WorldWideScience

Sample records for excessive sewage-sludge application

  1. PBDEs in Italian sewage sludge and environmental risk of using sewage sludge for land application

    International Nuclear Information System (INIS)

    Cincinelli, Alessandra; Martellini, Tania; Misuri, Lorenza; Lanciotti, Eudes; Sweetman, Andy; Laschi, Serena; Palchetti, Ilaria

    2012-01-01

    Polybrominated diphenyl ethers (PBDEs) were determined in sewage sludge samples collected from eight Italian wastewater treatment plants (WWTPs) between June 2009 and March 2010. Total PBDE concentrations ranged from 158.3 to 9427 ng g −1 dw, while deca-BDE (BDE-209) (concentrations ranging from 130.6 to 9411 ng g −1 dw) dominated the congener profile in all the samples, contributing between 77% and 99.8% of total PBDE. The suitability of using a magnetic particle enzyme-linked immunoassay (ELISA) to analyse PBDEs in sewage sludge was also tested. The ELISA results, expressed as BDE-47 equivalents, were well correlated with those obtained by GC–NCI–MS, with correlation coefficients (r 2 ) of 0.899 and 0.959, depending on the extraction procedure adopted. The risk assessment of PBDEs in sewage sludge addressed to land application was calculated. PEC soil values compared to the relative PNEC soil for penta and deca-BDE suggests that there is a low risk to the soil environment. - Highlights: ► PBDEs in sewage sludge were determined in eight Italian WWTPs for the first time. ► PBDEs concentrations showed differences between the eight investigated WWTPs. ► Deca-BDE (BDE-209) was the dominant congener in all samples. ► The suitability of using ELISA method to analyse PBDEs in sewage sludge was tested. ► The risk assessment of using sewage sludge for land application was evaluated. - Determination of PBDEs in sewage sludge by GC–NCI–MS and ELISA test and risk assessment when sewage sludge is used for land application.

  2. Land application of sewage sludge: Pathogen issues

    International Nuclear Information System (INIS)

    Chang, A.C.

    1997-01-01

    Diseases transmitted via the faecal-oral exposure route cause severe gastroenteric disorders, and large numbers of causative organisms are discharged with the faecal matter of infected individuals. For this reason, pathogenic bacteria, viruses, protozoa, or helminths, are always found in sewage sludge. If not properly treated for use in agriculture, sludge can be a source of pathogenic contamination. Radiation is an attractive method to reduce the numbers of microorganisms in sewage sludge. Routine examination for pathogens is not practised nor recommended because complicated and costly procedures are involved. Instead, an indicator organism is usually assayed and enumerated. In this paper, methods are discussed for the investigation of pathogens in sewage sludge. (author)

  3. Land application of sewage sludge: Pathogen issues

    Energy Technology Data Exchange (ETDEWEB)

    Chang, A C [Department of Soil and Environmental Sciences, Univ. of California at Riverside, Riverside, CA (United States)

    1997-10-01

    Diseases transmitted via the faecal-oral exposure route cause severe gastroenteric disorders, and large numbers of causative organisms are discharged with the faecal matter of infected individuals. For this reason, pathogenic bacteria, viruses, protozoa, or helminths, are always found in sewage sludge. If not properly treated for use in agriculture, sludge can be a source of pathogenic contamination. Radiation is an attractive method to reduce the numbers of microorganisms in sewage sludge. Routine examination for pathogens is not practised nor recommended because complicated and costly procedures are involved. Instead, an indicator organism is usually assayed and enumerated. In this paper, methods are discussed for the investigation of pathogens in sewage sludge. (author). 8 refs, 3 tabs.

  4. 40 CFR Appendix A to Part 503 - Procedure To Determine the Annual Whole Sludge Application Rate for a Sewage Sludge

    Science.gov (United States)

    2010-07-01

    ... Whole Sludge Application Rate for a Sewage Sludge A Appendix A to Part 503 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SEWAGE SLUDGE STANDARDS FOR THE USE OR DISPOSAL OF SEWAGE SLUDGE Pt... a Sewage Sludge Section 503.13(a)(4)(ii) requires that the product of the concentration for each...

  5. Major nutrients, heavy metals and PBDEs in soils after long-term sewage sludge application

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Longhua; Li, Zhu; Ren, Jing; Shen, Libo; Wang, Songfeng; Luo, Yongming [Chinese Academy of Sciences, Nanjing (China). Key Lab. of Soil Environment and Pollution Remediation; Cheng, Miaomiao [Chinese Academy of Sciences, Nanjing (China). Key Lab. of Soil Environment and Pollution Remediation; Chinese Academy of Sciences, Beijing (China). Graduate School; Christie, Peter [Agri-Food and Biosciences Institute, Belfast (United Kingdom). Agri-Environment Branch

    2012-04-15

    Purpose: Two contrasting soils receiving long-term application of commercial sewage sludge fertilizers in China were investigated to determine the concentrations of selected nutrients, heavy metals (HMs) and polybrominated diphenyl ethers (PBDEs) present to evaluate the impact of sewage sludge fertilizer on soil fertility and environmental risk. Materials and methods: Soil samples were collected from Tangshan City, Hebei province and Ningbo City, Zhejiang province and divided into two portions, one of which was air-dried and sieved through 2-, 0.25- and 0.149-mm nylon mesh for determination of nutrients and heavy metals. The other portion was frozen at -20 C, freeze-dried and sieved through 2-mm nylon mesh for PBDE analysis. The concentrations of nutrients, heavy metals and PBDEs were determined in all samples. Results and discussion: Concentrations of nutrients and heavy metals in soils amended with low rates of sewage sludge fertilizer (SSF) and conventional fertilizer were compared. After long-term excessive amendment with SSF from Ningbo City (SSF-N), the concentrations of soil total N, P, aqua regia-extractable HMs and DTPA extractable HMs were higher than the control, especially in the arable layer. Moreover, the concentration of aqua regia-extractable Zn (457 mg kg{sup -1}) exceeded the recommended China Environmental Quality Standard for soils (GB15618-1995). All 8 target PBDE congeners were found in fertilizer SSF-N and soil with excessive amendment with SSF-N for 12 years, but the concentrations of 8 different PBDEs in SSF-N-amended soil were not significantly different from control soil. Conclusions: Both economic and environmental benefits can be obtained by careful application of sewage sludge fertilizer to recycle plant nutrients. Repeated and excessive application rates of sewage sludge fertilizer may pose environmental risk, especially in respect of soil heavy metal and PBDE contamination, and high concentrations of phosphorus may also be

  6. Application of radiation technology to sewage sludge processing: A review

    International Nuclear Information System (INIS)

    Wang Jianlong; Wang Jiazhuo

    2007-01-01

    Sewage sludge is unwanted residual solid wastes generated in wastewater treatment and its management is one of the most critical environmental issues of today. The treatment and disposal of sludge contribute a considerable proportion of the cost for running a wastewater treatment plant. The increasing amount of swage sludge and more and more legislative regulation of its disposal have stimulated the need for developing new technologies to process sewage sludge efficiently and economically. One ideal consideration is to recycle it after proper treatment. Radiation technology is regarded to be a promising alternative for its high efficiency in pathogen inactivation, organic pollutants oxidation, odor nuisance elimination and some other characteristics enhancement, which will facilitate the down-stream process of sludge treatment and disposal. Here we present a brief review of application of radiation technology on sewage sludge processing. Some basic information of two currently available irradiation systems and fundamental radiation chemistry are introduced firstly; then the world-wide application of this promising technology is reviewed; various effects of radiation on sludge is discussed in detail; and some concluding remarks are given and some future directions are also proposed

  7. Sewage sludge conditioning with the application of ash from biomass-fired power plant

    Science.gov (United States)

    Wójcik, Marta; Stachowicz, Feliks; Masłoń, Adam

    2018-02-01

    During biomass combustion, there are formed combustion products. Available data indicates that only 29.1 % of biomass ashes were recycled in Poland in 2013. Chemical composition and sorptive properties of ashes enable their application in the sewage sludge treatment. This paper analyses the impact of ashes from biomass-combustion power plant on sewage sludge dewatering and higienisation. The results obtained in laboratory tests proved the possitive impact of biomass ashes on sewage sludge hydration reduction after dewatering and the increase of filtrate volume. After sludge conditioning with the use of biomass combustion by-products, the final moisture content decreased by approximatelly 10÷25 % in comparison with raw sewage sludge depending on the method of dewatering. The application of biomass combustion products in sewage sludge management could provide an alternative method of their utilization according to law and environmental requirements.

  8. Effects of ultrasonic disintegration of excess sewage sludge.

    Science.gov (United States)

    Zielewicz, Ewa

    2016-10-01

    Breaking down sludge floc (sonodyspergation effect) and destruction of the cell membranes of microorganisms forming floc is a direct effect of ultrasonic disintegration of sludge excess. This results in release of organic material by liquid sludge (the sonolysis effect). Desired technological effects of the disintegration are: to shorten the hydrolytic phase of fermentation, to increase the production of biogas (source of renewable energy) and an increased mineralization (stability) of fermented sludge. The presented study demonstrates research covering thickened excess sludge of various physicochemical properties, collected from nine municipal sewage treatment plants. The sludge was subjected to ultrasonic disintegration using three differently constructed disintegrators and different proportions of sonification area. Direct effects of disintegration were monitored and recorded using selected indicators describing changes in the properties of sludge and increase of substance dispersed and dissolved in the supernatant liquid to be filtered. Studies have demonstrated that those (direct) effects of ultrasonic disintegration depend on the physicochemical properties of the sludge (foremost the concentration of dry solids) that determine their variable susceptibility to the disintegration methods. The direct effects also depend on optimal process conditions (which consist of the construction of the ultrasonic disintegrator), the geometric proportions of the sonication area and the operating parameters of disintegration (which could be appropriately matched to the characteristics of sludge). The most preferable results were obtained for ultrasonic disintegration of sludge with a dry matter concentration C 0 < 4.2 %. The highest effect of sonolysis-an almost 30-fold increase in the COD dissolved in the supernatant-was obtained for the sludge of lowest dry matter (C 0 = 2.0 %), which was sonicated in a reactor with a short transducer of the largest radiating surface

  9. Studies on land application of sewage sludge and its limiting factors

    International Nuclear Information System (INIS)

    Wang Xin; Chen Tao; Ge Yinghua; Jia Yongfeng

    2008-01-01

    Field experiments were conducted to study the effect of sewage sludge application on the heavy metal content in soils and grasses. The sewage sludge was obtained from Northern Shenyang Wastewater Treatment Plant, China, and applied at 0, 15, 30, 60, 120 and 150 t ha -1 . Native grasses Zoysia japonica and Poa annua were chosen as experimental plants. The experimental results showed that nutrient content of the soil, especially organic matter, was increased after sewage sludge application. The grass biomass was increased and the grass growing season was longer. Heavy metal concentrations in the soil also increased; however, the Zn content did not exceed the stringent Chinese environmental quality standard for soil. Pb and Cu did not exceed the standard for B grade soil, but Cd concentration in soil amended by sewage sludge has exceeded the B grade standard. Therefore, it is suggested that the sewage sludge produced from the wastewater treatment plant should not be applied to farmland, for which B grade soil or better is required. The sludge is suitable for application to forestry and grasslands or nurseries where food chain contamination with cadmium is not a concern

  10. Heavy metals availability and soil fertility after land application of sewage sludge on dystroferric Red Latosol

    Directory of Open Access Journals (Sweden)

    Rodrigo Santos Moreira

    2013-12-01

    Full Text Available Sewage sludge is the solid residue obtained from urban sewage treatment plants. It is possible to use the sludge in a sustainable way as fertilizer and as soil conditioner due to its high levels of organic matter and nutrients. Besides pathogens and volatile organic compounds, the residue may also contain heavy metals which may accumulate and contaminate crops and the food chain. The aim of this study was evaluates the changes in the fertility of dystrophic Red Latosol and in the availability of heavy metals following application of sewage sludge. It was assessed whether organic matter supplied to the soil as large amounts of sewage sludge would decrease availability of heavy metals in the soil due to of insoluble compounds formation. From this, an experiment was carried out in polyethylene pots using lettuce plant for test. Sewage sludge were applied to the soil in concentrations equivalent to 60, 120 and 180 t ha-1, and a control without sludge, in four replicates, in a completely randomized design. The results show that sewage sludge led to an increase of organic matter contents, of the cation exchange capacity (CEC and of nutrients found in the soil. It also improved plant growth up to a concentration of 120 t ha-1. Availability of heavy metals, however, was reduced in sludge concentrations starting with 120 t ha-1.

  11. Technical support document for land application of sewage sludge. Volume 1. Final report

    International Nuclear Information System (INIS)

    Jones, A.; Beyer, L.; Rookwood, M.; Pacenka, J.; Bergin, J.

    1992-11-01

    The document provides the technical background and justification for the U.S. Environmental Protection Agency's (EPA) final regulation (40 CFR Part 503) covering the land application of sewage sludge. The document summarizes current practices in land application and presents data supporting the risk assessment methodology used to derive human health and environmental risk-based limits for contaminants in land applied sewage sludge. The management practices associated with land application are outlined and the different pathways by which contaminants reach highly-exposed individuals (HEIs) through land application are discussed

  12. The Different Physiological and Antioxidative Responses of Zucchini and Cucumber to Sewage Sludge Application.

    Directory of Open Access Journals (Sweden)

    Anna Wyrwicka

    Full Text Available The present study investigates the effect of soil amended with sewage sludge on oxidative changes in zucchini and cucumber plants (Cucurbitaceae and the consequent activation of their antioxidative systems and detoxification mechanisms. The plants were grown in pots containing soil amended with three concentrations of sewage sludge (1.8 g, 5.4 g and 10.8 g per pot, while controls were potted with vegetable soil. The activities of three antioxidative enzymes, ascorbate peroxidase (APx, catalase (CAT and guaiacol peroxidase (POx, were assessed, as well as of the detoxifying enzyme S-glutathione transferase (GST. Lipid peroxidation was evaluated by measuring the extent of oxidative damage; α-tocopherol content, the main lipophilic antioxidant, was also measured. Visible symptoms of leaf blade damage after sewage sludge application occurred only on the zucchini plants. The zucchini and cucumber plants showed a range of enzymatic antioxidant responses to sewage sludge application. While APx and POx activities increased significantly with increasing sludge concentration in the zucchini plants, they decreased in the cucumber plants. Moreover, although the activity of these enzymes increased gradually with increasing doses of sewage sludge, these levels fell at the highest dose. An inverse relationship between peroxidases activity and CAT activity was observed in both investigated plant species. In contrast, although GST activity increased progressively with sludge concentration in both the zucchini and cucumber leaves, the increase in GST activity was greater in the zucchini plants, being visible at the lowest dose used. The results indicate that signs of sewage sludge toxicity were greater in zucchini than cucumber, and its defense reactions were mainly associated with increases in APx, POx and GST activity.

  13. CO2 emission from soil after reforestation and application of sewage sludge

    Directory of Open Access Journals (Sweden)

    Janaina Braga Carmo

    2014-09-01

    Full Text Available This study aimed to quantify the carbon dioxide emissions from an Oxisol under degraded pasture located in Sorocaba, São Paulo State, Brazil. The treatments were: sewage sludge (LE, sewage sludge compost (CLE, mineral fertilizer (AM and no fertilization (T0. The experiment was conducted in a completely randomized block design with analysis of the effect of the four treatments (CLE, LE, and AM T0 with four replications. The application of sewage sludge, sewage sludge compost, mineral fertilizer and no fertilizer was statistically significant for the variables of height increase and stem height of Guanandi seedlings (Calophyllum brasiliense Cambessèdes - Calophyllaceae. Treatments showed significant differences in terms of CO2 emissions from soil. The CLE exhibited the highest CO2 fluxes, reaching a peak of 9.33±0.96 g C m- 2 day- 1 (p<0.0001, as well as the LE with a maximum CO2 flux of 6.35±1.17 C m- 2 day- 1 (p<0.005. The AM treatment (4.96±1.61 g C m- 2 day- 1 had the same statistical effect as T0 (5.33±0.49 g C m- 2 day- 1. CO2 fluxes were correlated with soil temperature in all treatments. However, considering the period of 172 days of evaluation, the total loss of C as CO2 was 2.7% for sewage sludge and 0.7% for the sewage sludge compost of the total C added with the application on soil.

  14. The Different Physiological and Antioxidative Responses of Zucchini and Cucumber to Sewage Sludge Application.

    Science.gov (United States)

    Wyrwicka, Anna; Urbaniak, Magdalena

    2016-01-01

    The present study investigates the effect of soil amended with sewage sludge on oxidative changes in zucchini and cucumber plants (Cucurbitaceae) and the consequent activation of their antioxidative systems and detoxification mechanisms. The plants were grown in pots containing soil amended with three concentrations of sewage sludge (1.8 g, 5.4 g and 10.8 g per pot), while controls were potted with vegetable soil. The activities of three antioxidative enzymes, ascorbate peroxidase (APx), catalase (CAT) and guaiacol peroxidase (POx), were assessed, as well as of the detoxifying enzyme S-glutathione transferase (GST). Lipid peroxidation was evaluated by measuring the extent of oxidative damage; α-tocopherol content, the main lipophilic antioxidant, was also measured. Visible symptoms of leaf blade damage after sewage sludge application occurred only on the zucchini plants. The zucchini and cucumber plants showed a range of enzymatic antioxidant responses to sewage sludge application. While APx and POx activities increased significantly with increasing sludge concentration in the zucchini plants, they decreased in the cucumber plants. Moreover, although the activity of these enzymes increased gradually with increasing doses of sewage sludge, these levels fell at the highest dose. An inverse relationship between peroxidases activity and CAT activity was observed in both investigated plant species. In contrast, although GST activity increased progressively with sludge concentration in both the zucchini and cucumber leaves, the increase in GST activity was greater in the zucchini plants, being visible at the lowest dose used. The results indicate that signs of sewage sludge toxicity were greater in zucchini than cucumber, and its defense reactions were mainly associated with increases in APx, POx and GST activity.

  15. Preparing sewage sludge for land application or surface disposal: A guide for preparers of sewage sludge on the monitoring, record keeping, and reporting requirements of the federal standards for the use of disposal of sewage sludge, 40 CFR part 503

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    The document focuses on the monitoring, recordkeeping, and reporting requirements that apply to persons who prepare sewage sludge or a material derived from sewage sludge. It defines persons who prepare sewage sludge and then summarizes their general responsibilities. USEPA promulgated at 40 CFR Part 503 Phase 1 of the risk-based regulations that govern the final use or disposal of sewage sludge. The intent of the Federal program is to ensure that the use or disposal of sewage sludge occurs in a way that protects both human health and the environment. The Part 503 regulation establishes general requirements, pollutant limits, operational standards, and management practices, as well as monitoring, recordkeeping, and reporting requirements. These requirements apply to sewage sludge that is land applied, placed on a surface disposal site, or incinerated in a sewage sludge-only incinerator.

  16. Chemical fractionation of heavy metals in a soil amended with repeated sewage sludge application

    International Nuclear Information System (INIS)

    Walter, I.; Cuevas, G.

    1999-01-01

    A sequential extraction method (KNO 3 , NaOH, Na 2 -EDTA, HNO 3 ) was used to determine the soil fraction of Zn, Cd, Cu, Ni, Pb, and Cr in different plots treated with sewage sludges. The sludges were applied to cropland from 1983 to 1991. Soil samples were collected after the 1st and 5th-year of the last sludge application. Sludge applications increased the INOR-fraction for Zn, Cd, and Cu. Cu was the only element found in the EXCH-fraction. Pb and Cr were found mainly in the RES-fraction. Ni was found in the INOR and OM-fractions. All the metals increased in the more resistant fractions. Sewage sludge applications changed the metals distribution of the soil and this effect has continued for at least 5 years. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  17. Land application of sewage sludge: A guide for land appliers on the requirements of the federal standards for the use or disposal of sewage sludge, 40 CFR part 503

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    The U.S. Environmental Protection Agency promulgated a regulation at 40 Code of Federal Regulations (CFR) Part 503 to ensure that sewage sludge is used or disposed of in a way that protects human health and the environment. Part 503 imposes requirements for the land application, surface disposal, and incineration of sewage sludge. The manual focuses on land application, providing guidance to land appliers of sewage sludge. The purpose of the document is to provide the land applier with sufficient guidance to comply fully with all applicable Part 503 requirements. The guidance is structured to first provide a general understanding of the Rule and its underlying principles, including definitions of sewage sludge, land application, and an explanation of who under the Rule is considered a land applier.

  18. Effects of sewage sludge stabilization on fertilizer value and greenhouse gas emissions after soil application

    DEFF Research Database (Denmark)

    Yoshida, Hiroko; Nielsen, Martin P.; Scheutz, Charlotte

    2015-01-01

    was therefore to investigate the effect of sewage sludge stabilization techniques on the C and N mineralization and gaseous emissions from soil. A soil incubation was conducted to determine the rate of C and N mineralization and N2O and CH4 emissions of sewage sludge stabilized using different techniques....... Unstabilized sludge released up to 90% of their C content as CO2, part of which could be caused by release of CO2 from carbonates. Compared with this, sludge stabilization including anaerobic digestion and drying resulted in a reduction of the C mineralization rate of about 40%. Liming reduced C mineralization...... the value of the sludge as a fertilizer. Emissions of CH4 were also reduced through sludge stabilization and mainly occurred after application of easily degradable sludge types, which is likely to have enhanced the creation of anaerobic microsites. The stabilization processes also decreased emissions of N2O...

  19. Highly Efficient Lead Distribution by Magnetic Sewage Sludge Biochar: Sorption Mechanisms and Bench Applications.

    Science.gov (United States)

    Ifthikar, Jerosha; Wang, Jia; Wang, Qiliang; Wang, Ting; Wang, Huabin; Khan, Aimal; Jawad, Ali; Sun, Tingting; Jiao, Xiang; Chen, Zhuqi

    2017-08-01

    Highly efficient magnetic sewage sludge biochar (MSSBC) discloses feasible fabrication process with lower production cost, superior adsorption capacity, usage of waste sewage sludge as resource, selected by external magnetic field and exceptional regeneration property. 2gL -1 MSSBC exhibited a high adsorption capacity of 249.00mgg -1 in 200ppmPb(II) and the lead-MSSBC equilibrium was achieved within one hour, owing to the existence of the copious active sites. The adsorption kinetics was well described by the pseudo-second-order model while the adsorption isotherm could be fitted by Langmuir model. Mechanism study demonstrated the adsorption involved electrostatic attraction, ion exchange, inner-sphere complexation and formation of co-precipitates at the surface of MSSBC. Additionally, adsorption performance maintained remarkable in a broad pH window. These outcomes demonstrated the promising waste resource utilization by a feasible approach that turns the solid waste of sewage sludge into biochar adsorbent with auspicious applications in elimination of Pb(II) from wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Irradiated sewage sludge for application to cropland. Results of a co-ordinated research project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-10-01

    Modern urban societies produce large volumes of sewage, which are transported through a network of underground sewers to wastewater treatment plants, where one or more stages of physical, biological and chemical treatment are imposed. Considerable tonnages of aerobically, and sometimes anaerobically, digested sludge are produced, and treated or untreated effluent is discharged to lagoons, waterways or the ocean. The disposal of sewage sludge is a major issue for municipal authorities. There are increasing legislative restrictions in many countries on disposal methods (e.g. incineration, landfill, composting) including surface application to agricultural land. Sludge can either be viewed as a dangerous waste requiring expensive disposal procedures, or it can be seen as a resource for possible use in agriculture as a soil conditioning agent and a source of plant nutrients. Untreated sewage sludge presents a public-health hazard as it contains human pathogens, including bacteria, viruses and other harmful organisms. Although it has been demonstrated that an appropriate dose of gamma-irradiation can eliminate human parasites and bacterial pathogens from sewage sludge, there is still public concern about the presence of viruses, as well as heavy metals and toxic organic compounds from industrial sources that could enter the food chain if sludge is applied to croplands. More information is also needed on the value of sludge as a source of plant nutrients, expressed in terms of fertilizer equivalence. In this regard, isotopic labelling techniques have a unique role to play in estimating the contribution of sewage sludge to crop nutrition. As a result of recommendations formulated at a Consultants Meeting organized by the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture and the IAEA Division of Physical and Chemical Sciences, 5-9 December 1994 (IAEA-TECDOC-971, Sewage Sludge and Wastewater for Use in Agriculture) the Joint Division implemented a Co

  1. Application of Hydrothermal Treatment to High Concentrated Sewage Sludge for Anaerobic Digestion Process

    OpenAIRE

    M. Orikawa; H. Kamahara; Y. Atsuta; H. Daimon

    2013-01-01

    Tomato and seaweed were produced by utilizing CO2 and heat discharged from power generation using biogas in Toyogawa biomass park, Japan. The biogas was obtained by anaerobic digestion with hydrothermal treatment. The hydrothermal treatment was applied to the high concentrated sewage sludge (22 % total solids (TS) dewatered sludge). The purpose of this study is to clarify the effect of hydrothermal treatment on the qualities of high concentrated sewage sludge, by analyzing particulate organic...

  2. Long-term field application of sewage sludge increases the abundance of antibiotic resistance genes in soil.

    Science.gov (United States)

    Chen, Qinglin; An, Xinli; Li, Hu; Su, Jianqiang; Ma, Yibing; Zhu, Yong-Guan

    2016-01-01

    Sewage sludge and manure are common soil amendments in crop production; however, their impact on the abundance and diversity of the antibiotic resistome in soil remains elusive. In this study, by using high-throughput sequencing and high-throughput quantitative PCR, the patterns of bacterial community and antibiotic resistance genes (ARGs) in a long-term field experiment were investigated to gain insights into these impacts. A total of 130 unique ARGs and 5 mobile genetic elements (MGEs) were detected and the long-term application of sewage sludge and chicken manure significantly increased the abundance and diversity of ARGs in the soil. Genes conferring resistance to beta-lactams, tetracyclines, and multiple drugs were dominant in the samples. Sewage sludge or chicken manure applications caused significant enrichment of 108 unique ARGs and MGEs with a maximum enrichment of up to 3845 folds for mexF. The enrichment of MGEs suggested that the application of sewage sludge or manure may accelerate the dissemination of ARGs in soil through horizontal gene transfer (HGT). Based on the co-occurrence pattern of ARGs subtypes revealed by network analysis, aacC, oprD and mphA-02, were proposed to be potential indicators for quantitative estimation of the co-occurring ARGs subtypes abundance by power functions. The application of sewage sludge and manure resulted in significant increase of bacterial diversity in soil, Proteobacteria, Acidobacteria, Actinobacteria and Chloroflexi were the dominant phyla (>10% in each sample). Five bacterial phyla (Chloroflexi, Planctomycetes, Firmicutes, Gemmatimonadetes and Bacteroidetes) were found to be significantly correlated with the ARGs in soil. Mantel test and variation partitioning analysis (VPA) suggested that bacterial community shifts, rather than MGEs, is the major driver shaping the antibiotic resistome. Additionally, the co-occurrence pattern between ARGs and microbial taxa revealed by network analysis indicated that four

  3. Integral study of sewage sludges

    International Nuclear Information System (INIS)

    1994-01-01

    Sewage sludges are the by-product generated during the treatment process of waste water, and they are conformed by a solid phase which origin is the accumulation of pollutant materials which has been added to water during natural and anthropogenic activities. Its handling is one of the most serious problems faced by water treatment plants which involve the production, gathering, transportation, re utilization and final disposal of sewage sludges. The main purpose of this project is to perform a technical evaluation of the process of sewage sludge irradiation for its possible application as a choice for treatment and final disposal. Irradiation with gammas from Cobalt-60 shows effectiveness in disinfestation of sewage sludges, since they reduce six times the microbial population with a 7 KGy dose. In like manners with doses of 10 KGy is possible to bring down in 70 % the concentration of organic compounds, as well as to eliminate the presence of 6 to 22 organic compounds on samples of sewage sludges. The whole content of this work is presented in six sections: Introduction, Antecedents, Methodology, Conclusions, Suggestions and Bibliography. (Author)

  4. The effect of sewage sludge application on the growth and absorption rates of Pb and As in water spinach

    Directory of Open Access Journals (Sweden)

    Rong Wang

    2016-01-01

    Full Text Available This paper investigated the effect of the application of sewage sludge on the growth rates and absorption rates of Pb and As in potted water spinach. Our results indicated that application of sewage sludge promoted vegetable growth, and the dry weight of water spinach reached a maximal value (4.38 ± 0.82 g upon 8% sludge application. We also found that the dry weights of water spinach after treatment were all greater than those of the control systems (CK. Treatment with sludge promoted the absorption of Pb and As in water spinach, with a significant (p < 0.05 increase of absorbed Pb following treatment concentrations above 10%, and a peak absorption of As at 8%. Finally, we found that concentrations of Pb and As were higher in rhizosphere-attached soil than in free pot.

  5. Response of rice to nitrogenous fertilizer and irradiated sewage sludge

    International Nuclear Information System (INIS)

    Azam, F.; Lodhi, A.; Sajjad, M.H.

    2003-01-01

    A greenhouse pot experiment was conducted to study the effect of Gamma-irradiated sewage sludge, applied alone or along with /sup 15/N-labelled ammonium sulphate (1.0 atom % /sup 15/N excess), on rice yield and N uptake. Six-kg portions of a clay loam were amended wit sewage sludge to obtain N addition rates of 30, 60, 90 and 120 mg kg/sub -1/ soil. In other treatments nitrogen was applied at 120 mg kg/sup -1/ as /sup 15/N-labelled ammonium sulphate or 120 mg kg/sub -1/ as /sup 15/NH/sub 4/-N + sludge-N in the ratios of 1:3, 1:1, or 3:1. All the treatments were given before transplanting rice. Three healthy seedlings (4-week old) of rice (Oryza sativa L., var. Bas-Pak) were transplanted pot/sup -1/ and the plants harvested at maturity. Application of sewage sludge caused a significant improvement in rice yield. Grain yield increased by 188% at sludge-N of 120 mg N kg/sup -1/. The yield benefit at similar rate of fertilizer N was 304%, the increase being more at higher rates of application. The increase in rice yield was dependent on uptake of N and sewage sludge significantly improved the availability of N to the plants. The additional plant N in sludge treated soil was partially attributable to enhanced mineralization of soil N and N/sub 2/ fixation by free living microorganisms. Application of inorganic N led to a significant increase in the availability of N to plants from soil organic matter and sewage sludge. Results of combined application suggested that substantial savings of fertilizer N can be made by using sewage sludge on rice-fields. (author)

  6. Possible Applications of Hardening Slurries with Fly Ash from Thermal Treatment of Municipal Sewage Sludge in Environmental Protection Structures

    Science.gov (United States)

    Falacinski, Paweł; Szarek, Łukasz

    2016-06-01

    In Poland, in recent years, there has been a rapid accumulation of sewage sludge - a by-product in the treatment of urban wastewater. This has come about as a result of infrastructure renewal, specifically, the construction of modern sewage treatment plants. The more stringent regulations and strategic goals adopted for modern sewage management have necessitated the application of modern engineering methodology for the disposal of sewage sludge. One approach is incineration. As a consequence, the amount of fly ash resulting from the thermal treatment of municipal sewage sludge has grown significantly. Hence, intensive work is in progress for environmentally safe management of this type of waste. The aim of the experiment was to evaluate the possibility of using the fly ash that results from municipal sewage sludge thermal treatment (SSTT) as an additive to hardening slurries. This type of hardening slurry with various types of additives, e.g. coal combustion products, is used in the construction of cut-off walls in hydraulic structures. The article presents the technological and functional parameters of hardening slurries with an addition of fly ash obtained by SSTT. Moreover, the usefulness of these slurries is analysed on the basis of their basic properties, i.e. density, contractual viscosity, water separation, structural strength, volumetric density, hydraulic conductivity, compressive and tensile strength. The mandated requirements for slurries employed in the construction of cut-off walls in flood embankments are listed as a usefulness criteria. The article presents the potential uses of fly ash from SSTT in hardening slurry technology. It also suggests directions for further research to fully identify other potential uses of this by-product in this field.

  7. Assessment of heavy metal pollution with applications of sewage sludge and city compost for maximizing crop yields

    International Nuclear Information System (INIS)

    D'Souza, T.J.; Ramachandran, V.; Raghu, K.

    1997-01-01

    Land application of municipal sewage sludge and city compost as organic manures make it imperative to assess heavy-metal pollution in soils and crops. Greenhouse experiments, conducted on maize in a vertisol and an ultisol amended with various doses of dry sewage sludge and city compost from Mumbai, indicated significant increases in dry matter-yields only in the vertisol. Significantly higher concentrations of Zn, Cu, Co, Pb, Ni and Cd were obtained in plants grown in the amended ultisol, but not in the amended vertisol. As Cd is the most toxic, experiments were conducted with four contrasting soils amended with varying doses of Cd-enriched sewage sludge and city compost. Results showed significant reductions in dry-matter yields of maize shoots at the higher rates of sludge or compost in the ultisol and an alfisol, but with no significant effects in the vertisol or an entisol. The levels of Cd and Zn were significantly elevated in plants in all four soil types. There were negative residual effects from the sludge and compost amendments: dry-matter yields of a succeeding maize crop were decreased in the ultisol and alfisol. Experiments with soils amended with sludge enriched with either Cd or Zn at 80 mg kg -1 indicated significant reductions in dry matter in all soils with Cd, but not with Zn. The results demonstrate that sewage sludges and city composts may be effectively used for maximizing crop yields, especially in vertisols and entisols. However, caution has to be exercised when using sludges containing even relatively low levels of Cd, or high levels of Zn, depending upon soil type. (author)

  8. Chemical and microbiological attributes of an oxisol treated with successive applications of sewage sludge¹

    Directory of Open Access Journals (Sweden)

    José Rafael Pires Bueno

    2011-08-01

    Full Text Available Studies on sewage sludge (SS have confirmed the possibilities of using this waste as fertilizer and/or soil conditioner in crop production areas. Despite restrictions with regard to the levels of potentially toxic elements (PTE and pathogens, it is believed that properly treated SS with low PTE levels, applied to soil at adequate rates, may improve the soil chemical and microbiological properties. This study consisted of a long-term field experiment conducted on a Typic Haplorthox (eutroferric Red Latosol treated with SS for seven successive years for maize production, to evaluate changes in the soil chemical and microbiological properties. The treatments consisted of two SS rates (single and double dose of the crop N requirement and a mineral fertilizer treatment. Soil was sampled in the 0-0.20 m layer and analyzed for chemical properties (organic C, pH, P, K, Ca, Mg, CEC, B, Cu, Fe, Mn, Zn, Cd, Ni, and Pb and microbiological properties (basal respiration, microbial biomass activity, microbial biomass C, metabolic quotient, microbial quotient, and protease and dehydrogenase enzyme activities. Successive SS applications to soil increased the macro- and micronutrient availability, but the highest SS dose reduced the soil pH significantly, indicating a need for periodic corrections. The SS treatments also affected soil microbial activity and biomass negatively. There were no significant differences among treatments for maize grain yield. After seven annual applications of the recommended sludge rate, the heavy metal levels in the soil had not reached toxic levels.

  9. INFLUENCE OF BIOLOGICAL AND THERMAL TRANSFORMED SEWAGE SLUDGE APPLICATION ON MANGANESE CONTENT IN PLANTS AND SOIL

    Directory of Open Access Journals (Sweden)

    Małgorzata Koncewicz-Baran

    2014-10-01

    Full Text Available A great variety of sewage sludge treatment methods, due to the agent (chemical, biological, thermal leads to the formation of varying ‘products’ properties, including the content of heavy metals forms. The aim of the study was to determine the effects of biologically and thermally transformed sewage sludge on the manganese content in plants and form of this element in the soil. The study was based on a two-year pot experiment. In this study was used stabilized sewage sludge collected from Wastewater Treatment Plant Krakow – ”Płaszów” and its mixtures with wheat straw in the gravimetric ratio 1:1 in conversion to material dry matter, transformed biologically (composting by 117 days in a bioreactor and thermally (in the furnace chamber with no air access by the following procedure exposed to temperatures of 130 °C for 40 min → 200 °C for 30 min. In both years of the study biologically and thermally transformed mixtures of sewage sludge with wheat straw demonstrated similar impact on the amount of biomass plants to the pig manure. Bigger amounts of manganese were assessed in oat biomass than in spring rape biomass. The applied sewage sludge and its biologically and thermally converted mixtures did not significantly affect manganese content in plant biomass in comparison with the farmyard manure. The applied fertilization did not modify the values of translocation and bioaccumulation ratios of manganese in the above-ground parts and roots of spring rape and oat. No increase in the content of the available to plants forms of manganese in the soil after applying biologically and thermally transformed sewage sludge mixtures with straw was detected. In the second year, lower contents of these manganese forms were noted in the soil of all objects compared with the first year of the experiment.

  10. Environmental and plant effects of sewage sludge application to forests and pastures

    International Nuclear Information System (INIS)

    Van Miegroet, H.; Boston, H.L.; Johnson, D.W.; Nevada Univ., Reno, NV

    1989-01-01

    Digested sewage sludge was applied to pastures and tree plantations at 19 to 44 Mg/ha (dry weight) as part of a municipal sludge disposal program. The sludge had low concentrations of heavy metals and traces of 137 Cs and 60 Co. Monitoring of soils, soil solutions, and runoff indicated that N, P, heavy metals, and radionuclides were largely retained in the upper 15cm of the soil. Soil solutions had elevated NO 3 - concentrations often >100 mg/L, but no significant increases in groundwater NO 3 - were found during the first year. Runoff from active sites had elevated concentrations of NO 3 - (20--30 mg/L), soluble P (1 mg/L), BOD 5 (5--30 mg/L), and fecal coliform (up to 14,000 colonies per 100 ml), not unlike runoff from pastures with cattle. Enrichment of organic N (2 times), available (inorganic) N (5 to 10 times), and Bray-P in the upper soils persisted for several years following sludge application. Sludge increased vegetation N concentrations from 1.5% to 2.3% and P concentrations from 0.16% to 0.31%. With the exception of Zn, heavy metals did not accumulate substantially in the vegetation. The sludge addition increased the survival and growth of sycamore (Platanus occidentalis L.). For a loblolly pine (Pinus taeda L.) plantation future growth improvements are expected based on elevated foliar N concentrations. 37 refs., 3 figs., 7 tabs

  11. Effects of Amended Sewage Sludge Application on Yield and Heavy Metal Uptake of Barley: A Case Study of Ahvaz Sewage Treatment Plant

    Directory of Open Access Journals (Sweden)

    Mostafa Chorom

    2007-06-01

    Full Text Available One aspect of sewage sludge application as an organic fertilizer on agricultural farms is environmental pollution concerns such as heavy metals uptake by plants. The aim of this study was to investigate the influence of amended sewage sludge application on yield and heavy metal uptake of Barley. This study was carried out over a period of barley growth with two treatments of sewage sludge (50 and 100 ton/ha and control treatment with four replicates arranged in a randomized complete block design. Plant samples were taken at three intervals (50, 90, and 180 days after sowing. The samples were prepared for measuring nutrients and heavy metals in stem, leaf, straw, and grain. Results of plant analysis showed that application of sewage sludge increased nitrogen, phosphorous, potassium and cadmium in vegetative parts compared to control. Grain analysis showed that application of sewage sludge significantly increased nitrogen, phosphorous, potassium, iron, and zinc. Grass yield significantly increased in the plot treated with 100 ton/ha sewage sludge. Grain yield in the two treatments significantly increased. The results revealed that the sewage sludge increased heavy metals uptake by plants but still below standard levels. It is, therefore, necessary to use the quantities of the elements introduced into soil and absorbed by plants in order to determine the toxicity level for each metal taking into account factors such as plant and soil types as well as environmental conditions. This information can then be used to determine sludge application quantities in each case. Meanwhile, sludge application may only be recommended for irrigated crops receiving adequate irrigation water due to its salinity. Moreover, it cannot be recommended for irrigated crops directly consumed by man.

  12. Land application of sewage sludge: A soil columns study | Gascó ...

    African Journals Online (AJOL)

    Sewage sludge was mixed into the top 100 mm of each column at the rates of 357 (H), 223 (M) and 22 Mg·ha-1 (L). Treatment H was calculated according to the critical soil concentration and treatments M and L were calculated according to the amount of metals which may be added to agricultural land on 10 yr average

  13. Application of a battery of biotests for the determination of leachate toxicity to bacteria and invertebrates from sewage sludge-amended soil.

    Science.gov (United States)

    Malara, Anna; Oleszczuk, Patryk

    2013-05-01

    The objective of the study was to determine the leachates toxicity from sewage sludge-amended soils (sandy and loamy). Samples originated from a plot experiment realized over a period of 29 months. Two types of soil were fertilized with sewage sludges at the dose of 3 % (90 t/ha). Soil samples were taken after 0, 7, 17, and 29 months from the application of sewage sludges. Leachates were obtained according to the EN 12457-2 protocol. The following commercial tests were applied for the estimation of the toxicity: Microtox (Vibrio fischeri), Microbial assay for toxic risk assessment (ten bacteria and one yeast), Protoxkit F (Tetrahymena thermophila), Rotoxkit F (Brachionus calyciflorus), and Daphtoxkit F (Daphnia magna). The test organisms displayed varied toxicity with relation to the soils amended with sewage sludges. The toxicity of the leachates depended both on the soil type and on the kind of sewage sludge applied. Notable differences were also observed in the sensitivity of the test organisms to the presence of sewage sludge in the soil. The highest sensitivity was a characteristic of B. calyciflorus, while the lowest sensitivity to the presence of the sludges was revealed by the protozoa T. thermophila. Throughout the periods of the study, constant variations of toxicity were observed for most of the test organisms. The intensity as well as the range of those variations depended both on the kind of test organism and on the kind of sludge and soil type. In most cases, an increase of the toxicity of soils amended with the sewage sludges was observed after 29 months of the experiment.

  14. Sewage sludges disinfection

    International Nuclear Information System (INIS)

    Alexandre, D.

    1977-01-01

    There is an hygienic risk in using biological sewage sludges for agriculture. Systematic analysis carried out on sludges samples obtained from purification plants in East and South part of France, show the almost uniform presence of pathogenic microorganisms. Some of it survive more than 9 months after soil application. Conventional process for disinfection: liming and heat are not suitable for agricultural use. On the other hand, irradiation involves no modification in structure and composition of sludges. Radiation doses required for disinfection vary according to microorganisms. If some of them are eliminated with rather light doses (200 krad) mycobacteria, viruses and eggs of worms resist to more important doses. Security dose is estimated around 1000 krad

  15. Sewage sludges disinfection

    International Nuclear Information System (INIS)

    Alexandre, D.; Gevaudan, P.P.

    1977-01-01

    There is a hygienic risk in using biological sewage sludges for agriculture. Systematic analyses carried out on sludge samples obtained from purification plants in the Eastern and Southern part of France, show the almost uniform presence of pathogenic microorganisms. Some of them survive more than nine months after application to the soil. Conventional processes for disinfection, liming and heat, make the sludge unsuitable for agricultural use. On the other hand, irradiation involves no modification of structure and composition of sludges. Radiation doses required for disinfection vary according to the type of microorganism. Some of them are eliminated at rather low doses (200 krad), but mycobacteria, viruses and eggs of worms resist to more important doses. The security dose is estimated to be approx. 1000 krad

  16. The Application of Active Sewage Sludge on the Vermicomposting of Agricultural Waste

    Directory of Open Access Journals (Sweden)

    seyyedeh maryam kharrazi

    2015-11-01

    Full Text Available In this experiment, active sewage sludge was inoculated in organic waste. The objective was to study its effect on nutrient dynamics during vermicomposting. Active sewage sludge, as a source of nitrogen fixing and phosphorous solubilizing bacteria, was added in four combinations to the vermicomposting substrate. Prior to inoculation with active sludge, the treatments were precomposted for 30 days and finally vermicomposted for 40 days. Results showed that inoculation of microorganisms in the substrate accompanied by earthworms’ activity enhances the organic waste biodegradation rate. Increasing sludge concentration from 0 to 6000 mg/l led to reduced Total Organic Carbon from 32.76 to 29.91%, Total Volatile Solids from 49.85 to 48/02%, and C/N ratio from 19.59 to 16.06 but increased Total Kjeldahl Nitrogen from 1.68 to 1.87%, nitrate from 1476.75 to 1699.60 mg/kg, Total Phosphorous from 1.66 to 1.77 g/kg, and Electrical Conductivity from 3.10 to 3.48 mS/cm. By increasing the concentration of sewage sludge, heavy metals content also increased significantly due to the enhanced organic matter biodegradation. Finally, the results showed that, among the treatments, the one with an active sewage sludge concentration of 6000 mg/l had more desirable effects on the final vermicompost quality. Based on the reproducibility of the process and the quality of the final products, this experimental procedure may be proposed for studies requiring a mass reduction in the initial composted waste mixtures.

  17. Development and application of a continuous fast microwave pyrolysis system for sewage sludge utilization.

    Science.gov (United States)

    Zhou, Junwen; Liu, Shiyu; Zhou, Nan; Fan, Liangliang; Zhang, Yaning; Peng, Peng; Anderson, Erik; Ding, Kuan; Wang, Yunpu; Liu, Yuhuan; Chen, Paul; Ruan, Roger

    2018-05-01

    A continuous fast microwave-assisted pyrolysis system was designed, fabricated, and tested with sewage sludge. The system is equipped with continuous biomass feeding, mixing of biomass and microwave absorbent, and separated catalyst upgrading. The effect of the sludge pyrolysis temperature (450, 500, 550, and 600 °C) on the products yield, distribution and potentially energy recovery were investigated. The physical, chemical, and energetic properties of the raw sewage sludge and bio-oil, char and gas products obtained were analyzed using elemental analyzer, GC-MS, Micro-GC, SEM and ICP-OES. While the maximum bio-oil yield of 41.39 wt% was obtained at pyrolysis temperature of 550 °C, the optimal pyrolysis temperature for maximum overall energy recovery was 500 °C. The absence of carrier gas in the process may be responsible for the high HHV of gas products. This work could provide technical support for microwave-assisted system scale-up and sewage sludge utilization. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Sewage sludge ash (SSA in high performance concrete: characterization and application

    Directory of Open Access Journals (Sweden)

    C. M. A. Fontes

    Full Text Available ABSTRACT Sewage sludge originated from the process of treatment of wastewater has become an environmental issue for three main reasons: contains pathogens, heavy metals and organic compounds that are harmful to the environmental and human health; high volumes are daily generated; and shortage of landfill sites for proper disposal. This research deals with the viability study of sewage sludge utilization, after calcination process, as mineral admixture in the production of concrete. High-performance concretes were produced with replacement content of 5% and 10% by weight of Portland cement with sewage sludge ash (SSA. The influence of this ash was analyzed through physical and mechanical tests. Analysis showed that the mixtures containing SSA have lower values of compressive strength than the reference. The results of absorptivity, porosity and accelerated penetration of chloride ions, presents that mixtures containing ash showed reductions compared to the reference. This indicates that SSA provided refinement of the pore structure, which was confirmed by mercury intrusion porosimetry test.

  19. Soil application of sewage sludge stabilized with steelmaking slag and its effect on soil properties and wheat growth.

    Science.gov (United States)

    Samara, Eftihia; Matsi, Theodora; Balidakis, Athanasios

    2017-10-01

    The effect of sewage sludge, stabilized with steelmaking slag, on soil chemical properties and fertility and on wheat (Triticum aestivum L.) growth was evaluated. Dewatered sewage sludge [75% (wet weight basis)] stabilized with steelmaking slag (25%) and three soils with different pH values were used in a pot experiment with winter wheat. The following treatments were applied: (i) sludge addition of 30gkg -1 (≈ 120Mgha -1 , rate equivalent to the common inorganic N fertilization for wheat, based on sludge's water soluble NO 3 -N), (ii) sludge addition of 10gkg -1 (≈ 40Mgha -1 , rate equivalent to the common inorganic N fertilization for wheat, based on sludge's Kjeldahl-N), (iii) addition of the common inorganic N fertilization for wheat (120kgNha -1 ) as NH 4 NO 3 , (iv) control (no fertilizer, no sludge). Sludge application at both rates to all soils resulted in a significant increase of pH, electrical conductivity of the saturation extract (EC se ) and soil available NO 3 -N and P, in comparison to the other two treatments and this increase remained constant till the end of the pot experiment. In sludge treatments pH did not exceed the critical value of 8.5, whereas EC se , although it did not reach the limit of 4dSm -1 , exceeded the value of 2dSm -1 at the rate of 30gkg -1 . Concentrations of heavy metals, which regulate the agronomic use of sewage sludge according to the established legislation, ranged from not detectable to lower than the respective permissible levels. Both rates of sludge's addition in all soils improved wheat's growth, as judged by the significant increase of the aboveground biomass yield and the total plant uptake of almost all nutrients, compared to the other two treatments. It was concluded that sewage sludge stabilized with steelmaking slag could be used in agriculture, applied at rates based on sludge's Kjeldahl-N content and crop's demand for N. However, potential environmental impacts must also be considered. Copyright © 2017

  20. Sustainability of Domestic Sewage Sludge Disposal

    Directory of Open Access Journals (Sweden)

    Claudia Bruna Rizzardini

    2014-04-01

    Full Text Available Activated sludge is now one of the most widely used biological processes for the treatment of wastewaters from medium to large populations. It produces high amounts of sewage sludge that can be managed and perceived in two main ways: as a waste it is discharged in landfill, as a fertilizer it is disposed in agriculture with direct application to soil or subjected to anaerobic digestion and composting. Other solutions, such as incineration or production of concrete, bricks and asphalt play a secondary role in terms of their degree of diffusion. The agronomical value of domestic sewage sludge is a proved question, which may be hidden by the presence of several pollutants such as heavy metals, organic compounds and pathogens. In this way, the sustainability of sewage sludge agricultural disposal requires a value judgment based on knowledge and evaluation of the level of pollution of both sewage sludge and soil. The article analyzed a typical Italian case study, a water management system of small communities, applying the criteria of evaluation of the last official document of European Union about sewage sludge land application, the “Working Document on Sludge (3rd draft, 2000”. The report brought out good sewage sludge from small wastewater treatment plants and soils quality suggesting a sustainable application.

  1. Short- and long-term temporal changes in soil concentrations of selected endocrine disrupting compounds (EDCs) following single or multiple applications of sewage sludge to pastures

    International Nuclear Information System (INIS)

    Rhind, S.M.; Kyle, C.E.; Ruffie, H.; Calmettes, E.; Osprey, M.; Zhang, Z.L.; Hamilton, D.; McKenzie, C.

    2013-01-01

    Temporal changes in soil burdens of selected endocrine disrupting compounds were determined following application to pasture of either sewage sludge or inorganic fertilizer. Soil polycyclic aromatic hydrocarbon and polychlorinated biphenyl concentrations were not altered. Changes in concentrations of diethylhexyl phthalate (DEHP) and PBDEs 47 and 99 differed with season but concentrations remained elevated for more than three weeks after application, when grazing animals are normally excluded from pasture. It is concluded that single applications of sewage sludge can increase soil concentrations of some, but not all classes of EDCs, possibly to concentrations sufficient to exert biological effects when different chemicals act in combination, but patterns of change depend on season and soil temperature. Analysis of soil from pasture subjected to repeated sludge applications, over 13 years, provided preliminary evidence of greater increases in soil burdens of all of the EDC groups measured, including all of the PBDE congeners measured. -- Highlights: •Sewage sludge or inorganic fertilizer was applied to pasture. •Soil PAH and PCB concentrations were not altered by sludge treatment. •Temporal changes in soil phthalate and PBDE differed with season. •Some soil EDC levels were elevated for more than three weeks after application. -- Effects of sewage sludge application to pastures on temporal changes in soil concentrations of endocrine disrupting compounds differ with chemical class and season

  2. Utilization of solar energy in sewage sludge composting: Fertilizer effect and application

    International Nuclear Information System (INIS)

    Chen, Yiqun; Yu, Fang; Liang, Shengwen; Wang, Zongping; Liu, Zizheng; Xiong, Ya

    2014-01-01

    Highlights: • Solar energy technologies were utilized in aerobic sewage sludge composting. • Greenhouse and solar reactors were constructed to compare impacts on the composting. • Impatiens balsamina was planted in pot experiments to evaluate fertilizer effect. - Abstract: Three reactors, ordinary, greenhouse, and solar, were constructed and tested to compare their impacts on the composting of municipal sewage sludge. Greenhouse and solar reactors were designed to evaluate the use of solar energy in sludge composting, including their effects on temperature and compost quality. After 40 days of composting, it was found that the solar reactor could provide more stable heat for the composting process. The average temperature of the solar reactor was higher than that of the other two systems, and only the solar reactor could maintain the temperature above 55 °C for more than 3 days. Composting with the solar reactor resulted in 31.3% decrease in the total organic carbon, increased the germination index to 91%, decreased the total nitrogen loss, and produced a good effect on pot experiments

  3. Utilization of solar energy in sewage sludge composting: Fertilizer effect and application

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yiqun; Yu, Fang; Liang, Shengwen; Wang, Zongping, E-mail: zongpingw@hust.edu.cn; Liu, Zizheng; Xiong, Ya

    2014-11-15

    Highlights: • Solar energy technologies were utilized in aerobic sewage sludge composting. • Greenhouse and solar reactors were constructed to compare impacts on the composting. • Impatiens balsamina was planted in pot experiments to evaluate fertilizer effect. - Abstract: Three reactors, ordinary, greenhouse, and solar, were constructed and tested to compare their impacts on the composting of municipal sewage sludge. Greenhouse and solar reactors were designed to evaluate the use of solar energy in sludge composting, including their effects on temperature and compost quality. After 40 days of composting, it was found that the solar reactor could provide more stable heat for the composting process. The average temperature of the solar reactor was higher than that of the other two systems, and only the solar reactor could maintain the temperature above 55 °C for more than 3 days. Composting with the solar reactor resulted in 31.3% decrease in the total organic carbon, increased the germination index to 91%, decreased the total nitrogen loss, and produced a good effect on pot experiments.

  4. Environmental application for GIS: Assessing Iskandar Malaysia's (IM) sewage sludge for potential biomass resource

    Science.gov (United States)

    Salim, M. R.; Shaharuddin, N.; Abdullah Halim, K.

    2014-02-01

    The low carbon scenario could be achieved through the identification of major sectors contributing to the emission of high greenhouse gases (GHG) into the atmosphere. Sewage treatment plant (STP) was ranked as one of the major sectors that emits methane gas (CH4) during treatment processes, including sludge treatment. Sludge treatment is also capital extensive with high operational cost. Thus, sewage sludge has been accepted as a nuisance in STP. However, many has claimed that, sludge produced contain organic matter that has the potential for biomass resource. Thus, it would be such a Žwaste? if sludge are directly disposed of into the landfill without utilizing them at its full potential. In order to do so, it is vital to be able to determine the amount of sludge production. This research was implemented in Iskandar Malaysia regions in the state of Johor. By using GIS tool, the regions that produced the most sewage sludge can be determined, and can be group as critical area. Result shows that Nusajaya produces the most, compared to other regions, which indicated Nusajaya as a densely populated region.

  5. Utilization of solar energy in sewage sludge composting: fertilizer effect and application.

    Science.gov (United States)

    Chen, Yiqun; Yu, Fang; Liang, Shengwen; Wang, Zongping; Liu, Zizheng; Xiong, Ya

    2014-11-01

    Three reactors, ordinary, greenhouse, and solar, were constructed and tested to compare their impacts on the composting of municipal sewage sludge. Greenhouse and solar reactors were designed to evaluate the use of solar energy in sludge composting, including their effects on temperature and compost quality. After 40 days of composting, it was found that the solar reactor could provide more stable heat for the composting process. The average temperature of the solar reactor was higher than that of the other two systems, and only the solar reactor could maintain the temperature above 55°C for more than 3 days. Composting with the solar reactor resulted in 31.3% decrease in the total organic carbon, increased the germination index to 91%, decreased the total nitrogen loss, and produced a good effect on pot experiments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Gross N transformation rates after application of household compost or domestic sewage sludge to agricultural soil

    DEFF Research Database (Denmark)

    Ambus, P.; Kure, L.K.; Jensen, E.S.

    2002-01-01

    Gross N mineralization and immobilization was examined in soil amended with compost and sewage sludge on seven occasions during a year using N-15 pool dilution and enrichment techniques. Gross N mineralization was initially stimulated with both wastes and accelerated through the first 112 days...... of incubation, peaking at 5 mg N.kg(-1).d(-1) with compost compared with 4 mg N.kg(-1).d(-1) in control and sludge-treated soil. The magnitudes of mineralization rates exceeded those of immobilization by on average 6.3 ( compost) and 11.4 ( sludge) times, leading to a persistent net N mineralization cumulating...... up to 160 mg N.kg(-1) soil(compost) and 54 mg N.kg(-1) soil (sludge) over the season from May to November. The numerical model FLUAZ comprehensively predicted rates of gross mineralization and immobilization. Sludge exhibited an early season N-release, whereas compost released only 10% of the N...

  7. Some long term effects on land application of sewage sludge on soil fertility

    International Nuclear Information System (INIS)

    McGrath, S.P.; Chaudri, A.M.; Giller, K.E.

    1997-01-01

    Metals may affect the growth of plants, soil microbial activity, and soil fertility in the long term. Less is known of the adverse long-term effects of metals on soil microorganisms than on crop yields, since the effects of metals added to soils in sewage sludge are difficult to assess, and few long-term experiments exist. This paper reviews evidence from controlled long-term field experiments with sewage sludges in the UK, Sweden, Germany and the USA. Adverse effects on microbial activity and populations of cyanobacteria (blue-green algae), Rhizobium leguminosarum bv. trifolii, mycorrhiza, and total microbial biomass have been detected, in some cases below the European Community's maximum allowable concentration limits for metals in sludge-treated soils. For example, N 2 -fixation by free- living heterotrophic bacteria was found to be inhibited at concentrations (mg kg -1 ) of 127 Zn, 37 Cu, 21 Ni, 3.4 Cd, 52 Cr and 71 Pb. Fixation by free-living cyanobacteria was reduced by 50% at concentrations (mg kg -1 ) of 114 Zn, 33 Cu, 17 Ni, 2.9 Cd, 80 Cr and 40 Pb. Numbers of Rhizobium Leguminosarum bv. trifolii were decreased by several orders of magnitude at metal concentrations (mg kg -1 ) of 130-200 Zn, 27-48 Cu, 11-15 Ni, and 0.8-1.0 Cd. Important factors influencing the severity of toxicity are soil texture and pH; higher pH and clay and organic C contents decrease metal toxicity considerably. The evidence presented in this review of long-term field experiments suggests that adverse effects on microbial parameters occur at modest concentrations of metals in soils. It is concluded that prevention of adverse effects on soil microbial processes, and ultimately on soil fertility, should be a factor that influences soil-protection legislation. (author)

  8. Ecological and Economic Aspects of the Application of Sewage Sludge in Energetic Plant Plantations - A Swot Analysis

    Science.gov (United States)

    Wójcik, Marta; Stachowicz, Feliks; Masłoń, Adam

    2017-12-01

    Sewage sludge management in Poland is a relatively new field of waste management called "in statu nascendi", the standards of which have not been recognized yet. It also requires the implementation of new solutions in the field of sewage sludge. So far, the most popular method of sewage sludge utilization has been landfill disposal. In line with the restriction placed on landfill waste with a calorific value above 6 MJ/kg introduced on 1 January 2016, agricultural use and thermal methods are particularly applied. Municipal sewage sludge may be successfully used in the cultivation of energetic plant plantations. The aforementioned waste could be treated as an alternative to traditional mineral fertilizers, which in turn might successfully provide valuable nutrients for plants. This paper illustrates the SWOT analysis (Strengths, Weaknesses, Opportunities, and Threats) associated with the use of sewage sludge from Świlcza-Kamyszyn WTTP (Podkarpackie Province, Poland) for agricultural purposes. This analysis could be useful in evaluating the utility of sewage sludge in perennial plant plantations in order to determine the appropriate waste management strategies.

  9. Trace elements in two Oxisols after annual application of sewage sludge for thirteen years

    Directory of Open Access Journals (Sweden)

    Maurício Gomes de Andrade

    2014-02-01

    Full Text Available This experiment aim was to evaluate the contamination of the trace elements (TE arsenic, barium, cadmium, chromium, copper, mercury, molybdenum, nickel, lead, selenium, and zinc considered in the CONAMA resolution 375 after 13 years long using sewage sludge (SS as fertilizer in two soils: an Eutroferric Clayed Red Latosol (Rhodic Eutrudox – RE and a Dystrophic Red Latosol (Typic Haplorthox – TH. Experiment in the field under maize cultivation had four treatments (0, 5, 10, and 20 t of SS ha-1, dry weight, five replications and an experimental design in randomized blocks. The agrochemicals (dolomitic limestone, single superphosphate, and potassium chloride, SS, soils, and the certified reference materials were digested according to the USEPA 3051A method and the chemical elements were quantified by ICP OES. The TE contents found in the agrochemicals used should not cause immediate environmental impact. The higher TE values were found in the RE and they did not reach the agricultural (more stringent Investigation Level (IL yet, according to 420 CONAMA resolution. Persisting the actual SS fertilization amount applied in the soil and the TE concentration in the SS is foreseen that Ba, Cd, Cr, Cu, Ni, and Zn will be the first elements to reach the IL in the RE.

  10. Bio-char derived from sewage sludge by liquefaction: Characterization and application for dye adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Leng, Lijian [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Yuan, Xingzhong, E-mail: yxz@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Huang, Huajun [School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045 (China); Shao, Jianguang; Wang, Hou [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Chen, Xiaohong [School of Business, Central South University, Changsha 410083 (China); Zeng, Guangming [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China)

    2015-08-15

    Graphical abstract: - Highlights: • SS liquefaction bio-chars were effective on MG and MB removal from aqueous. • MG adsorption capacity depended strongly on carboxylic and phenolic groups. • Metal release accounted for nearly 30% of the total MG adsorbed on bio-chars. • Acetone and low temperature favor effective adsorbent production by liquefaction. - Abstract: Bio-chars produced by liquefaction of sewage sludge with methanol, ethanol, or acetone as the solvent at 260–380 °C were characterized in terms of their elemental composition, thermogravimetric characteristics, surface area and pore size distribution, and oxygen-containing functional groups composition. The surface area and total volume of the bio-chars were low, but the contents of oxygen-containing functional groups were high. The bio-chars were effective on Malachite green (MG) and Methylene blue (MB) removal from aqueous solution. The MG adsorption equilibrium data showed excellent fit to the Langmuir model and the kinetic data fitted well to the Pseudo-second-order model. Thermodynamic investigations indicated that MG adsorption on bio-char was spontaneous and endothermic. The MG adsorption mechanism appears to be associated with cation release and functional group participation. Additionally, liquefaction of SS with acetone as the solvent at low temperature (280 °C) would favor the production of bio-char adsorbent in terms of bio-char yield and MG and MB adsorption capacity.

  11. Fermentation of sewage sludge using the MixAlco process

    African Journals Online (AJOL)

    Nafiisah

    Sewage sludge consists mainly of the excess biomass produced during biological treatment ... The traditional method of converting biomass to alcohol is by simultaneous saccharification .... Lime pretreatment and enzymatic hydrolysis of corn ...

  12. A new insight into resource recovery of excess sewage sludge: Feasibility of extracting mixed amino acids as an environment-friendly corrosion inhibitor for industrial pickling

    Energy Technology Data Exchange (ETDEWEB)

    Su, Wen; Tang, Bing, E-mail: renytang@163.com; Fu, Fenglian; Huang, Shaosong; Zhao, Shiyuan; Bin, Liying; Ding, Jiewei; Chen, Cuiqun

    2014-08-30

    Graphical abstract: - Highlights: • A value-added product was extracted from the municipal excess sludge. • The effective components contained in the product were mixed amino acids. • The product could provide a reliable protection to the steel from the acid medium. • A new insight into the resource recovery of excess sewage sludge was provided. - Abstract: The work mainly presented a laboratory-scale investigation on an effective process to extract a value-added product from municipal excess sludge. The functional groups in the hydrolysate were characterized with Fourier transform infrared spectrum, and the contained amino acids were measured by means of an automatic amino acid analyzer. The corrosion-inhibition characteristics of the hydrolysate were determined with weight-loss measurement, electrochemical polarization and scanning electron microscopy. Results indicated that the hydrolysate contained 15 kinds of amino acid, and their adsorption on the surface could effectively inhibit the corrosion reaction of the steel from the acid medium. Polarization curves indicated that the obtained hydrolysate was a mixed-type inhibitor, but mainly restricted metal dissolution on the anode. The adsorption accorded well with the Langmuir adsorption isotherm, involved an increase in entropy, and was a spontaneous, exothermic process.

  13. A new insight into resource recovery of excess sewage sludge: Feasibility of extracting mixed amino acids as an environment-friendly corrosion inhibitor for industrial pickling

    International Nuclear Information System (INIS)

    Su, Wen; Tang, Bing; Fu, Fenglian; Huang, Shaosong; Zhao, Shiyuan; Bin, Liying; Ding, Jiewei; Chen, Cuiqun

    2014-01-01

    Graphical abstract: - Highlights: • A value-added product was extracted from the municipal excess sludge. • The effective components contained in the product were mixed amino acids. • The product could provide a reliable protection to the steel from the acid medium. • A new insight into the resource recovery of excess sewage sludge was provided. - Abstract: The work mainly presented a laboratory-scale investigation on an effective process to extract a value-added product from municipal excess sludge. The functional groups in the hydrolysate were characterized with Fourier transform infrared spectrum, and the contained amino acids were measured by means of an automatic amino acid analyzer. The corrosion-inhibition characteristics of the hydrolysate were determined with weight-loss measurement, electrochemical polarization and scanning electron microscopy. Results indicated that the hydrolysate contained 15 kinds of amino acid, and their adsorption on the surface could effectively inhibit the corrosion reaction of the steel from the acid medium. Polarization curves indicated that the obtained hydrolysate was a mixed-type inhibitor, but mainly restricted metal dissolution on the anode. The adsorption accorded well with the Langmuir adsorption isotherm, involved an increase in entropy, and was a spontaneous, exothermic process

  14. Reuse of liquid, dewatered, and composted sewage sludge on agricultural land: effects of long-term application on soil and crop.

    Science.gov (United States)

    Mantovi, Paolo; Baldoni, Guido; Toderi, Giovanni

    2005-01-01

    To evaluate the effects of repeated sewage sludge applications in comparison to mineral fertilisers on a winter wheat-maize-sugar beet rotation, a field experiment on a silty-loam soil, in the eastern Po Valley (Italy), was carried out since 1988. Municipal-industrial wastewater sludge as anaerobically digested, belt filtered (dewatered), and composted with wheat straw, has been applied at 5 and 10 Mg DM ha(-1)yr(-1). Biosolids gave crop yields similar to the highest mineral fertiliser dressing. However, with the higher rate of liquid and dewatered sludge, excessive N supply was harmful, leading to wheat lodging and poor quality of sugar beet and wheat crops. From this standpoint compost use was safer. Biosolids increased organic matter (OM), total N, and available P in the soil and reduced soil alkalinity, with more evident effects at the highest rate. Compost caused the most pronounced OM top soil accumulation. Significant accumulations of total Zn and Cu were detected in amended top soil, but no other heavy metals (Cd, Cr, Ni, Pb), whose total concentration remained well below the hazard limits. Biosolid applications significantly increased the content of N, P, Zn, and Cu in wheat grain, N and Cu in sugar beet roots, and only Cu in maize grain. The application of biosolids brought about notable benefits to soil fertility but it was associated with possible negative effects on water quality due to increased P availability and on soil ecology due to Zn accumulation.

  15. Modeling the pH-mediated Extraction of Ionizable Organic Contaminants to Improve the Quality of Municipal Sewage Sludge Destined for Land Application

    OpenAIRE

    Venkatesan, Arjun K.; Halden, Rolf U.

    2016-01-01

    A model was developed to assess the impact of adding acids and bases to processed municipal sewage sludge (MSS) to mobilize contaminants, facilitating their removal from sludge by flushing prior to land application. Among 312 organic contaminants documented to occur in U.S. MSS, 71 or 23% were identified as ionizable organic contaminants (IOCs), contributing a disproportionately large fraction of 82% of the total mass of sludge-borne contaminants. Detected IOCs included 57 pharmaceuticals and...

  16. Sewage sludge irradiation with electrons

    International Nuclear Information System (INIS)

    Tauber, M.

    1976-01-01

    The disinfection of sewage sludge by irradiation has been discussed very intensively in the last few months. Powerful electron accelerators are now available and the main features of the irradiation of sewage sludge with fast electrons are discussed and the design parameters of such installations described. AEG-Telefunken is building an irradiation plant with a 1.5 MeV, 25 mA electron accelerator, to study the main features of electron irradiation of sewage sludge. (author)

  17. Experience with a pilot plant for the irradiation of sewage sludge

    International Nuclear Information System (INIS)

    Suess, A.; Rosopulo, A.; Borchert, H.; Beck, T.; Bauchhenss, J.; Schurmann, G.

    1975-01-01

    Since hygienization of sewage sludge will be important for an agricultural application, it is necessary to study the effect of differently treated sewage sludge to plants and soil. In bean- and maize experiments in 1973 and 1974 it was found that treatment of sewage sludge is less important than soil properties and water capacity. Analysis on the efficiency of nutrients, minor elements and heavy metals from differently treated sewage sludge to plants were performed. Microbiological greenhouse studies indicated that there is a distinct tendency for different reactions that irradiated sewage sludge gives a slightly better effect than untreated one. In the field experiments there were nearly no differences between untreated and irradiated sewage sludge. Studies on soil fauna in the performed field trials indicate influences of abiotic factors on the different locations. Besides these influences there is a decrease of the number of Collemboles and Mites on the plots with 800 m 3 /ha treated sewage sludge. There is a remarkable high decrease in the plots with irradiated sewage sludge after an application of 800 m 3 /ha. Physical and chemical studies indicated, depending on the soil type, an increase in the effective field capacity after the application of sewage sludge, while there were sometimes the best effects with irradiated sewage sludge. Relative high aggregate values were observed in the plots with irradiated sewage sludge. (orig./MG) [de

  18. Experience with a pilot plant for the irradiation of sewage sludge: Results on the effect of differently treated sewage sludge on plants and soil

    International Nuclear Information System (INIS)

    Suess, A.; Rosopulo, A.; Borchert, H.; Beck, Th.; Bauchhenss, J.; Schurmann, G.

    1975-01-01

    Since hygienization of sewage sludge will be important for an agricultural application it is necessary to study the effect of differently treated sewage sludge on plants and soil. In bean and maize experiments in 1973 and 1974 it was found that the treatment of sewage sludge is less important than soil properties and water capacity. Analysis on the efficiency of nutrients, minor elements and heavy metals from differently treated sewage sludge to plants were performed. Microbiological greenhouse studies indicated that there is a distinct tendency for different reactions, that irradiated sewage sludge gives a slightly better effect than untreated sludge, while the heat-treated sewage sludge indicates always a decrease, especially with the increase of applied amounts (respiration, protease and nitrification). In the field experiments there were almost no differences between untreated and irradiated sewage sludge, whereas there was always a smaller microbial activity after application of heat-treated sewage sludge. Studies on soil fauna (especially on Collemboles and Oribatidae) in the field trials indicate the influences of abiotic factors on the different locations. Besides these influences there was a decrease in the number of Collemboles and mites (in comparison with a normal fertilized plot) on the plots with 800 m 3 /ha treated sewage sludge. There was a remarkably large decrease in the plots with irradiated sewage sludge after an application of 800 m 3 /ha. Depending on the soil type, physical and chemical studies indicated an increase in the effective field capacity after the application of sewage sludge, and sometimes the best effects occurred with irradiated sewage sludge. Relative high aggregate values were observed (6-2, 6-5 mm diameter) in the plots with irradiated sewage sludge. (author)

  19. Persistence of antibiotic resistance and plasmid-associated genes in soil following application of sewage sludge and abundance on vegetables at harvest.

    Science.gov (United States)

    Rahube, Teddie O; Marti, Romain; Scott, Andrew; Tien, Yuan-Ching; Murray, Roger; Sabourin, Lyne; Duenk, Peter; Lapen, David R; Topp, Edward

    2016-07-01

    Sewage sludge recovered from wastewater treatment plants contains antibiotic residues and is rich in antibiotic resistance genes, selected for and enriched in the digestive tracts of human using antibiotics. The use of sewage sludge as a crop fertilizer constitutes a potential route of human exposure to antibiotic resistance genes through consumption of contaminated crops. Several gene targets associated with antibiotic resistance (catA1, catB3, ereA, ereB, erm(B), str(A), str(B), qnrD, sul1, and mphA), mobile genetic elements (int1, mobA, IncW repA, IncP1 groups -α, -β, -δ, -γ, -ε), and bacterial 16S rRNA (rrnS) were quantified by qPCR from soil and vegetable samples obtained from unamended and sludge-amended plots at an experimental field in London, Ontario. The qPCR data reveals an increase in abundance of gene targets in the soil and vegetables samples, indicating that there is potential for additional crop exposure to antibiotic resistance genes carried within sewage sludge following field application. It is therefore advisable to allow an appropriate delay period before harvesting of vegetables for human consumption.

  20. Field approach to mining-dump revegetation by application of sewage sludge co-compost and a commercial biofertilizer.

    Science.gov (United States)

    Sevilla-Perea, A; Mingorance, M D

    2015-08-01

    An approach was devised for revegetation of a mining dump soil, sited in a semiarid region, with basic pH as well as Fe and Mn enrichment. A field experiment was conducted involving the use of co-compost (a mixture of urban sewage sludge and plant remains) along with a commercial biofertilizer (a gel suspension which contains arbuscular mycorrhizal fungus) to reinforce the benefits of the former. Four treatments were studied: unamended soil; application of conditioners separately and in combination. Pistachio, caper, rosemary, thyme and juniper were planted. We evaluated the effects of the treatments using soil quality (physicochemical properties, total content of hazardous elements, nutrient availability, microbial biomass and enzyme activities) and plant establishment indicators (survival, growth, vigor, nutrient content in leaves, nutrient balances and mycorrhizal root colonization). Thyme and juniper did not show a suitable survival rate (biofertilizer + co-compost > co-compost > biofertilizer > unamended. The application of co-compost was therefore essential with regard to improving soil fertility; furthermore, it increased leaf N and P content, whereas leaf Fe and Mn concentrations showed a decrease. The combined treatment, however, provided the best results. The positive interaction between the two soil conditioners might be related to the capacity of the biofertilizer to increase nutrient uptake from the composted residue, and to protect plants against Fe and Mn toxicity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Greenhouse gases emissions accounting for typical sewage sludge digestion with energy utilization and residue land application in China

    Energy Technology Data Exchange (ETDEWEB)

    Niu Dongjie, E-mail: niudongjie@tongji.edu.cn [Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering of Tongji University, 1239 Siping Road, Shanghai 200092 (China); UNEP-Tongji Institute of Environment for Sustainable Development, 1239 Siping Road, Shanghai 200092 (China); Huang Hui [Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering of Tongji University, 1239 Siping Road, Shanghai 200092 (China); Dai Xiaohu [Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering of Tongji University, 1239 Siping Road, Shanghai 200092 (China); National Engineering Research Center for Urban Pollution Control, Shanghai 200092 (China); Zhao Youcai [Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering of Tongji University, 1239 Siping Road, Shanghai 200092 (China)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer GHGs emissions from sludge digestion + residue land use in China were calculated. Black-Right-Pointing-Pointer The AD unit contributes more than 97% of total biogenic GHGs emissions. Black-Right-Pointing-Pointer AD with methane recovery is attractive for sludge GHGs emissions reduction. - Abstract: About 20 million tonnes of sludge (with 80% moisture content) is discharged by the sewage treatment plants per year in China, which, if not treated properly, can be a significant source of greenhouse gases (GHGs) emissions. Anaerobic digestion is a conventional sewage sludge treatment method and will continue to be one of the main technologies in the following years. This research has taken into consideration GHGs emissions from typical processes of sludge thickening + anaerobic digestion + dewatering + residue land application in China. Fossil CO{sub 2}, biogenic CO{sub 2}, CH{sub 4,} and avoided CO{sub 2} as the main objects is discussed respectively. The results show that the total CO{sub 2}-eq is about 1133 kg/t DM (including the biogenic CO{sub 2}), while the net CO{sub 2}-eq is about 372 kg/t DM (excluding the biogenic CO{sub 2}). An anaerobic digestion unit as the main GHGs emission source occupies more than 91% CO{sub 2}-eq of the whole process. The use of biogas is important for achieving carbon dioxide emission reductions, which could reach about 24% of the total CO{sub 2}-eq reduction.

  2. Greenhouse gases emissions accounting for typical sewage sludge digestion with energy utilization and residue land application in China

    International Nuclear Information System (INIS)

    Niu Dongjie; Huang Hui; Dai Xiaohu; Zhao Youcai

    2013-01-01

    Highlights: ► GHGs emissions from sludge digestion + residue land use in China were calculated. ► The AD unit contributes more than 97% of total biogenic GHGs emissions. ► AD with methane recovery is attractive for sludge GHGs emissions reduction. - Abstract: About 20 million tonnes of sludge (with 80% moisture content) is discharged by the sewage treatment plants per year in China, which, if not treated properly, can be a significant source of greenhouse gases (GHGs) emissions. Anaerobic digestion is a conventional sewage sludge treatment method and will continue to be one of the main technologies in the following years. This research has taken into consideration GHGs emissions from typical processes of sludge thickening + anaerobic digestion + dewatering + residue land application in China. Fossil CO 2 , biogenic CO 2 , CH 4, and avoided CO 2 as the main objects is discussed respectively. The results show that the total CO 2 -eq is about 1133 kg/t DM (including the biogenic CO 2 ), while the net CO 2 -eq is about 372 kg/t DM (excluding the biogenic CO 2 ). An anaerobic digestion unit as the main GHGs emission source occupies more than 91% CO 2 -eq of the whole process. The use of biogas is important for achieving carbon dioxide emission reductions, which could reach about 24% of the total CO 2 -eq reduction.

  3. Assessment of mobility and bioavailability of mercury compounds in sewage sludge and composts.

    Science.gov (United States)

    Janowska, Beata; Szymański, Kazimierz; Sidełko, Robert; Siebielska, Izabela; Walendzik, Bartosz

    2017-07-01

    Content of heavy metals, including mercury, determines the method of management and disposal of sewage sludge. Excessive concentration of mercury in composts used as organic fertilizer may lead to accumulation of this element in soil and plant material. Fractionation of mercury in sewage sludge and composts provides a better understanding of the extent of mobility and bioavailability of the different mercury species and helps in more informed decision making on the application of sludge for agricultural purposes. The experimental setup comprises the composing process of the sewage sludge containing 13.1mgkg -1 of the total mercury, performed in static reactors with forced aeration. In order to evaluate the bioavailability of mercury, its fractionation was performed in sewage sludge and composts during the process. An analytical procedure based on four-stage sequential extraction was applied to determine the mercury content in the ion exchange (water soluble and exchangeable Hg), base soluble (Hg bound to humic and fulvic acid), acid soluble (Hg bound to Fe/Mn oxides and carbonates) and oxidizable (Hg bound to organic matter and sulphide) fractions. The results showed that from 50.09% to 64.55% of the total mercury was strongly bound to organo-sulphur and inorganic sulphide; that during composting, increase of concentrations of mercury compounds strongly bound with organic matter and sulphides; and that mercury content in the base soluble and oxidizable fractions was strongly correlated with concentration of dissolved organic carbon in those fractions. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Responses of absolute and specific enzyme activity to consecutive application of composted sewage sludge in a Fluventic Ustochrept.

    Directory of Open Access Journals (Sweden)

    Xiao Liu

    Full Text Available Composted sewage sludge (CS is considered a rich source of soil nutrients and significantly affects the physical, chemical, and biological characteristics of soil, but its effect on specific enzyme activity in soil is disregarded. The present experiment examined the absolute and specific enzyme activity of the enzymes involved in carbon, nitrogen, and phosphorus cycles, the diversity of soil microbial functions, and soil community composition in a Fluventic Ustochrept under a maize-wheat rotation system in North China during 2012-2015. Application of CS led to increase in MBC and in its ratio to both total organic carbon (TOC and microbial biomass nitrogen (MBN. Absolute enzyme activity, except that of phosphatase, increased in CS-treated soils, whereas specific activity of all the enzymes declined, especially at the highest dose of CS (45 t ha-1. The diversity of soil microbial community also increased in CS-treated soils, whereas its functional diversity declined at higher doses of CS owing to the lowered specific enzyme activity. These changes indicate that CS application induced the domination of microorganisms that are not metabolically active and those that use resources more efficiently, namely fungi. Redundancy analysis showed that fundamental alterations in soil enzyme activity depend on soil pH. Soil specific enzyme activity is affected more than absolute enzyme activity by changes in soil properties, especially soil microbial activity and composition of soil microflora (as judged by the following ratios: MBC/TOC, MBC/MBN, and TOC/LOC, that is labile organic carbon through the Pearson Correlation Coefficient. Specific enzyme activity is thus a more accurate parameter than absolute enzyme activity for monitoring the effect of adding CS on the activities and structure of soil microbial community.

  5. Application of sewage sludge and intermittent aeration strategy to the bioremediation of DDT- and HCH-contaminated soil.

    Science.gov (United States)

    Liang, Qi; Lei, Mei; Chen, Tongbin; Yang, Jun; Wan, Xiaoming; Yang, Sucai

    2014-08-01

    Adding organic amendments to stimulate the biodegradation of pesticides is a subject of ongoing interest. The effect of sewage sludge on the bioremediation of dichlorodiphenyltrichloroethane (DDT) and hexachlorocyclohexane (HCH) contaminated soil was investigated in bench scale experiments, and intermittent aeration strategy was also used in this study to form an anaerobic-aerobic cycle. Bioremediation of DDT and HCH was enhanced with the addition of sewage sludge and the intermittent aeration. The removal rates of HCH and DDT were raised by 16.8%-80.8% in 10 days. Sewage sludge increased the organic carbon content from 6.2 to 218 g/kg, and it could also introduce efficient degradation microbes to soil, including Pseudomonas sp., Bacillus sp. and Sphingomonas sp. The unaerated phase enhanced the anaerobic dechlorination of DDT and HCH, and anaerobic removal rates of β-HCH, o,p'-DDT and p,p'-DDT accounted for more than 50% of the total removal rates, but the content of α-HCH declined more in the aerobic phase. Copyright © 2014. Published by Elsevier B.V.

  6. Pilot study on feasibility of application of gas chromatography for the assessment of acrylamide concentration in sewage sludge.

    Science.gov (United States)

    Włodarczyk, Elżbieta; Próba, Marta; Wolny, Lidia; Wojtal, Łukasz

    2014-01-01

    The aim of this study was to determine the possibility of using gas chromatography to measurement of the acrylamide concentration in sewage sludge. Acrylamide, as a toxic substance, is not indifferent to human health, but it is used in the production of plastics, dyes, adhesives, cosmetics, mortar, as well as a coagulant for water treatment, wastewater or sewage sludge conditioning. Determination of acrylamide by gas chromatography was based on standard: EPA Method 8032A "Acrylamid by gas chromatography." It consists of a bromination reaction of the compound in the presence of dibromopropendial derivative, a triple extraction with the ethyl acetate, a concentration of the eluate sample up to the 1 ml volume, and an analysis by the gas chromatography using an electron capture detector (ECD). The acrylamide concentration of was calculated according to the formula presented in the mentioned standard. All samples were performed twice (the difference between the results was not greater than 10%), and the average value of the four samples was 17.64 µg/L(-1). The presence of acrylamide in sewage sludge has been confirmed.

  7. Cs-137 for irradiation of sewage sludge

    International Nuclear Information System (INIS)

    Lessel, T.

    1986-01-01

    Since 1973, the Geiselbullach sewage treatment works have been continuously operating their first system for gamma irradiation of sewage sludge. Within the framework of a German-American agreement, nine Cs-137 sources with a total activity of 56.000 Ci have been made available to the works free of charge in 1983, in order to test in practice and to demonstrate the applicability of these radiation sources in comparison to the Co-60 sources exclusively used up to then. This first study on the applicability of Cs-137 as a radiation source for sewage sludge treatment revealed no findings or effects speaking against Cs-137 as a radiation source for this purpose. (orig./RB) [de

  8. Sustainability of Domestic Sewage Sludge Disposal

    OpenAIRE

    Claudia Bruna Rizzardini; Daniele Goi

    2014-01-01

    Activated sludge is now one of the most widely used biological processes for the treatment of wastewaters from medium to large populations. It produces high amounts of sewage sludge that can be managed and perceived in two main ways: as a waste it is discharged in landfill, as a fertilizer it is disposed in agriculture with direct application to soil or subjected to anaerobic digestion and composting. Other solutions, such as incineration or production of concrete, bricks and asphalt play a s...

  9. Use of sewage sludge - nitrogen availability and heavy metal uptake into rape

    International Nuclear Information System (INIS)

    Gerzabek, M. H.; Lombi, E.; Herger, P.

    1998-07-01

    The results of a three years experiment with large pots in the field evaluating the effects of sewage sludge (sterilised by γ-irradiation or not sterilised) on rape growth, heavy metal-and N-uptake, using the 15 N-dilution technique, are presented. Mobile fractions of Cd, Cu and Zn increased significantly in the substrate due to sewage sludge treatments. However heavy metal transfer into rape plants did not respond clearly. Rape growth was clearly enhanced in the first and third year due to sewage sludge applications. The average N-utilization by rape from sewage sludge in a three years period decreased from 7.4 % (first year), 1.8 % (second year) to 1.1 % (third year), resulting in an overall utilization of 10.3 % of sewage sludge - N t by rape plants. Irradiation of sewage sludge did not result in any significant effect on the investigated parameters. (author)

  10. Sustainable pyrolytic sludge-char preparation on improvement of closed-loop sewage sludge treatment: Characterization and combined in-situ application.

    Science.gov (United States)

    Jin, Zhengyu; Chang, Fengmin; Meng, Fanlin; Wang, Cuiping; Meng, Yao; Liu, Xiaoji; Wu, Jing; Zuo, Jiane; Wang, Kaijun

    2017-10-01

    Aiming at closed-loop sustainable sewage sludge treatment, an optimal and economical pyrolytic temperature was found at 400-450 °C considering its pyrolysis efficiency of 65%, fast cracking of hydrocarbons, proteins and lipids and development of aromatized porous structure. Fourier-transform infrared (FTIR) and X-ray diffraction (XRD) tests demonstrated the development of adsorptive functional groups and crystallographic phases of adsorptive minerals. The optimal sludge-char, with a medium specific surface area of 39.6 m 2  g -1 and an iodine number of 327 mgI 2 g -1 , performed low heavy metals lixiviation. The application of sludge-char in raw sewage could remove 30% of soluble chemical oxygen demand (SCOD), along with an acetic acid adsorption capacity of 18.0 mg g -1 . The developed mesopore and/or macropore structures, containing rich acidic and basic functional groups, led to good biofilm matrices for enhanced microbial activities and improved autotrophic nitrification in anoxic stage of an A/O reactor through adsorbed extra carbon source, and hence achieved the total nitrogen (TN) removal up to 50.3%. It is demonstrated that the closed-loop sewage sludge treatment that incorporates pyrolytic sludge-char into in-situ biological sewage treatment can be a promising sustainable strategy by further optimization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Composting sewage sludge

    International Nuclear Information System (INIS)

    Epstein, E.

    1979-01-01

    Sewage sludge is predominantly organic matter containing domestic and industrial wastes. The inefficiency of the waste water treatment to destroy pathogens and stabilization of odor-producing volatile organic compounds necessitates further treatment before sludge can be used as a soil amendment or fertilizer. Composting, which is the rapid biological decomposition of the sludge organic matter is an excellent method of sludge stabilization. During the process, volatile organics are decomposed and many of the pathogens destoyed. The low cost of the process and its flexibility with respect to labor and capital makes the system highly attractive to municipalities. A major problem facing large urban waste water treatment facilities is the distribution or marketing. The light weight of the material, expensive hauling costs, and low fertilizer value reduce its attractiveness to the agricultural sector. Thus, the greatest market is for horticultural purposes, sod, nurseries, greenhouses, parks, and reclamation areas. The major potential benefits of irradiating compost as a means of further disinfection are: (1) elimination of any health hazard; (2) increase of market potential, i.e., providing more market outlets to distribute the material; (3) compliance with state and federal health regulations; and (4) enhancement of the economics of composting as a result of utilizing compost in speciality products commanding a higher value

  12. Life cycle assessment of sewage sludge management options including long-term impacts after land application

    DEFF Research Database (Denmark)

    Yoshida, Hiroko; ten Hoeve, Marieke; Christensen, Thomas Højlund

    2018-01-01

    -toxic impact categories other than freshwater eutrophication. The sensitivity analysis showed that the results were sensitive to soil and precipitation conditions. The ranking of scenarios was affected by local conditions for marine eutrophication. Overall, the present study highlighted the importance...... of including all sludge treatment stages and conducting a detailed N flow analysis, since the emission of reactive N into the environment is the major driver for almost all non-toxic impact categories....... happened. In general, the INC scenario performed better than or comparably to the scenarios with land application of the sludge. Human toxicity (non-carcinogenic) and eco-toxicity showed the highest normalised impact potentials for all the scenarios with land application. In both categories, impacts were...

  13. Recycling of Treated Sewage Sludge in Sustainable Agriculture

    International Nuclear Information System (INIS)

    Galal, Y.G.M.

    2012-01-01

    Agricultural utilization of organic wastes amendments has been shown to be a sound alternative for both waste recycling and soil fertility improvement. Also, attention had been paid to use the biological agents that most cheap and safe for agricultural application in poor sandy soils. In this respect, irradiated sewage sludge and individual and dual inoculants of Azospirillum, Rhizobium and Arbuscular mycorrhizae fungi were applied for reclamation and development of low fertile sandy soil. The fertilizer value of sewage sludge has been known for a long time, but the concomitant problems of heavy metals in soil, as a result of its continuous applications, have only been recognized recently. Most of the studies were devoted to follow up the effect of high concentrations of metals when sewage sludge was applied, but no attention has been accelerated about its effect on soil microorganisms. Adverse effects of sewage sludge on microbial activity and populations of cyanobacteria, Rhizobium, Mycorrhizae and total microbial biomass have been detected in some cases of Europe. For example, N 2 fixation by free-living heterotrophic bacteria was found to be inhibited at concentrations (mg kg -1 ) of 127 Zn, 37 Cu, 21 Ni, 3.4 Cd, 52 Cr, and 71 Pb. Impact of bio fertilizers combined with irradiated sewage sludge on micro nutrients, e.g. Fe, Zn, Mn, Pb availability to clover and wheat plants, and productivity of both crops was the main objective of this study. In this connection, nuclear technology may offer a safety method against pathogenic effects of sewage sludge applied into agricultural ecosystems. Therefore, irradiated sludge is considered as safely source of organic wastes as well as the benefits on enrichment the low fertile soil with available nutrients, which act as a limiting factor for crop production. The N, P and K nutrients uptake by either shoots or grains of tested crops were positively and significantly affected by application of sewage sludge as well as bio

  14. Environmental application for GIS: Assessing Iskandar Malaysia's (IM) sewage sludge for potential biomass resource

    International Nuclear Information System (INIS)

    Salim, M R; Shaharuddin, N; Halim, K Abdullah

    2014-01-01

    The low carbon scenario could be achieved through the identification of major sectors contributing to the emission of high greenhouse gases (GHG) into the atmosphere. Sewage treatment plant (STP) was ranked as one of the major sectors that emits methane gas (CH 4 ) during treatment processes, including sludge treatment. Sludge treatment is also capital extensive with high operational cost. Thus, sewage sludge has been accepted as a nuisance in STP. However, many has claimed that, sludge produced contain organic matter that has the potential for biomass resource. Thus, it would be such a Žwaste? if sludge are directly disposed of into the landfill without utilizing them at its full potential. In order to do so, it is vital to be able to determine the amount of sludge production. This research was implemented in Iskandar Malaysia regions in the state of Johor. By using GIS tool, the regions that produced the most sewage sludge can be determined, and can be group as critical area. Result shows that Nusajaya produces the most, compared to other regions, which indicated Nusajaya as a densely populated region

  15. Radioactive contamination of sewage sludge

    International Nuclear Information System (INIS)

    Soeder, C.J.; Zanders, E.; Raphael, T.

    1986-01-01

    Because of the radioactivity released through the explosion of the nuclear reactor near Chernobyl radionuclides have been accumulated to a significant extent in sewage sludge in the Federal Republic of Germany. This is demonstrated for samples from four activated sludge plants according to a recent recommendation of the German Commission for Radiation Protection, there is until now no reason to deviate from the common practices of sludge disposal or incineration. The degree of radioactive contamination of plant materials produced on farm lands on which sewage sludge is being spread cannot be estimated with sufficient certainty yet. Additional information is required. (orig.) [de

  16. Sewage sludge disposal in Austria

    International Nuclear Information System (INIS)

    Koch, F.

    1997-01-01

    Sewage systems serve about 70% of the Austrian population, producing 6 million m 3 of sewage sludge per year with a dry matter content of 4-5%. At present about 52% of this sludge is disposed of in land fills, 33% is incinerated, and only about 15 % is used in agriculture. Although agricultural utilization is becoming increasingly important, several problems, especially those related to public opinion, need to be resolved before increased use will be possible. In this paper, wastewater treatment and sewage-sludge production in Austria, and problems associated with sludge disposal are discussed. (author)

  17. Estimates of nitrogen availability of poultry manure and sewage sludge amendments in mined prime farmlands

    International Nuclear Information System (INIS)

    Zhai, Q.; Barnhisel, R.I.

    1994-01-01

    The application of poultry manure and sewage sludge may speed up the return of productivity of prime farmland following surface mining, as well as for utilizing nutrients in these wastes. However, excessive application may result in nitrate contamination of ground water. This research was carried out under laboratory and field conditions to test this concern. The objective was to examine nitrogen mineralization indices used to evaluate nitrogen availability to wheat (Triticum astivum). Two field experiments were established in fall 1992 in western Kentucky. Sewage sludge was applied to both topsoil and subsoil at one site, and poultry manure was applied to only the topsoil at the second site. Three rates of organic amendments were used in these experiments. Soil available nitrogen was evaluated by both biological mineralization and chemical extraction methods. A 7-day anaerobic incubation method was well correlated with grain yield and was superior to other chemical methods in predicting nitrogen availability. Both sewage sludge and poultry manure application to the topsoil provided a high available nitrogen source for wheat growth, which resulted in a higher yield than that for the unamended control

  18. Effects of thermal drying on phosphorus availability from iron-precipitated sewage sludge

    DEFF Research Database (Denmark)

    Lemming, Camilla; Scheutz, Charlotte; Bruun, Sander

    2017-01-01

    Thermal drying of sewage sludge implies sanitation and improves practical handling options of the sludge prior to land application. However, it may also affect its value as a fertilizer. The objective of this study was to assess whether thermal drying of sewage sludge, as well as drying temperature...

  19. Contaminant risks from biosolids land application Contemporary organic contaminant levels in digested sewage sludge from five treatment plants in Greater Vancouver, British Columbia

    International Nuclear Information System (INIS)

    Bright, D.A.; Healey, N.

    2003-01-01

    The risks of organic contaminants in sewage sludges are evaluated. - This study examines the potential for environmental risks due to organic contaminants at sewage sludge application sites, and documents metals and various potential organic contaminants (volatile organics, chlorinated pesticides, PCBs, dioxins/furans, extractable petroleum hydrocarbons, PAHs, phenols, and others) in current production biosolids from five wastewater treatment plants (WWTPs) within the Greater Vancouver Regional District (GVRD). There has been greater focus in Europe, North America and elsewhere on metals accumulation in biosolids-amended soil than on organic substances, with the exception of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans. Another objective, therefore, was to evaluate the extent to which management of biosolids re-use based on metal/metalloid levels coincidentally minimizes environmental risks from organic contaminants. Historical-use contaminants such as chlorophenols, PCBs, and chlorinated pesticides were not detected at environmentally relevant concentrations in any of the 36 fresh biosolids samples, and appear to have virtually eliminated from sanitary collection system inputs. The few organic contaminants found in freshly produced biosolids samples that exhibited high concentrations relative to British Columbia and Canadian soil quality benchmarks included p-cresol, phenol, phenanthrene, pyrene, naphthalene, and heavy extractable petroleum hydrocarbons (HEPHs-nCl9-C34 effective carbon chain length). It was concluded that, with the exception of these petroleum hydrocarbon constituents or their microbial metabolites, the mixing of biosolids with uncontaminated soils during land application and based on the known metal concentrations in biosolids from the Greater Vancouver WWTPs investigated provides adequate protection against the environmental risks associated with organic substances such as dioxins and furans, phthalate esters, or volatile

  20. Responses and Remediating Effects of Pennisetum hydridum to Application of Heavy-Metals-Contaminated Chicken Manures and Sewage Sludges

    Directory of Open Access Journals (Sweden)

    WANG Xi-na

    2015-10-01

    Full Text Available Pennisetum hydridum is a rapid growth, large biomass and multi-stress resistant plant. A pot experiment was carried out to investigate the bioremediation effects of P. hydridum by 2 kg heavy metal (Cd, Cu, Pb, and Zn contaminated chicken manure or sewage sludge mixing with 18 kg of lateritic red soil. The growth and heavy metal uptake of P. hydridum were measured in order to assess the phytoremediation potential. Results showed that P. hydridum growed well in all treatments and the best appeared in chicken manure. The biomass of plant in treatments with chicken manure, sewage sludge, and the control was 736.56±29.21, 499.99±32.01 g·pot-1, and 466.89±37.08 g·pot-1, respectively. The heavy metals in the soils were reduced significantly at the 200 d after planting P. hydridum in fall. The removing percentage of total Zn, Cu, Pb, and Cd in soil was 1.90%~4.52%, 3.96%~5.72%, 0.53%~1.24% and 10.34%~17.14% respectively. The best effect of removing Zn, Cd and Pb appeared in chicken manure treatment was 89.74, 0.68 mg and 19.18 mg. The best effect of removing Cu appeared in sludge treatment was 16.84 mg. The results indicated that P. hydridum could be used for removement of the heavy metals from the heavy metal contaminated soils which could be considered as an potential plant for bioremediation of heavy metals.

  1. Distributed and micro-generation from biogas and agricultural application of sewage sludge: Comparative environmental performance analysis using life cycle approaches

    International Nuclear Information System (INIS)

    Sadhukhan, Jhuma

    2014-01-01

    Highlights: • 180,000 MJ biogas from 15.87 t sewage sludge supply 1 household electricity per year. • From the highest to the lowest avoided impacts: PEM FC 2 eq./MJ compared to natural gas. • 1 m 3 biogas production from ∼3.2 t sewage sludge AD can save 0.92 m 3 natural gas. • Digested matter causes eutrophication and toxicity potentials. - Abstract: The Feed-In-Tariff scheme in the UK has generated attractive economics in the investment for anaerobic digestion (AD) to convert sewage sludge into biogas and digested sludge for energy and agricultural applications, respectively. The biogas is a source of biomethane to replace natural gas in the gas grid system. Biogas can be utilised to generate combined heat and power (CHP) on-site, at household micro and distributed or community scales. These biogas CHP generation options can replace the equivalent natural gas based CHP generation options. Digested sludge can be transformed into fertiliser for agricultural application replacing inorganic N:P:K fertiliser. Biogas and digested matter yields are inter-dependent: when one increases, the other decreases. Hence, these various options need to be assessed for avoided life cycle impact potentials, to understand where greatest savings lie and in order to rank these options for informed decision making by water industries. To fill a gap in the information available to industry dealing with wastewater, the avoided emissions by various AD based technologies, in primary impact potentials that make a difference between various systems, have been provided in this paper. 1 m 3 biogas can save 0.92 m 3 natural gas. An average UK household (with a demand of 2 kWe) requires 180,000 MJ or 5000 Nm 3 or 4.76 t biogas per year, from 15.87 t sewage sludge processed through AD. The proton exchange membrane fuel cell (PEM FC) is suitable for building micro-generations; micro gas turbine (Micro GT), solid oxide fuel cell (SOFC) and SOFC-GT hybrid are suitable for distributed

  2. Costs and economic efficiency of the drying of sewage sludges; Kosten und Wirtschaftlichkeit der Klaerschlammtrocknung

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Ulrich [Haarslev Industries A/S, Herlev (Denmark). Marketing and Business Development

    2013-03-01

    New methods of the thermal utilization have to be created due to the fact that agricultural utilisation of sewage sludge and the use in the reclamation due to stringent limit values and enhanced quality criteria are available restricted in future. The incineration of mechanically dewatered and dried sewage sludge is performed in mono-combustion plants as well as in coal-fired power plants. The author of the contribution under consideration reports on the costs and economic efficiency of the drying of sewage sludge. The drying of sewage sludge may perform an important and reasonable contribution to the utilization of municipal sewage sludge. The selection of a suitable drying process should ever depend on the local realities. Proved and suitable technologies are available for every application. Before the decision for a certain provider, one should examine reference plants and consider specific experiences of the operator among the decision-making.

  3. The effects of pelleted sewage sludge on Norway spruce establishment and nitrogen dynamics

    International Nuclear Information System (INIS)

    Johannesson, Anders

    1999-01-01

    In Sweden there is a big resource in unutilised sewage sludge. Studies have shown that application of municipal sewage sludge can improve forest productivity and planting environment. This study is examining the effects of two types of pelleted sewage sludge (pure sludge and a mixture of sludge and domestic wastes compost) on nitrogen turnover. Large differences were found in the fertilisation effect of the different treatments. The pure sewage sludge pellets treatment showed significant increases for NH 4 -accumulation, nitrification and NO 3 -leaching in the top 10 cm of the soil. Uptake of nitrogen was increased in spruce plants and vegetation. The mixed sludge/domestic waste pellets treatment showed indications of a minor initial release of nitrogen. This is seen as a small but significant initial increase in soil nitrification. These results suggest that the pure sewage sludge pellet is an adequate nitrogen fertiliser. The mixed sludge though is inadequate at least in the short run

  4. Irradiation treatment of sewage sludge: History and prospects

    International Nuclear Information System (INIS)

    Bao Borong; Wu Minghong; Zhou Ruimin; Zhu Jinliang

    1998-01-01

    This paper first reviews the history of irradiation treatment of sewage sludge in the world. The first sludge irradiation plant was built in Geiselbullach, West Germany in 1973 and used 60 Co as irradiation source. Since then, many sludge irradiators were constructed in U.S.A., India, Japan, Canada, Poland, etc., which used 60 Co, 137 Cs or electron beam as irradiation sources. The paper then describes some basic research on irradiation treatment of sewage sludge including optimization of irradiation parameters, synergistic effect of radiation with heat, oxygenation, irradiation-composting and potential applications of treated sludge. Some proposals have been suggested for further development of this technology in the future

  5. Phosphorus recovery from sewage sludge by an electrokinetic process

    DEFF Research Database (Denmark)

    Ribeiro, A.B.; Couto, N.; Mateus, E.P.

    to supply P for the next ca. 80 years. Additionaly, the quality of this raw material has deteriorated due to contamination, which has increased processing costs of mineral P fertilizers. The recovery of nutrients, like P, from secondary resources urges. Sewage sludge (SS) and sewage sludge ash (SSA) from...... waste water treatment plants (WWTP) may contain contaminants or unwanted elements regarding specific applications, but they also contain secondary resources of high value. Using these ash as a P resource, while removing the contaminants, seems a sustainable option. The electrokinetic (EK) process can....... This communication aims to discuss preliminary results of the feasibility of EK process to recover P from WWTP target wastes....

  6. Qualitative and Quantitative Assessment of Sewage Sludge by Gamma Irradiation with Pasteurization as a Tool for Hygienization

    Science.gov (United States)

    Priyadarshini, J.; Roy, P. K.; Mazumdar, A.

    2014-01-01

    In this research work, management of sewage sludge disposal on agricultural soils is addressed. The increasing amount of sewage sludge and more legislative regulation of its disposal have stimulated the need for developing new technologies to recycle sewage sludge efficiently. The research was structured along two main avenues, namely, the efficacy of the irradiation process for removing enteric pathogenic microorganisms and the potential of irradiated sludge as a soil amendment. This study investigated how application of irradiation with heat treatment reduced pathogens in sewage sludge. Raw and pasteurised Sewage sludge was treated at different dose treatment of 1.5, 3 and 5 kilogray (kGy) gamma irradiation individually and for 3 kGy sufficiency was achieved. Decrease in irradiation dose from 5 to 3 kGy was observed for pasteurised sludge resulting in saving of radiation energy. The presence of heavy metals in untreated sewage sludge has raised concerns, which decreases after irradiation.

  7. Where to dispose of the sewage sludge?

    International Nuclear Information System (INIS)

    Beurer, P.; Geering, F.

    2001-01-01

    The 'proper' course for the disposal of sewage sludge is a topic that has continually sparked intense discussion for years. New legal regulations have developed which have significantly changed the disposal structure. Nevertheless, the consumer market of agriculture products has an increasing influence on sewage sludge recycling possibilities. In this report, the changes in sewage sludge disposal within the last ten years and the expected development is pointed out. On account of legal guidelines and of political market influences, the thermal recycling of sewage sludge is considered as the future solution, which should, however, be adapted according to marginal situations. (author)

  8. Dewatering properties of differently treated sewage sludge

    International Nuclear Information System (INIS)

    Zehnder, H.J.

    1977-01-01

    A study on dewatering properties of radiosterilized sewage sludge of different type and origin was carried out. For comparison, also heat-treated (pasteurized) sludge was investigated. The specific filtration resistance of irradiated sewage sludge was lowered in all types of sludge examined. In general, pasteurization increased this parameter. The settling properties of irradiated digested sewage sludge was slightly improved, mainly in the first hours after treatment. Microbial effects may mask the real sedimentation relations especcially in aerobically stabilized sludges. A pasteurization treatment of sewage sludge caused an increased content of soluble substances and suspended particles in the supernatant water. The supernatant water from irradiated sludge showed a smaller increase

  9. Comparison and optimization of different processes of mechanical sewage sludge disintegration; Vergleich und Optimierung verschiedener Verfahren der mechanischen Klaerschlammdesintegration

    Energy Technology Data Exchange (ETDEWEB)

    Lehne, G.; Mueller, J.; Schwedes, J. [Technische Univ. Braunschweig (Germany). Inst. fuer Mechanische Verfahrenstechnik

    1999-07-01

    There are in principle three applications of mechanical sewage sludge disintegration within the framework of sewage treatment, which are briefly dealt with. The organic material released in the course of the disintegration process can be used as a proton donator for denitrification. In the second application, mechanical sludge disintegration improves the sedimentation properties of bulking sludge and scum. In the third application, sewage sludge disintegration enhances the anaerobic degradation behaviour of excess sludge and digester sludge. (orig.) [German] Es gibt drei prinzipielle Einsatzfaelle einer mechanischen Klaerschlammdesintegration im Rahmen des Abwasserreinigungsprozesses, auf die im folgenden kurz eingegangen wird. Das im Zuge der Desintegration freigesetzte organische Material kann als Protonendonator fuer die Denitrifikation verwendet werden. Eine weitere Anwendung der mechanischen Desintegration stellt die Verbesserung der Absetzeigenschaften von Blaeh- und Schwimmschlaemmen dar. Den dritten Einsatzfall der Klaerschlammdesintegration stellt die Verbesserung des anaeroben Abbauverhaltens von Ueberschuss- und Faulschlaemmen dar. (orig.)

  10. Effect of Sewage Sludge on Some Macronutrients Concentration and Soil Chemical Properties

    Directory of Open Access Journals (Sweden)

    Sakine Vaseghi

    2005-03-01

    Full Text Available Sewage sludge as an organic fertilizer has economic benefits. Land application of sewage sludge improves some soil chemical and physical properties. The objective of this study was to evaluate the effect of sewage sludge on soil chemical properties and macronutrient concentration in acid and calcareous soils. The study was carried out in a greenhouse using factorial experiment design as completely randomized with three replications. Treatments included : four levels of 0 or control, 50, and 100, 200 ton ha-1 sludge and one level of chemical fertilizer (F consisting of 250 kg ha-1 diammonium phosphate and 250 kg ha-1 urea, and soil including soils of Langroud, Lahijan, Rasht, and Isfahan. As a major vegetable , crop spinach (Spinacea oleracea was grown in the treated soils. Soils samples were analyzed for their chemical properties after crop narvesting. Application of sewage sludge significantly increased plant available k, P, total N, organic matter, electrical conductivity and cation exchange in the soils. Soils pH significantly decreased as a result sewage sludge application. The effect of sewage sludge on plant yield was significant. Overall, the results indicated that sewage sludge is potentially a valuable fertilizer. However, the sludge effect on soil EC and heavy metals should be taken into consideration before its widespread use on cropland.

  11. Applying Sewage Sludge to Eucalyptus grandis Plantations: Effects on Biomass Production and Nutrient Cycling through Litterfall

    International Nuclear Information System (INIS)

    Da Silva, P.H.M.; Poggiani, F.; Laclau, J.P.

    2011-01-01

    In most Brazilian cities sewage sludge is dumped into sanitary landfills, even though its use in forest plantations as a fertilizer and soil conditioner might be an interesting option. Sewage sludge applications might reduce the amounts of mineral fertilizers needed to sustain the productivity on infertile tropical soils. However, sewage sludge must be applied with care to crops to avoid soil and water pollution. The aim of our study was to assess the effects of dry and wet sewage sludges on the growth and nutrient cycling of Eucalyptus grandis plantations established on the most common soil type for Brazilian eucalypt plantations. Biomass production and nutrient cycling were studied over a 36-month period in a complete randomized block design. Four experimental treatments were compared: wet sewage sludge, dry sludge, mineral fertilizer, and no fertilizer applications. The two types of sludges as well as mineral fertilizer increased significantly the biomass of Eucalyptus trees. Wood biomass productions 36 months after planting were similar in the sewage sludge and mineral fertilization treatments (about 80 tons ha - '1) and 86 % higher than in the control treatment. Sewage sludge application also affected positively leaf litter production and significantly increased nutrient transfer among the components of the ecosystem.

  12. Applying Sewage Sludge to Eucalyptus grandis Plantations: Effects on Biomass Production and Nutrient Cycling through Litterfall

    Directory of Open Access Journals (Sweden)

    Paulo Henrique Müller da Silva

    2011-01-01

    Full Text Available In most Brazilian cities sewage sludge is dumped into sanitary landfills, even though its use in forest plantations as a fertilizer and soil conditioner might be an interesting option. Sewage sludge applications might reduce the amounts of mineral fertilizers needed to sustain the productivity on infertile tropical soils. However, sewage sludge must be applied with care to crops to avoid soil and water pollution. The aim of our study was to assess the effects of dry and wet sewage sludges on the growth and nutrient cycling of Eucalyptus grandis plantations established on the most common soil type for Brazilian eucalypt plantations. Biomass production and nutrient cycling were studied over a 36-month period in a complete randomized block design. Four experimental treatments were compared: wet sewage sludge, dry sludge, mineral fertilizer, and no fertilizer applications. The two types of sludges as well as mineral fertilizer increased significantly the biomass of Eucalyptus trees. Wood biomass productions 36 months after planting were similar in the sewage sludge and mineral fertilization treatments (about 80 tons ha−1 and 86% higher than in the control treatment. Sewage sludge application also affected positively leaf litter production and significantly increased nutrient transfer among the components of the ecosystem.

  13. Bioavailability of nitrogen from sewage sludge using 15N-labelled ammonium sulphate

    International Nuclear Information System (INIS)

    El-Motaium, R.A.

    2001-01-01

    The high nutrient nitrogen and organic matter contents of sewage sludge (SS) make it a potential organic fertilizer for sandy soil. In this study, 15 N-labelled ammonium sulphate was used to investigate the availability of nitrogen from irradiated and non-irradiated sewage sludge to tomato plants. The application of sewage sludge to sandy soil increased dry matter production (DMP), nitrogen yield (NY) and nitrogen recovery (NR) over two successive years. A positive relationship was found between sludge application rate and DMP and NY. The increase was significantly higher (P=0.05) in irradiated than non-irradiated sewage sludge. Total nitrogen derived from non-irradiated sewage sludge are : 48.0, 63.7, 73.5, 105.2 Kg/ha, whereas, the total nitrogen derived from irradiated sewage sludge are: 55.1, 72.5, 88.9, 141.4 Kg/ha corresponding to application rates of 10 t/ha, 20 t/ha, 30 t/ha, respectively. This was attributed to higher dry matter production in the later than the former. A highly significant correlation (0.945**) was found between dry matter production and sludge nitrogen yield (i.e. nitrogen derived from sewage sludge). Fertilizer nitrogen yield (total nitrogen derived from fertilizer) was high in treatment receiving mineral fertilizer, however, the 15 N recovery by tomato was only 13.8%. Soil did not contribute well towards total nitrogen yield in tomato and most nitrogen was derived from sewage sludge. Percent nitrogen derived from sewage sludge was in the range 88-92%, depending on the application rate

  14. Influence of sewage sludge compost applications on uptake of element by cultivated crops in a brown forest soil. Measurement by neutron activation analysis

    International Nuclear Information System (INIS)

    Suzuki, Hiroyuki; Kumagai, Hiroshi; Suzuki, Yuichi; Sakamoto, Kazunori; Inubushi, Kazuyuki; Nogawa, Norio; Kawate, Minoru; Sawahata, Hiroyuki

    2006-01-01

    A field study was conducted to investigate the absorption of various elements into oats and carrots cultivated in brown forest soil after three years' applications of chemical fertilizer and two types of sewage sludge compost mixed with sawdust (SD compost) or rice husk (RH compost). The results obtained in this study are summarized as follows. 1) The application of SD compost led to a significant increase on the concentrations of Mn, Zn, Ag and Ba in oat root, of Zn and Br in oat shoot, of Cl and Zn in oat ears, of Mg, Sc, Mn, Zn, Br, Ba and La in carrot peel, of Mn, Fe, Co and Zn in carrot edible portion and of Na, Sc, Mn, Fe, Co and Sm in carrot shoot. 2) The application of RH compost increased the concentrations of Mn, Zn, and Ag in oat root, of K, Cr, Mn, Zn and Br in oat shoot, of Zn and Br in oat ears, of Mg, Mn and Br in carrot peel, of Cl, Mn, Zn and Br in carrot edible portion and of Na, Mn, Zn, Br and Sm in carrot shoot. (author)

  15. Effect of bioleaching on hydrogen-rich gas production by steam gasification of sewage sludge

    International Nuclear Information System (INIS)

    Li, Hanhui; Chen, Zhihua; Huo, Chan; Hu, Mian; Guo, Dabin; Xiao, Bo

    2015-01-01

    Highlights: • Bioleaching can modify the physicochemical property of sewage sludge. • The enhancement is mainly hydrogen. • Bioleaching can enhance the gas production in gasification of sewage sludge. • Study provides an insight for future application of bioleached sewage sludge. - Abstract: Effect of bioleaching on hydrogen-rich gas production by steam gasification of sewage sludge was carried out in a lab-scale fixed-bed reactor. The influence of sewage sludge solids concentrations (6–14% (w/v) in 2% increments) during the bioleaching process and reactor temperature (600–900 °C in 100 °C increments) on gasification product yields and gas composition were studied. Characterization of samples showed that bioleaching treatment, especially in 6% (w/v) sludge solids concentration, led to metal removal effectively and modifications in the physicochemical property of sewage sludge which was favored for gasification. The maximum gas yield (49.4%) and hydrogen content (46.4%) were obtained at 6% (w/v) sludge solids concentration and reactor temperature of 900 °C. Sewage sludge after the bioleaching treatment may be a feasible feedstock for hydrogen-rich gas product.

  16. Occurrence of high-tonnage anionic surfactants into Spanish sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Cantarero, S.; Prieto, C. A.; Lopez, I.; Berna, J. L.

    2009-07-01

    The sewage Sludge directive 86/278/EEc seeks to encourage the disposal of sewage sludge in agriculture applications and regulate its use to prevent harmful effects on the soil environment. currently, the sewage sludge Directive is under revision and a possible cut-off limit for some organic chemicals (including linear alkylbenzene sulphonates. LAS, the main synthetic anionic surfactant) is to be implemented. This legal limit is based on monitoring studies carried out in Scandinavian countries, being strongly rejected by most EU countries since the Nordic situations was regarded as not representative. (Author)

  17. Occurrence of high-tonnage anionic surfactants into Spanish sewage sludge

    International Nuclear Information System (INIS)

    Cantarero, S.; Prieto, C. A.; Lopez, I.; Berna, J. L.

    2009-01-01

    The sewage Sludge directive 86/278/EEc seeks to encourage the disposal of sewage sludge in agriculture applications and regulate its use to prevent harmful effects on the soil environment. currently, the sewage sludge Directive is under revision and a possible cut-off limit for some organic chemicals (including linear alkylbenzene sulphonates. LAS, the main synthetic anionic surfactant) is to be implemented. This legal limit is based on monitoring studies carried out in Scandinavian countries, being strongly rejected by most EU countries since the Nordic situations was regarded as not representative. (Author)

  18. Fast pyrolysis of lignin, macroalgae and sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Trinh, N.T.

    2013-04-15

    Non-conventional biomass feedstock may also be applicable for fast pyrolysis processes. Among the forms of non-conventional biomasses, macroalgae, lignin (industrial residue) and sewage sludge may be attractive materials due to their low price, non-competitiveness with food crops and the possible utilization of solid wastes. Besides, a fast pyrolysis process can be used as a process to densify the biomass and produce bioslurry, a mixture of bio-oil and pyrolytic char. The bioslurry is found to be a possible feedstock for pressurized gasification plants. Thus, the aims of this project are to investigate fast pyrolysis properties of lignin, sewage sludge and macroalgae on a lab scale PCR and characterize their bio-oil properties. Bioslurry properties with respect to use as a feedstock for pressurized gasification is also investigated. Lignin and sewage sludge PCR pyrolysis provided bio-oil yields of 47 and 54 wt% daf, and oil energy recovery of 45 and 50 %, respectively. While the macroalgae PCR pyrolysis showed promising results with an organic oil yield of 65 wt% daf and an oil energy recovery of 76 %. The HHV of the lignin, sewage sludge and macroalgae oils were 29.7, 25.7 and 25.5 MJ/kg db respectively, and that are higher than that of typical bioiv oil from conventional biomasses (23-24 MJ/kg db). Almost all metals feedstock contents were contained in the chars at temperatures of 550 - 575 deg. C for lignin, sewage sludge and macroalgae PCR pyrolysis. Due to high feedstock nitrogen and sulfur contents, also a high level of nitrogen and sulfur of macroalgae and sewage sludge oils were observed compared to conventional bio-oil and this may limit their further industrial applications. The lignin char had a high proportion of small size particles, a HHV of 21 MJ/kg db and were almost free of chloride and sulfur, thus it is considered as a promising fuel for gasification or combustion; whereas macroalgae and sewage sludge chars containing high amounts of

  19. [Effects of intercropping Sedum plumbizincicola and Apium graceolens on the soil chemical and microbiological properties under the contamination of zinc and cadmium from sewage sludge application].

    Science.gov (United States)

    Nai, Feng-Jiao; Wu, Long-Hua; Liu, Hong-Yan; Ren, Jing; Liu, Wu-Xing; Luo, Yong-Ming

    2013-05-01

    Taking the vegetable soil with zinc- and cadmium contamination from a long-term sewage sludge application as the object, a pot experiment was conducted to study the remediation effect of Sedum plumbizincicola and Apium graceolens under continuous monoculture and intercropping. With the remediation time increased, both S. plumbizincicola and A. graceolens under monoculture grew poorly, but S. plumbizincicola under intercropping grew well. Under intercropping, the soil organic matter, total N, extractable N, and total P contents decreased significantly while the soil extractable K content had a significant increase, the counts of soil bacteria and fungi increased by 7.9 and 18.4 times and 3.7 and 4.3 times, respectively, but the soil urease and catalase activities remained unchanged, as compared with those under A. graceolens and S. plumbizincicola monoculture. The BIOLOG ECO micro-plates also showed that the carbon sources utilization level and the functional diversity index of soil microbial communities were higher under intercropping than under monoculture, and the concentrations of soil zinc and cadmium under intercropping decreased by 5.8% and 50.0%, respectively, with the decrements being significantly higher than those under monoculture. It was suggested that soil microbial effect could be one of the important factors affecting plant growth.

  20. Sewage sludge - arisings, composition, disposal capacities; Klaerschlamm - Mengen, Zusammensetzung, Entsorgungskapazitaeten

    Energy Technology Data Exchange (ETDEWEB)

    Faulstich, M.; Rabus, J. [Technische Univ. Muenchen, Garching (Germany). Lehrstuhl fuer Wasserguete- und Abfallwirtschaft; Urban, A.I.; Friedel, M. [Kassel Univ. (Gesamthochschule) (Germany). Fachgebiet Abfalltechnik

    1998-09-01

    One of the main disposal paths for sewage sludge in the past was landfilling. This option was severely restricted by the issue of the Technical Code on Household Waste in 1993. In its agricultural applications sewage sludge serves as a fertiliser and a soil improvement agent. Estimates on potential thermal treatment capacities have shown that there are enough public power plants to accommodate and provide thermal treatment for the total of sewage sludge arisings in Germany. As can be seen from the estimates presented in this paper, it would not even be necessary to restrict oneself to public power plant capacities. The paper points out possibilities of using plant capacities already existing in industrial firing plants and certain production sectors. It uses a comparison to show that sewage sludge would have to be dried in order to permit its thermal treatment in these private facilities. Aside from this, there are a number of new techniques entering the market which from the technical viewpoint also appear to be well suited for thermal sewage sludge treatment. [Deutsch] Ein wesentlicher Entsorgungsweg von Klaerschlamm war in der Vergangenheit die Verbringung auf eine Deponie. Diese Moeglichkeit ist durch die TA Siedlungsabfall von 1993 stark eingeschraenkt. Bei der landwirtschaftlichen Verwertung wird durch den Klaerschlamm eine Duengewirkung sowie eine Bodenverbesserung erreicht. Eine Abschaetzung der potentiellen thermischen Behandlungskapazitaeten zeigt, dass die gesamte bundesdeutsche Klaerschlammenge in oeffentlichen Kraftwerken unterzubringen und thermisch zu behandeln waere. Wie die hier dargestellten Abschaetzungen gezeigt haben, ist man durchaus nicht allein auf die Nutzung oeffentlicher Kraftwerkskapazitaeten angewiesen. Es wurden Moeglichkeiten zur Nutzung vorhandener Anlagenkapazitaeten in industriellen Feuerungsanlagen und in Produktionsbereichen aufgezeigt. Wie aus einem Vergleich erkennbar wird, ist allerdings eine Trocknung der Klaerschlaemme

  1. Composting of sewage sludge irradiated

    International Nuclear Information System (INIS)

    Hashimoto, Shoji; Watanabe, Hiromasa; Nishimura, Koichi; Kawakami, Waichiro

    1981-01-01

    Recently, the development of the techniques to return sewage sludge to forests and farm lands has been actively made, but it is necessary to assure its hygienic condition lest the sludge is contaminated by pathogenic bacteria. The research to treat sewage sludge by irradiation and utilize it as fertilizer or soil-improving material has been carried out from early on in Europe and America. The effects of the irradiation of sludge are sterilization, to kill parasites and their eggs, the inactivation of weed seeds and the improvement of dehydration. In Japan, agriculture is carried out in the vicinity of cities, therefore it is not realistic to use irradiated sludge for farm lands as it is. The composting treatment of sludge by aerobic fermentation is noticed to eliminate the harms when the sludge is returned to forests and farm lands. It is desirable to treat sludge as quickly as possible from the standpoint of sewage treatment, accordingly, the speed of composting is a problem. The isothermal fermentation experiment on irradiated sludge was carried out using a small-scale fermentation tank and strictly controlling fermentation conditions, and the effects of various factors on the fermentation speed were studied. The experimental setup and method are described. The speed of composting reached the maximum at 50 deg C and at neutral or weak alkaline pH. The speed increased with the increase of irradiation dose up to 30 Mrad. (Kako, I.)

  2. Use of sewage sludge as a fertilizer for increasing soil fertility and crop production

    International Nuclear Information System (INIS)

    Suess, A.

    1997-01-01

    The high nutrient and organic-matter contents of sewage sludge make it a useful soil amendment for farmers. In this study at four locations in Bavaria, the application of sewage sludge produced com yields that were similar to or better than those produced by an equal application (in terms of N) of chemical fertilizer. High rates of sludge (800 m 3 /ha) further improved crop yields, although such are impractical for farmers' fields. Residual beneficial effects of sewage-sludge application were seen also in terms of subsequent yields of barley. Application of sludge also improved biological and physical properties of the soils. More long-term studies are needed to better understand how sewage sludge contributes to the improvement of soil fertility and crop yields. (author)

  3. Sewage sludge application on cultivated soils: effects on runoff and trace metal load Aplicação de lodo de esgoto em solos agrícolas: efeitos na enxurrada e no carreamento de metais

    Directory of Open Access Journals (Sweden)

    Marcelo Valadares Galdos

    2009-06-01

    Full Text Available The use of sewage sludge in agricultural soils as a macro and micronutrient source and as a soil conditioner has been one of the alternatives for its disposal. However, sewage sludge contains trace metals, which are potential sources of pollution. The goal of this study was to evaluate the effect of sewage sludge application on surface water contamination through runoff when it was applied in a soil cultivated with corn. The effect of sludge application on the concentration and load of copper, nickel and zinc and the volume of runoff water and sediment were evaluated. The experiment was set up in plots used to study erosion losses in Campinas, Sao Paulo State, Brazil. The soil is a clayey Rhodic Hapludox. Three treatments were studied: no sewage sludge, sewage sludge to supply the N required by the crop and twice that amount, with four replications. The water and sediment lost by runoff were measured after each rainfall, and sampled for chemical analysis. The volumes of water and sediment lost by runoff decreased after sewage sludge application. The waste application increased trace metal concentration in the runoff water and sediment, especially zinc, which was present in high concentration in the sewage sludge used. Nevertheless, the load of trace metals transported from the plot was mostly dependent on the total runoff volume. Most of the Cu, Zn and Ni losses were via sediment, and occurred in a few highly erosive rainfall events in the period studied.O uso de lodo de esgoto em solos agrícolas como fonte de macro e micronutrientes e como condicionador de solos tem sido uma das alternativas para sua disposição final. O lodo de esgoto, entretanto, contém metais que são potencialmente fonte de poluição. Estudou-se o efeito da aplicação de lodo de esgoto na contaminação de águas superficiais por meio da enxurrada proveniente de solo agrícola cultivado com milho. O efeito da aplicação do lodo na concentração e no carreamento de

  4. Life cycle assessment of sewage sludge treatment and its use on land

    DEFF Research Database (Denmark)

    Yoshida, Hiroko

    factors per unit application of N fertiliser on land by fitting a linear mixed-effect model to the outcome of simulations with varying N application levels. It was evident that the effects of inorganic N fertiliser appear immediately after its application, while improvements in crop yield and emissions......Sewage sludge is generated as an end-product of wastewater treatment processes, and its management holds importance in the operation of wastewater treatment plants from both an economic and an environmental point of view. At the same time, the management of sewage sludge is becoming increasingly...... (LCAs) have been applied in the field of sewage sludge management for the past two decades. While providing a flexible platform for comparing a range of sewage sludge management options, a knowledge gap has been identified through the review of existing studies, including inconsistencies in pollutant...

  5. Impacts of Sewage Sludge in Tropical Soil: A Case Study in Brazil

    International Nuclear Information System (INIS)

    Bettiol, W.; Ghini, R.

    2011-01-01

    A long-term assay was conducted to evaluate the environmental impacts of agriculture use of sewage sludge on a tropical soil. This paper describes and discusses the results obtained by applying a interdisciplinary approach and the valuable insights gained. Experimental site was located in Jaguariuna (SP, Brazil). Multiyear comparison was developed with the application of sewage sludge obtained from wastewater treatment plants at Barueri (domestic and industrial sewage) and Franca (domestic sewage), Sao Paulo State. The treatments were control, mineral fertilization, and sewage sludge applied based on the N concentration that provides the same amount of N as in the mineral fertilization recommended for corn crop, two, four, and eight times the N recommended dosage. The results obtained indicated that the amount of sewage sludge used in agricultural areas must be calculated based on the N crop needs, and annual application must be avoided to prevent over applications.

  6. Pressurized Fluidized Bed Combustion of Sewage Sludge

    Science.gov (United States)

    Suzuki, Yoshizo; Nojima, Tomoyuki; Kakuta, Akihiko; Moritomi, Hiroshi

    A conceptual design of an energy recovering system from sewage sludge was proposed. This system consists of a pressurized fluidized bed combustor, a gas turbine, and a heat exchanger for preheating of combustion air. Thermal efficiency was estimated roughly as 10-25%. In order to know the combustion characteristics of the sewage sludge under the elevated pressure condition, combustion tests of the dry and wet sewage sludge were carried out by using laboratory scale pressurized fluidized bed combustors. Combustibility of the sewage sludge was good enough and almost complete combustion was achieved in the combustion of the actual wet sludge. CO emission and NOx emission were marvelously low especially during the combustion of wet sewage sludge regardless of high volatile and nitrogen content of the sewage sludge. However, nitrous oxide (N2O) emission was very high. Hence, almost all nitrogen oxides were emitted as the form of N2O. From these combustion tests, we judged combustion of the sewage sludge with the pressurized fluidized bed combustor is suitable, and the conceptual design of the power generation system is available.

  7. Use of radiation hygienised municipal sewage sludge as a soil conditioner to enhance agricultural productivity

    International Nuclear Information System (INIS)

    Shah, M.R.; Nareshkumar; Sabharwal, S.

    2009-01-01

    This paper presents a report on the applications that have been developed and demonstrated in the radiation hygienisation of municipal sewage sludge for use in the agriculture as value added manure. Radiation hygienization process effectively eliminates the pathogenic bacteria present in the sewage sludge. Application of sludge to agricultural land enhances the yield and quality of agricultural products due to macronutrients and micronutrients present in the sludge. The process benefits municipal sewage treatment plant authorities as well as farming community. (author)

  8. REEMISSION OF MERCURY COMPOUNDS FROM SEWAGE SLUDGE DISPOSAL

    OpenAIRE

    Beata Janowska

    2016-01-01

    The sewage sludge disposal and cultivation methods consist in storage, agricultural use, compost production, biogas production or heat treatment. The sewage sludge production in municipal sewage sludge treatment plants in year 2013 in Poland amounted to 540.3 thousand Mg d.m. The sewage sludge for agricultural or natural use must satisfy chemical, sanitary and environmental safety requirements. The heavy metal content, including the mercury content, determines the sewage sludge disposal metho...

  9. Modeling the pH-mediated extraction of ionizable organic contaminants to improve the quality of municipal sewage sludge destined for land application

    International Nuclear Information System (INIS)

    Venkatesan, Arjun K.; Halden, Rolf U.

    2016-01-01

    A model was developed to assess the impact of adding acids and bases to processed municipal sewage sludge (MSS) to mobilize contaminants, facilitating their removal from sludge by flushing prior to land application. Among 312 organic contaminants documented to occur in U.S. MSS, 71 or 23% were identified as ionizable organic contaminants (IOCs), contributing a disproportionately large fraction of 82% of the total mass of sludge-borne contaminants. Detected IOCs included 57 pharmaceuticals and personal care products, 12 perfluorinated compounds, one surfactant and one pesticide. Annually, about 2000 t of IOCs were estimated to be released to U.S. soils via land-application of MSS. A partitioning model developed to assess the impact of pH on hydrophobic sorption revealed that between 36 and 85% of the mass of individual classes of IOCs potentially could be desorbed from MSS via pH adjustment and flushing. Thus, modeling results suggest that a sequential pH treatment [acidic (~ pH 2) followed by basic (~ pH 12) treatment] has the potential to reduce the burden of harmful IOCs in MSS applied on U.S. land by up to 40 ± 16 t annually. This approach may serve as a cost-effective treatment process that can be implemented easily in existing sludge treatment infrastructure in the U.S. and worldwide, serving to significantly improve the quality of MSS destined for land application. - Highlights: • Sorption model predicts the leachability of ionizable organics from sludge. • Ionic organics make up 82% of total contaminant mass in U.S. sludge. • 36–85% of ionic organic pollutants are removable by pH treatment. • Proposed sludge treatment promises cost-effective risk reduction.

  10. Modeling the pH-mediated extraction of ionizable organic contaminants to improve the quality of municipal sewage sludge destined for land application

    Energy Technology Data Exchange (ETDEWEB)

    Venkatesan, Arjun K.; Halden, Rolf U., E-mail: halden@asu.edu

    2016-04-15

    A model was developed to assess the impact of adding acids and bases to processed municipal sewage sludge (MSS) to mobilize contaminants, facilitating their removal from sludge by flushing prior to land application. Among 312 organic contaminants documented to occur in U.S. MSS, 71 or 23% were identified as ionizable organic contaminants (IOCs), contributing a disproportionately large fraction of 82% of the total mass of sludge-borne contaminants. Detected IOCs included 57 pharmaceuticals and personal care products, 12 perfluorinated compounds, one surfactant and one pesticide. Annually, about 2000 t of IOCs were estimated to be released to U.S. soils via land-application of MSS. A partitioning model developed to assess the impact of pH on hydrophobic sorption revealed that between 36 and 85% of the mass of individual classes of IOCs potentially could be desorbed from MSS via pH adjustment and flushing. Thus, modeling results suggest that a sequential pH treatment [acidic (~ pH 2) followed by basic (~ pH 12) treatment] has the potential to reduce the burden of harmful IOCs in MSS applied on U.S. land by up to 40 ± 16 t annually. This approach may serve as a cost-effective treatment process that can be implemented easily in existing sludge treatment infrastructure in the U.S. and worldwide, serving to significantly improve the quality of MSS destined for land application. - Highlights: • Sorption model predicts the leachability of ionizable organics from sludge. • Ionic organics make up 82% of total contaminant mass in U.S. sludge. • 36–85% of ionic organic pollutants are removable by pH treatment. • Proposed sludge treatment promises cost-effective risk reduction.

  11. Effect of hydrothermal treatment temperature on the properties of sewage sludge derived solid fuel

    Directory of Open Access Journals (Sweden)

    Mi Yan

    2015-10-01

    Full Text Available High moisture content along with poor dewaterability are the main challenges for sewage sludge treatment and utilization. In this study, the effect of hydrothermal treatment at various temperature (120-200 ˚C on the properties of sewage sludge derived solid fuel was investigated in the terms of mechanical dewatering character, drying character, calorific value and heavy metal distribution. Hydrothermal treatment (HT followed by dewatering process significantly reduced moisture content and improved calorific value of sewage sludge with the optimum condition obtained at 140˚C. No significant alteration of drying characteristic was produced by HT. Heavy metal enrichment in solid particle was found after HT that highlighted the importance of further study regarding heavy metal behavior during combustion. However, it also implied the potential application of HT on sewage sludge for heavy metal removal from wastewater.

  12. Effectiveness of DTPA Chelate on Cd Availability in Soils Treated with Sewage Sludge

    Directory of Open Access Journals (Sweden)

    Pegah Houshyar

    2017-09-01

    Full Text Available Application of sewage sludge as a fertilizer on farmlands is a common practice in most countries. Although the practice may play a positive role in plant performance, the organic amendments introduced may increase the soil heavy metals content. This study was conducted in Arak, Iran, to investigate the effectiveness of DTPA chelate on corn Cd availability in a sewage sludge treated soil. The treatments consisted of sewage sludge (0, 15, and 30 t ha-1 polluted with cadmium applied at 0, 5, 10, and 15 mg kg-1 as well as DTPA applied at 0 and 1.5 mmol kg-1 soil. Corn plants were then grown in the soil in each treatmnent and, on day 60, the physic-chemical characteristics and Cd quantities were measured ion both the corn plants and soil samples. Application of 1.5 m mol of DTPA chelate in soil contaminated with 5 mg Cd led to a significant increase in the soil available Cd content. It was also observed that application of DTPA chelate to soils containing 30 t ha-1 of sewage sludge polluted with 10 mg Cd increased root and shoot Cd concentrations by 17 and 25%, respectively. Results indicated the effectiveness of DTPA chelate in reducing Cd phytoremediation with increasing sewage sludge loading rate. This was evidenced by the lowest phytoremediation effectiveness observed for the treatment with the greatest sewage sludge loading (30 t ha-1 and the lowest cadmium pollution (5 mg Cd.

  13. Agricultural yields of irradiated sewage sludge

    International Nuclear Information System (INIS)

    Magnavacca, Cecilia; Miranda, E.; Sanchez, M.

    1999-01-01

    Lettuce, radish and ryegrass have been used to study the nitrogen fertilization of soil by sewage sludge. The results show that the irradiated sludge improve by 15 - 30 % the production yield, compared to the non-irradiated sludge. (author)

  14. grown on soil amended with sewage sludge

    African Journals Online (AJOL)

    DELL

    2Department of Civil Engineering, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria. Corresponding ... Key Words: Sewage sludge, Green amaranth, Phytoextraction, Heavy metals. ..... Wastewater-irrigated Areas of Titagarh,.

  15. Investigation of Catalytic effect sewage sludge combustion ash in the formation of HAPs

    Energy Technology Data Exchange (ETDEWEB)

    Fullana, A.; Sidhu, S.; Font, R.; Conesa, A.

    2002-07-01

    Incineration is a very important technique in the treatment of sewage sludge. In 1998 approximately 1,5 million and 2,5 million dry tons of sewage sludge were incinerated in the United States and European Union (EU), respectively. In 1985, only 10% of EU sludge was incinerated, but by 2005 approximately 40% of EU sludge is expected to be incinerated. Use of sewage sludge as agricultural fertilizer was considered the best application for sludge until it was discovered that the presence of heavy metals in sludge could contaminate farmland. The limitations facing landfills and recycling plants and the planned ban on sea disposal has led to the expectation that the role of incineration will increase in the future. The expected increase in sludge incineration has also led to increased scrutiny of the main drawback to the incineration of sewage sludge: the formation of hazard air pollutants (HAP). Sewage sludge incineration has been identified as a very important source of HAPs such as chloro benzenes, chloro phenols, and PCDD/Fs. One of the more important characteristics of sewage sludge incineration is the formation of large amounts of ash, which is rich in known HAP formation catalysts such as Cu and Fe. Thus, the sludge incineration ash is expected to play an important role in the formation of HAPs in the post-combustion zone of a sludge incinerator. in this paper, we present results of our investigation of the catalytic effect of sewage sludge ash on the formation of chloro benzenes and chloro phenols. In this study, pyrolytic gas from sewage sludge was used as reaction gas instead of the synthetic organic mix that has been used in most previous HAPs formation studies. (Author) 4 refs.

  16. The use of reed canary grass and giant miscanthus in the phytoremediation of municipal sewage sludge.

    Science.gov (United States)

    Antonkiewicz, Jacek; Kołodziej, Barbara; Bielińska, Elżbieta Jolanta

    2016-05-01

    The application of municipal sewage sludge on energy crops is an alternative form of recycling nutrients, food materials, and organic matter from waste. Municipal sewage sludge constitutes a potential source of heavy metals in soil, which can be partially removed by the cultivation of energy crops. The aim of the research was to assess the effect of municipal sewage sludge on the uptake of heavy metals by monocotyledonous energy crops. Sewage sludge was applied at doses of 0, 10, 20, 40, and 60 Mg DM · ha(-1) once, before the sowing of plants. In a 6-year field experiment, the effect of four levels of fertilisation with sewage sludge on the uptake of heavy metals by two species of energy crops, reed canary grass (Phalaris arundinacea L.) of 'Bamse' cultivar and giant miscanthus (Miscanthus × giganteus GREEF et DEU), was analysed. It was established that the increasing doses of sewage sludge had a considerable effect on the increase in biomass yield from the tested plants. Due to the increasing doses of sewage sludge, a significant increase in heavy metals content in the energy crops was recorded. The heavy metal uptake with the miscanthus yield was the highest at a dose of 20 Mg DM · ha(-1), and at a dose of 40 Mg DM · ha(-1) in the case of reed canary grass. Research results indicate that on account of higher yields, higher bioaccumulation, and higher heavy metal uptake, miscanthus can be selected for the remediation of sewage sludge.

  17. Soil Microbial Functional and Fungal Diversity as Influenced by Municipal Sewage Sludge Accumulation

    Directory of Open Access Journals (Sweden)

    Magdalena Frąc

    2014-08-01

    Full Text Available Safe disposal of municipal sewage sludge is a challenging global environmental concern. The aim of this study was to assess the response of soil microbial functional diversity to the accumulation of municipal sewage sludge during landfill storage. Soil samples of a municipal sewage sludge (SS and from a sewage sludge landfill that was 3 m from a SS landfill (SS3 were analyzed relative to an undisturbed reference soil. Biolog EcoPlatesTM were inoculated with a soil suspension, and the Average Well Color Development (AWCD, Richness (R and Shannon-Weaver index (H were calculated to interpret the results. The fungi isolated from the sewage sludge were identified using comparative rDNA sequencing of the LSU D2 region. The MicroSEQ® ID software was used to assess the raw sequence files, perform sequence matching to the MicroSEQ® ID-validated reference database and create Neighbor-Joining trees. Moreover, the genera of fungi isolated from the soil were identified using microscopic methods. Municipal sewage sludge can serve as a habitat for plant pathogens and as a source of pathogen strains for biotechnological applications.

  18. Soil microbial functional and fungal diversity as influenced by municipal sewage sludge accumulation.

    Science.gov (United States)

    Frąc, Magdalena; Oszust, Karolina; Lipiec, Jerzy; Jezierska-Tys, Stefania; Nwaichi, Eucharia Oluchi

    2014-08-28

    Safe disposal of municipal sewage sludge is a challenging global environmental concern. The aim of this study was to assess the response of soil microbial functional diversity to the accumulation of municipal sewage sludge during landfill storage. Soil samples of a municipal sewage sludge (SS) and from a sewage sludge landfill that was 3 m from a SS landfill (SS3) were analyzed relative to an undisturbed reference soil. Biolog EcoPlatesTM were inoculated with a soil suspension, and the Average Well Color Development (AWCD), Richness (R) and Shannon-Weaver index (H) were calculated to interpret the results. The fungi isolated from the sewage sludge were identified using comparative rDNA sequencing of the LSU D2 region. The MicroSEQ® ID software was used to assess the raw sequence files, perform sequence matching to the MicroSEQ® ID-validated reference database and create Neighbor-Joining trees. Moreover, the genera of fungi isolated from the soil were identified using microscopic methods. Municipal sewage sludge can serve as a habitat for plant pathogens and as a source of pathogen strains for biotechnological applications.

  19. Soil Microbial Functional and Fungal Diversity as Influenced by Municipal Sewage Sludge Accumulation

    Science.gov (United States)

    Frąc, Magdalena; Oszust, Karolina; Lipiec, Jerzy; Jezierska-Tys, Stefania; Nwaichi, Eucharia Oluchi

    2014-01-01

    Safe disposal of municipal sewage sludge is a challenging global environmental concern. The aim of this study was to assess the response of soil microbial functional diversity to the accumulation of municipal sewage sludge during landfill storage. Soil samples of a municipal sewage sludge (SS) and from a sewage sludge landfill that was 3 m from a SS landfill (SS3) were analyzed relative to an undisturbed reference soil. Biolog EcoPlatesTM were inoculated with a soil suspension, and the Average Well Color Development (AWCD), Richness (R) and Shannon-Weaver index (H) were calculated to interpret the results. The fungi isolated from the sewage sludge were identified using comparative rDNA sequencing of the LSU D2 region. The MicroSEQ® ID software was used to assess the raw sequence files, perform sequence matching to the MicroSEQ® ID-validated reference database and create Neighbor-Joining trees. Moreover, the genera of fungi isolated from the soil were identified using microscopic methods. Municipal sewage sludge can serve as a habitat for plant pathogens and as a source of pathogen strains for biotechnological applications. PMID:25170681

  20. Application of sewage sludges in cultivates; Aplicacion de lodos digeridos procedentes de una E.D.A.R de lechos bacterianos en cultivos horticolas

    Energy Technology Data Exchange (ETDEWEB)

    Manas Ramirez, P.; Castro Barrilero, E.; Hera de las Ibanez, J.; Sanchez Tebar, J. C.

    2001-07-01

    In general, wastewater sewage sludge contains a great proportion of water, organic matter and mineral elements and can be used in agriculture as organic amendment. Nitrogen, phosphorous and potassium use to appear in most sewage sludge but in several cases heavy metals can be found in their chemical composition primarily when they come from industrial wastewater. The toxicity risk will depend on the heavy metals concentration and mobility. The wastewater depuration plant of Albacete is based on biological percolation filters and process daily about 48.000 m''3 of water 6.000 m''3 of which is industrial wastewater. The goal of this paper is to determine the agricultural aptitude of the digested sludge of this depuration plant using as control Lactuca sativa L. Results obtained showed significant differences among lettuce plants that were fertilized with three sludge dose and control. (Author) 26 refs.

  1. Presence of helminth eggs in sewage sludge from waste water plants; Presencia de huevos de helmintos en lodos procedentes de la depuracion de aguas

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Muro, J. L.; Garcia Orenes, F.; Nieto Asensio, N.; Bonora, I. B.; Morenilla Martinez, J. J.

    2003-07-01

    Land application of sewage sludge is a usual practice in wide areas of the Comunidad Valencia, due the low organic contents and nutrients of the soils, and the sewage sludge is a suitable material to use os organic amendment of soils. However the use of sewage sludge involves a very detailed characterization of sewage, to avoid sanitary hazards as the presence of helminth eggs and its high resistant to most of the treatment used to stabilize sewage sludge. The aim of this work was determine the parasitic contamination of helminths found in sewage sludge, stabilized by anaerobic digestion, from two waste water plants of Alicante (Alcoy y Benidorm) destined to agricultural land. Also it was studies the evolution of helminth eggs content of a sewage sludge subjected to composting process. (Author) 12 refs.

  2. Environmental considerations on the FBC combustion of dry sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, M. Helena; Abelha, Pedro; Gulyurtlu, Ibrahim; Cabrita, Isabel [INETI/DEECA, Lisboa (Portugal)

    2001-07-01

    This paper presents results of on-going research on the incineration of pre-dried granular sewage sludges using a FBC system. Co-combustion is compared with mono-combustion of sludges leads to minor emissions and higher retention of Cd, Pb, Cu, and Zn in the bottom ashes, when compared to co-combustion with coal. The leachability of the sludge is reduced through combustion, as none of the metals, Cd, Cr, Ca Ni, Ph, Zn, Co and Mn were leached from the bottom ashes. These findings may contribute to an improvement in the incineration of sewage sludges and to the development of applications for the ashes in civil engineering activities.

  3. Mineralização de compostos nitrogenados de lodos de esgoto na quinta aplicação em Latossolo Organic nitrogen mineralization rate following the fifth sewage sludge application in an Oxisol

    Directory of Open Access Journals (Sweden)

    Rita Carla Boeira

    2009-06-01

    284 mg kg-1 de N. Não houve efeito das quantidades de resíduos previamente aplicadas ao Latossolo sobre a fração de mineralização do N orgânico recentemente aplicado via lodo de esgoto, com confiabilidade de 95 %. Os resultados mostraram que, em reaplicações na mesma área, as doses de lodo de esgoto devem ser menores do que as doses calculadas para aplicação única, devido ao N residual acumulado no solo, tanto na forma orgânica quanto inorgânica.In agricultural systems treated with sewage sludge, the management ought to seek an adequate N supply to plants, while avoiding nitrate enrichment because of its potential to pollute subsurface water bodies. Thus, when determining the maximum amounts to be applied to a specific crop, some sewage sludge and soil properties should be known. One is the fraction of organic N of the waste that will be mineralized (NMF during the crop cycle. This quantity, combined with mineral N in the sludge, determines the amount of N in sewage sludge that will be available during the growing season. This study aimed to determine whether previous applications of sewage sludge affect the NMF of the residue recently applied to a Dark Red Dystroferric Latosol (Oxisol. The soil had been previously treated in four successive maize crops, with four rates and two types of sewage sludge, one of urban origin (Franca, SP and the other from urban-industrial sources (Barueri, SP. The study of N mineralization was installed in laboratory in a randomized blocks design with three replications and lasted 15 weeks. In the fifth application, sewage sludge doses of equivalent to 160, 320, 640, and 1,280 mg kg-1organic N were studied. On seven dates, the pH and the ammonium-N and nitrate-N concentration were determined. The NMF was calculated with data obtained for the net mineralization measured 105 days after the start of incubation. The performance of the two sludge types was similar, with a high initial mineralization rate. The ammonium levels

  4. Zinc, copper and manganese availability in soils treated with alkaline sewage sludge from Paraná state (Brazil

    Directory of Open Access Journals (Sweden)

    Maristela Dalpisol

    Full Text Available ABSTRACT In Paraná, most of the sludge generated in sewage treatment plants is subjected to the prolonged alkaline stabilization process. Although it is known that the alkaline sewage sludge contains micronutrients such as Zn, Cu and Mn, little is known about the availability of these elements in soils treated with this type of sewage sludge. Thus, the objective of the study was to evaluate the influence of alkaline sewage sludge from Paraná on Zn, Cu and Mn availability in soils. Twenty sewage treatment plants were selected throughout Paraná, where alkaline sewage sludge and the most representative agricultural soil of the each region were collected. Each soil was incubated for 60 days with alkaline sewage sludge rates (0, 10, 20, 40, and 80 Mg ha-1 from their region. Subsequently, Zn, Cu and Mn availability was determined using the Mehlich-1 extractant. The alkaline sewage sludge increased Zn availability and decreased Mn availability in most soils. Cu showed intermediate results, with increased availability, primarily in medium texture soils and decrease in most of the clayey soils. In soils with pH close to ideal for the plant growth, the alkaline sewage sludge rate should be carefully calculated so that there is no excessive increase in the pH and Zn, Cu and Mn imbalance.

  5. SEWAGE SLUDGE AS AN INGREDIENT IN FERTILIZERS AND SOIL SUBSTITUTES

    Directory of Open Access Journals (Sweden)

    Anna Grobelak

    2016-06-01

    Full Text Available In Poland, sludge management especially in medium and small sewage treatment plants is still a significant problem. According to data from the Central Statistical Office and the report on the implementation of the National Urban Wastewater Treatment Program (in polish KPOŚK land application of sewage sludge remains one of the main methods, although there has been considerable interest known: 'application for other purposes ", where the preparation of composts and fertilizers is included. The use of fertilizer produced from sewage sludge (compost, granules, organic and mineral fertilizers, is regulated by the Act on fertilizers and fertilization, and the relevant implementing rules. For example, they define the test procedure (concerning the quality of fertilizers to enable appropriate permissions to market this type of fertilizers. There is still only several technologies existing on the Polish market dedicated to production of fertilizers in advanced technologies of sewage sludge treatment. Usually the treatment plants are trying to obtain the necessary certificates for generated fertilizers (including composts, or soils substitutes. The advantages of these technologies should be no doubt: the loss of waste status, ability to store the fertilizer and unlimited transportation between areas, sanitization of the product (as a result of the use of calcium or sulfur compounds or temperature should be an alternative for drying technology. While the disadvantages are primarily the investment costs and time consuming certification procedures. However, these solutions enable to maintain the organic matter and phosphorus as well as greater control over possible pollution introduced into the soil.

  6. Soil and pasture P concentration in a Fraxinus excelsior L. silvopastoral system fertilised with different types of sewage sludge

    Science.gov (United States)

    Ferreiro-Domínguez, Nuria; Nair, Vimala; Rigueiro-Rodríguez, Antonio; Rosa Mosquera-Losada, María

    2015-04-01

    In Europe, sewage sludge should be stabilised before using as fertiliser in agriculture. Depending on the stabilisation process that is used, sewage sludge has different characteristics, nutrient contents and soil nutrient incorporation rates. Sewage sludge is usually applied on a plant-available N or total metal concentration basic, and therefore, P concentrations can be well above crop needs. Leaching of excess P can threaten surface and ground waters with eutrophication. In this context, recent studies have demonstrated that the implementation of agroforestry systems could reduce the P leaching risk compared with conventional agricultural systems due to the different localisation of tree and crop roots which enhance nutrient uptake. The aim of this study was to evaluate during three consecutive years the effect of municipal sewage sludge stabilised by anaerobic digestion, composting, and pelletisation on concentration of P in soil and pasture compared to control treatments (mineral and no fertilisation) in a silvopastoral system established under Fraxinus excelsior L. in Galicia (Spain). The results showed that at the beginning of the study, the fertilisation with mineral increased more the total and available P in soil than the fertilisation with sewage sludge probably because the sludge nutrient release rate is slower than those from mineral fertilisers. The increment of soil available P caused by the mineral fertiliser implied an improvement of the P concentration in the pasture. However, in the last year of the experiment it was observed a positive effect of the fertilisation with pelletised sludge on the concentration of P in pasture compared with the composted sludge and the mineral fertiliser probably due to the annual application of this type of sludge. Therefore, the establishment of silvopastoral systems and their fertilisation with pelletized sludge should be recommended because the pelletized sludge increases the concentration of P in the pasture and

  7. Investigation into Total Carbon in Sewage Sludge and Compost

    Directory of Open Access Journals (Sweden)

    Eglė Zuokaitė

    2011-02-01

    Full Text Available The relation between soil and climate change is highly important. The soil is a part of the climate change problem; however, it could also be a part of the solution to the encountered problem. For a better understanding and estimation of climate gas emissions and for slowing down these processes, more investigation in this field is required. Sustainable soil usage could help with saving or even increasing the amount of carbon in the soil. Such process will sustain the balance of climate gas emissions. Soil carbon is an essential element that determines soil fertility. Recently, the importance of organic materials for soil quality and the applicability of sewage sludge to enrich the soil using such materials have been discussed. Sewage sludge as an organic carbon source can improve soil quality. The best way to stabilise and immobilise carbon is mineralisation that occurs in the composting process. The article analyses and evaluates the loss of organic carbon content during the composting process of sewage sludge and explores loss rates by adding various natural supplements (wood shavings and chips, milled bark, grained branches, peat and zeolite.Article in Lithuanian

  8. Supercritical water gasification of sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Aye, L.; Yamaguchi, D. [Melbourne Univ. International Technologies Centre, Melbourne, Victoria (Australia). Dept. of Civil and Environmental Engineering

    2006-07-01

    Supercritical water gasification (SCWG) is an attractive technology for producing fuels from biomass and waste materials. As a result of greenhouse gas emissions and issues related to local air pollutants, hydrogen production from these renewable energy resources has been gaining in popularity. Disposal of sewage sludge is another environmental problem that have led to severe regulations. Incineration has been one of the most commonly used means of sewage sludge disposal. Thermal gasification produces gaseous fuel, making it a better option over incineration. However, due to its high moisture content, this process is not feasible to make use of sewage sludge directly. In order to analyze SCWG of sewage sludge, it has been determined that equilibrium analysis is most suitable since the maximum achievable amount of hydrogen in a given reacting condition can be estimated. The equilibrium model can be divided into two types of models, namely stoichiometric and non-stoichiometric. This paper presented the results of a study that used a computer program to develop a nonstoichiometric model with the direct Gibbs free energy minimization technique. In addition, various biomass were simulated for comparisons in order to identify if sewage sludge is a potential feedstock for hydrogen production. Last, the effects of reaction pressure and temperature on product distribution were also examined. It was shown that the proposed model is capable of estimating the product distribution at equilibrium. 33 refs., 4 tabs., 6 figs.

  9. EFFECT OF FLY ASHES AND SEWAGE SLUDGE ON Fe, Mn, Al, Si AND Co UPTAKE BY GRASS MIXTURE

    Directory of Open Access Journals (Sweden)

    Jacek Antonkiewicz

    2014-07-01

    Full Text Available Application of sewage sludge for environmental management of fly ashes landfill site affects chemical composition of plants. The aim of the present investigations was learning the effect of growing doses of municipal sewage sludge on the yield and uptake of Fe, Mn, Al, Si and Co by grass mixture used for environmental management of fly ashes landfill. The experimental design comprised of 5 objects differing by a dose of municipal sewage sludge supplied per 1 hectare: I. control, II. 25 t d.m., III. 50 t d.m., IV. 75 t d.m. and V. 100 t d.m. Application of sewage sludge resulted in the increase in yield. The content of analyzed elements in the grass mixture depended significantly on sewage sludge dose. Increasing doses of sewage sludge caused marked increase in Mn and Co contents, while they decreased Fe, Al and Si contents in the grass mixture. It was found that growing doses of sewage sludge caused an improvement of Fe to Mn ratio value in the grass mixture. Assessing the element content in the grass mixture in the view of forage value, it was found that Fe and Mn content did not meet the optimal value. Si content in plants was below the optimal value.

  10. Submersible microbial fuel cell for electricity production from sewage sludge

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Olias, Lola Gonzalez; Kongjan, Prawit

    2010-01-01

    A submersible microbial fuel cell (SMFC) was utilized to treatment of sewage sludge and simultaneous generate electricity. Stable power generation (145±5 mW/m2) was produced continuously from raw sewage sludge for 5.5 days. The corresponding total chemical oxygen demand (TCOD) removal efficiency...... of an effective system to treatment of sewage sludge and simultaneous recover energy....

  11. Lipid profiling in sewage sludge.

    Science.gov (United States)

    Zhu, Fenfen; Wu, Xuemin; Zhao, Luyao; Liu, Xiaohui; Qi, Juanjuan; Wang, Xueying; Wang, Jiawei

    2017-06-01

    High value-added reutilization of sewage sludge from wastewater treatment plants (WWTPs) is essential in sustainable development in WWTPs. However, despite the advantage of high value reutilization, this process must be based on a detailed study of organics in sludge. We used the methods employed in life sciences to determine the profile of lipids (cellular lipids, free fatty acids (FFAs), and wax/gum) in five sludge samples obtained from three typical WWTPs in Beijing; these samples include one sludge sample from a primary sedimentation tank, two activated sludge samples from two Anaerobic-Anoxic-Oxic (A2/O) tanks, and two activated sludge samples from two membrane bioreactor tanks. The percentage of total raw lipids varied from 2.90% to 12.3%. Sludge from the primary sedimentation tank showed the highest concentrations of lipid, FFA, and wax/gum and the second highest concentration of cellular lipids. All activated sludge contained an abundance of cellular lipids (>54%). Cells in sludge can from plants, animals, microbes and so on in wastewater. Approximately 14 species of cellular lipids were identified, including considerable high value-potential ceramide (9567-38774 mg/kg), coenzyme (937-3897 mg/kg), and some phosphatidylcholine (75-548 mg/kg). The presence of those lipid constituents would thus require a wider range of recovery methods for sludge. Both cellular lipids and FFAs contain an abundance of C16-C18 lipids at high saturation level, and they serve as good resources for biodiesel production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Evaluation of energy consumption during aerobic sewage sludge treatment in dairy wastewater treatment plant.

    Science.gov (United States)

    Dąbrowski, Wojciech; Żyłka, Radosław; Malinowski, Paweł

    2017-02-01

    The subject of the research conducted in an operating dairy wastewater treatment plant (WWTP) was to examine electric energy consumption during sewage sludge treatment. The excess sewage sludge was aerobically stabilized and dewatered with a screw press. Organic matter varied from 48% to 56% in sludge after stabilization and dewatering. It proves that sludge was properly stabilized and it was possible to apply it as a fertilizer. Measurement factors for electric energy consumption for mechanically dewatered sewage sludge were determined, which ranged between 0.94 and 1.5 kWhm -3 with the average value at 1.17 kWhm -3 . The shares of devices used for sludge dewatering and aerobic stabilization in the total energy consumption of the plant were also established, which were 3% and 25% respectively. A model of energy consumption during sewage sludge treatment was estimated according to experimental data. Two models were applied: linear regression for dewatering process and segmented linear regression for aerobic stabilization. The segmented linear regression model was also applied to total energy consumption during sewage sludge treatment in the examined dairy WWTP. The research constitutes an introduction for further studies on defining a mathematical model used to optimize electric energy consumption by dairy WWTPs. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Rheological properties of disintegrated sewage sludge

    Science.gov (United States)

    Wolski, Paweł

    2017-11-01

    The rheology of the sludge provides information about the capacity and the flow, which in the case of project tasks for the hydraulic conveying installation is an important control parameter. Accurate knowledge of the rheological properties of sludge requires the designation of rheological models. Models single and multiparameter (Ostwald, Bingham, Herschel-Bulkley'a, and others) allow an approximation of flow curves, and the determination of the boundaries of the flow of modified sludge allows you to control the process compaction or are dewatered sludge undergoing flow. The aim of the study was to determine the rheological parameters and rheological models of sludge conditioned by physical methods before and after the process of anaerobic digestion. So far, studies have shown that the application of conditioning in the preparation of sewage sludge increases shear stress, viscosity as well as the limits of flow in relation to the untreated sludge. Offset yield point by the application of a conditioning agent is associated with decreased flowability tested sludge, which has also been observed by analyzing the structure of the prepared samples. Lowering the yield point, and thus the shear stress was recorded as a result of the fermentation test of disintegrated sludge.

  14. Irradiated Sewage Sludge for Production of Fennel (Foeniculum vulgare L.) Plants in Sandy Soil 2- Seed production, oil content, oil constituents and heavy metals in seeds

    International Nuclear Information System (INIS)

    El-Motaium, R. A.; Abo-El-Seoud, M. A.

    2007-01-01

    Field experiment was conducted to study the impact of irradiated and non-irradiated sewage sludge applied to sandy soil on fennel plants (Foeniculum vulgare L.) productivity. In this regards, four rates of sewage sludge application were used (20, 40, 60 and 80 ton/ha) in addition to the mineral fertilizer treatment (control). Sandy soil amended with sewage sludge showed a promising effect on fennel seed yield. A linear gradual increase in seeds yield was observed as the sludge application rate increases. Seeds production increased by 41% to 308% over the control at 80 t /ha application rate, for non-irradiated and irradiated sewage sludge treatments, respectively. Irradiated sewage sludge treatments showed higher fennel seed yield than non-irradiated sewage sludge treatments.Volatile oil percent exhibited no observable variation due to the use of sewage sludge. A few and limited fluctuations could be observed. However, total oil content (cc/plot) increased due to the increase in seeds yield. The magnitude of increase in volatile oil production in response to the sewage sludge application was parallel to the increase in seeds yield. The GLC measurements of the fennel volatile oil reveal that, the t-anethole is the predominant fraction. However, fenchone was detected in relatively moderate concentration. The applied sewage sludge treatment induced some variations in fennel volatile oil constituents. The t.anethole is relatively higher in volatile oil obtained from plants grown on sandy soil fertilized with non-irradiated sewage sludge than the one fertilized with irradiated sewage sludge or chemical fertilizer. In the meantime, the obtained increase in t.anethole was accompanied by a decline in fenchone content. Seeds heavy metals (Zn, Fe, Pb, Cd) were determined. Under all sludge application rates iron and zinc concentrations were in the normal plant concentration range whereas, Cd concentrations were traces.

  15. The effect of Penicillium bilaii on wheat growth and phosphorus uptake as affected by soil pH, soil P and application of sewage sludge

    DEFF Research Database (Denmark)

    Sánchez-Esteva, S.; Gomez Muñoz, Beatriz; Jensen, Lars Stoumann

    2016-01-01

    Penicillium bilaii may enhance P availability to plants, since it has been shown to increase plant growth and P uptake. There is currently increasing interest in using microorganisms to promote P mobilisation from organic P sources. An investigation was conducted to determine the effects of P. bi....... bilaii on P uptake and growth of wheat in the presence and absence of sewage sludge. Two soils differing in P contents and pH were used, as it was hypothesised that these affect the efficiency of P mobilisation....

  16. Preparation of lightweight concretes with sewage sludge ash and their properties

    International Nuclear Information System (INIS)

    Lee, Hwa Young

    2010-01-01

    Sewage sludge results from the accumulation of solids from the unit processes of chemical coagulation, flocculation and sedimentation during wastewater treatment. Rapid urbanization in many areas of the world has resulted in a drastic increase of sewage sludge. More than two million tons of sewage sludge resulted from the treatment of urban sewage is produced annually in Korea. The majority of sewage sludge is disposed of conventionally by the landfill or ocean disposal method, both of which create severe environmental pollution. However, increasingly stringent environmental regulations and scarcity of landfill sites have posed disposal problems of sludge. Incineration is a viable alternative providing a means of sludge stabilization resulting in a reduced volume of sterile, odorless and practically inert residue. Accordingly, the development of environment friendly treatment technique of SSA (sewage sludge ash) inevitably produced during incineration of sewage sludge may be urgently required. For this aim, an attempt to manufacture the lightweight concrete has been made using sewage sludge ash and the physical properties have been determined in terms of specific gravity, compressive strength and thermal conductivity. As a result, the density of specimen prepared with SSA was ranged from 0.6 to 1.4g/ cm 3 and the compressive strength was ranged from 20 to 40kg/ cm 2 . As far as the thermal conductivity of specimen was concerned, it was ranged from 0.3 to 0.6 W/ mK depending on material composition which was far less than that of concrete. It was concluded that the lightweight concretes prepared with SSA could be applicable to building or construction materials such as insulation board and sound absorption material. (author)

  17. Effect of γ-irradiation and pasteurization of sewage sludge to the microbiological properties and the mineralization in soil

    International Nuclear Information System (INIS)

    Beck, T.; Schurmann, G.; Suess, A.

    1977-01-01

    Hygienic aspects of sewage sludge application in agricultural practice are of increasing importance. Because parasites are extremely sensitive to γ-irradiation a dose of 300 krad is quivalent to pasteurization. The total bacteria count of the sewage sludge is reduced by this dosage by 90 to 99%. Enzymic activity is reduced after radiation at a rate of about 39%. Especially amylase, catalase, and alkaline phosphatase are extremely sensitive to irradiation. Mineralization studies of sewage sludge with different pretreatments in different soil types indicated no significant differences. (orig.) [de

  18. Radioactive contamination of sewage sludge. Preliminary data

    Energy Technology Data Exchange (ETDEWEB)

    Soeder, C J; Zanders, E; Raphael, T

    1986-01-01

    Because of the radioactivity released through the explosion of the nuclear reactor near Chernobyl radionuclides have been accumulated to a significant extent in sewage sludge in the Federal Republic of Germany. This is demonstrated for samples from four activated sludge plants according to a recent recommendation of the German Commission for Radiation Protection, there is until now no reason to deviate from the common practices of sludge disposal or incineration. The degree of radioactive contamination of plant materials produced on farm lands on which sewage sludge is being spread cannot be estimated with sufficient certainty yet. Additional information is required.

  19. [Emissions of greenhouse gas and ammonia from the full process of sewage sludge composting and land application of compost].

    Science.gov (United States)

    Zhong, Jia; Wei, Yuan-Song; Zhao, Zhen-Feng; Ying, Mei-Juan; Zhou, Guo-Sheng; Xiong, Jian-Jun; Liu, Pei-Cai; Ge, Zhen; Ding, Gang-Qiang

    2013-11-01

    There is a great uncertainty of greenhouse gas (GHG) reduction and nitrogen conservation from the full process of sludge composting and land application of compost in China due to the lack of emission data of GHG such as N2O and CH4 and ammonia (NH3). The purpose of this study is to get emission characteristics of GHGs and NH3 from the full process with on-site observation. Results showed that the total GHG emission factor from full process of the turning windrow (TW) system (eCO2/dry sludge, 196.21 kg x t(-1)) was 1.61 times higher of that from the ATP system. Among the full process, N2O was mostly from the land application of compost, whereas CH4 mainly resulted from the sludge composting. In the sludge composting of ATP, the GHG emission equivalence of the ATP (eCO2/dry sludge, 12.47 kg x t(-1) was much lower than that of the TW (eCO2/dry sludge, 86.84 kg x t(-1)). The total NH3 emission factor of the TW (NH3/dry sludge, 6.86 kg x t(-1)) was slightly higher than that of the ATP (NH3/dry sludge, 6.63 kg x t(-1)). NH3 was the major contributor of nitrogen loss in the full process. During the composting, the nitrogen loss as NH3 from both TW and ATP was nearly the same as 30% of TN loss from raw materials, and the N and C loss caused by N2O and CH4 were negligible. These results clearly showed that the ATP was a kind of environmentally friendly composting technology.

  20. Mineralização de compostos nitrogenados após aplicações de lodos de esgoto em quatro cultivos de milho Nitrogen mineralization after sewage sludge applications to four corn crops

    Directory of Open Access Journals (Sweden)

    Rita Carla Boeira

    2009-02-01

    , nos tratamentos com lodo de Franca, e de 40 para 113 mg kg-1 de N tratamentos com lodo de Barueri. Concluiu-se que os efeitos residuais acumulados no solo devem ser considerados quando se pretender fazer novas aplicações de lodos de esgoto num mesmo local. Os potenciais de mineralização de compostos de N do solo e do lodo que será utilizado, além do acúmulo de nitrato no perfil do solo, devem ser determinados e considerados para o cálculo da dose da próxima aplicação.The available N in sewage sludge-amended soils is one of the restrictive factors for residue application in great amounts. This criterion must be considered in regulations for agricultural use of sewage sludge to avoid environmental pollution of soil and water bodies. The availability of mineral N from native soil organic-N is not considered in the calculation of the maximum rate of sewage sludge application, when these residues are applied for the first time, and this procedure is usual in the mineral fertilizer recommendations. Continuous sewage-sludge applications to soils may however cause cumulative residual effects on mineral N generation, which would imply in specific regulations for re-applications in the same area. The purpose of this study was to verify the potential availability of mineral N in a Latossol under corn previously treated with sewage sludge. The soil samples (0-0.20 m for this study were collected in a field experiment in Jaguariúna (São Paulo State, Brazil, between 1999 and 2002, where the treatments consisted of four consecutive applications, with a total application of 0; 14,716; 29,432; 58,864 and 117,728 kg ha-1 of urban sludge from the Franca sewage treatment plant Franca and 0; 22,700; 45,400; 90,800 and 181,600 kg ha-1 of industrial and urban sludge from the Barueri sewage treatment plant. After sampling, the treatments were incubated for 15 weeks in a laboratory. At the beginning of incubation, a residual effect of previous applications was observed on organic

  1. Phosphorus recovery from sewage sludge char ash

    NARCIS (Netherlands)

    Atienza-Martinez, M.; Gea, G.; Arauzo, J.; Kersten, Sascha R.A.; Kootstra, A.M.J.

    2014-01-01

    Phosphorus was recovered from the ash obtained after combustion at different temperatures (600 °C, 750 °C and 900 °C) and after gasification (at 820 °C using a mixture of air and steam as fluidising agent) of char from sewage sludge fast pyrolysis carried out at 530 °C. Depending on the leaching

  2. Disinfection of sewage sludge with gamma radiation

    International Nuclear Information System (INIS)

    1980-01-01

    In the Geiselbullach sewage treatment plant near Munich, sewage irradiation by a 60 Co source is being investigated on a technical scale. 145 m 3 of sewage sludge are irradiated per day and then used as field fertilizer. (orig./HBR) [de

  3. Survey of radiation effect on sewage sludge

    International Nuclear Information System (INIS)

    M'selmi, Nadia Ammar

    2005-01-01

    The high nutrient and organic matter contents of sewage sludge make it a useful soil amandment for famers. the presence of heavy metals and pathogens poses a major problem for utilisation of sladge to agriculture land. Radiation is a convenable method of sewage treatment. (author)

  4. Heavy metals precipitation in sewage sludge

    NARCIS (Netherlands)

    Marchioretto, M.M.; Rulkens, W.H.; Bruning, H.

    2005-01-01

    There is a great need for heavy metal removal from strongly metal-polluted sewage sludges. One of the advantages of heavy metal removal from this type of sludge is the possibility of the sludge disposal to landfill with reduced risk of metals being leached to the surface and groundwater. Another

  5. Agricultural potential of an industrial sewage sludge in compliance with CONAMA Resolution no. 375/2006

    Directory of Open Access Journals (Sweden)

    Lívia Rodrigues Dias Machado

    2015-12-01

    Full Text Available The agricultural use of sewage sludge is one of the best alternatives to disposal because of its potential as a plant fertilizer and soil conditioner. However, to be safe for agricultural use, the sewage sludge must be evaluated according to its physical, chemical, and biological properties and its origin. In Brazil, NBR 10.004/2004 is the standard that determines the classification of solid waste, and CONAMA Resolution 375/2006 defines the criteria for the agricultural use of sewage sludge. This study evaluated the agricultural potential of an aerobically digested industrial sewage sludge from the Serramar Dairy Cooperative in the city of Guaratinguetá, São Paulo. This sludge was classified as Class IIA waste according to NBR 10.004/2004 and displayed potential for agricultural use by falling within the limits in terms for heavy metals and pathogenic organisms established by Resolution 375/2006 as well as containing high levels of nutrients. To establish the sludge doses allowed for application to crops such as maize (annual and Eucalyptus sp. (perennial by the resolution, the amount of nitrogen available in the sludge and the amounts of this nutrient required by these crops were considered. The recommended sewage sludge doses for corn (8 Mg ha- 1 and Eucalyptus sp. forestation (6 Mg ha- 1 can meet the nitrogen and phosphorus needs of these crops but require supplementation with potassium mineral fertilizer.

  6. The use of municipal sewage sludge for the stabilization of soil contaminated by mining activities.

    Science.gov (United States)

    Theodoratos, P; Moirou, A; Xenidis, A; Paspaliaris, I

    2000-10-02

    The ability of municipal sewage sludge to immobilize Pb, Zn and Cd contained in contaminated soil originating from a former mining area in Lavrion, Greece was investigated. The soil was cured with sewage sludge in various proportions. The stabilization was evaluated primarily by applying chemical tests and complemented by the performance of additional biological tests. Application of the U.S. EPA Toxicity Characteristic Leaching Procedure (TCLP) on the stabilized mixtures proved that Pb, Zn and Cd solubility was reduced by 84%, 64% and 76%, respectively, at 15% w/w sludge addition, while a 10% w/w addition was sufficient to reduce Pb solubility below the U.S. EPA TCLP regulatory limit. The results of the extraction using EDTA solution showed the same trend, resulting in 26%, 36% and 53% reduction in the Pb, Zn and Cd extractable fractions, respectively. Speciation analysis of the treated soils revealed a significant decrease in the mobile fractions of heavy metals, which was attributed to their retention in sewage sludge by adsorption and organic complexation mechanisms. For the assessment of possible phytotoxicity, experiments including growing dwarf beans in the treated soil was carried out. It was found that sewage sludge addition had a positive effect on plant growth. Furthermore, the Pb and Zn uptake of plant leaves and roots was reduced, while Cd uptake was unaffected by the sludge treatment. The results of this study support the hypothesis that municipal sewage sludge is a potential effective stabilizing agent for contaminated soil containing Pb, Zn and Cd.

  7. Effect of acid detergent fiber in hydrothermally pretreated sewage sludge on anaerobic digestion process

    Science.gov (United States)

    Takasaki, Rikiya; Yuan, Lee Chang; Kamahara, Hirotsugu; Atsuta, Youichi; Daimon, Hiroyuki

    2017-10-01

    Hydrothermal treatment is one of the pre-treatment method for anaerobic digestion. The application of hydrothermal treatment to sewage sludge of wastewater treatment plant has been succeeded to enhance the biogas production. The purpose of this study is to quantitatively clarify the effect of hydrothermal treatment on anaerobic digestion process focusing on acid detergent fiber (ADF) in sewage sludge, which is low biodegradability. The hydrothermal treatment experiment was carried out for 15 minutes between 160 °C and 200 °C respectively. The ADF content was decreased after hydrothermal treatment compared with untreated sludge. However, ADF content was increased when raising the treatment temperature from 160 °C to 200 °C. During batch anaerobic digestion experiment, untreated and treated sludge were examined for 10 days under 38 °C, and all samples were fed once based on volatile solids of samples. From batch anaerobic digestion experiment, as ADF content in sewage sludge increased, the total biogas production decreased. It was found that ADF content in sewage sludge influence on anaerobic digestion. Therefore, ADF could be one of the indicator to evaluate the effect of hydrothermal treatment to sewage sludge on anaerobic digestion.

  8. Effect Of Wood-Based Biochar And Sewage Sludge Amendments For Soil Phosphorus Availability

    Directory of Open Access Journals (Sweden)

    Frišták Vladimír

    2015-06-01

    Full Text Available This study investigated the effects of two biochars (pyrolysed wood chips and garden clippings on phosphorus (P availability in a heavy-metal contaminated soil poor in phosphorus. Short-term 14-days incubation experiments were conducted to study how applications of biochars at different rates (1 and 5 % in combination with (1:1 and without dried sewage sludge from a municipal waste water treatment plant (WWTP affected the content of soil extractable P. For P-availability analyses deionized water, calcium acetate lactate (CAL, Mehlich 3 and Olsen extraction protocols were applied. In addition, the content of total and mobile forms of potentially toxic heavy metals (PTHM was studied. Application of both biochars caused a significant decrease of PTHM available forms in sewage sludge amended soil samples. The concentration of total and available P increased with higher biochar and sewage sludge application rates.

  9. Aplicação superficial de escória, lama cal, lodos de esgoto e calcário na cultura da soja Surface application of flue dust, aqueous lime, sewage sludge and limestone on soybean crop

    Directory of Open Access Journals (Sweden)

    Juliano Corulli Corrêa

    2008-09-01

    Full Text Available O objetivo deste trabalho foi avaliar o efeito da aplicação superficial de lodos de esgoto, lama cal, escória de aciaria e calcário sobre o estado nutricional e a produtividade da soja, em sistema plantio direto. O delineamento foi o de blocos ao acaso em arranjo fatorial 4x4+1, constituído por quatro tratamentos - resíduos de lodo de esgoto centrifugado (LC e de biodigestor (LB, escória de aciaria (E e lama cal (Lcal - nas doses 0, 2, 4 e 8 Mg ha-1, mais o controle com 2 Mg ha-1 de calcário. As plantas de soja apresentaram maior concentração de nitrogênio, fósforo e cálcio, em 2003, 2004 e 2005, e de potássio, em 2003 e 2004, em razão dos tratamentos LC, LB, E, Lcal e calagem. A produtividade da soja foi favorecida pela aplicação dos tratamentos no sistema plantio direto, em 2003, 2004 e 2005. O fósforo, e o cálcio contribuíram para o aumento da produtividade da soja em 2003 e 2004.The objective of this work was to evaluate the effect of the surface application of sewage sludge, aqueous lime, flue dust and limestone on soybean nutrition and yield in notill system. The experiment was arranged in a randomized complete block design, in factorial scheme of 4x4+1, and consisted of four residues: centrifuged sewage sludge (CSS, biodigestor sewage sludge (BSS, flue dust (FD and aqueous lime (AL, at 0, 2, 4 and 8 Mg ha-1, and one additional control treatment with dolomitic limestone at 2 Mg ha-1. The soybean plants showed greater contents of nitrogen, phosphorus and calcium in 2003, 2004 and 2005, and potassium contents in 2003 and 2004, due to the treatments CSS, BSS, FD, AL and limestone. Soybean grain yield was also enhanced due to surface applications of the treatments in notill system in 2003, 2004 and 2005. The phosphorus and calcium contributed to increase soybean yield in 2003 and 2004.

  10. Combustion characteristics of biodried sewage sludge.

    Science.gov (United States)

    Hao, Zongdi; Yang, Benqin; Jahng, Deokjin

    2018-02-01

    In this study, effects of biodrying on the characteristics of sewage sludge and the subsequent combustion behavior were investigated. 7-Day of biodrying removed 49.78% of water and 23.17% of VS initially contained in the sewage sludge and increased lower heating value (LHV) by 37.87%. Meanwhile, mass contents of C and N decreased from 36.25% and 6.12% to 32.06% and 4.82%, respectively. Surface of the biodried sewage sludge (BDSS) appeared granulated and multi-porous, which was thought to facilitate air transfer during combustion. According to thermogravimetric (TG) analysis coupled with mass spectrometer (MS) with a heating rate of 10 °C/min from 35 °C to 1000 °C, thermally-dried sewage sludge (TDSS) and BDSS lost 74.39% and 67.04% of the initial mass, respectively. In addition, combustibility index (S) of BDSS (8.67 × 10 -8  min -2  K -3 ) was higher than TDSS. TG-MS analyses also showed that less nitrogenous gases were generated from BDSS than TDSS. It was again showed that the average CO and NO concentrations in exit gas from isothermal combustion of BDSS were lower than those from TDSS, especially at low temperatures (≤800 °C). Based on these results, it was concluded that biodrying of sewage sludge was an energy-efficient water-removal method with less emission of air pollutants when BDSS was combusted. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Radiation technology for sewage sludge treatment: The Argentine project

    International Nuclear Information System (INIS)

    Graino, J.G.

    2001-01-01

    Within the environmental applications of ionizing radiation, disinfection of wastewaters or sewage sludges is one of the most best known. Argentina based the project of a full scale irradiation plant on the gamma irradiation application, utilizing Argentine made Cobalt-60 sources. The design characteristics, process descriptions and costs are included. The research project developed information about the irradiation effects on the sludges with respect to plant performance. For the purpose of oxi-irradiation experiments, a lab-scale pool irradiator was constructed and is described. (author)

  12. 40 CFR 503.7 - Requirement for a person who prepares sewage sludge.

    Science.gov (United States)

    2010-07-01

    ... sewage sludge. 503.7 Section 503.7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SEWAGE SLUDGE STANDARDS FOR THE USE OR DISPOSAL OF SEWAGE SLUDGE General Provisions § 503.7 Requirement for a person who prepares sewage sludge. Any person who prepares sewage sludge shall ensure that the...

  13. National inventory of alkylphenol ethoxylate compounds in U.S. sewage sludges and chemical fate in outdoor soil mesocosms

    International Nuclear Information System (INIS)

    Venkatesan, Arjun K.; Halden, Rolf U.

    2013-01-01

    We determined the first nationwide inventories of alkylphenol surfactants in U.S. sewage sludges (SS) using samples from the U.S. Environmental Protection Agency's 2001 national SS survey. Additionally, analysis of archived 3-year outdoor mesocosm samples served to determine chemical fates in SS-amended soil. Nonylphenol (NP) was the most abundant analyte (534 ± 192 mg/kg) in SS composites, followed by its mono- and di-ethoxylates (62.1 ± 28 and 59.5 ± 52 mg/kg, respectively). The mean annual load of NP and its ethoxylates in SS was estimated at 2408–7149 metric tonnes, of which 1204–4289 is applied on U.S. land. NP compounds showed observable loss from SS/soil mixtures (1:2), with mean half-lives ranging from 301 to 495 days. Surfactant levels in U.S. SS ten-times in excess of European regulations, substantial releases to U.S. soils, and prolonged half-lives found under field conditions, all argue for the U.S. to follow Europe's move from 20 years ago to regulate these chemicals. -- Highlights: ► First national survey of alkylphenol surfactants in U.S. sewage sludges. ► Nonylphenol (NP) and its ethoxylates were consistently detected in all samples. ► Levels of NP in U.S. biosolids exceed regulatory limit set by European Union. ► Significant surfactant releases to U.S. soils via biosolids land application. ► Half-lives >300 days for NP and its ethoxylates observed in outdoor soil mesocosms. -- First study providing national inventories of alkylphenol surfactants in U.S. sewage sludges (SS), shows significant release of chemicals to U.S. soils through SS land application

  14. Thermoradiation treatment of sewage sludge using reactor waste fission products

    International Nuclear Information System (INIS)

    Reynolds, M.C.; Hagengruber, R.L.; Zuppero, A.C.

    1974-06-01

    The hazards to public health associated with the application of municipal sewage sludge to land usage are reviewed to establish the need for disinfection of sludge prior to its distribution as a fertilizer, especially in the production of food and fodder. The use of ionizing radiation in conjunction with mild heating is shown to be an effective disinfection treatment and an economical one when reactor waste fission products are utilized. A program for researching and experimental demonstration of the process on sludges is also outlined

  15. Occurrence of high-tonnage anionic surfactants in Spanish sewage sludge.

    Science.gov (United States)

    Cantarero, Samuel; Prieto, Carlos A; López, Ignacio

    2012-03-01

    Agricultural application has become the most widespread method of sewage sludge disposal, being the most economical outlet for sludge and also recycling beneficial plant nutrients and organic matter to soil for crop production. As a matter of fact, the European Sewage Sludge Directive 86/278/EEC seeks to encourage the disposal of sewage sludge in agriculture applications and regulate its use to prevent harmful effects on the soil environment. At the present time, the sewage sludge Directive is under revision and a possible cut-off limit for some organic chemicals may be implemented. Linear alkylbenzene sulphonate (LAS), the main synthetic anionic surfactant, has been included in the draft list of chemicals to be limited. The present research work deals with the monitoring of LAS and soap in Spanish sewage sludge. The average concentration of LAS found in anaerobic sewage sludge samples was 8.06 g/kg, higher than the average values for European sludge. Besides, it has been also found that more than 55% of Spanish anaerobic sludge would not fulfil the limit proposed by the 3rd European Working paper on sludge. As a consequence, the implementation of the limit for LAS would make the disposal of most Spanish biosolids for agricultural applications almost impossible. Regarding the mechanisms why anionic surfactants are found in sludge, two surfactants are compared: LAS and soap, both readily biodegraded in aerobic conditions. Irrespective of the anaerobic biodegradability of soap, its concentration found in sludge is higher than LAS (only anaerobically biodegradable under particular conditions). The relevance of anaerobic biodegradation to assure environmental protection is discussed for this case. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Technical support document for the surface disposal of sewage sludge. Final report

    International Nuclear Information System (INIS)

    1992-11-01

    The document provides the technical background and justification for the U.S. Environmental Protection Agency's (EPA) final regulation (40 CFR Part 503) covering the surface disposal of sewage sludge. The document summarizes current practices in land application and presents data supporting the risk assessment methodology used to derive human health and environmental risk-based limits for contaminants in sewage sludge placed on surface disposal sites. The management practices associated with surface disposal are outlined and the different pathways by which contaminants reach highly-exposed individuals (HEIs) through surface disposal are discussed

  17. Technical support document for the surface disposal of sewage sludge. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1992-11-01

    The document provides the technical background and justification for the U.S. Environmental Protection Agency's (EPA) final regulation (40 CFR Part 503) covering the surface disposal of sewage sludge. The document summarizes current practices in land application and presents data supporting the risk assessment methodology used to derive human health and environmental risk-based limits for contaminants in sewage sludge placed on surface disposal sites. The management practices associated with surface disposal are outlined and the different pathways by which contaminants reach highly-exposed individuals (HEIs) through surface disposal are discussed.

  18. POTENTIAL AND PROPERTIES OF THE GRANULAR SEWAGE SLUDGE AS A RENEWABLE ENERGY SOURCE

    Directory of Open Access Journals (Sweden)

    Sebastian Werle

    2014-10-01

    Full Text Available The predominant method of the sewage sludge management in Poland is land disposal. However, since 01/01/2013, this method will be prohibited. Therefore, there is a strong need for development of thermal methods of sludge disposal. In the Polish legal system sewage sludge may be named as a biomass or waste. For purposes of determining the obligations of environmental regulations definition of the Minister of Environment should be used. When disposing of sewage sludge in an amount up to 1% by weight of fuel, emission standards for fuel do not change. At the disposal of sewage in quantities of more than 1%, should be conducted continuous measurement of emissions, including HCl, HF, and continuous measurements of flue gas parameters (as for the installation of waste disposal. For purposes of settlement of the share of energy from renewable sources we use the definition of Minister of Economy. In this case, in accordance with applicable law sewage sludge shall be considered as pure biomass is CO2 neutral. The use of sewage sludge as a fuel requires the determination of fundamental combustible properties. These properties should be in accordance with the requirements put fuels as an energy source. The paper presents results of a detailed physico-chemical analysis of dried sewage sludge produced in the two Polish wastewater treatment plants. The results were compared with five representatives of biomass fuels: straw of wheat, straw of rape, willow, pine and oak sawdust. Ultimate and proximate analysis includes a detailed analysis of fuel and ash. The results clearly indicate that the sludge is a very valuable fuel similar to “traditional” biomass.

  19. Evaluation of the nutritional value of Irradiated sewage sludges reuse in agriculture

    International Nuclear Information System (INIS)

    El-Motaium, R.A.; El-Ammari, M.F.

    2006-01-01

    Four different sludges were collected from wastewater treatment plants and a farm in greater Cairo area. These sludges represent three different treatments: secondary (Helwan), primary (Abou Rawash), digested (El-Gabal El-Asfar) and raw (El-Gabal El-Asfar farm). Half of the collected sludge was exposed to 6 KGy of gamma radiation and the other half was kept non-irradiated. The different parameters measured for this evaluation were ph, EC, total and available nitrogen, total and available phosphorus, total potassium, organic matter, C/N ratio, micro nutrients (Fe, Zn, Cu, Mn) and heavy metals (Cd, Pb, Ni). The data showed that irradiated sewage sludges contain high organic matter, nitrogen, phosphorus, potassium and micro nutrients content. Heavy metals concentrations in the different sludges were less than the international permissible levels for sludge utilization in agriculture. Thus, Egyptian irradiated sewage sludge can be reused for agriculture. Irradiated sewage sludge if applied at 20 t/ha rate can provide plants with their need of macro nutrients (NPK) and micro nutrients (Fe, Zn, Mn, Cu). In the meantime, Cd concentration that can be added to the soil at the same application rate is very small; 0.042-0.108 kg/ha for primary and secondary treated sludge, respectively. Sludge that was treated by digestion showed the highest concentrations of organic matter, nitrogen and phosphorus. Non-significant differences were observed between the ph, EC, OM%, C% and C/N values of irradiated and non-irradiated sewage sludges. In general, no consistent effect of gamma radiation on heavy metals content was recorded. Gamma radiation can impose positive effect on sewage sludge without a reduction of its nutritional value and it is recommended method for sewage sludge treatment

  20. The exploitation of swamp plants for dewatering liquid sewage sludge

    Directory of Open Access Journals (Sweden)

    Jiří Šálek

    2006-01-01

    Full Text Available The operators of little rural wastewater treatment plants have been interested in economic exploitation of sewage sludge in local conditions. The chance is searching simply and natural ways of processing and exploitation stabilized sewage sludge in agriculture. Manure substrate have been obtained by composting waterless sewage sludge including rest plant biomass after closing 6–8 years period of filling liquid sewage sludge to the basin. Main attention was focused on exploitation of swamp plants for dewatering liquid sewage sludge and determination of influence sewage sludge on plants, intensity and course of evapotranspiration and design and setting of drying beds. On the base of determined ability of swamp plants evapotranspiration were edited suggestion solutions of design and operation sludge bed facilities in the conditions of small rural wastewater treatment plant.

  1. Sanitizing effects of sewage sludge irradiation treatment

    International Nuclear Information System (INIS)

    Zhao Yongfu

    2005-01-01

    A large quantity of pathogenic organisms were found in sewage sludge. An investigation was carried out on the relationship in the chain of sludge-soil-vegetable between the survival of pathogenic organisms and the irradiation dosage. After irradiation with 5-6 kGy, coliform group reduced 3 log cycles, and ascarid ova were completely eliminated with a dose of 1 kGy, making the water matched the standard quality of irrigating water. In the soil applied with irradiated sewage sludge, the total bacteria and coliforms group count reduced to one tenth, and alive ascarid ova was not detected. The coliform group on the Chinese cabbage was extremely low and reached the standard of fresh eating. (authors)

  2. REEMISSION OF MERCURY COMPOUNDS FROM SEWAGE SLUDGE DISPOSAL

    Directory of Open Access Journals (Sweden)

    Beata Janowska

    2016-12-01

    Full Text Available The sewage sludge disposal and cultivation methods consist in storage, agricultural use, compost production, biogas production or heat treatment. The sewage sludge production in municipal sewage sludge treatment plants in year 2013 in Poland amounted to 540.3 thousand Mg d.m. The sewage sludge for agricultural or natural use must satisfy chemical, sanitary and environmental safety requirements. The heavy metal content, including the mercury content, determines the sewage sludge disposal method. Mercury has a high chemical activity and biological form compounds with different properties. The properties of the mercury present in sewage sludge or composts, its potential bioavailability depend on its physicochemical forms. Different forms of mercury, which are found in soil and sediments and sewage sludge, may be determined using various techniques sequential extraction. In order to assess the bioavailability the analysis of fractional of mercury in samples of sewage sludge and composts was made. For this purpose the analytical procedure based on a four sequential extraction process was applied. Mercury fractions were classified as exchangeable (EX, base soluble (BS, acids soluble (AS and oxidizable (OX. This article presents the research results on the mercury compounds contents in sewage sludge subjected to drying process, combustion and in composted sewage sludge. During drying and combustion process of the sewage sludge, mercury transforms into volatile forms that could be emitted into the atmosphere. The mercury fractionation in composted sewage sludge proved that mercury in compost occurs mainly in an organic fraction and in a residual fraction that are scarce in the environment.

  3. Submersible microbial fuel cell for electricity production from sewage sludge

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Olias, Lola Gonzalez; Kongjan, Prawit

    2011-01-01

    A submersible microbial fuel cell (SMFC) was utilized to treat sewage sludge and simultaneously generate electricity. Stable power generation (145± 5 mW/m2, 470 Ω) was produced continuously from raw sewage sludge for 5.5 days. The maximum power density reached 190±5 mW/m2. The corresponding total...... system to treat sewage sludge and simultaneously recover energy....

  4. Electron beam disinfection of sewage sludge

    International Nuclear Information System (INIS)

    Hashimoto, Shoji

    1992-01-01

    Electron beam treatment of dehydrated sewage sludge for safe reutilization was performed. Ranges of total bacterial counts and total coliforms in the sludge were from 1.5 x 10 8 to 1.6 x 10 9 and from 2.2 x 10 7 to 1.5 x 10 8 per wet gram, respectively. Total bacterial counts decreased about 5 log cycles after irradiating 5 kGy and irradiation with 2 kGy was enough to kill all coliforms in sewage sludge. The survival curves of total bacteria, obtained by irradiation in oxygen atmosphere, approached to that in nitrogen atmosphere with the increase of sludge thickness. No effects of dose rate and electron energy were found when the sludge layers were thin enough. Continuous disinfection of sewage sludge cake, with the maximum feed rate of 300 kg-sludge/hr, was successfully performed with a Cockcroft-Walton type electron accelerator, a sludge pump and a flat nozzle. (J.P.N.)

  5. Sewage sludge as a biomass energy source

    Directory of Open Access Journals (Sweden)

    Pavel Kolat

    2013-01-01

    Full Text Available The major part of the dry matter content of sewage sludge consists of nontoxic organic compounds, in general a combination of primary sludge and secondary microbiological sludge. The sludge also contains a substantive amount of inorganic material and a small amount of toxic components. There are many sludge-management options in which production of energy is one of the key treatment steps. The most important options are anaerobic digestion, co-digestion, incineration in combination with energy recovery and co-incineration in coal-fired power plants. The goal of our applied research is to verify, if the sludge from waste water treatment plants may be used as a biomass energy source in respect of the EU legislation, which would comply with emission limits or the proposal of energy process optimizing the preparation of coal/sludge mixture for combustion in the existing fluid bed boilers in the Czech Republic. The paper discusses the questions of thermal usage of mechanically drained stabilized sewage sludge from the waste water treatment plants in the boiler with circulated fluid layer. The paper describes methods of thermal analysis of coal, sewage sludge and its mixtures, mud transport to the circulating fluidised bed boiler, effects on efficiency, operational reliability of the combustion equipment, emissions and solid combustion residues.

  6. Evaluation of the energetic potential of sewage sludge by characterization of its organic composition.

    Science.gov (United States)

    Schaum, C; Lensch, D; Cornel, P

    2016-01-01

    The composition of sewage sludge and, thus, its energetic potential is influenced by wastewater and wastewater treatment processes. Higher or lower heating values (HHV or LHV) are decisive factors for the incineration/gasification/pyrolysis of sewage sludge. The HHV is analyzed with a bomb calorimeter and converted to the LHV. It is also possible to calculate the heating value via chemical oxygen demand (COD), total volatile solids (TVS), and elemental composition. Calculating the LHV via the COD provides a suitable method. In contrast, the correlation of the HHV or LHV with the TVS is limited. One prerequisite here is a constant specific energy density; this was given with the types of sewage sludge (primary, surplus/excess, and digested sludge) investigated. If the energy density is not comparable with sewage sludge, for instance with the co-substrate (bio-waste, grease, etc.), the estimation of the heating value using TVS will fail. When calculating the HHV or LHV via the elemental composition, one has to consider the validity of the coefficients of the calculation equation. Depending on the organic composition, it might be necessary to adjust the coefficients, e.g. when adding co-substrates.

  7. Assessing earthworm and sewage sludge impacts on microbiological and biochemical soil quality using multivariate analysis

    Directory of Open Access Journals (Sweden)

    Hanye Jafari Vafa

    2017-06-01

    Full Text Available Introduction: Land application of organic wastes and biosolids such as municipal sewage sludge has been an important and attractive practice for improving different properties of agricultural soils with low organic matter content in semi-arid regions, due to an increase of soil organic matter level and fertility. However, application of this organic waste may directly or indirectly affect soil bio-indicators such as microbial and enzymatic activities through a change in the activity of other soil organisms such as earthworms. Earthworms are the most important soil saprophagous fauna and much of the faunal biomass is attributed to the presence of these organisms in the soil. Therefore, it is crucial to evaluate the effect of earthworm activity on soil microbial and biochemical attributes, in particularly when soils are amended with urban sewage sludge. The purpose of this study was to evaluate the earthworm effects on biochemical and microbiological properties of a calcareous soil amended with municipal sewage sludge using Factor Analysis (FA. Materials and Methods: In the present study, the experimental treatments were sewage sludge (without and with 1.5% sewage sludge as the first factor and earthworm (no earthworm, Eiseniafoetida from epigeic group, Allolobophracaliginosa from endogeic group and a mixture of the two species as the second factor. The study was setup as 2×4 full factorial experiment arranged in a completely randomized design with three replications for each treatment under greenhouse conditions over 90 days. A calcareous soil from the 0-30 cm layer with clay loam texture was obtained from a farmland field under fallow without cultivation history for ten years. The soil was air-dried and passed through a 2-mm sieve for the experiment. Sewage sludge as the soil organic amendment was collected from Wastewater Treatment Plant in Shahrekord. Sewage sludge was air-dried and grounded to pass through a 1-mm sieve for a uniform mixture

  8. Restoration of pyritic colliery waste with sewage sludge in the Midlands coalfield, England, United Kingdom

    International Nuclear Information System (INIS)

    Humphries, R.N.; McQuire, G.E.; Sly, M.

    1994-01-01

    A trial was set up in 1990 in the Midlands coalfield in the United Kingdom (UK) to evaluate the use of sewage sludge to revegetate colliery waste tips containing 1--2% sulfur as iron pyrites. The rate of sewage sludge application is currently restricted by legislation and codes of practice to maximum concentrations of potentially toxic elements (copper, nickel, zinc, etc.) in the soil or waste after application. Following this guidance, an application rate of 250 mt/ha dry solids was applied at the trial site. At this rate, the colliery waste became extremely acidic pH <4.0. From experience elsewhere, much higher levels have been found to be necessary to control acidification in the absence of other measures or treatments. In view of the restriction on the amount of sewage sludge that can be applied, it is recommended that the current practice of covering fresh colliery wastes with soil or low sulfur spoil to a minimum depth of 0.45m is continued in the UK. Where this is not possible, the sludge must always be applied with sufficient neutralizing agent to control the potential acidity. If the acidity cannot be maintained above pH 5.0, the guidelines do not permit the application of sewage sludge

  9. Plant biomass increase linked to biological activity in soils amended with sewage sludge compost

    International Nuclear Information System (INIS)

    Ibanez-Burgos, A.; Lopez-Lopez, G.; Vera, J.; Rovira, J. M.; Reolid, C.; Sastre-Conde, I.

    2009-01-01

    Sewage sludge compost application to almond tree plantations presents a potential management alternative to combat soil mismanagement in Mediterranean areas where almonds are grown. this practice could also be used to restore vegetable biomass to soils which are not fertile enough to support other crops, as well as to fight climatic change. (Author)

  10. Plant biomass increase linked to biological activity in soils amended with sewage sludge compost

    Energy Technology Data Exchange (ETDEWEB)

    Ibanez-Burgos, A.; Lopez-Lopez, G.; Vera, J.; Rovira, J. M.; Reolid, C.; Sastre-Conde, I.

    2009-07-01

    Sewage sludge compost application to almond tree plantations presents a potential management alternative to combat soil mismanagement in Mediterranean areas where almonds are grown. this practice could also be used to restore vegetable biomass to soils which are not fertile enough to support other crops, as well as to fight climatic change. (Author)

  11. Effects of municipal sewage sludge doses on the yield, some yield ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-09-03

    Sep 3, 2008 ... Whereas grain yield, which was the highest component was ... land application, many studies have been performed ... grain. Analysis of variance was used to compare treatment ... een 17.0 - 164.0 cm depending on the environmental .... municipal sewage sludge for the stabilization of soil contaminated by.

  12. Improving the phytoremediation of heavy metals contaminated soil by use of sewage sludge.

    Science.gov (United States)

    Placek, Agnieszka; Grobelak, Anna; Kacprzak, Malgorzata

    2016-01-01

    Sewage sludge, in particular from the food industry, is characterized by fertilizing properties, due to the high content of organic matter and nutrients. The application of sewage sludge causes an improvement of soil parameters as well as increase in cation exchange capacity, and thus stronger binding of cations in the soil environment, which involves the immobilization of nutrients and greater resistance to contamination. In a field experiment sewage sludge has been used as an additive to the soil supporting the phytoremediation process of land contaminated with heavy metals (Cd, Zn, and Pb) using trees species: Scots pine (Pinus silvestris L.), Norway spruce (Picea abies L.), and oak (Quercus robur L.). The aim of the research was to determine how the application of sewage sludge into the soil surface improves the phytoremediation process. The conducted field experiment demonstrated that selected trees like Scots pine and Norway spruce, because of its excellent adaptability, can be used in the remediation of soil. Oak should not be used in the phytoremediation process of soils contaminated with high concentrations of trace elements in the soil, because a significant amount of heavy metals was accumulated in the leaves of oak causing a risk of recontamination.

  13. Improving the phytoremediation of heavy metals contaminated soil by use of sewage sludge

    Science.gov (United States)

    Placek, Agnieszka; Grobelak, Anna; Kacprzak, Malgorzata

    2016-01-01

    ABSTRACT Sewage sludge, in particular from the food industry, is characterized by fertilizing properties, due to the high content of organic matter and nutrients. The application of sewage sludge causes an improvement of soil parameters as well as increase in cation exchange capacity, and thus stronger binding of cations in the soil environment, which involves the immobilization of nutrients and greater resistance to contamination. In a field experiment sewage sludge has been used as an additive to the soil supporting the phytoremediation process of land contaminated with heavy metals (Cd, Zn, and Pb) using trees species: Scots pine (Pinus silvestris L.), Norway spruce (Picea abies L.), and oak (Quercus robur L.). The aim of the research was to determine how the application of sewage sludge into the soil surface improves the phytoremediation process. The conducted field experiment demonstrated that selected trees like Scots pine and Norway spruce, because of its excellent adaptability, can be used in the remediation of soil. Oak should not be used in the phytoremediation process of soils contaminated with high concentrations of trace elements in the soil, because a significant amount of heavy metals was accumulated in the leaves of oak causing a risk of recontamination. PMID:26368503

  14. Vancomycin resistant enterococci (VRE in Swedish sewage sludge

    Directory of Open Access Journals (Sweden)

    Aspan Anna

    2009-05-01

    Full Text Available Abstract Background Antimicrobial resistance is a serious threat in veterinary medicine and human healthcare. Resistance genes can spread from animals, through the food-chain, and back to humans. Sewage sludge may act as the link back from humans to animals. The main aims of this study were to investigate the occurrence of vancomycin resistant enterococci (VRE in treated sewage sludge, in a Swedish waste water treatment plant (WWTP, and to compare VRE isolates from sewage sludge with isolates from humans and chickens. Methods During a four month long study, sewage sludge was collected weekly and cultured for VRE. The VRE isolates from sewage sludge were analysed and compared to each other and to human and chicken VRE isolates by biochemical typing (PhenePlate, PFGE and antibiograms. Results Biochemical typing (PhenePlate-FS and pulsed field gel electrophoresis (PFGE revealed prevalence of specific VRE strains in sewage sludge for up to 16 weeks. No connection was found between the VRE strains isolated from sludge, chickens and humans, indicating that human VRE did not originate from Swedish chicken. Conclusion This study demonstrated widespread occurrence of VRE in sewage sludge in the studied WWTP. This implies a risk of antimicrobial resistance being spread to new farms and to the society via the environment if the sewage sludge is used on arable land.

  15. Modeling of Seepage Losses in Sewage Sludge Drying Bed ...

    African Journals Online (AJOL)

    This research was carried out to develop a model governing seepage losses in sewage sludge drying bed. The model will assist in the design of sludge drying beds for effective management of wastes derived from households' septic systems. In the experiment conducted this study, 125kg of sewage sludge, 90.7% moisture ...

  16. Polybrominated diphenyl ethers in sewage sludge from Shanghai, China: possible ecological risk applied to agricultural land.

    Science.gov (United States)

    Yang, Chao; Meng, Xiang-Zhou; Chen, Ling; Xia, Siqing

    2011-10-01

    Ideally, agricultural use is a treatment for the sewage sludge generated from municipal wastewater. However, this treatment probably causes ecological risks due to the occurrence of organic contaminants in sludge, which has attracted rising concerns recently. To assess the possible ecological risk, in this study, sewage sludge samples were collected from 28 wastewater treatment plants (WWTPs) in Shanghai, China for exploring the level and profile of polybrominated diphenyl ethers (PBDEs). The mean concentration of Σ18PBDE (sum of all target analytes except for BDE-209) was at the low end of global range. However, we found the highest reported BDE-209 levels (34,900 ng g(-1) dw) in sewage sludge/biosoilds to date. The annual mass loadings of penta-BDE, octa-BDE, and deca-BDE were 3.6, 0.6, and 763 kg through sludge, respectively. Following sludge application in agricultural land, the concentrations of penta-BDE, octa-BDE, and deca-BDE in soil were 0.19, 0.03, and 39.5 ng g(-1), respectively. Preliminary results indicate that the ecological risk of soil in organisms exposed to PBDEs was relatively low. Nevertheless, further studies are needed to explore the fate of PBDEs in sewage sludge due to no restriction on the usage and production of PBDEs products in China currently. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Guidance for writing permits for the use or disposal of sewage sludge. Draft report

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-01

    Section 405(d) of the Clean Water Act (CWA) directs the U.S. Environmental Protection Agency (EPA) to develop regulations containing guidelines for the use and disposal of sewage sludge. On February 19th, 1993, EPA published final regulations at 40 Code of Federal Regulations (CFR) Part 503 as the culmination of a major effort to develop technical standards in response to Section 405(d). These regulations govern three sewage sludge use and disposal practices: land application, surface disposal, and incineration. A key element in EPA's implementation of the Part 503 regulations is educating Agency and State personnel about these new requirements. Although the regulations are generally directly enforceable against all persons involved in the use and disposal of sewage sludge, they will also be implemented through permits issued to treatment works treating domestic sewage as defined in 40 CFR 122.22. Thus, the primary focus of the manual is to assist permit writers in incorporating the Part 503 requirements into permits; it serves as an update to the Guidance for Writing Case-by-Case Permit Conditions for Municipal Sewage Sludge (PB91-145508/HDM).

  18. Energy recovery from sewage sludge by means of fluidised bed gasification

    International Nuclear Information System (INIS)

    Gross, Bodo; Eder, Christian; Grziwa, Peter; Horst, Juri; Kimmerle, Klaus

    2008-01-01

    Because of its potential harmful impact on the environment, disposal of sewage sludge is becoming a major problem all over the world. Today the available disposal measures are at the crossroads. One alternative would be to continue its usage as fertiliser or to abandon it. Due to the discussions about soil contamination caused by sewage sludge, some countries have already prohibited its application in agriculture. In these countries, thermal treatment is now presenting the most common alternative. This report describes two suitable methods to directly convert sewage sludge into useful energy on-site at the wastewater treatment plant. Both processes consist mainly of four devices: dewatering and drying of the sewage sludge, gasification by means of fluidised bed technology (followed by a gas cleaning step) and production of useful energy via CHP units as the final step. The process described first (ETVS-Process) is using a high pressure technique for the initial dewatering and a fluidised bed technology utilising waste heat from the overall process for drying. In the second process (NTVS-Process) in addition to the waste heat, solar radiation is utilised. The subsequent measures - gasification, gas cleaning and electric and thermal power generation - are identical in both processes. The ETVS-Process and the NTVS-Process are self-sustaining in terms of energy use; actually a surplus of heat and electricity is generated in both processes

  19. Natural attenuation of toxic metal phytoavailability in 35-year-old sewage sludge-amended soil.

    Science.gov (United States)

    Tai, Yiping; Li, Zhian; Mcbride, Murray B

    2016-04-01

    Toxic heavy metals persist in agricultural soils and ecosystem for many decades after their application as contaminants in sewage sludge and fertilizer products This study assessed the potential long-term risk of cadmium (Cd), lead (Pb), zinc (Zn), and copper (Cu) in land-applied sewage sludge to food crop contamination. A sewage sludge-amended soil (SAS) aged in the field more than 35 years was used in a greenhouse pot experiment with leafy vegetables (lettuce and amaranth) having strong Cd and Zn accumulation tendencies. Soil media with variable levels of available Cd, Zn, and Cu (measured using 0.01 M CaCl2 extraction) were prepared by diluting SAS with several levels of uncontaminated control soil. Despite long-term aging in the field, the sludge site soil still retains large reserves of heavy metals, residual organic matter, phosphorus, and other nutrients, but its characteristics appear to have stabilized over time. Nevertheless, lettuce and amaranth harvested from the sludge-treated soil had undesirable contents of Cd and Zn. The high plant uptake efficiency for Cd and Zn raises a concern regarding the quality and safety of leafy vegetables in particular, when these crops are grown on soils that have been amended heavily with sewage sludge products at any time in their past.

  20. Application of a modified BCR sequential extraction (three-step) procedure for the determination of extractable trace metal contents in a sewage sludge amended soil reference material (CRM 483), complemented by a three-year stability study of acetic acid and EDTA extractable metal content.

    Science.gov (United States)

    Rauret, G; López-Sánchez, J F; Sahuquillo, A; Barahona, E; Lachica, M; Ure, A M; Davidson, C M; Gomez, A; Lück, D; Bacon, J; Yli-Halla, M; Muntau, H; Quevauviller, P

    2000-06-01

    This paper provides additional data on a sewage sludge amended soil certified reference material, CRM 483, which was certified in 1997 for its EDTA and acetic acid extractable contents of some trace metals, following standardised extraction procedures. The additional work aimed to test the long-term stability of the material and the applicability of an improved version of the BCR three-step sequential extraction procedure on the sewage sludge amended soil (CRM 483). The paper demonstrates the CRM 483 long-term stability for EDTA and acetic acid extractable contents of Cd, Cr, Cu, Ni, Pb and Zn and gives the results (obtained in the framework of an interlaboratory study) for the extractable contents of the same elements in the CRM 483, following the BCR three-step sequential extraction scheme. The aqua regia extractable contents following the ISO 11466 Standard are also given. The data are given as indicative (not certified) values.

  1. Sewage sludge application to agricultural land as soil physical conditioner Aplicação de lodo de esgoto como condicionador de propriedades físicas de um solo agrícola

    Directory of Open Access Journals (Sweden)

    Isabella Clerici De Maria

    2010-06-01

    Full Text Available Water resource quality is a concern of today's society and, as a consequence, low pollutant wastewaters and sludges are being increasingly treated, resulting in continuous production of sewage sludge. Sewage sludge (SS can be used as soil physical conditioner of agricultural or degraded lands, due to its organic C component. The objective of this research was to evaluate the long-term SS effects on soil physical quality of properties such as bulk density, porosity, permeability and water retention of degraded soils treated with annual SS applications. The SS rates were calculated according to the crop N demand. The field experiment consisted of three treatments: mineral fertilization, 10 and 20 Mg ha-1 of SS (once and twice the SS quantity to meet the maize N demand, respectively, in annual applications to the surface layer of a eutroferric Red Latosol. SS reduced bulk density, increased macroporosity and decreased microporosity after the third application, but did not significantly alter the soil permeability and physical quality as measured by the S index in the surface layer.A preocupação da sociedade civil com os recursos hídricos tem levado ao aumento do tratamento de esgotos e de águas residuais com baixa carga poluidora, resultando na produção de lodo de esgoto (LE. Por conter C orgânico em sua composição, o LE pode atuar como condicionador de propriedades físicas do solo. O objetivo do presente trabalho foi analisar o efeito do LE sobre atributos do solo (densidade, porosidade, permeabilidade e retenção de água, buscando avaliar se a aplicação anual de LE em um solo degradado, em longo prazo e em quantidades determinadas em função da necessidade de N pela cultura, determina modificações na qualidade física do solo. O ensaio constou da aplicação de três tratamentos: adubação mineral, 10 e 20 Mg ha-1 de LE (uma e duas vezes a quantidade de LE necessária para suprir o nitrogênio recomendado para a cultura de milho

  2. Changes on sewage sludge stability after greenhouse drying

    Science.gov (United States)

    Soriano-Disla, J. M.; Houot, S.; Imhoff, M.; Valentin, N.; Gómez, I.; Navarro-Pedreño, J.

    2009-04-01

    The progressive implementation of the Urban Waste Water Treatment Directive 91/271/EEC in all the European member states is increasing the quantities of sewage sludge requiring disposal. Sludge application onto cultivated soils as organic fertilizers allows the recycling of nutrients. The application of only dehydrated sludges has generated many problems including unpleasant odours and difficult management (regarding transport and application) related to their high water content. One way to overcome these problems, in a cheap and clean way, is the drying of sludges using the energy of the sun under greenhouse conditions. This drying may affect sludge chemical characteristics including organic matter stability and nitrogen availability, parameters which have to be controlled for the proper management of dry sludge application onto soils. For this reason, the main aim of this work was to study the impact of greenhouse drying of different sewage sludges on their organic matter stability and nitrogen availability, assessed by biochemical fractionation and mineralization assays. Three sewage sludges were sampled before (dehydrated sludges) and after greenhouse drying (dried sludges). The analyses consisted of: humidity, organic matter, mineral and organic N contents, N and C mineralization during 91-day laboratory incubations in controlled conditions, and biochemical fractionation using the Van Soest procedure. Greenhouse drying decreased the water content from 70-80% to 10% and also the odours, both of which will improve the management of the final product from the perspective of application and transport. We also found that drying reduced the organic matter content of the sludges but not the biodegradability of the remaining carbon. Organic N mineralization occurred during greenhouse drying, explaining why mineral N content tended to increase and the potential mineralization of organic nitrogen decreased after greenhouse drying. The biochemical stability did not

  3. Radionuclides in sewage sludge and problems of use and disposal

    International Nuclear Information System (INIS)

    Schneider, P.; Tiefenbrunner, F.; Dierich, M.P.; Brunner, P.

    1987-01-01

    In a sewage plant with radioactive contaminated sewage an accumulation of radionuclide in the sewage sludge was to be found. The specific activities are in inverse proportion to the water content of the sewage sludge, the dehydrated sewage sludge shows the highest specific activities. These enriched radionuclides seem to be absorbed from the sludge. Yet they can be utilized by plants. This was demonstrated in experiments with Trifolium repens and Secale cereale, where the rate of absorption amounted 15-33% (inCi/kg dry weight plant:nCi/kg dry weight soil X 100) (transfer factors). This is why fertilization with radioactive contaminated sewage sludge seems to cause problems. In further experiments an extraction of radionuclides from ashed sewage sludge was shown. By acidifying the mobile phasis an increase in radioactivity in the eluated fractions was achieved. (orig./HP) [de

  4. Combustion of Sewage Sludge as Alternative Fuel for Cement Industry

    Institute of Scientific and Technical Information of China (English)

    LI Fuzhou; ZHANG Wei

    2011-01-01

    The combustion of sewage sludge and coal was studied by thermogravimetric analysis.Both differential scanning calorimetric analysis and derivative thermogravimetric profiles showed differences between combustion of sewage sludge and coal, and non-isothermal kinetics analysis method was applied to evaluate the combustion process. Based on Coats-Redfem integral method, some reaction models were tested,the mechanism and kinetics of the combustion reaction were discussed. The results show that the combustion of sewage sludge is mainly in the Iow temperature stage, meanwhile the ignition temperature and Arrhenius activation energy are lower than that of coal. The combustion of sewage sludge has the advantage over coal in some aspects, thus sewage sludge can partly replace coal used as cement industry fuel.

  5. The effect of bioleaching on sewage sludge pyrolysis.

    Science.gov (United States)

    Chen, Zhihua; Hu, Mian; Cui, Baihui; Liu, Shiming; Guo, Dabin; Xiao, Bo

    2016-02-01

    The effects of bioleaching on sewage sludge pyrolysis were studied. Sewage sludge was treated by bioleaching with solid concentrations of 6% (w/v), 8% (w/v), 10% (w/v). Results showed that bioleaching treatment could modify the physicochemical properties of sewage sludge and enhance the metals removal. The optimum removal efficiencies of heavy metals were achieved with solid concentration of 6% (w/v) bioleaching treatment: Cu, 73.08%; Zn, 78.67%; Pb, 24.65%; Cd, 79.46%. The characterization results of thermogravimetric analysis (TGA) showed that the bioleached sewage sludge with a 6% (w/v) solid concentration treatment was the easiest to decompose. Pyrolytic experiments of bioleached sewage sludge were performed in a laboratory-scale fixed bed reactor. Results indicated that bioleaching treatment greatly influenced the product yields and gas composition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Sewage sludge - What can be done with it?

    International Nuclear Information System (INIS)

    Beurer, P.; Geering, F.

    2002-01-01

    This article presents a review of the state-of-the-art in the disposal of the sewage sludge that is left over after treatment of wastewater. Also, developments over the past ten years both in market structures and in legislation are discussed and future developments are reviewed. On account of legislation and political influences on the market, the thermal exploitation of sewage sludge is looked at in depth. The ecological and economic aspects of sewage sludge disposal are examined and the costs of different methods of sewage sludge treatment are compared. Various methods of disposal including dumping, composting, incineration in cement ovens, coal-fired power stations and waste incineration facilities are discussed, as is burning in special sludge incineration plant. A prognosis is made on the development of sewage sludge quantities for Germany, Switzerland and Austria over the next years

  7. Oil and coal from sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Naumann, H

    1981-01-01

    Under the leadership of professor Ernst Bayer a research group of Tuebingen succeeded in producing oil and coal from sewage sludge. The conversion of biomass into fossil fuels which in nature can only be calculated in historical periods of time is here brought about by the use of a catalyst on the basis of silicate and aluminium oxide, dopened with copper. First breakeven evaluations have given a real chance to be able to operate economically in a large scale plant the process being developed in laboratory tests.

  8. Vitrification as an alternative to landfilling of tannery sewage sludge.

    Science.gov (United States)

    Celary, Piotr; Sobik-Szołtysek, Jolanta

    2014-12-01

    Due to high content of heavy metals such as chromium, tannery sewage sludge is a material which is difficult to be biologically treated as it is in the case of organic waste. Consequently, a common practice in managing tannery sewage sludge is landfilling. This poses a potential threat to both soil and water environments and it additionally generates costs of construction of landfills that meet specific environment protection requirements. Vitrification of this kind of sewage sludge with the addition of mineral wastes can represent an alternative to landfilling. The aim of this study was to investigate the possibility of obtaining an environmentally safe product by means of vitrification of tannery sewage sludge from a flotation wastewater treatment process and chemical precipitation in order to address the upcoming issue of dealing with sewage sludge from the tannery industry which will be prohibited to be landfilled in Poland after 2016. The focus was set on determining mixtures of tannery sewage sludge with additives which would result in the lowest possible heavy metal leaching levels and highest hardness rating of the products obtained from their vitrification. The plasma vitrification process was carried out for mixtures with various amounts of additives depending on the type of sewage sludge used. Only the materials of waste character were used as additives. One finding of the study was an optimum content of mineral additives in vitrified mixture of 30% v/v waste molding sands with 20% v/v carbonate flotation waste from the zinc and lead industry for the formulations with flotation sewage sludge, and 45% v/v and 5% v/v, respectively, for precipitation sewage sludge. These combinations allowed for obtaining products with negligible heavy metal leaching levels and hardness similar to commercial glass, which suggests they could be potentially used as construction aggregate substitutes. Incineration of sewage sludge before the vitrification process lead to

  9. Use of sewage sludge and coconut coir mix as a peat substitute for potted chrysanthemum

    Energy Technology Data Exchange (ETDEWEB)

    Rosenani, A.B.; Lim, F.Y.; Thohirah, L.A.; Fauziah, C.I.

    2003-07-01

    Recent central processing of domestic wastewater in Malaysia has initiated investigations into the disposal/utilization of the sewage sludge produced. We had conducted an experiment to investigate the feasibility of using dewatered sewage sludge and coconut coir as a peat substitute in a potting medium for chrysanthemum. The experiment involved 9 treatments with sewage sludge (SS) and coconut coir (CC) mixed in different ratios (v/v) to replace peat in the standard potting medium of 3:2:1 (soil: peat: sand).The potting medium contained the following treatments, T1: peat + recommended rates of Agroblend (Ag), a slow release fertilizer, and Grofas (Gf), a foliar fertilizer (commonly used medium and fertilization), T2: [1SS:1CC] + Ag, T3: [1SS:1CC] + half recommended rates of Agroblend and Grofas (1/2Ag + 1/2Gf), T4: [2SS:1CC] + Ag, T5: [2SS:1CC] + 1/2Ag + 1/2Gf, T6: [3SS:1CC] + Ag, T7: [3SS:1CC] + 1/2Ag + 1/2Gf, T8: [4SS:1CC] + Ag, and T9: [4SS:1CC] + 1/2Ag + 1/2Gf; laid-out in a randomized complete block design with 5 replications. Results of the study show that in general the media with sludge and coconut coir mixtures produced better plant growth and higher total number of flowers than peat. However, the higher ratio of SS:CC, (4SS:1CC) produced poorer plant growth and less number of flowers. Increase in sewage sludge in the medium resulted in increase in foliar contents of heavy metals. This study demonstrates that sewage sludge and coconut coir mixture in the ratio of 1:1 may best substitute peat in the potting medium for chrysanthemum with only Agroblend fertilizer application. (author)

  10. Evaluation of irradiated sewage sludges

    International Nuclear Information System (INIS)

    Colin C, A.

    1994-01-01

    The residual muds are produced by a separation process in the black waters treatment constituted by a solid phase whose origin is the accumulation of pollutant matter that has been extended to the water for anthropogenic and/or natural activities. The present work has the purpose to carry out a technical evaluation for the irradiation process of residual muds for their possible application like alternative of treatment and final disposal. The results obtained for the Evaluation of the irradiation of residual muds are bounded with the federative entities in the study, on the number of treatment plants of residual waters by diverse methods, discharge types, system location, residual muds production and muds treatment, uses and final disposal. The results show in the several entities,a great variety and versatility of industrial branches with diverse systems for treatment of waters and scarceness in the systems for residual muds treatment. (Author)

  11. Evaluation and Source Apportionment of Heavy Metals (HMs) in Sewage Sludge of Municipal Wastewater Treatment Plants (WWTPs) in Shanxi, China.

    Science.gov (United States)

    Duan, Baoling; Liu, Fenwu; Zhang, Wuping; Zheng, Haixia; Zhang, Qiang; Li, Xiaomei; Bu, Yushan

    2015-12-11

    Heavy metals (HMs) in sewage sludge have become the crucial limiting factors for land use application. Samples were collected and analyzed from 32 waste water treatment plants (WWTPs) in the Shanxi Province, China. HM levels in sewage sludge were assessed. The multivariate statistical method principal component analysis (PCA) was applied to identify the sources of HMs in sewage sludge. HM pollution classes by geochemical accumulation index I(geo) and correlation analyses between HMs were also conducted. HMs were arranged in the following decreasing order of mean concentration: Zn > Cu > Cr > Pb > As > Hg > Cd; the maximum concentrations of all HMs were within the limit of maximum content permitted by Chinese discharge standard. I(geo) classes of HMs pollution in order from most polluted to least were: Cu and Hg pollution were the highest; Cd and Cr pollution were moderate; Zn, As and Pb pollution were the least. Sources of HM contamination in sewage sludge were identified as three components. The primary contaminant source accounting for 35.7% of the total variance was identified as smelting industry, coking plant and traffic sources; the second source accounting for 29.0% of the total variance was distinguished as household and water supply pollution; the smallest of the three sources accounting for 16.2% of the total variance was defined as special industries such as leather tanning, textile manufacturing and chemical processing industries. Source apportionment of HMs in sewage sludge can control HM contamination through suggesting improvements in government policies and industrial processes.

  12. Distribution of PCDD/Fs and organometallic compounds in sewage sludge of wastewater treatment plants in China

    International Nuclear Information System (INIS)

    Lu Mang; Wu Xuejiao; Zeng Decai; Liao Yong

    2012-01-01

    Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), organotin and organolead compounds were measured in sewage sludge samples collected from 24 wastewater treatment plants from 18 cities of 13 provinces in China. Total international toxicity equivalent (I-TEQ) values were evaluated for PCDD/Fs. The total concentration of PCDD/Fs ranged from 104.0 to 1661 pg/g dry weight (d.w.) and 2.51–75.21 pg I-TEQ/g d.w., indicating that all I-TEQs were below Chinese legislation limit value regulated for land application. The concentrations ranged from 258 to 3886, 126 to 1129, and 84–2133 ng/g as Sn d.w., for tributyltin (TBT), dibutyltin (DBT), and diphenyltin (DPhT), respectively. On the other side, organolead concentrations ranged from 85 to 668 with an average of 279 ng/g as lead. High concentrations of organolead compounds in sewage sludge indicated that the environmental impact of organolead compounds remains in China. - Highlights: ► The first study on PCDD/F distribution in sewage sludge in China on a national scale. ► The first study on organometallic compounds distribution in sewage sludge on a national scale. ► The persistence of tetraethyllead deserves attention. - This is the first study on the survey of the distributions of POPs and organometallic compounds in sewage sludge in China on a national scale.

  13. Transition metal rates in latosol twice treated with sewage sludge

    Directory of Open Access Journals (Sweden)

    Ana Tereza Jordão Pigozzo

    2006-05-01

    Full Text Available Agricultural recycling of sewage sludge has been a source of accumulation of heavy metals in the environment which may reach toxic levels and cause serious damage to the biota. Field experiments were undertaken for two agricultural years (2000 and 2002 and effects of two sewage sludge applications were evaluated through the extraction of (essential and non-essential transition metals by diethylenetriaminepentaacetic acid (DTPA extractor in a medium texture dystrophic Dark Red Latosol. Cd, Ni, Co, Pb and Cr were not detected. Application of sewage sludge initially caused a slight pH rise in the soil; later pH lowered and kept itself close to the starting level. It could be concluded that through consecutive sludge application, extractable rates of Fe and Mn in soil samples gradually increased during the two agricultural years in proportion to sewage sludge doses and sampling period. In fact, they were higher than rates of control. Due to low concentrations of soil samples, extractor had a restricted capacity for evaluation of its phytoavailability.A reciclagem agrícola do lodo de esgoto tem provocado o acúmulo de metais pesados no solo e na água, podendo atingir níveis tóxicos e causar danos às plantas cultivadas, aos animais e ao homem, por meio da cadeia trófica. Neste intuito foi desenvolvido o presente experimento, em condições de campo, entre 2000 e 2002, onde foram avaliados os efeitos da aplicação de lodo de esgoto por dois anos, sobre a extração de metais de transição (essenciais e não pelo extrator DTPA em um Latossolo Vermelho distrófico (LVd de textura média. As concentrações dos elementos metálicos: Mn, Fe, Cd, Ni, Co, Pb e Cr não foram detectados pelo método da absorção atômica na solução obtida com o extrator DTPA. A aplicação de lodo de esgoto causou inicialmente pequena elevação no pH do solo, posteriormente a diminuição do mesmo, e manteve-se próximo ao original. Foi possível concluir que, com

  14. Addition of biochar to sewage sludge decreases freely dissolved PAHs content and toxicity of sewage sludge-amended soil.

    Science.gov (United States)

    Stefaniuk, Magdalena; Oleszczuk, Patryk

    2016-11-01

    Due to an increased content of polycyclic aromatic hydrocarbons (PAHs) frequently found in sewage sludges, it is necessary to find solutions that will reduce the environmental hazard associated with their presence. The aim of this study was to determine changes of total and freely dissolved concentration of PAHs in sewage sludge-biochar-amended soil. Two different sewage sludges and biochars with varying properties were tested. Biochars (BC) were produced from biogas residues at 400 °C or 600 °C and from willow at 600 °C. The freely dissolved PAH concentration was determined by means of passive sampling using polyoxymethylene (POM). Total and freely dissolved PAH concentration was monitored at the beginning of the experiment and after 90 days of aging of the sewage sludge with the biochar and soil. Apart from chemical evaluation, the effect of biochar addition on the toxicity of the tested materials on bacteria - Vibrio fischeri (Microtox ® ), plants - Lepidium sativum (Phytotestkit F, Phytotoxkit F), and Collembola - Folsomia candida (Collembolan test) was evaluated. The addition of biochar to the sewage sludges decreased the content of C free PAHs. A reduction from 11 to 43% of sewage sludge toxicity or positive effects on plants expressed by root growth stimulation from 6 to 25% to the control was also found. The range of reduction of C free PAHs and toxicity was dependent on the type of biochar. After 90 days of incubation of the biochars with the sewage sludge in the soil, C free PAHs and toxicity were found to further decrease compared to the soil with sewage sludge alone. The obtained results show that the addition of biochar to sewage sludges may significantly reduce the risk associated with their environmental use both in terms of PAH content and toxicity of the materials tested. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Total organic carbon in a soil recovered with sewage sludge and native species of the Atlantic Forest

    Science.gov (United States)

    Mara Lima Goulart, Lívia; Amaral Guerrini, Iraê; Fidalgo de Faria, Marianne; Spada, Grasiela; Proença Nalesso, Pedro Henrique; Willian Carlos, Guilherme

    2017-04-01

    The use of organic waste such as sewage sludge, in the recovery of degraded áreas have shown very satisfactory results, because they are constituted by high contentes of organic matter and nutrients, essential to improve the physical and chemical properties of the soil. Thus, the objective of this study was to verify the total organic carbon (TOC) of a degraded soil, up to a metre deep, after 10 years of application of sewage sludge and planting native species of the Atlantic forest. The experiment was conducted at Fazenda Entre-Rios, owned by Suzano Papel e Celulose, in Itatinga, São Paulo, Brazil. The experiment was designed as randomized block with four replications, six doses of sewage sludge (0, 2.5, 5, 10, 15 and 20 t ha-1), conventional chemical fertilizer and only with potassium application, totaling eight treatments. Samples were collected every 20 cm (0-20, 20-40, 40-60, 60-80 and 80-100 cm) until reaching a metre deep. Ten years after trial deployment, the sewage sludge application in degraded soil was significantly influenced the TOC at all depths sampled. The highest values of the COT were observed in plots that received 15 and 20 t ha-1 of sewage sludge, in all depths sampled, except for the layer of 80-100 cm, which presented the highest average COT in the treatment with 10 t ha-1 of residue. As observed for all treatments, the highest TOC averages were observed in the superficial layers of the soil (0-20 and 20-40 cm). The sewage sludge application is useful to recover degraded soils, as it improving their chemical characteristics and showing to be a good alternative to the final destination of this residue.

  16. Radiation hygienization of raw sewage sludge

    International Nuclear Information System (INIS)

    Shah, M.R.; Lavale, D.S.; Rawat, P.; Benny, P.G.; Sharma, A.K.; Dey, G.R.; Bhave, V.

    2001-01-01

    'Radiation treatment of municipal sewage sludge can achieve resource conservation and recovery objectives. The liquid sludge irradiator of Sludge Hygienization Research Irradiator at Baroda (India) was operated for generating data on treatment of raw sludge containing 3-4 % solids. The plant system was modified for irradiating raw sludge without affecting basic irradiator initially designed to treat digested sludge. Hourly samples were analysed for estimation of disinfection dose requirement. Sand separated from the sludge was used as in-situ dosimeter by making use of its thermoluminescence property. Investigations are being carried out for regrowth of Total Coliforms in the sludge samples from this irradiator. Possibility of inadequate treatment due to geometric configuration of irradiator is being checked. (author)

  17. Effects of Sewage Sludges Contaminated with Chlorinated Aromatic Hydrocarbons on Sludge-Treated Areas (Soils and Sediments

    Directory of Open Access Journals (Sweden)

    Ethel Eljarrat

    2002-01-01

    Full Text Available The fate of PCDDs, PCDFs, and PCBs in sewage sludges after different management techniques — such as agricultural application, land restoration, and marine disposal — was studied. Changes observed in the concentrations, in the ratio between PCDD and PCDF levels, and in the isomeric distribution suggest the influence of the sewage sludge on the sludge-treated areas (soils and sediments. Whereas land application techniques seem to produce no serious environmental consequences, marine disposal practices produce considerable increases in the levels of contamination in marine sediments.

  18. The effects of different sewage sludge amendment rates on the heavy metal bioaccumulation, growth and biomass of cucumbers (Cucumis sativus L.).

    Science.gov (United States)

    Eid, Ebrahem M; Alrumman, Sulaiman A; El-Bebany, Ahmed F; Hesham, Abd El-Latif; Taher, Mostafa A; Fawy, Khaled F

    2017-07-01

    When sewage sludge is incorrectly applied, it may adversely impact agro-system productivity. Thus, this study addresses the reaction of Cucumis sativus L. (cucumber) to different amendment rates (0, 10, 20, 30, 40 and 50 g kg -1 ) of sewage sludge in a greenhouse pot experiment, in which the plant growth, heavy metal uptake and biomass were evaluated. A randomized complete block design with six treatments and six replications was used as the experimental design. The soil electrical conductivity, organic matter and Cr, Fe, Zn and Ni concentrations increased, but the soil pH decreased in response to the sewage sludge applications. As approved by the Council of European Communities, all of the heavy metal concentrations in the sewage sludge were less than the permitted limit for applying sewage sludge to land. Generally, applications of sewage sludge of up to 40 g kg -1 resulted in a considerable increase in all of the morphometric parameters and biomass of cucumbers in contrast to plants grown on the control soil. Nevertheless, the cucumber shoot height; root length; number of leaves, internodes and fruits; leaf area; absolute growth rate and biomass decreased in response to 50 g kg -1 of sewage sludge. All of the heavy metal concentrations (except the Cu, Zn and Ni in the roots, Mn in the fruits and Pb in the stems) in different cucumber tissues increased with increasing sewage sludge application rates. However, all of the heavy metal concentrations (except the Cr and Fe in the roots, Fe in the leaves and Cu in the fruits) were within the normal range and did not reach phytotoxic levels. A characteristic of these cucumbers was that all of the heavy metals had a bioaccumulation factor sewage sludge used in this study could be considered for use as a fertilizer in cucumber production systems in Saudi Arabia and can also serve as a substitute method of sewage sludge disposal. Graphical Abstract The effects of different sewage sludge amendment rates on the heavy

  19. A comparative study on different burning method of sewage sludge ash in mortar brick with eggshell powder as additive

    Science.gov (United States)

    Ing, Doh Shu; Azed, Muhammad Aizat; Chin, Siew Choo

    2017-11-01

    Population growth that increase every year has led to the increasing amount of waste generated annually. The content of heavy metal Cadmium (Cd), Lead (Pb) and Zinc (Zn) represent the biggest concentrations of heavy metals in sewage sludge waste which can be the source of pollution. Furthermore, the excessive disposal of eggshells waste to landfills may attract rats and worms due to the organic protein matrix that may pose health problem to the public. In the last decade, the demand on cement mortar brick has increased has resulted in higher cement production. However, cement plant is one of the major contributors of carbon dioxide emission. Hence, this research focuses on the production of environmental friendly cement with sewage sludge since there is occurrence of pozolonic material in Sewage Sludge Ash (SSA). From the initial finding, the major components of SSA are Silicon Dioxide (SiO2), Calcium oxide (CaO), Aluminium Oxide (Al2O3), Iron (III) Oxide (Fe2O3), Sodium Oxide (Na2O), Potassium oxide (K2O), Magnesium Oxide (MgO) and Iron (II) Oxide (FeO). Sewage sludge needed to be incinerated to remove the heavy metal before it can be used as cement replacement in mortar brick production. The sewage sludge were treated using two methods namely incineration and microwave. Both types of sewage sludge were then added with eggshell powder as additive. Eggshell powder act as additive in this research due to its high content of calcium carbonate and has nearly same composition of limestone used in the production of cement. Different percentages of Eggshell Powder (ESP) (0%, 5%, 10%, 15%) and 10% fixed of Microwaved Sewage Sludge Ash (MSSA) and Incinerated Sewage Sludge Ash (ISSA) as optimum dosage partially replacing the cement used to test the brick mortar properties in term of compressive strength, flexural strength and also water absorption. Result showed that ISSA with 5% of ESP is the most optimum brick with highest compressive strength and flexural strength

  20. SEWAGE SLUDGE EFFECTS ON POTATO, WINTER WHEAT AND MAIZE YIELD CULTIVATED IN ROTATION, AND SOIL PROPERTY MODIFICATION

    Directory of Open Access Journals (Sweden)

    Gh. Lixandru

    2005-10-01

    .1 kg/t sewage sludge applied in the previous year at a rate of 65 t/ha and only 3.7 kg/t at 195 t/ha. At a rate of 100 kg N/ha mineral fertilizer resulted in an yield increase of 4.9 kg grains/1 kg N. Maize yield in the third year after sewage sludge application increased by 11 kg grains/ton at a rate of 65 t/ha and only by 3.8 kg/t at 195 t/ha. Ammonium nitrate alone increased yield maize by 10.6 kg grains for 1 kg N. Plant utilization of N from sewage sludge during 3 years was of 17.5 % at a rate of 65 t/ha sewage sludge and only 6.5 % at rate of 195 t/ha. 6 The sewage sludge has increased soil pH by 0.2 units 3 years after the application of 65 t/ha, due to high amounts of Ca present in it. The content of accessible phosphates from soil fertilized by 65 t/ha sewage sludge increased significantly, existing the danger of soil overphosphatizing, with negative consequences on the plant nutrition. The total content of of Cu, Ni, Pb, Co and Mn from soil had easily increased on plots amended by 60-90 t/ha sewage sludge, doubled or tripled in case of Zn and remained unchanged in case of Cd. 8 Soil contamination by pathogenic germs remains low, Salmonella was absent, existing only the contamination with eggs of intestinal worms. 9 Sewage sludge between 30-60 t/ha had residual effect for at least 3 years. Periodical soil analyses on Zn and PAL content are indispensable, in order not exceed the allowable maximum limits. Our data have showed that the rate of sewage sjudge on chernozem must not exceed 400 kg P/ha.

  1. Sewage sludge treatment, utilisation and disposal; Schlammbehandlung, -verwertung und -beseitigung

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    In view of recent events and the resulting emotional and political decisions, the issue of sewage sludge treatment and disposal in Germany. must be seen in a new light. First, a new concept for sewage sludge management must be developed as recent legislation interferes with the 'classic' strategy of utilisation in agriculture, dumping and combustion. Scientists and sewage plant owners must find new ways to implement the specifications of the Act on Recycling and Waste Management. This ATV-DVWK training course discusses subjects that may be helpful on the new path. Starting from current legislation, problems, decision criteria and cost of sewage sludge treatment are gone into. Dimensioning fundamentals for sewage treatment plants re presented, and new and established treatment methods, operational problems and pollution problems are discussed. Further subjects are recycling of useful materials from sewage sludge, co-treatment of organic materials in fermenters, and disposal concepts for small and medium-sized communities. (orig.)

  2. Vitrification as an alternative to landfilling of tannery sewage sludge

    International Nuclear Information System (INIS)

    Celary, Piotr; Sobik-Szołtysek, Jolanta

    2014-01-01

    Highlights: • The possibility of vitrification of tannery sewage sludge was investigated. • Glass cullet was substituted with different wastes of mineral character. • Component ratio in the processed mixtures was optimized. • Environmental safety of the acquired vitrificates was verified. • An alternative management approach of usually landfilled waste was presented. - Abstract: Due to high content of heavy metals such as chromium, tannery sewage sludge is a material which is difficult to be biologically treated as it is in the case of organic waste. Consequently, a common practice in managing tannery sewage sludge is landfilling. This poses a potential threat to both soil and water environments and it additionally generates costs of construction of landfills that meet specific environment protection requirements. Vitrification of this kind of sewage sludge with the addition of mineral wastes can represent an alternative to landfilling. The aim of this study was to investigate the possibility of obtaining an environmentally safe product by means of vitrification of tannery sewage sludge from a flotation wastewater treatment process and chemical precipitation in order to address the upcoming issue of dealing with sewage sludge from the tannery industry which will be prohibited to be landfilled in Poland after 2016. The focus was set on determining mixtures of tannery sewage sludge with additives which would result in the lowest possible heavy metal leaching levels and highest hardness rating of the products obtained from their vitrification. The plasma vitrification process was carried out for mixtures with various amounts of additives depending on the type of sewage sludge used. Only the materials of waste character were used as additives. One finding of the study was an optimum content of mineral additives in vitrified mixture of 30% v/v waste molding sands with 20% v/v carbonate flotation waste from the zinc and lead industry for the formulations with

  3. Vitrification as an alternative to landfilling of tannery sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Celary, Piotr, E-mail: pcelary@is.pcz.czest.pl; Sobik-Szołtysek, Jolanta, E-mail: jszoltysek@is.pcz.czest.pl

    2014-12-15

    Highlights: • The possibility of vitrification of tannery sewage sludge was investigated. • Glass cullet was substituted with different wastes of mineral character. • Component ratio in the processed mixtures was optimized. • Environmental safety of the acquired vitrificates was verified. • An alternative management approach of usually landfilled waste was presented. - Abstract: Due to high content of heavy metals such as chromium, tannery sewage sludge is a material which is difficult to be biologically treated as it is in the case of organic waste. Consequently, a common practice in managing tannery sewage sludge is landfilling. This poses a potential threat to both soil and water environments and it additionally generates costs of construction of landfills that meet specific environment protection requirements. Vitrification of this kind of sewage sludge with the addition of mineral wastes can represent an alternative to landfilling. The aim of this study was to investigate the possibility of obtaining an environmentally safe product by means of vitrification of tannery sewage sludge from a flotation wastewater treatment process and chemical precipitation in order to address the upcoming issue of dealing with sewage sludge from the tannery industry which will be prohibited to be landfilled in Poland after 2016. The focus was set on determining mixtures of tannery sewage sludge with additives which would result in the lowest possible heavy metal leaching levels and highest hardness rating of the products obtained from their vitrification. The plasma vitrification process was carried out for mixtures with various amounts of additives depending on the type of sewage sludge used. Only the materials of waste character were used as additives. One finding of the study was an optimum content of mineral additives in vitrified mixture of 30% v/v waste molding sands with 20% v/v carbonate flotation waste from the zinc and lead industry for the formulations with

  4. Electrodialytic recovery of phosphorus from chemically precipitated sewage sludge ashes

    DEFF Research Database (Denmark)

    Parés Viader, Raimon; Jensen, Pernille Erland; Ottosen, Lisbeth M.

    Phosphorus scarcity requires improved recover and reuse of urban sources; the recycling of this nutrient from sewage sludge has become increasingly important in the last years. Using an innovative electrodialytic process, the present study shows the potential for P separation from Fe and Al...... precipitated sewage sludge ash using this technique, with a recovery rate of around 70%. Furthermore, heavy metals were removed from the phosphorous fraction, producing a pure and safe phosphorus source in the end....

  5. Electrodialytic recovery of phosphorus from chemically precipitated sewage sludge ashes

    DEFF Research Database (Denmark)

    Viader, Raimon Parés; Erland Jensen, Pernille; Ottosen, Lisbeth M.

    Phosphorus scarcity requires improved recover and reuse of urban sources; the recycling of this nutrient from sewage sludge has become increasingly important in the last years. Using an innovative electrodialytic process, the present study shows the potential for P separation from Fe and Al...... precipitated sewage sludge ash using this technique, with a recovery rate of around 70%. Furthermore, heavy metals were removed from the phosphorous fraction, producing a pure and safe phosphorus source in the end...

  6. Odor assessment for sewage sludge samples 300A01002

    International Nuclear Information System (INIS)

    Cash, D.B.; Molton, P.M.

    1976-12-01

    The use of radiation as a means of detoxifying sewage sludge as an alternate to the more conventional biological digestion treatment method was studied. A combination of gamma irradiation and heat (thermoradiation) treatment is being considered. In support of this effort, Battelle's Pacific Northwest Laboratories (PNL) were requested to assess the odor change of the sewage sludge, if any, that occurs with time after the samples were subjected to the treatment conditions. The test methods and results are presented

  7. The presence of contaminations in sewage sludge - The current situation.

    Science.gov (United States)

    Fijalkowski, Krzysztof; Rorat, Agnieszka; Grobelak, Anna; Kacprzak, Malgorzata J

    2017-12-01

    Sewage sludge/biosolids are by-wastes of municipal and industrial wastewater treatment. As sources of nutrients (C, N, P) they are widely used in intensive farming where large supplementation of organic matter to maintain fertility and enhance crop yields is needed. However, according to the report of European Commission published in 2010, only 39% of produced sewage sludge is recycled into agriculture in the European Union. This situation occurs mainly due to the fact, that the sewage sludge may contain a dangerous volume of different contaminants. For over decades, a great deal of attention has been focused on total concentration of few heavy metals and pathogenic bacteria Salmonella and Escherichia coli. The Sewage Sludge Directive (86/278/EEC) regulates the allowable limits of Zn, Cu, Ni, Pb, Cd, Cr and Hg and pathogens and allows for recovery of sludge on land under defined sanitary and environmentally sound conditions. In this paper, a review on quality of sewage sludge based on the publications after 2010 has been presented. Nowadays there are several papers focusing on new serious threats to human health and ecosystem occurring in sewage sludge - both chemicals (such as toxic trace elements - Se, Ag, Ti; nanoparticles; polyaromatic hydrocarbons; polychlorinated biphenyl; perfluorinated surfactants, polycyclic musks, siloxanes, pesticides, phenols, sweeteners, personal care products, pharmaceuticals, benzotriazoles) and biological traits (Legionella, Yersinia, Escherichia coli O157:H7). Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Electrodialytic treatment of sewage sludge ash for the recovery of phosphorous and separation of heavy metals

    DEFF Research Database (Denmark)

    Ebbers, Benjamin; Ottosen, Lisbeth M.; Jensen, Pernille Erland

    2012-01-01

    Mobilization and extraction of both phosphorus (P) and heavy metals (HM) from sewage sludge ash through means of acidification has been studied extensively. However, separation of both P and HM after mobilization to provide reusable materials has proven to be challenging. This study presents...... a combination of acidification and electrodialytic separation (EDS) to mobilize and separate P and HM from sewage sludge ash (SSA). The EDS experimental setup consists of three compartments, separated by ion exchange membranes which are located at either side of the stirred ash suspension. Through application...... of a direct current to electrodes in the outer compartments, ionic complexes migrate and concentrate in the electrode compartments in accordance to their charge. Application of both EDS and acidification of the ash resulted in an increased release of phosphorus from the ash, but did not always result...

  9. Analysis of Organic and Inorganic Contaminants in Dried Sewage Sludge and By-Products of Dried Sewage Sludge Gasification

    Directory of Open Access Journals (Sweden)

    Sebastian Werle

    2014-01-01

    Full Text Available Organic and inorganic contaminants in sewage sludge may cause their presence also in the by-products formed during gasification processes. Thus, this paper presents multidirectional chemical instrumental activation analyses of dried sewage sludge as well as both solid (ash, char coal and liquid (tar by-products formed during sewage gasification in a fixed bed reactor which was carried out to assess the extent of that phenomenon. Significant differences were observed in the type of contaminants present in the solid and liquid by-products from the dried sewage sludge gasification. Except for heavy metals, the characteristics of the contaminants in the by-products, irrespective of their form (solid and liquid, were different from those initially determined in the sewage sludge. It has been found that gasification promotes the migration of certain valuable inorganic compounds from sewage sludge into solid by-products which might be recovered. On the other hand, the liquid by-products resulting from sewage sludge gasification require a separate process for their treatment or disposal due to their considerable loading with toxic and hazardous organic compounds (phenols and their derivatives.

  10. Influence of the Pyrolysis Temperature on Sewage Sludge Product Distribution, Bio-Oil, and Char Properties

    DEFF Research Database (Denmark)

    Trinh, Ngoc Trung; Jensen, Peter Arendt; Dam-Johansen, Kim

    2013-01-01

    Fast pyrolysis may be used for sewage sludge treatment with the advantages of a significant reduction of solid waste volume and production of a bio-oil that can be used as fuel. A study of the influence of the reaction temperature on sewage sludge pyrolysis has been carried out using a pyrolysis...... of 392 g/mol, and metal concentrations lower than 0.14 wt % on a dry basis (db). Less optimal oil properties with respect to industrial applications were observed for oil samples obtained at 475 and 625 °C. Char properties of the 575 °C sample were an ash content of 81 wt % and a HHV of 6.1 MJ/kg db...

  11. Metal concentrations in earthworms from sewage sludge-amended soils at a strip mine reclamation site

    Energy Technology Data Exchange (ETDEWEB)

    Pietz, R.I.; Peterson, J.R.; Prater, J.E.; Zenz, D.R.

    A 3-yr study of earthworms was initiated in selected mine soil and nonmined fields at a Fulton County, IL land reclamation site. The purpose of this research was to determine the effect of the land application of anaerobically digested sewage sludge, used to reclaim the site, on heavy metal accumulations in earthworms. Two species of earthworms, Lumbricus terrestris and Aporrectodea tuberculata, were identified in the sludge-amended and nonamended, nonmined fields sampled. Only A. tuberculata was found in the sludge-amended and nonamended mine soil fields sampled. Earthworm metal concentrations generally increased with time in all the sampled fields. The decreasing order of metal accumulation by earthworms in all sludge-amended fields sampled was Cu > Cd > Ni > Cr > Pb > Zn. Sewage sludge applications to fields on both land types resulted in significant accumulations of Cd, Cu, and Zn. Land type (mine soil vs. nonmined) significantly affected earthworm Zn concentrations, with levels being higher in all nonmined fields sampled. Earthworm Cd and Cu accumulations in all fields sampled were significantly related to the current amounts of sludge-applied metals, the amount applied since the previous sampling. Concentrations of Ni, Cr, and Pb in earthworms were not significantly related to sewage sludge applications during the 1975 to 1977 sampling period. The higher Cd and Cu concentrations in earthworms from sludge-amended fields may pose a potential hazard to predators.

  12. Sewage sludge and wastewater for use in agriculture. Proceedings of consultants meetings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    Recently, gamma rays and electron beams have been successfully used on sludges and wastewater to eliminate pathogenic organisms and some toxic chemicals. Sufficient technical data are available for gamma treatment of sludges, permitting its application on the demonstration or commercial scale, but gaps in our knowledge exist for the practical application of electron-beam technology. The IAEA`s involvement in studies of radiation processing of sewage sludge dates back several years. A five-year Co-ordinated Research programme on Radiation Treatment of Sewage Sludge for Safe Reutilization, involving Canada, Germany, India, Indonesia, Italy, Japan, and the United State of America, was completed in 1990. This programme laid a solid foundation on which future programmes can be built. However, at present, information is limited on the availability of nutrients from sewage sludges to crops, its benefits as an organic amendment to soil, and the harmful effects of heavy metals on crop growth. Isotope and radiation techniques are valuable tools of potential use in finding answers to some of these questions. Refs, figs, tabs.

  13. Relative effectiveness of sewage sludge as a nitrogen fertilizer for tall fescue

    Energy Technology Data Exchange (ETDEWEB)

    Kiemnec, G.L.; Jackson, T.L.; Hemphill, D.D. Jr.; Volk, V.V.

    Sewage sludge application rates on grasses are mainly determined by N availability and concentration of toxic metals in sludge. The exact availability of N in sludge is difficult to predict. A 3-yr study was conducted to determine which sludge rates would give yields of tall fescue (Festuca arundinacea Shreb. Alta) comparable to yields obtained from inorganic N application. Sludge and NH/sub 4/NO/sub 3/ were surface applied at annual rates of 0, 110, 220, 440, and 880 (sludge only) kg N/ha. Dry matter yield of tall fescue from sludge-treated soils was 36, 56, and 50% of that on NH/sub 4/NO/sub 3/-treated soils for 1976, 1977, and 1978, respectively. Sludge was 27, 41, and 44% as effective as NH/sub 4/NO/sub 3/ as a source of available N in 1976, 1977, and 1978, respectively. Ammonium-N in the sewage sludge apparently provided most of the available N for fescue growth. Concentrations of Zn, Cd, and Cu were higher and Mn lower in tall fescue grown on sludge-treated soil with NH/sub 4/NO/sub 3/ and usually increased toward the end of the growing season. However, plant concentrations of these heavy metals never reached toxic levels at any time. Sewage sludge was an effective and safe nutrient source for tall fescue.

  14. Sewage sludge and wastewater for use in agriculture. Proceedings of consultants meetings

    International Nuclear Information System (INIS)

    1997-10-01

    Recently, gamma rays and electron beams have been successfully used on sludges and wastewater to eliminate pathogenic organisms and some toxic chemicals. Sufficient technical data are available for gamma treatment of sludges, permitting its application on the demonstration or commercial scale, but gaps in our knowledge exist for the practical application of electron-beam technology. The IAEA's involvement in studies of radiation processing of sewage sludge dates back several years. A five-year Co-ordinated Research programme on Radiation Treatment of Sewage Sludge for Safe Reutilization, involving Canada, Germany, India, Indonesia, Italy, Japan, and the United State of America, was completed in 1990. This programme laid a solid foundation on which future programmes can be built. However, at present, information is limited on the availability of nutrients from sewage sludges to crops, its benefits as an organic amendment to soil, and the harmful effects of heavy metals on crop growth. Isotope and radiation techniques are valuable tools of potential use in finding answers to some of these questions

  15. Alteração de atributos físicos em latossolo com aplicação superficial de escória de aciaria, lama cal, lodos de esgoto e calcário Oxisol physical attributes affected by surface application of flue dust, aqueous lime, sewage sludges and limestone

    Directory of Open Access Journals (Sweden)

    Juliano Corulli Corrêa

    2009-04-01

    dust, aqueous lime. The experiment was carried out under field conditions during the agricultural years of 2002 to 2005. Treatments were four residues sewage sludge centrifuged, sewage sludge biodigestor, flue dust and aqueous lime application on soil surface in four rates (0, 2, 4 e 8 t ha-1 and one control treatment, with 2 t ha-1 of dolomitc limestone. The experiment was set up in randomized block design, using 4 x 4 + 1 factorial design, with four replications. The Ca present in aqueous lime, sewage sludge centrifuged, flue dust and limestone increase aggregation of soil particles, DMP, IEA, total soil porosity and water retention, at this alteration due source, rate and soil depth. Surface application of aqueous lime at the rate 8 t ha-1, after 27 reaction month, allow the better aggregation of soil particles, since the surface into 40 cm depth.

  16. Enhanced composting of radiation disinfected sewage sludge

    International Nuclear Information System (INIS)

    Kawakami, W.; Hashimoto, S.

    1984-01-01

    Studies on isothermal composting of radiation disinfected sewage sludge and liquid chromatography of water extracts of the products were carried out. The optimum temperature and pH were around 50 deg C and 7 to 8, respectively. The repeated use of products as seeds increased the rate of CO 2 evolution. The rate reached a maximum within 10 hours and decreased rapidly, and the CO 2 evolution ceased after about 3 days. The conversion of organic carbon to carbon dioxide attained to about 40% for the repeated use of products as seeds at the optimum conditions. As long as seeds as available were used, no remarkable difference was found in the composting of unirradiated and irradiated sludges. The composting process using radiation, however, can be carried out at the optimum conditions and is expected to shorten the composting period, because it is not necessary to keep fermentation temperature higher to reduce pathogen in sludge. Liquid chromatographic studies of the products showed that low molecular components decreased and higher molecular ones increased with fermentation. An index expressing the degree of reduction of easily decomposable organics was presented. The index also showed that the optimum temperature for fermentation was 50 deg C. (author)

  17. Virological investigations on inadiated sewage sludge

    International Nuclear Information System (INIS)

    Epp, C.

    1980-08-01

    The virusinactivating activity of a Co 60 -irradiation pilot plant at Geiselbullach/Munich was to be examined. We investigated 16 impure sewage water, 15 purified sewage water, 32 raw sladge samples, 62 digested sludge samples before irradiation, 52 digested sludge samples after irradiation and 9 raw sludge samples after irradiation. We completed these investigations by adding poliovaccinevirus type 1 to the digested sludge before irradiation and by adding suspensions of pure virus in MEM + 2% FBS packed in synthetic capsules and mixtures of virus and sludge packed in synthetic capsules to the digested sludge. After the irradiation we collected the capsules and determined the virustiter. The testviruses were poliovaccinevirus type 1, poliowildvirus type 1, echovirus type 6, coxsackie-B-virus type 5, coxsackie-A-virus type 9 and adenovirus type 1. In the field trial the irradiation results were like the laboratory results assuming that the sewage sludge was homogenized enough by digestion and the solid particle concentration was not more than 3%. The D-value was 300-400 krad for enteroviruses and 700 krad for adenovirus. (orig.) [de

  18. A microbiological study on sewage sludge treatment

    International Nuclear Information System (INIS)

    Sermkiattipong, Ngamnit; Ito, Hitoshi; Hashimoto, Shoji.

    1990-09-01

    Isolation and identification of salmonellae in sewage sludge cake and radiation sensitivities of the isolated strains were studied. Disinfection of the sludge by heat or radiation and effect of such treatment on composting were also carried out. Five groups of O-antigen and seven serotypes of salmonellae were identified from the sludge cakes. D 10 values of the salmonellae in phosphate buffer were ranged from 0.16 to 0.22 kGy and those in sludge were about three times larger. Total bacterial counts and coliforms in the sludges were determined to be 4.6 x 10 7 - 5.1 x 10 9 and 1.3 x 10 5 - 1.1 x 10 9 colony forming unit (cfu/g). After irradiation at 20 kGy by gamma ray or electron beam, decrease of total bacterial count was 5 - 7 log cycles and a dose of 5 kGy was enough to eliminate all of the coliforms. Coliforms decreased rapidly by heating at 65degC, but only one log cycle decrease was observed in total bacterial count. By heating at 100degC, total bacterial count decreased rapidly. Two peaks were observed in CO 2 evolution curves of radiation disinfected sludge composting, but only one peak in heat disinfected sludge composting. (author)

  19. On the rheological characteristics of sewage sludge

    Directory of Open Access Journals (Sweden)

    Tomáš Vítěz

    2010-01-01

    Full Text Available The work is focused on characterization of rheological behavior of sewage sludges sampled at different stages of waste water treatment. The main attention was focused on dynamic viscosity dependence on temperature, and shear rate. The sludge samples were examined under temperature ranging from 1 °C to 25 °C and under shear rate ranging from 0.34 s−1 to 68 s−1. Rotary digital viscometer (concentric cylinders geometry was used to perform the reological measurements. The solids content of the sludge samples ranged from 0.43 % to 21.45 % (A and C samples, respectively and ash free dry mass from 56.21 % to 67.80 % (A and B samples, respectively. The tested materials were found to be of non–Newtoninan nature and temperature dependent. Measured data were successfully cha­ra­cte­ri­zed by several mathematical models (Arrhenius, Bingham Plastic, Casson Law, Exponential, Gaussian, and IPC Paste in MATLAB® software with satisfying correlations between experimental and computed results. The best match (R2 = 0.999 was received with use of Gaussian model, in both cases, shear rate and temperature dependence. The results are quite useful e.g. for the purpose of technological equipment design.

  20. Stabilization/solidification of sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Boura, Panagiota; Katsioti, Margarita; Tsakiridis, Petros; Katsiri, Alexandra

    2003-07-01

    The main objective of this work is to investigate a viable alternative for the final disposal of sewage sludge from urban wastewater treatment plants by its use as an additive in developing new construction materials. For this purpose, several mixtures of sludge- cement and sludge-cement and jarosite/alunite precipitate were prepared. Jarosite/alunite precipitate is a waste product of a new hydrometallurgical process. Two kinds of sludge were used: primary sludge from Psyttalia Wastewater Treatment Plant, which receives a considerable amount of industrial waste, and biological sludge from Metamorphosi Wastewater Treatment Plant. Various percentages of these sludges were stabilized/solidified with Portland cement and Portland cement with jarosite/alunite. The specimens were tested by determination of compressive strength according to the methods described by European Standard EN 196. X-Ray Diffraction (XRD) analysis as well as Thermogravimetry-Differential Thermal Analysis (TG-DTA) were used to determine the hydration products in 28 days. Furthermore, Toxicity Characteristic Leaching Procedure test for heavy metals (TCLP), were carried out in order to investigate the environmental compatibility of these new materials. (author)

  1. Transformation of apatite phosphorus and non-apatite inorganic phosphorus during incineration of sewage sludge.

    Science.gov (United States)

    Li, Rundong; Zhang, Ziheng; Li, Yanlong; Teng, Wenchao; Wang, Weiyun; Yang, Tianhua

    2015-12-01

    The recovery of phosphorus from incinerated sewage sludge ash (SSA) is assumed to be economical. Transformation from non-apatite inorganic phosphorus (NAIP) to apatite phosphorus (AP), which has a higher bioavailability and more extensive industrial applications, was studied at 750-950°C by sewage sludge incineration and model compound incineration with a calcium oxide (CaO) additive. Thermogravimetric differential scanning calorimetry analysis and X-ray diffraction measurements were used to analyze the reactions between NAIP with CaO and crystallized phases in SSA. High temperatures stimulated the volatilization of NAIP instead of AP. Sewage sludge incineration with CaO transformed NAIP into AP, and the percentage of AP from the total phosphorus reached 99% at 950°C. Aluminum phosphate reacted with CaO, forming Ca2P2O7 and Ca3(PO4)2 at 750-950°C. Reactions between iron phosphate and CaO occurred at lower temperatures, forming Ca(PO3)2 before reaching 850°C. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Gaseous emissions from sewage sludge combustion in a moving bed combustor.

    Science.gov (United States)

    Batistella, Luciane; Silva, Valdemar; Suzin, Renato C; Virmond, Elaine; Althoff, Chrtistine A; Moreira, Regina F P M; José, Humberto J

    2015-12-01

    Substantial increase in sewage sludge generation in recent years requires suitable destination for this residue. This study evaluated the gaseous emissions generated during combustion of an aerobic sewage sludge in a pilot scale moving bed reactor. To utilize the heat generated during combustion, the exhaust gas was applied to the raw sludge drying process. The gaseous emissions were analyzed both after the combustion and drying steps. The results of the sewage sludge characterization showed the energy potential of this residue (LHV equal to 14.5 MJ kg(-1), db) and low concentration of metals, polycyclic aromatic hydrocarbons (PAH), polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF). The concentration of CO, NOx, BTEX (benzene, toluene, ethylbenzene and xylenes) emitted from the sludge combustion process were lower than the legal limits. The overall sludge combustion and drying process showed low emissions of PCDD/PCDF (0.42 ng I-TEQ N m(-3)). BTEX and PAH emissions were not detected. Even with the high nitrogen concentration in the raw feed (5.88% db), the sludge combustion process presented NOx emissions below the legal limit, which results from the combination of appropriate feed rate (A/F ratio), excess air, and mainly the low temperature kept inside the combustion chamber. It was found that the level of CO emissions from the overall sludge process depends on the dryer operating conditions, such as the oxygen content and the drying temperature, which have to be controlled throughout the process in order to achieve low CO levels. The aerobic sewage sludge combustion process generated high SO2 concentration due to the high sulfur content (0.67 wt%, db) and low calcium concentration (22.99 g kg(-1)) found in the sludge. The high concentration of SO2 in the flue gas (4776.77 mg N m(-3)) is the main factor inhibiting PCDD/PCDF formation. Further changes are needed in the pilot plant scheme to reduce SO2 and particulate matter emissions

  3. ZEOLITIZATION OF SEWAGE SLUDGE ASH WITH A FUSION METHOD

    Directory of Open Access Journals (Sweden)

    Jolanta Latosińska

    2016-11-01

    Full Text Available The study shows the results of zeolitization of municipal sewage sludge ash with the indirect fusion method followed by a hydrothermal method. The zeolitization of sewage sludge ash was conducted at the melting temperature of 550°C and the melting time of 60 minutes, crystallization temperatures of 60°C and 90°C, crystallization time of 6 hours and the SSA:NaOH ratio of 1:1.8; 1:1.4. The research of modified sewage sludge ashes included the observation of changes of ash particles surface and the identification of crystalized phases. The zeolitization of sewage sludge ash at the ratio of SSA:NaOH 1.0:1.4 did not cause the formation of zeolite phases. On the other hand, the zeolitization at the ratio of SSA:NaOH 1.0:1.8 resulted in the formation of desired zeolite phases such as zeolite Y (faujasite and hydroxysodalite. The presented method of sewage sludge ash zeolitization allows to obtain highly usable material. Synthesized zeolites may be used as adsorbents and ion exchangers. They can be potentially used to remove heavy metals as well as ammonia from water and wastewater.

  4. Co-digestion of pig slaughterhouse waste with sewage sludge.

    Science.gov (United States)

    Borowski, Sebastian; Kubacki, Przemysław

    2015-06-01

    Slaughterhouse wastes (SHW) are potentially very attractive substrates for biogas production. However, mono-digestion of these wastes creates great technological problems associated with the inhibitory effects of ammonia and fatty acids on methanogens as well as with the foaming in the digesters. In the following study, the co-digestion of slaughterhouse wastes with sewage sludge (SS) was undertaken. Batch and semi-continuous experiments were performed at 35°C with municipal sewage sludge and pig SHW composed of meat tissue, intestines, bristles and post-flotation sludge. In batch assays, meat tissue and intestinal wastes gave the highest methane productions of 976 and 826 dm(3)/kg VS, respectively, whereas the methane yield from the sludge was only 370 dm(3)/kg VS. The co-digestion of sewage sludge with 50% SHW (weight basis) provided the methane yield exceeding 600 dm(3)/kg VS, which was more than twice as high as the methane production from sewage sludge alone. However, when the loading rate exceeded 4 kg VS/m(3) d, a slight inhibition of methanogenesis was observed, without affecting the digester stability. The experiments showed that the co-digestion of sewage sludge with large amount of slaughterhouse wastes is feasible, and the enhanced methane production does not affect the digester stability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Hydrogen and syngas production from sewage sludge via steam gasification

    Energy Technology Data Exchange (ETDEWEB)

    Nipattummakul, Nimit [The Combustion Laboratory, Dept. of Mechanical Engineering, University of Maryland, College Park, MD (United States); The Waste Incineration Research Center, Dept. of Mechanical and Aerospace Engineering, King Mongkut' s University of Technology, North Bangkok (Thailand); Ahmed, Islam I.; Gupta, Ashwani K. [The Combustion Laboratory, Dept. of Mechanical Engineering, University of Maryland, College Park, MD (United States); Kerdsuwan, Somrat [The Waste Incineration Research Center, Dept. of Mechanical and Aerospace Engineering, King Mongkut' s University of Technology, North Bangkok (Thailand)

    2010-11-15

    High temperature steam gasification is an attractive alternative technology which can allow one to obtain high percentage of hydrogen in the syngas from low-grade fuels. Gasification is considered a clean technology for energy conversion without environmental impact using biomass and solid wastes as feedstock. Sewage sludge is considered a renewable fuel because it is sustainable and has good potential for energy recovery. In this investigation, sewage sludge samples were gasified at various temperatures to determine the evolutionary behavior of syngas characteristics and other properties of the syngas produced. The syngas characteristics were evaluated in terms of syngas yield, hydrogen production, syngas chemical analysis, and efficiency of energy conversion. In addition to gasification experiments, pyrolysis experiments were conducted for evaluating the performance of gasification over pyrolysis. The increase in reactor temperature resulted in increased generation of hydrogen. Hydrogen yield at 1000 C was found to be 0.076 g{sub gas} g{sub sample}{sup -1}. Steam as the gasifying agent increased the hydrogen yield three times as compared to air gasification. Sewage sludge gasification results were compared with other samples, such as, paper, food wastes and plastics. The time duration for sewage sludge gasification was longer as compared to other samples. On the other hand sewage sludge yielded more hydrogen than that from paper and food wastes. (author)

  6. Irradiated Sewage Sludge for Production of Fennel Plants in Sandy Soil

    International Nuclear Information System (INIS)

    El-Motaium, R. A.; Abo El-Seoud, M. A.

    2004-01-01

    Irradiated sewage sludge (SS) has proved to be a useful organic fertilizer particularly for sandy soil. The objective of this study is to compare the response of fennel (Foeniculum vulgare L.) plants growing in sandy soil to different fertilizer regimes, organic vs. mineral. In a field experiment four levels (20, 40, 60, 80 t/ha) of irradiated and non-irradiated sewage sludge were incorporated into sandy soil, in addition to the control treatment (mineral fertilizer). Samples analysis included the biomass production at the vegetative and flowering stages, chlorophyll content, total and reducing sugars and heavy metals content of the shoots. The data indicate that the biomass production has dramatically increased as the sludge application rate increased in both irradiated and non-irradiated plots. However, the increase was significantly higher under all irradiated treatments than the corresponding rates of non-irradiated treatments at both the vegetative and flowering stages. Also, the biomass production at all levels of application was higher than the control, receiving mineral fertilizer. At the vegetative stage, the biomass values ranged from 3.1 g/plant for the control to 10.2 and 34.1 g/plant at 80 t/ha for non-irradiated and irradiated sewage sludge, respectively. Whereas, at the flowering stage the values ranged from 9.8 g/plant for the control to 23.9 and 65.1 g/plant at 80 t/ha for non-irradiated and irradiated sewage sludge, respectively. Total sugars, reducing sugar, non-reducing sugar, and chlorophyll content has increased as the sludge application rate increased. At 80t/ha application rate of irradiated sludge, the reducing sugars content was 29.39 mg/g DW at the vegetative stage and 37.85 mg/g DW at the flowering stage. Reducing sugars recorded lower values in the control plants, 14.54 mg/g DW at the vegetative stage and 18.78 mg/g DW at the flowering stage. Heavy metals (Zn, Fe, Pb, Cd) of the shoots was also determined. Sewage sludge was a good

  7. Soil Microbial Functional and Fungal Diversity as Influenced by Municipal Sewage Sludge Accumulation

    OpenAIRE

    Frąc, Magdalena; Oszust, Karolina; Lipiec, Jerzy; Jezierska-Tys, Stefania; Nwaichi, Eucharia Oluchi

    2014-01-01

    Safe disposal of municipal sewage sludge is a challenging global environmental concern. The aim of this study was to assess the response of soil microbial functional diversity to the accumulation of municipal sewage sludge during landfill storage. Soil samples of a municipal sewage sludge (SS) and from a sewage sludge landfill that was 3 m from a SS landfill (SS3) were analyzed relative to an undisturbed reference soil. Biolog EcoPlatesTM were inoculated with a soil suspension, and the Avera...

  8. Land reclamation recovery with the sewage sludge use

    Directory of Open Access Journals (Sweden)

    Cristina Rincon Tamanini

    2008-08-01

    Full Text Available In this work, investigations were carried out with five treatments [control, three doses of lime stabilized sludge (60, 120, 240 Mg ha-1 dry base and soil corrective plus mineral fertilizer] to evaluate the immediate recuperation of a borrowed area. The application of stabilized alkaline sewage sludge acted as an acidity corrective, allowed the increase in the organic matter contents (21 to 43.5g dm-3 and available P (44 to 156 mg dm-3. Even with the use of the highest dose, no increase in the concentration of 32 analyzed metals was observed, due to the low concentration of metals in the sludge. The experiment showed that short term restoration of degraded area was possible by using high rates of sewage sludge without metal contamination.Obras de infra-estrutura próximas aos grandes centros levam ao surgimento de áreas degradadas por decapamento que podem ser reintegradas a paisagem através dos processos de recuperação com o uso do lodo de esgoto. Estabeleceu-se um experimento com cinco tratamentos [testemunha, três doses de lodo alcalinizado (60, 120, 240Mgha-1 em base seca e corretivo mais adubo mineral], para avaliar a recuperação imediata de uma área de empréstimo. A aplicação de lodo de esgoto alcalinizado atuou como corretivo da acidez, proporcionou aumento no teor de matéria orgânica (21 para 43,5g dm-3 e P disponível (4,4 para 156mg dm-3 e total, se mostrando superior ao mineral mais calagem. Mesmo com uso da maior dose, não foi observado acréscimos nos teores de 32 metais analisados, dado à baixa concentração de metais no lodo. Os resultados obtidos indicam que é possível o uso de doses elevadas de lodo de esgoto na recuperação de áreas degradadas.

  9. Sewage sludge treatment and disposal. Experiences and perspectives; Klaerschlammbehandlung und -entsorgung. Erfahrungen und Perspektiven

    Energy Technology Data Exchange (ETDEWEB)

    Dichtl, N.; Mueller, J. [comps.] [Technische Univ. Braunschweig (Germany). Inst. fuer Siedlungswasserwirtschaft

    1997-09-01

    Topics of the proceedings are: sewage sludge treatment and sewage sludge disposal by means of: thermal treatment, fermentation, composting, wet oxidation, hydrolysis, disposal in agriculture, economical aspects of sewage sludge treatment. This book deals with theoretical aspects and practical examples. (SR)

  10. Study of heavy metal in sewage sludge and in Chinese cabbage ...

    African Journals Online (AJOL)

    The study was performed to investigate the heavy metal content and availability for crops in sewage sludge and its accumulation in Chinese cabbage grown in sewage sludge amended soil. We determined the total and chemical fraction of As, Cr, Cd, Pb, Ni, Cu, Zn, Fe, Mg and Mn in sewage sludge and the total content of ...

  11. 78 FR 34918 - Direct Final Approval of Sewage Sludge Incinerators State Plan for Designated Facilities and...

    Science.gov (United States)

    2013-06-11

    ... Approval of Sewage Sludge Incinerators State Plan for Designated Facilities and Pollutants; Indiana AGENCY... to control air pollutants from ``Sewage Sludge Incinerators'' (SSI). The Indiana Department of... unit,'' in part, as any device that combusts sewage sludge for the purpose of reducing the volume of...

  12. Environmentally compatible sewage sludge disposal; Umweltgerechte Klaerschlammentsorgung

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, J. [Technische Univ. Braunschweig (Germany). Inst. fuer Mechanische Verfahrenstechnik; Schwedes, J. [Technische Univ. Braunschweig (Germany). Inst. fuer Mechanische Verfahrenstechnik

    1997-09-01

    Cleaning of municipal and industrial waste water is done by means of biological processes: micro-organisms degrade pollutants. The resulting products are, besides cleaned waste water, sewage sludge and surplus sludge. Their disposal involves ecological and economic problems. One approach to their partial disposal is their degradation in a digester. Approximately one half of the organic substance is converted by anaerobic bacteria into energy-rich biogas. Optimization of this digestion process accelerates the anaerobic degradation process, increases the accruing amount of digester gas and reduces the volume of digested sludge to be disposed of. With these objectives, the Institute fuer Mechanische Verfahrenstechnik is conducting research into the mechanical treatment of micro-organisms remaining in surplus sludge by means of different treatment devices. The project is sponsored under the programme of the Deutsche Forschungsgemeinschaft DFG ``Biological processes with dispersive solids``. Mechanical treatment renders the cell constituents exploitable to anaerobic bacteria; the resulting sludge degradation is more rapid and more complete. (orig./ABI) [Deutsch] Zur Reinigung haeuslicher und industrieller Abwaesser werden biologische Prozesse eingesetzt. Dabei sorgen Mikroorganismen fuer den Abbau der Verunreinigungen. Neben dem gereinigten Abwasser fallen Primaer- und Ueberschussschlamm an, deren Entsorgung oekologische und oekonomische Probleme verursacht. Ein Weg zur partiellen Beseitigung dieser Klaerschlaemme ist ihr Abbau in einem Faulbehaelter. Dabei wird etwa die Haelfe der organischen Substanz durch anaerobe Bakterien zu einem energiereichen Biogas umgewandelt. Eine Optimierung dieses Faulprozesses beinhaltet: 1. Beschleunigung des anaeroben Abbauprozesses, 2. Erhoehung der anfallenden Faulgasmenge und 3. Reduzierung der zu entsorgenden Faulschlammenge. Mit diesen Zielsetzungen wird am Institut fuer Mechanische Verfahrenstechnik im Rahmen der DFG

  13. Urban Sewage Sludge, Sustainability, and Transition for Eco-City

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Liang, Hanwei; Chan, Felix T. S.

    2017-01-01

    The treatment of urban sewage sludge is of vital importance for mitigating the risks of environmental contaminations, and the negative effects on human health. However, there are usually various different technologies for the treatment of urban sewage sludge; thus, it is difficult for decision......-makers/stakeholders to select the most sustainable technology among multiple alternatives. This study aims at developing a generic multi-criteria decision support framework for sustainability assessment of the technologies for the treatment of urban sewage sludge. A generic criteria system including both hard and soft criteria...... in economic, environmental, social and technological aspects was developed for sustainability assessment. The improved analytic hierarchy process method, namely Best-Worst method, was employed to determine the weights of the criteria and the relative priorities of the technologies with respect to the soft...

  14. Bioleaching of heavy metals from sewage sludge using Acidithiobacillus thiooxidans

    Science.gov (United States)

    Wen, Ye-Ming; Lin, Hong-Yan; Wang, Qing-Ping; Chen, Zu-Liang

    2010-11-01

    Acidithiobacillus thiooxidans was isolated from sewage sludge using the incubation in the Waksman liquor medium and the inoculation in Waksman solid plate. It was found that the optimum conditions of the bioleaching included solid concentration 2%, sulfur concentration 5 gṡL-1 and cell concentration 10%. The removal efficiency of Cr, Cu, Pb and Zh in sewage sludge, which was obtained from waste treatment plant, Jinshan, Fuzhou, was 43.65%, 96.24%, 41.61% and 96.50% in the period of 4˜10 days under the optimum conditions, respectively. After processing using the proposed techniques, the heavy metals in sewage sludge did meet the requirement the standards of nation.

  15. Use of sewage sludge for agriculture in Japan

    International Nuclear Information System (INIS)

    Kumazawa, K.

    1997-01-01

    In Japan, the use of sewage sludge and composted sewage sludge is gradually increasing. They are applied not only to agricultural land, but also to golf courses, parks, etc. The presence of heavy metals and pathogens poses a major problem for such utilization of sludge. Composting is a traditional method of sewage treatment. Laws have been introduced and guidelines prepared for proper and safe use of these materials by farmers. Public acceptance plays a crucial role. At a time when environmental preservation is a major issue in almost every aspect of life, greater emphasis will have to be placed on making sludge and compost hygienically acceptable with minimum contamination from pathogenic organisms and heavy metals. The advantages of using sludges as fertilizer for improving and sustaining soil fertility and crop production are many. This paper reviews studies conducted on the use of sewage sludge in agriculture in japan. (author)

  16. Biological testing of a digested sewage sludge and derived composts.

    Science.gov (United States)

    Moreira, R; Sousa, J P; Canhoto, C

    2008-11-01

    Aiming to evaluate a possible loss of soil habitat function after amendment with organic wastes, a digested sewage sludge and derived composts produced with green residues, where biologically tested in the laboratory using soil animals (Eisenia andrei and Folsomia candida) and plants (Brassica rapa and Avena sativa). Each waste was tested mimicking a field application of 6ton/ha or 12ton/ha. Avoidance tests did not reveal any impact of sludge and composts to soil biota. Germination and growth tests showed that application of composts were beneficial for both plants. Composts did not affect earthworm's mass increase or reproduction, but the highest sludge amendment revealed negative effects on both parameters. Only the amendment of composts at the highest dose originated an impairment of springtails reproductive output. We suggest that bioassays using different test species may be an additional tool to evaluate effects of amendment of organic wastes in soil. Biological tests are sensitive to pollutants at low concentrations and to interactions undetected by routine chemical analysis.

  17. The fate of radionuclides in sewage sludge applied to land

    International Nuclear Information System (INIS)

    Boston, H.L.; Van Miegroet, H.; Larsen, I.L.; Walzer, A.E.; Carlton, J.E.

    1990-01-01

    Municipal sewage sludge containing up to 12 pCi/g 137 Cs, 20 pCi/g 60 Co, and 300 ppm U was injected in a pasture (43 Mg/ha) and sprayed over a young pine plantation (34 Mg/ha). In the pasture, radionuclides were largely retained in the upper 15 cm of the soil, and only about 15% moved below 15 cm. Sludge rapidly infiltrated the soil on the pine plantation. One year after application, at least 85% of the 137 Cs, 60 Co, and U were found in the upper 7 cm of the pine plantation, with only about 15% moving into the 7- to 15-cm strata. On-site total added radiation dose was 2 to 6 mrem/year. Radionuclides were not detected above background in soil solutions at ∼50 cm depth or in shallow down-gradient groundwater wells. Surface runoff from application areas did not have elevated radionuclide concentrations. Concentrations of these radionuclides increased slightly in vegetation on treated sites, and uranium was notably higher in earthworms. 9 refs., 2 tabs

  18. Evaluation of emission of greenhouse gases from soils amended with sewage sludge.

    Science.gov (United States)

    Paramasivam, S; Fortenberry, Gamola Z; Julius, Afolabi; Sajwan, Kenneth S; Alva, A K

    2008-02-01

    Increase in concentrations of various greenhouse gases and their possible contributions to the global warming are becoming a serious concern. Anthropogenic activities such as cultivation of flooded rice and application of waste materials, such as sewage sludge which are rich in C and N, as soil amendments could contribute to the increase in emission of greenhouse gases such as methane (CH(4)) and nitrous oxide (N(2)O) into the atmosphere. Therefore, evaluation of flux of various greenhouse gases from soils amended with sewage sludge is essential to quantify their release into the atmosphere. Two soils with contrasting properties (Candler fine sand [CFS] from Florida, and Ogeechee loamy sand [OLS] from Savannah, GA) were amended with varying rates (0, 24.7, 49.4, 98.8, and 148.3 Mg ha(-1)) of 2 types of sewage sludge (industrial [ISS] and domestic [DSS] origin. The amended soil samples were incubated in anaerobic condition at field capacity soil water content in static chamber (Qopak bottles). Gas samples were extracted immediately after amending soils and subsequently on a daily basis to evaluate the emission of CH(4), CO(2) and N(2)O. The results showed that emission rates and cumulative emission of all three gases increased with increasing rates of amendments. Cumulative emission of gases during 25-d incubation of soils amended with different types of sewage sludge decreased in the order: CO(2) > N(2)O > CH(4). The emission of gases was greater from the soils amended with DSS as compared to that with ISS. This may indicate the presence of either low C and N content or possible harmful chemicals in the ISS. The emission of gases was greater from the CFS as compared to that from the OLS. Furthermore, the results clearly depicted the inhibitory effect of acetylene in both soils by producing more N(2)O and CH(4) emission compared to the soils that did not receive acetylene at the rate of 1 mL g(-1) soil. Enumeration of microbial population by fluorescein diacetate

  19. Life cycle assessment of sewage sludge management: A review

    DEFF Research Database (Denmark)

    Yoshida, Hiroko; Christensen, Thomas Højlund; Scheutz, Charlotte

    2013-01-01

    In this article, 35 published studies on life cycle assessment (LCA) of sewage sludge were reviewed for their methodological and technological assumptions. Overall, LCA has been providing a flexible framework to quantify environmental impacts of wastewater and sewage sludge treatment and disposal...... and how they were estimated in the analysis. In order to reduce these choice uncertainties, consolidation of the modelling approach in the following area are recommended: quantification of fugitive gas emissions and modelling of disposal practices. Besides harmonization of the key technical assumptions...

  20. Future of sewage sludge in disposal; Klaerschlammentsorgung. Quo vadis?

    Energy Technology Data Exchange (ETDEWEB)

    Wiechmann, Benjamin [Umweltbundesamt, Dessau (Germany). Fachgebiet III 2.4 - Abfalltechnik, Abfalltechniktransfer

    2013-06-01

    The thermal treatment of sewage sludge is changing continuously. In the future, the disposal of sewage sludge is framed and will be adjust by the idea of resource saving. Simultaneously due the amendment of the 17th BImSchV emission control will be encouraged. Although, more than a quarter of the upcoming sludge is incinerated in mono-incineration plants, this amount should be increased. Therefore, it is necessary to build up new capacities of mono-incineration plants. The legal and strategic framework which has an influence on the combustion of sludge will be examined in this paper. (orig.)

  1. Heavy metals speciation in soils treated with sewage sludges

    International Nuclear Information System (INIS)

    Forero Hernandez, Adriana; Ballesteros Gonzalez, Maria Ines

    2004-01-01

    The chemical speciation in soils that had been treated with sewage sludge was determined to find out what had occurred to the heavy metals present. This was done nine weeks after sludge application. An incubation assay was realized using 2.5 % w/w sludge level; this is equivalent to 81.5 ton of sludge per hectare. Pots filled with sludge-soil mixture were placed in a greenhouse at temperature between 17 and 25 Celsius degrade, humidity at field capacity distributed in accordance with a random experimental design with four replicates and seven treatments. It was found that the concentration of Cd, Cu, Mn, Pb, and Zn was lower than the limits established by the environmental protection agency (EPA) for soil usage. Also, the organic carbon content, the available nitrogen and phosphorus were in the normal concentration range reported for organic fertilizers. The sludge addition to the soil gave significant increase of the fraction of Cd bounded to organic material as compared with the exchangeable fraction and the fraction bounded to iron-manganese oxides. Cooper showed more affinity for the fraction of iron-manganese oxides. Lead gave a fraction bounded to organic material that was absent in the witness samples. Zinc had a bigger proportion in the fraction associated with iron manganese oxides. Manganese as compared with the other metals showed the biggest unchangeable fraction

  2. Irradiation of sewage sludge using cesium-137: a comparative assessment

    International Nuclear Information System (INIS)

    1980-06-01

    Irradiation using 137 CS is a recently developed process for disinfecting sewage sludge before applying it to the land. Irradiation, composting, and heat drying are Processes to Further Reduce Pathogens (PFRP) when operated to meet the guidelines set forth under Title 40, Code of the Federal Register, Part 257 (40 CFR 257). This report identifies and develops technical, operational, and environmental considerations for sludge handling systems incorporating these PFRP to determine the economic advantages of each process. The results indicate that sludge irradiation systems are cost-competitive with composting and heat drying systems for wastewater treatment plants with or without existing anaerobic digesters. Irradiation can thus be considered for new as well as upgrading existing facilities for sludge disinfection. An attractive aspect of the irradiation process is that significantly less conventional energy is used for operation when compared to composting and heat drying. In the final analysis, however, the applicability and desirability of any process is best determined by more evaluations specific to a given community

  3. Electrokinetic extraction of surfactants and heavy metals from sewage sludge

    International Nuclear Information System (INIS)

    Ferri, Violetta; Ferro, Sergio; Martinez-Huitle, Carlos A.; De Battisti, Achille

    2009-01-01

    Waste management represents a quite serious problem involving aspects of remediation technologies and potential re-utilization in different fields of human activities. Of course, wastes generated in industrial activities deserve more attention because of the nature and amount of xenobiotic components, often difficult to be eliminated. However, also ordinary wastes of urban origin are drawing more and more attention, depending on the concentration of noxious substances like surfactants and some heavy metal, which may eventually require expensive disposal. In the present paper, a research has been carried out on the application of electrokinetic treatments for the abatement of the above xenobiotic components from sewage sludge generated in urban wastewater treatment plants. Experiments were carried out on a laboratory scale, in a 250 mm x 50 mm x 100 mm cell, using 250-300 g of sludge for each test and current densities between 2.4 and 5.7 mA cm -2 . As a general result, quite significant abatements of heavy-metal ions and surfactants were achieved, with relatively low energy consumption

  4. Economic evaluation of slurry-, sewage-sludge, and crop disinfection facility applications based on industrial accelerator and 60Co radiation source

    International Nuclear Information System (INIS)

    Abelovszky, L.

    1979-01-01

    The degree of the compliance with the requirements of slurry and sewage treatment, the range of use of radiation sterilization procedures in agriculture and food industry, the possibilities of the complex application of radiation methods and factors influencing their economic efficiency, the economic evaluation of the versatile chargeable accelerators, the fixed and semi-mobile radioisotope facilities, the economic efficiency of the multipurpose utilization, the differences in the application of accelerators and radio isotopes as to the power source applied, the penetration, the dose rates and the radiation energy focusing are discussed. The radiation facility costs are compared. Conclusions concerning the choice of the most efficient applications are given. (author)

  5. Pilot tests in enhanced ultrasonic disintegration of sewage sludge; Pilotversuche zur Intensivierung der Schlammfaulung durch Klaerschlammdesintegration mit Ultraschall

    Energy Technology Data Exchange (ETDEWEB)

    Nickel, K.; Tiehm, A.; Neis, U. [Technische Univ. Hamburg-Harburg, Hamburg (Germany). Arbeitsbereich Abwasserwirtschaft

    1999-07-01

    The work has the objective to optimize ultrasonic disintegration of sewage sludge in permant routine operation. Anaerobic degradation of disintegrated crude and excess sludge was investigated on a pilot scale at a municipal sewage treatment plant. (orig.) [German] Ziel dieser Arbeit ist die Optimierung der Klaerschlammdesintegration mit Ultraschall im praktischen Dauerbetrieb. Der anaerobe Abbau von desintegriertem Roh- und Ueberschussschlamm wurde im Pilotmassstab vor Ort auf einer kommunalen Klaeranlage untersucht. (orig.)

  6. Rapid thermal conditioning of sewage sludge

    Science.gov (United States)

    Zheng, Jianhong

    Rapid thermal conditioning (RTC) is a developing technology recently applied to sewage sludge treatment. Sludge is heated rapidly to a reaction temperature (up to about 220sp°C) under sufficient pressure to maintain the liquid phase. Reaction is quenched after 10 to 30 seconds when the mixture of sludge and steam pass through a pressure let-down valve. This process reduces the amount of sludge requiring land disposal, eliminates the need for polymer coagulant, improves dewaterability, increases methane production, and further reduces the concentration of pathogens. The odor problem associated with traditional thermal conditioning processes is largely minimized. Ammonia removal is readily integrated with the process. For this research, a pilot unit was constructed capable of processing 90 liters of sludge per hour. Over 22 runs were made with this unit using sludge from New York City Water Pollution Control Plants (WPCP). Sludges processed in this equipment were tested to determine the effect of RTC operating conditions on sludge dewaterability, biodegradability, and other factors affecting the incorporation of RTC into wastewater treatment plants. Dewaterability of thermally conditioned sludge was assessed for cetrifugeability and filterability. Bench scale centrifugation was used for evaluating centrifugeability, pressure filtration and capillary suction time (CST) for filterability. A mathematical model developed for centrifuge dewatering was used to predict the effect of RTC on full scale centrifuge performance. Particle size distribution and solids density of raw and treated PDS were also analyzed. An observed increase in sludge solids density at least partially explains its improved centrifugeability. An investigation of thermally conditioned amino acids showed that the L-isomer is highly biodegradable while the D-isomers are generally less so. Glucose is highly biodegradable, but rapidly becomes refractory as thermal conditioning time is lengthened. This

  7. Fenton's reagent as a remediation process in water treatment: application to the degradation of polycyclic aromatic hydrocarbons in waters and sewage sludges; La reaction de fenton comme procede de rehabilitation dans le traitement des eaux: application a la degradation des hydrocarbures aromatiques polycycliques dans les eaux et les boues residuaires

    Energy Technology Data Exchange (ETDEWEB)

    Flotron, V

    2004-05-15

    This study is related to the application of Fenton's reagent to remedy matrices contaminated by polycyclic aromatic hydrocarbons (PAHs). In aqueous solution, the choice of the reagent implementation is important, in order to generate enough radicals to oxidize pollutants. Degradation of the organic compounds is possible, but a large difference in reactivity is observed between 'alternant' and 'non-alternant' PAHs (with a five carbon atoms cycle). Besides, if a few specific precautions are omitted, the PAHs can sorb onto the flask inside surface, and therefore not undergo oxidation. The results on sewage sludges show that under certain conditions (high reagent concentrations), the pollutants can be oxidised although they are adsorbed. Moreover, it appears that the matrix itself plays an important role, as the iron oxides seem to be able to decompose hydrogen peroxide, and thus initiate Fenton reaction. Its application to contaminated soils and sediments is also possible. (author)

  8. Fenton's reagent as a remediation process in water treatment: application to the degradation of polycyclic aromatic hydrocarbons in waters and sewage sludges; La reaction de fenton comme procede de rehabilitation dans le traitement des eaux: application a la degradation des hydrocarbures aromatiques polycycliques dans les eaux et les boues residuaires

    Energy Technology Data Exchange (ETDEWEB)

    Flotron, V.

    2004-05-15

    This study is related to the application of Fenton's reagent to remedy matrices contaminated by polycyclic aromatic hydrocarbons (PAHs). In aqueous solution, the choice of the reagent implementation is important, in order to generate enough radicals to oxidize pollutants. Degradation of the organic compounds is possible, but a large difference in reactivity is observed between 'alternant' and 'non-alternant' PAHs (with a five carbon atoms cycle). Besides, if a few specific precautions are omitted, the PAHs can sorb onto the flask inside surface, and therefore not undergo oxidation. The results on sewage sludges show that under certain conditions (high reagent concentrations), the pollutants can be oxidised although they are adsorbed. Moreover, it appears that the matrix itself plays an important role, as the iron oxides seem to be able to decompose hydrogen peroxide, and thus initiate Fenton reaction. Its application to contaminated soils and sediments is also possible. (author)

  9. Evaluation of selected sewage sludge gasification technological parameters

    Science.gov (United States)

    Gałko, Grzegorz; Król, Danuta

    2018-02-01

    Evaluation of selected sewage sludge gasification technological parameters was shown in this paper. Degree of carbon conducted in combustible substance and syngas efficiency (technological readiness coefficient) in accordance with equations were calculated. Enthalpy of individual compounds formation and energy balance were calculated in accordance with rule of Hess.

  10. Modeling of Evaporation Losses in Sewage Sludge Drying Bed ...

    African Journals Online (AJOL)

    A model for evaporation losses in sewage sludge drying bed was derived from first principles. This model was developed based on the reasoning that the rate at which evaporation is taking place is directly proportional to the instantaneous quantity of water in the sludge. The aim of this work was to develop a model to assist ...

  11. Co-composting of sewage sludge and Echinochloa pyramidalis (Lam.)

    African Journals Online (AJOL)

    Yaoundé-Cameroon) in order to assess the effect of three sewage sludge: Macrophyte ratios on the co-composting process and compost quality. The ratios were T1: 25 kg of plant material (Echinochloa pyramidalis) and 75 kg sludge; T2: 50 kg ...

  12. Biodegradation of Lignocelluloses in Sewage Sludge Composting and Vermicomposting

    Directory of Open Access Journals (Sweden)

    Hosein Alidadi

    2012-08-01

    Full Text Available Please cite this article as: Alidadi H, Najafpour AA, Vafaee A, Parvaresh A, Peiravi R. Biodegradation of lignocelluloses in sewage sludge composting and vermicomposting. Arch Hyg Sci 2012;1(1:1-5.   Aims of the Study: The aim of this study was to determine the amount of lignin degradation and biodegradation of organic matter and change of biomass under compost and vermicomposting of sewage sludge. Materials & Methods: Sawdust was added to sewage sludge at 1:3 weight bases to Carbon to Nitrogen ratio of 25:1 for composting or vermicomposting. Lignin and volatile solids were determined at different periods, of 0, 10, 30, 40 and 60 days of composting or vermicomposting period to determine the biodegradation of lignocellulose to lignin. Results were expressed as mean of two replicates and the comparisons among means were made using the least significant difference test calculated (p <0.05. Results: After 60 days of experiment period, the initial lignin increased from 3.46% to 4.48% for compost and 3.46% to 5.27% for vermicompost. Biodegradation of lignocellulose was very slow in compost and vermicompost processes. Vermicomposting is a much faster process than compost to convert lignocellulose to lignin (p <0.05. Conclusions: The organic matter losses in sewage sludge composting and vermicomposting are due to the degradation of the lignin fractions. By increasing compost age, the amount of volatile solids will decrease.

  13. A steady state model for anaerobic digestion of sewage sludges ...

    African Journals Online (AJOL)

    A steady state model for anaerobic digestion of sewage sludge is developed that comprises three sequential parts – a kinetic part from which the % COD removal and ... and a carbonate system weak acid/base chemistry part from which the digester pH is calculated from the partial pressure of CO2 and alkalinity generated.

  14. Leachability of fired clay brick incorporating with sewage sludge waste

    Science.gov (United States)

    Kadir, Aeslina Abdul; Salim, Nurul Salhana Abdul; Sarani, Noor Amira; Rahmat, Nur Aqma Izurin; Abdullah, Mohd Mustafa Al Bakri

    2017-09-01

    Sewage sludge is sewerage from wastewater treatment plants that generates millions tons of sludge ever year. Regarding this activity, it causes lack management of waste which is harmful to the surrounding conditions. Therefore, this study is focuses on the incorporation of sewage sludge waste into fired clay brick to provide an option of disposal method, producing adequate quality of brick as well as limiting the heavy metal leachability to the environment. Sewage sludge brick (SSB) mixtures were incorporated with 0%, 1%, 5%, 10%, 20% and 30% of sewage sludge waste (SSW). Heavy metals of crushed SSB were determined by using Toxicity Characteristic Leaching Procedure (TCLP) according to Method 1311 of United State Environment Protection Agency (USEPA) standard. From the results obtained, up to 20% of SSW could be incorporated into fired clay brick and comply with the USEPA standard. Therefore, this study revealed that by incorporating SSW into fired clay brick it could be an alternative method to dispose the SSW and also could act as a replacement material for brick manufacturing with appropriate mix and design.

  15. Biological sulphate reduction with primary sewage sludge in an ...

    African Journals Online (AJOL)

    The success of the UASB reactor depends largely on the settling properties and stability of the sludge bed which comprises the anaerobic active biomass. The solid-liquid separation behaviour of the sludge bed in 2 UASB reactors (R1 at 35oC and R2 at 20oC) fed with primary sewage sludge and sulphate was investigated ...

  16. Phosphate Recovery From Sewage Sludge Containing Iron Phosphate

    NARCIS (Netherlands)

    Wilfert, P.K.

    2018-01-01

    The scope of this thesis was to lay the basis for a phosphate recovery technology that can be applied on sewage sludge containing iron phosphate. Such a technology should come with minimal changes to the existing sludge treatment configuration while keeping the use of chemicals or energy as small as

  17. Sewage sludge pasteurization by gamma radiation: financial viability case studies

    International Nuclear Information System (INIS)

    Swinwood, J.F.; Kotler, J.

    1990-01-01

    This paper examines the financial viability of sewage sludge pasteurization by gamma radiation, by examining the following three North American scenarios: 1. Small volume sewage treatment plant experiencing high sludge disposal costs; 2. Large volume sewage treatment plant experiencing low sludge disposal costs; 3. Large volume sewage treatment plant experiencing high sludge disposal costs. (author)

  18. Sewage sludge pasteurization by gamma radiation: financial viability case studies

    Energy Technology Data Exchange (ETDEWEB)

    Swinwood, J.F.; Kotler, J. (Nordion International Inc., Kanata, Ontario (Canada))

    1990-01-01

    This paper examines the financial viability of sewage sludge pasteurization by gamma radiation, by examining the following three North American scenarios: 1. Small volume sewage treatment plant experiencing high sludge disposal costs; 2. Large volume sewage treatment plant experiencing low sludge disposal costs; 3. Large volume sewage treatment plant experiencing high sludge disposal costs. (author).

  19. Utilisation of Electrodialytically Treated Sewage Sludge Ash in Mortar

    DEFF Research Database (Denmark)

    Kappel, Annemette; Pares Viader, Raimon; Kowalski, Krzysztof Piotr

    2018-01-01

    Phosphorous is a scarce resource and there is a need to develop methods for recovery of this irreplaceable nutrient from secondary resources, e.g. from sewage sludge ash (SSA). Today SSA is most often disposed of and the resource is lost. In the present study, about 90% phosphorous was recovered...

  20. Sewage sludge pasteurization by gamma radiation: Financial viability case studies

    Science.gov (United States)

    Swinwood, Jean F.; Kotler, Jiri

    This paper examines the financial viability of sewage sludge pasteurization by gamma radiation, by examining the following three North American scenarios: 1) Small volume sewage treatment plant experiencing high sludge disposal costs. 2) Large volume sewage treatment plant experiencing low sludge disposal costs. 3) Large volume sewage treatment plant experiencing high sludge disposal costs.

  1. The content of chromium and copper in plants and soil fertilized with sewage sludge with addition of various amounts of CaO and lignite ash

    Directory of Open Access Journals (Sweden)

    Wysokiński Andrzej

    2016-09-01

    Full Text Available The influence of fertilization with fresh sewage sludge with the addition of calcium oxide and lignite ash in the proportions dry mass 6:1, 4:1, 3:1 and 2:1 on the content of chromium and copper in plants and soil and uptake of these elements was investigated in pot experiment. Sewage sludge were taken from Siedlce (sludge after methane fermentation and Łuków (sludge stabilized in oxygenic conditions, eastern Poland. The chromium content in the biomass of the test plants (maize, sunflower and oat was higher following the application of mixtures of sewage sludge with ash than of the mixtures with CaO. The copper content in plants most often did not significantly depend on the type of additives to the sludge. Various amounts of additives to the sewage sludge did not have a significant effect on the contents of either of the studied trace elements in plants. The contents of chromium and copper in soil after 3 years of cultivation of plants were higher than before the experiment, but these amounts were not significantly differentiated depending on the type and the amount of the used additive (i.e. CaO vs. ash to sewage sludge.

  2. The kinetics of combustion of chars derived from sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    J.S. Dennis; R.J. Lambert; A.J. Milne; S.A. Scott; A.N. Hayhurst [University of Cambridge, Cambridge (United Kingdom). Department of Chemical Engineering

    2005-02-01

    Experiments have been conducted to determine the combustion characteristics of sewage sludge chars in electrically heated beds of silica sand fluidised by air. The effects of the initial size of the char particles, the temperature of the bed and the concentration of (O{sub 2}) in the fluidising gas were investigated. Also, the temperatures of burning particles were measured with embedded thermocouples. The kinetics of combustion were measured at temperatures low enough for the CO formed by initial reaction between the carbon and oxygen to burn at some distance away from the particle. It is probable that the lower value is closer to the actual value, thought to be 135{+-}15 kJ/mol, reflecting the catalytic nature of the ash skeleton on which the carbon is supported. It was possible to obtain good agreement between measured burnout times and those predicted using the grain model of Szekely J, Evans JW, Sohn HY. Gas-solid reactions. New York: Academic Press; 1976, for the case where the kinetics are controlled by a combination of: (i) external mass transfer of oxygen from the particulate phase to the external surface of the burning char particle, (ii) diffusion of oxygen from the external surface into the porous matrix to the surfaces of grains, of which the solid is composed, and (iii) diffusion of oxygen into the microporous grains, where reaction occurs with the carbon. It was found that, for particles with diameters of 2 mm or larger, the initial rates of reaction, for bed temperatures in excess of 750{degree}C, are dominated by external mass transfer. 22 refs., 8 figs., 1 tab.

  3. Perspectives of recycling gamma irradiated sewage-sludge in agricultural applications: a study on methi (Trigonella foenum-graecum L. :leguminosae)

    Energy Technology Data Exchange (ETDEWEB)

    Pandya, G A; Banerjee, S; Modi, V V [Baroda Univ. (India). Faculty of Science

    1991-01-01

    The effects of gamma-irradiated sludge on the growth and yield of methi (Trigonella foenum-graecum L.) in pot cultures have been studied. The gamma-irradiated sludge appeared to negatively affect the physical growth parameters of the plant. The significant positive effect of gamma-irradiated sludge was observed on the biochemical growth parameters and yield of methi plants. There was a 3.5-, 1.7- and 2-fold increase in the total protein content, total soluble sugars and starch content, respectively, of plants grown in soil supplemented with gamma-irradiated sludge after 45 days of growth. The gamma-irradiated sludge did not show any detrimental effect on any of the three biochemical parameters studied, even after 90 days of plant growth. The sludge obtained from the conventional treatment process was found to be inhibitory to the protein and starch content of plants in the latter stages of plant growth. A significant increase in the yield of methi plants, after 45 as well as 90 days, grown in the presence of gamma-irradiated sludge indicates a beneficial effect of recycling of irradiated sludge for agricultural applications. (author).

  4. Perspectives of recycling gamma irradiated sewage-sludge in agricultural applications: a study on methi (Trigonella foenum-graecum L.:leguminosae)

    International Nuclear Information System (INIS)

    Pandya, G.A.; Banerjee, S.; Modi, V.V.

    1991-01-01

    The effects of gamma-irradiated sludge on the growth and yield of methi (Trigonella foenum-graecum L.) in pot cultures have been studied. The gamma-irradiated sludge appeared to negatively affect the physical growth parameters of the plant. The significant positive effect of gamma-irradiated sludge was observed on the biochemical growth parameters and yield of methi plants. There was a 3.5-, 1.7- and 2-fold increase in the total protein content, total soluble sugars and starch content, respectively, of plants grown in soil supplemented with gamma-irradiated sludge after 45 days of growth. The gamma-irradiated sludge did not show any detrimental effect on any of the three biochemical parameters studied, even after 90 days of plant growth. The sludge obtained from the conventional treatment process was found to be inhibitory to the protein and starch content of plants in the latter stages of plant growth. A significant increase in the yield of methi plants, after 45 as well as 90 days, grown in the presence of gamma-irradiated sludge indicates a beneficial effect of recycling of irradiated sludge for agricultural applications. (author)

  5. Pharmaceuticals and personal care products in untreated and treated sewage sludge: Occurrence and environmental risk in the case of application on soil - A critical review.

    Science.gov (United States)

    Verlicchi, P; Zambello, E

    2015-12-15

    This review is based on 59 papers published between 2002 and 2015, referring to about 450 treatment trains providing data regarding sludge concentrations for 169 compounds, specifically 152 pharmaceuticals and 17 personal care products, grouped into 28 different classes. The rationale of the study is to provide data to evaluate the environmental risk posed by the spreading of treated sludge in agriculture. Following discussion of the legislative scenario governing the final disposal of treated sludge in European countries and the USA, the study provides a snapshot of the occurrence of selected compounds in primary, secondary, mixed, digested, conditioned, composted and dried sludge originating in municipal wastewater treatment plants fed mainly with urban wastewater as well as in sludge-amended soil. Not only are measured values reported, but also predicted concentrations based on Kd values are reported. It emerges that in secondary sludge, the highest concentrations were found for fragrances, antiseptics and antibiotics and an attenuation in their concentrations occurs during treatment, in particular anaerobic digestion and composting. An in-depth literature survey of the (measured and predicted) Kd values for the different compounds and treated sludge are reported and an analysis of the influence of pH, redox conditions, sludge type was carried out. The data regarding measured and predicted concentrations of selected compounds in sludge-amended soil is then analyzed. Finally an environmental risk assessment posed by their occurrence in soil in the case of land application of sludge is examined, and the results obtained by different authors are compared. The most critical compounds found in the sludge-amended soil are estradiol, ciprofloxacin, ofloxacin, tetracycline, caffeine, triclosan and triclocarban. The study concludes with a focus on the main issues that should be further investigated in order to refine the environmental risk assessment. Copyright © 2015

  6. Hydraulic conductivity and soil-sewage sludge interactions

    Directory of Open Access Journals (Sweden)

    Silvio Romero de Melo Ferreira

    2011-10-01

    Full Text Available One of the main problems faced by humanity is pollution caused by residues resulting from the production and use of goods, e.g, sewage sludge. Among the various alternatives for its disposal, the agricultural use seems promising. The purpose of this study was to evaluate the hydraulic conductivity and interaction of soil with sandy-silty texture, classified as Spodosols, from the Experimental Station Itapirema - IPA, in Goiana, state of Pernambuco, in mixtures with sewage sludge from the Mangueira Sewage Treatment Station, in the city of Recife, Pernambuco at rates of 25, 50 and 75 Mg ha-1. Tests were conducted to let water percolate the natural saturated soil and soil-sludge mixtures to characterize their physical, chemical, and microstructural properties as well as hydraulic conductivity. Statistical data analysis showed that the presence of sewage sludge in soils leads to an increase of the < 0.005 mm fraction, reduction in real specific weight and variation in optimum moisture content from 11.60 to 12.90 % and apparent specific dry weight from 17.10 and 17.50 kN m-3. In the sludge-soil mixture, the quartz grains were covered by sludge and filling of the empty soil macropores between grains. There were changes in the chemical characteristics of soil and effluent due to sewage sludge addition and a small decrease in hydraulic conductivity. The results indicate the possibility that soil acidity influenced the concentrations of the elements found in the leachate, showing higher levels at higher sludge doses. It can be concluded that the leaching degree of potentially toxic elements from the sewage sludge treatments does not harm the environment.

  7. Transformation of Silver Nanoparticles in Sewage Sludge during Incineration.

    Science.gov (United States)

    Meier, Christoph; Voegelin, Andreas; Pradas del Real, Ana; Sarret, Geraldine; Mueller, Christoph R; Kaegi, Ralf

    2016-04-05

    Silver nanoparticles (Ag-NP) discharged into the municipal sewer system largely accumulate in the sewage sludge. Incineration and agricultural use are currently the most important strategies for sewage sludge management. Thus, the behavior of Ag-NP during sewage sludge incineration is essential for a comprehensive life cycle analysis and a more complete understanding of the fate of Ag-NP in the (urban) environment. To address the transformation of Ag-NP during sewage sludge incineration, we spiked metallic Ag(0)-NP to a pilot wastewater treatment plant and digested the sludge anaerobically. The sludge was then incinerated on a bench-scale fluidized bed reactor in a series of experiments under variable conditions. Complementary results from X-ray absorption spectroscopy (XAS) and electron microscopy-energy dispersive X-ray (EM-EDX) analysis revealed that Ag(0)-NP transformed into Ag2S-NP during the wastewater treatment, in agreement with previous studies. On the basis of a principal component analysis and subsequent target testing of the XAS spectra, Ag(0) was identified as a major Ag component in the ashes, and Ag2S was clearly absent. The reformation of Ag(0)-NP was confirmed by EM-EDX. The fraction of Ag(0) of the total Ag in the ashes was quantified by linear combination fitting (LCF) of XAS spectra, and values as high as 0.8 were found for sewage sludge incinerated at 800 °C in a synthetic flue gas atmosphere. Low LCF totals (72% to 94%) indicated that at least one relevant reference spectrum was missing in the LCF analysis. The presence of spherical Ag-NP with a diameter of incineration, as demonstrated in this study, needs to be considered in the life cycle assessment of engineered Ag-NP.

  8. Radiation disinfection of liquid sewage sludge for safe reutilization

    International Nuclear Information System (INIS)

    Harsoyo; Hilmy, Nazly; Suwirma, S.

    1992-01-01

    Liquid sewage sludge with water content of 80.9% was irradiated with doses of 2, 4, and 6 kGy respectively and then stored at room temperature. Parameter observed were total microbes per g, chemical, physical properties. Total bacterial counts of unirradiated liquid sewage sludge were found to be 12,91 X 10(5) per g, while coliform, enterobacteriaceae, staphylococcus, fecal streptococcus, and pseudomonas were found to be 76.66 X 10(4) per g, 23.82 X 10(4) per g, 46.57 X 10(3) per g, 6.27 X 10(2) per g, 20.04 X 10(3) per g, respectively. About 10% of the total coliform were escherichia coli. Irradiation dose of 4 kGy eliminated salmonella from all samples observed. No shigella was found in the samples. Total nitrogen contents of the liquid sewage sludge ranged berween 0.34 and 0.48%, phosphorus between 0.78 and 1.04%, and potassium between 0.04 and 0.06%. Heavy metal elements were found only in very small amount. The BOD(5), COD, solid suspension, particle size, and sedimentation rate of unirradiated liquid sewage sludge were found to be 1.49 ppm, 13.93% W, 46 mg/ml, 0.0035 ml, and 11.30 cm/week, respectively. A combination of irradiation at 4 kGy and storage for 4 weeks could eliminate enterobacteriaceae, staphylococcus, fecal streptococcus, psedomonas, and salmonella in the liquid sewage sludge. (authors). 9 refs, 13 tabs

  9. Copper, nickel and zinc phytoavailability in an oxisol amended with sewage sludge and liming

    Directory of Open Access Journals (Sweden)

    Martins Adão Luiz Castanheiro

    2003-01-01

    Full Text Available Contents of heavy metal on agricultural soils have been raised by land applications of sewage sludge and may constitute a hazard to plants, animals and humans. A field experiment was carried out from 1983 to 1987, to evaluate the long-term effect of sewage sludge application, with and without liming, on heavy metal accumulation and availability in a Rhodic Hapludox soil grown with maize (HMD 7974 hybrid. Trials were set up in a completely randomized blocks design with four replications. Each block was split in two bands, one with and another without liming. The sludge was applied in each band at rates: 0, 20, 40, 60 and 80 Mg ha-1 (dry basis in a single application; and 40, 60 and 80 Mg ha-1 split in two, three and four equal yearly applications, respectively. The soil was sampled for chemical analysis each year after harvest. Soil samples were analysed for Cu, Ni and Zn in extracts obtained with DTPA and Mehlich-3 solutions, and in extracts obtained by digestion with nitric-perchloric acid (total metal contents, using an inductively coupled plasma (ICP spectrometer. In general, Zn, Cu and Ni concentrations in DTPA and Mehlich-3 extracts increased linearly with sludge application. Total Cu and Zn concentrations increased when sludge was applied, whereas total Ni concentrations were not affected. Both extractants were suitable to evaluate Cu and Zn availability to corn in the soil treated with sewage sludge. Liming reduced the DTPA extractability of Zn. DTPA-extractable Cu concentrations were not significantly affected by liming. Mehlich-3-extractable Cu and Zn concentrations increased with liming. Only DTPA extractant indicated reduction of Ni concentrations in the soil after liming.

  10. Treatment of sewage sludge by hydrothermal carbonization as part of a sustainable recycling management; Hydrothermale Karbonisierung zur weitergehenden Klaerschlammaufbereitung als Baustein einer nachhaltigen Kreislaufwirtschaft

    Energy Technology Data Exchange (ETDEWEB)

    Wallmann, Rainer; Loewen, Achim; Hoebel, Wanja [HAWK Hochschule fuer angewandte Wissenschaft und Kunst, Fachhochschule Hildesheim/Holzminden/Goettingen (DE). Fachgebiet Nachhaltige Energie- und Umwelttechnik (NEUTec)

    2010-07-15

    An analysis of up-to-date research on hydrothermal carbonization HTC shows that extensive basic investigation has been conducted and the process has proven to be of relevance. First results published indicate a wide range of applications for HTC and open up the path for large scale utilization. The application of HTC in technical scale is most promising for liquid media such as sewage sludge or fermentation residues deriving from waste and waste water treatment or from bioenergy processes. Especially municipal sewage sludge offers great potential. Due to the current amendment of the regulation on sewage sludge, an increasing demand for alternative treatment processes has developed. The mass flow distribution is of special importance with respect to preventive soil protection. Also, a sustainable handling of nutrient rich biomass is require d for reasons of climate and resource protection. In this regard, HTC can offer a relevant contribution. However, there is still significant demand for further research. (orig.)

  11. Evaluation of sewage sludge and slow pyrolyzed sewage sludge-derived biochar for adsorption of phenanthrene and pyrene.

    Science.gov (United States)

    Zielińska, Anna; Oleszczuk, Patryk

    2015-09-01

    The present study investigated the sorption of phenanthrene (PHE) and pyrene (PYR) by sewage sludges and sewage sludge-derived biochars. The organic carbon normalized distribution coefficient (log K(OC) for C(w) = 0.01 S(w)) for the sewage sludges ranged from 5.62 L kg(-1) to 5.64 L kg(-1) for PHE and from 5.72 L kg(-1) to 5.75 L kg(-1) for PYR. The conversion of sewage sludges into biochar significantly increased their sorption capacity. The value of log K(OC) for the biochars ranged from 5.54 L kg(-1) to 6.23 L kg(-1) for PHE and from 5.95 L kg(-1) to 6.52 L kg(-1) for PYR depending on temperature of pyrolysis. The dominant process was monolayer adsorption in the micropores and/or multilayer surface adsorption (in the mesopores), which was indicated by the significant correlations between log K(OC) and surface properties of biochars. PYR was sorbed better on the tested materials than PHE. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Analysis of soil and sewage sludge by ICP-OES and the German standard DIN 38414 sample preparation technique (P3)

    International Nuclear Information System (INIS)

    Edlund, M.; Heitland, P.; Visser, H.

    2002-01-01

    Full text: The elemental analyses of soil and sewage sludge has developed to become one of the main applications for ICP optical emission spectrometry (ICP-OES) and is described in many official procedures. These methods include different acid mixtures and digestion techniques. Even though the German standard DIN 38414 part 7 and the Dutch NEN 6465 do not guarantee complete recoveries for all elements, they are widely accepted in Europe. This paper describes sample preparation, line selection and investigates precision, accuracy and Limits of detection. The SPECTRO CIROSCCD EOP with axial plasma observation and the SPECTRO CIROSCCD SOP with radial observation were compared and evaluated for the analyses of soil and sewage sludge. Accuracy was investigated using the certified reference materials CRM-141 R, CRM-143 R and GSD 11. Both instruments show excellent performance in terms of speed, precision, accuracy and detection limits for the determination of trace metals in soil and sewage sludge. (author)

  13. Effects of Biochar-Derived Sewage Sludge on Heavy Metal Adsorption and Immobilization in Soils

    Science.gov (United States)

    Zhou, Dan; Liu, Dan; Gao, Fengxiang; Li, Mengke; Luo, Xianping

    2017-01-01

    The object of this study was to evaluate the effect of sewage sludge biochar on adsorption and mobility of Cr, Mn, Cu, and Zn. Biochar (BC400) was produced via pyrolysis of municipal sewage sludge at 400 °C. Maximum adsorption capacities (qm) for Zn, Cr, Mn, and Cu were 5.905, 5.724, 5.681, and 5.342 mg·g−1, respectively, in the mono-metal solution and 2.475, 8.204, 1.01, and 5.415 mg·g−1, respectively, in the multi-metal solution. The adsorption capacities for Mn, Cu, and Zn decreased in the multi-metal solution due to competitive adsorption, whereas the capacity for Cr increased. Surface precipitation is an important mechanism in the sorption of these metals on BC400. The 360-day incubation experiment showed that BC400 application reduced metal mobility in contaminated soils, which was attributed to the substantial decreases in the acid-soluble fractions of Cr, Mn, Cu, and Zn (72.20%, 70.38%, 50.43%, and 29.78%, respectively). Furthermore, the leaching experiment using simulated acid rain indicated that the addition of BC400 enhanced the acid buffer capacity of contaminated soil, and the concentration of Cr, Mn, Cu, and Zn in the leachate was lower than in untreated soil. Overall, this study indicates that sewage sludge biochar application reduces the mobility of heavy metal in co-contaminated soil, and this adsorption experiment is suitable for the evaluation of biochar properties for remediation. PMID:28644399

  14. Effect of Sewage-Sludge on Bioremediation of a Crude-Oil Polluted Soil

    Directory of Open Access Journals (Sweden)

    Sara Sharifi Hosseini

    2010-06-01

    Full Text Available Khuzestan Province accommodates the largest oil-fields with huge petroleum production in Iran. During the Persian Gulf war in 1991, more than 6-8 million gallons of oil was spilt in the Persian Gulf, the greatest amount of which was transported into Khuzestan soil. Thus, oil removal from contaminated soil by advanced technologies such as bioremediation seems to be of vital necessity. The aim of this study was to evaluate the effect of sewage-sludge application on bioremediation of oil-contaminated soil. Soil samples (5kg were artificially contaminated with crude oil to a level of 1000 mg/kg. Sewage sludge treatments were applied at the 3 levels of 0, 100, and 200 gr/5kg soil in 3 replicates. The soils were kept in the normal moisture aerobic environment for 5 and 10 weeks. The soils were then analyzed for Hydrocarbon-degrading heterotrophic bacterial count. Oil extraction from the samples was accomplished using the oil Soxhlet extraction method and oil degradation was measured by GC chromatography. The results showed that the hydrocarbon-degrading and heterotrophic bacterial counts in all the treatments increased with time. Results indicate that heterotrophic bacterial population increased from 6×103 cfu/gr soil to  2×1010  cfu/gr soil. Also, C/N ratio decreased from 6 to 3. GC results indicated that all normal Alkanes and Isopernoids, i.e. Phytane and Pristane, decreased by 50-90 percent in all the treatments. It was also found that the application of sewage sludge at 100 gr/5kg soil to oil-contaminated soil leads to greater rates of biodegradation after 5 weeks

  15. Effects of Biochar-Derived Sewage Sludge on Heavy Metal Adsorption and Immobilization in Soils.

    Science.gov (United States)

    Zhou, Dan; Liu, Dan; Gao, Fengxiang; Li, Mengke; Luo, Xianping

    2017-06-23

    The object of this study was to evaluate the effect of sewage sludge biochar on adsorption and mobility of Cr, Mn, Cu, and Zn. Biochar (BC400) was produced via pyrolysis of municipal sewage sludge at 400 °C. Maximum adsorption capacities ( q m ) for Zn, Cr, Mn, and Cu were 5.905, 5.724, 5.681, and 5.342 mg·g -1 , respectively, in the mono-metal solution and 2.475, 8.204, 1.01, and 5.415 mg·g -1 , respectively, in the multi-metal solution. The adsorption capacities for Mn, Cu, and Zn decreased in the multi-metal solution due to competitive adsorption, whereas the capacity for Cr increased. Surface precipitation is an important mechanism in the sorption of these metals on BC400. The 360-day incubation experiment showed that BC400 application reduced metal mobility in contaminated soils, which was attributed to the substantial decreases in the acid-soluble fractions of Cr, Mn, Cu, and Zn (72.20%, 70.38%, 50.43%, and 29.78%, respectively). Furthermore, the leaching experiment using simulated acid rain indicated that the addition of BC400 enhanced the acid buffer capacity of contaminated soil, and the concentration of Cr, Mn, Cu, and Zn in the leachate was lower than in untreated soil. Overall, this study indicates that sewage sludge biochar application reduces the mobility of heavy metal in co-contaminated soil, and this adsorption experiment is suitable for the evaluation of biochar properties for remediation.

  16. Impact of composting strategies on the degradation of nonylphenol in sewage sludge.

    Science.gov (United States)

    Zheng, Guodi; Chen, Tongbin; Yu, Jie; Gao, Ding; Shen, Yujun; Niu, Mingjie; Liu, Hongtao

    2015-12-01

    Nonylphenol can be present in sewage sludge, and this can limit the use of the sewage sludge to amend soil. Composting is one of the most efficient and economical methods of making sewage sludge stable and harmless. The nonylphenol degradation rates during composting with added bulking agents and with aeration applied were studied. Three organic bulking agents (sawdust, corn stalk, and mushroom residue) were added to sewage sludge, and the effects of the bulking agents used and the amount added on nonylphenol degradation were determined. The highest apparent nonylphenol degradation rate (71.6%) was found for sewage sludge containing 20% mushroom residue. The lowest apparent nonylphenol degradation rate (22.5%) was found for sewage sludge containing 20% sawdust. The temperature of the composting pile of sewage sludge containing 20% sawdust became too high for nonylphenol to be efficiently degraded, and the apparent nonylphenol degradation rate was lower than was found for sewage sludge containing 10% sawdust. Increasing the ventilating time from 5 to 15 min increased the apparent nonylphenol degradation rate from 19.7 to 41.6%. Using appropriate aerobic conditions facilitates the degradation of nonylphenol in sewage sludge, decreasing the risks posed by sewage sludge applied to land. Adding too much of a bulking agent can decrease the amount of the nonylphenol degraded. Increasing the ventilating time and the amount of air supplied can increase the amount of nonylphenol degraded even if doing so causes the composting pile temperature to remain low.

  17. [Effect of microbial nutrient concentration on improvement of municipal sewage sludge dewaterability through bioleaching].

    Science.gov (United States)

    Song, Yong-wei; Liu, Fen-wu; Zhou, Li-xiang

    2012-08-01

    In this study, shaking flask batch experiments and practical engineering application tests were performed to investigate the effect of microbial nutrient concentration on the dewaterability of municipal sewage sludge with 2%, 3%, 4% and 5% solid contents via bioleaching. Meanwhile, the changes of pH value and the utilization efficiency of microbial nutrients during bioleaching were analyzed in this study. The results showed that the pH value decreased gradually at the beginning and then maintained a stable state in the treatments with different solid contents, and the nutrients were completely used up by the microorganisms after 2 days of bioleaching. It was found that the SRF of 2%, 3%, 4%, 5% sludges decreased quickly and then rose gradually with the extension of bioleaching time. In addition, the higher solid content the greater the increase. It was determined that the optimum microbial nutrient dosage for sludge with solid content of 2%, 3%, 4% and 5% were 3.0 g x L(-1), 4.5 g x L(-1), 8.3 g x L(-1) and 12.8 g x L(-1) respectively. At this point, the lowest SRF of sludge with each solid content were 0.61 x 10(12) m x kg(-1), 1.22 x 10(12) m x kg(-1), 3.09 x 10(12) m x kg(-1) and 4.83 x 10(12) m x kg(-1), respectively. Through the engineering application, it was showed that diluting the solid content of sewage sludge from 5% to 3% before bioleaching was feasible. It could not only improve the dewaterability of bioleached sewage sludge (the SRF declined from 3.29 x 10(12) m x kg(-1) to 1.10 x 10(12) m x kg(-1)), but also shorten the sludge nutrient time (shortened from 4 days to 2.35 days) and reduce the operation costs. Therefore, the results of this study have important significance for the engineering application of bioleaching of municipal sewage sludge with high solid content.

  18. Wood ash to treat sewage sludge for agricultural use

    Energy Technology Data Exchange (ETDEWEB)

    White, R.K. [Clemson Univ., SC (United States)

    1993-12-31

    About 90% of the three million tons of wood ash generated in the United States from wood burning facilities is being landfilled. Many landfills are initiated tipping fees and/or restrictions on the disposal of special wastes such as ash. The purpose of this work was to evaluate (1) the feasibility of using wood ash to stabilize sewage sludge and (2) the fertilizer and liming value of the sludge/ash mixture on plant response and soil pH. Research showed that wood ash, when mixed with sludge, will produce a pH above 12.0, which meets US EPA criteria for pathogen reduction for land application on non-direct food chain crops. Different ratios of wood ash to sludge mixtures were tested and the 1:1 ratio (by weight) was found to be optimal. Five replications of wood ash from four sources were tested for moisture content, pH and fertilizer nutrients. The pH of the ash/sludge mixture (1:1) on day one ranged from 12.4 to 13.2. In most cases the pH remained the same over a 21 day test or only dropped 0.1 to 0.3 units. Analyses of the mixtures showed that heavy metal concentrations (As, B, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, S, Se, Zn) were low. The 1:1 ash/sludge mixture had a calcium carbonate equivalency of 17%. Green house pot studies using tall fescue grass were loadings of 300 to 750 pounds per acre of TKN-N than for 500 lb/acre of 10-10-10 commercial fertilizer. Plant tissue analysis showed N, P, K, Ca, and Mg levels to be within the sufficiency range for tall fescue.

  19. Fate of triclosan in field soils receiving sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Butler, E [Department of Environmental Science and Technology, School of Applied Sciences, Cranfield University, College Road, Cranfield, Bedfordshire MK43 0AL (United Kingdom); Whelan, M J; Sakrabani, R [Department of Environmental Science and Technology, School of Applied Sciences, Cranfield University, College Road, Cranfield, Bedfordshire MK43 0AL (United Kingdom); Egmond, R van [Safety and Environmental Assurance Centre, Unilever Colworth Laboratory, Colworth Park, Sharnbrook, Bedfordshire MK44 1LQ (United Kingdom)

    2012-08-15

    The anti-microbial substance triclosan can partition to sewage sludge during wastewater treatment and subsequently transfer to soil when applied to land. Here, we describe the fate of triclosan in a one-year plot experiment on three different soils receiving sludge. Triclosan and methyl-triclosan concentrations were measured in soil samples collected monthly from three depths. A large fraction of triclosan loss appeared to be explained by transformation to methyl-triclosan. After 12 months less than 20% of the initial triclosan was recovered from each soil. However, the majority was recovered as methyl-triclosan. Most of the chemical recovered at the end of the experiment (both triclosan and methyl-triclosan) was still in the top 10 cm layer, although there was translocation to lower soil horizons in all three soils. Between 16.5 and 50.6% of the applied triclosan was unaccounted for after 12 months either as a consequence of degradation or the formation of non-extractable residues. - Highlights: Black-Right-Pointing-Pointer We study the fate of triclosan in 3 different field soils amended with biosolids. Black-Right-Pointing-Pointer Triclosan concentrations were measured over 12 months at 3 depths of soil. Black-Right-Pointing-Pointer Methyl-triclosan was identified as a main biotransformation product. Black-Right-Pointing-Pointer There was very little movement of triclosan through the soil. Black-Right-Pointing-Pointer Only between 16 and 50% of triclosan applied was degraded or leached out of the soil. - This paper investigates the mobility and degradation of triclosan in three field soils after receiving an application of biosolids and the persistence of methyl-triclosan.

  20. Fate of triclosan in field soils receiving sewage sludge

    International Nuclear Information System (INIS)

    Butler, E.; Whelan, M.J.; Sakrabani, R.; Egmond, R. van

    2012-01-01

    The anti-microbial substance triclosan can partition to sewage sludge during wastewater treatment and subsequently transfer to soil when applied to land. Here, we describe the fate of triclosan in a one-year plot experiment on three different soils receiving sludge. Triclosan and methyl-triclosan concentrations were measured in soil samples collected monthly from three depths. A large fraction of triclosan loss appeared to be explained by transformation to methyl-triclosan. After 12 months less than 20% of the initial triclosan was recovered from each soil. However, the majority was recovered as methyl-triclosan. Most of the chemical recovered at the end of the experiment (both triclosan and methyl-triclosan) was still in the top 10 cm layer, although there was translocation to lower soil horizons in all three soils. Between 16.5 and 50.6% of the applied triclosan was unaccounted for after 12 months either as a consequence of degradation or the formation of non-extractable residues. - Highlights: ► We study the fate of triclosan in 3 different field soils amended with biosolids. ► Triclosan concentrations were measured over 12 months at 3 depths of soil. ► Methyl-triclosan was identified as a main biotransformation product. ► There was very little movement of triclosan through the soil. ► Only between 16 and 50% of triclosan applied was degraded or leached out of the soil. - This paper investigates the mobility and degradation of triclosan in three field soils after receiving an application of biosolids and the persistence of methyl-triclosan.

  1. Composting sewage sludge with green waste from tree pruning

    Directory of Open Access Journals (Sweden)

    Sarah Mello Leite Moretti

    2015-10-01

    Full Text Available Sewage sludge (SS has been widely used as organic fertilizer. However, its continuous use can cause imbalances in soil fertility as well as soil-water-plant system contamination. The study aimed to evaluate possible improvements in the chemical and microbiological characteristics of domestic SS, with low heavy metal contents and pathogens, through the composting process. Two composting piles were set up, based on an initial C/N ratio of 30:1, with successive layers of tree pruning waste and SS. The aeration of piles was performed by mechanical turnover when the temperature rose above 65 ºC. The piles were irrigated when the water content was less than 50 %. Composting was conducted for 120 days. Temperature, moisture content, pH, electrical conductivity (EC, carbon and nitrogen contents, and fecal coliforms were monitored during the composting. A reduction of 58 % in the EC of the compost (SSC compared with SS was observed and the pH reduced from 7.8 to 6.6. There was an increase in the value of cation exchange capacity/carbon content (CEC/C and carbon content. Total nitrogen remained constant and N-NO3- + N-NH4+ were immobilised in organic forms. The C/N ratio decreased from 25:1 to 12:1. Temperatures above 55 ºC were observed for 20 days. After 60 days of composting, fecal coliforms were reduced from 107 Most Probable Number per gram of total solids (MPN g−1 to 104 MPN g−1. I one pile the 103 MPN g−1 reached after 90 days in one pile; in another, there was recontamination from 105 to 106 MPN g−1. In SSC, helminth eggs were eliminated, making application sustainable for agriculture purposes.

  2. Is the biochar produced from sewage sludge a good quality solid fuel?

    Directory of Open Access Journals (Sweden)

    Pulka Jakub

    2016-12-01

    Full Text Available The influence of sewage sludge torrefaction temperature on fuel properties was investigated. Non-lignocellulosic waste thermal treatment experiment was conducted within 1 h residence time, under the following temperatures: 200, 220, 240, 260, 280 and 300°C. Sawdust was used as lignocellulosic reference material. The following parameters of biochar have been measured: moisture, higher heating value, ash content, volatile compounds and sulfur content. Sawdust biochar has been confirmed to be a good quality solid fuel. High ash and sulfur content may be an obstacle for biochar energy reuse. The best temperature profile for sawdust torrefaction and fuel production for 1 h residence time was 220°C. At this temperature the product contained 84% of initial energy while decreased the mass by 25%. The best temperature profile for sewage sludge was 240°C. The energy residue was 91% and the mass residue was 85%. Higher temperatures in both cases caused excessive mass and energy losses.

  3. Improving bioelectricity generation and COD removal of sewage sludge in microbial desalination cell.

    Science.gov (United States)

    Ebrahimi, Atieh; Yousefi Kebria, Daryoush; Darzi, Ghasem Najafpour

    2018-05-01

    Improving wastewater treatment process and water desalination are two important solutions for increasing the available supply of fresh water. Microbial desalination cells (MDCs) with common electrolytes display relatively low organic matter removal and high cost. In this study, sewage sludge was used as the substrate in the Microbial desalination cell (MDC) under three different initial salt concentrations (5, 20 and 35 g.L -1 ) and the maximum salt removal rates of 50.6%, 64% and 69.6% were obtained under batch condition, respectively. The MDC also produced the maximum power density of 47.1 W m -3 and the averaged chemical oxygen demand (COD) removal of 58.2 ± 0.89% when the initial COD was 6610 ± 83 mg L -1 . Employing treated sludge as catholyte enhanced COD removal and power density to 87.3% and 54.4 W m -3 , respectively, with counterbalancing pH variation in treated effluent. These promising results showed, for the first time, that the excess sewage sludge obtained from biological wastewater treatment plants could be successfully used as anolyte and catholyte in MDC, achieving organic matter biodegradation along with salt removal and energy production. In addition, using treated sludge as catholyte will improve the performance of MDC and introduce a more effective method for both sludge treatment and desalination.

  4. Thermoradiation treatment of sewage sludge to eliminate pathogens for safe use as fertilizer and animal feed supplement

    International Nuclear Information System (INIS)

    Sivinski, H.D.; Whitfield, W.J.

    1975-01-01

    This paper describes a research program titled ''Waste Resources Utilization'' using a new technique called thermoradiation to destroy pathogenic organisms in sewage sludge. The thermoradiated sewage sludge will be used to study the feasibility of use for safe land application as fertilizer and soil conditioner and use as a feed supplement for ruminant animals. Experiments to date have shown good results for sludge disinfection of resistant bacteria, viruses, and parasites. Thermoradiation experiments are being carried out at a temperature of 65 0 C combined with 160 krad gamma dose for a total of 2000 pounds of dried treated sludge. The sludge will be shipped to New Mexico State University for the feeding studies and land application studies. (auth)

  5. Energetic assessment of air-steam gasification of sewage sludge and of the integration of sewage sludge pyrolysis and air-steam gasification of char

    International Nuclear Information System (INIS)

    Gil-Lalaguna, N.; Sánchez, J.L.; Murillo, M.B.; Atienza-Martínez, M.; Gea, G.

    2014-01-01

    Thermo-chemical treatment of sewage sludge is an interesting option for recovering energy and/or valuable products from this waste. This work presents an energetic assessment of pyrolysis and gasification of sewage sludge, also considering the prior sewage sludge thermal drying and the gasification of the char derived from the pyrolysis stage. Experimental data obtained from pyrolysis of sewage sludge, gasification of sewage sludge and gasification of char (all of these performed in a lab-scale fluidized reactor) were used for the energetic calculations. The results show that the energy contained in the product gases from pyrolysis and char gasification is not enough to cover the high energy consumption for thermal drying of sewage sludge. Additional energy could be obtained from the calorific value of the pyrolysis liquid, but some of its properties must be improved facing towards its use as fuel. On the other hand, the energy contained in the product gas of sewage sludge gasification is enough to cover the energy demand for both the sewage sludge thermal drying and the gasification process itself. Furthermore, a theoretical study included in this work shows that the gasification efficiency is improved when the chemical equilibrium is reached in the process. - Highlights: • 4 MJ kg −1 for thermal drying of sewage sludge (SS) from 65 to 6.5 wt.% of moisture. • 0.15 MJ kg −1 for thermal decomposition of sewage sludge during fast pyrolysis. • Not enough energy in gases from SS pyrolysis and char gasification for thermal drying. • Enough energy in SS gasification gas for thermal drying and gasification process. • Gasification efficiency improves when equilibrium is reached in the process

  6. Leaching of Heavy Metals Using SPLP Method from Fired Clay Brick Incorporating with Sewage Sludge

    Science.gov (United States)

    Kadir, Aeslina Abdul; Salim, Nurul Salhana Abdul; Amira Sarani, Noor; Aqma Izurin Rahmat, Nur

    2017-05-01

    Sewage sludge is a by-product generate from wastewater treatment process. The sewage sludge contains significant trace metal such as Cr, Mn, Ni, Cu, Zn, As, Cd and Pb which are toxic to the environment. Sewage sludge is disposed of by landfilling method. However, this option not suitable because of land restriction and environmental control regulations imposed. Therefore, sewage sludge from wastewater treatment plant was incorporated into fired clay brick to produce good quality of brick as well as reducing heavy metals from sludge itself. Sewage sludge with 0%, 1%, 5%, 10% and 20% of were incorporated into fired clay bricks and fired at 1050°C temperature with heating rates of 1°C/min. The brick sample then crushed and sieved through 9.5 mm sieve for Synthetic Precipitation Leaching Procedure (SPLP). From the results, incorporation up to 20% of sewage sludge has leached less heavy metals and compliance with USEPA standard.

  7. Sewage sludge pyrolysis - the distribution of heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Kistler, R.; Widmer, F.; Brunner, P.

    1986-01-01

    The paper informs about the heavy metal contents of sewage sludges and discusses the origin of household, industry and surface sewerage of the respective heavy metals. The study aimed at assessing whether and in how far heavy metal volatility may be checked by reducing the temperature during sewage sludge pyrolysis. The testing equipment used was made of glass/silica glass. Instead of in particles heavy metals were precipitated in the gaseous state. Except from mercury heavy metals are retained by the ashes up to temperatures from 450 to 555/sup 0/C. Due to the persistence of mercury care should be taken to keep the sewerage clear of it from the very beginning. Emissions caused by reactor materials can be avoided by choosing appropriate pyrolysis reactors.

  8. The drying of sewage sludge by immersion frying

    Directory of Open Access Journals (Sweden)

    D. P. Silva

    2005-06-01

    Full Text Available The objective of this work was to dry sewage sludge using a fry-drying process. The frying experiments were carried out in commercial fryers modified by adding thermocouples to the setup. During frying, typical drying curves were obtained and it was verified that, in relation to the parameters: oil temperature, oil type and shape of the sample, the shape factor the most effect on the drying rate, at least within the range chosen for the variables studied. Oil uptake and calorific value were also analyzed. The calorific value of the samples increased with frying time, reaching values around 24MJ/kg after 600s of frying (comparable to biocombustibles such as wood and sugarcane bagasse. The process of immersion frying showed great potential for drying materials, especially sewage sludge, obtaining a product with a high energy content, thereby increasing its value as a combustible.

  9. The long-term and the short-term at a cropping municipal sewage sludge disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Welby, C.W. (North Carolina State Univ., Raleigh, NC (United States). Dept. of Marine, Earth and Atmospheric Sciences)

    1994-03-01

    The City of Raleigh, NC, chose land application of municipal sewage sludge as a means of reducing pollution to the Neuse River. The Neuse River Waste Water Treatment Plant (NRWWTP) is located in the Piedmont Province of North Carolina. The soils at the facility are derived largely from the Rolesville Granite. Sewage sludge is applied to over 640 acres of cropland, owned in fee or leased. In making the policy decision for use of the sludge land application method 20 or so years ago, the City had to evaluate the potential for heavy metal accumulation in the soils and plants as well as the potential for ground-water contamination from the nitrate-nitrogen. The city also had to make a policy decision about limiting the discharge of heavy metals to the sewer system. Study of data from monitoring wells demonstrate that well position is a key in determining whether or not nitrate-nitrogen contamination is detected. Data from a three-year study suggest that nitrate-nitrogen moves fairly rapidly t the water table, although significant buildup in nitrogen-nitrogen may take a number of years. Evidence exists suggesting that the time between application of sewage sludge and an increase of nitrate-nitrogen at the water table may be on the order of nine months to a year. It is apparent that in the case of municipal sewage sludge application one can anticipate some nitrate-nitrogen buildup and that the public policy on drinking water standards must recognize this fact.

  10. The long-term and the short-term at a cropping municipal sewage sludge disposal facility

    International Nuclear Information System (INIS)

    Welby, C.W.

    1994-01-01

    The City of Raleigh, NC, chose land application of municipal sewage sludge as a means of reducing pollution to the Neuse River. The Neuse River Waste Water Treatment Plant (NRWWTP) is located in the Piedmont Province of North Carolina. The soils at the facility are derived largely from the Rolesville Granite. Sewage sludge is applied to over 640 acres of cropland, owned in fee or leased. In making the policy decision for use of the sludge land application method 20 or so years ago, the City had to evaluate the potential for heavy metal accumulation in the soils and plants as well as the potential for ground-water contamination from the nitrate-nitrogen. The city also had to make a policy decision about limiting the discharge of heavy metals to the sewer system. Study of data from monitoring wells demonstrate that well position is a key in determining whether or not nitrate-nitrogen contamination is detected. Data from a three-year study suggest that nitrate-nitrogen moves fairly rapidly t the water table, although significant buildup in nitrogen-nitrogen may take a number of years. Evidence exists suggesting that the time between application of sewage sludge and an increase of nitrate-nitrogen at the water table may be on the order of nine months to a year. It is apparent that in the case of municipal sewage sludge application one can anticipate some nitrate-nitrogen buildup and that the public policy on drinking water standards must recognize this fact

  11. The key to sewage sludge disposal. Wohin mit dem Klaerschlamm

    Energy Technology Data Exchange (ETDEWEB)

    Florin, G. (Sulzer-Escher Wyss GmbH, Fliessbett-Technik, Ravensburg (Germany))

    1994-01-01

    At the sewage treatment plant in Dornbirn (Austria), the quality of the treated effluent is so good that trout can be seen swimming in the outfall. Nevertheless, the quantity of removed polluting matter has posed a real problem for the persons responsible. In their efforts to find a means for reducing the volume of sewage sludge, they came across the so-called fluidbed drying process. (orig.)

  12. Biological sulphate reduction with primary sewage sludge in an ...

    African Journals Online (AJOL)

    2009-07-31

    Jul 31, 2009 ... The success of the UASB reactor depends largely on the settling properties and stability of the sludge bed which comprises the anaerobic active biomass. The solid-liquid separation behaviour of the sludge bed in 2 UASB reactors (R1 at 35oC and. R2 at 20oC) fed with primary sewage sludge and sulphate ...

  13. Social and environmental aspects of a sewage sludge irradiation plant

    International Nuclear Information System (INIS)

    Mangussi, J.

    2000-01-01

    The critical environmental parameters involved in an environmental impact study for a 700,000 Ci of 60 Co sewage sludge irradiation plant are described and analyzed. The plant is the first that will operate in Argentina and it is located in a town of 500,000 inhabitants, in an agricultural region with no nuclear tradition. The position of the environmental authorities and of the public opinion is analyzed. Possible information alternatives are proposed. (author)

  14. Composting of gamma-radiation disinfected sewage sludge

    International Nuclear Information System (INIS)

    Kawakami, W.; Hashimoto, S.; Watanabe, H.; Nishimura, K.; Watanabe, H.; Ito, H.; Takehisa, M.

    1981-01-01

    The composting of radiation disinfected sewage sludge has been studied since 1978, aiming to present a new process of sludge composting for agricultural uses. This process is composed of two steps: irradiation step to disinfect sludge, and composting step to remove odor and easily decomposable organics in sludge. In this paper, the gamma-irradiation effect on sludge cake and composting condition of irradiated sludge are discussed. (author)

  15. Solid State Culture Conditions for Composting Sewage Sludge

    Directory of Open Access Journals (Sweden)

    N.A. Kabbashi

    2012-10-01

    Full Text Available Composting is applied to treat sewage sludge from treatment plants to enhance its quality and suitability for agricultural use. In this work the optimal conditions for composting sewage sludge from domestic wastewater treatment plants in a horizontal drum bioreactor (HDB were investigated. This study investigated the physico-chemical conditions affecting the use of filamentous fungi in composting. The average number of faecal coliforms was 2.3  107 bacteria/g waste dry weight at the beginning of the composting process, and decreased considerably to 8.2  103, 8.1  103, 8.5  103, 8.0  103,and 8.4  103 bacteria/g, respectively for experiments T1 to T5. This decrease was presumably the result of raising temperature. The phase of hygienisation was marked by a very significant decrease in the number of E. coli cells (1.8  107, to 3.7  103, 3.8  103, 3.3  103, 3.2  103, and 3.6  103 bacteria/g for T1 to T5 experiments, respectively: A second aspect was the investigation of a possible reduction of hazardous pollutants.  The highest concentration was for Fe and the lowest for Pb, showing that Fe is the most loosely bound to the sewage sludge organic matrix and Pb the most strongly bound, the Cd reduction by composting was more than 50%.Keywords: Sewage sludge, compost, horizontal drum bioreactor, hazardous.

  16. Treatment of supernatant from sewage sludge by elctron beam irradiation

    International Nuclear Information System (INIS)

    Arai, Hidehiko; Sugiyama, Masashi; Shimizu, Ken.

    1988-01-01

    Part of the results was presented on the investigation of treatment of supernatant from sewage sludge by combination of electron beam irradiation and microbiological treatment. Supernatant is electron-beam irradiated after microbiologically treated, and then treated microbiologically again. Based this method, by irradiation of 10 kGy, chemical oxygen demand (COD) in supernatant can be decreased lower than 30 ppm. Moreover, electron-beam irradiation induces remarkable decolorization and deodorization. (author)

  17. Effect of sewage sludge or compost on the sorption and distribution of copper and cadmium in soil

    International Nuclear Information System (INIS)

    Vaca-Paulin, R.; Esteller-Alberich, M.V.; Lugo-de la Fuente, J.; Zavaleta-Mancera, H.A.

    2006-01-01

    The application of biosolids such as sewage sludge is a concern, because of the potential release of toxic metals after decomposition of the organic matter. The effect of application of sewage sludge (Sw) and compost (C) to the soil (S) on the Cu and Cd sorption, distribution and the quality of the dissolved organic matter (DOM) in the soil, was investigated under controlled conditions. Visible spectrophotometry, infrared spectroscopy, sorption isotherms (simple and competitive sorption systems), and sequential extraction methods were used. The E 4 /E 6 (λ at 465 and 665 nm) ratio and the infrared spectra (IR) of DOM showed an aromatic behaviour in compost-soil (C-S); in contrast sewage sludge-soil (Sw-S) showed an aliphatic behaviour. Application of either Sw or C increased the Cu sorption capacity of soil. The Cd sorption decreased only in soil with a competitive metal system. The availability of Cu was low due to its occurrence in the acid soluble fraction (F3). The Cu concentration varied in accordance with the amounts of Cu added. The highest Cd concentration was found in the exchangeable fraction (F2). The Sw and C applications did not increase the Cd availability in the soil

  18. Activated sewage sludge, a potential animal foodstuff. Part I. Nutritional characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Tacon, A.G.J.

    1979-08-01

    The nutritive value of activated sewage sludge is discussed in terms of its amino acid N, non-amino acid N, carbohydrate, fat, mineral, vitamin and microbial content. Processed activated sewage sludge is described as a stable dark brown material of relatively uniform quality, having a nutritive value broadly equivalent to brewers yeast or a protein-rich cereal. The potential hazards associated with the use of activated sewage sludge as a feed ingredient are discussed. 29 references

  19. Correção da acidez e mobilidade de íons em Latossolo com aplicação superficial de escória, lama cal, lodos de esgoto e calcário Liming and ion mobility in an Oxisol under surface application of flue dust, aqueous lime, sewage sludge and limestone

    Directory of Open Access Journals (Sweden)

    Juliano Corulli Corrêa

    2007-09-01

    Full Text Available Com o objetivo de avaliar a correção da acidez, saturação por bases e a mobilidade de nitrato, cálcio e magnésio no perfil de um Latossolo Vermelho distrófico, foi conduzido experimento em condições de campo, em área sob sistema plantio direto, de 2002 a 2005. A possível interferência dos ácidos orgânicos, provenientes da aveia-preta, decorrentes da aplicação superficial de escória de aciaria, lama cal e lodos de esgoto centrifugado e de biodigestor, foram igualmente avaliadas nas doses de 0 (testemunha, 2, 4 e 8 t ha-1 e um tratamento adicional composto pela calagem superficial na dose de 2 t ha-1. A aplicação superficial de doses crescentes de escória de aciaria, lama cal e lodo de esgoto centrifugado permitiu verificar aumento do valor de pH no solo. Esses resíduos e o lodo de esgoto de biodigestor elevaram a saturação por bases e a disponibilidade de nitrato, cálcio e magnésio até a profundidade de 40 cm no solo, com apenas três meses de reação. A pequena quantidade de ácidos orgânicos na parte aérea da aveia-preta não justificou o rápido deslocamento dos nutrientes e da neutralização do solo em subsuperfície. Os resíduos escória de aciaria, lama cal e lodo de esgoto centrifugado podem ser utilizados como corretivos da acidez e aplicados sobre a superfície do solo no sistema de plantio direto.The experiment was carried out under field conditions in a no-tillage system from 2002 to 2005, aiming to evaluate liming, base saturation and nitrate, calcium and magnesium mobility in a dystrophic Clay Rhodic Hapludox soil. The possible interference of organic acid catering of black oat through surface application of flue dust, aqueous lime and sewage sludge from a centrifuge and a biodigestor were also evaluated at rates of zero (control, 2, 4 and 8 t ha-1 as well as an additional treatment of dolomitic limestone at the rate of 2 t ha-1. Due to the increasing surface applications of flue dust, aqueous lime and

  20. The existing state of sewage sludge containing radioactive substances

    International Nuclear Information System (INIS)

    Shirasaki, Makoto; Hisaoka, Natsuki

    2012-01-01

    Radioactive substances were discharged over a wide range from the accident of the Fukushima Daiichi Nuclear Station of Tokyo Electric Power Company. As a result, in sewer system, especially in the combined sewer system that jointly collects rainwater and sewage, radioactive substances accumulated on the surface of urban areas were transferred together with rainwater to sewage plants and accumulated there. In the process of further treatment, radioactive substances were transferred to and concentrated in sewage sludge, and a high concentration of radioactive substances were detected in incineration ash. For this reason, some sewage plants still continuously store dewatered sludge, incinerator ash, etc. This paper introduces the current state of waste treatment from the published data from each local government in Tohoku and Kanto districts. As for the sewer, which is essential as a lifeline, the Ministry of Land, Infrastructure, Transport and Tourism, together with the Japan Sewage Works Association, established 'Investigative Commission on Radioactive Substance Countermeasures in Sewerage System.' This group grasped the damage situation due to radioactive substances, and summarized the measures to be taken by sewage managers, such as the storage method for sewage sludge containing radioactive substances as well as the method for the volume reduction of sewage sludge. (O.A.)

  1. Thermal utilisation and disposal of sewage sludge; Thermische Klaerschlammverwertung -beseitigung

    Energy Technology Data Exchange (ETDEWEB)

    Baumgart, H.C. [Emscher Genossenschaft/Lippeverband, Essen (Germany). Technischer Vorstand

    2001-07-01

    Sewage sludge combustion - either in an incinerator or for heat or power generation - has always been important and is getting ever more so. From the cost aspect, it makes quite a difference whether sewage sludge is just incinerated or utilised. The author makes it clear that this cost aspect - and what it means to communities and citizens - tends to be neglected by those who favour sewage sludge combustion and utilisation. [German] Die Verbrennung von Klaerschlamm - sei es als Schlammveraschung oder als thermische oder energetische Verwertung - hat schon immer fuer grosse Klaeranlagen einen bedeutenden Stellenwert gehabt. Die Bedeutung der Verbrennung scheint in letzter Zeit sogar zuzunehmen. Unter Kostengesichtspunkten ist es ein grosser Unterschied, ob ein Klaerschlamm nur verascht oder energetisch verwertet wird. Vor dem Hintergrund der allgemeinen Diskussion um die leeren Kassen der Kommunen, um die sogenannte dritte Miete fuer den Buerger und damit die Zumutbarkeit fuer weitere Steigerungen der Abwassergebuehren stoert mich die Bagatellisierung der Kostengesichtspunkte vor allem auf Seiten derer, die die Verbrennung der Klaerschlaemme fordern. (orig.)

  2. Hydrogen production from sewage sludge by steam gasification

    Energy Technology Data Exchange (ETDEWEB)

    Aye, L.; Klinkajorn, P. [Melbourne Univ. International Technologies Centre, Melbourne, Victoria (Australia). Dept. of Civil and Environmental Engineering

    2006-07-01

    Because of the shortage of energy sources in the near future, renewable energy, such as biomass, has become an important source of energy. One of the most common approaches for producing gaseous fuels from biomass is gasification. The main product gases of gasification are hydrogen, carbon monoxide, methane and low molecular weight hydrocarbons. Because of the capability of very low emission at the point of use, the interest in using hydrogen for electrical power generation and in electric-vehicles has been increasing. Hydrogen from biomass steam gasification (SG) is a net zero green house gas emission fuel. Sewage sludge (SS) has a potential to produce hydrogen-rich gaseous fuel. Therefore, hydrogen production from sewage sludge may be a solution for cleaner fuel and the sewage sludge disposal problem. This paper presented the results of a computer model for SSSG by using Gibbs free energy minimization (GFEM) method. The computer model developed was used to determine the hydrogen production limits for various steam to biomass ratios. The paper presented an introduction to renewable energy and gasification and discussed the Gibbs free energy minimization method. The study used a RAND algorithm. It presented the computer model input parameters and discussed the results of the stoichiometric analysis and Gibbs free energy minimization. The energy requirement for hydrogen production was also presented. 17 refs., 1 tab., 6 figs.

  3. Sewage sludge does not induce genotoxicity and carcinogenesis

    Science.gov (United States)

    Silva, Paula Regina Pereira; Barbisan, Luis Fernando; Dagli, Maria Lúcia Zaidan; Saldiva, Paulo Hilário Nascimento

    2012-01-01

    Through a series of experiments, the genotoxic/mutagenic and carcinogenic potential of sewage sludge was assessed. Male Wistar rats were randomly assigned to four groups: Group 1 - negative control; Group 2 - liver carcinogenesis initiated by diethylnitrosamine (DEN; 200 mg/kg i.p.); Group 3 and G4-liver carcinogenesis initiated by DEN and fed 10,000 ppm or 50,000 ppm of sewage sludge. The animals were submitted to a 70% partial hepatectomy at the 3rd week. Livers were processed for routine histological analysis and immunohistochemistry, in order to detect glutathione S-transferase positive altered hepatocyte foci (GST-P+ AHF). Peripheral blood samples for the comet assay were obtained from the periorbital plexus immediately prior to sacrificing. Polychromatic erythrocytes (PCEs) were analyzed in femoral bone-marrow smears, and the frequencies of those micronucleated (MNPCEs) registered. There was no sewage-sludge-induced increase in frequency of either DNA damage in peripheral blood leucocytes, or MNPCEs in the femoral bone marrow. Also, there was no increase in the levels of DNA damage, in the frequency of MNPCEs, and in the development of GST-P AHF when compared with the respective control group. PMID:23055806

  4. Simulation of substrate degradation in composting of sewage sludge

    International Nuclear Information System (INIS)

    Zhang Jun; Gao Ding; Chen Tongbin; Zheng Guodi; Chen Jun; Ma Chuang; Guo Songlin; Du Wei

    2010-01-01

    To simulate the substrate degradation kinetics of the composting process, this paper develops a mathematical model with a first-order reaction assumption and heat/mass balance equations. A pilot-scale composting test with a mixture of sewage sludge and wheat straw was conducted in an insulated reactor. The BVS (biodegradable volatile solids) degradation process, matrix mass, MC (moisture content), DM (dry matter) and VS (volatile solid) were simulated numerically by the model and experimental data. The numerical simulation offered a method for simulating k (the first-order rate constant) and estimating k 20 (the first-order rate constant at 20 o C). After comparison with experimental values, the relative error of the simulation value of the mass of the compost at maturity was 0.22%, MC 2.9%, DM 4.9% and VS 5.2%, which mean that the simulation is a good fit. The k of sewage sludge was simulated, and k 20 , k 20s (first-order rate coefficient of slow fraction of BVS at 20 o C) of the sewage sludge were estimated as 0.082 and 0.015 d -1 , respectively.

  5. Biodegradation of tetrabromobisphenol A in the sewage sludge process.

    Science.gov (United States)

    Peng, Xingxing; Wang, Zhangna; Wei, Dongyang; Huang, Qiyuan; Jia, Xiaoshan

    2017-11-01

    Anaerobic sewage sludge capable of rapidly degrading tetrabromobisphenol A (TBBPA) was successfully acclimated in an anaerobic reactor over 280days. During the period from 0 to 280days, the TBBPA degradation rate (DR), utilization of glucose, and VSS were monitored continuously. After 280days of acclimation, the TBBPA DR of active sludge reached 96.0% after 20days of treatment in batch experiments. Based on scanning electron microscopy (SEM) observations and denaturing gradient gel electrophoresis (DGGE) determinations, the diversity of the microorganisms after 0 and 280days in the acclimated anaerobic sewage sludge was compared. Furthermore, eleven metabolites, including 2-bromophenol, 3-bromophenol, 2,4-dibromophenol, 2,6-dibromophenol, tribromophenol and bisphenol A, were identified by gas chromatography-mass spectrometry (GC-MS). Moreover, the six primary intermediary metabolites were also well-degraded by the acclimated anaerobic sewage sludge to varying degrees. Among the six target metabolites, tribromophenol was the most preferred substrate for biodegradation via debromination. These metabolites degraded more rapidly than monobromide and bisphenol A. The biodegradation data of the intermediary metabolites exhibited a good fit to a pseudo-first-order model. Finally, based on the metabolites, metabolic pathways were proposed. In conclusion, the acclimated microbial consortia degraded TBBPA and its metabolites well under anaerobic conditions. Copyright © 2017. Published by Elsevier B.V.

  6. Mechanisms and kinetics of granulated sewage sludge combustion.

    Science.gov (United States)

    Kijo-Kleczkowska, Agnieszka; Środa, Katarzyna; Kosowska-Golachowska, Monika; Musiał, Tomasz; Wolski, Krzysztof

    2015-12-01

    This paper investigates sewage sludge disposal methods with particular emphasis on combustion as the priority disposal method. Sewage sludge incineration is an attractive option because it minimizes odour, significantly reduces the volume of the starting material and thermally destroys organic and toxic components of the off pads. Additionally, it is possible that ashes could be used. Currently, as many as 11 plants use sewage sludge as fuel in Poland; thus, this technology must be further developed in Poland while considering the benefits of co-combustion with other fuels. This paper presents the results of experimental studies aimed at determining the mechanisms (defining the fuel combustion region by studying the effects of process parameters, including the size of the fuel sample, temperature in the combustion chamber and air velocity, on combustion) and kinetics (measurement of fuel temperature and mass changes) of fuel combustion in an air stream under different thermal conditions and flow rates. The combustion of the sludge samples during air flow between temperatures of 800 and 900°C is a kinetic-diffusion process. This process determines the sample size, temperature of its environment, and air velocity. The adopted process parameters, the time and ignition temperature of the fuel by volatiles, combustion time of the volatiles, time to reach the maximum temperature of the fuel surface, maximum temperature of the fuel surface, char combustion time, and the total process time, had significant impacts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Characterization study on secondary sewage sludge for replacement in building materials

    Science.gov (United States)

    Kadir, Aeslina Abdul; Sarani, Noor Amira; Aziz, Nurul Sazwana A.; Hamdan, Rafidah; Abdullah, Mohd Mustafa Al Bakri

    2017-09-01

    Recently, environmental issues continually increased since expanded in industrial development and grown in population. Regarding to this activity, it will cause lack management of waste such as solid waste from wastewater treatment plant called sewage sludge. This research presents the characteristic study of sewage sludge, regardless of whether it is appropriate or not to be applied as building materials. The sewage sludge samples were collected from secondary treatment at Senggarang and Perwira under Indah Water Konsortium (IWK) treatment plant. Raw materials were tested with X-ray Fluorescence (XRF) and Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) in order to determine the composition of sewage sludge and heavy metal concentration contains in sewage sludge. From the study, it was found that sewage sludge contained high amount of Silica Oxide (SiO2) with 13.6%, Sulphur Trioxide (SO3) with 12.64% and Iron Oxide (Fe2O3) with 8.7% which is similar in clay. In addition, sewage sludge also high in Iron (Fe) with 276.2 mg/L followed by Zinc (Zn) with concentration 45.41 mg/L which sewage sludge cannot be directly disposed to landfill. Results from this study demonstrated that sewage sludge has high possibility to be reused as alternative building materials such as bricks and have compatible chemical composition with clay.

  8. Effects of sewage sludge fertilizer on heavy metal accumulation and consequent responses of sunflower (Helianthus annuus).

    Science.gov (United States)

    Belhaj, Dalel; Elloumi, Nada; Jerbi, Bouthaina; Zouari, Mohamed; Abdallah, Ferjani Ben; Ayadi, Habib; Kallel, Monem

    2016-10-01

    Use of sewage sludge, a biological residue produced from sewage treatment processes in agriculture, is an alternative disposal technique of waste. To study the usefulness of sewage sludge amendment for Helianthus annuus, a pot experiment was conducted by mixing sewage sludge at 2.5, 5, and 7.5 % (w/w) amendment ratios to the agricultural soil. Soil pH decreased whereas electrical conductivity, organic matter, total N, available P, and exchangeable Na, K, and Ca increased in soil amended with sewage sludge in comparison to unamended soil. Sewage sludge amendment led to significant increase in Pb, Ni, Cu, Cr, and Zn concentrations of soil. The increased concentration of heavy metals in soil due to sewage sludge amendment led to increases in shoot and root concentrations of Cr, Cu, Ni, and Zn in plant as compared to those grown on unamended soil. Accumulation was more in roots than shoots for most of the heavy metals. Moreover, high metal removal for the harvestable parts of the crops was recorded. Sewage sludge amendment increased root and shoot length, leaves number, biomass, and antioxidant activities of sunflower. Significant increases in the activities of antioxidant enzymes and in the glutathione, proline, and soluble sugar content in response to amendment with sewage sludge may be defense mechanisms induced in response to heavy metal stress. Graphical abstract Origin, fate and behavior of sewage sludge fertilizer.

  9. Lixiviação de nitrogênio em latossolo incubado com lodo de esgoto Nitrogen leaching in a latosol incubated with sewage sludges

    Directory of Open Access Journals (Sweden)

    Rita Carla Boeira

    2009-08-01

    doses do lodo de Franca, e de 81 para 399 % com as doses do lodo de Barueri.Sewage sludges contain high levels of organic N. If these residues are applied in excess to soils, there is the risk of polluting the groundwater with nitrate, a product of N mineralization. For this reason, one of the criteria underlying the determination of the maximum N application rate to soils is the crop available N. This paper presents the results of a 224 day laboratory leaching study on organic N mineralization of anaerobically-digested sewage sludges from two treatment plants, namely Franca (urban sludge and Barueri (urban-industrial sludge, both located in São Paulo State, Brazil. The sewage sludges were applied to 0-0.20 m Latosol (Oxisol samples at four rates, containing 0.13, 0.3, 0.5 and 1.0 g kg-1 of organic N; these treatments were equivalent to the soil application of 5, 11, 22 and 43 t ha-1 of Franca sewage sludge and to 8, 15, 31 and 61 t ha-1 of Barueri sewage sludge. The soil samples with treatments were incubated in percolation tubes at temperatures between 25 and 28 °C. The tubes were periodically leached (12 times with 0.01 mol L-1 KCl, and N-NH4+ and N-(NO3- + NO2- were determined in the leachates. During the incubation, there was a significant correlation between the rate of organic N applied as sludges and the net inorganic N accumulation in the leachates, for both sludges. The potential N mineralization estimated by the single exponential model for the soil without sludge was 73 mg kg-1 of N, and increased from 107 to 224 mg kg-1 and from 132 to 364 mg kg-1 in the Franca and Barueri-treated soils, respectively. The potential mineralization fraction of organic N in the residues decreased with increasing rates: 26, 25, 21 and 14 % for the Franca, and 43, 39, 34 and 27 % for Barueri sewage sludge. Thus, the potential for N leaching in the studied Oxisol increased from 46 to 207 % when increasing doses of Franca sewage sludge were applied, and from 81 to 399 % under

  10. Effects of sewage sludge on bio-accumulation of heavy metals in tomato seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Elloumi, N.; Belhaj, D.; Jerbi, B.; Zouari, M.; Kallel, M.

    2016-07-01

    The proposal to use sewage sludge (SS) on agricultural fields as a sustainable way to dispose of the waste is based on its high organic and nutrients content. However, the presence of heavy metals (HMs) in sludge can contaminate crops and accumulate in the food chain. The aim of this study was to assess changes in soil fertility, biochemical responses of tomato (Solanum lycopersicum L. cv. Rio Grande) seedlings and the availability of HMs with increased rate application of SS (0, 2.5, 5 and 7.5%). Leaf chlorophyll content, nutritional status, proline, membrane peroxidation, stomatal conductance and HM accumulation were investigated. Results showed that the soil pH decreased, whereas soil salinity, organic carbon, total N, available P and exchangeable Na, Ca, K and HM content increased significantly with increasing application rates of SS. Among the three HMs (Zn, Cu and Cr), Zn had the highest capacity for transferring from soil into plants. Low metal translocation was observed from roots to leaves. The 7.5% SS dose decreased biomass production and caused a decline in chlorophyll content and stomatal conductance. However, lipid peroxidation and proline contents increased. Therefore, the use of 2.5 and 5% doses of sewage sludge in agriculture would be an efficient and cost-effective method to restore the fertility of soil and an environment-friendly solution for disposal problems.

  11. Effects of sewage sludge on bio-accumulation of heavy metals in tomato seedlings

    Directory of Open Access Journals (Sweden)

    Nada Elloumi

    2016-12-01

    Full Text Available The proposal to use sewage sludge (SS on agricultural fields as a sustainable way to dispose of the waste is based on its high organic and nutrients content. However, the presence of heavy metals (HMs in sludge can contaminate crops and accumulate in the food chain. The aim of this study was to assess changes in soil fertility, biochemical responses of tomato (Solanum lycopersicum L. cv. Rio Grande seedlings and the availability of HMs with increased rate application of SS (0, 2.5, 5 and 7.5%. Leaf chlorophyll content, nutritional status, proline, membrane peroxidation, stomatal conductance and HM accumulation were investigated. Results showed that the soil pH decreased, whereas soil salinity, organic carbon, total N, available P and exchangeable Na, Ca, K and HM content increased significantly with increasing application rates of SS. Among the three HMs (Zn, Cu and Cr, Zn had the highest capacity for transferring from soil into plants. Low metal translocation was observed from roots to leaves. The 7.5% SS dose decreased biomass production and caused a decline in chlorophyll content and stomatal conductance. However, lipid peroxidation and proline contents increased. Therefore, the use of 2.5 and 5% doses of sewage sludge in agriculture would be an efficient and cost-effective method to restore the fertility of soil and an environment-friendly solution for disposal problems.

  12. Environmental and economic life cycle assessment for sewage sludge treatment processes in Japan.

    Science.gov (United States)

    Hong, Jinglan; Hong, Jingmin; Otaki, Masahiro; Jolliet, Olivier

    2009-02-01

    Life cycle assessment for sewage sludge treatment was carried out by estimating the environmental and economic impacts of the six alternative scenarios most often used in Japan: dewatering, composting, drying, incineration, incinerated ash melting and dewatered sludge melting, each with or without digestion. Three end-of-life treatments were also studied: landfilling, agricultural application and building material application. The results demonstrate that sewage sludge digestion can reduce the environmental load and cost through reduced dry matter volume. The global warming potential (GWP) generated from incineration and melting processes can be significantly reduced through the reuse of waste heat for electricity and/or heat generation. Equipment production in scenarios except dewatering has an important effect on GWP, whereas the contribution of construction is negligible. In addition, the results show that the dewatering scenario has the highest impact on land use and cost, the drying scenario has the highest impact on GWP and acidification, and the incinerated ash melting scenario has the highest impact on human toxicity due to re-emissions of heavy metals from incinerated ash in the melting unit process. On the contrary, the dewatering, composting and incineration scenarios generate the lowest impact on human toxicity, land use and acidification, respectively, and the incinerated ash melting scenario has the lowest impact on GWP and cost. Heavy metals released from atmospheric effluents generated the highest human toxicity impact, with the effect of dioxin emissions being significantly lower. This study proved that the dewatered sludge melting scenario is an environmentally optimal and economically affordable method.

  13. Irradiated sewage sludge for increased crop production - III. Macronutrient availability

    International Nuclear Information System (INIS)

    El-Motaium, R.; Badawy, S.H.

    2002-01-01

    Irradiated and non-irradiated sewage sludge, from El-Gabal El-Asfar Farm near Cairo, were applied to tomato (Lycopersicon esculentum cv. GS) grown in a calcareous and a sandy soil at rates of 20, 40, 60, and 80 t/ha. Unfertilized controls and basal-fertilizer treatments were included. Total concentrations of micronutrients (Cu, Zn, Fe, Mn) in sludge-treated calcareous soil were higher than those in the sandy soil, although DTPA-extractable micronutrient concentrations were lower. There were no significant differences between irradiated and non-irradiated sludge treatments in DTPA-extractable and total micronutrient concentrations for the calcareous or the sandy soil. The total micronutrient concentrations for the highest sludge application rate (80 t/ha) were 5,108, 125, 68.2, and 207 μg/g in the calcareous soil and 2,200, 74.8, 43.2, and 139 μg/g in the sandy soil for Fe, Mn, Cu, and Zn, respectively, whereas the DTPA-extractable micronutrient concentrations were 25.0, 6.2, 5.5 and 6.6 μg/g in the calcareous soil and 53.3, 10.1, 7.3 and 9.83 μg/g in the sandy soil, respectively. Highly significant differences were observed in total and available micronutrient concentrations in calcareous and sandy soils among the sludge-application rates. Micronutrient concentrations of tomato leaves and fruits increased with increasing application rates of irradiated and non-irradiated sludge, and were higher in the sandy than in the calcareous soil for the same treatment. Highly significant differences were observed among the sludge-application rates in terms of the concentrations of micronutrients in both leaves and fruits. However, there were no significant differences between the irradiated and non-irradiated sludge treatments in the micronutrient concentrations of leaves and fruits in either soil. Micronutrient uptake increased with increasing rates of application of sludge to the soil, more so in the sandy than in the calcareous soil. The amounts of Fe, Mn, Cu, and Zn

  14. Irradiated sewage sludge for increased crop production - III. Macronutrient availability

    International Nuclear Information System (INIS)

    El-Motaium, R.; Badawy, S.H.

    2002-01-01

    Irradiated and non-irradiated sewage sludge, from El-Gabal El-Asfar Farm near Cairo, were applied to tomato (Lycopersicon esculentum cv. GS) grown in a calcareous and a sandy soil at rates of 20, 40, 60, and 80 t/ha. Unfertilized controls and basal-fertilizer treatments were included. Total concentrations of micronutrients (Cu, Zn, Fe, Mn) in sludge-treated calcareous soil were higher than those in the sandy soil, although DTPAextractable micronutrient concentrations were lower. There were no significant differences between irradiated and non-irradiated sludge treatments in DTPA-extractable and total micronutrient concentrations for the calcareous or the sandy soil. The total micronutrient concentrations for the highest sludge application rate (80 t/ha) were 5,108, 125, 68.2, and 207 μg/g in the calcareous soil and 2,200, 74.8, 43.2, and 139 μg/g in the sandy soil for Fe, Mn, Cu, and Zn, respectively, whereas the DTPA-extractable micronutrient concentrations were 25.0, 6.2, 5.5 and 6.6 μg/g in the calcareous soil and 53.3, 10.1, 7.3 and 9.83 μg/g in the sandy soil, respectively. Highly significant differences were observed in total and available micronutrient concentrations in calcareous and sandy soils among the sludge-application rates. Micronutrient concentrations of tomato leaves and fruits increased with increasing application rates of irradiated and non-irradiated sludge, and were higher in the sandy than in the calcareous soil for the same treatment. Highly significant differences were observed among the sludge-application rates in terms of the concentrations of micronutrients in both leaves and fruits. However, there were no significant differences between the irradiated and non-irradiated sludge treatments in the micronutrient concentrations of leaves and fruits in either soil. Micronutrient uptake increased with increasing rates of application of sludge to the soil, more so in the sandy than in the calcareous soil. The amounts of Fe, Mn, Cu, and Zn

  15. Speciation evolution of zinc and copper during pyrolysis and hydrothermal carbonization treatments of sewage sludges.

    Science.gov (United States)

    Huang, Rixiang; Zhang, Bei; Saad, Emily M; Ingall, Ellery D; Tang, Yuanzhi

    2018-04-01

    Thermal and hydrothermal treatments are promising techniques for sewage sludge management that can potentially facilitate safe waste disposal, energy recovery, and nutrient recovery/recycling. Content and speciation of heavy metals in the treatment products affect the potential environmental risks upon sludge disposal and/or application of the treatment products. Therefore, it is important to study the speciation transformation of heavy metals and the effects of treatment conditions. By combining synchrotron X-ray spectroscopy/microscopy analysis and sequential chemical extraction, this study systematically characterized the speciation of Zn and Cu in municipal sewage sludges and their chars derived from pyrolysis (a representative thermal treatment technique) and hydrothermal carbonization (HTC; a representative hydrothermal treatment technique). Spectroscopy analysis revealed enhanced sulfidation of Zn and Cu by anaerobic digestion and HTC treatments, as compared to desulfidation by pyrolysis. Overall, changes in the chemical speciation and matrix properties led to reduced mobility of Zn and Cu in the treatment products. These results provide insights into the reaction mechanisms during pyrolysis and HTC treatments of sludges and can help evaluate the environmental/health risks associated with the metals in the treatment products. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Effects of elemental sulphur on heavy metal uptake by plants growing on municipal sewage sludge.

    Science.gov (United States)

    Dede, Gulgun; Ozdemir, Saim

    2016-01-15

    In this study experiment was carried out to determine the phytoextraction potential of six plant species (Conium maculatum, Brassica oleraceae var. oleraceae, Brassica juncea, Datura stramonium, Pelargonium hortorum and Conyza canadensis) grown in a sewage sludge medium amended with metal uptake promoters. The solubility of Cu, Cd and Pb was significantly increased with the application of elemental S due to decrease of pH. Faecal coliform number was markedly decreased by addition of elemental sulphur. The extraction of Cu, Cr and Pb from sewage sludge by using B. juncea plant was observed as 65%, 65% and 54% respectively that is statistically similar to EDTA as sulphur. The bioaccumulation factors were found higher (>1) in the plants tested for Cu and Pb like B. juncea. Translocation index (TI) calculated values for Cd and Pb were greater than one (>1) in both C. maculatum and B. oleraceae var. oleraceae. The results cleared that the amendment of sludge with elemental sulphur showed potential to solubilize heavy metals in phytoremediation as much as EDTA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. The possibility of using a magnetic field for the conditioning of sewage sludge

    Directory of Open Access Journals (Sweden)

    Kamila Natalia Hrut

    2018-04-01

    Full Text Available The purpose of the work was to determine the applicability of the magnetic field for the conditioning of the sewage sludge prepared by the dual chemical method with using PIX 113 iron coagulate, and 2 types of organic polyelectrolytes: Superfloc C-494, and Superfloc C-496. In order to assess the impact of process parameters (flow rate and flow direction through the coil, tests were conducted in several research combinations differing in the method of preparation of sludge, the flow direction and flow rate through the solenoid. The analyses were divided into two stages, differing in the applied polyelectrolyte. In order to determine the changes of susceptibility to dewatering, the capillary suction time test, specific resistance to filtration and the final hydrating of the filter cake were used. The assessment of the quality of the leachates was made on the basis of the chemical oxygen demand values. The most beneficial effects of the magnetic field effect were achieved for the combination with the Superfloc C-494 polymer, and flow through the solenoid towards S-N at rate 1.0 L/min. The results shows that the influence of the magnetic field on the susceptibility to dewatering of the sludge is variable, dependent on the flow direction and flow rate of sludge through the coil, as well as on the type of conditioning agent. In order to be able to unequivocally determine the possibility of using a magnetic field for the conditioning of sewage sludge, further research is necessary.

  18. Parametric relationships for gamma dose and irradiation homogeneity in a sewage sludge irradiator

    International Nuclear Information System (INIS)

    Krishnamurthy, K.

    1986-01-01

    A study on the inter-relationships between factors governing γ dose and irradiation homogeneity in a sewage sludge irradiator is presented here. The analysis involves a 60 Co irradiator of cylindrical irradiation geometry with batchwise operation for hygienisation of liquid sludge. The influence of the parameters such as the source-target geometry, strength of 60 Co sources in the irradiator, hygienisation dose and rheological and hydraulic characteristics of sewage sludge on the selection of the three critical factors viz. the pumping rate (P) required to maintain turbulent flow regime in the irradiation zone; the mininum re-circulation time (Tsub(m)) essential to achieve a certain degree of homogeneity of dose absorption in the fluid; and the irradiation time (Tsub(i)) required to impart the necessary dose for the desired hygienisation effect in the sludge has been discussed in detail and inter-relationships among these three factors have been worked out. The applicability of the relationships to a typical operating plant has also been elucidated. (author)

  19. Chemical state of mercury and selenium in sewage sludge ash based P-fertilizers

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Christian, E-mail: cv.vogel@yahoo.de [Division 4.4 Thermochemical Residues Treatment and Resource Recovery, Bundesanstalt für Materialforschung und −prüfung (BAM), Unter den Eichen 87, 12205 Berlin (Germany); Krüger, Oliver; Herzel, Hannes [Division 4.4 Thermochemical Residues Treatment and Resource Recovery, Bundesanstalt für Materialforschung und −prüfung (BAM), Unter den Eichen 87, 12205 Berlin (Germany); Amidani, Lucia [ESRF—The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble (France); Adam, Christian [Division 4.4 Thermochemical Residues Treatment and Resource Recovery, Bundesanstalt für Materialforschung und −prüfung (BAM), Unter den Eichen 87, 12205 Berlin (Germany)

    2016-08-05

    Highlights: • Mercury bonded to carbon/organic material was detected in some sewage sludge ashes. • After thermochemcial treatment some mercury remains stabilized in the SSA matrix. • Analysis of the chemical state of mercury and selenium in highly diluted samples. - Abstract: Phosphorus-fertilizers from secondary resources such as sewage sludge ash (SSA) will become more important in the future as they could substitute conventional fertilizers based on the nonrenewable resource phosphate rock. Thermochemical approaches were developed which remove heavy metals from SSA prior to its fertilizer application on farmlands. We analyzed the chemical state of mercury and selenium in SSA before and after thermochemical treatment under different conditions for P-fertilizer production by X-ray absorption near edge structure (XANES) spectroscopy. In some incineration plants the mercury loaded carbon adsorber from off-gas cleaning was collected together with the SSA for waste disposal. SSAs from those plants contained mercury mainly bound to carbon/organic material. The other SSAs contained inorganic mercury compounds which are most probably stabilized in the SSA matrix and were thus not evaporated during incineration. During thermochemical treatment, carbon-bound mercury was removed quantitatively. In contrast, a certain immobile fraction of inorganic mercury compounds remained in thermochemically treated SSA, which were not clearly identified. HgSe might be one of the inorganic compounds, which is supported by results of Se K-edge XANES spectroscopy. Furthermore, the chemical state of selenium in the SSAs was very sensitive to the conditions of the thermochemical treatment.

  20. The slag original from the process of sewage sludge incineration selected properties characteristic

    Science.gov (United States)

    Głowacka, Anna; Rucińska, Teresa; Kiper, Justyna

    2017-11-01

    This work characterizes the physical and chemical properties of slag from combustion of municipal sewage sludge in "Pomorzany" waste treatment plant in Szczecin. The technology of sludge management is based on drying the sludge in low-temperature belt driers, to a content level of at least 90%, dry mass., and then burning in a grate boiler with mobile grate. The research of the slag resulting from combustion of municipal sewage sludge was conducted using reference methods, presenting images from a scanning electron microscope. The tested waste contained from 16.300 to 23.150% P2O5 completely soluble in strong acids, pH 8.03, mineral substance 98.73% dry mass. The content of heavy metals did not exceed the permissible amount specified in the Regulation of the Minister of Agriculture and Rural Development of 18 June 2008 on the implementation of certain provisions of the Act on fertilizers and fertilization (Journal of Laws of 2008 No. 119, item. 765). The screening trials showed that 48.4% are fractions of 630 µm-1.25 mm. The results show that the waste code 19 01 12 may be used as: alternative source of phosphorus for direct application to soil treatment, for production of organic - mineral fertilizers and as construction aggregate for production of concrete mortars.

  1. Speciation evolution of zinc and copper during pyrolysis and hydrothermal carbonization treatments of sewage sludges

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Rixiang; Zhang, Bei; Saad, Emily M.; Ingall, Ellery D.; Tang, Yuanzhi

    2018-04-01

    Thermal and hydrothermal treatments are promising techniques for sewage sludge management that can potentially facilitate safe waste disposal, energy recovery, and nutrient recovery/recycling. Content and speciation of heavy metals in the treatment products affect the potential environmental risks upon sludge disposal and/or application of the treatment products. Therefore, it is important to study the speciation transformation of heavy metals and the effects of treatment conditions. By combining synchrotron X-ray spectroscopy/microscopy analysis and sequential chemical extraction, this study systematically characterized the speciation of Zn and Cu in municipal sewage sludges and their chars derived from pyrolysis (a representative thermal treatment technique) and hydrothermal carbonization (HTC; a representative hydrothermal treatment technique). Spectroscopy analysis revealed enhanced sulfidation of Zn and Cu by anaerobic digestion and HTC treatments, as compared to desulfidation by pyrolysis. Overall, changes in the chemical speciation and matrix properties led to reduced mobility of Zn and Cu in the treatment products. These results provide insights into the reaction mechanisms during pyrolysis and HTC treatments of sludges and can help evaluate the environmental/health risks associated with the metals in the treatment products.

  2. Enhanced methane yield by co-digestion of sewage sludge with micro-algae and catering waste leachate.

    Science.gov (United States)

    2018-04-04

    The co-digestion of different wastes is a promising concept to improve methane generation during anaerobic process. However, the anaerobic co-digestion of catering waste leachate with algal biomass and sewage sludge has not been studied to date. This work investigated the methane generation by the anaerobic co-digestion of different mixtures of catering waste leachate, micro-algal biomass, and sewage sludge. Co-digestion of waste mixture containing equal ratios of three substrates had 39.31% higher methane yield than anaerobic digestion of raw sludge. This was possibly due to a proliferation of methanogens during the co-digestion period induced by multi-phase digestion of different wastes with different degrees of digestibility. Therefore, co-digestion of catering waste leachate, micro-algal biomass, and sewage sludge appears to be an efficient technology for energy conversion from waste resources. The scientific application of this co-digestion technology with these three substrates may play a role in solving important environmental issues of waste management.

  3. Nitrogen effects on mobility and plant uptake of heavy metals in sewage sludge applied to soil columns

    Energy Technology Data Exchange (ETDEWEB)

    Giordano, P.M.; Mortvedt, J.J.

    1976-01-01

    Cation movement in soil under leaching conditions has been associated with N fertilization. Therefore, this study was conducted to determine whether the mobility of some heavy metals applied in the inorganic form or in sewage sludge is enhanced in the presence of various sources of N. Columns of heavy metal-amended soil in plastic well casings were cropped with tall fescue (Festuca arundinacea Schreb.) and leached three times with deionized H/sub 2/O. Heavy metal concentrations above check values were not detected in leachates from any column. Mobility of the heavy metals from the inorganic sources was slightly greater than that from the sewage sludge. Nitrogen fertilization did not affect the downward movement of Zn, Cd, Cr, Pb, or Ni in soil but enhanced uptake of these metals by fescue because of increased growth. These results suggest that heavy metal contamination of ground water is not likely in heavy textured soils when sewage sludge applications are accompanied by N fertilization, at least for short periods of time. 11 references, 1 figure, 4 tables.

  4. Carbon capture and biogas enhancement by carbon dioxide enrichment of anaerobic digesters treating sewage sludge or food waste.

    Science.gov (United States)

    Bajón Fernández, Y; Soares, A; Villa, R; Vale, P; Cartmell, E

    2014-05-01

    The increasing concentration of carbon dioxide (CO2) in the atmosphere and the stringent greenhouse gases (GHG) reduction targets, require the development of CO2 sequestration technologies applicable for the waste and wastewater sector. This study addressed the reduction of CO2 emissions and enhancement of biogas production associated with CO2 enrichment of anaerobic digesters (ADs). The benefits of CO2 enrichment were examined by injecting CO2 at 0, 0.3, 0.6 and 0.9 M fractions into batch ADs treating food waste or sewage sludge. Daily specific methane (CH4) production increased 11-16% for food waste and 96-138% for sewage sludge over the first 24h. Potential CO2 reductions of 8-34% for sewage sludge and 3-11% for food waste were estimated. The capacity of ADs to utilise additional CO2 was demonstrated, which could provide a potential solution for onsite sequestration of CO2 streams while enhancing renewable energy production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Comparative analyses of microbial structures and gene copy numbers in the anaerobic digestion of various types of sewage sludge.

    Science.gov (United States)

    Hidaka, Taira; Tsushima, Ikuo; Tsumori, Jun

    2018-04-01

    Anaerobic co-digestion of various sewage sludges is a promising approach for greater recovery of energy, but the process is more complicated than mono-digestion of sewage sludge. The applicability of microbial structure analyses and gene quantification to understand microbial conditions was evaluated. The results show that information from gene analyses is useful in managing anaerobic co-digestion and damaged microbes in addition to conventional parameters like total solids, pH and biogas production. Total bacterial 16S rRNA gene copy numbers are the most useful tools for evaluating unstable anaerobic digestion of sewage sludge, rather than mcrA and total archaeal 16S rRNA gene copy numbers, and high-throughput sequencing. First order decay rates of gene copy numbers during pH failure were higher than typical decay rates of microbes in stable operation. The sequencing analyses, including multidimensional scaling, showed very different microbial structure shifts, but the results were not consistent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Efeitos da aplicação do lodo de esgoto enriquecido com cádmio e zinco na cultura do arroz Effects of the application of cadmium and zinc-enriched sewage sludge on rice

    Directory of Open Access Journals (Sweden)

    Clarice de Oliveira

    2005-02-01

    Full Text Available A utilização do lodo de esgoto, como fonte de nutrientes para as plantas, pode ser limitada pela presença de metais, que podem causar contaminação no solo, nos aqüíferos e nas plantas. Lodo de esgoto urbano produzido na Estação de Tratamento da Ilha do Governador (ETIG, Rio de Janeiro (RJ, foi enriquecido com 1.667 mg kg-1 de Cd e 8.000 mg kg-1 de Zn e, após 20 dias de incubação, sob umidade constante (50 % g g-1, foi utilizado em doses de 0, 20, 40 e 80 t ha-1, em amostras de dois solos: Latossolo Vermelho-Amarelo (LV e Argissolo Vermelho-Amarelo (PV. Para avaliar o efeito do Cd e do Zn no crescimento de arroz (IAC-47 foi feito um experimento em casa de vegetação, durante 126 dias, com amostras dos solos LV e PV incubadas com o lodo de esgoto enriquecido. Adotou-se um delineamento experimental de blocos ao acaso com quatro repetições. Foram coletados raízes, folhas e grãos e determinados a produção de matéria seca e teores de Cd e Zn. As elevadas doses de Cd e Zn aplicadas no solo, decorrentes da aplicação do lodo de esgoto, não mostraram efeito na produção de matéria seca; nas plantas, os metais concentraram-se nas raízes, com baixa translocação para as folhas. Os níveis de Cd e de Zn encontrados na planta inteira demonstraram a tolerância da variedade de arroz IAC-47 a elevados teores de Cd e Zn.The presence of heavy metals can restrict the use of sewage sludge as a source for plant nutrients since they may contaminate soil, aquifers and plants. Urban sewage sludge from the Treatment Station of Ilha do Governador (ETIG, Rio de Janeiro, Brazil, was enriched with 1.667 mg kg-1 Cd and 8.000 mg kg-1 Zn. After 20 days of incubation under a constant humidity of 50% (g g-1, doses of 0, 20, 40 and 80 t ha-1 were applied to two soil samples (red-yellow Latosol (LV and red-yellow Argisol (PV. A greenhouse experiment evaluated the effect of Cd and Zn on the growth of rice (IAC-47 during 126 days in the samples of both

  7. A study on torrefaction of sewage sludge to enhance solid fuel qualities

    International Nuclear Information System (INIS)

    Poudel, Jeeban; Ohm, Tae-In; Lee, Sang-Hoon; Oh, Sea Cheon

    2015-01-01

    Highlights: • The physio chemical variation of sewage sludge during torrefaction was studied. • Compounds with oxygen were emitted at a temperature lower than that for C x H y . • Sewage sludge torrefaction range was defined between 300 and 350 °C. - Abstract: Torrefaction is a treatment which serves to improve the properties of biomass in relation to thermochemical processing techniques for energy generation. In this study, the torrefaction of sewage sludge, which is a non-lignocellulosic waste was investigated in a horizontal tubular reactor under nitrogen flow at temperature ranging from 150 to 400 °C, for torrefaction residence time varying from 0 to 50 min. The torrefaction kinetics of sewage sludge was studied to obtain the kinetic parameters. The torrefied sewage sludge products were characterized in terms of their elemental composition, energy yield, ash content and volatile fraction. The energy and mass yields decreased with an increase in the torrefaction temperature. From an elemental analysis, the weight percentage of carbon in the sewage sludge increased with an increase in the torrefaction temperature. On the other hand, the weight percentages of hydrogen and oxygen tended to decrease. The gaseous products from torrefaction of sewage sludge were also analyzed. From this work, it was found that the compounds with oxygen were emitted at a temperature lower than that for hydrocarbon gases and the temperatures of 300–350 °C were the optimum torrefaction temperatures for sewage sludge

  8. Codigestion of olive oil mill wastewaters with manure, household waste or sewage sludge

    DEFF Research Database (Denmark)

    Angelidaki, I.; Ahring, B.K.

    1997-01-01

    Combined anaerobic digestion of oil mill effluent (OME) together with manure, household waste (HHW) or sewage sludge was investigated. In batch experiments it was shown that OME could be degraded into biogas when codigested with manure. In codigestion with HHW or sewage sludge, OME dilution...

  9. 78 FR 34973 - Proposal for Sewage Sludge Incinerators State Plan for Designated Facilities and Pollutants; Indiana

    Science.gov (United States)

    2013-06-11

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 62 [EPA-R05-OAR-2013-0372; FRL-9820-9] Proposal for Sewage Sludge Incinerators State Plan for Designated Facilities and Pollutants; Indiana AGENCY... direct final rulemaking, Indiana's State Plan to control air pollutants from Sewage Sludge Incinerators...

  10. A study on torrefaction of sewage sludge to enhance solid fuel qualities

    Energy Technology Data Exchange (ETDEWEB)

    Poudel, Jeeban [Department of Mechanical Engineering, Kongju National University, 1223-24 Cheonan-Daero, Seobuk, Chungnam 330-717 (Korea, Republic of); Ohm, Tae-In [Department of Civil and Environmental Engineering, Hanbat National University, 125 Dongseo-Daero, Yuseong, Daejeon, 330-717 (Korea, Republic of); Lee, Sang-Hoon [Korea Institute of Energy Technology Evaluation and Planning, 135-502 Teheran-ro 114gil 14, Gangnam-gu, Seoul (Korea, Republic of); Oh, Sea Cheon, E-mail: ohsec@kongju.ac.kr [Department of Environmental Engineering, Kongju National University, 1223-24 Cheonan-Daero, Seobuk, Chungnam 330-717 (Korea, Republic of)

    2015-06-15

    Highlights: • The physio chemical variation of sewage sludge during torrefaction was studied. • Compounds with oxygen were emitted at a temperature lower than that for C{sub x}H{sub y}. • Sewage sludge torrefaction range was defined between 300 and 350 °C. - Abstract: Torrefaction is a treatment which serves to improve the properties of biomass in relation to thermochemical processing techniques for energy generation. In this study, the torrefaction of sewage sludge, which is a non-lignocellulosic waste was investigated in a horizontal tubular reactor under nitrogen flow at temperature ranging from 150 to 400 °C, for torrefaction residence time varying from 0 to 50 min. The torrefaction kinetics of sewage sludge was studied to obtain the kinetic parameters. The torrefied sewage sludge products were characterized in terms of their elemental composition, energy yield, ash content and volatile fraction. The energy and mass yields decreased with an increase in the torrefaction temperature. From an elemental analysis, the weight percentage of carbon in the sewage sludge increased with an increase in the torrefaction temperature. On the other hand, the weight percentages of hydrogen and oxygen tended to decrease. The gaseous products from torrefaction of sewage sludge were also analyzed. From this work, it was found that the compounds with oxygen were emitted at a temperature lower than that for hydrocarbon gases and the temperatures of 300–350 °C were the optimum torrefaction temperatures for sewage sludge.

  11. Contributo para a melhoria de solos marginais destinados a pastagens pela aplicação de lama residual urbana, sem riscos ambientais Contribution to the improvement of degraded soils under pastures through sewage sludge application, without environmental risks

    Directory of Open Access Journals (Sweden)

    M. G. Serrão

    2009-01-01

    ções de biomassa, por melhoria do teor de fósforo “assimilável” no solo, a LRU não provocou poluição do solo, um ano após a sua aplicação, quanto aos compostos orgânicos pesquisados, nem aumentou a flora microbiana patogénica, nos dois ciclos culturais. Contudo, a maior dose de LRU aumentou a concentração de Cu extraível por água régia no solo (0-10 cm para níveis superiores ao máximo legislado em Portugal (100 mg kg-1 e reduziu apreciavelmente a população de rizóbio, no 1º ciclo cultural e a proporção de leguminosas, no 2º ciclo. Os teores foliares de Cu foram muito inferiores ao nível máximo tolerável para a dieta de pequenos ruminantes (25 mg kg-1, o que sugere, nitidamente, que da aplicação da LRU não deverão ocorrer efeitos nocivos para a nutrição animal. Face aos efeitos indesejáveis do nível mais elevado de LRU, a dose L1 (12 t/ha seria a recomendável.Sewage sludge (SS application to soils reserved for pastures, still scarcely used in the country, often contributes to improve organic matter (O.M. and some plant nutrient contents and to reduce the erosion risk, by increasing the soil vegetation cover. However, the occasional occurrence in SS of high levels of heavy metals, organic pollutant compounds, and pathogenic organisms restrict the SS rate to apply and makes indispensable their control in the soils to which they were applied. Also, the high nitrogen concentration often present in SS can inhibit the symbiotic rhizobium activity, with sequent damage in the leguminous species survival in grassland. In this work, dry matter yield, floristic composition, and copper (Cu concentration in the plant biomass were evaluated, in two successive years of a field experiment with a sown pasture mixture, established in a poor Haplic Luvisol in the Mértola region. A biologically treated SS from Évora, rich in Cu, was applied. The evolution in the topsoil of the O.M., some plant nutrients, and aqua regia extractable Cu concentrations

  12. Sewage sludge utilisation and disposal in Switzerland; Loesungen zur Verwertung oder Beseitigung von Klaerschlamm in der Schweiz

    Energy Technology Data Exchange (ETDEWEB)

    Matter, C. [TBF Toscano-Bernardi-Frey AG, Zuerich (Switzerland); Pelloni, L.; Vollmeier, T. [TBF Toscano-Bernardi-Frey AG, Zuerich (Switzerland)

    1996-11-01

    Sewage sludge can be dumped in Switzerland only during a period of transition which will end by 2000. The amount of sewage sludge utilized in agriculture is limited. For these reasons, sewage sludge combustion is an important option. The available methods for sludge combustion are described and compared.

  13. The Noell Conversion Process - a gasification process for the pollutant-free disposal of sewage sludge and the recovery of energy and materials

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, M. [Preussag Noell GmbH, Wuerzburg (Germany); Mayer, M. [Noell-KRC Energie- und Umwelttechnik GmbH, Wuerzburg (Germany)

    2000-07-01

    The Noell Conversion Process was developed to guarantee the safe disposal of sewage sludge and other waste materials by means of thermal treatment, even with every strict emission standards. The center piece of this process is a pressurised entrained flow gasifier. The reacting conditions in this gasifier does not only suppresses the formation of dioxins and furans, but also completely destroys and dioxins and furans contained in the waste materials. Another advantage of the Noell Conversion Process referring the thermal treatment of sewage sludge is the recovery of marketable substances such as synthesis gas, sulphur and vitrified slag. To demonstrate this advanced technology in the field of sewage sludge treatment, Noell-KRC has built a pilot plant in Freiberg/Germany. This plant was designed for a throughput of 0.5 Mg/h (dry base) of sewage sludge. During the operation of the plant from 1996 until 1998, it was possible to demonstrate that there are no problems with emissions of heavy metals like Mercury or organic components like Dioxins and Furans. The H2 rich gas produced in the process can be utilised as a power source. The vitrified slag produced in the process is of a quality suitable for use as a construction material with a wide range of applications. (Author)

  14. Effects of land disposal of municipal sewage sludge on soil, streambed sediment, and ground- and surface-water quality at a site near Denver, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Gaggiani, N.G.

    1991-01-01

    The report describes the effects of burial and land application of municipal sewage sludge on soil and streambed sediment and water quality in the underlying aquifers and surface water within and around the Lowry sewage-sludge-disposal area. The existing ground-water observation-well network at the disposal area was expanded for the study. Surface-water-sampling sites were selected so that runoff could be sampled from intense rainstorms or snowmelt. The sampling frequency for ground-water and surface-water runoff was changed from yearly to quarterly, and soil samples were collected. Four years of data were collected from 1984 to 1987 during the expanded monitoring program at the Lowry sewage-sludge-disposal area. These data, in addition to the data collected by the U.S. Geological Survey from 1981 to 1983, were used to determine effects of sewage-sludge-disposal on soil and streambed sediment and surface- and ground-water quality at the disposal area.

  15. Macrobenthic succession following the cessation of sewage sludge disposal

    Science.gov (United States)

    Birchenough, Silvana N. R.; Frid, Chris L. J.

    2009-11-01

    Half a million tonnes of sewage sludge was disposed annually over an 18-yr period at a licensed area off the Northumberland coast, UK. The disposal operation ceased in December 1998, providing the ecological opportunity to study macrobenthic changes in relation to theoretical succession models. A transect from the centre of the disposal site to a control station was monitored three times a year (i.e. March, August and December). This study provides a description of the changes in the macrobenthos and physical environment in the initial '3 years' (i.e. 1999 - 2001). During the period of sewage sludge disposal there were indications of an impact on the macrobenthic community with a high total abundance of individuals ( N) and high total number of species ( S) at the stations located in the centre of the disposal ground. During the immediate post-disposal phase the site continued to show a localised increased of individuals and species in the disposal area. Over time the communities showed signs of successional changes when the reduction of organic matter source was eliminated from the natural system. Multivariate analysis demonstrated a clear gradient of change in the community composition between impacted and control stations. While most benthic studies assess re-colonisation and succession stages of macrobenthos by using manipulative field experiments, this study provides an in situ long-term assessment in the offshore environment. This study contributes with information on: i) initial colonization and succession of macrobenthic communities over a large scale and real world data; ii) macrobenthic data into existing successional models and iii) resilience of benthic communities following the cessation of sewage sludge disposal. This information has the potential to contribute to an effective management of the marine communities in the North Sea.

  16. Flyash and sewage sludge as liner material - Preparations for a pilot test with fly-ash stabilised sewage sludge as landfill liner; Linermaterial med aska och roetslam - Underlag foer genomfoerande av pilotfoersoek med stabiliserat avloppsslam som taetskiktsmaterial

    Energy Technology Data Exchange (ETDEWEB)

    Macsik, J.; Rogbeck, Y.; Svedberg, B.; Uhlander, O. [Scandiaconsult Sverige AB, Stockholm (Sweden); Mossakowska, A. [Stockholm Vatten AB (Sweden)

    2003-11-01

    The aim of this project was to develop a new liner material based on biofuel fly ash and sewage sludge and to plan for a pilot test with this new liner (FSA) on a landfill. The investigation shows that FSA has potential to fulfil technical and economical requirements as well as requirements of durability. This project constitutes part of a larger one, where the overall aim is to collect information/experience of FSA as a liner for presentation in a handbook. During the conducted laboratory work recipes for mixture proportions for application as landfill liner were controlled according to technical and environmental aspects. A recipe for FSA material has been prepared, which has permeability values lower than 10-9 m/s. This low permeability can assure a low percolation of precipitated water through the landfill liner, < 50 litre/m{sup 2}/year. FSA has sufficient un-drained shear strength and has an estimated slow bio-degradation, which can assure a long duration period. Based on results from tests conducted in this and other projects, where FSA materials were tested, necessary quality verifications has been conducted for the ingredients bio-fly-ash and sewage sludge and for the FSA-mixture. The FSA materials potential as liner increases with darker colour (bordering black). FSA-40 is a mixture of 40 % dry solid (DS) fly ash and 60 % DS sewage sludge, and FSA-60 is a mixture containing 60 % DS fly ash and 40 % DS sewage sludge and so on. Some important parameters of the ingredient materials are DS content (or water content) and pH and CaO content of the fly ash. A liner made of FSA should have surrounding layers of high water containing capacity in order to protect the FSA-liner from drying. The drainage and oxidation protection layers have to transport precipitated water as well as contain sufficient pore water in order to be an oxygen barrier above the liner (FSA). In addition, the investigation shows that a paddle blender should be used in order to guarantee a

  17. EFFECTIVENESS OF RECLAMATION OF SODA WASTE DISPOSAL SITE AT JANIKOWO USING SEWAGE SLUDGE

    Directory of Open Access Journals (Sweden)

    Jan Siuta

    2014-10-01

    Full Text Available There are numerous reclamation technologies based on sewage sludge treatment, however, one that is most purposeful consists in applying the sludge in order to achieve green cover (bioremediation with plants on fine grained waste disposal sites which have a high potential for soil formation on the one hand, but on the other, are highly vulnerable to erosive action of wind and atmospheric precipitation. The technological waste at the Janikowo Soda Plant has liquid consistence, contains fine-grained (dust-like and water soluble calcium compounds, and is highly alkaline and saline. The waste was disposed and dehydrated in the large-area earthen ponds elevated beyond the ground level. The combined surface of all the exploited settling ponds (with roads and escarpments jointly exceeds 105 ha. Dehydration by infiltration and evaporation was a source of unrestricted dust emissions from the drying and dry surfaces of the waste site. Urgent action was then deemed necessary to manage the high risk of nuisance dust to the local population, technical infrastructure, engines and cars. Consequently, it was decided that the best way to manage nuisance dust would be to create a thick and permanent vegetal cover on the waste site. The vegetal cover would also limit salt infiltration from the disposal site to groundwater and to adjacent agricultural land, and contribute to improving the local landscape values. Treatment with adequately high (appropriate for reclamation purposes doses of sewage sludge and sowing of plants which have a high growth potential and nutrient demand resulted in the quick establishment of green cover on the waste disposal site. The contents of mineral elements in plants and in the top layer of the ground reclaimed were analyzed starting from the year 2000 onwards until the year 2013. The chemical composition of sewage sludge was systematically analyzed as well. No excessive contents were found of main elements neither of heavy metals in

  18. Radioactive nuclides in sewage sludges and problems associated with their utilisation or dumping

    International Nuclear Information System (INIS)

    Schneider, P.; Brunner, P.; Tiefenbrunner, F.; Dierich, M.P.

    1990-01-01

    In a sewage plant with radioactively contaminated sewage an accumulation of radionuclides was found in the sewage sludge. The specific activities are in inverse proportion to the water content of the sewage sludge, the dehydrated sewage sludge having the highest specific activities. The retained radionuclides seem to be firmly accumulated in the sludge. Nevertheless, they are in a form which can be utilised by plants. This was demonstrated in experiments with Trifolium Repens and Secale Cereale where the rate of absorption was 15-33% (in Ci/kg dry weight per plant: nCi/kg dry weight soil x 100). Thus there are problems associated with using radioactively contaminated sewage sludge as a fertiliser. In further experiments to extract radioactive nuclides from ashed sewage sludge it was shown that acidifying the aqueous phase results in an increase in the level of radioactivity in the eluated fractions. (author)

  19. Analysis of sewage sludge and cover soil by neutron activation analysis

    International Nuclear Information System (INIS)

    Moon, J.H.; Lim, J.M.; Kim, S.H.; Chung, Y.S.

    2008-01-01

    The Korean government reported that in 2005, 4395 tons/day of sewage sludge were generated from sewage disposal facilities in Korea and only 11.03% of it was reused. In addition, as a direct landfill of sewage sludge was forbidden from June 2003, research for a relevant disposal technique has been increasing. In this study, the aims were to analyze the collected sewage sludge samples and to evaluate the possibility for their reuse by a comparison of the elemental contents from a sewage sludge and a cover soil. Sludge samples were collected from a sewage disposal plant in Daejeon city and the cover soil was produced by a dilution of a sewage sludge with quicklime. Instrumental neutron activation analysis was employed to determine the elemental contents in the samples. Twenty seven elements were analyzed and their concentrations were compared. (author)

  20. Reclamation of copper mine tailings using sewage sludge

    OpenAIRE

    Stjernman Forsberg, Lovisa

    2008-01-01

    Tailings are the fine-grained fraction of waste produced during mining operations. This work was carried out on tailings from the Aitik copper mine in northern Sweden. Establishment of vegetation on the Aitik mine tailings deposit is planned to take place at closure of the mine, using sewage sludge as fertiliser. However, the tailings contain traces of metal sulphides, e.g. pyrite, FeS2, and chalcopyrite, CuFeS2. When the sulphides are oxidised, they start to weather and release metals and st...

  1. Phytoextraction of heavy metal from sewage sludge by plants

    Directory of Open Access Journals (Sweden)

    Jaroslava Bartlová

    2010-01-01

    Full Text Available In 2008 and 2009, studies made contents of cadmium and lead in the soil and their uptake by non-traditional plants were studied in a small-plot trial. At the same time also the effect of bio-algeen preparations on phytoextraction of heavy metals by these plants was investigated. Experimental plots were established on the reclaimed land after closing down mining operations in the town of Žacléř (North-East Bohemia where a layer of sewage sludge from a wastewater treatment plant 0.6–0.8 m thick was subsequently applied. The locality is situated in the altitude of 612 m, its average annual temperature is about 6.8 °C and the mean annual precipitations are 857 mm. Analyses revealed higher concentrations of heavy metals in the applied sewage sludge. The average concentrations of lead and cadmium were 180 mg . kg−1 and 6.89 mg . kg−1, respectively. The experiment had two variants: Variant 1 – sewage sludge without any other substances, and Variant 2 – sewage sludge + bio-algeen preparations (B. A. S-90 or B. A. Root Concentrate. To find the most suitable plant species for the phytoextraction of cadmium and lead, the following non-traditional plants were cultivated in both variants: fodder mallow (Malva verticillata L., rye (Secale cereale L. var. multicaule METZG. ex ALEF. and white sweet clover (Melilotus alba MEDIC.. The highest accumulation of cadmium and lead in the aboveground biomass was found out in rye, viz 14.89 mg . kg−1 DM and 14.89 mg . kg−1 DM of Cd and Pb, respectively., As compared with other plants under study, white sweet clover exhibited the significantly lowest capability to extract both heavy metals from soil (viz 0.22 and 3.20 mg . kg−1 DM of Cd and Pb, respectively. A positive effect of bio-algeen on phytoextraction of cadmium and lead was evident in all plants. The highest yield of aboveground biomass was recorded on the plot with white sweet clover with added

  2. Electron ray facilities for the pasteurization of sewage sludges

    International Nuclear Information System (INIS)

    Heuer, D.; Hofmann, E.G.

    1978-01-01

    Growing industrialization and the simultaneous increase in population density demand broad preventive measures in the area of waste water and sewage sludges. Electron irradiation is becoming an important tool for disinfection in this field. The AEG-Telefunken sludge pasteurization process works in continuous operation with homogenized sludge at electron energies between 1,0 to 1,5 MeV and a radiation dosage of 4 kJ/kg. The system offers the capabilities for an effective and costadvantageous disinfection of waste sludges of differing consistencies and origins and their harmless reuse as fertilizer in agriculture. (orig.) [de

  3. Soil microbial population and nitrogen fixation in peanut under fly ash and sewage sludge

    International Nuclear Information System (INIS)

    Sarkar, S.; Khan, A.R.

    2002-06-01

    Surface disposal of municipal sludge and industrial wastes is an old practice that recently has been attracting concerns due to associated soil, air and water pollution. Wise utilization and recycling of these wastes in agricultural land brings in the much-needed organic and mineral matter to the soil. However, the assimilative capacity of the soil with respect to its physical, chemical and biological properties and the performance of crop grown, needs thorough investigation. Industrial wastes like fly ash (FA) from Thermal Power Plant and Sewage Sludge from municipal and city activities (untreated and treated CW) are some such important organic based waste resources having a potentiality for recycling in the agricultural land. The characteristics of these wastes with respect to their pH, plant nutrient and heavy metals content differs. Fly ash, being a burnt residue of coal, is rich in essential mineral elements and also has capacity in neutralizing soil acidity and supplying the nutrients to the plants (Molliner and Street, 1982). Sewage sludge application also has a significant influence on the physical, chemical and biological properties of soil. The soil biological systems can be altered by new energy input for the organisms, which is reflected by changes in the micro and macrobiological populations, in turn influencing the synthesis and decomposition of soil organic substances, nutrient availability, interactions with soil inorganic components and other exchanges with physical and chemical properties (Clapp et al, 1986). So far, much information is known regarding changes in physico-chemical properties of soil and performance of crop due to applications of such wastes. However, long term studies are needed to improve our understanding of the effects of land application of such wastes on soil biological systems (McGrath et al. 1995). It is known that native soil microbial population is responsible for decomposition of organic matter and recycling of nutrients

  4. phytoremediation of sewage sludge in soils contaminated

    African Journals Online (AJOL)

    PROF EKWUEME

    repeated increase daily or weekly application of sewage ... fertilizers, herbicides, germicides and decomposition and burning of fossil fuels. ... However, organic and inorganic pollutants greatly ... green vegetables for the in-situ or ex-situ.

  5. Optimization and validation of a new method of analysis for polycyclic aromatic hydrocarbons in sewage sludge by liquid chromatography after microwave assisted extraction

    International Nuclear Information System (INIS)

    Villar, P.; Callejon, M.; Alonso, E.; Jimenez, J.C.; Guiraum, A.

    2004-01-01

    Characterization of sludge from waste water treatment plants which are destined to be spread on agricultural lands, is a priority need. Inorganic pollutants are regularly controlled but organic pollutants have received little attention up to now. In this paper, we have developed an analytical procedure using microwave-assisted extraction prior to liquid chromatography coupled with diode array (LC-DAD) or fluorescence (LC-FL) detectors for the determination of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge. The main factors affecting the extraction efficiency (microwave power, irradiation time and extractant volume) were optimized. Clean-up of sewage sludge extracts was not found to be necessary. For adequate fluorescence detection of PAHs a temporal program of excitation and emission wavelengths was used. The optimized method was applied to the extraction of PAHs from various sludges from a waste water treatment plant (Jerez de la Frontera, Cadiz, Spain). The limits of detection were between 4 ng g -1 sewage sludge for benzo[b]fluoranthene and 12 ng g -1 sewage sludge for pyrene using LC-FL. When LC-DAD is used the limits of detection were between 13 ng g -1 for indeno[1,2,3-cd]pyrene and 62 ng g -1 for naphthalene. The relative standard deviations were found to be <10%. The validation of the proposed method was carried out by application to analysis for PAHs in a certified reference material (CRM) 088 dried sewage sludge of the Community Bureau of Reference (BCR). The recoveries were between 69% for benzo[k]fluoranthene and 110% for pyrene using LC-FL and between 52% for indeno[1,2,3-cd]pyrene and 104% for benzo[a]pyrene using LC-DAD of the certified values. These results are in a very good agreement with those given in the literature

  6. Disponibilidade de metais pesados em Latossolo com aplicação superficial de escória, lama cal, lodos de esgoto e calcário Heavy metal exchangeable in an Oxisol with surface application of flue dust, aqueous lime, sewage sludge and limestone

    Directory of Open Access Journals (Sweden)

    Juliano Corulli Corrêa

    2008-03-01

    Full Text Available O objetivo deste trabalho foi avaliar alguns atributos químicos do solo e a disponibilidade de cádmio (Cd, cromo (Cr, níquel (Ni, mercúrio (Hg, chumbo (Pb e arsênio (As, por meio da extração pelo DTPA, em conseqüência da aplicação superficial de escória de aciaria, lama cal e lodos de esgoto centrifugados e de biodigestores, nas doses 0 (testemunha, 2, 4 e 8 Mg ha-1 e um tratamento adicional composto pela calagem superficial na dose 2 Mg ha-1. O experimento foi conduzido em delineamento de blocos ao acaso, em condições de campo, em área sob sistema plantio direto, durante 2003 e 2004. A aplicação superficial de escória de aciaria, lama cal, lodo de esgoto centrifugado e de biodigestor, até a dose 8 Mg ha-1, assim como o calcário na dose 2 Mg ha-1, não trazem problemas de disponibilidade ao ambiente, com relação aos metais pesados Cd, Cr, Hg, Pb, Ni e As, quando aplicados sobre a superfície em Latossolo Vermelho distrófico, no sistema plantio direto. A fitodisponibilidade de metais pesados às culturas da soja e aveia-preta foi nula, quando foram aplicadas doses de até 8 Mg ha-1 de lodo de esgoto, escória e lama cal sobre a superfície do solo, no sistema plantio direto.The objective of this work was to evaluate the soil chemical attributes and exchange of cadmium (Cd, chromium (Cr, nickel (Ni, mercury (Hg, lead (Pb and arsenic (As by DTPA extractor in an Oxisol with surface application of flue dust, aqueous lime, sewage sludge in rates of zero (control, 2, 4 and 8 Mg ha-1 and one additional treatment of dolomitic limestone at 2 Mg ha-1. The experiment was carried out in a randomized blocks design under field conditions, in a no-tillage system in 2003 and 2004. The surface applications of flue dust, aqueous lime and sewage sludge centrifuge and biodigestor at 8 Mg ha-1, as well as the application of limestone at 2 Mg ha-1, cause no problems of exchange to the environment, related to the heavy metals Cd, Cr, Hg, Pb, Ni

  7. The sanitary effect of gamma irradiation on sewage sludge

    International Nuclear Information System (INIS)

    Hess, E.; Breer, C.

    1975-01-01

    Sludge contains Salmonellae in more than 90% of samples. The maximum number reaches 10 7 per liter. Neither aerobic stabilization nor anaerobic digestion significantly reduces the contamination with Salmonellae. Moreover, Salmonellae in sewage sludge spread on grass may survive up to 72 weeks. Fertilizing with unsanitized sludge may therefore lead to transmission from plant to animal. Sanitizing of sludge to be used as fertilizer is therefore urgent. The sanitary effect of pasteurisation and of gamma irradiation on sewage sludge was investigated. For this the number of Enterobacteriaceae before and after irradiation in 259 specimens of sludge from 44 different sewage disposal plants was examined. The doses applied were 100, 200, 300, 400 and sometimes 500 krad. A linear reduction of Enterobacteriaceae was achieved with increasing radiation doses. A dose of 300 krad resulted in a death rate of 10 4 - 10 8 , occasionally 10 9 Enterobacteriaceae. Less than 10 Enterobacteriaceae per gramm were found in 97.2% of the samples irradiated with 300 krad. The effect found in the above mentioned model experiments could be perfectly confirmed under practical conditions in the irradiation plant of Geiselbullach. The sanitary effect of gamma irradiation with 300-350 krad, determined by Enterobacteriaceae reduction, was equivalent to the effect of heat treatment by pasteurisation. (orig./MG) [de

  8. Properties of fired clay brick incorporating with sewage sludge waste

    Science.gov (United States)

    Kadir, Aeslina Abdul; Salim, Nurul Salhana Abdul; Sarani, Noor Amira; Rahmat, Nur Aqma Izurin; Abdullah, Mohd Mustafa Al Bakri

    2017-09-01

    The production of sludge in wastewater treatment plant is about to increase every year and most of the sludge was directly disposed to landfill. In addition, the constraint to treat sludge is very high in cost and time- consuming could be disadvantages to the responsible parties. Therefore, this research was conducted to utilize sludge produced from the wastewater treatment plant into fired clay brick as one of the alternatives of disposal method. In this study, the research attempt to incorporate sewage sludge waste (SSW) into fired clay brick. The sewage sludge brick (SSB) mixtures were incorporated with 0%, 1%, 5%, 10%, and 20% of SSW. The manufactured bricks were fired at 1050°C with heating rate of 1°C/min. Physical and mechanical properties test were conducted such as shrinkage, density, water absorption and compressive strength. As the conclusion, brick with utilization 5% of SSW is acceptable to produce good quality of brick. This study shows by using SSW in fired clay brick could be an alternative method to dispose of the SSW and also could act as a replacement material for brick manufacturing with appropriate mix and design.

  9. Usage of pumice as bulking agent in sewage sludge composting.

    Science.gov (United States)

    Wu, Chuandong; Li, Weiguang; Wang, Ke; Li, Yunbei

    2015-08-01

    In this study, the impacts of reused and sucrose-decorated pumice as bulking agents on the composting of sewage sludge were evaluated in the lab-scale reactor. The variations of temperature, pH, NH3 and CO2 emission rate, moisture content (MC), volatile solid, dissolved organic carbon, C/N and the water absorption characteristics of pumice were detected during the 25days composting. The MC of pumice achieved 65.23% of the 24h water absorptivity within the first 2h at the mass ratio of 0.6:1 (pumice:sewage sludge). Reused pumice increased 23.68% of CO2 production and reduced 21.25% of NH3 emission. The sucrose-decorated pumice reduced 43.37% of nitrogen loss. These results suggested that adding pumice and sucrose-decorated pumice in sludge composting matrix could not only adjust the MC of materials, but also improve the degradation of organic matters and reduce nitrogen loss. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Inactivation of bacteria in sewage sludge by gamma radiation

    International Nuclear Information System (INIS)

    Pandya, G.A.; Kapila, Smita; Kelkar, V.B.; Negi, Shobha; Modi, V.V.

    1987-01-01

    The survival of certain bacterial cultures suspended in sewage sludge and exposed to gamma-radiation was studied. The inactivation patterns of most of the organisms were significantly different when irradiation was performed using sewage samples collected in the summer and monsoon seasons. The summer sample collected from the anaerobic digester afforded significant protection to both Gram negative and Gram positive organisms. This was evident by the increase in dose required to bring about a 6 log cycle reduction in viable count of the bacterial cultures, when suspended in sewage samples instead of phosphate buffer. The observations made using monsoon digester samples were quite different. This sewage sludge greatly enhanced inactivation by gamma-radiation in most cases. The effects of certain chemicals on the inactivation patterns of two organisms - Salmonella typhi and Shigella flexneri - were examined. Arsenate, mercury and lead salts sensitised S. typhi, while barium acetate and sodium sulphide protected this culture against gamma-radiation. In the case of Sh. flexneri, barium acetate and iodacetamide proved to be radioprotectors. The effects of some chemicals on the inactivation pattern of Sh. flexneri cells irradiated in sludge are also discussed. (author)

  11. A Simple and Rapid Method to Evaluate Potentially Mineralizable Nitrogen in Sewage Sludge Amended Calcareous Soils

    Directory of Open Access Journals (Sweden)

    Yazdan Lotfi

    2005-06-01

    Full Text Available Potentially mineralizable nitrogen (PMN can be usually considered as labile nitrogen. Measurement of PMN is expensive and time consuming; therefore, a simpler and more rapid alternative may facilitate routine laboratory analysis. The objective of this study was to determine the relationship between PMN and biological index of nitrogen availability (BINA. The studied soil was previously treated with 0, 25, and 100 tons ha-1 of sewage sludge with 0, 1, 2 and 3 consecutive years of application. Soil samples were taken 6 months after the latest application. PMN was measured according to Stanford and Smith procedure (20 weeks of aerobic incubation with 2 weeks leaching intervals and BINA measured as described by Bundy and Meisinger (7 days of anaerobic incubation at 40˚ C followed by extraction of NH4+. Results showed that PMN was significantly correlated with BINA (r = 0.938, P

  12. Plant growth inhibition by soluble salts in sewage sludge-amended mine spoils

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, C.S.; Anderson, R.C. [Illinois State University, Normal, IL (United States). Dept. of Biological Sciences

    1995-07-01

    The growth response of prairie switchgrass {ital Panicum virgatum}L was compared in strip mine spoil amended with various levels of anaerobically digested waste-activated sewage sludge (0, 56, 111, 222, or 333 dry Mg ha{sup -1}) and commercial fertilizer, pure sludge, and glasshouse soil. Plants were grown in a growth chamber and substrates were maintained at field capacity during the study. Soluble salt concentrations of the substrates increased linearly as a function of sludge amendment and were within the range known to inhibit the growth of many plant species at the high levels of sludge application. There was, however, a linear response of biomass production to increasing levels of sludge amendment. Maintaining substrates at field capacity apparently prevented the high concentration of soluble salts from inhibiting plant growth. The increased biomass yield associated with sludge application was likely due to the increased availability of inorganic nutrients associated with sludge amendment. 22 refs., 2 figs., 2 tabs.

  13. Disintegration of excess activated sludge--evaluation and experience of full-scale applications.

    Science.gov (United States)

    Zábranská, J; Dohányos, M; Jenícek, P; Kutil, J

    2006-01-01

    Anaerobic digestion of sewage sludge can be improved by introducing a disintegration of excess activated sludge as a pretreatment process. The disintegration brings a deeper degradation of organic matter and less amount of output sludge for disposal, a higher production of biogas and consequently energy yield, in some cases suppression of digesters foaming and better dewaterability. The full-scale application of disintegration by a lysate-thickening centrifuge was monitored long term in three different WWTPs. The evaluation of contribution of disintegration to biogas production and digested sludge quality was assessed and operational experience is discussed. Increment of specific biogas production was evaluated in the range of 15-26%, organic matter in digested sludge significantly decreased to 48-49%. Results proved that the installation of a disintegrating centrifuge in WWTPs of different sizes and conditions would be useful and beneficial.

  14. Changes in the Concentration of Heavy Metals (Cr, Cd, Ni During the Vermicomposting Process of Sewage Sludge

    Directory of Open Access Journals (Sweden)

    Aušra Zigmontienė

    2014-10-01

    Full Text Available Sewage sludge treatment and utilization is an important issue for a biodegradable waste management strategy. Heavy metals in sewage sludge complicate its use. Vermicomposting is one of the ways to improve the characteristics of sewage sludge and to reduce the residual concentrations of heavy metals. Study on changes in the concentration of heavy metals (Chromium, Nickel and Cadmium, when vermicomposting sewage sludge, was performed using Californian earthworms (Eisenia fetida. For that purpose, 60 kg of sewage sludge from Vilnius Waste Water Treatment Plant were taken thus inserting 1.5 kg of Californian earthworms into it. Optimal conditions for work (optimum temperature, moisture, pH for earthworms to survive were maintained in the course of the study that lasted 120 days and was conducted in June – August. The samples of sewage sludge and earthworms were taken every 10 days. The concentrations of heavy metals in sewage sludge were measured using atomic absorption spectroscopy.

  15. Sewage sludge drying process integration with a waste-to-energy power plant.

    Science.gov (United States)

    Bianchini, A; Bonfiglioli, L; Pellegrini, M; Saccani, C

    2015-08-01

    Dewatered sewage sludge from Waste Water Treatment Plants (WWTPs) is encountering increasing problems associated with its disposal. Several solutions have been proposed in the last years regarding energy and materials recovery from sewage sludge. Current technological solutions have relevant limits as dewatered sewage sludge is characterized by a high water content (70-75% by weight), even if mechanically treated. A Refuse Derived Fuel (RDF) with good thermal characteristics in terms of Lower Heating Value (LHV) can be obtained if dewatered sludge is further processed, for example by a thermal drying stage. Sewage sludge thermal drying is not sustainable if the power is fed by primary energy sources, but can be appealing if waste heat, recovered from other processes, is used. A suitable integration can be realized between a WWTP and a waste-to-energy (WTE) power plant through the recovery of WTE waste heat as energy source for sewage sludge drying. In this paper, the properties of sewage sludge from three different WWTPs are studied. On the basis of the results obtained, a facility for the integration of sewage sludge drying within a WTE power plant is developed. Furthermore, energy and mass balances are set up in order to evaluate the benefits brought by the described integration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Behavior of Ag nanoparticles in soil: Effects of particle surface coating, aging and sewage sludge amendment

    International Nuclear Information System (INIS)

    Whitley, Annie R.; Levard, Clément; Oostveen, Emily; Bertsch, Paul M.; Matocha, Chris J.; Kammer, Frank von der; Unrine, Jason M.

    2013-01-01

    This study addressed the relative importance of particle coating, sewage sludge amendment, and aging on aggregation and dissolution of manufactured Ag nanoparticles (Ag MNPs) in soil pore water. Ag MNPs with citrate (CIT) or polyvinylpyrrolidone (PVP) coatings were incubated with soil or municipal sewage sludge which was then amended to soil (1% or 3% sludge (w/w)). Pore waters were extracted after 1 week and 2 and 6 months and analyzed for chemical speciation, aggregation state and dissolution. Ag MNP coating had profound effects on aggregation state and partitioning to pore water in the absence of sewage sludge, but pre-incubation with sewage sludge negated these effects. This suggests that Ag MNP coating does not need to be taken into account to understand fate of AgMNPs applied to soil through biosolids amendment. Aging of soil also had profound effects that depended on Ag MNP coating and sludge amendment. -- Highlights: •Silver nanoparticle coating affects fate in unamended soils. •Citrated coated silver nanoparticles could be found in pore water for up to six months. •Pre-incubation of silver nanoparticles in sewage sludge negated effects of surface coating. •Weathered or reprecipitated particles found in pore water for up to two months in sludge amended soils. •Particle surface coating, sewage sludge amendment and aging all have important impacts. -- Behavior of manufactured silver nanoparticles in soil depends on surface coating, contact with sewage sludge, and aging

  17. Experience with a pilot plant for the irradiation of sewage sludge

    International Nuclear Information System (INIS)

    Rosopulo, A.; Fiedler, I.; Staerk, H.; Suess, A.; Technische Univ. Muenchen

    1975-01-01

    Analyses of mineral nutrients and trace elements in sewage sludge over a one year period showed that there are relatively small differences in the content of inorganic constituents. In relation to sewage sludge treatment we found a change in the ratio of NH 4 -N : total N after a heat treatment; this means that the ammonium content increased in 70% of the analysed samples compared to untreated sludge. After radiation treatment of sewage sludge no change can be observed up to a pH of 8. With an increase of the pH-value (>= 8) losses of NH- 4 N can be observed. During the dewatering process of sewage sludge - which is influenced by sewage sludge treatment -, potassium, sodium and ammonium are enriched in the filtering water. While there is a decrease of these alkali elements in the dewatered sewage sludge, nearly no change in the other components can be observed. Studying the availability of mineral compounds and trace elements to plants, results are presented of inorganic nutrients and essential or toxic trace elements of sewage sludge and plants. (orig.) [de

  18. Sealing layer of fly ashes and sewage sludge and vegetation establishment in treatment of mine tailings impoundments; Flygaska och roetslam som taetskikt vid efterbehandling av sandmagasin med vegetationsetablering

    Energy Technology Data Exchange (ETDEWEB)

    Greger, Maria; Neuschuetz, Clara [Stockholm Univ. (Sweden). Dept. of Botany; Isaksson, Karl-Erik [Boliden Mineral AB (Sweden)

    2006-02-15

    Each year the Swedish mining industry produces 25 Mtonnes of mine tailings that are disposed of in extensive natural impoundments. As this sand, containing more or less sulphide-rich minerals, is penetrated by oxygen and water, it starts weathering resulting in formation of acidic and metal-rich drainage water. To prevent oxygen penetration the mine tailings can be covered with a sealing layer covered with a protective cover that facilitates establishment of vegetation. The aim of this study has been to examine the function of fly ash and sewage sludge in sealing layers at impoundments of pyrite rich mine tailings, and the ability of different plant species, which are suitable for establishment in these areas, to penetrate the sealing layer with their roots and what impact they have on the drainage water. Experiments have been performed in field and greenhouse environment, with sealing layers consisting of fly ash and sewage sludge mixtures, covered with protective covers of sewage sludge or till. Plant establishment has been studied in a survey of naturally established plants at sewage sludge disposal sites close to mining areas, and by sowing and planting of selected plants, for instance fast growing grass species and fibre hemp at the test plots in field and in greenhouse experiments. Large scale application of ashes, sewage sludge and an ash/sludge mixture have been performed in field at three test plots with the size of 0.3-1 ha. Leakage of nutrients and metals from sealing layers has been studied in field and greenhouse tests. In addition, the ability of plant roots to penetrate sealing layers made of different ash/sludge mixtures have been examined in greenhouse experiments. This investigation is a cooperation between Stockholm University and Boliden Mineral AB, and the field experiments have been performed at the mine tailings impoundments at Gillervattnet, Boliden. Other collaborating participants are Skellefteaa Kraft and Munksund, who have produced the

  19. Valorisation of ferric sewage sludge ashes: Potential as a phosphorus source

    DEFF Research Database (Denmark)

    Guedes, Paula; Couto, Nazare; Ottosen, Lisbeth M.

    2016-01-01

    Sewage sludge ashes (SSA), although a waste, contain elements with socio-economic and environmental potential that can be recovered. This is the case of phosphorus (P). SSA from two Danish incinerators were collected during two years and characterized. The sampling was done immediately after...... incineration (fresh SSA) or from an outdoor deposit (deposited SSA). Although morphology and mineral composition were similar, physico-chemical and metal concentration differences were found between incinerator plants and sampling periods. No differences were observed between deposited and fresh SSA, except...... for the parameters directly influenced by disposal conditions (e.g. moisture content). All the SSAs had high concentrations of P (up to 16 wt%), but they all exceeded Danish EPA Cd and Ni thresholds for direct application at agricultural soil.Fresh and deposited SSA were acid washed aiming P extraction, achieving 50...

  20. Simultaneous heavy metals removal and municipal sewage sludge dewaterability improvement in bioleaching processes by various inoculums.

    Science.gov (United States)

    Shi, Chaohong; Zhu, Nengwu; Shang, Ru; Kang, Naixin; Wu, Pingxiao

    2015-11-01

    The heavy metals content and dewaterability of municipal sewage sludge (MSS) are important parameters affecting its subsequent disposal and land application. Six kinds of inoculums were prepared to examine the characteristics of heavy metals removal and MSS dewaterability improvement in bioleaching processes. The results showed that Cu, Zn and Cd bioleaching efficiencies (12 days) were 81-91, 87-93 and 81-89%, respectively, which were significantly higher than those of Fe-S control (P bioleaching boosted by the prepared inoculums could also significantly enhance MSS dewaterability (P bioleaching for heavy metals removal and dewaterability improvement. It also suggested that the synergy of sulfur/ferrous-oxidizing bacteria (SFOB) enriched from AMD and the cooperation of exogenous and indigenous SFOB significantly promoted bioleaching efficiencies.

  1. Efficiency of repeated phytoextraction of cadmium and zinc from an agricultural soil contaminated with sewage sludge.

    Science.gov (United States)

    Luo, Kai; Ma, Tingting; Liu, Hongyan; Wu, Longhua; Ren, Jing; Nai, Fengjiao; Li, Rui; Chen, Like; Luo, Yongming; Christie, Peter

    2015-01-01

    Long-term application of sewage sludge resulted in soil cadmium (Cd) and zinc (Zn) contamination in a pot experiment conducted to phytoextract Cd/Zn repeatedly using Sedum plumbizincicola and Apium graceolens in monoculture or intercropping mode eight times. Shoot yields and soil physicochemical properties changed markedly with increasing number of remediation crops when the two plant species were intercropped compared with the unplanted control soil and the two monoculture treatments. Changes in soil microbial indices such as average well colour development, soil enzyme activity and soil microbial counts were also significantly affected by the growth of the remediation plants, especially intercropping with S. plumbizincicola and A. graveolens. The higher yields and amounts of Cd taken up indicated that intercropping of the hyperaccumulator and the vegetable species may be suitable for simultaneous agricultural production and soil remediation, with larger crop yields and higher phytoremediation efficiencies than under monoculture conditions.

  2. Ten year experience in operation of a sewage sludge treatment plant using gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lessel, T [Abwasserverband Ampergruppe, Eichenau/Muenchen (Germany, F.R.); Suess, A [Bayerische Landesanstalt fuer Bodenkultur und Pflanzenbau, Muenchen (Germany, F.R.)

    1984-01-01

    The first sewage sludge gamma irradiation plant in a technical scale, using Co-60 has been successfully working in Geiselbullach near Munich, FRG, since July 1973. More than 250,000 m/sup 3/ of liquid sludge has been disinfected during that time. Very simple plant design, fully automatic operation over 24 hours and high availability proved the practical applicability of such a facility in a sewage water purification plant without any specially skilled personnel. Beside wide investigations for hygienic aspects, changing of the physical sludge characteristics, effect of irradiated sludge on soil and plants the economic considerations were regarded as important. Experiments were undertaken to optimize the flexibility of the plant operation and to reduce the necessary radiation dose for minimizing the operation costs.

  3. Ten year experience in operation of a sewage sludge treatment plant using gamma irradiation

    International Nuclear Information System (INIS)

    Lessel, T.; Suess, A.

    1984-01-01

    The first sewage sludge gamma irradiation plant in a technical scale, using Co-60 has been successfully working in Geiselbullach near Munich, FRG, since July 1973. More than 250,000 m 3 of liquid sludge has been disinfected during that time. Very simple plant design, fully automatic operation over 24 hours and high availability proved the practical applicability of such a facility in a sewage water purification plant without any specially skilled personnel. Beside wide investigations for hygienic aspects, changing of the physical sludge characteristics, effect of irradiated sludge on soil and plants the economic considerations were regarded as important. Experiments were undertaken to optimize the flexibility of the plant operation and to reduce the necessary radiation dose for minimizing the operation costs. (author)

  4. The persistence of polynuclear aromatic hydrocarbons in sewage sludge-amended agricultural soils

    International Nuclear Information System (INIS)

    Wild, S.R.; Jones, K.C.; Berrow, M.L.

    1992-01-01

    In 1968 five metal enriched sewage sludges containing different concentrations of polynuclear aromatic hydrocarbons (PAHs) were applied to different plots on field soils at two experimental sites, Luddington and Lee Valley in the UK. This resulted in substantial increases in soil ΣPAH concentrations in all plots. Since application compound specific losses have occurred, with the high molecular weight PAHs being more persistent. Calculated half-lives range from under 2 years for naphthalene to over 9 years for benzo[ghi]perylene and coronene. The loss of PAH compounds in these field experiments can be related, in part, to certain physico-chemical properties, namely water solubility and the octanol:water partition coefficients. 20 refs., 3 figs., 1 tab

  5. Bioprocessing of sewage sludge for safe recycling on agricultural land - BIOWASTE

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Jens Ejbye; Angelidaki, Irini; Christensen, Nina; Batstone, Damien John; Lyberatos, Gerasimos; Stamatelatou, Katerina; Lichtfouse, Eric; Elbisser, Brigitte; Rogers, Kayne; Sappin-Didier, Valerie; Dernaix, Laurence; Caria; Giovanni; Metzger, Laure; Borghi, Veronica; Montcada, Eloi

    2003-07-01

    Disposal and handling of sewage sludge are increasing problems in Europe due to the increasing quantities of the sewage sludge produced. A large amount of the sewage sludge contains small fractions of toxic chemicals, which results in problems with safe use of the sewage sludge on agricultural land. From an ecological and economical point of view, it would be essential to establish methodologies, which could allow sewage sludge to be reused as fertilizers on agricultural land. Energy efficient biotreatment processes of organic waste are, therefore, of crucial importance. BIOWASTE will offer an integrated study of this area. The typical composition of sewage sludge will be characterized with regard to key contaminating compounds. The following compounds will be in focus: Emulsifying agents such as nonylphenols and nonylphenol ethoxylates (NPE), polycyclic aromatic hydrocarbons (PAHs) derived from incomplete combustion processes and phthalates, which are used as additives in plastics and surfactants such as linear alkyl benzene sulfonate (LAS). Analytical techniques suitable for qualitative and quantitative evaluation of the chemical species involved in the processes under investigation will be determined. Bacteria that are able to degrade selected contaminating compounds under anaerobic and aerobic conditions will be isolated, characterized and bioaugmented for decontamination of sewage sludge through bioprocessing. Aerobic, anaerobic and combination of aerobic/anaerobic bioprocessing of sewage sludge will be applied. A mathematical model will be developed to describe the biodegradation processes of the contaminating compounds after establishing the kinetic parameters for degradation of contaminating compounds. The bioprocessed sewage sludge will be used in eco- and plant- toxicology tests to evaluate the impact of the xenobiotics on the environment. Methodologies will be developed and applied to assess the cleanliness of the bioprocessing as a safe method for waste

  6. Thermal utilisation and disposal of sewage sludge; Thermische Klaerschlammverwertung und -Beseitigung

    Energy Technology Data Exchange (ETDEWEB)

    Dichtl, N. [Technische Univ. Braunschweig (Germany). Inst. fuer Siedlungswasserwirtschaft

    2004-07-01

    In view of the increasing difficulty of getting rid of sewage sludge under the new legal specifications, thermal methods of sewage sludge treatment will become more important. While sewage sludge contains useful material such as carbon, nitrogen, or phosphorus, there are also harmful constituents like heavy metals and organic compounds. Thermal processes will handle these critical constituents, provided that they are really eliminated in the process and not emitted again with the flue gases. Even if thermal processes meet the rigid emission criteria, it should be kept in mind that other useful constituents, especially phosphorus, will remain unused. (orig.)

  7. Incinerated sewage sludge ash as alternative binder in cement-based materials

    DEFF Research Database (Denmark)

    Krejcirikova, Barbora; Goltermann, Per; Hodicky, Kamil

    2013-01-01

    Sewage sludge ash is characterized by its pozzolanic properties, as cement is. This predetermines its use in a substitution of cement and cementitious materials. Utilization of sewage sludge ash does not only decrease the consumption of cement, one of the largest cause of CO2 emissions, but also...... it can minimize the need of ash landfill disposal. The objective of this study is to show potential use of incinerated sewage sludge ash (ISSA), an industrial byproduct, as possible binder in cement-based materials. Chemical and mechanical characteristics are presented and compared with results obtained...

  8. Sewage sludge: guidelines and its use as fertilizer, soil conditioner and forest substrate

    Directory of Open Access Journals (Sweden)

    David Pessanha Siqueira

    2017-12-01

    Full Text Available Sewage sludge is a residue generated after treatment of sewage, being a growing environmental issue due to the increase in wastewater collection and treatment networks. The disposal of these wastes to agricultural land has been presented as the most appropriate, with positive effects indicated by research. However, there are criteria and procedures to be followed  for the sewage sludge legal management. The main guidelines for sewage sludge use in agriculture are presented, as well as its impact on the chemical and physical properties of soils and its performance as a forest substrate, highlighting its strengths and weaknesses.

  9. Facile synthesis and characterisation of AlNs using Protein Rich Solution extracted from sewage sludge and its application for ultrasonic assisted dye adsorption: Isotherms, kinetics, mechanism and RSM design.

    Science.gov (United States)

    Mary Ealias, Anu; Saravanakumar, M P

    2018-01-15

    Protein Rich Solution (PRS) was prepared from the sewage sludge with ultrasonic assistance. With PRS, aluminium based nanosheet like materials (AlNs) were synthesised for the ultrasonic removal of Congo Red (CR) and Crystal Violet (CV) dyes. PRS was characterised by UV, EEM and NMR spectral analysis. AlNs were characterised by FTIR, XRD, TGA, BET, SEM, AFM, TEM and XPS analysis. The point of zero charge of AlNs was found to be 5.4. The BET analysis ensured that the average pore diameter and total pore volume of AlNs as 8.464 nm and 0.11417 cc/g respectively. The efficacy of AlNs for the removal of toxic dyes was tested by performing Response surface methodology (RSM) designed experiments. The effect of sonication time, dosage and initial concentration on dye removal was studied at an optimised pH value. Langmuir, Freundlich and Temkin isotherm models were examined. The maximum adsorption capacity was found to be 121.951 and 105.263 mg/g for CR and CV respectively. The kinetic models like pseudo-first order, pseudo-second order, Elovich and intra-particle diffusion were examined to understand the mechanism behind it. The results revealed that the use of ultrasonication enhanced the mass transfer. The experimental studies on the influence of ultrasound power indicated a positive relation with the removal efficiency. The results of thermodynamic study revealed that the process was spontaneous and exothermic for both the dyes. The increase in ionic strength increased the removal efficiency for both CR and CV. RSM predicted the optimum adsorbent dosages as 0.16 g for 50 mg/L of CR and 0.12 g for 100 mg/L of CV dye solutions. The values of half-life and fractional adsorption for both CR and CV suggested that the low cost AlNs has high potential to remove the toxic industrial dyes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Bioleaching of heavy metals from sewage sludge by Acidithiobacillus thiooxidans. A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Ye-Ming; Wang, Qing-Ping; Chen, Zu-Liang [Fujian Normal Univ., Fuzhou (China). School of Environmental Science and Engineering; Tang, Caixian [La Trobe Univ., Melbourne, VIC (Australia). Dept. of Agricultural Sciences

    2012-06-15

    To understand the bioleaching of metals from sludge by Acidithiobacillus thiooxidans, the aims of this study were to evaluate the experimental conditions affecting the efficiency of removal of the metals, including solids concentration, initial pH, sulfur concentration and inoculum level were examined, and following the bioleaching mechanism was proposed. Materials and methods: A. thiooxidans were isolated from collected sludge samples containing bacteria from Fuzhou Jingshan sewage treatment plant, and identification of bacteria by sequencing the 16 s rDNA gene sequences. Conditions affecting the bioleaching and application were conducted by batch experiments. The analysis of Cr, Cu, Pb, and Zn was carried out using an atomic absorption spectrophotometer, and the pH and oxidation-reduction potential (ORP) were measured using a pH meter and an ORP meter. The results show that a high metal leaching efficiency was achieved at low solid concentrations due to decreases in buffering capacity. In addition, the best conditions of the bioleaching included 2 % (w/{nu}) solid concentration, 5.0 gL{sup -1} sulfur concentration, and 10 % ({nu}/{nu}) inoculum concentration, where the removal efficiencies of Cr, Cu, Pb, and Zn in sewage sludge was 43.6 %, 96.2 %, 41.6 %, and 96.5 %, respectively. We found that the bioleaching of Zn was governed by direct and indirect mechanisms, while the bioleaching of Cu, Pb, and Cr was mainly dominated by the bioleaching indirect mechanism. After processing with the proposed techniques, the heavy metals in the sewage sludge did meet the requirement of the national standards. (orig.)

  11. Carbon sequestration and greenhouse gases emissions in soil under sewage sludge residual effects

    Directory of Open Access Journals (Sweden)

    Leonardo Machado Pitombo

    2015-02-01

    Full Text Available The large volume of sewage sludge (SS generated with high carbon (C and nutrient content suggests that its agricultural use may represent an important alternative to soil carbon sequestration and provides a potential substitute for synthetic fertilizers. However, emissions of CH4 and N2O could neutralize benefits with increases in soil C or saving fertilizer production because these gases have a Global Warming Potential (GWP 25 and 298 times greater than CO2, respectively. Thus, this study aimed to determine C and N content as well as greenhouse gases (GHG fluxes from soils historically amended with SS. Sewage sludge was applied between 2001 and 2007, and maize (Zea mays L. was sowed in every year between 2001 and 2009. We evaluated three treatments: Control (mineral fertilizer, 1SS (recommended rate and 2SS (double rate. Carbon stocks (0-40 cm were 58.8, 72.5 and 83.1 Mg ha–1in the Control, 1SS and 2SS, respectively, whereas N stocks after two years without SS treatment were 4.8, 5.8, and 6.8 Mg ha–1, respectively. Soil CO2 flux was highly responsive to soil temperature in SS treatments, and soil water content greatly impacted gas flux in the Control. Soil N2O flux increased under the residual effects of SS, but in 1SS, the flux was similar to that found in moist tropical forests. Soil remained as a CH4sink. Large stores of carbon following historical SS application indicate that its use could be used as a method for carbon sequestration, even under tropical conditions.

  12. Sewage sludge drying by energy recovery from OFMSW composting: Preliminary feasibility evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Rada, Elena Cristina; Ragazzi, Marco; Villotti, Stefano [University of Trento, Department of Civil, Environmental and Mechanical Engineering, via Mesiano 77, I-38123 Trento (Italy); Torretta, Vincenzo, E-mail: vincenzo.torretta@uninsubria.it [Insubria University of Varese, Department of Biotechnologies and Life Sciences, Via G.B. Vico 46, I-21100 Varese (Italy)

    2014-05-01

    Highlights: • The aim is to support the drying of sewage sludge, using a solar greenhouse. • The system allows the exploitation of heat available from OFMSW aerobic process. • Another aim is to face the problem of OFMSW treatment, in particular food waste. • Energy and mass balances are presented for a case study. - Abstract: In this paper an original energy recovery method from composting is analyzed. The integrated system exploits the heat available from the aerobic biochemical process in order to support the drying of sewage sludge, using a specific solar greenhouse. The aim is to tackle the problem of organic waste treatment, with specific regard to food waste. This is done by optimizing the energy consumption of the aerobic process of composting, using the heat produced to solve a second important waste management problem such as the sewage waste treatment. Energy and mass balances are presented in a preliminary feasibility study. Referring to a composting plant with a capacity of 15,000 t/y of food waste, the estimation of the power from recovered heat for the entire plant resulted about 42 kW. The results demonstrated that the energy recoverable can cover part of the heat necessary for the treatment of sludge generated by the population served by the composting plant (in terms of food waste and green waste collection). The addition of a renewable source such as solar energy could cover the residual energy demand. The approach is presented in detail in order for it to be replicated in other case studies or at full scale applications.

  13. Environmental & economic life cycle assessment of current & future sewage sludge to energy technologies.

    Science.gov (United States)

    Mills, N; Pearce, P; Farrow, J; Thorpe, R B; Kirkby, N F

    2014-01-01

    The UK Water Industry currently generates approximately 800GWh pa of electrical energy from sewage sludge. Traditionally energy recovery from sewage sludge features Anaerobic Digestion (AD) with biogas utilisation in combined heat and power (CHP) systems. However, the industry is evolving and a number of developments that extract more energy from sludge are either being implemented or are nearing full scale demonstration. This study compared five technology configurations: 1 - conventional AD with CHP, 2 - Thermal Hydrolysis Process (THP) AD with CHP, 3 - THP AD with bio-methane grid injection, 4 - THP AD with CHP followed by drying of digested sludge for solid fuel production, 5 - THP AD followed by drying, pyrolysis of the digested sludge and use of the both the biogas and the pyrolysis gas in a CHP. The economic and environmental Life Cycle Assessment (LCA) found that both the post AD drying options performed well but the option used to create a solid fuel to displace coal (configuration 4) was the most sustainable solution economically and environmentally, closely followed by the pyrolysis configuration (5). Application of THP improves the financial and environmental performance compared with conventional AD. Producing bio-methane for grid injection (configuration 3) is attractive financially but has the worst environmental impact of all the scenarios, suggesting that the current UK financial incentive policy for bio-methane is not driving best environmental practice. It is clear that new and improving processes and technologies are enabling significant opportunities for further energy recovery from sludge; LCA provides tools for determining the best overall options for particular situations and allows innovation resources and investment to be focused accordingly. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Sewage sludge drying by energy recovery from OFMSW composting: Preliminary feasibility evaluation

    International Nuclear Information System (INIS)

    Rada, Elena Cristina; Ragazzi, Marco; Villotti, Stefano; Torretta, Vincenzo

    2014-01-01

    Highlights: • The aim is to support the drying of sewage sludge, using a solar greenhouse. • The system allows the exploitation of heat available from OFMSW aerobic process. • Another aim is to face the problem of OFMSW treatment, in particular food waste. • Energy and mass balances are presented for a case study. - Abstract: In this paper an original energy recovery method from composting is analyzed. The integrated system exploits the heat available from the aerobic biochemical process in order to support the drying of sewage sludge, using a specific solar greenhouse. The aim is to tackle the problem of organic waste treatment, with specific regard to food waste. This is done by optimizing the energy consumption of the aerobic process of composting, using the heat produced to solve a second important waste management problem such as the sewage waste treatment. Energy and mass balances are presented in a preliminary feasibility study. Referring to a composting plant with a capacity of 15,000 t/y of food waste, the estimation of the power from recovered heat for the entire plant resulted about 42 kW. The results demonstrated that the energy recoverable can cover part of the heat necessary for the treatment of sludge generated by the population served by the composting plant (in terms of food waste and green waste collection). The addition of a renewable source such as solar energy could cover the residual energy demand. The approach is presented in detail in order for it to be replicated in other case studies or at full scale applications

  15. Sewage sludge disinfection by irradiation (ENEA-ACEA collaboration)

    International Nuclear Information System (INIS)

    Baraldi, D.

    1997-01-01

    The Municipal Association for Electricity and Water (ACEA) of Rome and the Lazio Regional Administration are implementing a programme of intervention aimed at protecting the water quality of the hydrogeological basin of Lake Bracciano. With support from ENEA, a pilot plant is being constructed for sewage-sludge direction by irradiation with accelerated electrons, in order to use the sludge as a fertilizer for agriculture, as is practised abroad mainly in Germany and the United States. The work to be carried out within the ENEA-ACEA agreement includes: sludge digestion, drying, and sterilization by irradiation. Results achieved so far, including preliminary analyses of irradiated sludge, are presented. The irradiation plant and processes involved are also described. (author)

  16. Composition and reactivity of ash from sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Willems, M; Pedersen, B; Jorgensen, S S

    1976-01-01

    Sewage sludge and sludge ash produced at 450 to 1050/sup 0/C in the laboratory or in a multiple hearth incinerator were analyzed by chemical and X-ray diffraction methods. Among the ash components were 23 to 32 percent calcium and magnesium phosphates and the following percentages of heavy metals: Zn 0.9, Cu 0.2, Pb 0.1, Cr 0.07, Ni 0.02, and Cd 0.006. As shown by EDTA-extraction, the reactivity of heavy metals was higher in ash produced at 450/sup 0/C than in dry sludge, but lower in ash produced above 800/sup 0/C. Phosphate in the 800 to 900/sup 0/C samples was dissolved in citric acid but not in citrate.

  17. Thermodynamic Equilibrium Calculations on Cd Transformation during Sewage Sludge Incineration.

    Science.gov (United States)

    Liu, Jing-yong; Huang, Limao; Sun, Shuiyu; Ning, Xun'an; Kuo, Jiahong; Sun, Jian; Wang, Yujie; Xie, Wuming

    2016-06-01

    Thermodynamic equilibrium calculations were performed to reveal the distribution of cadmium during the sewage sludge incineration process. During sludge incineration in the presence of major minerals, such as SiO2, Al2O3 and CaO, the strongest effect was exerted by SiO2 on the Cd transformation compared with the effect of others. The stable solid product of CdSiO3 was formed easily with the reaction between Cd and SiO2, which can restrain the emissions of gaseous Cd pollutants. CdCl2 was formed more easily in the presence of chloride during incineration, thus, the volatilization of Cd was advanced by increasing chlorine content. At low temperatures, the volatilization of Cd was restrained due to the formation of the refractory solid metal sulfate. At high temperatures, the speciation of Cd was not affected by the presence of sulfur, but sulfur could affect the formation temperature of gaseous metals.

  18. Fast pyrolysis of lignin, macroalgae and sewage sludge

    DEFF Research Database (Denmark)

    Trinh, Ngoc Trung

    effect on the product distributions of the lignin and sewage sludge PCR pyrolysis, as well as their bio-oil properties with respect to molecular mass distribution, identified GC-MS component compositions, water-insoluble fraction, viscosity, and HHV. A maximum of organic oil yields of lignin and sewage...... samples of wood, char and grinded char with respect to phase transitions, rheological properties, elemental composition, and energy density were investigated. Also pumping properties were investigated at temperatures of 25, 40 and 60 ºC and the solids loading of 0 - 20 wt%. The bioslurries obtained...... of the condenser nozzle and high rotor speed for obtaining high bio-oil. The recognized limitations lead to that the old PCR set-up cannot be safely scaled up and perform well in a continuous mode. Thus a new set-up with significant modifications of reactor and bio-condenser has been manufactured to overcome...

  19. Phosphorus recovery from sewage sludge ash through an electrodialytic process

    DEFF Research Database (Denmark)

    Guedes, Paula; Couto, Nazare; Ottosen, Lisbeth M.

    2014-01-01

    The electrodialytic separation process (ED) was applied to sewage sludge ash (SSA) aiming at phosphorus (P) recovery. As the SSA may have high heavy metals contents, their removal was also assessed. Two SSA were sampled, one immediately after incineration (SA) and the other from an open deposit (SB......). Both samples were ED treated as stirred suspensions in sulphuric acid for 3,7 and 14 days. After 14 days, phosphorus was mainly mobilized towards the anode end (approx. 60% in the SA and 70% in the SB), whereas heavy metals mainly electromigrated towards the cathode end. The anolyte presented...... a composition of 98% of P, mainly as orthophosphate, and 2% of heavy metals. The highest heavy metal removal was achieved for Cu (ca. 80%) and the lowest for Pb and Fe (between 4% and 6%). The ED showed to be a viable method for phosphorus recovery from SSA, as it promotes the separation of P from the heavy...

  20. The legacy of sewage sludge disposal in New York bight

    Energy Technology Data Exchange (ETDEWEB)

    Buchholtz ten Brink, M.; Casso, M.A. [Geological Survey, Woods Hole, MA (United States); Allison, M.A. [Texas A and M Univ., Galveston, TX (United States); Schleel, J.S.

    1995-12-31

    From 1924 until 1987, New York City disposed of sewage sludge by dumping at the 12-mile dumpsite in 20 m of water off the New York-New Jersey coast. Approximately 125 {times} 10{sup 6} m{sup 3} was deposited, peaking in the early 1980`s. The dumpsite is at the head of the Hudson Shelf Valley, a submerged river channel crossing the continental shelf, in a region of sandy sediments that are regularly reworked by wave action. The introduction of the chemically and texturally distinct `sludge` sediment provides a tracer to study how accumulated anthropogenic deposits are dispersed throughout the region or transferred off the shelf. This work, begun in 1992, focuses on the fate of the material in the valley, ``downstream`` from the dumpsite. Geophysical, chemical, and radiological tools were used to delineate the sedimentary processes, the extent of contaminant dispersal, and the longterm fate of the dump spoils. Sediment derived from the sewage sludge has preferentially deposited on the valley floor relative to the surrounding shelf, resulting in unnaturally high accumulation rates in the upper valley. Dark, sludge-derived sediment is being covered by cleaner deposits from 0 to 26 km downvalley from the dumpsite, but ongoing resuspension and transport of the sediment results in a sewage signal in the uppermost sediments up to 80 km from the dumpsite. Both buried and surface ``sludge`` is subject to biological mixing. The patchy occurrence of the black sediment and interbedded sand layers observed downvalley suggest that resuspension and transport occur episodically, probably during major storm events.

  1. Sanitary effect of gamma irradiation on sewage sludge

    International Nuclear Information System (INIS)

    Hess, E.; Breer, C.

    1975-01-01

    Our investigations prove that sludge contains Salmonellae in more than 90% of samples. The maximum number of organisms was 10 7 per litre. One of our most important findings was the fact that neither aerobic stabilization nor anaerobic digestion significantly reduces contamination with Salmonellae. Moreover we found that Salmonellae in sewage sludge spread on grass may survive up to 72 weeks. Fertilizing with unsanitized sludge may therefore lead to transmission from plant to animal. The increasing number of Salmonella carriers among our herds of cattle and their striking accumulation during the grazing period demonstrate that such transmission represents a growing danger. Sanitation of sludge to be used as fertilizer is therefore urgent. In our investigation of the sanitary effect of pasteurization (70degC for 30 min) and of gamma irradiation on sewage sludge, we examined the number of Enterobacteriaceae before and after irradiation in 259 specimens of sludge from 44 different sewage disposal plants. The doses applied were 100, 200, 300, 400 and also 500 krad. We found a linear reduction of Enterobacteriaceae with increasing doses; a dose of 300 krad resulted in a death rate of 10 4 - 10 8 , occasionally 10 9 Enterobacteriaceae; and there were less than 10 Enterobacteriaceae per gram in 97.2% of the samples irradiated with 300 krad. The results of these model experiments could be completely confirmed under practical conditions in the irradiation plant of Geiselbullach. The sanitary effect of gamma irradiation with 300-350 krad, determined by the reduction in Enterobacteriaceae, was equivalent to the effect of heat treatment by pasteurization. (author)

  2. Effects of heat, radiation, and thermoradiation on the filterability of sewage sludge

    International Nuclear Information System (INIS)

    Carter, C.V.

    1978-01-01

    The effects of heat, radiation and thermoradiation processes on the dewatering properties of raw and primary digested sewage sludges were investigated. These effects were measured by observing the changes in filterability subsequent to treatment. Thermal treatment (40 0 to 95 0 C) of the sewage sludge resulted in decreased filterability. Radiation and thermoradiation treatment increased the filterability, the increase being dose and temperature dependent. These treatment methods are not as effective as chemical additives in increasing the filterability of sewage sludge. The combined use of radiation and organic polymer conditioner shows no significant improvement in the filterability of sewage sludge over the use of polymer alone. There appears to be some interaction; however, it shows no useful synergistic effect

  3. Agricultural yields of irradiated sewage sludge; Rendimiento agricola de barros cloacales irradiados

    Energy Technology Data Exchange (ETDEWEB)

    Magnavacca, Cecilia; Miranda, E; Sanchez, M [Comision Nacional de Energia Atomica, Ezeiza (Argentina). Centro Atomico Ezeiza

    1999-07-01

    Lettuce, radish and ryegrass have been used to study the nitrogen fertilization of soil by sewage sludge. The results show that the irradiated sludge improve by 15 - 30 % the production yield, compared to the non-irradiated sludge. (author)

  4. Elimination of pathogenic microorganisms contained in sewage sludge by different anaerobic digestion technologies

    International Nuclear Information System (INIS)

    Rodriguez Morales, J. A.; Hernandez Lehmann, A.; Herandez Munoz, A. F.

    2010-01-01

    sewage sludge should be treated to facilitate handling and avoid possible problems like the smell of pathogens. These treatments modify the properties of the sludge making them more suitable for reuse or disposal. (Author) 5 refs.

  5. Joint NRC/EPA Sewage Sludge Radiological Survey: Survey Design & Test Site Results

    Science.gov (United States)

    This report contains the results of a radiological survey of nine publicly POTWs around the country, which was commissioned by the Sewage Sludge Subcommittee, to determine whether and to what extent radionuclides concentrate in sewage treatment wastes.

  6. Disposal Situation of Sewage Sludge from Municipal Wastewater Treatment Plants (WWTPs) and Assessment of the Ecological Risk of Heavy Metals for Its Land Use in Shanxi, China.

    Science.gov (United States)

    Duan, Baoling; Zhang, Wuping; Zheng, Haixia; Wu, Chunyan; Zhang, Qiang; Bu, Yushan

    2017-07-21

    Land use of sewage sludge is the primary disposal method in Shanxi, accounting for 42.66% of all. To determine the ecological risk of heavy metals in sewage sludge, contents of seven heavy metals in sewage sludge from 9 municipal waste water treatment plants (WWTPs) that had the highest application for land use were determined. The order of the measured concentrations was: Zn > Cr > Cu > Ni > Pb > As > Cd, and all heavy metals contents were within the threshold limit values of the Chinese Control Standards for Pollutants in Sludge from Agriculture Use (GB4284-84). Four indices were used to assess the pollution and the ecological risk of heavy metals. By the mean values of the geoaccumulation index (I geo ), heavy metals were ranked in the following order: Cd > Zn > Cu > As > Cr > Ni > Pb. The values showed that the pollution of Zn in station 3 and Cd in station 1, 2, 3, 4, 8 and 9 were heavily; Cu in station 8 and 9, Zn in station 1, 2, 4, 8 and 9 and Cd in station 5 and 7 were moderately to heavily, and the accumulation of other heavy metals were not significant. The single-factor pollution index (PI) suggested that none of the stations had heavy metals contamination, except for Cu in station 9, Zn in station 3 and 8, and Cd in station 1 and 9, which were at a moderate level. According to the results of the Nemerow's synthetic pollution index (PN), sewage sludge from all stations was safe for land use with respect to heavy metals contamination, except for stations 3, 8 and 9, which were at the warning line. The monomial potential ecological risk coefficient (Eri) revealed that heavy metals ecological risks in most stations were low. However, station 9 had a moderate risk for Cu; station 6 had a moderate risk, stations 5 and 7 had high risk, other stations had very high risk for Cd. According to the results of the potential ecological risk index (RI), station 1, 8 and 9 had high risk; station 2, 3, 4, 5 and 7 had a moderate risk, and station 6 had a low risk. The

  7. Disposal Situation of Sewage Sludge from Municipal Wastewater Treatment Plants (WWTPs and Assessment of the Ecological Risk of Heavy Metals for Its Land Use in Shanxi, China

    Directory of Open Access Journals (Sweden)

    Baoling Duan

    2017-07-01

    Full Text Available Land use of sewage sludge is the primary disposal method in Shanxi, accounting for 42.66% of all. To determine the ecological risk of heavy metals in sewage sludge, contents of seven heavy metals in sewage sludge from 9 municipal waste water treatment plants (WWTPs that had the highest application for land use were determined. The order of the measured concentrations was: Zn > Cr > Cu > Ni > Pb > As > Cd, and all heavy metals contents were within the threshold limit values of the Chinese Control Standards for Pollutants in Sludge from Agriculture Use (GB4284-84. Four indices were used to assess the pollution and the ecological risk of heavy metals. By the mean values of the geoaccumulation index (Igeo, heavy metals were ranked in the following order: Cd > Zn > Cu > As > Cr > Ni > Pb. The values showed that the pollution of Zn in station 3 and Cd in station 1, 2, 3, 4, 8 and 9 were heavily; Cu in station 8 and 9, Zn in station 1, 2, 4, 8 and 9 and Cd in station 5 and 7 were moderately to heavily, and the accumulation of other heavy metals were not significant. The single-factor pollution index (PI suggested that none of the stations had heavy metals contamination, except for Cu in station 9, Zn in station 3 and 8, and Cd in station 1 and 9, which were at a moderate level. According to the results of the Nemerow’s synthetic pollution index (PN, sewage sludge from all stations was safe for land use with respect to heavy metals contamination, except for stations 3, 8 and 9, which were at the warning line. The monomial potential ecological risk coefficient (Eri revealed that heavy metals ecological risks in most stations were low. However, station 9 had a moderate risk for Cu; station 6 had a moderate risk, stations 5 and 7 had high risk, other stations had very high risk for Cd. According to the results of the potential ecological risk index (RI, station 1, 8 and 9 had high risk; station 2, 3, 4, 5 and 7 had a moderate risk, and station 6 had a

  8. Influence of vegetation and sewage sludge on sealing layer of fly ashes in post-treatment of mine tailings impoundments; Inverkan av vegetation och roetslam paa taetskikt av flygaska vid efterbehandling av sandmagasin

    Energy Technology Data Exchange (ETDEWEB)

    Greger, Maria; Neuschuetz, Clara (Inst. of Bothany, Stockholm Univ., Stockholm (Sweden)); Isaksson, Karl-Erik (Boliden Mineral AB, Stockholm (Sweden))

    2009-03-15

    Mining industry produces 25 Mton mine tailings yearly that are deposited in impoundments in the nature. When this sand, containing sulphur rich minerals, reacts with oxygen and water it starts to weather and acidic metal rich water is formed. To prevent this, the sand can be covered with a sealing layer and a protective cover layer with vegetation. As sealing and cover materials fly ashes and sewage sludge can be used. The aim of this investigation was to find out: 1) how sealing layer of fly ashes with and without sewage sludge, and a cover with sewage sludge can be placed practically on mine tailings in a cold climate. 2) how such a cover should be constructed to minimize the risk of root penetration and leakage of nutrients and metals 3) which vegetation that is most suitable This was investigated in field- and greenhouse tests with a sealing layer of fly ash and/or sewage sludge with a cover layer of sewage sludge in which different plant species were established. The practical application was performed in 0.3-1 ha plots at a mine tailings impoundments at Boliden. The ability of plant roots to penetrate a sealing layer was investigated, as well as the effect of simulated root exudates on the penetration resistance in hardened ash. Leakage of nutrients and metals from cover layer of sewage sludge, in some cases with sealing layers beneath, was investigated in field and greenhouse lysimeters. Various plant species were compared on their ability to affect metal and nutrient leakage as well as root penetration and shattering of the hardened ashes. The project was a cooperation between Stockholm University and Boliden Mineral AB, and the field tests were performed at the impoundment Gillervattnet in Boliden and in Garpenberg. Cooperating were also Iggesund Paperboard, Skellefteaa Kraft, Stora Enso Fors, Umeaa Energi and Vattenfall, all producers of ashes that were used, as well as Stockholm Vatten AB, which produced the sewage sludge. The most important conclusions

  9. Alterações em algumas propriedades de um latossolo degradado com uso de lodo de esgoto e resíduos orgânicos Alterations in some properties of a degraded oxisol by sewage sludge and organic residue application

    Directory of Open Access Journals (Sweden)

    Priscila Torres Modesto

    2009-10-01

    power plant, is a slow process and usually requires the addition of organic residues as source of organic matter and nutrients to improve the soil properties. The objective of this study was to verify the effects of the addition of sewage sludge and organic residues (wood shavings and sugar cane filter cake on the growth of two Cerrado tree species, used in the recovery of the properties of a subsoil area impacted by the construction of the hydroelectric power plant Ilha Solteira in the county of Selvíria, MS, Brazil. The experiment was conducted in a greenhouse and the experimental design consisted of randomized blocks with eight treatments, six replications with one plant per replication, for each test plant. Each replication (a 3.3 L plastic bag was conducted with the following mixture proportions: 30 % sewage sludge; 20 % filter cake, and 10 % wood shavings. Subsoil fertility, mycorrhizal colonization, microbial activity (released C-CO2, and plant growth (canopy and root fresh and dry matter weight and plant heights 30, 60, 90 and 120 days after planting of two Cerrado native species ['monjoleiro' (Acacia polyphylla DC. and 'jatobá-do-cerrado' (Hymenaea stigonocarpa Mart] were analyzed as indicators of subsoil recovery. The treatments with sewage sludge resulted in increased microbial activity in the substrate and increased growth of the two tree species. The presence of sewage sludge improved subsoil fertility, increasing the organic matter, P, K, Ca and Mg contents. The levels of organic matter and P were elevated in the treatments with sewage mixture and the other residues, indicating such applications as adequate in recovery processes. The results showed that the mixtures containing sewage associated to residues improved the subsoil quality with a view to its recovery.

  10. Disposal of sewage sludge. Rotary kiln plants and energetic utilization of sewage sludge; Klaerschlammentsorgung. Drehrohranlagen in der Trocknung und energetischen Nutzung von Klaerschlamm

    Energy Technology Data Exchange (ETDEWEB)

    Hormes, Franz [Visser und Smit Hanab GmbH, Kaarst (Germany). Rotary Kilns

    2013-03-01

    The author of the contribution under consideration reports on rotary kiln plants in the disposal of sewage sludge. The examples give an insight into the systems engineering for the thermal treatment of sewage sludge, for the minimization or full thermal utilization. The examples show that there exists any specific solution. The process selection depends on the legal requirements and the framework conditions in dependence from the site and infrastructure. Generally, the following statements are valid: (a) The co-combustion is cheaper than every mono-combustion; (b) The costs for the transport of wet sludge often are more favourable than the costs of drying; (c) Plants for low capacities are specifically expensive. The following criteria become more important: (a) energy costs, recycling of energy; (b) recycling of phosphorus from sewage sludge; (c) Reduction of the input of heavy metals in order to comply with the fertilizer ordinance.

  11. Amendment of the EC Sewage Sludge Regulation and the German Sewage Sludge Ordinance; Novellierung der EG-Klaerschlammrichtlinie und der deutschen Klaerschlammverordnung

    Energy Technology Data Exchange (ETDEWEB)

    Bergs, C.G.; Krebsbach, A. [Bundesministerium fuer Umwelt, Naturschutz und Reaktorsicherheit, Berlin (Germany)

    2001-03-01

    The EC Sewage Sludge Guideline of 12 June 1996 laid down the boundary conditions for sewage sludge utilisation in agriculture. The purpose of the regulation was the standardisation of member states regulations on sewage sludge treatment and the harmonisation of limiting values for pollutant emissions in the EC member states. [German] Mit der 'Richtlinie des Rates vom 12. Juni 1996 ueber den Schutz der Boeden bei der Verwendung von Klaerschlamm in der Landwirtschaft' (86/278/EWG) hat die Europaeische Kommission EU-weite Rahmenvorgaben fuer die landwirtschaftliche Klaerschlammverwertung geschaffen. Ziel der Richtlinie war es, eine Rechtsangleichung der Regelungen ueber die Klaerschlammverwertung und eine Harmonisierung der Schadstoffgrenzwerte in den Mitgliedstaaten zu erreichen. (orig.)

  12. A laboratory manual for the determination of inorganic chemical contaminants and nutrients in sewage sludges

    International Nuclear Information System (INIS)

    Smith, R.

    1984-01-01

    In addition to a brief discussion on sewage sludge disposal, sludge contaminants, and the potential beneficial and adverse effects of the various inorganic chemical contaminants and nutrients commonly present in sewage sludge, this technical guide presents a scheme of analysis for the determination of the major inorganic contaminants and nutrients. Safety and simplicity were the main criteria considered in the selection of the various sample pretreatment procedures and analytical techniques

  13. Innovative sewage sludge utilization in Switzerland; Innovative Klaerschlammverwertung in der Schweiz

    Energy Technology Data Exchange (ETDEWEB)

    Greiler, Erwin [oeCompany - Renewable Energy Consulting, Graz (Austria)

    2017-08-01

    ln the nature in millions of years running of coal origin process is technically copied with the socalled hydrothermal carbonization within less hours. As source substrate any biomass can be used practically. ln the case of sewage sludge as the starting substrate, both fresh and sludge dewatering can be used. The advantage of the HTC procedure compared with to conventional sewage sludge utilisation lies, among other things, in the lower energy consumption during the process. Therefore, overall, it is more environmentally friendly.

  14. TECHNOLOGICAL AND ENVIRONMENTAL PROBLEMS CONNECTED WITH THERMAL CONVERSION OF SEWAGE SLUDGE

    Directory of Open Access Journals (Sweden)

    Alina Żogała

    2016-02-01

    Full Text Available Overview of the most common technological and environmental problems connected with thermal conversion of sewage sludge was presented in the article. Such issues as the influence of content of moisture and mineral matter on fuel properties of sludge, problem of emission of pollutants, problem of management of solid residue, risk of corrosion, were described. Besides, consolidated characteristic of the most important methods of thermal conversion of sewage sludge, with their advantages and disadvantages, was presented in the paper.

  15. PAHs content of sewage sludge in Europe and its use as soil fertilizer

    Energy Technology Data Exchange (ETDEWEB)

    Suciu, Nicoleta A., E-mail: nicoleta.suciu@unicatt.it; Lamastra, Lucrezia; Trevisan, Marco

    2015-07-15

    Highlights: • Sewage sludge contamination by PAHs may restrict its use as soil fertilizer. • Long term data concerning sewage sludge contamination by PAHs is lacking. • Literature review for EU countries and monitoring data for Italy is presented. • Focus PEARL model was used to simulate B(a)Pyr, the most toxic PAH, fate in soil. • The simulated B(a)Pyr soil concentration was much lower than its LOEC for soil organisms. - Abstract: The European Commission has been planning limits for organic pollutants in sewage sludge for 14 years; however no legislation has been implemented. This is mainly due to lack of data on sewage sludge contamination by organic pollutants, and possible negative effects to the environment. However, waste management has become an acute problem in many countries. Management options require extensive waste characterization, since many of them may contain compounds which could be harmful to the ecosystem, such as heavy metals, organic pollutants. The present study aims to show the true European position, regarding the polycyclic aromatic hydrocarbons (PAHs) content of sewage sludge, by comparing the Italian PAHs content with European Union countries, and at assessing the suitability of sewage sludge as soil fertilizer. The FOCUS Pearl model was used to estimate the concentration of benzo [a] pyrene (B(a)Pyr), the most toxic PAH in soil, and its exposure to organisms was then evaluated. The simulated B(a)Pyr and PAHs, expressed as B(a)Pyr, concentrations in soil were much lower than the B(a)Pyr’s most conservative lowest observable effect concentration (LOEC) for soil organisms. Furthermore, the results obtained indicate that it is more appropriate to apply 5 t ha{sup −1} sewage sludge annually than 15 t ha{sup −1} triennially. Results suggest, the EU maximum recommended limit of 6 mg kg{sup −1} PAHs in sewage sludge, should be conservative enough to avoid groundwater contamination and negative effects on soil organisms.

  16. Interaction of alkylphenolic and perfluorinated compounds with sewage sludges and soils

    OpenAIRE

    Milinovic, Jelena

    2014-01-01

    [eng] In this doctoral thesis the interaction of emergent organic pollutants, such as alkylphenolic and perfluorinated compounds (APCs and PFCs, respectively) with sewage sludge and soil samples was studied. These two families of organic compounds were selected because of their ubiquitous presence and persistence in environmental matrices and to know mechanisms responsible for their interaction. With respect to the behaviour of APCs in sewage sludges, concretely octylphenol (OP), nonylphenol ...

  17. PAHs content of sewage sludge in Europe and its use as soil fertilizer

    International Nuclear Information System (INIS)

    Suciu, Nicoleta A.; Lamastra, Lucrezia; Trevisan, Marco

    2015-01-01

    Highlights: • Sewage sludge contamination by PAHs may restrict its use as soil fertilizer. • Long term data concerning sewage sludge contamination by PAHs is lacking. • Literature review for EU countries and monitoring data for Italy is presented. • Focus PEARL model was used to simulate B(a)Pyr, the most toxic PAH, fate in soil. • The simulated B(a)Pyr soil concentration was much lower than its LOEC for soil organisms. - Abstract: The European Commission has been planning limits for organic pollutants in sewage sludge for 14 years; however no legislation has been implemented. This is mainly due to lack of data on sewage sludge contamination by organic pollutants, and possible negative effects to the environment. However, waste management has become an acute problem in many countries. Management options require extensive waste characterization, since many of them may contain compounds which could be harmful to the ecosystem, such as heavy metals, organic pollutants. The present study aims to show the true European position, regarding the polycyclic aromatic hydrocarbons (PAHs) content of sewage sludge, by comparing the Italian PAHs content with European Union countries, and at assessing the suitability of sewage sludge as soil fertilizer. The FOCUS Pearl model was used to estimate the concentration of benzo [a] pyrene (B(a)Pyr), the most toxic PAH in soil, and its exposure to organisms was then evaluated. The simulated B(a)Pyr and PAHs, expressed as B(a)Pyr, concentrations in soil were much lower than the B(a)Pyr’s most conservative lowest observable effect concentration (LOEC) for soil organisms. Furthermore, the results obtained indicate that it is more appropriate to apply 5 t ha −1 sewage sludge annually than 15 t ha −1 triennially. Results suggest, the EU maximum recommended limit of 6 mg kg −1 PAHs in sewage sludge, should be conservative enough to avoid groundwater contamination and negative effects on soil organisms

  18. Role of soil properties in sewage sludge toxicity to soil collembolans

    OpenAIRE

    Domene, X.

    2010-01-01

    Soil properties are one of the most important factors explaining the different toxicity results found in different soils. Although there is knowledge about the role of soil properties on the toxicity of individual chemicals, not much is known about its relevance for sewage sludge amendments. In particular little is known about the effect of soil properties on the toxicity modulation of these complex wastes. In addition, in most studies on sewage sludges the identity of the main substances lin...

  19. Effect of gamma irradiation and moisture on microbiological load of sewage sludge

    International Nuclear Information System (INIS)

    Al-Bachir, M.; Al-Adawi, M. A.; Shamma, M.

    2002-07-01

    Concentrated municipal sewage sludge, stored for 2, 4, and 6 months, with moisture content of 2, 20, 40, 60, and 80% were exposed to doses of 0, 1, 2, 3, 4, and 5 kGy in a 60 Co package irradiator. Immediately after irradiation, total microbial count, bacterial pathogens in sewage sludge was determined. Techno-economic feasibility of irradiated sewage according to the moisture content in sewage sludge and the needed irradiation dose to eliminate pathogens was evaluated. The results indicated that, all tested sewage sludge sample, bacterial pathogens including Enterobacter sp., Klebsiella sp., Salmonella sp., and e. coli, were detected. Used doses of gamma irradiation reduced the counts of microorganisms. D 1 0 of total count decreased with increasing the moisture level of sewage sludge. The lowest lethal dose for bacterial pathogens including Enterobacter sp., Klebsiella sp., Salmonella sp., and e. coli is over 5 kGy and 1 kGy in air dried and watered sludge with more than 40% sewage sludge respectively, for samples taken at 2, 4 and 6 months of storage. (author)

  20. Phytoextraction of heavy metals from municipal sewage sludge by Rosa multiflora and Sida hermaphrodita.

    Science.gov (United States)

    Antonkiewicz, Jacek; Kołodziej, Barbara; Bielińska, Elżbieta Jolanta

    2017-04-03

    The aim of the study was to evaluate the efficacy of the multiflora rose var. "Jatar" (Rosa multiflora Thunb. ex Murray) and the Virginia fanpetals (Sida hermaphrodita Rusby) to phytoextract heavy metals from municipal sewage sludge. The 6-year field experiment involved four levels of fertilization with sewage sludge at doses of 0, 10, 20, 40, and 60 Mg DM (Dry Mass) sludge ha -1 . The increasing doses of sewage sludge were found to significantly increase the yield of multiflora rose and Virginia fanpetals biomass. They also significantly increased the content of heavy metals in these plants. The highest uptake of heavy metals by the multiflora rose and Virginia fanpetals crops was recorded at the fertilization dose of 60 Mg DM ⋅ ha -1 . Our investigations show that the Virginia fanpetals was more efficient in the phytoextraction of Cr, Ni, Cu, Zn, and Cd from the sewage sludge than the multiflora rose, due to the greater yields and higher heavy metal uptake by the former plant. In turn, the multiflora rose phytoextracted greater amounts of Pb from the sewage sludge. The analyses indicate that the Virginia fanpetals can be used for phytoremediation (phytoextraction) of heavy metals contained in sewage sludge.

  1. Ensured waste disposal without thermal treatment of sewage sludge?; Entsorgungssicherheit ohne thermische Klaerschlammbehandlung?

    Energy Technology Data Exchange (ETDEWEB)

    Melsa, A.K. [Niersverband, Viersen (Germany)

    1998-07-01

    The Technical Rule on Domestic Waste Management (TASi) specifies that from 2005, sewage sludge containing more than 5% of organic dry matter must no longer be dumped. This means that sewage sludge combustion will be the only means of disposal, apart from using sewage sludge as a fertilizer. The author's employer ('Niersverband' utility) was among the first to develop a future-oriented sewage sludge disposal strategy, and a drying plant was construct which is to reduce the weight and volume of sewage sludge in order to obtain a fuel of high calorific value. Further, a contract was closed for combustion of sewage sludge as fuel in a combustion system. [German] Unter Beruecksichtigung der TASi, die verlangt, dass spaetestens ab dem Jahr 2005 Klaerschlaemme mit einem hoeheren organischen Feststoffgehalt als 5% nicht mehr abgelagert werden duerfen, verbleibt uns neben der stofflichen Verwertung in der Landwirtschaft als massgeblicher Entsorgungsweg die Verbrennung, und zwar nicht - und das ist zu unterstreichen - um die Schadstoffe im Klaerschlamm zu beseitigen, sondern um den Klaerschlamm zu entsorgen. Eine betriebssichere Klaerschlammverbrennung stellt dabei die hoechste erreichbare Stufe der Entsorgungssicherheit dar. Der Niersverband hat sich fruehzeitig mit der Aufstellung einer zukunftsfaehigen Klaerschlammentsorgungsstrategie befasst und eine Trocknungsanlage geplant, die eine weitgehende Gewichts- und Volumenreduktion des Klaerschlamms sowie die Erzeugung eines heizwertreichen Brennstoffs gewaehrleistet und damit die Entsorgungsmoeglichkeiten deutlich verbessert. Des weiteren wurde ein erster Vertrag zur energetischen Klaerschlammverwertung in einer Verbrennungsanlage abgeschlossen. (orig.)

  2. Medium-Chain Chlorinated Paraffins (CPs) Dominate in Australian Sewage Sludge.

    Science.gov (United States)

    Brandsma, Sicco H; van Mourik, Louise; O'Brien, Jake W; Eaglesham, Geoff; Leonards, Pim E G; de Boer, Jacob; Gallen, Christie; Mueller, Jochen; Gaus, Caroline; Bogdal, Christian

    2017-03-21

    To simultaneously quantify and profile the complex mixture of short-, median-, and long-chain CPs (SCCPs, MCCPs, and LCCPs) in Australian sewage sludge, we applied and further validated a recently developed novel instrumental technique, using quadrupole time-of-flight high resolution mass spectrometry running in the negative atmospheric pressure chemical ionization mode (APCI-qTOF-HRMS). Without using an analytical column the cleaned extracts were directly injected into the qTOF-HRMS followed by quantification of the CPs by a mathematical algorithm. The recoveries of the four SCCP, MCCP and LCCP-spiked sewage sludge samples ranged from 86 to 123%. This APCI-qTOF-HRMS method is a fast and promising technique for routinely measuring SCCPs, MCCPs, and LCCPs in sewage sludge. Australian sewage sludge was dominated by MCCPs with concentrations ranging from 542 to 3645 ng/g dry weight (dw). Lower SCCPs concentrations (<57-1421 ng/g dw) were detected in the Australian sewage sludge, which were comparable with the LCCPs concentrations (116-960 ng/g dw). This is the first time that CPs were reported in Australian sewage sludge. The results of this study gives a first impression on the distribution of the SCCPs, MCCPs, and LCCPs in Australia wastewater treatment plants (WWTPs).

  3. Potential impacts of using sewage sludge biochar on the growth of plant forest seedlings

    Directory of Open Access Journals (Sweden)

    Maria Isidoria Silva

    Full Text Available ABSTRACT: Sewage sludge has long been successfully used in the production of nursery plants; however, some restriction may apply due to its high pathogenic characteristics. The process of charring the organic waste significantly reduces that undesired component and may be as effective as the non-charred residue. The aim of this study was to evaluate the effect of sewage sludge biochar on the growth and morphological traits of eucalyptus ( Eucalyptus grandis L. seedlings, and compare results with those observed when using uncharred sewage sludge. Treatments were arranged in a completely randomized design, in a 2 x 2 factorial scheme, with four replications. Charred and non-charred sewage sludge were tested with and without NPK addition. A control treatment was also evaluated. Ten weeks old eucalyptus seedlings were transferred to the pots and grew for eight weeks. Chlorophyll content, plant height and stem diameter were measured at 0, 30 and 60 days after transplant. Shoot and root biomass were measured after plant harvest. Dickson Quality Index was calculated to evaluate the overall quality of seedlings. Biochar was effective in improving the seedlings quality, and had similar effects as the non-charred waste. Therefore, sewage sludge biochar has the potential to improve the process of production of forest species seedlings and further reduce the environmental risks associated with the use of non-charred sewage sludge.

  4. Yield of castor bean fertilized with sewage sludge and potassium and magnesium sulphate

    Directory of Open Access Journals (Sweden)

    Thâmara F. M. Cavalcanti

    2015-08-01

    Full Text Available ABSTRACTThe aim of this study was to evaluate the yield and nutrition of castor bean in response to fertilization with sewage sludge and potassium (K and magnesium (Mg sulphate. The experiment was carried out from January to July 2011. The treatments, in a randomized block design with three replicates, in a Nitosol, corresponded to a factorial scheme (2 x 4 +1: two doses of K and Mg sulphate combined with four doses of sewage sludge (0, 2.60, 5.20 and 10.40 t ha-1, dry basis, applied based on its nitrogen (N content and the N requirement for the crop and an additional treatment with NPK. The castor bean grain yield fertilized with sewage sludge did not differ from conventional fertilization, with the maximum value achieved at a dose of 7.5 t ha-1 of sewage sludge. The fertilization with sewage sludge increased zinc and copper levels in the soil to values close to or higher than those in conventional fertilization, without any influence on the concentrations in the leaf. Fertilization with K and Mg sulphate increased the levels of these cations in the soil without affecting the concentrations in the leaves. The fertilization with sewage sludge increased the contents of organic matter, sulfur, zinc, iron, copper and boron in the soil, and manganese and boron in castor bean leaves.

  5. Anaerobic digestion of sewage sludge: French inventory and state of the art

    International Nuclear Information System (INIS)

    Reverdy, A.L.; Dieude-Fauvel, E.; Baudez, J.C.; Ferstler, V.

    2012-01-01

    Following the Kyoto Protocol and the 'Grenelle de l'environnement', France committed itself to develop renewable energies. Methanization is a process which falls within this objective. Anaerobic digestion of organic material generates biogas made of methane (CH 4 ), carbon dioxide (CO 2 ) and water (H 2 O). In 2009, electricity generation from biogas represented only 0, 93% of the renewable electricity production in France. An inventory of facilities and a state of the art of the methanization of sewage sludge on wastewater treatment plants with the inhabitant equivalent of more than 30.000 were realized. They were done with bibliography and surveys. In France, 68 installations of sewage sludge methanization were counted. The primary technology used is a mix reactor in which sewage sludge, heated at deg. C 37, are introduced. Biogas is mainly valued to warm those sludges. Electrical valorization is poor, especially on old installations. Anaerobic digestion of sewage sludge is generally accepted by managers, mainly because of its capacity to reduce sewage sludge quantity and odors. Methanization as listed in France is quite basic. It is performed with digestion series modification, with pretreatments or with co-digestion. Given the quantity of sewage sludge which could be digested, France could increase renewable energies via biogas. However this technology is perfectible in many units because biogas is burned in flares. (authors)

  6. Novel Concept of an Installation for Sustainable Thermal Utilization of Sewage Sludge

    Directory of Open Access Journals (Sweden)

    Wilhelm Jan Tic

    2018-03-01

    Full Text Available This study proposes an innovative installation concept for the sustainable utilization of sewage sludge. The aim of the study is to prove that existing devices and technologies allow construction of such an installation by integration of a dryer, torrefaction reactor and gasifier with engine, thus maximizing recovery of the waste heat by the installation. This study also presents the results of drying tests, performed at a commercial scale paddle dryer as well as detailed analysis of the torrefaction process of dried sewage sludge. Both tests aim to identify potential problems that could occur during the operation. The scarce literature studies published so far on the torrefaction of sewage sludge presents results from batch reactors, thus giving very limited data of the composition of the torgas. This study aims to cover that gap by presenting results from the torrefaction of sewage sludge in a continuously working, laboratory scale, isothermal rotary reactor. The study confirmed the feasibility of a self-sustaining installation of thermal utilization of sewage sludge using low quality heat. Performed study pointed out the most favorable way to use limited amounts of high temperature heat. Plasma gasification of the torrefied sewage sludge has been identified that requires further studies.

  7. Co-digestion of cultivated microalgae and sewage sludge from municipal waste water treatment.

    Science.gov (United States)

    Olsson, Jesper; Feng, Xin Mei; Ascue, Johnny; Gentili, Francesco G; Shabiimam, M A; Nehrenheim, Emma; Thorin, Eva

    2014-11-01

    In this study two wet microalgae cultures and one dried microalgae culture were co-digested in different proportions with sewage sludge in mesophilic and thermophilic conditions. The aim was to evaluate if the co-digestion could lead to an increased efficiency of methane production compared to digestion of sewage sludge alone. The results showed that co-digestion with both wet and dried microalgae, in certain proportions, increased the biochemical methane potential (BMP) compared with digestion of sewage sludge alone in mesophilic conditions. The BMP was significantly higher than the calculated BMP in many of the mixtures. This synergetic effect was statistically significant in a mixture containing 63% (w/w VS based) undigested sewage sludge and 37% (w/w VS based) wet algae slurry, which produced 23% more methane than observed with undigested sewage sludge alone. The trend was that thermophilic co-digestion of microalgae and undigested sewage sludge did not give the same synergy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Life cycle assessment of sewage sludge co-incineration in a coal-based power station.

    Science.gov (United States)

    Hong, Jingmin; Xu, Changqing; Hong, Jinglan; Tan, Xianfeng; Chen, Wei

    2013-09-01

    A life cycle assessment was conducted to evaluate the environmental and economic effects of sewage sludge co-incineration in a coal-fired power plant. The general approach employed by a coal-fired power plant was also assessed as control. Sewage sludge co-incineration technology causes greater environmental burden than does coal-based energy production technology because of the additional electricity consumption and wastewater treatment required for the pretreatment of sewage sludge, direct emissions from sludge incineration, and incinerated ash disposal processes. However, sewage sludge co-incineration presents higher economic benefits because of electricity subsidies and the income generating potential of sludge. Environmental assessment results indicate that sewage sludge co-incineration is unsuitable for mitigating the increasing pressure brought on by sewage sludge pollution. Reducing the overall environmental effect of sludge co-incineration power stations necessitates increasing net coal consumption efficiency, incinerated ash reuse rate, dedust system efficiency, and sludge water content rate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Dry co-digestion of sewage sludge and rice straw under mesophilic and thermophilic anaerobic conditions.

    Science.gov (United States)

    Chu, Xiangqian; Wu, Guangxue; Wang, Jiaquan; Hu, Zhen-Hu

    2015-12-01

    Dry anaerobic digestion of sewage sludge can recover biogas as energy; however, its low C/N ratio limits it as a single substrate in the anaerobic digestion. Rice straw is an abundant agricultural residue in China, which is rich in carbon and can be used as carbon source. In the present study, the performance of dry co-digestion of sewage sludge and rice straw was investigated under mesophilic (35 °C) and thermophilic (55 °C) conditions. The operational factors impacting dry co-digestion of sewage sludge and rice straw such as C/N ratio, moisture content, and initial pH were explored under mesophilic conditions. The results show that low C/N ratios resulted in a higher biogas production rate, but a lower specific biogas yield; low moisture content of 65 % resulted in the instability of the digestion system and a low specific biogas yield. Initial pH ranging 7.0-9.0 did not affect the performance of the anaerobic digestion. The C/N ratio of 26-29:1, moisture content of 70-80 %, and pH 7.0-9.0 resulted in good performance in the dry mesophilic co-digestion of sewage sludge and rice straw. As compared with mesophilic digestion, thermophilic co-digestion of sewage sludge and rice straw significantly enhanced the degradation efficiency of the substrates and the specific biogas yield (p sewage sludge under mesophilic and thermophilic conditions.

  10. Practical aspects of the pasteurization of sewage sludge by electron irradiation

    International Nuclear Information System (INIS)

    Tauber, M.; Hofmann, E.G.; Offermann, B.P.

    1975-01-01

    Recently the demand for disinfection of sewage sludge has increased. Investigations have shown that the radiation pasteurization of sludge is the most preferable treatment. Up to now most of these investigations have been made with 60 Co radiation sources. However, it is not easy to run an economic and safe process line for the irradiation of sewage sludge with such isotope sources. Powerful electron accelerators are now available and the main features of the irradiation of sewage sludge with fast electrons are discussed and the design parameters of such installations described. From the standpoint of the limited electron penetration into the material it is desirable to use high-energy electrons (up to 1.5 MeV) whereas from an economic standpoint it may be better to use electrons of lower energies (0.5 to 1 MeV) and to homogenize the sewage sludge to the required thickness. The following parameters must be considered for a commercial process line: effectivity of the electron radiation process; limited penetration of electrons into the material to be irradiated; beam power of electron accelerators required for sewage sludge treatment; safety aspects; economics of the process with regard to electron energy, power and homogenization of the material; and environmental aspects of the installations. The practical aspects of commercial process lines for electron irradiation of sewage sludge and the design of handling equipment are discussed in relation to these parameters. (author)

  11. Effect of pyrolysis temperatures on freely dissolved polycyclic aromatic hydrocarbon (PAH) concentrations in sewage sludge-derived biochars.

    Science.gov (United States)

    Zielińska, Anna; Oleszczuk, Patryk

    2016-06-01

    The aim of this study was to evaluate the effect of sewage sludge pyrolysis on freely dissolved (Cfree) polycyclic aromatic hydrocarbon (PAH) contents in biochars. Four sewage sludges with varying properties and PAH contents were pyrolysed at temperatures of 500 °C, 600 °C or 700 °C. Cfree PAH contents were determined using polyoxymethylene (POM). The contents of Cfree PAHs in the sludges ranged from 262 to 294 ng L(-1). Sewage sludge-derived biochars have from 2.3- to 3.4-times lower Cfree PAH contents comparing to corresponding sewage sludges. The Cfree PAH contents in the biochars ranged between 81 ng L(-1) and 126 ng L(-1). As regards agricultural use of biochar, the lower contents of Cfree PAHs in the biochars compared to the sewage sludges makes biochar a safer material than sewage sludge in terms of PAH contents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Sewage sludge management strategies, volumes and disposal cost - a Europe-wide comparison; Entsorgungswege, Klaerschlammmengen und Entsorgungskosten im europaeischen Vergleich

    Energy Technology Data Exchange (ETDEWEB)

    Schmelz, K.G. [Emschergenossenschaft / Lippeverband, Essen (Germany)

    2007-07-01

    About 60 percent of the sewage sludge produced in the EU are used in agriculture or landscaping, at significantly lower cost than thermal disposal. If the EU were to banish the use of sewage sludge for these purposes, the cost of sewage sludge disposal would increase by about 40 percent. The same would apply in case of a hygienisation law. In this case, thermal utilisation would be preferable. (orig.)

  13. Heterogeneous catalytic ozonation of biologically pretreated Lurgi coal gasification wastewater using sewage sludge based activated carbon supported manganese and ferric oxides as catalysts.

    Science.gov (United States)

    Zhuang, Haifeng; Han, Hongjun; Hou, Baolin; Jia, Shengyong; Zhao, Qian

    2014-08-01

    Sewage sludge of biological wastewater treatment plant was converted into sewage sludge based activated carbon (SBAC) with ZnCl₂ as activation agent, which supported manganese and ferric oxides as catalysts (including SBAC) to improve the performance of ozonation of real biologically pretreated Lurgi coal gasification wastewater. The results indicated catalytic ozonation with the prepared catalysts significantly enhanced performance of pollutants removal and the treated wastewater was more biodegradable and less toxic than that in ozonation alone. On the basis of positive effect of higher pH and significant inhibition of radical scavengers in catalytic ozonation, it was deduced that the enhancement of catalytic activity was responsible for generating hydroxyl radicals and the possible reaction pathway was proposed. Moreover, the prepared catalysts showed superior stability and most of toxic and refractory compounds were eliminated at successive catalytic ozonation runs. Thus, the process with economical, efficient and sustainable advantages was beneficial to engineering application. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Determination of pesticides in sewage sludge from an agro-food industry using QuEChERS extraction followed by analysis with liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Ponce-Robles, Laura; Rivas, Gracia; Esteban, Belen; Oller, Isabel; Malato, Sixto; Agüera, Ana

    2017-10-01

    An analytical method was developed and validated for the determination of ten pesticides in sewage sludge coming from an agro-food industry. The method was based on the application of Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) extraction for solid sewage sludge and SPE extraction for sludge aqueous phase, followed by liquid chromatography (LC) coupled to hybrid quadrupole/linear ion trap mass spectrometry (QqLIT-MS). The QuEChERS method was reported 14 years ago and nowadays is mainly applied to the analysis of pesticides in food. More recent applications have been reported in other matrices as sewage sludge, but the complexity of the matrix makes necessary the optimization of the cleanup step to improve the efficiency of the analysis. With this aim, several dispersive solid-phase extraction cleanup sorbents were tested, choosing C18 + PSA as a d-SPE sorbent. The proposed method was satisfactorily validated for most compounds investigated, showing recoveries higher than 80% in most cases, with the only exception of prochloraz (71%) at low concentration level. Limits of quantification were lower than 40 ng l -1 in the aqueous phase and below 40 ng g -1 in the solid phase for the majority of the analytes. The method was applied to solid sludge and the sludge aqueous phase coming from an agro-food industry which processes fruits and vegetables. Graphical abstract Application of LC/MS/MS advanced analytical techniques for determination of pesticides contained in sewage sludge.

  15. THE CONCENTRATION OF TRACE ELEMENTS IN SEWAGE SLUDGE FROM WASTEWATER TREATMENT PLANT IN GNIEWINO

    Directory of Open Access Journals (Sweden)

    Julita Karolina Milik

    2017-09-01

    Full Text Available Sewage sludge originated from wastewater treatment plants (WWTP serving rural areas are suggested for agricultural or natural usage. Before, however, sewage sludge is subjected to the several pre-treatments, which involve stabilization, hygienisation and pre-composting. These methods decrease mainly the amount of organic substances and presence of microorganisms, but hardly affects concentrations of heavy metals. The advantages of using sludges as fertilizer for improving and sustaining soil fertility and crop production are many. The addition of sewage sludge to soils could affect potential availability of heavy metals. Trace elements are distributed in the soil in various forms: solid phases, free ions in soil solution, soluble organic-mineral complexes, or adsorbed on colloidal particles. In the study the concentrations of trace elements (Pb, Cd, Cr, Hg, Ni, Zn, Al, As, Se, B, Ba, Br, Ca, Cu, Fe, Mn, Na, Ga, Li, Mo, Sr, Mg, K, Ru, Tl, V, U was tested in sewage sludge obtained from (WWTP serving rural areas (PE< 9 000. In each case, the tested sewage sludge was meeting the criteria of stabilization and was used for agriculture and land reclamation purpose. All the samples were collected in 2016 and were subjected to microwave mineralization in a closed system in aqua regia. The total amound of macro and microelements were determined with a ICP-OES. It was found that the total concentrations of trace metals in all of sewage sludge are the same than Polish regulation limit of pollutants for sludge to be used in agriculture. The trace elements (cadmium: 1,16 mg·kg-1/d.m. in polish sewage sludge, respectively, much higher than those in the other countries. As a most prevalent copper and zinc were observed (111,28 mg·kg-1/d.m. and 282,94 mg·kg-1/d.m.. The concentrations of copper in polish sewage sludge are much lower (49-130 mg·kg-1/d.m. than european sewage sludge (522-562 mg·kg-1/d.m.. The two out of tested heavy metals (beryllium, bismuth

  16. Effects of sewage sludge on the yield of plants in the rotation system of wheat-white head cabbage-tomato

    Directory of Open Access Journals (Sweden)

    Mehmet Arif Özyazıcı

    2013-01-01

    Full Text Available This research was carried to determine the effects of sewage sludge applications on the yield and yield components of plants under crop rotation system. The field experiments were conducted in the Bafra Plain, located in the north region of Turkey. In this research, the “wheat-white head cabbage-tomato” crop rotation systems have been examined and the same crop rotation has been repeated in two separate years and field trials have been established. Seven treatments were compared: a control without application of sludge nor nitrogen fertilization, a treatment without sludge, but nitrogen and phosphorus fertilization, applied at before sowing of wheat and five treatments where, respectively 10, 20, 30, 40 and 50 tons sludge ha-1. The experimental design was a randomized complete block with three replications. The results showed that all the yield components of wheat and yield of white head cabbage and tomato increased significantly with increasing rates of sewage sludge as compared to control. As a result, 20 t ha-1 of sewage sludge application could be recommended the suitable dose for the rotation of wheat-white head cabbage-tomato in soil and climatic conditions of Bafra Plain.

  17. Estoque de carbono e quantificação de substâncias húmicas em Latossolo submetido a aplicação contínua de lodo de esgoto Organic carbon stock and quantification of humic substances of an oxisol under continuous sewage sludge application

    Directory of Open Access Journals (Sweden)

    Bruno de Oliveira Dias

    2007-08-01

    Full Text Available Este estudo teve como objetivo avaliar o efeito da aplicação contínua de doses de lodo de esgoto oriundo da Estação de Tratamento de Esgoto de Barueri, SP, sobre os teores e estoques de C e sobre as alterações na distribuição de substâncias húmicas em Latossolo Vermelho distroférrico. O experimento foi instalado em 1999, no Campo Experimental da Embrapa Meio Ambiente, em Jaguariúna-SP; os dados foram obtidos após a sexta aplicação de lodo e cultivo sucessivo de milho. Foram utilizadas, nas diferentes parcelas experimentais, as seguintes doses acumuladas de lodo de esgoto (base seca: 0, 30, 60, 120 e 240 Mg ha-1, sendo estudados os tratamentos: (L0 testemunha sem adição de lodo; e aplicação de lodo de esgoto visando fornecer uma (L1, duas (L2, quatro (L4 e oito (L8 vezes a dose de N requerida pelo milho. Foram avaliados os teores e o estoque de C orgânico nas camadas de solo de 0-10, 10-20, 20-40 e 40-60 cm. Os teores de C associados às substâncias húmicas foram avaliados na camada de solo de 0-10 cm. O teor e o estoque de C orgânico aumentaram com o acréscimo nas doses de lodo de esgoto aplicadas, até a camada de solo de 0-20 cm. A maior parte (50-66 % do C associado às substâncias húmicas está presente no solo na forma de humina, seguido por C-fração ácidos fúlvicos e C-fração ácidos húmicos, nesta ordem. A aplicação de lodo de esgoto implica maior acúmulo de substâncias húmicas no solo, mas as proporções de C-humificado da matéria orgânica não são alteradas.This study was carried out to evaluate the effect of continuous sewage sludge applications (Sewage Treatment Station of Barueri, São Paulo State, Brazil on the C content and stock and on the distribution of C-humic fractions of a Red Latosol (Oxisol. The experiment was installed in 1999 on an experimental field of Embrapa Environment, in Juaguariúna (SP. The data were collected after the sixth sludge application (SS with corn cultivation

  18. Sewage sludge and wastewater fertilisation of Short Rotation Coppice (SRC) for increased bioenergy production - Biological and economic potential

    International Nuclear Information System (INIS)

    Dimitriou, I.; Rosenqvist, H.

    2011-01-01

    Application of municipal residues, e.g. wastewater or sewage sludge, to Short Rotation Coppice (SRC) is among the most attractive methods for attaining environmental and energy goals set for Europe. At current woodchip prices in Sweden, the gross margin for SRC cultivation is positive only if biomass production is >9 t DM/ha yr. The gross profit margin increases (by 39 and 199 EUR/GJ, respectively) if sewage sludge and wastewater are applied to SRC. Application of residues to SRC has proved to be an acceptable alternative treatment method, and the farmer's profit can be markedly increased if compensation is paid for waste treatment. If all available sludge and wastewater were applied to SRC plantations, they could be grown on large agricultural areas in Europe, and c. 6000 PJ of renewable energy could be produced annually. However, a more economical landuse strategy, e.g. the use of more P-rich residues, appears more rational, and is biologically justifiable. (author)

  19. Environmental risk evaluation of the use of mine spoils and treated sewage sludge in the ecological restoration of limestone quarries

    Science.gov (United States)

    Jordán, M. M.; Pina, S.; García-Orenes, F.; Almendro-Candel, M. B.; García-Sánchez, E.

    2008-07-01

    The ecologic restoration criteria in areas degraded from extraction activities require making use of their mine spoils. These materials do not meet fertility conditions to guarantee restoration success and therefore, need the incorporation of organic amendments to obtain efficient substratum. Reducing the deficiencies in the organic material and restoration material nutrients with the contribution of treated sewage sludge is proposed in this work. This experiment was based on a controlled study using columns. The work was conducted with two mine spoils, both very rich in calcium carbonate. The first mineral, of poor quality, came from the formation of aggregates of crushed limestone ( Z). The other residual material examined originated in limestone extraction, formed by the levels of interspersed non-limestone materials and the remains of stripped soils ( D). Two treatments were undertaken (30,000 and 90,000 kg/ha of sewage sludge), in addition to a control treatment. The water contribution was carried out with a device that simulated either short-duration rain or a flooding irrigation system in order to cover the surface and then percolate through the soil. The collection of leached water took place 24 h after the applications. Different parameters of the leached water were determined, including pH, electrical conductivity, nitrate anions, ammonium, phosphates, sulphates and chlorides. The values obtained for each irrigation application are discussed, and the nitrate values obtained were very elevated.

  20. Sewage sludge and wastewater fertilisation of Short Rotation Coppice (SRC) for increased bioenergy production - Biological and economic potential

    Energy Technology Data Exchange (ETDEWEB)

    Dimitriou, I. [Department of Crop Production Ecology, Swedish University of Agricultural Sciences, P.O. Box 7043, SE 750 07 Uppsala (Sweden); Rosenqvist, H. [Department of Agriculture-Farming Systems, Technology and Product Quality, Swedish University of Agricultural Sciences, P.O. Box 17, SE-261 21 Billeberga (Sweden)

    2011-02-15

    Application of municipal residues, e.g. wastewater or sewage sludge, to Short Rotation Coppice (SRC) is among the most attractive methods for attaining environmental and energy goals set for Europe. At current woodchip prices in Sweden, the gross margin for SRC cultivation is positive only if biomass production is >9 t DM/ha yr. The gross profit margin increases (by 39 and 199 EUR/GJ, respectively) if sewage sludge and wastewater are applied to SRC. Application of residues to SRC has proved to be an acceptable alternative treatment method, and the farmer's profit can be markedly increased if compensation is paid for waste treatment. If all available sludge and wastewater were applied to SRC plantations, they could be grown on large agricultural areas in Europe, and c. 6000 PJ of renewable energy could be produced annually. However, a more economical landuse strategy, e.g. the use of more P-rich residues, appears more rational, and is biologically justifiable. (author)

  1. Technical and economical feasibility study of a sewage sludge disinfection plants by irradiation process

    International Nuclear Information System (INIS)

    Rojas Bustos, Gustavo

    1999-01-01

    This report presents a technical and economical evaluation for a disinfection plant of sewage sludge based on irradiation. The process starts after sludge stabilization which is achieved by anaerobic digestion. It includes two stages, plus an optional: the first corresponds to dewatering of sewage sludge up to a solids content between 20 and 25 %, the second stage corresponds to disinfection by gamma or electron beam irradiation, and the third, which is optional, corresponds to the drying of sewage sludge up to a water content of 50%, which allows to diminish significantly the volumes of solids to be transported. If this stage is not accomplished the final product corresponds to a sewage sludge with 25 % of dry solids, which can also be disposed in agricultural land. Process was designed to treat 60 tons per day of sewage sludge (dry matter basis). The report presents the design of process equipment, principal and auxiliary, the investment and operational cost estimations as well as the total cost of treatment per ton of sewage sludge. A sensitivity analysis is also included to determine the influence of operational process parameters in operational and investment costs. The results showed that a sewage sludge plant including dewatering and disinfection process through gamma irradiation, achieves a capital investment of about US$ 12.000.000 with a treatment cost per ton of dry sludge of US$140. Including the optional air-drying stage, the total cost of treatment is about US$148 per ton of dry matter. In the case of electron beam irradiation the capital investment achieves a value of US$ 11 millions with a total treatment cost of US$ 136 per ton of dry matter. These values resulted quite similar to the cost of alternative treatment, i.e., disposal in a dedicated landfill. (L.V.)

  2. Forms of polycyclic aromatic hydrocarbon in the formation of sewage sludge toxicity to Heterocypris incongruens

    International Nuclear Information System (INIS)

    Oleszczuk, Patryk

    2008-01-01

    The aim of the present study was to evaluate to what degree polycyclic aromatic hydrocarbon (PAH) determines sewage sludge toxicity in relation to Heterocypris incongruens. Six differing sewage sludges with increasing contents of polycyclic aromatic hydrocarbons were selected for the present study. As well as total PAH content, the content of the potentially bioavailable fraction was also determined in the sewage sludges using a method of mild-solvent extraction (with n-butanol). The PAH content was also calculated in the sewage sludge pore water by the equilibrium partitioning method. The total PAH content in the sewage sludges studied were in the range 3.60 to 27.95 mg kg -1 . The contribution of the n-butanol extracted fraction was in the range 38.7 to 75.4%. In the group of individual PAHs, 4- and 5-ring compounds had the highest content in the potentially bioavailable group. H. incongruens mortality in the range 6.7 to 100%, depending both on the sewage sludge and the dose applied. An increase of the sewage sludge dose usually resulted in an increase in toxicity. At the highest dose, a 100% mortality of H. incongruens was found in half of the sludges. The lowest dose, irrespective of the sludge type, caused over 40% growth inhibition. However, the results obtained did not allow for the establishing of an unambiguous relationship between various sludge toxicity levels and the content of potentially bio-available PAHs. In some cases only, the extraction using n-butanol explained the high difference in toxicity despite a slight differentiation in the PAH content

  3. CISCO - Combined Cycle with Integrated Sewage Sludge Combustion; Kombi-Anlage mit integrierter Klaerschlam-Verbrennung - CISCO (Combined Cycle with Integrated Sewage Sludge Combustion)

    Energy Technology Data Exchange (ETDEWEB)

    Vockrodt, S.; Leithner, R. [Technische Univ. Braunschweig (Germany). Inst. fuer Waerme- und Brennstofftechnik

    2004-12-01

    A new combined process is presented in which is sewage sludge is dried until it can be combusted, and the heat of combustion is used for sludge drying. (orig.) [German] Mit einer neuen Verfahrenskombination ist es moeglich, Klaerschlamm so weit zu trocknen, dass er verbrannt werden kann, wobei die Verbrennungswaerme zur Trocknung genutzt wird. (orig.)

  4. Efeito residual do lodo de esgoto na produtividade do milho safrinha Residual effect of sewage sludge on off-season corn yield

    Directory of Open Access Journals (Sweden)

    Graziela Moraes de Cesare Barbosa

    2007-06-01

    Full Text Available Das opções de disposição final do lodo de esgoto, a reciclagem agrícola tem sido uma das mais utilizadas em diversos países desenvolvidos, sendo considerada a forma mais adequada em termos técnicos, econômicos e ambientais. Este trabalho teve por objetivo avaliar o efeito residual do lodo de esgoto na produtividade do milho safrinha, após dois anos de aplicação consecutiva desse resíduo em um Latossolo Vermelho eutroférrico. O experimento foi realizado em campo, em delineamento em blocos ao acaso com três repetições, e os tratamentos foram os seguintes: testemunha e adubações com lodo de esgoto nas doses de 6, 12, 24 e 36 t ha-1 (peso de matéria seca. Houve efeito residual do uso do lodo de esgoto caleado na produtividade de milho safrinha; a dose de 36 t ha-1 foi estatisticamente superior às doses de 6 e 12 t ha-1.Among the possibilities of final disposal of sewage sludge, agricultural recycling has become one of the most widely used in several developed countries, and is considered the most appropriate in technical, economical and environmental terms. This study aimed at evaluating the sewage sludge residual effect on off-season corn yield on an Eutroferric Red Latossol (Oxisol. The field experiment was in a randomized block design with three replications, with treatments consisting of increasing doses of sewage sludge (0, 6, 12, 24 and 36 t ha-1, on a dry weight basis, applied in the two previous cropping seasons.. The residual effect of the application of lime-stabilized sewage sludge increased the yield of off-season corn; the grain yield under a rate of 36 t ha-1 was statistically higher than those under 6 and 12 t ha-1.

  5. Comparative short-term effects of sewage sludge and its biochar on soil properties, maize growth and uptake of nutrients on a tropical clay soil in Zimbabwe

    Institute of Scientific and Technical Information of China (English)

    Willis Gwenzi; Moreblessing Muzava; Farai Mapanda; Tonny P Tauro

    2016-01-01

    Soil application of biochar from sewage could potentialy enhance carbon sequestration and close urban nutrient balances. In sub-Saharan Africa, comparative studies investigating plant growth effect and nutrients uptake on tropical soils amended with sewage sludge and its biochar are very limited. A pot experiment was conducted to investigate the effects of sewage sludge and its biochar on soil chemical properties, maize nutrient and heavy metal uptake, growth and biomass partitioning on a tropical clayey soil. The study compared three organic amendments; sewage sludge (SS), sludge biochar (SB) and their combination (SS+SB) to the unamended control and inorganic fertilizers. Organic amendments were applied at a rate of 15 t ha–1 for SS and SB, and 7.5 t ha–1 each for SS and SB. Maize growth, biomass production and nutrient uptake were signiifcantly improved in biochar and sewage sludge amendments compared to the unamended control. Comparable results were observed with F, SS and SS+SB on maize growth at 49 d of sowing. Maize growth for SB, SS, SS+SB and F increased by 42, 53, 47, and 49%, respectively compared to the unamended control. Total biomass for SB, SS, SS+SB, and F increased by 270, 428, 329, and 429%, respectively compared with the unamended control. Biochar amendments reduced Pb, Cu and Zn uptakes by about 22% compared with sludge alone treatment in maize plants. However, there is need for future research based on the current pot experiment to determine whether the same results can be produced under ifeld conditions.

  6. Bio-oil production from dry sewage sludge by fast pyrolysis in an electrically-heated fluidized bed reactor

    Directory of Open Access Journals (Sweden)

    Renato O. Arazo

    2017-01-01

    Full Text Available The optimization of bio-oil produced from sewage sludge using fast pyrolysis in a fluidized bed reactor was investigated. Effects of temperature, sludge particle size and vapor residence time on bio-oil properties, such as yield, high heating value (HHV and moisture content were evaluated through experimental and statistical analyses. Characterization of the pyrolysis products (bio-oil and biogas was also done. Optimum conditions produced a bio-oil product with an HHV that is nearly twice as much as lignocellulosic-derived bio-oil, and with properties comparable to heavy fuel oil. Contrary to generally acidic bio-oil, the sludge-derived bio-oil has almost neutral pH which could minimize the pipeline and engine corrosions. The Fourier Transform Infrared and gas-chromatography and mass spectrometry analyses of bio-oil showed a dominant presence of gasoline-like compounds. These results demonstrate that fast pyrolysis of sewage sludge from domestic wastewater treatment plant is a favorable technology to produce biofuels for various applications.

  7. Co-combustion of sewage sludge; Mitverbrennung von Klaerschlamm

    Energy Technology Data Exchange (ETDEWEB)

    Thome-Kozmiensky, K.J. [Technische Univ. Berlin (Germany). Fachgebiet Abfallwirtschaft

    1998-09-01

    Thermal sewage disposal pursues the following aims: destruction of organic pollutants contained in the sludge; concentration and removal or almost complete fixation of inorganic pollutants in the residue matrix; minimisation of the mass solid residue; production of useful products; utilisation of the caloric content. The thermal treatment chain should be as short as possible; intermediate stages in separate reactors such as digestion, drying, degasification or gasification should be avoided if the material is ultimately to be combusted. The present paper examines and assesses the co-combustion of sewage sludge. [Deutsch] Mit der thermischen Klaerschlammentsorgung werden folgende Ziele verfolgt: - Zerstoerung der im Schlamm enthaltenen organischen Schadstoffe, - Konzentration und Ausschleusung oder weitestgehende Fixierung der anorganischen Schadstoffe in die Reststoffmatrix, - Minimierung der Masse an festen Restabfaellen, - Herstellung verwertbarer Produkte, - Nutzung des Waermeeinhalts. Die thermische Behandlungskette sollte moeglichst kurz sein; Zwischenschritte wie Faulung, Trocknung, Ent- oder Vergasung in getrennten Reaktoren sollten vermieden werden, wenn letztendlich doch verbrannt wird. Das Verfahren der Mitverbrennung von Klaerschlamm wird hier untersucht und bewertet. (orig./SR)

  8. Considerations in the public acceptance of sewage sludge irradiation systems

    International Nuclear Information System (INIS)

    Dix, G.P.

    1975-01-01

    Considerations associated with public acceptance of municipal sewage sludge irradiation systems are discussed including the benefit to society, public information and safeguards. Public acceptance of products is based upon the benefit to society as measured by reduced consumer costs, minimization of public risk and enhancement of the quality of life and the environment. When viewed in this positive light, the sludge irradiator has high potential benefits to the community. If large-scale engineering experiments show that sludge irradiation is more cost-effective than other methods, reduced consumer costs would result. Today many sewage plants do not consistently remove pathogens from sludge; sludge irradiation could be an effective method of pathogen removal and result in avoidance of a major public risk. The sludge irradiator may be able to clean up recreational areas, reduce noxious odours from sewage treatment facilities, and reduce the energy requirements for producing fertilizer and soil conditioners and conserve their mineral content. Plant safeguards must be explained to dispel public concern that the contents of the source can be released to the sludge accidentally. This will be the main issue within the technical sector of the public, and the design, procedural and administrative safeguards of the plant must be fully explained. The primary risk associated with sludge irradiators will be the remote possibility of source leakage into the sludge. The various safeguards in sludge irradiation plants are discussed in detail including the form of the radionuclide, encapsulation, the irradiation chamber, safeguards instrumentation, shielding and thermal safeguards. (Author)

  9. Soil cadmium mobility as a consequence of sewage sludge disposal

    Energy Technology Data Exchange (ETDEWEB)

    Lamy, I. [Station de Science du Sol, Versailles (France); Bourgeois, S.; Bermond, A. [Institut National Agronomique, Paris (France)

    1993-10-01

    Anaerobically digested liquid sewage sludge was applied as a single treatment to a loamy hydromorphic drained soil, characteristic of agricultural soils in the North of France, at a rate of 11 Mg of dry solids ha{sup -1}. Total Cd concentrations of drainage waters for both amended and unamended plots were monitored at selected times to follow the mobility of Cd after sludge disposal. The drained ground-water of the plot that exhibited the highest discharge of sludge soluble organic matter (SSOM) exhibited about twice the Cd levels of the control plot during the first few weeks following sludge disposal (average of 3 and 1.5 {mu}g L{sup -1} respectively). Laboratory experiments were conducted to provide estimates of the relative binding strength of Cd-soil interactions as well as Cd-SSOM interactions. The behavior of Cd in a mixed sludge-soil system showed that the addition of sludge soluble organic matter to the soil led to a decrease in the sorption of this cation across the pH range between 5 and 7. The laboratory studies highlighted the role of soluble organic matter in soil Cd speciation, and can be used to speculate on the perturbations induced by high levels of sludge soluble organic matter introduced into a soil.

  10. Effects of irradiation of sewage sludge on heavy metal bioavailability

    International Nuclear Information System (INIS)

    Sheppard, S.C.; Mayoh, K.R.

    1986-10-01

    Sewage sludges are a valuable resource to agriculture, but their use is limited by the hazards of pathogens, toxic chemicals and heavy metals. Irradiation can control the pathogens and deactivate some of the toxic chemicals. The relative cost of industrial-scale irradiation using accelerators has decreased progressively. This, coupled with the increasing necessity to recycle wastes, has led to renewed interest in irradiation of sludges. In response to this renewed interest, this report examines what is known about the effects of irradiation on the bioavailability of heavy metals. Very few studies have addressed this topic, although workers in the U.S. have claimed decreased solubility of metals in irradiated sludges. We have also briefly reviewed the general literature on sludge to gain indirect evidence on the likely effects. The scant data, often based on less than ideal experimental methodologies, show no major consistent effects of irradiation on the availability of heavy metals from sludge. The data are not sufficient to rule out such effects entirely, but the effects appear to be fairly subtle and not likely to persist beyond one growth season. 85 refs

  11. [Effects of ultrasonic pretreatment on drying characteristics of sewage sludge].

    Science.gov (United States)

    Li, Run-Dong; Yang, Yu-Ting; Li, Yan-Long; Niu, Hui-Chang; Wei, Li-Hong; Sun, Yang; Ke, Xin

    2009-11-01

    The high water content of sewage sludge has engendered many inconveniences to its treatment and disposal. While ultrasonic takes on unique advantages on the sludge drying because of its high ultrasonic power, mighty penetrating capability and the ability of causing cavitations. Thus this research studies the characteristics influences of ultrasonic bring to the sludge drying and effects of the exposure time, ultrasonic generator power, temperatures of ultrasonic and drying temperature on the drying characteristics of dewatered sludge. Results indicate that ultrasonic pretreatment could speed up evaporation of the free water in sludge surface and help to end the drying stage with constant speed. In addition, ultrasonic treatment can effectively improve the sludge drying efficiency which could be more evident with the rise of the ultrasonic power (100-250 W), ultrasonic temperature and drying temperature. If dried under low temperature such as 105 degrees C, sludge will have premium drying characteristics when radiated under ultrasound for a shorter time such as 3 min. In the end, the ultrasonic treatment is expected to be an effective way to the low-cost sludge drying and also be an important reference to the optimization of the sludge drying process because of its effects on the increase of sludge drying efficiency.

  12. Anaerobic co-digestion of sewage sludge and molasses

    Science.gov (United States)

    Kalemba, Katarzyna; Barbusiński, Krzysztof

    2017-11-01

    The efficiency of simultaneous digestion of sewage sludge and by-product of refining sugar beets (molasses) was investigated. The study was conducted for 28 days under mesophilic conditions. 0.5%, 1%, 1.5%, 2% and 3% (m/m) of molasses was added to the mixture of sludge. The result of the study showed that addition of molasses had positive effect the biogas production. The biggest biogas yield was achieved in sample with 0.5% of molasses (95.69 mL/g VS). In this sample biogas production increased by 21% in comparison with reference sample (without molasses). The biggest methane content (73%) was also observed in the sample with 0.5% of molasses. For comparison in reference sample was produced biogas with 70% content of methane. The dose over 0.5% of molasses caused inhibition of fermentation process. The minimal degree (38%) of degradation of organic matter was achieved in reference sample (38.53%) and in sample with 0.5% of molasses (39.71%) but in other samples was in the range of 35.61-36.76 % (from 3% to 1%, respectively). Digestion process have adverse effect on dewatering properties of sludge. Before co-digestion capillary suction time was from 31 s to 55 s, and after process increased from 36 s to 556 s (from 0% to 3% of molasses, respectively).

  13. Municipal Sewage Sludge Drying Treatment by an Composite Modifier

    Directory of Open Access Journals (Sweden)

    Na Wei

    2012-01-01

    Full Text Available A sludge composite modifier (SCM which comprises a mixture of three cementitious components was proposed for sludge drying and stabilization. Effect of SCM components on sludge moisture content was analyzed using uniform design and the optimum composition of SCM was determined by computer-aided modeling and optimization. To compare the drying effect of SCM, quicklime, and Portland cement, the effects of material content and curing time on moisture content of sludge were also studied. The results showed that the optimum ratio of modifier component was slag/cement clinker/dihydrate gypsum = 0.64/0.292/0.068 and the moisture content of SCM-stabilized sludge decreased with the increasing material content and extending curing time. Besides, the experimental results showed that optimized SCM behaved better than quicklime and Portland cement in sludge semi-drying and XRD analysis revealed that the main hydrated product of stabilization was ettringite, which played an important role in the effective drying process. Sewage sludge stabilized using SCM could be used as an effective landfill cover.

  14. Effects of past sewage sludge additions on heavy metal availability in light textured soils: implications for crop yields and metal uptakes

    International Nuclear Information System (INIS)

    Bhogal, A.; Nicholson, F.A.; Chambers, B.J.; Shepherd, M.A.

    2003-01-01

    Topsoil extractable zinc and copper concentrations are a good indicator of metal bioavailability to crops. - The effect of heavy metal additions in past sewage sludge applications on soil metal availability and the growth and yield of crops was evaluated at two sites in the UK. At Gleadthorpe, sewage sludges enriched with salts of zinc (Zn), copper (Cu) and nickel (Ni) had been applied to a loamy sand in 1982 and additionally naturally contaminated Zn and Cu sludge cakes in 1986. At Rosemaund, sewage sludges naturally contaminated with Zn, Cu, Ni and chromium (Cr) had been applied in 1968-1971 to a sandy loam. From 1994 to 1997, the yields of both cereals and legumes at Gleadthorpe were up to 3 t/ha lower than the no-sludge control where total topsoil Zn and Cu concentrations exceeded 200 and 120 mg/kg, respectively, but only when topsoil ammonium nitrate extractable metal levels also exceeded 40 mg/kg Zn and 0.9 mg/kg Cu. At Rosemaund, yields were only decreased where total topsoil Cu concentrations exceeded 220 mg/kg or 0.7 mg/kg ammonium nitrate extractable Cu. These results demonstrate the importance of measuring extractable as well as total heavy metal concentrations in topsoils when assessing likely effects on plant yields and metal uptakes, and setting soil quality criteria

  15. Alternatives for sewage sludge disposal. Report by the Waste Management Association of the Federal Laender (LAGA), submitted to the 34th Conference of Environment Ministers. Alternativen der Klaerschlammentsorgung. Bericht der Laenderabfallgemeinschaft Abfall (LAGA) zur 34. Umweltministerkonferenz

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1991-01-01

    This report points out methods to be used either alternatively or in addition to the application of sewage sludge to farmland. They include the exploitation of existing combustion capacities, for instance black-coal-fired power plants, brown-coal-fired power plants, rotary cement kilns, works producing materials for asphalt mixtures, waste incinerators, semicoking plants and pyrolysis plants. (EF).

  16. Utilization of municipal sewage sludge as additives for the production of eco-cement

    International Nuclear Information System (INIS)

    Lin, Yiming; Zhou, Shaoqi; Li, Fuzhen; Lin, Yixiao

    2012-01-01

    Highlights: ► The results of X-ray diffraction (XRD) pattern and scanning electron micrograph (SEM) indicated that the major components in the eco-cement clinkers were similar to those in ordinary Portland cement. ► Though the C 2 S phase formation increased with the increase of sewage sludge contents. ► All the eco-cement pastes had a longer initial setting time and final setting time than those of plain cement paste, which increased as the sewage sludge contents in raw meal increased. ► All the eco-cement pastes had lower early flexural strengths and it increased with the increase of sewage sludge contents increased, while the compressive strengths decreased slightly. ► However, it had no significant effect on all the strengths at later ages. - Abstract: The effects of using dried sewage sludge as additive on cement property in the process of clinker burning were investigated in this paper. The eco-cement samples were prepared by adding 0.50–15.0% of dried sewage sludge to unit raw meal, and then the mixtures were burned at 1450 °C for 2 h. The results indicated that the major components in the eco-cement clinkers were similar to those in ordinary Portland cement. Although the C 2 S phase formation increased with the increase of sewage sludge content, it was also found that the microstructure of the mixture containing 15.0% sewage sludge in raw meal was significantly different and that a larger amount of pores were distributed in the clinker. Moreover, all the eco-cement pastes had a longer initial setting time and final setting time than those of plain cement paste, which increased as the sewage sludge content in the raw meal increased. All the eco-cement pastes had lower early flexural strengths, which increased as the sewage sludge content increased, while the compressive strengths decreased slightly. However, this had no significant effect on all the strengths at later stages. Furthermore, the leaching concentrations of all the types of eco

  17. Characterization of sewage sludge generated in Rio de Janeiro, Brazil, and perspectives for agricultural recycling

    Directory of Open Access Journals (Sweden)

    Alan Henrique Marques de Abreu

    2017-08-01

    Full Text Available Sanitary sewage collection and treatment is a serious environmental problem in Brazilian cities, as well as the destination of solid waste resulting from this process, i.e. the sewage sludge, a substance rich in organic matter and nutrients, which is normally discarded in landfills. The aim of this study was to characterize the sewage sludge generated in four treatment stations in Rio de Janeiro State, Brazil and check if they meet the legal criteria of the National Environment Council (CONAMA, Resolution No. 375/2006. It also focused on analyzing the perspectives for its agricultural recycling based on the potential demand for main agricultural crops grown in Rio de Janeiro State. Samples from eight sewage sludge lots from four treatment stations located in the metropolitan area of Rio de Janeiro were analyzed. These stations receive and treat only domestic sewage by activated sludge system. For chemical and biological characterization of these lots, representative samples were collected and analyzed according to parameters of CONAMA Resolution No. 375/2006. In order to analyze the perspectives of agricultural recycling of sewage sludge in Rio de Janeiro State, 10 crops with the largest cultivated area in the state were surveyed and analyzed which of them are apt to receive sewage sludge as fertilizer and/or soil amendment. To determine the potential demand for sewage sludge in agriculture, the area occupied by these crops were multiplied by each fertilizer recommendation considering the sewage sludge as fertilizer. The analyzed sludge presented a high content of nutrients and organic matter and was included in the parameters of heavy metals, pathogenic agents, and bacteriological indicators stipulated by CONAMA Resolution No. 375/2006. The agricultural panorama of Rio de Janeiro State is favorable for agricultural recycling of sewage sludge since there is a great potential demand for this residue and, among the 10 agricultural crops with the

  18. Inhibition of the bioavailability of heavy metals in sewage sludge biochar by adding two stabilizers

    Science.gov (United States)

    Huang, Zhujian; Lu, Qin; Wang, Jun; Chen, Xian; He, Zhenli

    2017-01-01

    Agricultural application of sewage sludge (SS) after carbonization is a plausible way for disposal. Despite its benefits of improving soil fertility and C sequestration, heavy metals contained in sewage sludge biochars (SSB) are still a concern. In this study, two types of heavy metal stabilizers were chosen: fulvic acid (FA) and phosphogypsum (with CaSO4, CS, as the main component). The two stabilizers were incorporated into SS prior to 350°C carbonization for 1 h at the rates of 1%, 2%, or 4%. The obtained SSBs were then analyzed by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Total and available concentrations of four heavy metals, i.e., Zn, Pb, Cd, and Ni, in the SSBs were determined. In addition, a series of pot soil culture experiments was conducted to investigate the effects of stabilizers incorporation into SSB on heavy metal bioavailability and the uptake by plants (corn as an indicator) and plant biomass yield, with SS and SSB (no stabilizers) as controls. The results showed that incorporation of both FA and CS increased functional groups such as carboxyl, phenol, hydroxyl, amine and quinine groups in the SSBs. The percentage of heavy metals in sulfuric and oxidizable state and residual state of SSBs were significantly increased after carbonization, and hence the mobility of the heavy metals in SSBs was decreased. The introduction of the stabilizers (i.e., FA or CS) significantly lowered the total and available concentrations of Zn, Pb, Cd, and Ni. The reduction in available heavy metal concentration increased with incorporation rate of the stabilizers from 1% to 4%. In the treatments with FA or CS incorporated SSB, less heavy metals were taken up by plants and more plant biomass yields were obtained. The mitigating effects were more pronounced at higher rates of FA or CS stabilizer. These findings provide a way to lower bioavailability of heavy metals in SS or SSB for land application or horticulture as a

  19. Attributes of the soil fertilized with sewage sludge and calcium and magnesium silicate

    Directory of Open Access Journals (Sweden)

    Geraldo R. Zuba Junio

    2015-11-01

    Full Text Available ABSTRACTThis study aimed to evaluate the chemical attributes of an Inceptisol cultivated with castor bean (Ricinus communis L., variety ‘BRS Energia’, fertilized with sewage sludge compost and calcium (Ca and magnesium (Mg silicate. The experiment was conducted at the ICA/UFMG, in a randomized block design, using a 2 x 4 factorial scheme with three replicates, and the treatments consisted of two doses of Ca-Mg silicate (0 and 1 t ha-1 and four doses of sewage sludge compost (0, 23.81, 47.62 and 71.43 t ha-1, on dry basis. Soil organic matter (OM, pH, sum of bases (SB, effective cation exchange capacity (CEC(t, total cation exchange capacity (CEC(T, base saturation (V% and potential acidity (H + Al were evaluated. There were no significant interactions between doses of sewage sludge compost and doses of Ca-Mg silicate on soil attributes, and no effect of silicate fertilization on these attributes. However, fertilization with sewage sludge compost promoted reduction in pH and increase in H + Al, OM and CEC. The dose of 71.43 t ha-1 of sewage sludge compost promoted the best soil chemical conditions.

  20. Influence of forced air volume on water evaporation during sewage sludge bio-drying.

    Science.gov (United States)

    Cai, Lu; Chen, Tong-Bin; Gao, Ding; Zheng, Guo-Di; Liu, Hong-Tao; Pan, Tian-Hao

    2013-09-01

    Mechanical aeration is critical to sewage sludge bio-drying, and the actual water loss caused by aeration can be better understood from investigations of the relationship between aeration and water evaporation from the sewage sludge bio-drying pile based on in situ measurements. This study was conducted to investigate the effects of forced air volume on the evaporation of water from a sewage sludge bio-drying pile. Dewatered sewage sludge was bio-dried using control technology for bio-drying, during which time the temperature, superficial air velocity and water evaporation were measured and calculated. The results indicated that the peak air velocity and water evaporation occurred in the thermophilic phase and second temperature-increasing phase, with the highest values of 0.063 ± 0.027 m s(-1) and 28.9 kg ton(-1) matrix d(-1), respectively, being observed on day 4. Air velocity above the pile during aeration was 43-100% higher than when there was no aeration, and there was a significantly positive correlation between air volume and water evaporation from day 1 to 15. The order of daily means of water evaporation was thermophilic phase > second temperature-increasing phase > temperature-increasing phase > cooling phase. Forced aeration controlled the pile temperature and improved evaporation, making it the key factor influencing water loss during the process of sewage sludge bio-drying. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Sewage sludge disposal-requirements, expense and acceptance; Klaerschlammentsorgung zwischen Anspruch, Aufwand und Akzeptanz

    Energy Technology Data Exchange (ETDEWEB)

    Gruenebaum, T. [Ruhrverband, Essen (Germany)

    1997-02-01

    Production of sewage sludges is unavoidable at wastewater treatment. Sewage sludges shall be used in agriculture. Although the content of hazardous substances in sewage sludges has obviously been minimized, the use of those sludges is limited because of the low acceptance in agriculture and food industry. Therefore it is necessary to build up methods of disposal which make possible and ensure a medium- or even longtime disposal. Incineration seems to be the solution since the requirements for landfill of sewage sludges have been renewed. The currently valid transitional regulation lead to remarkable reactions of the disposal market. The plans for sewage sludge disposal have to agree with the principles of environmental protection, safety, economic efficiency, good realization and operational handling. (orig.) [Deutsch] Bei der Abwasserreinigung faellt Klaerschlamm an. Dieser ist moeglichst in der Landwirtschaft zu verwerten. Obwohl die Schadstoffgehalte der Klaerschlaemme in den letzten 15 Jahren sehr deutlich gesunken sind, ist der Einsatz durch Akzeptanzprobleme in der Landwirtschaft und bei der Nahrungsmittelindustrie limitiert. Es gilt deshalb, Entsorgungspfade aufzubauen, die eine mittel- und langfristige Sicherung der Entsorgung ermoeglichen. Nach den neueren Anforderungen an eine Deponierung ist demnach immer eine Verbrennung vorzusehen. Die z.Z. noch geltende Uebergangsregelung hat zu massiven Reaktionen des Entsorgungsmarktes gefuehrt. Die Planungen zur Klaerschlammentsorgung muessen sich an den Grundsaetzen der Umsetzbarkeit und betrieblichen Handhabbarkeit ausrichten. (orig.)

  2. Radioresistance of microorganisms in sewage sludge with special regard to the virus species

    International Nuclear Information System (INIS)

    Mayr, A.; Mahnel, H.; Brodorotti, H.S. v.; Ottis, K.

    1979-01-01

    Of the viral species present in surface and waste water only entero-, reo-, parvo-, and possibly paramyxoviruses are of relevance. These viruses remain infectious through to the sewage sludge stage, although then only present in small numbers. Bacteria and moulds are present in high concentrations in sewage sludge, the majority being non-pathogenis or only facultative pathogenic species. Of these only Salmonellae are of public health concern. Viruses are considerably more radiation resistant than bacteria and moulds. In sewage sludge a parvo virus was clearly the most resistant towards radiation followed, in order of decreasing resistivity, by reo- and entero-viruses. With the exception of the strongly resistant streptococcus faecalis two enterobacteria and one mould were found to be relatively radiation-sensitive. Gamma radiation is effective for inactivating all viral and bacterial contamination of sewage sludge. The dose required depends upon the radiation resistance and concentration of the individual strain. Enteroviral elimination determines the dose required for viruses and salmonella radiation the dose for bacteria. For practical sewage sludge decontamination a total irradiation dose of 500 krad has been calculated to meet normal requirements, and this dose can be raised to 1 Mrad for more stringent demands. (orig./MG) [de

  3. Analysis of briquetting process of sewage sludge with coal to combustion process

    Directory of Open Access Journals (Sweden)

    Kosturkiewicz Bogdan

    2016-01-01

    Full Text Available Energy recovery from sewage sludge can be achieved by several thermal technologies, but before those processes sewage sludge requires special pretreatment. The paper presents the investigation of the sewage sludge with coal briquettes as a fuel for combustion process. Research is conducted at Department of Manufacturing Systems and Department of Thermal Engineering and Environmental Protection, AGH University of Science and Technology to develop a technology of briquette preparation. The obtained results showed possibility of briquetting of municipal sewage sludge with coal in roll presses, equipped with asymmetric thickening gravity feed system. The following properties were determined for the obtained briquettes: density, drop strength and compressive strength. Based on physical and chemical analysis of prepared briquettes it was confirmed that briquettes have good fuel properties to combustion process. Thermal behaviour of studied sewage sludge and prepared mixture was investigated by thermogravimetric analysis (TG. For the thermo gravimetric analysis (TG the samples were heated in an alumina crucible from an ambient temperature up to 1000 °C at a constant rates: 10 °C/min, 40 °C/min and 100 °C/min in a 40 ml/min flow of air.

  4. Composting of sewage sludge with solid fraction of digested pulp from agricultural biogas plant

    Science.gov (United States)

    Czekała, Wojciech; Dach, Jacek; Przybył, Jacek; Mazurwiekiwcz, Jakub; Janczak, Damian; Lewicki, Andrzej; Smurzyńska, Anna; Kozłowski, Kamil

    2018-02-01

    Sewage sludge management is an important element of environmental protection. Composting and anaerobic digestion are the biological conversion methods for sewage sludge management. Mass and volume reduction is a result of a properly composted process. Solid fraction of digested pulp can be use as co-substrate, because it is good structural material. The aim of the study was to determine the possibility of composting sewage sludge with a solid fraction of digestate. The compost mix consisted of 25 kilograms of sewage sludge and 20 kilograms solid fraction of digestate in fresh mass. The experiment was carried out in laboratory conditions. Bioreactors of 165 dm3 volume were used. The experiment included two stages. Stage I took place in bioreactors and lasted until the cooling phase of the compost was complete. Stage II included compost maturation for a period of eight months (to 287 day of composting). The reduction of mass obtained at the end of Stage I amounted 30.2%. At the end of Stage II, it was 86.7% relative to the initial weight of the compost. The maximum value of temperature was 75.1°C. Studies have shown that sludge with a solid fraction of digestate can be a suitable substrate for composting with sewage sludge.

  5. Effects of hydrothermal treatment of sewage sludge on pyrolysis and steam gasification

    International Nuclear Information System (INIS)

    Moon, Jihong; Mun, Tae-Young; Yang, Won; Lee, Uendo; Hwang, Jungho; Jang, Ensuk; Choi, Changsik

    2015-01-01

    Highlights: • Hydrothermal treatment (HT) is energy efficient and increases fuel energy density. • Pyrolysis and steam gasification were performed with sewage sludge before/after HT. • Product gases resembled those from wood chips, particularly at high temperature. • HT increases sludge lignin content, possibly enhancing methane yield of product gas. • HT can improve sewage sludge for use as an alternative to biomass and fossil fuels. - Abstract: Hydrothermal treatment is a promising option for pretreatment drying of organic waste, due to its low energy consumption and contribution to increasing fuel energy density. In this study, the characteristics of hydrothermally treated sewage sludge were investigated, and pyrolysis and steam gasification were performed with the sludge before and after hydrothermal treatment. The overall composition of product gases from treated sludge was similar to that obtained from steam gasification of wood chips, particularly under high-temperature conditions. In addition, the increase in lignin content of sewage sludge following hydrothermal treatment could help enhance methane yield in product gas during pyrolysis and steam gasification. The findings suggest that hydrothermal treatment is an appropriate method for improving sewage sludge for use as an alternative to biomass and fossil fuels

  6. Disinfection of sewage sludge by gamma radiation, electron beams and alternative methods

    International Nuclear Information System (INIS)

    Lessel, T.

    1997-01-01

    Sewage sludges generally contain high concentrations of pathogens, even after digestion or other conventional treatments for stabilization. Disinfection can be effected by irradiation (e.g. gamma or electron beam), by heat treatment (pasteurization or thermophilic stabilization), and by changing the pH (lime treatment). Irradiation is a simple and reliable process for disinfection with special advantages and favorable side-effects. Irradiation can be combined with oxygenation, heat or other treatments, with favorable synergistic effects. The total costs for the irradiation treatment of sewage sludges are comparable to those of alternative disinfection methods. Most of the worldwide practical experience has been obtained at the sewage-sludge irradiation plant in Geiselbullach (10 km west of Munich, Germany), which was continuously in operation from 1973 to 1993. A multidisciplinary research programme was conducted during the first 8 years. In subsequent years, the plant was operated commercially for sewage-sludge disinfection, without public funds. Other demonstration or research plants for sewage-sludge irradiation have been reported in the USA, India, Russia, Japan, Austria, Germany and Hungary. (author)

  7. Comparative characterization of sewage sludge compost and soil: Heavy metal leaching characteristics.

    Science.gov (United States)

    Fang, Wen; Wei, Yonghong; Liu, Jianguo

    2016-06-05

    The leaching and accumulation of heavy metals are major concerns following the land application of sewage sludge compost (SSC). We comparatively characterized SSC, the reference soil, and the SSC amended soil to investigate their similarities and differences regarding heavy metal leaching behavior and then to evaluate the effect of SSC land application on the leaching behavior of soil. Results showed that organic matter, including both of particulate organic matter (POM) and dissolved organic matter (DOM), were critical factors influencing heavy metal leaching from both of SSC and the soil. When SSC was applied to soil at the application rate of 48t/ha, the increase of DOM content slightly enhanced heavy metal leaching from the amended soil over the applicable pH domain (6leaching behavior of heavy metals. The geochemical speciation modeling revealed that heavy metal speciation in the solid phase were similar between the reference soil and the amended soil. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Persistence of perfluoroalkylated substances in closed bottle tests with municipal sewage sludge.

    Science.gov (United States)

    Sáez, Monica; de Voogt, Pim; Parsons, John R

    2008-09-01

    Perfluoroalkylated substances (PFAS) are chemicals with completely fluorinated alkyl chains. The specific properties of the F-C bond give PFAS a high stability and make them very useful in a wide range of applications. PFAS also pose a potential risk to the environment and humans because they have been recently characterized as persistent, bioaccumulative, and toxic. The objective of this work is to study the bacterial degradation of PFAS under aerobic and anaerobic conditions in municipal sewage sludge as a contribution toward understanding their environmental fate and behavior. Bacterial communities from sewage sludge were exposed to a mixture of PFAS under aerobic or anaerobic conditions. Individual PFAS concentrations were determined in the experiment media at different exposure times using liquid chromatography-mass spectrometry analysis after extraction with solid-phase extraction. The PFAS analyses of samples of sludge showed repeatable replicate results, allowing a reliable quantification of the different groups of PFAS analyzed. No conclusive evidence for PFAS degradation was observed under the experimental conditions tested in this work. Reduction in concentrations, however, was observed for some PFAS in sludge under aerobic conditions. The largest concentration decrease occurred for the fluorotelomer alcohols (FTOHs), especially for the 8:2 FTOH, which have been described as biodegradable in the literature. However, this concentration decrease could be due to different causes: sorption to glass, septa, or matrix components, as well as bacterial activity. Therefore, it is not certain that biodegradation occurred. PFAS are very recalcitrant chemicals, especially when fully fluorinated. Although some decreases in concentration have been observed for some PFAS, such as the FTOHs, there is no conclusive evidence for biodegradation. It can be concluded that the PFAS tested in these experiments are non-biodegradable under these experimental conditions. Since

  9. The optimization of sewage sludge and effluent disposal on energy crops of short rotation hybrid poplar

    Energy Technology Data Exchange (ETDEWEB)

    Moffat, A.J.; Armstrong, A.T. [Forest Research, Farnham (United Kingdom); Ockleston, J. [Thames Water Utilities Ltd., Reading (United Kingdom)

    2001-07-01

    An experiment was set up to test the effect of sewage sludge application and waste water irrigation on the biomass production of two poplar varieties, Populus trichocarpa x P. deltoides ''Beaupre'', and Populus trichocarpa ''Trichobel''. Three sludge applications were examined factorially with two irrigation regimes (with and without), over the two final years of a three-year rotation. The effects of treatment on soil and soil water were monitored, and the amount of heavy metals removed in the biomass was quantified. Irrigation had a significant effect on biomass of both poplar varieties, with Beaupre yielding more than Trichobel. Sludge application was not effective in increasing biomass yield, but the experiment was valuable in identifying that modest amounts of sludge (approximately 100 m{sup 3} ha{sup -1} yr{sup -1}) were acceptable environmentally and did not compromise biomass production. Cadmium uptake was detected in the poplar biomass, but the amounts were small and insufficient for poplar to be used in phytoremediation of metal-contaminated land. (author)

  10. Management of sewage sludge by composting using fermented water hyacinth.

    Science.gov (United States)

    Tello-Andrade, A F; Jiménez-Moleón, M C; Sánchez-Galván, G

    2015-10-01

    The goal of the present research work was to assess the management of sewage sludge (SS) by composting using fermented water hyacinth (WHferm) as an amendment. The water hyacinth was fermented, and a higher production of volatile fatty acids (VFAs) (782.67 mg L(-1)) and soluble organic carbon (CSOL) (4788.34 mg L(-1)) was obtained using a particle size of 7 mm compared to 50 mm. For composting, four treatments (10 kg fresh weight each) were evaluated: treatment A (100 % SS + 0 % WHferm), treatment B (75 % SS + 25 % WHferm), treatment C (50 % SS + 50 % WHferm), and treatment D (25 % SS + 75 % WHferm). The WHferm added to SS, especially in treatments C (50 %) and D (75 %), increased the initial contents of organic matter (OM), organic carbon (CORG), CSOL, the C/N ratio, and the germination index (GI). The heavy metal content (HMC) (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) at the beginning was below the maximum allowed by USEPA regulations. All of the samples were free of Salmonella sp. from the beginning. The reduction of the CORG, CSOL, total Kjeldahl nitrogen (TKN), and C/N ratio indicated the degradation of the OM by day 198. The treatments with WHferm (B, C, and D) yielded higher values of electrical conductivity, cation exchange capacity, and GI than SS at day 198. No significant differences were observed in GI among the treatments with WHferm. The fecal coliforms were eliminated (Penicillium, Rhizopus, Paecilomyces (penicillin producers), and Fusariella isolated from the compost may have promoted the elimination of pathogens since no thermophile temperatures were obtained. WHferm as an amendment in the composting of SS improved the characteristics of the final product, especially when it was used in proportions of 25 and 50 %. An excellent product was obtained in terms of HMC, and the product was B class in terms of pathogens.

  11. Emission reduction in thermal processes for sewage sludge disposal; Emissionsreduzierung bei thermischen Verfahren zur Klaerschlammentsorgung

    Energy Technology Data Exchange (ETDEWEB)

    Nethe, L.P. [Maerker Umwelttechnik GmbH, Hamburg (Germany)

    1998-09-01

    Owing to the intensification of treatment processes and the construction of new sewage plants sewage arisings are due to rise considerably. The thermal treatment of sewage sludge which it has not been possible to avoid or utilise is an important and indispensable part of any sewage sludge disposal concept. If equipped with a state-of-the-art flue gas purification process that uses carbonaceous adsorbents (Sorbalit trademark), thermal treatment of sewage sludge can be regarded as an environmentally safe process technique. [Deutsch] Die anfallenden Klaerschlammengen werden durch die Intensivierung der Klaerprozesse und der Bau neuer Klaeranlagen deutlich zunehmen. Die thermische Behandlung nicht vermiedener oder verwerteter Klaerschlaemme stellt einen bedeutenden und unverzichtbaren Teil der Klaerschlamm-Entsorgungskonzepte dar. Bei Installation einer - dem Stand der Technik - entsprechenden Rauchgasreinigung mit dem Einsatz kohlenstoffhaltiger Adsorbentien (Sorbalit {sup trademark}) ist die thermische Behandlung von Klaerschlamm eine umweltsichere Verfahrenstechnik. (orig.)

  12. Moisture variation associated with water input and evaporation during sewage sludge bio-drying.

    Science.gov (United States)

    Cai, Lu; Gao, Ding; Chen, Tong-Bin; Liu, Hong-Tao; Zheng, Guo-Di; Yang, Qi-Wei

    2012-08-01

    The variation of moisture during sewage sludge bio-drying was investigated. In situ measurements were conducted to monitor the bulk moisture and water vapor, while the moisture content, water generation, water evaporation and aeration water input of the bio-drying bulk were calculated based on the water mass balance. The moisture in the sewage sludge bio-drying material decreased from 66% to 54% in response to control technology for bio-drying. During the temperature increasing and thermophilic phases of sewage sludge bio-drying, the moisture content, water generation and water evaporation of the bulk initially increased and then decreased. The peak water generation and evaporation occurred during the thermophilic phase. During the bio-drying, water evaporation was much greater than water generation, and aeration facilitated the water evaporation. Copyright © 2012. Published by Elsevier Ltd.

  13. Life cycle assessment of alternative sewage sludge disposal methods; Oekobilanz von Klaerschlammentsorgungsalternativen

    Energy Technology Data Exchange (ETDEWEB)

    Fehrenbach, H. [Institut fuer Energie- und Umweltforschung (ifeu), Heidelberg (Germany)

    1994-10-01

    At present there are three principal options for sewage sludge disposal in use or under discussion: agricultural utilisation - landfilling - cold pretreatment prior to disposal or utilisation (e.g., composting or fermentation) - thermal pretreatment prior to disposal or utilisation (e.g., monocombustion, co-combustion, pyrolysis, gasification). 10% of sewage sludge is currently combusted, 60% is landfilled, and 30% is used for agriculture. The ifeu Institute has carried out several studies which examine and compare the environmental impact of sewage sludge disposal options. [Deutsch] Zur Entsorgung bzw. Verwertung von Klaerschlamm stehen derzeit drei grundsaetzliche Optionen in Anwendung oder werden diskutiert: - Landwirtschaftliche Verwertung - Deponierung - kalte Vorbehandlung vor Deponierung oder Verwertung (z.B. Kompostierung oder Vergaerung) - thermische Vorbehandlung vorn Deponierung oder Verwertung (z.B. Mono- oder Mitverbrennung, Pyrolyse, Vergasung). Verbrannt werden gegenwaertig etwa 10%, 60% deponiert und 30% landwirschaftlich verwertet. Das ifeu-Institut hat in verschiedenen Arbeiten die Umweltauswirkungen von Klaerschlammentsorgungsoptionen untersucht und gegenuebergestellt. (orig./SR)

  14. Comparison of phosphorus recovery from incineration and gasification sewage sludge ash

    DEFF Research Database (Denmark)

    Parés Viader, Raimon; Jensen, Pernille Erland; Ottosen, Lisbeth M.

    Incineration of sewage sludge is a common practice in many western countries. Gasification is an attractive option because of its high energy efficiency and flexibility in the usage of the produced gas. However, they both unavoidably produce sewage sludge ash (SSA), a material which is rich...... in phosphorus (P), but that it is commonly landfilled or used in construction materials. With current uncertainty in phosphate rock (PR) supply, P recovery from SSA has become interesting. In the present work, ashes from incineration and gasification of the same sewage sludge were compared in terms of P...... extractability using electrodialytic (ED) methods. The results show that comparable recovery rates of P were achieved with a single ED step for incineration SSA and a sequential combination of two ED steps for gasification SSA, which was due to a higher influence of Fe and/or Al in P solubility for the latter...

  15. Integrated drying and incineration of wet sewage sludge in combined bubbling and circulating fluidized bed units.

    Science.gov (United States)

    Li, Shiyuan; Li, Yunyu; Lu, Qinggang; Zhu, Jianguo; Yao, Yao; Bao, Shaolin

    2014-12-01

    An original integrated drying and incineration technique is proposed to dispose of sewage sludge with moisture content of about 80% in a circulating fluidized bed. This system combines a bubbling fluidized bed dryer with a circulating fluidized bed incinerator. After drying, sewage sludge with moisture less than 20% is transported directly and continuously from the fluidized bed dryer into a circulating fluidized bed incinerator. Pilot plant results showed that integrated drying and incineration is feasible in a unique single system. A 100 t/d Sewage Sludge Incineration Demonstration Project was constructed at the Qige sewage treatment plant in Hangzhou City in China. The operational performance showed that the main operation results conformed to the design values, from which it can be concluded that the scale-up of this technique is deemed both feasible and successful. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Comparison of phosphorus recovery from incineration and gasification sewage sludge ash

    DEFF Research Database (Denmark)

    Parés Viader, Raimon; Jensen, Pernille Erland; Ottosen, Lisbeth M.

    2017-01-01

    Incineration of sewage sludge is a common practice in many western countries. Gasification is an attractive option because of its high energy efficiency and flexibility in the usage of the produced gas. However, they both unavoidably produce sewage sludge ash (SSA), a material which is rich...... in phosphorus (P), but that it is commonly landfilled or used in construction materials. With current uncertainty in phosphate rock (PR) supply, P recovery from SSA has become interesting. In the present work, ashes from incineration and gasification of the same sewage sludge were compared in terms of P...... extractability using electrodialytic (ED) methods. The results show that comparable recovery rates of P were achieved with a single ED step for incineration SSA and a sequential combination of two ED steps for gasification SSA, which was due to a higher influence of Fe and/or Al in P solubility for the latter...

  17. Thermal treatment of sewage sludge from waste water. Tratamiento termico de lodos procedentes de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Andreottola, G. (Universidad de Trento (Italy)); Canziani, R.; Ragazzi, M. (Politicnico de Milan (Italy))

    1994-01-01

    Thermal Treatment of sewage sludge can be beneficial as a pre-treatment step of many treatment/disposal options, but above all, it allows the recovery of the energetic content sludge. Energy recovery from sewage sludge can be performed in many ways; direct incineration thermal drying followed by incineration and co-combustion with municipal solid wastes or other non conventional fuels. Another option is the recovery of waste energy (e.g. from an endo thermal engine using biogas as fuel) to dry sludge wich, in turn can be used as a fuel. The paper will evaluate several options of thermal treatment of sewage sludge, with particular emphasis on the energetic yield from different processes. (Author)

  18. Essential oil production of lemongrass (Cymbopogon citratus under organic compost containing sewage sludge

    Directory of Open Access Journals (Sweden)

    Júlia V. d'Ávila

    Full Text Available ABSTRACT One of the main urban polluting agents are the sewers, which even with proper treatment end up generating a polluting waste, the sewage sludge. One of the options for the disposal of this sludge is the use in agriculture, due to its high content of organic matter and nutrients. This study aimed to use urban sewage sludge for lemongrass cultivation and essential oil production. The plants were grown in soil containing different organic compost doses (0, 5, 10, 20, 40 and 60 t ha-1, formed from the sewage sludge composting process and waste of urban vegetation pruning. At harvest, plants were analyzed for the concentration of nutrients, chlorophyll content, number of tillers, biomass production, essential oil content and the microbiological quality of the leaves. The results showed that the addition of the compost increased the levels of nutrients in the plants, mainly nitrogen, positively influencing the production of tillers, biomass, chlorophyll contents, yield and essential oil content.

  19. Review of enhanced processes for anaerobic digestion treatment of sewage sludge

    Science.gov (United States)

    Liu, Xinyuan; Han, Zeyu; Yang, Jie; Ye, Tianyi; Yang, Fang; Wu, Nan; Bao, Zhenbo

    2018-02-01

    Great amount of sewage sludge had been produced each year, which led to serious environmental pollution. Many new technologies had been developed recently, but they were hard to be applied in large scales. As one of the traditional technologies, anaerobic fermentation process was capable of obtaining bioenergy by biogas production under the functions of microbes. However, the anaerobic process is facing new challenges due to the low fermentation efficiency caused by the characteristics of sewage sludge itself. In order to improve the energy yield, the enhancement technologies including sewage sludge pretreatment process, co-digestion process, high-solid digestion process and two-stage fermentation process were widely studied in the literatures, which were introduced in this article.

  20. Behavior of solid matters and heavy metals during conductive drying process of sewage sludge

    Directory of Open Access Journals (Sweden)

    Jianping Luo

    2016-12-01

    Full Text Available Behavior of solid matters and heavy metals during conductive drying process of sewage sludge was evaluated in a sewage sludge disposal center in Beijing, China. The results showed most of solid matters could be retained in the dried sludge after drying. Just about 3.1% of solid matters were evaporated with steam mainly by the form of volatile fatty acids. Zn was the dominant heavy metal in the sludge, followed by Cu, Cr, Pb, Ni, Hg, and Cd. The heavy metals in the condensate were all below the detection limit except Hg. Hg in the condensate accounted for less than 0.1% of the total Hg. It can be concluded that most of the heavy metals are also retained in the dried sludge during the drying process, but their bioavailability could be changed significantly. The results are useful for sewage sludge utilization and its condensate treatment.

  1. Influence of maize straw content with sewage sludge on composting process

    Directory of Open Access Journals (Sweden)

    Czekała Wojciech

    2016-09-01

    Full Text Available After entrance to EU in 2004, the management of sewage sludge has become more and more important problem for the new members. In Poland, one of the most promising technologies is composting process of sewage sludge with carbonaceous materials. However, the high price of typically used cereal straw forces the specialists to look for new and cheap materials used as donor of carbon and substrates creating good, porous structure of composted heap. This work presents the results of sewage sludge composting mixed with sawdust and maize straw used to create structure favorable for air exchange. The results show dynamic thermophilic phase of composting process in all cases where maize straw was used.

  2. Parametric effect during power generation from sewage sludge using prototype mfc

    International Nuclear Information System (INIS)

    Memon, A.R.; Aftab, A.

    2015-01-01

    Pakistan like other countries is also faced with energy crisis, for which there is a need to identify indigenous technologies along with renewable energy sources to satisfy the energy footprint of the country. Use of MFC (Microbial Fuel Cell) technique is currently a step towards this direction that can play an effective role in solving the dual problems of environmental pollution and energy shortage. In this study, sewage sludge from a wastewater treatment plant was collected and used as a substrate for electricity generation in association with other biomass sources. Effect of relevant parameters such as oxygen flow rate, pH and concentration on voltage generation was also analyzed. The experimental results yielded in voltage generation of 2500 mv/l for sewage sludge in comparison to that obtained using carbon manure (270 mv/l), wastewater (229 mv/l) and cow manure (330 mv/l) suggesting towards the potential of sewage sludge for power generation. (author)

  3. Chlorinated hydrocarbons and PCBs in field soils, sediments and sewage sludges

    International Nuclear Information System (INIS)

    Schaaf, H.

    1992-01-01

    As requested by the Ministry of Agriculture of the FRG, the 'Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten (VDLUFA)' built up a data collection over chlorinated hydrocarbons and PCBs in field soils, sediments, sewage sludges. Nearly 70.000 samples were collected and statistically evaluated. The results of these investigations will be described. The major constituents of the chlorinated hydrocarbons generally were Lindane, DDT(total) and HCB. In sewage sludges PCBs could be detected in nearly every sample. The contents of PCBs in field soils are smaller than in sewage sludges. Rather 'high contents', greater than 100-200 μg/kg d.m./organic pollutants, were detected only in 2% of the samples. 7 refs., 5 figs., 2 tabs

  4. Adsorption of mercury by activated carbon prepared from dried sewage sludge in simulated flue gas.

    Science.gov (United States)

    Park, Jeongmin; Lee, Sang-Sup

    2018-04-25

    Conversion of sewage sludge to activated carbon is attractive as an alternative method to ocean dumping for the disposal of sewage sludge. Injection of activated carbon upstream of particulate matter control devices has been suggested as a method to remove elemental mercury from flue gas. Activated carbon was prepared using various activation temperatures and times and was tested for their mercury adsorption efficiency using lab-scale systems. To understand the effect of the physical property of the activated carbon, its mercury adsorption efficiency was investigated as a function of their Brunauer-Emmett-Teller (BET) surface area. Two simulated flue gas conditions: (1) without hydrogen chloride (HCl) and (2) with 20 ppm HCl, were used to investigate the effect of flue gas composition on the mercury adsorption capacity of activated carbon. Despite very low BET surface area of the prepared sewage sludge activated carbons, their mercury adsorption efficiencies were comparable under both simulated flue gas conditions to those of pinewood and coal activated carbons. After injecting HCl into the simulated flue gas, all sewage sludge activated carbons demonstrated high adsorption efficiencies, i.e., more than 87%, regardless of their BET surface area. IMPLICATIONS We tested activated carbons prepared from dried sewage sludge to investigate the effect of their physical properties on their mercury adsorption efficiency. Using two simulated flue gas conditions, we conducted mercury speciation for the outlet gas. We found that the sewage sludge activated carbon had comparable mercury adsorption efficiency to pinewood and coal activated carbons, and the presence of HCl minimized the effect of physical property of the activated carbon on its mercury adsorption efficiency.

  5. Improving material and energy recovery from the sewage sludge and biomass residues

    Energy Technology Data Exchange (ETDEWEB)

    Kliopova, Irina, E-mail: irina.kliopova@ktu.lt; Makarskienė, Kristina

    2015-02-15

    Highlights: • SRF production from 10–40 mm fraction of pre-composted sludge and biomass residues. • The material and energy balance of compost and SRF production. • Characteristics of raw materials and classification of produced SRF. • Results of the efficiency of energy recovery, comparison analysis with – sawdust. - Abstract: Sewage sludge management is a big problem all over the world because of its large quantities and harmful impact on the environment. Energy conversion through fermentation, compost production from treated sludge for agriculture, especially for growing energetic plants, and treated sludge use for soil remediation are widely used alternatives of sewage sludge management. Recently, in many EU countries the popularity of these methods has decreased due to the sewage sludge content (heavy metals, organic pollutions and other hazards materials). This paper presents research results where the possibility of solid recovered fuel (SRF) production from the separate fraction (10–40 mm) of pre-composted materials – sewage sludge from municipal waste water treatment plant and biomass residues has been evaluated. The remaining fractions of pre-composted materials can be successfully used for compost or fertiliser production, as the concentration of heavy metals in the analysed composition is reduced in comparison with sewage sludge. During the experiment presented in this paper the volume of analysed biodegradable waste was reduced by 96%: about 20% of input biodegradable waste was recovered to SRF in the form of pellets with 14.25 MJ kg{sup −1} of the net calorific value, about 23% were composted, the rest – evaporated and discharged in a wastewater. The methods of material-energy balances and comparison analysis of experiment data have been chosen for the environmental impact assessment of this biodegradable waste management alternative. Results of the efficiency of energy recovery from sewage sludge by SRF production and burning

  6. Pharmaceutical load in sewage sludge and biochar produced by hydrothermal carbonization.

    Science.gov (United States)

    vom Eyser, C; Palmu, K; Schmidt, T C; Tuerk, J

    2015-12-15

    We investigated the removal of twelve pharmaceuticals in sewage sludge by hydrothermal carbonization (HTC), which has emerged as a technology for improving the quality of organic waste materials producing a valuable biochar material. In this study, the HTC converted sewage sludge samples to a biochar product within 4h at a temperature of 210 °C and a resulting pressure of about 15 bar. Initial pharmaceutical load of the sewage sludge was investigated as well as the residual concentrations in biochar produced from spiked and eight native sewage sludge samples from three waste water treatment plants. Additionally, the solid contents of source material and product were compared, which showed a considerable increase of the solid content after filtration by HTC. All pharmaceuticals except sulfamethoxazole, which remained below the limit of quantification, frequently occurred in the investigated sewage sludges in the μg/kg dry matter (DM) range. Diclofenac, carbamazepine, metoprolol and propranolol were detected in all sludge samples with a maximum concentration of 800 μg/kgDM for metoprolol. HTC was investigated regarding its contaminant removal efficiency using spiked sewage sludge. Pharmaceutical concentrations were reduced for seven compounds by 39% (metoprolol) to≥97% (carbamazepine). In native biochar samples the four compounds phenazone, carbamazepine, metoprolol and propranolol were detected, which confirmed that the HTC process can reduce the load of micropollutants. In contrast to the other investigated compounds phenazone concentration increased, which was further addressed in thermal behaviour studies including three structurally similar potential precursors. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Improving material and energy recovery from the sewage sludge and biomass residues.

    Science.gov (United States)

    Kliopova, Irina; Makarskienė, Kristina

    2015-02-01

    Sewage sludge management is a big problem all over the world because of its large quantities and harmful impact on the environment. Energy conversion through fermentation, compost production from treated sludge for agriculture, especially for growing energetic plants, and treated sludge use for soil remediation are widely used alternatives of sewage sludge management. Recently, in many EU countries the popularity of these methods has decreased due to the sewage sludge content (heavy metals, organic pollutions and other hazards materials). This paper presents research results where the possibility of solid recovered fuel (SRF) production from the separate fraction (10-40 mm) of pre-composted materials--sewage sludge from municipal waste water treatment plant and biomass residues has been evaluated. The remaining fractions of pre-composted materials can be successfully used for compost or fertiliser production, as the concentration of heavy metals in the analysed composition is reduced in comparison with sewage sludge. During the experiment presented in this paper the volume of analysed biodegradable waste was reduced by 96%: about 20% of input biodegradable waste was recovered to SRF in the form of pellets with 14.25 MJ kg(-1) of the net calorific value, about 23% were composted, the rest--evaporated and discharged in a wastewater. The methods of material-energy balances and comparison analysis of experiment data have been chosen for the environmental impact assessment of this biodegradable waste management alternative. Results of the efficiency of energy recovery from sewage sludge by SRF production and burning, comparison analysis with widely used bio-fuel-sawdust and conclusions made are presented. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Improving material and energy recovery from the sewage sludge and biomass residues

    International Nuclear Information System (INIS)

    Kliopova, Irina; Makarskienė, Kristina

    2015-01-01

    Highlights: • SRF production from 10–40 mm fraction of pre-composted sludge and biomass residues. • The material and energy balance of compost and SRF production. • Characteristics of raw materials and classification of produced SRF. • Results of the efficiency of energy recovery, comparison analysis with – sawdust. - Abstract: Sewage sludge management is a big problem all over the world because of its large quantities and harmful impact on the environment. Energy conversion through fermentation, compost production from treated sludge for agriculture, especially for growing energetic plants, and treated sludge use for soil remediation are widely used alternatives of sewage sludge management. Recently, in many EU countries the popularity of these methods has decreased due