  17. MODELING CST ION EXCHANGE FOR CESIUM REMOVAL FROM SCIX BATCHES 1 - 4

    Energy Technology Data Exchange (ETDEWEB)

    Smith, F.

    2011-04-25

    The objective of this work is, through modeling, to predict the performance of Crystalline Silicotitinate (CST) for the removal of cesium from Small Column Ion Exchange (SCIX) Batches 1-4 (as proposed in Revision 16 of the Liquid Waste System Plan). The scope of this task is specified in Technical Task Request (TTR) 'SCIX Feed Modeling', HLE-TTR-2011-003, which specified using the Zheng, Anthony, Miller (ZAM) code to predict CST isotherms for six given SCIX feed compositions and the VErsatile Reaction and SEparation simulator for Liquid Chromatography (VERSE-LC) code to predict ion-exchange column behavior. The six SCIX feed compositions provided in the TTR represent SCIX Batches 1-4 and Batches 1 and 2 without caustic addition. The study also investigated the sensitivity in column performance to: (1) Flow rates of 5, 10, and 20 gpm with 10 gpm as the nominal flow; and (2) Temperatures of 25, 35, and 45 C with 35 C as the nominal temperature. The isotherms and column predictions presented in this report reflect the expected performance of engineered CST IE-911. This form of CST was used in experiments conducted at the Savannah River National Laboratory (SRNL) that formed the basis for estimating model parameters (Hamm et al., 2002). As has been done previously, the engineered resin capacity is estimated to be 68% of the capacity of particulate CST without binder.

  18. Modeling Ion-Exchange Processing With Spherical Resins For Cesium Removal

    Energy Technology Data Exchange (ETDEWEB)

    Hang, T.; Nash, C. A.; Aleman, S. E.

    2012-09-19

    The spherical Resorcinol-Formaldehyde and hypothetical spherical SuperLig(r) 644 ion-exchange resins are evaluated for cesium removal from radioactive waste solutions. Modeling results show that spherical SuperLig(r) 644 reduces column cycling by 50% for high-potassium solutions. Spherical Resorcinol Formaldehyde performs equally well for the lowest-potassium wastes. Less cycling reduces nitric acid usage during resin elution and sodium addition during resin regeneration, therefore, significantly decreasing life-cycle operational costs. A model assessment of the mechanism behind ''cesium bleed'' is also conducted. When a resin bed is eluted, a relatively small amount of cesium remains within resin particles. Cesium can bleed into otherwise decontaminated product in the next loading cycle. The bleed mechanism is shown to be fully isotherm-controlled vs. mass transfer controlled. Knowledge of residual post-elution cesium level and resin isotherm can be utilized to predict rate of cesium bleed in a mostly non-loaded column. Overall, this work demonstrates the versatility of the ion-exchange modeling to study the effects of resin characteristics on processing cycles, rates, and cold chemical consumption. This evaluation justifies further development of a spherical form of the SL644 resin.

  19. Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms

    Science.gov (United States)

    Widdows, Kate L.; Panitchob, Nuttanont; Crocker, Ian P.; Please, Colin P.; Hanson, Mark A.; Sibley, Colin P.; Johnstone, Edward D.; Sengers, Bram G.; Lewis, Rohan M.; Glazier, Jocelyn D.

    2015-01-01

    Uptake of system L amino acid substrates into isolated placental plasma membrane vesicles in the absence of opposing side amino acid (zero-trans uptake) is incompatible with the concept of obligatory exchange, where influx of amino acid is coupled to efflux. We therefore hypothesized that system L amino acid exchange transporters are not fully obligatory and/or that amino acids are initially present inside the vesicles. To address this, we combined computational modeling with vesicle transport assays and transporter localization studies to investigate the mechanisms mediating [14C]l-serine (a system L substrate) transport into human placental microvillous plasma membrane (MVM) vesicles. The carrier model provided a quantitative framework to test the 2 hypotheses that l-serine transport occurs by either obligate exchange or nonobligate exchange coupled with facilitated transport (mixed transport model). The computational model could only account for experimental [14C]l-serine uptake data when the transporter was not exclusively in exchange mode, best described by the mixed transport model. MVM vesicle isolates contained endogenous amino acids allowing for potential contribution to zero-trans uptake. Both L-type amino acid transporter (LAT)1 and LAT2 subtypes of system L were distributed to MVM, with l-serine transport attributed to LAT2. These findings suggest that exchange transporters do not function exclusively as obligate exchangers.—Widdows, K. L., Panitchob, N., Crocker, I. P., Please, C. P., Hanson, M. A., Sibley, C. P., Johnstone, E. D., Sengers, B. G., Lewis, R. M., Glazier, J. D. Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms. PMID:25761365

  20. Modeling foreign exchange market activity around macroeconomic news: Hawkes-process approach

    Science.gov (United States)

    Rambaldi, Marcello; Pennesi, Paris; Lillo, Fabrizio

    2015-01-01

    We present a Hawkes-model approach to the foreign exchange market in which the high-frequency price dynamics is affected by a self-exciting mechanism and an exogenous component, generated by the pre-announced arrival of macroeconomic news. By focusing on time windows around the news announcement, we find that the model is able to capture the increase of trading activity after the news, both when the news has a sizable effect on volatility and when this effect is negligible, either because the news in not important or because the announcement is in line with the forecast by analysts. We extend the model by considering noncausal effects, due to the fact that the existence of the news (but not its content) is known by the market before the announcement.

  1. CFD Modeling of Flow and Ion Exchange Kinetics in a Rotating Bed Reactor System

    DEFF Research Database (Denmark)

    Larsson, Hilde Kristina; Schjøtt Andersen, Patrick Alexander; Byström, Emil

    2017-01-01

    A rotating bed reactor (RBR) has been modeled using computational fluid dynamics (CFD). The flow pattern in the RBR was investigated and the flow through the porous material in it was quantified. A simplified geometry representing the more complex RBR geometry was introduced and the simplified...... model was able to reproduce the main characteristics of the flow. Alternating reactor shapes were investigated, and it was concluded that the use of baffles has a very large impact on the flows through the porous material. The simulations suggested, therefore, that even faster reaction rates could...... be achieved by making the baffles deeper. Two-phase simulations were performed, which managed to reproduce the deflection of the gas–liquid interface in an unbaffled system. A chemical reaction was implemented in the model, describing the ion-exchange phenomena in the porous material using four different...

  2. A MODEL OF HETEROGENEOUS DISTRIBUTED SYSTEM FOR FOREIGN EXCHANGE PORTFOLIO ANALYSIS

    Directory of Open Access Journals (Sweden)

    Dragutin Kermek

    2006-06-01

    Full Text Available The paper investigates the design of heterogeneous distributed system for foreign exchange portfolio analysis. The proposed model includes few separated and dislocated but connected parts through distributed mechanisms. Making system distributed brings new perspectives to performance busting where software based load balancer gets very important role. Desired system should spread over multiple, heterogeneous platforms in order to fulfil open platform goal. Building such a model incorporates different patterns from GOF design patterns, business patterns, J2EE patterns, integration patterns, enterprise patterns, distributed design patterns to Web services patterns. The authors try to find as much as possible appropriate patterns for planned tasks in order to capture best modelling and programming practices.

  3. Characterisation of transient storage biogeochemistry through groundwater models: the importance of considering microform hyporheic exchange in models at coarser scales

    Science.gov (United States)

    Käser, D.; Binley, A.; Heathwaite, L.

    2010-12-01

    Transient storage of stream water in the sediment, or hyporheic exchange flow (HEF), is a primary control on the ecological structure and functions of the hyporheic zone. Increasingly, river rehabilitation programmes require quantitative methods for evaluating its influence on the lotic system, particularly on its pollutant attenuation capacity. Previous studies have already shown the potential of groundwater numerical models to characterize HEF at the channel-unit or the reach scale, for example to compare different rehabilitation scenarios. Modellers and end-users, however, must consider these results with care. The predominant underlying concept implies that HEF is driven by geomorphological features such as pool-riffle or pool-step sequences, and meanders. Yet any degree of streambed roughness is also likely to induced small scale HEF through current-obstacle interaction. Both scales of exchange potentially play a crucial role in terms of biogeochemical transformations. Simulated conceptualisations show that ignoring current-obstacle interactions in groundwater models can lead to strong underestimations of short residence time flow paths or to a misrepresentation of biogeochemical 'hotspots'. For example, ‘Head to tail’ flow paths through riffles are sometimes thought to explain variations in stream water chemistry; however, because riffles are shallow zones of high stream water velocity, they have a potential for pumping exchange that would typically be characterized by a small depth, short residence times, and large fluxes. Little is known on the relative efficiency of these two scales of HEF systems. A sensitivity analysis shows how the interaction of pumping exchange and HEF caused by channel-unit structures may create various small-scale and complex patterns of downwelling and upwelling areas that may control in return the biogeochemical patchiness in the shallow subsurface. There is still much to learn about the interaction of HEF systems of different

  4. Biologically variable ventilation improves gas exchange and respiratory mechanics in a model of severe bronchospasm.

    Science.gov (United States)

    Mutch, W Alan C; Buchman, Timothy G; Girling, Linda G; Walker, Elizabeth K-Y; McManus, Bruce M; Graham, M Ruth

    2007-07-01

    Mechanical ventilation can be lifesaving for status asthmaticus, but how best to accomplish mechanical ventilation is unclear. Biologically variable ventilation (mechanical ventilation that emulates healthy variation) and conventional control mode ventilation (monotonously regular) were compared in an animal model of bronchospasm to determine which approach yields better gas exchange and respiratory mechanics. A randomized prospective trial of biologically variable ventilation vs. control mode ventilation in swine. University research laboratory. Eighteen farm-raised pigs. Methacholine was administered as a nebulized aerosol to initiate bronchospasm, defined as doubling of peak inspiratory pressure and respiratory system resistance, and then randomized (n = 9 each group) to either continue control mode ventilation or switch to biologically variable ventilation at the same minute ventilation. Over the next 4 hrs, hemodynamics, blood gases, respiratory mechanics, and carbon dioxide expirograms were recorded hourly. At end-experiment, tracheobronchial lavage was undertaken to determine interleukin-6 and -10 concentrations. Measurements of physiologic variables and inflammatory cytokines showed that biologically variable ventilation significantly improved gas exchange, with greater arterial oxygen tensions (p = .006; group x time interaction), lower arterial carbon dioxide tensions (p = .0003; group effect), lower peak inspiratory pressures (p = .0001; group x time), greater static compliance (p = .0001; group x time), greater dynamic compliance (p = .0001; group x time), and lower total respiratory system resistance (p = .028; group x time), compared with conventional ventilation. The appearance of inflammatory cytokines in bronchoalveolar lavage fluid (interleukin-6 and -10) was not affected by mode of ventilation. In this experimental model, biologically variable ventilation was superior to control mode ventilation in terms of gas exchange and respiratory mechanics

  5. Numerical Modeling of Freezing and Melting Processes around a Borehole Heat Exchanger

    Science.gov (United States)

    Shao, Haibing; Zheng, Tianyuan; Nagel, Thomas; Kolditz, Olaf

    2015-04-01

    In ground sourced heat pump (GSHP) systems, heat energy stored in the shallow subsurface is extracted through borehole heat exchangers (BHE) and then utilized for domestic heating. In cold regions, the continuous heat deficit in the vicinity of the BHE can cause freezing of the surrounding soil. Its material properties, such as permeability and heat conductivity, will then significantly change and lead to a series of coupled thermal, hydraulic, and mechanical processes. In particular, the heat exchange performance of the BHE will be altered, and the frozen soil may also induce ground lift or subsidence in the vicinity of the building. As the first step of modelling this coupled system, we followed the approach proposed by Al-Khoury et al (2010) and Diersch et al (2011), where the BHE has been fully integrated into the numerical model in a dual-continuum way. Additionally, we extended the existing heat transport module in the numerical simulator OpenGeoSys to include the freezing and melting processes, whereas the ice volume fraction in the soil is non-linearly dependent on the temperature, and the soil properties were determined based on the degree of freezing/melting. The non-linearity of the coupled model was numerically solved by a Newton scheme. The extended model has been verified by comparing numerical results against analytical solutions and also findings from other numerical codes. Moreover, we proposed and simulated a hypothetical scenario, where ice is gradually forming around a BHE in response to the continuous operation of a heat pump. The model is capable of reproducing the thermodynamic freezing process as well as the heat transport affected by it. Future work will be focused on the integration of deformation processes into the model.

  6. Modeling variations in the cedi/dollar exchange rate in Ghana: an autoregressive conditional heteroscedastic (ARCH) models.

    Science.gov (United States)

    Techie Quaicoe, Michael; Twenefour, Frank B K; Baah, Emmanuel M; Nortey, Ezekiel N N

    2015-01-01

    This research article aimed at modeling the variations in the dollar/cedi exchange rate. It examines the applicability of a range of ARCH/GARCH specifications for modeling volatility of the series. The variants considered include the ARMA, GARCH, IGARCH, EGARCH and M-GARCH specifications. The results show that the series was non stationary which resulted from the presence of a unit root in it. The ARMA (1, 1) was found to be the most suitable model for the conditional mean. From the Box-Ljung test statistics x-squared of 1476.338 with p value 0.00217 for squared returns and 16.918 with 0.0153 p values for squared residuals, the null hypothesis of no ARCH effect was rejected at 5% significance level indicating the presence of an ARCH effect in the series. ARMA (1, 1) + GARCH (1, 1) which has all parameters significant was found to be the most suitable model for the conditional mean with conditional variance, thus showing adequacy in describing the conditional mean with variance of the return series at 5% significant level. A 24 months forecast for the mean actual exchange rates and mean returns from January, 2013 to December, 2014 made also showed that the fitted model is appropriate for the data and a depreciating trend of the cedi against the dollar for forecasted period respectively.

  7. Two-phase plate-fin heat exchanger modeling for waste heat recovery systems in diesel engines

    NARCIS (Netherlands)

    Feru, E.; de Jager, B.; Willems, F.; Steinbuch, M.

    2014-01-01

    This paper presents the modeling and model validation for a modular two-phase heat exchanger that recovers energy in heavy-duty diesel engines. The model is developed for temperature and vapor quality prediction and for control design of the waste heat recovery system. In the studied waste heat

  8. Monomer exchange and the hourglass model of protein-based oscillators

    Science.gov (United States)

    Emberly, Eldon

    2008-03-01

    Circadian rhythms in photosynthetic cyanobacteria are under the control of a three protein biochemical network that generates oscillations in the phosphorylation level of one of the proteins. This oscillatory signal has a period of roughly 24 hours and regulates many biological processes in the bacteria to the day and night cycle. The molecular view of the phosphorylation process is that one of the proteins forms a hexameric complex whose phosphorylation levels rise and fall based on the activity of the other two proteins. Each hexameric complex thus functions as an independent molecular clock. However the bacteria contains many such clocks and so how do they interact to generate a coherent oscillating signal? In this talk I will discuss a model that suggests that monomer exchange between hexamers helps to synchronize the population of clocks during the daylight portion of the oscillation. Other synchronizing mechanisms will be highlighted for the other portion of the cycle. Recent experiments will be discussed in light of the exchange model.

  9. Adsorptive Desulfurization of Model Gasoline by Using Different Zn Sources Exchanged NaY Zeolites

    Directory of Open Access Journals (Sweden)

    Jingwei Rui

    2017-02-01

    Full Text Available A series of Zn-modified NaY zeolites were prepared by the liquid-phase ion-exchange method with different Zn sources, including Zn(NO32, Zn(Ac2 and ZnSO4. The samples were tested as adsorbents for removing an organic sulfur compound from a model gasoline fuel containing 1000 ppmw sulfur. Zn(Ac2-Y exhibited the best performance for the desulfurization of gasoline at ambient conditions. Combined with the adsorbents’ characterization results, the higher adsorption capacity of Zn(Ac2-Y is associated with a higher ion-exchange degree. Further, the results demonstrated that the addition of 5 wt % toluene or 1-hexene to the diluted thiophene (TP solution in cyclohexane caused a large decrease in the removal of TP from the model gasoline fuel. This provides evidence about the competition through the π-complexation between TP and toluene for adsorption on the active sites. The acid-catalyzed alkylation by 1-hexene of TP and the generated complex mixture of bulky alkylthiophenes would adsorb on the surface active sites of the adsorbent and block the pores. The regenerated Zn(Ac2-Y adsorbent afforded 84.42% and 66.10% of the initial adsorption capacity after the first two regeneration cycles.

  10. Mathematical Modeling of Non-Fickian Diffusional Mass Exchange of Radioactive Contaminants in Geological Disposal Formations

    Directory of Open Access Journals (Sweden)

    Anna Suzuki

    2018-01-01

    Full Text Available Deep geological repositories for nuclear wastes consist of both engineered and natural geologic barriers to isolate the radioactive material from the human environment. Inappropriate repositories of nuclear waste would cause severe contamination to nearby aquifers. In this complex environment, mass transport of radioactive contaminants displays anomalous behaviors and often produces power-law tails in breakthrough curves due to spatial heterogeneities in fractured rocks, velocity dispersion, adsorption, and decay of contaminants, which requires more sophisticated models beyond the typical advection-dispersion equation. In this paper, accounting for the mass exchange between a fracture and a porous matrix of complex geometry, the universal equation of mass transport within a fracture is derived. This equation represents the generalization of the previously used models and accounts for anomalous mass exchange between a fracture and porous blocks through the introduction of the integral term of convolution type and fractional derivatives. This equation can be applied for the variety of processes taking place in the complex fractured porous medium, including the transport of radioactive elements. The Laplace transform method was used to obtain the solution of the fractional diffusion equation with a time-dependent source of radioactive contaminant.

  11. Adsorptive Desulfurization of Model Gasoline by Using Different Zn Sources Exchanged NaY Zeolites.

    Science.gov (United States)

    Rui, Jingwei; Liu, Fei; Wang, Rijie; Lu, Yanfei; Yang, Xiaoxia

    2017-02-17

    A series of Zn-modified NaY zeolites were prepared by the liquid-phase ion-exchange method with different Zn sources, including Zn(NO₃)₂, Zn(Ac)₂ and ZnSO₄. The samples were tested as adsorbents for removing an organic sulfur compound from a model gasoline fuel containing 1000 ppmw sulfur. Zn(Ac)₂-Y exhibited the best performance for the desulfurization of gasoline at ambient conditions. Combined with the adsorbents' characterization results, the higher adsorption capacity of Zn(Ac)₂-Y is associated with a higher ion-exchange degree. Further, the results demonstrated that the addition of 5 wt % toluene or 1-hexene to the diluted thiophene (TP) solution in cyclohexane caused a large decrease in the removal of TP from the model gasoline fuel. This provides evidence about the competition through the π-complexation between TP and toluene for adsorption on the active sites. The acid-catalyzed alkylation by 1-hexene of TP and the generated complex mixture of bulky alkylthiophenes would adsorb on the surface active sites of the adsorbent and block the pores. The regenerated Zn(Ac)₂-Y adsorbent afforded 84.42% and 66.10% of the initial adsorption capacity after the first two regeneration cycles.

  12. Ion Exchange Modeling Of Cesium Removal From Hanford Waste Using Spherical Resorcinol-Formaldehyde Resin

    Energy Technology Data Exchange (ETDEWEB)

    Aleman, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hamm, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Smith, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2007-06-27

    This report discusses the expected performance of spherical Resorcinol-Formaldehyde (RF) ion exchange resin for the removal of cesium from alkaline Hanford radioactive waste. Predictions of full scale column performance in a carousel mode are made for the Hot Commissioning, Envelope B, and Subsequent Operations waste compositions under nominal operating conditions and for perturbations from the nominal. Only the loading phase of the process cycle is addressed in this report. Pertinent bench-scale column tests, kinetic experiments, and batch equilibrium experiments are used to estimate model parameters and to benchmark the ion-exchange model. The methodology and application presented in this report reflect the expected behavior of spherical RF resin manufactured at the intermediate-scale (i.e., approximately 100 gallon batch size; batch 5E-370/641). It is generally believed that scale-up to production-scale in resin manufacturing will result in similarly behaving resin batches whose chemical selectivity is unaffected while total capacity per gram of resin may vary some. As such, the full-scale facility predictions provided within this report should provide reasonable estimates of production-scale column performance.

  13. Process Model for Studying Regional 13C Stable Isotope Exchange between Vegetation and Atmosphere

    Science.gov (United States)

    Chen, J. M.; Chen, B.; Huang, L.; Tans, P.; Worthy, D.; Ishizawa, M.; Chan, D.

    2007-12-01

    The variation of the stable isotope 13CO2 in the air in exchange with land ecosystems results from fractionation processes in both plants and soil during photosynthesis and respiration. Its diurnal and seasonal variations therefore contain information on the carbon cycle. We developed a model (BEPS-iso) to simulate its exchange between vegetation and the atmosphere. To be useful for regional carbon cycle studies, the model has the following characteristics: (i) it considers the turbulent mixing in the vertical profile from the soil surface to the top of the planetary boundary layer (PBL); (ii) it scales individual leaf photosynthetic discrimination to the whole canopy through the separation of sunlit and shaded leaf groups; (iii) through simulating leaf-level photosynthetic processes, it has the capacity to mechanistically examine isotope discrimination resulting from meteorological forcings, such as radiation, precipitation and humidity; and (iv) through complete modeling of radiation, energy and water fluxes, it also simulates soil moisture and temperature needed for estimating ecosystem respiration and the 13C signal from the soil. After validation using flask data acquired at 20 m level on a tower near Fraserdale, Ontario, Canada, during intensive campaigns (1998-2000), the model has been used for several purposes: (i) to investigate the diurnal and seasonal variations in the disequilibrium in 13C fractionation between ecosystem respiration and photosynthesis, which is an important step in using 13C measurements to separate these carbon cycle components; (ii) to quantify the 13C rectification in the PBL, which differs significantly from CO2 rectification because of the diurnal and seasonal disequilibriums; and (iii) to model the 13C spatial and temporal variations over the global land surface for the purpose of CO2 inversion using 13C as an additional constraint.

  14. Information model for digital exchange of soil-related data - potential modifications on ISO 28258

    Science.gov (United States)

    Schulz, Sina; Eberhardt, Einar; Reznik, Tomas

    2017-04-01

    ABSTRACT The International Standard ISO 28258 "Digital exchange of soil-related data" provides an information model that describes the organization of soil data to facilitate data transfer between data producers, holders and users. The data model contains a fixed set of "core" soil feature types, data types and properties, whereas its customization is on the data provider level, e.g. by adding user-specific properties. Rules for encoding these information are given by a customized XML-based format (called "SoilML"). Some technical shortcomings are currently under consideration in the ISO working group. Directly after publication of ISO 28258 in 2013, also several conceptual and implementation issues concerning the information model had been identified, such as renaming of feature types, modification of data types, and enhancement of definitions or addition of super-classes are part of the current revision process. Conceptual changes for the current ISO data model that are compatible with the Australian/New Zealand soil data model ANZSoilML and the EU INSPIRE Data Specifications Soil are also discussed. The concept of a model with a limited set of properties that can be extended by the data provider should remain unaffected. This presentation aims to introduce and comment on the current ISO soil information model and the proposed modifications. Moreover, we want to discuss these adjustments with respect to enhanced applicability of this International Standard.

  15. Modeling cation exchange capacity and soil water holding capacity from basic soil properties

    Directory of Open Access Journals (Sweden)

    Idowu Olorunfemi

    2016-10-01

    Full Text Available Cation exchange capacity (CEC is a good indicator of soil productivity and is useful for making recommendations of phosphorus, potassium, and magnesium for soils of different textures. Soil water holding capacity (SWHC defines the ability of a soil to hold water at a particular time of the season. This research predicted CEC and SWHC of soils using pedotransfer models developed (using Minitab 17 statistical software from basic soil properties (Sand(S, Clay(C, soil pH, soil organic carbon (SOC and verify the model by comparing the relationship between measured and estimated (obtained by PTFs CEC and SWHC in the Forest Vegetative Zone of Nigeria. For this study, a total of 105 sampling points in 35 different locations were sampled in the study areas. Three sampling points were randomly selected per location and three undisturbed samples were collected at each sampling point. The results showed success in predicting CEC and SWHC from basic soil properties. In this study, five linear regression models for predicting soil CEC and seven linear regression models for predicting SWHC from some soil physical and chemical properties were suggested. Model 5 [CEC = -13.93+2.645 pH +0.0446 C (%+2.267 SOC (%] was best for predicting CEC while model 12 [SWHC (%=36.0- 0.215 S (%+0.113 C (%+10.36 SOC (%] is the most acceptable model for predicting SWHC.

  16. Modeling of salt and pH gradient elution in ion-exchange chromatography.

    Science.gov (United States)

    Schmidt, Michael; Hafner, Mathias; Frech, Christian

    2014-01-01

    The separation of proteins by internally and externally generated pH gradients in chromatofocusing on ion-exchange columns is a well-established analytical method with a large number of applications. In this work, a stoichiometric displacement model was used to describe the retention behavior of lysozyme on SP Sepharose FF and a monoclonal antibody on Fractogel SO3 (S) in linear salt and pH gradient elution. The pH dependence of the binding charge B in the linear gradient elution model is introduced using a protein net charge model, while the pH dependence of the equilibrium constant is based on a thermodynamic approach. The model parameter and pH dependences are calculated from linear salt gradient elutions at different pH values as well as from linear pH gradient elutions at different fixed salt concentrations. The application of the model for the well-characterized protein lysozyme resulted in almost identical model parameters based on either linear salt or pH gradient elution data. For the antibody, only the approach based on linear pH gradients is feasible because of the limited pH range useful for salt gradient elution. The application of the model for the separation of an acid variant of the antibody from the major monomeric form is discussed. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A review on the performance and modelling of proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Boucetta, A., E-mail: abirboucetta@yahoo.fr; Ghodbane, H., E-mail: h.ghodbane@mselab.org; Bahri, M., E-mail: m.bahri@mselab.org [Department of Electrical Engineering, MSE Laboratory, Mohamed khider Biskra University (Algeria); Ayad, M. Y., E-mail: ayadmy@gmail.com [R& D, Industrial Hybrid Vehicle Applications (France)

    2016-07-25

    Proton Exchange Membrane Fuel Cells (PEMFC), are energy efficient and environmentally friendly alternative to conventional energy conversion for various applications in stationary power plants, portable power device and transportation. PEM fuel cells provide low operating temperature and high-energy efficiency with near zero emission. A PEM fuel cell is a multiple distinct parts device and a series of mass, energy, transport through gas channels, electric current transport through membrane electrode assembly and electrochemical reactions at the triple-phase boundaries. These processes play a decisive role in determining the performance of the Fuel cell, so that studies on the phenomena of gas flows and the performance modelling are made deeply. This paper gives a comprehensive overview of the state of the art on the Study of the phenomena of gas flow and performance modelling of PEMFC.

  18. Issues associated with modelling of proton exchange membrane fuel cell by computational fluid dynamics

    Science.gov (United States)

    Bednarek, Tomasz; Tsotridis, Georgios

    2017-03-01

    The objective of the current study is to highlight possible limitations and difficulties associated with Computational Fluid Dynamics in PEM single fuel cell modelling. It is shown that an appropriate convergence methodology should be applied for steady-state solutions, due to inherent numerical instabilities. A single channel fuel cell model has been taken as numerical example. Results are evaluated for quantitative as well qualitative points of view. The contribution to the polarization curve of the different fuel cell components such as bi-polar plates, gas diffusion layers, catalyst layers and membrane was investigated via their effects on the overpotentials. Furthermore, the potential losses corresponding to reaction kinetics, due to ohmic and mas transport limitations and the effect of the exchange current density and open circuit voltage, were also investigated. It is highlighted that the lack of reliable and robust input data is one of the issues for obtaining accurate results.

  19. Combining Coarse-Grained Protein Models with Replica-Exchange All-Atom Molecular Dynamics

    Directory of Open Access Journals (Sweden)

    Andrzej Koliński

    2013-05-01

    Full Text Available We describe a combination of all-atom simulations with CABS, a well-established coarse-grained protein modeling tool, into a single multiscale protocol. The simulation method has been tested on the C-terminal beta hairpin of protein G, a model system of protein folding. After reconstructing atomistic details, conformations derived from the CABS simulation were subjected to replica-exchange molecular dynamics simulations with OPLS-AA and AMBER99sb force fields in explicit solvent. Such a combination accelerates system convergence several times in comparison with all-atom simulations starting from the extended chain conformation, demonstrated by the analysis of melting curves, the number of native-like conformations as a function of time and secondary structure propagation. The results strongly suggest that the proposed multiscale method could be an efficient and accurate tool for high-resolution studies of protein folding dynamics in larger systems.

  20. Assessment of model estimates of land-atmosphere CO2 exchange across northern Eurasia

    Science.gov (United States)

    Rawlins, M.A.; McGuire, A.D.; Kimball, J.S.; Dass, P.; Lawrence, D.; Burke, E.; Chen, X.; Delire, C.; Koven, C.; MacDougall, A.; Peng, S.; Rinke, A.; Saito, K.; Zhang, W.; Alkama, R.; Bohn, T. J.; Ciais, P.; Decharme, B.; Gouttevin, I.; Hajima, T.; Ji, D.; Krinner, G.; Lettenmaier, D.P.; Miller, P.; Moore, J.C.; Smith, B.; Sueyoshi, T.

    2015-01-01

    A warming climate is altering land-atmosphere exchanges of carbon, with a potential for increased vegetation productivity as well as the mobilization of permafrost soil carbon stores. Here we investigate land-atmosphere carbon dioxide (CO2) cycling through analysis of net ecosystem productivity (NEP) and its component fluxes of gross primary productivity (GPP) and ecosystem respiration (ER) and soil carbon residence time, simulated by a set of land surface models (LSMs) over a region spanning the drainage basin of Northern Eurasia. The retrospective simulations cover the period 1960–2009 at 0.5° resolution, which is a scale common among many global carbon and climate model simulations. Model performance benchmarks were drawn from comparisons against both observed CO2 fluxes derived from site-based eddy covariance measurements as well as regional-scale GPP estimates based on satellite remote-sensing data. The site-based comparisons depict a tendency for overestimates in GPP and ER for several of the models, particularly at the two sites to the south. For several models the spatial pattern in GPP explains less than half the variance in the MODIS MOD17 GPP product. Across the models NEP increases by as little as 0.01 to as much as 0.79 g C m−2 yr−2, equivalent to 3 to 340 % of the respective model means, over the analysis period. For the multimodel average the increase is 135 % of the mean from the first to last 10 years of record (1960–1969 vs. 2000–2009), with a weakening CO2 sink over the latter decades. Vegetation net primary productivity increased by 8 to 30 % from the first to last 10 years, contributing to soil carbon storage gains. The range in regional mean NEP among the group is twice the multimodel mean, indicative of the uncertainty in CO2 sink strength. The models simulate that inputs to the soil carbon pool exceeded losses, resulting in a net soil carbon gain amid a decrease in residence time. Our analysis points to improvements in model

  1. Assessment of model estimates of land-atmosphere CO2 exchange across Northern Eurasia

    Science.gov (United States)

    Rawlins, M. A.; McGuire, A. D.; Kimball, J. S.; Dass, P.; Lawrence, D.; Burke, E.; Chen, X.; Delire, C.; Koven, C.; MacDougall, A.; Peng, S.; Rinke, A.; Saito, K.; Zhang, W.; Alkama, R.; Bohn, T. J.; Ciais, P.; Decharme, B.; Gouttevin, I.; Hajima, T.; Ji, D.; Krinner, G.; Lettenmaier, D. P.; Miller, P.; Moore, J. C.; Smith, B.; Sueyoshi, T.

    2015-07-01

    A warming climate is altering land-atmosphere exchanges of carbon, with a potential for increased vegetation productivity as well as the mobilization of permafrost soil carbon stores. Here we investigate land-atmosphere carbon dioxide (CO2) cycling through analysis of net ecosystem productivity (NEP) and its component fluxes of gross primary productivity (GPP) and ecosystem respiration (ER) and soil carbon residence time, simulated by a set of land surface models (LSMs) over a region spanning the drainage basin of Northern Eurasia. The retrospective simulations cover the period 1960-2009 at 0.5° resolution, which is a scale common among many global carbon and climate model simulations. Model performance benchmarks were drawn from comparisons against both observed CO2 fluxes derived from site-based eddy covariance measurements as well as regional-scale GPP estimates based on satellite remote-sensing data. The site-based comparisons depict a tendency for overestimates in GPP and ER for several of the models, particularly at the two sites to the south. For several models the spatial pattern in GPP explains less than half the variance in the MODIS MOD17 GPP product. Across the models NEP increases by as little as 0.01 to as much as 0.79 g C m-2 yr-2, equivalent to 3 to 340 % of the respective model means, over the analysis period. For the multimodel average the increase is 135 % of the mean from the first to last 10 years of record (1960-1969 vs. 2000-2009), with a weakening CO2 sink over the latter decades. Vegetation net primary productivity increased by 8 to 30 % from the first to last 10 years, contributing to soil carbon storage gains. The range in regional mean NEP among the group is twice the multimodel mean, indicative of the uncertainty in CO2 sink strength. The models simulate that inputs to the soil carbon pool exceeded losses, resulting in a net soil carbon gain amid a decrease in residence time. Our analysis points to improvements in model elements

  2. Using adaptive neuro fuzzy inference system (ANFIS) for proton exchange membrane fuel cell (PEMFC) performance modeling

    Energy Technology Data Exchange (ETDEWEB)

    Rezazadeh, S.; Mirzaee, I. [Urmia Univ., Urmia (Iran, Islamic Republic of); Mehrabi, M. [University of Pretoria, Pretoria (South Africa)

    2012-11-15

    In this paper, an adaptive neuro fuzzy inference system (ANFIS) is used for modeling proton exchange membrane fuel cell (PEMFC) performance using some numerically investigated and compared with those to experimental results for training and test data. In this way, current density I (A/cm{sup 2}) is modeled to the variation of pressure at the cathode side P{sup C} (atm), voltage V (V), membrane thickness (mm), Anode transfer coefficient {alpha}{sup an}, relative humidity of inlet fuel RH{sup a} and relative humidity of inlet air RH{sup c} which are defined as input (design) variables. Then, we divided these data into train and test sections to do modeling. We instructed ANFIS network by 80% of numerical validated data. 20% of primary data which had been considered for testing the appropriateness of the models was entered ANFIS network models and results were compared by three statistical criterions. Considering the results, it is obvious that our proposed modeling by ANFIS is efficient and valid and it can be expanded for more general states.

  3. On observational and modelling strategies targeted at regional carbon exchange over continents

    Directory of Open Access Journals (Sweden)

    C. Gerbig

    2009-10-01

    Full Text Available Estimating carbon exchange at regional scales is paramount to understanding feedbacks between climate and the carbon cycle, but also to verifying climate change mitigation such as emission reductions and strategies compensating for emissions such as carbon sequestration. This paper discusses evidence for a number of important shortcomings of current generation modelling frameworks designed to provide regional scale budgets from atmospheric observations. Current top-down and bottom-up approaches targeted at deriving consistent regional scale carbon exchange estimates for biospheric and anthropogenic sources and sinks are hampered by a number of issues: we show that top-down constraints using point measurements made from tall towers, although sensitive to larger spatial scales, are however influenced by local areas much more strongly than previously thought. On the other hand, classical bottom-up approaches using process information collected at the local scale, such as from eddy covariance data, need up-scaling and validation on larger scales. We therefore argue for a combination of both approaches, implicitly providing the important local scale information for the top-down constraint, and providing the atmospheric constraint for up-scaling of flux measurements. Combining these data streams necessitates quantifying their respective representation errors, which are discussed. The impact of these findings on future network design is highlighted, and some recommendations are given.

  4. Derivatization patterns among starch chain populations assessed by ion-exchange chromatography: a model system approach.

    Science.gov (United States)

    Hong, Jung Sun; Huber, Kerry C

    2015-05-20

    Reaction patterns of wheat starch derivatized with a fluorescent probe (model reaction system) were investigated over the course of a reaction period (0.5, 4, 12, or 24h). Debranched derivatives were fractionated into three populations (Unbound, Bound-1, Bound-2) based on charge density via anion-exchange chromatography, with each ion-exchanged fraction further analyzed by size-exclusion chromatography (refractive index [RI] and fluorescence [FL] detection) to assess proportions and patterns of reaction on amylose (AM) and amylopectin (AP) long (LC), medium (MC), and short (SC) branch chains. Approximately 11-12% of the total chains accounted for 63-75% of the FL recovered in the two bound fractions. FL peaks representing AM, AP-LC, AP-MC, AP-SC, and intermediate material (eluted with AM based on molecular size, but reacted more akin to AP-LC) were monitored over the reaction period. Fractionation behaviors varied amongst starch chains, attributable to the impact of the granule structure on molecular reaction patterns. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. A two level hierarchical model of protein retention in ion exchange chromatography.

    Science.gov (United States)

    Salvalaglio, Matteo; Paloni, Matteo; Guelat, Bertrand; Morbidelli, Massimo; Cavallotti, Carlo

    2015-09-11

    Predicting protein retention in ion exchange chromatography (IEX) from first principles is a fascinating perspective. In this work a two level hierarchical modeling strategy is proposed in order to calculate protein retention factors. Model predictions are tested against experimental data measured for Lysozyme and Chymotrypsinogen A in IEX columns as a function of ionic strength and pH. At the highest level of accuracy Molecular Dynamics (MD) simulations in explicit water are used to determine the interaction free energy between each of the two proteins and the IEX stationary phase for a reference pH and ionic strength. At a lower level of accuracy a linear response model based on an implicit treatment of solvation and adopting a static protein structure is used to calculate interaction free energies for the full range of pHs and ionic strengths considered. A scaling coefficient, determined comparing MD and implicit solvent simulations, is then introduced in order to correct the linear response model for errors induced by the adoption of a static protein structure. The calculated free energies are then used to compute protein retention factors, which can be directly compared with experimental data. The possibility to introduce a third level of accuracy is explored testing the predictions of a semiempirical model. A quantitative agreement between the predicted and measured protein retention factors is obtained using the coupled MD-linear response models, supporting the reliability of the proposed approach. The model allows quantifying the electrostatic, van der Waals, and conformational contributions to the interaction free energies. A good agreement between experiments and model is obtained also using the semiempirical model that, although requiring parameterization over higher level models or experimental data, proves to be useful in order to rapidly determine protein retention factors across wide pH and ionic strength ranges as it is computationally inexpensive

  6. Model-based high-throughput design of ion exchange protein chromatography.

    Science.gov (United States)

    Khalaf, Rushd; Heymann, Julia; LeSaout, Xavier; Monard, Florence; Costioli, Matteo; Morbidelli, Massimo

    2016-08-12

    This work describes the development of a model-based high-throughput design (MHD) tool for the operating space determination of a chromatographic cation-exchange protein purification process. Based on a previously developed thermodynamic mechanistic model, the MHD tool generates a large amount of system knowledge and thereby permits minimizing the required experimental workload. In particular, each new experiment is designed to generate information needed to help refine and improve the model. Unnecessary experiments that do not increase system knowledge are avoided. Instead of aspiring to a perfectly parameterized model, the goal of this design tool is to use early model parameter estimates to find interesting experimental spaces, and to refine the model parameter estimates with each new experiment until a satisfactory set of process parameters is found. The MHD tool is split into four sections: (1) prediction, high throughput experimentation using experiments in (2) diluted conditions and (3) robotic automated liquid handling workstations (robotic workstation), and (4) operating space determination and validation. (1) Protein and resin information, in conjunction with the thermodynamic model, is used to predict protein resin capacity. (2) The predicted model parameters are refined based on gradient experiments in diluted conditions. (3) Experiments on the robotic workstation are used to further refine the model parameters. (4) The refined model is used to determine operating parameter space that allows for satisfactory purification of the protein of interest on the HPLC scale. Each section of the MHD tool is used to define the adequate experimental procedures for the next section, thus avoiding any unnecessary experimental work. We used the MHD tool to design a polishing step for two proteins, a monoclonal antibody and a fusion protein, on two chromatographic resins, in order to demonstrate it has the ability to strongly accelerate the early phases of process

  7. Projecting Ammonia Dry Deposition Using Passive Samplers and a Bi-Directional Exchange Model

    Science.gov (United States)

    Robarge, W. P.; Walker, J. T.; Austin, R. E.

    2011-12-01

    Animal agriculture within the United States is known to be a source of ammonia (NH3) emissions. Dry deposition of NH3 to terrestrial ecosystems immediately surrounding large local sources of NH3 emissions (e.g. animal feeding operations) is difficult to measure, and is best estimated via models. Presented here are results for a semi-empirical modeling approach for estimating air-surface exchange fluxes of NH3 downwind of a large poultry facility (~ 3.5 million layers) using a bi-directional air-surface exchange model. The modeling domain is the western section of the Pocosin Lakes National Wildlife Refuge in Tyrrell, Washington, and Hyde Counties of eastern North Carolina in the South Atlantic Coastal Plain physiographic region. Vegetation within the modeling domain is primarily pocosin wetlands, characterized by acid (pH 3.6) peat soils and a thick canopy of shrub vegetation (leatherwood (Cyrilla racemiflora), inkberry (Ilex glabra), wax myrtle (Morella cerifera)). Land surrounding the refuge is primarily used for crop production: ~ 28%, 24%, and 45% agricultural in Tyrell, Hyde, and Washington counties, respectively. Ammonia air-surface exchange (flux) was calculated using a two-layer canopy compensation point model developed by Nemitz et al. (2001. Quart. J. Roy. Met. Soc. 127, 815 - 833.) as implemented by Walker et al. (2008. Atmos. Environ., 42, 3407 - 3418.), in which the competing processes of emission and deposition within the foliage-soil system were taken into account by relating the net canopy-scale NH3 flux to the net emission potential of the canopy (i.e., foliage and soil). Ammonia air concentrations were measured using ALPHA passive samplers (Center for Ecology and Hydrology, Edinburgh) along transects to the north and northeast of the poultry facility at distances of 800, 2000 and 3200 m, respectively. Samplers were deployed in duplicate at each location at a height of 5.8 m from July 2008 to July 2010 weekly during warm months and bi-weekly curing

  8. Alveolar ventilation to perfusion heterogeneity and diffusion impairment in a mathematical model of gas exchange

    Science.gov (United States)

    Vidal Melo, M. F.; Loeppky, J. A.; Caprihan, A.; Luft, U. C.

    1993-01-01

    This study describes a two-compartment model of pulmonary gas exchange in which alveolar ventilation to perfusion (VA/Q) heterogeneity and impairment of pulmonary diffusing capacity (D) are simultaneously taken into account. The mathematical model uses as input data measurements usually obtained in the lung function laboratory. It consists of two compartments and an anatomical shunt. Each compartment receives fractions of alveolar ventilation and blood flow. Mass balance equations and integration of Fick's law of diffusion are used to compute alveolar and blood O2 and CO2 values compatible with input O2 uptake and CO2 elimination. Two applications are presented. The first is a method to partition O2 and CO2 alveolar-arterial gradients into VA/Q and D components. The technique is evaluated in data of patients with chronic obstructive pulmonary disease (COPD). The second is a theoretical analysis of the effects of blood flow variation in alveolar and blood O2 partial pressures. The results show the importance of simultaneous consideration of D to estimate VA/Q heterogeneity in patients with diffusion impairment. This factor plays an increasing role in gas alveolar-arterial gradients as severity of COPD increases. Association of VA/Q heterogeneity and D may produce an increase of O2 arterial pressure with decreasing QT which would not be observed if only D were considered. We conclude that the presented computer model is a useful tool for description and interpretation of data from COPD patients and for performing theoretical analysis of variables involved in the gas exchange process.

  9. Assessment of the Draft AIAA S-119 Flight Dynamic Model Exchange Standard

    Science.gov (United States)

    Jackson, E. Bruce; Murri, Daniel G.; Hill, Melissa A.; Jessick, Matthew V.; Penn, John M.; Hasan, David A.; Crues, Edwin Z.; Falck, Robert D.; McCarthy, Thomas G.; Vuong, Nghia; hide

    2011-01-01

    An assessment of a draft AIAA standard for flight dynamics model exchange, ANSI/AIAA S-119-2011, was conducted on behalf of NASA by a team from the NASA Engineering and Safety Center. The assessment included adding the capability of importing standard models into real-time simulation facilities at several NASA Centers as well as into analysis simulation tools. All participants were successful at importing two example models into their respective simulation frameworks by using existing software libraries or by writing new import tools. Deficiencies in the libraries and format documentation were identified and fixed; suggestions for improvements to the standard were provided to the AIAA. An innovative tool to generate C code directly from such a model was developed. Performance of the software libraries compared favorably with compiled code. As a result of this assessment, several NASA Centers can now import standard models directly into their simulations. NASA is considering adopting the now-published S-119 standard as an internal recommended practice.

  10. Kinetic model for the vibrational energy exchange in flowing molecular gas mixtures. Ph.D. Thesis

    Science.gov (United States)

    Offenhaeuser, F.

    1987-01-01

    The present study is concerned with the development of a computational model for the description of the vibrational energy exchange in flowing gas mixtures, taking into account a given number of energy levels for each vibrational degree of freedom. It is possible to select an arbitrary number of energy levels. The presented model uses values in the range from 10 to approximately 40. The distribution of energy with respect to these levels can differ from the equilibrium distribution. The kinetic model developed can be employed for arbitrary gaseous mixtures with an arbitrary number of vibrational degrees of freedom for each type of gas. The application of the model to CO2-H2ON2-O2-He mixtures is discussed. The obtained relations can be utilized in a study of the suitability of radiation-related transitional processes, involving the CO2 molecule, for laser applications. It is found that the computational results provided by the model agree very well with experimental data obtained for a CO2 laser. Possibilities for the activation of a 16-micron and 14-micron laser are considered.

  11. Comparison of heat flux estimations from two turbulent exchange models based on thermal UAV data.

    Science.gov (United States)

    Hoffmann, Helene; Nieto, Hector; Jensen, Rasmus; Friborg, Thomas

    2015-04-01

    Advantages of UAV (Unmanned Aerial Vehicle) data-collection, compared to more traditional data-collections are numerous and already well-discussed (Berni et al., 2009; Laliberte et al., 2011; Turner et al., 2012). However studies investigating the quality and applications of UAV-data are crucial if advantages are to be beneficial for scientific purposes. In this study, thermal data collected over an agricultural site in Denmark have been obtained using a fixed-wing UAV and investigated for the estimation of heat fluxes. Estimation of heat fluxes requires high precision data and careful data processing. Latent, sensible and soil heat fluxes are estimates through two models of the two source energy modelling scheme driven by remotely sensed observations of land surface temperature; the original TSEB (Norman et al., 1995) and the DTD (Norman et al., 2000) which builds on the TSEB. The DTD model accounts for errors arising when deriving radiometric temperatures and can to some extent compensate for the fact that thermal cameras rarely are accurate. The DTD model requires an additional set of remotely sensed data during morning hours of the day at which heat fluxes are to be determined. This makes the DTD model ideal to use when combined with UAV data, because acquisition of data is not limited by fixed time by-passing tracks like satellite images (Guzinski et al., 2013). Based on these data, heat fluxes are computed from the two models and compared with fluxes from an eddy covariance station situated within the same designated agricultural site. This over-all procedure potentially enables an assessment of both the collected thermal UAV-data and of the two turbulent exchange models. Results reveal that both TSEB and DTD models compute heat fluxes from thermal UAV data that is within a very reasonable range and also that estimates from the DTD model is in best agreement with the eddy covariance system.

  12. Modelling, simulation and control of a proton exchange membrane fuel cell (PEMFC) power system

    Energy Technology Data Exchange (ETDEWEB)

    Al-Dabbagh, Ahmad W.; Lu, Lixuan; Mazza, Antonio [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa, ON L1H 7K4 (Canada)

    2010-05-15

    Fuel cell power systems are emerging as promising means of electrical power generation on account of the associated clean electricity generation process, as well as their suitability for use in a wide range of applications. During the design stage, the development of a computer model for simulating the behaviour of a system under development can facilitate the experimentation and testing of that system's performance. Since the electrical power output of a fuel cell stack is seldom at a suitable fixed voltage, conditioning circuits and their associated controllers must be incorporated in the design of the fuel cell power system. This paper presents a MATLAB/Simulink model that simulates the behaviour of a Proton Exchange Membrane Fuel Cell (PEMFC), conditioning circuits and their controllers. The computer modelling of the PEMFC was based on adopted mathematical models that describe the fuel cell's operational voltage, while accounting for the irreversibilities associated with the fuel cell stack. The conditioning circuits that are included in the Simulink model are a DC-DC converter and DC-AC inverter circuits. These circuits are the commonly utilized power electronics circuits for regulating and conditioning the output voltage from a fuel cell stack. The modelling of the circuits is based on relationships that govern the output voltage behaviour with respect to their input voltages, switching duty cycle and efficiency. In addition, this paper describes a Fuzzy Logic Controller (FLC) design that is aimed at regulating the conditioning circuits to provide and maintain suitable electrical power for a wide range of applications. The model presented demonstrates the use of the FLC in conjunction with the PEMFC Simulink model and that it is the basis for more in-depth analytical models. (author)

  13. Thermal modelling of borehole heat exchangers and borehole thermal energy stores; Zur thermischen Modellierung von Erdwaermesonden und Erdsonden-Waermespeichern

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Dan

    2011-07-15

    The thermal use of the underground for heating and cooling applications can be done with borehole heat exchangers. This work deals with the further development of the modelling of thermal transport processes inside and outside the borehole as well as with the application of the further developed models. The combination of high accuracy and short computation time is achieved by the development of three-dimensional thermal resistance and capacity models for borehole heat exchangers. Short transient transport processes can be calculated by the developed model with a considerable higher dynamic and accuracy than with known models from literature. The model is used to evaluate measurement data of a thermal response test by parameter estimation technique with a transient three-dimensional model for the first time. Clear advantages like shortening of the test duration are shown. The developed borehole heat exchanger model is combined with a three-dimensional description of the underground in the Finite-Element-Program FEFLOW. The influence of moving groundwater on borehole heat exchangers and borehole thermal energy stores is then quantified.

  14. Commercial exchanges in B2B Dyads. A new model of decision-making in fast changing markets

    NARCIS (Netherlands)

    Moreno Bragado, Elisa

    2003-01-01

    This dissertation presents a Model of Commercial Exchanges in B2B Dyads. This model explains how buying and selling decisions are made in industrial markets that are subject to continuous change, particularly the market for telecommunication products and services.Buying and selling decision-making

  15. Coupled carbon-water exchange of the Amazon rain forest. I. Model description, parameterization and sensitivity analysis

    NARCIS (Netherlands)

    Simon, E.; Meixner, F.X.; Ganzeveld, L.N.; Kesselmeier, J.

    2005-01-01

    Detailed one-dimensional multilayer biosphere-atmosphere models, also referred to as CANVEG models, are used for more than a decade to describe coupled water-carbon exchange between the terrestrial vegetation and the lower atmosphere. Within the present study, a modified CANVEG scheme is described.

  16. Modeling the effects of temperature and relative humidity on gas exchange of prickly pear cactus (Opuntia spp.) stems

    NARCIS (Netherlands)

    Guevara-Arauza, J.C.; Yahia, E.M.; Cedeno, L.; Tijskens, L.M.M.

    2006-01-01

    A model to estimate gas profile of modified atmosphere packaged (MAP) prickly pear cactus stems was developed and calibrated. The model describes the transient gas exchange taking in consideration the effect of temperature (T) and relative humidity (RH) on film permeability (FPgas), respiration rate

  17. A three-dimensional model for analyzing the effects of salmon redds on hyporheic exchange and egg pocket habitat

    Science.gov (United States)

    Daniele Tonina; John M. Buffington

    2009-01-01

    A three-dimensional fluid dynamics model is developed to capture the spatial complexity of the effects of salmon redds on channel hydraulics, hyporheic exchange, and egg pocket habitat. We use the model to partition the relative influences of redd topography versus altered hydraulic conductivity (winnowing of fines during spawning) on egg pocket conditions for a...

  18. Monte Carlo Simulation Of The Portfolio-Balance Model Of Exchange Rates: Finite Sample Properties Of The GMM Estimator

    OpenAIRE

    Hong-Ghi Min

    2011-01-01

    Using Monte Carlo simulation of the Portfolio-balance model of the exchange rates, we report finite sample properties of the GMM estimator for testing over-identifying restrictions in the simultaneous equations model. F-form of Sargans statistic performs better than its chi-squared form while Hansens GMM statistic has the smallest bias.

  19. Comparative Analysis To Determine Predictive Model Accuracy : A dynamic currency exchange rate predictive model development using SAP HANA Predictive Analytic Library (PAL) algorithm

    OpenAIRE

    Oke, Mudiaga

    2014-01-01

    The present thesis describes the development and implementation of a dynamic currency exchange rate predictive model. The aim of the thesis was to measure and determine the accuracy of a dynamic currency exchange rate predictive model by analysing different historical data samples. The theoretical framework of the thesis focused on research into different disciplines related to predicted analytics and the different data mining algorithms. The study was carried out using quantitative data ...

  20. Modelling shelf-ocean exchange and its biogeochemical consequences in coastal upwelling systems

    DEFF Research Database (Denmark)

    Muchamad, Al Azhar

    The biogeochemical cycles of organic carbon, nutrients, oxygen, and sulfur in the oceans have been suggested to dominantly occur across the shelf–ocean transition over the continental margin, although this zone represents only a small percentage of the global ocean area. Coastal upwelling zones...... in eastern boundary upwelling systems is an example of the most productive ocean waters over continental margins where intense supply of nutrients occur from deeper ocean waters. Interesting questions arise related to the biogeochemical cycles in such upwelling systems; such as 1) how the recently observed...... these questions centering on shelf–ocean exchange and biogeochemical cycle in the coastal upwelling systems under oxic and anoxic conditions. Firstly, I developed a new biogeochemical model which resolves coupling between cycles of the elements nitrogen, oxygen, phosphate, and sulfur by considering several key...

  1. Selected aspects of modelling of foreign exchange rates with neural networks

    Directory of Open Access Journals (Sweden)

    Václav Mastný

    2005-01-01

    Full Text Available This paper deals with forecasting of the high-frequency foreign exchange market with neural networks. The objective is to investigate some aspects of modelling with neural networks (impact of topology, size of training set and time horizon of the forecast on the performance of the network. The data used for the purpose of this paper contain 15-minute time series of US dollar against other major currencies, Japanese Yen, British Pound and Euro. The results show, that performance of the network in terms of correct directorial change is negatively influenced by increasing number of hidden neurons and decreasing size of training set. The performance of the network is influenced by sampling frequency.

  2. Down-Hole Heat Exchangers: Modelling of a Low-Enthalpy Geothermal System for District Heating

    Directory of Open Access Journals (Sweden)

    M. Carlini

    2012-01-01

    Full Text Available In order to face the growing energy demands, renewable energy sources can provide an alternative to fossil fuels. Thus, low-enthalpy geothermal plants may play a fundamental role in those areas—such as the Province of Viterbo—where shallow groundwater basins occur and conventional geothermal plants cannot be developed. This may lead to being fuelled by locally available sources. The aim of the present paper is to exploit the heat coming from a low-enthalpy geothermal system. The experimental plant consists in a down-hole heat exchanger for civil purposes and can supply thermal needs by district heating. An implementation in MATLAB environment is provided in order to develop a mathematical model. As a consequence, the amount of withdrawable heat can be successfully calculated.

  3. Intrachromosomal exchange aberrations predicted on the basis of globular interphase chromosome model

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, S.G.; Eidelman, Yu.A

    2002-07-01

    One of the key questions in understanding mechanisms of chromosome aberration production is how does interphase chromosome structure affect aberration formation. To explore this a modelling approach is presented which combines Monte Carlo simulation of both a particle track and interphase chromosome structure. The structural state of interphase chromosome influences a dose-effect relationship for intrachromosomal exchange aberrations (intrachanges). It is shown that intrachanges are induced frequently by both X rays and a particles if the chromosome is in the condensed globular but not in the decondensed coiled state. Truly simple intra-arm intrachanges induced by X rays are dose squared in coiled chromosomes, but exhibit linear dose dependence in globular chromosomes. Experimental data on interarm intrachanges obtained by dual arm chromosome painting are analysed by means of the technique presented. Results of analysis support the conclusion about the arms proximity of chromosome 1 in human lymphocytes. (author)

  4. Ferromagnetic polarons in the one-dimensional double and super-exchange model

    Energy Technology Data Exchange (ETDEWEB)

    Vallejo, E. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-360, 04510 Mexico D.F. (Mexico)], E-mail: emapion@yahoo.com; Lopez-Urias, F. [Advanced Materials Department, IPICYT, Camino a la Presa San Jose 2055, Lomas 4a. seccion, 78216 San Luis Potosi, S.L.P. (Mexico); Navarro, O. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-360, 04510 Mexico D.F. (Mexico); Avignon, M. [Institut Neel-Centre National de la Recherche Scientifique (CNRS) and Universite Joseph Fourier, BP 166, 38042 Grenoble Cedex 9 (France)

    2008-07-15

    We present an analytical and numerical study of the competition between double and super-exchange (SE) interactions with classical localized spins interacting with itinerant electrons in a one-dimensional (1D) model. A phase separation between ferromagnetic (F) and anti-ferromagnetic (AF) phases was found at low SE interaction energy. The F-AF phase separation consists of a large F polaron within an AF background. For large SE interaction energy, the conduction electrons are self-trapped within separate small magnetic polarons. These magnetic polarons contain a single electron inside two or three sites forming a Wigner crystal. A new phase separation is found between these small polarons and the AF phase.

  5. Two-component mixture model: Application to palm oil and exchange rate

    Science.gov (United States)

    Phoong, Seuk-Yen; Ismail, Mohd Tahir; Hamzah, Firdaus Mohamad

    2014-12-01

    Palm oil is a seed crop which is widely adopt for food and non-food products such as cookie, vegetable oil, cosmetics, household products and others. Palm oil is majority growth in Malaysia and Indonesia. However, the demand for palm oil is getting growth and rapidly running out over the years. This phenomenal cause illegal logging of trees and destroy the natural habitat. Hence, the present paper investigates the relationship between exchange rate and palm oil price in Malaysia by using Maximum Likelihood Estimation via Newton-Raphson algorithm to fit a two components mixture model. Besides, this paper proposes a mixture of normal distribution to accommodate with asymmetry characteristics and platykurtic time series data.

  6. Risk Forecasting of Karachi Stock Exchange: A Comparison of Classical and Bayesian GARCH Models

    Directory of Open Access Journals (Sweden)

    Farhat Iqbal

    2016-09-01

    Full Text Available This paper is concerned with the estimation, forecasting and evaluation of Value-at-Risk (VaR of Karachi Stock Exchange before and after the global financial crisis of 2008 using Bayesian method. The generalized autoregressive conditional heteroscedastic (GARCH models under the assumption of normal and heavy-tailed errors are used to forecast one-day-ahead risk estimates. Various measures and backtesting methods are employed to evaluate VaR forecasts. The observed number of VaR violations using Bayesian method is found close to the expected number of violations. The losses are also found smaller than the competing Maximum Likelihood method. The results showed that the Bayesian method produce accurate and reliable VaR forecasts and can be preferred over other methods. 

  7. Modeling and simulation of the dynamic behavior of portable proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ziegler, C.

    2005-07-01

    In order to analyze the operational behavior, a mathematical model of planar self-breathing fuel cells is developed and validated in Chapter 3 of this thesis. The multicomponent transport of the species is considered as well as the couplings between the transport processes of heat, charge, and mass and the electrochemical reactions. Furthermore, to explain the oxygen mass transport limitation in the porous electrode of the cathode side an agglomerate model for the oxygen reduction reaction is developed. In Chapter 4 the important issue of liquid water generation and transport in PEMFCs is addressed. One of the major tasks when operating this type of fuel cell is avoiding the complete flooding of the PEMFC during operation. A one-dimensional and isothermal model is developed that is based on a coupled system of partial differential equations. The model contains a dynamic and two-phase description of the proton exchange membrane fuel cell. The mass transport in the gas phase and in the liquid phase is considered as well as the phase transition between liquid water and water vapor. The transport of charges and the electrochemical reactions are part of the model. Flooding effects that are caused by liquid water accumulation are described by this model. Moreover, the model contains a time-dependent description of the membrane that accounts for Schroeder's paradox. The model is applied to simulate cyclic voltammograms. Chapter 5 is focused on the dynamic investigation of PEMFC stacks. Understanding the dynamic behavior of fuel cell stacks is important for the operation and control of fuel cell stacks. Using the single cell model of Chapter 3 and the dynamic model of Chapter 4 as basis, a mathematical model of a PEMFC stack is developed. However, due to the complexity of a fuel cell stack, the spatial resolution and dynamic description of the liquid water transport are not accounted for. These restrictions allow for direct comparison between the solution variables of

  8. A mechanistic model of ion-exchange chromatography on polymer fiber stationary phases.

    Science.gov (United States)

    Winderl, Johannes; Hahn, Tobias; Hubbuch, Jürgen

    2016-12-02

    Fibers are prominent among novel stationary phase supports for preparative chromatography. Several recent studies have highlighted the potential of fiber-based adsorbents for high productivity downstream processing in both batch and continuous mode, but so far the development of these materials and of processes employing these materials has solely been based on experimental data. In this study we assessed whether mechanistic modeling can be performed on fiber-based adsorbents. With a column randomly filled with short cut hydrogel grafted anion exchange fibers, we tested whether tracer, linear gradient elution, and breakthrough data could be reproduced by mechanistic models. Successful modeling was achieved for all of the considered experiments, for both non-retained and retained molecules. For the fibers used in this study the best results were obtained with a transport-dispersive model in combination with a steric mass action isotherm. This approach accurately accounted for the convection and dispersion of non-retained tracers, and the breakthrough and elution behaviors of three different proteins with sizes ranging from 6 to 160kDa were accurately modeled, with simulation results closely resembling the experimental data. The estimated model parameters were plausible both from their physical meaning, and from an analysis of the underlying model assumptions. Parameters were determined within good confidence levels; the average confidence estimate was below 7% for confidence levels of 95%. This shows that fiber-based adsorbents can be modeled mechanistically, which will be valuable for the future design and evaluation of these novel materials and for the development of processes employing such materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Performance testing of the AST-50O model of district heating network heat exchanger with 08Cr14 steel tubes

    Energy Technology Data Exchange (ETDEWEB)

    Afanas' ev, A.A.; Borisov, V.P.; Grebennikov, V.N.; Dolinin, E.L.; Krutikov, P.G.; Shishkunov, V.A.; Stogov, V.I.

    1984-02-01

    Test results of network heat exchanger model of a nuclear boiler plant AST-500 with a tube part of 08Kh14MF ferritic-martensitic steel are presented. The model presents a one-through counterflow water-water heat-exchanger. The model was connected to the district heating network where it operated for 5000 hr at pH=7.3 and at the temperature 70-90 deg C. Rolled joints ''tube-tube sheet'' did not have traces of contact corrosion, gradual corrosion of 08Kh14MF steel did not exceed 0 003 mm/year, which ensured normal working capacity of heat-exchanger equipment for the planned 30 years.

  10. Model of Heat Exchangers for Waste Heat Recovery from Diesel Engine Exhaust for Thermoelectric Power Generation

    Science.gov (United States)

    Baker, Chad; Vuppuluri, Prem; Shi, Li; Hall, Matthew

    2012-06-01

    The performance and operating characteristics of a hypothetical thermoelectric generator system designed to extract waste heat from the exhaust of a medium-duty turbocharged diesel engine were modeled. The finite-difference model consisted of two integrated submodels: a heat exchanger model and a thermoelectric device model. The heat exchanger model specified a rectangular cross-sectional geometry with liquid coolant on the cold side, and accounted for the difference between the heat transfer rate from the exhaust and that to the coolant. With the spatial variation of the thermoelectric properties accounted for, the thermoelectric device model calculated the hot-side and cold-side heat flux for the temperature boundary conditions given for the thermoelectric elements, iterating until temperature and heat flux boundary conditions satisfied the convection conditions for both exhaust and coolant, and heat transfer in the thermoelectric device. A downhill simplex method was used to optimize the parameters that affected the electrical power output, including the thermoelectric leg height, thermoelectric n-type to p-type leg area ratio, thermoelectric leg area to void area ratio, load electrical resistance, exhaust duct height, coolant duct height, fin spacing in the exhaust duct, location in the engine exhaust system, and number of flow paths within the constrained package volume. The calculation results showed that the configuration with 32 straight fins was optimal across the 30-cm-wide duct for the case of a single duct with total height of 5.5 cm. In addition, three counterflow parallel ducts or flow paths were found to be an optimum number for the given size constraint of 5.5 cm total height, and parallel ducts with counterflow were a better configuration than serpentine flow. Based on the reported thermoelectric properties of MnSi1.75 and Mg2Si0.5Sn0.5, the maximum net electrical power achieved for the three parallel flow paths in a counterflow arrangement was 1

  11. A system dynamics evaluation model: implementation of health information exchange for public health reporting.

    Science.gov (United States)

    Merrill, Jacqueline A; Deegan, Michael; Wilson, Rosalind V; Kaushal, Rainu; Fredericks, Kimberly

    2013-06-01

    To evaluate the complex dynamics involved in implementing electronic health information exchange (HIE) for public health reporting at a state health department, and to identify policy implications to inform similar implementations. Qualitative data were collected over 8 months from seven experts at New York State Department of Health who implemented web services and protocols for querying, receipt, and validation of electronic data supplied by regional health information organizations. Extensive project documentation was also collected. During group meetings experts described the implementation process and created reference modes and causal diagrams that the evaluation team used to build a preliminary model. System dynamics modeling techniques were applied iteratively to build causal loop diagrams representing the implementation. The diagrams were validated iteratively by individual experts followed by group review online, and through confirmatory review of documents and artifacts. Three casual loop diagrams captured well-recognized system dynamics: Sliding Goals, Project Rework, and Maturity of Resources. The findings were associated with specific policies that address funding, leadership, ensuring expertise, planning for rework, communication, and timeline management. This evaluation illustrates the value of a qualitative approach to system dynamics modeling. As a tool for strategic thinking on complicated and intense processes, qualitative models can be produced with fewer resources than a full simulation, yet still provide insights that are timely and relevant. System dynamics techniques clarified endogenous and exogenous factors at play in a highly complex technology implementation, which may inform other states engaged in implementing HIE supported by federal Health Information Technology for Economic and Clinical Health (HITECH) legislation.

  12. Modelling Groundwater-Surface water Exchange and its Implications on Groundwater Quality

    Science.gov (United States)

    Maier, Uli; Wiesner, Victoria; Trauth, Nico; Musolff, Andreas; Fleckenstein, Jan

    2014-05-01

    Hydrogeochemical interactions are still posing a significant challenge for the assessment of water quality at the catchment scale. Numerical modelling of water quality is still restricted by computer power and parameter uncertainty at larger scales and is demanding further research regarding the influence of surface water on groundwater resources. The Selke river is a tributary to the larger Bode river in the surroundings of the Harz mountains in northern Germany. Hydrology and water quality is monitored at a well-equipped field investigation site, which is accompanied by numerical modeling work at different scales. The site consists of approximately two km2 of river, alluvial sediments and gently inclined hillslopes. River stage, water levels and saturation in surface water, unsaturated zone and groundwater were simulated for quasi steady state conditions and a transient, climate-data driven run over the course of a year. Of particular interest are the observed model results for the hotspots of hydraulic and geochemical interaction, between the river, its alluvial plain and the hyporheic zone. Model results will be used to guide the further instrumentation of the field investigation. Such hotspots of interaction between environmental compartments are discussed, as well as travel time distributions from particle tracking and dispersive approaches. Groundwater nitrate contamination and its removal potential will be linked to the water exchange behavior.

  13. Contact behavior modelling and its size effect on proton exchange membrane fuel cell

    Science.gov (United States)

    Qiu, Diankai; Peng, Linfa; Yi, Peiyun; Lai, Xinmin; Janßen, Holger; Lehnert, Werner

    2017-10-01

    Contact behavior between the gas diffusion layer (GDL) and bipolar plate (BPP) is of significant importance for proton exchange membrane fuel cells. Most current studies on contact behavior utilize experiments and finite element modelling and focus on fuel cells with graphite BPPs, which lead to high costs and huge computational requirements. The objective of this work is to build a more effective analytical method for contact behavior in fuel cells and investigate the size effect resulting from configuration alteration of channel and rib (channel/rib). Firstly, a mathematical description of channel/rib geometry is outlined in accordance with the fabrication of metallic BPP. Based on the interface deformation characteristic and Winkler surface model, contact pressure between BPP and GDL is then calculated to predict contact resistance and GDL porosity as evaluative parameters of contact behavior. Then, experiments on BPP fabrication and contact resistance measurement are conducted to validate the model. The measured results demonstrate an obvious dependence on channel/rib size. Feasibility of the model used in graphite fuel cells is also discussed. Finally, size factor is proposed for evaluating the rule of size effect. Significant increase occurs in contact resistance and porosity for higher size factor, in which channel/rib width decrease.

  14. First-principles modeling of fluid and solute exchange in the human during normal and hemodialysis conditions.

    Science.gov (United States)

    Fernandez de Canete, J; Del Saz Huang, P

    2010-09-01

    A first-principles computer model of fluid and solute exchange under both physiological and hemodialysis condition is presented. The whole system has been modeled and simulated under the MODELICA integrated environment, which uses a hierarchical modeling strategy. The model performance has been analyzed by simulation in the light of existing hypothesis and physiological data used here for validation purposes. The results obtained provide a physiological interpretative key to patient's hemodynamic behavior during hemodialysis. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Mechanistic modeling of ion-exchange process chromatography of charge variants of monoclonal antibody products.

    Science.gov (United States)

    Kumar, Vijesh; Leweke, Samuel; von Lieres, Eric; Rathore, Anurag S

    2015-12-24

    Ion-exchange chromatography (IEX) is universally accepted as the optimal method for achieving process scale separation of charge variants of a monoclonal antibody (mAb) therapeutic. These variants are closely related to the product and a baseline separation is rarely achieved. The general practice is to fractionate the eluate from the IEX column, analyze the fractions and then pool the desired fractions to obtain the targeted composition of variants. This is, however, a very cumbersome and time consuming exercise. A mechanistic model that is capable of simulating the peak profile will be a much more elegant and effective way to make a decision on the pooling strategy. This paper proposes a mechanistic model, based on the general rate model, to predict elution peak profile for separation of the main product from its variants. The proposed approach uses inverse fit of process scale chromatogram for estimation of model parameters using the initial values that are obtained from theoretical correlations. The packed bed column has been modeled along with the chromatographic system consisting of the mixer, tubing and detectors as a series of dispersed plug flow and continuous stirred tank reactors. The model uses loading ranges starting at 25% to a maximum of 70% of the loading capacity and hence is applicable to process scale separations. Langmuir model has been extended to include the effects of salt concentration and temperature on the model parameters. The extended Langmuir model that has been proposed uses one less parameter than the SMA model and this results in a significant ease of estimating the model parameters from inverse fitting. The proposed model has been validated with experimental data and has been shown to successfully predict peak profile for a range of load capacities (15-28mg/mL), gradient lengths (10-30CV), bed heights (6-20cm), and for three different resins with good accuracy (as measured by estimation of residuals). The model has been also

  16. Modelling of the Water Exchange between Shallow Groundwater and River during bank filtration and changing conditions

    Science.gov (United States)

    Wang, Weishi; Munz, Matthias; Oswald, Sascha E.

    2015-04-01

    The interaction of river water and groundwater is of importance for the hydrological cycle and water quality in rivers. Moreover, drinking water is often obtained by pumping groundwater in the direct vicinity of rivers, called bank filtration. Typically this implies a considerable dynamics, because changes in river water level and pumping activities will cause varying conditions, and in its effects modified by the local hydrogeology. Numerical modelling can be a tool to study spatial patterns and temporal changes. Often this is limited by model performance, uncertainty of geological structure and lack of sufficient observation values beyond water heads, for example water quality or temperature data. The aim of this research is to model the hydraulic conditions for transient conditions, including a period of substantial re-construction works in the river. Later this will then be used to include the temperature and other water quality data to improve the model performance. As shown from the geological information analysis, the majority of the water volume pumped is from the first and second aquifers, where a strong exchange between the river and groundwater can happen. The implementation of the geological structure is based on 7 main geological profiles and several scattered drilling wells of difference depths. A first model has been built in FEFLOW 6.2 as a steady fluid flow model, while the pilot-points auto-calibration method is used for estimating the hydraulic conductivity of different sediment types, based on water head information of 19 observation wells. Then a transient model during the year 2011-2013 is further calibrated based on estimated hydraulic conductivity. Furthermore, the observation wells are used to make a statistic analysis with the hydrograph of the river to clarify the correlation of changes in river to changes in groundwater.

  17. A preliminary threshold model of parasitism in the Cockle Cerastoderma edule using delayed exchange of stability

    Science.gov (United States)

    O'Grady, E. A.; Culloty, S. C.; Kelly, T. C.; O'Callaghan, M. J. A.; Rachinskii, D.

    2015-02-01

    Thresholds occur, and play an important role, in the dynamics of many biological communities. In this paper, we model a persistence type threshold which has been shown experimentally to exist in hyperparasitised flukes in the cockle, a shellfish. Our model consists of a periodically driven slow-fast host-parasite system of equations for a slow flukes population (host) and a fast Unikaryon hyperparasite population (parasite). The model exhibits two branches of the critical curve crossing in a transcritical bifurcation scenario. We discuss two thresholds due to immediate and delayed exchange of stability effects; and we derive algebraic relationships for parameters of the periodic solution in the limit of the infinite ratio of the time scales. Flukes, which are the host species in our model, parasitise cockles and in turn are hyperparasitised by the microsporidian Unikaryon legeri; the life cycle of flukes includes several life stages and a number of different hosts. That is, the flukes-hyperparasite system in a cockle is, naturally, part of a larger estuarine ecosystem of interacting species involving parasites, shellfish and birds which prey on shellfish. A population dynamics model which accounts for one system of such multi-species interactions and includes the fluke-hyperparasite model in a cockle as a subsystem is presented. We provide evidence that the threshold effect we observed in the flukes-hyperparasite subsystem remains apparent in the multi-species system. Assuming that flukes damage cockles, and taking into account that the hyperparasite is detrimental to flukes, it is natural to suggest that the hyperparasitism may support the abundance of cockles and, thereby, the persistence of the estuarine ecosystem, including shellfish and birds. We confirm the possibility of the existence of this scenario in our model, at least partially, by removing the hyperparasite and demonstrating that this may result in a substantial drop in cockle numbers. The result

  18. Seasonal and interannual variability of the water exchange in the Turkish Straits System estimated by modelling

    Directory of Open Access Journals (Sweden)

    V. MADERICH

    2015-07-01

    Full Text Available A chain of simple linked models is used to simulate the seasonal and interannual variability of the Turkish Straits System. This chain includes two-layer hydraulic models of the Bosphorus and Dardanelles straits simulating the exchange in terms of level and density difference along each strait, and a one-dimensional area averaged layered model of the Marmara Sea. The chain of models is complemented also by the similar layered model of the Black Sea proper and by a one-layer Azov Sea model with the Kerch Strait. This linked chain of models is used to study the seasonal and interannual variability of the system in the period 1970-2009. The salinity of the Black Sea water flowing into the Aegean Sea increases by approximately 1.7 times through entrainment from the lower layer. The flow entering into the lower layer of the Dardanelles Strait from the Aegean Sea is reduced by nearly 80% when it reaches the Black Sea. In the seasonal scale, a maximal transport in the upper layer and minimal transport in the bottom layer are during winter/spring for the Bosphorus and in spring for the Dardanelles Strait, whereas minimal transport in upper layer and maximal undercurrent are during the summer for the Bosphorus Strait and autumn for the Dardanelles Strait. The increase of freshwater flux into the Black Sea in interannual time scales (41 m3s-1 per year is accompanied by a more than twofold growth of the Dardanelles outflow to the North Aegean (102 m3s-1 per year.

  19. Application of artificial neural network models and principal component analysis method in predicting stock prices on Tehran Stock Exchange

    Science.gov (United States)

    Zahedi, Javad; Rounaghi, Mohammad Mahdi

    2015-11-01

    Stock price changes are receiving the increasing attention of investors, especially those who have long-term aims. The present study intends to assess the predictability of prices on Tehran Stock Exchange through the application of artificial neural network models and principal component analysis method and using 20 accounting variables. Finally, goodness of fit for principal component analysis has been determined through real values, and the effective factors in Tehran Stock Exchange prices have been accurately predicted and modeled in the form of a new pattern consisting of all variables.

  20. A soft-core Gay-Berne model for the simulation of liquid crystals by Hamiltonian replica exchange.

    Science.gov (United States)

    Berardi, Roberto; Zannoni, Claudio; Lintuvuori, Juho S; Wilson, Mark R

    2009-11-07

    The Gay-Berne (GB) potential has proved highly successful in the simulation of liquid crystal phases, although it is fairly demanding in terms of resources for simulations of large (e.g., N>10(5)) systems, as increasingly required in applications. Here, we introduce a soft-core GB model, which exhibits both liquid crystal phase behavior and rapid equilibration. We show that the Hamiltonian replica exchange method, coupled with the newly introduced soft-core GB model, can effectively speed up the equilibration of a GB liquid crystal phase by frequent exchange of configurations between replicas, while still recovering the mesogenic properties of the standard GB potential.

  1. Optimization of Heat Exchangers with Dimpled Surfaces to Improve the Performance in Thermoelectric Generators Using a Kriging Model

    Science.gov (United States)

    Li, Shuai; Wang, Yiping; Wang, Tao; Yang, Xue; Deng, Yadong; Su, Chuqi

    2017-05-01

    Thermoelectric generators (TEGs) have become a topic of interest for vehicle exhaust energy recovery. Electrical power generation is deeply influenced by temperature differences, temperature uniformity and topological structures of TEGs. When the dimpled surfaces are adopted in heat exchangers, the heat transfer rates can be augmented with a minimal pressure drop. However, the temperature distribution shows a large gradient along the flow direction which has adverse effects on the power generation. In the current study, the heat exchanger performance was studied in a computational fluid dynamics (CFD) model. The dimple depth, dimple print diameter, and channel height were chosen as design variables. The objective function was defined as a combination of average temperature, temperature uniformity and pressure loss. The optimal Latin hypercube method was used to determine the experiment points as a method of design of the experiment in order to analyze the sensitivity of the design variables. A Kriging surrogate model was built and verified according to the database resulting from the CFD simulation. A multi-island genetic algorithm was used to optimize the structure in the heat exchanger based on the surrogate model. The results showed that the average temperature of the heat exchanger was most sensitive to the dimple depth. The pressure loss and temperature uniformity were most sensitive to the parameter of channel rear height, h 2. With an optimal design of channel structure, the temperature uniformity can be greatly improved compared with the initial exchanger, and the additional pressure loss also increased.

  2. The Prediction of Exchange Rates with the Use of Auto-Regressive Integrated Moving-Average Models

    Directory of Open Access Journals (Sweden)

    Daniela Spiesová

    2014-10-01

    Full Text Available Currency market is recently the largest world market during the existence of which there have been many theories regarding the prediction of the development of exchange rates based on macroeconomic, microeconomic, statistic and other models. The aim of this paper is to identify the adequate model for the prediction of non-stationary time series of exchange rates and then use this model to predict the trend of the development of European currencies against Euro. The uniqueness of this paper is in the fact that there are many expert studies dealing with the prediction of the currency pairs rates of the American dollar with other currency but there is only a limited number of scientific studies concerned with the long-term prediction of European currencies with the help of the integrated ARMA models even though the development of exchange rates has a crucial impact on all levels of economy and its prediction is an important indicator for individual countries, banks, companies and businessmen as well as for investors. The results of this study confirm that to predict the conditional variance and then to estimate the future values of exchange rates, it is adequate to use the ARIMA (1,1,1 model without constant, or ARIMA [(1,7,1,(1,7] model, where in the long-term, the square root of the conditional variance inclines towards stable value.

  3. Modelling of Split Condenser Heat Pump with Limited Set of Plate Heat Exchanger Dimensions

    DEFF Research Database (Denmark)

    Christensen, Stefan Wuust; Elmegaard, Brian; Markussen, Wiebke Brix

    2017-01-01

    in parallel to different temperature levels, whereas only one stream is heated in a THP. The length/width ratio of the plate heat exchangers on the high pressure side of a SCHP was investigated to find the optimal plate dimensions with respect to minimum area of the heat exchangers. The total heat exchanger...... area was found to decrease with an increasing length/width ratio of the plates. The marginal change in heat exchanger area was shown to be less significant for heat exchangers with high length/width ratios. In practice only a limited number of plate dimensions are available and feasible...... in the production. This was investigated to find the practical potential of a SCHP compared to a THP. Using plates optimized for a SCHP in a THP, the total required heat exchanger area increased by approximately 100% for the conditions investigated in this study, indicating that available plate dimensions influence...

  4. Incorporation of crop phenology in Simple Biosphere Model (SiBcrop to improve land-atmosphere carbon exchanges from croplands

    Directory of Open Access Journals (Sweden)

    E. Lokupitiya

    2009-06-01

    Full Text Available Croplands are man-made ecosystems that have high net primary productivity during the growing season of crops, thus impacting carbon and other exchanges with the atmosphere. These exchanges play a major role in nutrient cycling and climate change related issues. An accurate representation of crop phenology and physiology is important in land-atmosphere carbon models being used to predict these exchanges. To better estimate time-varying exchanges of carbon, water, and energy of croplands using the Simple Biosphere (SiB model, we developed crop-specific phenology models and coupled them to SiB. The coupled SiB-phenology model (SiBcrop replaces remotely-sensed NDVI information, on which SiB originally relied for deriving Leaf Area Index (LAI and the fraction of Photosynthetically Active Radiation (fPAR for estimating carbon dynamics. The use of the new phenology scheme within SiB substantially improved the prediction of LAI and carbon fluxes for maize, soybean, and wheat crops, as compared with the observed data at several AmeriFlux eddy covariance flux tower sites in the US mid continent region. SiBcrop better predicted the onset and end of the growing season, harvest, interannual variability associated with crop rotation, day time carbon uptake (especially for maize and day to day variability in carbon exchange. Biomass predicted by SiBcrop had good agreement with the observed biomass at field sites. In the future, we will predict fine resolution regional scale carbon and other exchanges by coupling SiBcrop with RAMS (the Regional Atmospheric Modeling System.

  5. Estimation of Bid Curves in Power Exchanges using Time-varying Simultaneous-Equations Models

    Science.gov (United States)

    Ofuji, Kenta; Yamaguchi, Nobuyuki

    Simultaneous-equations model (SEM) is generally used in economics to estimate interdependent endogenous variables such as price and quantity in a competitive, equilibrium market. In this paper, we have attempted to apply SEM to JEPX (Japan Electric Power eXchange) spot market, a single-price auction market, using the publicly available data of selling and buying bid volumes, system price and traded quantity. The aim of this analysis is to understand the magnitude of influences to the auctioned prices and quantity from the selling and buying bids, than to forecast prices and quantity for risk management purposes. In comparison with the Ordinary Least Squares (OLS) estimation where the estimation results represent average values that are independent of time, we employ a time-varying simultaneous-equations model (TV-SEM) to capture structural changes inherent in those influences, using State Space models with Kalman filter stepwise estimation. The results showed that the buying bid volumes has that highest magnitude of influences among the factors considered, exhibiting time-dependent changes, ranging as broad as about 240% of its average. The slope of the supply curve also varies across time, implying the elastic property of the supply commodity, while the demand curve remains comparatively inelastic and stable over time.

  6. Development of an informatics infrastructure for data exchange of biomolecular simulations: Architecture, data models and ontology.

    Science.gov (United States)

    Thibault, J C; Roe, D R; Eilbeck, K; Cheatham, T E; Facelli, J C

    2015-01-01

    Biomolecular simulations aim to simulate structure, dynamics, interactions, and energetics of complex biomolecular systems. With the recent advances in hardware, it is now possible to use more complex and accurate models, but also reach time scales that are biologically significant. Molecular simulations have become a standard tool for toxicology and pharmacology research, but organizing and sharing data - both within the same organization and among different ones - remains a substantial challenge. In this paper we review our recent work leading to the development of a comprehensive informatics infrastructure to facilitate the organization and exchange of biomolecular simulations data. Our efforts include the design of data models and dictionary tools that allow the standardization of the metadata used to describe the biomedical simulations, the development of a thesaurus and ontology for computational reasoning when searching for biomolecular simulations in distributed environments, and the development of systems based on these models to manage and share the data at a large scale (iBIOMES), and within smaller groups of researchers at laboratory scale (iBIOMES Lite), that take advantage of the standardization of the meta data used to describe biomolecular simulations.

  7. An analytical model and parametric study of electrical contact resistance in proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zhiliang; Wang, Shuxin; Zhang, Lianhong [School of Mechanical Engineering, Tianjin University, Tianjin 300072 (China); Hu, S. Jack [Department of Mechanical Engineering, The University of Michigan, Ann Arbor, MI 48109-2125 (United States)

    2009-04-15

    This paper presents an analytical model of the electrical contact resistance between the carbon paper gas diffusion layers (GDLs) and the graphite bipolar plates (BPPs) in a proton exchange membrane (PEM) fuel cell. The model is developed based on the classical statistical contact theory for a PEM fuel cell, using the same probability distributions of the GDL structure and BPP surface profile as previously described in Wu et al. [Z. Wu, Y. Zhou, G. Lin, S. Wang, S.J. Hu, J. Power Sources 182 (2008) 265-269] and Zhou et al. [Y. Zhou, G. Lin, A.J. Shih, S.J. Hu, J. Power Sources 163 (2007) 777-783]. Results show that estimates of the contact resistance compare favorably with experimental data by Zhou et al. [Y. Zhou, G. Lin, A.J. Shih, S.J. Hu, J. Power Sources 163 (2007) 777-783]. Factors affecting the contact behavior are systematically studied using the analytical model, including the material properties of the two contact bodies and factors arising from the manufacturing processes. The transverse Young's modulus of chopped carbon fibers in the GDL and the surface profile of the BPP are found to be significant to the contact resistance. The factor study also sheds light on the manufacturing requirements of carbon fiber GDLs for a better contact performance in PEM fuel cells. (author)

  8. An analytical model and parametric study of electrical contact resistance in proton exchange membrane fuel cells

    Science.gov (United States)

    Wu, Zhiliang; Wang, Shuxin; Zhang, Lianhong; Hu, S. Jack

    This paper presents an analytical model of the electrical contact resistance between the carbon paper gas diffusion layers (GDLs) and the graphite bipolar plates (BPPs) in a proton exchange membrane (PEM) fuel cell. The model is developed based on the classical statistical contact theory for a PEM fuel cell, using the same probability distributions of the GDL structure and BPP surface profile as previously described in Wu et al. [Z. Wu, Y. Zhou, G. Lin, S. Wang, S.J. Hu, J. Power Sources 182 (2008) 265-269] and Zhou et al. [Y. Zhou, G. Lin, A.J. Shih, S.J. Hu, J. Power Sources 163 (2007) 777-783]. Results show that estimates of the contact resistance compare favorably with experimental data by Zhou et al. [Y. Zhou, G. Lin, A.J. Shih, S.J. Hu, J. Power Sources 163 (2007) 777-783]. Factors affecting the contact behavior are systematically studied using the analytical model, including the material properties of the two contact bodies and factors arising from the manufacturing processes. The transverse Young's modulus of chopped carbon fibers in the GDL and the surface profile of the BPP are found to be significant to the contact resistance. The factor study also sheds light on the manufacturing requirements of carbon fiber GDLs for a better contact performance in PEM fuel cells.

  9. Estimating net ecosystem exchange of carbon using the normalized difference vegetation index and an ecosystem model

    Energy Technology Data Exchange (ETDEWEB)

    Veroustraete, F.; Patyn, J. [Flemish Inst. for Technological Research, Boeretang (Belgium); Myneni, R.B.

    1996-10-01

    The evaluation and prediction of changes in carbon dynamics at the ecosystem level is a key issue in studies of global change. An operational concept for the determination of carbon fluxes for the Belgian territory is the goal of the presented study. The approach is based on the integration of remotely sensed data into ecosystem models in order to evaluate photosynthetic assimilation and net ecosystem exchange (NEE). Remote sensing can be developed as an operational tool to determine the fraction of absorbed photosynthetically active radiation (fPAR). A review of the methodological approach of mapping fPAR dynamics at the regional scale by means of NOAA11-AVHRR/2 data for the year 1990 is given. The processing sequence from raw radiance values to fPAR is presented. An interesting aspect of incorporating remote sensing derived fPAR in ecosystem models is the potential for modeling actual as opposed to potential vegetation. Further work should prove whether the concepts presented and the assumptions made in this study are valid.

  10. IMPLEMENTASI SINGLE MINUTE EXCHANGE OF DIES (SMED UNTUK OPTIMASI WAKTU CHANGEOVER MODEL PADA PRODUKSI PANEL TELEKOMUNIKASI

    Directory of Open Access Journals (Sweden)

    Ahmad Mulyana

    2017-06-01

    Full Text Available Sebagai salah satu perusahaan pembuat panel telekomunikasi dan panel elektrik, PT. Cometal dihadapkan pada tantangan waktu delivery yang kompetitif.  Permasalahannya perusahaan masih mengalami keterlambatan pengiriman produk ke konsumen akibat lamanya waktu changeover model yang menyebabkan downtime mesin punching pada proses produksi panel telekomunikasi. Untuk mengurangi lead time maka perlu diupayakan minimasi waste pada changeover model di mesin punching.  Tujuan penelitian ini adalah mengidentifikasi faktor penyebab tingginya waktu changeover model pada mesin punching dan melakukan improvement dengan metode SMED (single minute exchange of dies.  Penerapan metode SMED dilakukan dengan mengotimalkan aktifitas eksternal pada produksi panel telekomunikasi melalui koordinasi kegiatan Pengamatan dilakukan selama 30 hari menggunakan studi waktu sebelum dan sesudah implementasi SMED.  Penerapan konsep SMED dilakukan dengan  mengubah 15 aktifitas internal menjadi 5 aktifitas internal dan merekayasa alat bantu gauge tool untuk mengurangi downtime mesin.  Improvement yang diperoleh adalah berkurangnya waktu downtime mesin punching dari 44,90 jam menjadi 10,96 jam atau terjadi penurunan waktu setup sebesar 75, 59 persen.

  11. Mathematical model of heat-mass exchange processes in a flat solar collector SUN 1

    Directory of Open Access Journals (Sweden)

    Tunik Aleksandr Aleksandrovich

    2016-01-01

    Full Text Available In a flat solar collector SUN 1 The active development of environmental friendly energy sources alternative to HPPs is currently of great importance in the world. Such alternative energy sources are: water, ground, sun, wind, biofuel, etc. If we have a look at the atlas of solar energy resources on the territory of Russia, we can make a conclusion, that in many regions of our country solar activity level allows using solar collector. Though the analysis of different models of solar collector showed, that most of them are ineffective in the regions with cold climate, though the solar activity of these regions is of a great level. In this regard, a mathematical model of heat-mass exchange processes in flat solar collectors is introduced in this article. The model was a basis for the development of a new solar collector, named SUN 1, which has an original heating tubes form. This form allows heat transfer medium to be under the influence of solar energy for a longer time and consequently to warm to a higher temperature, increasing the warming rapidity.

  12. Evaluating Force-Field London Dispersion Coefficients Using the Exchange-Hole Dipole Moment Model.

    Science.gov (United States)

    Mohebifar, Mohamad; Johnson, Erin R; Rowley, Christopher N

    2017-12-12

    London dispersion interactions play an integral role in materials science and biophysics. Force fields for atomistic molecular simulations typically represent dispersion interactions by the 12-6 Lennard-Jones potential using empirically determined parameters. These parameters are generally underdetermined, and there is no straightforward way to test if they are physically realistic. Alternatively, the exchange-hole dipole moment (XDM) model from density-functional theory predicts atomic and molecular London dispersion coefficients from first principles, providing an innovative strategy to validate the dispersion terms of molecular-mechanical force fields. In this work, the XDM model was used to obtain the London dispersion coefficients of 88 organic molecules relevant to biochemistry and pharmaceutical chemistry and the values compared with those derived from the Lennard-Jones parameters of the CGenFF, GAFF, OPLS, and Drude polarizable force fields. The molecular dispersion coefficients for the CGenFF, GAFF, and OPLS models are systematically higher than the XDM-calculated values by a factor of roughly 1.5, likely due to neglect of higher order dispersion terms and premature truncation of the dispersion-energy summation. The XDM dispersion coefficients span a large range for some molecular-mechanical atom types, suggesting an unrecognized source of error in force-field models, which assume that atoms of the same type have the same dispersion interactions. Agreement with the XDM dispersion coefficients is even poorer for the Drude polarizable force field. Popular water models were also examined, and TIP3P was found to have dispersion coefficients similar to the experimental and XDM references, although other models employ anomalously high values. Finally, XDM-derived dispersion coefficients were used to parametrize molecular-mechanical force fields for five liquids-benzene, toluene, cyclohexane, n-pentane, and n-hexane-which resulted in improved accuracy in the

  13. Hyperon interaction in free space and nuclear matter within a SU(3) based meson exchange model

    Energy Technology Data Exchange (ETDEWEB)

    Dhar, Madhumita

    2016-06-15

    To establish the connection between free space and in-medium hyperon-nucleon interactions is the central issue of this thesis. The guiding principle is flavor SU(3) symmetry which is exploited at various levels. In first step hyperon-nucleon and hyperon- hyperon interaction boson exchange potential in free space are introduced. A new parameter set applicable for the complete baryon octet has been derived leading to an updated one-boson- exchange model, utilizing SU(3) flavor symmetry, optimizing the number of free parameters involved, and revising the set of mesons included. The scalar, pseudoscalar, and vector SU(3) meson octets are taken into account. T-matrices are calculated by solving numerically coupled linear systems of Lippmann-Schwinger equations obtained from a 3-D reduced Bethe-Salpeter equation. Coupling constants were determined by χ{sup 2} fits to the world set of scattering data. A good description of the few available data is achieved within the imposed SU(3) constraints. Having at hand a consistently derived vacuum interaction we extend the approach next to investigations of the in-medium properties of hyperon interaction, avoiding any further adjustments. Medium effect in infinite nuclear matter are treated microscopically by recalculating T-matrices by an medium-modified system of Lippmann-Schwinger equations. A particular important role is played by the Pauli projector accounting for the exclusion principle. The presence of a background medium induces a weakening of the vacuum interaction amplitudes. Especially coupled channel mixing is found to be affected sensitively by medium. Investigation on scattering lengths and effective range parameters are revealing the density dependence of the interaction on a quantitative level.

  14. Unfolding of a model protein on ion exchange and mixed mode chromatography surfaces.

    Science.gov (United States)

    Gospodarek, Adrian M; Hiser, Diana E; O'Connell, John P; Fernandez, Erik J

    2014-08-15

    Recent studies with proteins indicate that conformational changes and aggregation can occur during ion exchange chromatography (IEC). Such behavior is not usually expected, but could lead to decreased yield and product degradation from both IEC and multi mode chromatography (MMC) that has ligands of both hydrophobic and charged functionalities. In this study, we used hydrogen exchange mass spectrometry to investigate unfolding of the model protein BSA on IEC and MMC surfaces under different solution conditions at 25°C. Increased solvent exposure, indicating greater unfolding relative to that in solution, was found for protein adsorbed on cationic IEC and MMC surfaces in the pH range of 3.0 to 4.5, where BSA has decreased stability in solution. There was no effect of anionic surfaces at pH values in the range from 6.0 to 9.0. Differences of solvent exposure of whole molecules when adsorbed and in solution suggest that adsorbed BSA unfolds at lower pH values and may show aggregation, depending upon pH and the surface type. Measurements on digested peptides showed that classifications of stability can be made for various regions; these are generally retained as pH is changed. When salt was added to MMC systems, where electrostatic interactions would be minimized, less solvent exposure was seen, implying that it is the cationic moieties, rather than the hydrophobic ligands, which cause greater surface unfolding at low salt concentrations. These results suggest that proteins of lower stability may exhibit unfolding and aggregation during IEC and MMC separations, as they can with hydrophobic interaction chromatography. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Frequency analysis of tick quotes on the foreign exchange market and agent-based modeling: A spectral distance approach

    Science.gov (United States)

    Sato, Aki-Hiro

    2007-08-01

    High-frequency financial data of the foreign exchange market (EUR/CHF, EUR/GBP, EUR/JPY, EUR/NOK, EUR/SEK, EUR/USD, NZD/USD, USD/CAD, USD/CHF, USD/JPY, USD/NOK, and USD/SEK) are analyzed by utilizing the Kullback-Leibler divergence between two normalized spectrograms of the tick frequency and the generalized Jensen-Shannon divergence among them. The temporal structure variations of the similarity between currency pairs is detected and characterized. A simple agent-based model in which N market participants exchange M currency pairs is proposed. The equation for the tick frequency is approximately derived theoretically. Based on the analysis of this model, the spectral distance of the tick frequency is associated with the similarity of the behavior (perception and decision) of the market participants in exchanging these currency pairs.

  16. Three-dimensional multiphase flow computational fluid dynamics models for proton exchange membrane fuel cell: A theoretical development

    Directory of Open Access Journals (Sweden)

    Jean-Paul Kone

    2017-03-01

    Full Text Available A review of published three-dimensional, computational fluid dynamics models for proton exchange membrane fuel cells that accounts for multiphase flow is presented. The models can be categorized as models for transport phenomena, geometry or operating condition effects, and thermal effects. The influences of heat and water management on the fuel cell performance have been repeatedly addressed, and these still remain two central issues in proton exchange membrane fuel cell technology. The strengths and weaknesses of the models, the modelling assumptions, and the model validation are discussed. The salient numerical features of the models are examined, and an overview of the most commonly used computational fluid dynamic codes for the numerical modelling of proton exchange membrane fuel cells is given. Comprehensive three-dimensional multiphase flow computational fluid dynamic models accounting for the major transport phenomena inside a complete cell have been developed. However, it has been noted that more research is required to develop models that include among other things, the detailed composition and structure of the catalyst layers, the effects of water droplets movement in the gas flow channels, the consideration of phase change in both the anode and the cathode sides of the fuel cell, and dissolved water transport.

  17. Volatility modeling for IDR exchange rate through APARCH model with student-t distribution

    Science.gov (United States)

    Nugroho, Didit Budi; Susanto, Bambang

    2017-08-01

    The aim of this study is to empirically investigate the performance of APARCH(1,1) volatility model with the Student-t error distribution on five foreign currency selling rates to Indonesian rupiah (IDR), including the Swiss franc (CHF), the Euro (EUR), the British pound (GBP), Japanese yen (JPY), and the US dollar (USD). Six years daily closing rates over the period of January 2010 to December 2016 for a total number of 1722 observations have analysed. The Bayesian inference using the efficient independence chain Metropolis-Hastings and adaptive random walk Metropolis methods in the Markov chain Monte Carlo (MCMC) scheme has been applied to estimate the parameters of model. According to the DIC criterion, this study has found that the APARCH(1,1) model under Student-t distribution is a better fit than the model under normal distribution for any observed rate return series. The 95% highest posterior density interval suggested the APARCH models to model the IDR/JPY and IDR/USD volatilities. In particular, the IDR/JPY and IDR/USD data, respectively, have significant negative and positive leverage effect in the rate returns. Meanwhile, the optimal power coefficient of volatility has been found to be statistically different from 2 in adopting all rate return series, save the IDR/EUR rate return series.

  18. Modeling coupled interactions of carbon, water, and ozone exchange between terrestrial ecosystems and the atmosphere. I: model description.

    Science.gov (United States)

    Nikolov, Ned; Zeller, Karl F

    2003-01-01

    A new biophysical model (FORFLUX) is presented to study the simultaneous exchange of ozone, carbon dioxide, and water vapor between terrestrial ecosystems and the atmosphere. The model mechanistically couples all major processes controlling ecosystem flows trace gases and water implementing recent concepts in plant eco-physiology, micrometeorology, and soil hydrology. FORFLUX consists of four interconnected modules-a leaf photosynthesis model, a canopy flux model, a soil heat-, water- and CO2- transport model, and a snow pack model. Photosynthesis, water-vapor flux and ozone uptake at the leaf level are computed by the LEAFC3 sub-model. The canopy module scales leaf responses to a stand level by numerical integration of the LEAFC3model over canopy leaf area index (LAI). The integration takes into account (1) radiative transfer inside the canopy, (2) variation of foliage photosynthetic capacity with canopy depth, (3) wind speed attenuation throughout the canopy, and (4) rainfall interception by foliage elements. The soil module uses principles of the diffusion theory to predict temperature and moisture dynamics within the soil column, evaporation, and CO2 efflux from soil. The effect of soil heterogeneity on field-scale fluxes is simulated employing the Bresler-Dagan stochastic concept. The accumulation and melt of snow on the ground is predicted using an explicit energy balance approach. Ozone deposition is modeled as a sum of three fluxes- ozone uptake via plant stomata, deposition to non-transpiring plant surfaces, and ozone flux into the ground. All biophysical interactions are computed hourly while model projections are made at either hourly or daily time step. FORFLUX represents a comprehensive approach to studying ozone deposition and its link to carbon and water cycles in terrestrial ecosystems.

  19. Charge Reduction Potentials of Several Refrigerants Based on Experimentally Validated Micro-Channel Heat Exchangers Performance and Charge Model

    OpenAIRE

    Padilla Fuentes, Yadira; Hrnjak, Predrag S.

    2012-01-01

    This paper presents an experimentally validated simulation model developed to obtain accurate prediction of evaporator microchannel heat exchanger performance and charge. Effects of using various correlations are presented and discussed with focus on serpentine microchannel evaporators. Experiments with propane are used to validate the model. The experimentally validated model is used to compare the charge reduction potential of various refrigerants. The procedure for charge reduction analysi...

  20. Simulating carbon exchange using a regional atmospheric model coupled to an advanced land-surface model

    Directory of Open Access Journals (Sweden)

    H. W. Ter Maat

    2010-08-01

    Full Text Available This paper is a case study to investigate what the main controlling factors are that determine atmospheric carbon dioxide content for a region in the centre of The Netherlands. We use the Regional Atmospheric Modelling System (RAMS, coupled with a land surface scheme simulating carbon, heat and momentum fluxes (SWAPS-C, and including also submodels for urban and marine fluxes, which in principle should include the dominant mechanisms and should be able to capture the relevant dynamics of the system. To validate the model, observations are used that were taken during an intensive observational campaign in central Netherlands in summer 2002. These include flux-tower observations and aircraft observations of vertical profiles and spatial fluxes of various variables.

    The simulations performed with the coupled regional model (RAMS-SWAPS-C are in good qualitative agreement with the observations. The station validation of the model demonstrates that the incoming shortwave radiation and surface fluxes of water and CO2 are well simulated. The comparison against aircraft data shows that the regional meteorology (i.e. wind, temperature is captured well by the model. Comparing spatially explicitly simulated fluxes with aircraft observed fluxes we conclude that in general latent heat fluxes are underestimated by the model compared to the observations but that the latter exhibit large variability within all flights. Sensitivity experiments demonstrate the relevance of the urban emissions of carbon dioxide for the carbon balance in this particular region. The same tests also show the relation between uncertainties in surface fluxes and those in atmospheric concentrations.

  1. Modeling coupled thermal-mechanical processes of frozen soil induced by borehole heat exchanger

    Science.gov (United States)

    Shao, H.

    2015-12-01

    To utilize the shallow geothermal energy, heat pumps are often coupled with Borehole Heat Exchangers (BHE) to provide heating and cooling for buildings. In cold regions, soil freezing around the BHE is a potential problem which will dramatically influence the underground soil temperature distribution, subsequently the inlet and outlet refrigerant temperature of the BHE, and finally the efficiency of the heat pump. In this study, a numerical model has been developed to simulate the coupled temperature evolution both inside the BHE, and the propagating freezing front in the surrounding soil. The coupled model was validated against analytical solutions and experimental data. The influence of the freezing process on the overall system performance is investigated by comparing one long BHE configuration without freezing and another short one with latent heat from the frozen groundwater. It is found that when freezing happens, the coefficient of performance (COP) of the heat pump will decrease by around 0.5, leading to more electricity consumption. Furthermore, analysis of the simulation result reveals that the exploitation of latent heat through groundwater freezing is only economically attractive if electricity price is low and interest rate high, and it is not the case is most European countries.

  2. Density functionals for surface science: Exchange-correlation model development with Bayesian error estimation

    Science.gov (United States)

    Wellendorff, Jess; Lundgaard, Keld T.; Møgelhøj, Andreas; Petzold, Vivien; Landis, David D.; Nørskov, Jens K.; Bligaard, Thomas; Jacobsen, Karsten W.

    2012-06-01

    A methodology for semiempirical density functional optimization, using regularization and cross-validation methods from machine learning, is developed. We demonstrate that such methods enable well-behaved exchange-correlation approximations in very flexible model spaces, thus avoiding the overfitting found when standard least-squares methods are applied to high-order polynomial expansions. A general-purpose density functional for surface science and catalysis studies should accurately describe bond breaking and formation in chemistry, solid state physics, and surface chemistry, and should preferably also include van der Waals dispersion interactions. Such a functional necessarily compromises between describing fundamentally different types of interactions, making transferability of the density functional approximation a key issue. We investigate this trade-off between describing the energetics of intramolecular and intermolecular, bulk solid, and surface chemical bonding, and the developed optimization method explicitly handles making the compromise based on the directions in model space favored by different materials properties. The approach is applied to designing the Bayesian error estimation functional with van der Waals correlation (BEEF-vdW), a semilocal approximation with an additional nonlocal correlation term. Furthermore, an ensemble of functionals around BEEF-vdW comes out naturally, offering an estimate of the computational error. An extensive assessment on a range of data sets validates the applicability of BEEF-vdW to studies in chemistry and condensed matter physics. Applications of the approximation and its Bayesian ensemble error estimate to two intricate surface science problems support this.

  3. A porosity model for flow resistance calculation of heat exchanger with louvered fins

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Taek Keun [Halla Visteon Climate Control Corp. Daejeon (Korea, Republic of); Kang, Hie Chan [Kunsan National University, Gunsan (Korea, Republic of); Lee, Joon Sik [Seoul National University, Seoul (Korea, Republic of)

    2016-04-15

    A full 3-dimensional flow simulation of a louvered fin heat exchanger assembly requires a huge number of grid points and enormous computing time. This work proposes a porous media model for the flow resistance calculation of the louvered fin side in order to efficiently simulate a complex 3-dimensional flow over the louvered fins. In the present model, we determine the permeability and Ergun constant in the modified Darcy equation. We first build up a database of the friction factor from the available experimental data and our own CFD data, and then develop the friction factor correlation in the range of the Reynolds number based on the louver pitch from 0.001 to 20000 for 14 different louvered fin types. We use the non-linear and multi-linear regression analyses to obtain the friction factor correlation as a function of louvered fin geometric parameters such as louver pitch, louver angle and fin pitch. The present friction factor correlation shows an excellent agreement with the previous experimental and CFD data. The modified Darcy equation with the proposed permeability and Ergun constant for the louvered fin side can easily be coupled with the 3-dimensional computation of the main tube flow.

  4. Thermal modeling of a greenhouse integrated to an aquifer coupled cavity flow heat exchanger system

    Energy Technology Data Exchange (ETDEWEB)

    Sethi, V.P. [Department of Mechanical Engineering, Punjab Agricultural University, Ludhiana 141 008, Punjab (India); Sharma, S.K. [Energy Research Centre, Panjab University, Chandigarh 160 017, Punjab (India)

    2007-06-15

    A thermal model is developed for heating and cooling of an agricultural greenhouse integrated with an aquifer coupled cavity flow heat exchanger system (ACCFHES). The ACCFHES works on the principal of utilizing deep aquifer water available at the ground surface through an irrigation tube well already installed in every agricultural field at constant year-round temperature of 24 C. The analysis is based on the energy balance equations for different components of the greenhouse. Using the derived analytical expressions, a computer program is developed in C{sup ++} for computing the hourly greenhouse plant and room air temperature for various design and climatic parameters. Experimental validation of the developed model is carried out using the measured plant and room air temperature data of the greenhouse (in which capsicum is grown) for the winter and summer conditions of the year 2004-2005 at Chandigarh (31 N and 78 E), Punjab, India. It is observed that the predicted and measured values are in close agreement. Greenhouse room air and plant temperature is maintained 6-7 K and 5-6 K below ambient, respectively for an extreme summer day and 7-8 K and 5-6 K above ambient, respectively for an extreme winter night. Finally, parametric studies are conducted to observe the effect of various operating parameters such as mass of the plant, area of the plant, mass flow rate of the circulating air and area of the ACCFHES on the greenhouse room air and plant temperature. (author)

  5. Teacher Exchange In England: A Model to Improve Writing in the Public Schools.

    Science.gov (United States)

    Amodeo, Luiza B.; Martin, Jeanette V.

    Teachers participating in the Teacher Center-United Kingdom Exchange Program at New Mexico State University were required to keep a journal throughout the entire exchange year. The objective of the exercise was to improve writing and reduce writing anxiety among the teachers, and to influence them to implement journal writing in their public…

  6. Numerical Model on Frost Height of Round Plate Fin Used for Outdoor Heat Exchanger of Mobile Electric Heat Pumps

    Directory of Open Access Journals (Sweden)

    Moo-Yeon Lee

    2012-01-01

    Full Text Available The objective of this study is to provide the numerical model for prediction of the frost growth of the round plate fin for the purpose of using it as a round plate fin-tube heat exchanger (evaporator under frosting conditions. In this study, numerical model was considering the frost density change with time, and it showed better agreement with experimental data of Sahin (1994 than that of the Kim model (2004 and the Jonse and Parker model (1975. This is because the prediction on the frost height with time was improved by using the frost thermal conductivity reflecting the void fraction and density of ice crystal with frost growth. Therefore, the developed numerical model could be used for frosting performance prediction of the round plate fin-tube heat exchanger.

  7. A Distributed Model of Oilseed Biorefining, via Integrated Industrial Ecology Exchanges

    Science.gov (United States)

    Ferrell, Jeremy C.

    As the demand for direct petroleum substitutes increases, biorefineries are poised to become centers for conversion of biomass into fuels, energy, and biomaterials. A distributed model offers reduced transportation, tailored process technology to available feedstock, and increased local resilience. Oilseeds are capable of producing a wide variety of useful products additive to food, feed, and fuel needs. Biodiesel manufacturing technology lends itself to smaller-scale distributed facilities able to process diverse feedstocks and meet demand of critical diesel fuel for basic municipal services, safety, sanitation, infrastructure repair, and food production. Integrating biodiesel refining facilities as tenants of eco-industrial parks presents a novel approach for synergistic energy and material exchanges whereby environmental and economic metrics can be significantly improved upon compared to stand alone models. This research is based on the Catawba County NC EcoComplex and the oilseed crushing and biodiesel processing facilities (capacity-433 tons biodiesel per year) located within. Technical and environmental analyses of the biorefinery components as well as agronomic and economic models are presented. The life cycle assessment for the two optimal biodiesel feedstocks, soybeans and used cooking oil, resulted in fossil energy ratios of 7.19 and 12.1 with carbon intensity values of 12.51 gCO2-eq/MJ and 7.93 gCO2-eq/MJ, respectively within the industrial ecology system. Economic modeling resulted in a biodiesel conversion cost of 1.43 per liter of fuel produced with used cooking oil, requiring a subsidy of 0.58 per liter to reach the break-even point. As subsidies continue significant fluctuation, metrics other than operating costs are required to justify small-scale biofuel projects.

  8. An individual-oriented model on the emergence of support in fights, its reciprocation and exchange.

    Directory of Open Access Journals (Sweden)

    Charlotte K Hemelrijk

    Full Text Available Complex social behaviour of primates has usually been attributed to the operation of complex cognition. Recently, models have shown that constraints imposed by the socio-spatial structuring of individuals in a group may result in an unexpectedly high number of patterns of complex social behaviour, resembling the dominance styles of egalitarian and despotic species of macaques and the differences between them. This includes affiliative patterns, such as reciprocation of grooming, grooming up the hierarchy, and reconciliation. In the present study, we show that the distribution of support in fights, which is the social behaviour that is potentially most sophisticated in terms of cognitive processes, may emerge in the same way. The model represents the spatial grouping of individuals and their social behaviour, such as their avoidance of risks during attacks, the self-reinforcing effects of winning and losing their fights, their tendency to join in fights of others that are close by (social facilitation, their tendency to groom when they are anxious, the reduction of their anxiety by grooming, and the increase of anxiety when involved in aggression. Further, we represent the difference in intensity of aggression apparent in egalitarian and despotic macaques. The model reproduces many aspects of support in fights, such as its different types, namely, conservative, bridging and revolutionary, patterns of choice of coalition partners attributed to triadic awareness, those of reciprocation of support and 'spiteful acts' and of exchange between support and grooming. This work is important because it suggests that behaviour that seems to result from sophisticated cognition may be a side-effect of spatial structure and dominance interactions and it shows that partial correlations fail to completely omit these effects of spatial structure. Further, the model is falsifiable, since it results in many patterns that can easily be tested in real primates by

  9. Transient computation fluid dynamics modeling of a single proton exchange membrane fuel cell with serpentine channel

    Science.gov (United States)

    Hu, Guilin; Fan, Jianren

    The proton exchange membrane fuel cell (PEMFC) has become a promising candidate for the power source of electrical vehicles because of its low pollution, low noise and especially fast startup and transient responses at low temperatures. A transient, three-dimensional, non-isothermal and single-phase mathematical model based on computation fluid dynamics has been developed to describe the transient process and the dynamic characteristics of a PEMFC with a serpentine fluid channel. The effects of water phase change and heat transfer, as well as electrochemical kinetics and multicomponent transport on the cell performance are taken into account simultaneously in this comprehensive model. The developed model was employed to simulate a single laboratory-scale PEMFC with an electrode area about 20 cm 2. The dynamic behavior of the characteristic parameters such as reactant concentration, pressure loss, temperature on the membrane surface of cathode side and current density during start-up process were computed and are discussed in detail. Furthermore, transient responses of the fuel cell characteristics during step changes and sinusoidal changes in the stoichiometric flow ratio of the cathode inlet stream, cathode inlet stream humidity and cell voltage are also studied and analyzed and interesting undershoot/overshoot behavior of some variables was found. It was also found that the startup and transient response time of a PEM fuel cell is of the order of a second, which is similar to the simulation results predicted by most models. The result is an important guide for the optimization of PEMFC designs and dynamic operation.

  10. Impacts of differing aerodynamic resistance formulae on modeled energy exchange at the above-canopy/within-canopy/soil interface

    Science.gov (United States)

    Application of the Two-Source Energy Balance (TSEB) Model using land surface temperature (LST) requires aerodynamic resistance parameterizations for the flux exchange above the canopy layer, within the canopy air space and at the soil/substrate surface. There are a number of aerodynamic resistance f...

  11. Modelling the limits on the response of net carbon exchange to fertilization in a south-eastern pine forest

    Science.gov (United States)

    Chun-Tai. Lai; G. Katul; J. Butnor; M. Siqueira; D. Ellsworth; C. Maier; Kurt Johnsen; S. Mickeand; R. Oren

    2002-01-01

    Using a combination of model simulations and detailed measurements at a hierarchy of scales conducted at a sandhills forest site, the effect of fertilization on net ecosystem exchange (NEE) and its components in 6-year-old Pinus taeda stands was quantified. The detailed measurements, collected over a 20-d period in September and October, included gas...

  12. The Chemistry of Atmosphere-Forest Exchange (CAFE Model – Part 2: Application to BEARPEX-2007 observations

    Directory of Open Access Journals (Sweden)

    G. M. Wolfe

    2011-02-01

    Full Text Available In a companion paper, we introduced the Chemistry of Atmosphere-Forest Exchange (CAFE model, a vertically-resolved 1-D chemical transport model designed to probe the details of near-surface reactive gas exchange. Here, we apply CAFE to noontime observations from the 2007 Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX-2007. In this work we evaluate the CAFE modeling approach, demonstrate the significance of in-canopy chemistry for forest-atmosphere exchange and identify key shortcomings in the current understanding of intra-canopy processes.

    CAFE generally reproduces BEARPEX-2007 observations but requires an enhanced radical recycling mechanism to overcome a factor of 6 underestimate of hydroxyl (OH concentrations observed during a warm (~29 °C period. Modeled fluxes of acyl peroxy nitrates (APN are quite sensitive to gradients in chemical production and loss, demonstrating that chemistry may perturb forest-atmosphere exchange even when the chemical timescale is long relative to the canopy mixing timescale. The model underestimates peroxy acetyl nitrate (PAN fluxes by 50% and the exchange velocity by nearly a factor of three under warmer conditions, suggesting that near-surface APN sinks are underestimated relative to the sources. Nitric acid typically dominates gross dry N deposition at this site, though other reactive nitrogen (NOy species can comprise up to 28% of the N deposition budget under cooler conditions. Upward NO2 fluxes cause the net above-canopy NOy flux to be ~30% lower than the gross depositional flux. CAFE under-predicts ozone fluxes and exchange velocities by ~20%. Large uncertainty in the parameterization of cuticular and ground deposition precludes conclusive attribution of non-stomatal fluxes to chemistry or surface uptake. Model-measurement comparisons of vertical concentration gradients for several emitted species suggests that the lower canopy airspace may be

  13. Mechanisms underlying gas exchange alterations in an experimental model of pulmonary embolism

    Directory of Open Access Journals (Sweden)

    J.H.T. Ferreira

    2006-09-01

    Full Text Available The aim of the present study was to determine the ventilation/perfusion ratio that contributes to hypoxemia in pulmonary embolism by analyzing blood gases and volumetric capnography in a model of experimental acute pulmonary embolism. Pulmonary embolization with autologous blood clots was induced in seven pigs weighing 24.00 ± 0.6 kg, anesthetized and mechanically ventilated. Significant changes occurred from baseline to 20 min after embolization, such as reduction in oxygen partial pressures in arterial blood (from 87.71 ± 8.64 to 39.14 ± 6.77 mmHg and alveolar air (from 92.97 ± 2.14 to 63.91 ± 8.27 mmHg. The effective alveolar ventilation exhibited a significant reduction (from 199.62 ± 42.01 to 84.34 ± 44.13 consistent with the fall in alveolar gas volume that effectively participated in gas exchange. The relation between the alveolar ventilation that effectively participated in gas exchange and cardiac output (V Aeff/Q ratio also presented a significant reduction after embolization (from 0.96 ± 0.34 to 0.33 ± 0.17 fraction. The carbon dioxide partial pressure increased significantly in arterial blood (from 37.51 ± 1.71 to 60.76 ± 6.62 mmHg, but decreased significantly in exhaled air at the end of the respiratory cycle (from 35.57 ± 1.22 to 23.15 ± 8.24 mmHg. Exhaled air at the end of the respiratory cycle returned to baseline values 40 min after embolism. The arterial to alveolar carbon dioxide gradient increased significantly (from 1.94 ± 1.36 to 37.61 ± 12.79 mmHg, as also did the calculated alveolar (from 56.38 ± 22.47 to 178.09 ± 37.46 mL and physiological (from 0.37 ± 0.05 to 0.75 ± 0.10 fraction dead spaces. Based on our data, we conclude that the severe arterial hypoxemia observed in this experimental model may be attributed to the reduction of the V Aeff/Q ratio. We were also able to demonstrate that V Aeff/Q progressively improves after embolization, a fact attributed to the alveolar ventilation redistribution

  14. Specification of a STEP Based Reference Model for Exchange of Robotics Models

    DEFF Research Database (Denmark)

    Haenisch, Jochen; Kroszynski, Uri; Ludwig, Arnold

    ESPRIT Project 6457: "Interoperability of Standards for Robotics in CIME" (InterRob) belongs to the Subprogram "Computer Integrated Manufacturing and Engineering" of ESPRIT, the European Specific Programme for Research and Development in Information Technology supported by the European Commision...... combining geometric, dynamic, process and robot specific data.The growing need for accurate information about manufacturing data (models of robots and other mechanisms) in diverse industrial applications has initiated ESPRIT Project 6457: InterRob. Besides the topics associated with standards for industrial...

  15. Benefits to the Simulation Training Community of a New ANSI Standard for the Exchange of Aero Simulation Models

    Science.gov (United States)

    Hildreth, Bruce L.; Jackson, E. Bruce

    2009-01-01

    The American Institute of Aeronautics Astronautics (AIAA) Modeling and Simulation Technical Committee is in final preparation of a new standard for the exchange of flight dynamics models. The standard will become an ANSI standard and is under consideration for submission to ISO for acceptance by the international community. The standard has some a spects that should provide benefits to the simulation training community. Use of the new standard by the training simulation community will reduce development, maintenance and technical refresh investment on each device. Furthermore, it will significantly lower the cost of performing model updates to improve fidelity or expand the envelope of the training device. Higher flight fidelity should result in better transfer of training, a direct benefit to the pilots under instruction. Costs of adopting the standard are minimal and should be paid back within the cost of the first use for that training device. The standard achie ves these advantages by making it easier to update the aerodynamic model. It provides a standard format for the model in a custom eXtensible Markup Language (XML) grammar, the Dynamic Aerospace Vehicle Exchange Markup Language (DAVE-ML). It employs an existing XML grammar, MathML, to describe the aerodynamic model in an input data file, eliminating the requirement for actual software compilation. The major components of the aero model become simply an input data file, and updates are simply new XML input files. It includes naming and axis system conventions to further simplify the exchange of information.

  16. A Mass Computation Model for Lightweight Brayton Cycle Regenerator Heat Exchangers

    Science.gov (United States)

    Juhasz, Albert J.

    2010-01-01

    Based on a theoretical analysis of convective heat transfer across large internal surface areas, this paper discusses the design implications for generating lightweight gas-gas heat exchanger designs by packaging such areas into compact three-dimensional shapes. Allowances are made for hot and cold inlet and outlet headers for assembly of completed regenerator (or recuperator) heat exchanger units into closed cycle gas turbine flow ducting. Surface area and resulting volume and mass requirements are computed for a range of heat exchanger effectiveness values and internal heat transfer coefficients. Benefit cost curves show the effect of increasing heat exchanger effectiveness on Brayton cycle thermodynamic efficiency on the plus side, while also illustrating the cost in heat exchanger required surface area, volume, and mass requirements as effectiveness is increased. The equations derived for counterflow and crossflow configurations show that as effectiveness values approach unity, or 100 percent, the required surface area, and hence heat exchanger volume and mass tend toward infinity, since the implication is that heat is transferred at a zero temperature difference. To verify the dimensional accuracy of the regenerator mass computational procedure, calculation of a regenerator specific mass, that is, heat exchanger weight per unit working fluid mass flow, is performed in both English and SI units. Identical numerical values for the specific mass parameter, whether expressed in lb/(lb/sec) or kg/ (kg/sec), show the dimensional consistency of overall results.

  17. Resolution exchange simulation.

    Science.gov (United States)

    Lyman, Edward; Ytreberg, F Marty; Zuckerman, Daniel M

    2006-01-20

    We extend replica-exchange simulation in two ways and apply our approaches to biomolecules. The first generalization permits exchange simulation between models of differing resolution--i.e., between detailed and coarse-grained models. Such "resolution exchange" can be applied to molecular systems or spin systems. The second extension is to "pseudoexchange" simulations, which require little CPU usage for most levels of the exchange ladder and also substantially reduce the need for overlap between levels. Pseudoexchanges can be used in either replica or resolution exchange simulations. We perform efficient, converged simulations of a 50-atom peptide to illustrate the new approaches.

  18. Many-body dispersion interactions from the exchange-hole dipole moment model.

    Science.gov (United States)

    Otero-de-la-Roza, A; Johnson, Erin R

    2013-02-07

    In this article, we present the extension of the exchange-hole dipole moment model (XDM) of dispersion interactions to the calculation of two-body and three-body dispersion energy terms to any order, 2(l)-pole oscillator strengths, and polarizabilities. By using the newly-formulated coefficients, we study the relative importance of the higher-order two-body and the leading non-additive three-body (triple-dipole) interactions in gas-phase as well as in condensed systems. We show that the two-body terms up to R(-10), but not the terms of higher-order, are essential in the correct description of the dispersion energy, while there are a number of difficulties related to the choice of the damping function, which precludes the use three-body triple-dipole contributions in XDM. We conclude that further study is required before the three-body term can be used in production XDM density-functional calculations and point out the salient problems regarding its use.

  19. Proton Exchange Membrane Fuel Cell Engineering Model Powerplant. Test Report: Benchmark Tests in Three Spatial Orientations

    Science.gov (United States)

    Loyselle, Patricia; Prokopius, Kevin

    2011-01-01

    Proton exchange membrane (PEM) fuel cell technology is the leading candidate to replace the aging alkaline fuel cell technology, currently used on the Shuttle, for future space missions. This test effort marks the final phase of a 5-yr development program that began under the Second Generation Reusable Launch Vehicle (RLV) Program, transitioned into the Next Generation Launch Technologies (NGLT) Program, and continued under Constellation Systems in the Exploration Technology Development Program. Initially, the engineering model (EM) powerplant was evaluated with respect to its performance as compared to acceptance tests carried out at the manufacturer. This was to determine the sensitivity of the powerplant performance to changes in test environment. In addition, a series of tests were performed with the powerplant in the original standard orientation. This report details the continuing EM benchmark test results in three spatial orientations as well as extended duration testing in the mission profile test. The results from these tests verify the applicability of PEM fuel cells for future NASA missions. The specifics of these different tests are described in the following sections.

  20. Modified Becke-Johnson exchange potential: improved modeling of lead halides for solar cell applications

    Directory of Open Access Journals (Sweden)

    Radi A. Jishi

    2016-01-01

    Full Text Available We report first-principles calculations, within density functional theory, on the lead halide compounds PbCl2, PbBr2, and CH3NH3PbBr3−xClx, taking into account spin-orbit coupling. We show that, when the modified Becke-Johnson exchange potential is used with a suitable choice of defining parameters, excellent agreement between calculations and experiment is obtained. The computational model is then used to study the effect of replacing the methylammonium cation in CH3NH3PbI3 and CH3NH3PbBr3 with either N2H5+or N2H3+, which have slightly smaller ionic radii than methylammonium. We predict that a considerable downshift in the values of the band gaps occurs with this replacement. The resulting compounds would extend optical absorption down to the near-infrared region, creating excellent light harvesters for solar cells.

  1. Design Fluida Temperature Control in Heat Exchanger using Model Predictive Control Algoritm

    Directory of Open Access Journals (Sweden)

    Fatimah Ekasari Masturi

    2014-03-01

    Full Text Available Heat Exchanger merupakan suatu alat proses pertukaran panas, berfungsi untuk memindahkan panas antara dua fluida yang berbeda temperatur dan dipisahkan oleh suatu sekat pemisah. Pada proses perpindahan panas ini terdapat delay time sehingga dibutuhkan suatu kontroller agar diperoleh temperatur fluida sesuai dengan kriteria yang diinginkan, tidak terdapat energi yang terbuang, serta pemanfaatan sumber energi yang tersedia benar-benar dapat lebih efisien. Model Predictive Control (MPC telah berhasil diaplikasikan di berbagai industri proses, karena kemampuannya untuk mengatasi berbagai masalah multivariabel kontrol seperti interaksi, waktu tunda dan batasan. Keuntungan dari MPC karena kedua variabel, yaitu variabel manipulasi dan variabel kontrol, dihitung dengan menggunakan teknik optimasi. Pengendalian terhadap pendekatan linear plant dengan Kontroler MPC menggunakan parameter Hp (prediksi horizon= 20 Hc(kontrol horizon= 4 matriks pembobot Q=1 R=0.1  dapat menghasilkan respon yang stabil tanpa adanya overshoot serta mampu mencapai setpoint yang diinginkan yaitu 70°C, pada beban tetap (nominal ataupun beban bervariasi sekitar 20 % dari beban nominal dengan waktu steady state 35s.

  2. CFD Modeling of Sodium-Oxide Deposition in Sodium-Cooled Fast Reactor Compact Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Tatli, Emre; Ferroni, Paolo; Mazzoccoli, Jason

    2015-09-02

    The possible use of compact heat exchangers (HXs) in sodium-cooled fast reactors (SFR) employing a Brayton cycle is promising due to their high power density and resulting small volume in comparison with conventional shell-and-tube HXs. However, the small diameter of their channels makes them more susceptible to plugging due to Na2O deposition during accident conditions. Although cold traps are designed to reduce oxygen impurity levels in the sodium coolant, their failure, in conjunction with accidental air ingress into the sodium boundary, could result in coolant oxygen levels that are above the saturation limit in the cooler parts of the HX channels. This can result in Na2O crystallization and the formation of solid deposits on cooled channel surfaces, limiting or even blocking coolant flow. The development of analysis tools capable of modeling the formation of these deposits in the presence of sodium flow will allow designers of SFRs to properly size the HX channels so that, in the scenario mentioned above, the reactor operator has sufficient time to detect and react to the affected HX. Until now, analytical methodologies to predict the formation of these deposits have been developed, but never implemented in a high-fidelity computational tool suited to modern reactor design techniques. This paper summarizes the challenges and the current status in the development of a Computational Fluid Dynamics (CFD) methodology to predict deposit formation, with particular emphasis on sensitivity studies on some parameters affecting deposition.

  3. ESTIMATION OF GAS EXCHANGE INDICATORS AT 3-D MODELING OF THE WORKING PROCESS OF THE TWO-STROKE PETROL ENGINE

    Directory of Open Access Journals (Sweden)

    V. Korohodskyi

    2017-06-01

    Full Text Available With the help of 3-D modeling of the workflow of a two-stroke engine with spark ignition, crank-chamber scavenging and a carburetor feeding system in the modes of external speed characteristic the indices of gas exchange were evaluated. The simulation results are consistent with the experimental data and 3D simulation results in the AVL FIRE and MTFS® software complexes. The model allows performing optimized calculations of multiphase flow in ICE during experimental design work.

  4. Modelling spatial and temporal variability of surface water-groundwater fluxes and heat exchange along a lowland river reach

    Science.gov (United States)

    Munz, Matthias; Schmidt, Christian; Fleckenstein, Jan; Oswald, Sascha

    2013-04-01

    In this study we used the deterministic, fully-integrated surface-subsurface flow and heat transport model (HydroGeoSphere) to investigate the spatial and temporal variability of surface water-groundwater (SFW-GW) interaction along a lowland river reach. The model incorporates the hydrological as well as the heat transport processes including (1) radiative fluxes warming and cooling the surface water; (2) seasonal groundwater temperature changes; (3) occasionally occurring heat inputs due to precipitation and (4) highly variable SFW-GW water advective heat exchange driven by the general relation between SFW and GW hydraulic heads and geomorphological structure of the riverbed. The study area is a 100 m long lowland river reach of the Selke river, at the boundary of the Harz mountains characterized by distinctive gravel bars. Continuous time series of hydraulic heads and temperatures at different depth in the river bank, the hyporheic zone and within the river are used to define the boundary conditions, to calibrate and to validate the numerical model. The 3D modelling results show that the water and heat exchange at the SFW-GW interface is highly variable in space with zones of daily temperature oscillations penetrating deep into the sediment and spots of daily constant temperature following the average GW temperature. To increase the understanding of evolving pattern, the observed temperature variations in space and time will be linked to dominant stream flow conditions, streambed morphology, advective and conductive heat exchange between SFW and GW and subsurface solute residence times. This study allows to analyse and quantify water and heat fluxes at the SFW-GW interface, to trace subsurface flow paths within the streambed sediments and thus improves the understanding of hyporheic zone exchange mechanisms. It is a sound basis for investigating quantitatively variations of sediment properties, boundary conditions and streambed morphology and also for subsequent

  5. Application of the Hubbard model to Cp*(2)Yb(bipy), a model system for strong exchange coupling in lanthanide systems.

    Science.gov (United States)

    Lukens, Wayne W; Magnani, Nicola; Booth, Corwin H

    2012-10-01

    Exchange coupling is quantified in lanthanide (Ln) single-molecule magnets (SMMs) containing a bridging N(2)(3-) radical ligand and between [Cp*(2)Yb](+) and bipy(•-) in Cp*(2)Yb(bipy), where Cp* is pentamethylcyclopentadienyl and bipy is 2,2'-bipyridyl. In the case of these lanthanide SMMs, the magnitude of exchange coupling between the Ln ion and the bridging N(2)(3-), 2J, is very similar to the barrier to magnetic relaxation, U(eff). A molecular version of the Hubbard model is applied to systems in which unpaired electrons on magnetic metal ions have direct overlap with unpaired electrons residing on ligands. The Hubbard model explicitly addresses electron correlation, which is essential for understanding the magnetic behavior of these complexes. This model is applied quantitatively to Cp*(2)Yb(bipy) to explain its very strong exchange coupling, 2J = -0.11 eV (-920 cm(-1)). The model is also used to explain the presence of strong exchange coupling in Ln SMMs in which the lanthanide spins are coupled via bridging N(2)(3-) radical ligands. The results suggest that increasing the magnetic coupling in lanthanide clusters could lead to an increase in the blocking temperatures of exchange-coupled lanthanide SMMs, suggesting routes to rational design of future lanthanide SMMs.

  6. Modelling non-steady-state isotope enrichment of leaf water in a gas-exchange cuvette environment.

    Science.gov (United States)

    Song, Xin; Simonin, Kevin A; Loucos, Karen E; Barbour, Margaret M

    2015-12-01

    The combined use of a gas-exchange system and laser-based isotope measurement is a tool of growing interest in plant ecophysiological studies, owing to its relevance for assessing isotopic variability in leaf water and/or transpiration under non-steady-state (NSS) conditions. However, the current Farquhar & Cernusak (F&C) NSS leaf water model, originally developed for open-field scenarios, is unsuited for use in a gas-exchange cuvette environment where isotope composition of water vapour (δv ) is intrinsically linked to that of transpiration (δE ). Here, we modified the F&C model to make it directly compatible with the δv -δE dynamic characteristic of a typical cuvette setting. The resultant new model suggests a role of 'net-flux' (rather than 'gross-flux' as suggested by the original F&C model)-based leaf water turnover rate in controlling the time constant (τ) for the approach to steady sate. The validity of the new model was subsequently confirmed in a cuvette experiment involving cotton leaves, for which we demonstrated close agreement between τ values predicted from the model and those measured from NSS variations in isotope enrichment of transpiration. Hence, we recommend that our new model be incorporated into future isotope studies involving a cuvette condition where the transpiration flux directly influences δv . There is an increasing popularity among plant ecophysiologists to use a gas-exchange system coupled to laser-based isotope measurement for investigating non-steady state (NSS) isotopic variability in leaf water (and/or transpiration); however, the current Farquhar & Cernusak (F&C) NSS leaf water model is unsuited for use in a gas-exchange cuvette environment due to its implicit assumption of isotope composition of water vapor (δv ) being constant and independent of that of transpiration (δE ). In the present study, we modified the F&C model to make it compatible with the dynamic relationship between δv and δE as is typically associated

  7. Air conditioning - window model. Part 2. Thermal exchange processes; Klimatechnik - Fenstermodell. Teil 2. Thermische Austauschvorgaenge

    Energy Technology Data Exchange (ETDEWEB)

    Stoll, J. [Georg-Simon-Ohm-Fachhochschule, Nuernberg (Germany)

    2005-07-01

    Modern external walls and windows require detailed calculations which cannot be based on out-of-date information. While the first part of this contribution discussed short-wave solar radiation, this sequel goes into thermal exchange processes. (orig.)

  8. CARVE Modeled Gross Ecosystem CO2 Exchange and Respiration, Alaska, 2012-2014

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides 3-hourly estimates of gross ecosystem CO2 exchange (GEE) and respiration (autotrophic and heterotrophic) for the state of Alaska from 2012 to...

  9. Water exchange through the Kerama Gap estimated with a 25-year Pacific HYbrid Coordinate Ocean Model

    Science.gov (United States)

    Zhou, Wenzheng; Yu, Fei; Nan, Feng

    2017-03-01

    V ariations in water exchange through the Kerama Gap (between Okinawa Island and Miyakojima Island) from 1979 to 2003 were estimated with the 0.08° Pacific HYbrid Coordinate Ocean Model (HYCOM). The model results show that the mean transport through the Kerama Gap (KGT) from the Pacific Ocean to the East China Sea (ECS) was 2.1 Sv, which agrees well with the observed mean KGT (2.0 Sv) for 2009-2010. Over the time period examined, the monthly KGT varied from -10.9 Sv to 15.8 Sv and had a standard deviation of ± 5.0 Sv. The water mainly enters the ECS via the subsurface layer (300-500 m) along the northeastern slope of the Kerama Gap and mainly flows out of the ECS into the southwest of the Kerama Gap. The seasonal and interannual variations of the KGT and the Kuroshio upstream transport were negatively correlated. The Kuroshio upstream transport was largest in summer and smallest in autumn while the KGT was smallest in summer (1.02 Sv) and largest in spring (2.94 Sv) and autumn (2.44 Sv). The seasonal and interannual variations in the Kuroshio downstream (across the PN-line) transport differed significantly from the Kuroshio upstream transport but corresponded well with the KGT and the sum of the transport through the Kerama Gap and the Kuroshio upstream, which indicates that information about variation in the KGT is important for determining variation in the Kuroshio transport along the PN-line.

  10. Water exchange through the Kerama Gap estimated with a 25-year Pacific HYbrid Coordinate Ocean Model

    Science.gov (United States)

    Zhou, Wenzheng; Yu, Fei; Nan, Feng

    2017-11-01

    Variations in water exchange through the Kerama Gap (between Okinawa Island and Miyakojima Island) from 1979 to 2003 were estimated with the 0.08° Pacific HYbrid Coordinate Ocean Model (HYCOM). The model results show that the mean transport through the Kerama Gap (KGT) from the Pacific Ocean to the East China Sea (ECS) was 2.1 Sv, which agrees well with the observed mean KGT (2.0 Sv) for 2009-2010. Over the time period examined, the monthly KGT varied from -10.9 Sv to 15.8 Sv and had a standard deviation of ± 5.0 Sv. The water mainly enters the ECS via the subsurface layer (300-500 m) along the northeastern slope of the Kerama Gap and mainly flows out of the ECS into the southwest of the Kerama Gap. The seasonal and interannual variations of the KGT and the Kuroshio upstream transport were negatively correlated. The Kuroshio upstream transport was largest in summer and smallest in autumn while the KGT was smallest in summer (1.02 Sv) and largest in spring (2.94 Sv) and autumn (2.44 Sv). The seasonal and interannual variations in the Kuroshio downstream (across the PN-line) transport differed significantly from the Kuroshio upstream transport but corresponded well with the KGT and the sum of the transport through the Kerama Gap and the Kuroshio upstream, which indicates that information about variation in the KGT is important for determining variation in the Kuroshio transport along the PN-line.

  11. A numerical modelling of gas exchange mechanisms between air and turbulent water with an aquarium chemical reaction

    Science.gov (United States)

    Nagaosa, Ryuichi S.

    2014-01-01

    This paper proposes a new numerical modelling to examine environmental chemodynamics of a gaseous material exchanged between the air and turbulent water phases across a gas-liquid interface, followed by an aquarium chemical reaction. This study uses an extended concept of a two-compartment model, and assumes two physicochemical substeps to approximate the gas exchange processes. The first substep is the gas-liquid equilibrium between the air and water phases, A(g)⇌A(aq), with Henry's law constant H. The second is a first-order irreversible chemical reaction in turbulent water, A(aq)+H2O→B(aq)+H+ with a chemical reaction rate κA. A direct numerical simulation (DNS) technique has been employed to obtain details of the gas exchange mechanisms and the chemical reaction in the water compartment, while zero velocity and uniform concentration of A is considered in the air compartment. The study uses the different Schmidt numbers between 1 and 8, and six nondimensional chemical reaction rates between 10(≈0) to 101 at a fixed Reynolds number. It focuses on the effects of the Schmidt number and the chemical reaction rate on fundamental mechanisms of the gas exchange processes across the interface.

  12. Reprint of: A numerical modelling of gas exchange mechanisms between air and turbulent water with an aquarium chemical reaction

    Science.gov (United States)

    Nagaosa, Ryuichi S.

    2014-08-01

    This paper proposes a new numerical modelling to examine environmental chemodynamics of a gaseous material exchanged between the air and turbulent water phases across a gas-liquid interface, followed by an aquarium chemical reaction. This study uses an extended concept of a two-compartment model, and assumes two physicochemical substeps to approximate the gas exchange processes. The first substep is the gas-liquid equilibrium between the air and water phases, A(g)⇌A(aq), with Henry's law constant H. The second is a first-order irreversible chemical reaction in turbulent water, A(aq)+H2O→B(aq)+H+ with a chemical reaction rate κA. A direct numerical simulation (DNS) technique has been employed to obtain details of the gas exchange mechanisms and the chemical reaction in the water compartment, while zero velocity and uniform concentration of A is considered in the air compartment. The study uses the different Schmidt numbers between 1 and 8, and six nondimensional chemical reaction rates between 10(≈0) to 101 at a fixed Reynolds number. It focuses on the effects of the Schmidt number and the chemical reaction rate on fundamental mechanisms of the gas exchange processes across the interface.

  13. Nanostructured exchange coupled hard/soft composites: From the local magnetization profile to an extended 3d simple model

    Energy Technology Data Exchange (ETDEWEB)

    Russier, V., E-mail: russier@glvt-cnrs.fr [ICMPE, UMR 7182 CNRS and University UPEC, 2 rue Henri Dunant, 94320 Thiais (France); Younsi, K.; Bessais, L. [ICMPE, UMR 7182 CNRS and University UPEC, 2 rue Henri Dunant, 94320 Thiais (France)

    2012-03-15

    In nanocomposite magnetic materials the exchange coupling between phases plays a central role in the determination of the extrinsic magnetic properties of the material: coercive field,remanence magnetization. Exchange coupling is therefore of crucial importance in composite systems made of magnetically hard and soft grains or in partially crystallized media including nanosized crystallites in a soft matrix. It has been shown also to be a key point in the control of stratified hard/soft media coercive field in the research for optimized recording media. A signature of the exchange coupling due to the nanostructure is generally obtained on the magnetization curve M(H) with a plateau characteristic of the domain wall compression at the hard/soft interface ending at the depinning of the wall inside the hard phase. This compression/depinning behavior is clearly evidenced through one dimensional description of the interface, which is rigorously possible only in stratified media. Starting from a local description of the hard/soft interface in a model for nanocomposite system we show that one can extend this kind of behavior for system of hard crystallites embedded in a soft matrix. - Highlights: Black-Right-Pointing-Pointer Exchange coupling between hard and soft components of a magnetic nanocomposite. Black-Right-Pointing-Pointer Connection between one dimensional stratified media and three dimensional model. Black-Right-Pointing-Pointer Investigation of the compression behavior of the local magnetization profile at the interface.

  14. Study on the turbulence model sensitivity for various cross-corrugated surfaces applied to matrix type heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jun Myung; Ha, Man Yeong; Son, Chang Min; Doo, Jeong Hoon; Min, June Kee [Pusan National University, Busan (Korea, Republic of)

    2016-03-15

    Diverse cross-corrugated surface geometries were considered to estimate the sensitivity of four variants of k-ε turbulence models (Low Reynolds, standard, RNG and realizable models). The cross-corrugated surfaces considered in this study are a conventional sinusoidal shape and two different asymmetric shapes. The numerical simulations using the steady incompressible Reynolds-averaged Navier Stokes (RANS) equations were carried out to obtain the steady solutions of the flow and thermal fields in the unitary cell of the heat exchanger matrix. In addition, the experimental test for the measurement of local convective heat transfer coefficients on the heat transfer surfaces was performed by means of the Transient liquid crystal (TLC) technique in order to compare the numerical results with the measured data. The features on detailed flow structure and corresponding heat transfer in the unitary cell of the matrix type heat exchanger are compared and analyzed against four different turbulence models considered in this study.

  15. A meson-exchange isobar model for the {pi}{sup +}d {r_reversible} pp reaction

    Energy Technology Data Exchange (ETDEWEB)

    Canton, L.; Cattapan, G.; Dortmans, P.J.; Pisent, G. [Istituto Nazionale di Fisica Nucleare, Padua (Italy); Svenne, J.P. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Physics]|[Winnipeg Inst. for Theoretical Physics, Winnipeg, MB (Canada)

    1994-10-10

    A broad set of observables are calculated for the {pi}{sup +} d {r_reversible} pp reaction with a relatively simple meson-exchange isobar model. The comparison between the calculated results and experimental data (including spin observables), shows that the model gives an overall phenomenologically acceptable description of the reaction around the {Delta} resonance. The effects due to the inclusion of Galilei invariant (pseudovector) recoil term in the {pi}NN vertex, of relativistic corrections to the {rho}-exchange component of the {Delta}N transition potential, and of NN final state interaction in the {pi}{sup +}d {yields} p+p process are also discussed. It is estimated that the model is sufficiently simple to be extended to the case of pion absorption on other light nuclei, in particular {sup 3}He (or tritium). 32 refs., 13 figs.

  16. A model for predicting the thermal-hydraulic performance of louvered-fin, flat-tube heat exchangers under frosting conditions

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Y.; Jacobi, A.M. [Department of Mechanical Science and Engineering, University of Illinois, 1206 West Green Street, Urbana, IL 61801 (United States)

    2010-03-15

    Correlations and a model are developed to predict the time-varying performance of folded-louvered-fin, microchannel heat exchangers. The model utilizes the correlations developed from the experimental data and incorporates a sub-model for frost properties. The model successfully predicts the heat transfer performance of the heat exchangers studied, but its ability to predict the pressure-drop behavior needs further improvement. The model can be used to evaluate geometry effects on the frosting behavior of the louvered-fin, microchannel heat exchangers, and can be easily generalized to other applications with simultaneous heat and mass transfer. (author)

  17. Ion-exchange reactions on clay minerals coupled with advection/dispersion processes. Application to Na+/Ca2+ exchange on vermiculite: Reactive-transport modeling, batch and stirred flow-through reactor experiments

    Science.gov (United States)

    Tertre, E.; Hubert, F.; Bruzac, S.; Pacreau, M.; Ferrage, E.; Prêt, D.

    2013-07-01

    The present study aims at testing the validity of using an Na+/Ca2+ ion-exchange model, derived from batch data to interpret experimental Ca2+-for-Na+ exchange breakthrough curves obtained on vermiculite (a common swelling clay mineral in surface environments). The ion-exchange model was constructed considering the multi-site nature of the vermiculite surface as well as the exchange of all aqueous species (Mg2+ derived from the dissolution of the solid and H+). The proposed ion-exchange model was then coupled with a transport model, and the predicted breakthrough curves were compared with the experimental ones obtained using a well stirred flow-through reactor. For a given solute residence time in the reactor (typically 50 min), our thermodynamic model based on instantaneous equilibrium was found to accurately reproduce several of the experimental breakthrough curves, depending on the Na+ and Ca2+ concentrations of the influents pumped through the reactor. However the model failed to reproduce experimental breakthrough curves obtained at high flow rates and low chemical gradient between the exchanger phase and the solution. An alternative model based on a hybrid equilibrium/kinetic approach was thus used and allowed predicting experimental data. Based on these results, we show that a simple parameter can be used to differentiate between thermodynamic and kinetic control of the exchange reaction with water flow. The results of this study are relevant for natural systems where two aquatic environments having contrasted chemistries interact. Indeed, the question regarding the attainment of a full equilibrium in such a system during the contact time of the aqueous phase with the particle/colloid remains most often open. In this context, we show that when a river (a flow of fresh water) encounters marine colloids, a systematic full equilibrium can be assumed (i.e., the absence of kinetic effects) when the residence time of the solute in 1 m3 of the system is ⩾6200 h.

  18. Net ecosystem CO2 exchange and evapotranspiration of a sphagnum mire: field measurements and model simulations

    Science.gov (United States)

    Olchev, Alexander; Volkova, Elena; Karataeva, Tatiana; Zatsarinnaya, Dina; Novenko, Elena

    2014-05-01

    The spatial and temporal variability of net ecosystem exchange of CO2 (NEE) and evapotranspiration (ET) of a karst-hole sphagnum peat mire situated at the boundary between broad-leaved and forest-steppe zones in the central part of European Russia (54.06N, 37.59E, 260 m a.s.l.) was described using results of field measurements and simulations with Mixfor-3D model. The area of the mire is about 1.2 ha and it is surrounded by a broadleaved forest stand. It is a typical peat mire according to water and mineral supply as well as to vegetation composition. The vegetation of the peripheral parts of the mire is typical eutrophic whereas the vegetation in its central part is represented by meso-oligothrophic plant communities. To describe the spatial variability of NEE and ET within the mire a portable measuring system consisting of a transparent ventilated chamber combined with an infrared CO2 and H2O analyzer LI-840A (Li-Cor, USA) was used. The measurements were provided along a transect from the southern peripheral part of the mire to its center under sunny clear-sky weather conditions in the period from May to September of 2012 and from May 2013 to October 2013. The chamber method was used for measurements of NEE and ET fluxes because of small size of the mire, a very uniform surrounding forest stand and the mosaic mire vegetation. All these factors promote very heterogeneous exchange conditions within the mire and make it difficult to apply, for example, an eddy covariance method that is widely used for flux measurements in the field. The results of the field measurements showed a significant spatial and temporal variability of NEE and ET that was mainly influenced by incoming solar radiation, air temperature and ground water level. During the entire growing season the central part of the mire was a sink of CO2 for the atmosphere (up to 6.8±4.2 µmol m-2 s-1 in June) whereas its peripheral part, due to strong shading by the surrounding forest, was mainly a source of

  19. Modelling of geochemical reactions and experimental cation exchange in MX 80 bentonite.

    Science.gov (United States)

    Montes-H, G; Fritz, B; Clement, A; Michau, N

    2005-10-01

    Bentonites are widely used for waste repository systems because of their hydrodynamic, surface and chemical-retention properties. MX 80 bentonite (bentonite of Wyoming) contains approximately 85% Na/Ca-montmorillonite and 15% accessory minerals. The dominant presence of Na/Ca-montmorillonite in this clay mineral could cause it to perform exceptionally well as an engineered barrier for a radioactive waste repository because this buffer material is expected to fill up by swelling the void between canisters containing waste and the surrounding ground. However, the Na/Ca-montmorillonite could be transformed to other clay minerals as a function of time under repository conditions. Previous modelling studies based on the hydrolysis reactions have shown that the Na/Ca-montmorillonite-to-Ca-montmorillonite conversion is the most significant chemical transformation. In fact, this chemical process appears to be a simple cation exchange into the engineered barrier. The purpose of the present study was two-fold. Firstly, it was hoped to predict the newly formed products of bentonite-fluid reactions under repository conditions by applying a thermokinetic hydrochemical code (KIRMAT: Kinetic Reactions and Mass Transport). The system modelled herein was considered to consist of a 1-m thick zone of water-saturated engineered barrier. This non-equilibrated system was placed in contact with a geological fluid on one side, which was then allowed to diffuse into the barrier, while the other side was kept in contact with iron-charged water. Reducing initial conditions ( [P(O)2 approximately equals 0] ; Eh=-200 mV) and a constant reaction temperature (100 degrees C) were considered. Secondly, it was hoped to estimate the influence of inter-layer cations (Ca and Na) on the swelling behaviour of the MX 80 bentonite by using an isothermal system of water vapour adsorption and an environmental scanning electron microscope (ESEM) coupled with a digital image analysis (DIA) program. Here, the

  20. Mass exchange in an experimental new-generation life support system model based on biological regeneration of environment

    Science.gov (United States)

    Tikhomirov, A. A.; Ushakova, S. A.; Manukovsky, N. S.; Lisovsky, G. M.; Kudenko, Yu. A.; Kovalev, V. S.; Gubanov, V. G.; Barkhatov, Yu. V.; Gribovskaya, I. V.; Zolotukhin, I. G.; Gros, J. B.; Lasseur, Ch.

    An experimental model of a biological life support system was used to evaluate qualitative and quantitative parameters of the internal mass exchange. The photosynthesizing unit included the higher plant component (wheat and radish), and the heterotrophic unit consisted of a soil-like substrate, California warms, mushrooms and microbial microflora. The gas mass exchange involved evolution of oxygen by the photosynthesizing component and its uptake by the heterotroph component along with the formation and maintaining of the SLS structure, growth of mushrooms and California worms, human respiration, and some other processes. Human presence in the system in the form of "virtual human" that at regular intervals took part in the respirative gas exchange during the experiment. Experimental data demonstrated good oxygen/carbon dioxide balance, and the closure of the cycles of these gases was almost complete. The water cycle was nearly 100% closed. The main components in the water mass exchange were transpiration water and the watering solution with mineral elements. Human consumption of the edible plant biomass (grains and roots) was simulated by processing these products by a unique physicochemical method of oxidizing them to inorganic mineral compounds, which were then returned into the system and fully assimilated by the plants. The oxidation was achieved by "wet combustion" of organic biomass, using hydrogen peroxide following a special procedure, which does not require high temperature and pressure. Hydrogen peroxide is produced from the water inside the system. The closure of the cycle was estimated for individual elements and compounds. Stoichiometric proportions are given for the main components included in the experimental model of the system. Approaches to the mathematical modeling of the cycling processes are discussed, using the data of the experimental model. Nitrogen, as a representative of biogmic elements, shows an almost 100% closure of the cycle inside

  1. Fractional Market Model and its Verification on the Warsaw STOCK Exchange

    Science.gov (United States)

    Kozłowska, Marzena; Kasprzak, Andrzej; Kutner, Ryszard

    We analyzed the rising and relaxation of the cusp-like local peaks superposed with oscillations which were well defined by the Warsaw Stock Exchange index WIG in a daily time horizon. We found that the falling paths of all index peaks were described by a generalized exponential function or the Mittag-Leffler (ML) one superposed with various types of oscillations. However, the rising paths (except the first one of WIG which rises exponentially and the most important last one which rises again according to the ML function) can be better described by bullish anti-bubbles or inverted bubbles.2-4 The ML function superposed with oscillations is a solution of the nonhomogeneous fractional relaxation equation which defines here our Fractional Market Model (FMM) of index dynamics which can be also called the Rheological Model of Market. This solution is a generalized analog of an exactly solvable fractional version of the Standard or Zener Solid Model of viscoelastic materials commonly used in modern rheology.5 For example, we found that the falling paths of the index can be considered to be a system in the intermediate state lying between two complex ones, defined by short and long-time limits of the Mittag-Leffler function; these limits are given by the Kohlrausch-Williams-Watts (KWW) law for the initial times, and the power-law or the Nutting law for asymptotic time. Some rising paths (i.e., the bullish anti-bubbles) are a kind of log-periodic oscillations of the market in the bullish state initiated by a crash. The peaks of the index can be viewed as precritical or precrash ones since: (i) the financial market changes its state too early from the bullish to bearish one before it reaches a scaling region (defined by the diverging power-law of return per unit time), and (ii) they are affected by a finite size effect. These features could be a reminiscence of a significant risk aversion of the investors and their finite number, respectively. However, this means that the

  2. Performance Measurement Model for the Consumer Industry Listed on Indonesia Stock Exchange: DEA and SFA Approaches

    Directory of Open Access Journals (Sweden)

    T.Handono Eko Prabowo

    2014-08-01

    Full Text Available This  research  attempts  to  provide  performance  measurement  model  for  the  consumer industry listed on Indonesia Stock Exchange (IDX by  using the data envelopment analysis (DEA and the stochastic frontier analysis (SFA. There were 36 panel irms analyzed over the period of 2000-2005 or 216 pooled observations. The output variable was total sales and input variables were labor, inventory, ixed assets and capital. Z-variables are age of the irm, size  of  the  irm,  market  share  and  time  period.  Empirical  indings  reveal  that  the  average technical  eficiency  (mean  TE  for  consumer  industry  was  0.6630.  The  study  indicates  the existence of output slacks (output deicits and input slacks (input wastages in the consumer industry's  operation.  The  study  also  shows  that  the  joint  effect  of  four  z-variables  on  the technical  ineficiencies  of  the  consumer  industry  was  signiicant  although  the  individual effects of one or more variables might not be statistically signiicant. ";} // -->activate javascript

  3. Fluidized-Bed Heat Transfer Modeling for the Development of Particle/Supercritical-CO2 Heat Exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhiwen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Martinek, Janna G [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-06-03

    Concentrating solar power (CSP) technology is moving toward high-temperature and high-performance design. One technology approach is to explore high-temperature heat-transfer fluids and storage, integrated with a high-efficiency power cycle such as the supercritical carbon dioxide (s-CO2) Brayton power cycle. The s-CO2 Brayton power system has great potential to enable the future CSP system to achieve high solar-to-electricity conversion efficiency and to reduce the cost of power generation. Solid particles have been proposed as a possible high-temperature heat-transfer medium that is inexpensive and stable at high temperatures above 1,000 degrees C. The particle/heat exchanger provides a connection between the particles and s-CO2 fluid in the emerging s-CO2 power cycles in order to meet CSP power-cycle performance targets of 50% thermal-to-electric efficiency, and dry cooling at an ambient temperature of 40 degrees C. The development goals for a particle/s-CO2 heat exchanger are to heat s-CO2 to =720 degrees C and to use direct thermal storage with low-cost, stable solid particles. This paper presents heat-transfer modeling to inform the particle/s-CO2 heat-exchanger design and assess design tradeoffs. The heat-transfer process was modeled based on a particle/s-CO2 counterflow configuration. Empirical heat-transfer correlations for the fluidized bed and s-CO2 were used in calculating the heat-transfer area and optimizing the tube layout. A 2-D computational fluid-dynamics simulation was applied for particle distribution and fluidization characterization. The operating conditions were studied from the heat-transfer analysis, and cost was estimated from the sizing of the heat exchanger. The paper shows the path in achieving the cost and performance objectives for a heat-exchanger design.

  4. Modeling exchange rate volatility in CEEC countries: Impact of global financial and European sovereign debt crisis

    Directory of Open Access Journals (Sweden)

    Miletić Siniša

    2015-01-01

    Full Text Available The aim of this study is to envisage the impact of global financial (GFC and European sovereign debt crisis (ESDC on foreign exchange markets of emerg- ing countries in Central and Eastern Europe CEEC countries (Czech Republic, Hungary, Romania, poland and Serbia. The daily returns of exchange rates on Czech Republic koruna (CZK, Hungarian forint (HuF, Romanian lea (RoL, polish zloty (pLZ and Serbian dinar (RSD, all against the Euro are analyzed during the period from 3rd January 2000 to15th April 2013, in respect. To examine the impact of global financial crisis and European sovereign debt crisis, dummy variables were adopted. overall results imply that global financial crisis has no impact on exchange rate returns in selected CEEC countries, while European sovereign debt crisis inf luencing in depreciation of polish zloty by 8% and Roma- nian lea by 6%. obtained results by our calculation, imply that global financial crisis increased enhanced volatility on exchange rate returns of Czech koruna, Romanian lea and polish zloty. Moreover, results of empirical analysis imply that this impact has the strongest inf luence in volatility on exchange rate returns of polish zloty.

  5. Modeling and Validation of Sodium Plugging for Heat Exchangers in Sodium-cooled Fast Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ferroni, Paolo [Westinghouse Electric Company LLC, Cranberry Township, PA (United States). Global Technology Development; Tatli, Emre [Westinghouse Electric Company LLC, Cranberry Township, PA (United States); Czerniak, Luke [Westinghouse Electric Company LLC, Cranberry Township, PA (United States); Sienicki, James J. [Argonne National Lab. (ANL), Argonne, IL (United States); Chien, Hual-Te [Argonne National Lab. (ANL), Argonne, IL (United States); Yoichi, Momozaki [Argonne National Lab. (ANL), Argonne, IL (United States); Bakhtiari, Sasan [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-06-29

    The project “Modeling and Validation of Sodium Plugging for Heat Exchangers in Sodium-cooled Fast Reactor Systems” was conducted jointly by Westinghouse Electric Company (Westinghouse) and Argonne National Laboratory (ANL), over the period October 1, 2013- March 31, 2016. The project’s motivation was the need to provide designers of Sodium Fast Reactors (SFRs) with a validated, state-of-the-art computational tool for the prediction of sodium oxide (Na2O) deposition in small-diameter sodium heat exchanger (HX) channels, such as those in the diffusion bonded HXs proposed for SFRs coupled with a supercritical CO2 (sCO2) Brayton cycle power conversion system. In SFRs, Na2O deposition can potentially occur following accidental air ingress in the intermediate heat transport system (IHTS) sodium and simultaneous failure of the IHTS sodium cold trap. In this scenario, oxygen can travel through the IHTS loop and reach the coldest regions, represented by the cold end of the sodium channels of the HXs, where Na2O precipitation may initiate and continue. In addition to deteriorating HX heat transfer and pressure drop performance, Na2O deposition can lead to channel plugging especially when the size of the sodium channels is small, which is the case for diffusion bonded HXs whose sodium channel hydraulic diameter is generally below 5 mm. Sodium oxide melts at a high temperature well above the sodium melting temperature such that removal of a solid plug such as through dissolution by pure sodium could take a lengthy time. The Sodium Plugging Phenomena Loop (SPPL) was developed at ANL, prior to this project, for investigating Na2O deposition phenomena within sodium channels that are prototypical of the diffusion bonded HX channels envisioned for SFR-sCO2 systems. In this project, a Computational Fluid Dynamic (CFD) model capable of simulating the thermal-hydraulics of the SPPL test

  6. The dynamic effect of exchange-rate volatility on Turkish exports: Parsimonious error-correction model approach

    Directory of Open Access Journals (Sweden)

    Demirhan Erdal

    2015-01-01

    Full Text Available This paper aims to investigate the effect of exchange-rate stability on real export volume in Turkey, using monthly data for the period February 2001 to January 2010. The Johansen multivariate cointegration method and the parsimonious error-correction model are applied to determine long-run and short-run relationships between real export volume and its determinants. In this study, the conditional variance of the GARCH (1, 1 model is taken as a proxy for exchange-rate stability, and generalized impulse-response functions and variance-decomposition analyses are applied to analyze the dynamic effects of variables on real export volume. The empirical findings suggest that exchangerate stability has a significant positive effect on real export volume, both in the short and the long run.

  7. Computer-aided process planning in prismatic shape die components based on Standard for the Exchange of Product model data

    Directory of Open Access Journals (Sweden)

    Awais Ahmad Khan

    2015-11-01

    Full Text Available Insufficient technologies made good integration between the die components in design, process planning, and manufacturing impossible in the past few years. Nowadays, the advanced technologies based on Standard for the Exchange of Product model data are making it possible. This article discusses the three main steps for achieving the complete process planning for prismatic parts of the die components. These three steps are data extraction, feature recognition, and process planning. The proposed computer-aided process planning system works as part of an integrated system to cover the process planning of any prismatic part die component. The system is built using Visual Basic with EWDraw system for visualizing the Standard for the Exchange of Product model data file. The system works successfully and can cover any type of sheet metal die components. The case study discussed in this article is taken from a large design of progressive die.

  8. Exchange anisotropy of ferromagnetic/antiferromagnetic bilayers intrinsic magnetic anisotropy of antiferromagnetic layer and single spin ensemble model

    CERN Document Server

    Tsunoda, M

    2002-01-01

    The origin of the magnetic anisotropy of the antiferromagnetic (AF) layer and the role of it in the magnetization process of exchange coupled ferromagnetic/antiferromagnetic bilayers are discussed. Through the magnetic torque analysis of a pseudo-single crystalline Ni-Fe/Mn-Ni bilayer and a polycrystalline Ni-Fe/Mn-Ir bilayer, the magnetocrystalline anisotropy of the antiferromagnet is strongly suggested to be the origin of the magnetic anisotropy of the antiferromagnetic (AF) layer. The single spin ensemble model is newly introduced for polycrystalline bilayers, taking into account the two-dimensionally random distribution of the magnetic anisotropy axes of the AF grains. The mechanism of a well-known experimental fact, the reversible induction of the exchange anisotropy along desirable directions by field cooling procedure, is successfully elucidated with the new model.

  9. Role stressors and job attitudes: a mediated model of leader-member exchange.

    Science.gov (United States)

    Zhang, Rui-Ping; Tsingan, Li; Zhang, Long-Ping

    2013-01-01

    Workers with high levels of role stressors have been known to report low job satisfaction and high turnover intention. However, how the role stressors-job attitudes relationship is influenced by leader-member exchange has hardly been studied. This study examined the effect of leader-member exchange (leader support) on the relationship between chronic role stressors (i.e., role ambiguity and role conflict) and job attitudes (i.e., job satisfaction and turnover intention). Employees (N = 162) who enrolled in weekend psychology courses were investigated. The results showed that leader-member exchange mediated the effects of role stressors on job satisfaction and turnover intention. Implications of these results are discussed and directions for future research are suggested.

  10. COMPARISON OF MATHEMATICAL MODELS FOR HEAT EXCHANGERS OF UNCONVENTIONAL CHP UNITS

    Directory of Open Access Journals (Sweden)

    Peter Durcansky

    2015-08-01

    Full Text Available An unconventional CHP unit with a hot air engine is designed as the primary energy source with fuel in the form of biomass. The heat source is a furnace designed for combustion of biomass, whether in the form of wood logs or pellets. The transport of energy generated by the biomass combustion to the working medium of a hot-air engine is ensured by a special heat exchanger connected to this resource. The correct operation of the hot-air engine is largely dependent on an appropriate design of the exchanger. The paper deals with the calculation of the heat exchanger for the applicationsmentioned, using criterion equations, and based on CFD simulations.

  11. A quark model calculation for the short-range contribution in the pion double charge exchange reaction

    Energy Technology Data Exchange (ETDEWEB)

    Zou Bingsong; Jiang Huanqing (Institute of Theoretical Physics and Institute of High Energy Physcis, Academia Sinica, Beijing (CN))

    1989-10-01

    A quark model calculation for the short-range contribution in the pion double charge exchange (DCX) reaction is presented. In the framework of this new model the angular distributions of {sup 18}O({pi}{sup +},{pi}{sup {minus}}){sup 18}Ne(g.s.) at low energies are calculated and compared with the experimental data. It is found that this model can explain the anomalous'' increasing behavior for the DCX reaction around 50 MeV quite well.

  12. Barter exchanges

    DEFF Research Database (Denmark)

    Sudzina, Frantisek

    Although barter is often perceived as something that proceeded money, barter is still used. The focus of the paper is on barter exchanges. Barter exchanges are used both in developing countries as well as in developed countries (including the U.S.). They are used by both organizations...... and individuals. They usually allow to exchange good but some include also services. Some exchanges allow only for bi-directional barter, i.e. when only two parties are involved in the exchange. But probably most of the barter exchanges use barter money; this makes it easier to exchange goods and services...

  13. The Impact of Coastal Phytoplankton Blooms on Ocean-Atmosphere Thermal Energy Exchange: Evidence from a Two-Way Coupled Numerical Modeling System

    Science.gov (United States)

    2012-12-25

    Phytoplankton Blooms on Ocean-Atmosphere Thermal Energy Exchange: Evidence from a Two-Way Coupled Numerical Modeling System 5a. CONTRACT NUMBER... phytoplankton stocks in a coastal embayment may impact thermal energy exchange processes. Monterey Bay simulations parameterizing solar shortwave transparency...in the surface ocean as an invariant oligotrophic oceanic water type estimate consistently colder sea surface temperature (SST) than simulations

  14. Estimation of a simple agent-based model of financial markets: An application to Australian stock and foreign exchange data

    Science.gov (United States)

    Alfarano, Simone; Lux, Thomas; Wagner, Friedrich

    2006-10-01

    Following Alfarano et al. [Estimation of agent-based models: the case of an asymmetric herding model, Comput. Econ. 26 (2005) 19-49; Excess volatility and herding in an artificial financial market: analytical approach and estimation, in: W. Franz, H. Ramser, M. Stadler (Eds.), Funktionsfähigkeit und Stabilität von Finanzmärkten, Mohr Siebeck, Tübingen, 2005, pp. 241-254], we consider a simple agent-based model of a highly stylized financial market. The model takes Kirman's ant process [A. Kirman, Epidemics of opinion and speculative bubbles in financial markets, in: M.P. Taylor (Ed.), Money and Financial Markets, Blackwell, Cambridge, 1991, pp. 354-368; A. Kirman, Ants, rationality, and recruitment, Q. J. Econ. 108 (1993) 137-156] of mimetic contagion as its starting point, but allows for asymmetry in the attractiveness of both groups. Embedding the contagion process into a standard asset-pricing framework, and identifying the abstract groups of the herding model as chartists and fundamentalist traders, a market with periodic bubbles and bursts is obtained. Taking stock of the availability of a closed-form solution for the stationary distribution of returns for this model, we can estimate its parameters via maximum likelihood. Expanding our earlier work, this paper presents pertinent estimates for the Australian dollar/US dollar exchange rate and the Australian stock market index. As it turns out, our model indicates dominance of fundamentalist behavior in both the stock and foreign exchange market.

  15. Exchange market pressures during the financial crisis: A Bayesian model averaging evidence

    Czech Academy of Sciences Publication Activity Database

    Feldkircher, M.; Horváth, Roman; Rusnák, M.

    2014-01-01

    Roč. 40, č. 1 (2014), s. 21-41 ISSN 0261-5606 R&D Projects: GA ČR GA13-11983S Institutional support: RVO:67985556 Keywords : exchange rate pressure * Financial crisis Subject RIV: AH - Economics Impact factor: 2.117, year: 2014 http://library.utia.cas.cz/separaty/2015/E/horvath-0449956.pdf

  16. Modelling land atmosphere exchange of gaseous oxides of nitrogen in Europe

    NARCIS (Netherlands)

    Duyzer, J.; Fowler, D.

    1994-01-01

    This review outlines current understanding of the exchange processes and methods used to estimate regional NOy deposition. Several methods have been used to measure dry deposition. Measurement artefacts such as non-stationarity caused by local sources, monitors responding to other gases than NO2 and

  17. Micromagnetic Modeling of Reversal Nucleation in Core/Shell Exchange-Spring Structures

    Science.gov (United States)

    Jiang, J. S.; Bader, Sam

    2015-03-01

    Nanocomposite exchange-spring permanent magnet materials promise superior performance and are a potential solution to the supply criticality in rare earth elements. The nucleation of magnetization reversal in cylindrical and spherical soft core/hard shell exchange-spring structures has been investigated by solving the linearized Brown's equation perturbatively, and has been verified with numerical simulations. Accounting for the magnetostatic self-interaction field leads to a modification to the proposed quasi-coherent ``bulging'' mode of nucleation for small core sizes. The modified curling mode, where the magnetization configuration is vortex-like and flux-closed, becomes favored at large core sizes. The mode crossover occurs at a core diameter of approximately twice the exchange length for the cylindrical geometry. Since flux-closure allows magnetic elements to be densely packed without affecting the nucleation field, a potential direction for improving permanent magnet materials is to induce the modified curling mode by creating a soft-cylinder-in-hard-matrix exchange-spring microstructure. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

  18. Biosphere model simulations of interannual variability in terrestrial 13C/12C exchange.

    NARCIS (Netherlands)

    Velde, van der I.R.; Miller, J.B.; Schaefer, K.; Masarie, K.A.; Denning, S.; White, J.W.C.; Krol, M.C.; Peters, W.; Tans, P.P.

    2013-01-01

    Previous studies suggest that a large part of the variability in the atmospheric ratio of (CO2)-C-13/(12)CO(2)originates from carbon exchange with the terrestrial biosphere rather than with the oceans. Since this variability is used to quantitatively partition the total carbon sink, we here

  19. Electromagnetic properties of the deuteron in a relativistic one-boson exchange model

    NARCIS (Netherlands)

    Tjon, J.A.; Zuilhof, M.J.

    1979-01-01

    The deuteron electric electromagnetic form factors are studied in a quasi-potential framework, where relativistic and meson-exchange contributions are treated consistently. At moderate momentum transfer the corrections to the static approximation are found to be significantly less than estimates

  20. Air-Sea Exchange of Legacy POPs in the North Sea Based on Results of Fate and Transport, and Shelf-Sea Hydrodynamic Ocean Models

    OpenAIRE

    Kieran O'Driscoll

    2014-01-01

    The air-sea exchange of two legacy persistent organic pollutants (POPs), γ-HCH and PCB 153, in the North Sea, is presented and discussed using results of regional fate and transport and shelf-sea hydrodynamic ocean models for the period 1996–2005. Air-sea exchange occurs through gas exchange (deposition and volatilization), wet deposition and dry deposition. Atmospheric concentrations are interpolated into the model domain from results of the EMEP MSC-East multi-compartmental model (Gusev et ...

  1. Mapping cation exchange capacity using a Veris-3100 instrument and invVERIS modelling software.

    Science.gov (United States)

    Koganti, T; Moral, F J; Rebollo, F J; Huang, J; Triantafilis, J

    2017-12-01

    The cation exchange capacity (CEC) is one of the most important soil properties as it influences soil's ability to hold essential nutrients. It also acts as an index of structural resilience. In this study, we demonstrate a method for 3-dimensional mapping of CEC across a study field in south-west Spain. We do this by establishing a linear regression (LR) between the calculated true electrical conductivity (σ - mS/m) and measured CEC (cmol(+)/kg) at various depths. We estimate σ by inverting Veris-3100 data (ECa - mS/m) collected along 47 parallel transects spaced 12m apart. We invert the ECa data acquired from both shallow (0-0.3m) and deep (0-0.9m) array configurations, using a quasi-three-dimensional inversion algorithm (invVeris V1.1). The CEC data was acquired at 40 locations and from the topsoil (0-0.3m), subsurface (0.3-0.6m) and subsoil (0.6-0.9m). The best LR between σ and CEC was achieved using S2 inversion algorithm using a damping factor (λ)=18. The LR (CEC=1.77+0.33×σ) had a large coefficient of determination (R(2)=0.89). To determine the predictive capability of the LR, we validated the model using a cross-validation. Given the high accuracy (root-mean-square-error [RMSE]=1.69 cmol(+)/kg), small bias (mean-error [ME]=-0.00cmol(+)/kg) and large coefficient of determination (R(2)=0.88) and Lin's concordance (0.94), between measured and predicted CEC and at various depths, we conclude we were well able to predict the CEC distribution in topsoil and the subsurface. However, the predictions made in the subsoil were poor due to limited data availability in areas where ECa changed rapidly from small to large values. In this regard, improvements in prediction accuracy can be achieved by collection of ECa in more closely spaced transects, particularly in areas where ECa varies over short spatial scales. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. A replica exchange Monte Carlo algorithm for protein folding in the HP model

    Directory of Open Access Journals (Sweden)

    Shmygelska Alena

    2007-09-01

    Full Text Available Abstract Background The ab initio protein folding problem consists of predicting protein tertiary structure from a given amino acid sequence by minimizing an energy function; it is one of the most important and challenging problems in biochemistry, molecular biology and biophysics. The ab initio protein folding problem is computationally challenging and has been shown to be NP MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaat0uy0HwzTfgDPnwy1egaryqtHrhAL1wy0L2yHvdaiqaacqWFneVtcqqGqbauaaa@3961@-hard even when conformations are restricted to a lattice. In this work, we implement and evaluate the replica exchange Monte Carlo (REMC method, which has already been applied very successfully to more complex protein models and other optimization problems with complex energy landscapes, in combination with the highly effective pull move neighbourhood in two widely studied Hydrophobic Polar (HP lattice models. Results We demonstrate that REMC is highly effective for solving instances of the square (2D and cubic (3D HP protein folding problem. When using the pull move neighbourhood, REMC outperforms current state-of-the-art algorithms for most benchmark instances. Additionally, we show that this new algorithm provides a larger ensemble of ground-state structures than the existing state-of-the-art methods. Furthermore, it scales well with sequence length, and it finds significantly better conformations on long biological sequences and sequences with a provably unique ground-state structure, which is believed to be a characteristic of real proteins. We also present evidence that our REMC algorithm can fold sequences which exhibit significant interaction between termini in the hydrophobic core relatively easily. Conclusion We demonstrate that REMC utilizing the pull move

  3. Validation of intermediate heat and decay heat exchanger model in MARS-LMR with STELLA-1 and JOYO tests

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chiwoong; Ha, Kwiseok; Hong, Jonggan; Yeom, Sujin; Eoh, Jaehyuk [Sodium-cooled Fast Reactor Design Division, Korea Atomic Energy Research Institute (KAERI), 989-111, Daedeok-Daero, Yuseong-Gu, Daejeon 305-353 (Korea, Republic of); Jeong, Hae-yong, E-mail: hyjeong@sejong.ac.kr [Department of Nuclear Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 143-747 (Korea, Republic of)

    2016-11-15

    Highlights: • The capability of the MARS-LMR for heat transfer through IHX and DHX is evaluated. • Prediction of heat transfer through IHXs and DHXs is essential in the SFR analysis. • Data obtained from the STELLA-1 and the JOYO test are analyzed with the MARS-LMR. • MARS-LMR adopts the Aoki’s correlation for tube side and Graber-Rieger’s for shell. • The performance of the basic models and other available correlations is evaluated. • The current models in MARS-LMR show best prediction for JOYO and STELLA-1 data. - Abstract: The MARS-LMR code has been developed by the Korea Atomic Energy Research Institute (KAERI) to analyze transients in a pool-type sodium-cooled fast reactor (SFR). Currently, KAERI is developing a prototype Gen-IV SFR (PGSFR) with metallic fuel. The decay heat exchangers (DHXs) and the intermediate heat exchangers (IHXs) were designed as a sodium-sodium counter-flow tube bundle type for decay heat removal system (DHRS) and intermediate heat transport system (IHTS), respectively. The IHX and DHX are important components for a heat removal function under normal and accident conditions, respectively. Therefore, sodium heat transfer models for the DHX and IHX heat exchangers were added in MARS-LMR. In order to validate the newly added heat transfer model, experimental data were obtained from the JOYO and STELLA-1 facilities were analyzed. JOYO has two different types of IHXs: type-A (co-axial circular arrangement) and type-B (triangular arrangement). For the code validation, 38 and 39 data points for type A and type B were selected, respectively. A DHX performance test was conducted in STELLA-1, which is the test facility for heat exchangers and primary pump in the PGSFR. The DHX test in STELLA-1 provided eight data points for a code validation. Ten nodes are used in the heat transfer region is used, based on the verification test for the heat transfer models. RMS errors for JOYO IHX type A and type B of 19.1% and 4.3% are obtained

  4. Non-stomatal exchange in ammonia dry deposition models: comparison of two state-of-the-art approaches

    Directory of Open Access Journals (Sweden)

    F. Schrader

    2016-10-01

    Full Text Available The accurate representation of bidirectional ammonia (NH3 biosphere–atmosphere exchange is an important part of modern air quality models. However, the cuticular (or external leaf surface pathway, as well as other non-stomatal ecosystem surfaces, still pose a major challenge to translating our knowledge into models. Dynamic mechanistic models including complex leaf surface chemistry have been able to accurately reproduce measured bidirectional fluxes in the past, but their computational expense and challenging implementation into existing air quality models call for steady-state simplifications. Here we qualitatively compare two semi-empirical state-of-the-art parameterizations of a unidirectional non-stomatal resistance (Rw model after Massad et al. (2010, and a quasi-bidirectional non-stomatal compensation-point (χw model after Wichink Kruit et al. (2010, with NH3 flux measurements from five European sites. In addition, we tested the feasibility of using backward-looking moving averages of air NH3 concentrations as a proxy for prior NH3 uptake and as a driver of an alternative parameterization of non-stomatal emission potentials (Γw for bidirectional non-stomatal exchange models. Results indicate that the Rw-only model has a tendency to underestimate fluxes, while the χw model mainly overestimates fluxes, although systematic underestimations can occur under certain conditions, depending on temperature and ambient NH3 concentrations at the site. The proposed Γw parameterization revealed a clear functional relationship between backward-looking moving averages of air NH3 concentrations and non-stomatal emission potentials, but further reduction of uncertainty is needed for it to be useful across different sites. As an interim solution for improving flux predictions, we recommend reducing the minimum allowed Rw and the temperature response parameter in the unidirectional model and revisiting the temperature-dependent Γw parameterization

  5. Automatic Generation of Object Models for Process Planning and Control Purposes using an International standard for Information Exchange

    Directory of Open Access Journals (Sweden)

    Petter Falkman

    2003-10-01

    Full Text Available In this paper a formal mapping between static information models and dynamic models is presented. The static information models are given according to an international standard for product, process and resource information exchange, (ISO 10303-214. The dynamic models are described as Discrete Event Systems. The product, process and resource information is automatically converted into product routes and used for simulation, controller synthesis and verification. A high level language, combining Petri nets and process algebra, is presented and used for speci- fication of desired routes. A main implication of the presented method is that it enables the reuse of process information when creating dynamic models for process control. This method also enables simulation and verification to be conducted early in the development chain.

  6. Integrated bicarbonate-form ion exchange treatment and regeneration for DOC removal: Model development and pilot plant study.

    Science.gov (United States)

    Hu, Yue; Boyer, Treavor H

    2017-05-15

    The application of bicarbonate-form anion exchange resin and sodium bicarbonate salt for resin regeneration was investigated in this research is to reduce chloride ion release during treatment and the disposal burden of sodium chloride regeneration solution when using traditional chloride-form ion exchange (IX). The target contaminant in this research was dissolved organic carbon (DOC). The performance evaluation was conducted in a completely mixed flow reactor (CMFR) IX configuration. A process model that integrated treatment and regeneration was investigated based on the characteristics of configuration. The kinetic and equilibrium experiments were performed to obtain required parameters for the process model. The pilot plant tests were conducted to validate the model as well as provide practical understanding on operation. The DOC concentration predicted by the process model responded to the change of salt concentration in the solution, and showed a good agreement with pilot plant data with less than 10% difference in terms of percentage removal. Both model predictions and pilot plant tests showed over 60% DOC removal by bicarbonate-form resin for treatment and sodium bicarbonate for regeneration, which was comparable to chloride-form resin for treatment and sodium chloride for regeneration. Lastly, the DOC removal was improved by using higher salt concentration for regeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Macroscopic models for charge exchange reactions in N not = Z nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Stringari, S.; Lipparini, E.

    1987-10-19

    Vlasov equations in the isospin channels are derived in the framework of the time dependent Hartree-Fock theory. The local equilibrium (hydrodynamic) approximation is then considered and applied to study isovector giant resonances excited in charge exchange reactions and ..mu../sup -/ inclusive capture in N not = Z nuclei. The theoretical predictions well account for the observed energy splitting between different isospin fragments and for the quenching of the ..delta..T/sub Z/ = +1 strength.

  8. Manager-subordinate exchange relationships : investigation of a manager behavior model

    OpenAIRE

    Carter, Marta L.

    1993-01-01

    This field study investigated the relationship among behavioral and perceptual measures of the Leader-Member Exchange (LMX) relationship and organizational outcome variables. The major purposes of this study were to determine: (1) the extent to which the dyad is the appropriate level of analysis for the examination of manager-subordinate relationships, (2) which objectively observed managerr behaviors are important in defining negotiating latitude, the most commonly us...

  9. A Generalized Adsorption Rate Model Based on the Limiting-Component Constraint in Ion-Exchange Chromatographic Separation for Multicomponent Systems

    DEFF Research Database (Denmark)

    In species exchange processes (e.g., ion-exchange chromatography column), conventional adsorption rate models describe mass transfer (or exchange) between phases, assuming the existence of a counterpart species. In contrast, the adsorption models may not be useful in an inert environment (or...... inactive zone) where adsorption/desorption cannot take place because of lack of counterpart species. In packed-bed chromatography described as a distributed dynamic system, a wide range of concentrations including zero-concentrations can be distributed over the column length and the concentration profiles...... such that conventional LDF (linear driving force) type models are extended to inactive zones without loosing their generality. Based on a limiting component constraint, an exchange probability kernel is developed for multi-component systems. The LDF-type model with the kernel is continuous with time and axial direction...

  10. Variability in the saline water exchange between the Baltic and the Gulf of Gdansk by the sigma-coordinate model

    Directory of Open Access Journals (Sweden)

    Andrzej Jankowski

    2003-03-01

    Full Text Available A three-dimensional baroclinic sigma-coordinate model was applied to study the circulation and thermohaline variabilityin the coastal zone in the south-eastern Baltic Sea. The model is based on the Princeton Ocean Model code of Blumberg & Mellor(1987, known as POM, and has the horizontal resolution of ~5 km and 24 sigma-levels in the vertical. The hydrodynamic conditions and variability of water and salt exchange between the Gulf of Gdansk and the Baltic Proper, and the renewal of water masses in the Gulf of Gdansk due to atmospheric forcing are analyzed. The numerical simulations were performed with real atmospheric forcings as well as with homogeneous (spatially uniform wind fields over the whole Baltic Sea. The numerical simulations showed that the atmospheric forcing (winds can play a significant role in shaping the renewal of bottom saline waters in the Gulf of Gdansk. Two regions of inflow/outflow of saline waters responsible for the salinity regime were located. The overall water exchange between the Gulf and the Baltic Proper as well as the exchange of saline bottom waters appear to be strongly dependent on wind conditions. The net flux of water of salinity >9 PSU is of the order of 48000-100000 m3 s-1. SE, E, S and NE winds were foundto exert the greatest influence on salinity conditions in the Gulf of Gdansk. Estimates of saline (salinity >9 PSU water residencetime based on the model simulation yielded values from 46 days for SE winds to 153 days for NW winds.

  11. Air/ground heat exchanger (GHE): Modelling, design, performance; Luft-/Erdwaermetauscher EWT: Modellierung, Auslegung und Betriebserfahrungen

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, A. [Fraunhofer-Inst. fuer Solare Energiesysteme, Freiburg (Germany); Pfafferott, J. [Energieversorgung Spree-Schwarze Elster AG (ESSAG), Cottbus (Germany); Dibowski, G. [Deutsches Zentrum fuer Luft- und Raumfahrt e.V. (DLR), Koeln (Germany). Abt. Sonnenofen

    1998-02-01

    Air/Ground Heat Exchanger (GHE) utilize soil for seasonal heat storage and are used for air preheating or -cooling. Design and layout require suitable tools which adequately describe the complex heat temperature mechanisms in soils. Since heat densities in soil and heat exchange coefficients between air and GHE are both low, a detailed characterization of the soil and a precise modeling of the heat exchange processes within the GHE are needed. Tools for the design and yield prediction of GHE are presented by way of examples. Results are compared with measured data and both opportunities and limitations of GHEs are discussed using calculated and actual data. (orig.) [Deutsch] Luft-/Erdwaermetauscher EWT nutzen das Erdreich als saisonalen Energiespeicher, sie werden beispielsweise zur Zuluft-Vorerwaermung oder -kuehlung eingesetzt. Die Planung und Auslegung von Luft-/Erdwaermetauschern erfordert geeignete Hilfsmittel, um das komplizierte Temperaturfeld im Erdreich mit ausreichender Genauigkeit abbilden zu koennen. Da die Waermestromdichten im Erdreich und der Waermeuebergang zwischen der Luft im Luft-/Erdwaermetauscher und dem umgebenden Erdreich gering sind, ist sowohl eine detaillierte Abbildung des Erdreichs als auch die Modellierung des Waermeuebergangs im Luft-/Erdwaermetauscher erforderlich. Verfahren zur Auslegung und Ertragsvorhersage von Luft-/Erdwaermetauschern werden vorgestellt und deren Anwendung demonstriert. Die Ergebnisse werden mit Betriebserfahrungen von realisierten Luft-/Erdwrmetauschern verglichen. Moeglichkeiten und Grenzen von Luft-/Erdwaermetauschern werden anhand von Praxis und Simulationsrechnungen diskutiert. (orig.)

  12. Optimization of Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Ivan Catton

    2010-10-01

    The objective of this research is to develop tools to design and optimize heat exchangers (HE) and compact heat exchangers (CHE) for intermediate loop heat transport systems found in the very high temperature reator (VHTR) and other Generation IV designs by addressing heat transfer surface augmentation and conjugate modeling. To optimize heat exchanger, a fast running model must be created that will allow for multiple designs to be compared quickly. To model a heat exchanger, volume averaging theory, VAT, is used. VAT allows for the conservation of mass, momentum and energy to be solved for point by point in a 3 dimensional computer model of a heat exchanger. The end product of this project is a computer code that can predict an optimal configuration for a heat exchanger given only a few constraints (input fluids, size, cost, etc.). As VAT computer code can be used to model characteristics )pumping power, temperatures, and cost) of heat exchangers more quickly than traditional CFD or experiment, optimization of every geometric parameter simultaneously can be made. Using design of experiment, DOE and genetric algorithms, GE, to optimize the results of the computer code will improve heat exchanger disign.

  13. A model-data fusion analysis for examining the response of carbon exchange to environmental variation in crop field

    Science.gov (United States)

    Yokozawa, M.; Sakurai, G.; Ono, K.; Mano, M.; Miyata, A.

    2011-12-01

    Agricultural activities, cultivating crops, managing soil, harvesting and post-harvest treatments, are not only affected from the surrounding environment but also change the environment reversely. The changes in environment, temperature, radiation and precipitation, brings changes in crop productivity. On the other hand, the status of crops, i.e. the growth and phenological stage, change the exchange of energy, H2O and CO2 between crop vegetation surface and atmosphere. Conducting the stable agricultural harvests, reducing the Greenhouse Effect Gas (GHG) emission and enhancing carbon sequestration in soil are preferable as a win-win activity. We conducted model-data fusion analysis for examining the response of cropland-atmosphere carbon exchange to environmental variation. The used model consists of two sub models, paddy rice growth sub-model and soil decomposition sub-model. The crop growth sub-model mimics the rice plant growth processes including formation of reproductive organs as well as leaf expansion. The soil decomposition sub-model simulates the decomposition process of soil organic carbon. Assimilating the data on the time changes in CO2 flux measured by eddy covariance method, rice plant biomass, LAI and the final yield with the model, the parameters were calibrated using a stochastic optimization algorithm with a particle filter. The particle filter, which is one of Monte Carlo filters, enable us to evaluating time changes in parameters based on the observed data until the time and to make prediction of the system. Iterative filtering and prediction with changing parameters and/or boundary condition enable us to obtain time changes in parameters governing the crop production as well as carbon exchange. In this paper, we applied the model-data fusion analysis to the two datasets on paddy rice field sites in Japan: only a single rice cultivation, and a single rice and wheat cultivation. We focused on the parameters related to crop production as well as

  14. Multiscale study of bacterial growth: Experiments and model to understand the impact of gas exchange on global growth.

    Science.gov (United States)

    Lalanne-Aulet, David; Piacentini, Adalberto; Guillot, Pierre; Marchal, Philippe; Moreau, Gilles; Colin, Annie

    2015-01-01

    Using a millifluidics and macroscale setup, we study quantitatively the impact of gas exchange on bacterial growth. In millifluidic environments, the permeability of the incubator materials allows an unlimited oxygen supply by diffusion. Moreover, the efficiency of diffusion at small scales makes the supply instantaneous in comparison with the cell division time. In hermetic closed vials, the amount of available oxygen is low. The growth curve has the same trend but is quantitatively different from the millifluidic situation. The analysis of all the data allows us to write a quantitative modeling enabling us to capture the entire growth process.

  15. Modeling data of copper(II) sorption onto the composite sorbent based on cation exchanger and tin(IV) hydroxide

    Science.gov (United States)

    Ikanina, Elena V.; Kalyaeva, Mariya I.; Markov, Vyacheslav F.

    2017-09-01

    The methodology of stepwise synthesis of the composite sorbent based on cation exchanger and tin(IV) hydroxide was demonstrated. The results of copper(II) sorption onto the composite sorbent are presented. Langmuir, Freundlich and Temkin adsorption isotherms were used in mathematical modeling of the sorption data. The Langmuir model most accurately describes the sorption process. The constants of the Langmuir model and the specific surface area of the composite sorbent were defined. Granules of the composite sorbent were studied by scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDXMA). The distribution coefficients of copper(II) in the composite sorbent and the sorption degree from CuSO4 aqueous solutions of various concentrations were computed.

  16. Mathematical modeling of the "plant community -soil-like substrate -gas exchange with the human" closed ecosystem

    Science.gov (United States)

    Barkhatov, Yuri; Gubanov, Vladimir; Tikhomirov, Alexander A.; Degermendzhy, Andrey G.

    A mathematical model of the "plant community -soil-like substrate -gas exchange with the human" experimental biological life support system (BLSS) has been constructed to predict its functioning and estimate feasibility of controlling it. The mathematical model consists of three compartments -two `phytotron' models (with wheat and radish) and the `mycotron' model (for mushrooms). The following components are included in the model: edible mushrooms (mushroom fruit bodies and mycelium); wheat; radish; straw (processed by mycelium); dead organic matter in the phytotron (separately for the wheat unit and for the radish unit); worms; worms' coprolites; vermicompost used as a soil-like substrate (SLS); bacterial microflora; min-eral nitrogen, phosphorus and iron; products of the system intended for humans (wheat grains, radish roots and mushroom fruit bodies); oxygen and carbon dioxide. Under continuous gas exchange, the mass exchange between the compartments occurs at the harvesting time. The conveyor character of the closed ecosystem functioning has been taken into account -the num-ber of culture age groups can be regulated (in experiments -4 and 8 age groups). The conveyor cycle duration can be regulated as well. The module is designed for the food and gas exchange requirements of 1/30 of a virtually present human. Aim of model analysis is determination of investigation direction in real experimental BLSS. The model allows doing dynamic calcu-lations of closure coefficient based on the main elements taken into account in the model and evaluating all dynamic components of the system under different conditions and modes of its operation, especially under the conditions that can hardly be created experimentally. One of the sustainability conditions can be long-duration functioning of the system under the light-ing that is far from the optimum. The mathematical model of the system can demonstrate variants of its sustainable functioning or ruin under various critical

  17. Surface-atmosphere exchange of ammonia over peatland using QCL-based eddy-covariance measurements and inferential modeling

    Science.gov (United States)

    Zöll, Undine; Brümmer, Christian; Schrader, Frederik; Ammann, Christof; Ibrom, Andreas; Flechard, Christophe R.; Nelson, David D.; Zahniser, Mark; Kutsch, Werner L.

    2016-09-01

    Recent advances in laser spectrometry offer new opportunities to investigate ecosystem-atmosphere exchange of environmentally relevant trace gases. In this study, we demonstrate the applicability of a quantum cascade laser (QCL) absorption spectrometer to continuously measure ammonia concentrations at high time resolution and thus to quantify the net exchange between a seminatural peatland ecosystem and the atmosphere based on the eddy-covariance approach. Changing diurnal patterns of both ammonia concentration and fluxes were found during different periods of the campaign. We observed a clear tipping point in early spring with decreasing ammonia deposition velocities and increasingly bidirectional fluxes that occurred after the switch from dormant vegetation to CO2 uptake but was triggered by a significant weather change. While several biophysical parameters such as temperature, radiation, and surface wetness were identified to partially regulate ammonia exchange at the site, the seasonal concentration pattern was clearly dominated by agricultural practices in the surrounding area. Comparing the results of a compensation point model with our measurement-based flux estimates showed considerable differences in some periods of the campaign due to overestimation of non-stomatal resistances caused by low acid ratios. The total cumulative campaign exchange of ammonia after 9 weeks, however, differed only in a 6 % deviation with 911 and 857 g NH3-N ha-1 deposition being found by measurements and modeling, respectively. Extrapolating our findings to an entire year, ammonia deposition was lower than reported by Hurkuck et al. (2014) for the same site in previous years using denuder systems. This was likely due to a better representation of the emission component in the net signal of eddy-covariance fluxes as well as better adapted site-specific parameters in the model. Our study not only stresses the importance of high-quality measurements for studying and assessing land

  18. Surface–atmosphere exchange of ammonia over peatland using QCL-based eddy-covariance measurements and inferential modeling

    Directory of Open Access Journals (Sweden)

    U. Zöll

    2016-09-01

    Full Text Available Recent advances in laser spectrometry offer new opportunities to investigate ecosystem–atmosphere exchange of environmentally relevant trace gases. In this study, we demonstrate the applicability of a quantum cascade laser (QCL absorption spectrometer to continuously measure ammonia concentrations at high time resolution and thus to quantify the net exchange between a seminatural peatland ecosystem and the atmosphere based on the eddy-covariance approach. Changing diurnal patterns of both ammonia concentration and fluxes were found during different periods of the campaign. We observed a clear tipping point in early spring with decreasing ammonia deposition velocities and increasingly bidirectional fluxes that occurred after the switch from dormant vegetation to CO2 uptake but was triggered by a significant weather change. While several biophysical parameters such as temperature, radiation, and surface wetness were identified to partially regulate ammonia exchange at the site, the seasonal concentration pattern was clearly dominated by agricultural practices in the surrounding area. Comparing the results of a compensation point model with our measurement-based flux estimates showed considerable differences in some periods of the campaign due to overestimation of non-stomatal resistances caused by low acid ratios. The total cumulative campaign exchange of ammonia after 9 weeks, however, differed only in a 6 % deviation with 911 and 857 g NH3-N ha−1 deposition being found by measurements and modeling, respectively. Extrapolating our findings to an entire year, ammonia deposition was lower than reported by Hurkuck et al. (2014 for the same site in previous years using denuder systems. This was likely due to a better representation of the emission component in the net signal of eddy-covariance fluxes as well as better adapted site-specific parameters in the model. Our study not only stresses the importance of high-quality measurements

  19. APEX user`s guide - (Argonne production, expansion, and exchange model for electrical systems), version 3.0

    Energy Technology Data Exchange (ETDEWEB)

    VanKuiken, J.C.; Veselka, T.D.; Guziel, K.A.; Blodgett, D.W.; Hamilton, S.; Kavicky, J.A.; Koritarov, V.S.; North, M.J.; Novickas, A.A.; Paprockas, K.R. [and others

    1994-11-01

    This report describes operating procedures and background documentation for the Argonne Production, Expansion, and Exchange Model for Electrical Systems (APEX). This modeling system was developed to provide the U.S. Department of Energy, Division of Fossil Energy, Office of Coal and Electricity with in-house capabilities for addressing policy options that affect electrical utilities. To meet this objective, Argonne National Laboratory developed a menu-driven programming package that enables the user to develop and conduct simulations of production costs, system reliability, spot market network flows, and optimal system capacity expansion. The APEX system consists of three basic simulation components, supported by various databases and data management software. The components include (1) the investigation of Costs and Reliability in Utility Systems (ICARUS) model, (2) the Spot Market Network (SMN) model, and (3) the Production and Capacity Expansion (PACE) model. The ICARUS model provides generating-unit-level production-cost and reliability simulations with explicit recognition of planned and unplanned outages. The SMN model addresses optimal network flows with recognition of marginal costs, wheeling charges, and transmission constraints. The PACE model determines long-term (e.g., longer than 10 years) capacity expansion schedules on the basis of candidate expansion technologies and load growth estimates. In addition, the Automated Data Assembly Package (ADAP) and case management features simplify user-input requirements. The ADAP, ICARUS, and SMN modules are described in detail. The PACE module is expected to be addressed in a future publication.

  20. Capital Asset Pricing Model Testing at Warsaw Stock Exchange: Are Family Businesses the Remedy for Economic Recessions?

    Directory of Open Access Journals (Sweden)

    Jacek Lipiec

    2014-07-01

    Full Text Available In this article, we test the capital asset pricing model (CAPM on the Warsaw Stock Exchange (WSE by measuring the performance of two portfolios composed of construction firms: family-controlled and nonfamily controlled. These portfolios were selected from the WIG-Construction (WIG—Warszawski Indeks Giełdowy—Warsaw Stock Exchange Index. The performance of both portfolios was measured in the period from 2006 to 2012 with respect to three sub-periods: (1 pre-crisis period: 2006–2007; (2 crisis period: 2008–2009; and (3 post-crisis period: 2010–2012. This division was constructed in this way to find out how family firms performed in crisis times in relation to nonfamily firms. In addition, the construction portfolio was chosen due to its sensitivity to recessions. When an economy faces a downturn, construction firms are among the first to be exposed to risk. The performance was measured by using the capital asset pricing model with statistical inference. We find that public family firms significantly outperformed non-family peers in the crisis times.

  1. An Integrated Data Analysis model to determine ion effective charge from beam attenuation and charge exchange emission measurements

    Science.gov (United States)

    Nornberg, M. D.; den Hartog, D. J.; Reusch, L. M.

    2017-10-01

    We have created a forward model for charge-exchange impurity density measurements that incorporates neutral beam attenuation measurements self-consistently for determining the ion effective charge Zeff in MST PPCD plasmas. Detailed knowledge of Zeff is critical to determining the resistive dissipation of hot plasmas and requires knowledge of the impurity content and dynamics. Previously, Zeff profiles were determined from soft-x-ray brightness measurements by using charge-exchange impurity density measurements as prior information using an Integrated Data Analysis (IDA) method. The model is extended to include a self-consistent calculation of the neutral beam attenuation and includes measurements of the beam Doppler-shift spectrum and shine-through particle flux. Methods of experimental design are employed to calculate the information gained from different diagnostic combinations. The analysis shows that while attenuation measurements alone do not provide a unique impurity density measurement in the case of a multi-species inhomogeneous plasmas, they do provide a valuable measurement of the Zeff profile and constrain the range of contributing impurity densities. Supported by US DOE.

  2. Carbon dioxide exchange over agricultural landscape using eddy correlation and footprint modelling

    DEFF Research Database (Denmark)

    Søgaard, H.; Jensen, N.O.; Bøgh, E.

    2003-01-01

    Within an agricultural landscape of western Denmark, the carbon dioxide exchange was studied throughout a year (April 1998-March 1999). During the growing season, five eddy correlation systems were operated in parallel over some of the more important crops (winter wheat, winter barley, spring...... barley, maize and grass). A sixth system was mounted on top of a 48 m mast to enable landscape-wide flux measurements both in summer and winter. The spatial distribution of the different crop types was mapped by use of satellite images (Landsat TM and SPOT). A very large diversity in carbon functioning...... is observed when comparing the carbon dioxide fluxes from the different fields. In the middle of the growing season, May-June, the daytime CO2 fluxes range from a net emission of 5 g C m(-2) per day to a carbon assimilation of 12 g C m(-2) per day. Due to differences in canopy development this range...

  3. Carbon mass-balance modeling and carbon isotope exchange processes in the Curonian Lagoon

    Science.gov (United States)

    Barisevičiūtė, Rūta; Žilius, Mindaugas; Ertürk, Ali; Petkuvienė, Jolita

    2016-04-01

    The Curonian lagoon one of the largest coastal lagoons in Europe is located in the southeastern part of the Baltic Sea and lies along the Baltic coast of Lithuania and the Kaliningrad region of Russia. It is influenced by a discharge of the Nemunas and other smaller rivers and saline water of the Baltic Sea. The narrow (width 0.4 km, deep 8-14 m) Klaipėda Strait is the only way for fresh water run-off and brackish water intrusions. This research is focused on carbon isotope fractionations related with air - water exchange, primary production and organic carbon sedimentation, mineralization and uptake from both marine and terrestrial sources.

  4. Intercomparisons of Prognostic, Diagnostic, and Inversion Modeling Approaches for Estimation of Net Ecosystem Exchange over the Pacific Northwest Region

    Science.gov (United States)

    Turner, D. P.; Jacobson, A. R.; Nemani, R. R.

    2013-12-01

    The recent development of large spatially-explicit datasets for multiple variables relevant to monitoring terrestrial carbon flux offers the opportunity to estimate the terrestrial land flux using several alternative, potentially complimentary, approaches. Here we developed and compared regional estimates of net ecosystem exchange (NEE) over the Pacific Northwest region of the U.S. using three approaches. In the prognostic modeling approach, the process-based Biome-BGC model was driven by distributed meteorological station data and was informed by Landsat-based coverages of forest stand age and disturbance regime. In the diagnostic modeling approach, the quasi-mechanistic CFLUX model estimated net ecosystem production (NEP) by upscaling eddy covariance flux tower observations. The model was driven by distributed climate data and MODIS FPAR (the fraction of incident PAR that is absorbed by the vegetation canopy). It was informed by coarse resolution (1 km) data about forest stand age. In both the prognostic and diagnostic modeling approaches, emissions estimates for biomass burning, harvested products, and river/stream evasion were added to model-based NEP to get NEE. The inversion model (CarbonTracker) relied on observations of atmospheric CO2 concentration to optimize prior surface carbon flux estimates. The Pacific Northwest is heterogeneous with respect to land cover and forest management, and repeated surveys of forest inventory plots support the presence of a strong regional carbon sink. The diagnostic model suggested a stronger carbon sink than the prognostic model, and a much larger sink that the inversion model. The introduction of Landsat data on disturbance history served to reduce uncertainty with respect to regional NEE in the diagnostic and prognostic modeling approaches. The FPAR data was particularly helpful in capturing the seasonality of the carbon flux using the diagnostic modeling approach. The inversion approach took advantage of a global

  5. Ventilation-perfusion distributions and gas exchange during carbon dioxide-pneumoperitoneum in a porcine model.

    Science.gov (United States)

    Strang, C M; Fredén, F; Maripuu, E; Hachenberg, T; Hedenstierna, G

    2010-11-01

    Carbon dioxide (CO₂)-pneumoperitoneum (PP) of 12 mm Hg increases arterial oxygenation, but it also promotes collapse of dependent lung regions. This seeming paradox prompted the present animal study on the effects of PP on ventilation-perfusion distribution (V/Q) and gas exchange. Fourteen anaesthetized pigs were studied. In seven pigs, single photon emission computed tomography (SPECT) was used for spatial analysis of ventilation and perfusion distributions, and in another seven pigs, multiple inert gas elimination technique (MIGET) was used for detailed analysis of V/Q matching. SPECT/MIGET and central haemodynamics and pulmonary gas exchange were recorded during anaesthesia before and 60 min after induction of PP. SPECT during PP showed no or only poorly ventilated regions in the dependent lung compared with the ventilation distribution during anaesthesia before PP. PP was accompanied by redistribution of blood flow away from the non- or poorly ventilated regions. V/Q analysis by MIGET showed decreased shunt from 9 (sd 2) to 7 (2)% after induction of PP (P<0.05). No regions of low V/Q were seen either before or during PP. Almost no regions of high V/Q developed during PP (1% of total ventilation). Pa(o₂) increased from 33 (1.2) to 35.7 (3.2) kPa (P<0.01) and arterial to end-tidal Pco₂ gradient (Pae'(co₂) increased from 0.3 (0.1) to 0.6 (0.2) kPa (P<0.05). Perfusion was redistributed away from dorsal, collapsed lung regions when PP was established. This resulted in a better V/Q match. A possible mechanism is enhanced hypoxic pulmonary vasoconstriction.

  6. A 3-D functional-structural grapevine model that couples the dynamics of water transport with leaf gas exchange.

    Science.gov (United States)

    Zhu, Junqi; Dai, Zhanwu; Vivin, Philippe; Gambetta, Gregory A; Henke, Michael; Peccoux, Anthony; Ollat, Nathalie; Delrot, Serge

    2017-12-23

    Predicting both plant water status and leaf gas exchange under various environmental conditions is essential for anticipating the effects of climate change on plant growth and productivity. This study developed a functional-structural grapevine model which combines a mechanistic understanding of stomatal function and photosynthesis at the leaf level (i.e. extended Farqhuhar-von Caemmerer-Berry model) and the dynamics of water transport from soil to individual leaves (i.e. Tardieu-Davies model). The model included novel features that account for the effects of xylem embolism (fPLC) on leaf hydraulic conductance and residual stomatal conductance (g0), variable root and leaf hydraulic conductance, and the microclimate of individual organs. The model was calibrated with detailed datasets of leaf photosynthesis, leaf water potential, xylem sap abscisic acid (ABA) concentration and hourly whole-plant transpiration observed within a soil drying period, and validated with independent datasets of whole-plant transpiration under both well-watered and water-stressed conditions. The model well captured the effects of radiation, temperature, CO2 and vapour pressure deficit on leaf photosynthesis, transpiration, stomatal conductance and leaf water potential, and correctly reproduced the diurnal pattern and decline of water flux within the soil drying period. In silico analyses revealed that decreases in g0 with increasing fPLC were essential to avoid unrealistic drops in leaf water potential under severe water stress. Additionally, by varying the hydraulic conductance along the pathway (e.g. root and leaves) and changing the sensitivity of stomatal conductance to ABA and leaf water potential, the model can produce different water use behaviours (i.e. iso- and anisohydric). The robust performance of this model allows for modelling climate effects from individual plants to fields, and for modelling plants with complex, non-homogenous canopies. In addition, the model provides a

  7. A Review of the Experimental and Modeling Development of a Water Phase Change Heat Exchanger for Future Exploration Support Vehicles

    Science.gov (United States)

    Cognata, Thomas; Leimkuehler, Thomas; Ramaswamy, Balasubramaniam; Nayagam, Vedha; Hasan, Mohammad; Stephan, Ryan

    2011-01-01

    Water affords manifold benefits for human space exploration. Its properties make it useful for the storage of thermal energy as a Phase Change Material (PCM) in thermal control systems, in radiation shielding against Solar Particle Events (SPE) for the protection of crew members, and it is indisputably necessary for human life support. This paper envisions a single application for water which addresses these benefits for future exploration support vehicles and it describes recent experimental and modeling work that has been performed in order to arrive at a description of the thermal behavior of such a system. Experimental units have been developed and tested which permit the evaluation of the many parameters of design for such a system with emphasis on the latent energy content, temperature rise, mass, and interstitial material geometry. The experimental results are used to develop a robust and well correlated model which is intended to guide future design efforts toward the multi-purposed water PCM heat exchanger envisioned.

  8. Numerical solutions to a kinetic model for the plasma-sheath problem with charge exchange collisions of ions.

    Science.gov (United States)

    Sternovsky, Z; Downum, K; Robertson, S

    2004-08-01

    A kinetic model of the plasma-sheath problem is presented that includes the effects of charge-exchange collisions of the ion. The collisions are modeled as a sink for accelerated ions and as a source of cold ions. Solutions are obtained by numerical integration of Poisson's equation from a point near the plasma midplane to the wall. In the quasineutral region, these solutions agree with earlier analytic work. As the mean free path is decreased, the current density at the wall decreases and the potential profile in the quasineutral region shows a smooth transition from a parabolic profile to a nearly cubic profile determined by the ion mobility. An approximate expression is found for the ion flux to the wall in the collisional limit.

  9. On controllability and system constraints of the linear models of proton exchange membrane and solid oxide fuel cells

    Science.gov (United States)

    Radisavljevic, Verica

    2011-10-01

    In this paper we first show that the linear models of proton exchange membrane (polymer electrolyte membrane, PEM) and solid oxide (SO) fuel cells, commonly used in power and energy literature, are not controllable. The source of uncontrollability is the equation for pressure of the water vapor that is only affected by the fuel cell current, which in fact is a disturbance in this system and cannot be controlled by the given model inputs: inlet molar flow rates of hydrogen and oxygen. Being uncontrollable these models are not good candidates for studying control of dynamic processes in PEM and SO fuel cells. However, due to their simplicity, they can be used in hybrid configurations with other energy producing devices such as photovoltaic (solar) cells, wind turbine, micro gas turbine, battery (ultra capacitor) to demonstrate some other phenomena, but not for control purposes unless the hybrid models formed in such hybrid configurations are controllable. Testing controllability of such hybrid models is mandatory. Secondly, we introduce some algebraic constraints that follow from the model dynamics and the Nernst open-loop fuel cell voltage formula. These constraints must be satisfied in simulation of considered fuel cell modes, for example, via MATLAB/Simulink or any other computer software package.

  10. Modelling the impact of soil Carbonic Anhydrase on the net ecosystem exchange of OCS at Harvard forest using the MuSICA model

    Science.gov (United States)

    Launois, Thomas; Ogée, Jérôme; Commane, Roisin; Wehr, Rchard; Meredith, Laura; Munger, Bill; Nelson, David; Saleska, Scott; Wofsy, Steve; Zahniser, Mark; Wingate, Lisa

    2016-04-01

    The exchange of CO2 between the terrestrial biosphere and the atmosphere is driven by photosynthetic uptake and respiratory loss, two fluxes currently estimated with considerable uncertainty at large scales. Model predictions indicate that these biosphere fluxes will be modified in the future as CO2 concentrations and temperatures increase; however, it still unclear to what extent. To address this challenge there is a need for better constraints on land surface model parameterisations. Additional atmospheric tracers of large-scale CO2 fluxes have been identified as potential candidates for this task. In particular carbonyl sulphide (OCS) has been proposed as a complementary tracer of gross photosynthesis over land, since OCS uptake by plants is dominated by carbonic anhydrase (CA) activity, an enzyme abundant in leaves that catalyses CO2 hydration during photosynthesis. However, although the mass budget at the ecosystem is dominated by the flux of OCS into leaves, some OCS is also exchanged between the atmosphere and the soil and this component of the budget requires constraining. In this study, we adapted the process-based isotope-enabled model MuSICA (Multi-layer Simulator of the Interactions between a vegetation Canopy and the Atmosphere) to include the transport, reaction, diffusion and production of OCS within a forested ecosystem. This model was combined with 3 years (2011-2013) of in situ measurements of OCS atmospheric concentration profiles and fluxes at the Harvard Forest (Massachussets, USA) to test hypotheses on the mechanisms responsible for CA-driven uptake by leaves and soils as well as possible OCS emissions during litter decomposition. Model simulations over the three years captured well the impact of diurnally and seasonally varying environmental conditions on the net ecosystem OCS flux. A sensitivity analysis on soil CA activity and soil OCS emission rates was also performed to quantify their impact on the vertical profiles of OCS inside the

  11. The use of laboratory-determined ion exchange parameters in the predictive modelling of field-scale major cation migration in groundwater over a 40-year period.

    Science.gov (United States)

    Carlyle, Harriet F; Tellam, John H; Parker, Karen E

    2004-01-01

    An attempt has been made to estimate quantitatively cation concentration changes as estuary water invades a Triassic Sandstone aquifer in northwest England. Cation exchange capacities and selectivity coefficients for Na(+), K(+), Ca(2+), and Mg(2+) were measured in the laboratory using standard techniques. Selectivity coefficients were also determined using a method involving optimized back-calculation from flushing experiments, thus permitting better representation of field conditions; in all cases, the Gaines-Thomas/constant cation exchange capacity (CEC) model was found to be a reasonable, though not perfect, first description. The exchange parameters interpreted from the laboratory experiments were used in a one-dimensional reactive transport mixing cell model, and predictions compared with field pumping well data (Cl and hardness spanning a period of around 40 years, and full major ion analyses in approximately 1980). The concentration patterns predicted using Gaines-Thomas exchange with calcite equilibrium were similar to the observed patterns, but the concentrations of the divalent ions were significantly overestimated, as were 1980 sulphate concentrations, and 1980 alkalinity concentrations were underestimated. Including representation of sulphate reduction in the estuarine alluvium failed to replicate 1980 HCO(3) and pH values. However, by including partial CO(2) degassing following sulphate reduction, a process for which there is 34S and 18O evidence from a previous study, a good match for SO(4), HCO(3), and pH was attained. Using this modified estuary water and averaged values from the laboratory ion exchange parameter determinations, good predictions for the field cation data were obtained. It is concluded that the Gaines-Thomas/constant exchange capacity model with averaged parameter values can be used successfully in ion exchange predictions in this aquifer at a regional scale and over extended time scales, despite the numerous assumptions inherent in

  12. O3 and NOx Exchange

    NARCIS (Netherlands)

    Loubet, B.; Castell, J.F.; Laville, P.; Personne, E.; Tuzet, A.; Ammann, C.; Emberson, L.; Ganzeveld, L.; Kowalski, A.S.; Merbold, L.; Stella, P.; Tuovinen, J.P.

    2015-01-01

    This discussion was based on the background document “Review on modelling atmosphere-biosphere exchange of Ozone and Nitrogen oxides”, which reviews the processes contributing to biosphere-atmosphere exchange of O3 and NOx, including stomatal and non-stomatal exchange of O3 and NO, NO2.

  13. Comparison of different modelling strategies for simulating gas exchange of Douglas-fir forest

    NARCIS (Netherlands)

    Wijk, van M.T.; Bouten, W.; Verstraten, J.M.

    2002-01-01

    Carbon and latent heat fluxes can be simulated with different model strategies to fulfil different research purposes. In this study we compared four different model concepts: artificial neural networks (ANN), fuzzy logic (FL), an index model (IM, using light use efficiency and water use efficiency)

  14. Experimental and numerical study of nanofluid in heat exchanger fitted by modified twisted tape: exergy analysis and ANN prediction model

    Science.gov (United States)

    Maddah, Heydar; Ghasemi, Nahid; Keyvani, Bahram; Cheraghali, Ramin

    2017-04-01

    Present study provides an experimental investigation of the exergetic efficiency due to the flow and heat transfer of nanofluids in different geometries and flow regimes of the double pipe heat exchangers. The experiments with different Geometrical Progression Ratio (GPR) of twists as the new modified twisted tapes and different nanofluid concentration were performed under similar operation condition. Pitch length of the proposed twisted tapes and consequently the twist ratios changed along the twists with respect to the Geometrical Progression Ratio (GPR) whether reducer (RGPR 1). Regarding the experimental data, utilization of RGPR twists together with nanofluids tends to increase exergetic efficiency. Since the Prediction of exergetic efficiency from experimental process is complex and time consuming, artificial neural networks for identification of the relationship, which may exist between the thermal and flow parameters and exergetic efficiency, have been utilized. The network input consists of five parameters ({Re} ,\\Pr ,φ, Tr, GPR) that crucially dominate the heat transfer process. The results proved that the introduced ANN model is reliable and capable in proposing a proper development plan for a heat exchanger and/or to determine the optimal plan of operation for heat transfer process.

  15. Sharing Service Resource Information for Application Integration in a Virtual Enterprise - Modeling the Communication Protocol for Exchanging Service Resource Information

    Science.gov (United States)

    Yamada, Hiroshi; Kawaguchi, Akira

    Grid computing and web service technologies enable us to use networked resources in a coordinated manner. An integrated service is made of individual services running on coordinated resources. In order to achieve such coordinated services autonomously, the initiator of a coordinated service needs to know detailed service resource information. This information ranges from static attributes like the IP address of the application server to highly dynamic ones like the CPU load. The most famous wide-area service discovery mechanism based on names is DNS. Its hierarchical tree organization and caching methods take advantage of the static information managed. However, in order to integrate business applications in a virtual enterprise, we need a discovery mechanism to search for the optimal resources based on the given a set of criteria (search keys). In this paper, we propose a communication protocol for exchanging service resource information among wide-area systems. We introduce the concept of the service domain that consists of service providers managed under the same management policy. This concept of the service domain is similar to that for autonomous systems (ASs). In each service domain, the service information provider manages the service resource information of service providers that exist in this service domain. The service resource information provider exchanges this information with other service resource information providers that belong to the different service domains. We also verified the protocol's behavior and effectiveness using a simulation model developed for proposed protocol.

  16. Interpretation of relevance of sodium-calcium exchange in action potential of diabetic rat heart by mathematical model.

    Science.gov (United States)

    Yaras, Nazmi; Turan, Belma

    2005-01-01

    Sarcolemmal Na+-Ca2+ exchange plays a central role in ion transport of the myocardium and the current carried with it contributes to the late phase of the action potential (AP) besides the contribution of outward K+-currents. In this study, the mathematical model for AP of the diabetic rat ventricular myocytes [34] was modified and used for the diabetic rat papillary muscle. We used our experimentally measured values of two K+-currents; transient outward current, Ito and steady-state outward current, Iss, as well as L-type Ca2+-current, I(CaL), then compared with the simulated values. We have demonstrated that the prolongation in the AP of the papillary muscle of the diabetic rats are not due to the alteration of I(CaL) but mainly due to the inhibition of the K+-currents and also the Na+-Ca2+ exchanger current, I(Na-Ca). In combination with our experimental data on sodium-selenite-treated diabetic rats, our simulation results provide new information concerning plausible ionic mechanisms, and second a possible positive effect of selenium treatment on the altered I(Na-Ca) for the observed changes in the AP duration of streptozotocin-induced diabetic rat heart.

  17. A model sensitivity study for the sea–air exchange of methane in the Laptev Sea, Arctic Ocean

    Directory of Open Access Journals (Sweden)

    Iréne Wåhlström

    2014-10-01

    Full Text Available The ocean's sinks and sources determine the concentration of methane in the water column and by that regulating the emission of methane to the atmosphere. In this study, we investigate how sensitive the sea–air exchange of methane is to increasing/decreasing sinks and sources as well as changes of different drivers with a time-dependent biogeochemical budget model for one of the shallow shelf sea in the Siberian Arctic, the Laptev Sea. The applied changes are: increased air temperature, river discharge, wind, atmospheric methane, concentration of nutrients in the river runoff or flux of methane from the sediment. Furthermore, simulations are performed to examine how the large range in observations for methane concentration in the Lena River as well as the rate of oxidation affects the net sea–air exchange. In addition, a simulation with five of these changes applied together was carried out to simulate expected climate change at the end of this century. The result indicates that none of the simulations changed the seawater to becoming a net sink for atmospheric methane and all simulations except three increased the outgassing to the atmosphere. The three exceptions were: doubling the atmospheric methane, decreasing the rivers’ concentration of methane and increasing the oxidation rate where the latter is one of the key mechanisms controlling emission of methane to the atmosphere.

  18. Modeling heat exchangers under consideration of manufacturing tolerances and uncertain flow distribution

    Energy Technology Data Exchange (ETDEWEB)

    Abdelaziz, O.; Radermacher, R. [Center for Environmental Energy Engineering, Department of Mechanical Engineering, University of Maryland, 4164 Martin Hall, College Park, MD 20742 (United States)

    2010-06-15

    Small dimensions found in modern and novel heat exchanger (HX) designs encounter very challenging manufacturing issues. With current manufacturing techniques HXs in small dimensions will exhibit large tolerances relative to design variables. Hence, the anticipated variation in performance is a concern. Furthermore, small flow channel dimensions are very susceptible to severe fouling and even blockage. Therefore, flow distribution would be uncertain. These uncertainties in dimensions and flow distribution should be accounted for during the design and performance evaluation of new HX geometries with focus on ultra-compact designs. This paper outlines an effort to theoretically evaluate the performance of an air-to-water HX, assembled from tubes with non-conventional heat transfer surfaces. Vertical spacing within this HX is subject to a predefined statistical distribution compounded with uncertainty in water flow rate through each flow path (i.e., tube). A new implementation technique for {epsilon}-NTU is proposed in order to accommodate different air conditions on both tube sides. A Monte Carlo simulation approach is used to estimate the HX performance distribution. This approach is applied to three HX designs showing the performance degradation subject to geometrical and flow uncertainties. The simulation results under uncertainty provided useful insights into the reasons for the performance degradation and showed great impact to the uncertainty distribution. Overall, the proposed HX design with the smallest dimensions showed the least performance degradation due to manufacturing and operating conditions uncertainty. (author)

  19. Perovskite Quantum Dots Modeled Using ab Initio and Replica Exchange Molecular Dynamics

    KAUST Repository

    Buin, Andrei

    2015-06-18

    © 2015 American Chemical Society. Organometal halide perovskites have recently attracted tremendous attention at both the experimental and theoretical levels. Much of this work has been dedicated to bulk material studies, yet recent experimental work has shown the formation of highly efficient quantum-confined nanocrystals with tunable band edges. Here we investigate perovskite quantum dots from theory, predicting an upper bound of the Bohr radius of 45 Å that agrees well with literature values. When the quantum dots are stoichiometric, they are trap-free and have nearly symmetric contributions to confinement from the valence and conduction bands. We further show that surface-associated conduction bandedge states in perovskite nanocrystals lie below the bulk states, which could explain the difference in Urbach tails between mesoporous and planar perovskite films. In addition to conventional molecular dynamics (MD), we implement an enhanced phase-space sampling algorithm, replica exchange molecular dynamics (REMD). We find that in simulation of methylammonium orientation and global minima, REMD outperforms conventional MD. To the best of our knowledge, this is the first REMD implementation for realistic-sized systems in the realm of DFT calculations.

  20. Computational Fluid Dynamic Modeling of Horizontal Air-Ground Heat Exchangers (HAGHE for HVAC Systems

    Directory of Open Access Journals (Sweden)

    Paolo Maria Congedo

    2014-12-01

    Full Text Available In order to satisfy the requirements of Directive 2010/31/EU for Zero Energy Buildings (ZEB, innovative solutions were investigated for building HVAC systems. Horizontal air-ground heat exchangers (HAGHE offer a significant contribution in reducing energy consumption for ventilation, using the thermal energy stored underground, in order to pre-heat or pre-cool the ventilation air, in winter and summer, respectively. This is particularly interesting in applications for industrial, commercial and education buildings where keeping the indoor air quality under control is extremely important. Experimental measurements show that, throughout the year, the outside air temperature fluctuations are mitigated at sufficient ground depth (about 3 m because of the high thermal inertia of the soil, the ground temperature is relatively constant and instead higher than that of the outside air in winter and lower in summer. The study aims to numerically investigate the behavior of HAGHE by varying the air flow rate and soil conductivity in unsteady conditions by using annual weather data of South-East Italy. The analysis shows that, in warm climates, the HAGHE brings a real advantage for only a few hours daily in winter, while it shows significant benefits in the summer for the cooling of ventilation air up to several temperature degrees, already by a short pipe.

  1. THE CURRENT ACCOUNT DEFICIT AND THE FIXED EXCHANGE RATE. ADJUSTING MECHANISMS AND MODELS.

    Directory of Open Access Journals (Sweden)

    HATEGAN D.B. Anca

    2010-07-01

    Full Text Available The main purpose of the paper is to explain what measures can be taken in order to fix the trade deficit, and the pressure that is upon a country by imposing such measures. The international and the national supply and demand conditions change rapidly, and if a country doesn’t succeed in keeping a tight control over its deficit, a lot of factors will affect its wellbeing. In order to reduce the external trade deficit, the government needs to resort to several techniques. The desired result is to have a balanced current account, and therefore, the government is free to use measures such as fixing its exchange rate, reducing government spending etc. We have shown that all these measures will have a certain impact upon an economy, by allowing its exports to thrive and eliminate the danger from excessive imports, or vice-versa. The main conclusion our paper is that government intervention is allowed in order to maintain the balance of the current account.

  2. Purification of Monoclonal Antibodies Using a Fiber Based Cation-Exchange Stationary Phase: Parameter Determination and Modeling

    Directory of Open Access Journals (Sweden)

    Jan Schwellenbach

    2016-10-01

    Full Text Available Monoclonal antibodies (mAb currently dominate the market for protein therapeutics. Because chromatography unit operations are critical for the purification of therapeutic proteins, the process integration of novel chromatographic stationary phases, driven by the demand for more economic process schemes, is a field of ongoing research. Within this study it was demonstrated that the description and prediction of mAb purification on a novel fiber based cation-exchange stationary phase can be achieved using a physico-chemical model. All relevant mass-transport phenomena during a bind and elute chromatographic cycle, namely convection, axial dispersion, boundary layer mass-transfer, and the salt dependent binding behavior in the fiber bed were described. This work highlights the combination of model adaption, simulation, and experimental parameter determination through separate measurements, correlations, or geometric considerations, independent from the chromatographic cycle. The salt dependent binding behavior of a purified mAb was determined by the measurement of adsorption isotherms using batch adsorption experiments. Utilizing a combination of size exclusion and protein A chromatography as analytic techniques, this approach can be extended to a cell culture broth, describing the salt dependent binding behavior of multiple components. Model testing and validation was performed with experimental bind and elute cycles using purified mAb as well as a clarified cell culture broth. A comparison between model calculations and experimental data showed a good agreement. The influence of the model parameters is discussed in detail.

  3. Numerical model of a thermoelectric generator with compact plate-fin heat exchanger for high temperature PEM fuel cell exhaust heat recovery

    DEFF Research Database (Denmark)

    Xin, Gao; Andreasen, Søren Juhl; Chen, Min

    2012-01-01

    This paper presents a numerical model of an exhaust heat recovery system for a high temperature polymer electrolyte membrane fuel cell (HTPEMFC) stack. The system is designed as thermoelectric generators (TEGs) sandwiched in the walls of a compact plate-fin heat exchanger. Its model is based...

  4. Effect of geometrical uncertainties on the performance of heat exchangers using an efficient POD-based model reduction technique

    Science.gov (United States)

    Abraham, S.; Ghorbaniasl, G.; Raisee, M.; Lacor, C.

    2016-06-01

    The present paper aims at assessing the effect of manufacturing tolerances on the performance of heat exchangers. To this end, a two-dimensional square rib-roughened cooling channel is considered and uncertainties are introduced along the rib profile, using a Karhunen-Loéve expansion including 20 uncertainties. In order to break the curse of dimensionality and keep the overall computational cost within acceptable limits, an efficient uncertainty quantification strategy is followed. A sensitivity analysis is first performed on a coarse grid, enabling the most important dimension to be identified and to remove the ones which have not any significant effect on the output of interest. Afterwards, an efficient Proper Orthogonal Decomposition based dimension reduction technique is implemented in order to propagate uncertainties through the CFD model. It is shown that heat transfer predictions are strongly affected by geometrical uncertainties while no significant effect was found for the pressure drop.

  5. A Carbon Flux Super Site. New Insights and Innovative Atmosphere-Terrestrial Carbon Exchange Measurements and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Leclerc, Monique Y. [The University of Georgia Research Foundation, Athens, GA (United States)

    2014-11-17

    This final report presents the main activities and results of the project “A Carbon Flux Super Site: New Insights and Innovative Atmosphere-Terrestrial Carbon Exchange Measurements and Modeling” from 10/1/2006 to 9/30/2014. It describes the new AmeriFlux tower site (Aiken) at Savanna River Site (SC) and instrumentation, long term eddy-covariance, sodar, microbarograph, soil and other measurements at the site, and intensive field campaigns of tracer experiment at the Carbon Flux Super Site, SC, in 2009 and at ARM-CF site, Lamont, OK, and experiments in Plains, GA. The main results on tracer experiment and modeling, on low-level jet characteristics and their impact on fluxes, on gravity waves and their influence on eddy fluxes, and other results are briefly described in the report.

  6. Information Exchange in Global Logistics Chains : An application for Model-based Auditing (abstract)

    NARCIS (Netherlands)

    Veenstra, A.W.; Hulstijn, J.; Christiaanse, R.; Tan, Y.

    2013-01-01

    An integrated data pipeline has been proposed to meet requirements for supply chain visibility and control. How can data integration be used for risk assessment, monitoring and control in global supply chains? We argue that concepts from model-based auditing can be used to model the ‘ideal’ flow of

  7. Jump-diffusion model of exchange rate dynamics : estimation via indirect inference

    NARCIS (Netherlands)

    Jiang, George J.

    1998-01-01

    This paper investigates asymmetric effects of monetary policy over the business cycle. A two-state Markov Switching Model is employed to model both recessions and expansions. For the United States and Germany, strong evidence is found that monetary policy is more effective in a recession than during

  8. Modelling Combined Heat Exchange in the Leading Edge of Perspective Aircraft Wing

    Directory of Open Access Journals (Sweden)

    Kandinsky Roman O.

    2015-01-01

    Full Text Available In this paper gas dynamic numerical modelling of leading edge flow is presented and thermal loading parameters are determined. Numerical modelling of combined radiative and conductive heat transfer of the wing edge is carried out, thermal state of structure is given and the results are analyzed.

  9. Efficient ensemble forecasting of marine ecology with clustered 1D models and statistical lateral exchange: application to the Red Sea

    KAUST Repository

    Dreano, Denis

    2017-05-24

    Forecasting the state of large marine ecosystems is important for many economic and public health applications. However, advanced three-dimensional (3D) ecosystem models, such as the European Regional Seas Ecosystem Model (ERSEM), are computationally expensive, especially when implemented within an ensemble data assimilation system requiring several parallel integrations. As an alternative to 3D ecological forecasting systems, we propose to implement a set of regional one-dimensional (1D) water-column ecological models that run at a fraction of the computational cost. The 1D model domains are determined using a Gaussian mixture model (GMM)-based clustering method and satellite chlorophyll-a (Chl-a) data. Regionally averaged Chl-a data is assimilated into the 1D models using the singular evolutive interpolated Kalman (SEIK) filter. To laterally exchange information between subregions and improve the forecasting skills, we introduce a new correction step to the assimilation scheme, in which we assimilate a statistical forecast of future Chl-a observations based on information from neighbouring regions. We apply this approach to the Red Sea and show that the assimilative 1D ecological models can forecast surface Chl-a concentration with high accuracy. The statistical assimilation step further improves the forecasting skill by as much as 50%. This general approach of clustering large marine areas and running several interacting 1D ecological models is very flexible. It allows many combinations of clustering, filtering and regression technics to be used and can be applied to build efficient forecasting systems in other large marine ecosystems.

  10. Efficient ensemble forecasting of marine ecology with clustered 1D models and statistical lateral exchange: application to the Red Sea

    Science.gov (United States)

    Dreano, Denis; Tsiaras, Kostas; Triantafyllou, George; Hoteit, Ibrahim

    2017-07-01

    Forecasting the state of large marine ecosystems is important for many economic and public health applications. However, advanced three-dimensional (3D) ecosystem models, such as the European Regional Seas Ecosystem Model (ERSEM), are computationally expensive, especially when implemented within an ensemble data assimilation system requiring several parallel integrations. As an alternative to 3D ecological forecasting systems, we propose to implement a set of regional one-dimensional (1D) water-column ecological models that run at a fraction of the computational cost. The 1D model domains are determined using a Gaussian mixture model (GMM)-based clustering method and satellite chlorophyll-a (Chl-a) data. Regionally averaged Chl-a data is assimilated into the 1D models using the singular evolutive interpolated Kalman (SEIK) filter. To laterally exchange information between subregions and improve the forecasting skills, we introduce a new correction step to the assimilation scheme, in which we assimilate a statistical forecast of future Chl-a observations based on information from neighbouring regions. We apply this approach to the Red Sea and show that the assimilative 1D ecological models can forecast surface Chl-a concentration with high accuracy. The statistical assimilation step further improves the forecasting skill by as much as 50%. This general approach of clustering large marine areas and running several interacting 1D ecological models is very flexible. It allows many combinations of clustering, filtering and regression technics to be used and can be applied to build efficient forecasting systems in other large marine ecosystems.

  11. The Atmospheric Chemistry and Canopy Exchange Simulation System (ACCESS: model description and application to a temperate deciduous forest canopy

    Directory of Open Access Journals (Sweden)

    R. D. Saylor

    2013-01-01

    Full Text Available Forest canopies are primary emission sources of biogenic volatile organic compounds (BVOCs and have the potential to significantly influence the formation and distribution of secondary organic aerosol (SOA mass. Biogenically-derived SOA formed as a result of emissions from the widespread forests across the globe may affect air quality in populated areas, degrade atmospheric visibility, and affect climate through direct and indirect forcings. In an effort to better understand the formation of SOA mass from forest emissions, a 1-D column model of the multiphase physical and chemical processes occurring within and just above a vegetative canopy is being developed. An initial, gas-phase-only version of this model, the Atmospheric Chemistry and Canopy Exchange Simulation System (ACCESS, includes processes accounting for the emission of BVOCs from the canopy, turbulent vertical transport within and above the canopy and throughout the height of the planetary boundary layer (PBL, near-explicit representation of chemical transformations, mixing with the background atmosphere and bi-directional exchange between the atmosphere and canopy and the atmosphere and forest floor. The model formulation of ACCESS is described in detail and results are presented for an initial application of the modeling system to Walker Branch Watershed, an isoprene-emission-dominated forest canopy in the southeastern United States which has been the focal point for previous chemical and micrometeorological studies. Model results of isoprene profiles and fluxes are found to be consistent with previous measurements made at the simulated site and with other measurements made in and above mixed deciduous forests in the southeastern United States. Sensitivity experiments are presented which explore how canopy concentrations and fluxes of gas-phase precursors of SOA are affected by background anthropogenic nitrogen oxides (NOx. Results from these experiments suggest that the

  12. Differences in Net Ecosystem Exchange for an intensely managed watershed using a lumped, regional model and a mechanistic, hillslope-scale model

    Science.gov (United States)

    Wilson, C. G.; Wacha, K.; Papanicolaou, T.; Stanier, C. O.; Jamroensan, A.

    2014-12-01

    In this study, Net Ecosystem Exchange (NEE), and its components Gross Ecosystem Exchange (GEE) and Ecosystem Respiration (RESP), were compared from a lumped, regional model and a mechanistic, hillslope-scale model to determine if the effects of land management on the carbon cycle are captured by larger-scale biosphere models that determine CO2 sources and sinks. WRF-VPRM (Weather Research & Forecasting - Vegetation Photosynthesis & Respiration Model) is a regional-scale model that uses simulated downward shortwave radiation and surface temperatures, along with satellite-derived land cover indices and eddy flux tower-derived parameters to estimate biosphere CO2 fluxes with empirical equations. The DAYCENT biogeochemical model coupled with the Watershed Erosion Prediction Project model (WEPP), which simulates changes in soil carbon stocks due to different land management and the resulting enhanced erosion, can also quantify biosphere CO2 fluxes. Both models (i.e., WRF-VPRM and WEPP-DAYCENT) were used to quantify GEE, RESP, and NEE for the summer of 2008 in the IML-CZO Clear Creek watershed of the U.S. Midwest to examine the role of land management heterogeneity in CO2 exchanges between the biosphere and atmosphere. Comparing average daily GEE rates from WRF-VPRM (-11.0 ± 5.2 g C/m2/d) with WEPP-DAYCENT average values weighted per land use area in the watershed (-10.2 ± 1.5 g C/m2/d) showed no significant differences (t-test; p=0.08). In contrast, daily RESP values were different between the two models. Daily respiration rates were relatively constant for WRF-VPRM (6.0 ± 0.8 g C/m2/d), while WEPP-DAYCENT values for each management practice were significantly greater (7.2 ± 1.8 g C/m2/d; t-test, pmanagement and net erosion/deposition on total SOC stocks and tillage impacts on respiration by increasing decomposition from the breaking of soil aggregates and enhanced mineralization. In WRF-VPRM, respiration is calculated with a regression equation based on air

  13. Evaluation of a hierarchy of models reveals importance of substrate limitation for predicting carbon dioxide and methane exchange in restored wetlands

    Science.gov (United States)

    Oikawa, P. Y.; Jenerette, G. D.; Knox, S. H.; Sturtevant, C.; Verfaillie, J.; Dronova, I.; Poindexter, C. M.; Eichelmann, E.; Baldocchi, D. D.

    2017-01-01

    Wetlands and flooded peatlands can sequester large amounts of carbon (C) and have high greenhouse gas mitigation potential. There is growing interest in financing wetland restoration using C markets; however, this requires careful accounting of both CO2 and CH4 exchange at the ecosystem scale. Here we present a new model, the PEPRMT model (Peatland Ecosystem Photosynthesis Respiration and Methane Transport), which consists of a hierarchy of biogeochemical models designed to estimate CO2 and CH4 exchange in restored managed wetlands. Empirical models using temperature and/or photosynthesis to predict respiration and CH4 production were contrasted with a more process-based model that simulated substrate-limited respiration and CH4 production using multiple carbon pools. Models were parameterized by using a model-data fusion approach with multiple years of eddy covariance data collected in a recently restored wetland and a mature restored wetland. A third recently restored wetland site was used for model validation. During model validation, the process-based model explained 70% of the variance in net ecosystem exchange of CO2 (NEE) and 50% of the variance in CH4 exchange. Not accounting for high respiration following restoration led to empirical models overestimating annual NEE by 33-51%. By employing a model-data fusion approach we provide rigorous estimates of uncertainty in model predictions, accounting for uncertainty in data, model parameters, and model structure. The PEPRMT model is a valuable tool for understanding carbon cycling in restored wetlands and for application in carbon market-funded wetland restoration, thereby advancing opportunity to counteract the vast degradation of wetlands and flooded peatlands.

  14. Epidemic model for information diffusion in web forums: experiments in marketing exchange and political dialog.

    Science.gov (United States)

    Woo, Jiyoung; Chen, Hsinchun

    2016-01-01

    As social media has become more prevalent, its influence on business, politics, and society has become significant. Due to easy access and interaction between large numbers of users, information diffuses in an epidemic style on the web. Understanding the mechanisms of information diffusion through these new publication methods is important for political and marketing purposes. Among social media, web forums, where people in online communities disseminate and receive information, provide a good environment for examining information diffusion. In this paper, we model topic diffusion in web forums using the epidemiology model, the susceptible-infected-recovered (SIR) model, frequently used in previous research to analyze both disease outbreaks and knowledge diffusion. The model was evaluated on a large longitudinal dataset from the web forum of a major retail company and from a general political discussion forum. The fitting results showed that the SIR model is a plausible model to describe the diffusion process of a topic. This research shows that epidemic models can expand their application areas to topic discussion on the web, particularly social media such as web forums.

  15. Application of linear pH gradients for the modeling of ion exchange chromatography: Separation of monoclonal antibody monomer from aggregates.

    Science.gov (United States)

    Kluters, Simon; Wittkopp, Felix; Jöhnck, Matthias; Frech, Christian

    2016-02-01

    The mobile phase pH is a key parameter of every ion exchange chromatography process. However, mechanistic insights into the pH influence on the ion exchange chromatography equilibrium are rare. This work describes a mechanistic model capturing salt and pH influence in ion exchange chromatography. The pH dependence of the characteristic protein charge and the equilibrium constant is introduced to the steric mass action model based on a protein net charge model considering the number of amino acids interacting with the stationary phase. This allows the description of the adsorption equilibrium of the chromatographed proteins as a function of pH. The model parameters were determined for a monoclonal antibody monomer, dimer, and a higher aggregated species based on a manageable set of pH gradient experiments. Without further modification of the model parameters the transfer to salt gradient elution at fixed pH is demonstrated. A lumped rate model was used to predict the separation of the monoclonal antibody monomer/aggregate mixture in pH gradient elution and for a pH step elution procedure-also at increased protein loadings up to 48 g/L packed resin. The presented model combines both salt and pH influence and may be useful for the development and deeper understanding of an ion exchange chromatography separation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Theoretical Evaluation of the Sediment/Water Exchange Description in Generic Compartment Models (SimpleBox)

    DEFF Research Database (Denmark)

    Sørensen, P. B.; Fauser, P.; Carlsen, L.

    in the calculations, the one box model needs to be evaluated in relation to a more complete solution of the differential equations for diffusion. General guidelines that are based on the system parameters are set up in order to establish the importance of diffusion and deposition respectively. These define the range......It is shown how diffusion and deposition of solids drive the flux of substance between the water column and the sediment. The generic compartment models (Mackay type) use a one box model for the sediment in order to keep the calculations simple. However, when diffusion needs to be included...

  17. A general model of resource production and exchange in systems of interdependent specialists.

    Energy Technology Data Exchange (ETDEWEB)

    Conrad, Stephen Hamilton; Finley, Patrick D.; Beyeler, Walter Eugene; Brown, Theresa Jean; Glass, Robert John, Jr.; Breen, Peter; Kuypers, Marshall; Norton, Matthew David; Quach, Tu-Thach; Antognoli, Matthew; Mitchell, Michael David

    2011-11-01

    Infrastructures are networks of dynamically interacting systems designed for the flow of information, energy, and materials. Under certain circumstances, disturbances from a targeted attack or natural disasters can cause cascading failures within and between infrastructures that result in significant service losses and long recovery times. Reliable interdependency models that can capture such multi-network cascading do not exist. The research reported here has extended Sandia's infrastructure modeling capabilities by: (1) addressing interdependencies among networks, (2) incorporating adaptive behavioral models into the network models, and (3) providing mechanisms for evaluating vulnerability to targeted attack and unforeseen disruptions. We have applied these capabilities to evaluate the robustness of various systems, and to identify factors that control the scale and duration of disruption. This capability lays the foundation for developing advanced system security solutions that encompass both external shocks and internal dynamics.

  18. A steady-state stomatal model of balanced leaf gas exchange, hydraulics and maximal source-sink flux.

    Science.gov (United States)

    Hölttä, Teemu; Lintunen, Anna; Chan, Tommy; Mäkelä, Annikki; Nikinmaa, Eero

    2017-07-01

    Trees must simultaneously balance their CO2 uptake rate via stomata, photosynthesis, the transport rate of sugars and rate of sugar utilization in sinks while maintaining a favourable water and carbon balance. We demonstrate using a numerical model that it is possible to understand stomatal functioning from the viewpoint of maximizing the simultaneous photosynthetic production, phloem transport and sink sugar utilization rate under the limitation that the transpiration-driven hydrostatic pressure gradient sets for those processes. A key feature in our model is that non-stomatal limitations to photosynthesis increase with decreasing leaf water potential and/or increasing leaf sugar concentration and are thus coupled to stomatal conductance. Maximizing the photosynthetic production rate using a numerical steady-state model leads to stomatal behaviour that is able to reproduce the well-known trends of stomatal behaviour in response to, e.g., light, vapour concentration difference, ambient CO2 concentration, soil water status, sink strength and xylem and phloem hydraulic conductance. We show that our results for stomatal behaviour are very similar to the solutions given by the earlier models of stomatal conductance derived solely from gas exchange considerations. Our modelling results also demonstrate how the 'marginal cost of water' in the unified stomatal conductance model and the optimal stomatal model could be related to plant structural and physiological traits, most importantly, the soil-to-leaf hydraulic conductance and soil moisture. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Heston Model Calibration in the Brazilian Foreign Exchange (FX Options Market

    Directory of Open Access Journals (Sweden)

    Joe Akira Yoshino

    2004-06-01

    Full Text Available Despite the relatively recent advance in the derivative industry, the European FX option market uses simple models such as Black (1976 or Garman and Kohlhagen (1983. This widespread practice hides very important quantitative effects that could be better explored by using alternative pricing models such as the one that incorporates the stochastic volatility features. Understanding and calibrating this type of pricing model represents a challenge in the current state of art in financial engineering, specially in emerging markets that are characterized by strong volatilities, periodic changing regimes and in most case suffering of liquidity, specially during the crisis. In this sense, this paper shows how to implement the Hestons Model for the Brazilian FX option market. This approach uses the volatility matrix provided by a pool of domestic market players. Although the Hestons Model presents a formal analytical solution it does not require simulation-, the closed form solutions show a mathematical complexity. Thus, the main objective of this work is to implement this model in the Brazilian FX market.

  20. Representing Sub-Plot Canopy Heterogeneity Improves Model Prediction of Net Ecosystem Exchange in a Mixed-Deciduous Forest

    Science.gov (United States)

    Frasson, R. P. M.; Bohrer, G.; Medvigy, D.; Vogel, C. S.; Gough, C. M.; Curtis, P.

    2014-12-01

    Canopy density and composition may vary within an eddy covariance tower's footprint in response to small-scale topographic features, biotic interactions such as herbivory, local disturbances, etc. We are investigating how different representations of canopy heterogeneity influence predictions of net ecosystem CO2 exchange in a mixed-deciduous forest by an age/plant functional type structured ecosystem model. Our study area is located at the University of Michigan Biological Station (UMBS) where two eddy covariance towers and periodic tree censuses provide a rich long-term record of ecosystem structure, weather, and carbon uptake. Meteorological measurements collected at the US-UMB AmeriFlux tower served to force, optimize, and evaluate the Ecosystem Demography model version 2 (ED2), while tree census information was used to initialize ED2. To test the influence that representing canopy heterogeneity has on model-tower agreement, we ran a set of ED2 site-level simulations with an increasing number of sub-grid patches. The first simulation, which we call 'aggregated', had one large patch explicitly containing all trees. The aggregated canopy represents a case where different size cohorts of each plant functional type are distributed homogeneously throughout the plot with uniform stem density. Six other simulations represented patch-level canopies with varying degrees of heterogeneity, ranging from 5 to 64 sub-plot patches; each patch represented from one to several of the 0.1 ha tree census plots. A preliminary comparison of the aggregated and the 20-plot heterogeneous simulations showed that including patch-level heterogeneity in the canopy description improved model prediction quality. For example, compared to the single-patch, aggregated simulation, including 20 sub-plot patches improved model bias in the estimated accumulated 5-year net ecosystem exchange from 17% to 5%, which is smaller than our tower observation uncertainty. As a result of this study, we will

  1. Mathematical Model-Based Temperature Preparation of Liquid-Propellant Components Cooled by Liquid Nitrogen in the Heat Exchanger with a Coolant

    Directory of Open Access Journals (Sweden)

    S. K. Pavlov

    2014-01-01

    Full Text Available Before fuelling the tanks of missiles, boosters, and spacecraft with liquid-propellant components (LPC their temperature preparation is needed. The missile-system ground equipment performs this operation during prelaunch processing of space-purpose missiles (SPM. Usually, the fuel cooling is necessary to increase its density and provide heat compensation during prelaunch operation of SPM. The fuel temperature control systems (FTCS using different principles of operation and types of coolants are applied for fuel cooling.To determine parameters of LPC cooling process through the fuel heat exchange in the heat exchanger with coolant, which is cooled by liquid nitrogen upon contact heat exchange in the coolant reservoir, a mathematical model of this process and a design technique are necessary. Both allow us to determine design parameters of the cooling system and the required liquid nitrogen reserve to cool LPC to the appropriate temperature.The article presents an overview of foreign and domestic publications on cooling processes research and implementation using cryogenic products such as liquid nitrogen. The article draws a conclusion that it is necessary to determine the parameters of LPC cooling process through the fuel heat exchange in the heat exchanger with coolant, which is liquid nitrogen-cooled upon contact heat exchange in the coolant reservoir allowing to define rational propellant cooling conditions to the specified temperature.The mathematical model describes the set task on the assumption that a heat exchange between the LPC and the coolant in the heat exchanger and with the environment through the walls of tanks and pipelines of circulation loops is quasi-stationary.The obtained curves allow us to calculate temperature changes of LPC and coolant, cooling time and liquid nitrogen consumption, depending on the process parameters such as a flow rate of liquid nitrogen, initial coolant temperature, pump characteristics, thermal

  2. Three order state space modeling of proton exchange membrane fuel cell with energy function definition

    Energy Technology Data Exchange (ETDEWEB)

    Becherif, M. [University of Technology of Belfort-Montbeliard, SeT-FCLab, UTBM, 90010 Belfort Cedex (France); Hissel, D. [University of Franche Comte, FEMTO-ST/FCLab, UMR CNRS 6174, 90010 Belfort Cedex (France); Gaagat, S. [Department of Chemical Engineering, IIT Guwahati, Assam (India); Wack, M. [SeT, UTBM, 90010 Belfort Cedex (France)

    2010-10-01

    The fuel cell is a complex system which is the centre of a lot of multidisciplinary research activities since it involves intricate application of various fields of study. The operation of a fuel cell depends on a wide range of parameters. The effect of one cannot be studied in isolation without disturbing the system which makes it very difficult to comprehend, analyze and predict various phenomena occurring in the fuel cell. In the current work, we present an equivalent electrical circuit of the pneumatics and fluidics in a fuel cell stack. The proposed model is based on the physical phenomena occurring inside fuel cell stack where we define the fluidic-electrical and pneumatic-electrical analogy. The effect of variation in temperature and relative humidity on the cell are considered in this model. The proposed model, according to the considered hypothesis, is a simple three order state space model which is suitable for the control purpose where a desired control structure can be formulated for high-end applications of the fuel cell as a subpart of a larger system, for instance, in hybrid propulsion of vehicles coupled with batteries and supercapacitors. Another key point of our work is the definition of the natural fuel cell stack energy function. The circuit analysis equations are presented and the simulated model is validated using the experimental data obtained using the fuel cell test bench available in Fuel Cell Laboratory, France. (author)

  3. Three order state space modeling of proton exchange membrane fuel cell with energy function definition

    Science.gov (United States)

    Becherif, M.; Hissel, D.; Gaagat, S.; Wack, M.

    The fuel cell is a complex system which is the centre of a lot of multidisciplinary research activities since it involves intricate application of various fields of study. The operation of a fuel cell depends on a wide range of parameters. The effect of one cannot be studied in isolation without disturbing the system which makes it very difficult to comprehend, analyze and predict various phenomena occurring in the fuel cell. In the current work, we present an equivalent electrical circuit of the pneumatics and fluidics in a fuel cell stack. The proposed model is based on the physical phenomena occurring inside fuel cell stack where we define the fluidic-electrical and pneumatic-electrical analogy. The effect of variation in temperature and relative humidity on the cell are considered in this model. The proposed model, according to the considered hypothesis, is a simple three order state space model which is suitable for the control purpose where a desired control structure can be formulated for high-end applications of the fuel cell as a subpart of a larger system, for instance, in hybrid propulsion of vehicles coupled with batteries and supercapacitors. Another key point of our work is the definition of the natural fuel cell stack energy function. The circuit analysis equations are presented and the simulated model is validated using the experimental data obtained using the fuel cell test bench available in Fuel Cell Laboratory, France.

  4. Exchange Rate Expectations and the Current Exchange Rate: A Test of the Monetarist Approach

    OpenAIRE

    V S Somanath

    1984-01-01

    The monetarist model of the exchange rate includes expectations of the future exchange rate as a determinant of the current exchange rate. This paper investigates whether expectations are a significant determinant of the exchange rate. An expectations process that is consistent with a basic monetarist exchange rate model is considered. Alternative measures of expectations are generated using this process. In the empirical tests, while the standard forward exchange premium measure of expectati...

  5. Experimental diagnostics and modeling of inductive phenomena at low frequencies in impedance spectra of proton exchange membrane fuel cells

    Science.gov (United States)

    Pivac, Ivan; Šimić, Boris; Barbir, Frano

    2017-10-01

    Representation of fuel cell processes by equivalent circuit models, involving resistance and capacitance elements representing activation losses on both anode and cathode in series with resistance representing ohmic losses, cannot capture and explain the inductive loop that may show up at low frequencies in Nyquist diagram representation of the electrochemical impedance spectra. In an attempt to explain the cause of the low-frequency inductive loop and correlate it with the processes within the fuel cell electrodes, a novel equivalent circuit model of a Proton Exchange Membrane (PEM) fuel cell has been proposed and experimentally verified here in detail. The model takes into account both the anode and the cathode, and has an additional resonant loop on each side, comprising of a resistance, capacitance and inductance in parallel representing the processes within the catalyst layer. Using these additional circuit elements, more accurate and better fits to experimental impedance data in the wide frequency range at different current densities, cell temperatures, humidity of gases, air flow stoichiometries and backpressures were obtained.

  6. Modelling of the interaction between chemical and mechanical behaviour of ion exchange resins incorporated into a cement-based matrix

    Directory of Open Access Journals (Sweden)

    Le Bescop P.

    2013-07-01

    Full Text Available In this paper, we present a predictive model, based on experimental data, to determine the macroscopic mechanical behavior of a material made up of ion exchange resins solidified into a CEM III cement paste. Some observations have shown that in some cases, a significant macroscopic expansion of this composite material may be expected, due to internal pressures generated in the resin. To build the model, we made the choice to break down the problem in two scale’s studies. The first deals with the mechanical behavior of the different heterogeneities of the composite, i.e. the resin and the cement paste. The second upscales the information from the heterogeneities to the Representative Elementary Volume (REV of the composite. The heterogeneities effects are taken into account in the REV by applying a homogenization method derived from the Eshelby theory combined with an interaction coefficient drawn from the poroelasticity theory. At the first scale, from the second thermodynamic law, a formulation is developed to estimate the resin microscopic swelling. The model response is illustrated on a simple example showing the impact of the calculated internal pressure, on the macroscopic strain.

  7. Orientation of monoclonal antibodies in ion-exchange chromatography: A predictive quantitative structure-activity relationship modeling approach.

    Science.gov (United States)

    Kittelmann, Jörg; Lang, Katharina M H; Ottens, Marcel; Hubbuch, Jürgen

    2017-08-11

    Chromatographic separation of biopharmaceuticals in general and monoclonal antibodies (mAbs) specifically is the bottleneck in terms of cost and throughput in preparative purification. Still, generalized platform processes are used, neglecting molecule specific characteristics, defining protein-resin interaction terms. Currently used in silico modeling approaches do not consider the orientation of the molecule towards the chromatographic resins as a result of the structural features on an atomic level. This paper describes a quantitative structure-activity relationship (QSAR) approach to model the orientation of mAbs on ion exchange chromatographic matrices as a function of property distribution and mobile phase characteristics. 6 mAbs were used to build a predictive QSAR model and to investigate the preferred binding orientations and resulting surface shielding on resins. Thereby different dominating orientations, caused by composition of Fab fragments of the mAbs, could be identified. The presented methodology is suitable to gain extended insight in molecule orientation on chromatographic resins and to tailor purification strategies based on molecule structure. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Inter-basin exchange in the Azov-Black-Marmara-Medirerranean Seas system: unstructured-grid modeling

    Science.gov (United States)

    Stanev, Emil V.; Grashorn, Sebastian; Zhang, Yinglong J.

    2017-04-01

    In this paper we use the unstructured grid model SCHISM to simulate the thermo-hydrodynamics in a chain of baroclinic interconnected basins. The model shows a good skill in simulating the basic thermo-hydrodynamics. The superiority of the simulations compared to the ones in earlier numerical studies is demonstrated on the example of model capabilities to resolve the strait dynamics, gravity currents originating from the straits, high-salinity bottom layer on the shallow shelf, as well as the multiple intrusions from the Bosporus Straits down to 700 m. The comparison with observations shows that the timings and magnitude of exchange flows are realistically simulated, along with the blocking events. The short-term variability of the strait transports is largely shaped by the anomalies of wind. The two-layer flow in tree straits considered here show different dependencies upon the net transport, the spatial variability of this dependence is also quite pronounced. It has been shown that the blocking of the surface flow can occur at different net transports giving a caveat when using simple relationships to prescribe (steady) outflow and inflow, as done in previous research. Specific attention has been given to the he role of synoptic atmospheric forcing for the basin wide circulation and redistribution of mass in the Black Sea.

  9. Theoretical Base of the PUCK-Model with Application to Foreign Exchange Markets

    Science.gov (United States)

    Takayasu, Misako; Watanabe, Kota; Mizuno, Takayuki; Takayasu, Hideki

    We analyze statistical properties of a random walker in a randomly changing potential function called the PUCK model both theoretically and numerically. In this model the center of the potential function moves with the moving average of the random walker's trace, and the potential function is given by a quadratic function with its curvature slowly changing around zero. By tuning several parameters the basic statistical properties fit nicely with those of real financial market prices, such as power law price change distribution, very short decay of autocorrelation of price changes, long tails in autocorrelation of the square of price changes and abnormal diffusion in short time scale.

  10. The Endogeneity of the Exchange Rate as a Determinant of FDI: A Model of Money, Entry, and Multinational Firms

    OpenAIRE

    Russ, Katheryn

    2004-01-01

    This paper argues that when the exchange rate and projected sales in the host country are jointly determined by underlying macroeconomic variables, standard regressions of FDI flows on both exchange rate levels and volatility are subject to bias. The results hinge on the interaction of macroeconomic uncertainty, a sunk cost, and heterogeneous productivity across firms. They indicate that a multinational firm’s response to increases in exchange rate volatility will differ depending on whethe...

  11. Exchange Network

    Science.gov (United States)

    The Environmental Information Exchange Network (EIEN) is an Internet-based system used by state, tribal and territorial partners to securely share environmental and health information with one another and EPA.

  12. An Individual-Oriented Model on the Emergence of Support in Fights, Its Reciprocation and Exchange

    NARCIS (Netherlands)

    Hemelrijk, Charlotte K.; Puga-Gonzalez, Ivan

    2012-01-01

    Complex social behaviour of primates has usually been attributed to the operation of complex cognition. Recently, models have shown that constraints imposed by the socio-spatial structuring of individuals in a group may result in an unexpectedly high number of patterns of complex social behaviour,

  13. Model-based fault detection for proton exchange membrane fuel cell ...

    African Journals Online (AJOL)

    user

    In this paper, an intelligent model-based fault detection (FD) is developed for proton ... process behaviors, efficient and advanced automated diagnostic systems .... Finally, the nature and likely cause of the faults are analyzed by the relations ..... Her research interest includes artificial intelligence, fault tolerant control, fault ...

  14. Characterization of foreign exchange market using the threshold-dealer-model

    Science.gov (United States)

    Yamada, Kenta; Takayasu, Hideki; Takayasu, Misako

    2007-08-01

    We introduce a deterministic dealer model which implements most of the empirical laws, such as fat tails in the price change distributions, autocorrelation of price change and non-Poissonian intervals. We also clarify the causality between microscopic dealers’ dynamics and macroscopic market's empirical laws.

  15. Ocean Circulation and Exchanges Through the Bering Sea: 1979-2001 Model Results

    National Research Council Canada - National Science Library

    2005-01-01

    A model has been developed and run with sufficiently high resolution (̂9 km and 45 levels) and a large enough spatial domain to allow for realistic representation of flow through the narrow and shallow straits in the Bering Sea region...

  16. Information exchange in global logistics chains : An application for model-based auditing,

    NARCIS (Netherlands)

    Veenstra, A.W.; Hulstijn, J.; Christiaanse, R.M.J.; Tan, Y.

    2013-01-01

    An integrated data pipeline has been proposed to meet requirements for visibility, supervision and control in global supply chains. How can data integration be used for risk assessment, monitoring and control in global supply chains? We argue that concepts from model-based auditing can be used to

  17. SPH modelling of multi-fluid lock-exchange over and within porous media

    Science.gov (United States)

    Basser, Hossein; Rudman, Murray; Daly, Edoardo

    2017-10-01

    Multi-fluid flow over and within porous media occurs frequently in nature and plays an important role in engineering applications. The modeling of these flows and validation against experimental or field observations have not been largely conducted in literature. An explicit numerical scheme for incompressible fluid using Smoothed Particle Hydrodynamics (EISPH) was employed and solved using two integration algorithms. To explore the capabilities and limitations of the model, case studies including percolation of a single fluid in a porous medium, gravity current of a single fluid over a porous medium, multi-fluid flow over an impermeable bed, and a porous medium were simulated and compared with experimental data. The EISPH method led to results overall similar to the observed experimental data. The model was able to reproduce the behaviour of the flow within media with different porosities. In addition, the model reproduced behaviour of multi-fluid flow at the interface between different fluids, such as reproducing Kelvin-Helmholtz vortices and diffusion of salt.

  18. Modelling information exchange in worker-queen conflict over sex allocation

    NARCIS (Netherlands)

    Pen, I.R.; Taylor, P.D.

    2005-01-01

    We investigate the conflict between queen and worker over sex allocation, specifically the allocation of the queen's eggs between workers and reproductives and the allocation of the reproductive eggs between male and female. In contrast to previous models, we allow workers to observe and use

  19. Improved Formulations for Air-Surface Exchanges Related to National Security Needs: Dry Deposition Models

    Energy Technology Data Exchange (ETDEWEB)

    Droppo, James G.

    2006-07-01

    The Department of Homeland Security and others rely on results from atmospheric dispersion models for threat evaluation, event management, and post-event analyses. The ability to simulate dry deposition rates is a crucial part of our emergency preparedness capabilities. Deposited materials pose potential hazards from radioactive shine, inhalation, and ingestion pathways. A reliable characterization of these potential exposures is critical for management and mitigation of these hazards. A review of the current status of dry deposition formulations used in these atmospheric dispersion models was conducted. The formulations for dry deposition of particulate materials from am event such as a radiological attack involving a Radiological Detonation Device (RDD) is considered. The results of this effort are applicable to current emergency preparedness capabilities such as are deployed in the Interagency Modeling and Atmospheric Assessment Center (IMAAC), other similar national/regional emergency response systems, and standalone emergency response models. The review concludes that dry deposition formulations need to consider the full range of particle sizes including: 1) the accumulation mode range (0.1 to 1 micron diameter) and its minimum in deposition velocity, 2) smaller particles (less than .01 micron diameter) deposited mainly by molecular diffusion, 3) 10 to 50 micron diameter particles deposited mainly by impaction and gravitational settling, and 4) larger particles (greater than 100 micron diameter) deposited mainly by gravitational settling. The effects of the local turbulence intensity, particle characteristics, and surface element properties must also be addressed in the formulations. Specific areas for improvements in the dry deposition formulations are 1) capability of simulating near-field dry deposition patterns, 2) capability of addressing the full range of potential particle properties, 3) incorporation of particle surface retention/rebound processes, and

  20. Modelling of Thermal Behavior of Borehole Heat Exchangers of Geothermal Heat Pump Heating Systems

    Directory of Open Access Journals (Sweden)

    Gornov V.F.

    2016-01-01

    Full Text Available This article reports results of comparing the accuracy of the software package “INSOLAR.GSHP.12”, modeling non-steady thermal behavior of geothermal heat pump heating systems (GHCS and of the similar model “conventional” using finite difference methods for solving spatial non-steady problems of heat conductivity. The software package is based on the method of formulating mathematical models of thermal behavior of ground low-grade heat collection systems developed by INSOLAR group of companies. Equations of mathematical model of spatial non-steady thermal behavior of ground mass of low-grade heat collection system obtained by the developed method have been solved analytically that significantly reduced computing time spent by the software complex “INSOLAR.GSHP.12” for calculations. The method allows to turn aside difficulties associated with information uncertainty of mathematical models of the ground thermal behavior and approximation of external factors affecting the ground. Use of experimentally obtained information about the ground natural thermal behavior in the software package allows to partially take into account the whole complex of factors (such as availability of groundwater, their velocity and thermal behavior, structure and arrangement of ground layers, the Earth’s thermal background, precipitation, phase transformations of moisture in the pore space, and more, significantly influencing the formation of thermal behavior of the ground mass of a low-grade geothermal heat collection system. Numerical experiments presented in the article confirmed the high convergence of the results obtained through the software package “INSOLAR.GSHP.12” with solutions obtained by conventional finite-difference methods.

  1. Measurements and modeling of surface-atmosphere exchange of microorganisms in Mediterranean grassland

    Science.gov (United States)

    Carotenuto, Federico; Georgiadis, Teodoro; Gioli, Beniamino; Leyronas, Christel; Morris, Cindy E.; Nardino, Marianna; Wohlfahrt, Georg; Miglietta, Franco

    2017-12-01

    Microbial aerosols (mainly composed of bacterial and fungal cells) may constitute up to 74 % of the total aerosol volume. These biological aerosols are not only relevant to the dispersion of pathogens, but they also have geochemical implications. Some bacteria and fungi may, in fact, serve as cloud condensation or ice nuclei, potentially affecting cloud formation and precipitation and are active at higher temperatures compared to their inorganic counterparts. Simulations of the impact of microbial aerosols on climate are still hindered by the lack of information regarding their emissions from ground sources. This present work tackles this knowledge gap by (i) applying a rigorous micrometeorological approach to the estimation of microbial net fluxes above a Mediterranean grassland and (ii) developing a deterministic model (the PLAnET model) to estimate these emissions on the basis of a few meteorological parameters that are easy to obtain. The grassland is characterized by an abundance of positive net microbial fluxes and the model proves to be a promising tool capable of capturing the day-to-day variability in microbial fluxes with a relatively small bias and sufficient accuracy. PLAnET is still in its infancy and will benefit from future campaigns extending the available training dataset as well as the inclusion of ever more complex and critical phenomena triggering the emission of microbial aerosol (such as rainfall). The model itself is also adaptable as an emission module for dispersion and chemical transport models, allowing further exploration of the impact of land-cover-driven microbial aerosols on the atmosphere and climate.

  2. PENERAPAN MODEL PEMBELAJARAN AKTIF MELALUI STRATEGI ROTATING TRIO EXCHANGE UNTUK MENINGKATKAN KEMAMPUAN ANALISIS DAN AKTIVITAS BELAJAR SISWA SMA KELAS X SEMESTER II POKOK BAHASAN KALOR

    Directory of Open Access Journals (Sweden)

    - Arifin

    2012-01-01

    Full Text Available Pada masa sekarang masih banyak guru yang menerapkan metode ceramah dalam pembelajaran. Guru mengajar murid dengantarget kurikulum dan nilai Ujian Nasional. Kondisi tersebut mengakibatkan aktivitas belajar siswa rendah dan kemampuan berpikirsiswa tidak berkembang. Model pembelajaran aktif melalui strategi rotating trio exchange memberi kesempatan kepada siswaberpartisipasi aktif dalam pembelajaran melalui diskusi dengan seksama. Melalui kegiatan tersebut metode pembelajaran inidapat membuat siswa aktif sejak awal pembelajaran. Penelitian eksperimen ini dilakukan dengan tujuan untuk mengetahuipeningkatan kemampuan analisis dan aktivitas belajar siswa setelah diterapkan model pembelajaran aktif dengan strategi rotatingtrio exchange. Metode pengumpulan data yang digunakan adalah observasi dan tes. Berdasarkan uji t dan uji gain dapatdisimpulkan bahwa pembelajaran aktif melalui strategi rotating trio exchange dapat meningkatkan kemampuan analisis danaktivitas belajar siswa pada pokok bahasan kalor. Nowadays, there are many teachers still applying lecture learning method. In the classroom, teacher activities to instruction thestudent with curiculum target and National Test values standart only. The lecture learning method makes student's learningactivities and anlytical thinking skill not increased. Active learning with Rotating Trio Exchange Strategy gives an opportunity forstudents to participate in the learning procces by intensif discussion. This experiment research have the goals that are to knowimproving student's learning activities and anlytical thinking skill by applied of active learning with rotating trio exchange strategy.Taking over of data in this research do by observation and test metode. Base of t test and gain test got conclusion that activelearning with rotating trio exchange strategy can be improve student's learning activities and anlytical thinking skill on the calor submaterial.Keywords: active learning; rotating trio

  3. A quantitative approach to developing more mechanistic gas exchange models for field grown potato

    DEFF Research Database (Denmark)

    Ahmadi, Seyed Hamid; Andersen, Mathias Neumann; Poulsen, Rolf Thostrup

    2009-01-01

    , Woodrow, Berry, 1987. In: Nijhoff, M. (Eds.), Progress in Photosynthesis Research, vol. 4. Dordrecht, The Netherlands, pp. 5.221-5.224]. To overcome the limitations of previous models in simulating stomatal conductance when plants are exposed to drought stress, we proposed a down-regulating factor...... of chemical and hydraulic signalling on stomatal conductance as exp(-β[ABA])exp(-δ|ψ|) in which [ABA] and |ψ| are xylem ABA concentration and absolute value of leaf or stem water potential. In this study we found that stem water potential could be a very reliable indicator of how plant water status affects...... the stomatal conductance regulation. While previous models considered the same weighting for relative humidity and photosynthesis rate, we found that relative humidity has a more pronounced regulating effect on stomatal conductance than photosynthesis rate and the weightings for relative humidity...

  4. Modeling the dynamic behavior of proton-exchange membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Llapade, Peter O [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory; Davey, John R [Los Alamos National Laboratory; Borup, Rodney L [Los Alamos National Laboratory; Meyers, Jeremy P [UNIV OF TEXAS-AUSTIN

    2010-01-01

    A two-phase transient model that incorporates the permanent hysteresis observed in the experimentally measured capillary pressure of GDL has been developed. The model provides explanation for the difference in time constant between membrane hydration and dehydration observed in the HFR experiment conducted at LANL. When there is liquid water at the cathode catalyst layer, time constant of the water content in the membrane is closely tied to that of liquid water saturation in the CCL, as the vapor is already saturated. The water content in the membrane will not reach steady state as long as the liquid water flow in the CCL is not at steady state. Also, Increased resistance to proton transport in the membrane is observed when the cell voltage is stepped down to a very low value.

  5. Water Uptake Profile In a Model Ion-Exchange Membrane: Conditions For Water-Rich Channels

    Science.gov (United States)

    2014-12-01

    concentrated phase dissociate and leak into the water phase. In the D = 4 model, however, the channel is at a finite concentration of φ ≈ 0.22. For maximizing...PVBTMA has a solubility gap, at the conditions that generate a two- phase coexistence [33,34]. As an added benefit, we proposed that dissociated ions from...Polyelectrolytes, however, have another source of entropy from dissociated counter-ions, an effect which can be estimated. The Bjerrum length, Q, for

  6. Modeling Net Ecosystem Exchange for Grassland in Central Kazakhstan by Combining Remote Sensing and Field Data

    Directory of Open Access Journals (Sweden)

    Pavel Propastin

    2009-07-01

    Full Text Available Carbon sequestration was estimated in a semi-arid grassland region in Central Kazakhstan using an approach that integrates remote sensing, field measurements and meteorological data. Carbon fluxes for each pixel of 1 × 1 km were calculated as a product of photosynthetically active radiation (PAR and its fraction absorbed by vegetation (fPAR, the light use efficiency (LUE and ecosystem respiration (Re. The PAR is obtained from a mathematical model incorporating Earth-Sun distance, solar inclination, solar elevation angle, geographical position and cloudiness information of localities. The fPAR was measured in field using hemispherical photography and was extrapolated to each pixel by combination with the Normalized Difference Vegetation Index (NDVI obtained by the Vegetation instrument on board the Satellite Pour l’Observation de la Terra (SPOT satellite. Gross Primary Production (GPP of the aboveground and belowground vegetation of 14 sites along a 230 km west-east transect within the study region were determined at the peak of growing season in different land cover types and linearly related to the amount of PAR absorbed by vegetation (APAR. The product of this relationship is LUE = 0.61 and 0.97 g C/MJ APAR for short grassland and steppe, respectively. The Re is estimated using complex models driven by climatic data. Growing season carbon sequestration was calculated for the modelling year of 2004. Overall, the short grassland was a net carbon sink, whereas the steppe was carbon neutral. The evaluation of the modelled carbon sequestration against independent reference data sets proved high accuracy of the estimations.

  7. Estimation of Value-at-Risk on Romanian Stock Exchange Using Volatility Forecasting Models

    Directory of Open Access Journals (Sweden)

    Claudiu Ilie OPREANA

    2013-12-01

    Full Text Available This paper aims to analyse the market risk (estimated by Value-at-Risk on the Romanian capital market using modern econometric tools to estimate volatility, such as EWMA, GARCH models. In this respect, I want to identify the most appropriate volatility forecasting model to estimate the Value-at-Risk (VaR of a portofolio of representative indices (BET, BET-FI and RASDAQ-C. VaR depends on the volatility, time horizon and confidence interval for the continuous returns under analysis. Volatility tends to happen in clusters. The assumption that volatility remains constant at all times can be fatal. It is determined that the most recent data have asserted more influence on future volatility than past data. To emphasize this fact, recently, EWMA and GARCH models have become critical tools in financial applications. The outcome of this study is that GARCH provides more accurate analysis than EWMA.This approach is useful for traders and risk managers to be able to forecast the future volatility on a certain market.

  8. A study of the coordination shell of aluminum(III) and magnesium(II) in model protein environments: thermodynamics of the complex formation and metal exchange reactions.

    Science.gov (United States)

    Rezabal, Elixabete; Mercero, Jose M; Lopez, Xabier; Ugalde, Jesus M

    2006-03-01

    Al(III) toxicity in living organisms is based on competition with other metal cations. Mg(II) is one of the most affected cations, since the size similarity dominates over the charge identity. The slow ligand exchange rates for Al(III) render the ion useless as a metal ion at the active sites of enzymes and provide a mechanism by which Al(III) inhibits Mg(II) dependent biochemical processes. Al(III) cation interactions with relevant bioligands have been studied in a protein-model environment in gas and aqueous phases using density functional theory methods. The protein model consists of the metal cation bound to two chosen bioligands (functional groups of the amino acid side chains, one of them being always an acetate) and water molecules interacting with the cation to complete its first coordination shell. Analogous Mg(II) complexes are calculated and compared with the Al(III) ones. Formation energies of the complexes are calculated in both phases and magnesium/aluminum exchange energies evaluated. The effect of different dielectric media is also analyzed. The presence of an acetate ligand in the binding site is found to promote both, complex formation and metal exchange reactions. In addition, buried binding sites (with low dielectric constant) of the protein favor metal exchange, whereas fully solvated environments of high dielectric constant require the presence of two anionic ligands for metal exchange to occur.

  9. MATHEMATICAL MODELLING OF MASS EXCHANGE PROCESSES BETWEEN FLOW AND ALLUVIAL SEDIMENTS

    Directory of Open Access Journals (Sweden)

    M. R. Magomedova

    2017-01-01

    Full Text Available Objectives. The aim is to improve the mathematical model of the motion of channelfill deposits in terms of clarifying one of the main relationships on which the sediment flow rate depends: the frequency of pulsations of the vertical fluid velocity component with hydraulic flow parameters.Methods. The mathematical model is developed using probability theory and the theory of runs of random processes, taking into account the normal distribution of the horizontal and vertical components of the instantaneous flow velocities and the Rayleigh law of the distribution of their maxima.Results. As a result of the modelling, information was obtained concerning the volumes and areas of the zones of influence of increased turbidity on the aquatic bioresources of the Gizeldon River. The operation of the Gizeldon hydroelectric power station have led to the loss of zoobenthos habitats, the destruction of bottom biocenoses, the loss of food organisms of plankton and benthos, a decrease in the fodder base of fish and the direct death of the ichthyofauna. An assessment of the damage caused to aquatic bioresources from the operation of the Gizeldon hydroelectric power station was carried out. As a result, it was proved that the negative influence of the "turbidity loop" in the lower tail of the river, taking into account the critical values of suspended matter concentration in water will be traced for 3.7 km. The amount of damage to aquatic bioresources in physical terms is about 1.5 tons due to the destruction of the fodder base of fish and the deterioration of habitat conditions in the zone of increased turbidity.Conclusion. The results of mathematical modelling were tested on field data materials and used to calculate the turbidity of the Gizeldon River flow during the reconstruction of the Gizeldon hydroelectric power station. The results of the approbation of the mathematical model of the motion of channel-fill sediment are presented in order to identify the

  10. Modeling two-phase flow in three-dimensional complex flow-fields of proton exchange membrane fuel cells

    Science.gov (United States)

    Kim, Jinyong; Luo, Gang; Wang, Chao-Yang

    2017-10-01

    3D fine-mesh flow-fields recently developed by Toyota Mirai improved water management and mass transport in proton exchange membrane (PEM) fuel cell stacks, suggesting their potential value for robust and high-power PEM fuel cell stack performance. In such complex flow-fields, Forchheimer's inertial effect is dominant at high current density. In this work, a two-phase flow model of 3D complex flow-fields of PEMFCs is developed by accounting for Forchheimer's inertial effect, for the first time, to elucidate the underlying mechanism of liquid water behavior and mass transport inside 3D complex flow-fields and their adjacent gas diffusion layers (GDL). It is found that Forchheimer's inertial effect enhances liquid water removal from flow-fields and adds additional flow resistance around baffles, which improves interfacial liquid water and mass transport. As a result, substantial improvements in high current density cell performance and operational stability are expected in PEMFCs with 3D complex flow-fields, compared to PEMFCs with conventional flow-fields. Higher current density operation required to further reduce PEMFC stack cost per kW in the future will necessitate optimizing complex flow-field designs using the present model, in order to efficiently remove a large amount of product water and hence minimize the mass transport voltage loss.

  11. Baroclinic stabilization effect of the Atlantic-Arctic water exchange simulated by the eddy-permitting ocean model and global atmosphere-ocean model

    Science.gov (United States)

    Moshonkin, Sergey; Bagno, Alexey; Gritsun, Andrey; Gusev, Anatoly

    2017-04-01

    Numerical experiments were performed with the global atmosphere-ocean model INMCM5 (for version of the international project CMIP6, resolution for atmosphere is 2°x1.5°, 21 level) and with the three-dimensional, free surface, sigma coordinate eddy-permitting ocean circulation model for Atlantic (from 30°S) - Arctic and Bering sea domain (0.25 degrees resolution, Institute of Numerical Mathematics Ocean Model or INMOM). Spatial resolution of the INMCM5 oceanic component is 0.5°x0.25°. Both models have 40 s-levels in ocean. Previously, the simulations were carried out for INMCM5 to generate climatic system stable state. Then model was run for 180 years. In the experiment with INMOM, CORE-II data for 1948-2009 were used. As the goal for comparing results of two these numerical models, we selected evolution of the density and velocity anomalies in the 0-300m active ocean layer near Fram Strait in the Greenland Sea, where oceanic cyclonic circulation influences Atlantic-Arctic water exchange. Anomalies were count without climatic seasonal cycle for time scales smaller than 30 years. We use Singular Value Decomposition analysis (SVD) for density-velocity anomalies with time lag from minus one to six months. Both models perform identical stable physical result. They reveal that changes of heat and salt transports by West Spitsbergen and East Greenland currents, caused by atmospheric forcing, produce the baroclinic modes of velocity anomalies in 0-300m layer, thereby stabilizing ocean response on the atmospheric forcing, which stimulates keeping water exchange between the North Atlantic and Arctic Ocean at the certain climatological level. The first SVD-mode of density-velocity anomalies is responsible for the cyclonic circulation variability. The second and third SVD-modes stabilize existing ocean circulation by the anticyclonic vorticity generation. The second and third SVD-modes give 35% of the input to the total dispersion of density anomalies and 16-18% of the

  12. Performance Comparison of Relational and Native-XML Databases using the Semantics of the Land Command and Control Information Exchange Data Model (LC2IEDM)

    Science.gov (United States)

    2005-09-01

    MIP’s Land Command and Control Information Exchange Data Model (LC2IEDM), it is feasible to compare the syntactic strength of human-readable XML documents with the semantics of LC2IEDM as used within a relational database.

  13. The Use of Video Modeling with the Picture Exchange Communication System to Increase Independent Communicative Initiations in Preschoolers with Autism and Developmental Delays

    Science.gov (United States)

    Cihak, David F.; Smith, Catherine C.; Cornett, Ashlee; Coleman, Mari Beth

    2012-01-01

    The use of video modeling (VM) procedures in conjunction with the picture exchange communication system (PECS) to increase independent communicative initiations in preschool-age students was evaluated in this study. The four participants were 3-year-old children with limited communication skills prior to the intervention. Two of the students had…

  14. Impact of aerodynamic resistance formulations used in two-source modeling of energy exchange from the soil and vegetation using land surface temperature

    Science.gov (United States)

    Application of the Two-Source Energy Balance (TSEB) Model using land surface temperature (LST) requires aerodynamic resistance parameterizations for the flux exchange above the canopy layer, within the canopy air space and at the soil/substrate surface. There are a number of aerodynamic resistance f...

  15. Coupled carbon-water exchange of the Amazon rain forest, I. Model description, parameterization and sensitivity analysis

    Directory of Open Access Journals (Sweden)

    E. Simon

    2005-01-01

    Full Text Available Detailed one-dimensional multilayer biosphere-atmosphere models, also referred to as CANVEG models, are used for more than a decade to describe coupled water-carbon exchange between the terrestrial vegetation and the lower atmosphere. Within the present study, a modified CANVEG scheme is described. A generic parameterization and characterization of biophysical properties of Amazon rain forest canopies is inferred using available field measurements of canopy structure, in-canopy profiles of horizontal wind speed and radiation, canopy albedo, soil heat flux and soil respiration, photosynthetic capacity and leaf nitrogen as well as leaf level enclosure measurements made on sunlit and shaded branches of several Amazonian tree species during the wet and dry season. The sensitivity of calculated canopy energy and CO2 fluxes to the uncertainty of individual parameter values is assessed. In the companion paper, the predicted seasonal exchange of energy, CO2, ozone and isoprene is compared to observations. A bi-modal distribution of leaf area density with a total leaf area index of 6 is inferred from several observations in Amazonia. Predicted light attenuation within the canopy agrees reasonably well with observations made at different field sites. A comparison of predicted and observed canopy albedo shows a high model sensitivity to the leaf optical parameters for near-infrared short-wave radiation (NIR. The predictions agree much better with observations when the leaf reflectance and transmission coefficients for NIR are reduced by 25–40%. Available vertical distributions of photosynthetic capacity and leaf nitrogen concentration suggest a low but significant light acclimation of the rain forest canopy that scales nearly linearly with accumulated leaf area. Evaluation of the biochemical leaf model, using the enclosure measurements, showed that recommended parameter values describing the photosynthetic light response, have to be optimized. Otherwise

  16. TESTING EXCHANGE RATE DETERMINATION MODEL FOR YTL/US$: EVIDENCE FROM HIGH FREQUENCY DATA

    OpenAIRE

    Saatcioğlu, Cem; KORAP, H. Levent

    2008-01-01

    Bu çalışmada, YTL/US$ döviz kuru belirlenme mekanizması aylık gözlem aralığı kullanılarak 1986M01-2007M08 dönemi için incelenmektedir. Parasal model döviz kuru belirlenme mekanizmasına dayalı olarak oluşturulan kuramsal bir yaklaşım doğrultusunda, çağdaş çok değişkenli eş-bütünleşim yöntemi kullanılarak elde edilen tahmin sonuçları YTL/US$ parasal döviz kurunun iktisat kuramı tarafından önerilen temellerle eş-bütünleşik bir ilişki içerisinde olduğunu göstermektedir. Tahmin bulguları parasal d...

  17. Degradation modeling of high temperature proton exchange membrane fuel cells using dual time scale simulation

    Science.gov (United States)

    Pohl, E.; Maximini, M.; Bauschulte, A.; vom Schloß, J.; Hermanns, R. T. E.

    2015-02-01

    HT-PEM fuel cells suffer from performance losses due to degradation effects. Therefore, the durability of HT-PEM is currently an important factor of research and development. In this paper a novel approach is presented for an integrated short term and long term simulation of HT-PEM accelerated lifetime testing. The physical phenomena of short term and long term effects are commonly modeled separately due to the different time scales. However, in accelerated lifetime testing, long term degradation effects have a crucial impact on the short term dynamics. Our approach addresses this problem by applying a novel method for dual time scale simulation. A transient system simulation is performed for an open voltage cycle test on a HT-PEM fuel cell for a physical time of 35 days. The analysis describes the system dynamics by numerical electrochemical impedance spectroscopy. Furthermore, a performance assessment is performed in order to demonstrate the efficiency of the approach. The presented approach reduces the simulation time by approximately 73% compared to conventional simulation approach without losing too much accuracy. The approach promises a comprehensive perspective considering short term dynamic behavior and long term degradation effects.

  18. Investigation of market efficiency and Financial Stability between S&P 500 and London Stock Exchange: Monthly and yearly Forecasting of Time Series Stock Returns using ARMA model

    Science.gov (United States)

    Rounaghi, Mohammad Mahdi; Nassir Zadeh, Farzaneh

    2016-08-01

    We investigated the presence and changes in, long memory features in the returns and volatility dynamics of S&P 500 and London Stock Exchange using ARMA model. Recently, multifractal analysis has been evolved as an important way to explain the complexity of financial markets which can hardly be described by linear methods of efficient market theory. In financial markets, the weak form of the efficient market hypothesis implies that price returns are serially uncorrelated sequences. In other words, prices should follow a random walk behavior. The random walk hypothesis is evaluated against alternatives accommodating either unifractality or multifractality. Several studies find that the return volatility of stocks tends to exhibit long-range dependence, heavy tails, and clustering. Because stochastic processes with self-similarity possess long-range dependence and heavy tails, it has been suggested that self-similar processes be employed to capture these characteristics in return volatility modeling. The present study applies monthly and yearly forecasting of Time Series Stock Returns in S&P 500 and London Stock Exchange using ARMA model. The statistical analysis of S&P 500 shows that the ARMA model for S&P 500 outperforms the London stock exchange and it is capable for predicting medium or long horizons using real known values. The statistical analysis in London Stock Exchange shows that the ARMA model for monthly stock returns outperforms the yearly. ​A comparison between S&P 500 and London Stock Exchange shows that both markets are efficient and have Financial Stability during periods of boom and bust.

  19. Feasibility Study for an Air Force Environmental Model and Data Exchange. Volume 1. Model and Data Requirements with Recommendations.

    Science.gov (United States)

    1983-07-01

    ls Date Base Management. Mathematical Models Environmental Environmental Management ABSTRACT (Continue an tov~e Ofd necessary, aid Iden Ifil by blOc... Mathematical equations representing the physical and chemical processes of air and water are the most common, but there are also models of such...Armaments Division/ Comuter Systems D/KRESS ____ [IQ Air Force Systems ConmandSac/~v Pjan Iso/wJ Air Weather Service hleadquiarters 3rd Weather

  20. Circles of Confidence in Correspondence: Modeling Confidentiality and Secrecy in Knowledge Exchange Networks of Letters and Drawings in the Early Modern Period.

    Science.gov (United States)

    van den Heuvel, Charles; Weingart, Scott B; Spelt, Nils; Nellen, Henk

    2016-01-01

    Science in the early modern world depended on openness in scholarly communication. On the other hand, a web of commercial, political, and religious conflicts required broad measures of secrecy and confidentiality; similar measures were integral to scholarly rivalries and plagiarism. This paper analyzes confidentiality and secrecy in intellectual and technological knowledge exchange via letters and drawings. We argue that existing approaches to understanding knowledge exchange in early modern Europe--which focus on the Republic of Letters as a unified entity of corresponding scholars--can be improved upon by analyzing multilayered networks of communication. We describe a data model to analyze circles of confidence and cultures of secrecy in intellectual and technological knowledge exchanges. Finally, we discuss the outcomes of a first experiment focusing on the question of how personal and professional/official relationships interact with confidentiality and secrecy, based on a case study of the correspondence of Hugo Grotius.

  1. Hydrogen exchange

    DEFF Research Database (Denmark)

    Jensen, Pernille Foged; Rand, Kasper Dyrberg

    2016-01-01

    Hydrogen exchange (HX) monitored by mass spectrometry (MS) is a powerful analytical method for investigation of protein conformation and dynamics. HX-MS monitors isotopic exchange of hydrogen in protein backbone amides and thus serves as a sensitive method for probing protein conformation...... and dynamics along the entire protein backbone. This chapter describes the exchange of backbone amide hydrogen which is highly quenchable as it is strongly dependent on the pH and temperature. The HX rates of backbone amide hydrogen are sensitive and very useful probes of protein conformation......, as they are distributed along the polypeptide backbone and form the fundamental hydrogen-bonding networks of basic secondary structure. The effect of pressure on HX in unstructured polypeptides (poly-dl-lysine and oxidatively unfolded ribonuclease A) and native folded proteins (lysozyme and ribonuclease A) was evaluated...

  2. A model-data intercomparison of CO2 exchange across North America: Results from the North American Carbon Program Site Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Schwalm, C.R.; Williams, C.A.; Schaefer, K.; Anderson, R.; Arain, M.A.; Baker, I.; Black, T.A.; Chen, G.; Ciais, P.; Davis, K. J.; Desai, A. R.; Dietze, M.; Dragoni, D.; Fischer, M.L.; Flanagan, L.B.; Grant, R.F.; Gu, L.; Hollinger, D.; Izaurralde, R.C.; Kucharik, C.; Lafleur, P.M.; Law, B.E.; Li, L.; Li, Z.; Liu, S.; Lokupitiya, E.; Luo, Y.; Ma, S.; Margolis, H.; Matamala, R.; McCaughey, H.; Monson, R. K.; Oechel, W. C.; Peng, C.; Poulter, B.; Price, D.T.; Riciutto, D.M.; Riley, W.J.; Sahoo, A.K.; Sprintsin, M.; Sun, J.; Tian, H.; Tonitto, C.; Verbeeck, H.; Verma, S.B.

    2011-06-01

    Our current understanding of terrestrial carbon processes is represented in various models used to integrate and scale measurements of CO{sub 2} exchange from remote sensing and other spatiotemporal data. Yet assessments are rarely conducted to determine how well models simulate carbon processes across vegetation types and environmental conditions. Using standardized data from the North American Carbon Program we compare observed and simulated monthly CO{sub 2} exchange from 44 eddy covariance flux towers in North America and 22 terrestrial biosphere models. The analysis period spans {approx}220 site-years, 10 biomes, and includes two large-scale drought events, providing a natural experiment to evaluate model skill as a function of drought and seasonality. We evaluate models' ability to simulate the seasonal cycle of CO{sub 2} exchange using multiple model skill metrics and analyze links between model characteristics, site history, and model skill. Overall model performance was poor; the difference between observations and simulations was {approx}10 times observational uncertainty, with forested ecosystems better predicted than nonforested. Model-data agreement was highest in summer and in temperate evergreen forests. In contrast, model performance declined in spring and fall, especially in ecosystems with large deciduous components, and in dry periods during the growing season. Models used across multiple biomes and sites, the mean model ensemble, and a model using assimilated parameter values showed high consistency with observations. Models with the highest skill across all biomes all used prescribed canopy phenology, calculated NEE as the difference between GPP and ecosystem respiration, and did not use a daily time step.

  3. Evaluating the effect of remote sensing image spatial resolution on soil exchangeable potassium prediction models in smallholder farm settings.

    Science.gov (United States)

    Xu, Yiming; Smith, Scot E; Grunwald, Sabine; Abd-Elrahman, Amr; Wani, Suhas P

    2017-09-15

    Major end users of Digital Soil Mapping (DSM) such as policy makers and agricultural extension workers are faced with choosing the appropriate remote sensing data. The objective of this research is to analyze the spatial resolution effects of different remote sensing images on soil prediction models in two smallholder farms in Southern India called Kothapally (Telangana State), and Masuti (Karnataka State), and provide empirical guidelines to choose the appropriate remote sensing images in DSM. Bayesian kriging (BK) was utilized to characterize the spatial pattern of exchangeable potassium (K ex ) in the topsoil (0-15 cm) at different spatial resolutions by incorporating spectral indices from Landsat 8 (30 m), RapidEye (5 m), and WorldView-2/GeoEye-1/Pleiades-1A images (2 m). Some spectral indices such as band reflectances, band ratios, Crust Index and Atmospherically Resistant Vegetation Index from multiple images showed relatively strong correlations with soil K ex in two study areas. The research also suggested that fine spatial resolution WorldView-2/GeoEye-1/Pleiades-1A-based and RapidEye-based soil prediction models would not necessarily have higher prediction performance than coarse spatial resolution Landsat 8-based soil prediction models. The end users of DSM in smallholder farm settings need select the appropriate spectral indices and consider different factors such as the spatial resolution, band width, spectral resolution, temporal frequency, cost, and processing time of different remote sensing images. Overall, remote sensing-based Digital Soil Mapping has potential to be promoted to smallholder farm settings all over the world and help smallholder farmers implement sustainable and field-specific soil nutrient management scheme. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Modelling the water mass exchange through navigational channels connecting adjacent coastal basins - application to the Channel of Potidea (North Aegean Sea

    Directory of Open Access Journals (Sweden)

    Y. G. Savvidis

    2005-02-01

    Full Text Available The research objective is the detection of the mechanism of the water mass exchange through a navigational channel connecting two adjacent coastal basins. The research involves the application of a mathematical model in parallel to in-situ measurements. The hydrodynamic circulation in the greater area of the NW Aegean Sea is modeled by means of a barotropic circulation model. Wind, Coriolis and Tide are the main forcings taken into account. The flow through the channel is resolved at a subgrid scale by means of a local open channel flow model. The comparison between field measurements, recorded during a limited period, and the model results supports the model verification. The study is integrated by an operational application of the model under various realistic forcings. The results help to gain a better understanding of the mechanisms regulating the water mass exchange and the consequent interaction between two adjacent connected coastal basins. From the case study of the Potidea channel it is revealed that the water mass exchange under mean wind forcing is of the same order as the one induced by the tidal forcing.

  5. The Washington Needle Depot: fitting healthcare to injection drug users rather than injection drug users to healthcare: moving from a syringe exchange to syringe distribution model

    Directory of Open Access Journals (Sweden)

    Glickman Andrea

    2010-01-01

    Full Text Available Abstract Needle exchange programs chase political as well as epidemiological dragons, carrying within them both implicit moral and political goals. In the exchange model of syringe distribution, injection drug users (IDUs must provide used needles in order to receive new needles. Distribution and retrieval are co-existent in the exchange model. Likewise, limitations on how many needles can be received at a time compel addicts to have multiple points of contact with professionals where the virtues of treatment and detox are impressed upon them. The centre of gravity for syringe distribution programs needs to shift from needle exchange to needle distribution, which provides unlimited access to syringes. This paper provides a case study of the Washington Needle Depot, a program operating under the syringe distribution model, showing that the distribution and retrieval of syringes can be separated with effective results. Further, the experience of IDUs is utilized, through paid employment, to provide a vulnerable population of people with clean syringes to prevent HIV and HCV.

  6. Modelling effects of seasonal variation in water table depth on net ecosystem CO2 exchange of a tropical peatland

    Science.gov (United States)

    Mezbahuddin, M.; Grant, R. F.; Hirano, T.

    2014-02-01

    Seasonal variation in water table depth (WTD) determines the balance between aggradation and degradation of tropical peatlands. Longer dry seasons together with human interventions (e.g. drainage) can cause WTD drawdowns making tropical peatland C storage highly vulnerable. Better predictive capacity for effects of WTD on net CO2 exchange is thus essential to guide conservation of tropical peat deposits. Mathematical modelling of basic eco-hydrological processes under site-specific conditions can provide such predictive capacity. We hereby deploy a process-based mathematical model ecosys to study effects of seasonal variation in WTD on net ecosystem productivity (NEP) of a drainage affected tropical peat swamp forest at Palangkaraya, Indonesia. Simulated NEP suggested that the peatland was a C source (NEP ~ -2 g C m-2 d-1, where a negative sign represents a C source and a positive sign a C sink) during rainy seasons with shallow WTD, C neutral or a small sink (NEP ~ +1 g C m-2 d-1) during early dry seasons with intermediate WTD and a substantial C source (NEP ~ -4 g C m-2 d-1) during late dry seasons with deep WTD from 2002 to 2005. These values were corroborated by regressions (P 0.8, intercepts approaching 0 and slopes approaching 1. We also simulated a gradual increase in annual NEP from 2002 (-609 g C m-2) to 2005 (-373 g C m-2) with decreasing WTD which was attributed to declines in duration and intensity of dry seasons following the El Niño event of 2002. This increase in modelled NEP was corroborated by EC-gap filled annual NEP estimates. Our modelling hypotheses suggested that (1) poor aeration in wet soils during shallow WTD caused slow nutrient (predominantly phosphorus) mineralization and consequent slow plant nutrient uptake that suppressed gross primary productivity (GPP) and hence NEP (2) better soil aeration during intermediate WTD enhanced nutrient mineralization and hence plant nutrient uptake, GPP and NEP and (3) deep WTD suppressed NEP through a

  7. Mechanistic Modeling Based PAT Implementation for Ion-Exchange Process Chromatography of Charge Variants of Monoclonal Antibody Products.

    Science.gov (United States)

    Kumar, Vijesh; Rathore, Anurag S

    2017-09-01

    Process chromatography is typically used to remove product related impurities and variants that have very similar physicochemical properties to the product. Baseline separation may not be achieved in most cases due to high protein loading and thus, pooling of the elution peak can be challenging for maximizing yield and achieving consistency in product quality. Batch-to-batch variability in quality of the feed material also occurs in commercial manufacturing. Mechanistic modeling of process chromatography, though non-trivial, can be an enabler for implementation of Process Analytical Technology. This paper presents one such application involving prediction of the impact of variability in feed quality and in gradient shape on separation of charge variants by cation exchange process chromatography and thereby facilitating feed forward control. Five batches having different compositions of charge variants have been used to demonstrate the proposed pooling strategy based on simulated chromatograms and the outcome has been compared to offline pooling based on fractionation. For all the conditions examined and for the desired target of main product (67%), the proposed approach resulted in remarkable consistency in product quality (67 ± 2%) while delivering a yield of greater than 90%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. How do leader-member exchange quality and differentiation affect performance in teams? An integrated multilevel dual process model.

    Science.gov (United States)

    Li, Alex Ning; Liao, Hui

    2014-09-01

    Integrating leader-member exchange (LMX) research with role engagement theory (Kahn, 1990) and role system theory (Katz & Kahn, 1978), we propose a multilevel, dual process model to understand the mechanisms through which LMX quality at the individual level and LMX differentiation at the team level simultaneously affect individual and team performance. With regard to LMX differentiation, we introduce a new configural approach focusing on the pattern of LMX differentiation to complement the traditional approach focusing on the degree of LMX differentiation. Results based on multiphase, multisource data from 375 employees of 82 teams revealed that, at the individual level, LMX quality positively contributed to customer-rated employee performance through enhancing employee role engagement. At the team level, LMX differentiation exerted negative influence on teams' financial performance through disrupting team coordination. In particular, teams with the bimodal form of LMX configuration (i.e., teams that split into 2 LMX-based subgroups with comparable size) suffered most in team performance because they experienced greatest difficulty in coordinating members' activities. Furthermore, LMX differentiation strengthened the relationship between LMX quality and role engagement, and team coordination strengthened the relationship between role engagement and employee performance. Theoretical and practical implications of the findings are discussed. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  9. Exchange Options

    NARCIS (Netherlands)

    Jamshidian, F.

    2007-01-01

    The contract is described and market examples given. Essential theoretical developments are introduced and cited chronologically. The principles and techniques of hedging and unique pricing are illustrated for the two simplest nontrivial examples: the classical Black-Scholes/Merton/Margrabe exchange

  10. PENERAPAN MODEL PEMBELAJARAN ROTATING TRIO EXCHANGE (RTE UNTUK MENINGKATKAN KUALITAS PEMBELAJARAN MATERI UPAYA-UPAYA PENEGAKAN HAM DI INDONESIA

    Directory of Open Access Journals (Sweden)

    Hasti Anggraini

    2017-03-01

    Full Text Available The purpose of this research is to improve the quality of learning through the application of the Rotating Trio Exchange (RTE model on the Material of Human Rights Enforcement in Indonesia. The study wasconducted in X IPA 4 and X IPA 8 graders of SMA Negeri 1 Pati Academic Year 2014 / 2015. The characteristic of students in both classes is balanced in terms of the dynamics of the activity and the value of learning outcomes that all have passed the learning mastery (100% passed.Implementation of the actions carried out in three cycles (cycle I, II, and III, each cycle lasts for 135 minutes (3 x 45 minutes. The design of Class Action Research uses the models of Kemmis and Taggart (1988 whose implementation consists of four steps: (1 planning; (2 implementation; (3 observation; and (4 reflection.The results of the implementation on the first cycle is not in line with expectations, as one indicator of the knowledge domains and one indicator of the skill domains shows a lower value or not balanced with other indicators. The average classical learning mastery in this cycle is above the passing grade (80. TQM indicators of these two classes is balanced, that is 684 for X IPA 4 and 679 for X IPA 8. The mean of TQM cognitive formation of both classes is 24.87%, skills is 49.081, and attitudes is 26.049%. In the second cycle, an improvement is carried out in the discourse of knowledge and skills of 7.8. This is influenced by the dynamics of student involvement equalization model which is evenly and alternately. In the third cycle, the two classes showed a different increase in quality, class X IPA 8 showed positive improvement, while Class X IPA 4 shows a fluctuative increase. The increase is relatively small, nevertheless indicates a significant RTE models to improve the quality of classical learning. The use of appropriate learning models is one of the factors that teachers can do to improve the quality of learning that is shown by the increase in

  11. AirMOSS: L4 Daily Modeled Net Ecosystem Exchange (NEE), AirMOSS sites, 2012-2014

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides Level 4 daily estimates of Net Ecosystem Exchange (NEE) of CO2 at a spatial resolution of 30 arc-seconds (~1 km) for seven of the sites...

  12. Water-Chemistry Evolution and Modeling of Radionuclide Sorption and Cation Exchange during Inundation of Frenchman Flat Playa

    Energy Technology Data Exchange (ETDEWEB)

    Hershey, Ronald; Cablk, Mary; LeFebre, Karen; Fenstermaker, Lynn; Decker, David

    2013-08-01

    dioxide and calcite; dissolution of sodium chloride, gypsum, and composite volcanic glass; and precipitation of composite clay and quartz represented changes in water as it disappeared from the playa. This modeling provided an understanding of the water-soil geochemical environment, which was then used to evaluate the potential mobility of residual radionuclides into the playa soils by water. Because there is no information on the chemical forms of anthropogenic radionuclides in Frenchman Flat playa soil, it was assumed that soil radionuclides go into solution when the playa is inundated. In mobility modeling, a select group of radionuclides were allowed to sorb onto, or exchange with, playa soil minerals to evaluate the likelihood that the radionuclides would be removed from water during playa inundation. Radionuclide mobility modeling suggested that there would be minimal sorption or exchange of several important radionuclides (uranium, cesium, and technetium) with playa minerals such that they may be mobile in water when the playa is inundated and could infiltrate into the subsurface. Mobility modeling also showed that plutonium may be much less mobile because of sorption onto calcite, but the amount of reactive surface area of playa soil calcite is highly uncertain. Plutonium is also known to sorb onto colloidal particles suspended in water, suspended colloidal particles will move with the water, providing a mechanism to redistribute plutonium when Frenchman Flat playa is inundated. Water chemistry, stable isotopes, and geochemical modeling showed that residual radionuclides in Frenchman Flat playa soils could be mobilized in water when the playa is inundated with precipitation. Also, there is potential for these radionuclides to infiltrate into the subsurface with water. As a result of the information obtained both during this study and the conclusions drawn from it, additional data collection, investigation, and modeling are recommended. Specifically: sampling the

  13. Value Exchange Model

    Directory of Open Access Journals (Sweden)

    Germán Contreras

    2010-07-01

    Full Text Available El intercambio de valor es no sólo un modelo de negocios, sino también un modelo social de comportamiento. Los consumidores podrían tener diferentes necesidades que no se limitan a productos tangibles, sino que también están asociadas a la obtención y uso de los productos. Se suele decir que en administración el valor está referido sólo a la productividad o a una forma de satisfacer a los consumidores eficientemente. Sin embargo, qué significa valor para los consumidores? Cómo pueden los encargados de mercadeo desarrollar procesos para mejorar los procesos de intercambio de valor? Para comprender estos temas, en este artículo se analiza el concepto de valor desde dos perspectivas: procesos de mercadeo y consumidores. Este artículo intenta proveer un mejor entendimiento del modelo de intercambio de valor, así como analizar el concepto desde varias perspectivas.

  14. The Dynamics of Multilateral Exchange

    Science.gov (United States)

    Hausken, Kjell; Moxnes, John F.

    The article formulates a dynamic mathematical model where arbitrarily many players produce, consume, exchange, loan, and deposit arbitrarily many goods over time to maximize utility. Consuming goods constitutes a benefit, and producing, exporting, and loaning away goods constitute a cost. Utilities are benefits minus costs, which depend on the exchange ratios and bargaining functions. Three-way exchange occurs when one player acquires, through exchange, one good from another player with the sole purpose of using this good to exchange against the desired good from a third player. Such a triple handshake is not merely a set of double handshakes since the player assigns no interest to the first good in his benefit function. Cognitive and organization costs increase dramatically for higher order exchanges. An exchange theory accounting for media of exchange follows from simple generalization of two-way exchange. The examples of r-way exchange are the triangle trade between Africa, the USA, and England in the 17th and 18th centuries, the hypothetical hypercycle involving RNAs as players and enzymes as goods, and reaction-diffusion processes. The emergence of exchange, and the role of trading agents are discussed. We simulate an example where two-way exchange gives zero production and zero utility, while three-way exchange causes considerable production and positive utility. Maximum utility for each player is reached when exchanges of the same order as the number of players in society are allowed. The article merges micro theory and macro theory within the social, natural, and physical sciences.

  15. Ion Exchange Distribution Coefficient Tests and Computer Modeling at High Ionic Strength Supporting Technetium Removal Resin Maturation

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Charles A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hamm, L. Larry [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Smith, Frank G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-12-19

    The primary treatment of the tank waste at the DOE Hanford site will be done in the Waste Treatment and Immobilization Plant (WTP) that is currently under construction. The baseline plan for this facility is to treat the waste, splitting it into High Level Waste (HLW) and Low Activity Waste (LAW). Both waste streams are then separately vitrified as glass and poured into canisters for disposition. The LAW glass will be disposed onsite in the Integrated Disposal Facility (IDF). There are currently no plans to treat the waste to remove technetium, so its disposition path is the LAW glass. Due to the water solubility properties of pertechnetate and long half-life of 99Tc, effective management of 99Tc is important to the overall success of the Hanford River Protection Project mission. To achieve the full target WTP throughput, additional LAW immobilization capacity is needed, and options are being explored to immobilize the supplemental LAW portion of the tank waste. Removal of 99Tc, followed by off-site disposal, would eliminate a key risk contributor for the IDF Performance Assessment (PA) for supplemental waste forms, and has potential to reduce treatment and disposal costs. Washington River Protection Solutions (WRPS) is developing some conceptual flow sheets for supplemental LAW treatment and disposal that could benefit from technetium removal. One of these flowsheets will specifically examine removing 99Tc from the LAW feed stream to supplemental immobilization. To enable an informed decision regarding the viability of technetium removal, further maturation of available technologies is being performed. This report contains results of experimental ion exchange distribution coefficient testing and computer modeling using the resin SuperLig® 639a to selectively remove perrhenate from high ionic strength simulated LAW. It is advantageous to operate at higher concentration in order to treat the waste

  16. Ion exchange equilibrium constants

    CERN Document Server

    Marcus, Y

    2013-01-01

    Ion Exchange Equilibrium Constants focuses on the test-compilation of equilibrium constants for ion exchange reactions. The book first underscores the scope of the compilation, equilibrium constants, symbols used, and arrangement of the table. The manuscript then presents the table of equilibrium constants, including polystyrene sulfonate cation exchanger, polyacrylate cation exchanger, polymethacrylate cation exchanger, polysterene phosphate cation exchanger, and zirconium phosphate cation exchanger. The text highlights zirconium oxide anion exchanger, zeolite type 13Y cation exchanger, and

  17. Calculating constants of the rates of the reactions of excitation, ionization, and atomic exchange: A model of a shock oscillator with a change of the Hamiltonian of the system

    Science.gov (United States)

    Tsyganov, D. L.

    2017-11-01

    A new model for calculating the rates of reactions of excitation, ionization, and atomic exchange is proposed. Diatomic molecule AB is an unstructured particle M upon the exchange of elastic-vibrational (VT) energy, i.e., a model of a shock forceful oscillator with a change in Hamiltonian (SFOH). The SFOH model is based on the quantum theory of strong perturbations. The SFOH model allows generalization in simulating the rates of the reactions of excitation, ionization, and atomic exchange in the vibrational-vibrational (VV) energy exchange of diatomic molecules, and the exchange of VV- and VT-energy of polyatomic molecules. The rate constants of the excitation of metastables A 3Σ u +, B 3Π g , W 3Δ u , B'3Σ u -, a'3Σ u -, and the ionization of a nitrogen molecules from ground state X2Σ g + upon a collision with a heavy structureless particle (a nitrogen molecule), are found as examples.

  18. Technology Performance Exchange

    Energy Technology Data Exchange (ETDEWEB)

    2015-09-01

    To address the need for accessible, high-quality data, the Department of Energy has developed the Technology Performance Exchange (TPEx). TPEx enables technology suppliers, third-party testing laboratories, and other entities to share product performance data. These data are automatically transformed into a format that technology evaluators can easily use in their energy modeling assessments to inform procurement decisions.

  19. Nonlinear mechanisms of the exchange rate pass-through: a Phillips curve model with threshold for Brazil

    Directory of Open Access Journals (Sweden)

    Arnildo da Silva Correa

    2010-09-01

    Full Text Available This paper investigates the presence of nonlinear mechanisms of pass-through from the exchange rate to inflation in Brazil. In particular, it estimates a Phillips curve with a threshold for the pass-through. The paper examines whether the short-run magnitude of the pass-through is affected by the business cycle, direction and magnitude of exchange rate changes, and exchange rate volatility. The results indicate that the short-run pass-through is higher when the economy is growing faster, when the exchange rate depreciates above some threshold and when exchange rate volatility is lower.Este trabalho investiga a presença de mecanismos não-lineares de repasse cambial para a inflação no Brasil. Em particular, estima-se uma curva de Phillips com limiar (threshold para o repasse cambial. O artigo examina se a magnitude de curto prazo do repasse é afetada pelo ciclo econômico, pela direção e magnitude da variação cambial e pela volatilidade da taxa de câmbio. Os resultados indicam que o repasse de curto prazo é maior quando a economia está em expansão, quando a taxa de câmbio se deprecia acima de certo valor e quando a volatilidade da taxa de câmbio é menor.

  20. Systems of Interaction between the First Sedentary Villages in the Near East Exposed Using Agent-Based Modelling of Obsidian Exchange

    Directory of Open Access Journals (Sweden)

    David Ortega

    2016-03-01

    Full Text Available In the Near East, nomadic hunter-gatherer societies became sedentary farmers for the first time during the transition into the Neolithic. Sedentary life presented a risk of isolation for Neolithic groups. As fluid intergroup interactions are crucial for the sharing of information, resources and genes, Neolithic villages developed a network of contacts. In this paper we study obsidian exchange between Neolithic villages in order to characterize this network of interaction. Using agent-based modelling and elements taken from complex network theory, we model obsidian exchange and compare results with archaeological data. We demonstrate that complex networks of interaction were established at the outset of the Neolithic and hypothesize that the existence of these complex networks was a necessary condition for the success and spread of a new way of living.

  1. Mathematical and numerical modelling of fractional crystallization coupled with chemical exchanges and differential magma-solid transport in magma chambers

    Science.gov (United States)

    Lakhssassi, Morad; Guy, Bernard; Cottin, Jean-Yves; Touboul, Eric

    2010-05-01

    The knowledge of the chemical evolution of magmas is a major concern in geochemistry and petrology. The jumps (or discontinuities) of chemical composition observed in volcanic series from the same province are also the subject of many studies. In particular the phenomenon of "Daly gap" (Daly 1910, 1925), the name given to the jump in chemical composition between the mafic rocks (basalt) and felsic rocks (trachyte, rhyolite, phonolite), corresponding to the absence or scarcity of rocks of intermediate composition (andesite), in both ocean and continental series. Some authors explain these compositional jumps thanks to the intervention of various geological phenomena which follow in time. For example, when a magma chamber turns from a closed to an open system, the lava of a specific composition is ejected to the surface, favoring the rise of the lightest, the most volatile-rich and the less sticky magmas to the surface of the earth (Geist et al., 1995, Thompson et al., 2001). The various explanations offered, although they agree satisfactorily with the natural data, most often lead us away from basic phenomena of melting / solidification, relative migration and chemical equilibrium between solid and liquid and involve various additional phenomena. In our study, we propose a numerical modelling of the crystallization of a closed magma chamber. The physical and mathematical model distinguishes three main classes of processes occurring simultaneously: - heat transfer and solidification, - relative migration between the solid and the liquid magma, - chemical reactions between the two (solid and liquid) phases. Writing the partial differential equations with dimensionless numbers makes two parameters appear, they express the respective ratios of the solidification velocity on the transport velocity, and the kinetics of chemical exchange on the transport velocity. The speed of relative movement between the solid and the liquid, the solidification velocity and the chemical

  2. A Model to Evaluate the Effectiveness of Collaborative Online Learning Teams – Self-Disclosure and Social Exchange Theory Perspective

    Directory of Open Access Journals (Sweden)

    Ying-Chieh Liu

    2010-12-01

    Full Text Available Collaborative online learning teams (COLTs are teams that are comprised of groups of online students. Accompanying the popularity of online learning, both on campuses and as professional development within many industries, learning in groups has been attracting much attention. However, there is little research constructing intact frameworks to evaluate the effectiveness of COLTs. This study built a framework by incorporating six constructs: self-disclosure, social exchange, trust, cohesion, performance and satisfaction, and validated it by analyzing data from a five-week experiment. The results showed that social exchange had a significant impact on trust, but self-disclosure did not. Trust was significantly related to cohesion and cohesion was significantly related to performance and satisfaction. This study suggests that instructors should incorporate the number of students’ posts into parts of evaluation to facilitate self-disclosure, and to stop “social loafing” behaviors while encouraging social exchange activities.

  3. Micrometeorological measurement of hexachlorobenzene and polychlorinated biphenyl compound air-water gas exchange in Lake Superior and comparison to model predictions

    Directory of Open Access Journals (Sweden)

    M. D. Rowe

    2012-05-01

    Full Text Available Air-water exchange fluxes of persistent, bioaccumulative and toxic (PBT substances are frequently estimated using the Whitman two-film (W2F method, but micrometeorological flux measurements of these compounds over water are rarely attempted. We measured air-water exchange fluxes of hexachlorobenzene (HCB and polychlorinated biphenyls (PCBs on 14 July 2006 in Lake Superior using the modified Bowen ratio (MBR method. Measured fluxes were compared to estimates using the W2F method, and to estimates from an Internal Boundary Layer Transport and Exchange (IBLTE model that implements the NOAA COARE bulk flux algorithm and gas transfer model. We reveal an inaccuracy in the estimate of water vapor transfer velocity that is commonly used with the W2F method for PBT flux estimation, and demonstrate the effect of use of an improved estimation method. Flux measurements were conducted at three stations with increasing fetch in offshore flow (15, 30, and 60 km in southeastern Lake Superior. This sampling strategy enabled comparison of measured and predicted flux, as well as modification in near-surface atmospheric concentration with fetch, using the IBLTE model. Fluxes estimated using the W2F model were compared to fluxes measured by MBR. In five of seven cases in which the MBR flux was significantly greater than zero, concentration increased with fetch at 1-m height, which is qualitatively consistent with the measured volatilization flux. As far as we are aware, these are the first reported ship-based micrometeorological air-water exchange flux measurements of PCBs.

  4. Ratiometric analysis in hyperpolarized NMR (I): test of the two-site exchange model and the quantification of reaction rate constants.

    Science.gov (United States)

    Li, Lin Z; Kadlececk, Stephen; Xu, He N; Daye, Dania; Pullinger, Benjamin; Profka, Harrilla; Chodosh, Lewis; Rizi, Rahim

    2013-10-01

    Conventional methods for the analysis of in vivo hyperpolarized (13) C NMR data from the lactate dehydrogenase (LDH) reaction usually make assumptions on the stability of rate constants and/or the validity of the two-site exchange model. In this study, we developed a framework to test the validity of the assumption of stable reaction rate constants and the two-site exchange model in vivo via ratiometric fitting of the time courses of the signal ratio L(t)/P(t). Our analysis provided evidence that the LDH enzymatic kinetics observed by hyperpolarized NMR are in near-equilibrium and satisfy the two-site exchange model for only a specific time window. In addition, we quantified both the forward and reverse exchange rate constants of the LDH reaction for the transgenic and mouse xenograft models of breast cancer using the ratio fitting method developed, which includes only two modeling parameters and is less sensitive to the influence of instrument settings/protocols, such as flip angles, degree of polarization and tracer dosage. We further compared the ratio fitting method with a conventional two-site exchange modeling method, i.e. the differential equation fitting method, using both the experimental and simulated hyperpolarized NMR data. The ratio fitting method appeared to fit better than the differential equation fitting method for the reverse rate constant on the mouse tumor data, with less relative errors on average, whereas the differential equation fitting method also resulted in a negative reverse rate constant for one tumor. The simulation results indicated that the accuracy of both methods depends on the width of the transport function, noise level and rate constant ratio; one method may be more accurate than the other based on the experimental/biological conditions aforementioned. We were able to categorize our tumor models into specific conditions of the computer simulation and to estimate the errors of rate quantification. We also discussed possible

  5. Inferring CO2 Fluxes from OCO-2 for Assimilation into Land Surface Models to Calculate Net Ecosystem Exchange

    Science.gov (United States)

    Prouty, R.; Radov, A.; Halem, M.; Nearing, G. S.

    2016-12-01

    Investigations of mid to high latitude atmospheric CO2 show a growing seasonal amplitude. Land surface models poorly predict net ecosystem exchange (NEE) and are unable to substantiate these sporadic observations. An investigation of how the biosphere has reacted to changes in atmospheric CO2 is essential to our understanding of potential climate-vegetation feedbacks. A global, seasonal investigation of CO2-flux is then necessary in order to assimilate into land surface models for improving the prediction of annual NEE. The Atmospheric Radiation Measurement program (ARM) of DOE collects CO2-flux measurements (in addition to CO2 concentration and various other meteorological quantities) at several towers located around the globe at half hour temporal frequencies. CO2-fluxes are calculated via the eddy covariance technique, which utilizes CO2-densities and wind velocities to calculate CO2-fluxes. The global coverage of CO2 concentrations as provided by the Orbiting Carbon Observatory (OCO-2) provide satellite-derived CO2 concentrations all over the globe. A framework relating the satellite-inferred CO2 concentrations collocated with the ground-based ARM as well as Ameriflux stations would enable calculations of CO2-fluxes far from the station sites around the entire globe. Regression techniques utilizing deep-learning neural networks may provide such a framework. Additionally, meteorological reanalysis allows for the replacement of the ARM multivariable meteorological variables needed to infer the CO2-fluxes. We present the results of inferring CO2-fluxes from OCO-2 CO2 concentrations for a two year period, Sept. 2014- Sept. 2016 at the ARM station located near Oklahoma City. A feed-forward neural network (FFNN) is used to infer relationships between the following data sets: F([ARM CO2-density], [ARM Meteorological Data]) = [ARM CO2-Flux] F([OCO-2 CO2-density],[ARM Meteorological Data]) = [ARM CO2-Flux] F([ARM CO2-density],[Meteorological Reanalysis]) = [ARM CO2-Flux

  6. Optimization of two-compartment-exchange-model analysis for dynamic contrast-enhanced mri incorporating bolus arrival time.

    Science.gov (United States)

    Nadav, Guy; Liberman, Gilad; Artzi, Moran; Kiryati, Nahum; Bashat, Dafna Ben

    2017-01-01

    To optimize the analysis of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) under the two-compartment-exchange-model (2CXM) and to incorporate voxelwise bolus-arrival-time (BAT). The accuracy of the pharmacokinetic (PK) parameters, extracted from 3T DCE-MRI using 2CXM, was tested under several conditions: eight algorithms for data estimation; correction for BAT; using model selection; different temporal resolution and scan duration. Comparisons were performed on simulated data. The best algorithm was applied to seven patients with brain tumors or following stroke. The extracted perfusion parameters were compared to those of dynamic susceptibility contrast MRI (DSC-MRI). ACoPeD (AIF-corrected-perfusion-DCE-MRI), an analysis using a 2 nd derivative regularized-spline and incorporating BAT, achieved the most accurate estimation in simulated data, mean-relative-error: F p , F, v p , v e : 24.8%, 41.7%, 26.4%, 27.2% vs. 76.5%, 190.8%, 78.8%, 82.39% of the direct four parameters estimation (one-sided two-sample t-test, P BAT increased the estimation accuracy of the PK parameters by more than 30% and provided a supertemporal resolution estimation of the BAT (higher than the acquired resolution, mean-absolute-error 0.2 sec). High temporal resolution (∼2 sec) is required to avoid biased estimation of PK parameters, and long scan duration (∼20 min) is important for reliable permeability but not for perfusion estimations, mean-error-reduction: E: ∼12%, v e : ∼6%. Using ACoPeD, PK values from normal-appearing white matter, gray matter, and lesion were extracted from patients. Preliminary results showed significant voxelwise correlations to DSC-MRI, between flow values in a patient following stroke (r = 0.49, P < 0.001), and blood volume in a patient with a brain tumor (r = 0.62, P < 0.001). This study proposes an optimized analysis method, ACoPeD, for tissue perfusion and permeability estimation using DCE-MRI, to be used in clinical settings. 1

  7. Ion exchange phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Bourg, I.C.; Sposito, G.

    2011-05-01

    Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculation (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).

  8. Calculation of thermodynamic corrections from electronic exchange effects in Thomas–Fermi model employed for hot dense plasma

    Directory of Open Access Journals (Sweden)

    H Hosseinkhani

    2016-09-01

    Full Text Available In this paper, considering the plasma electronic exchange intraction effects, first, Thomas–Fermi equation has been solved numerically. Then, employing the results of these equations, the amount of exchange corrections for pressure and internal energy of the plasma (electron gas with specific atomic number has been calculated based on variation of  plasma density and temperature. The results of the calculations can be used in both quantitative and qualitative description of changing the phase of matter in high temperature and density, encountered with in theoretical and experimental  studies of inertial fusion and astro physical phenomena as well.

  9. Air-Sea Exchange of Legacy POPs in the North Sea Based on Results of Fate and Transport, and Shelf-Sea Hydrodynamic Ocean Models

    Directory of Open Access Journals (Sweden)

    Kieran O'Driscoll

    2014-04-01

    Full Text Available The air-sea exchange of two legacy persistent organic pollutants (POPs, γ-HCH and PCB 153, in the North Sea, is presented and discussed using results of regional fate and transport and shelf-sea hydrodynamic ocean models for the period 1996–2005. Air-sea exchange occurs through gas exchange (deposition and volatilization, wet deposition and dry deposition. Atmospheric concentrations are interpolated into the model domain from results of the EMEP MSC-East multi-compartmental model (Gusev et al, 2009. The North Sea is net depositional for γ-HCH, and is dominated by gas deposition with notable seasonal variability and a downward trend over the 10 year period. Volatilization rates of γ-HCH are generally a factor of 2–3 less than gas deposition in winter, spring and summer but greater in autumn when the North Sea is net volatilizational. A downward trend in fugacity ratios is found, since gas deposition is decreasing faster than volatilization. The North Sea is net volatilizational for PCB 153, with highest rates of volatilization to deposition found in the areas surrounding polluted British and continental river sources. Large quantities of PCB 153 entering through rivers lead to very high local rates of volatilization.

  10. Decadal trends in the seasonal-cycle amplitude of terrestrial CO2 exchange resulting from the ensemble of terrestrial biosphere models

    Directory of Open Access Journals (Sweden)

    Akihiko Ito

    2016-05-01

    Full Text Available The seasonal-cycle amplitude (SCA of the atmosphere–ecosystem carbon dioxide (CO2 exchange rate is a useful metric of the responsiveness of the terrestrial biosphere to environmental variations. It is unclear, however, what underlying mechanisms are responsible for the observed increasing trend of SCA in atmospheric CO2 concentration. Using output data from the Multi-scale Terrestrial Model Intercomparison Project (MsTMIP, we investigated how well the SCA of atmosphere–ecosystem CO2 exchange was simulated with 15 contemporary terrestrial ecosystem models during the period 1901–2010. Also, we made attempt to evaluate the contributions of potential mechanisms such as atmospheric CO2, climate, land-use, and nitrogen deposition, through factorial experiments using different combinations of forcing data. Under contemporary conditions, the simulated global-scale SCA of the cumulative net ecosystem carbon flux of most models was comparable in magnitude with the SCA of atmospheric CO2 concentrations. Results from factorial simulation experiments showed that elevated atmospheric CO2 exerted a strong influence on the seasonality amplification. When the model considered not only climate change but also land-use and atmospheric CO2 changes, the majority of the models showed amplification trends of the SCAs of photosynthesis, respiration, and net ecosystem production (+0.19 % to +0.50 % yr−1. In the case of land-use change, it was difficult to separate the contribution of agricultural management to SCA because of inadequacies in both the data and models. The simulated amplification of SCA was approximately consistent with the observational evidence of the SCA in atmospheric CO2 concentrations. Large inter-model differences remained, however, in the simulated global tendencies and spatial patterns of CO2 exchanges. Further studies are required to identify a consistent explanation for the simulated and observed amplification trends, including their

  11. Mass exchange at the Strait of Gibraltar in response to tidal and lower frequency forcing as simulated by a Mediterranean Sea model

    Directory of Open Access Journals (Sweden)

    Ali Harzallah

    2014-09-01

    Full Text Available The exchange between the Atlantic and the Mediterranean at the Strait of Gibraltar is studied based on numerical simulations of the Mediterranean Sea compared to two sets of observations. The model used has a varying horizontal resolution, highest at the Strait of Gibraltar. Numerical simulations forced by tide, by the subinertial variability, by both and by increasing the diffusion at the Strait are performed and compared to each other. The model successfully reproduces the main observed features of the variability at the tidal and at the lower frequency time scales including the phasing between the barotropic and baroclinic flow components and density variations. The model also simulates the strong mixing at the strait by tide and the resulting fortnightly modulation of the flow, with exchange reduction during spring tides and outflowing waters and acceleration during neap tides and inflowing waters. It is shown that tidal oscillations reduce the two-way exchange by interaction with the subinertial variability. The effects of tide on the Mediterranean Sea thermohaline circulation are also examined using multi-decadal simulations. It is shown that the model reproduces the cooling and saltening of waters crossing the strait in the upper layer and the warming and freshening of waters crossing the strait in the deeper layer, as previously shown by high resolution models of the Strait of Gibraltar. These changes are shown to cool and increase the salinity of the Mediterranean waters especially in the upper and intermediate layers. The water-cooling is shown to lead to a reduction of the heat loss at the sea surface. Based on model results, it is concluded that tide may have an effect on the Mediterranean Sea heat budget and hence on the atmosphere above. A validation of this conclusion is however needed, in particular using higher resolution models.

  12. Multiscale CT-Based Computational Modeling of Alveolar Gas Exchange during Artificial Lung Ventilation, Cluster (Biot and Periodic (Cheyne-Stokes Breathings and Bronchial Asthma Attack

    Directory of Open Access Journals (Sweden)

    Andrey Golov

    2017-02-01

    Full Text Available An airflow in the first four generations of the tracheobronchial tree was simulated by the 1D model of incompressible fluid flow through the network of the elastic tubes coupled with 0D models of lumped alveolar components, which aggregates parts of the alveolar volume and smaller airways, extended with convective transport model throughout the lung and alveolar components which were combined with the model of oxygen and carbon dioxide transport between the alveolar volume and the averaged blood compartment during pathological respiratory conditions. The novel features of this work are 1D reconstruction of the tracheobronchial tree structure on the basis of 3D segmentation of the computed tomography (CT data; 1D−0D coupling of the models of 1D bronchial tube and 0D alveolar components; and the alveolar gas exchange model. The results of our simulations include mechanical ventilation, breathing patterns of severely ill patients with the cluster (Biot and periodic (Cheyne-Stokes respirations and bronchial asthma attack. The suitability of the proposed mathematical model was validated. Carbon dioxide elimination efficiency was analyzed in all these cases. In the future, these results might be integrated into research and practical studies aimed to design cyberbiological systems for remote real-time monitoring, classification, prediction of breathing patterns and alveolar gas exchange for patients with breathing problems.

  13. Carbon exchange in Western Siberian watershed mires and implication for the greenhouse effect : A spatial temporal modeling approach

    NARCIS (Netherlands)

    Borren, W.

    2007-01-01

    The vast watershed mires of Western Siberia formed a significant sink of carbon during the Holocene. Because of their large area these mires might play an important role in the carbon exchange between terrestrial ecosystems and the atmosphere. However, estimation of the Holocene and future carbon

  14. Educating Bilingual/ESL Teachers in a Language/Culture Exchange Field School: A Collaborative Model in Teacher Education.

    Science.gov (United States)

    Guadarrama, Irma N.

    This paper describes a program that brings bilingual and English-as-a-Second-Language (ESL) teachers from the United States to a Mexican ESL school to teach in the Tetiz (Yucatan, Mexico) field school and in exchange, learn Mayan language and culture. The theoretical base for the project is drawn from the work of major theorists in second language…

  15. Structural modeling and electron paramagnetic resonance spectroscopy of the human Na+/H+ exchanger isoform 1, NHE1

    DEFF Research Database (Denmark)

    Nygaard, Eva B; Lagerstedt, Jens O; Bjerre, Gabriel

    2011-01-01

    We previously presented evidence that transmembrane domain (TM) IV and TM X-XI are important for inhibitor binding and ion transport by the human Na(+)/H(+) exchanger, hNHE1 (Pedersen, S. F., King, S. A., Nygaard, E. B., Rigor, R. R., and Cala, P. M. (2007) J. Biol. Chem. 282, 19716-19727). Here,...

  16. Building Partnerships to Address Community Geoscience Priorities: A Brief History of the Thriving Earth Exchange (TEX) Model and its Evolution

    Science.gov (United States)

    Finn, C.; Udu-gama, N.; Pandya, R.; Leshin, L. A.; McEntee, C.; Williams, B. M.; Goodwin, M.

    2016-12-01

    Increasingly, communities around the world are being challenged by extremes in climatic change and natural hazards and a lack of key natural resources. In many cases, such communities do not have access to the experts and resources they need to address these changes. While partnerships are being developed to address these challenges, there is a need to bring communities and scientists together equitably. Thriving Earth Exchange (TEX), a program powered by the American Geophysical Union (AGU), seeks to connect communities by offering them scientists that can work with them on developing effective solutions for their real-life climate change, natural hazards and/or natural resources challenges. TEX advocates community science - the notion that scientists and communities equitably work together to identify how science can advance local priorities such that it produces local impact, guides future research and generates solutions that can be shared. The concept for TEX evolved from 2011 AGU Council discussions on potential options for impacting AGU's upcoming Centennial. The concept started as a single "Grand Challenge" concept, but evolved through several trails and iterations to today's vibrant TEX program and model. The TEX process is not for every community or scientist. In order to ensure that a community can proceed through a project with a scientist, TEX has found that they often must have a mandate to work on the issue at hand. For instance, if a planning department is tasked with doing a climate vulnerability assessment, a project looking at how heat extremes affect the elderly could probably proceed without interruption from other internal community processes. In some cases, available funds acts as an impetus for a community to seek action. Yet at other times, an individual's passion to address a community challenge may be the spark required to turn ideas into action. This presentation will provide an overview of the TEX genesis within AGU, and its growth and

  17. Developing multi-tracer approaches to constrain the parameterisation of leaf and soil CO2 and H2O exchange in land surface models

    Science.gov (United States)

    Ogée, Jerome; Wehr, Richard; Commane, Roisin; Launois, Thomas; Meredith, Laura; Munger, Bill; Nelson, David; Saleska, Scott; Zahniser, Mark; Wofsy, Steve; Wingate, Lisa

    2016-04-01

    The net flux of carbon dioxide between the land surface and the atmosphere is dominated by photosynthesis and soil respiration, two of the largest gross CO2 fluxes in the carbon cycle. More robust estimates of these gross fluxes could be obtained from the atmospheric budgets of other valuable tracers, such as carbonyl sulfide (COS) or the carbon and oxygen isotope compositions (δ13C and δ18O) of atmospheric CO2. Over the past decades, the global atmospheric flask network has measured the inter-annual and intra-annual variations in the concentrations of these tracers. However, knowledge gaps and a lack of high-resolution multi-tracer ecosystem-scale measurements have hindered the development of process-based models that can simulate the behaviour of each tracer in response to environmental drivers. We present novel datasets of net ecosystem COS, 13CO2 and CO18O exchange and vertical profile data collected over 3 consecutive growing seasons (2011-2013) at the Harvard forest flux site. We then used the process-based model MuSICA (multi-layer Simulator of the Interactions between vegetation Canopy and the Atmosphere) to include the transport, reaction, diffusion and production of each tracer within the forest and exchanged with the atmosphere. Model simulations over the three years captured well the impact of diurnally and seasonally varying environmental conditions on the net ecosystem exchange of each tracer. The model also captured well the dynamic vertical features of tracer behaviour within the canopy. This unique dataset and model sensitivity analysis highlights the benefit in the collection of multi-tracer high-resolution field datasets and the developement of multi-tracer land surface models to provide valuable constraints on photosynthesis and respiration across scales in the near future.

  18. CAPITAL ASSET PRICING MODEL METHOD USED IN MEASURING AND ANALYZING COMPANIES LISTED IN PEFINDO25 AT INDONESIA STOCK EXCHANGE PERIOD 2015

    Directory of Open Access Journals (Sweden)

    Francis M HUTABARAT

    2016-08-01

    Full Text Available The industry in Indonesia is an interesting business to capitalize. In Indonesia many companies were established since it is profitable. The capital market serves as an economic pillar in most countries. Indonesia is a rich country, rich in many ways especially in natural resources. However, the industry has its ups and downs in the stock market. It is interesting to see the performance of the companies listed in the Indonesia Stock Exchange.  This study aimed to measure and analyze companies listed in Pefindo25 at Indonesian Stock Exchange using Capital Asset Pricing Model. The sample used is 25 companies listed at Pefindo25 index. Based on the results of the study, it can conclude that after analyzing the companies listed in the Indonesian Stock Exchange using Capital Asset Pricing Model that based on Beta analysis, the companies have the type of stocks that are aggressive and defensive. With positive and negative return. The company with aggressive beta shows that the company tend to face higher risk, as JPFA find itself with positif return 15.47% expected return. And companies with defensive type of stocks tend to have positive return such as: FISH, STTP, AISA, APLN, and others since they are not sensitive to market changes. It is recommended for further research to look on this CAPM method in analyzing the stock investment.

  19. Stochastic multi-objective model for optimal energy exchange optimization of networked microgrids with presence of renewable generation under risk-based strategies.

    Science.gov (United States)

    Gazijahani, Farhad Samadi; Ravadanegh, Sajad Najafi; Salehi, Javad

    2018-02-01

    The inherent volatility and unpredictable nature of renewable generations and load demand pose considerable challenges for energy exchange optimization of microgrids (MG). To address these challenges, this paper proposes a new risk-based multi-objective energy exchange optimization for networked MGs from economic and reliability standpoints under load consumption and renewable power generation uncertainties. In so doing, three various risk-based strategies are distinguished by using conditional value at risk (CVaR) approach. The proposed model is specified as a two-distinct objective function. The first function minimizes the operation and maintenance costs, cost of power transaction between upstream network and MGs as well as power loss cost, whereas the second function minimizes the energy not supplied (ENS) value. Furthermore, the stochastic scenario-based approach is incorporated into the approach in order to handle the uncertainty. Also, Kantorovich distance scenario reduction method has been implemented to reduce the computational burden. Finally, non-dominated sorting genetic algorithm (NSGAII) is applied to minimize the objective functions simultaneously and the best solution is extracted by fuzzy satisfying method with respect to risk-based strategies. To indicate the performance of the proposed model, it is performed on the modified IEEE 33-bus distribution system and the obtained results show that the presented approach can be considered as an efficient tool for optimal energy exchange optimization of MGs. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  20. A leaf gas exchange model that accounts for intra-canopy variability by considering leaf nitrogen content and local acclimation to radiation in grapevine (Vitis vinifera L.).

    Science.gov (United States)

    Prieto, Jorge A; Louarn, Gaëtan; Perez Peña, Jorge; Ojeda, Hernán; Simonneau, Thierry; Lebon, Eric

    2012-07-01

    Understanding the distribution of gas exchange within a plant is a prerequisite for scaling up from leaves to canopies. We evaluated whether leaf traits were reliable predictors of the effects of leaf ageing and leaf irradiance on leaf photosynthetic capacity (V(cmax) , J(max) ) in field-grown vines (Vitis vinifera L). Simultaneously, we measured gas exchange, leaf mass per area (LMA) and nitrogen content (N(m) ) of leaves at different positions within the canopy and at different phenological stages. Daily mean leaf irradiance cumulated over 10 d (PPFD(10) ) was obtained by 3D modelling of the canopy structure. N(m) decreased over the season in parallel to leaf ageing while LMA was mainly affected by leaf position. PPFD(10) explained 66, 28 and 73% of the variation of LMA, N(m) and nitrogen content per area (N(a) ), respectively. Nitrogen content per unit area (N(a) = LMA × N(m) ) was the best predictor of the intra-canopy variability of leaf photosynthetic capacity. Finally, we developed a classical photosynthesis-stomatal conductance submodel and by introducing N(a) as an input, the model accurately simulated the daily pattern of gas exchange for leaves at different positions in the canopy and at different phenological stages during the season. © 2012 Blackwell Publishing Ltd.