Sample records for exchange matrix damage

  1. Analysis of Damage in a Ceramic Matrix Composite

    DEFF Research Database (Denmark)

    Sørensen, Bent F.; Talreja, Ramesh


    are discussed. For distributed matrix micro cracking a continuum damage model is used as the basis for describing the associated stress-strain behavior. A simplified analysis of frictional sliding at the fiber/matrix inter face is made to elucidate its effect on the stress-strain response.......Mechanisms of damage and the associated mechanical response are stud ied for a unidirectionally fiber-reinforced ceramic matrix composite subjected to uniaxial tensile loading parallel to fibers. A multi-stage development of damage is identified, and for each stage the governing mechanisms...

  2. Random matrix theory and portfolio optimization in Moroccan stock exchange (United States)

    El Alaoui, Marwane


    In this work, we use random matrix theory to analyze eigenvalues and see if there is a presence of pertinent information by using Marčenko-Pastur distribution. Thus, we study cross-correlation among stocks of Casablanca Stock Exchange. Moreover, we clean correlation matrix from noisy elements to see if the gap between predicted risk and realized risk would be reduced. We also analyze eigenvectors components distributions and their degree of deviations by computing the inverse participation ratio. This analysis is a way to understand the correlation structure among stocks of Casablanca Stock Exchange portfolio.


    Directory of Open Access Journals (Sweden)

    Anatoly Beletsky


    Full Text Available The methods of construction of matrix formation the secret protocols legalized subscribers of public communications networks encryption keys. Based key exchange protocols laid asymmetric cryptography algorithms. The solution involves the calculation of one-way functions and is based on the use of generalized Galois arrays of isomorphism relationship with forming elements, and depending on the selected irreducible polynomial generating matrix. A simple method for constructing generalized Galois matrix by the method of filling the diagonal. In order to eliminate the isomorphism of Galois arrays and their constituent elements, limiting the possibility of building one-way functions, Galois matrix subjected to similarity transformation carried out by means of permutation matrices. The variant of the organization of the algebraic attacks on encryption keys sharing protocols and discusses options for easing the consequences of an attack.

  4. Stochastic-Strength-Based Damage Simulation Tool for Ceramic Matrix and Polymer Matrix Composite Structures (United States)

    Nemeth, Noel N.; Bednarcyk, Brett A.; Pineda, Evan J.; Walton, Owen J.; Arnold, Steven M.


    Stochastic-based, discrete-event progressive damage simulations of ceramic-matrix composite and polymer matrix composite material structures have been enabled through the development of a unique multiscale modeling tool. This effort involves coupling three independently developed software programs: (1) the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC), (2) the Ceramics Analysis and Reliability Evaluation of Structures Life Prediction Program (CARES/ Life), and (3) the Abaqus finite element analysis (FEA) program. MAC/GMC contributes multiscale modeling capabilities and micromechanics relations to determine stresses and deformations at the microscale of the composite material repeating unit cell (RUC). CARES/Life contributes statistical multiaxial failure criteria that can be applied to the individual brittle-material constituents of the RUC. Abaqus is used at the global scale to model the overall composite structure. An Abaqus user-defined material (UMAT) interface, referred to here as "FEAMAC/CARES," was developed that enables MAC/GMC and CARES/Life to operate seamlessly with the Abaqus FEA code. For each FEAMAC/CARES simulation trial, the stochastic nature of brittle material strength results in random, discrete damage events, which incrementally progress and lead to ultimate structural failure. This report describes the FEAMAC/CARES methodology and discusses examples that illustrate the performance of the tool. A comprehensive example problem, simulating the progressive damage of laminated ceramic matrix composites under various off-axis loading conditions and including a double notched tensile specimen geometry, is described in a separate report.

  5. Mechanisms of formation damage in matrix-permeability geothermal wells

    Energy Technology Data Exchange (ETDEWEB)

    Bergosh, J.L.; Wiggins, R.B.; Enniss, D.O.


    Tests were conducted to determine mechanisms of formation damage that can occur in matrix permeability geothermal wells. Two types of cores were used in the testing, actual cores from the East Mesa Well 78-30RD and cores from a fairly uniform generic sandstone formation. Three different types of tests were run. The East Mesa cores were used in the testing of the sensitivity of core to filtrate chemistry. The tests began with the cores exposed to simulated East Mesa brine and then different filtrates were introduced and the effects of the fluid contrast on core permeability were measured. The East Mesa cores were also used in the second series of tests which tested formation sandstone cores were used in the third test series which investigated the effects of different sizes of entrained particles in the fluid. Tests were run with both single-particle sizes and distributions of particle mixes. In addition to the testing, core preparation techniques for simulating fracture permeability were evaluated. Three different fracture formation mechanisms were identified and compared. Measurement techniques for measuring fracture size and permeability were also developed.

  6. Strong, damage tolerant oxide-fiber/oxide matrix composites (United States)

    Bao, Yahua

    cationic polyelectrolytes to have a positive surface charge and then dipped into diluted, negatively-charged AlPO4 colloidal suspension (0.05M) at pH 7.5. Amorphous AlPO4 (crystallizes to tridymite- and cristobalite-forms at 1080°C) nano particles were coated on fibers layer-by-layer using an electrostatic attraction protocol. A uniform and smooth coating was formed which allowed fiber pullout from the matrix of a Nextel 720/alumina mini-composite hot-pressed at 1250°C/20MPa. Reaction-bonded mullite (RBM), with low formation temperature and sintering shrinkage was synthesized by incorporation of mixed-rare-earth-oxide (MREO) and mullite seeds. Pure mullite formed with 7.5wt% MREO at 1300°C. Introduction of 5wt% mullite seeds gave RBM with less than 3% shrinkage and 20% porosity. AlPO4-coated Nextel 720/RBM composites were successful fabricated by EPID and pressureless sintering at 1300°C. Significant fiber pullout occurred and the 4-point bend strength was around 170MPa (with 25-30vol% fibers) at room temperature and 1100°C and a Work-of-Fracture 7KJ/m2. At 1200°C, the composite failed in shear due to the MREO-based glassy phase in the matrix. AlPO4-coated Nextel 720 fiber/aluminosilicate (no MREO) showed damage tolerance at 1200°C with a bend strength 170MPa.

  7. Simulating vulnerability functions and seismic damage probability matrix for reinforced concrete frame buildings

    Directory of Open Access Journals (Sweden)

    Esperanza Maldonado Rondón


    Full Text Available This paper outlines vulnerability functions and seismic damage probability matrixes being constructed for reinforced concrete frame buildings. These functions and matrixes were based on simulation techniques and experts’ opinion. The proposed functions and matrixes relate a building’s vulnerability to the level of damage which might be incurred, depending on an earthquake’s motion. Vulnerability was defined by estimating an index proposed by expert opinion. Damage was defined by means of a da-mage index depending on nonlinear static analysis. Simulation techniques were used for constructing hypothetical buildings and thereby to building the functions and matrixes. Such buildings represented the typical characteristics of Colombian cities’ reinforced concrete frame system (Bucaramanga for example. A set of tools was made for constructing and applying these functions and matrixes, allowing us to determine the level of seismic damage by using the buildings’ characteristics for specific seismic action.

  8. Damage Accumulation in Advanced Metal Matrix Composites Under Thermal Cycling (United States)


    for steady state creep which is given by (em) C= - A G- -Doe (2.4.6) where G is the matrix shear modulus, b is the matrix Burgers vector, k is...program was then developed with the help of another graduate student, Doug Graesser, which was able to count the number of black pixels present in the

  9. Unified continuum damage model for matrix cracking in composite rotor blades

    Energy Technology Data Exchange (ETDEWEB)

    Pollayi, Hemaraju; Harursampath, Dineshkumar [Nonlinear Multifunctional Composites - Analysis and Design Lab (NMCAD Lab) Department of Aerospace Engineering Indian Institute of Science Bangalore - 560012, Karnataka (India)


    This paper deals with modeling of the first damage mode, matrix micro-cracking, in helicopter rotor/wind turbine blades and how this effects the overall cross-sectional stiffness. The helicopter/wind turbine rotor system operates in a highly dynamic and unsteady environment leading to severe vibratory loads present in the system. Repeated exposure to this loading condition can induce damage in the composite rotor blades. These rotor/turbine blades are generally made of fiber-reinforced laminated composites and exhibit various competing modes of damage such as matrix micro-cracking, delamination, and fiber breakage. There is a need to study the behavior of the composite rotor system under various key damage modes in composite materials for developing Structural Health Monitoring (SHM) system. Each blade is modeled as a beam based on geometrically non-linear 3-D elasticity theory. Each blade thus splits into 2-D analyzes of cross-sections and non-linear 1-D analyzes along the beam reference curves. Two different tools are used here for complete 3-D analysis: VABS for 2-D cross-sectional analysis and GEBT for 1-D beam analysis. The physically-based failure models for matrix in compression and tension loading are used in the present work. Matrix cracking is detected using two failure criterion: Matrix Failure in Compression and Matrix Failure in Tension which are based on the recovered field. A strain variable is set which drives the damage variable for matrix cracking and this damage variable is used to estimate the reduced cross-sectional stiffness. The matrix micro-cracking is performed in two different approaches: (i) Element-wise, and (ii) Node-wise. The procedure presented in this paper is implemented in VABS as matrix micro-cracking modeling module. Three examples are presented to investigate the matrix failure model which illustrate the effect of matrix cracking on cross-sectional stiffness by varying the applied cyclic load.

  10. The Influence of Particle Shapes on Strength and Damage Properties of Metal Matrix Composites. (United States)

    Qing, Hai


    The influence of the distribution of particle shapes, locations and orientations on the mechanical behavior of the particle reinforced Metal-Matrix Composite (MMC) is studied through finite element (FE) method under different loading conditions in this investigation. The FE-model with multi-particle is generated through the random sequential adsorption algorithm, with the particles treated respectively as elastic-brittle circular, regular octagon and hexagon and square shape. Ductile failure in metal matrix, brittle fracture of particles and interface debonding are taken into account during the simulations. 2D cohesive element is applied to simulate the debonding behavior of interface. The damage models based on the stress triaxial indicator and maximum principal stress criterion are developed to simulate the ductile failure of metal matrix and brittle cracking of particles, respectively. Simulation results show that the interface debonding dominates the failure process under the loading, while the damage in particle grows at slowest rate compared with those in matrix and interface.

  11. Performing multiobjective optimization on perforated plate matrix heat exchanger surfaces using genetic algorithm

    Directory of Open Access Journals (Sweden)

    John Anish K.


    Full Text Available Matrix Heat Exchanger is having wide spread applications in cryogenics and aerospace, where high effectiveness and compactness is essential. This can be achieved by providing high thermal conductive plates and low thermal conductive spacers alternately. These perforated plate matrix heat exchangers have near to 100% efficiency due to low longitudinal heat transfer. The heat transfer and flow friction characteristics of a perforated plate matrix heat exchanger can be represented using Colburn factor and friction factor. In this paper, dimensionless parameters like Reynolds number (Re, porosity (p, perforation perimeter factor (P f, plate thickness to pore diameter ratio (l/d and spacer thickness to plate thickness ratio (s/l have been optimized for maximum Colburn factor and minimum friction factor using genetic algorithm. Two algorithms, one for single objective and the other for multi-objective problems, which are believed to be more efficient, are described. The algorithms coded with MATLAB, is used to perform multi-objective optimization on perforated plate matrix heat exchanger surfaces. The results show promising results.

  12. Determination of effective elastic properties of metal matrix composites with damage particulates using homogenization method (United States)

    Halim, S. Z.; Basaruddin, K. S.; Ibrahim, I.; Majid, M. S. Abdul; Ridzuan, M. J. M.


    The present study aims to investigate the effect of micro-damage in particulates metal matrix composite on the elastic properties. The micro damage that perhaps could occurs during manufacturing process or due to environmental effects was modelled in three different types, namely shattered, debonded and breakage particulates with variation of volume fraction. The modelling and analysis were conducted based on homogenization theory by utilizing multiscale finite element software (Voxelxon). The results suggest that the elastic properties of metal matrix composite was sensitive to the geometrical defects of its particle.

  13. Damage detection via closed-form sensitivity matrix of modal kinetic energy change ratio (United States)

    Hadjian Shahri, A. H.; Ghorbani-Tanha, A. K.


    In this paper, a new damage detection method based on a damage sensitive feature parameter named Modal Kinetic Energy Change Ratio has been proposed. The sensitivity matrix for the damage identification procedure is calculated by making use of the closed-form sensitivity of eigenvalues of the structure. Numerical simulations and experimental tests were carried out on a beam-like structure in order to examine the reliability and feasibility of the proposed method. System Equivalent Reduction Expansion Technique is employed to omit rotational degrees of freedom of the model. It is demonstrated that this method locates and quantifies structural damage(s) with acceptable accuracy. The best advantage of the proposed method comparing to the ones which are based on modal strain energy is that it is not sensitive to mode shape noise and yields favorable results under moderate noise in natural frequencies.

  14. Dielectric matrix formulation of correlation energies in the Random Phase Approximation (RPA): inclusion of exchange effects

    CERN Document Server

    Mussard, Bastien; Jansen, Georg; Angyan, Janos


    Starting from the general expression for the ground state correlation energy in the adiabatic connection fluctuation dissipation theorem (ACFDT) framework, it is shown that the dielectric matrix formulation, which is usually applied to calculate the direct random phase approximation (dRPA) correlation energy, can be used for alternative RPA expressions including exchange effects. Within this famework, the ACFDT analog of the second order screened exchange (SOSEX) approximation leads to a logarithmic formula for the correlation energy similar to the direct RPA expression. Alternatively, the contribution of the exchange can be included in the kernel used to evaluate the response functions. In this case the use of an approximate kernel is crucial to simplify the formalism and to obtain a correlation energy in logarithmic form. Technical details of the implementation of these methods are discussed and it is shown that one can take advantage of density fitting or Cholesky decomposition techniques to improve the co...

  15. Fracture-Based Mesh Size Requirements for Matrix Cracks in Continuum Damage Mechanics Models (United States)

    Leone, Frank A.; Davila, Carlos G.; Mabson, Gerald E.; Ramnath, Madhavadas; Hyder, Imran


    This paper evaluates the ability of progressive damage analysis (PDA) finite element (FE) models to predict transverse matrix cracks in unidirectional composites. The results of the analyses are compared to closed-form linear elastic fracture mechanics (LEFM) solutions. Matrix cracks in fiber-reinforced composite materials subjected to mode I and mode II loading are studied using continuum damage mechanics and zero-thickness cohesive zone modeling approaches. The FE models used in this study are built parametrically so as to investigate several model input variables and the limits associated with matching the upper-bound LEFM solutions. Specifically, the sensitivity of the PDA FE model results to changes in strength and element size are investigated.

  16. Investigation of Electrochemical and Morphological Properties of Mixed Matrix Polysulfone-Silica Anion Exchange Membrane

    Directory of Open Access Journals (Sweden)



    Full Text Available Mixed matrix anion exchange membranes (AEMs were synthesized using dry-wet phase inversion. The casting solutions were prepared by dispersing finely ground anion-exchange resin particles in N,N-dimethylacetamide (DMAc solutions of polysulfone (PSf. Subsequently, nanosilica particles were introduced into the membranes. The results show that evaporation time (tev and solution composition contributed to membrane properties formation. A longer tev produces membranes with reduced void fraction inside the membranes, thus the amount of water adsorbed and membrane conductivity are reduced. Meanwhile, the permselectivity was improved by increasing tev, since a longer tev produces membranes with a narrower channel for ion migration and more effective Donnan exclusion. The incorporation of 0.5 %-wt nanosilica particles into the polymer matrix led to conductivity improvement (from 2.27 to 3.41 This may be associated with additional pathway formation by hydroxyl groups on the silica surface that entraps water and assists ion migration. However, at further silica loading (1.0 and 1.5 %-wt, these properties decreased (to 1.9 and 1.4 respectively, which attributed to inaccessibility of ion-exchange functional groups due to membrane compactness. It was found from the results that nanosilica contributes to membrane formation (increases casting solution viscosity then reduces void fraction and membrane functional group addition (provides hydroxyl groups.

  17. Characterization of multi-layered impact damage in polymer matrix composites using lateral thermography (United States)

    Whitlow, Travis; Sathish, Shamachary


    Polymer matrix composites (PMCs) are increasingly being integrated into aircraft structures. However, these components are susceptible to impact related delamination, which, on aircrafts, can occur due to a number of reasons during aircraft use and maintenance. Quantifying impact damage is an important aspect for life-management of aircraft and requires in-depth knowledge of the damage zone on a ply-by-ply level. Traditionally, immersion ultrasound has provided relative high resolution images of impact damage. Ultrasonic time-of-flight data can be used to determine the front surface delamination depth and an approximation of the delaminated area. However, such inspections require the material to be immersed in water and can be time consuming. The objective of this work is to develop a quick and robust methodology to non-destructively characterize multi-layered impact damage using lateral thermography. Initial results suggest lateral heat flow is sensitive to the depth of impact damage. The anticipated outcome of this project is to estimate the extent of through-thickness impact damage. Initial results are shown and future efforts are discussed.

  18. Damage Tolerance Enhancement of Carbon Fiber Reinforced Polymer Composites by Nanoreinforcement of Matrix (United States)

    Fenner, Joel Stewart

    Nanocomposites are a relatively new class of materials which incorporate exotic, engineered nanoparticles to achieve superior material properties. Because of their extremely small size and well-ordered structure, many nanoparticles possess properties that exceed those offered by a wide range of other known materials, making them attractive candidates for novel materials engineering development. Their small size is also an impediment to their practical use, as they typically cannot be employed by themselves to realize those properties in large structures. Furthermore, nanoparticles typically possess strong self-affinity, rendering them difficult to disperse uniformly into a composite. However, contemporary research has shown that, if well-dispersed, nanoparticles have great capacity to improve the mechanical properties of composites, especially damage tolerance, in the form of fracture toughness, fatigue life, and impact damage mitigation. This research focuses on the development, manufacturing, and testing of hybrid micro/nanocomposites comprised of woven carbon fibers with a carbon nanotube reinforced epoxy matrix. Material processing consisted of dispersant-and-sonication based methods to disperse nanotubes into the matrix, and a vacuum-assisted wet lay-up process to prepare the hybrid composite laminates. Various damage tolerance properties of the hybrid composite were examined, including static strength, fracture toughness, fatigue life, fatigue crack growth rate, and impact damage behavior, and compared with similarly-processed reference material produced without nanoreinforcement. Significant improvements were obtained in interlaminar shear strength (15%), Mode-I fracture toughness (180%), shear fatigue life (order of magnitude), Mode-I fatigue crack growth rate (factor of 2), and effective impact damage toughness (40%). Observations by optical microscopy, scanning electron microscopy, and ultrasonic imaging showed significant differences in failure behavior

  19. A Coupled/Uncoupled Computational Scheme for Deformation and Fatigue Damage Analysis of Unidirectional Metal-Matrix Composites (United States)

    Wilt, Thomas E.; Arnold, Steven M.; Saleeb, Atef F.


    A fatigue damage computational algorithm utilizing a multiaxial, isothermal, continuum-based fatigue damage model for unidirectional metal-matrix composites has been implemented into the commercial finite element code MARC using MARC user subroutines. Damage is introduced into the finite element solution through the concept of effective stress that fully couples the fatigue damage calculations with the finite element deformation solution. Two applications using the fatigue damage algorithm are presented. First, an axisymmetric stress analysis of a circumferentially reinforced ring, wherein both the matrix cladding and the composite core were assumed to behave elastic-perfectly plastic. Second, a micromechanics analysis of a fiber/matrix unit cell using both the finite element method and the generalized method of cells (GMC). Results are presented in the form of S-N curves and damage distribution plots.

  20. Ultrasonic Assessment of Impact-Induced Damage and Microcracking in Polymer Matrix Composites (United States)

    Gyekanyesi, John (Technical Monitor); Liaw, Benjamin; Villars, Esther; Delmont, Frantz


    The main objective of this NASA Faculty Awards for Research (FAR) project is to conduct ultrasonic assessment of impact-induced damage and microcracking in fiber-metal laminated (FML) composites at various temperatures. It is believed that the proposed study of impact damage assessment on FML composites will benefit several NASA's missions and current interests, such as ballistic impact testing of composite fan containment and high strain rate deformation modeling of polymer matrix composites. Impact-induced damage mechanisms in GLARE and ARALL fiber-metal laminates subject to instrumented drop-weight impacts at various temperatures were studied. GLARE and ARALL are hybrid composites made of alternating layers of aluminum and glass- (for GLARE) and aramid- (for ARALL) fiber reinforced epoxy. Damage in pure aluminum panels impacted by foreign objects was mainly characterized by large plastic deformation surrounding a deep penetration dent. On the other hand, plastic deformation in fiber-metal laminates was often not as severe although the penetration dent was still produced. The more stiff fiber-reinforced epoxy layers provided better bending rigidity; thus, enhancing impact damage tolerance. Severe cracking, however, occurred due to the use of these more brittle fiber-reinforced epoxy layers. Fracture patterns, e.g., crack length and delamination size, were greatly affected by the lay-up configuration rather than by the number of layers, which implies that thickness effect was not significant for the panels tested in this study. Immersion ultrasound techniques were then used to assess damages generated by instrumented drop-weight impacts onto these fiber-metal laminate panels as well as 2024-T3 aluminum/cast acrylic sandwich plates adhered by epoxy. Depending on several parameters, such as impact velocity, mass, temperature, laminate configuration, sandwich construction, etc., various types of impact damage were observed, including plastic deformation, radiating

  1. Analysis of flow boiling of ammonia and R-114 in a matrix heat exchanger (United States)

    Panchal, C. B.


    An analysis is carried out for flow boiling in a vertical matrix aluminum heat exchanger. The prediction model, developed for thin film evaporation in a previous study, is extended to include heat transfer in the slug-flow regime that exists at low mass qualities. Appropriate criteria is used to switch from slug-flow to thin-film annular-flow analysis. The two-phase-flow convective heat transfer enhancement for the slug-flow is correlated with inclusion of fluid Reynolds and Prandtl numbers in addition to commonly used Martinelli parameter. This approach reflects transient nature of heat transfer in the slug-flow regime. The thin-film annular-flow analysis developed in the previous study is refined with inclusion of a reliable two-phase friction factor correlation. The experimentally measured pressure drop is used to validate the friction factor correlation. The resulting prediction method is used to predict exit mass qualities for ammonia and R-114. The experimental analysis includes flow boiling of ammonia and R-114 in a vertical brazed-aluminum matrix heat exchanger. The test unit has straight perforated fins on the fluid side and extruded rectangular channels on the single-phase (water) heating-media side. Only two parameters are adjusted to validate the analytical prediction method, the constant in the friction factor correlation, and the constant in the slug-flow heat transfer correlation. The results show that the combination of slug-flow and thin-film annular-flow model gives better prediction of the overall performance of the matrix heat exchanger than a single model applied for the whole range of mass qualities.

  2. Synergistic Effects of Physical Aging and Damage on Long-Term Behavior of Polymer Matrix Composites (United States)

    Brinson, L. Cate


    The research consisted of two major parts, first modeling and simulation of the combined effects of aging and damage on polymer composites and secondly an experimental phase examining composite response at elevated temperatures, again activating both aging and damage. For the simulation, a damage model for polymeric composite laminates operating at elevated temperatures was developed. Viscoelastic behavior of the material is accounted for via the correspondence principle and a variational approach is adopted to compute the temporal stresses within the laminate. Also, the effect of physical aging on ply level stress and on overall laminate behavior is included. An important feature of the model is that damage evolution predictions for viscoelastic laminates can be made. This allows us to track the mechanical response of the laminate up to large load levels though within the confines of linear viscoelastic constitutive behavior. An experimental investigation of microcracking and physical aging effects in polymer matrix composites was also pursued. The goal of the study was to assess the impact of aging on damage accumulation, in ten-ns of microcracking, and the impact of damage on aging and viscoelastic behavior. The testing was performed both at room and elevated temperatures on [+/- 45/903](sub s) and [02/903](sub s) laminates, both containing a set of 90 deg plies centrally located to facilitate investigation of microcracking. Edge replication and X-ray-radiography were utilized to quantify damage. Sequenced creep tests were performed to characterize viscoelastic and aging parameters. Results indicate that while the aging times studied have limited ]Influence on damage evolution, elevated temperature and viscoelastic effects have a profound effect on the damage mode seen. Some results are counterintuitive, including the lower strain to failure for elevated temperature tests and the catastrophic failure mode observed for the [+/- 45/9O3](sub s), specimens. The

  3. Stochastic-Strength-Based Damage Simulation of Ceramic Matrix Composite Laminates (United States)

    Nemeth, Noel N.; Mital, Subodh K.; Murthy, Pappu L. N.; Bednarcyk, Brett A.; Pineda, Evan J.; Bhatt, Ramakrishna T.; Arnold, Steven M.


    The Finite Element Analysis-Micromechanics Analysis Code/Ceramics Analysis and Reliability Evaluation of Structures (FEAMAC/CARES) program was used to characterize and predict the progressive damage response of silicon-carbide-fiber-reinforced reaction-bonded silicon nitride matrix (SiC/RBSN) composite laminate tensile specimens. Studied were unidirectional laminates [0] (sub 8), [10] (sub 8), [45] (sub 8), and [90] (sub 8); cross-ply laminates [0 (sub 2) divided by 90 (sub 2),]s; angled-ply laminates [plus 45 (sub 2) divided by -45 (sub 2), ]s; doubled-edge-notched [0] (sub 8), laminates; and central-hole laminates. Results correlated well with the experimental data. This work was performed as a validation and benchmarking exercise of the FEAMAC/CARES program. FEAMAC/CARES simulates stochastic-based discrete-event progressive damage of ceramic matrix composite and polymer matrix composite material structures. It couples three software programs: (1) the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC), (2) the Ceramics Analysis and Reliability Evaluation of Structures Life Prediction Program (CARES/Life), and (3) the Abaqus finite element analysis program. MAC/GMC contributes multiscale modeling capabilities and micromechanics relations to determine stresses and deformations at the microscale of the composite material repeating-unit-cell (RUC). CARES/Life contributes statistical multiaxial failure criteria that can be applied to the individual brittle-material constituents of the RUC, and Abaqus is used to model the overall composite structure. For each FEAMAC/CARES simulation trial, the stochastic nature of brittle material strength results in random, discrete damage events that incrementally progress until ultimate structural failure.

  4. Diffusion, trapping, and isotope exchange of plasma implanted deuterium in ion beam damaged tungsten (United States)

    Barton, Joseph Lincoln

    Tritium accumulation in nuclear fusion reactor materials is a major concern for practical and safe fusion energy. This work examines hydrogen isotope exchange as a tritium removal technique, analyzes the effects of neutron damage using high energy copper ion beams, and introduces a diffusion coefficient that is a function of the concentration of trapped atoms. Tungsten samples were irradiated with high energy (0.5 - 5 MeV) copper ions for controlled levels of damage - 10-3 to 10-1 displacements per atom (dpa) - at room temperature. Samples were then exposed to deuterium plasma at constant temperature (˜ 380 K) to a high fluence of 1024 ions/m2, where retention is at is maximized (i.e. saturated). By then subsequently exposing these samples to fractions of this fluence with hydrogen plasma, isotope exchange rates were observed. The resulting deuterium still trapped in the tungsten is then measured post mortem. Nuclear reaction analysis (NRA) gives the depth resolved deuterium retention profile with the 3He(D,p) 4He reaction, and thermal desorption spectroscopy (TDS) gives the total amount of deuterium trapped in the tungsten by heating a sample in vacuum up to 1200 K and measuring the evaporated gas molecules with a residual gas analyzer. Isotope exchange data show that hydrogen atoms can displace trapped deuterium atoms efficiently only up to the first few microns, but does not affect the atoms trapped at greater depths. In ion damaged tungsten, measurements showed a significant increase in retention in the damage region proportional to dpa 0.66, which results in a significant spike in total retention, and isotope exchange in damaged samples is still ineffective at depths greater than a few microns. Thus, isotope exchange is not an affective tritium removal technique; however, these experiments have shown that trapping in material defects greatly affects diffusion. These experiments lead to a simplified diffusion model with defect densities as the only free

  5. Micromechanics Fatigue Damage Analysis Modeling for Fabric Reinforced Ceramic Matrix Composites (United States)

    Min, J. B.; Xue, D.; Shi, Y.


    A micromechanics analysis modeling method was developed to analyze the damage progression and fatigue failure of fabric reinforced composite structures, especially for the brittle ceramic matrix material composites. A repeating unit cell concept of fabric reinforced composites was used to represent the global composite structure. The thermal and mechanical properties of the repeating unit cell were considered as the same as those of the global composite structure. The three-phase micromechanics, the shear-lag, and the continuum fracture mechanics models were integrated with a statistical model in the repeating unit cell to predict the progressive damages and fatigue life of the composite structures. The global structure failure was defined as the loss of loading capability of the repeating unit cell, which depends on the stiffness reduction due to material slice failures and nonlinear material properties in the repeating unit cell. The present methodology is demonstrated with the analysis results evaluated through the experimental test performed with carbon fiber reinforced silicon carbide matrix plain weave composite specimens.

  6. Representing Matrix Cracks Through Decomposition of the Deformation Gradient Tensor in Continuum Damage Mechanics Methods (United States)

    Leone, Frank A., Jr.


    A method is presented to represent the large-deformation kinematics of intraply matrix cracks and delaminations in continuum damage mechanics (CDM) constitutive material models. The method involves the additive decomposition of the deformation gradient tensor into 'crack' and 'bulk material' components. The response of the intact bulk material is represented by a reduced deformation gradient tensor, and the opening of an embedded cohesive interface is represented by a normalized cohesive displacement-jump vector. The rotation of the embedded interface is tracked as the material deforms and as the crack opens. The distribution of the total local deformation between the bulk material and the cohesive interface components is determined by minimizing the difference between the cohesive stress and the bulk material stress projected onto the cohesive interface. The improvements to the accuracy of CDM models that incorporate the presented method over existing approaches are demonstrated for a single element subjected to simple shear deformation and for a finite element model of a unidirectional open-hole tension specimen. The material model is implemented as a VUMAT user subroutine for the Abaqus/Explicit finite element software. The presented deformation gradient decomposition method reduces the artificial load transfer across matrix cracks subjected to large shearing deformations, and avoids the spurious secondary failure modes that often occur in analyses based on conventional progressive damage models.

  7. Ion exchange separation of chromium from natural water matrix for stable isotope mass spectrometric analysis (United States)

    Ball, J.W.; Bassett, R.L.


    A method has been developed for separating the Cr dissolved in natural water from matrix elements and determination of its stable isotope ratios using solid-source thermal-ionization mass spectrometry (TIMS). The separation method takes advantage of the existence of the oxidized form of Cr as an oxyanion to separate it from interfering cations using anion-exchange chromatography, and of the reduced form of Cr as a positively charged ion to separate it from interfering anions such as sulfate. Subsequent processing of the separated sample eliminates residual organic material for application to a solid source filament. Ratios for 53Cr/52Cr for National Institute of Standards and Technology Standard Reference Material 979 can be measured using the silica gel-boric acid technique with a filament-to-filament standard deviation in the mean 53Cr/52Cr ratio for 50 replicates of 0.00005 or less. (C) 2000 Elsevier Science B.V. All rights reserved.

  8. A Damage Resistance Comparison Between Candidate Polymer Matrix Composite Feedline Materials (United States)

    Nettles, A. T


    As part of NASAs focused technology programs for future reusable launch vehicles, a task is underway to study the feasibility of using the polymer matrix composite feedlines instead of metal ones on propulsion systems. This is desirable to reduce weight and manufacturing costs. The task consists of comparing several prototype composite feedlines made by various methods. These methods are electron-beam curing, standard hand lay-up and autoclave cure, solvent assisted resin transfer molding, and thermoplastic tape laying. One of the critical technology drivers for composite components is resistance to foreign objects damage. This paper presents results of an experimental study of the damage resistance of the candidate materials that the prototype feedlines are manufactured from. The materials examined all have a 5-harness weave of IM7 as the fiber constituent (except for the thermoplastic, which is unidirectional tape laid up in a bidirectional configuration). The resin tested were 977-6, PR 520, SE-SA-1, RS-E3 (e-beam curable), Cycom 823 and PEEK. The results showed that the 977-6 and PEEK were the most damage resistant in all tested cases.

  9. Damage and failure behavior of metal matrix composites under biaxial loads (United States)

    Kirkpatrick, Steven Wayne

    Metal matrix composites (MMCs) are being considered for increased use in structures that require the ductility and damage tolerance of the metal matrix and the enhanced strength and creep resistance at elevated temperatures of high performance fibers. Particularly promising for advanced aerospace engines and airframes are SiC fiber/titanium matrix composites (TMCs). A large program was undertaken in the Air Force to characterize the deformation and failure behaviors of TMCs and to develop computational models that can be used for component design. The effort reported here focused on a SiC SCS-6/Timetal 21S composite under biaxial loading conditions. Biaxial loading conditions are important because multiaxial stresses have been shown to influence the strength and ductility of engineering materials and, in general, structural components are subjected to multiaxial loads. The TMC material response, including stress-strain curves and failure surfaces, was measured using a combination of off-axis uniaxial tension and compression tests and biaxial cruciform tests. The off-axis tests produce combinations of in-plane tension, compression, and shear stresses, the mix of which are controlled by the relative angle between the fiber and specimen axes. The biaxial cruciform tests allowed independent control over the tensile or compressive loads in the fiber and transverse directions. The results of these characterization tests were used to develop a microstructural constitutive model and failure criteria. The basis of the micromechanical constitutive model is a representative unit volume of the MMC with a periodic array of fibers. The representative unit volume is divided into a fiber and three matrix cells for which the microstructural equilibrium and compatibility equations can be analyzed. The resulting constitutive model and associated failure criteria can be used to predict the material behavior under general loading conditions.

  10. Colloid Mobilization in a Fractured Soil: Effect of Pore-Water Exchange between Preferential Flow Paths and Soil Matrix. (United States)

    Mohanty, Sanjay K; Saiers, James E; Ryan, Joseph N


    Exchange of water and solutes between contaminated soil matrix and bulk solution in preferential flow paths has been shown to contribute to the long-term release of dissolved contaminants in the subsurface, but whether and how this exchange can affect the release of colloids in a soil are unclear. To examine this, we applied rainfall solutions of different ionic strength on an intact soil core and compared the resulting changes in effluent colloid concentration through multiple sampling ports. The exchange of water between soil matrix and the preferential flow paths leading to each port was characterized on the basis of the bromide (conservative tracer) breakthrough time at the port. At individual ports, two rainfalls of a certain ionic strength mobilized different amounts of colloids when the soil was pre-exposed to a solution of lower or higher ionic strength. This result indicates that colloid mobilization depended on rainfall solution history, which is referred as colloid mobilization hysteresis. The extent of hysteresis was increased with increases in exchange of pore water and solutes between preferential flow paths and matrix. The results indicate that the soil matrix exchanged the old water from the previous infiltration with new infiltrating water during successive infiltration and changed the pore water chemistry in the preferential flow paths, which in turn affected the release of soil colloids. Therefore, rainfall solution history and soil heterogeneity must be considered to assess colloid mobilization in the subsurface. These findings have implications for the release of colloids, colloid-associated contaminants, and pathogens from soils.

  11. Hypohalous acids contribute to renal extracellular matrix damage in experimental diabetes. (United States)

    Brown, Kyle L; Darris, Carl; Rose, Kristie Lindsey; Sanchez, Otto A; Madu, Hartman; Avance, Josh; Brooks, Nickolas; Zhang, Ming-Zhi; Fogo, Agnes; Harris, Raymond; Hudson, Billy G; Voziyan, Paul


    In diabetes, toxic oxidative pathways are triggered by persistent hyperglycemia and contribute to diabetes complications. A major proposed pathogenic mechanism is the accumulation of protein modifications that are called advanced glycation end products. However, other nonenzymatic post-translational modifications may also contribute to pathogenic protein damage in diabetes. We demonstrate that hypohalous acid-derived modifications of renal tissues and extracellular matrix (ECM) proteins are significantly elevated in experimental diabetic nephropathy. Moreover, diabetic renal ECM shows diminished binding of α1β1 integrin consistent with the modification of collagen IV by hypochlorous (HOCl) and hypobromous acids. Noncollagenous (NC1) hexamers, key connection modules of collagen IV networks, are modified via oxidation and chlorination of tryptophan and bromination of tyrosine residues. Chlorotryptophan, a relatively minor modification, has not been previously found in proteins. In the NC1 hexamers isolated from diabetic kidneys, levels of HOCl-derived oxidized and chlorinated tryptophan residues W(28) and W(192) are significantly elevated compared with nondiabetic controls. Molecular dynamics simulations predicted a more relaxed NC1 hexamer tertiary structure and diminished assembly competence in diabetes; this was confirmed using limited proteolysis and denaturation/refolding. Our results suggest that hypohalous acid-derived modifications of renal ECM, and specifically collagen IV networks, contribute to functional protein damage in diabetes. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  12. Heavy-ion double charge exchange reactions: A tool toward 0 νββ nuclear matrix elements

    Energy Technology Data Exchange (ETDEWEB)

    Cappuzzello, F.; Bondi, M. [Universita di Catania, Dipartimento di Fisica e Astronomia, Catania (Italy); INFN, Laboratori Nazionali del Sud, Catania (Italy); Cavallaro, M.; Agodi, C.; Carbone, D.; Cunsolo, A. [INFN, Laboratori Nazionali del Sud, Catania (Italy); Foti, A. [Universita di Catania, Dipartimento di Fisica e Astronomia, Catania (Italy); INFN, Sezione di Catania, Catania (Italy)


    The knowledge of the nuclear matrix elements for the neutrinoless double beta decay is fundamental for neutrino physics. In this paper, an innovative technique to extract information on the nuclear matrix elements by measuring the cross section of a double charge exchange nuclear reaction is proposed. The basic point is that the initial- and final-state wave functions in the two processes are the same and the transition operators are similar. The double charge exchange cross sections can be factorized in a nuclear structure term containing the matrix elements and a nuclear reaction factor. First pioneering experimental results for the {sup 40}Ca({sup 18}O,{sup 18}Ne){sup 40}Ar reaction at 270 MeV incident energy show that such cross section factorization reasonably holds for the crucial 0{sup +} → 0{sup +} transition to {sup 40}Ar{sub gs}, at least at very forward angles. (orig.)

  13. Assessment of thermal shock induced damage in silicon carbide fibre reinforced glass matrix composites

    Directory of Open Access Journals (Sweden)

    Boccaccini, A. R.


    Full Text Available The development of microstructural damage in silicon carbide fibre (Nicalon™ reinforced glass matrix composite samples subjected to thermal shock was investigated by using a nondestructive forced resonance technique and fibre push out indentation tests. Thermal shock testing involved quenching samples in a water bath maintained at room temperature from a high temperature (650ºC. Changes in the Young's modulus and internal friction of the samples with increasing number of shocks were measured accurately by the forced resonance technique. Fibre push-out tests showed no significant changes in the properties of the fibre-matrix interface, indicating that damage in the composite was concentrated mainly in the development of matrix microcracking. It was also shown that the internal friction is a very sensitive parameter by which to detect the onset and development of such microcracking. A simple semi-empirical model is proposed to correlate the internal friction level with the microcracking density in the glass matrix. Finally, the relevance of detecting nondestructively the existence of microcracks in the glass matrix, before any significant interfacial degradation occurs, is emphasized, in conextion with the possibility of inducing a crack healing process by a thermal treatment (annealing, taking advantage of the viscous flow properties of the glass.

    El desarrollo de daño microestructural en materiales compuestos de matriz de vidrio reforzados con fibras de carburo de silicio (Nicalon™ sometidos a choque térmico fue investigado mediante la técnica no-destructiva de resonancia forzada y por mediciones de indentación "push-out" de fibras. Los ensayos de choque térmico involucraron el enfriamiento brusco en un baño de agua a temperatura ambiente de las piezas previamente calentadas a una temperatura elevada (650ºC. La técnica de resonancia forzada permitió medir cambios en el módulo de Young de elasticidad y en la fricci

  14. Determination of glucose exchange rates and permeability of erythrocyte membrane in preeclampsia and subsequent oxidative stress-related protein damage using dynamic-19F-NMR. (United States)

    Dickinson, Elizabeth; Arnold, John R P; Fisher, Julie


    The cause of the pregnancy condition preeclampsia (PE) is thought to be endothelial dysfunction caused by oxidative stress. As abnormal glucose tolerance has also been associated with PE, we use a fluorinated-mimic of this metabolite to establish whether any oxidative damage to lipids and proteins in the erythrocyte membrane has increased cell membrane permeability. Data were acquired using 19 F Dynamic-NMR (DNMR) to measure exchange of 3-fluoro-3-deoxyglucose (3-FDG) across the membrane of erythrocytes from 10 pregnant women (5 healthy control women, and 5 from women suffering from PE). Magnetisation transfer was measured using the 1D selective inversion and 2D EXSY pulse sequences, over a range of time delays. Integrated intensities from these experiments were used in matrix diagonalisation to estimate the values of the rate constants of exchange and membrane permeability. No significant differences were observed for the rate of exchange of 3-FDG and membrane permeability between healthy pregnant women and those suffering from PE, leading us to conclude that no oxidative damage had occurred at this carrier-protein site in the membrane.

  15. Determination of glucose exchange rates and permeability of erythrocyte membrane in preeclampsia and subsequent oxidative stress-related protein damage using dynamic-{sup 19}F-NMR

    Energy Technology Data Exchange (ETDEWEB)

    Dickinson, Elizabeth, E-mail: [University of York, Department of Chemistry (United Kingdom); Arnold, John R. P. [Selby College (United Kingdom); Fisher, Julie [University of Leeds, School of Chemistry (United Kingdom)


    The cause of the pregnancy condition preeclampsia (PE) is thought to be endothelial dysfunction caused by oxidative stress. As abnormal glucose tolerance has also been associated with PE, we use a fluorinated-mimic of this metabolite to establish whether any oxidative damage to lipids and proteins in the erythrocyte membrane has increased cell membrane permeability. Data were acquired using {sup 19}F Dynamic-NMR (DNMR) to measure exchange of 3-fluoro-3-deoxyglucose (3-FDG) across the membrane of erythrocytes from 10 pregnant women (5 healthy control women, and 5 from women suffering from PE). Magnetisation transfer was measured using the 1D selective inversion and 2D EXSY pulse sequences, over a range of time delays. Integrated intensities from these experiments were used in matrix diagonalisation to estimate the values of the rate constants of exchange and membrane permeability. No significant differences were observed for the rate of exchange of 3-FDG and membrane permeability between healthy pregnant women and those suffering from PE, leading us to conclude that no oxidative damage had occurred at this carrier-protein site in the membrane.

  16. Probable causes of damage of heat-exchange tubes of low-pressure-exchanges of PND-3 type and repair methods (United States)

    Trifonov, N. N.; Esin, S. B.; Nikolaenkova, E. K.; Sukhorukov, Yu. G.; Svyatkin, F. A.; Sintsova, T. G.; Modestov, V. S.


    The structures of low-pressure heaters (LPH), which are installed at nuclear power plants with the K-1000-60/1500 type turbine plants are considered. It was revealed that only the PND-3 type low-pressure heaters have the damages of the heat exchange tubes. For a short operation life, the number of the damaged heat-exchange tubes of PND-3 is approximately 50 pcs for Kalinin NPP and 100-150 pcs for Balakovo NPP. The low-pressure heaters were manufactured at AO Ural Plant of Chemical Machine-Building "Uralkhimmash," OAO Taganrog Boiler-Making Works "Krasny Kotelshchik," and Vitkovice Machinery Group, but the damage nature of the heat-exchange tubes is identical for all PND-3. The damages occur in the place of passage of the heat exchange tubes through the first, the second, and the third partitions over the lower tube plate (the first path of the turbine condensate). Hydraulic shocks can be one of the possible causes of the damage of the heat-exchange tubes of PND-3. The analysis of the average thermal and dynamic loads of the tube systems of PND-1-PND-4 revealed that PND-3 by the thermal power are loaded 1.4-1.6 times and by the dynamic effects are loaded 1.8-2.0 times more than the remaining LPHs. Another possible cause of damage can be the cascaded drain of the separate into PND-4 and then through the drainage heat exchange into PND-3. An additional factor can be the structure of the condensate drainage unit. The advanced system of the heating steam flow and pumping scheme of the separate drain using the existing drainage pumps of PND-3 for K-1000-60/1500 turbine plants for Balakovo and Kalinin NPPs were proposed. The considered decisions make it possible to reduce the flow rate of the heating steam condensate from PND-3 into PND-4 and the speed of the heating steam in the tube space of PND-3 and eliminate the occurrence of hydraulic shocks and damages of the heat exchanger tubes.

  17. Pericytes as Inducers of Rapid, Matrix Metalloproteinase-9-Dependent Capillary Damage during Ischemia. (United States)

    Underly, Robert G; Levy, Manuel; Hartmann, David A; Grant, Roger I; Watson, Ashley N; Shih, Andy Y


    Blood-brain barrier disruption (BBB) and release of toxic blood molecules into the brain contributes to neuronal injury during stroke and other cerebrovascular diseases. While pericytes are builders and custodians of the BBB in the normal brain, their impact on BBB integrity during ischemia remains unclear. We imaged pericyte-labeled transgenic mice with in vivo two-photon microscopy to examine the relationship between pericytes and blood plasma leakage during photothrombotic occlusion of cortical capillaries. Upon cessation of capillary flow, we observed that plasma leakage occurred with three times greater frequency in regions where pericyte somata adjoined the endothelium. Pericyte somata covered only 7% of the total capillary length in cortex, indicating that a disproportionate amount of leakage occurred from a small fraction of the capillary bed. Plasma leakage was preceded by rapid activation of matrix metalloproteinase (MMP) at pericyte somata, which was visualized at high resolution in vivo using a fluorescent probe for matrix metalloproteinase-2/9 activity, fluorescein isothiocyanate (FITC)-gelatin. Coinjection of an MMP-9 inhibitor, but not an MMP-2 inhibitor, reduced pericyte-associated FITC-gelatin fluorescence and plasma leakage. These results suggest that pericytes contribute to rapid and localized proteolytic degradation of the BBB during cerebral ischemia. Pericytes are a key component of the neurovascular unit and are essential for normal BBB function. However, during acute ischemia, we find that pericytes are involved in creating rapid and heterogeneous BBB disruption in the capillary bed. The mechanism by which pericytes contribute to BBB damage warrants further investigation, as it may yield new therapeutic targets for acute stroke injury and other neurological diseases involving capillary flow impairment. Copyright © 2017 the authors 0270-6474/17/370129-12$15.00/0.

  18. Influence of the extracellular matrix on endogenous and transplanted stem cells after brain damage (United States)

    Roll, Lars; Faissner, Andreas


    The limited regeneration capacity of the adult central nervous system (CNS) requires strategies to improve recovery of patients. In this context, the interaction of endogenous as well as transplanted stem cells with their environment is crucial. An understanding of the molecular mechanisms could help to improve regeneration by targeted manipulation. In the course of reactive gliosis, astrocytes upregulate Glial fibrillary acidic protein (GFAP) and start, in many cases, to proliferate. Beside GFAP, subpopulations of these astroglial cells coexpress neural progenitor markers like Nestin. Although cells express these markers, the proportion of cells that eventually give rise to neurons is limited in many cases in vivo compared to the situation in vitro. In the first section, we present the characteristics of endogenous progenitor-like cells and discuss the differences in their neurogenic potential in vitro and in vivo. As the environment plays an important role for survival, proliferation, migration, and other processes, the second section of the review describes changes in the extracellular matrix (ECM), a complex network that contains numerous signaling molecules. It appears that signals in the damaged CNS lead to an activation and de-differentiation of astrocytes, but do not effectively promote neuronal differentiation of these cells. Factors that influence stem cells during development are upregulated in the damaged brain as part of an environment resembling a stem cell niche. We give a general description of the ECM composition, with focus on stem cell-associated factors like the glycoprotein Tenascin-C (TN-C). Stem cell transplantation is considered as potential treatment strategy. Interaction of transplanted stem cells with the host environment is critical for the outcome of stem cell-based therapies. Possible mechanisms involving the ECM by which transplanted stem cells might improve recovery are discussed in the last section. PMID:25191223

  19. Swelling behavior of ion exchange resins incorporated in tri-calcium silicate cement matrix: I. Chemical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Neji, M., E-mail: [CEA, DEN, DPC, SECR, Laboratoire d' Etude du Comportement des Bétons et des Argiles, F-91191 Gif-sur-Yvette (France); Polytech Lille – LML UMR, 8107 Villeneuve d' Ascq (France); Bary, B.; Le Bescop, P. [CEA, DEN, DPC, SECR, Laboratoire d' Etude du Comportement des Bétons et des Argiles, F-91191 Gif-sur-Yvette (France); Burlion, N. [Polytech Lille – LML UMR, 8107 Villeneuve d' Ascq (France)


    This paper presents the first part of a theoretical and experimental work aiming at modeling the chemo-mechanical behavior of composites made up of ion exchange resins (IER) solidified in a tri-calcium silicate cement paste (C{sub 3}S). Because of ion exchange processes, the volume change of the IER may cause internal pressures leading to the degradation of the material. In this study, a predictive modeling is developed for describing the chemical behavior of such material. It is based on thermodynamic equilibria to determine the evolution of the ion exchange processes, and the potential precipitation of portlandite in the composite. In parallel, a phenomenological study has been set up to understand chemical phenomena related to the swelling mechanisms. The model created has been finally implemented in a finite elements software; the simulation of a laboratory test has been performed and the results compared to experimental data. - Highlights: • Ion exchange theory to model the swelling behavior of Ion exchange resin. • Experimental phenomenon analysis about Chemo-mechanical interaction between IER and cement paste matrix. • Chemo-Transport modeling on a composite material made with IER embedded into cement paste matrix.

  20. The Rapid Inactivation of Porcine Skin by Applying High Hydrostatic Pressure without Damaging the Extracellular Matrix

    Directory of Open Access Journals (Sweden)

    Naoki Morimoto


    Full Text Available We previously reported that high hydrostatic pressure (HHP of 200 MPa for 10 minutes could induce cell killing. In this study, we explored whether HHP at 200 MPa or HHP at lower pressure, in combination with hyposmotic distilled water (DW, could inactivate the skin, as well as cultured cells. We investigated the inactivation of porcine skin samples 4 mm in diameter. They were immersed in either a normal saline solution (NSS or DW, and then were pressurized at 100 and 200 MPa for 5, 10, 30, or 60 min. Next, we explored the inactivation of specimens punched out from the pressurized skin 10 × 2 cm in size. The viability was evaluated using a WST-8 assay and an outgrowth culture. The histology of specimens was analyzed histologically. The mitochondrial activity was inactivated after the pressurization at 200 MPa in both experiments, and no outgrowth was observed after the pressurization at 200 MPa. The arrangement and proportion of the dermal collagen fibers or the elastin fibers were not adversely affected after the pressurization at 200 MPa for up to 60 minutes. This study showed that a HHP at 200 MPa for 10 min could inactivate the skin without damaging the dermal matrix.

  1. The rapid inactivation of porcine skin by applying high hydrostatic pressure without damaging the extracellular matrix. (United States)

    Morimoto, Naoki; Mahara, Atsushi; Shima, Kouji; Ogawa, Mami; Jinno, Chizuru; Kakudo, Natsuko; Kusumoto, Kenji; Fujisato, Toshia; Suzuki, Shigehiko; Yamaoka, Tetsuji


    We previously reported that high hydrostatic pressure (HHP) of 200 MPa for 10 minutes could induce cell killing. In this study, we explored whether HHP at 200 MPa or HHP at lower pressure, in combination with hyposmotic distilled water (DW), could inactivate the skin, as well as cultured cells. We investigated the inactivation of porcine skin samples 4 mm in diameter. They were immersed in either a normal saline solution (NSS) or DW, and then were pressurized at 100 and 200 MPa for 5, 10, 30, or 60 min. Next, we explored the inactivation of specimens punched out from the pressurized skin 10×2 cm in size. The viability was evaluated using a WST-8 assay and an outgrowth culture. The histology of specimens was analyzed histologically. The mitochondrial activity was inactivated after the pressurization at 200 MPa in both experiments, and no outgrowth was observed after the pressurization at 200 MPa. The arrangement and proportion of the dermal collagen fibers or the elastin fibers were not adversely affected after the pressurization at 200 MPa for up to 60 minutes. This study showed that a HHP at 200 MPa for 10 min could inactivate the skin without damaging the dermal matrix.

  2. Spatially resolved protein hydrogen exchange measured by matrix-assisted laser desorption ionization in-source decay

    DEFF Research Database (Denmark)

    Rand, Kasper D; Bache, Nicolai; Nedertoft, Morten M


    Mass spectrometry has become a powerful tool for measuring protein hydrogen exchange and thereby reveal the structural dynamics of proteins in solution. Here we describe the successful application of a matrix-assisted laser desorption ionization (MALDI) mass spectrometry approach based on in......-source decay (ISD) to measure spatially resolved amide backbone hydrogen exchange. By irradiating deuterated protein molecules in a crystalline matrix with a high laser fluence, they undergo prompt fragmentation. Spatially resolved deuteration levels are readily obtained by mass analysis of consecutive...... fragment ions. MALDI ISD analysis of deuterated cytochrome c yielded an extensive series of c-fragment ions which originate from cleavage of nearly all N-C(α) bonds (Cys17 to Glu104) allowing for a detailed analysis of the deuterium content of the backbone amides. While hydrogen scrambling can be major...

  3. Study on the turbulence model sensitivity for various cross-corrugated surfaces applied to matrix type heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jun Myung; Ha, Man Yeong; Son, Chang Min; Doo, Jeong Hoon; Min, June Kee [Pusan National University, Busan (Korea, Republic of)


    Diverse cross-corrugated surface geometries were considered to estimate the sensitivity of four variants of k-ε turbulence models (Low Reynolds, standard, RNG and realizable models). The cross-corrugated surfaces considered in this study are a conventional sinusoidal shape and two different asymmetric shapes. The numerical simulations using the steady incompressible Reynolds-averaged Navier Stokes (RANS) equations were carried out to obtain the steady solutions of the flow and thermal fields in the unitary cell of the heat exchanger matrix. In addition, the experimental test for the measurement of local convective heat transfer coefficients on the heat transfer surfaces was performed by means of the Transient liquid crystal (TLC) technique in order to compare the numerical results with the measured data. The features on detailed flow structure and corresponding heat transfer in the unitary cell of the matrix type heat exchanger are compared and analyzed against four different turbulence models considered in this study.

  4. Cholesterol Exchange, DNA Damages, Apoptosis and Necrosis of Blood Cells in Severe Concomitant Injury

    Directory of Open Access Journals (Sweden)

    V. V. Moroz


    Full Text Available Objective: to study a number of free-radical reactions, the parameters of cholesterol exchange, and the extent of blood cell DNA damages in victims early after concomitant injury. Subjects and methods. The study covered 77 patients who had experienced severe mechanical injury. The patients’ condition on admission was an APACHE II of 19.1±5.4 scores. According to the outcome of the disease, all the patients were divided into 2 groups: 1 deceased patients and 2 survivors. The study was conducted on admission to an intensive care unit and on days 3, 5, 7, and 15. The extent of blood cell DNA damages and the proportion of apoptotic and necrotic blood cells were estimated by gel isolated cell elec-trophoresis (DNA rocket electrophoresis. The «Human 8-oxoGuanine DNA Glycosylate (OGG1 FLARE Assay» kit was used to measure the content of 8-hydroxy-2-deoxyguanosine in cell DNA. The cholesterol and overall antioxida-tive statuses and biochemical parameters were determined on an automatic biochemical Cobas Miras Plus analyzer. Very low-density lipoproteins (VLDL and low-density lipoproteins (LDL were calculated. Results and discussion. In severe concomitant injury, there were increases in DNA damages in the blood cells and in their apoptotic and necrotic processes, which were particularly pronounced on days 3—5. In the group of deceased patients, the increase of 8-hydroxy-2-deoxyguanosine was greater than the normal values on days 5 and 7. On admission, the systemic antioxidative status was greater than the normal values in the survivors and deceased patients and tended to diminish in both groups during an observation. The average statistical values of total cholesterol were lower at all stages of the study. At the stages of the study, the concentration of triglycerides and VLDL were in the normal range in all the patients. At week 1 of the observation, the level of LDL was normal or greater in the survivors than in the deceased. The changes in high

  5. Linear scaling computation of the Fock matrix. VIII. Periodic boundaries for exact exchange at the $\\Gamma$-point


    Tymczak, C J; Weber, Valéry T.; Schwegler, Eric; Challacombe, Matt


    A translationally invariant formulation of the Hartree-Fock (HF) $\\Gamma$-point approximation is presented. This formulation is achieved through introduction of the Minimum Image Convention (MIC) at the level of primitive two-electron integrals, and implemented in a periodic version of the ONX algorithm [J. Chem. Phys, {\\bf 106} 9708 (1997)] for linear scaling computation of the exchange matrix. Convergence of the HF-MIC $\\Gamma$-point model to the HF ${\\bf k}$-space limit is demonstrated for...

  6. Electrical Resistance of SiC/SiC Ceramic Matrix Composites for Damage Detection and Life-Prediction (United States)

    Smith, Craig; Morscher, Gregory; Xia, Zhenhai


    Ceramic matrix composites (CMC) are suitable for high temperature structural applications such as turbine airfoils and hypersonic thermal protection systems due to their low density high thermal conductivity. The employment of these materials in such applications is limited by the ability to accurately monitor and predict damage evolution. Current nondestructive methods such as ultrasound, x-ray, and thermal imaging are limited in their ability to quantify small scale, transverse, in-plane, matrix cracks developed over long-time creep and fatigue conditions. CMC is a multifunctional material in which the damage is coupled with the material s electrical resistance, providing the possibility of real-time information about the damage state through monitoring of resistance. Here, resistance measurement of SiC/SiC composites under mechanical load at both room temperature monotonic and high temperature creep conditions, coupled with a modal acoustic emission technique, can relate the effects of temperature, strain, matrix cracks, fiber breaks, and oxidation to the change in electrical resistance. A multiscale model can in turn be developed for life prediction of in-service composites, based on electrical resistance methods. Results of tensile mechanical testing of SiC/SiC composites at room and high temperatures will be discussed. Data relating electrical resistivity to composite constituent content, fiber architecture, temperature, matrix crack formation, and oxidation will be explained, along with progress in modeling such properties.

  7. Reorganization of Damaged Chromatin by the Exchange of Histone Variant H2A.Z-2

    Energy Technology Data Exchange (ETDEWEB)

    Nishibuchi, Ikuno [Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima (Japan); Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima (Japan); Department of Radiation Oncology, Hiroshima Prefectural Hospital, Hiroshima (Japan); Suzuki, Hidekazu; Kinomura, Aiko; Sun, Jiying; Liu, Ning-Ang [Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima (Japan); Horikoshi, Yasunori [Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima (Japan); Research Center for Mathematics of Chromatin Live Dynamics, Hiroshima University, Hiroshima (Japan); Shima, Hiroki [Department of Biochemistry, Graduate School of Medical Sciences, Tohoku University, Sendai (Japan); Kusakabe, Masayuki; Harata, Masahiko [Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Sendai (Japan); Fukagawa, Tatsuo [Department of Molecular Genetics, National Institute of Genetics and The Graduate University for Advanced Studies, Mishima (Japan); Ikura, Tsuyoshi [Laboratory of Chromatin Regulatory Network, Department of Mutagenesis, Radiation Biology Center, Kyoto University, Kyoto (Japan); Ishida, Takafumi [Department of Cardiovascular Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima (Japan); Nagata, Yasushi [Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima (Japan); Tashiro, Satoshi, E-mail: [Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima (Japan); Research Center for Mathematics of Chromatin Live Dynamics, Hiroshima University, Hiroshima (Japan)


    Purpose: The reorganization of damaged chromatin plays an important role in the regulation of the DNA damage response. A recent study revealed the presence of 2 vertebrate H2A.Z isoforms, H2A.Z-1 and H2A.Z-2. However, the roles of the vertebrate H2A.Z isoforms are still unclear. Thus, in this study we examined the roles of the vertebrate H2A.Z isoforms in chromatin reorganization after the induction of DNA double-strand breaks (DSBs). Methods and Materials: To examine the dynamics of H2A.Z isoforms at damaged sites, we constructed GM0637 cells stably expressing each of the green fluorescent protein (GFP)-labeled H2A.Z isoforms, and performed fluorescence recovery after photobleaching (FRAP) analysis and inverted FRAP analysis in combination with microirradiation. Immunofluorescence staining using an anti-RAD51 antibody was performed to study the kinetics of RAD51 foci formation after 2-Gy irradiation of wild-type (WT), H2A.Z-1- and H2A.Z-2-deficient DT40 cells. Colony-forming assays were also performed to compare the survival rates of WT, H2A.Z-1-, and H2A.Z-2-deficient DT40 cells with control, and H2A.Z-1- and H2A.Z-2-depleted U2OS cells after irradiation. Results: FRAP analysis revealed that H2A.Z-2 was incorporated into damaged chromatin just after the induction of DSBs, whereas H2A.Z-1 remained essentially unchanged. Inverted FRAP analysis showed that H2A.Z-2 was released from damaged chromatin. These findings indicated that H2A.Z-2 was exchanged at DSB sites immediately after the induction of DSBs. RAD51 focus formation after ionizing irradiation was disturbed in H2A.Z-2-deficient DT40 cells but not in H2A.Z-1-deficient cells. The survival rate of H2A.Z-2-deficient cells after irradiation was lower than those of WT and H2A.Z-1- DT40 cells. Similar to DT40 cells, H2A.Z-2-depleted U2OS cells were also radiation-sensitive compared to control and H2A.Z-1-depleted cells. Conclusions: We found that vertebrate H2A.Z-2 is involved in the regulation of the DNA

  8. Damage Assessment in Glass Fiber-Epoxy Matrix Composite under High Velocity Impact of Ice

    Directory of Open Access Journals (Sweden)

    Shokoofeh Dolati


    Full Text Available This study investigated the influence of nanoclay on the impact damage resistance of glass fiber-epoxy composites under high velocity ice impact loading. Addition of 0.5 wt. % nanoclay into epoxy was shown to improve damage resistance compared to composite plates having no nanoclay platelet. The glass fiber-epoxy composites containing nanoclay brought about substantial improvement in ice impact damage resistance and damage tolerance in the form of smaller damage area. Delamination followed by high velocity ice impact constituted major damage mode in the specimens tested.

  9. Nonnegative Matrix Factorization of time frequency representation of vibration signal for local damage detection - comparison of algorithms (United States)

    Wodecki, Jacek


    Local damage detection in rotating machine elements is very important problem widely researched in the literature. One of the most common approaches is the vibration signal analysis. Since time domain processing is often insufficient, other representations are frequently favored. One of the most common one is time-frequency representation hence authors propose to separate internal processes occurring in the vibration signal by spectrogram matrix factorization. In order to achieve this, it is proposed to use the approach of Nonnegative Matrix Factorization (NMF). In this paper three NMF algorithms are tested using real and simulated data describing single-channel vibration signal acquired on damaged rolling bearing operating in drive pulley in belt conveyor driving station. Results are compared with filtration using Spectral Kurtosis, which is currently recognized as classical method for impulsive information extraction, to verify the validity of presented methodology.


    Directory of Open Access Journals (Sweden)

    I. A. Dyomichev


    Full Text Available We present spectra of the alkali-silicate glasses with copper ions in near-surface area, introduced by ion exchange of different temperature and duration. It is shown that the reduction of Cu2+ in the near-surface area causes existence of Cu+ and neutral atoms in glass after the ion-exchange in divalent salt. The ion-exchange itself involves only Cu+ and Na+ ions. The formation of subnanometer clusters Cun is due to neutral copper atoms staying in near-surface zone. We have shown that the waveguide layer in near-surface area, made by ion-exchange, has а visible luminescence with the excitation by UVradiation. At the same time, the contribution to luminescence is made by Cu+ ions, molecular clusters Cun and by dimers Cu+ - Cu+ . During the high-temperature ion-exchange at 600 °С the formation and destruction equilibrium shift of molecular clusters Cun can be seen. An hour ion-exchange leads to molecular clusters Cun destruction, while at time periods less than 30 min and around 18 hours it leads to the formation of Cun. The sample turns green after 18,5 hours ion-exchange showing formation of a considerable amount of divalent copper ions Cu2+ therein.

  11. Durability and Damage Tolerance of High Temperature Advanced Titanium Metal Matrix Composites

    National Research Council Canada - National Science Library

    Ghonem, H


    .... The basic components of these mechanisms are examined in this program. The evolution features of residual stresses indicated that stress relaxation occurred in the Ti matrix phase of the composite following post-fabrication cool down to 600 00...

  12. Improved Foreign Object Damage Performance for 2D Woven Ceramic Matrix Composites Project (United States)

    National Aeronautics and Space Administration — As the power density of advanced engines increases, the need for new materials that are capable of higher operating temperatures, such as ceramic matrix composites...

  13. Improved Foreign Object Damage Performance for 3D Woven Ceramic Matrix Composites Project (United States)

    National Aeronautics and Space Administration — As the power density of advanced engines increases, the need for new materials that are capable of higher operating temperatures, such as ceramic matrix composites...

  14. Electrochemical characterization of mixed matrix heterogeneous cation exchange membranes modified by simultaneous using ilmenite-co-iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, Sayed Mohsen; Hamidi, Alireza; Moghadassi, Abdolreza [Faculty of Engineering, Arak University, Arak (Iran, Islamic Republic of); Madaeni, Sayed Siavash [Razi University, Kermanshah (Iran, Islamic Republic of)


    Mixed matrix heterogeneous cation exchange membranes were prepared by solution casting technique. Ilmenite-co-iron oxide nanoparticle was also employed as inorganic filler additive in membrane fabrication. The effect of the used additives on membrane electrochemical properties was studied. Membrane ion exchange capacity, membrane potential, transport number and selectivity all were improved by use of FeTiO{sub 3}/Fe{sub 3}O{sub 4} nanoparticles in membrane matrix. Utilizing FeTiO{sub 3}-co-Fe{sub 3}O{sub 4} nanoparticles in the casting solution also led to increase in ionic flux obviously. The modified membranes containing FeTiO{sub 3}-co-Fe{sub 3}O{sub 4} nanoparticles showed higher transport number, selectivity and ionic flux compared to modified membrane containing ilmenite. Electrodialysis experiment in laboratory scale also showed higher cation removal for modified membrane containing FeTiO{sub 3}-co-Fe{sub 3}O{sub 4} nanoparticles compared to other modified membranes and pristine ones. Results showed that membrane areal electrical resistance declined sharply by use of FeTiO{sub 3}-co-Fe{sub 3}O{sub 4} nanoparticles in membrane matrix. Moreover, modified membrane containing ilmenite showed lower electrical resistance compared to others. Results showed that oxidative stability of membranes was decreased slightly by use of FeTiO{sub 3}/Fe{sub 3}O{sub 4} nanoparticles in membrane matrix. The results revealed that modified membranes in this study are comparable with that of other commercial ones.

  15. Confirmatory investigations on the flux effect and associated unstable matrix damage in RPV materials exposed to high neutron fluence

    Energy Technology Data Exchange (ETDEWEB)

    Chaouadi, R., E-mail: [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Gérard, R. [Tractebel Engineering, Avenue Ariane 7, 1200 Brussels (Belgium)


    This paper provides additional experimental data on the neutron flux effect on RPV hardening and embrittlement and on the so-called unstable matrix damage that was suggested to occur at high flux. Six materials taken from the first irradiation surveillance capsules of Belgian PWRs with a fluence not exceeding about 1.5 × 10{sup 19} n/cm{sup 2} were further irradiated in the BR2 high flux reactor to additional fluences ranging between about 1 and 1.5 × 10{sup 20} n/cm{sup 2} at 290 °C. Eight additional RPV materials were selected to investigate the flux effect on irradiation hardening. No statistically-significant difference in irradiation hardening for low and high flux could be evidenced from the null hypothesis test applied with the general linear model. This is confirmed by additional experiments where fourteen irradiated specimens of various RPV materials consisting of low to high Cu and Ni contents were annealed at 350 °C for 5 h to eventually reveal some recovery of the unstable matrix damage. The results did not show any recovery upon heat treatment, which indicates that unstable matrix defects did not appear in these materials during irradiation at high flux.

  16. Laser Induced Fluorescence (LIF) Nondestructive Evaluation of Incipient Heat Damage in Polymer Matrix Composites, A2476 (United States)


    02-2017 2. REPORT TYPE Final 3. DATES COVERED (From - To) Oct 2011 - Jul 2016 4. TITLE AND SUBTITLE Laser Induced Fluorescence (LIF...Instances of mechanical strength degradation from incipient heat damage in aircraft PMCs exceeding 60% have been reported (Fisher et al., 1995). Currently...forms of exposure. Bowie’s master’s thesis (2017) includes a review of the scientific and engineering literature on incipient heat damage in PMCs

  17. Charge-constrained auxiliary-density-matrix methods for the Hartree–Fock exchange contribution

    DEFF Research Database (Denmark)

    Merlot, Patrick; Izsak, Robert; Borgoo, Alex


    Three new variants of the auxiliary-density-matrix method (ADMM) of Guidon, Hutter, and VandeVondele [J. Chem. Theory Comput. 6, 2348 (2010)] are presented with the common feature thatthey have a simplified constraint compared with the full orthonormality requirement of the earlier ADMM1 method...

  18. Protective effect of matrix metalloproteinase inhibitors against epidermal basement membrane damage: skin equivalents partially mimic photoageing process. (United States)

    Amano, S; Ogura, Y; Akutsu, N; Matsunaga, Y; Kadoya, K; Adachi, E; Nishiyama, T


    The epidermal basement membrane (BM) plays important roles in adhesion between epidermis and dermis, and in controlling epidermal differentiation. The BM has been reported to be damaged in sun-exposed skin. Although matrix metalloproteinases (MMPs) are believed to be involved in the BM damage, there is no good in vitro model for examining BM damage by MMPs or for exploring methods to protect the BM. To examine the involvement of MMPs in BM damage and approaches to protect the BM from such damage by using an in vitro skin-equivalent (SE) model. SE was prepared by culturing human keratinocytes on contracted collagen gel including human fibroblasts. MMP-1, -2, -3 and -9, laminin 5 and type IV and VII collagens were determined by specific sandwich ELISAs, and MMP-2 and MMP-9 were analysed by gelatin zymography. Histological examination of SE was also carried out. Despite production of BM components such as laminin 5 and type IV and VII collagens in SEs, BM was rarely observed at the dermal-epidermal junction. Several MMPs, such as MMP-1, -2, -3 and -9, were observed to be present in conditioned media and some of them were in active forms. Tissue inhibitor of metalloproteinase (TIMP)-2 was not detected, although TIMP-1 was present. Synthetic MMP inhibitors, CGS27023A and MMP-inhibitor I, which inhibit MMP-1, -2, -3 and -9, markedly augmented deposition of laminin 5 and type IV and VII collagens at the dermal-epidermal junction, resulting in the formation of continuous epidermal BM. Our results indicate that MMPs are involved in the degradation of BM in SEs, and that MMP inhibitors exert a protective effect against BM damage.

  19. Both RAD5-dependent and independent pathways are involved in DNA damage-associated sister chromatid exchange in budding yeast

    Directory of Open Access Journals (Sweden)

    Michael T. Fasullo


    Full Text Available Sister chromatids are preferred substrates for recombinational repair after cells are exposed to DNA damage. While some agents directly cause double-strand breaks (DSBs, others form DNA base adducts which stall or impede the DNA replication fork. We asked which types of DNA damage can stimulate SCE in budding yeast mutants defective in template switch mechanisms and whether PCNA polyubiquitination functions are required for DNA damage-associated SCE after exposure to potent recombinagens. We measured spontaneous and DNA damage-associated unequal sister chromatid exchange (uSCE in yeast strains containing two fragments of his3 after exposure to MMS, 4-NQO, UV, X rays, and HO endonuclease-induced DSBs. We determined whether other genes in the pathway for template switching, including UBC13, MMS2, SGS1, and SRS2 were required for DNA damage-associated SCE. RAD5 was required for DNA damage-associated SCE after exposure to UV, MMS, and 4-NQO, but not for spontaneous, X-ray-associated, or HO endonuclease-induced SCE. While UBC13, MMS2, and SGS1 were required for MMS and 4NQO-associated SCE, they were not required for UV-associated SCE. DNA damage-associated recombination between his3 recombination substrates on non-homologous recombination was enhanced in rad5 mutants. These results demonstrate that DNA damaging agents that cause DSBs stimulate SCE by RAD5-independent mechanisms, while several potent agents that generate bulky DNA adducts stimulate SCE by multiple RAD5-dependent mechanisms. We suggest that DSB-associated recombination that occurs in G2 is RAD5-independent.

  20. Luhmann meets the Matrix Exchanging and sharing information in network-centric environments

    Directory of Open Access Journals (Sweden)

    Ben Van Lier


    Full Text Available A fast-paced process of hybridization of man and technology, organization and technology and society and technology is currently sweeping the world. This process requires a way of (scientific thinking that takes hybrid systems as the starting point. This way of thinking gives hybrid systems an increasing need to be interlinked, which enables them to exchange and share information through these links. This development of linking (hybrid systems to enable them to exchange and share information, can also be denoted as the realization of interoperability between (hybrid systems. Five principles from Luhmann’s systems theory can be of help to understand interoperability. Interoperability enables (hybrid systems to join random coalitions and networks. The network centric warfare concept is currently the basis for international efforts for the development and application of interoperability that would enable armed forces to act effectively and efficiently. In this paper is demonstrated what Luhmann’s system’s theory can learn us.

  1. NMR imaging of fluid exchange between macropores and matrix in eogenetic karst (United States)

    Florea, L.J.; Cunningham, K.J.; Altobelli, S.


    Sequential time-step images acquired using nuclear magnetic resonance (NMR) show the displacement of deuterated water (D2O) by fresh water within two limestone samples characterized by a porous and permeable limestone matrix of peloids and ooids. These samples were selected because they have a macropore system representative of some parts of the eogenetic karst limestone of the Biscayne Aquifer in southeastern Florida. The macroporosity, created by the trace fossil Ophiomorpha, is principally well connected and of centimeter scale. These macropores occur in broadly continuous stratiform zones that create preferential flow layers within the hydrogeologic units of the Biscayne. This arrangement of porosity is important because in coastal areas, it could produce a preferential pathway for salt water intrusion. Two experiments were conducted in which samples saturated with D2O were placed in acrylic chambers filled with fresh water and examined with NMR. Results reveal a substantial flux of fresh water into the matrix porosity with a simultaneous loss of D 2O. Specifically, we measured rates upward of 0.001 mL/h/g of sample in static conditions, and perhaps as great as 0.07 mL/h/g of sample when fresh water continuously flows past a sample at velocities less than those found within stressed areas of the Biscayne. These experiments illustrate how fresh water and D2O, with different chemical properties, migrate within one type of matrix porosity found in the Biscayne. Furthermore, these experiments are a comparative exercise in the displacement of sea water by fresh water in the matrix of a coastal, karst aquifer since D2O has a greater density than fresh water. ?? 2008 National Ground Water Association.

  2. NMR imaging of fluid exchange between macropores and matrix in eogenetic karst. (United States)

    Florea, Lee J; Cunningham, Kevin J; Altobelli, Stephen


    Sequential time-step images acquired using nuclear magnetic resonance (NMR) show the displacement of deuterated water (D(2)O) by fresh water within two limestone samples characterized by a porous and permeable limestone matrix of peloids and ooids. These samples were selected because they have a macropore system representative of some parts of the eogenetic karst limestone of the Biscayne Aquifer in southeastern Florida. The macroporosity, created by the trace fossil Ophiomorpha, is principally well connected and of centimeter scale. These macropores occur in broadly continuous stratiform zones that create preferential flow layers within the hydrogeologic units of the Biscayne. This arrangement of porosity is important because in coastal areas, it could produce a preferential pathway for salt water intrusion. Two experiments were conducted in which samples saturated with D(2)O were placed in acrylic chambers filled with fresh water and examined with NMR. Results reveal a substantial flux of fresh water into the matrix porosity with a simultaneous loss of D(2)O. Specifically, we measured rates upward of 0.001 mL/h/g of sample in static conditions, and perhaps as great as 0.07 mL/h/g of sample when fresh water continuously flows past a sample at velocities less than those found within stressed areas of the Biscayne. These experiments illustrate how fresh water and D(2)O, with different chemical properties, migrate within one type of matrix porosity found in the Biscayne. Furthermore, these experiments are a comparative exercise in the displacement of sea water by fresh water in the matrix of a coastal, karst aquifer since D(2)O has a greater density than fresh water.

  3. A novel enzyme-based acidizing system: Matrix acidizing and drilling fluid damage removal

    Energy Technology Data Exchange (ETDEWEB)

    Harris, R.E.; McKay, D.M. [Cleansorb Limited, Surrey (United Kingdom); Moses, V. [King`s College, London (United Kingdom)


    A novel acidizing process is used to increase the permeability of carbonate rock cores in the laboratory and to remove drilling fluid damage from cores and wafers. Field results show the benefits of the technology as applied both to injector and producer wells.

  4. Electrical Resistance Based Damage Modeling of Multifunctional Carbon Fiber Reinforced Polymer Matrix Composites (United States)

    Hart, Robert James

    In the current thesis, the 4-probe electrical resistance of carbon fiber-reinforced polymer (CFRP) composites is utilized as a metric for sensing low-velocity impact damage. A robust method has been developed for recovering the directionally dependent electrical resistivities using an experimental line-type 4-probe resistance method. Next, the concept of effective conducting thickness was uniquely applied in the development of a brand new point-type 4-probe method for applications with electrically anisotropic materials. An extensive experimental study was completed to characterize the 4-probe electrical resistance of CFRP specimens using both the traditional line-type and new point-type methods. Leveraging the concept of effective conducting thickness, a novel method was developed for building 4-probe electrical finite element (FE) models in COMSOL. The electrical models were validated against experimental resistance measurements and the FE models demonstrated predictive capabilities when applied to CFRP specimens with varying thickness and layup. These new models demonstrated a significant improvement in accuracy compared to previous literature and could provide a framework for future advancements in FE modeling of electrically anisotropic materials. FE models were then developed in ABAQUS for evaluating the influence of prescribed localized damage on the 4-probe resistance. Experimental data was compiled on the impact response of various CFRP laminates, and was used in the development of quasi- static FE models for predicting presence of impact-induced delamination. The simulation-based delamination predictions were then integrated into the electrical FE models for the purpose of studying the influence of realistic damage patterns on electrical resistance. When the size of the delamination damage was moderate compared to the electrode spacing, the electrical resistance increased by less than 1% due to the delamination damage. However, for a specimen with large

  5. Preparation of bioconjugates by solid-phase conjugation to ion exchange matrix-adsorbed carrier proteins

    DEFF Research Database (Denmark)

    Houen, G.; Olsen, D.T.; Hansen, P.R.


    protein was conjugated with glutathione, the conjugation ratio determined by acid hydrolysis, and amino acid analysis performed with quantification of carboxymethyl cysteine. Elution of conjugates from the resin by a salt gradient revealed considerable heterogeneity in the degree of derivatization...... of ovalbumin and various peptides were prepared in a similar manner and used for production of peptide antisera by direct immunization with the conjugates bound to the ion exchanger. Advantages of the method are its solid-phase nature, allowing fast and efficient reactions and intermediate washings...

  6. Protective effect of melatonin against transient global cerebral ischemia-induced neuronal cell damage via inhibition of matrix metalloproteinase-9. (United States)

    Kim, Su-Jin; Lee, Seong-Ryong


    Melatonin possesses various pharmacological effects including neuroprotective effects against brain ischemia. Post-ischemic increases in matrix metalloproteinase-9 (MMP-9) expression and activity mainly contribute to neuronal damage by degradation of the extracellular matrix. This study was designed to examine whether melatonin has a neuroprotective effect and an influence on MMP-9 in transient global brain ischemia. Mice were subjected to 20 min of global brain ischemia and sacrificed 72h later. Melatonin (30 mg/kg) was administered 30 min before and 2h after ischemia as well as once daily until sacrifice. Hippocampal pyramidal cell damage after ischemia was significantly decreased by melatonin. As observed by zymography, melatonin inhibited the increase of MMP-9 activity after ischemia. In the brain sections, the increased gelatinase activity was mainly observed in the hippocampus after ischemia and melatonin also reduced gelatinase activity. The laminin and NeuN expression levels were reduced in the hippocampal CA1 and CA2 regions after ischemia, and melatonin reduced laminin degradation and neuronal loss. A TUNEL assay demonstrated that there were TUNEL-positive cells in the hippocampus and the number of TUNEL-positive cells was significantly decreased by melatonin. There was no difference in the ischemia-induced hippocampal neuronal damage between the vehicle- and melatonin-treated groups of MMP-9 knock-out mice. These data demonstrate that melatonin suppressed the occurrence of neuronal injury, which might be partly due to its inhibitory effects on MMP-9 in addition to its anti-oxidative effects. MMP-9 may be an important key target of melatonin in neuroprotection against global ischemia. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. FEAMAC/CARES Stochastic-Strength-Based Damage Simulation Tool for Ceramic Matrix Composites (United States)

    Nemeth, Noel; Bednarcyk, Brett; Pineda, Evan; Arnold, Steven; Mital, Subodh; Murthy, Pappu; Bhatt, Ramakrishna


    Reported here is a coupling of two NASA developed codes: CARES (Ceramics Analysis and Reliability Evaluation of Structures) with the MAC/GMC (Micromechanics Analysis Code/ Generalized Method of Cells) composite material analysis code. The resulting code is called FEAMAC/CARES and is constructed as an Abaqus finite element analysis UMAT (user defined material). Here we describe the FEAMAC/CARES code and an example problem (taken from the open literature) of a laminated CMC in off-axis loading is shown. FEAMAC/CARES performs stochastic-strength-based damage simulation response of a CMC under multiaxial loading using elastic stiffness reduction of the failed elements.

  8. Stochastic-Strength-Based Damage Simulation Tool for Ceramic Matrix Composite (United States)

    Nemeth, Noel; Bednarcyk, Brett; Pineda, Evan; Arnold, Steven; Mital, Subodh; Murthy, Pappu


    Reported here is a coupling of two NASA developed codes: CARES (Ceramics Analysis and Reliability Evaluation of Structures) with the MAC/GMC (Micromechanics Analysis Code/ Generalized Method of Cells) composite material analysis code. The resulting code is called FEAMAC/CARES and is constructed as an Abaqus finite element analysis UMAT (user defined material). Here we describe the FEAMAC/CARES code and an example problem (taken from the open literature) of a laminated CMC in off-axis loading is shown. FEAMAC/CARES performs stochastic-strength-based damage simulation response of a CMC under multiaxial loading using elastic stiffness reduction of the failed elements.

  9. Swelling behavior of ion exchange resins incorporated in tri-calcium silicate cement matrix: II. Mechanical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Neji, M., E-mail: [CEA, DEN, DPC, SECR, Laboratoire d' Etude du Comportement des Bétons et des Argiles, F-91191 Gif-sur-Yvette (France); Polytech Lille, LML UMR, 8107 Villeneuve d' Ascq (France); Bary, B.; Le Bescop, P. [CEA, DEN, DPC, SECR, Laboratoire d' Etude du Comportement des Bétons et des Argiles, F-91191 Gif-sur-Yvette (France); Burlion, N. [Polytech Lille, LML UMR, 8107 Villeneuve d' Ascq (France)


    This paper presents the second part of a study aiming at modelling the mechanical behavior of composites made up of ion exchange resins (IER) solidified in a tri-calcium silicate cement paste (C{sub 3}S). Such composites may be subjected to internal pressures due to ion exchange processes between ionic species which are in IER and interstitial solution of the cement paste. The reactive transport model developed in the companion paper is coupled in this study to a multi-scale approach describing the mechanical behavior of the material. It is based on an analogy with thermomechanics for taking in account the IER internal pressures, and on Eshelby-based homogenization techniques to estimate both mechanical and coupling parameters. A laboratory test has been set up to measure the macroscopic strain caused by the swelling phenomenon. The model has been finally implemented in a finite elements software. The simulation of the laboratory tests has been performed and the results have been analyzed and compared to experimental data. - Highlights: • Experimental analysis about mechanical behavior of a composite material. • Chemo-Mechanical-Transport modeling on a composite material made up with IER embedded into cement paste matrix. • Multi-scale modeling.

  10. Characterizing the influence of matrix ductility on damage phenomenology in continuous fiber-reinforced thermoplastic laminates undergoing quasi-static indentation

    KAUST Repository

    Yudhanto, Arief


    The use of thermoplastic matrix was known to improve the impact properties of laminated composites. However, different ductility levels can exist in a single family of thermoplastic matrix, and this may consequently modify the damage phenomenology of thermoplastic composites. This paper focuses on the effect of matrix ductility on the out-of-plane properties of thermoplastic composites, which was studied through quasi-static indentation (QSI) test that may represent impact problem albeit the speed difference. We evaluated continuous glass-fiber reinforced polypropylene thermoplastic composites (GFPP), and selected homopolymer PP and copolymer PP that represent ductile and less ductile matrices, respectively. Several cross-ply laminates were selected to study the influence of ply thicknesses and relative orientation of interfaces on QSI properties of GFPP. It is expected that GFPP with ductile matrix improves energy absorption of GFPP. However, the damage mechanism is completely different between GFPP with ductile and GFPP with less ductile matrices. GFPP with ductile matrix exhibits smaller damage zone in comparison to the one with less ductile matrix. Higher matrix ductility inhibits the growth of ply cracking along the fiber, and this causes the limited size of delamination. The stacking sequence poses more influence on less ductile composites rather than the ductile one.

  11. Perilla frutescens leaves extract ameliorates ultraviolet radiation-induced extracellular matrix damage in human dermal fibroblasts and hairless mice skin. (United States)

    Bae, Jung-Soo; Han, Mira; Shin, Hee Soon; Kim, Min-Kyoung; Shin, Chang-Yup; Lee, Dong Hun; Chung, Jin Ho


    Perilla frutescens (L.) Britt. (Lamiaceae) is a traditional herb that is consumed in East Asian countries as a traditional medicine. This traditional herb has been documented for centuries to treat various diseases such as depression, allergies, inflammation and asthma. However, the effect of Perilla frutescens on skin has not been characterized well. The present study aimed to investigate the effect of Perilla frutescens leaves extract (PLE) on ultraviolet radiation-induced extracellular matrix damage in human dermal fibroblasts and hairless mice skin. Human dermal fibroblasts and Skh-1 hairless mice were irradiated with UV and treated with PLE. Protein and mRNA levels of various target molecules were analyzed by western blotting and quantitative RT-PCR, respectively. Histological changes of mouse skin were analyzed by H&E staining. To elucidate underlying mechanism of PLE, activator protein-1 (AP-1) DNA binding assay and the measurement of reactive oxygen species (ROS) were performed. PLE significantly inhibited basal and UV-induced MMP-1 and MMP-3 expression dose-dependently, and also decreased UV-induced phosphorylation of extracellular signal-regulated kinases and c-Jun N-terminal kinases. This inhibitory effects of PLE on MMP-1 and MMP-3 were mediated by reduction of ROS generation and AP-1 DNA binding activity induced by UV. Furthermore, PLE promoted type I procollagen production irrespective of UV irradiation. In the UV-irradiated animal model, PLE significantly reduced epidermal skin thickness and MMP-13 expression induced by UV. Our results demonstrate that PLE has the protective effect against UV-induced dermal matrix damage. Therefore, we suggest that PLE can be a potential agent for prevention of skin aging. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Rheumatic Heart Disease and Myxomatous Degeneration: Differences and Similarities of Valve Damage Resulting from Autoimmune Reactions and Matrix Disorganization.

    Directory of Open Access Journals (Sweden)

    Carlo de Oliveira Martins

    Full Text Available Autoimmune inflammatory reactions leading to rheumatic fever (RF and rheumatic heart disease (RHD result from untreated Streptococcus pyogenes throat infections in individuals who exhibit genetic susceptibility. Immune effector mechanisms have been described that lead to heart tissue damage culminating in mitral and aortic valve dysfunctions. In myxomatous valve degeneration (MXD, the mitral valve is also damaged due to non-inflammatory mechanisms. Both diseases are characterized by structural valve disarray and a previous proteomic analysis of them has disclosed a distinct profile of matrix/structural proteins differentially expressed. Given their relevance in organizing valve tissue, we quantitatively evaluated the expression of vimentin, collagen VI, lumican, and vitronectin as well as performed immunohistochemical analysis of their distribution in valve tissue lesions of patients in both diseases. We identified abundant expression of two isoforms of vimentin (45 kDa, 42 kDa with reduced expression of the full-size protein (54 kDa in RHD valves. We also found increased vitronectin expression, reduced collagen VI expression and similar lumican expression between RHD and MXD valves. Immunohistochemical analysis indicated disrupted patterns of these proteins in myxomatous degeneration valves and disorganized distribution in rheumatic heart disease valves that correlated with clinical manifestations such as valve regurgitation or stenosis. Confocal microscopy analysis revealed a diverse pattern of distribution of collagen VI and lumican into RHD and MXD valves. Altogether, these results demonstrated distinct patterns of altered valve expression and tissue distribution/organization of structural/matrix proteins that play important pathophysiological roles in both valve diseases.

  13. Human RECQ1 is a DNA damage responsive protein required for genotoxic stress resistance and suppression of sister chromatid exchanges.

    Directory of Open Access Journals (Sweden)

    Sudha Sharma


    Full Text Available DNA helicases are ubiquitous enzymes that unwind DNA in an ATP-dependent and directionally specific manner. Unwinding of double-stranded DNA is essential for the processes of DNA repair, recombination, transcription, and DNA replication. Five human DNA helicases sharing sequence similarity with the E. coli RecQ helicase have been identified. Three of the human RecQ helicases are implicated in hereditary diseases (Bloom syndrome, Werner syndrome, and Rothmund-Thomson syndrome which display clinical symptoms of premature aging and cancer. RECQ1 helicase is the most highly expressed of the human RecQ helicases; however, a genetic disease has yet not been linked to mutations in the RECQ1 gene, and the biological functions of human RECQ1 in cellular DNA metabolism are not known.In this study, we report that RECQ1 becomes phosphorylated upon DNA damage and forms irradiation-induced nuclear foci that associate with chromatin in human cells. Depletion of RECQ1 renders human cells sensitive to DNA damage induced by ionizing radiation or the topoisomerase inhibitor camptothecin, and results in spontaneous gamma-H2AX foci and elevated sister chromatid exchanges, indicating aberrant repair of DNA breaks. Consistent with a role in homologous recombinational repair, endogenous RECQ1 is associated with the strand exchange protein Rad51 and the two proteins directly interact with high affinity.Collectively, these results provide the first evidence for a role of human RECQ1 in the response to DNA damage and chromosomal stability maintenance and point to the vital importance of RECQ1 in genome homeostasis.

  14. Designing Solvent Exchange-Induced In Situ Forming Gel from Aqueous Insoluble Polymers as Matrix Base for Periodontitis Treatment. (United States)

    Srichan, Tharatree; Phaechamud, Thawatchai


    An in situ forming gel is a dosage form which is promised for site-specific therapy such as periodontal pocket of periodontitis treatment. Ethylcellulose, bleached shellac, and Eudragit RS were applied in this study as a polymeric matrix for in situ forming gel employing N-methyl pyrrolidone (NMP) as solvent. Solutions comprising ethylcellulose, bleached shellac, and Eudragit RS in NMP were evaluated for viscosity, rheology, and rate of water penetration. Ease of administration by injection was determined as the force required to expel polymeric solutions through a needle using texture analyzer. In vitro gel formation and in vitro gel degradation were conducted after injection into phosphate buffer solution pH 6.8. Ethylcellulose, bleached shellac, and Eudragit RS could form the in situ gel, in vitro. Gel viscosity and pH value depended on percentage amount of the polymer, whereas the water diffusion at early period likely relied on types of polymer. Furthermore, the solutions containing higher polymer concentration exhibited the lower degree of degradation. All the preparations were acceptable as injectable dosage forms because the applied force was lower than 50 N. All of them inhibited Staphylococcus aureus, Escherichia coli, Candida albicans, Streptococcus mutans, and Porphyrommonas gingivalis growth owing to antimicrobial activity of NMP which exhibited a potential use for periodontitis treatment. Moreover, the developed systems presented as the solvent exchange induced in situ forming gel and showed capability to be incorporated with the suitable antimicrobial active compounds for periodontitis treatment which should be further studied.

  15. A quantitative and non-contact technique to characterise microstructural variations of skin tissues during photo-damaging process based on Mueller matrix polarimetry. (United States)

    Dong, Yang; He, Honghui; Sheng, Wei; Wu, Jian; Ma, Hui


    Skin tissue consists of collagen and elastic fibres, which are highly susceptible to damage when exposed to ultraviolet radiation (UVR), leading to skin aging and cancer. However, a lack of non-invasive detection methods makes determining the degree of UVR damage to skin in real time difficult. As one of the fundamental features of light, polarization can be used to develop imaging techniques capable of providing structural information about tissues. In particular, Mueller matrix polarimetry is suitable for detecting changes in collagen and elastic fibres. Here, we demonstrate a novel, quantitative, non-contact and in situ technique based on Mueller matrix polarimetry for monitoring the microstructural changes of skin tissues during UVR-induced photo-damaging. We measured the Mueller matrices of nude mouse skin samples, then analysed the transformed parameters to characterise microstructural changes during the skin photo-damaging and self-repairing processes. Comparisons between samples with and without the application of a sunscreen showed that the Mueller matrix-derived parameters are potential indicators for fibrous microstructure in skin tissues. Histological examination and Monte Carlo simulations confirmed the relationship between the Mueller matrix parameters and changes to fibrous structures. This technique paves the way for non-contact evaluation of skin structure in cosmetics and dermatological health.

  16. The novel composite mechanism of ammonium molybdophosphate loaded on silica matrix and its ion exchange breakthrough curves for cesium

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Hao [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Li, Yuxiang, E-mail: [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); National Defense Key Discipline Laboratory for Nuclear Wastes and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010 (China); Wu, Lang [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Ma, Xue [School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China)


    Highlights: • The granular composites were fabricated by the sequential annealing mechanism. • The method controls the porous characteristics and stable structure of materials. • The breakthrough curve of Cs{sup +} follows the Thomas model with a high removal rate. • It is a probable for SM-AMP20 to recycle Cs{sup +} using an eluent of 2–3 mol/L NH{sub 4}NO{sub 3}. - Abstract: Long-lived {sup 137}Cs (over 30 years), a byproduct of the spent fuel fission processes, comprises the majority of high-level and prolific heat-generating waste in downstream processing. This study reports a novel sequential annealing mechanism with cross-linked network of polyvinyl alcohol, fabricating the composite of ammonium molybdophosphate loaded on silica matrix (SM-AMP20, 20 wt% AMP) as an excellent granular ion exchanger for removal Cs{sup +}. When the matrix is remarkably sequential annealed, well-dispersed SM-AMP20 particles are formed by firmly anchoring themselves on controlling the porous characteristics and stable structure. The material crystallizes in the complex cubic space group Pn-3m with cell parameters of crystalline AMP formation. The breakthrough curve of Cs{sup +} by SM-AMP20 follows the Thomas model with a high removal rate of 88.23% (∼10 mg/L of Cs{sup +}) and breakthrough time as high as 26 h (flow rate Q ≈ 2.5 mL/min and bed height Z ≈ 11 cm) at neutral pH. We also report on sorbents that could efficiently remove Cs{sup +} ions from complex solutions containing different competitive cations (Na{sup +}, Al{sup 3+}, Fe{sup 3+}, and Ni{sup 2+}, respectively) in large excess. Furthermore, this study shows that there is a probability for SM-AMP20 to recycle cesium using an eluent of 2–3 mol/L NH{sub 4}NO{sub 3} solution.

  17. Influence of matrix nature on the functional efficacy of biomedical cell product for the regeneration of damaged liver (experimental model of acute liver failure

    Directory of Open Access Journals (Sweden)

    S. V. Gautier


    Full Text Available Aim. A comparative analysis of the functional efficacy of biomedical cell products (BMCP for the regeneration of damaged liver based on biopolymer scaffolded porous and hydrogel matrices was performed on the experimental model of acute liver failure. Materials and methods. Matrices allowed for clinical use were employed for BMCP in the form of a sponge made from biopolymer nanostructured composite material (BNCM based on a highly purified bacterial copolymers of poly (β-hydroxybutyrate-co-β-oxyvalerate and polyethylene glycol and a hydrogel matrix from biopolymer microheterogeneous collagen-containing hydrogel (BMCH. Cellular component of BMCP was represented by liver cells and multipotent mesenchymal bone marrow stem cells. The functional efficacy of BMCP for the regeneration of damaged liver was evaluated on the experimental model of acute liver failure in Wistar rats (n = 40 via biochemical, morphological, and immunohistochemical methods. Results. When BMCP was implanted to regenerate the damaged liver on the basis of the scaffolded BNCM or hydrogel BMCH matrices, the lethality in rats with acute liver failure was absent; while in control it was 66.6%. Restoration of the activity of cytolytic enzyme levels and protein-synthetic liver function began on day 9 after modeling acute liver failure, in contrast to the control group, where recovery occurred only by days 18–21. Both matrices maintained the viability and functional activity of liver cells up to 90 days with the formation of blood vessels in BMCP. The obtained data confirm that scaffolded BNCM matrix and hydrogel BMCH matrix retain for a long time (up to 90 days the vital activity of the adherent cells in the BMCP composition, which allows using them to correct acute liver failure. At the same time, hydrogel matrix due to the presence of bioactive components contributes to the creation of the best conditions for adhesion and cell activity which accelerate the regeneration processes

  18. Synergistic Effects of Frequency and Temperature on Damage Evolution and Life Prediction of Cross-Ply Ceramic Matrix Composites under Tension-Tension Fatigue Loading (United States)

    Longbiao, Li


    In this paper, the synergistic effects of loading frequency and testing temperature on the fatigue damage evolution and life prediction of cross-ply SiC/MAS ceramic-matrix composite have been investigated. The damage parameters of the fatigue hysteresis modulus, fatigue hysteresis dissipated energy and the interface shear stress were used to monitor the damage evolution inside of SiC/MAS composite. The evolution of fatigue hysteresis dissipated energy, the interface shear stress and broken fibers fraction versus cycle number, and the fatigue life S-N curves of SiC/MAS composite under the loading frequency of 1 and 10 Hz at 566 °C and 1093 °C in air condition have been predicted. The synergistic effects of the loading frequency and testing temperature on the degradation rate of fatigue hysteresis dissipated energy and the interface shear stress have been analyzed.

  19. Impact damage prediction in carbon fiber-reinforced laminated composite using the matrix-reinforced mixing theory


    Pérez Martínez, Marco Antonio; Martínez García, Javier; Oller Martínez, Sergio Horacio; Gil Espert, Lluís; Rastellini, Fernando G.; Flores, Fernando


    The impact damage tolerance of fiber-reinforced laminated composite materials is a source of concern, mainly due to internal induced damage which causes large reductions on the strength and stability of the structure. This paper presents a procedure based on a finite element formulation that can be used to perform numerical predictions of the impact induced internal damage in composite laminates. The procedure is based on simulating the composite performance using a micro-mechanical approach ...

  20. Application of a clay-slag geopolymer matrix for repairing damaged concrete: Laboratory and industrial-scale experiments

    Czech Academy of Sciences Publication Activity Database

    Perná, Ivana; Hanzlíček, Tomáš; Boura, P.; Lučaník, A.


    Roč. 59, č. 10 (2017), s. 929-937 ISSN 0025-5300 Institutional support: RVO:67985891 Keywords : blast-furnace slag * geopolymer * scanning electron microscopy (SEM) * damaged concrete repair * long-term monitoring Subject RIV: JJ - Other Materials OBOR OECD: Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics Impact factor: 0.418, year: 2016

  1. LC-MS/MS analysis of pramipexole in mouse plasma and tissues: elimination of lipid matrix effects using weak cation exchange mode based solid-phase extraction. (United States)

    Guo, Weilin; Li, Gao; Yang, Yanxia; Yang, Conglian; Si, Luqin; Huang, Jiangeng


    Intranasal delivery is emerging as a promising alternative for oral or intravenous administration of central nervous system (CNS) drugs, such as pramipexole which is widely used for the treatment of Parkinson's disease. To evaluate the effectiveness of intranasal delivery of pramipexole, preclinical pharmacokinetic and tissue distribution studies following intranasal administration need to be investigated. In this paper, we developed and validated a robust and sensitive LC-MS/MS assay without matrix effect for accurate measurements of pramipexole in mouse plasma and tissue samples. Pramipexole and its stable isotope labeled internal standard (d3-pramipexole) were extracted from biological samples by protein precipitation (PPT) coupled with solid phase extraction (SPE) using weak cation exchange SPE cartridges. Matrix effects were studied using post-column infusion and post-extraction addition experiments by direct monitoring of typical phospholipids including glycerophosphocholines (GPChos) and lysoglycerophosphocholines (Lyso-GPChos). Chromatographic separation was achieved on a Welch Ultimate(®) XB-CN column using isocratic elution with a run time of 3.0 min. The assay was linear in the concentration range of 0.05-100 ng/mL and the intra- and inter-day precision and accuracy met the acceptance criteria. Compared with previous reported assays, the current sample preparation approach exhibited significant reduction of matrix effects due to the dramatically decreased levels of residual matrix components such as GPChos and Lyso-GPChos. This method has been successfully applied to pharmacokinetic and tissue distribution studies of pramipexole in mice following a single intravenous or intranasal dose of 50 μg/kg. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Removal of Aluminum from the Dissolved Alumina Matrix by NH{sub 4}OH Precipitation and Chelate Ion Exchange Resin

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Jung Ki; Kim, Chang Soo; Han, Myung Sub; Lee, Hwa Shim [Korea Research Institute of Standardsand Science, Daejeon (Korea, Republic of)


    Many studies have been devoted to the determination of trace elements in alumina matrices using high sensitivity techniques such as inductively coupled plasma-optical emission spectrometry (ICP-OES) and inductively coupled plasma-mass spectrometry (ICP-MS). The dissolved alumina samples contain high concentrations of aluminum (Al) and sulfuric acid. High Al concentrations can cause high background emission from 190 to 250 nm and can increase the detection limit of ICP-OES. Furthermore, reactions between the Al matrix and quartz from the quartz torch used in high temperature plasmas can result in the formation of aluminosilicate (3Al{sub 2}O{sub 3}–2SiO{sub 2}), which reduce the torch lifetime. High concentration of Al matrix can also form a white deposit on the skimmer and the sampler cone, and block the orifice. These problems prevent the long-term use of ICP-MS seriously. NIST SRM 699 alumina was used as a test sample for the removal of the Al and the recovery of trace metals from matrix. First, about 1 g of NIST SRM 699 alumina standard was dissolved with 40 mL of 25% H{sub 2}SO{sub 4} for 65 h at 230 °C in PolytetraFluoroethylene (PTFE) vessel and diluted with deionized water to be about 100 g. For fast and simple separation of the two solid layers, 5 mL aliquots of 0.1 M NH4OH solution were added and the solutions were shaken gently; then, only the swollen resin layer was transferred to another tube. This transfer process was repeated several times.

  3. Protective effect of Arthrospira platensis extracts against ultraviolet B-induced cellular senescence through inhibition of DNA damage and matrix metalloproteinase-1 expression in human dermal fibroblasts. (United States)

    Lee, Jeong-Ju; Kim, Ki Bbeum; Heo, Jina; Cho, Dae-Hyun; Kim, Hee-Sik; Han, Song Hee; Ahn, Kyu Joong; An, In-Sook; An, Sungkwan; Bae, Seunghee


    Ultraviolet (UV) light exposure causes skin photoaging, which is known to be preventable and controllable by application of UV-protective agents. In this study, we demonstrated, for the first time, that the extract of microalgae Arthrospira platensis has a reverse effect on UV-induced photodamage such as loss of cell viability, cellular senescence, DNA damage, and collagen destruction in dermal fibroblasts. Forty-eight extracts were prepared from the cell biomass by controlling culture light conditions, extract solvents, and disruption methods. Then, we analyzed their cytotoxicities using WST-1 assay and separated low and high cytotoxic extracts with normal human dermal fibroblasts (nHDFs). Using the low cytotoxic extracts, we performed UVB protection assay and selected the most effective extract demonstrating protective effect against UVB-induced nHDF damage. Flow cytometric analysis and senescence-associated (SA) β-galactosidase assay showed that pretreatment with the extract reversed UVB-induced G2/M phase cell cycle arrest and senescence in nHDFs. Furthermore, UVB-induced DNA damage in nHDFs, such as cyclobutane pyrimidine dimer formation, was significantly suppressed by the extract. Further, quantitative real-time PCR experiments revealed that the extract significantly inhibited UVB-induced upregulation of matrix metalloproteinase 1 (MMP1) and MMP3 expression in nHDFs. Therefore, we concluded that the microalgae extract can be a potential anti-photoaging agent. Copyright © 2017. Published by Elsevier B.V.

  4. The nuclear guanine nucleotide exchange factors Ect2 and Net1 regulate RhoB-mediated cell death after DNA damage.

    Directory of Open Access Journals (Sweden)

    Melissa C Srougi


    Full Text Available Commonly used antitumor treatments, including radiation and chemotherapy, function by damaging the DNA of rapidly proliferating cells. However, resistance to these agents is a predominant clinical problem. A member of the Rho family of small GTPases, RhoB has been shown to be integral in mediating cell death after ionizing radiation (IR or other DNA damaging agents in Ras-transformed cell lines. In addition, RhoB protein expression increases after genotoxic stress, and loss of RhoB expression causes radio- and chemotherapeutic resistance. However, the signaling pathways that govern RhoB-induced cell death after DNA damage remain enigmatic. Here, we show that RhoB activity increases in human breast and cervical cancer cell lines after treatment with DNA damaging agents. Furthermore, RhoB activity is necessary for DNA damage-induced cell death, as the stable loss of RhoB protein expression using shRNA partially protects cells and prevents the phosphorylation of c-Jun N-terminal kinases (JNKs and the induction of the pro-apoptotic protein Bim after IR. The increase in RhoB activity after genotoxic stress is associated with increased activity of the nuclear guanine nucleotide exchange factors (GEFs, Ect2 and Net1, but not the cytoplasmic GEFs p115 RhoGEF or Vav2. Importantly, loss of Ect2 and Net1 via siRNA-mediated protein knock-down inhibited IR-induced increases in RhoB activity, reduced apoptotic signaling events, and protected cells from IR-induced cell death. Collectively, these data suggest a mechanism involving the nuclear GEFs Ect2 and Net1 for activating RhoB after genotoxic stress, thereby facilitating cell death after treatment with DNA damaging agents.

  5. Modelling of the interaction between chemical and mechanical behaviour of ion exchange resins incorporated into a cement-based matrix

    Directory of Open Access Journals (Sweden)

    Le Bescop P.


    Full Text Available In this paper, we present a predictive model, based on experimental data, to determine the macroscopic mechanical behavior of a material made up of ion exchange resins solidified into a CEM III cement paste. Some observations have shown that in some cases, a significant macroscopic expansion of this composite material may be expected, due to internal pressures generated in the resin. To build the model, we made the choice to break down the problem in two scale’s studies. The first deals with the mechanical behavior of the different heterogeneities of the composite, i.e. the resin and the cement paste. The second upscales the information from the heterogeneities to the Representative Elementary Volume (REV of the composite. The heterogeneities effects are taken into account in the REV by applying a homogenization method derived from the Eshelby theory combined with an interaction coefficient drawn from the poroelasticity theory. At the first scale, from the second thermodynamic law, a formulation is developed to estimate the resin microscopic swelling. The model response is illustrated on a simple example showing the impact of the calculated internal pressure, on the macroscopic strain.

  6. Synergistic Effects of Temperature, Oxidation and Stress Level on Fatigue Damage Evolution and Lifetime Prediction of Cross-Ply SiC/CAS Ceramic-Matrix Composites Through Hysteresis-Based Parameters (United States)

    Li, Longbiao


    The damage development and cyclic fatigue lifetime of cross-ply SiC/CAS ceramic-matrix composites have been investigated at different testing temperatures in air atmosphere. The relationships between the fatigue hysteresis-based damage parameters, i.e., fatigue hysteresis dissipated energy, fatigue hysteresis modulus and fatigue peak strain and the damage mechanisms of matrix multicracking, fiber/matrix interface debonding, interface sliding and fibers failure, have been established. With the increase in the cycle number, the evolution of the fatigue hysteresis modulus, fatigue peak strain and fatigue hysteresis dissipated energy depends upon the fatigue peak stress levels, interface and fibers oxidation and testing temperature. The fatigue life S-N curves of cross-ply SiC/CAS composite at room and elevated temperatures have been predicted, and the fatigue limit stresses at room temperature, 750 and 850 °C, are 50, 36 and 30% of the tensile strength, respectively.

  7. A three-factor Doehlert matrix design in optimising the determination of octadecyltrimethylammonium bromide by cation-exchange chromatography with suppressed conductivity detection. (United States)

    Cataldi, Tommaso R I; Orlando, Donatella; Nardiello, Donatella; Rubino, Alessandra; Bianco, Giuliana; Abate, Salvatore; Ciriello, Rosanna; Guerrieri, Antonio


    A simple and effective chromatographic method with suppressed conductivity detection was developed and validated to determine dissolved samples of octadecyltrimethylammonium bromide (C18H37N+ Me3Br-, ODTAB) for purity testing. A response surface methodology generated with a Doehlert matrix design was applied to optimize the chromatographic and detection conditions in ion-exchange chromatography (IEC) with conductivity detection in the chemical suppression mode. A three-factor Doehlert design was performed to fit a second-order model and jointly optimize the peak intensity and shorten analysis time through a global desirability function. Regenerant flow rate, volume fraction of acetonitrile in the acidic eluent and its flow rate were studied at seven, five and three levels, respectively. The optimized separation and detection conditions were accomplished by using a cation-exchange column eluted at 0.5 mL min(-1) with an isocratic mobile phase composed of CH3CN and 25 mN H2SO4, 82/18 (v/v). Chemical suppression of ionic conductivity was performed by 100 mN tetrabutylammonium hydroxide (TBAOH) as a regenerant at a flow-rate of 4.0 mL min(-1). Remarkably good agreement was found between predicted and experimental values of signal intensity and chromatographic retention. With the developed method, a linear calibration curve of ODTA+ as bromide salt from 5 to 1000 ppm was obtained using hexadecyltrimethylammonium bromide as internal standard. The estimated limit of detection was 0.3 ppm (S/N=3). The effectiveness of electrochemically suppressed conductivity detection of ODTA+ was also demonstrated, thus making easier the whole detection operation and instrumental needs as well.

  8. Loss of Slc4a1b chloride/bicarbonate exchanger function protects mechanosensory hair cells from aminoglycoside damage in the zebrafish mutant persephone.

    Directory of Open Access Journals (Sweden)

    Dale W Hailey

    Full Text Available Mechanosensory hair cell death is a leading cause of hearing and balance disorders in the human population. Hair cells are remarkably sensitive to environmental insults such as excessive noise and exposure to some otherwise therapeutic drugs. However, individual responses to damaging agents can vary, in part due to genetic differences. We previously carried out a forward genetic screen using the zebrafish lateral line system to identify mutations that alter the response of larval hair cells to the antibiotic neomycin, one of a class of aminoglycoside compounds that cause hair cell death in humans. The persephone mutation confers resistance to aminoglycosides. 5 dpf homozygous persephone mutants are indistinguishable from wild-type siblings, but differ in their retention of lateral line hair cells upon exposure to neomycin. The mutation in persephone maps to the chloride/bicarbonate exchanger slc4a1b and introduces a single Ser-to-Phe substitution in zSlc4a1b. This mutation prevents delivery of the exchanger to the cell surface and abolishes the ability of the protein to import chloride across the plasma membrane. Loss of function of zSlc4a1b reduces hair cell death caused by exposure to the aminoglycosides neomycin, kanamycin, and gentamicin, and the chemotherapeutic drug cisplatin. Pharmacological block of anion transport with the disulfonic stilbene derivatives DIDS and SITS, or exposure to exogenous bicarbonate, also protects hair cells against damage. Both persephone mutant and DIDS-treated wild-type larvae show reduced uptake of labeled aminoglycosides. persephone mutants also show reduced FM1-43 uptake, indicating a potential impact on mechanotransduction-coupled activity in the mutant. We propose that tight regulation of the ionic environment of sensory hair cells, mediated by zSlc4a1b activity, is critical for their sensitivity to aminoglycoside antibiotics.

  9. A bacterial cytotoxin identifies the RhoA exchange factor Net1 as a key effector in the response to DNA damage.

    Directory of Open Access Journals (Sweden)

    Lina Guerra

    Full Text Available BACKGROUND: Exposure of adherent cells to DNA damaging agents, such as the bacterial cytolethal distending toxin (CDT or ionizing radiations (IR, activates the small GTPase RhoA, which promotes the formation of actin stress fibers and delays cell death. The signalling intermediates that regulate RhoA activation and promote cell survival are unknown. PRINCIPAL FINDINGS: We demonstrate that the nuclear RhoA-specific Guanine nucleotide Exchange Factor (GEF Net1 becomes dephosphorylated at a critical inhibitory site in cells exposed to CDT or IR. Expression of a dominant negative Net1 or Net1 knock down by iRNA prevented RhoA activation, inhibited the formation of stress fibers, and enhanced cell death, indicating that Net1 activation is required for this RhoA-mediated responses to genotoxic stress. The Net1 and RhoA-dependent signals involved activation of the Mitogen-Activated Protein Kinase p38 and its downstream target MAPK-activated protein kinase 2. SIGNIFICANCE: Our data highlight the importance of Net1 in controlling RhoA and p38 MAPK mediated cell survival in cells exposed to DNA damaging agents and illustrate a molecular pathway whereby chronic exposure to a bacterial toxin may promote genomic instability.

  10. Intestinal inhibition of the Na+/H+ exchanger 3 prevents cardiorenal damage in rats and inhibits Na+ uptake in humans. (United States)

    Spencer, Andrew G; Labonte, Eric D; Rosenbaum, David P; Plato, Craig F; Carreras, Christopher W; Leadbetter, Michael R; Kozuka, Kenji; Kohler, Jill; Koo-McCoy, Samantha; He, Limin; Bell, Noah; Tabora, Jocelyn; Joly, Kristin M; Navre, Marc; Jacobs, Jeffrey W; Charmot, Dominique


    The management of sodium intake is clinically important in many disease states including heart failure, kidney disease, and hypertension. Tenapanor is an inhibitor of the sodium-proton (Na(+)/H(+)) exchanger NHE3, which plays a prominent role in sodium handling in the gastrointestinal tract and kidney. When administered orally to rats, tenapanor acted exclusively in the gastrointestinal tract to inhibit sodium uptake. We showed that the systemic availability of tenapanor was negligible through plasma pharmacokinetic studies, as well as autoradiography and mass balance studies performed with (14)C-tenapanor. In humans, tenapanor reduced urinary sodium excretion by 20 to 50 mmol/day and led to an increase of similar magnitude in stool sodium. In salt-fed nephrectomized rats exhibiting hypervolemia, cardiac hypertrophy, and arterial stiffening, tenapanor reduced extracellular fluid volume, left ventricular hypertrophy, albuminuria, and blood pressure in a dose-dependent fashion. We observed these effects whether tenapanor was administered prophylactically or after disease was established. In addition, the combination of tenapanor and the blood pressure medication enalapril improved cardiac diastolic dysfunction and arterial pulse wave velocity relative to enalapril monotherapy in this animal model. Tenapanor prevented increases in glomerular area and urinary KIM-1, a marker of renal injury. The results suggest that therapeutic alteration of sodium transport in the gastrointestinal tract instead of the kidney--the target of current drugs--could lead to improved sodium management in renal disease.

  11. Detecting early kidney damage in horses with colic by measuring matrix metalloproteinase -9 and -2, other enzymes, urinary glucose and total proteins

    Directory of Open Access Journals (Sweden)

    Salonen Hanna


    Full Text Available Abstract Background The aim of the study was to investigate urine matrix metalloproteinase (MMP-2 and -9 activity, alkaline phosphatase/creatinine (U-AP/Cr and gamma-glutamyl-transpeptidase/creatinine (U-GGT/Cr ratios, glucose concentration, and urine protein/creatinine (U-Prot/Cr ratio and to compare data with plasma MMP-2 and -9 activity, cystatin-C and creatinine concentrations in colic horses and healthy controls. Horses with surgical colic (n = 5 were compared to healthy stallions (n = 7 that came for castration. Blood and urine samples were collected. MMP gelatinolytic activity was measured by zymography. Results We found out that horses with colic had significantly higher urinary MMP-9 complex and proMMP-9 activities than horses in the control group. Colic horses also had higher plasma MMP-2 activity than the control horses. Serum creatinine, although within reference range, was significantly higher in the colic horses than in the control group. There was no significant increase in urinary alkaline phosphatase, gamma-glutamyltranspeptidase or total proteins in the colic horses compared to the control group. A human cystatin-C test (Dako Cytomation latex immunoassay® based on turbidimetry did not cross react with equine cystatin-C. Conclusion The results indicate that plasma MMP-2 may play a role in the pathogenesis of equine colic and urinary MMP-9 in equine kidney damage.

  12. Plasma Desphospho-Uncarboxylated Matrix Gla Protein as a Marker of Kidney Damage and Cardiovascular Risk in Advanced Stage of Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Ilona Kurnatowska


    Full Text Available Background/Aims: Desphospho-uncarboxylated matrix Gla protein (dp-ucMGP is formed as a result of vitamin K insufficiency. The aim of this study was to investigate the association between plasma dp-ucMGP, kidney function and cardiovascular risk factors before and after 9-months substitution of vitamin K2 in non-dialysis patients with chronic kidney disease (CKD stage 4 and 5. Methods: 38 CKD patients were supplemented for 270±12 days with 90 µg vitamin K2 and 10 µg cholecalciferol or 10 µg cholecalciferol alone. At baseline and at follow-up circulating calcium, phosphate, lipids, hemoglobin, albumin and total protein, dp-ucMGP, osteoprotegerin, fetuin A, osteocalcin and fibroblast grown factor 23 (FGF-23 were assessed. Proteinuria was assessed in the first morning void. Results: Baseline plasma dp-ucMGP was 1018.6±498.3 pmol/l and was significantly higher in patients at stage 5 CKD (1388.3 ±505.4 pmol/l than at stage 4 (885.1±419.7 pmol/l, p=0.04. Vitamin K2 supplementation resulted in a decrease of dp-ucMGP level by 10.7%. Plasma dp-ucMGP was positively associated with proteinuria, serum creatinine, PTH and FGF-23; and inversely associated with glomerular filtration rate, serum hemoglobin and albumin. Conclusions: High dp-ucMGP level, reflecting a poor vitamin K status seems to be associated with kidney damage and may be also a marker of cardiovascular risk in CKD patients. Supplementation with vitamin K2 may improve the carboxylation status of MGP.

  13. Increments in cytokines and matrix metalloproteinases in skeletal muscle after injection of tissue-damaging toxins from the venom of the snake Bothrops asper

    Directory of Open Access Journals (Sweden)

    Alexandra Rucavado


    Full Text Available Envenomations by the snake Bothrops asper are characterized by prominent local tissue damage (i.e. myonecrosis, blistering, hemorrhage and edema. Various phospholipases A2 and metalloproteinases that induce local pathological alterations have been purified from this venom. Since these toxins induce a conspicuous inflammatory response, it has been hypothesized that inflammatory mediators may contribute to the local pathological alterations described. This study evaluated the local production of cytokines and matrix metalloproteinases (MMPs as a consequence of intramuscular injections of an Asp-49 myotoxic phospholipase A2 (myotoxin III (MT-III and a P-I type hemorrhagic metalloproteinase (BaP1 isolated from B. asper venom. Both enzymes induced prominent tissue alterations and conspicuous increments in interleukin (IL-1β, IL-6 and a number of MMPs, especially gelatinase MMP-9, rapidly after injection. In contrast, no increments in tumor necrosis factor-α (TNF-α and interferon-γ were detected. In agreement, MT-III and BaP1 did not induce the synthesis of TNF-α by resident peritoneal macrophages in vitro. Despite the conspicuous expression of latent forms of MMPs in muscle, evidenced by zymography, there were no increments in activated MMP-2 and only a small increase in activated MMP-9, as detected by a functional enzymatic assay. This suggests that MMP activity was regulated by a highly controlled activation of latent forms and, probably, by a concomitant synthesis of MMP inhibitors. Since no hemorrhage nor dermonecrosis were observed after injection of MT-III, despite a prominent increase in MMP expression, and since inflammatory exudate did not enhance hemorrhage induced by BaP1, it is suggested that endogenous MMPs released in the tissue are not responsible for the dermonecrosis and hemorrhage characteristic of B. asper envenomation. Moreover, pretreatment of mice with the peptidomimetic MMP inhibitor batimastat did not reduce myotoxic nor

  14. Preparation and electrochemical characterization of polyvinylchloride/ FeTiO{sub 3}-co-Fe{sub 3}O{sub 4} nanoparticles mixed matrix ion exchange membranes: Investigation of concentration and pH effects

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, Sayedmohsen; Hamidi, Alireza; Moghadassi, Abdolreza; Parvizian, Fahime [Faculty of Engineering, Arak University, Arak (Iran, Islamic Republic of); Madaeni, Sayed Siavash [Faculty of Engineering, Razi University, Kermanshah (Iran, Islamic Republic of)


    Polyvinyl chloride based/FeTiO{sub 3}-co-Fe{sub 3}O{sub 4} nanoparticles mixed matrix heterogeneous cation exchange membranes were prepared by solution casting technique. The effect of using filler additives in casting solution and also electrolyte concentration and pH on electrochemical properties of membrane was studied. Membrane potential, transport number and selectivity were improved by using FeTiO{sub 3}/Fe{sub 3}O{sub 4} nanoparticles in membrane matrix. Utilizing FeTiO{sub 3}/ Fe{sub 3}O{sub 4} nanoparticles in membrane matrix also led to improvement of membrane ionic flux from 2.95*10{sup -5} to 4.15*10{sup -5} (mol/m{sup 2}·s) obviously. Similar trend was also found for membrane electrical conductivity. Moreover, the transport number, selectivity and membrane electrical conductivity were enhanced by increase of electrolyte concentration. Prepared membranes exhibited higher transport number/selectivity at pH 7 compared to other pH values. Obtained results showed that the membrane electrical resistance decreased initially by increase of electrolyte pH sharply and then began to increase. Membranes exhibited lower selectivity for bivalent ions compared to monovalent type. Modified membranes containing FeTiO{sub 3}/Fe{sub 3}O{sub 4} nanoparticles showed more appropriate electrochemical properties compared to other prepared membranes.

  15. Heavy ion induced damage in MgAl sub 2 O sub 4 , an inert matrix candidate for the transmutation of minor actinides

    CERN Document Server

    Wiss, T


    Magnesium aluminum spinel (MgAl sub 2 O sub 4) is a material selected as a possible matrix for transmutation of minor actinides by neutron capture or fission in nuclear reactors. To study the radiation stability of this inert matrix, especially against fission product impact, irradiations with heavy energetic ions or clusters have been performed. The high electronic energy losses of the heavy ions in this material led to the formation of visible tracks as evidenced by transmission electron microscopy for 30 MeV C sub 6 sub 0 -Buckminster fullerenes and for ions of energy close to or higher than fission energy ( sup 2 sup 0 sup 9 Bi with 120 MeV and 2.38 GeV energy). The irradiations at high energies showed a pronounced degradation of the spinel. Additionally, MgAl sub 2 O sub 4 exhibited a large swelling for irradiation at high fluences with fission products of fission energy (here I-ions of 72 MeV) and at temperatures <= 500 deg. C. These observations are discussed from the technological point of view in ...

  16. The use of cation exchange matrix separation coupled with ICP-MS to directly determine platinum group element (PGE) and other trace element emissions from passenger cars equipped with diesel particulate filters (DPF)

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, Warren R.L.; Cozzi, Giulio [Institute for the Dynamics of Environmental Processes-CNR, Venice (Italy); De Boni, Antonella; Gabrieli, Jacopo [University of Venice, Department of Environmental Science, Venice (Italy); Asti, Massimo; Merlone Borla, Edoardo; Parussa, Flavio [Centro Ricerche Fiat, Orbassano (Italy); Moretto, Ezio [FIAT Powertrain Technologies S.p.A, Turin (Italy); Cescon, Paolo; Barbante, Carlo [University of Venice, Department of Environmental Science, Venice (Italy); Institute for the Dynamics of Environmental Processes-CNR, Venice (Italy); Boutron, Claude [Laboratoire de Glaciologie et Geophysique de l' Environnement, UMR CNRS 5183, B.P. 96, Saint Martin d' Heres Cedex (France)


    Inductively coupled plasma-mass spectrometry coupled with cation exchange matrix separation has been optimised for the direct determination of platinum group element (PGE) and trace element emissions from a diesel engine car. After matrix separation method detection limits of 1.6 ng g{sup -1} for Pd, 0.4 ng g{sup -1} for Rh and 4.3 ng g{sup -1} for Pt were achieved, the method was validated against the certified reference material BCR 723, urban road dust. The test vehicle was fitted with new and aged catalytic converters with and without diesel particulate filters (DPF). Samples were collected after three consecutive New European Driving Cycle (NEDC) of the particulate and ''soluble'' phases using a home-made sampler optimised for trace element analysis. Emission factors for the PGEs ranged from 0.021 ng km{sup -1} for Rh to 70.5 ng km{sup -1} for Pt; when a DPF was fitted, the emission factors for the PGEs actually used in the catalysts dropped by up to 97% (for Pt). Trace element emission factors were found to drop by a maximum of 92% for Ni to a minimum of 18% for Y when a DPF was fitted; a new DPF was also found to cause a reduction of up to 86% in the emission of particulate matter. (orig.)

  17. The use of cation exchange matrix separation coupled with ICP-MS to directly determine platinum group element (PGE) and other trace element emissions from passenger cars equipped with diesel particulate filters (DPF). (United States)

    Cairns, Warren R L; De Boni, Antonella; Cozzi, Giulio; Asti, Massimo; Borla, Edoardo Merlone; Parussa, Flavio; Moretto, Ezio; Cescon, Paolo; Boutron, Claude; Gabrieli, Jacopo; Barbante, Carlo


    Inductively coupled plasma-mass spectrometry coupled with cation exchange matrix separation has been optimised for the direct determination of platinum group element (PGE) and trace element emissions from a diesel engine car. After matrix separation method detection limits of 1.6 ng g(-1) for Pd, 0.4 ng g(-1) for Rh and 4.3 ng g(-1) for Pt were achieved, the method was validated against the certified reference material BCR 723, urban road dust. The test vehicle was fitted with new and aged catalytic converters with and without diesel particulate filters (DPF). Samples were collected after three consecutive New European Driving Cycle (NEDC) of the particulate and "soluble" phases using a home-made sampler optimised for trace element analysis. Emission factors for the PGEs ranged from 0.021 ng km(-1) for Rh to 70.5 ng km(-1) for Pt; when a DPF was fitted, the emission factors for the PGEs actually used in the catalysts dropped by up to 97% (for Pt). Trace element emission factors were found to drop by a maximum of 92% for Ni to a minimum of 18% for Y when a DPF was fitted; a new DPF was also found to cause a reduction of up to 86% in the emission of particulate matter.

  18. Sequenced response of extracellular matrix deadhesion and fibrotic regulators after muscle damage is involved in protection against future injury in human skeletal muscle

    DEFF Research Database (Denmark)

    Mackey, Abigail; Brandstetter, Simon; Schjerling, Peter


    The purpose of this study was to test the hypothesis that remodeling of skeletal muscle extracellular matrix (ECM) is involved in protecting human muscle against injury. Biopsies were obtained from medial gastrocnemius muscles after a single bout of electrical stimulation (B) or a repeated bout (RB......) 30 d later, or 30 d after a single stimulation bout (RBc). A muscle biopsy was collected from the control leg for comparison with the stimulated leg. Satellite cell content, tenascin C, and muscle regeneration were assessed by immunohistochemistry; real-time PCR was used to measure mRNA levels...... of collagens, laminins, heat-shock proteins (HSPs), inflammation, and related growth factors. The large responses of HSPs, CCL2, and tenascin C detected 48 h after a single bout were attenuated in the RB trial, indicative of protection against injury. Satellite cell content and 12 target genes, including IGF-1...

  19. Baseline frequency of chromosomal aberrations and sister chromatid exchanges in peripheral blood lymphocytes of healthy individuals living in Turin (North-Western Italy): assessment of the effects of age, sex and GSTs gene polymorphisms on the levels of genomic damage. (United States)

    Santovito, Alfredo; Cervella, Piero; Delpero, Massimiliano


    The increased exposure to environmental pollutants has led to the awareness of the necessity for constant monitoring of human populations, especially those living in urban areas. This study evaluated the background levels of genomic damage in a sample of healthy subjects living in the urban area of Turin (Italy). The association between DNA damage with age, sex and GSTs polymorphisms was assessed. One hundred and one individuals were randomly sampled. Sister Chromatid Exchanges (SCEs) and Chromosomal Aberrations (CAs) assays, as well as genotyping of GSTT1 and GSTM1 genes, were performed. Mean values of SCEs and CAs were 5.137 ± 0.166 and 0.018 ± 0.002, respectively. Results showed age and gender associated with higher frequencies of these two cytogenetic markers. The eldest subjects (51-65 years) showed significantly higher levels of genomic damage than younger individuals. GSTs polymorphisms did not appear to significantly influence the frequencies of either markers. The CAs background frequency observed in this study is one of the highest reported among European populations. Turin is one of the most polluted cities in Europe in terms of air fine PM10 and ozone and the clastogenic potential of these pollutants may explain the high frequencies of chromosomal rearrangements reported here.

  20. Debonding damage analysis in composite-masonry strengthening systems with polymer- and mortar-based matrix by means of the acoustic emission technique (United States)

    Verstrynge, E.; Wevers, M.; Ghiassi, B.; Lourenço, P. B.


    Different types of strengthening systems, based on fiber reinforced materials, are under investigation for external strengthening of historic masonry structures. A full characterization of the bond behavior and of the short- and long-term failure mechanisms is crucial to ensure effective design, compatibility with the historic substrate and durability of the strengthening solution. Therein, non-destructive techniques are essential for bond characterization, durability assessment and on-site condition monitoring. In this paper, the acoustic emission (AE) technique is evaluated for debonding characterization and localization on fiber reinforced polymer (FRP) and steel reinforced grout-strengthened clay bricks. Both types of strengthening systems are subjected to accelerated ageing tests under thermal cycles and to single-lap shear bond tests. During the reported experimental campaign, AE data from the accelerated ageing tests demonstrated the thermal incompatibility between brick and epoxy-bonded FRP composites, and debonding damage was successfully detected, characterized and located. In addition, a qualitative comparison is made with digital image correlation and infrared thermography, in view of efficient on-site debonding detection.

  1. The study of radiation-induced damage and remodeling of extracellular matrix of rectum and bladder by second-harmonic generation microscopy (United States)

    Kochueva, Marina V.; Sergeeva, Ekaterina A.; Ignatjeva, Natalya Yu.; Zakharkina, Olga L.; Kuznetzov, Sergej S.; Kiseleva, Elena B.; Babak, Ksenia V.; Kamensky, Vladislav A.; Maslennikova, Anna V.


    Adverse events in normal tissues after irradiation of malignant tumors are of great importance in modern radiation oncology. Second harmonic generation (SHG) microscopy allows observe the structure of collagen fibers and bundles without additional staining. The study objective was evaluation the dose-time dependences of the structural changes occurring in collagen of rat rectum and bladder after gamma-irradiation. Animals were irradiated by a local field at single doses of 10 Gy and 40 Gy. The study of collagen state was carried out in a week and a month after radiation exposure. Paraffin-embedded material was sectioned on the slices 10 mkm thick and SHG-imaging was performed by LSM 510 Meta (Carl Zeiss, Germany). Excitation was implemented with a pulsed (100-fs) titanium-sapphire laser at a wavelength of 800 nm and a pulse repetition frequency of 80 MHz, registration was performed at two wavelengths: 362-415 nm according to collagen fluorescence and 512-576 nm according to myoglobin fluorescence. In a week after irradiation, sings of epithelial damage and edema of submucosal layer, more significant after the dose of 40 Gy were observed on LSM-images. The SHG signal decreased at this time reflecting the processes of collagen degradation independently either in bladder or in rectum. In a month after radiation the increase of size and number of collagen-bearing structures was observed, more essential after irradiation in a dose of 40 Gy. LSM microscopy with SHG allows evaluate changes of normal tissues after ionizing radiation and get information in addition to standard and special histological staining.

  2. Two tools for applying chromatographic retention data to the mass-based identification of peptides during hydrogen/deuterium exchange experiments by nano-liquid chromatography/matrix-assisted laser desorption/ionization mass spectrometry. (United States)

    Gershon, P D


    Two tools are described for integrating LC elution position with mass-based data in hydrogen-deuterium exchange (HDX) experiments by nano-liquid chromatography/matrix-assisted laser desorption/ionization mass spectrometry (nanoLC/MALDI-MS, a novel approach to HDX-MS). The first of these, 'TOF2H-Z Comparator', highlights peptides in HDX experiments that are potentially misidentified on the basis of mass alone. The program first calculates normalized values for the organic solvent concentration responsible for the elution of ions in nanoLC/MALDI HDX experiments. It then allows the solvent gradients for the multiple experiments contributing to an MS/MS-confirmed peptic peptide library to be brought into mutual alignment by iteratively re-modeling variables among LC parameters such as gradient shape, solvent species, fraction duration and LC dead time. Finally, using the program, high-probability chromatographic outliers can be flagged within HDX experimental data. The role of the second tool, 'TOF2H-XIC Comparator', is to normalize the LC chromatograms corresponding to all deuteration timepoints of all HDX experiments of a project, to a common reference. Accurate normalization facilitates the verification of chromatographic consistency between all ions whose spectral segments contribute to particular deuterium uptake plots. Gradient normalization in this manner revealed chromatographic inconsistencies between ions whose masses were either indistinguishable or separated by precise isotopic increments. Copyright © 2010 John Wiley & Sons, Ltd.

  3. Matrix theory

    CERN Document Server

    Franklin, Joel N


    Mathematically rigorous introduction covers vector and matrix norms, the condition-number of a matrix, positive and irreducible matrices, much more. Only elementary algebra and calculus required. Includes problem-solving exercises. 1968 edition.

  4. Thiourea catalysis of MeHg ligand exchange between natural dissolved organic matter and a thiol-functionalized resin: a novel method of matrix removal and MeHg preconcentration for ultratrace Hg speciation analysis in freshwaters

    Energy Technology Data Exchange (ETDEWEB)

    Vermillion, Brian R.; Hudson, Robert J.M. [University of Illinois Urbana-Champaign, Department of Natural Resources and Environmental Sciences, Urbana, IL (United States)


    Ultratrace analysis of dissolved MeHg in freshwaters requires both dissociation of MeHg from strong ligands in the sample matrix and preconcentration for detection. Existing solid phase extraction methods generally do not efficiently adsorb MeHg from samples containing high concentrations of natural dissolved organic matter. We demonstrate here that the addition of 10-60 mM thiourea (TU) quantitatively releases MeHg from the dissolved matrix of freshwater samples by forming a more labile complex (MeHgTU{sup +}) that quantitatively exchanges MeHg with thiol-functionalized resins at pH{proportional_to}3.5 during column loading. The contents of these columns were efficiently eluted with acidified TU and MeHg was analyzed by Hg-TU complex ion chromatography with cold-vapor atomic fluorescence spectrometry detection. Routinely more than 90% of MeHg was recovered with good precision (average relative standard deviation of 6%) from natural waters - obtained from pools and saturated sediments of wetlands and from rivers - containing up to 68.7 mg C L{sup -1} dissolved organic matter. With the preconcentration step, the method detection limit of 0.29 pg absolute or 0.007 ng L{sup -1} in 40-mL samples is equivalent to that of the current state-of-the- art as practiced by skilled analysts. MeHg in 20-50-mL samples was completely trapped. On the basis of our knowledge of the chemistry of the process, breakthrough volume should depend on the concentrations of TU and H{sup +}. At a TU concentration of 12 mM breakthrough occurred between 50 and 100 mL, but overall adsorption efficiency was still 85% at 100 mL. Formation of artifactual MeHg is minimal; only about 0.7% of ambient MeHg is artifactual as estimated from samples spiked with 4 {mu}g L{sup -1} Hg{sup II}. (orig.)

  5. Barter exchanges

    DEFF Research Database (Denmark)

    Sudzina, Frantisek

    Although barter is often perceived as something that proceeded money, barter is still used. The focus of the paper is on barter exchanges. Barter exchanges are used both in developing countries as well as in developed countries (including the U.S.). They are used by both organizations...... and individuals. They usually allow to exchange good but some include also services. Some exchanges allow only for bi-directional barter, i.e. when only two parties are involved in the exchange. But probably most of the barter exchanges use barter money; this makes it easier to exchange goods and services...

  6. Matrix calculus

    CERN Document Server

    Bodewig, E


    Matrix Calculus, Second Revised and Enlarged Edition focuses on systematic calculation with the building blocks of a matrix and rows and columns, shunning the use of individual elements. The publication first offers information on vectors, matrices, further applications, measures of the magnitude of a matrix, and forms. The text then examines eigenvalues and exact solutions, including the characteristic equation, eigenrows, extremum properties of the eigenvalues, bounds for the eigenvalues, elementary divisors, and bounds for the determinant. The text ponders on approximate solutions, as well

  7. Exchange Network (United States)

    The Environmental Information Exchange Network (EIEN) is an Internet-based system used by state, tribal and territorial partners to securely share environmental and health information with one another and EPA.

  8. Cryogenic regenerative heat exchangers

    CERN Document Server

    Ackermann, Robert A


    An in-depth survey of regenerative heat exchangers, this book chronicles the development and recent commercialization of regenerative devices for cryogenic applications. Chapters cover historical background, concepts, practical applications, design data, and numerical solutions, providing the latest information for engineers to develop advanced cryogenic machines. The discussions include insights into the operation of a regenerator; descriptions of the cyclic and fluid temperature distributions in a regenerator; data for various matrix geometries and materials, including coarse and fine bronze, stainless steel-woven wire mesh screens, and lead spheres; and unique operating features of cryocoolers that produce deviations from ideal regenerator theory.

  9. Fragmentation of extracellular matrix by hypochlorous acid

    DEFF Research Database (Denmark)

    Woods, Alan A; Davies, Michael Jonathan


    of the MPO-derived oxidant hypochlorous acid (HOCl) with extracellular matrix from vascular smooth muscle cells and healthy pig arteries has been examined. HOCl is rapidly consumed by such matrix samples, with the formation of matrix-derived chloramines or chloramides. The yield of these intermediates...... increases with HOCl dose. These materials undergo a time- and temperature-dependent decay, which parallels the release of sugar and protein components from the treated matrix, consistent with these species being important intermediates. Matrix damage is enhanced by species that increase chloramine....../chloramide decomposition, with copper and iron ions being effective catalysts, and decreased by compounds which scavenge chloramines/chloramides, or species derived from them. The effect of such matrix modifications on cellular behaviour is poorly understood, though it is known that changes in matrix materials can have...

  10. Matrix analysis

    CERN Document Server

    Bhatia, Rajendra


    A good part of matrix theory is functional analytic in spirit. This statement can be turned around. There are many problems in operator theory, where most of the complexities and subtleties are present in the finite-dimensional case. My purpose in writing this book is to present a systematic treatment of methods that are useful in the study of such problems. This book is intended for use as a text for upper division and gradu­ ate courses. Courses based on parts of the material have been given by me at the Indian Statistical Institute and at the University of Toronto (in collaboration with Chandler Davis). The book should also be useful as a reference for research workers in linear algebra, operator theory, mathe­ matical physics and numerical analysis. A possible subtitle of this book could be Matrix Inequalities. A reader who works through the book should expect to become proficient in the art of deriving such inequalities. Other authors have compared this art to that of cutting diamonds. One first has to...

  11. Hydrogen exchange

    DEFF Research Database (Denmark)

    Jensen, Pernille Foged; Rand, Kasper Dyrberg


    Hydrogen exchange (HX) monitored by mass spectrometry (MS) is a powerful analytical method for investigation of protein conformation and dynamics. HX-MS monitors isotopic exchange of hydrogen in protein backbone amides and thus serves as a sensitive method for probing protein conformation...... and dynamics along the entire protein backbone. This chapter describes the exchange of backbone amide hydrogen which is highly quenchable as it is strongly dependent on the pH and temperature. The HX rates of backbone amide hydrogen are sensitive and very useful probes of protein conformation......, as they are distributed along the polypeptide backbone and form the fundamental hydrogen-bonding networks of basic secondary structure. The effect of pressure on HX in unstructured polypeptides (poly-dl-lysine and oxidatively unfolded ribonuclease A) and native folded proteins (lysozyme and ribonuclease A) was evaluated...

  12. Exchange Options

    NARCIS (Netherlands)

    Jamshidian, F.


    The contract is described and market examples given. Essential theoretical developments are introduced and cited chronologically. The principles and techniques of hedging and unique pricing are illustrated for the two simplest nontrivial examples: the classical Black-Scholes/Merton/Margrabe exchange

  13. Inherited complex I deficiency is associated with faster protein diffusion in the matrix of moving mitochondria

    NARCIS (Netherlands)

    Koopman, W.J.H.; Distelmaier, F.; Hink, M.A.; Verkaart, S.; Wijers, M.; Fransen, J.; Smeitink, J.A.M.; Willems, P.H.G.M.


    Mitochondria continuously change shape, position, and matrix configuration for optimal metabolite exchange. It is well established that changes in mitochondrial metabolism influence mitochondrial shape and matrix configuration. We demonstrated previously that inhibition of mitochondrial complex I

  14. Radiation damage

    CERN Document Server

    Heijne, Erik H M; CERN. Geneva


    a) Radiation damage in organic materials. This series of lectures will give an overview of radiation effects on materials and components frequently used in accelerator engineering and experiments. Basic degradation phenomena will be presented for organic materials with comprehensive damage threshold doses for commonly used rubbers, thermoplastics, thermosets and composite materials. Some indications will be given for glass, scintillators and optical fibres. b) Radiation effects in semiconductor materials and devices. The major part of the time will be devoted to treat radiation effects in semiconductor sensors and the associated electronics, in particular displacement damage, interface and single event phenomena. Evaluation methods and practical aspects will be shown. Strategies will be developed for the survival of the materials under the expected environmental conditions of the LHC machine and detectors. I will describe profound revolution in our understanding of black holes and their relation to quantum me...

  15. Ion exchange equilibrium constants

    CERN Document Server

    Marcus, Y


    Ion Exchange Equilibrium Constants focuses on the test-compilation of equilibrium constants for ion exchange reactions. The book first underscores the scope of the compilation, equilibrium constants, symbols used, and arrangement of the table. The manuscript then presents the table of equilibrium constants, including polystyrene sulfonate cation exchanger, polyacrylate cation exchanger, polymethacrylate cation exchanger, polysterene phosphate cation exchanger, and zirconium phosphate cation exchanger. The text highlights zirconium oxide anion exchanger, zeolite type 13Y cation exchanger, and

  16. Electrically controlled cesium ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Lilga, M. [Pacific Northwest Lab., Richland, WA (United States)


    Several sites within the DOE complex (Savannah River, Idaho, Oak Ridge and Hanford) have underground storage tanks containing high-level waste resulting from nuclear engineering activities. To facilitate final disposal of the tank waste, it is advantageous to separate and concentrate the radionuclides for final immobilization in a vitrified glass matrix. This task proposes a new approach for radionuclide separation by combining ion exchange (IX) and electrochemistry to provide a selective and economic separation method.

  17. Universal portfolios generated by Vandermonde generating matrix (United States)

    Tan, Choon Peng; Yong, Say Loong


    A universal portfolio generated by the one-parameter symmetric positive definite Vandermonde matrix is studied. It is obtained by maximizing the scaled growth rate of the estimated daily wealth return and minimizing the Mahalanobis squared divergence of two portfolio vectors associated with the Vandermonde matrix. The parameter of the Vandermonde matrix is chosen so that the matrix is positive definite. The companion matrices of the three and five-dimensional generating matrices are evaluated to determine the portfolios. Three and five stock-data sets are selected from the local stock exchange in Malaysia and the empirical performance of the portfolios is presented. There is empirical evidence that the use of an appropriate generating Vandermonde matrix may increase the wealth of investors.

  18. 17 CFR 256.925 - Injuries and damages. (United States)


    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Injuries and damages. 256.925... COMPANY ACT OF 1935 2. Expense § 256.925 Injuries and damages. (a) This account shall include the cost of premiums for insurance to protect the service company against claims for injury, liability and damage...

  19. Mixed-matrix membrane adsorbers for protein separation

    NARCIS (Netherlands)

    Avramescu, M.E.; Borneman, Zandrie; Wessling, Matthias


    The separation of two similarly sized proteins, bovine serum albumin (BSA) and bovine hemoglobin (Hb) was carried out using a new type of ion-exchange mixed-matrix adsorber membranes. The adsorber membranes were prepared by incorporation of various types of Lewatit ion-exchange resins into an

  20. Enzyme capturing and concentration with mixed matrix membrane adsorbers

    NARCIS (Netherlands)

    Saiful, S.; Borneman, Zandrie; Wessling, Matthias


    This study reports the use of membrane adsorbers for lysozyme (LZ) capturing and concentration: the membrane adsorbers are prepared by incorporation of ion exchange resins into an EVAL porous matrix. The mixed matrix membrane (MMM) adsorber possesses an open and interconnected porous structure with

  1. Segmented heat exchanger (United States)

    Baldwin, Darryl Dean; Willi, Martin Leo; Fiveland, Scott Byron; Timmons, Kristine Ann


    A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

  2. Micromechanism Based Modeling of Structural Life in Metal Matrix Composites

    National Research Council Canada - National Science Library

    Allen, David


    .... These achievements include: (1) life prediction of continuous fiber metal matrix composites; (2) the influence of heat treatment on the mechanical properties and damage development in a SiC/Ti-15-3 MMC; (3...

  3. Irradiation damage

    Energy Technology Data Exchange (ETDEWEB)

    Howe, L.M


    There is considerable interest in irradiation effects in intermetallic compounds from both the applied and fundamental aspects. Initially, this interest was associated mainly with nuclear reactor programs but it now extends to the fields of ion-beam modification of metals, behaviour of amorphous materials, ion-beam processing of electronic materials, and ion-beam simulations of various kinds. The field of irradiation damage in intermetallic compounds is rapidly expanding, and no attempt will be made in this chapter to cover all of the various aspects. Instead, attention will be focused on some specific areas and, hopefully, through these, some insight will be given into the physical processes involved, the present state of our knowledge, and the challenge of obtaining more comprehensive understanding in the future. The specific areas that will be covered are: point defects in intermetallic compounds; irradiation-enhanced ordering and irradiation-induced disordering of ordered alloys; irradiation-induced amorphization.

  4. Matrix completion by deep matrix factorization. (United States)

    Fan, Jicong; Cheng, Jieyu


    Conventional methods of matrix completion are linear methods that are not effective in handling data of nonlinear structures. Recently a few researchers attempted to incorporate nonlinear techniques into matrix completion but there still exists considerable limitations. In this paper, a novel method called deep matrix factorization (DMF) is proposed for nonlinear matrix completion. Different from conventional matrix completion methods that are based on linear latent variable models, DMF is on the basis of a nonlinear latent variable model. DMF is formulated as a deep-structure neural network, in which the inputs are the low-dimensional unknown latent variables and the outputs are the partially observed variables. In DMF, the inputs and the parameters of the multilayer neural network are simultaneously optimized to minimize the reconstruction errors for the observed entries. Then the missing entries can be readily recovered by propagating the latent variables to the output layer. DMF is compared with state-of-the-art methods of linear and nonlinear matrix completion in the tasks of toy matrix completion, image inpainting and collaborative filtering. The experimental results verify that DMF is able to provide higher matrix completion accuracy than existing methods do and DMF is applicable to large matrices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Diagnosis using nail matrix. (United States)

    Richert, Bertrand; Caucanas, Marie; André, Josette


    Diagnosing nail matrix diseases requires knowledge of the nail matrix function and anatomy. This allows recognition of the clinical manifestations and assessment of potential surgical risk. Nail signs depend on the location within the matrix (proximal or distal) and the intensity, duration, and extent of the insult. Proximal matrix involvement includes nail surface irregularities (longitudinal lines, transverse lines, roughness of the nail surface, pitting, and superficial brittleness), whereas distal matrix insult induces longitudinal or transverse chromonychia. Clinical signs are described and their main causes are listed to enable readers to diagnose matrix disease from the nail's clinical features. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Leaching of Co and Cs from spent ion exchange resins in cement ...

    Indian Academy of Sciences (India)



    Aug 22, 2003 ... Abstract. The leaching rate of 60Co and 137Cs from the spent cation exchange resins in cement–bentonite matrix has been studied. The solidification matrix was a standard Portland cement mixed with 290–350 (kg/m3) spent cation exchange resins, with or without 2–5% of bentonite clay. The leaching ...

  7. Leaching of 60 Co and 137 Cs from spent ion exchange resins in ...

    Indian Academy of Sciences (India)

    The leaching rate of 60Co and 137Cs from the spent cation exchange resins in cement–bentonite matrix has been studied. The solidification matrix was a standard Portland cement mixed with 290–350 (kg/m3) spent cation exchange resins, with or without 2–5% of bentonite clay. The leaching rates from the ...

  8. Totalization Data Exchange (TDEX) (United States)

    Social Security Administration — The Totalization Data Exchange (TDEX) process is an exchange between SSA and its foreign country partners to identify deaths of beneficiaries residing abroad. The...

  9. The Matrix Cookbook

    DEFF Research Database (Denmark)

    Petersen, Kaare Brandt; Pedersen, Michael Syskind

    Matrix identities, relations and approximations. A desktop reference for quick overview of mathematics of matrices.......Matrix identities, relations and approximations. A desktop reference for quick overview of mathematics of matrices....

  10. Matrix differentiation formulas (United States)

    Usikov, D. A.; Tkhabisimov, D. K.


    A compact differentiation technique (without using indexes) is developed for scalar functions that depend on complex matrix arguments which are combined by operations of complex conjugation, transposition, addition, multiplication, matrix inversion and taking the direct product. The differentiation apparatus is developed in order to simplify the solution of extremum problems of scalar functions of matrix arguments.

  11. Matrix with Prescribed Eigenvectors (United States)

    Ahmad, Faiz


    It is a routine matter for undergraduates to find eigenvalues and eigenvectors of a given matrix. But the converse problem of finding a matrix with prescribed eigenvalues and eigenvectors is rarely discussed in elementary texts on linear algebra. This problem is related to the "spectral" decomposition of a matrix and has important technical…

  12. A New Flexibility Based Damage Index for Damage Detection of Truss Structures

    Directory of Open Access Journals (Sweden)

    M. Montazer


    Full Text Available A new damage index, called strain change based on flexibility index (SCBFI, is introduced to locate damaged elements of truss systems. The principle of SCBFI is based on considering strain changes in structural elements, between undamaged and damaged states. The strain of an element is evaluated using the columnar coefficients of the flexibility matrix estimated via modal analysis information. Two illustrative test examples are considered to assess the performance of the proposed method. Numerical results indicate that the method can provide a reliable tool to accurately identify the multiple-structural damage for truss structures.

  13. 9Real exchange rate misalignment and economic performance in ...

    African Journals Online (AJOL)

    an exchange rate is described as overvalued or undervalued when it appreciates over or depreciates under its equilibrium level – both situations refer to a misalignment. Exchange rate overvaluation can damage the potential economic growth of a country through foreign currency shortage, large current account deficits and ...

  14. Nanocrystal doped matrixes (United States)

    Parce, J. Wallace; Bernatis, Paul; Dubrow, Robert; Freeman, William P.; Gamoras, Joel; Kan, Shihai; Meisel, Andreas; Qian, Baixin; Whiteford, Jeffery A.; Ziebarth, Jonathan


    Matrixes doped with semiconductor nanocrystals are provided. In certain embodiments, the semiconductor nanocrystals have a size and composition such that they absorb or emit light at particular wavelengths. The nanocrystals can comprise ligands that allow for mixing with various matrix materials, including polymers, such that a minimal portion of light is scattered by the matrixes. The matrixes of the present invention can also be utilized in refractive index matching applications. In other embodiments, semiconductor nanocrystals are embedded within matrixes to form a nanocrystal density gradient, thereby creating an effective refractive index gradient. The matrixes of the present invention can also be used as filters and antireflective coatings on optical devices and as down-converting layers. Processes for producing matrixes comprising semiconductor nanocrystals are also provided. Nanostructures having high quantum efficiency, small size, and/or a narrow size distribution are also described, as are methods of producing indium phosphide nanostructures and core-shell nanostructures with Group II-VI shells.

  15. On the residual properties of damaged FRC (United States)

    Zerbino, R.; Torrijos, M. C.; Giaccio, G.


    A discussion on the residual behaviour of Fibre Reinforced Concrete (FRC) is performed based on two selected cases of concrete degradation: the exposure at High Temperatures and the development of Alkali Silica Reactions. In addition, and taking in mind that the failure mechanism in FRC is strongly related with the fibre pull-out strength, the bond strength in damaged matrices was shown concluding that the residual bond strength is less affected than the matrix strength. As the damage increases, the compressive strength and the modulus of elasticity decrease, being the modulus of elasticity the most affected. There were no significant changes produced by the incorporation of fibres on the residual behaviour when compared with previous experience on plain damage concrete. Regarding the tensile behaviour although the first peak decreases as the damage increases, even for a severely damage FRC the residual stresses remain almost unaffected.

  16. Impact damage development in damaged composite materials (United States)

    Duke, J. C., Jr.; Kiernan, M. T.


    A procedure for predicting the nature of impact damage development based on the measured acousto-ultrasonic (AU) response of fiber reinforced crossply laminates with or without damage is described. Results of AU evaluation as well as penetrant enhanced radiographs of damaged laminates are presented.

  17. Drilling of polymer-matrix composites

    CERN Document Server

    Krishnaraj, Vijayan; Davim, J Paulo


    Polymeric composites are recognised as good candidates for structural components due to their inherent properties. However, they present several kinds of damages while creating holes for assembly. Delamination is considered the most serious damage since it reduces service life of the component. Thrust and delamination can be controlled by proper drill point geometry. Drilling at high speed is also a current requirement of the aerospace industry. This book focus on drilling of polymer matrix composites for aerospace and defence applications. The book presents introduction to machining of polymer composites and discusses drilling as a processing of composites.

  18. Cell-matrix adhesion. (United States)

    Berrier, Allison L; Yamada, Kenneth M


    The complex interactions of cells with extracellular matrix (ECM) play crucial roles in mediating and regulating many processes, including cell adhesion, migration, and signaling during morphogenesis, tissue homeostasis, wound healing, and tumorigenesis. Many of these interactions involve transmembrane integrin receptors. Integrins cluster in specific cell-matrix adhesions to provide dynamic links between extracellular and intracellular environments by bi-directional signaling and by organizing the ECM and intracellular cytoskeletal and signaling molecules. This mini review discusses these interconnections, including the roles of matrix properties such as composition, three-dimensionality, and porosity, the bi-directional functions of cellular contractility and matrix rigidity, and cell signaling. The review concludes by speculating on the application of this knowledge of cell-matrix interactions in the formation of cell adhesions, assembly of matrix, migration, and tumorigenesis to potential future therapeutic approaches. 2007 Wiley-Liss, Inc.

  19. Parallelism in matrix computations

    CERN Document Server

    Gallopoulos, Efstratios; Sameh, Ahmed H


    This book is primarily intended as a research monograph that could also be used in graduate courses for the design of parallel algorithms in matrix computations. It assumes general but not extensive knowledge of numerical linear algebra, parallel architectures, and parallel programming paradigms. The book consists of four parts: (I) Basics; (II) Dense and Special Matrix Computations; (III) Sparse Matrix Computations; and (IV) Matrix functions and characteristics. Part I deals with parallel programming paradigms and fundamental kernels, including reordering schemes for sparse matrices. Part II is devoted to dense matrix computations such as parallel algorithms for solving linear systems, linear least squares, the symmetric algebraic eigenvalue problem, and the singular-value decomposition. It also deals with the development of parallel algorithms for special linear systems such as banded ,Vandermonde ,Toeplitz ,and block Toeplitz systems. Part III addresses sparse matrix computations: (a) the development of pa...

  20. Double exchange ferromagnetism in the Peierls insulator state. (United States)

    Nishimoto, S; Ohta, Y


    We study the effects of opening the band gap on the double exchange ferromagnetism. Applying the density-matrix renormalization group method and an analytical expansion from the dimer limit to the one-dimensional double exchange model, we demonstrate for a relevant region of the exchange coupling that, in the weak dimerization regime, the Peierls gap opens in the fully spin-polarized conduction band without affecting its ferromagnetism, whereas in the strong dimerization regime, the ferromagnetism is destroyed, and the Mott gap opens instead, leading the system to the antiferromagnetic quasi-long-range order. An insulator version of double exchange ferromagnetism is thus established.

  1. The CATDAT damaging earthquakes database

    Directory of Open Access Journals (Sweden)

    J. E. Daniell


    Full Text Available The global CATDAT damaging earthquakes and secondary effects (tsunami, fire, landslides, liquefaction and fault rupture database was developed to validate, remove discrepancies, and expand greatly upon existing global databases; and to better understand the trends in vulnerability, exposure, and possible future impacts of such historic earthquakes.

    Lack of consistency and errors in other earthquake loss databases frequently cited and used in analyses was a major shortcoming in the view of the authors which needed to be improved upon.

    Over 17 000 sources of information have been utilised, primarily in the last few years, to present data from over 12 200 damaging earthquakes historically, with over 7000 earthquakes since 1900 examined and validated before insertion into the database. Each validated earthquake includes seismological information, building damage, ranges of social losses to account for varying sources (deaths, injuries, homeless, and affected, and economic losses (direct, indirect, aid, and insured.

    Globally, a slightly increasing trend in economic damage due to earthquakes is not consistent with the greatly increasing exposure. The 1923 Great Kanto ($214 billion USD damage; 2011 HNDECI-adjusted dollars compared to the 2011 Tohoku (>$300 billion USD at time of writing, 2008 Sichuan and 1995 Kobe earthquakes show the increasing concern for economic loss in urban areas as the trend should be expected to increase. Many economic and social loss values not reported in existing databases have been collected. Historical GDP (Gross Domestic Product, exchange rate, wage information, population, HDI (Human Development Index, and insurance information have been collected globally to form comparisons.

    This catalogue is the largest known cross-checked global historic damaging earthquake database and should have far-reaching consequences for earthquake loss estimation, socio-economic analysis, and the global

  2. Quasiclassical Random Matrix Theory


    Prange, R. E.


    We directly combine ideas of the quasiclassical approximation with random matrix theory and apply them to the study of the spectrum, in particular to the two-level correlator. Bogomolny's transfer operator T, quasiclassically an NxN unitary matrix, is considered to be a random matrix. Rather than rejecting all knowledge of the system, except for its symmetry, [as with Dyson's circular unitary ensemble], we choose an ensemble which incorporates the knowledge of the shortest periodic orbits, th...

  3. Superficial Siderosis after Germinal Matrix Hemorrhage. (United States)

    Yilmaz, U; Meyer, S; Gortner, L; Körner, H; Türkyilmaz, M; Simgen, A; Reith, W; Mühl-Benninghaus, R


    Germinal matrix hemorrhage is a frequent complication of prematurity and can be associated with adverse neurodevelopmental outcome, depending on its severity. In addition to parenchymal damage, intraventricular residues of hemorrhage and hydrocephalus MR imaging findings include superficial siderosis. The purpose of this study was to investigate the prevalence and location of superficial siderosis in patients with a history of germinal matrix hemorrhage. We retrospectively identified patients with a history of germinal matrix hemorrhage who underwent MR imaging in our institution between 2008 and 2016. Imaging was evaluated for the presence and location of superficial siderosis. The presence of subependymal siderosis and evidence of hydrocephalus were assessed. Thirty-seven patients with a history of germinal matrix hemorrhage were included; 86.5% had preterm births. The mean age at the first MR imaging was 386 days (range 2-5140 days). The prevalence of superficial siderosis was 67.6%. Superficial siderosis was detected significantly more often when MR imaging was performed within the first year of life (82.8% versus 12.5%, P germinal matrix hemorrhage, but it dissolves and has a low prevalence thereafter. A prospective analysis of its initial severity and speed of dissolution during this first year might add to our understanding of the pathophysiology of neurodevelopmental impairment after germinal matrix hemorrhages. © 2016 by American Journal of Neuroradiology.

  4. Liver Fibrosis and Altered Matrix Synthesis

    Directory of Open Access Journals (Sweden)

    Katrin Neubauer


    Full Text Available Liver fibrosis represents the uniform response of liver to toxic, infectious or metabolic agents. The process leading to liver fibrosis resembles the process of wound healing, including the three phases following tissue injury: inflammation, synthesis of collagenous and noncollagenous extracellular matrix components, and tissue remodelling (scar formation. While a single liver tissue injury can be followed by an almost complete restitution ad integrum, the persistence of the original damaging noxa results in tissue damage. During the establishment of liver fibrosis, the basement membrane components collagen type IV, entactin and laminin increase and form a basement membrane-like structure within the space of Disse. The number of endothelial fenestrae of the sinusoids decreases. These changes of the sinusoids are called 'capillarization' because the altered structure of the sinusoids resembles that of capillaries. At the cellular level, origin of liver fibrogenesis is initiated by the damage of hepatocytes, resulting in the recruitment of inflammatory cells and platelets, and activation of Kupffer cells, with subsequent release of cytokines and growth factors. The hepatic stellate cells seem to be the primary target cells for these inflammatory stimuli, because during fibrogenesis, they undergo an activation process to a myofibroblast-like cell, which represents the major matrix-producing cell. Based on this pathophysiological mechanism, therapeutic methods are developed to inhibit matrix synthesis or stimulate matrix degradation. A number of substances are currently being tested that either neutralize fibrogenic stimuli and prevent the activation of hepatic stellate cells, or directly modulate the matrix metabolism. However, until now, the elimination of the hepatotoxins has been the sole therapeutic concept available for the treatment of liver fibrogenesis in humans.

  5. VT Telephone Exchange Boundaries (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The UtilityTelecom_EXCHANGE represents Vermont Telephone Exchange boundaries as defined by the VT Public Service Board. The original data was...

  6. Patience of matrix games

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Arnsfelt; Ibsen-Jensen, Rasmus; Podolskii, Vladimir V.


    For matrix games we study how small nonzero probability must be used in optimal strategies. We show that for image win–lose–draw games (i.e. image matrix games) nonzero probabilities smaller than image are never needed. We also construct an explicit image win–lose game such that the unique optimal...

  7. Fuzzy risk matrix. (United States)

    Markowski, Adam S; Mannan, M Sam


    A risk matrix is a mechanism to characterize and rank process risks that are typically identified through one or more multifunctional reviews (e.g., process hazard analysis, audits, or incident investigation). This paper describes a procedure for developing a fuzzy risk matrix that may be used for emerging fuzzy logic applications in different safety analyses (e.g., LOPA). The fuzzification of frequency and severity of the consequences of the incident scenario are described which are basic inputs for fuzzy risk matrix. Subsequently using different design of risk matrix, fuzzy rules are established enabling the development of fuzzy risk matrices. Three types of fuzzy risk matrix have been developed (low-cost, standard, and high-cost), and using a distillation column case study, the effect of the design on final defuzzified risk index is demonstrated.

  8. Higher Spin Matrix Models

    Directory of Open Access Journals (Sweden)

    Mauricio Valenzuela


    Full Text Available We propose a hybrid class of theories for higher spin gravity and matrix models, i.e., which handle simultaneously higher spin gravity fields and matrix models. The construction is similar to Vasiliev’s higher spin gravity, but part of the equations of motion are provided by the action principle of a matrix model. In particular, we construct a higher spin (gravity matrix model related to type IIB matrix models/string theory that have a well defined classical limit, and which is compatible with higher spin gravity in A d S space. As it has been suggested that higher spin gravity should be related to string theory in a high energy (tensionless regime, and, therefore to M-Theory, we expect that our construction will be useful to explore concrete connections.

  9. Extracellular Matrix and Liver Disease (United States)

    Arriazu, Elena; Ruiz de Galarreta, Marina; Cubero, Francisco Javier; Varela-Rey, Marta; Pérez de Obanos, María Pilar; Leung, Tung Ming; Lopategi, Aritz; Benedicto, Aitor; Abraham-Enachescu, Ioana


    Abstract Significance: The extracellular matrix (ECM) is a dynamic microenvironment that undergoes continuous remodeling, particularly during injury and wound healing. Chronic liver injury of many different etiologies such as viral hepatitis, alcohol abuse, drug-induced liver injury, obesity and insulin resistance, metabolic disorders, and autoimmune disease is characterized by excessive deposition of ECM proteins in response to persistent liver damage. Critical Issues: This review describes the main collagenous and noncollagenous components from the ECM that play a significant role in pathological matrix deposition during liver disease. We define how increased myofibroblasts (MF) from different origins are at the forefront of liver fibrosis and how liver cell-specific regulation of the complex scarring process occurs. Recent Advances: Particular attention is paid to the role of cytokines, growth factors, reactive oxygen species, and newly identified matricellular proteins in the regulation of fibrillar type I collagen, a field to which our laboratory has significantly contributed over the years. We compile data from recent literature on the potential mechanisms driving fibrosis resolution such as MF’ apoptosis, senescence, and reversal to quiescence. Future Directions: We conclude with a brief description of how epigenetics, an evolving field, can regulate the behavior of MF and of how new “omics” tools may advance our understanding of the mechanisms by which the fibrogenic response to liver injury occurs. Antioxid. Redox Signal. 21, 1078–1097. PMID:24219114

  10. New fault tolerant matrix converter

    Energy Technology Data Exchange (ETDEWEB)

    Ibarra, Edorta; Andreu, Jon; Kortabarria, Inigo; Ormaetxea, Enekoitz; Alegria, Inigo Martinez de; Martin, Jose Luis [Department of Electronics and Telecommunications, University of the Basque Country, Alameda de Urquijo s/n, E-48013 Bilbao (Spain); Ibanez, Pedro [TECNALIA, Energy Unit, Parque Tecnologico de Zamudio, E-48170 Bizkaia (Spain)


    The matrix converter (MC) presents a promising topology that will have to overcome certain barriers (protection systems, durability, the development of converters for real applications, etc.) in order to gain a foothold in the industry. In some applications, where continuous operation must be insured in the case of a system failure, improved reliability of the converter is of particular importance. In this sense, this article focuses on the study of a fault tolerant MC. The fault tolerance of a converter is characterized by its total or partial response in the case of a breakage of any of its components. Taking into consideration that virtually no work has been done on fault tolerant MCs, this paper describes the most important studies in this area. Moreover, a new method is proposed for detecting the breakage of MC semiconductors. Likewise, a new variation of SVM modulation with failure tolerance capacity is presented. This guarantees the continuous operation of the converter and the pseudo-optimum control of a PMSM. This paper also proposes a novel MC topology, which allows the flexible reconfiguration of this converter, when one or several of its semiconductors are damaged. In this way, the MC can continue operating at 100% of its performance without having to double its resources. In this way, it can be said that the solution described in this article represents a step forward towards the development of reliable matrix converters for real applications. (author)

  11. Micromechanical Modeling of Impact Damage Mechanisms in Unidirectional Composite Laminates (United States)

    Meng, Qinghua; Wang, Zhenqing


    Composite laminates are susceptible to the transverse impact loads resulting in significant damage such as matrix cracking, fiber breakage and delamination. In this paper, a micromechanical model is developed to predict the impact damage of composite laminates based on microstructure and various failure models of laminates. The fiber and matrix are represented by the isotropic and elastic-plastic solid, and their impact failure behaviors are modeled based on shear damage model. The delaminaton failure is modeling by the interface element controlled by cohesive damage model. Impact damage mechanisms of laminate are analyzed by using the micromechanical model proposed. In addition, the effects of impact energy and laminated type on impact damage behavior of laminates are investigated. Due to the damage of the surrounding matrix near the impact point caused by the fiber deformation, the surface damage area of laminate is larger than the area of ​​impact projectile. The shape of the damage area is roughly rectangle or elliptical with the major axis extending parallel to the fiber direction in the surface layer of laminate. The alternating laminated type with two fiber directions is more propitious to improve the impact resistance of laminates.

  12. Transmission line matrix modelling of thermal injuries to skin. (United States)

    Aliouat Bellia, S; Saidane, A; Hamou, A; Benzohra, M; Saiter, J M


    A numerical model based on the transmission line matrix method is presented for the quantitative prediction of skin burn resulting from exposure of a specific region of human skin surface to a high temperature heat source. Transient temperatures were numerically estimated by Pennes' bioheat equation, and the damage function denoting the extent of burn was calculated using the Arrhenius assumptions for protein damage rate. A two-dimensional transmission line matrix model was used to predict the effects of exposure time and structure thicknesses on the transient temperature distribution and damage extent. Compared with other numerical sources the transmission line matrix results revealed good agreement, suggesting that this method may be an effective tool for the thermal diagnostic of burns.

  13. Ideal Heat Exchange System (United States)

    Tsirlin, A. M.


    The requirements with which a heat exchange system should comply in order that at certain values of the total contact surface and heat load the entropy production in it should be minimal have been determined. It has been shown that this system can serve as a standard for real systems of irreversible heat exchange. We have found the conditions for physical realizability of a heat exchange system in which heat exchange occurs by a law linear with respect to the temperature difference between contacting flows. Analogous conditions are given without deriving for the case of heat exchange by the Fourier law.

  14. Resolution exchange simulation. (United States)

    Lyman, Edward; Ytreberg, F Marty; Zuckerman, Daniel M


    We extend replica-exchange simulation in two ways and apply our approaches to biomolecules. The first generalization permits exchange simulation between models of differing resolution--i.e., between detailed and coarse-grained models. Such "resolution exchange" can be applied to molecular systems or spin systems. The second extension is to "pseudoexchange" simulations, which require little CPU usage for most levels of the exchange ladder and also substantially reduce the need for overlap between levels. Pseudoexchanges can be used in either replica or resolution exchange simulations. We perform efficient, converged simulations of a 50-atom peptide to illustrate the new approaches.

  15. Brayton-cycle heat exchanger technology program (United States)

    Killackey, J. J.; Coombs, M. G.; Graves, R. F.; Morse, C. J.


    The following five tasks designed to advance this development of heat exchanger systems for close loop Brayton cycle power systems are presented: (1) heat transfer and pressure drop data for a finned tubular heat transfer matrix. The tubes are arranged in a triangular array with copper stainless steel laminate strips helically wound on the tubes to form a disk fin geometry; (2) the development of a modularized waste heat exchanger. Means to provide verified double containment are described; (3) the design, fabrication, and test of compact plate fin heat exchangers representative of full scale Brayton cycle recuperators; (4) the analysis and design of bellows suitable for operation at 1600 F and 200 psia for 1,000 cycles and 50,000 hours creep life; and (5) screening tests used to select a low cost braze alloy with the desirable attributes of a gold base alloy. A total of 22 different alloys were investigated; the final selection was Nicrobraz 30.

  16. Extending exchange symmetry beyond bosons and fermions (United States)

    Tichy, Malte C.; Mølmer, Klaus


    We study quantum many-body states of particles subject to a more general exchange symmetry than the behavior under pairwise exchange obeyed by bosons and fermions. We refer to these hypothetical particles as immanons because the scalar product of states with the generalized exchange symmetry is the immanant of the matrix containing all mutual scalar products of the occupied single-particle states, a generalization of the determinant and permanent applied for fermions and bosons. Immanons are shown to obey a partial Pauli principle that forbids the occupation of single-particle states above certain threshold numbers. This has measurable consequences for their tendency to favor or oppose multiple occupation of single-particle modes, and it links conjectured mathematical properties of immanants to the expected outcome of a physical Gedanken experiment.

  17. Elementary matrix theory

    CERN Document Server

    Eves, Howard


    The usefulness of matrix theory as a tool in disciplines ranging from quantum mechanics to psychometrics is widely recognized, and courses in matrix theory are increasingly a standard part of the undergraduate curriculum.This outstanding text offers an unusual introduction to matrix theory at the undergraduate level. Unlike most texts dealing with the topic, which tend to remain on an abstract level, Dr. Eves' book employs a concrete elementary approach, avoiding abstraction until the final chapter. This practical method renders the text especially accessible to students of physics, engineeri

  18. Damage Analysis of CFRP under Impact Fatigue

    Directory of Open Access Journals (Sweden)

    George Tsigkourakos


    Full Text Available In recent years carbon fibre reinforced polymers (CFRPs have become some of the most important structural materials in the aerospace industry due to their excellent stiffness and strength to weight ratios. The real-life loading histories of aerospace composite components and structures involve the generation of transient loads that can propagate as cyclic impacts. This phenomenon is known as impact fatigue (IF. Such loads can cause various types of damage in composites, including fibre breakage, transverse matrix cracking, de-bonding between fibres and matrix and delamination, resulting in a reduction of residual stiffness and a loss of functionality.

  19. Determining thermal diffusivity and defect attributes in ceramic matrix composites by infrared imaging (United States)

    Ahuja, Sanjay; Ellingson, William A.; Stuckey, J. B.; Koehl, E. R.


    Ceramic matrix composites are being developed for numerous high temperature applications, including rotors and combustors for advanced turbine engines, heat exchanger and hot-gas filters for coal gasification plants. Among the materials of interest are silicon-carbide-fiber- reinforced-silicon-carbide (SiC(f)/SiC), silicon-carbide-fiber-reinforced-silicon-nitride (SiC(f)/Si3N4), aluminum-oxide-reinforced-alumina (Al2O3(f)/Al2O3, etc. In the manufacturing of these ceramic composites, the conditions of the fiber/matrix interface are critical to the mechanical and thermal behavior of the component. Defects such as delaminations and non-uniform porosity can directly affect the performance. A nondestructive evaluation (NDE) method, developed at Argonne National Laboratory has proved beneficial in analyzing as-processed conditions and defect detection created during manufacturing. This NDE method uses infrared thermal imaging for full-field quantitative measurement of the distribution of thermal diffusivity in large components. Intensity transform algorithms have been used for contrast enhancement of the output image. Nonuniformity correction and automatic gain control are used to dynamically optimize video contrast and brightness, providing additional resolution in the acquired images. Digital filtering, interpolation, and least-squares-estimation techniques have been incorporated for noise reduction and data acquisition. The Argonne NDE system has been utilized to determine thermal shock damage, density variations, and variations in fiber coating in a full array of test specimens.

  20. Pesticide-Exposure Matrix (United States)

    The "Pesticide-exposure Matrix" was developed to help epidemiologists and other researchers identify the active ingredients to which people were likely exposed when their homes and gardens were treated for pests in past years.

  1. Tendon functional extracellular matrix. (United States)

    Screen, Hazel R C; Berk, David E; Kadler, Karl E; Ramirez, Francesco; Young, Marian F


    This article is one of a series, summarizing views expressed at the Orthopaedic Research Society New Frontiers in Tendon Research Conference. This particular article reviews the three workshops held under the "Functional Extracellular Matrix" stream. The workshops focused on the roles of the tendon extracellular matrix, such as performing the mechanical functions of tendon, creating the local cell environment, and providing cellular cues. Tendon is a complex network of matrix and cells, and its biological functions are influenced by widely varying extrinsic and intrinsic factors such as age, nutrition, exercise levels, and biomechanics. Consequently, tendon adapts dynamically during development, aging, and injury. The workshop discussions identified research directions associated with understanding cell-matrix interactions to be of prime importance for developing novel strategies to target tendon healing or repair. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  2. Deducing Cosmological Observables from the S-matrix

    NARCIS (Netherlands)

    Miao, S. P.|info:eu-repo/dai/nl/314122389; Prokopec, T.|info:eu-repo/dai/nl/326113398; Woodard, R.P.


    We study one loop quantum gravitational corrections to the long range force induced by the exchange of a massless scalar between two massive scalars. The various diagrams contributing to the flat space S-matrix are evaluated in a general covariant gauge and we show that dependence on the gauge

  3. Matrix Big Brunch


    Bedford, J; Papageorgakis, C.; Rodriguez-Gomez, D.; Ward, J.


    Following the holographic description of linear dilaton null Cosmologies with a Big Bang in terms of Matrix String Theory put forward by Craps, Sethi and Verlinde, we propose an extended background describing a Universe including both Big Bang and Big Crunch singularities. This belongs to a class of exact string backgrounds and is perturbative in the string coupling far away from the singularities, both of which can be resolved using Matrix String Theory. We provide a simple theory capable of...

  4. The Matrix Organization Revisited

    DEFF Research Database (Denmark)

    Gattiker, Urs E.; Ulhøi, John Parm


    This paper gives a short overview of matrix structure and technology management. It outlines some of the characteristics and also points out that many organizations may actualy be hybrids (i.e. mix several ways of organizing to allocate resorces effectively).......This paper gives a short overview of matrix structure and technology management. It outlines some of the characteristics and also points out that many organizations may actualy be hybrids (i.e. mix several ways of organizing to allocate resorces effectively)....

  5. Matrix comparison, Part 2

    DEFF Research Database (Denmark)

    Schneider, Jesper Wiborg; Borlund, Pia


    The present two-part article introduces matrix comparison as a formal means for evaluation purposes in informetric studies such as cocitation analysis. In the first part, the motivation behind introducing matrix comparison to informetric studies, as well as two important issues influencing such c...... and Procrustes analysis can be used as statistical validation tools in informetric studies and thus help choosing suitable proximity measures....

  6. Hacking the Matrix. (United States)

    Czerwinski, Michael; Spence, Jason R


    Recently in Nature, Gjorevski et al. (2016) describe a fully defined synthetic hydrogel that mimics the extracellular matrix to support in vitro growth of intestinal stem cells and organoids. The hydrogel allows exquisite control over the chemical and physical in vitro niche and enables identification of regulatory properties of the matrix. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Fatigue and frictional heating in ceramic matrix composites

    DEFF Research Database (Denmark)

    Jacobsen, T.K.; Sørensen, B.F.; Brøndsted, P.


    This paper describes an experimental technique for monitoring the damage evolution in ceramic matrix composites during cyclic testing. The damage is related to heat dissipation, which may be measured as radiated heat from the surface of the test specimen. In the present experimental set-up an iso......This paper describes an experimental technique for monitoring the damage evolution in ceramic matrix composites during cyclic testing. The damage is related to heat dissipation, which may be measured as radiated heat from the surface of the test specimen. In the present experimental set......-up an isothermal chamber has been utilized. The chamber walls and the grips are water-cooled to allow a consistent calculation of the conductive heat loss to the grips, the radiative heat loss to the chamber walls, and the convective heat loss to the air. An infrared camera scans the surface continously...

  8. A progression of damage repair capability in self-repairing composites (United States)

    Dry, Carolyn


    This paper covers several projects in which the author sought to determine the extent of damage against which self repair would be effective. So far no limits have been reached beyond those of the fiber/matrix itself. Starting with repair of barely visible damage in airplane wings consisting of graphite fiber/resin matrix composites progression was next to self repair of ballistic damage to vinyl ester walls and epoxy resin walls and finally blast damage self repair of walls and then blast and ballistic damage were combined.

  9. Nonlinear Dynamic Behavior of an Impact Damaged Composite Skin-Stiffener Structure

    NARCIS (Netherlands)

    Ooijevaar, T.H.; Rogge, M.D.; Loendersloot, Richard; Warnet, Laurent; Akkerman, Remko; Tinga, Tiedo


    One of the key issues in composite structures for aircraft applications is the early identification of damage. Often, service induced damage does not involve visible plastic deformation, but internal matrix related damage. A wide range of technologies, comprising global vibration and local wave

  10. Dynamic characterisation of a damaged composite structure with stiffeners employing fibre bragg gratings

    NARCIS (Netherlands)

    Ooijevaar, T.H.; Botsis, J.; Gmür, Th.; Grooteman, F.P.; Cugnoni, J.; Warnet, Laurent; Loendersloot, Richard; Akkerman, Remko; de Boer, Andries


    One of the key issues in composite structures for aircraft applications is the early detection and localisation of damage. Often service induced damage does not involve visible plastic deformation, but internal matrix related damage, like transverse cracks and delaminations. Their detection imposes

  11. Adaptively Compressed Exchange Operator

    CERN Document Server

    Lin, Lin


    The Fock exchange operator plays a central role in modern quantum chemistry. The large computational cost associated with the Fock exchange operator hinders Hartree-Fock calculations and Kohn-Sham density functional theory calculations with hybrid exchange-correlation functionals, even for systems consisting of hundreds of atoms. We develop the adaptively compressed exchange operator (ACE) formulation, which greatly reduces the computational cost associated with the Fock exchange operator without loss of accuracy. The ACE formulation does not depend on the size of the band gap, and thus can be applied to insulating, semiconducting as well as metallic systems. In an iterative framework for solving Hartree-Fock-like systems, the ACE formulation only requires moderate modification of the code, and can be potentially beneficial for all electronic structure software packages involving exchange calculations. Numerical results indicate that the ACE formulation can become advantageous even for small systems with tens...

  12. Laser Processed Heat Exchangers (United States)

    Hansen, Scott


    The Laser Processed Heat Exchanger project will investigate the use of laser processed surfaces to reduce mass and volume in liquid/liquid heat exchangers as well as the replacement of the harmful and problematic coatings of the Condensing Heat Exchangers (CHX). For this project, two scale unit test articles will be designed, manufactured, and tested. These two units are a high efficiency liquid/liquid HX and a high reliability CHX.

  13. Microsoft Exchange 2013 cookbook

    CERN Document Server

    Van Horenbeeck, Michael


    This book is a practical, hands-on guide that provides the reader with a number of clear, step-by-step exercises.""Microsoft Exchange 2013 Cookbook"" is targeted at network administrators who deal with the Exchange server in their day-to-day jobs. It assumes you have some practical experience with previous versions of Exchange (although this is not a requirement), without being a subject matter expert.

  14. Formation damage due to fines migration and its remedial methods

    Directory of Open Access Journals (Sweden)

    Sabry Kasem Galal


    Well testing analysis and well performance analysis were done to detect formation damage and provide an overall measure of formation damage. Laboratory core flood tests had been used to determine the causes, degree, and extent of damage. Scanning electron microscopy (SEM was used to analyze the rock samples used for the core flood test before and after the test. Core flood test had been done to evaluate the effect of acid on improving and curing damaged cores. Matrix acid stimulation on a case study from the studied field was evaluated.

  15. Microtube strip heat exchanger (United States)

    Doty, F. D.


    During the last quarter, Doty Scientific, Inc. (DSI) continued to make progress on the microtube strip (MTS) heat exchanger. The DSI completed a heat exchanger stress analysis of the ten-module heat exchanger bank; and performed a shell-side flow inhomogeneity analysis of the three-module heat exchanger bank. The company produced 50 tubestrips using an in-house CNC milling machine and began pressing them onto tube arrays. The DSI revised some of the tooling required to encapsulate a tube array and press tubestrips into the array to improve some of the prototype tooling.

  16. Matrix Information Geometry

    CERN Document Server

    Bhatia, Rajendra


    This book is an outcome of the Indo-French Workshop on Matrix Information Geometries (MIG): Applications in Sensor and Cognitive Systems Engineering, which was held in Ecole Polytechnique and Thales Research and Technology Center, Palaiseau, France, in February 23-25, 2011. The workshop was generously funded by the Indo-French Centre for the Promotion of Advanced Research (IFCPAR).  During the event, 22 renowned invited french or indian speakers gave lectures on their areas of expertise within the field of matrix analysis or processing. From these talks, a total of 17 original contribution or state-of-the-art chapters have been assembled in this volume. All articles were thoroughly peer-reviewed and improved, according to the suggestions of the international referees. The 17 contributions presented  are organized in three parts: (1) State-of-the-art surveys & original matrix theory work, (2) Advanced matrix theory for radar processing, and (3) Matrix-based signal processing applications.  

  17. Ion Exchange Resins Transforming Drug Delivery Systems. (United States)

    Gupta, Shweta; Benien, Parul; Sahoo, P K


    Ion-exchange resins are light, porous, three-dimensional high molecular weight cross - linked matrix of hydrocarbon chains carrying positively or negatively charged sites that can attract an ion of opposite charge from the surrounding medium. There is stoichiometric exchange of mobile ions between the solid and the solution called as Ion-exchange which does not lead to any radical change in the properties and structure of the solid. Depending upon the type of Ionexchanged it can be either Cation-exchange or Anion-exchange. They are prepared in the form of granules, beads or sheets. As drug delivery systems they have received considerable attention after the 1950s due to their inertness, freedom from side effects, high drug loading capacity, ease of sterilization and the fact that their structure can be easily altered to achieve the desired drug release characteristics. Their use is revolutionizing all traditional delivery systems namely - oral, nasal, ophthalmic and parenteral. Ion- exchange resins have been used for the development of novel drug delivery systems (NDDSs), to modify the characteristics of the dosage form and various other biomedical applications. The present article deals with the varied applications of ion-exchange resins for taste making, as resinates (simple and microencapsulated or coated), Pennkinetic systems, in selective recovery of pharmaceuticals, in pH and ionic strength responsive systems, in gastro-retentive systems, in hollow fiber systems, as sigmoidal release systems, as site specific delivery systems and as inotophoretically assisted transdermal drug delivery systems. They also have an immense importance when used as disintegrants / superdisintegrants in formulation of orodispersible tablets, powder processing aids and in the dissolution and stabilization of drugs.





    In this paper a simplified predictive control design is applied for the controlling a temperature of a fluid stream using the shell and tube heat exchanger. The predictive control design based on Dynamic Matrix Control (DMC) involves the complicated inversion computation for higher dimensional matrix. Using DMC for controlling a temperature of the shell and tube heat exchanger, there is still a need for optimization of conversation of energy. The simplified predictive control is based on DMC,...

  19. MATLAB matrix algebra

    CERN Document Server

    Pérez López, César


    MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. MATLAB Matrix Algebra introduces you to the MATLAB language with practical hands-on instructions and results, allowing you to quickly achieve your goals. Starting with a look at symbolic and numeric variables, with an emphasis on vector and matrix variables, you will go on to examine functions and operations that support vectors and matrices as arguments, including those based on analytic parent functions. Computational methods for finding eigenvalues and eigenvectors of matrices are detailed, leading to various matrix decompositions. Applications such as change of bases, the classification of quadratic forms and ...

  20. Dynamic Matrix Rank

    DEFF Research Database (Denmark)

    Frandsen, Gudmund Skovbjerg; Frandsen, Peter Frands


    We consider maintaining information about the rank of a matrix under changes of the entries. For n×n matrices, we show an upper bound of O(n1.575) arithmetic operations and a lower bound of Ω(n) arithmetic operations per element change. The upper bound is valid when changing up to O(n0.575) entries...... in a single column of the matrix. We also give an algorithm that maintains the rank using O(n2) arithmetic operations per rank one update. These bounds appear to be the first nontrivial bounds for the problem. The upper bounds are valid for arbitrary fields, whereas the lower bound is valid for algebraically...... closed fields. The upper bound for element updates uses fast rectangular matrix multiplication, and the lower bound involves further development of an earlier technique for proving lower bounds for dynamic computation of rational functions....

  1. Matrix interdiction problem

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Feng [Los Alamos National Laboratory; Kasiviswanathan, Shiva [Los Alamos National Laboratory


    In the matrix interdiction problem, a real-valued matrix and an integer k is given. The objective is to remove k columns such that the sum over all rows of the maximum entry in each row is minimized. This combinatorial problem is closely related to bipartite network interdiction problem which can be applied to prioritize the border checkpoints in order to minimize the probability that an adversary can successfully cross the border. After introducing the matrix interdiction problem, we will prove the problem is NP-hard, and even NP-hard to approximate with an additive n{gamma} factor for a fixed constant {gamma}. We also present an algorithm for this problem that achieves a factor of (n-k) mUltiplicative approximation ratio.

  2. Steady State Shift Damage Localization

    DEFF Research Database (Denmark)

    Sekjær, Claus; Bull, Thomas; Markvart, Morten Kusk


    the required accuracy when examining complex structures, an extensive amount of degrees of freedom (DOF) must often be utilized. Since the interrogation matrix for each damage pattern depends on the size of the system matrices constituting the FE-model, the computational time quickly becomes of first......-order importance. The present paper investigates two sub-structuring approaches, in which the idea is to employ Craig-Bampton super-elements to reduce the amount of interrogation distributions while still providing an acceptable localization resolution. The first approach operates on a strict super-element level......, while the second combines super-elements and shell elements. The applicability of the proposed approaches is tested in an experimental procedure with a residential-sized wind turbine blade introduced, alternately, to failure of the trailing edge and a modification of the mass....

  3. Combat damage control surgery. (United States)

    Blackbourne, Lorne H


    Although the use of damage control surgery for blunt and penetrating injury has been widely reported and defined, the use of damage control surgery on the battlefield (combat damage control surgery) has not been well detailed. Damage control surgery is now well established as the standard of care for severely injured civilian patients requiring emergent laparotomy in the United States. The civilian damage control paradigm is based on a "damage control trilogy." This trilogy comprises an abbreviated operation, intensive care unit resuscitation, and a return to the operating room for the definitive operation. The goal of damage control surgery and the triology is avoidance of irreversible physiological insult termed the lethal triad. The lethal triad comprises the vicious cycle of hypothermia, acidosis, and coagulopathy. Although the damage control model involves the damage control trilogy, abbreviated operation, intensive care unit resuscitation, and definitive operation, all in the same surgical facility, the combat damage control paradigm must incorporate global evacuation through several military surgical facilities and involves up to ten stages to allow for battlefield evacuation, surgical operations, multiple resuscitations, and transcontinental transport. Combat damage control surgery represents many unique challenges for those who care for the severely injured patients in a combat zone.

  4. Matrixed business support comparison study.

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, Josh D.


    The Matrixed Business Support Comparison Study reviewed the current matrixed Chief Financial Officer (CFO) division staff models at Sandia National Laboratories. There were two primary drivers of this analysis: (1) the increasing number of financial staff matrixed to mission customers and (2) the desire to further understand the matrix process and the opportunities and challenges it creates.

  5. Covariance of dynamic strain responses for structural damage detection (United States)

    Li, X. Y.; Wang, L. X.; Law, S. S.; Nie, Z. H.


    A new approach to address the practical problems with condition evaluation/damage detection of structures is proposed based on the distinct features of a new damage index. The covariance of strain response function (CoS) is a function of modal parameters of the structure. A local stiffness reduction in structure would cause monotonous increase in the CoS. Its sensitivity matrix with respect to local damages of structure is negative and narrow-banded. The damage extent can be estimated with an approximation to the sensitivity matrix to decouple the identification equations. The CoS sensitivity can be calibrated in practice from two previous states of measurements to estimate approximately the damage extent of a structure. A seven-storey plane frame structure is numerically studied to illustrate the features of the CoS index and the proposed method. A steel circular arch in the laboratory is tested. Natural frequencies changed due to damage in the arch and the damage occurrence can be judged. However, the proposed CoS method can identify not only damage happening but also location, even damage extent without need of an analytical model. It is promising for structural condition evaluation of selected components.

  6. GRUNDTVIG in transnational exchange

    DEFF Research Database (Denmark)

    Grundtvig in transnational exchange is the report from the seminar in december 2015 in cooperation with University of Cape Town and University of Hamburg.......Grundtvig in transnational exchange is the report from the seminar in december 2015 in cooperation with University of Cape Town and University of Hamburg....

  7. Optimization of Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Ivan Catton


    The objective of this research is to develop tools to design and optimize heat exchangers (HE) and compact heat exchangers (CHE) for intermediate loop heat transport systems found in the very high temperature reator (VHTR) and other Generation IV designs by addressing heat transfer surface augmentation and conjugate modeling. To optimize heat exchanger, a fast running model must be created that will allow for multiple designs to be compared quickly. To model a heat exchanger, volume averaging theory, VAT, is used. VAT allows for the conservation of mass, momentum and energy to be solved for point by point in a 3 dimensional computer model of a heat exchanger. The end product of this project is a computer code that can predict an optimal configuration for a heat exchanger given only a few constraints (input fluids, size, cost, etc.). As VAT computer code can be used to model characteristics )pumping power, temperatures, and cost) of heat exchangers more quickly than traditional CFD or experiment, optimization of every geometric parameter simultaneously can be made. Using design of experiment, DOE and genetric algorithms, GE, to optimize the results of the computer code will improve heat exchanger disign.

  8. Education and Industry Exchange (United States)

    Webb, Gerald A.


    Through an exchange plan a school representative worked at the personnel counter of a local company, and a supervisor from that company worked with counselors, faculty, administrators, and students from the local school. The exchange of ideas and insights were of benefit to the school and the company. (KP)

  9. Elementary matrix algebra

    CERN Document Server

    Hohn, Franz E


    This complete and coherent exposition, complemented by numerous illustrative examples, offers readers a text that can teach by itself. Fully rigorous in its treatment, it offers a mathematically sound sequencing of topics. The work starts with the most basic laws of matrix algebra and progresses to the sweep-out process for obtaining the complete solution of any given system of linear equations - homogeneous or nonhomogeneous - and the role of matrix algebra in the presentation of useful geometric ideas, techniques, and terminology.Other subjects include the complete treatment of the structur

  10. Complex matrix model duality

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T.W.


    The same complex matrix model calculates both tachyon scattering for the c=1 non-critical string at the self-dual radius and certain correlation functions of half-BPS operators in N=4 super- Yang-Mills. It is dual to another complex matrix model where the couplings of the first model are encoded in the Kontsevich-like variables of the second. The duality between the theories is mirrored by the duality of their Feynman diagrams. Analogously to the Hermitian Kontsevich- Penner model, the correlation functions of the second model can be written as sums over discrete points in subspaces of the moduli space of punctured Riemann surfaces. (orig.)

  11. Novel silica-based ion exchange resin

    Energy Technology Data Exchange (ETDEWEB)



    Eichrom`s highly successful Diphonixo resin resembles a conventional ion exchange resin in its use of sulfonic acid ligands on a styrene- divinylbenzene matrix. Diphonix resin exhibits rapid exchange kinetics that allow economical operation of ion exchange systems. Unlike conventional resins, Diphonix resin contains chelating ligands that are diphosphonic acid groups that recognize and remove the targeted metals and reject the more common elements such as sodium, calcium and magnesium. This latter property makes Diphonix ideal for many industrial scale applications, including those involving waste treatment. For treatment of low-level, transuranic (TRU) and high- level radioactive wastes, Diphonix`s polystyrene backbone hinders its application due to radiolytic stability of the carbon-hydrogen bonds and lack of compatibility with expected vitrification schemes. Polystyrene-based Diphonix is approximately 60% carbon- hydrogen. In response to an identified need within the Department of Energy for a resin with the positive attributes of Diphonix that also exhibits greater radiolytic stability and final waste form compatibility, Eichrom has successfully developed a new, silica-based resin version of Diphonix. Target application for this new resin is for use in environmental restoration and waste management situations involving the processing of low-level, transuranic and high-level radioactive wastes. The resin can also be used for processing liquid mixed waste (waste that contains low level radioactivity and hazardous constituents) including mixed wastes contaminated with organic compounds. Silica-based Diphonix is only 10% carbon-hydrogen, with the bulk of the matrix silica.

  12. On low cycle fatigue in metal matrix composites

    DEFF Research Database (Denmark)

    Pedersen, Thomas Ø; Tvergaard, Viggo


    A numerical cell model analysis is used to study the development of fatigue damage in aluminium reinforced by aligned, short SiC fibres. The material is subjected to cyclic loading with either stress control or strain control, and the matrix material is represented by a cyclic plasticity model...

  13. Matrix relation algebras

    NARCIS (Netherlands)

    el Bachraoui, M.; van de Vel, M.L.J.


    Square matrices over a relation algebra are relation algebras in a natural way. We show that for fixed n, these algebras can be characterized as reducts of some richer kind of algebra. Hence for fixed n, the class of n × n matrix relation algebras has a first-order characterization. As a

  14. Kernelized Bayesian Matrix Factorization. (United States)

    Gönen, Mehmet; Kaski, Samuel


    We extend kernelized matrix factorization with a full-Bayesian treatment and with an ability to work with multiple side information sources expressed as different kernels. Kernels have been introduced to integrate side information about the rows and columns, which is necessary for making out-of-matrix predictions. We discuss specifically binary output matrices but extensions to realvalued matrices are straightforward. We extend the state of the art in two key aspects: (i) A full-conjugate probabilistic formulation of the kernelized matrix factorization enables an efficient variational approximation, whereas full-Bayesian treatments are not computationally feasible in the earlier approaches. (ii) Multiple side information sources are included, treated as different kernels in multiple kernel learning which additionally reveals which side sources are informative. We then show that the framework can also be used for supervised and semi-supervised multilabel classification and multi-output regression, by considering samples and outputs as the domains where matrix factorization operates. Our method outperforms alternatives in predicting drug-protein interactions on two data sets. On multilabel classification, our algorithm obtains the lowest Hamming losses on 10 out of 14 data sets compared to five state-of-the-art multilabel classification algorithms. We finally show that the proposed approach outperforms alternatives in multi-output regression experiments on a yeast cell cycle data set.

  15. A random matrix analysis

    Indian Academy of Sciences (India)

    chaos to galaxies. We demonstrate the applicability of random matrix theory for networks by pro- viding a new dimension to complex systems research. We show that in spite of huge differences ... as mentioned earlier, different types of networks can be constructed based on the nature of connections. For example,.

  16. Constructing the matrix (United States)

    Elliott, John


    As part of our 'toolkit' for analysing an extraterrestrial signal, the facility for calculating structural affinity to known phenomena must be part of our core capabilities. Without such a resource, we risk compromising our potential for detection and decipherment or at least causing significant delay in the process. To create such a repository for assessing structural affinity, all known systems (language parameters) need to be structurally analysed to 'place' their 'system' within a relational communication matrix. This will need to include all known variants of language structure, whether 'living' (in current use) or ancient; this must also include endeavours to incorporate yet undeciphered scripts and non-human communication, to provide as complete a picture as possible. In creating such a relational matrix, post-detection decipherment will be assisted by a structural 'map' that will have the potential for 'placing' an alien communication with its nearest known 'neighbour', to assist subsequent categorisation of basic parameters as a precursor to decipherment. 'Universal' attributes and behavioural characteristics of known communication structure will form a range of templates (Elliott, 2001 [1] and Elliott et al., 2002 [2]), to support and optimise our attempt at categorising and deciphering the content of an extraterrestrial signal. Detection of the hierarchical layers, which comprise intelligent, complex communication, will then form a matrix of calculations that will ultimately score affinity through a relational matrix of structural comparison. In this paper we develop the rationales and demonstrate functionality with initial test results.

  17. Vertices from replica in a random matrix theory

    Energy Technology Data Exchange (ETDEWEB)

    Brezin, E [Laboratoire de Physique Theorique, Ecole Normale Superieure, 24 rue Lhomond 75231, Paris Cedex 05 (France); Hikami, S [Department of Basic Sciences, University of Tokyo, Meguro-ku, Komaba, Tokyo 153 (Japan)


    Kontsevich's work on Airy matrix integrals has led to explicit results for the intersection numbers of the moduli space of curves. In a subsequent work Okounkov rederived these results from the edge behavior of a Gaussian matrix integral. In our work we consider the correlation functions of vertices in a Gaussian random matrix theory, with an external matrix source. We deal with operator products of the form <{pi}{sub i=1}{sup n}1/N tr M{sup k{sub i}}>, in a 1/N expansion. For large values of the powers k{sub i}, in an appropriate scaling limit relating large k's to large N, universal scaling functions are derived. Furthermore, we show that the replica method applied to characteristic polynomials of the random matrices, together with a duality exchanging N and the number of points, provides a new way to recover Kontsevich's results on these intersection numbers.

  18. A 3D Orthotropic Strain-Rate Dependent Elastic Damage Material Model.

    Energy Technology Data Exchange (ETDEWEB)

    English, Shawn Allen


    A three dimensional orthotropic elastic constitutive model with continuum damage and cohesive based fracture is implemented for a general polymer matrix composite lamina. The formulation assumes the possibility of distributed (continuum) damage followed b y localized damage. The current damage activation functions are simply partially interactive quadratic strain criteria . However, the code structure allows for changes in the functions without extraordinary effort. The material model formulation, implementation, characterization and use cases are presented.

  19. Micromechanisms of damage in unidirectional fiber reinforced composites

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Brøndsted, Povl


    Numerical micromechanical investigations of the mechanical behavior and damage evolution of glass fiber reinforced composites are presented. A program code for the automatic generation of 3D micromechanical unit cell models of composites with damageable elements is developed, and used...... in the numerical experiments. The effect of the statistical variability of fiber strengths, viscosity of the polymer matrix as well as the interaction between the damage processes in matrix, fibers and interface are investigated numerically. It is demonstrated that fibers with constant strength ensure higher...... strength of a composite at the pre-critical load, while the fibers with randomly distributed strengths lead to the higher strength of the composite at post-critical loads. In the case of randomly distributed fiber strengths, the damage growth in fibers seems to be almost independent from the crack length...

  20. Effect of matrix toughness on fatigue life of plain woven carbon fabric composites (United States)

    Nishikawa, Yasuhiro; Okubo, Kazuya; Fujii, Toru; Uenoya, Toshiyuki


    The effect of matrix toughness on the fatigue life of polymer matrix composites using plain woven carbon fabrics (pw-CFC) was studied. In order to vary the matrix toughness without changing the inherent cohesion properties such as adhesive strength between matrix and fibers, two different curing agents (acid anhydride and amine types) were used. Static tensile and tension/tension fatigue cyclic loads were applied to pw-CFC specimens. It was observed that the fatigue life was significantly affected by matrix toughness. During the fatigue tests, damage progression was observed intermittently by using a thermo-elastic stress analyzer (TSA). The stress re-distribution occurs due to fatigue damage progression. TSA can identify such stress re- distribution by means of detecting surface temperature amplitude. Highly fatigue-damaged area of pw-CFC was localized if the matrix toughness was high, although moderately damaged area grew all over the specimen. The experimental results indicate that the fatigue life and damage of pw-CFC are strongly governed by matrix toughness.

  1. Heat exchanger design handbook

    CERN Document Server

    Thulukkanam, Kuppan


    Completely revised and updated to reflect current advances in heat exchanger technology, Heat Exchanger Design Handbook, Second Edition includes enhanced figures and thermal effectiveness charts, tables, new chapter, and additional topics--all while keeping the qualities that made the first edition a centerpiece of information for practicing engineers, research, engineers, academicians, designers, and manufacturers involved in heat exchange between two or more fluids.See What's New in the Second Edition: Updated information on pressure vessel codes, manufacturer's association standards A new c

  2. Anion exchange membrane (United States)

    Verkade, John G; Wadhwa, Kuldeep; Kong, Xueqian; Schmidt-Rohr, Klaus


    An anion exchange membrane and fuel cell incorporating the anion exchange membrane are detailed in which proazaphosphatrane and azaphosphatrane cations are covalently bonded to a sulfonated fluoropolymer support along with anionic counterions. A positive charge is dispersed in the aforementioned cations which are buried in the support to reduce the cation-anion interactions and increase the mobility of hydroxide ions, for example, across the membrane. The anion exchange membrane has the ability to operate at high temperatures and in highly alkaline environments with high conductivity and low resistance.

  3. Oxidation and modification of extracellular matrix and its role in disease. (United States)

    Chuang, C Y; Degendorfer, G; Davies, M J


    There is accumulating evidence that damage to extracellular materials and particularly the extracellular matrix, can play a major role in multiple human pathologies. In contrast to cells, the extracellular compartment of most biological tissues is relatively poorly equipped to prevent or repair damage caused by oxidation due to lower levels of antioxidant defenses (low molecular mass and enzymatic) and repair systems (both catabolic and enzymatic). The extracellular compartment is therefore likely to be subject to both an increased extent of damage and an overall accumulation of damage due to slow turnover and/or poor repair. The nature and consequences of damage to the extracellular matrix is poorly understood, despite evidence that changes in matrix structure influences not only structural integrity, but also cell adhesion, proliferation, migration and signaling, and cytokine and growth factor binding. In this article the nature of the extracellular matrix is briefly reviewed, together with evidence for the presence of matrix modifications in cardiovascular disease. The oxidants and mechanisms that are known to damage extracellular matrix are reviewed, together with the limited data available to date on how such changes affect structural properties and cellular behavior.

  4. Crack Opening Displacement Behavior in Ceramic Matrix Composites (United States)

    Sevener, Kathy; Tracy, Jared; Chen, Zhe; Daly, Sam; Kiser, Doug


    Ceramic Matrix Composites (CMC) modeling and life prediction strongly depend on oxidation, and therefore require a thorough understanding of when matrix cracks occur, the extent of cracking for given conditions (time-temperature-environment-stress), and the interactions of matrix cracks with fibers and interfaces. In this work, the evolution of matrix cracks in a melt-infiltrated Silicon Carbide/Silicon Carbide (SiC/SiC) CMC under uniaxial tension was examined using scanning electron microscopy (SEM) combined with digital image correlation (DIC) and manual crack opening displacement (COD) measurements. Strain relaxation due to matrix cracking, the relationship between COD's and applied stress, and damage evolution at stresses below the proportional limit were assessed. Direct experimental observation of strain relaxation adjacent to regions of matrix cracking is presented and discussed. Additionally, crack openings were found to increase linearly with increasing applied stress, and no crack was found to pass fully through the gage cross-section. This observation is discussed in the context of the assumption of through-cracks for all loading conditions and fiber architectures in oxidation modeling. Finally, the combination of SEM with DIC is demonstrated throughout to be a powerful means for damage identification and quantification in CMC's at stresses well below the proportional limit.

  5. Data Exchange Inventory System (DEXI) (United States)

    Social Security Administration — Enterprise tool used to identify data exchanges occurring between SSA and our trading partners. DEXI contains information on both incoming and outgoing exchanges and...

  6. Microplate Heat Exchanger Project (United States)

    National Aeronautics and Space Administration — We propose a microplate heat exchanger for cryogenic cooling systems used for continuous flow distributed cooling systems, large focal plane arrays, multiple cooling...

  7. Exchange Risk Management Policy

    CERN Document Server


    At the Finance Committee of March 2005, following a comment by the CERN Audit Committee, the Chairman invited the Management to prepare a document on exchange risk management policy. The Finance Committee is invited to take note of this document.

  8. HUD Exchange Grantee Database (United States)

    Department of Housing and Urban Development — The About Grantees section of the HUD Exchange brings up contact information, reports, award, jurisdiction, and location data for organizations that receive HUD...

  9. NASA Earth Exchange (NEX) (United States)

    National Aeronautics and Space Administration — The NASA Earth Exchange (NEX) represents a new platform for the Earth science community that provides a mechanism for scientific collaboration and knowledge sharing....

  10. Anion exchange polymer electrolytes (United States)

    Kim, Yu Seung; Kim, Dae Sik


    Anion exchange polymer electrolytes that include guanidinium functionalized polymers may be used as membranes and binders for electrocatalysts in preparation of anodes for electrochemical cells such as solid alkaline fuel cells.

  11. 3D constitutive model of anisotropic damage for unidirectional ply based on physical failure mechanisms

    DEFF Research Database (Denmark)

    Qing, Hai; Mishnaevsky, Leon


    A 3D anisotropic continuum damage model is developed for the computational analysis of the elastic–brittle behaviour of fibre-reinforced composite. The damage model is based on a set of phenomenological failure criteria for fibre-reinforced composite, which can distinguish the matrix and fibre...... failure under tensile and compressive loading. The homogenized continuum theory is adopted for the anisotropic elastic damage constitutive model. The damage modes occurring in the longitudinal and transverse directions of a ply are represented by a damage vector. The elastic damage model is implemented...

  12. Rasch models with exchangeable rows and columns

    DEFF Research Database (Denmark)

    Lauritzen, Steffen Lilholt

    The article studies distributions of doubly infinite binary matrices with exchangeable rows and columns which satify the further property that the probability of any $m \\times n$ submatrix is a function of the row- and column sums of that matrix. We show that any such distribution is a (unique......) mixture of random Rasch distributions. The non-degenerate elements of these distributions were introduced by Rasch (1960). We investigate the relationship between these random Rasch distributions and a problem in visual perception, the characters of a certain Abelian semigroup, and the problem...

  13. Cryptographic Combinatorial Securities Exchanges (United States)

    Thorpe, Christopher; Parkes, David C.

    We present a useful new mechanism that facilitates the atomic exchange of many large baskets of securities in a combinatorial exchange. Cryptography prevents information about the securities in the baskets from being exploited, enhancing trust. Our exchange offers institutions who wish to trade large positions a new alternative to existing methods of block trading: they can reduce transaction costs by taking advantage of other institutions’ available liquidity, while third party liquidity providers guarantee execution—preserving their desired portfolio composition at all times. In our exchange, institutions submit encrypted orders which are crossed, leaving a “remainder”. The exchange proves facts about the portfolio risk of this remainder to third party liquidity providers without revealing the securities in the remainder, the knowledge of which could also be exploited. The third parties learn either (depending on the setting) the portfolio risk parameters of the remainder itself, or how their own portfolio risk would change if they were to incorporate the remainder into a portfolio they submit. In one setting, these third parties submit bids on the commission, and the winner supplies necessary liquidity for the entire exchange to clear. This guaranteed clearing, coupled with external price discovery from the primary markets for the securities, sidesteps difficult combinatorial optimization problems. This latter method of proving how taking on the remainder would change risk parameters of one’s own portfolio, without revealing the remainder’s contents or its own risk parameters, is a useful protocol of independent interest.

  14. Matrix groups for undergraduates

    CERN Document Server

    Tapp, Kristopher


    Matrix groups touch an enormous spectrum of the mathematical arena. This textbook brings them into the undergraduate curriculum. It makes an excellent one-semester course for students familiar with linear and abstract algebra and prepares them for a graduate course on Lie groups. Matrix Groups for Undergraduates is concrete and example-driven, with geometric motivation and rigorous proofs. The story begins and ends with the rotations of a globe. In between, the author combines rigor and intuition to describe the basic objects of Lie theory: Lie algebras, matrix exponentiation, Lie brackets, maximal tori, homogeneous spaces, and roots. This second edition includes two new chapters that allow for an easier transition to the general theory of Lie groups. From reviews of the First Edition: This book could be used as an excellent textbook for a one semester course at university and it will prepare students for a graduate course on Lie groups, Lie algebras, etc. … The book combines an intuitive style of writing w...

  15. Extracellular matrix structure. (United States)

    Theocharis, Achilleas D; Skandalis, Spyros S; Gialeli, Chrysostomi; Karamanos, Nikos K


    Extracellular matrix (ECM) is a non-cellular three-dimensional macromolecular network composed of collagens, proteoglycans/glycosaminoglycans, elastin, fibronectin, laminins, and several other glycoproteins. Matrix components bind each other as well as cell adhesion receptors forming a complex network into which cells reside in all tissues and organs. Cell surface receptors transduce signals into cells from ECM, which regulate diverse cellular functions, such as survival, growth, migration, and differentiation, and are vital for maintaining normal homeostasis. ECM is a highly dynamic structural network that continuously undergoes remodeling mediated by several matrix-degrading enzymes during normal and pathological conditions. Deregulation of ECM composition and structure is associated with the development and progression of several pathologic conditions. This article emphasizes in the complex ECM structure as to provide a better understanding of its dynamic structural and functional multipotency. Where relevant, the implication of the various families of ECM macromolecules in health and disease is also presented. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Animal damage management handbook. (United States)

    Hugh C. Black


    This handbook treats animal damage management (ADM) in the West in relation to forest, range, and recreation resources; predator management is not addressed. It provides a comprehensive reference of safe, effective, and practical methods for managing animal damage on National Forest System lands. Supporting information is included in references after each chapter and...

  17. Animal damage to birch (United States)

    James S. Jordan; Francis M. Rushmore


    A relatively few animal species are responsible for most of the reported damage to the birches. White-tailed deer, yellow-bellied sapsuckers, porcupines, moose, and hares are the major animals involved. We will review reports of damage, discuss the underlying causes, and describe possible methods of control. For example, heavy deer browsing that eliminates birch...

  18. DNA damage response

    NARCIS (Netherlands)

    G. Giglia-Mari (Giuseppina); A. Zotter (Angelika); W. Vermeulen (Wim)


    textabstractStructural changes to DNA severely affect its functions, such as replication and transcription, and play a major role in age-related diseases and cancer. A complicated and entangled network ofDNA damage response (DDR) mechanisms, including multiple DNA repair pathways, damage tolerance

  19. Tree damage and mycotrophy

    Energy Technology Data Exchange (ETDEWEB)

    Heyser, W.; Iken, J.; Meyer, F.H.


    Tree species that are particularly endangered in our forests are characterized by the fact that they live in an obligatory symbiosis with ectomycorrhiza fungii. In verifying which tree species appear to be more damaged or less severely damaged, a conspicuous phenomenon noted was that the tree species exhibiting slight symptoms of damage or none at all included such ones as form mycorrhizas facultatively or dispense with mycorrhizas, e.g. Acer, Aesculus, Fraxinus, Populus, Salix. Given that trees in municipal gardens reflect the development and extent of damage in a way similar to forests, and given also that much greater numbers of tree species are often cultured in parks of this type, the latter were considered particularly suited to examine the question of whether a relationship exists between mycotrophy and the severity of damage.

  20. Matter Dependence of the Three-Loop Soft Anomalous Dimension Matrix

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Lance J.; /SLAC


    The resummation of soft gluon exchange for QCD hard scattering requires a matrix of anomalous dimensions, which has been computed through two loops. The two-loop matrix is proportional to the one-loop matrix. Recently there have been proposals that this proportionality extends to higher loops. One can test such proposals by computing the dependence of this matrix on the matter content in a generic gauge theory. It is shown that for the matter-dependent part the proportionality extends to three loops for arbitrary massless processes.

  1. A note on matrix differentiation


    Kowal, Pawel


    This paper presents a set of rules for matrix differentiation with respect to a vector of parameters, using the flattered representation of derivatives, i.e. in form of a matrix. We also introduce a new set of Kronecker tensor products of matrices. Finally we consider a problem of differentiating matrix determinant, trace and inverse.

  2. Radiation effects on ion exchange materials

    Energy Technology Data Exchange (ETDEWEB)

    Gangwer, T.E.; Goldstein, M.; Pillay, K.K.S.


    An extensive literature review and data compilation has been completed on the radiation-damage of ion exchange resins. The primary goal of the study has been to review the available literature on ion exchange materials used in, as well as those with potential for use in, the nuclear fuel and waste reprocessing areas. The physical and chemical properties of ion exchangers are reviewed. Experimental parameters useful in characterizing the effects of radiation on synthetic ion exchange resins are identified or defined. In compiling the diverse types of data, an effort was made to present the experimental data or experimentally based parameters in a format that would be useful for inter-comparing radiation effects on resins. When subject to radiation there are various general trends or qualitative effects displayed by the different types of resins. These radiation-trends and effects have been formulated into qualitative statements. The present day level of understanding of the behavior of resins under ionizing radiation is too limited to justify quantitative predictive modeling. The limitations and deficiencies of the literature are discussed and the experimentation needed to achieve quantitative modeling are outlined. 14 figs., 108 references.

  3. Metabolite Damage and Metabolite Damage Control in Plants

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Andrew D. [Horticultural Sciences Department and; Henry, Christopher S. [Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois 60439, email:; Computation Institute, University of Chicago, Chicago, Illinois 60637; Fiehn, Oliver [Genome Center, University of California, Davis, California 95616, email:; de Crécy-Lagard, Valérie [Microbiology and Cell Science Department, University of Florida, Gainesville, Florida 32611, email: ,


    It is increasingly clear that (a) many metabolites undergo spontaneous or enzyme-catalyzed side reactions in vivo, (b) the damaged metabolites formed by these reactions can be harmful, and (c) organisms have biochemical systems that limit the buildup of damaged metabolites. These damage-control systems either return a damaged molecule to its pristine state (metabolite repair) or convert harmful molecules to harmless ones (damage preemption). Because all organisms share a core set of metabolites that suffer the same chemical and enzymatic damage reactions, certain damage-control systems are widely conserved across the kingdoms of life. Relatively few damage reactions and damage-control systems are well known. Uncovering new damage reactions and identifying the corresponding damaged metabolites, damage-control genes, and enzymes demands a coordinated mix of chemistry, metabolomics, cheminformatics, biochemistry, and comparative genomics. This review illustrates the above points using examples from plants, which are at least as prone to metabolite damage as other organisms.

  4. A 3D Orthotropic Elastic Continuum Damage Material Model

    Energy Technology Data Exchange (ETDEWEB)

    English, Shawn Allen [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Brown, Arthur A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)


    A three dimensional orthotropic elastic constitutive model with continuum damage is implemented for polymer matrix composite lamina. Damage evolves based on a quadratic homogeneous function of thermodynamic forces in the orthotropic planes. A small strain formulation is used to assess damage. In order to account for large deformations, a Kirchhoff material formulation is implemented and coded for numerical simulation in Sandia’s Sierra Finite Element code suite. The theoretical formulation is described in detail. An example of material parameter determination is given and an example is presented.

  5. Genotoxic damage in cultured human peripheral blood lymphocytes ...

    African Journals Online (AJOL)

    Falaq Naz


    Jun 29, 2012 ... In the present study the effects of oral contraceptives were studied among users using chromosomal aberrations, sister chromatid exchanges and DNA damage as a parameter, in cultured human peripheral blood lym- phocytes. The study was performed on 25 women (users) and 25 age match controls.

  6. Matrix fluid chemistry experiment. Final report June 1998 - March 2003

    Energy Technology Data Exchange (ETDEWEB)

    Smellie, John A.T. [Conterra AB, Luleaa (Sweden); Waber, H. Niklaus [Univ. of Bern (Switzerland). Inst. of Geology; Frape, Shaun K. [Univ. of Waterloo (Canada). Dept. of Earth Sciences


    The Matrix Fluid Chemistry Experiment set out to determine the composition and evolution of matrix pore fluids/waters in low permeable rock located at repository depths in the Aespoe Hard Rock Laboratory (HRL). Matrix pore fluids/waters can be highly saline in composition and, if accessible, may influence the near-field groundwater chemistry of a repository system. Characterising pore fluids/waters involved in-situ borehole sampling and analysis integrated with laboratory studies and experiments on rock matrix drill core material. Relating the rate of in-situ pore water accumulation during sampling to the measured rock porosity indicated a hydraulic conductivity of 10{sup -14}-10{sup -13} m/s for the rock matrix. This was in accordance with earlier estimated predictions. The sampled matrix pore water, brackish in type, mostly represents older palaeo- groundwater mixtures preserved in the rock matrix and dating back to at least the last glaciation. A component of matrix pore 'fluid' is also present. One borehole section suggests a younger groundwater component which has accessed the rock matrix during the experiment. There is little evidence that the salinity of the matrix pore waters has been influenced significantly by fluid inclusion populations hosted by quartz. Crush/leach, cation exchange, pore water diffusion and pore water displacement laboratory experiments were carried out to compare extracted/calculated matrix pore fluids/waters with in-situ sampling. Of these the pore water diffusion experiments appear to be the most promising approach and a recommended site characterisation protocol has been formulated. The main conclusions from the Matrix Fluid Chemistry Experiment are: Groundwater movement within the bedrock hosting the experimental site has been enhanced by increased hydraulic gradients generated by the presence of the tunnel, and to a much lesser extent by the borehole itself. Over experimental timescales {approx}4 years) solute transport

  7. Exchanging Description Logic Knowledge Bases

    NARCIS (Netherlands)

    Arenas, M.; Botoeva, E.; Calvanese, D.; Ryzhikov, V.; Sherkhonov, E.


    In this paper, we study the problem of exchanging knowledge between a source and a target knowledge base (KB), connected through mappings. Differently from the traditional database exchange setting, which considers only the exchange of data, we are interested in exchanging implicit knowledge. As

  8. The cellulose resource matrix. (United States)

    Keijsers, Edwin R P; Yılmaz, Gülden; van Dam, Jan E G


    The emerging biobased economy is causing shifts from mineral fossil oil based resources towards renewable resources. Because of market mechanisms, current and new industries utilising renewable commodities, will attempt to secure their supply of resources. Cellulose is among these commodities, where large scale competition can be expected and already is observed for the traditional industries such as the paper industry. Cellulose and lignocellulosic raw materials (like wood and non-wood fibre crops) are being utilised in many industrial sectors. Due to the initiated transition towards biobased economy, these raw materials are intensively investigated also for new applications such as 2nd generation biofuels and 'green' chemicals and materials production (Clark, 2007; Lange, 2007; Petrus & Noordermeer, 2006; Ragauskas et al., 2006; Regalbuto, 2009). As lignocellulosic raw materials are available in variable quantities and qualities, unnecessary competition can be avoided via the choice of suitable raw materials for a target application. For example, utilisation of cellulose as carbohydrate source for ethanol production (Kabir Kazi et al., 2010) avoids the discussed competition with easier digestible carbohydrates (sugars, starch) deprived from the food supply chain. Also for cellulose use as a biopolymer several different competing markets can be distinguished. It is clear that these applications and markets will be influenced by large volume shifts. The world will have to reckon with the increase of competition and feedstock shortage (land use/biodiversity) (van Dam, de Klerk-Engels, Struik, & Rabbinge, 2005). It is of interest - in the context of sustainable development of the bioeconomy - to categorize the already available and emerging lignocellulosic resources in a matrix structure. When composing such "cellulose resource matrix" attention should be given to the quality aspects as well as to the available quantities and practical possibilities of processing the

  9. A Plastic Damage Mechanics Model for Engineered Cementitious Composites

    DEFF Research Database (Denmark)

    Dick-Nielsen, Lars; Stang, Henrik; Poulsen, Peter Noe


    This paper discusses the establishment of a plasticity-based damage mechanics model for Engineered Cementitious Composites (ECC). The present model differs from existing models by combining a matrix and fiber description in order to describe the behavior of the ECC material. The model provides...

  10. Aircraft Dynamic Response to Damaged and Repaired Runways. (United States)


    second papier traite d’un modele mathematique qui peut tre utilise pour le calcul de la reponse dynamique des structures d’un avion operant sur des...for the dynamic qualification process of aircraft operation on damaged /repaired runways is in- dicated. LIST OF SYMBOLS A matrix of the factors of a

  11. Random matrix theory

    CERN Document Server

    Deift, Percy


    This book features a unified derivation of the mathematical theory of the three classical types of invariant random matrix ensembles-orthogonal, unitary, and symplectic. The authors follow the approach of Tracy and Widom, but the exposition here contains a substantial amount of additional material, in particular, facts from functional analysis and the theory of Pfaffians. The main result in the book is a proof of universality for orthogonal and symplectic ensembles corresponding to generalized Gaussian type weights following the authors' prior work. New, quantitative error estimates are derive

  12. Matrix Encryption Scheme

    Directory of Open Access Journals (Sweden)

    Abdelhakim Chillali


    Full Text Available In classical cryptography, the Hill cipher is a polygraphic substitution cipher based on linear algebra. In this work, we proposed a new problem applicable to the public key cryptography, based on the Matrices, called “Matrix discrete logarithm problem”, it uses certain elements formed by matrices whose coefficients are elements in a finite field. We have constructed an abelian group and, for the cryptographic part in this unreliable group, we then perform the computation corresponding to the algebraic equations, Returning the encrypted result to a receiver. Upon receipt of the result, the receiver can retrieve the sender’s clear message by performing the inverse calculation.

  13. Matrix string partition function

    CERN Document Server

    Kostov, Ivan K; Kostov, Ivan K.; Vanhove, Pierre


    We evaluate quasiclassically the Ramond partition function of Euclidean D=10 U(N) super Yang-Mills theory reduced to a two-dimensional torus. The result can be interpreted in terms of free strings wrapping the space-time torus, as expected from the point of view of Matrix string theory. We demonstrate that, when extrapolated to the ultraviolet limit (small area of the torus), the quasiclassical expressions reproduce exactly the recently obtained expression for the partition of the completely reduced SYM theory, including the overall numerical factor. This is an evidence that our quasiclassical calculation might be exact.

  14. Matrix vector analysis

    CERN Document Server

    Eisenman, Richard L


    This outstanding text and reference applies matrix ideas to vector methods, using physical ideas to illustrate and motivate mathematical concepts but employing a mathematical continuity of development rather than a physical approach. The author, who taught at the U.S. Air Force Academy, dispenses with the artificial barrier between vectors and matrices--and more generally, between pure and applied mathematics.Motivated examples introduce each idea, with interpretations of physical, algebraic, and geometric contexts, in addition to generalizations to theorems that reflect the essential structur

  15. Matrix algebra for linear models

    CERN Document Server

    Gruber, Marvin H J


    Matrix methods have evolved from a tool for expressing statistical problems to an indispensable part of the development, understanding, and use of various types of complex statistical analyses. This evolution has made matrix methods a vital part of statistical education. Traditionally, matrix methods are taught in courses on everything from regression analysis to stochastic processes, thus creating a fractured view of the topic. Matrix Algebra for Linear Models offers readers a unique, unified view of matrix analysis theory (where and when necessary), methods, and their applications. Written f

  16. Microgravity condensing heat exchanger (United States)

    Thomas, Christopher M. (Inventor); Ma, Yonghui (Inventor); North, Andrew (Inventor); Weislogel, Mark M. (Inventor)


    A heat exchanger having a plurality of heat exchanging aluminum fins with hydrophilic condensing surfaces which are stacked and clamped between two cold plates. The cold plates are aligned radially along a plane extending through the axis of a cylindrical duct and hold the stacked and clamped portions of the heat exchanging fins along the axis of the cylindrical duct. The fins extend outwardly from the clamped portions along approximately radial planes. The spacing between fins is symmetric about the cold plates, and are somewhat more closely spaced as the angle they make with the cold plates approaches Passageways extend through the fins between vertex spaces which provide capillary storage and communicate with passageways formed in the stacked and clamped portions of the fins, which communicate with water drains connected to a pump externally to the duct. Water with no entrained air is drawn from the capillary spaces.

  17. Ion exchange phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Bourg, I.C.; Sposito, G.


    Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculation (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).

  18. Regenerator heat exchanger – calculation of heat recovery efficiency and pressure loss

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per Kvols

    Performance of heat exchangers is determined based on two main parameters: efficiency to exchange / recover heat and pressure loss due to friction between fluid and exchanger surfaces. These two parameters are contradicting each other which mean that the higher is efficiency the higher becomes...... pressure loss. The aim of the optimized design of heat exchanger is to reach the highest or the required heat efficiency and at the same time to keep pressure losses as low as possible keeping total exchanger size within acceptable size. In this report is presented analytical calculation method...... to calculate efficiency and pressure loss in the regenerator heat exchanger with a fixed matrix that will be used in the decentralized ventilation unit combined in the roof window. Moreover, this study presents sensitivity study of regenerator heat exchanger performance, taking into account, such parameters as...

  19. Diabetes and nerve damage (United States)

    Diabetic neuropathy; Diabetes - neuropathy; Diabetes - peripheral neuropathy ... In people with diabetes, the body's nerves can be damaged by decreased blood flow and a high blood sugar level. This condition is ...

  20. LSD and Genetic Damage (United States)

    Dishotsky, Norman I.; And Others


    Reviews studies of the effects of lysergic acid diethylamide (LSD) on man and other organisms. Concludes that pure LSD injected in moderate doses does not cause chromosome or detectable genetic damage and is not a teratogen or carcinogen. (JM)

  1. Heat exchanger panel (United States)

    Warburton, Robert E. (Inventor); Cuva, William J. (Inventor)


    The present invention relates to a heat exchanger panel which has broad utility in high temperature environments. The heat exchanger panel has a first panel, a second panel, and at least one fluid containment device positioned intermediate the first and second panels. At least one of the first panel and the second panel have at least one feature on an interior surface to accommodate the at least one fluid containment device. In a preferred embodiment, each of the first and second panels is formed from a high conductivity, high temperature composite material. Also, in a preferred embodiment, the first and second panels are joined together by one or more composite fasteners.

  2. Microscale Regenerative Heat Exchanger (United States)

    Moran, Matthew E.; Stelter, Stephan; Stelter, Manfred


    The device described herein is designed primarily for use as a regenerative heat exchanger in a miniature Stirling engine or Stirling-cycle heat pump. A regenerative heat exchanger (sometimes called, simply, a "regenerator" in the Stirling-engine art) is basically a thermal capacitor: Its role in the Stirling cycle is to alternately accept heat from, then deliver heat to, an oscillating flow of a working fluid between compression and expansion volumes, without introducing an excessive pressure drop. These volumes are at different temperatures, and conduction of heat between these volumes is undesirable because it reduces the energy-conversion efficiency of the Stirling cycle.

  3. Microwave Assisted Reduction of Pt-Catalyst by N-Phenyl-p-Phenylenediamine for Proton Exchange Membrane Fuel Cells

    National Research Council Canada - National Science Library

    Ming-Jer Tsai; Tar-Hwa Hsieh; Yen-Zen Wang; Ko-Shan Ho; Chia-Yun Chang


    The presence of N-phenyl-p-phenylenediamine (PPDA: a dimer of aniline) during microwave (MW) irradiation can significantly improve Pt-loading on the XC72 carbon matrix as a catalyst support of proton exchange membrane fuel cells...

  4. An Elastic-Plastic Damage Model for Long-Fiber Thermoplastics

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Ba Nghiep; Kunc, Vlastimil


    This article proposes an elastic-plastic damage model that combines micromechanical modeling with continuum damage mechanics to predict the stress-strain response of injection-molded long-fiber thermoplastics. The model accounts for distributions of orientation and length of elastic fibers embedded in a thermoplastic matrix whose behavior is elastic-plastic and damageable. The elastic-plastic damage behavior of the matrix is described by the modified Ramberg-Osgood relation and the three-dimensional damage model in deformation assuming isotropic hardening. Fiber/matrix debonding is accounted for using a parameter that governs the fiber/matrix interface compliance. A linear relationship between this parameter and the matrix damage variable is assumed. First, the elastic-plastic damage behavior of the reference aligned-fiber composite containing the same fiber volume fraction and length distribution as the actual composite is computed using an incremental Eshelby-Mori-Tanaka mean field approach. The incremental response of the latter is then obtained from the solution for the aligned-fiber composite by averaging over all fiber orientations. The model is validated against the experimental stress-strain results obtained for long-glass-fiber/polypropylene specimens.

  5. Bypassing damaged nervous tissue

    CERN Document Server

    Shneider, M N


    We show the principal ability of bypassing damaged demyelinated portions of nervous tissue, thereby restoring its normal function for the passage of action potentials. We carry out a theoretical analysis on the basis of the synchronization mechanism of action potential propagation along a bundle of neurons, proposed recently in [1]. And we discuss the feasibility of implement a bypass to restore damaged nervous tissue and creating an artificial neuron network.

  6. Ceramic matrix and resin matrix composites: A comparison (United States)

    Hurwitz, Frances I.


    The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.

  7. Ceramic matrix and resin matrix composites - A comparison (United States)

    Hurwitz, Frances I.


    The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.

  8. The predictive protective control of the heat exchanger (United States)

    Nevriva, Pavel; Filipova, Blanka; Vilimec, Ladislav


    The paper deals with the predictive control applied to flexible cogeneration energy system FES. FES was designed and developed by the VITKOVICE POWER ENGINEERING joint-stock company and represents a new solution of decentralized cogeneration energy sources. In FES, the heating medium is flue gas generated by combustion of a solid fuel. The heated medium is power gas, which is a gas mixture of air and water steam. Power gas is superheated in the main heat exchanger and led to gas turbines. To protect the main heat exchanger against damage by overheating, the novel predictive protective control based on the mathematical model of exchanger was developed. The paper describes the principle, the design and the simulation of the predictive protective method applied to main heat exchanger of FES.

  9. Nature's Heat Exchangers. (United States)

    Barnes, George


    Discusses the heat-transfer systems of different animals. Systems include heat conduction into the ground, heat transferred by convection, heat exchange in lizards, fish and polar animals, the carotid rete system, electromagnetic radiation from animals and people, and plant and animal fiber optics. (MDH)

  10. Basic Exchange Rate Theories

    NARCIS (Netherlands)

    J.G.M. van Marrewijk (Charles)


    textabstractThis four-chapter overview of basic exchange rate theories discusses (i) the elasticity and absorption approach, (ii) the (long-run) implications of the monetary approach, (iii) the short-run effects of monetary and fiscal policy under various economic conditions, and (iv) the transition

  11. Technology Performance Exchange

    Energy Technology Data Exchange (ETDEWEB)


    To address the need for accessible, high-quality data, the Department of Energy has developed the Technology Performance Exchange (TPEx). TPEx enables technology suppliers, third-party testing laboratories, and other entities to share product performance data. These data are automatically transformed into a format that technology evaluators can easily use in their energy modeling assessments to inform procurement decisions.

  12. Telephone Exchange Maintenance

    CERN Document Server


    Urgent maintenance work on CERN telephone exchanges will be performed on 24 March from 6 a.m. to 8 a.m. Telephone services may be disrupted or even interrupted during this time. For more details, please contact us by email at

  13. Baltic Exchange toodi Tallinna

    Index Scriptorium Estoniae


    Viimane osa merekonteineritesse kokkupakitud Londoni laevandus- ja merebörsi Baltic Exchange'i endise peakorteri detailidest jõudis 2007. a. juunis Tallinna. Hoone detailid ostnud ärimehed Heiti Hääl ja Eerik-Niiles Kross plaanivad leida hoonele koha Tallinna kesklinnas. E.-N. Krossi kommentaar

  14. Heat exchanger. Varmeveksler

    Energy Technology Data Exchange (ETDEWEB)

    Rosman, I.E.; Wagner, W.R.


    The invention concerns a manifold for a plate-type heat exchanger, and includes a side channel connected the inlet of the manifold. The plates can be designed as an integral assembly together with the integrated side- and external end-manifolds as well. 16 drawings.

  15. Chemical exchange program analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Waffelaert, Pascale


    As part of its EMS, Sandia performs an annual environmental aspects/impacts analysis. The purpose of this analysis is to identify the environmental aspects associated with Sandia's activities, products, and services and the potential environmental impacts associated with those aspects. Division and environmental programs established objectives and targets based on the environmental aspects associated with their operations. In 2007 the most significant aspect identified was Hazardous Materials (Use and Storage). The objective for Hazardous Materials (Use and Storage) was to improve chemical handling, storage, and on-site movement of hazardous materials. One of the targets supporting this objective was to develop an effective chemical exchange program, making a business case for it in FY07, and fully implementing a comprehensive chemical exchange program in FY08. A Chemical Exchange Program (CEP) team was formed to implement this target. The team consists of representatives from the Chemical Information System (CIS), Pollution Prevention (P2), the HWMF, Procurement and the Environmental Management System (EMS). The CEP Team performed benchmarking and conducted a life-cycle analysis of the current management of chemicals at SNL/NM and compared it to Chemical Exchange alternatives. Those alternatives are as follows: (1) Revive the 'Virtual' Chemical Exchange Program; (2) Re-implement a 'Physical' Chemical Exchange Program using a Chemical Information System; and (3) Transition to a Chemical Management Services System. The analysis and benchmarking study shows that the present management of chemicals at SNL/NM is significantly disjointed and a life-cycle or 'Cradle-to-Grave' approach to chemical management is needed. This approach must consider the purchasing and maintenance costs as well as the cost of ultimate disposal of the chemicals and materials. A chemical exchange is needed as a mechanism to re-apply chemicals on site. This

  16. Progressive Damage Analysis of Bonded Composite Joints (United States)

    Leone, Frank A., Jr.; Girolamo, Donato; Davila, Carlos G.


    The present work is related to the development and application of progressive damage modeling techniques to bonded joint technology. The joint designs studied in this work include a conventional composite splice joint and a NASA-patented durable redundant joint. Both designs involve honeycomb sandwich structures with carbon/epoxy facesheets joined using adhesively bonded doublers.Progressive damage modeling allows for the prediction of the initiation and evolution of damage within a structure. For structures that include multiple material systems, such as the joint designs under consideration, the number of potential failure mechanisms that must be accounted for drastically increases the complexity of the analyses. Potential failure mechanisms include fiber fracture, intraply matrix cracking, delamination, core crushing, adhesive failure, and their interactions. The bonded joints were modeled using highly parametric, explicitly solved finite element models, with damage modeling implemented via custom user-written subroutines. Each ply was discretely meshed using three-dimensional solid elements. Layers of cohesive elements were included between each ply to account for the possibility of delaminations and were used to model the adhesive layers forming the joint. Good correlation with experimental results was achieved both in terms of load-displacement history and the predicted failure mechanism(s).

  17. Progressive delamination in polymer matrix composite laminates: A new approach (United States)

    Chamis, C. C.; Murthy, P. L. N.; Minnetyan, L.


    A new approach independent of stress intensity factors and fracture toughness parameters has been developed and is described for the computational simulation of progressive delamination in polymer matrix composite laminates. The damage stages are quantified based on physics via composite mechanics while the degradation of the laminate behavior is quantified via the finite element method. The approach accounts for all types of composite behavior, laminate configuration, load conditions, and delamination processes starting from damage initiation, to unstable propagation, and to laminate fracture. Results of laminate fracture in composite beams, panels, plates, and shells are presented to demonstrate the effectiveness and versatility of this new approach.

  18. Google matrix of Twitter (United States)

    Frahm, K. M.; Shepelyansky, D. L.


    We construct the Google matrix of the entire Twitter network, dated by July 2009, and analyze its spectrum and eigenstate properties including the PageRank and CheiRank vectors and 2DRanking of all nodes. Our studies show much stronger inter-connectivity between top PageRank nodes for the Twitter network compared to the networks of Wikipedia and British Universities studied previously. Our analysis allows to locate the top Twitter users which control the information flow on the network. We argue that this small fraction of the whole number of users, which can be viewed as the social network elite, plays the dominant role in the process of opinion formation on the network.

  19. Matrix membranes and integrability

    Energy Technology Data Exchange (ETDEWEB)

    Zachos, C. [Argonne National Lab., IL (United States); Fairlie, D. [University of Durham (United Kingdom). Dept. of Mathematical Sciences; Curtright, T. [University of Miami, Coral Gables, FL (United States). Dept. of Physics


    This is a pedagogical digest of results reported in Curtright, Fairlie, {ampersand} Zachos 1997, and an explicit implementation of Euler`s construction for the solution of the Poisson Bracket dual Nahm equation. But it does not cover 9 and 10-dimensional systems, and subsequent progress on them Fairlie 1997. Cubic interactions are considered in 3 and 7 space dimensions, respectively, for bosonic membranes in Poisson Bracket form. Their symmetries and vacuum configurations are explored. Their associated first order equations are transformed to Nahm`s equations, and are hence seen to be integrable, for the 3-dimensional case, by virtue of the explicit Lax pair provided. Most constructions introduced also apply to matrix commutator or Moyal Bracket analogs.

  20. Light cone matrix product

    Energy Technology Data Exchange (ETDEWEB)

    Hastings, Matthew B [Los Alamos National Laboratory


    We show how to combine the light-cone and matrix product algorithms to simulate quantum systems far from equilibrium for long times. For the case of the XXZ spin chain at {Delta} = 0.5, we simulate to a time of {approx} 22.5. While part of the long simulation time is due to the use of the light-cone method, we also describe a modification of the infinite time-evolving bond decimation algorithm with improved numerical stability, and we describe how to incorporate symmetry into this algorithm. While statistical sampling error means that we are not yet able to make a definite statement, the behavior of the simulation at long times indicates the appearance of either 'revivals' in the order parameter as predicted by Hastings and Levitov (e-print arXiv:0806.4283) or of a distinct shoulder in the decay of the order parameter.

  1. Hybrid carbon/glass fiber composites: Micromechanical analysis of structure–damage resistance relationships

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Dai, Gaoming


    of fiber damages is analyzed in numerical experiments. The effects of fiber clustering, matrix properties, nanoreinforcement, load sharing rules on the strength and damage resistance of composites are studied. It was observed that hybrid composites under uniform displacement loading might have lower...

  2. Assessing Tropical Cyclone Damage (United States)

    Done, J.; Czajkowski, J.


    Landfalling tropical cyclones impact large coastal and inland areas causing direct damage due to winds, storm-surge flooding, tornadoes, and precipitation; as well as causing substantial indirect damage such as electrical outages and business interruption. The likely climate change impact of increased tropical cyclone intensity, combined with increases in exposure, bring the possibility of increased damage in the future. A considerable amount of research has focused on modeling economic damage due to tropical cyclones, and a series of indices have been developed to assess damages under climate change. We highlight a number of ways this research can be improved through a series of case study analyses. First, historical loss estimates are revisited to properly account for; time, impacted regions, the source of damage by type, and whether the damage was direct/indirect and insured/uninsured. Second, the drivers of loss from both the socio-economic and physical side are examined. A case is made to move beyond the use of maximum wind speed to more stable metrics and the use of other characteristics of the wind field such as direction, degree of gustiness, and duration is explored. A novel approach presented here is the potential to model losses directly as a function of climate variables such as sea surface temperature, greenhouse gases, and aerosols. This work is the first stage in the development of a tropical cyclone loss model to enable projections of losses under scenarios of both socio-economic change (such as population migration or altered policy) and physical change (such as shifts in tropical cyclone activity one from basin to another or within the same basin).

  3. Simulating Replica Exchange: Markov State Models, Proposal Schemes, and the Infinite Swapping Limit. (United States)

    Zhang, Bin W; Dai, Wei; Gallicchio, Emilio; He, Peng; Xia, Junchao; Tan, Zhiqiang; Levy, Ronald M


    Replica exchange molecular dynamics is a multicanonical simulation technique commonly used to enhance the sampling of solvated biomolecules on rugged free energy landscapes. While replica exchange is relatively easy to implement, there are many unanswered questions about how to use this technique most efficiently, especially because it is frequently the case in practice that replica exchange simulations are not fully converged. A replica exchange cycle consists of a series of molecular dynamics steps of a set of replicas moving under different Hamiltonians or at different thermodynamic states followed by one or more replica exchange attempts to swap replicas among the different states. How the replica exchange cycle is constructed affects how rapidly the system equilibrates. We have constructed a Markov state model of replica exchange (MSMRE) using long molecular dynamics simulations of a host-guest binding system as an example, in order to study how different implementations of the replica exchange cycle can affect the sampling efficiency. We analyze how the number of replica exchange attempts per cycle, the number of MD steps per cycle, and the interaction between the two parameters affects the largest implied time scale of the MSMRE simulation. The infinite swapping limit is an important concept in replica exchange. We show how to estimate the infinite swapping limit from the diagonal elements of the exchange transition matrix constructed from MSMRE "simulations of simulations" as well as from relatively short runs of the actual replica exchange simulations.

  4. Counterflow Regolith Heat Exchanger (United States)

    Zubrin, Robert; Jonscher, Peter


    A problem exists in reducing the total heating power required to extract oxygen from lunar regolith. All such processes require heating a great deal of soil, and the heat energy is wasted if it cannot be recycled from processed material back into new material. The counterflow regolith heat exchanger (CoRHE) is a device that transfers heat from hot regolith to cold regolith. The CoRHE is essentially a tube-in-tube heat exchanger with internal and external augers attached to the inner rotating tube to move the regolith. Hot regolith in the outer tube is moved in one direction by a right-hand - ed auger, and the cool regolith in the inner tube is moved in the opposite direction by a left-handed auger attached to the inside of the rotating tube. In this counterflow arrangement, a large fraction of the heat from the expended regolith is transferred to the new regolith. The spent regolith leaves the heat exchanger close to the temperature of the cold new regolith, and the new regolith is pre-heated close to the initial temperature of the spent regolith. Using the CoRHE can reduce the heating requirement of a lunar ISRU system by 80%, reducing the total power consumption by a factor of two. The unique feature of this system is that it allows for counterflow heat exchange to occur between solids, instead of liquids or gases, as is commonly done. In addition, in variants of this concept, the hydrogen reduction can be made to occur within the counterflow heat exchanger itself, enabling a simplified lunar ISRU (in situ resource utilization) system with excellent energy economy and continuous nonbatch mode operation.

  5. Sorption and binary exchange of nitrate, sulfate, and uranium on an anion-exchange resin. (United States)

    Gu, Baohua; Ku, Yee-Kyoung; Jardine, Philip M


    Competitive ion-exchange reactions were studied on a strong-base anion-exchange resin to remove NO3- and uranium from a contaminated groundwater containing high levels of NO3- (approximately 140 mM), SO4(2-) (approximately 10 mM), and U(VI) (approximately 0.2 mM). Results indicate that although SO4(2-) carries divalent negative charges, it showed the least selectivity for sorption by the Purolite A-520E resin, which is functionalized with triethylamine exchange sites. Nitrate was the most strongly sorbed. Sorption selectivity followed the order of NO3- > Cl- > SO4(2-) under the experimental conditions. Nitrate competitively sorbed and displaced previously sorbed SO4(2-) in a column flow-through experiment and resulted in a high elution front of SO4(2-) in the effluent. Although the concentration of uranium in groundwater is orders of magnitude lower than that of NO3- or SO4(2-), it was found to be strongly sorbed by the anion-exchange resin. Because the most stable uranium species in oxic and suboxic environments is the UO2(2+) cation, its strong sorption by anion-exchange resins is hypothesized to be the result of the co-ion effect of NO3- by forming anionic UO2(NO3)3- complexes in the resin matrix. These observations point out a potential alternative remediation strategy that uses strong-base anion-exchange resins to remove uranium from this site-specific groundwater, which has a low pH and a relatively high NO3- concentration.

  6. Analytical applications of ion exchangers

    CERN Document Server

    Inczédy, J


    Analytical Applications of Ion Exchangers presents the laboratory use of ion-exchange resins. This book discusses the development in the analytical application of ion exchangers. Organized into 10 chapters, this book begins with an overview of the history and significance of ion exchangers for technical purposes. This text then describes the properties of ion exchangers, which are large molecular water-insoluble polyelectrolytes having a cross-linked structure that contains ionic groups. Other chapters consider the theories concerning the operation of ion-exchange resins and investigate th

  7. Homolumo Gap and Matrix Model

    CERN Document Server

    Andric, I; Jurman, D; Nielsen, H B


    We discuss a dynamical matrix model by which probability distribution is associated with Gaussian ensembles from random matrix theory. We interpret the matrix M as a Hamiltonian representing interaction of a bosonic system with a single fermion. We show that a system of second-quantized fermions influences the ground state of the whole system by producing a gap between the highest occupied eigenvalue and the lowest unoccupied eigenvalue.

  8. Reactive solute transport in an asymmetrical fracture-rock matrix system (United States)

    Zhou, Renjie; Zhan, Hongbin


    The understanding of reactive solute transport in a single fracture-rock matrix system is the foundation of studying transport behavior in the complex fractured porous media. When transport properties are asymmetrically distributed in the adjacent rock matrixes, reactive solute transport has to be considered as a coupled three-domain problem, which is more complex than the symmetric case with identical transport properties in the adjacent rock matrixes. This study deals with the transport problem in a single fracture-rock matrix system with asymmetrical distribution of transport properties in the rock matrixes. Mathematical models are developed for such a problem under the first-type and the third-type boundary conditions to analyze the spatio-temporal concentration and mass distribution in the fracture and rock matrix with the help of Laplace transform technique and de Hoog numerical inverse Laplace algorithm. The newly acquired solutions are then tested extensively against previous analytical and numerical solutions and are proven to be robust and accurate. Furthermore, a water flushing phase is imposed on the left boundary of system after a certain time. The diffusive mass exchange along the fracture/rock matrixes interfaces and the relative masses stored in each of three domains (fracture, upper rock matrix, and lower rock matrix) after the water flushing provide great insights of transport with asymmetric distribution of transport properties. This study has the following findings: 1) Asymmetric distribution of transport properties imposes greater controls on solute transport in the rock matrixes. However, transport in the fracture is mildly influenced. 2) The mass stored in the fracture responses quickly to water flushing, while the mass stored in the rock matrix is much less sensitive to the water flushing. 3) The diffusive mass exchange during the water flushing phase has similar patterns under symmetric and asymmetric cases. 4) The characteristic distance

  9. Continuum theory of fibrous tissue damage mechanics using bond kinetics: application to cartilage tissue engineering. (United States)

    Nims, Robert J; Durney, Krista M; Cigan, Alexander D; Dusséaux, Antoine; Hung, Clark T; Ateshian, Gerard A


    This study presents a damage mechanics framework that employs observable state variables to describe damage in isotropic or anisotropic fibrous tissues. In this mixture theory framework, damage is tracked by the mass fraction of bonds that have broken. Anisotropic damage is subsumed in the assumption that multiple bond species may coexist in a material, each having its own damage behaviour. This approach recovers the classical damage mechanics formulation for isotropic materials, but does not appeal to a tensorial damage measure for anisotropic materials. In contrast with the classical approach, the use of observable state variables for damage allows direct comparison of model predictions to experimental damage measures, such as biochemical assays or Raman spectroscopy. Investigations of damage in discrete fibre distributions demonstrate that the resilience to damage increases with the number of fibre bundles; idealizing fibrous tissues using continuous fibre distribution models precludes the modelling of damage. This damage framework was used to test and validate the hypothesis that growth of cartilage constructs can lead to damage of the synthesized collagen matrix due to excessive swelling caused by synthesized glycosaminoglycans. Therefore, alternative strategies must be implemented in tissue engineering studies to prevent collagen damage during the growth process.

  10. Senescent intervertebral disc cells exhibit perturbed matrix homeostasis phenotype. (United States)

    Ngo, Kevin; Patil, Prashanti; McGowan, Sara J; Niedernhofer, Laura J; Robbins, Paul D; Kang, James; Sowa, Gwendolyn; Vo, Nam


    Aging greatly increases the risk for intervertebral disc degeneration (IDD) as a result of proteoglycan loss due to reduced synthesis and enhanced degradation of the disc matrix proteoglycan (PG). How disc matrix PG homeostasis becomes perturbed with age is not known. The goal of this study is to determine whether cellular senescence is a source of this perturbation. We demonstrated that disc cellular senescence is dramatically increased in the DNA repair-deficient Ercc1(-/Δ) mouse model of human progeria. In these accelerated aging mice, increased disc cellular senescence is closely associated with the rapid loss of disc PG. We also directly examine PG homeostasis in oxidative damage-induced senescent human cells using an in vitro cell culture model system. Senescence of human disc cells treated with hydrogen peroxide was confirmed by growth arrest, senescence-associated β-galactosidase activity, γH2AX foci, and acquisition of senescence-associated secretory phenotype. Senescent human disc cells also exhibited perturbed matrix PG homeostasis as evidenced by their decreased capacity to synthesize new matrix PG and enhanced degradation of aggrecan, a major matrix PG. of the disc. Our in vivo and in vitro findings altogether suggest that disc cellular senescence is an important driver of PG matrix homeostatic perturbation and PG loss. Published by Elsevier B.V.

  11. Indirect identification of damage functions from damage records

    CERN Document Server

    Steinhäuser, J Micha; Kropp, Jürgen P


    In order to assess future damage caused by natural disasters, it is desirable to estimate the damage caused by single events. So called damage functions provide -- for a natural disaster of certain magnitude -- a specific damage value. However, in general, the functional form of such damage functions is unknown. We study the distributions of recorded flood damages on extended scales and deduce which damage functions lead to such distributions when the floods obey Generalized Extreme Value statistics and follow Generalized Pareto distributions. Based on the finding of broad damage distributions we investigate two possible functional forms to characterize the data. In the case of Gumbel distributed extreme events, (i) a power-law distribution density with an exponent close to 2 (Zipf's law) implies an exponential damage function; (ii) stretched exponential distribution densities imply power-law damage functions. In the case of Weibull (Frechet) distributed extreme events we find correspondingly steeper (less st...

  12. A Progressive Damage Model for Predicting Permanent Indentation and Impact Damage in Composite Laminates (United States)

    Ji, Zhaojie; Guan, Zhidong; Li, Zengshan


    In this paper, a progressive damage model was established on the basis of ABAQUS software for predicting permanent indentation and impact damage in composite laminates. Intralaminar and interlaminar damage was modelled based on the continuum damage mechanics (CDM) in the finite element model. For the verification of the model, low-velocity impact tests of quasi-isotropic laminates with material system of T300/5228A were conducted. Permanent indentation and impact damage of the laminates were simulated and the numerical results agree well with the experiments. It can be concluded that an obvious knee point can be identified on the curve of the indentation depth versus impact energy. Matrix cracking and delamination develops rapidly with the increasing impact energy, while considerable amount of fiber breakage only occurs when the impact energy exceeds the energy corresponding to the knee point. Predicted indentation depth after the knee point is very sensitive to the parameter μ which is proposed in this paper, and the acceptable value of this parameter is in range from 0.9 to 1.0.

  13. Data Exchange Inventory (DEXI) System (United States)

    Social Security Administration — DEXI is an intranet application used by SSA users to track all incoming and outgoing data exchanges between SSA and our data exchange partners. Information such as...

  14. Matrix Depot: an extensible test matrix collection for Julia

    Directory of Open Access Journals (Sweden)

    Weijian Zhang


    Full Text Available Matrix Depot is a Julia software package that provides easy access to a large and diverse collection of test matrices. Its novelty is threefold. First, it is extensible by the user, and so can be adapted to include the user’s own test problems. In doing so, it facilitates experimentation and makes it easier to carry out reproducible research. Second, it amalgamates in a single framework two different types of existing matrix collections, comprising parametrized test matrices (including Hansen’s set of regularization test problems and Higham’s Test Matrix Toolbox and real-life sparse matrix data (giving access to the University of Florida sparse matrix collection. Third, it fully exploits the Julia language. It uses multiple dispatch to help provide a simple interface and, in particular, to allow matrices to be generated in any of the numeric data types supported by the language.

  15. mapDamage

    DEFF Research Database (Denmark)

    Ginolhac, Aurélien; Rasmussen, Morten; Gilbert, Tom


    Ancient DNA extracts consist of a mixture of contaminant DNA molecules, most often originating from environmental microbes, and endogenous fragments exhibiting substantial levels of DNA damage. The latter introduce specific nucleotide misincorporations and DNA fragmentation signatures in sequencing...... in embedded R script in order to detect typical patterns of genuine ancient DNA sequences. Availability and implementation: The Perl script mapDamage is freely available with documentation and example files at The script requires prior installation...

  16. 3D Progressive Damage Modeling for Laminated Composite Based on Crack Band Theory and Continuum Damage Mechanics (United States)

    Wang, John T.; Pineda, Evan J.; Ranatunga, Vipul; Smeltzer, Stanley S.


    A simple continuum damage mechanics (CDM) based 3D progressive damage analysis (PDA) tool for laminated composites was developed and implemented as a user defined material subroutine to link with a commercially available explicit finite element code. This PDA tool uses linear lamina properties from standard tests, predicts damage initiation with an easy-to-implement Hashin-Rotem failure criteria, and in the damage evolution phase, evaluates the degradation of material properties based on the crack band theory and traction-separation cohesive laws. It follows Matzenmiller et al.'s formulation to incorporate the degrading material properties into the damaged stiffness matrix. Since nonlinear shear and matrix stress-strain relations are not implemented, correction factors are used for slowing the reduction of the damaged shear stiffness terms to reflect the effect of these nonlinearities on the laminate strength predictions. This CDM based PDA tool is implemented as a user defined material (VUMAT) to link with the Abaqus/Explicit code. Strength predictions obtained, using this VUMAT, are correlated with test data for a set of notched specimens under tension and compression loads.

  17. Ceramic matrix composite article and process of fabricating a ceramic matrix composite article (United States)

    Cairo, Ronald Robert; DiMascio, Paul Stephen; Parolini, Jason Robert


    A ceramic matrix composite article and a process of fabricating a ceramic matrix composite are disclosed. The ceramic matrix composite article includes a matrix distribution pattern formed by a manifold and ceramic matrix composite plies laid up on the matrix distribution pattern, includes the manifold, or a combination thereof. The manifold includes one or more matrix distribution channels operably connected to a delivery interface, the delivery interface configured for providing matrix material to one or more of the ceramic matrix composite plies. The process includes providing the manifold, forming the matrix distribution pattern by transporting the matrix material through the manifold, and contacting the ceramic matrix composite plies with the matrix material.

  18. Dynamical Clustering of Exchange Rates


    Fenn, Daniel J.; Porter, Mason A.; Mucha, Peter J; Mark McDonald; Stacy Williams; Johnson, Neil F.; Jones, Nick S


    We use techniques from network science to study correlations in the foreign exchange (FX) market over the period 1991--2008. We consider an FX market network in which each node represents an exchange rate and each weighted edge represents a time-dependent correlation between the rates. To provide insights into the clustering of the exchange rate time series, we investigate dynamic communities in the network. We show that there is a relationship between an exchange rate's functional role withi...

  19. Serial tempering without exchange. (United States)

    Nymeyer, Hugh


    Serial tempering is a computational method that turns the temperature T (or more generally any independent λ parameter) into a dynamical variable. It is shown that, under conditions for which this variable is fast, serial tempering is equivalent to the umbrella sampling method with a single effective potential. This equivalence is demonstrated using both a small one-dimensional system and a small solvated peptide. The suggestion is then made to replace the serial tempering protocol with the equivalent umbrella sampling calculation. This approach, serial tempering without exchange (STeWiE), has the same performance as serial tempering in the limit that exchanges are frequent, is simpler to implement, and has fewer adjustable parameters than conventional serial tempering. The equivalence of serial tempering and STeWiE also provides a convenient route for estimating and optimizing the performance of serial tempering simulations and other generalized-ensemble methods.

  20. Lipid exchange by ultracentrifugation

    DEFF Research Database (Denmark)

    Drachmann, Nikolaj Düring; Olesen, Claus


    Lipids play an important role in maintaining P-type ATPase structure and function, and often they are crucial for ATPase activity. When the P-type ATPases are in the membrane, they are surrounded by a mix of different lipids species with varying aliphatic chain lengths and saturation......, and the complex interplay between the lipids and the P-type ATPases are still not well understood. We here describe a robust method to exchange the majority of the lipids surrounding the ATPase after solubilisation and/or purification with a target lipid of interest. The method is based on an ultracentrifugation...... step, where the protein sample is spun through a dense buffer containing large excess of the target lipid, which results in an approximately 80-85 % lipid exchange. The method is a very gently technique that maintains protein folding during the process, hence allowing further characterization...

  1. Exchange rate rebounds after foreign exchange market interventions (United States)

    Hoshikawa, Takeshi


    This study examined the rebounds in the exchange rate after foreign exchange intervention. When intervention is strongly effective, the exchange rate rebounds at next day. The effect of intervention is reduced slightly by the rebound after the intervention. The exchange rate might have been 67.12-77.47 yen to a US dollar without yen-selling/dollar-purchasing intervention of 74,691,100 million yen implemented by the Japanese government since 1991, in comparison to the actual exchange rate was 103.19 yen to the US dollar at the end of March 2014.

  2. Charge exchange reactions as tests for structures of exotic nuclei

    CERN Document Server

    Karataglidis, S


    Charge exchange reactions serve as alternative tests of the structures of exotic nuclei. Of particular relevance is the (p, n) reaction, which is related to the Gamow-Teller matrix element. The (p, n) reaction is also related to (p, p′) in the case of transitions to the isobaric analogue state (IAS). There are few measurements of (p, n) reactions using exotic beams. We revisit the case of 6He(p, n)6Li and discuss apparent discrepancies with other available data.

  3. O3 and NOx Exchange

    NARCIS (Netherlands)

    Loubet, B.; Castell, J.F.; Laville, P.; Personne, E.; Tuzet, A.; Ammann, C.; Emberson, L.; Ganzeveld, L.; Kowalski, A.S.; Merbold, L.; Stella, P.; Tuovinen, J.P.


    This discussion was based on the background document “Review on modelling atmosphere-biosphere exchange of Ozone and Nitrogen oxides”, which reviews the processes contributing to biosphere-atmosphere exchange of O3 and NOx, including stomatal and non-stomatal exchange of O3 and NO, NO2.

  4. The stability of exchange networks

    NARCIS (Netherlands)

    Doğan, G.; Assen, M. van; Rijt, A. van de; Buskens, V.W.


    Economic and sociological exchange theories predict divisions of exchange benefits given an assumed fixed network of exchange relations. Since network structure has been found to have a large impact on actors’ payoffs, actors have strong incentives for network change.Weanswer the question what

  5. Integrated foreign exchange risk management

    DEFF Research Database (Denmark)

    Aabo, Tom; Høg, Esben; Kuhn, Jochen


    Empirical research has focused on export as a proxy for exchange rate exposure and the use of foreign exchange derivatives as an instrument to deal with this exposure. This empirical study applies an integrated foreign exchange risk management approach with a particular focus on the role of impor...

  6. Integrated Foreign Exchange Risk Management

    DEFF Research Database (Denmark)

    Aabo, Tom; Høg, Esben; Kuhn, Jochen

    Empirical research has focused on export as a proxy for the exchange rate exposure and the use of foreign exchange derivatives as the instrument to deal with this exposure. This empirical study applies an integrated foreign exchange risk management approach with a particular focus on the role...

  7. Scraped surface heat exchangers. (United States)

    Rao, Chetan S; Hartel, Richard W


    Scraped surface heat exchangers (SSHEs) are commonly used in the food, chemical, and pharmaceutical industries for heat transfer, crystallization, and other continuous processes. They are ideally suited for products that are viscous, sticky, that contain particulate matter, or that need some degree of crystallization. Since these characteristics describe a vast majority of processed foods, SSHEs are especially suited for pumpable food products. During operation, the product is brought in contact with a heat transfer surface that is rapidly and continuously scraped, thereby exposing the surface to the passage of untreated product. In addition to maintaining high and uniform heat exchange, the scraper blades also provide simultaneous mixing and agitation. Heat exchange for sticky and viscous foods such as heavy salad dressings, margarine, chocolate, peanut butter, fondant, ice cream, and shortenings is possible only by using SSHEs. High heat transfer coefficients are achieved because the boundary layer is continuously replaced by fresh material. Moreover, the product is in contact with the heating surface for only a few seconds and high temperature gradients can be used without the danger of causing undesirable reactions. SSHEs are versatile in the use of heat transfer medium and the various unit operations that can be carried out simultaneously. This article critically reviews the current understanding of the operations and applications of SSHEs.

  8. Timing Foreign Exchange Markets

    Directory of Open Access Journals (Sweden)

    Samuel W. Malone


    Full Text Available To improve short-horizon exchange rate forecasts, we employ foreign exchange market risk factors as fundamentals, and Bayesian treed Gaussian process (BTGP models to handle non-linear, time-varying relationships between these fundamentals and exchange rates. Forecasts from the BTGP model conditional on the carry and dollar factors dominate random walk forecasts on accuracy and economic criteria in the Meese-Rogoff setting. Superior market timing ability for large moves, more than directional accuracy, drives the BTGP’s success. We explain how, through a model averaging Monte Carlo scheme, the BTGP is able to simultaneously exploit smoothness and rough breaks in between-variable dynamics. Either feature in isolation is unable to consistently outperform benchmarks throughout the full span of time in our forecasting exercises. Trading strategies based on ex ante BTGP forecasts deliver the highest out-of-sample risk-adjusted returns for the median currency, as well as for both predictable, traded risk factors.

  9. Paste heat exchange

    Energy Technology Data Exchange (ETDEWEB)


    The subject of coal paste heat exchangers is discussed in this letter report from Gelsenberg A.G. to I.G. Farbenindustrie A.G. Gelsenberg had given little consideration to the heating of coal paste by means of regeneration (heat exchange) because of the lack of experience in paste regeneration with bituminous coal, especially at 700 atmospheres. At the I.G. Farben plant at Poelitz, paste regeneration was carried out so that low concentration coal paste was heated in the regenerator together with the process gas, and the remaining coal was fed into the cold pass of the preheater in a thicker paste. Later tests proved this process viable. Gelsenberg heated normal coal paste and the gas in heat exchangers with the goal of relieving the preheater. Good results were achieved without change in design. The coal paste was heated with process gas in the regenerator at up to 315 degrees with constant pressure difference, so that after three months no decrease in K-values and no deposition or thickening was observed. Through the omission of paste gas, the pressure difference of the system became more constant and did not rise above the former level. The temperature also was more controllable, the chamber smoother running. Principal thermal data are given in a table. 1 table, 1 graph.

  10. The exchangeability of shape

    Directory of Open Access Journals (Sweden)

    Kaba Dramane


    Full Text Available Abstract Background Landmark based geometric morphometrics (GM allows the quantitative comparison of organismal shapes. When applied to systematics, it is able to score shape changes which often are undetectable by traditional morphological studies and even by classical morphometric approaches. It has thus become a fast and low cost candidate to identify cryptic species. Due to inherent mathematical properties, shape variables derived from one set of coordinates cannot be compared with shape variables derived from another set. Raw coordinates which produce these shape variables could be used for data exchange, however they contain measurement error. The latter may represent a significant obstacle when the objective is to distinguish very similar species. Results We show here that a single user derived dataset produces much less classification error than a multiple one. The question then becomes how to circumvent the lack of exchangeability of shape variables while preserving a single user dataset. A solution to this question could lead to the creation of a relatively fast and inexpensive systematic tool adapted for the recognition of cryptic species. Conclusions To preserve both exchangeability of shape and a single user derived dataset, our suggestion is to create a free access bank of reference images from which one can produce raw coordinates and use them for comparison with external specimens. Thus, we propose an alternative geometric descriptive system that separates 2-D data gathering and analyzes.

  11. Stress Corrosion Cracking in Polymer Matrix Glass Fiber Composites (United States)

    Kosak, Jonathan

    With the use of Polymer Matrix Glass Fiber Composites ever expanding, understanding conditions that lead to failure before expected service life is of increasing importance. Stress Corrosion Cracking (SCC) has proven to be one such example of conditions found in use in high voltage transmission line applications that leads to brittle fracture of polymer matrix composites. SCC has been proven to be the result of acid buildup on the lines due to corona discharges and water buildup. This acid leaches minerals from the fibers, leading to fracture at low loads and service life. In order to combat this problem, efforts are being made to determine which composites have greater resistance to SCC. This study was used to create a methodology to monitor for damage during SCC and classify damage by mechanism type (matrix cracking and fiber breaking) by using 4-point SCC bend testing, 3-point bend testing, a forward predictive model, unique post processing techniques, and microscopy. This would allow a classification in composite resistance to SCC as well as create a methodology for future research in this field. Concluding this study, only matrix cracking was able to be fully classified, however, a methodology was developed for future experimentation.

  12. An Application of Matrix Multiplication

    Indian Academy of Sciences (India)

    IAS Admin

    linguistics, graph theory applications to biological networks, social networks, electrical engineering. We are well aware of the ever increasing impor- tance of graphical and matrix representations in applications to several day-to-day real life prob- lems. The interconnectedness of the notion of graph, matrix, probability, limits, ...

  13. Matrix Methods to Analytic Geometry. (United States)

    Bandy, C.


    The use of basis matrix methods to rotate axes is detailed. It is felt that persons who have need to rotate axes often will find that the matrix method saves considerable work. One drawback is that most students first learning to rotate axes will not yet have studied linear algebra. (MP)

  14. How to Study a Matrix (United States)

    Jairam, Dharmananda; Kiewra, Kenneth A.; Kauffman, Douglas F.; Zhao, Ruomeng


    This study investigated how best to study a matrix. Fifty-three participants studied a matrix topically (1 column at a time), categorically (1 row at a time), or in a unified way (all at once). Results revealed that categorical and unified study produced higher: (a) performance on relationship and fact tests, (b) study material satisfaction, and…

  15. Developments in Random Matrix Theory


    Snaith, N. C.; Forrester, P. J.; Verbaarschot, J. J. M.


    In this preface to the Journal of Physics A, Special Edition on Random Matrix Theory, we give a review of the main historical developments of random matrix theory. A short summary of the papers that appear in this special edition is also given.

  16. QCD and random matrix theory

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, A.D. [Niels Bohr Inst., Copenhagen (Denmark)


    Chiral random matrix theory has recently been shown to provide a tool useful for both modeling chiral symmetry restoration in QCD and for providing analytic descriptions of the microscopic spectral content of lattice gauge simulations. The basic ideas of chiral random matrix theory and some recent results are discussed. (orig.) 24 refs.

  17. Extensions to the Dynamic Aerospace Vehicle Exchange Markup Language (United States)

    Brian, Geoffrey J.; Jackson, E. Bruce


    The Dynamic Aerospace Vehicle Exchange Markup Language (DAVE-ML) is a syntactical language for exchanging flight vehicle dynamic model data. It provides a framework for encoding entire flight vehicle dynamic model data packages for exchange and/or long-term archiving. Version 2.0.1 of DAVE-ML provides much of the functionality envisioned for exchanging aerospace vehicle data; however, it is limited in only supporting scalar time-independent data. Additional functionality is required to support vector and matrix data, abstracting sub-system models, detailing dynamics system models (both discrete and continuous), and defining a dynamic data format (such as time sequenced data) for validation of dynamics system models and vehicle simulation packages. Extensions to DAVE-ML have been proposed to manage data as vectors and n-dimensional matrices, and record dynamic data in a compatible form. These capabilities will improve the clarity of data being exchanged, simplify the naming of parameters, and permit static and dynamic data to be stored using a common syntax within a single file; thereby enhancing the framework provided by DAVE-ML for exchanging entire flight vehicle dynamic simulation models.

  18. Quantum mechanics in matrix form

    CERN Document Server

    Ludyk, Günter


    This book gives an introduction to quantum mechanics with the matrix method. Heisenberg's matrix mechanics is described in detail. The fundamental equations are derived by algebraic methods using matrix calculus. Only a brief description of Schrödinger's wave mechanics is given (in most books exclusively treated), to show their equivalence to Heisenberg's matrix  method. In the first part the historical development of Quantum theory by Planck, Bohr and Sommerfeld is sketched, followed by the ideas and methods of Heisenberg, Born and Jordan. Then Pauli's spin and exclusion principles are treated. Pauli's exclusion principle leads to the structure of atoms. Finally, Dirac´s relativistic quantum mechanics is shortly presented. Matrices and matrix equations are today easy to handle when implementing numerical algorithms using standard software as MAPLE and Mathematica.

  19. Machining of Metal Matrix Composites

    CERN Document Server


    Machining of Metal Matrix Composites provides the fundamentals and recent advances in the study of machining of metal matrix composites (MMCs). Each chapter is written by an international expert in this important field of research. Machining of Metal Matrix Composites gives the reader information on machining of MMCs with a special emphasis on aluminium matrix composites. Chapter 1 provides the mechanics and modelling of chip formation for traditional machining processes. Chapter 2 is dedicated to surface integrity when machining MMCs. Chapter 3 describes the machinability aspects of MMCs. Chapter 4 contains information on traditional machining processes and Chapter 5 is dedicated to the grinding of MMCs. Chapter 6 describes the dry cutting of MMCs with SiC particulate reinforcement. Finally, Chapter 7 is dedicated to computational methods and optimization in the machining of MMCs. Machining of Metal Matrix Composites can serve as a useful reference for academics, manufacturing and materials researchers, manu...

  20. Assembly of Fibronectin Extracellular Matrix (United States)

    Singh, Purva; Carraher, Cara; Schwarzbauer, Jean E.


    In the process of matrix assembly, multivalent extracellular matrix (ECM) proteins are induced to self-associate and to interact with other ECM proteins to form fibrillar networks. Matrix assembly is usually initiated by ECM glycoproteins binding to cell surface receptors, such as fibronectin (FN) dimers binding to α5β1 integrin. Receptor binding stimulates FN self-association mediated by the N-terminal assembly domain and organizes the actin cytoskeleton to promote cell contractility. FN conformational changes expose additional binding sites that participate in fibril formation and in conversion of fibrils into a stabilized, insoluble form. Once assembled, the FN matrix impacts tissue organization by contributing to the assembly of other ECM proteins. Here, we describe the major steps, molecular interactions, and cellular mechanisms involved in assembling FN dimers into fibrillar matrix while highlighting important issues and major questions that require further investigation. PMID:20690820

  1. Inspeção termográfica de danos por impacto em laminados de matriz polimérica reforçados por fibras de carbono Thermographic inspection of impact damage in carbon fiber-reinforcing polymer matrix laminates

    Directory of Open Access Journals (Sweden)

    José R. Tarpani


    Full Text Available Laminados compósitos com matrizes poliméricas, respectivamente termorrígida e termoplástica, fortalecidas com fibras contínuas de carbono foram submetidos a impacto único transversal com diferentes níveis de energia. Os danos impingidos aos materiais estruturais foram avaliados por termografia ativa infravermelha na modalidade transmissão. Em geral, os termogramas do laminado termoplástico apresentaram indicações mais claras e bem definidas dos danos causados por impacto, se comparados aos do compósito termorrígido. O aquecimento convectivo das amostras por fluxo controlado de ar quente se mostrou mais eficaz que o realizado por irradiação, empregando-se lâmpada de filamento. Observou-se também que tempos mais longos de aquecimento favoreceram a visualização dos danos. O posicionamento da face impactada do espécime, relativamente à câmera infravermelha e à fonte de calor, não afetou a qualidade dos termogramas no caso do laminado termorrígido, enquanto que influenciou significativamente os termogramas do compósito termoplástico. Os resultados permitiram concluir que a termografia infravermelha é um método de ensaio não-destrutivo simples, robusto e confiável para a detecção de danos por impacto tão leve quanto 5 J em laminados compósitos poliméricos reforçados com fibras de carbono.Continuous carbon fiber reinforced thermoset and thermoplastic composite laminates were exposed to single transversal impact with different energy levels. The damages impinged to the structural materials were evaluated by active infrared thermography in the transmission mode. In general, the thermoplastic laminate thermograms showed clearer damage indications than those from the thermosetting composite. The convective heating of the samples by controlled hot air flow was more efficient than via irradiation using a filament lamp. It was also observed that longer heating times improved the damage visualization. The positioning of the

  2. A new method to assess damage to RCMRFs from period elongation and Park-Ang damage index using IDA (United States)

    Aghagholizadeh, Mehrdad; Massumi, Ali


    Despite a significant progress in loading and design codes of seismic resistant structures and technology improvements in building structures, the field of civil engineering is still facing critical challenges. An example of those challenges is the assessment of the state of damage that has been imposed to a structure after earthquakes of different intensities. To determine the operability of a structure and its resistance to probable future earthquakes, quick assessment of damages and determining the operability of a structure after an earthquake are crucial. Present methods to calculate damage to structures are time consuming and do not accurately provide the rate of damage. Damage estimation is important task in the fields of structural health monitoring and decision-making. This study examines the relationship between period elongation and the Park-Ang damage index. A dynamic non-linear analysis is employed with IDARC program to calculate the amount of damage and period of the current state. This new method is shown to be a quick and accurate technique for damage assessment. It is easy to calculate the period of an existing structure and changes in the period which reflects changes in the stiffness matrix.

  3. Thermal Decomposition of Radiation-Damaged Polystyrene

    Energy Technology Data Exchange (ETDEWEB)

    J Abrefah GS Klinger


    The radiation-damaged polystyrene material (''polycube'') used in this study was synthesized by mixing a high-density polystyrene (''Dylene Fines No. 100'') with plutonium and uranium oxides. The polycubes were used on the Hanford Site in the 1960s for criticality studies to determine the hydrogen-to-fissile atom ratios for neutron moderation during processing of spent nuclear fuel. Upon completion of the studies, two methods were developed to reclaim the transuranic (TRU) oxides from the polymer matrix: (1) burning the polycubes in air at 873 K; and (2) heating the polycubes in the absence of oxygen and scrubbing the released monomer and other volatile organics using carbon tetrachloride. Neither of these methods was satisfactory in separating the TRU oxides from the polystyrene. Consequently, the remaining polycubes were sent to the Hanford Plutonium Finishing Plant (PFP) for storage. Over time, the high dose of alpha and gamma radiation has resulted in a polystyrene matrix that is highly cross-linked and hydrogen deficient and a stabilization process is being developed in support of Defense Nuclear Facility Safety Board Recommendation 94-1. Baseline processes involve thermal treatment to pyrolyze the polycubes in a furnace to decompose the polystyrene and separate out the TRU oxides. Thermal decomposition products from this degraded polystyrene matrix were characterized by Pacific Northwest National Laboratory to provide information for determining the environmental impact of the process and for optimizing the process parameters. A gas chromatography/mass spectrometry (GC/MS) system coupled to a horizontal tube furnace was used for the characterization studies. The decomposition studies were performed both in air and helium atmospheres at 773 K, the planned processing temperature. The volatile and semi-volatile organic products identified for the radiation-damaged polystyrene were different from those observed for virgin

  4. Micromechanics of diffusion-induced damage evolution in reinforced polymers

    DEFF Research Database (Denmark)

    Abhilash, A.S.; Joshi, Shailendra P.; Mukherjee, Abhijit


    In this work we numerically investigate the nucleation and evolution of micromechanical damage in reinforced glassy polymers under transient hygro-mechanical loading. In particular, we demonstrate the role that fiber distribution plays in the evolution of overall damage due to fiber......–matrix interfacial debonding under moisture ingress. The heterogeneity of fiber distribution (clustering) is characterized by the coefficient of variation Cv of the center-to-center distances between interacting fibers, determined by identifying a cut-off radius around a typical fiber. The initial moisture diffusion...... to aggravated damage. The strong dependence of the moisture-induced damage evolution on the fiber arrangement suggests that one should not resort to using simplistic unit cell models that assume regular fiber arrangements in such cases....

  5. Magnetic Field Triggered Multicycle Damage Sensing and Self Healing. (United States)

    Ahmed, Anansa S; Ramanujan, R V


    Multifunctional materials inspired by biological structures have attracted great interest, e.g. for wearable/ flexible "skin" and smart coatings. A current challenge in this area is to develop an artificial material which mimics biological skin by simultaneously displaying color change on damage as well as self healing of the damaged region. Here we report, for the first time, the development of a damage sensing and self healing magnet-polymer composite (Magpol), which actively responds to an external magnetic field. We incorporated reversible sensing using mechanochromic molecules in a shape memory thermoplastic matrix. Exposure to an alternating magnetic field (AMF) triggers shape recovery and facilitates damage repair. Magpol exhibited a linear strain response upto 150% strain and complete recovery after healing. We have demonstrated the use of this concept in a reusable biomedical device i.e., coated guidewires. Our findings offer a new synergistic method to bestow multifunctionality for applications ranging from medical device coatings to adaptive wing structures.

  6. Mentalizing ability in patients with prefrontal cortex damage. (United States)

    Yeh, Zai-Ting; Lo, Chiao-Yu; Tsai, Ming-Dar; Tsai, Ming-Cheng


    Mentalizing ability is the issue in the social cognition of patients with brain injury that has received the most attention. The present study investigated mentalization ability in patients with prefrontal cortex damage. The aims of this study were to investigate: (a) whether patients with prefrontal cortex damage are impaired in mentalizing ability, including theory of mind (ToM) and empathy; (b) whether patients with ventromedial prefrontal cortex damage are impaired in different aspects of ToM; (c) whether patients with ventromedial prefrontal cortex damage are impaired in different aspects of empathy; and (d) whether impairment of mentalizing ability in patients with prefrontal cortex damage can be explained by executive dysfunction. Mini-Mental State Examination (MMSE), Matrix Reasoning subtest, working memory, executive function, theory of mind, and empathy assessments were conducted on eight patients with ventromedial prefrontal cortex damage, 15 patients with dorsolateral prefrontal cortex damage, and 19 normal comparisons matched for level of education and intelligence. The results showed that performance on affective and nonverbal theory of mind was significantly lower in patients with dorsolateral prefrontal cortex damage than in the comparison group. Performance on personal distress items of empathy was significantly lower in the ventromedial prefrontal cortex damage group than in the dorsolateral prefrontal cortex damage group. In addition, further multiple regression analysis showed that affective theory of mind could be explained by the Wisconsin Card Sorting Test-Modified (WCST-M), with an explained variance of up to 44%. The present study suggests that the impairment of mentalizing ability in patients with prefrontal cortex damage is partially the result of executive dysfunction.

  7. The Dynamics of Multilateral Exchange (United States)

    Hausken, Kjell; Moxnes, John F.

    The article formulates a dynamic mathematical model where arbitrarily many players produce, consume, exchange, loan, and deposit arbitrarily many goods over time to maximize utility. Consuming goods constitutes a benefit, and producing, exporting, and loaning away goods constitute a cost. Utilities are benefits minus costs, which depend on the exchange ratios and bargaining functions. Three-way exchange occurs when one player acquires, through exchange, one good from another player with the sole purpose of using this good to exchange against the desired good from a third player. Such a triple handshake is not merely a set of double handshakes since the player assigns no interest to the first good in his benefit function. Cognitive and organization costs increase dramatically for higher order exchanges. An exchange theory accounting for media of exchange follows from simple generalization of two-way exchange. The examples of r-way exchange are the triangle trade between Africa, the USA, and England in the 17th and 18th centuries, the hypothetical hypercycle involving RNAs as players and enzymes as goods, and reaction-diffusion processes. The emergence of exchange, and the role of trading agents are discussed. We simulate an example where two-way exchange gives zero production and zero utility, while three-way exchange causes considerable production and positive utility. Maximum utility for each player is reached when exchanges of the same order as the number of players in society are allowed. The article merges micro theory and macro theory within the social, natural, and physical sciences.

  8. Genetic Damage Induced by Accidental Environmental Pollutants

    Directory of Open Access Journals (Sweden)

    Beatriz Pérez-Cadahía


    Full Text Available Petroleum is one of the main energy sources worldwide. Its transport is performed by big tankers following some established marine routes. In the last 50 years a total amount of 37 oil tankers have given rise to great spills in different parts of the world, Prestige being the last one. After the accident, a big human mobilisation took place in order to clean beaches, rocks and fauna, trying to reduce the environmental consequences of this serious catastrophe. These people were exposed to the complex mixture of compounds contained in the oil. This study aimed at determine the level of environmental exposure to volatile organic compounds (VOC, and the possible damage induced on the population involved in the different cleaning tasks by applying the genotoxicity tests sister chromatid exchanges (SCE, micronucleus (MN test, and comet assay. Four groups of individuals were included: volunteers (V, hired manual workers (MW, hired high-pressure cleaner workers (HPW and controls. The higher VOC levels were associated with V environment, followed by MW and lastly by HPW, probably due to the use of high-pressure cleaners. Oil exposure during the cleaning tasks has caused an increase in the genotoxic damage in individuals, the comet assay being the most sensitive biomarker to detect it. Sex, age and tobacco consumption have shown to influence the level of genetic damage, while the effect of using protective devices was less noticeable than expected, perhaps because the kind used was not the most adequate.

  9. Genetic damage induced by accidental environmental pollutants. (United States)

    Pérez-Cadahía, Beatriz; Laffon, Blanca; Pásaro, Eduardo; Méndez, Josefina


    Petroleum is one of the main energy sources worldwide. Its transport is performed by big tankers following some established marine routes. In the last 50 years a total amount of 37 oil tankers have given rise to great spills in different parts of the world, Prestige being the last one. After the accident, a big human mobilisation took place in order to clean beaches, rocks and fauna, trying to reduce the environmental consequences of this serious catastrophe. These people were exposed to the complex mixture of compounds contained in the oil. This study aimed at determine the level of environmental exposure to volatile organic compounds (VOC), and the possible damage induced on the population involved in the different cleaning tasks by applying the genotoxicity tests sister chromatid exchanges (SCE), micronucleus (MN) test, and comet assay. Four groups of individuals were included: volunteers (V), hired manual workers (MW), hired high-pressure cleaner workers (HPW) and controls. The higher VOC levels were associated with V environment, followed by MW and lastly by HPW, probably due to the use of high-pressure cleaners. Oil exposure during the cleaning tasks has caused an increase in the genotoxic damage in individuals, the comet assay being the most sensitive biomarker to detect it. Sex, age and tobacco consumption have shown to influence the level of genetic damage, while the effect of using protective devices was less noticeable than expected, perhaps because the kind used was not the most adequate.

  10. Coagulation aggravates blood-induced joint damage in dogs. (United States)

    van Meegeren, Monique E R; Roosendaal, Goris; Barten-van Rijbroek, Angelique D; Schutgens, Roger E G; Lafeber, Floris P J G; Mastbergen, Simon C


    Joint bleeding due to trauma, major joint surgery, or hemophilia leads to joint damage. It is unclear if there are differences between coagulating blood and anticoagulated blood with respect to joint degeneration, especially in vivo. Therefore, we undertook this study to evaluate in a canine in vivo model whether intraarticular exposure to coagulating blood is more destructive than exposure to anticoagulated blood, and whether inflammation plays a role in the cartilage- damaging process. In 7 dogs the left knees were injected with coagulating blood 4 times a week during weeks 1 and 4, and the right knees were injected with saline. In 7 other dogs, anticoagulated heparinized blood was injected, and heparinized saline was used as control. Ten weeks after the last injection, cartilage matrix turnover and synovial inflammation were analyzed. To study inflammation-independent cartilage damage, explants of cartilage from at least 6 human donors per group were exposed in vitro to coagulating and anticoagulated blood, plasma, and serum for 4 days. Cartilage matrix turnover was determined after a recovery period of 12 days. Canine knees injected with coagulating blood showed more disturbed proteoglycan turnover than knees injected with anticoagulated blood. Synovial inflammation was present only after intraarticular injections with coagulating blood. In in vitro experiments, exposure of human cartilage explants to coagulating blood resulted in more damage than did exposure to anticoagulated blood, while exposure to plasma and serum did not alter cartilage matrix turnover. This study shows that coagulating blood causes more long-lasting in vivo joint damage than anticoagulated blood, thereby suggesting that along with joint bleeding in hemophilia, exposure to intraarticular blood should also be avoided during surgery and trauma to prevent joint damage. Copyright © 2012 by the American College of Rheumatology.

  11. Expansive Soil Crack Depth under Cumulative Damage

    Directory of Open Access Journals (Sweden)

    Bei-xiao Shi


    Full Text Available The crack developing depth is a key problem to slope stability of the expansive soil and its project governance and the crack appears under the roles of dry-wet cycle and gradually develops. It is believed from the analysis that, because of its own cohesion, the expansive soil will have a certain amount of deformation under pulling stress but without cracks. The soil body will crack only when the deformation exceeds the ultimate tensile strain that causes cracks. And it is also believed that, due to the combined effect of various environmental factors, particularly changes of the internal water content, the inherent basic physical properties of expansive soil are weakened, and irreversible cumulative damages are eventually formed, resulting in the development of expansive soil cracks in depth. Starting from the perspective of volumetric strain that is caused by water loss, considering the influences of water loss rate and dry-wet cycle on crack developing depth, the crack developing depth calculation model which considers the water loss rate and the cumulative damages is established. Both the proposal of water loss rate and the application of cumulative damage theory to the expansive soil crack development problems try to avoid difficulties in matrix suction measurement, which will surely play a good role in promoting and improving the research of unsaturated expansive soil.

  12. Magnetic properties of iron cluster/chromium matrix nanocomposites

    Directory of Open Access Journals (Sweden)

    Arne Fischer


    Full Text Available A custom-designed apparatus was used for the fine-tuned co-deposition of preformed Fe clusters into antiferromagnetic Cr matrices. Three series of samples with precisely defined cluster sizes, with accuracy to a few atoms, and controlled concentrations were fabricated, followed by a complete characterization of structure and magnetic performance. Relevant magnetic characteristics, reflecting the ferromagnetic/antiferromagnetic coupling between Fe clusters and the Cr matrix, i.e., blocking temperature, coercivity field, and exchange bias were measured and their dependence on cluster size and cluster concentration in the matrix was analyzed. It is evident that the blocking temperatures are clearly affected by both the cluster size and their concentration in the Cr matrix. In contrast the coercivity shows hardly any dependence on size or inter-cluster distance. The exchange bias was found to be strongly sensitive to the cluster size but not to the inter-cluster distances. Therefore, it was concluded to be an effect that is purely localized at the interfaces.

  13. Fabrication of fiber composites with a MAX phase matrix by reactive melt infiltration (United States)

    Lenz, F.; Krenkel, W.


    Due to the inherent brittleness of ceramics it is very desirable to increase the damage tolerance of ceramics. The ternary MAX phases are a promising group of materials with high fracture toughness. The topic of this study is the development of ceramic matrix composites (CMCs) with a matrix containing MAX phases, to achieve a damage tolerant structural composite material. For this purpose carbon fiber reinforced preforms with a carbon-titanium carbide matrix (C/C-TiC) were developed and infiltrated with silicon by a pressureless reactive melt infiltration. Finally liquid silicon caused the formation of SiC, TiSi2 and Ti3SiC2 in the matrix of the composite.

  14. New pole placement algorithm - Polynomial matrix approach (United States)

    Shafai, B.; Keel, L. H.


    A simple and direct pole-placement algorithm is introduced for dynamical systems having a block companion matrix A. The algorithm utilizes well-established properties of matrix polynomials. Pole placement is achieved by appropriately assigning coefficient matrices of the corresponding matrix polynomial. This involves only matrix additions and multiplications without requiring matrix inversion. A numerical example is given for the purpose of illustration.

  15. Reactive oxygen species production and discontinuous gas exchange in insects. (United States)

    Boardman, Leigh; Terblanche, John S; Hetz, Stefan K; Marais, Elrike; Chown, Steven L


    While biochemical mechanisms are typically used by animals to reduce oxidative damage, insects are suspected to employ a higher organizational level, discontinuous gas exchange mechanism to do so. Using a combination of real-time, flow-through respirometry and live-cell fluorescence microscopy, we show that spiracular control associated with the discontinuous gas exchange cycle (DGC) in Samia cynthia pupae is related to reactive oxygen species (ROS). Hyperoxia fails to increase mean ROS production, although minima are elevated above normoxic levels. Furthermore, a negative relationship between mean and mean ROS production indicates that higher ROS production is generally associated with lower . Our results, therefore, suggest a possible signalling role for ROS in DGC, rather than supporting the idea that DGC acts to reduce oxidative damage by regulating ROS production.

  16. [Progress on matrix metalloproteinase inhibitors]. (United States)

    Lingling, Jia; Qianbing, Wan


    Continuing advances in dentin bonding technology and adhesives revolutionized bonding of resin-based composite restorations. However, hybrid layers created by contemporary dentin adhesives present imperfect durability, and degradation of collagen matrix by endogenous enzymes is a significant factor causing destruction of hybrid layers. Bond durability can be improved by using enzyme inhibitors to prevent collagen degradation and to preserve integrity of collagen matrix. This review summarizes progress on matrix metalloproteinase inhibitors (including chlorhexidine, ethylenediaminetetraacetic acid, quaternary ammonium salt, tetracycline and its derivatives, hydroxamic acid inhibitors, bisphosphonate derivative, and cross-linking agents) and suggests prospects for these compounds.

  17. Hadronic matrix elements for Kaons

    Energy Technology Data Exchange (ETDEWEB)

    Bijnens, Johan [Department of Theoretical Physics 2, Lund University, Soelvegatan 14A, S-22362 Lund (Sweden); Gamiz, Elvira [CAFPE and Departamento de Fisica Teorica y del Cosmos, Universidad de Granada Campus de Fuente Nueva, E-18002 Granada (Spain); Prades, Joaquim [CAFPE and Departamento de Fisica Teorica y del Cosmos, Universidad de Granada Campus de Fuente Nueva, E-18002 Granada (Spain)


    We review some work done by us calculating matrix elements for Kaons. Emphasis is put on the matrix elements which are relevant to predict non-leptonic Kaon CP violating observables. In particular, we recall our results for the B{sub K} parameter which governs the K{sup 0}-K{sup 0} mixing and update our results for {epsilon}'inK including estimated all-higher-order CHPT corrections and the new results from recent analytical calculations of the {delta}itI = 3/2 component. Some comments on future prospects on calculating matrix elements for Kaons are also added.

  18. Nowcasting Disaster Damage


    Kryvasheyeu, Yury; Chen, Haohui; Obradovich, Nick; Moro, Esteban; Van Hentenryck, Pascal; Fowler, James; Cebrian, Manuel


    Could social media data aid in disaster response and damage assessment? Countries face both an increasing frequency and intensity of natural disasters due to climate change. And during such events, citizens are turning to social media platforms for disaster-related communication and information. Social media improves situational awareness, facilitates dissemination of emergency information, enables early warning systems, and helps coordinate relief efforts. Additionally, spatiotemporal distri...

  19. Adjoint Techniques for Topology Optimization of Structures Under Damage Conditions (United States)

    Akgun, Mehmet A.; Haftka, Raphael T.


    The objective of this cooperative agreement was to seek computationally efficient ways to optimize aerospace structures subject to damage tolerance criteria. Optimization was to involve sizing as well as topology optimization. The work was done in collaboration with Steve Scotti, Chauncey Wu and Joanne Walsh at the NASA Langley Research Center. Computation of constraint sensitivity is normally the most time-consuming step of an optimization procedure. The cooperative work first focused on this issue and implemented the adjoint method of sensitivity computation (Haftka and Gurdal, 1992) in an optimization code (runstream) written in Engineering Analysis Language (EAL). The method was implemented both for bar and plate elements including buckling sensitivity for the latter. Lumping of constraints was investigated as a means to reduce the computational cost. Adjoint sensitivity computation was developed and implemented for lumped stress and buckling constraints. Cost of the direct method and the adjoint method was compared for various structures with and without lumping. The results were reported in two papers (Akgun et al., 1998a and 1999). It is desirable to optimize topology of an aerospace structure subject to a large number of damage scenarios so that a damage tolerant structure is obtained. Including damage scenarios in the design procedure is critical in order to avoid large mass penalties at later stages (Haftka et al., 1983). A common method for topology optimization is that of compliance minimization (Bendsoe, 1995) which has not been used for damage tolerant design. In the present work, topology optimization is treated as a conventional problem aiming to minimize the weight subject to stress constraints. Multiple damage configurations (scenarios) are considered. Each configuration has its own structural stiffness matrix and, normally, requires factoring of the matrix and solution of the system of equations. Damage that is expected to be tolerated is local

  20. Stress corrosion cracking of metal matrix composites: Modeling and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R.H.


    The stress corrosion crack growth ate of metal matrix composites has been described by a model which is dependent on the length-to- diameter ({ell}/d) ratio and volume fraction of the reinforcing phase and matrix creep component. The model predicts a large dependence of the stress corrosion crack growth rate of a metal matrix composite on {ell}/d and matrix creep component and a small dependence on the volume fraction of reinforcement. Experimentally determined crack growth rates for 7090 Al/SiC tested in 3.5% NcCl solution, 6061 Al/SiC tested in moist air with NaCl and immersed in NaCl solution, and Mg/Al{sub 2}0{sub 3} tested in a chloride/chromate solution are all consistent with the model. The close correspondence between the model and experiment for a matrix creep stress exponent of 3 suggest that there is little corrosion damage to the reinforcing phase in these systems. 16 refs., 5 figs.

  1. Electrical Resistance and Transport Numbers of Ion-Exchange Membranes Used in Electrodialytic Soil Remediation

    DEFF Research Database (Denmark)

    Hansen, Henrik; Ottosen, Lisbeth M.; Villumsen, Arne


    causes damage to the membrane. This work presents the result from transport number and electrical resistance measurements done on four sets of ion-exchange membranes (Ionics, Inc. CR67 HMR412 cation-exchange membranes and Ionics, Inc. AR204 SXZR anion-exchange membranes), which have been used in four......Electrodialytic soil remediation is a recently developed method to decontaminate heavy metal polluted soil using ion-exchange membranes. In this method one side of the ion-exchange membrane is in direct contact with the polluted soil. It is of great importance to know if this contact with the soil...... different electrodialytic soil remediation experiments. The experiments showed that after the use in electrodialytic soil remediation, the ion-exchange membranes had transport numbers in the same magnitude as new membranes. The electrical resistance for six membranes did not differ from that of new...

  2. A Continuum Damage Mechanics Model for the Static and Cyclic Fatigue of Cellular Composites (United States)

    Huber, Otto


    The fatigue behavior of a cellular composite with an epoxy matrix and glass foam granules is analyzed and modeled by means of continuum damage mechanics. The investigated cellular composite is a particular type of composite foam, and is very similar to syntactic foams. In contrast to conventional syntactic foams constituted by hollow spherical particles (balloons), cellular glass, mineral, or metal place holders are combined with the matrix material (metal or polymer) in the case of cellular composites. A microstructural investigation of the damage behavior is performed using scanning electron microscopy. For the modeling of the fatigue behavior, the damage is separated into pure static and pure cyclic damage and described in terms of the stiffness loss of the material using damage models for cyclic and creep damage. Both models incorporate nonlinear accumulation and interaction of damage. A cycle jumping procedure is developed, which allows for a fast and accurate calculation of the damage evolution for constant load frequencies. The damage model is applied to examine the mean stress effect for cyclic fatigue and to investigate the frequency effect and the influence of the signal form in the case of static and cyclic damage interaction. The calculated lifetimes are in very good agreement with experimental results. PMID:28809806

  3. GoM Diet Matrix (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set was taken from CRD 08-18 at the NEFSC. Specifically, the Gulf of Maine diet matrix was developed for the EMAX exercise described in that center...

  4. Localized Hydration in Lyophilized Myoglobin by Hydrogen-Deuterium Exchange Mass Spectrometry. 1. Exchange Mapping (United States)

    Sophocleous, Andreas M.; Zhang, Jun; Topp, Elizabeth M.


    The local effects of hydration on myoglobin (Mb) in solid matrices containing mannitol or sucrose (1:1 w/w, protein:additive) were mapped using hydrogen-deuterium exchange with mass spectrometric analysis (HDX-MS) at 5°C and compared to solution controls. Solid powders were exposed to D2O(g) at controlled activity (aw) followed by reconstitution and analysis of the intact protein and peptides produced by pepsin digestion. HDX varied with matrix type, aw, and position along the protein backbone. HDX was less in sucrose matrices than in mannitol matrices at all aw while the difference in solution was negligible. Differences in HDX in the two matrices were detectable despite similarities in their bulk water content. The extent of exchange in solids is proposed as a measure of the hydration of exchangeable amide groups, as well as protein conformation and dynamics; pepsin digestion allows these effects to be mapped with peptide-level resolution. PMID:22352965

  5. Newtonian M(atrix) cosmology (United States)

    Álvarez, Enrique; Meessen, Patrick


    A Newtonian matrix cosmology, corresponding to the Banks, Fischler, Shenker and Susskind model of eleven-dimensional M-theory in the infinite momentum frame as a supersymmetric (0+1) M(atrix) model is constructed. Interesting new results are obtained, such as the existence of (much sought for in the past) static solutions. The possible interpretation of the off-diagonal entries as a background geometry is also briefly discussed.

  6. Superstatistics in Random Matrix Theory


    Abul-Magd, A. Y.


    Random matrix theory (RMT) provides a successful model for quantum systems, whose classical counterpart has a chaotic dynamics. It is based on two assumptions: (1) matrix-element independence, and (2) base invariance. Last decade witnessed several attempts to extend RMT to describe quantum systems with mixed regular-chaotic dynamics. Most of the proposed generalizations keep the first assumption and violate the second. Recently, several authors presented other versions of the theory that keep...

  7. Matrix analysis of electrical machinery

    CERN Document Server

    Hancock, N N


    Matrix Analysis of Electrical Machinery, Second Edition is a 14-chapter edition that covers the systematic analysis of electrical machinery performance. This edition discusses the principles of various mathematical operations and their application to electrical machinery performance calculations. The introductory chapters deal with the matrix representation of algebraic equations and their application to static electrical networks. The following chapters describe the fundamentals of different transformers and rotating machines and present torque analysis in terms of the currents based on the p

  8. Use of Time- and Frequency-Domain Approaches for Damage Detection in Civil Engineering Structures

    Directory of Open Access Journals (Sweden)

    V. H. Nguyen


    Full Text Available The aim of this paper is to apply both time- and frequency-domain-based approaches on real-life civil engineering structures and to assess their capability for damage detection. The methodology is based on Principal Component Analysis of the Hankel matrix built from output-only measurements and of Frequency Response Functions. Damage detection is performed using the concept of subspace angles between a current (possibly damaged state and a reference (undamaged state. The first structure is the Champangshiehl Bridge located in Luxembourg. Several damage levels were intentionally created by cutting a growing number of prestressed tendons and vibration data were acquired by the University of Luxembourg for each damaged state. The second example consists in reinforced and prestressed concrete panels. Successive damages were introduced in the panels by loading heavy weights and by cutting steel wires. The illustrations show different consequences in damage identification by the considered techniques.

  9. An immunofluorescence assay for extracellular matrix components highlights the role of epithelial cells in producing a stable, fibrillar extracellular matrix

    Directory of Open Access Journals (Sweden)

    Omar S. Qureshi


    Full Text Available Activated fibroblasts are considered major drivers of fibrotic disease progression through the production of excessive extracellular matrix (ECM in response to signals from damaged epithelial and inflammatory cells. Nevertheless, epithelial cells are capable of expressing components of the ECM, cross-linking enzymes that increase its stability and are sensitive to factors involved in the early stages of fibrosis. We therefore wanted to test the hypothesis that epithelial cells can deposit ECM in response to stimulation in a comparable manner to fibroblasts. We performed immunofluorescence analysis of components of stable, mature extracellular matrix produced by primary human renal proximal tubular epithelial cells and renal fibroblasts in response to cytokine stimulation. Whilst fibroblasts produced a higher basal level of extracellular matrix components, epithelial cells were able to deposit significant levels of fibronectin, collagen I, III and IV in response to cytokine stimulation. In response to hypoxia, epithelial cells showed an increase in collagen IV deposition but not in response to the acute stress stimuli aristolochic acid or hydrogen peroxide. When epithelial cells were in co-culture with fibroblasts we observed significant increases in the level of matrix deposition which could be reduced by transforming growth factor beta (TGF-β blockade. Our results highlight the role of epithelial cells acting as efficient producers of stable extracellular matrix which could contribute to renal tubule thickening in fibrosis.

  10. An immunofluorescence assay for extracellular matrix components highlights the role of epithelial cells in producing a stable, fibrillar extracellular matrix. (United States)

    Qureshi, Omar S; Bon, Hélène; Twomey, Breda; Holdsworth, Gill; Ford, Kirsty; Bergin, Marianne; Huang, Linghong; Muzylak, Mariusz; Healy, Louise J; Hurdowar, Vanessa; Johnson, Timothy S


    Activated fibroblasts are considered major drivers of fibrotic disease progression through the production of excessive extracellular matrix (ECM) in response to signals from damaged epithelial and inflammatory cells. Nevertheless, epithelial cells are capable of expressing components of the ECM, cross-linking enzymes that increase its stability and are sensitive to factors involved in the early stages of fibrosis. We therefore wanted to test the hypothesis that epithelial cells can deposit ECM in response to stimulation in a comparable manner to fibroblasts. We performed immunofluorescence analysis of components of stable, mature extracellular matrix produced by primary human renal proximal tubular epithelial cells and renal fibroblasts in response to cytokine stimulation. Whilst fibroblasts produced a higher basal level of extracellular matrix components, epithelial cells were able to deposit significant levels of fibronectin, collagen I, III and IV in response to cytokine stimulation. In response to hypoxia, epithelial cells showed an increase in collagen IV deposition but not in response to the acute stress stimuli aristolochic acid or hydrogen peroxide. When epithelial cells were in co-culture with fibroblasts we observed significant increases in the level of matrix deposition which could be reduced by transforming growth factor beta (TGF-β) blockade. Our results highlight the role of epithelial cells acting as efficient producers of stable extracellular matrix which could contribute to renal tubule thickening in fibrosis. © 2017. Published by The Company of Biologists Ltd.

  11. Micromechanical Modeling for Tensile Behaviour of Carbon Fiber - Reinforced Ceramic - Matrix Composites (United States)

    Longbiao, Li


    The stress-strain curves of fiber - reinforced ceramic - matrix composites (CMCs) exhibit obvious non-linear behaviour under tensile loading. The occurrence of multiple damage mechanisms, i.e., matrix multicracking, fiber/matrix interface debonding and fibers fracture, is the mainly reason for the non-linear characteristic. The micromechanics approach has been developed to predict the tensile stress-strain curves of unidirectional, cross-ply and woven CMCs. The shear-lag model was used to describe the micro stress field of the damaged composite. The damage models were used to determine the evolution of micro damage parameters, i.e., matrix crack spacing, interface debonded length and broken fibers fraction. By combining the shear-lag model with damage models and considering the effect of transverse multicracking in the 90° plies or transverse yarns in cross-ply or woven CMCs, the tensile stress-strain curves of unidirectional, cross-ply, 2D and 2.5D woven CMCs have been predicted. The results agreed with experimental data.

  12. Is the prefrontal cortex important for fluid intelligence? A neuropsychological study using Matrix Reasoning. (United States)

    Tranel, Daniel; Manzel, Kenneth; Anderson, Steven W


    Patients with prefrontal damage and severe defects in decision making and emotional regulation often have a remarkable absence of intellectual impairment, as measured by conventional IQ tests such as the WAIS/WAIS-R. This enigma might be explained by shortcomings in the tests, which tend to emphasize measures of "crystallized" (e.g., vocabulary, fund of information) more than "fluid" (e.g., novel problem solving) intelligence. The WAIS-III added the Matrix Reasoning subtest to enhance measurement of fluid reasoning. In a set of four studies, we investigated Matrix Reasoning performances in 80 patients with damage to various sectors of the prefrontal cortex, and contrasted these with the performances of 80 demographically matched patients with damage outside the frontal lobes. The results failed to support the hypothesis that prefrontal damage would disproportionately impair fluid intelligence, and every prefrontal subgroup we studied (dorsolateral, ventromedial, dorsolateral + ventromedial) had Matrix Reasoning scores (as well as IQ scores more generally) that were indistinguishable from those of the brain-damaged comparison groups. Our findings do not support a connection between fluid intelligence and the frontal lobes, although a viable alternative interpretation is that the Matrix Reasoning subtest lacks construct validity as a measure of fluid intelligence.

  13. Grounding Damage to Conventional Vessels

    DEFF Research Database (Denmark)

    Lützen, Marie; Simonsen, Bo Cerup


    regulations for design of bottom compartment layout with regard to grounding damages are largely based on statistical damage data. New and updated damage statistics holding 930 grounding accident records has been investigated. The bottom damage statistics is compared to current regulations for the bottom......The present paper is concerned with rational design of conventional vessels with regard to bottom damage generated in grounding accidents. The aim of the work described here is to improve the design basis, primarily through analysis of new statistical data for grounding damage. The current...... for the relation between the amount of deformed structure and the energy absorption. Finally, the paper shows how damage statistics for existing, conventional vessels can be used together with theoretical prediction methods for determining grounding damage distributions for new vessel types not included...

  14. Developing bulk exchange spring magnets

    Energy Technology Data Exchange (ETDEWEB)

    Mccall, Scott K.; Kuntz, Joshua D.


    A method of making a bulk exchange spring magnet by providing a magnetically soft material, providing a hard magnetic material, and producing a composite of said magnetically soft material and said hard magnetic material to make the bulk exchange spring magnet. The step of producing a composite of magnetically soft material and hard magnetic material is accomplished by electrophoretic deposition of the magnetically soft material and the hard magnetic material to make the bulk exchange spring magnet.

  15. Characteristics of model heat exchanger (United States)

    Kolínský, Jan


    The aim of this paper is thermal analysis of model water to water heat exchanger at different mass flow rates. Experimental study deals with determination of total heat transfer - power of the heat exchanger. Furthermore the paper deals with analysis of heat exchanger charakcteristic using a definition of thermal efficiency. It is demonstrated that it is advisable to monitor the dependence of thermal efficiency and flow ratio.

  16. Network Using Damage Progression Trends

    Directory of Open Access Journals (Sweden)

    C. J. Keulen


    damage (RAPID technique. Two damage metrics are used with the algorithm and a comparison is made to the more commonly used signal difference coefficient (SDC metric. Best case results show that damage is detected within 12 mm. The algorithm is also run on a more sparse network with no damage detection, therefore indicating that the selected arrangement is the most sparse arrangement with this configuration.

  17. DNA damage and mutation. Types of DNA damage


    Chakarov, Stoyan; Petkova, Rumena; Russev,George Ch; Zhelev, Nikolai


    This review outlines the basic types of DNA damage caused by exogenous and endogenous factors, analyses the possible consequences of each type of damage and discusses the need for different types of DNA repair. The mechanisms by which a minor damaging event to DNA may eventually result in the introduction of heritable mutation/s are reviewed. The major features of the role of DNA damage in ageing and carcinogenesis are outlined and the role of iatrogenic DNA damage in human health and dis...

  18. DNA damage and mutation. Types of DNA damage (United States)

    Chakarov, Stoyan; Petkova, Rumena; Russev, George Ch; Zhelev, Nikolai


    This review outlines the basic types of DNA damage caused by exogenous and endogenous factors, analyses the possible consequences of each type of damage and discusses the need for different types of DNA repair. The mechanisms by which a minor damaging event to DNA may eventually result in the introduction of heritable mutation/s are reviewed. The major features of the role of DNA damage in ageing and carcinogenesis are outlined and the role of iatrogenic DNA damage in human health and disease (with curative intent as well as a long-term adverse effect of genotoxic therapies) are discussed in detail.

  19. Hierarchical nanoreinforced composites: Computational analysis of damage mechanisms

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Pontefisso, Alessandro; Dai, Gaoming


    The potential of hierarchical composites with secondary nanoreinforcement is discussed and analysed on the basis of the computational modelling. The concept of nanostructuring of interfaces as an important reserve of the improvement of the composite properties is discussed. The influence...... of distribution, shape, orientation of nanoparticles (carbon nanotube, graphene) in unidirectional polymer matrix composites on the strength and damage resistance of the composites is studied in computational studies. The possible directions of the improvement of nanoreinforced composites by controlling shapes...

  20. What Drives Stock Exchange Integration?

    National Research Council Canada - National Science Library

    Ekaterina Dorodnykh


    .... After a broad discussion of the existent literature, the investigation combines a large number of potentially relevant determinants for the explanation of whether stock exchanges are participating...

  1. Mastering Microsoft Exchange Server 2013

    CERN Document Server

    Elfassy, David


    The bestselling guide to Exchange Server, fully updated for the newest version Microsoft Exchange Server 2013 is touted as a solution for lowering the total cost of ownership, whether deployed on-premises or in the cloud. Like the earlier editions, this comprehensive guide covers every aspect of installing, configuring, and managing this multifaceted collaboration system. It offers Windows systems administrators and consultants a complete tutorial and reference, ideal for anyone installing Exchange Server for the first time or those migrating from an earlier Exchange Server version.Microsoft

  2. Hybrid Heat Exchangers (United States)

    Tu, Jianping Gene; Shih, Wei


    A hybrid light-weight heat exchanger concept has been developed that uses high-conductivity carbon-carbon (C-C) composites as the heat-transfer fins and uses conventional high-temperature metals, such as Inconel, nickel, and titanium as the parting sheets to meet leakage and structural requirements. In order to maximize thermal conductivity, the majority of carbon fiber is aligned in the fin direction resulting in 300 W/m.K or higher conductivity in the fin directions. As a result of this fiber orientation, the coefficient of thermal expansion (CTE) of the C-C composite in both non-fiber directions matches well with the CTE of various high-temperature metal alloys. This allows the joining of fins and parting sheets by using high-temperature braze alloys.

  3. The Radioecology Exchange

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, Catherine L.; Beresford, Nicholas A.; Patel, Sabera; Wells, Claire; Howard, Brenda J. [NERC Centre for Ecology and Hydrology, CEH Lancaster, Lancaster Environment Centre, Library Av., Bailrigg, Lancaster, LA1 4AP (United Kingdom); Mora, Juan Carlos; Real, Almudena [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Avenida complutense 22, Madrid, 28040 (Spain); Beaugelin-Seiller, Karine; Gilbin, Rodolphe; Hinton, Thomas [IRSN-Institut de Radioprotection et de Surete Nucleaire, 31, Avenue de la Division Leclerc, 92260 Fontenay-Aux-Roses (France); Vesterbacka, Pia; Muikku, Maarit; Outola, Iisa [Radiation and Nuclear Safety Authority, P.O. Box 14, FI-00881 Helsinki (Finland); Skuterud, Lavrans; AlbumYtre-Eide, Martin [Norwegian Radiation Protection Authority, Grini Naeringspark 13, Oesteraas, 1332 (Norway); Bradshaw, Clare; Stark, Karolina; Jaeschke, Ben [Stockholms Universitet, Universitetsvaegen 10, Stockholm, 10691 (Sweden); Oughton, Deborah; Skipperud, Lindis [NMBU Norwegian University of Life Science P.O. Box 5003N-1432 Aas, Oslo (Norway); Vandenhove, Hildegarde; Vanhoudt, Nathalie [SCK.CEN, Studiecentrum voor Kernenergie/Centre d' Etude de l' Energie Nucleaire, Avenue Herrmann-Debroux 40, BE-1160 Brussels (Belgium); Willrodt, Christine; Steiner, Martin [Bundesamt fuer Strahlenschutz, Willy-Brandt-Strasse 5, 38226 Salzgitter (Germany)


    The Radioecology Exchange ( was created in 2011 under the EU FP7 STAR (Strategy for Allied Radioecology) network of excellence. The project aims to integrate the research efforts on radioecology of nine European organisations into a sustainable network. The web site (together with associated Twitter feeds and Facebook page) currently provides the gateway to project outputs and other on-line radiation protection and radioecological resources. In 2013, the EU FP7 COMET (Coordination and implementation of a pan-European instrument for radioecology) project commenced; it aims to strengthen research on the impact of radiation on man and the environment. COMET includes the STAR partners with the addition of one Japanese and two Ukrainian research institutes. As STAR and COMET interact closely together and with the European Radioecology Alliance (, the Radioecology Exchange will be modified to become an international 'hub' for information related to radioecology. Project specific information will be hosted on separate web sites and This paper will present an overview of the resources hosted on the Radioecology Exchange inviting other scientists to contribute. Highlighted aspects of the site include: Social media (News blog, Twitter, Facebook) - Items announcing project outputs, training courses, jobs, studentships etc. Virtual laboratory - Information which encourages integration through joint research and integrated use of data and sample materials. These pages will focus on three categories: (1) Methodological: descriptions and video clips of commonly used analytical methods and protocols and the procedures used in STAR and COMET; (2) Informative: databases made available by STAR/COMET partners together with details of sample archives held. Fact-sheets on radio-ecologically important radionuclides and 'topical descriptions' which show absorbed

  4. Contextualizing aquired brain damage

    DEFF Research Database (Denmark)

    Nielsen, Charlotte Marie Bisgaard


    Contextualizing aquired brain damage Traditional approaches study ’communicational problems’ often in a discourse of disabledness or deficitness. With an ontology of communcation as something unique and a presupposed uniqueness of each one of us, how could an integrational approach (Integrational...... for people with aquired brain injuries will be presented and comparatively discussed in a traditional versus an integrational perspective. Preliminary results and considerations on ”methods” and ”participation” from this study will be presented along with an overview of the project's empirical data....

  5. Fatigue Damage in Wood

    DEFF Research Database (Denmark)

    Clorius, Christian Odin; Pedersen, Martin Bo Uhre; Hoffmeyer, Preben


    An investigation of fatigue failure in wood subjected to load cycles in compression parallel to grain is presented. Fatigue failure is found to depend both on the total time under load and on the number of cycles.Recent accelerated fatigue research on wood is reviewed, and a discrepancy between...... to 10 Hz are used. The number of cycles to failure is found to be a poor measure of the fatigue performance of wood. Creep, maximum strain, stiffness and work are monitored throughout the fatigue tests. Accumulated creep is suggested identified with damage and a correlation between stiffness reduction...

  6. Low Cost Polymer heat Exchangers for Condensing Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, Thomas [Brookhaven National Lab. (BNL), Upton, NY (United States); Trojanowski, Rebecca [Brookhaven National Lab. (BNL), Upton, NY (United States); Wei, George [Brookhaven National Lab. (BNL), Upton, NY (United States); Worek, Michael [Brookhaven National Lab. (BNL), Upton, NY (United States)


    Work in this project sought to develop a suitable design for a low cost, corrosion resistant heat exchanger as part of a high efficiency condensing boiler. Based upon the design parameters and cost analysis several geometries and material options were explored. The project also quantified and demonstrated the durability of the selected polymer/filler composite under expected operating conditions. The core material idea included a polymer matrix with fillers for thermal conductivity improvement. While the work focused on conventional heating oil, this concept could also be applicable to natural gas, low sulfur heating oil, and biodiesel- although these are considered to be less challenging environments. An extruded polymer composite heat exchanger was designed, built, and tested during this project, demonstrating technical feasibility of this corrosion-resistant material approach. In such flue gas-to-air heat exchangers, the controlling resistance to heat transfer is in the gas-side convective layer and not in the tube material. For this reason, the lower thermal conductivity polymer composite heat exchanger can achieve overall heat transfer performance comparable to a metal heat exchanger. However, with the polymer composite, the surface temperature on the gas side will be higher, leading to a lower water vapor condensation rate.

  7. Product Design Based on Matrix Functions and Components

    Directory of Open Access Journals (Sweden)

    Oscar E. Herrera-Bedoya


    Full Text Available It’s presented a tool for product design based on the rearrangement of features and components matrix. This tool has been developed in MATLAB and uses a first process based on the diagonalization, a second process based on the exchange of items and ends with a visual inspection. The results obtained were the reduction of computational cost and an approximation between 90% to 95% of the global minimum of entropy. This allows a faster decision-making process with a high percentage of accuracy and / or organize for easier handling.

  8. Extracellular matrix and cytoskeletal dynamics during branching morphogenesis (United States)

    Kim, Hye Young; Nelson, Celeste M.


    Branching morphogenesis is a fundamental developmental process which results in amplification of epithelial surface area for exchanging molecules in organs including the lung, kidney, mammary gland and salivary gland. These complex tree-like structures are built by iterative rounds of simple routines of epithelial morphogenesis, including bud formation, extension, and bifurcation, that require constant remodeling of the extracellular matrix (ECM) and the cytoskeleton. In this review, we highlight the current understanding of the role of the ECM and cytoskeletal dynamics in branching morphogenesis across these different organs. The cellular and molecular mechanisms shared during this morphogenetic process provide insight into the development of other branching organs. PMID:22609561

  9. Interphase for ceramic matrix composites reinforced by non-oxide ceramic fibers (United States)

    DiCarlo, James A. (Inventor); Bhatt, Ramakrishna (Inventor); Morscher, Gregory N. (Inventor); Yun, Hee-Mann (Inventor)


    A ceramic matrix composite material is disclosed having non-oxide ceramic fibers, which are formed in a complex fiber architecture by conventional textile processes; a thin mechanically weak interphase material, which is coated on the fibers; and a non-oxide or oxide ceramic matrix, which is formed within the interstices of the interphase-coated fiber architecture. During composite fabrication or post treatment, the interphase is allowed to debond from the matrix while still adhering to the fibers, thereby providing enhanced oxidative durability and damage tolerance to the fibers and the composite material.

  10. Progressive damage state evolution and quantification in composites (United States)

    Patra, Subir; Banerjee, Sourav


    Precursor damage state quantification can be helpful for safety and operation of aircraft and defense equipment's. Damage develops in the composite material in the form of matrix cracking, fiber breakages and deboning, etc. However, detection and quantification of the damage modes at their very early stage is not possible unless modifications of the existing indispensable techniques are conceived, particularly for the quantification of multiscale damages at their early stage. Here, we present a novel nonlocal mechanics based damage detection technique for precursor damage state quantification. Micro-continuum physics is used by modifying the Christoffel equation. American society of testing and materials (ASTM) standard woven carbon fiber (CFRP) specimens were tested under Tension-Tension fatigue loading at the interval of 25,000 cycles until 500,000 cycles. Scanning Acoustic Microcopy (SAM) and Optical Microscopy (OM) were used to examine the damage development at the same interval. Surface Acoustic Wave (SAW) velocity profile on a representative volume element (RVE) of the specimen were calculated at the regular interval of 50,000 cycles. Nonlocal parameters were calculated form the micromorphic wave dispersion curve at a particular frequency of 50 MHz. We used a previously formulated parameter called "Damage entropy" which is a measure of the damage growth in the material calculated with the loading cycle. Damage entropy (DE) was calculated at every pixel on the RVE and the mean of DE was plotted at the loading interval of 25,000 cycle. Growth of DE with fatigue loading cycles was observed. Optical Imaging also performed at the interval of 25,000 cycles to investigate the development of damage inside the materials. We also calculated the mean value of the Surface Acoustic Wave (SAW) velocity and plotted with fatigue cycle which is correlated further with Damage Entropy (DE). Statistical analysis of the Surface Acoustic Wave profile (SAW) obtained at different

  11. Lipase biofilm deposited by Matrix Assisted Pulsed Laser Evaporation technique

    Energy Technology Data Exchange (ETDEWEB)

    Aronne, Antonio [Department of Chemical Engineering, Materials and Industrial Production, University of Naples “Federico II”, Napoli (Italy); Bloisi, Francesco, E-mail: [SPIN – CNR, Naples (Italy); Department of Physics, University of Naples “Federico II”, Napoli (Italy); Calabria, Raffaela; Califano, Valeria [Istituto Motori – CNR, Naples (Italy); Depero, Laura E. [Department of Mechanical and Industrial Engineering, University of Brescia, Brescia (Italy); Fanelli, Esther [Department of Chemical Engineering, Materials and Industrial Production, University of Naples “Federico II”, Napoli (Italy); Federici, Stefania [Department of Mechanical and Industrial Engineering, University of Brescia, Brescia (Italy); Massoli, Patrizio [Istituto Motori – CNR, Naples (Italy); Vicari, Luciano R.M. [SPIN – CNR, Naples (Italy); Department of Physics, University of Naples “Federico II”, Napoli (Italy)


    Highlights: • A lipase film was deposited with Matrix Assisted Pulsed Laser Evaporation technique. • FTIR spectra show that laser irradiation do not damage lipase molecule. • Laser fluence controls the characteristics of complex structure generated by MAPLE. - Abstract: Lipase is an enzyme that finds application in biodiesel production and for detection of esters and triglycerides in biosensors. Matrix Assisted Pulsed Laser Evaporation (MAPLE), a technique derived from Pulsed Laser Deposition (PLD) for deposition of undamaged biomolecules or polymers, is characterized by the use of a frozen target obtained from a solution/suspension of the guest material (to be deposited) in a volatile matrix (solvent). The presence of the solvent avoids or at least reduces the potential damage of guest molecules by laser radiation but only the guest material reaches the substrate in an essentially solvent-free deposition. MAPLE can be used for enzymes immobilization, essential for industrial application, allowing the development of continuous processes, an easier separation of products, the reuse of the catalyst and, in some cases, enhancing enzyme properties (pH, temperature stability, etc.) and catalytic activity in non-aqueous media. Here we show that MAPLE technique can be used to deposit undamaged lipase and that the complex structure (due to droplets generated during extraction from target) of the deposited material can be controlled by changing the laser beam fluence.

  12. Thoracic damage control surgery. (United States)

    Gonçalves, Roberto; Saad, Roberto


    The damage control surgery came up with the philosophy of applying essential maneuvers to control bleeding and abdominal contamination in trauma patients who are within the limits of their physiological reserves. This concept was extended to thoracic injuries, where relatively simple maneuvers can shorten operative time of in extremis patients. This article aims to revise the various damage control techniques in thoracic organs that must be known to the surgeon engaged in emergency care. RESUMO A cirurgia de controle de danos surgiu com a filosofia de se aplicar manobras essenciais para controle de sangramento e contaminação abdominal, em doentes traumatizados, nos limites de suas reservas fisiológicas. Este conceito se estendeu para as lesões torácicas, onde manobras relativamente simples, podem abreviar o tempo operatório de doentes in extremis. Este artigo tem como objetivo, revisar as diversas técnicas de controle de dano em órgãos torácicos, que devem ser de conhecimento do cirurgião que atua na emergência.

  13. Self-healing effect of spallation damageability (United States)

    Buravova, S. N.


    The self-healing effect has been found in a study of the microstructure of the bands of localized deformation. It has been shown that interstitial elements (O, C) and the particles of a doping phase migrate to the zone of growing spallation damageability from the matrix material. When considering the wave pattern of the process of localization, it has been ascertained that the formation of bands of localized deformation is accompanied by the process of reverberation which is characterized by the formation of periodically repeated compression-extension cycles. A weak attenuation of the reverberation has led to an increase in the duration of the deformation pulse of the sample by two to three orders of magnitude compared with the time of the initial compression pulse.

  14. The Effect of Delamination on Damage Path and Failure Load Prediction for Notched Composite Laminates (United States)

    Satyanarayana, Arunkumar; Bogert, Philip B.; Chunchu, Prasad B.


    The influence of delamination on the progressing damage path and initial failure load in composite laminates is investigated. Results are presented from a numerical and an experimental study of center-notched tensile-loaded coupons. The numerical study includes two approaches. The first approach considers only intralaminar (fiber breakage and matrix cracking) damage modes in calculating the progression of the damage path. In the second approach, the model is extended to consider the effect of interlaminar (delamination) damage modes in addition to the intralaminar damage modes. The intralaminar damage is modeled using progressive damage analysis (PDA) methodology implemented with the VUMAT subroutine in the ABAQUS finite element code. The interlaminar damage mode has been simulated using cohesive elements in ABAQUS. In the experimental study, 2-3 specimens each of two different stacking sequences of center-notched laminates are tensile loaded. The numerical results from the two different modeling approaches are compared with each other and the experimentally observed results for both laminate types. The comparisons reveal that the second modeling approach, where the delamination damage mode is included together with the intralaminar damage modes, better simulates the experimentally observed damage modes and damage paths, which were characterized by splitting failures perpendicular to the notch tips in one or more layers. Additionally, the inclusion of the delamination mode resulted in a better prediction of the loads at which the failure took place, which were higher than those predicted by the first modeling approach which did not include delaminations.

  15. Meso-Scale Damage Simulation of 3D Braided Composites under Quasi-Static Axial Tension (United States)

    Zhang, Chao; Mao, Chunjian; Zhou, Yexin


    The microstructure of 3D braided composites is composed of three phases: braiding yarn, matrix and interface. In this paper, a representative unit-cell (RUC) model including these three phases is established. Coupling with the periodical boundary condition, the damage behavior of 3D braided composites under quasi-static axial tension is simulated by using finite element method based on this RUC model. An anisotropic damage model based on Murakami damage theory is proposed to predict the damage evolution of yarns and matrix; a damage-friction combination interface constitutive model is adopted to predict the interface debonding behavior. A user material subroutine (VUMAT) involving these damage models is developed and implemented in the finite element software ABAQUS/Explicit. The whole process of damage evolution of 3D braided composites under quasi-static axial tension with typical braiding angles is simulated, and the damage mechanisms are revealed in detail in the simulation process. The tensile strength properties of the braided composites are predicted from the calculated stress-strain curves. Numerical results agree with the available experiment data and thus validates the proposed damage analysis model. The effects of certain material parameters on the predicted stress-strain responses are also discussed by numerical parameter study.

  16. Meso-Scale Damage Simulation of 3D Braided Composites under Quasi-Static Axial Tension (United States)

    Zhang, Chao; Mao, Chunjian; Zhou, Yexin


    The microstructure of 3D braided composites is composed of three phases: braiding yarn, matrix and interface. In this paper, a representative unit-cell (RUC) model including these three phases is established. Coupling with the periodical boundary condition, the damage behavior of 3D braided composites under quasi-static axial tension is simulated by using finite element method based on this RUC model. An anisotropic damage model based on Murakami damage theory is proposed to predict the damage evolution of yarns and matrix; a damage-friction combination interface constitutive model is adopted to predict the interface debonding behavior. A user material subroutine (VUMAT) involving these damage models is developed and implemented in the finite element software ABAQUS/Explicit. The whole process of damage evolution of 3D braided composites under quasi-static axial tension with typical braiding angles is simulated, and the damage mechanisms are revealed in detail in the simulation process. The tensile strength properties of the braided composites are predicted from the calculated stress-strain curves. Numerical results agree with the available experiment data and thus validates the proposed damage analysis model. The effects of certain material parameters on the predicted stress-strain responses are also discussed by numerical parameter study.

  17. Precursor to damage state quantification in composite materials (Conference Presentation) (United States)

    Patra, Subir; Banerjee, Sourav


    Nonlinear damage in the composite materials is developed with the growth of damages in the material under fatigue loading. Nonlinear ultrasonic techniques are sensitive to early stage damages such as, fiber breakages, matrix micro-cracking, and deboning etc. Here, in this work, early stage damages are detected in Unidirectional (UD) carbon fiber composite under fatigue loading. Specimens are prepared according to American Society for Testing and Materials (ASTM) standard. Specimens are subjected to low cycle high load (LCHL) fatigue loading until 150,000 cycles. Sensors are mounted on the specimen used for actuation and sensing. A five count tone burst with low frequency (fc =375 kHz) followed by high frequency (fc =770 kHz) signal, was used as actuation signal. Pitch-catch experiments are collected at the interval of 5,000 cycles. Sensor signals are collected for various excitation voltage (from 5V to 20V, with 5V interval). First Fourier Transform (FFT) of the sensor signals are performed and side band frequencies are observed at around 770 kHz. Severity of damages in the material is quantified from the ratio of amplitude of side band frequencies with the central frequency. Nonlinearity in the material due to damage development is also investigated from the damage growth curve obtained at various excitation amplitude. Optical Microcopy imaging were also performed at the interval of 5,000 to examine developments of damages inside the material. This study has a good potential in detection of early stage damages in composite materials.

  18. Acoustic emission monitoring of low velocity impact damage in graphite/epoxy laminates during tensile loading (United States)

    Parker, Bradford H.


    An acoustic emission (AE) system was set up in a linear location data acquisition mode to monitor the tensile loading of eight-ply quasi-isotropic graphite/epoxy specimens containing low velocity impact damage. The impact damage was induced using an instrumented drop weight tower. During impact, specimens were supported by either an aluminum plate or a membrane configuration. Cross-sectional examinations revealed that the aluminum plate configuration resulted in primarily matrix cracking and back surface fiber failure. The membrane support resulted in only matrix cracking and delamination damage. Penetrant enhanced radiography and immersion ultrasonics were used in order to assess the amount of impact damage in each tensile specimen. During tensile loading, AE reliably detected and located the damage sites which included fiber failure. All specimens with areas of fiber breakage ultimately failed at the impact site. AE did not reliably locate damage which consisted of only delaminations and matrix cracking. Specimens with this type of damage did not ultimately fail at the impact site. In summary, AE demonstrated the ability to increase the reliability of structural proof tests; however, the successful use of this technique requires extensive baseline testing.

  19. 78 FR 69910 - Joint Industry Plan; BATS Exchange, Inc., BATS-Y Exchange, Inc., BOX Options Exchange LLC, C2... (United States)


    ... COMMISSION Joint Industry Plan; BATS Exchange, Inc., BATS-Y Exchange, Inc., BOX Options Exchange LLC, C2... LLC, NYSE Arca, Inc. and Topaz Exchange, LLC; Notice of Filing of Proposed National Market System Plan... and Exchange Commission (``Commission'') the proposed National Market System (``NMS'') Plan Governing...

  20. Matrix factorizations and elliptic fibrations

    Directory of Open Access Journals (Sweden)

    Harun Omer


    Full Text Available I use matrix factorizations to describe branes at simple singularities of elliptic fibrations. Each node of the corresponding Dynkin diagrams of the ADE-type singularities is associated with one indecomposable matrix factorization which can be deformed into one or more factorizations of lower rank. Branes with internal fluxes arise naturally as bound states of the indecomposable factorizations. Describing branes in such a way avoids the need to resolve singularities. This paper looks at gauge group breaking from E8 fibers down to SU(5 fibers due to the relevance of such fibrations for local F-theory GUT models. A purpose of this paper is to understand how the deformations of the singularity are understood in terms of its matrix factorizations. By systematically factorizing the elliptic fiber equation, this paper discusses geometries which are relevant for building semi-realistic local models. In the process it becomes evident that breaking patterns which are identical at the level of the Kodaira type of the fibers can be inequivalent at the level of matrix factorizations. Therefore the matrix factorization picture supplements information which the conventional less detailed descriptions lack.

  1. Modeling of Stress Development During Thermal Damage Healing in Fiber-reinforced Composite Materials Containing Embedded Shape Memory Alloy Wires

    NARCIS (Netherlands)

    Bor, Teunis Cornelis; Warnet, Laurent; Akkerman, Remko; de Boer, Andries


    Fiber-reinforced composite materials are susceptible to damage development through matrix cracking and delamination. This article concerns the use of shape memory alloy (SMA) wires embedded in a composite material to support healing of damage through a local heat treatment. The composite material

  2. Liquid/liquid heat exchanger (United States)

    Miller, C. G.


    Conceptual design for heat exchanger, utilizing two immiscible liquids with dissimilar specific gravities in direct contact, is more efficient mechanism of heat transfer than conventional heat exchangers with walls or membranes. Concept could be adapted for collection of heat from solar or geothermal sources.

  3. Educators Exchange: A Program Evaluation. (United States)

    Armstrong, William B.

    The Educators Exchange Program (EEP) was established under a training and educational exchange agreement reached by California's San Diego Community College District (SDCCD) and the republic of Mexico. In the program, the District provided a 4-week technological training program to faculty at Centros de Capacitacion Tecnologica Industrial…

  4. Risk Balance in Exchange Protocols

    NARCIS (Netherlands)

    M.T. Dashti (Mohammad); Y. Wang (Yanjing); I. Cervesato


    htmlabstractWe study the behaviour of rational agents in exchange protocols which rely on trustees. We allow malicious parties to compromise the trustee by paying a cost and, thereby, present a game analysis that advocates exchange protocols which induce balanced risks on the participants. We also

  5. Professional Exchange: Mapping the Future. (United States)

    Dingman, Robert L.


    New associate editor of Professional Exchange section of "Journal of Mental Health Counseling" discusses importance of section. Lists potential topics suggested in 1989, then adds several other topics to the list. Concludes with guidelines for submission to Professional Exchange section. (NB)

  6. Thermal Decomposition of Radiation-Damaged Polystyrene

    Energy Technology Data Exchange (ETDEWEB)

    Abrefah, John; Klinger, George S.


    The radiation-damaged polystyrene (given the identification name of 'polycube') was fabricated by mixing high-density polystyrene material ("Dylene Fines # 100") with plutonium and uranium oxides. The polycubes were used in the 1960s for criticality studies during processing of spent nuclear fuel. The polycubes have since been stored for almost 40 years at the Hanford Plutonium Finishing Plant (PFP) after failure of two processes to reclaim the plutonium and uranium oxides from the polystyrene matrix. Thermal decomposition products from this highly cross-linked polystyrene matrix were characterized using Gas Chromatograph/Mass Spectroscopy (GC/MS) system coupled to a horizontal furnace. The decomposition studies were performed in air and helium atmospheres at about 773 K. The volatile and semi-volatile organic products for the radiation-damaged polystyrene were different compared to virgin polystyrene. The differences were in the number of organic species generated and their concentrations. In the inert (i.e., helium) atmosphere, the major volatile organic products identified (in order of decreasing concentrations) were styrene, benzene, toluene, ethylbenzene, xylene, nathphalene, propane, .alpha.-methylbenzene, indene and 1,2,3-trimethylbenzene. But in air, the major volatile organic species identified changed slightly. Concentrations of the organic species in the inert atmosphere were significantly higher than those for the air atmosphere processing. Overall, 38 volatile organic species were identified in the inert atmosphere compared to 49 species in air. Twenty of the 38 species in the inert conditions were also products in the air atmosphere. Twenty-two oxidized organic products were identified during thermal processing in air.

  7. Heat exchanger leakage problem location

    Directory of Open Access Journals (Sweden)

    Jícha Miroslav


    Full Text Available Recent compact heat exchangers are very often assembled from numerous parts joined together to separate heat transfer fluids and to form the required heat exchanger arrangement. Therefore, the leak tightness is very important property of the compact heat exchangers. Although, the compact heat exchangers have been produced for many years, there are still technological problems associated with manufacturing of the ideal connection between the individual parts, mainly encountered with special purpose heat exchangers, e.g. gas turbine recuperators. This paper describes a procedure used to identify the leakage location inside the prime surface gas turbine recuperator. For this purpose, an analytical model of the leaky gas turbine recuperator was created to assess its performance. The results obtained are compared with the experimental data which were acquired during the recuperator thermal performance analysis. The differences between these two data sets are used to indicate possible leakage areas.

  8. Transendothelial lipoprotein exchange and microalbuminuria

    DEFF Research Database (Denmark)

    Jensen, Jan Skov; Feldt-Rasmussen, Bo; Jensen, Kurt Svarre


    OBJECTIVE: Microalbuminuria associates with increased risk of atherosclerosis in individuals without diabetes. We hypothesized that transendothelial lipoprotein exchange is elevated among such individuals, possibly explaining increased intimal lipoprotein accumulation and thus atherosclerosis....... METHODS: Using an in vivo isotope technique, transendothelial exchange of low density lipoprotein (LDL) was measured in 77 non-diabetic individuals. Autologous 131-iodinated LDL was reinjected intravenously, and the 1-h fractional escape rate was calculated as index of transendothelial exchange. RESULTS......: There was no difference in transendothelial LDL exchange between subjects with microalbuminuria versus normoalbuminuria (mean (95% confidence interval) 3.8%/h (3.3-4.3%/h) versus 4.2%/h (3.7-4.7%/h); P=0.33). In contrast, there was a positive correlation between transendothelial LDL exchange and (logarithmically...

  9. Next Generation Microchannel Heat Exchangers

    CERN Document Server

    Ohadi, Michael; Dessiatoun, Serguei; Cetegen, Edvin


    In Next Generation Microchannel Heat Exchangers, the authors’ focus on the new generation highly efficient heat exchangers and presentation of novel data and technical expertise not available in the open literature.  Next generation micro channels offer record high heat transfer coefficients with pressure drops much less than conventional micro channel heat exchangers. These inherent features promise fast penetration into many mew markets, including high heat flux cooling of electronics, waste heat recovery and energy efficiency enhancement applications, alternative energy systems, as well as applications in mass exchangers and chemical reactor systems. The combination of up to the minute research findings and technical know-how make this book very timely as the search for high performance heat and mass exchangers that can cut costs in materials consumption intensifies.

  10. High Temperature Heat Exchanger Project

    Energy Technology Data Exchange (ETDEWEB)

    Anthony E. Hechanova, Ph.D.


    The UNLV Research Foundation assembled a research consortium for high temperature heat exchanger design and materials compatibility and performance comprised of university and private industry partners under the auspices of the US DOE-NE Nuclear Hydrogen Initiative in October 2003. The objectives of the consortium were to conduct investigations of candidate materials for high temperature heat exchanger componets in hydrogen production processes and design and perform prototypical testing of heat exchangers. The initial research of the consortium focused on the intermediate heat exchanger (located between the nuclear reactor and hydrogen production plan) and the components for the hydrogen iodine decomposition process and sulfuric acid decomposition process. These heat exchanger components were deemed the most challenging from a materials performance and compatibility perspective

  11. Continuum damage modeling in ductile materials using level sets (United States)

    de Brauer, Alexia; Udaykumar, H. S.


    Ductile materials under high-velocity impact undergo large deformation and eventually damage. Damage alters the mechanical behavior of the materials and can lead to fracture and fragmentation. This work proposes a general Eulerian framework to model fracture and interfacial debonding in ductile materials. The current effort focuses on a plate impact problem, where a crack forms due to damage accumulation causing a discontinuity in the material. Damage accumulation is described by the continuum damage models. The level set approach is adopted for both tracking the sharp material interfaces and creating the crack. Results are found to be in good agreement with experimental data and two other commercial codes, CTH and EPIC. Also, damage is considered at the interfaces between two bonded materials, such as particles embedded in a matrix in a composite material. The progressive decohesion of the interfaces due to dynamic loading is simulated via a cohesive zone model. The result shows the ability of the code to handle the separation of the interfaces and create voids. This work has been funded from the AFRL-RW, Computational Mechanics Branch, Eglin AFB, Program Manager: Dr. Angela Diggs.

  12. Triboluminescent Materials for Smart Optical Damage Sensors for Space Applications (United States)

    Aggarwal, M. D.; Penn, B. G.; Miller, J.; Sadate, S.; Batra, A. K.


    There is a need to develop a new technique of damage detection for composites, which could detect cracking or delamination from any desired location within a material structure in real time. Recently, triboluminescent materials have been proposed as smart sensors of structural damage. To sense the damage, these materials can be epoxy bonded, coated in a polymer matrix, or embedded in a composite host structure. When the damage or fracture takes place in the host structure, the resultant fracture of triboluminescent crystals creates a light emission. This will warn in real time that structural damage has occurred. The triboluminescent emission of the candidate phosphor has to be bright enough that the light reaching from the point of fracture to the detector through a fiber optic cable is detectable. There are a large number of triboluminescent materials, but few satisfy the above criterion. The authors have synthesized an organic material known as Europium tetrakis (dibenzoylmethide) triethylammonium (EuD4TEA), which is a potential candidate for application as a damage sensor and could be made into a wireless sensor with the addition of microchip, antenna, and electronics. Preliminary results on the synthesis and characterization of this material are presented.

  13. Lectures on matrix field theory

    CERN Document Server

    Ydri, Badis


    These lecture notes provide a systematic introduction to matrix models of quantum field theories with non-commutative and fuzzy geometries. The book initially focuses on the matrix formulation of non-commutative and fuzzy spaces, followed by a description of the non-perturbative treatment of the corresponding field theories. As an example, the phase structure of non-commutative phi-four theory is treated in great detail, with a separate chapter on the multitrace approach. The last chapter offers a general introduction to non-commutative gauge theories, while two appendices round out the text. Primarily written as a self-study guide for postgraduate students – with the aim of pedagogically introducing them to key analytical and numerical tools, as well as useful physical models in applications – these lecture notes will also benefit experienced researchers by providing a reference guide to the fundamentals of non-commutative field theory with an emphasis on matrix models and fuzzy geometries.

  14. Matrix formalism of synchrobetatron coupling

    Directory of Open Access Journals (Sweden)

    Xiaobiao Huang


    Full Text Available In this paper we present a complete linear synchrobetatron coupling formalism by studying the transfer matrix which describes linear horizontal and longitudinal motions. With the technique established in the linear horizontal-vertical coupling study [D. Sagan and D. Rubin, Phys. Rev. ST Accel. Beams 2, 074001 (1999PRABFM1098-440210.1103/PhysRevSTAB.2.074001], we found a transformation to block diagonalize the transfer matrix and decouple the betatron motion and the synchrotron motion. By separating the usual dispersion term from the horizontal coordinate first, we were able to obtain analytic expressions of the transformation under reasonable approximations. We also obtained the perturbations to the betatron tune and the Courant-Snyder functions. The closed-orbit changes due to finite energy gains at rf cavities and radiation energy losses were studied by the 5×5 extended transfer matrix with the fifth column describing kicks in the 4-dimension phase space.

  15. On the Interfragment Exchange in the X-Pol Method. (United States)

    Cembran, Alessandro; Bao, Peng; Wang, Yingjie; Song, Lingchun; Truhlar, Donald G; Gao, Jiali


    The inclusion of exchange repulsion terms in the explicit polarization (X-Pol) model is examined by antisymmetrizing the X-Pol Hartree-product wave function; this yields XPol with full eXchange, called X-Pol-X. When the monomers are treated by Hartree-Fock theory, this calculation can be accomplished by using the formalism of block-localized wave functions (BLW) that has been used in a variety of applications. In this case the block-localized structure in the X-Pol-X wave function allows for decomposition of the full Fock matrix of a dimension of M blocks into M smaller Fock matrices. The method is illustrated by considering two trimer structures of water clusters, and it is found that the total exchange repulsion energies in these hydrogen-bonding test cases are adequately treated and-to a good approximation- are pairwise additive. We also present a formalism to yield a simplified Fock matrix by making use of the neglect of interfragment differential overlap (NIDO) approximation, which is less severe than the neglect of diatomic differential overlap (NDDO) approximation.

  16. Fault-Tolerant Heat Exchanger (United States)

    Izenson, Michael G.; Crowley, Christopher J.


    A compact, lightweight heat exchanger has been designed to be fault-tolerant in the sense that a single-point leak would not cause mixing of heat-transfer fluids. This particular heat exchanger is intended to be part of the temperature-regulation system for habitable modules of the International Space Station and to function with water and ammonia as the heat-transfer fluids. The basic fault-tolerant design is adaptable to other heat-transfer fluids and heat exchangers for applications in which mixing of heat-transfer fluids would pose toxic, explosive, or other hazards: Examples could include fuel/air heat exchangers for thermal management on aircraft, process heat exchangers in the cryogenic industry, and heat exchangers used in chemical processing. The reason this heat exchanger can tolerate a single-point leak is that the heat-transfer fluids are everywhere separated by a vented volume and at least two seals. The combination of fault tolerance, compactness, and light weight is implemented in a unique heat-exchanger core configuration: Each fluid passage is entirely surrounded by a vented region bridged by solid structures through which heat is conducted between the fluids. Precise, proprietary fabrication techniques make it possible to manufacture the vented regions and heat-conducting structures with very small dimensions to obtain a very large coefficient of heat transfer between the two fluids. A large heat-transfer coefficient favors compact design by making it possible to use a relatively small core for a given heat-transfer rate. Calculations and experiments have shown that in most respects, the fault-tolerant heat exchanger can be expected to equal or exceed the performance of the non-fault-tolerant heat exchanger that it is intended to supplant (see table). The only significant disadvantages are a slight weight penalty and a small decrease in the mass-specific heat transfer.

  17. Damage scenarios and an onboard support system for damaged ships

    Directory of Open Access Journals (Sweden)

    Choi Jin


    Full Text Available Although a safety assessment of damaged ships, which considers environmental conditions such as waves and wind, is important in both the design and operation phases of ships, in Korea, rules or guidelines to conduct such assessments are not yet developed. However, NATO and European maritime societies have developed guidelines for a safety assessment. Therefore, it is required to develop rules or guidelines for safety assessments such as the Naval Ship Code (NSC of NATO. Before the safety assessment of a damaged ship can be performed, the available damage scenarios must be developed and the safety assessment criteria must be established. In this paper, the parameters related to damage by accidents are identified and categorized when developing damage scenarios. The need for damage safety assessment criteria is discussed, and an example is presented. In addition, a concept and specifications for the DB-based supporting system, which is used in the operation phases, are proposed.

  18. Supersymmetry in random matrix theory

    Energy Technology Data Exchange (ETDEWEB)

    Kieburg, Mario


    I study the applications of supersymmetry in random matrix theory. I generalize the supersymmetry method and develop three new approaches to calculate eigenvalue correlation functions. These correlation functions are averages over ratios of characteristic polynomials. In the first part of this thesis, I derive a relation between integrals over anti-commuting variables (Grassmann variables) and differential operators with respect to commuting variables. With this relation I rederive Cauchy- like integral theorems. As a new application I trace the supermatrix Bessel function back to a product of two ordinary matrix Bessel functions. In the second part, I apply the generalized Hubbard-Stratonovich transformation to arbitrary rotation invariant ensembles of real symmetric and Hermitian self-dual matrices. This extends the approach for unitarily rotation invariant matrix ensembles. For the k-point correlation functions I derive supersymmetric integral expressions in a unifying way. I prove the equivalence between the generalized Hubbard-Stratonovich transformation and the superbosonization formula. Moreover, I develop an alternative mapping from ordinary space to superspace. After comparing the results of this approach with the other two supersymmetry methods, I obtain explicit functional expressions for the probability densities in superspace. If the probability density of the matrix ensemble factorizes, then the generating functions exhibit determinantal and Pfaffian structures. For some matrix ensembles this was already shown with help of other approaches. I show that these structures appear by a purely algebraic manipulation. In this new approach I use structures naturally appearing in superspace. I derive determinantal and Pfaffian structures for three types of integrals without actually mapping onto superspace. These three types of integrals are quite general and, thus, they are applicable to a broad class of matrix ensembles. (orig.)

  19. Symmetries and Interactions in Matrix String Theory

    NARCIS (Netherlands)

    Hacquebord, F.H.


    This PhD-thesis reviews matrix string theory and recent developments therein. The emphasis is put on symmetries, interactions and scattering processes in the matrix model. We start with an introduction to matrix string theory and a review of the orbifold model that flows out of matrix string theory

  20. Properties of the matrix A-XY

    NARCIS (Netherlands)

    Steerneman, A.G.M.; van Perlo -ten Kleij, Frederieke


    The main topic of this paper is the matrix V = A - XY*, where A is a nonsingular complex k x k matrix and X and Y are k x p complex matrices of full column rank. Because properties of the matrix V can be derived from those of the matrix Q = I - XY*, we will consider in particular the case where A =

  1. Polychoric/Tetrachoric Matrix or Pearson Matrix? A methodological study

    Directory of Open Access Journals (Sweden)

    Dominguez Lara, Sergio Alexis


    Full Text Available The use of product-moment correlation of Pearson is common in most studies in factor analysis in psychology, but it is known that this statistic is only applicable when the variables related are in interval scale and normally distributed, and when are used in ordinal data may to produce a distorted correlation matrix . Thus is a suitable option using polychoric/tetrachoric matrices in item-level factor analysis when the items are in level measurement nominal or ordinal. The aim of this study was to show the differences in the KMO, Bartlett`s Test and Determinant of the Matrix, percentage of variance explained and factor loadings in depression trait scale of Depression Inventory Trait - State and the Neuroticism dimension of the short form of the Eysenck Personality Questionnaire -Revised, regarding the use of matrices polychoric/tetrachoric matrices and Pearson. These instruments was analyzed with different extraction methods (Maximum Likelihood, Minimum Rank Factor Analysis, Unweighted Least Squares and Principal Components, keeping constant the rotation method Promin were analyzed. Were observed differences regarding sample adequacy measures, as well as with respect to the explained variance and the factor loadings, for solutions having as polychoric/tetrachoric matrix. So it can be concluded that the polychoric / tetrachoric matrix give better results than Pearson matrices when it comes to item-level factor analysis using different methods.

  2. Towards Google matrix of brain

    Energy Technology Data Exchange (ETDEWEB)

    Shepelyansky, D.L., E-mail: [Laboratoire de Physique Theorique (IRSAMC), Universite de Toulouse, UPS, F-31062 Toulouse (France); LPT - IRSAMC, CNRS, F-31062 Toulouse (France); Zhirov, O.V. [Budker Institute of Nuclear Physics, 630090 Novosibirsk (Russian Federation)


    We apply the approach of the Google matrix, used in computer science and World Wide Web, to description of properties of neuronal networks. The Google matrix G is constructed on the basis of neuronal network of a brain model discussed in PNAS 105 (2008) 3593. We show that the spectrum of eigenvalues of G has a gapless structure with long living relaxation modes. The PageRank of the network becomes delocalized for certain values of the Google damping factor {alpha}. The properties of other eigenstates are also analyzed. We discuss further parallels and similarities between the World Wide Web and neuronal networks.

  3. Electrically switched ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Lilga, M.A. [Pacific Northwest National Lab., Richland, WA (United States); Schwartz, D.T.; Genders, D.


    A variety of waste types containing radioactive {sup 137}Cs are found throughout the DOE complex. These waste types include water in reactor cooling basins, radioactive high-level waste (HLW) in underground storage tanks, and groundwater. Safety and regulatory requirements and economics require the removal of radiocesium before these wastes can be permanently disposed of. Electrically Switched Ion Exchange (ESIX) is an approach for radioactive cesium separation that combines IX and electrochemistry to provide a selective, reversible, and economic separation method that also produces little or no secondary waste. In the ESIX process, an electroactive IX film is deposited electrochemically onto a high-surface area electrode, and ion uptake and elution are controlled directly by modulating the potential of the film. For cesium, the electroactive films under investigation are ferrocyanides, which are well known to have high selectivities for cesium in concentrated sodium solutions. When a cathode potential is applied to the film, Fe{sup +3} is reduced to the Fe{sup +2} state, and a cation must be intercalated into the film to maintain charge neutrality (i.e., Cs{sup +} is loaded). Conversely, if an anodic potential is applied, a cation must be released from the film (i.e., Cs{sup +} is unloaded). Therefore, to load the film with cesium, the film is simply reduced; to unload cesium, the film is oxidized.

  4. Studies concerning the anion ex-change resins catalyzed esterification of epichlorohydrin with organic acids

    Directory of Open Access Journals (Sweden)

    E.I. Muresan


    Full Text Available The paper studies the esterification of carboxylic acids with epichlorohydrin over two macroporous strong base anion exchange resins with different polymer matrix. For both resins, the influence of reaction parameters (temperature, catalyst loading, molar ratio on the reaction rate and the yields of the two isomeric esters were investigated.

  5. Analytical model for force prediction when machining metal matrix composites (United States)

    Sikder, Snahungshu

    Metal Matrix Composites (MMC) offer several thermo-mechanical advantages over standard materials and alloys which make them better candidates in different applications. Their light weight, high stiffness, and strength have attracted several industries such as automotive, aerospace, and defence for their wide range of products. However, the wide spread application of Meal Matrix Composites is still a challenge for industry. The hard and abrasive nature of the reinforcement particles is responsible for rapid tool wear and high machining costs. Fracture and debonding of the abrasive reinforcement particles are the considerable damage modes that directly influence the tool performance. It is very important to find highly effective way to machine MMCs. So, it is important to predict forces when machining Metal Matrix Composites because this will help to choose perfect tools for machining and ultimately save both money and time. This research presents an analytical force model for predicting the forces generated during machining of Metal Matrix Composites. In estimating the generated forces, several aspects of cutting mechanics were considered including: shearing force, ploughing force, and particle fracture force. Chip formation force was obtained by classical orthogonal metal cutting mechanics and the Johnson-Cook Equation. The ploughing force was formulated while the fracture force was calculated from the slip line field theory and the Griffith theory of failure. The predicted results were compared with previously measured data. The results showed very good agreement between the theoretically predicted and experimentally measured cutting forces.

  6. Thermal Fatigue Limitations of Continuous Fiber Metal Matrix Composites (United States)

    Halford, Gary R.; Arya, Vinod K.


    The potential structural benefits of unidirectional, continuous-fiber, metal matrix composites (MMC's) are legendary. When compared to their monolithic matrices, MMC's possess superior properties such as higher stiffness and tensile strength, and lower coefficient of thermal expansion in the direction of the reinforcing fibers. As an added bonus, the MMC density will be lower if the fibers are less dense than the matrix matErial they replace. The potential has been demonstrated unequivocally both analytically and experimentally, especially at ambient temperatures. Successes prompted heavily-funded National efforts within the United States (USAF and NASA) and elsewhere to extend the promise of MMC's into the temperature regime wherein creep, stress relaxation, oxidation, and thermal fatigue damage mechanisms lurk. This is the very regime for which alternative high-temperature materials are becoming mandatory, since further enhancement of state- of-the-art monolithic alloys is rapidly approaching a point of diminishing returns.


    Directory of Open Access Journals (Sweden)

    Yuri M. Iryanov, Nikolay A. Kiryanov, Olga V. Dyuriagina , Tatiana Yu. Karaseva, Evgenii A. Karasev


    Full Text Available Background: The damage or loss of articular cartilage is costly medical problem. The purpose of this work – morphological analysis of reparative chondrogenesis when implanted in the area of the knee joint cartilage of granulated mineralized bone matrix. Material and Methods: The characteristic features of the knee cartilage regeneration studied experimentally in pubertal Wistar rats after modeling a marginal perforated defect and implantation of granulated mineralized bone matrix obtained according to original technology without heat and demineralizing processing into the injury zone. Results: This biomaterial established to have pronounced chondro- and osteoinductive properties, and to provide prolonged activation of reparative process, accelerated organotypical remodeling and restoration of the articular cartilage injured. Conclusion: The data obtained demonstrate the efficacy of МВМ in clinical practice for the treatment of diseases and injuries of the articular cartilage.

  8. Constitutive Modelling of Damage Evolution and Martensitic Transformation in 316L Stainless Steel

    Directory of Open Access Journals (Sweden)

    Ryś Maciej


    Full Text Available In this work, the constitutive model, derived with the use of thermodynamic of irreversible processes framework is presented. The model is derived under the assumption of small strains. Plastic strain induced martensitic phase transformation is considered in the austenitic matrix where the volume fraction of the martensite is reflected by a scalar parameter. The austenitic matrix is assumed as the elastic-plastic material and martensitic phase is assumed as randomly distributed and randomly oriented inclusions. Both phases are affected by damage evolution but there is no distinction in the model between damage in austenite and martensite.

  9. Random matrix theory and multivariate statistics


    Diaz-Garcia, Jose A.; Jáimez, Ramon Gutiérrez


    Some tools and ideas are interchanged between random matrix theory and multivariate statistics. In the context of the random matrix theory, classes of spherical and generalised Wishart random matrix ensemble, containing as particular cases the classical random matrix ensembles, are proposed. Some properties of these classes of ensemble are analysed. In addition, the random matrix ensemble approach is extended and a unified theory proposed for the study of distributions for real normed divisio...

  10. Matrix theory selected topics and useful results

    CERN Document Server

    Mehta, Madan Lal


    Matrices and operations on matrices ; determinants ; elementary operations on matrices (continued) ; eigenvalues and eigenvectors, diagonalization of normal matrices ; functions of a matrix ; positive definiteness, various polar forms of a matrix ; special matrices ; matrices with quaternion elements ; inequalities ; generalised inverse of a matrix ; domain of values of a matrix, location and dispersion of eigenvalues ; symmetric functions ; integration over matrix variables ; permanents of doubly stochastic matrices ; infinite matrices ; Alexander matrices, knot polynomials, torsion numbers.

  11. Debonding of short fibres among particulates in a metal matrix composite

    DEFF Research Database (Denmark)

    Tvergaard, Viggo


    A numerical analysis is carried out for the development of damage by fibre-matrix debonding in aluminium reinforced by aligned, short SiC fibres. A unit cell-model that has earlier been applied to study materials with arrays of transversely staggered fibres is here extended to contain a number...

  12. Meso-Scale Progressive Damage Behavior Characterization of Triaxial Braided Composites under Quasi-Static Tensile Load (United States)

    Ren, Yiru; Zhang, Songjun; Jiang, Hongyong; Xiang, Jinwu


    Based on continuum damage mechanics (CDM), a sophisticated 3D meso-scale finite element (FE) model is proposed to characterize the progressive damage behavior of 2D Triaxial Braided Composites (2DTBC) with 60° braiding angle under quasi-static tensile load. The modified Von Mises strength criterion and 3D Hashin failure criterion are used to predict the damage initiation of the pure matrix and fiber tows. A combining interface damage and friction constitutive model is applied to predict the interface damage behavior. Murakami-Ohno stiffness degradation scheme is employed to predict the damage evolution process of each constituent. Coupling with the ordinary and translational symmetry boundary conditions, the tensile elastic response including tensile strength and failure strain of 2DTBC are in good agreement with the available experiment data. The numerical results show that the main failure modes of the composites under axial tensile load are pure matrix cracking, fiber and matrix tension failure in bias fiber tows, matrix tension failure in axial fiber tows and interface debonding; the main failure modes of the composites subjected to transverse tensile load are free-edge effect, matrix tension failure in bias fiber tows and interface debonding.

  13. Custom, contract, and kidney exchange. (United States)

    Healy, Kieran; Krawiec, Kimberly D


    In this Essay, we examine a case in which the organizational and logistical demands of a novel form of organ exchange (the nonsimultaneous, extended, altruistic donor (NEAD) chain) do not map cleanly onto standard cultural schemas for either market or gift exchange, resulting in sociological ambiguity and legal uncertainty. In some ways, a NEAD chain resembles a form of generalized exchange, an ancient and widespread instance of the norm of reciprocity that can be thought of simply as the obligation to “pay it forward” rather than the obligation to reciprocate directly with the original giver. At the same time, a NEAD chain resembles a string of promises and commitments to deliver something in exchange for some valuable consideration--that is, a series of contracts. Neither of these salient "social imaginaries" of exchange--gift giving or formal contract--perfectly meets the practical demands of the NEAD system. As a result, neither contract nor generalized exchange drives the practice of NEAD chains. Rather, the majority of actual exchanges still resemble a simpler form of exchange: direct, simultaneous exchange between parties with no time delay or opportunity to back out. If NEAD chains are to reach their full promise for large-scale, nonsimultaneous organ transfer, legal uncertainties and sociological ambiguities must be finessed, both in the practices of the coordinating agencies and in the minds of NEAD-chain participants. This might happen either through the further elaboration of gift-like language and practices, or through a creative use of the cultural form and motivational vocabulary, but not necessarily the legal and institutional machinery, of contract.

  14. Regularization in Matrix Relevance Learning

    NARCIS (Netherlands)

    Schneider, Petra; Bunte, Kerstin; Stiekema, Han; Hammer, Barbara; Villmann, Thomas; Biehl, Michael

    A In this paper, we present a regularization technique to extend recently proposed matrix learning schemes in learning vector quantization (LVQ). These learning algorithms extend the concept of adaptive distance measures in LVQ to the use of relevance matrices. In general, metric learning can

  15. Parallel Sparse Matrix - Vector Product

    DEFF Research Database (Denmark)

    Alexandersen, Joe; Lazarov, Boyan Stefanov; Dammann, Bernd

    This technical report contains a case study of a sparse matrix-vector product routine, implemented for parallel execution on a compute cluster with both pure MPI and hybrid MPI-OpenMP solutions. C++ classes for sparse data types were developed and the report shows how these class can be used...

  16. Supersymmetry in Random Matrix Theory


    Guhr, Thomas


    Supersymmetry is nowadays indispensable for many problems in Random Matrix Theory. It is presented here with an emphasis on conceptual and structural issues. An introduction to supermathematics is given. The Hubbard-Stratonovich transformation as well as its generalization and superbosonization are explained. The supersymmetric non-linear sigma model, Brownian motion in superspace and the color-flavor transformation are discussed.

  17. The COMPADRE Plant Matrix Database

    DEFF Research Database (Denmark)


    COMPADRE contains demographic information on hundreds of plant species. The data in COMPADRE are in the form of matrix population models and our goal is to make these publicly available to facilitate their use for research and teaching purposes. COMPADRE is an open-access database. We only request...

  18. Open Membranes in Matrix Theory


    Li, Miao


    We discuss how to construct open membranes in the recently proposed matrix model of M theory. In order to sustain an open membrane, two boundary terms are needed in the construction. These boundary terms are available in the system of the longitudinal five-branes and D0-branes.

  19. Hyper-systolic matrix multiplication

    NARCIS (Netherlands)

    Lippert, Th.; Petkov, N.; Palazzari, P.; Schilling, K.

    A novel parallel algorithm for matrix multiplication is presented. It is based on a 1-D hyper-systolic processor abstraction. The procedure can be implemented on all types of parallel systems. (C) 2001 Elsevier Science B,V. All rights reserved.

  20. Bilateral matrix-exponential distributions

    DEFF Research Database (Denmark)

    Bladt, Mogens; Esparza, Luz Judith R; Nielsen, Bo Friis


    In this article we define the classes of bilateral and multivariate bilateral matrix-exponential distributions. These distributions have support on the entire real space and have rational moment-generating functions. These distributions extend the class of bilateral phasetype distributions of [1]...

  1. Extracellular matrix and wound healing. (United States)

    Maquart, F X; Monboisse, J C


    Extracellular matrix has been known for a long time as an architectural support for the tissues. Many recent data, however, have shown that extracellular matrix macromolecules (collagens, elastin, glycosaminoglycans, proteoglycans and connective tissue glycoproteins) are able to regulate many important cell functions, such as proliferation, migration, protein synthesis or degradation, apoptosis, etc., making them able to play an important role in the wound repair process. Not only the intact macromolecules but some of their specific domains, that we called "Matrikines", are also able to regulate many cell activities. In this article, we will summarize main findings showing the effects of extracellular matrix macromolecules and matrikines on connective tissue and epithelial cells, particularly in skin, and their potential implication in the wound healing process. These examples show that extracellular matrix macromolecules or some of their specific domains may play a major role in wound healing. Better knowledge of these interactions may suggest new therapeutic targets in wound healing defects. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  2. Unravelling the nuclear matrix proteome

    DEFF Research Database (Denmark)

    Albrethsen, Jakob; Knol, Jaco C; Jimenez, Connie R


    The nuclear matrix (NM) model posits the presence of a protein/RNA scaffold that spans the mammalian nucleus. The NM proteins are involved in basic nuclear function and are a promising source of protein biomarkers for cancer. Importantly, the NM proteome is operationally defined as the proteins...

  3. Heat and moisture exchanger: importance of humidification in anaesthesia and ventilatory breathing system. (United States)

    Parmar, Vandana


    Adequate humidification is vital to maintain homeostasis of the airway. Heat and moisture exchangers conserve some of the exhaled water, heat and return them to inspired gases. Many heat and moisture exchangers also perfom bacterial/viral filtration and prevent inhalation of small particles. Heat and moisture exchangers are also called condenser humidifier, artificial nose, etc. Most of them are disposable devices with exchanging medium enclosed in a plastic housing. For adult and paediatric age group different dead space types are available. Heat and moisture exchangers are helpful during anaesthesia and ventilatory breathing system. To reduce the damage of the upper respiratory tract through cooling and dehydration inspiratory air can be heated and humidified, thus preventing the serious complications.

  4. Fractional Excretion of Survivin, Extracellular Matrix Metalloproteinase Inducer, and Matrix Metalloproteinase 7 in Children with Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Agnieszka Bargenda


    Full Text Available Background: Epithelial–mesenchymal transition (EMT is defined as a transformation of tubular epithelial cells into mesenchymal ones. These cells migrate through the extracellular matrix and change into active myofibroblasts, which are responsible for excessive matrix deposition. Such changes may lead to tubular dysfunction and fibrosis of the renal parenchyma, characteristic of chronic kidney disease (CKD. However, there are no data on potential EMT markers in children with CKD. The aim of our study was to assess the usefulness of fractional excretion (FE of survivin, E-cadherin, extracellular matrix metalloproteinase inducer (EMMPRIN, matrix metalloproteinase (MMP7, and transforming growth factor beta 1 (TGF-β1 as potential markers of CKD-related complications such as tubular damage and fibrosis. Methods: Forty-one pre-dialysis children with CKD Stages 3–5 and 23 age-matched controls were enrolled in the study. The serum and urine concentrations of analysed parameters were assessed by an enzyme-linked immunosorbent assay test. Results: Tubular reabsorption of all analysed parameters was >99% in the control group. All FE values rose significantly in children with CKD, yet they remained 1%. Conclusions: FE of the examined markers may become a useful tool in the assessment of tubular dysfunction during the course of CKD. The FE of survivin, EMMPRIN, and MMP7 warrant further research as potential independent markers of kidney-specific EMT.

  5. The Precision Simulation of the First Generation Matrix Converter

    Directory of Open Access Journals (Sweden)

    M. Bednář


    Full Text Available This paper describes simulation of first generation matrix converter, which was realized in the lab. The simulation was developed in response to the need a diagnostic tool. The program is needed in order to debug the implemented control algorithms. The simulator supplies an environment for testing the generation of switching pulses without the risk of damaging the hardware. It supports the large potentiality for quicker development of new switching algorithms. A description of the simulated system is also included. 

  6. Telomeres, histone code, and DNA damage response. (United States)

    Misri, S; Pandita, S; Kumar, R; Pandita, T K


    Genomic stability is maintained by telomeres, the end terminal structures that protect chromosomes from fusion or degradation. Shortening or loss of telomeric repeats or altered telomere chromatin structure is correlated with telomere dysfunction such as chromosome end-to-end associations that could lead to genomic instability and gene amplification. The structure at the end of telomeres is such that its DNA differs from DNA double strand breaks (DSBs) to avoid nonhomologous end-joining (NHEJ), which is accomplished by forming a unique higher order nucleoprotein structure. Telomeres are attached to the nuclear matrix and have a unique chromatin structure. Whether this special structure is maintained by specific chromatin changes is yet to be thoroughly investigated. Chromatin modifications implicated in transcriptional regulation are thought to be the result of a code on the histone proteins (histone code). This code, involving phosphorylation, acetylation, methylation, ubiquitylation, and sumoylation of histones, is believed to regulate chromatin accessibility either by disrupting chromatin contacts or by recruiting non-histone proteins to chromatin. The histone code in which distinct histone tail-protein interactions promote engagement may be the deciding factor for choosing specific DSB repair pathways. Recent evidence suggests that such mechanisms are involved in DNA damage detection and repair. Altered telomere chromatin structure has been linked to defective DNA damage response (DDR), and eukaryotic cells have evolved DDR mechanisms utilizing proficient DNA repair and cell cycle checkpoints in order to maintain genomic stability. Recent studies suggest that chromatin modifying factors play a critical role in the maintenance of genomic stability. This review will summarize the role of DNA damage repair proteins specifically ataxia-telangiectasia mutated (ATM) and its effectors and the telomere complex in maintaining genome stability. Copyright 2008 S. Karger

  7. Second Harmonic Generation Imaging and Fourier Transform Spectral Analysis Reveal Damage in Fatigue-Loaded Tendons (United States)

    Fung, David T.; Sereysky, Jedd B.; Basta-Pljakic, Jelena; Laudier, Damien M.; Huq, Rumana; Jepsen, Karl J.; Schaffler, Mitchell B.; Flatow, Evan L.


    Conventional histologic methods provide valuable information regarding the physical nature of damage in fatigue-loaded tendons, limited to thin, two-dimensional sections. We introduce an imaging method that characterizes tendon microstructure three-dimensionally and develop quantitative, spatial measures of damage formation within tendons. Rat patellar tendons were fatigue loaded in vivo to low, moderate, and high damage levels. Tendon microstructure was characterized using multiphoton microscopy by capturing second harmonic generation signals. Image stacks were analyzed using Fourier transform-derived computations to assess frequency-based properties of damage. Results showed 3D microstructure with progressively increased density and variety of damage patterns, characterized by kinked deformations at low, fiber dissociation at moderate, and fiber thinning and out-of-plane discontinuities at high damage levels. Image analysis generated radial distributions of power spectral gradients, establishing a “fingerprint” of tendon damage. Additionally, matrix damage was mapped using local, discretized orientation vectors. The frequency distribution of vector angles, a measure of damage content, differed from one damage level to the next. This study established an objective 3D imaging and analysis method for tendon microstructure, which characterizes directionality and anisotropy of the tendon microstructure and quantitative measures of damage that will advance investigations of the microstructural basis of degradation that precedes overuse injuries. PMID:20232150

  8. Correlation analysis of the Korean stock market: Revisited to consider the influence of foreign exchange rate (United States)

    Jo, Sang Kyun; Kim, Min Jae; Lim, Kyuseong; Kim, Soo Yong


    We investigated the effect of foreign exchange rate in a correlation analysis of the Korean stock market using both random matrix theory and minimum spanning tree. We collected data sets which were divided into two types of stock price, the original stock price in Korean Won and the price converted into US dollars at contemporary foreign exchange rates. Comparing the random matrix theory based on the two different prices, a few particular sectors exhibited substantial differences while other sectors changed little. The particular sectors were closely related to economic circumstances and the influence of foreign financial markets during that period. The method introduced in this paper offers a way to pinpoint the effect of exchange rate on an emerging stock market.



    Podobeková, Veronika; Peráčková, Jana


    The article discusses utilization of heat from waste water in sewage. During the year, temperature of water in sewage ranges between 10 °C and 20 °C and the heat from sewage could be used for heating, cooling and hot water preparation in building. The heat is extracted through a transfer surface area of the heat exchanger into the heat pump, which is able to utilize the low–potential energy. Different design and types of the heat exchangers in sewage are dealt with: heat exchangers embedded i...

  10. Relational and XML Data Exchange

    CERN Document Server

    Arenas, Marcelo


    Data exchange is the problem of finding an instance of a target schema, given an instance of a source schema and a specification of the relationship between the source and the target. Such a target instance should correctly represent information from the source instance under the constraints imposed by the target schema, and it should allow one to evaluate queries on the target instance in a way that is semantically consistent with the source data. Data exchange is an old problem that re-emerged as an active research topic recently, due to the increased need for exchange of data in various for

  11. Heat exchanger using graphite foam (United States)

    Campagna, Michael Joseph; Callas, James John


    A heat exchanger is disclosed. The heat exchanger may have an inlet configured to receive a first fluid and an outlet configured to discharge the first fluid. The heat exchanger may further have at least one passageway configured to conduct the first fluid from the inlet to the outlet. The at least one passageway may be composed of a graphite foam and a layer of graphite material on the exterior of the graphite foam. The layer of graphite material may form at least a partial barrier between the first fluid and a second fluid external to the at least one passageway.

  12. Biological studies of matrix metalloproteinase sensitive drug delivery systems

    DEFF Research Database (Denmark)

    Johansen, Pia Thermann

    for delivery of drugs to specific tissues or cells utilizing biological knowledge of cancer tissue is getting increased attention. In this thesis a novel matrix metalloproteinase-2 (MMP-2) sensitive poly-ethylene glycol (PEG) coated liposomal drug delivery system for treatment of cancer was developed......Cancer, which is a group of diseases characterized by cells with elevated replication rate and compromised DNA damage response, is often treated with cytotoxic drugs, chemotherapeutics, inducing DNA damage that results in cell death. The use of chemotherapeutics in the clinic, however, is limited...... strategies have been developed to target tumor tissue, however, liposomal systems developed so far rely on passive drug diffusion or unspecific association between liposomes and cells after accumulation in tumor tissue, resulting in low drug efficiency. Therefore, development of rationally designed systems...

  13. Acousto-ultrasonic evaluation of ceramic matrix composite materials (United States)

    Dosreis, Henrique L. M.


    Acousto-ultrasonic nondestructive evaluation of ceramic composite specimens with a lithium-alumino-silicate glass matrix reinforced with unidirectional silicon carbide (NICALON) fibers was conducted to evaluate their reserve of strength. Ceramic composite specimens with different amount of damage were prepared by four-point cyclic fatigue loading of the specimens at 500 C for a different number of cycles. The reserve of strength of the specimens was measured as the maximum bending stress recorded during four-pointed bending test with the load monotonically increased until failure occurs. It was observed that the reserve of strength did not correlate with the number of fatigue cycles. However, it was also observed that higher values of the stress wave factor measurements correspond to higher values of the reserve of strength test data. Therefore, these results show that the acousto-ultrasonic approach has the potential of being used to monitor damage and to estimate the reserve of strength of ceramic composites.

  14. Modelling Strategies for Simulating Delamination and Matrix Cracking in Composite Laminates (United States)

    Lachaud, Frederic; Espinosa, Christine; Michel, Laurent; Rahme, Pierre; Piquet, Robert


    The composite materials are nowadays widely used in aeronautical domain. These materials are subjected to different types of loading that can damage a part of the structure. This diminishes the resistance of the structure to failure. In this paper, matrix cracking and delamination propagation in composite laminates are simulated as a part of damage. Two different computational strategies are developed: (i) a cohesive model (CM) based on the classical continuum mechanics and (ii) a continuous damage material model (CDM) coupling failure modes and damage. Another mixed methodology (MM) is proposed using the continuous damage model for delamination initiation and the cohesive model for 3D crack propagation and mesh openings. A good agreement was obtained when compared simple characterization tests and corresponding simulations.

  15. Fatigue damage evaluation of plain woven carbon fiber reinforced plastic (CFRP) modified with MFC (micro-fibrillated cellulose) by thermo-elastic damage analysis (TDA) (United States)

    Aoyama, Ryohei; Okubo, Kazuya; Fujii, Toru


    The aim of this study is to investigate characteristics of fatigue damage of CFRP modified with MFC by TDA under tensile cyclic loading. In this paper, fatigue life of CFRP modified with MFC was investigated under cyclic loading. Characteristics of fatigue damage of CFRP modified with MFC were evaluated by thermo-elastic damage analysis. Maximum improvement in fatigue life was also obtained under cyclic loading when epoxy matrix was enhanced with 0.3wt% of MFC as well as under static loading. Result of TDA showed same tendency as the result of fatigue test, and the result of TDA well expressed the fatigue damage behavior of plain woven CFRP plate. Eventually, TDA was effective for clear understanding the degree of fatigue damage progression of CFRP modified with MFC.

  16. Aqueous flow and transport in analog systems of fractures embedded in permeable matrix

    DEFF Research Database (Denmark)

    Sonnenborg, Torben Obel; Butts, Michael Brian; Jensen, Karsten Høgh


    Two-dimensional laboratory investigations of flow and transport in a fractured permeable medium are presented. Matrix blocks of a manufactured consolidated permeable medium were arranged together to create fractures in the spaces between the blocks. Experiments examined flow and transport in four...... different configurations: (1) matrix only, (2) and (3) matrix blocks containing single fractures of different mean apertures, and (4) a brickwork pattern setup simulating a tortuous multiple fracture network. The observed partitioning of flow and solute concentrations suggested mass exchange between...... the fractures and the matrix was occurring. An analysis of the experimental results using a discrete fracture model and a range of constant aperture models showed that this approach did not capture the correct flow mechanisms. Subsequent simulations including spatial variations of the fracture aperture were...

  17. Development of a criterion for predicting residual strength of composite structures damaged by impact loading


    Ricardo de Medeiros


    Advanced aerospace materials, including fibre reinforced polymer and ceramic matrix composites, are increasingly being used in critical and demanding applications, challenging not only the current damage prediction, detection, and quantification methodologies, but also the residual life of the structure. The main objective of this work consists of developing theoretical and experimental studies about residual strength for composite structures, which are damaged by impact loading, aided by a S...

  18. Localization of simulated damage on a steel beam from random vibrations

    Czech Academy of Sciences Publication Activity Database

    Bayer, Jan; Král, J.; Urushadze, Shota


    Roč. 62, č. 1 (2018), s. 112-116 ISSN 0553-6626 R&D Projects: GA ČR(CZ) GC17-26353J Institutional support: RVO:68378297 Keywords : damage localization * change of natural modes * flexibility matrix * flexibility curvatures * case study * damage detection * vibration monitoring Subject RIV: JM - Building Engineering OBOR OECD: Construction engineering, Municipal and structural engineering Impact factor: 0.313, year: 2016 article /view/10625

  19. Nondestructive determination of fatigue crack damage in composites using vibration tests. (United States)

    Dibenedetto, A. T.; Gauchel, J. V.; Thomas, R. L.; Barlow, J. W.


    The vibration response of glass reinforced epoxy and polyester laminates was investigated. The complex modulus and the damping capacity were measured as fatigue crack damage accumulated. Changes in the Young's modulus as well as the damping capacity correlated with the amount of crack damage. The damping was especially sensitive to debonding of the reinforcement from the resin matrix. Measurement of these vibration response changes shows promise as a means to nondestructively test the structural integrity of filament-reinforced composite structural members.

  20. Delayed exercise promotes remodeling in sub-rupture fatigue damaged tendons. (United States)

    Bell, R; Boniello, M R; Gendron, N R; Flatow, E L; Andarawis-Puri, N


    Tendinopathy is a common musculoskeletal injury whose treatment is limited by ineffective therapeutic interventions. Previously we have shown that tendons ineffectively repair early sub-rupture fatigue damage. In contrast, physiological exercise has been shown to promote remodeling of healthy tendons but its utility as a therapeutic to promote repair of fatigue damaged tendons remains unknown. Therefore, the objective of this study was to assess the utility of exercise initiated 1 and 14 days after onset of fatigue damage to promote structural repair in fatigue damaged tendons. We hypothesized that exercise initiated 14 days after fatigue loading would promote remodeling as indicated by a decrease in area of collagen matrix damage, increased procollagen I and decorin, while decreasing proteins indicative of tendinopathy. Rats engaged in 6-week exercise for 30 min/day or 60 min/day starting 1 or 14 days after fatigue loading. Initiating exercise 1-day after onset of fatigue injury led to exacerbation of matrix damage, particularly at the tendon insertion. Initiating exercise 14 days after onset of fatigue injury led to remodeling of damaged regions in the midsubstance and collagen synthesis at the insertion. Physiological exercise applied after the initial biological response to injury has dampened can potentially promote remodeling of damaged tendons. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  1. Extracellular matrix inflammation in vascular cognitive impairment and dementia. (United States)

    Rosenberg, Gary A


    Vascular cognitive impairment and dementia (VCID) include a wide spectrum of chronic manifestations of vascular disease related to large vessel strokes and small vessel disease (SVD). Lacunar strokes and white matter (WM) injury are consequences of SVD. The main vascular risk factor for SVD is brain hypoperfusion from cerebral blood vessel narrowing due to chronic hypertension. The hypoperfusion leads to activation and degeneration of astrocytes with the resulting fibrosis of the extracellular matrix (ECM). Elasticity is lost in fibrotic cerebral vessels, reducing the response of stiffened blood vessels in times of increased metabolic need. Intermittent hypoxia/ischaemia activates a molecular injury cascade, producing an incomplete infarction that is most damaging to the deep WM, which is a watershed region for cerebral blood flow. Neuroinflammation caused by hypoxia activates microglia/macrophages to release proteases and free radicals that perpetuate the damage over time to molecules in the ECM and the neurovascular unit (NVU). Matrix metalloproteinases (MMPs) secreted in an attempt to remodel the blood vessel wall have the undesired consequences of opening the blood-brain barrier (BBB) and attacking myelinated fibres. This dual effect of the MMPs causes vasogenic oedema in WM and vascular demyelination, which are the hallmarks of the subcortical ischaemic vascular disease (SIVD), which is the SVD form of VCID also called Binswanger's disease (BD). Unravelling the complex pathophysiology of the WM injury-related inflammation in the small vessel form of VCID could lead to novel therapeutic strategies to reduce damage to the ECM, preventing the progressive damage to the WM. © 2017 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  2. Overload road damage model

    CSIR Research Space (South Africa)

    Roux, MP


    Full Text Available .02 1.07 1.02 1.07 1.05 Current Condition: Provincial 1.07 1.17 1.03 1.08 1.05 1.12 1.05 1.12 1.09 Deteriorated Condition 1.14 1.27 1.06 1.14 1.10 1.18 1.10 1.20 1.15 TR 2005/26 - TBP51: Overload Road Damage Model Report – March 2005 CSIR... million Ave. O/L E80s/vehicle (n=4) Low High Average 1996 50,595 14,220 16% 1.28 19.7 40.4 30.1 1997 45,657 13,691 15% 1.31 18.8 38.9 28.9 1998 33,235 14,291 15% 1.22 17.6 36.2 26.9 1999 72,546 25,788 15% 1.13 16.3 33.4 24.9 2000 135...

  3. Treatment of anisotropic damage development within a scalar damage formulation (United States)

    Chan, K. S.; Bodner, S. R.; Munson, D. E.

    This paper is concerned with describing a damage mechanics formulation which provides for non-isotropic effects using a scalar damage variable. An investigation has been in progress for establishing the constitutive behavior of rock salt at long times and low to moderate confining pressures in relation to the possible use of excavated rooms in rock salt formations as repositories for nuclear waste. An important consideration is the effect of damage manifested principally by the formation of shear induced wing cracks which have a stress dependent orientation. The analytical formulation utilizes a scalar damage parameter, but is capable of indicating the non-isotropic dependence of inelastic straining on the stress state and the confining pressure. Also, the equations indicate the possibility of volumetric expansions leading to the onset of tertiary creep and eventually rupture if the damage variable reaches a critical value.

  4. Ribonucleotide triggered DNA damage and RNA-DNA damage responses. (United States)

    Wallace, Bret D; Williams, R Scott


    Research indicates that the transient contamination of DNA with ribonucleotides exceeds all other known types of DNA damage combined. The consequences of ribose incorporation into DNA, and the identity of protein factors operating in this RNA-DNA realm to protect genomic integrity from RNA-triggered events are emerging. Left unrepaired, the presence of ribonucleotides in genomic DNA impacts cellular proliferation and is associated with chromosome instability, gross chromosomal rearrangements, mutagenesis, and production of previously unrecognized forms of ribonucleotide-triggered DNA damage. Here, we highlight recent findings on the nature and structure of DNA damage arising from ribonucleotides in DNA, and the identification of cellular factors acting in an RNA-DNA damage response (RDDR) to counter RNA-triggered DNA damage.

  5. Degradation of extracellular matrix by peroxynitrite/peroxynitrous acid. (United States)

    Kennett, Eleanor C; Davies, Michael J


    The extracellular matrix (ECM) provides strength and elasticity to tissues and plays a key role in regulating cell behavior; damage to this material is believed to be a major factor in many inflammatory diseases. Peroxynitrite/peroxynitrous acid, which is generated at elevated levels at sites of inflammation, is believed to play a role in ECM damage; however, the mechanisms involved are poorly understood. Here we examined the reactions of bolus peroxynitrite, and that generated in a time-dependent manner by SIN-1 decomposition, with ECM isolated from a vascular smooth muscle cell line and porcine thoracic aorta. Bolus peroxynitrite caused the release of ECM glycosaminoglycans and proteins, the formation of 3-nitroTyr, and the detection of ECM-derived radicals (by immuno-spin trapping) in a concentration-dependent manner. Release and nitration of ECM components were modulated by the local pH and bicarbonate. SIN-1 caused the release of glycosaminoglycan, but not protein, from vascular smooth muscle cell-derived ECM in a concentration-, time-, and pH-dependent manner. The data presented here suggest that peroxynitrite-mediated damage to ECM occurs via a radical-mediated pathway. These reactions may contribute to ECM damage at sites of inflammation and play a role in disease progression, including rupture of atherosclerotic lesions.

  6. Matrix metalloproteinases in fish biology and matrix turnover. (United States)

    Pedersen, Mona E; Vuong, Tram T; Rønning, Sissel B; Kolset, Svein O


    Matrix metalloproteinases have important functions for tissue turnover in fish, with relevance both for the fish industry and molecular and cellular research on embryology, inflammation and tissue repair. These metalloproteinases have been studied in different fish types, subjected to both aquaculture and experimental conditions. This review highlights studies on these metalloproteinases in relation to both fish quality and health and further, the future importance of fish for basic research studies. Copyright © 2015. Published by Elsevier B.V.

  7. Pu Anion Exchange Process Intensification

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)


    This project seeks to improve the efficiency of the plutonium anion-exchange process for purifying Pu through the development of alternate ion-exchange media. The objective of the project in FY15 was to develop and test a porous foam monolith material that could serve as a replacement for the current anion-exchange resin, Reillex® HPQ, used at the Savannah River Site (SRS) for purifying Pu. The new material provides advantages in efficiency over the current resin by the elimination of diffusive mass transport through large granular resin beads. By replacing the large resin beads with a porous foam there is much more efficient contact between the Pu solution and the anion-exchange sites present on the material. Several samples of a polystyrene based foam grafted with poly(4-vinylpyridine) were prepared and the Pu sorption was tested in batch contact tests.

  8. Liquid droplet heat exchanger studies (United States)

    Bruckner, A. P.; Hedges, D. E.; Yungster, S.


    Recent analytical and experimental investigations of the liquid droplet heat exchanger (LDHX) concept for space power applications are described. The performance of the LDHX is compared to that of a conventional heat exchanger for heat rejection applications in a Brayton cycle, using the mass-specific heat exchanger effectiveness as a figure of merit. It is shown that the LDHX has an order of magnitude advantage over the conventional heat exchanger. Furthermore, significant improvement in cycle efficiency and power to mass ratio is possible. Two-phase flow experiments in a laboratory scale LDHX, using air and water as the two media, show very good agreement with the quasi-one-dimensional model used in the parametric studies.

  9. Estimating Foreign Exchange Reserve Adequacy

    Directory of Open Access Journals (Sweden)

    Abdul Hakim


    Full Text Available Accumulating foreign exchange reserves, despite their cost and their impacts on other macroeconomics variables, provides some benefits. This paper models such foreign exchange reserves. To measure the adequacy of foreign exchange reserves for import, it uses total reserves-to-import ratio (TRM. The chosen independent variables are gross domestic product growth, exchange rates, opportunity cost, and a dummy variable separating the pre and post 1997 Asian financial crisis. To estimate the risky TRM value, this paper uses conditional Value-at-Risk (VaR, with the help of Glosten-Jagannathan-Runkle (GJR model to estimate the conditional volatility. The results suggest that all independent variables significantly influence TRM. They also suggest that the short and long run volatilities are evident, with the additional evidence of asymmetric effects of negative and positive past shocks. The VaR, which are calculated assuming both normal and t distributions, provide similar results, namely violations in 2005 and 2008.

  10. VLER Health Exchange by Area (United States)

    Department of Veterans Affairs — “Connect Your Docs” through the Virtual Lifetime Electronic Record (VLER) Health Exchange program. This program gives VA and community health care providers secure...

  11. Counterflow Regolith Heat Exchanger Project (United States)

    National Aeronautics and Space Administration — The counterflow regolith heat exchanger (CoRHE) is a device that transfers heat from hot regolith to cold regolith. The CoRHE is essentially a tube-in-tube heat...

  12. Time-dependent deformation of a nonlinear viscoelastic rubber-toughened fiber composite with growing damage (United States)

    Bocchieri, Robert Thomas

    One important factor in the durability of polymeric composites is their loss in stiffness over time due to many softening mechanisms, including nonlinear viscoelasticity, viscoplasticity and damage. Damage here refers to all ply-level microstructural changes such as matrix cracking, fiber-matrix debonding and shear yielding. This dissertation uses the theory previously established by Schapery (1999) to develop experimental and data analysis methods for isolating these softening effects. Schapery's constitutive theory is first tailored for a continuous fiber composite and evaluated for creep/recovery loading where nonlinear viscoelasticity, viscoplasticity and damage growth have a significant effect on strain. Numerical methods, implementing a Genetic Algorithm, are developed to fit material parameters in the recovery equations. This method successfully fits simulated recovery data with hereditary damage effects, but was not implemented on real data due to the unusually complex recovery behavior of the material studied. A method of Acoustic emission monitoring and waveform analysis is developed as a means for tracking two of the primary damage mechanisms in these materials, matrix-cracking and fiber/matrix debond. With direct monitoring, the extent of damage in the material does not need to be inferred from its effect on the stress-strain response. Unidirectional 30°, 45° and 90° coupons of a rubber-toughened carbon/epoxy are monitored in this way for various loading histories. A method of comparing waveforms from different samples is also suggested. An interpretation of the AE data is pro posed based on an initial population of existing flaws. Then a cumulative distribution function (CDF) of microcracking is defined and used to study effects of stress history. After developing an idealized model of the material consisting of two viscoelastic phases, a single loading parameter, which is theoretically independent of loading history and derived from viscoelastic

  13. Shock Initiation of Damaged Explosives

    Energy Technology Data Exchange (ETDEWEB)

    Chidester, S K; Vandersall, K S; Tarver, C M


    Explosive and propellant charges are subjected to various mechanical and thermal insults that can increase their sensitivity over the course of their lifetimes. To quantify this effect, shock initiation experiments were performed on mechanically and thermally damaged LX-04 (85% HMX, 15% Viton by weight) and PBX 9502 (95% TATB, 5% Kel-F by weight) to obtain in-situ manganin pressure gauge data and run distances to detonation at various shock pressures. We report the behavior of the HMX-based explosive LX-04 that was damaged mechanically by applying a compressive load of 600 psi for 20,000 cycles, thus creating many small narrow cracks, or by cutting wedge shaped parts that were then loosely reassembled, thus creating a few large cracks. The thermally damaged LX-04 charges were heated to 190 C for long enough for the beta to delta solid - solid phase transition to occur, and then cooled to ambient temperature. Mechanically damaged LX-04 exhibited only slightly increased shock sensitivity, while thermally damaged LX-04 was much more shock sensitive. Similarly, the insensitive explosive PBX 9502 was mechanically damaged using the same two techniques. Since PBX 9502 does not undergo a solid - solid phase transition but does undergo irreversible or 'rachet' growth when thermally cycled, thermal damage to PBX 9502 was induced by this procedure. As for LX-04, the thermally damaged PBX 9502 demonstrated a greater shock sensitivity than mechanically damaged PBX 9502. The Ignition and Growth reactive flow model calculated the increased sensitivities by igniting more damaged LX-04 and PBX 9502 near the shock front based on the measured densities (porosities) of the damaged charges.

  14. Enhanced defect detection and sizing accuracy using matrix phased array ultrasonic tools

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Roger; Porter, Nancy; Todorov, Evgueni [Edison Welding Institute (EWI), Columbus, OH (United States); Lozev, Mark [BP, Naperville, IL (United States); Reverdy, Frederic [Centre d' Etudes Nucleaires de Saclay (NDT/CEA) Saclay (France). Nondestructive Testing; Benoist, Philippe [Centre d' Etudes Nucleaires de Saclay (NDE/CEA) Saclay (France); Dumas, Philippe [Imasonic, Besancon (France)


    Although ultrasonic testing inspection technology and tools have improved significantly, there is still a need for more reliable detection, monitoring, and accurate sizing of crack-like and planar defects, complex corrosion damage, and detection of secondary features within deformed pipe. Ultrasonic two dimensional (2D) matrix phased array technology offers some unique advantages that make the technology promising for improving detection and sizing of pipeline flaws resulting from welding or from in-service damage. Ultrasonic modeling and simulation has been conducted to evaluate the detection and sizing capabilities of 2D matrix arrays for various pipeline inspection concepts. Simulations have been performed using both flexible and rigid array probes. Inspection concepts using rigid probes were evaluated for inspections from both the outside and inside pipe surfaces, while flexible probes were evaluated primarily for inspection from the outside surface when dents or corrosion damage may limit the use of rigid probes. (author)

  15. Topology of foreign exchange markets using hierarchical structure methods (United States)

    Naylor, Michael J.; Rose, Lawrence C.; Moyle, Brendan J.


    This paper uses two physics derived hierarchical techniques, a minimal spanning tree and an ultrametric hierarchical tree, to extract a topological influence map for major currencies from the ultrametric distance matrix for 1995-2001. We find that these two techniques generate a defined and robust scale free network with meaningful taxonomy. The topology is shown to be robust with respect to method, to time horizon and is stable during market crises. This topology, appropriately used, gives a useful guide to determining the underlying economic or regional causal relationships for individual currencies and to understanding the dynamics of exchange rate price determination as part of a complex network.

  16. International Prices and Exchange Rates


    Gopinath, Gita; Burstein, Ariel


    We survey the recent empirical and theoretical developments in the literature on the relation between prices and exchange rates. After updating some of the major findings in the empirical literature we present a simple framework to interpret this evidence. We review theoretical models that generate insensitivity of prices to exchange rate changes through variable markups, both under flexible prices and nominal rigidities, first in partial equilibrium and then in general equilibrium.

  17. Exchange rate determination in Vietnam


    Thai-Ha Le


    This study investigates the determinants of the exchange rate in Vietnam and suggests policy implications. Gregory-Hansen cointegration tests and generalised variance decomposition (VDC) analysis were applied to monthly data from July 2004 to December 2013. The model was built based on the three popular approaches to exchange rate determination, which are purchasing power parity (PPP) approach, balance of payment (BOP) approach, and monetary and portfolio approach. This study finds that the p...

  18. Shared Year Exchange in Nursing

    DEFF Research Database (Denmark)

    Vedsegaard, Helle Wendner; Wederkinck, Elisabeth


    Beskrivelse af Shared Year Exchange in Nursing, et udviklingsporjekt omhandlende udvikling, beskrivelse og implementering af et fælles studieår for sygeplejerskestuderende ved Metropol og La Trobe University Australien.......Beskrivelse af Shared Year Exchange in Nursing, et udviklingsporjekt omhandlende udvikling, beskrivelse og implementering af et fælles studieår for sygeplejerskestuderende ved Metropol og La Trobe University Australien....

  19. The masonry damage diagnostic system

    NARCIS (Netherlands)

    Hees, R.P.J. van; Naldini, S.


    The MDDS (Masonry Damage Diagnostic Systetn) is an expert system for the evaluation of the deterioration of ancient brick masonry structures. A demo version was developed in an EC-Environment project. The system is centered on damage related to the interaction between materials (brick masonry,

  20. Damage Degree Evaluation of Earthquake Area Using UAV Aerial Image

    Directory of Open Access Journals (Sweden)

    Jinhong Chen


    Full Text Available An Unmanned Aerial Vehicle (UAV system and its aerial image analysis method are developed to evaluate the damage degree of earthquake area. Both the single-rotor and the six-rotor UAVs are used to capture the visible light image of ground targets. Five types of typical ground targets are considered for the damage degree evaluation: the building, the road, the mountain, the riverway, and the vegetation. When implementing the image analysis, first the Image Quality Evaluation Metrics (IQEMs, that is, the image contrast, the image blur, and the image noise, are used to assess the imaging definition. Second, once the image quality is qualified, the Gray Level Cooccurrence Matrix (GLCM texture feature, the Tamura texture feature, and the Gabor wavelet texture feature are computed. Third, the Support Vector Machine (SVM classifier is employed to evaluate the damage degree. Finally, a new damage degree evaluation (DDE index is defined to assess the damage intensity of earthquake. Many experiment results have verified the correctness of proposed system and method.

  1. Damage in woven CFRP laminates under impact loading

    Directory of Open Access Journals (Sweden)

    Silberschmidt V.V.


    Full Text Available Carbon fibre-reinforced polymer (CFRP composites used in sports products can be exposed to different in-service conditions such as large dynamic bending deformations caused by impact loading. Composite materials subjected to such loads demonstrate various damage modes such as matrix cracking, delamination and, ultimately, fabric fracture. Damage evolution affects both in-service properties and performance of CFRP that can deteriorate with time. These failure modes need adequate means of analysis and investigation, the major approaches being experimental characterisation and numerical simulations. This research deals with a deformation behaviour and damage in composite laminates due to dynamic bending. Experimental tests are carried out to characterise the behaviour of a woven CFRP material under large-deflection dynamic bending in impact tests carried out to obtain the force-time and absorbed energy profiles for CFRP laminates. Damage in the impacted laminates is analysed using optical microscopy. Numerical simulations are performed to study the deformation behaviour and damage in CFRP for cases of large-deflection bending based on three-dimensional finite-element models implemented in the commercial code Abaqus/Explicit. Multiple layers of bilinear cohesive-zone elements are employed to model the initiation and progression of inter-ply delamination observed in the microscopy studies. The obtained results of simulations show good agreement with experimental data.

  2. Damage in woven CFRP laminates under impact loading (United States)

    Ullah, H.; Harland, A. R.; Silberschmidt, V. V.


    Carbon fibre-reinforced polymer (CFRP) composites used in sports products can be exposed to different in-service conditions such as large dynamic bending deformations caused by impact loading. Composite materials subjected to such loads demonstrate various damage modes such as matrix cracking, delamination and, ultimately, fabric fracture. Damage evolution affects both in-service properties and performance of CFRP that can deteriorate with time. These failure modes need adequate means of analysis and investigation, the major approaches being experimental characterisation and numerical simulations. This research deals with a deformation behaviour and damage in composite laminates due to dynamic bending. Experimental tests are carried out to characterise the behaviour of a woven CFRP material under large-deflection dynamic bending in impact tests carried out to obtain the force-time and absorbed energy profiles for CFRP laminates. Damage in the impacted laminates is analysed using optical microscopy. Numerical simulations are performed to study the deformation behaviour and damage in CFRP for cases of large-deflection bending based on three-dimensional finite-element models implemented in the commercial code Abaqus/Explicit. Multiple layers of bilinear cohesive-zone elements are employed to model the initiation and progression of inter-ply delamination observed in the microscopy studies. The obtained results of simulations show good agreement with experimental data.

  3. Damage growth in aerospace composites

    CERN Document Server


    This book presents novel methods for the simulation of damage evolution in aerospace composites that will assist in predicting damage onset and growth and thus foster less conservative designs which realize the promised economic benefits of composite materials. The presented integrated numerical/experimental methodologies are capable of taking into account the presence of damage and its evolution in composite structures from the early phases of the design (conceptual design) through to the detailed finite element method analysis and verification phase. The book is based on the GARTEUR Research Project AG-32, which ran from 2007 to 2012, and documents the main results of that project. In addition, the state of the art in European projects on damage evolution in composites is reviewed. While the high specific strength and stiffness of composite materials make them suitable for aerospace structures, their sensitivity to damage means that designing with composites is a challenging task. The new approaches describ...

  4. Extracellular Matrix Proteins Mediate HIV-1 gp120 Interactions with α4β7. (United States)

    Plotnik, David; Guo, Wenjin; Cleveland, Brad; von Haller, Priska; Eng, Jimmy K; Guttman, Miklos; Lee, Kelly K; Arthos, James; Hu, Shiu-Lok


    Gut-homing α4β7high CD4+ T lymphocytes have been shown to be preferentially targeted by human immunodeficiency virus type 1 (HIV-1) and are implicated in HIV-1 pathogenesis. Previous studies demonstrated that HIV-1 envelope protein gp120 binds and signals through α4β7 and that this likely contributes to the infection of α4β7high T cells and promotes cell-to-cell virus transmission. Structures within the second variable loop (V2) of gp120, including the tripeptide motif LDV/I, are thought to mediate gp120-α4β7 binding. However, lack of α4β7 binding has been reported in gp120 proteins containing LDV/I, and the precise determinants of gp120-α4β7 binding are not fully defined. In this work, we report the novel finding that fibronectins mediate indirect gp120-α4β7 interactions. We show that Chinese hamster ovary (CHO) cells used to express recombinant gp120 produced fibronectins and other extracellular matrix proteins that copurified with gp120. CHO cell fibronectins were able to mediate the binding of a diverse panel of gp120 proteins to α4β7 in an in vitro cell binding assay. The V2 loop was not required for fibronectin-mediated binding of gp120 to α4β7, nor did V2-specific antibodies block this interaction. Removal of fibronectin through anion-exchange chromatography abrogated V2-independent gp120-α4β7 binding. Additionally, we showed a recombinant human fibronectin fragment mediated gp120-α4β7 interactions similarly to CHO cell fibronectin. These findings provide an explanation for the apparently contradictory observations regarding the gp120-α4β7 interaction and offer new insights into the potential role of fibronectin and other extracellular matrix proteins in HIV-1 biology.IMPORTANCE Immune tissues within the gut are severely damaged by HIV-1, and this plays an important role in the development of AIDS. Integrin α4β7 plays a major role in the trafficking of lymphocytes, including CD4+ T cells, into gut lymphoid tissues. Previous reports

  5. Solute Migration from the Aquifer Matrix into a Solution Conduit and the Reverse. (United States)

    Li, Guangquan; Field, Malcolm S


    A solution conduit has a permeable wall allowing for water exchange and solute transfer between the conduit and its surrounding aquifer matrix. In this paper, we use Laplace Transform to solve a one-dimensional equation constructed using the Euler approach to describe advective transport of solute in a conduit, a production-value problem. Both nonuniform cross-section of the conduit and nonuniform seepage at the conduit wall are considered in the solution. Physical analysis using the Lagrangian approach and a lumping method is performed to verify the solution. Two-way transfer between conduit water and matrix water is also investigated by using the solution for the production-value problem as a first-order approximation. The approximate solution agrees well with the exact solution if dimensionless travel time in the conduit is an order of magnitude smaller than unity. Our analytical solution is based on the assumption that the spatial and/or temporal heterogeneity in the wall solute flux is the dominant factor in the spreading of spring-breakthrough curves, and conduit dispersion is only a secondary mechanism. Such an approach can lead to the better understanding of water exchange and solute transfer between conduits and aquifer matrix. Euler and Lagrangian approaches are used to solve transport in conduit. Two-way transfer between conduit and matrix is investigated. The solution is applicable to transport in conduit of persisting solute from matrix. © 2016, National Ground Water Association.

  6. Force spectroscopy measurements show that cortical neurons exposed to excitotoxic agonists stiffen before showing evidence of bleb damage.

    Directory of Open Access Journals (Sweden)

    Shan Zou

    Full Text Available In ischemic and traumatic brain injury, hyperactivated glutamate (N-methyl-D-aspartic acid, NMDA and sodium (Nav channels trigger excitotoxic neuron death. Na(+, Ca(++ and H2O influx into affected neurons elicits swelling (increased cell volume and pathological blebbing (disassociation of the plasma membrane's bilayer from its spectrin-actomyosin matrix. Though usually conflated in injured tissue, cell swelling and blebbing are distinct processes. Around an injury core, salvageable neurons could be mildly swollen without yet having suffered the bleb-type membrane damage that, by rendering channels leaky and pumps dysfunctional, exacerbates the excitotoxic positive feedback spiral. Recognizing when neuronal inflation signifies non-lethal osmotic swelling versus blebbing should further efforts to salvage injury-penumbra neurons. To assess whether the mechanical properties of osmotically-swollen versus excitotoxically-blebbing neurons might be cytomechanically distinguishable, we measured cortical neuron elasticity (gauged via atomic force microscopy (AFM-based force spectroscopy upon brief exposure to hypotonicity or to excitotoxic agonists (glutamate and Nav channel activators, NMDA and veratridine. Though unperturbed by solution exchange per se, elasticity increased abruptly with hypotonicity, with NMDA and with veratridine. Neurons then invariably softened towards or below the pre-treatment level, sometimes starting before the washout. The initial channel-mediated stiffening bespeaks an abrupt elevation of hydrostatic pressure linked to NMDA or Nav channel-mediated ion/H2O fluxes, together with increased [Ca(++]int-mediated submembrane actomyosin contractility. The subsequent softening to below-control levels is consistent with the onset of a lethal level of bleb damage. These findings indicate that dissection/identification of molecular events during the excitotoxic transition from stiff/swollen to soft/blebbing is warranted and should be

  7. Matrix Factorization for Evolution Data

    Directory of Open Access Journals (Sweden)

    Xiao-Yu Huang


    Full Text Available We study a matrix factorization problem, that is, to find two factor matrices U and V such that R≈UT×V, where R is a matrix composed of the values of the objects O1,O2,…,On at consecutive time points T1,T2,…,Tt. We first present MAFED, a constrained optimization model for this problem, which straightforwardly performs factorization on R. Then based on the interplay of the data in U, V, and R, a probabilistic graphical model using the same optimization objects is constructed, in which structural dependencies of the data in these matrices are revealed. Finally, we present a fitting algorithm to solve the proposed MAFED model, which produces the desired factorization. Empirical studies on real-world datasets demonstrate that our approach outperforms the state-of-the-art comparison algorithms.

  8. The gravitational S-matrix

    CERN Document Server

    Giddings, Steven B


    We investigate the hypothesized existence of an S-matrix for gravity, and some of its expected general properties. We first discuss basic questions regarding existence of such a matrix, including those of infrared divergences and description of asymptotic states. Distinct scattering behavior occurs in the Born, eikonal, and strong gravity regimes, and we describe aspects of both the partial wave and momentum space amplitudes, and their analytic properties, from these regimes. Classically the strong gravity region would be dominated by formation of black holes, and we assume its unitary quantum dynamics is described by corresponding resonances. Masslessness limits some powerful methods and results that apply to massive theories, though a continuation path implying crossing symmetry plausibly still exists. Physical properties of gravity suggest nonpolynomial amplitudes, although crossing and causality constrain (with modest assumptions) this nonpolynomial behavior, particularly requiring a polynomial bound in c...

  9. Octonions in random matrix theory (United States)

    Forrester, Peter J.


    The octonions are one of the four normed division algebras, together with the real, complex and quaternion number systems. The latter three hold a primary place in random matrix theory, where in applications to quantum physics they are determined as the entries of ensembles of Hermitian random matrices by symmetry considerations. Only for N=2 is there an existing analytic theory of Hermitian random matrices with octonion entries. We use a Jordan algebra viewpoint to provide an analytic theory for N=3. We then proceed to consider the matrix structure X†X, when X has random octonion entries. Analytic results are obtained from N=2, but are observed to break down in the 3×3 case.

  10. DNA damage in neurodegenerative diseases

    Energy Technology Data Exchange (ETDEWEB)

    Coppedè, Fabio, E-mail:; Migliore, Lucia, E-mail:


    Highlights: • Oxidative DNA damage is one of the earliest detectable events in the neurodegenerative process. • The mitochondrial DNA is more vulnerable to oxidative attack than the nuclear DNA. • Cytogenetic damage has been largely documented in Alzheimer's disease patients. • The question of whether DNA damage is cause or consequence of neurodegeneration is still open. • Increasing evidence links DNA damage and repair with epigenetic phenomena. - Abstract: Following the observation of increased oxidative DNA damage in nuclear and mitochondrial DNA extracted from post-mortem brain regions of patients affected by neurodegenerative diseases, the last years of the previous century and the first decade of the present one have been largely dedicated to the search of markers of DNA damage in neuronal samples and peripheral tissues of patients in early, intermediate or late stages of neurodegeneration. Those studies allowed to demonstrate that oxidative DNA damage is one of the earliest detectable events in neurodegeneration, but also revealed cytogenetic damage in neurodegenerative conditions, such as for example a tendency towards chromosome 21 malsegregation in Alzheimer's disease. As it happens for many neurodegenerative risk factors the question of whether DNA damage is cause or consequence of the neurodegenerative process is still open, and probably both is true. The research interest in markers of oxidative stress was shifted, in recent years, towards the search of epigenetic biomarkers of neurodegenerative disorders, following the accumulating evidence of a substantial contribution of epigenetic mechanisms to learning, memory processes, behavioural disorders and neurodegeneration. Increasing evidence is however linking DNA damage and repair with epigenetic phenomena, thereby opening the way to a very attractive and timely research topic in neurodegenerative diseases. We will address those issues in the context of Alzheimer's disease

  11. Random matrix improved subspace clustering

    KAUST Repository

    Couillet, Romain


    This article introduces a spectral method for statistical subspace clustering. The method is built upon standard kernel spectral clustering techniques, however carefully tuned by theoretical understanding arising from random matrix findings. We show in particular that our method provides high clustering performance while standard kernel choices provably fail. An application to user grouping based on vector channel observations in the context of massive MIMO wireless communication networks is provided.

  12. Random matrix theory within superstatistics


    Abul-Magd, A. Y.


    We propose a generalization of the random matrix theory following the basic prescription of the recently suggested concept of superstatistics. Spectral characteristics of systems with mixed regular-chaotic dynamics are expressed as weighted averages of the corresponding quantities in the standard theory assuming that the mean level spacing itself is a stochastic variable. We illustrate the method by calculating the level density, the nearest-neighbor-spacing distributions and the two-level co...

  13. Staggered chiral random matrix theory


    Osborn, James C.


    We present a random matrix theory (RMT) for the staggered lattice QCD Dirac operator. The staggered RMT is equivalent to the zero-momentum limit of the staggered chiral Lagrangian and includes all taste breaking terms at their leading order. This is an extension of previous work which only included some of the taste breaking terms. We will also present some results for the taste breaking contributions to the partition function and the Dirac eigenvalues.

  14. Octonions in random matrix theory


    Forrester, Peter J.


    The octonions are one of the four normed division algebras, together with the real, complex and quaternion number systems. The latter three hold a primary place in random matrix theory, where in applications to quantum physics they are determined as the entries of ensembles of Hermitian random by symmetry considerations. Only for $N=2$ is there an existing analytic theory of Hermitian random matrices with octonion entries. We use a Jordan algebra viewpoint to provide an analytic theory for $N...

  15. Multivariate Matrix-Exponential Distributions

    DEFF Research Database (Denmark)

    Bladt, Mogens; Nielsen, Bo Friis


    In this article we consider the distributions of non-negative random vectors with a joint rational Laplace transform, i.e., a fraction between two multi-dimensional polynomials. These distributions are in the univariate case known as matrix-exponential distributions, since their densities can be ...... for the multivariate normal distribution. However, the proof is different and involves theory for rational function based on continued fractions and Hankel determinants....

  16. Matrix mechanics and fluid shear stress control stem cells fate in three dimensional microenvironment. (United States)

    Chen, Guobao; Lv, Yonggang; Guo, Pan; Lin, Chongwen; Zhang, Xiaomei; Yang, Li; Xu, Zhiling


    Stem cells have the ability to self-renew and to differentiate into multiple mature cell types during early life and growth. Stem cells adhesion, proliferation, migration and differentiation are affected by biochemical, mechanical and physical surface properties of the surrounding matrix in which stem cells reside and stem cells can sensitively feel and respond to the microenvironment of this matrix. More and more researches have proven that three dimensional (3D) culture can reduce the gap between cell culture and physiological environment where cells always live in vivo. This review summarized recent findings on the studies of matrix mechanics that control stem cells (primarily mesenchymal stem cells (MSCs)) fate in 3D environment, including matrix stiffness and extracellular matrix (ECM) stiffness. Considering the exchange of oxygen and nutrients in 3D culture, the effect of fluid shear stress (FSS) on fate decision of stem cells was also discussed in detail. Further, the difference of MSCs response to matrix stiffness between two dimensional (2D) and 3D conditions was compared. Finally, the mechanism of mechanotransduction of stem cells activated by matrix mechanics and FSS in 3D culture was briefly pointed out.

  17. Distributed-memory matrix computations

    DEFF Research Database (Denmark)

    Balle, Susanne Mølleskov


    The main goal of this project is to investigate, develop, and implement algorithms for numerical linear algebra on parallel computers in order to acquire expertise in methods for parallel computations. An important motivation for analyzaing and investigating the potential for parallelism in these......The main goal of this project is to investigate, develop, and implement algorithms for numerical linear algebra on parallel computers in order to acquire expertise in methods for parallel computations. An important motivation for analyzaing and investigating the potential for parallelism....... Several areas in the numerical linear algebra field are investigated and they illustrate the problems that arise as well as the techniques that are related to the use of massively parallel computers: 1.Study of Strassen's matrix-matrix multiplication on the Connection Machine model CM-200. What...... performance can we expect to achieve? Why? 2.Solving systems of linear equations using a Strassen-type matrix-inversion algorithm. A good way to solve systems of linear equations on massively parallel computers? 3.Aspects of computing the singular value decomposition on the Connec-tion Machine CM-5/CM-5E...

  18. MALDI Matrix Research for Biopolymers (United States)

    Fukuyama, Yuko


    Matrices are necessary materials for ionizing analytes in matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS). The choice of a matrix appropriate for each analyte controls the analyses. Thus, in some cases, development or improvement of matrices can become a tool for solving problems. This paper reviews MALDI matrix research that the author has conducted in the recent decade. It describes glycopeptide, carbohydrate, or phosphopeptide analyses using 2,5-dihydroxybenzoic acid (2,5-DHB), 1,1,3,3-tetramethylguanidinium (TMG) salts of p-coumaric acid (CA) (G3CA), 3-aminoquinoline (3-AQ)/α-cyano-4-hydroxycinnamic acid (CHCA) (3-AQ/CHCA) or 3-AQ/CA and gengeral peptide, peptide containing disulfide bonds or hydrophobic peptide analyses using butylamine salt of CHCA (CHCAB), 1,5-diaminonaphthalene (1,5-DAN), octyl 2,5-dihydroxybenzoate (alkylated dihydroxybenzoate, ADHB), or 1-(2,4,6-trihydroxyphenyl)octan-1-one (alkylated trihydroxyacetophenone, ATHAP). PMID:26819908

  19. Superstatistics in Random Matrix Theory

    Directory of Open Access Journals (Sweden)

    A.Y. Abul-Magd


    Full Text Available Random matrix theory (RMT provides a successful model for quantum systems, whose classical counterpart has chaotic dynamics. It is based on two assumptions: (1 matrix-element independence, and (2 base invariance. The last decade witnessed several attempts to extend RMT to describe quantum systems with mixed regular-chaotic dynamics. Most of the proposed generalizations keep the first assumption and violate the second. Recently, several authors have presented other versions of the theory that keep base invariance at the expense of allowing correlations between matrix elements. This is achieved by starting from non-extensive entropies rather than the standard Shannon entropy, or by following the basic prescription of the recently suggested concept of superstatistics. The latter concept was introduced as a generalization of equilibrium thermodynamics to describe non-equilibrium systems by allowing the temperature to fluctuate. We here review the superstatistical generalizations of RMT and illustrate their value by calculating the nearest-neighbor-spacing distributions and comparing the results of calculation with experiments on billiards modeling systems in transition from order to chaos.

  20. Comparison of genome stability in two pig breeds by using the sister chromatid exchange (SCE test

    Directory of Open Access Journals (Sweden)

    V. Barbieri


    Full Text Available The sister chromatid exchange (SCE test has been used to detect genome stability in humans (Chaganti, 1974 and the main livestock species (Ciotola et al., 2004; Di Meo et al., 2000; Di Berardino et al., 1979, and to discover DNA damage caused by a variety of natural and artificial chemical compounds (Iannuzzi et al., 1990.

  1. Matrix-assisted laser desorption/ionisation mass spectrometry of transfer ribonucleic acids isolated from yeast. (United States)

    Gruic-Sovulj, I; Lüdemann, H C; Hillenkamp, F; Weygand-Durasevic, I; Kucan, Z; Peter-Katalinic, J


    tRNATyr and tRNASer purified from bulk brewer's yeast tRNA were subjected to analysis by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Choosing a mixture of 2,4,6- and 2,3,4-trihydroxy-acetophenone and diammonium citrate as matrix a mass resolution of up to 220 (FWHM) was achieved in the linear mode of operation. Cation adduct suppression by addition of cation exchange beads and a chelating agent (CDTA) is shown to substantially improve mass resolution for this class of molecules. PMID:9108172

  2. An Observation of a Transverse to Longitudinal Emittance Exchange at the Fermilab A0 Photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Koeth, Timothy W [State Univ. of New Jersey, New Brunswick, NJ (United States)


    An experimental program to perform a proof of principle of transverse to longitudinal emittance exchangexin ↔ ϵzout and ϵxin ↔ ϵzout) has been developed at the Fermilab A0 Photoinjector. A new beamline, including two magnetic dogleg channels and a TM110 deflecting mode radio frequency cavity, were constructed for the emittance exchange experiment. The first priority was a measurement of the Emittance Exchange beamline transport matrix. The method of difference orbits was used to measure the transport matrix. Through varying individual beam input vector elements, such as xin, x'in, yin, y'in, zin, or δin, and measuring the changes in all of the beam output vector's elements, xout, x'out, yout, y'out, zout, δout, the full 6 x 6 transport matrix was measured. The measured emittance exchange transport matrix was in overall good agreement with our calculated transport matrix. A direct observation of an emittance exchange was performed by measuring the electron beam's characteristics before and after the emittance exchange beamline. Operating with a 14.3 MeV, 250pC electron bunch, ϵzin of 21.1 ± 1.5 mm • mrad was observed to be exchanged with ϵxout of 20.8 ± 2.00 mm • mrad. Diagnostic limitations in the ϵzout measurement did not account for an energy-time correlation, thus potentially returning values larger than the actual longitudinal emittance. The ϵxin of 4.67 ± 0.22 mm • mrad was observed to be exchanged with ϵzout of 7.06 ± 0.43 mm • mrad. The apparent ϵzoutgrowth is consistent with calculated values in which the correlation term is neglected.

  3. Oxidative capacity, lipotoxicity, and mitochondrial damage in type 2 diabetes. (United States)

    Schrauwen, Patrick; Hesselink, Matthijs K C


    Recent evidence points toward decreased oxidative capacity and mitochondrial aberrations as a major contributor to the development of insulin resistance and type 2 diabetes. In this article we will provide an integrative view on the interrelation between decreased oxidative capacity, lipotoxicity, and mitochondrial aberrations in type 2 diabetes. Type 2 diabetes is characterized by disturbances in fatty acid metabolism and is accompanied by accumulation of fatty acids in nonadipose tissues. In metabolically active tissues, such as skeletal muscle, fatty acids are prone to so-called oxidative damage. In addition to producing energy, mitochondria are also a major source of reactive oxygen species, which can lead to lipid peroxidation. In particular, the mitochondrial matrix, which contains DNA, RNA, and numerous enzymes necessary for substrate oxidation, is sensitive to peroxide-induced oxidative damage and needs to be protected against the formation and accumulation of lipids and lipid peroxides. Recent evidence reports that mitochondrial uncoupling is involved in the protection of the mitochondrial matrix against lipid-induced mitochondrial damage. Disturbances in this protection mechanism can contribute to the development of type 2 diabetes.

  4. Neutrinoless ββ decay mediated by the exchange of light and heavy neutrinos: the role of nuclear structure correlations (United States)

    Menéndez, J.


    Neutrinoless β β decay nuclear matrix elements calculated with the shell model and energy-density functional theory typically disagree by more than a factor of two in the standard scenario of light-neutrino exchange. In contrast, for a decay mediated by sterile heavy neutrinos the deviations are reduced to about 50%, an uncertainty similar to the one due to short-range effects. We compare matrix elements in the light- and heavy-neutrino-exchange channels, exploring the radial, momentum transfer and angular momentum-parity matrix element distributions, and considering transitions that involve correlated and uncorrelated nuclear states. We argue that the shorter-range heavy-neutrino exchange is less sensitive to collective nuclear correlations, and that discrepancies in matrix elements are mostly due to the treatment of long-range correlations in many-body calculations. Our analysis supports previous studies suggesting that isoscalar pairing correlations, which affect mostly the longer-range part of the neutrinoless β β decay operator, are partially responsible for the differences between nuclear matrix elements in the standard light-neutrino-exchange mechanism.

  5. Processing-property relationship in ion-exchanged ESP (engineered stress profile) glasses (United States)

    Shen, Junwu


    A novel two-step ion exchange process was recently proposed to produce Engineered Stress Profile (ESP) glass. Important characteristics of ESP glass include high strength, relatively low strength variability and high surface damage resistance. It has been found that the mechanical reliability of ESP glass is mainly dependent on the processing conditions. Therefore, the primary objective of the current thesis is to quantitatively study the relationship between the mechanical properties of ESP glasses and the ion exchange processing conditions. Based on this relationship, processing conditions can be determined for any particular requirement of mechanical behavior for ion exchanged glass. To establish a property-processing relationship in ESP glasses, it is necessary to predict the stress profile in ion exchanged glass from the processing conditions. Since the residual stress profile in ion exchanged glass is mainly caused by the K/Na ion exchange and the stress relaxation, the diffusion process and the stress relaxation behavior of glass were studied. The K2O concentration profiles in singe-step and two-step ion exchanged soda lime silicate (SLS) glasses were calculated and found to be in a good agreement with the measured concentration profiles. The uniaxial compressive stress relaxation behavior of the SLS glass in the current thesis at typical ion exchange temperatures was studied. Since the surface composition in ion exchanged glass is significantly different from the composition of untreated glass, this composition difference could cause significant difference in glass properties including viscosity and stress relaxation. Therefore, properties of glasses with different K/Na ratios were studied, and empirical equations were obtained to estimate glass properties from the glass composition. Given the diffusion coefficient, surface concentration, composition-dependent dilation coefficient and stress relaxation data, residual stress profiles in ion-exchanged glasses

  6. Characterization of the energy-dependent uncertainty and correlation in silicon neutron displacement damage metrics (United States)

    Griffin, Patrick; Rochman, Dimitri; Koning, Arjan


    A rigorous treatment of the uncertainty in the underlying nuclear data on silicon displacement damage metrics is presented. The uncertainty in the cross sections and recoil atom spectra are propagated into the energy-dependent uncertainty contribution in the silicon displacement kerma and damage energy using a Total Monte Carlo treatment. An energy-dependent covariance matrix is used to characterize the resulting uncertainty. A strong correlation between different reaction channels is observed in the high energy neutron contributions to the displacement damage metrics which supports the necessity of using a Monte Carlo based method to address the nonlinear nature of the uncertainty propagation.

  7. Characterization of the energy-dependent uncertainty and correlation in silicon neutron displacement damage metrics

    Directory of Open Access Journals (Sweden)

    Griffin Patrick


    Full Text Available A rigorous treatment of the uncertainty in the underlying nuclear data on silicon displacement damage metrics is presented. The uncertainty in the cross sections and recoil atom spectra are propagated into the energy-dependent uncertainty contribution in the silicon displacement kerma and damage energy using a Total Monte Carlo treatment. An energy-dependent covariance matrix is used to characterize the resulting uncertainty. A strong correlation between different reaction channels is observed in the high energy neutron contributions to the displacement damage metrics which supports the necessity of using a Monte Carlo based method to address the nonlinear nature of the uncertainty propagation.

  8. Damage localization in a residential-sized wind turbine blade by use of the SDDLV method

    DEFF Research Database (Denmark)

    Johansen, Rasmus Johan; Hansen, Lasse Majgaard; Ulriksen, Martin Dalgaard


    The stochastic dynamic damage location vector (SDDLV) method has previously proved to facilitate effective damage localization in truss- and plate-like structures. The method is based on interrogating damage-induced changes in transfer function matrices in cases where these matrices cannot...... be derived explicitly due to unknown input. Instead, vectors from the kernel of the transfer function matrix change are utilized; vectors which are derived on the basis of the system and state-to-output mapping matrices from output-only state-space realizations. The idea is then to convert the kernel vectors...

  9. "On some definitions in matrix algebra"



    Many definitions in matrix algebra are not standardized. This notediscusses some of thepitfalls associated with undesirable orwrong definitions, anddealswith central conceptslikesymmetry, orthogonality, square root, Hermitian and quadratic forms, and matrix derivatives.

  10. Analytic matrix elements with shifted correlated Gaussians

    DEFF Research Database (Denmark)

    Fedorov, D. V.


    Matrix elements between shifted correlated Gaussians of various potentials with several form-factors are calculated analytically. Analytic matrix elements are of importance for the correlated Gaussian method in quantum few-body physics....

  11. Cubic Matrix, Nambu Mechanics and Beyond


    Yoshiharu, KAWAMURA; Department of Physics, Shinshu University


    We propose a generalization of cubic matrix mechanics by introducing a canonical triplet and study its relation to Nambu mechanics. The generalized cubic matrix mechanics we consider can be interpreted as a 'quantum' generalization of Nambu mechanics.

  12. Cubic Matrix, Nambu Mechanics and Beyond


    Kawamura, Y.


    We propose a generalization of cubic matrix mechanics by introducing a canonical triplet and study its relation to Nambu mechanics. The generalized cubic matrix mechanics we consider can be interpreted as a “quantum” generalization of Nambu mechanics.

  13. Glomerular extracellular matrix components and integrins

    NARCIS (Netherlands)

    Sterk, L. M.; de Melker, A. A.; Kramer, D.; Kuikman, I.; Chand, A.; Claessen, N.; Weening, J. J.; Sonnenberg, A.


    It has become apparent that extracellular matrix components and their cellular receptors, the integrins, are important regulators of glomerular development and function. In this rapidly evolving field we studied the production of extracellular matrix components and integrins by rat glomerular

  14. Damage assessment in Braunsbach 2016: data collection and analysis for an improved understanding of damaging processes during flash floods (United States)

    Laudan, Jonas; Rözer, Viktor; Sieg, Tobias; Vogel, Kristin; Thieken, Annegret H.


    Flash floods are caused by intense rainfall events and represent an insufficiently understood phenomenon in Germany. As a result of higher precipitation intensities, flash floods might occur more frequently in future. In combination with changing land use patterns and urbanisation, damage mitigation, insurance and risk management in flash-flood-prone regions are becoming increasingly important. However, a better understanding of damage caused by flash floods requires ex post collection of relevant but yet sparsely available information for research. At the end of May 2016, very high and concentrated rainfall intensities led to severe flash floods in several southern German municipalities. The small town of Braunsbach stood as a prime example of the devastating potential of such events. Eight to ten days after the flash flood event, damage assessment and data collection were conducted in Braunsbach by investigating all affected buildings and their surroundings. To record and store the data on site, the open-source software bundle KoBoCollect was used as an efficient and easy way to gather information. Since the damage driving factors of flash floods are expected to differ from those of riverine flooding, a post-hoc data analysis was performed, aiming to identify the influence of flood processes and building attributes on damage grades, which reflect the extent of structural damage. Data analyses include the application of random forest, a random general linear model and multinomial logistic regression as well as the construction of a local impact map to reveal influences on the damage grades. Further, a Spearman's Rho correlation matrix was calculated. The results reveal that the damage driving factors of flash floods differ from those of riverine floods to a certain extent. The exposition of a building in flow direction shows an especially strong correlation with the damage grade and has a high predictive power within the constructed damage models. Additionally

  15. The Theory of Quaternion Matrix Derivatives


    Xu, Dongpo; Mandic, Danilo P.


    A systematic theory is introduced for calculating the derivatives of quaternion matrix function with respect to quaternion matrix variables. The proposed methodology is equipped with the matrix product rule and chain rule and it is able to handle both analytic and nonanalytic functions. This corrects a flaw in the existing methods, that is, the incorrect use of the traditional product rule. In the framework introduced, the derivatives of quaternion matrix functions can be calculated directly ...

  16. Efficient Robust Matrix Factorization with Nonconvex Penalties


    Yao, Quanming


    Robust matrix factorization (RMF) is a fundamental tool with lots of applications. The state-of-art is robust matrix factorization by majorization and minimization (RMF-MM) algorithm. It iteratively constructs and minimizes a novel surrogate function. Besides, it is also the only RMF algorithm with convergence guarantee. However, it can only deal with the convex $\\ell_1$-loss and does not utilize sparsity when matrix is sparsely observed. In this paper, we proposed robust matrix factorization...

  17. The matrix reorganized: extracellular matrix remodeling and integrin signaling. (United States)

    Larsen, Melinda; Artym, Vira V; Green, J Angelo; Yamada, Kenneth M


    Via integrins, cells can sense dimensionality and other physical and biochemical properties of the extracellular matrix (ECM). Cells respond differently to two-dimensional substrates and three-dimensional environments, activating distinct signaling pathways for each. Direct integrin signaling and indirect integrin modulation of growth factor and other intracellular signaling pathways regulate ECM remodeling and control subsequent cell behavior and tissue organization. ECM remodeling is critical for many developmental processes, and remodeled ECM contributes to tumorigenesis. These recent advances in the field provide new insights and raise new questions about the mechanisms of ECM synthesis and proteolytic degradation, as well as the roles of integrins and tension in ECM remodeling.

  18. Fair Exchange in Strand Spaces

    Directory of Open Access Journals (Sweden)

    Joshua D. Guttman


    Full Text Available Many cryptographic protocols are intended to coordinate state changes among principals. Exchange protocols coordinate delivery of new values to the participants, e.g. additions to the set of values they possess. An exchange protocol is fair if it ensures that delivery of new values is balanced: If one participant obtains a new possession via the protocol, then all other participants will, too. Fair exchange requires progress assumptions, unlike some other protocol properties. The strand space model is a framework for design and verification of cryptographic protocols. A strand is a local behavior of a single principal in a single session of a protocol. A bundle is a partially ordered global execution built from protocol strands and adversary activities. The strand space model needs two additions for fair exchange protocols. First, we regard the state as a multiset of facts, and we allow strands to cause changes in this state via multiset rewriting. Second, progress assumptions stipulate that some channels are resilient-and guaranteed to deliver messages-and some principals are assumed not to stop at certain critical steps. This method leads to proofs of correctness that cleanly separate protocol properties, such as authentication and confidentiality, from invariants governing state evolution. G. Wang's recent fair exchange protocol illustrates the approach.

  19. Pu Anion Exchange Process Intensification

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)


    This research is focused on improving the efficiency of the anion exchange process for purifying plutonium. While initially focused on plutonium, the technology could also be applied to other ion-exchange processes. Work in FY17 focused on the improvement and optimization of porous foam columns that were initially developed in FY16. These foam columns were surface functionalized with poly(4-vinylpyridine) (PVP) to provide the Pu specific anion-exchange sites. Two different polymerization methods were explored for maximizing the surface functionalization with the PVP. The open-celled polymeric foams have large open pores and large surface areas available for sorption. The fluid passes through the large open pores of this material, allowing convection to be the dominant mechanism by which mass transport takes place. These materials generally have very low densities, open-celled structures with high cell interconnectivity, small cell sizes, uniform cell size distributions, and high structural integrity. These porous foam columns provide advantages over the typical porous resin beads by eliminating the slow diffusion through resin beads, making the anion-exchange sites easily accessible on the foam surfaces. The best performing samples exceeded the Pu capacity of the commercially available resin, and also offered the advantage of sharper elution profiles, resulting in a more concentrated product, with less loss of material to the dilute heads and tails cuts. An alternate approach to improving the efficiency of this process was also explored through the development of a microchannel array system for performing the anion exchange.

  20. Electrically Switched Cesium Ion Exchange

    Energy Technology Data Exchange (ETDEWEB)

    JPH Sukamto; ML Lilga; RK Orth


    This report discusses the results of work to develop Electrically Switched Ion Exchange (ESIX) for separations of ions from waste streams relevant to DOE site clean-up. ESIX combines ion exchange and electrochemistry to provide a selective, reversible method for radionuclide separation that lowers costs and minimizes secondary waste generation typically associated with conventional ion exchange. In the ESIX process, an electroactive ion exchange film is deposited onto. a high surface area electrode, and ion uptake and elution are controlled directly by modulating the potential of the film. As a result, the production of secondary waste is minimized, since the large volumes of solution associated with elution, wash, and regeneration cycles typical of standard ion exchange are not needed for the ESIX process. The document is presented in two parts: Part I, the Summary Report, discusses the objectives of the project, describes the ESIX concept and the approach taken, and summarizes the major results; Part II, the Technology Description, provides a technical description of the experimental procedures and in-depth discussions on modeling, case studies, and cost comparisons between ESIX and currently used technologies.

  1. Computational Micromechanics of Damage Initiation and Growth in Functionally Graded Composites

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Gross, Dietmar


    composites with metal matrix and ceramic inclusions, a series of numerical mesomechanical experiments has been carried out. The tensile stress-strain curves, fraction of failed particles versus applied strain curves, and stress and damage distributions at different stages of loading were determined...

  2. A computational model for prediction of progressive damage in laminated composites

    NARCIS (Netherlands)

    Ahmed, A.; Sluys, L.J.


    A finite element model based on solid-like shell elements is presented for the simulation of progressive damage in laminated composite structures. To model mesh independent matrix cracking, a discontinuous solid-like shell element (DSLS) is utilized. The shell element has only displacement degrees

  3. Matrix algebra for higher order moments

    NARCIS (Netherlands)

    Meijer, Erik


    A large part of statistics is devoted to the estimation of models from the sample covariance matrix. The development of the statistical theory and estimators has been greatly facilitated by the introduction of special matrices, such as the commutation matrix and the duplication matrix, and the

  4. An extended diffraction tomography method for quantifying structural damage using numerical Green's functions. (United States)

    Chan, Eugene; Rose, L R Francis; Wang, Chun H


    Existing damage imaging algorithms for detecting and quantifying structural defects, particularly those based on diffraction tomography, assume far-field conditions for the scattered field data. This paper presents a major extension of diffraction tomography that can overcome this limitation and utilises a near-field multi-static data matrix as the input data. This new algorithm, which employs numerical solutions of the dynamic Green's functions, makes it possible to quantitatively image laminar damage even in complex structures for which the dynamic Green's functions are not available analytically. To validate this new method, the numerical Green's functions and the multi-static data matrix for laminar damage in flat and stiffened isotropic plates are first determined using finite element models. Next, these results are time-gated to remove boundary reflections, followed by discrete Fourier transform to obtain the amplitude and phase information for both the baseline (damage-free) and the scattered wave fields. Using these computationally generated results and experimental verification, it is shown that the new imaging algorithm is capable of accurately determining the damage geometry, size and severity for a variety of damage sizes and shapes, including multi-site damage. Some aspects of minimal sensors requirement pertinent to image quality and practical implementation are also briefly discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Fast, accurate evaluation of exact exchange: The occ-RI-K algorithm. (United States)

    Manzer, Samuel; Horn, Paul R; Mardirossian, Narbe; Head-Gordon, Martin


    Construction of the exact exchange matrix, K, is typically the rate-determining step in hybrid density functional theory, and therefore, new approaches with increased efficiency are highly desirable. We present a framework with potential for greatly improved efficiency by computing a compressed exchange matrix that yields the exact exchange energy, gradient, and direct inversion of the iterative subspace (DIIS) error vector. The compressed exchange matrix is constructed with one index in the compact molecular orbital basis and the other index in the full atomic orbital basis. To illustrate the advantages, we present a practical algorithm that uses this framework in conjunction with the resolution of the identity (RI) approximation. We demonstrate that convergence using this method, referred to hereafter as occupied orbital RI-K (occ-RI-K), in combination with the DIIS algorithm is well-behaved, that the accuracy of computed energetics is excellent (identical to conventional RI-K), and that significant speedups can be obtained over existing integral-direct and RI-K methods. For a 4400 basis function C68H22 hydrogen-terminated graphene fragment, our algorithm yields a 14× speedup over the conventional algorithm and a speedup of 3.3× over RI-K.

  6. Solid phase extraction for removal of matrix effects in lipophilic marine toxin analysis by liquid chromatography-tandem mass spectrometry

    NARCIS (Netherlands)

    Gerssen, A.; McElhinney, A. M.; Mulder, P.P.J.; Bire, L.; Hess, P.; de Boer, J.


    The potential of solid phase extraction (SPE) clean-up has been assessed to reduce matrix effects (signal suppression or enhancement) in the liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of lipophilic marine toxins. A large array of ion-exchange, silica-based, and mixed-function

  7. Solid phase extraction for removal of matrix effects in lipophilic marine toxin analysis by liquid chromatography-tandem mass spectrometry

    NARCIS (Netherlands)

    Gerssen, A.; McElhinney, M.; Mulder, P.P.J.; Bire, R.; Hess, P.; Boer, de J.


    The potential of solid phase extraction (SPE) clean-up has been assessed to reduce matrix effects (signal suppression or enhancement) in the liquid chromatography-tandem mass spectrometry (LC¿MS/MS) analysis of lipophilic marine toxins. A large array of ion-exchange, silica-based, and mixed-function

  8. Space Radiation Induced Cytogenetic Damage in the Blood Lymphocytes of Astronauts: Persistence of Damage After Flight and the Effects of Repeat Long Duration Missions (United States)

    George, Kerry; Rhone, Jordan; Chappell, L. J.; Cucinotta, F. A.


    Cytogenetic damage was assessed in blood lymphocytes from astronauts before and after they participated in long-duration space missions of three months or more. The frequency of chromosome damage was measured by fluorescence in situ hybridization (FISH) chromosome painting before flight and at various intervals from a few days to many months after return from the mission. For all individuals, the frequency of chromosome exchanges measured within a month of return from space was higher than their prefight yield. However, some individuals showed a temporal decline in chromosome damage with time after flight. Statistical analysis using combined data for all astronauts indicated a significant overall decreasing trend in total chromosome exchanges with time after flight, although this trend was not seen for all astronauts and the yield of chromosome damage in some individuals actually increased with time after flight. The decreasing trend in total exchanges was slightly more significant when statistical analysis was restricted to data collected more than 220 days after return from flight. In addition, limited data on multiple flights show a lack of correlation between time in space and translocation yields. Data from three crewmembers who has participated in two separate long-duration space missions provide limited information on the effect of repeat flights and show a possible adaptive response to space radiation exposure.

  9. Economical Fabrication of Thick-Section Ceramic Matrix Composites (United States)

    Babcock, Jason; Ramachandran, Gautham; Williams, Brian; Benander, Robert


    A method was developed for producing thick-section [>2 in. (approx.5 cm)], continuous fiber-reinforced ceramic matrix composites (CMCs). Ultramet-modified fiber interface coating and melt infiltration processing, developed previously for thin-section components, were used for the fabrication of CMCs that were an order of magnitude greater in thickness [up to 2.5 in. (approx.6.4 cm)]. Melt processing first involves infiltration of a fiber preform with the desired interface coating, and then with carbon to partially densify the preform. A molten refractory metal is then infiltrated and reacts with the excess carbon to form the carbide matrix without damaging the fiber reinforcement. Infiltration occurs from the inside out as the molten metal fills virtually all the available void space. Densification to fabrication, and testing in two complementary efforts. In a project for the Army, involving SiC/SiC blisk development, nominally 0.8 in. thick x 8 in. diameter (approx. 2 cm thick x 20 cm diameter) components were successfully infiltrated. Blisk hubs were machined using diamond-embedded cutting tools and successfully spin-tested. Good ply uniformity and extremely low residual porosity (matrix composites fabricated via CVI or PIP. The pyrolytic carbon/zirconium nitride interface coating optimized in this work for use on carbon fibers was incorporated in the SiC/SiC composites and yielded a >41 ksi (approx. 283 MPa) flexural strength.

  10. [Antioxidant properties of the pollen exine polymer matrix]. (United States)

    Smirnova, A V; Timoffev, K N; Breĭgina, M A; Matveeva, N P; Ermakov, I P


    The antioxidant properties of exine polymer matrix which forms the outer layer of pollen grain wall were studied. The main component of this matrix is sporopollenin - a unique biopolymer resistant to mechanical and chemical damage. The samples of isolated exine, purified from soluble compounds, were studied with EPR using stable nitroxyl radical TEMPO and DMPO spin trap. At the same time, we analyzed changes in fluorescence of DCFH which detected ROS in the solution. It has been established that exine effectively reduces TEMPO radical and eliminates hydroxyl radical. Also, the fluorometric analysis demonstrated that the exine eliminated H2O2, and this ability significantly decreased after treatment of exine with feruloyl esterase or mild alkaline hydrolysis (1M NaOH), i.e. after hydrolysis of hydroxycinnamic acid esters. After harsh hydrolysis (4M NaOH, 170 degrees C) of ethers bonds a large amount of hydroxycinnamic acids has been released, and exines have lost their antioxidant capacity almost completely. The obtained results point to the ability of extracellular polymer matrix of the exine to eliminate free radicals and H2O2 during crucial periods of male gametophyte development. The participation of ferulic acid and, possibly, of other hydroxycinnamic acids of sporopollenin in these processes has been demonstrated.

  11. Numerical Modeling of Combined Matrix Cracking and Delamination in Composite Laminates Using Cohesive Elements (United States)

    Kumar, Deepak; Roy, Rene; Kweon, Jin-Hwe; Choi, Jin-ho


    Sub-laminate damage in the form of matrix cracking and delamination was simulated by using interface cohesive elements in the finite element (FE) software ABAQUS. Interface cohesive elements were inserted parallel to the fiber orientation in the transverse ply with equal spacing (matrix cracking) and between the interfaces (delamination). Matrix cracking initiation in the cohesive elements was based on stress traction separation laws and propagated under mixed-mode loading. We expanded the work of Shi et al. (Appl. Compos. Mater. 21, 57-70 2014) to include delamination and simulated additional [45/-45/0/90]s and [02/90n]s { n = 1,2,3} CFRP laminates and a [0/903]s GFRP laminate. Delamination damage was quantified numerically in terms of damage dissipative energy. We observed that transverse matrix cracks can propagate to the ply interface and initiate delamination. We also observed for [0/90n/0] laminates that as the number of 90° ply increases past n = 2, the crack density decreases. The predicted crack density evolution compared well with experimental results and the equivalent constraint model (ECM) theory. Empirical relationships were established between crack density and applied stress by linear curve fitting. The reduction of laminate elastic modulus due to cracking was also computed numerically and it is in accordance with reported experimental measurements.

  12. Low-velocity impact damage characterization of carbon fiber reinforced polymer (CFRP) using infrared thermography (United States)

    Li, Yin; Zhang, Wei; Yang, Zheng-wei; Zhang, Jin-yu; Tao, Sheng-jie


    Carbon fiber reinforced polymer (CFRP) after low-velocity impact is detected using infrared thermography, and different damages in the impacted composites are analyzed in the thermal maps. The thermal conductivity under pulse stimulation, frictional heating and thermal conductivity under ultrasonic stimulation of CFRP containing low-velocity impact damage are simulated using numerical simulation method. Then, the specimens successively exposed to the low-velocity impact are respectively detected using the pulse infrared thermography and ultrasonic infrared thermography. Through the numerical simulation and experimental investigation, the results obtained show that the combination of the above two detection methods can greatly improve the capability for detecting and evaluating the impact damage in CFRP. Different damages correspond to different infrared thermal images. The delamination damage, matrix cracking and fiber breakage are characterized as the block-shape hot spot, line-shape hot spot, and

  13. Damage Simulation in Non-Crimp Fabric Composite Plates Subjected to Impact Loads (United States)

    Satyanarayana, Arunkumar; Bogert, Philip B.; Aitharaju, Venkat; Aashat, Satvir; Kia, Hamid


    Progressive failure analysis (PFA) of non-crimp fabric (NCF) composite laminates subjected to low velocity impact loads was performed using the COmplete STress Reduction (COSTR) damage model implemented through VUMAT and UMAT41 user subroutines in the frame works of the commercial finite element programs ABAQUS/Explicit and LS-DYNA, respectively. To validate the model, low velocity experiments were conducted and detailed correlations between the predictions and measurements for both intra-laminar and inter-laminar failures were made. The developed material and damage model predicts the peak impact load and duration very close with the experimental results. Also, the simulation results of delamination damage between the ply interfaces, in-plane matrix damages and fiber damages were all in good agreement with the measurements from the non-destructive evaluation data.

  14. Pervaporation with ion exchange membranes

    Energy Technology Data Exchange (ETDEWEB)

    Boeddeker, K.W.; Wenzlaff, A.


    Sorption and pervaporation of aqueous-organic solvent systems (water-ethanol; water-carboxylic acids) with commercial ion exchange membranes are compared to obtain information on polymersolvent interaction vs. coupling. Close agreement between sorption selectivity and pervaporation selectivity indicates coupling. If pervaporation is less selective than sorption, polymer-solvent interaction overtakes coupling, the limit of de-coupling being phase separation within the sorbate as signaled by a sudden increase in permeability of the lesser interacting component. As long as sorption and pervaporation operate in parallel, favoring enrichment of the same component, coupling enhances the separation effect. If pervaporation counteracts sorption, coupling is detrimental to the separation effect. Potential applications include the dehydration of pre-concentrated water-ethanol using anion exchange membranes, and the enrichment of acetic acid from dilute aqueous solution by pervaporative removal of water through cation exchange membranes.

  15. Composite sandwich construction with syntactic foam core - A practical assessment of post-impact damage and residual strength (United States)

    Hiel, C.; Dittman, D.; Ishai, O.


    An account is given of an inspection method that has been successfully used to assess the postimpact damage and residual strength of syntactic (glass microspheres in epoxy matrix) foam-core sandwich panels with hybrid (carbon and glass fiber-reinforced) composite skins, which inherently possess high damage tolerance. SEM establishes that the crushing of the microspheres is responsible for the absorption of most of the impact energy. Damage tolerance is a function of the localization of damage by that high impact energy absorption.

  16. Minimal solution for inconsistent singular fuzzy matrix equations


    Nikuie, M.; M.K. Mirnia


    The fuzzy matrix equations $Ailde{X}=ilde{Y}$ is called a singular fuzzy matrix equations while the coefficients matrix of its equivalent crisp matrix equations be a singular matrix. The singular fuzzy matrix equations are divided into two parts: consistent singular matrix equations and inconsistent fuzzy matrix equations. In this paper, the inconsistent singular fuzzy matrix equations is studied and the effect of generalized inverses in finding minimal solution of an inconsistent singular fu...

  17. Lightweight Damage Tolerant, High-Temperature Radiators for Nuclear Power and Propulsion (United States)

    Craven, Paul D.; SanSoucie, Michael P.


    NASA is increasingly emphasizing exploration to bodies beyond near-Earth orbit. New propulsion systems and new spacecraft are being built for these missions. As the target bodies get further out from Earth, high energy density systems, e.g., nuclear fusion, for propulsion and power will be advantageous. The mass and size of these systems, including supporting systems such as the heat exchange system, including thermal radiators, will need to be as small as possible. Conventional heat exchange systems are a significant portion of the total thermal management mass and size. Nuclear electric propulsion (NEP) is a promising option for high-speed, in-space travel due to the high energy density of nuclear fission power sources and efficient electric thrusters. Heat from the reactor is converted to power for use in propulsion or for system power. The heat not used in the power conversion is then radiated to space as shown in figure 1. Advanced power conversion technologies will require high operating temperatures and would benefit from lightweight radiator materials. Radiator performance dictates power output for nuclear electric propulsion systems. Pitch-based carbon fiber materials have the potential to offer significant improvements in operating temperature, thermal conductivity, and mass. These properties combine to allow significant decreases in the total mass of the radiators and significant increases in the operating temperature of the fins. A Center-funded project at NASA Marshall Space Flight Center has shown that high thermal conductivity, woven carbon fiber fins with no matrix material, can be used to dissipate waste heat from NEP systems and because of high specific power (kW/kg), will require less mass and possibly less total area than standard metal and composite radiator fins for radiating the same amount of heat. This project uses an innovative approach to reduce the mass and size required for the thermal radiators to the point that in-space NEP and power

  18. Oxidative Damage in Parkinson's Disease

    National Research Council Canada - National Science Library

    Beal, M


    The objective of the present research is to determine whether there is a coherent body of evidence implicating oxidative damage in the pathogenesis of Parkinson's Disease and the MPTP model of Parkinsonism...

  19. Civil Liability for Environmental Damages

    Directory of Open Access Journals (Sweden)

    Daniela Ciochină


    Full Text Available We debated in this article the civil liability for environmental damages as stipulated in ourlegislation with reference to Community law. The theory of legal liability in environmental law is basedon the duty of all citizens to respect and protect the environment. Considering the importance ofenvironment in which we live, the liability for environmental damages is treated by the Constitution as aprinciple and a fundamental obligation. Many human activities cause environmental damages and, in linewith the principle of sustainable development, they should be avoided. However, when this is notpossible, they must be regulated (by criminal or administrative law in order to limit their adverse effectsand, according to the polluter pays principle, to internalize in advance their externalities (through taxes,insurances or other forms of financial security products. Communication aims to analyze these issues andlegal regulations dealing with the issue of liability for environmental damage.

  20. Loss and damage post Paris (United States)

    Petherick, Anna


    The Paris Agreement gave the Warsaw International Mechanism for Loss and Damage a permanent and potentially prominent place in climate negotiations, but beyond that its impact remains wide open for interpretation.