WorldWideScience

Sample records for excessive glucocorticoid receptor

  1. Selective Glucocorticoid Receptor modulators.

    Science.gov (United States)

    De Bosscher, Karolien

    2010-05-31

    The ancient two-faced Roman god Janus is often used as a metaphor to describe the characteristics of the Glucocorticoid Receptor (NR3C1), which exhibits both a beneficial side, that serves to halt inflammation, and a detrimental side responsible for undesirable effects. However, recent developments suggest that the Glucocorticoid Receptor has many more faces with the potential to express a range of different functionalities, depending on factors that include the tissue type, ligand type, receptor variants, cofactor surroundings and target gene promoters. This behavior of the receptor has made the development of safer ligands, that trigger the expression program of only a desirable subset of genes, a real challenge. Thus more knowledge-based fundamental research is needed to ensure the design and development of selective Glucocorticoid Receptor modulators capable of reaching the clinic. Recent advances in the characterization of novel selective Glucocorticoid Receptor modulators, specifically in the context of anti-inflammatory strategies, will be described in this review. 2010 Elsevier Ltd. All rights reserved.

  2. Glucocorticoid receptor haplotype and metabolic syndrome : the Lifelines cohort study

    NARCIS (Netherlands)

    Wester, Vincent L.; Koper, Jan W.; van den Akker, Erica L. T.; Franco, Oscar H.; Stolk, Ronald P.; van Rossum, Elisabeth F. C.

    2016-01-01

    Objective: An excess of glucocorticoids (Cushing's syndrome) is associated with metabolic syndrome (MetS) features. Several single-nucleotide polymorphisms (SNPs) in the glucocorticoid receptor (GR) gene influence sensitivity to glucocorticoids and have been associated with aspects of MetS. However,

  3. Regulation of triglyceride metabolism by glucocorticoid receptor

    Directory of Open Access Journals (Sweden)

    Wang Jen-Chywan

    2012-05-01

    Full Text Available Abstract Glucocorticoids are steroid hormones that play critical and complex roles in the regulation of triglyceride (TG homeostasis. Depending on physiological states, glucocorticoids can modulate both TG synthesis and hydrolysis. More intriguingly, glucocorticoids can concurrently affect these two processes in adipocytes. The metabolic effects of glucocorticoids are conferred by intracellular glucocorticoid receptors (GR. GR is a transcription factor that, upon binding to glucocorticoids, regulates the transcriptional rate of specific genes. These GR primary target genes further initiate the physiological and pathological responses of glucocorticoids. In this article, we overview glucocorticoid-regulated genes, especially those potential GR primary target genes, involved in glucocorticoid-regulated TG metabolism. We also discuss transcriptional regulators that could act with GR to participate in these processes. This knowledge is not only important for the fundamental understanding of steroid hormone actions, but also are essential for future therapeutic interventions against metabolic diseases associated with aberrant glucocorticoid signaling, such as insulin resistance, dyslipidemia, central obesity and hepatic steatosis.

  4. Molecular mechanisms of glucocorticoid receptor signaling

    Directory of Open Access Journals (Sweden)

    Marta Labeur

    2010-10-01

    Full Text Available This review highlights the most recent findings on the molecular mechanisms of the glucocorticoid receptor (GR. Most effects of glucocorticoids are mediated by the intracellular GR which is present in almost every tissue and controls transcriptional activation via direct and indirect mechanisms. Nevertheless the glucocorticoid responses are tissue -and gene- specific. GR associates selectively with corticosteroid ligands produced in the adrenal gland in response to changes of humoral homeostasis. Ligand interaction with GR promotes either GR binding to genomic glucocorticoid response elements, in turn modulating gene transcription, or interaction of GR monomers with other transcription factors activated by other signalling pathways leading to transrepression. The GR regulates a broad spectrum of physiological functions, including cell differentiation, metabolism and inflammatory responses. Thus, disruption or dysregulation of GR function will result in severe impairments in the maintenance of homeostasis and the control of adaptation to stress.

  5. Glucocorticoid receptor knockdown and adult hippocampal neurogenesis

    NARCIS (Netherlands)

    Hooijdonk, Leonarda Wilhelmina Antonia van

    2010-01-01

    The research in this thesis is aimed at the elucidation of the role of the glucocorticoid receptor (GR) in hippocampal neuroplasticity and functioning. To achieve this, we have developed a novel method to specifically knockdown GR in a discrete cell population of the mouse brain. In this thesis I

  6. From receptor balance to rational glucocorticoid therapy.

    Science.gov (United States)

    de Kloet, E Ron

    2014-08-01

    Corticosteroids secreted as end product of the hypothalamic-pituitary-adrenal axis act like a double-edged sword in the brain. The hormones coordinate appraisal processes and decision making during the initial phase of a stressful experience and promote subsequently cognitive performance underlying the management of stress adaptation. This action exerted by the steroids on the initiation and termination of the stress response is mediated by 2 related receptor systems: mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs). The receptor types are unevenly distributed but colocalized in abundance in neurons of the limbic brain to enable these complementary hormone actions. This contribution starts from a historical perspective with the observation that phasic occupancy of GR during ultradian rhythmicity is needed to maintain responsiveness to corticosteroids. Then, during stress, initially MR activation enhances excitability of limbic networks that are engaged in appraisal and emotion regulation. Next, the rising hormone concentration occupies GR, resulting in reallocation of energy to limbic-cortical circuits with a role in behavioral adaptation and memory storage. Upon MR:GR imbalance, dysregulation of the hypothalamic-pituitary-adrenal axis occurs, which can enhance an individual's vulnerability. Imbalance is characteristic for chronic stress experience and depression but also occurs during exposure to synthetic glucocorticoids. Hence, glucocorticoid psychopathology may develop in susceptible individuals because of suppression of ultradian/circadian rhythmicity and depletion of endogenous corticosterone from brain MR. This knowledge generated from testing the balance hypothesis can be translated to a rational glucocorticoid therapy.

  7. Glucocorticoid Regulation of the Vitamin D Receptor

    Science.gov (United States)

    Hidalgo, Alejandro A.; Trump, Donald L.; Johnson, Candace S.

    2010-01-01

    Many studies indicate calcitriol has potent anti-tumor activity in different types of cancers. However, high levels of vitamin D can produce hypercalcemia in some patients. Glucocorticoids are used to ameliorate hypercalcemia and to enhance calcitriol anti-tumor activity. Calcitriol in combination with the glucocorticoid dexamethasone (Dex) increased vitamin D receptor (VDR) protein levels and ligand binding in squamous cell carcinoma VII (SCC). In this study we found that both calcitriol and Dex induce VDR- and glucocorticoid receptor (GR)-mediated transcription respectively, indicating both hormone receptors are active in SCC. Pre-treatment with Dex increases VDR-mediated transcription at the human CYP24A1 promoter. Whereas, pre-treatment with other steroid hormones, including dihydrotestosterone and R1881, has no effect on VDR-mediated transcription. Real-time PCR indicates treatment with Dex increases Vdr transcripts in a time-dependent manner, suggesting Dex may directly regulate expression of Vdr. Numerous putative glucocorticoid response elements (GREs) were found in the Vdr gene. Chromatin immunoprecipitation (ChIP) assay demonstrated GR binding at several putative GREs located within the mouse Vdr gene. However, none of the putative GREs studied increase GR-mediated transcription in luciferase reporter assays. In an attempt to identify the response element responsible for Vdr transcript regulation, future studies will continue to analyze newly identified GREs more distal from the Vdr gene promoter. PMID:20398752

  8. Glucocorticoid Receptors and the Pattern of Steroid Response in ...

    African Journals Online (AJOL)

    CD3+) expression of glucocorticoid receptors (GCR) and the response to glucocorticoid treatment in children with idiopathic nephrotic syndrome (NS). The aim of the current study is to determine whether steroid responsiveness is dependent on ...

  9. Glucocorticoid receptor haplotype and metabolic syndrome: the Lifelines cohort study.

    Science.gov (United States)

    Wester, Vincent L; Koper, Jan W; van den Akker, Erica L T; Franco, Oscar H; Stolk, Ronald P; van Rossum, Elisabeth F C

    2016-12-01

    An excess of glucocorticoids (Cushing's syndrome) is associated with metabolic syndrome (MetS) features. Several single-nucleotide polymorphisms (SNPs) in the glucocorticoid receptor (GR) gene influence sensitivity to glucocorticoids and have been associated with aspects of MetS. However, results are inconsistent, perhaps due to the heterogeneity of the studied populations and limited samples. Furthermore, the possible association between functional GR SNPs and prevalence of MetS remains unexplored. Cross-sectional population-based cohort study. MetS presence and carriage of functional GR SNPs (BclI, N363S, ER22/23EK, GR-9beta) were determined in 12 552 adult participants from Lifelines, a population-based cohort study in the Netherlands. GR SNPs were used to construct GR haplotypes. Five haplotypes accounted for 99.9% of all GR haplotypes found. No main effects of functional GR haplotypes on MetS were found, but the association of GR haplotype 4 (containing N363S) with MetS was influenced by interaction with age, sex and education status (P haplotype 4 increased MetS presence in younger men (at or below the median age of 47; odds ratio 1.77, P = 0.005) and in people of low education status (odds ratio 1.48, P = 0.039). A glucocorticoid receptor haplotype that confers increased sensitivity to glucocorticoids appears to increase the risk of metabolic syndrome, but only among younger men and less educated individuals, suggesting gene-environment interactions. © 2016 European Society of Endocrinology.

  10. Familial glucocorticoid resistance caused by a splice site deletion in the human glucocorticoid receptor gene

    Energy Technology Data Exchange (ETDEWEB)

    Karl, M.; Lamberts, S.W.J.; Detera-Wadleigh, S.D.; Encio, I.J.; Stratakis, C.A.; Hurley, D.M.; Accili, D.; Chrousos, G.P. (National Institutes of Health, Bethesda, MD (United States) Erasmus Univ. of Rotterdam (Netherlands))

    1993-03-01

    The clinical syndrome of generalized, compensated glucocorticoid resistance is characterized by increased cortisol secretion without clinical evidence of hyper- or hypocortisolism, and manifestations of androgen and/or mineralocorticoid excess. This condition results from partial failure of the glucocorticoid receptor (GR) to modulate transcription of its target genes. The authors studied the molecular mechanisms of this syndrome in a Dutch kindred, whose affected members had hypercortisolism and approximately half of normal GRs, and whose proband was a young woman with manifestations of hyperandrogenism. Using the polymerase chain reaction to amplify and sequence each of the nine exons of the GR gene [alpha], along with their 5[prime]- and 3[prime]-flanking regions, the authors identified a 4-base deletion at the 3[prime]-boundary of exon 6 in one GR allele ([Delta][sub 4]), which removed a donor splice site in all three affected members studied. In contrast, the sequence of exon 6 in the two unaffected siblings was normal. A single nucleotide substitution causing an amino acid substitution in the amino terminal domain of the GR (asparagine to serine, codon 363) was also discovered in exon 2 of the other allele (G[sub 1220]) in the proband, in one of her affected brothers and in her unaffected sister. This deletion in the glucocorticoid receptor gene was associated with the expression of only one allele and a decrease of GR protein by 50% in affected members of this glucocorticoid resistant family. The mutation identified in exon 2 did not segregate with the disease and appears to be of no functional significance. The presence of the null allele was apparently compensated for by increased cortisol production at the expense of concurrent hyperandrogenism. 40 refs., 3 figs.

  11. Antenatal glucocorticoid treatment and polymorphisms of the glucocorticoid and mineralocorticoid receptors are associated with IQ and behavior in young adults born very preterm

    NARCIS (Netherlands)

    Voorn, B. van der; Pal, S.M. van der; Rotteveel, J.; Finken, M.J.

    2015-01-01

    Context: Preterm survivors exhibit neurodevelopmental impairments. Whether this association is influenced by antenatal glucocorticoid treatment and glucocorticoid sensitivity is unknown. Objectives: To study the effects of antenatal glucocorticoid treatment and glucocorticoid receptor (GR) and

  12. The glucocorticoid receptor: a revisited target for toxins.

    Science.gov (United States)

    Marketon, Jeanette I Webster; Sternberg, Esther M

    2010-06-01

    The hypothalamic-pituitary-adrenal (HPA) axis activation and glucocorticoid responses are critical for survival from a number of bacterial, viral and toxic insults, demonstrated by the fact that removal of the HPA axis or GR blockade enhances mortality rates. Replacement with synthetic glucocorticoids reverses these effects by providing protection against lethal effects. Glucocorticoid resistance/insensitivity is a common problem in the treatment of many diseases. Much research has focused on the molecular mechanism behind this resistance, but an area that has been neglected is the role of infectious agents and toxins. We have recently shown that the anthrax lethal toxin is able to repress glucocorticoid receptor function. Data suggesting that the glucocorticoid receptor may be a target for a variety of toxins is reviewed here. These studies have important implications for glucocorticoid therapy.

  13. The Glucocorticoid Receptor: A Revisited Target for Toxins

    Directory of Open Access Journals (Sweden)

    Jeanette I. Webster Marketon

    2010-06-01

    Full Text Available The hypothalamic-pituitary-adrenal (HPA axis activation and glucocorticoid responses are critical for survival from a number of bacterial, viral and toxic insults, demonstrated by the fact that removal of the HPA axis or GR blockade enhances mortality rates. Replacement with synthetic glucocorticoids reverses these effects by providing protection against lethal effects. Glucocorticoid resistance/insensitivity is a common problem in the treatment of many diseases. Much research has focused on the molecular mechanism behind this resistance, but an area that has been neglected is the role of infectious agents and toxins. We have recently shown that the anthrax lethal toxin is able to repress glucocorticoid receptor function. Data suggesting that the glucocorticoid receptor may be a target for a variety of toxins is reviewed here. These studies have important implications for glucocorticoid therapy.

  14. Testicular Receptor-4: Novel Regulator of Glucocorticoid Resistance.

    Science.gov (United States)

    Zhang, Dongyun; Du, Li; Heaney, Anthony P

    2016-08-01

    Glucocorticoids are powerful steroid hormones that regulate development, metabolism, and immune response. However, glucocorticoid unresponsiveness or resistance is observed in the treatment of inflammatory, autoimmune, and lymphoproliferative diseases and significantly limits their efficacy. In Cushing's disease, although some glucocorticoid-mediated suppression of pituitary-derived ACTH is seen, corticotroph tumors exhibit relative resistance to glucocorticoid action. We previously demonstrated that testicular orphan receptor 4 (TR4) binds to the pro-opiomelanocortin (POMC) promoter to induce corticotroph tumor POMC expression and ACTH secretion, and we hypothesized that TR4 may interact with glucocorticoid signaling to modulate POMC expression and action. Here we demonstrate that TR4 abrogates glucocorticoid receptor (GR)- or dexamethasone-mediated POMC and activator protein-1 transrepression in both murine and human pituitary corticotroph tumor cells. Co-immunoprecipitation studies indicate that TR4 and GR interact directly with each other, resulting in TR4-mediated disruption of GR binding to the POMC promoter. These results demonstrate that TR4 binds GR to play an important role in glucocorticoid-directed corticotroph tumor POMC regulation in addition to modulating glucocorticoid actions on other GR targets. Characterization of this pathway may offer important insights into glucocorticoid resistance and may identify a novel approach for the treatment of Cushing's disease and the glucocorticoid-resistant states.

  15. Retinoids enhance glucocorticoid-induced apoptosis of T cells by facilitating glucocorticoid receptor-mediated transcription

    Science.gov (United States)

    Tóth, K; Sarang, Z; Scholtz, B; Brázda, P; Ghyselinck, N; Chambon, P; Fésüs, L; Szondy, Z

    2011-01-01

    Glucocorticoid-induced apoptosis of thymocytes is one of the first recognized forms of programmed cell death. It was shown to require gene activation induced by the glucocorticoid receptor (GR) translocated into the nucleus following ligand binding. In addition, the necessity of the glucocorticoid-induced, but transcription-independent phosphorylation of phosphatidylinositol-specific phospholipase C (PI-PLC) has also been shown. Here we report that retinoic acids, physiological ligands for the nuclear retinoid receptors, enhance glucocorticoid-induced death of mouse thymocytes both in vitro and in vivo. The effect is mediated by retinoic acid receptor (RAR) alpha/retinoid X receptor (RXR) heterodimers, and occurs when both RARα and RXR are ligated by retinoic acids. We show that the ligated RARα/RXR interacts with the ligated GR, resulting in an enhanced transcriptional activity of the GR. The mechanism through which this interaction promotes GR-mediated transcription does not require DNA binding of the retinoid receptors and does not alter the phosphorylation status of Ser232, known to regulate the transcriptional activity of GR. Phosphorylation of PI-PLC was not affected. Besides thymocytes, retinoids also promoted glucocorticoid-induced apoptosis of various T-cell lines, suggesting that they could be used in the therapy of glucocorticoid-sensitive T-cell malignancies. PMID:21072052

  16. Glucocorticoid receptors in monocytes in type 1 diabetes mellitus

    DEFF Research Database (Denmark)

    Damm, P; Binder, C

    1989-01-01

    Glucocorticoid receptor binding characteristics were investigated in 8 males with poorly controlled Type 1 diabetes mellitus and 14 healthy males. The cell type studied was monocytes, and a method for correction for heterogeneity in glucocorticoid binding in a mononuclear leucocyte population was...

  17. Glucocorticoid Receptor Polymorphisms and Outcomes in Pediatric Septic Shock.

    Science.gov (United States)

    Cvijanovich, Natalie Z; Anas, Nick; Allen, Geoffrey L; Thomas, Neal J; Bigham, Michael T; Weiss, Scott L; Fitzgerald, Julie; Checchia, Paul A; Meyer, Keith; Quasney, Michael; Gedeit, Rainer; Freishtat, Robert J; Nowak, Jeffrey; Raj, Shekhar S; Gertz, Shira; Grunwell, Jocelyn R; Opoka, Amy; Wong, Hector R

    2017-04-01

    Polymorphisms of the glucocorticoid receptor gene are associated with outcome and corticosteroid responsiveness among patients with inflammatory disorders. We conducted a candidate gene association study to test the hypothesis that these polymorphisms are associated with outcome and corticosteroid responsiveness among children with septic shock. We genotyped 482 children with septic shock for the presence of two glucocorticoid receptor polymorphisms (rs56149945 and rs41423247) associated with increased sensitivity and one glucocorticoid receptor polymorphism (rs6198) associated with decreased sensitivity to corticosteroids. The primary outcome variable was complicated course, defined as 28-day mortality or the persistence of two or more organ failures 7 days after a septic shock diagnosis. We used logistic regression to test for an association between corticosteroid exposure and outcome, within genotype group, and adjusted for illness severity. Multiple PICUs in the United States. Standard care. There were no differences in outcome when comparing the various genotype groups. Among patients homozygous for the wild-type glucocorticoid receptor allele, corticosteroids were independently associated with increased odds of complicated course (odds ratio, 2.30; 95% CI, 1.01-5.21; p = 0.047). Based on these glucocorticoid receptor polymorphisms, we could not detect a beneficial effect of corticosteroids among any genotype group. Among children homozygous for the wild-type allele, corticosteroids were independently associated with increased odds of poor outcome.

  18. Dibutyltin disrupts glucocorticoid receptor function and impairs glucocorticoid-induced suppression of cytokine production.

    Directory of Open Access Journals (Sweden)

    Christel Gumy

    Full Text Available BACKGROUND: Organotins are highly toxic and widely distributed environmental chemicals. Dibutyltin (DBT is used as stabilizer in the production of polyvinyl chloride plastics, and it is also the major metabolite formed from tributyltin (TBT in vivo. DBT is immunotoxic, however, the responsible targets remain to be defined. Due to the importance of glucocorticoids in immune-modulation, we investigated whether DBT could interfere with glucocorticoid receptor (GR function. METHODOLOGY: We used HEK-293 cells transiently transfected with human GR as well as rat H4IIE hepatoma cells and native human macrophages and human THP-1 macrophages expressing endogenous receptor to study organotin effects on GR function. Docking of organotins was used to investigate the binding mechanism. PRINCIPAL FINDINGS: We found that nanomolar concentrations of DBT, but not other organotins tested, inhibit ligand binding to GR and its transcriptional activity. Docking analysis indicated that DBT inhibits GR activation allosterically by inserting into a site close to the steroid-binding pocket, which disrupts a key interaction between the A-ring of the glucocorticoid and the GR. DBT inhibited glucocorticoid-induced expression of phosphoenolpyruvate carboxykinase (PEPCK and tyrosine-aminotransferase (TAT and abolished the glucocorticoid-mediated transrepression of TNF-alpha-induced NF-kappaB activity. Moreover, DBT abrogated the glucocorticoid-mediated suppression of interleukin-6 (IL-6 and TNF-alpha production in lipopolysaccharide (LPS-stimulated native human macrophages and human THP-1 macrophages. CONCLUSIONS: DBT inhibits ligand binding to GR and subsequent activation of the receptor. By blocking GR activation, DBT may disturb metabolic functions and modulation of the immune system, providing an explanation for some of the toxic effects of this organotin.

  19. Knockout of the vascular endothelial glucocorticoid receptor abrogates dexamethasone-induced hypertension.

    Science.gov (United States)

    Goodwin, Julie E; Zhang, Junhui; Gonzalez, David; Albinsson, Sebastian; Geller, David S

    2011-07-01

    Glucocorticoid-mediated hypertension is incompletely understood. Recent studies have suggested the primary mechanism of this form of hypertension may be through the effects of glucocorticoids on vascular tissues and not to excess sodium and water re-absorption as traditionally believed. The goal of this study was to better understand the role of the vasculature in the generation and maintenance of glucocorticoid-mediated hypertension. We created a mouse model with a tissue-specific knockout of the glucocorticoid receptor in the vascular endothelium. We show that these mice are relatively resistant to dexamethasone-induced hypertension. After 1 week of dexamethasone treatment, control animals have a mean blood pressure (BP) increase of 13.1 mmHg, whereas knockout animals have only a 2.7 mmHg increase (P < 0.001). Interestingly, the knockout mice have slightly elevated baseline BP compared with the controls (112.2 ± 2.5 vs. 104.6 ± 1.2 mmHg, P = 0.04), a finding which is not entirely explained by our data. Furthermore, we demonstrate that the knockout resistance arterioles have a decreased contractile response to dexamethasone with only 6.6% contraction in knockout vessels compared with 13.4% contraction in control vessels (P = 0.034). Finally, we show that in contrast to control animals, the knockout animals are able to recover a significant portion of their normal circadian BP rhythm, suggesting that the vascular endothelial glucocorticoid receptor may function as a peripheral circadian clock. Our study highlights the importance of the vascular endothelial glucocorticoid receptor in several fundamental physiologic processes, namely BP homeostasis and circadian rhythm.

  20. Glucocorticoid receptor polymorphism in obesity and glucose homeostasis.

    Science.gov (United States)

    Majer-Łobodzińska, Agnieszka; Adamiec-Mroczek, Joanna

    2017-01-01

    Glucocorticoid receptor (GR) activity plays a significant role in the etiology of obesity and is essential for glucose homeostasis, the development of hyperinsulinaemia and subsequent increased fat deposition. Several polymorphisms in the GR gene have been described, and at least three of them seem to be associated with altered glucocorticoid sensitivity and changes in glucose homeostasis, and other metabolic parameters. The N363S polymorphism has been associated with increased sensitivity to glucocorticoides, increased insulin response to dexamethasone and increased plasma glucose level. BclI polymorphism is associated with increased abdominal obesity, hyperinsulinaemia and increased insulin resistance. Another polymorphism, ER22/23EK, in contrast to the others, is associated with relative resistance to glucocoricides actions and more beneficial metabolic profile-lower insulin resistance level, decreased lower cardiovascular risk and subseuent prolongation of life time. More research is still needed to understand the mechanisms behind these associations at the molecular level.

  1. Repeated blockade of mineralocorticoid receptors, but not of glucocorticoid receptors impairs food rewarded spatial learning

    NARCIS (Netherlands)

    Douma, B. R.; Korte, S. M.; Buwalda, B.; La Fleur, S. E.; Bohus, B.; Luiten, P. G.

    1998-01-01

    Corticosteroids from the adrenal cortex influence a variety of behaviours including cognition, learning and memory. These hormones act via two intracellular receptors, the mineralo-corticoid receptor (MR) and the glucocorticoid receptor (GR). These two receptor types display a high concentration and

  2. Repeated blockade of mineralocorticoid receptors, but not of glucocorticoid receptors impairs food rewarded spatial learning

    NARCIS (Netherlands)

    Douma, BRK; Korte, SM; Buwalda, B; la Fleur, SE; Bohus, B; Luiten, PGM

    Corticosteroids from the adrenal cortex influence a variety of behaviours including cognition, learning and memory. These hormones act via two intracellular receptors, the mineralo-corticoid receptor (MR) and the glucocorticoid receptor (GR). These two receptor types display a high concentration and

  3. Lymphocyte glucocorticoid receptor resistance and depressive symptoms severity : A preliminary report

    NARCIS (Netherlands)

    Tanke, M. A. C.; Bosker, F. J.; Gladkevich, An.; Medema, H. M.; den Boer, J. A.; Korf, J.

    2008-01-01

    Objective: Assessment of the temporal interrelationship of neuropsychiatric parameters requires technologies allowing frequent biological measurements. We propose glucocorticoid receptor (GR) function of lymphocytes to assess the temporal relationship between glucocorticoid resistance and the course

  4. The Effect of Glucocorticoid and Glucocorticoid Receptor Interactions on Brain, Spinal Cord, and Glial Cell Plasticity

    Directory of Open Access Journals (Sweden)

    Kathryn M. Madalena

    2017-01-01

    Full Text Available Stress, injury, and disease trigger glucocorticoid (GC elevation. Elevated GCs bind to the ubiquitously expressed glucocorticoid receptor (GR. While GRs are in every cell in the nervous system, the expression level varies, suggesting that diverse cell types react differently to GR activation. Stress/GCs induce structural plasticity in neurons, Schwann cells, microglia, oligodendrocytes, and astrocytes as well as affect neurotransmission by changing the release and reuptake of glutamate. While general nervous system plasticity is essential for adaptation and learning and memory, stress-induced plasticity is often maladaptive and contributes to neuropsychiatric disorders and neuropathic pain. In this brief review, we describe the evidence that stress/GCs activate GR to promote cell type-specific changes in cellular plasticity throughout the nervous system.

  5. Molecular mechanisms of glucocorticoid receptor signaling Mecanismos moleculares de señalización del receptor de glucocorticoides

    Directory of Open Access Journals (Sweden)

    Marta Labeur

    2010-10-01

    Full Text Available This review highlights the most recent findings on the molecular mechanisms of the glucocorticoid receptor (GR. Most effects of glucocorticoids are mediated by the intracellular GR which is present in almost every tissue and controls transcriptional activation via direct and indirect mechanisms. Nevertheless the glucocorticoid responses are tissue -and gene- specific. GR associates selectively with corticosteroid ligands produced in the adrenal gland in response to changes of humoral homeostasis. Ligand interaction with GR promotes either GR binding to genomic glucocorticoid response elements, in turn modulating gene transcription, or interaction of GR monomers with other transcription factors activated by other signalling pathways leading to transrepression. The GR regulates a broad spectrum of physiological functions, including cell differentiation, metabolism and inflammatory responses. Thus, disruption or dysregulation of GR function will result in severe impairments in the maintenance of homeostasis and the control of adaptation to stress.Esta revisión destaca los más recientes hallazgos sobre los mecanismos moleculares del receptor de glucocorticoides (GR. La mayoría de los efectos de los glucocorticoides son mediados por los GR intracelulares presentes en casi todos los tejidos y controlan la activación transcripcional por mecanismos directos e indirectos. Las respuestas a los glucocorticoides son específicas para cada gen y tejido. Los GR se asocian en forma selectiva con ligandos producidos en la glándula adrenal, corticosteroides, en respuesta a cambios neuroendocrinos. La interacción del ligando con el GR promueve: a la unión del GR a elementos genómicos de respuesta a glucocorticoides, modulando la transcripción; b la interacción de monómeros del GR con otros factores de transcripción activados por otras vías, llevando a la transrepresión. El GR regula un amplio espectro de funciones fisiológicas, incluyendo la

  6. The aryl hydrocarbon receptor and glucocorticoid receptor interact to activate human metallothionein 2A

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Shoko, E-mail: satosho@rs.tus.ac.jp [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan); Shirakawa, Hitoshi, E-mail: shirakah@m.tohoku.ac.jp [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan); Tomita, Shuhei, E-mail: tomita@med.tottori-u.ac.jp [Division of Molecular Pharmacology, Department of Pathophysiological and Therapeutic Science, Yonago 683-8503 (Japan); Tohkin, Masahiro, E-mail: tohkin@phar.nagoya-cu.ac.jp [Department of Medical Safety Science, Graduate School of Pharmaceutical Science, Nagoya City University, Nagoya 267-8603 (Japan); Gonzalez, Frank J., E-mail: gonzalef@mail.nih.gov [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Komai, Michio, E-mail: mkomai@m.tohoku.ac.jp [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan)

    2013-11-15

    Although the aryl hydrocarbon receptor (AHR) and glucocorticoid receptor (GR) play essential roles in mammalian development, stress responses, and other physiological events, crosstalk between these receptors has been the subject of much debate. Metallothioneins are classic glucocorticoid-inducible genes that were reported to increase upon treatment with AHR agonists in rodent tissues and cultured human cells. In this study, the mechanism of human metallothionein 2A (MT2A) gene transcription activation by AHR was investigated. Cotreatment with 3-methylcholanthrene and dexamethasone, agonists of AHR and GR respectively, synergistically increased MT2A mRNA levels in HepG2 cells. MT2A induction was suppressed by RNA interference against AHR or GR. Coimmunoprecipitation experiments revealed a physical interaction between AHR and GR proteins. Moreover, chromatin immunoprecipitation assays indicated that AHR was recruited to the glucocorticoid response element in the MT2A promoter. Thus, we provide a novel mechanism whereby AHR modulates expression of human MT2A via the glucocorticoid response element and protein–protein interactions with GR. - Highlights: • Aryl hydrocarbon receptor forms a complex with glucocorticoid receptor in cells. • Human metallothionein gene is regulated by the AHR and GR interaction. • AHR–GR complex binds to glucocorticoid response element in metallothionein gene. • We demonstrated a novel transcriptional mechanism via AHR and GR interaction.

  7. The transcriptomics of glucocorticoid receptor signaling in developing zebrafish.

    Directory of Open Access Journals (Sweden)

    Dinushan Nesan

    Full Text Available Cortisol is the primary corticosteroid in teleosts that is released in response to stressor activation of the hypothalamus-pituitary-interrenal axis. The target tissue action of this hormone is primarily mediated by the intracellular glucocorticoid receptor (GR, a ligand-bound transcription factor. In developing zebrafish (Danio rerio embryos, GR transcripts and cortisol are maternally deposited into the oocyte prior to fertilization and influence early embryogenesis. To better understand of the molecular mechanisms involved, we investigated changes in the developmental transcriptome prior to hatch, in response to morpholino oligonucleotide knockdown of GR using the Agilent zebrafish microarray platform. A total of 1313 and 836 mRNA transcripts were significantly changed at 24 and 36 hours post fertilization (hpf, respectively. Functional analysis revealed numerous developmental processes under GR regulation, including neurogenesis, eye development, skeletal and cardiac muscle formation. Together, this study underscores a critical role for glucocorticoid signaling in programming molecular events essential for zebrafish development.

  8. Adipocyte glucocorticoid receptors mediate fat-to-brain signaling.

    Science.gov (United States)

    de Kloet, Annette D; Krause, Eric G; Solomon, Matia B; Flak, Jonathan N; Scott, Karen A; Kim, Dong-Hoon; Myers, Brent; Ulrich-Lai, Yvonne M; Woods, Stephen C; Seeley, Randy J; Herman, James P

    2015-06-01

    Stress-related (e.g., depression) and metabolic pathologies (e.g., obesity) are important and often co-morbid public health concerns. Here we identify a connection between peripheral glucocorticoid receptor (GR) signaling originating in fat with the brain control of both stress and metabolism. Mice with reduced adipocyte GR hypersecrete glucocorticoids following acute psychogenic stress and are resistant to diet-induced obesity. This hypersecretion gives rise to deficits in responsiveness to exogenous glucocorticoids, consistent with reduced negative feedback via adipocytes. Increased stress reactivity occurs in the context of elevated hypothalamic expression of hypothalamic-pituitary-adrenal (HPA) axis-excitatory neuropeptides and in the absence of altered adrenal sensitivity, consistent with a central cite of action. Our results identify a novel mechanism whereby activation of the adipocyte GR promotes peripheral energy storage while inhibiting the HPA axis, and provide functional evidence for a fat-to-brain regulatory feedback network that serves to regulate not just homeostatic energy balance but also responses to psychogenic stimuli. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. High-fat diet and glucocorticoid treatment cause hyperglycemia associated with adiponectin receptor alterations

    Directory of Open Access Journals (Sweden)

    Oller do Nascimento Cláudia

    2011-01-01

    Full Text Available Abstract Background Adiponectin is the most abundant plasma protein synthesized for the most part in adipose tissue, and it is an insulin-sensitive hormone, playing a central role in glucose and lipid metabolism. In addition, it increases fatty acid oxidation in the muscle and potentiates insulin inhibition of hepatic gluconeogenesis. Two adiponectin receptors have been identified: AdipoR1 is the major receptor expressed in skeletal muscle, whereas AdipoR2 is mainly expressed in liver. Consumption of high levels of dietary fat is thought to be a major factor in the promotion of obesity and insulin resistance. Excessive levels of cortisol are characterized by the symptoms of abdominal obesity, hypertension, glucose intolerance or diabetes and dyslipidemia; of note, all of these features are shared by the condition of insulin resistance. Although it has been shown that glucocorticoids inhibit adiponectin expression in vitro and in vivo, little is known about the regulation of adiponectin receptors. The link between glucocorticoids and insulin resistance may involve the adiponectin receptors and adrenalectomy might play a role not only in regulate expression and secretion of adiponectin, as well regulate the respective receptors in several tissues. Results Feeding of a high-fat diet increased serum glucose levels and decreased adiponectin and adipoR2 mRNA expression in subcutaneous and retroperitoneal adipose tissues, respectively. Moreover, it increased both adipoR1 and adipoR2 mRNA levels in muscle and adipoR2 protein levels in liver. Adrenalectomy combined with the synthetic glucocorticoid dexamethasone treatment resulted in increased glucose and insulin levels, decreased serum adiponectin levels, reduced adiponectin mRNA in epididymal adipose tissue, reduction of adipoR2 mRNA by 7-fold in muscle and reduced adipoR1 and adipoR2 protein levels in muscle. Adrenalectomy alone increased adiponectin mRNA expression 3-fold in subcutaneous adipose

  10. Effects of glucocorticoid excess on the sensitivity of glucose transport and metabolism to insulin in rat skeletal muscle.

    OpenAIRE

    Dimitriadis, G; Leighton, B; Parry-Billings, M.; Sasson, S; Young, M; Krause, U.; Bevan, S.; Piva, T; Wegener, G.; Newsholme, E A

    1997-01-01

    GENBANK/dy examines the mechanisms of glucocorticoid-induced insulin resistance in rat soleus muscle. Glucocorticoid excess was induced by administration of dexamethasone to rats for 5 days. Dexamethasone decreased the sensitivity of 3-O-methylglucose transport, 2-deoxyglucose phosphorylation, glycogen synthesis and glucose oxidation to insulin. The total content of GLUT4 glucose transporters was not decreased by dexamethasone; however, the increase in these transporters in the plasma membran...

  11. A Pharmacokinetic/Pharmacodynamic Study of the Glucocorticoid Receptor Antagonist Mifepristone Combined with Enzalutamide in Castrate Resistant Prostate Cancer

    Science.gov (United States)

    2015-12-01

    AWARD NUMBER: W81XWH-14-1-0021 TITLE: A Pharmacokinetic/Pharmacodynamic Study of the Glucocorticoid Receptor Antagonist Mifepristone Combined...4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER A Pharmacokinetic/Pharmacodynamic Study of the Glucocorticoid Receptor Antagonist Mifepristone Combined...way it adapts is by upregulating another hormone receptor, the glucocorticoid receptor (GR), which may compensate for diminished AR activity. The

  12. Comparative analysis of ginsenosides in human glucocorticoid receptor binding, transactivation, and transrepression.

    Science.gov (United States)

    Hu, Catherine; Lau, Aik Jiang; Wang, RuiQi; Chang, Thomas K H

    2017-11-15

    Conflicting data exist on the effect of ginsenosides on transactivation of human glucocorticoid receptor α (herein referred to as glucocorticoid receptor), and relatively little is known regarding the effect of these chemicals on transrepression of this receptor. We investigated the effect of 20(S)-protopanaxadiol (PPD), PPD-type ginsenosides (Rb1, Rb2, Rc, Rd, Rh2, and Compound K), 20(S)-protopanaxatriol (PPT), and PPT-type ginsenosides (Re, Rf, Rg1, and Rh1) on glucocorticoid receptor binding, transactivation, and transrepression. Each ginsenoside was less efficacious than dexamethasone (positive control) in binding to the ligand-binding domain of glucocorticoid receptor. Among the ginsenosides investigated, Rh2 had the smallest IC50 value (15 ± 1µM), whereas it was 0.02 ± 0.01µM for dexamethasone. In contrast to dexamethasone, none of the ginsenosides influenced glucocorticoid receptor transactivation or transrepression in LS180 human colorectal adenocarcinoma cells, as assessed in a dual-luciferase reporter gene assay. Rh2 did not affect the endogenous mRNA level of tyrosine aminotransferase (marker for glucocorticoid receptor transactivation) or corticosteroid-binding globulin (marker for glucocorticoid receptor transrepression) in HepG2 human hepatocellular carcinoma cells. This chemical also did not alter the response by a glucocorticoid receptor agonist (dexamethasone or Compound A) in the dual-luciferase reporter gene assay or target gene expression assay. In conclusion, ginsenosides were less efficacious and less potent than dexamethasone in binding to the ligand-binding domain of glucocorticoid receptor. The number of glycosylated groups was associated with a decrease in receptor binding potency. PPD-type and PPT-type ginsenosides are not modulators of glucocorticoid receptor transactivation or transrepression in LS180 and HepG2 cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Brief treatment with the glucocorticoid receptor antagonist mifepristone normalizes the reduction in neurogenesis after chronic stress.

    NARCIS (Netherlands)

    Oomen, C.A.; Mayer, J.L.; de Kloet, E.R.; Joëls, M.; Lucassen, P.J.

    2007-01-01

    In rodents, stress suppresses adult neurogenesis. This is thought to involve activation of glucocorticoid receptors in the brain. In the present study, we therefore questioned whether glucocorticoid receptor blockade by mifepristone can normalize the effects of chronic stress on adult neurogenesis.

  14. Glucocorticoid receptor mediated suppression of natural killer cell activity: identification of associated deacetylase and corepressor molecules.

    Science.gov (United States)

    Bush, Kristin A; Krukowski, Karen; Eddy, Justin L; Janusek, Linda Witek; Mathews, Herbert L

    2012-01-01

    Physical and psychological stressors reduce natural killer cell function. This reduction in cellular function results from stress-induced release of glucocorticoids. Glucocorticoids act upon natural killer cells to deacetylate and transrepress immune response genes through epigenetic processes. However, other than the glucocorticoid receptor, the proteins that participate in this process are not well described in natural killer cells. The purpose of this study was to identify the proteins associated with the glucocorticoid receptor that are likely epigenetic participants in this process. Treatment of natural killer cells with the synthetic glucocorticoid, dexamethasone, produced a significant time dependent reduction in natural killer cell activity as early as 8h post treatment. This reduction in natural killer cell activity was preceded by nuclear localization of the glucocorticoid receptor with histone deacetylase 1 and the corepressor, SMRT. Other class I histone deacetylases were not associated with the glucocorticoid receptor nor was the corepressor NCoR. These results demonstrate histone deacetylase 1 and SMRT to associate with the ligand activated glucocorticoid receptor within the nuclei of natural killer cells and to be the likely participants in the histone deacetylation and transrepression that accompanies glucocorticoid mediated reductions in natural killer cell function. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Glucocorticoid receptor-mediated induction of glutamine synthetase in skeletal muscle cells in vitro

    Science.gov (United States)

    Max, Stephen R.; Thomas, John W.; Banner, Carl; Vitkovic, Ljubisa; Konagaya, Masaaki

    1987-01-01

    The regulation by glucocorticoids of glutamine synthetase in L6 muscle cells in culture is studied. Glutamine synthetase activity was strikingly enhanced by dexamethasone. The dexamethasone-mediated induction of glutamine synthetase activity was blocked by RU38486, a glucocorticoid antagonist, indicating the involvement of intracellular glucocorticoid receptors in the induction process. RU38486 alone was without effect. Northern blot analysis revealed that dexamethasone-mediated enhancement of glutamine synthetase activity involves increased levels of glutamine synthetase mRNA. Glucocorticoids regulate the expression of glutamine synthetase mRNA in cultured muscle cells via interaction with intracellular receptors. Such regulation may be relevant to control of glutamine production by muscle.

  16. Dexamethasone and sex regulate placental glucocorticoid receptor isoforms in mice.

    Science.gov (United States)

    Cuffe, James S M; Saif, Zarqa; Perkins, Anthony V; Moritz, Karen M; Clifton, Vicki L

    2017-08-01

    Maternal dexamethasone exposure in the mouse impairs placental development and programs adult disease in a sexually dimorphic manner. Glucocorticoids bind to different glucocorticoid receptor (GR) isoforms to regulate gene transcription and cellular signaling. We hypothesized that sexually dimorphic placental responses to glucocorticoids are due to differences in GR isoforms present in the placenta. Pregnant C57Bl6 mice were exposed to saline or dexamethasone from E12.5 until E14.5 (1 µg/kg/h) before the collection of placentae. Cytoplasmic and nuclear protein fractions were extracted from placentae of male and female fetuses for Western blot analysis of GR isoforms. Eight known isoforms of the GR were detected in the mouse placenta including the translational isoforms GRα-A, B, C and D1-3 and the splice variants GRA and GRP. The expression of GRA, GRP and each of the GRα isoforms were altered by dexamethasone in relation to fetal sex and cellular location. Placentae of female fetuses had higher GRα-A and GRP expression in the cytoplasm than males, and GRα-C was more highly expressed in the nucleus of females than that in males. Dexamethasone significantly increased the cytoplasmic expression of GRα-A, but reduced the expression of GRα-C in placentae of males. Dexamethasone increased the expression of the GRα-C-regulated genes Sgk1 and Bcl2l11, particularly in females. The cleaved caspase-3 staining in placental sections indicated GRα-C may mediate sex differences in dexamethasone-induced apoptosis. These findings may underlie the sex-specific placental adaptations that regulate different growth profiles in males and females and different risks for programmed disease outcomes in offspring. © 2017 Society for Endocrinology.

  17. Five patients with biochemical and/or clinical generalized glucocorticoid resistance without alterations in the glucocorticoid receptor gene

    NARCIS (Netherlands)

    N.A.T.M. Huizenga (Nannette); P. de Lange (Pieter); J.W. Koper (Jan); W.W. de Herder (Wouter); R. Abs; J.H. Kasteren; F.H. de Jong (Frank); S.W.J. Lamberts (Steven)

    2000-01-01

    textabstractCortisol resistance (CR) is a rare disease characterized by a generalized reduced sensitivity of end-organs to the actions of glucocorticoids (GCs). GC effects are mediated by the GC receptor (GR). The molecular alterations in CR described thus far were

  18. Neuroendocrine Function After Hypothalamic Depletion of Glucocorticoid Receptors in Male and Female Mice.

    Science.gov (United States)

    Solomon, Matia B; Loftspring, Matthew; de Kloet, Annette D; Ghosal, Sriparna; Jankord, Ryan; Flak, Jonathan N; Wulsin, Aynara C; Krause, Eric G; Zhang, Rong; Rice, Taylor; McKlveen, Jessica; Myers, Brent; Tasker, Jeffrey G; Herman, James P

    2015-08-01

    Glucocorticoids act rapidly at the paraventricular nucleus (PVN) to inhibit stress-excitatory neurons and limit excessive glucocorticoid secretion. The signaling mechanism underlying rapid feedback inhibition remains to be determined. The present study was designed to test the hypothesis that the canonical glucocorticoid receptors (GRs) is required for appropriate hypothalamic-pituitary-adrenal (HPA) axis regulation. Local PVN GR knockdown (KD) was achieved by breeding homozygous floxed GR mice with Sim1-cre recombinase transgenic mice. This genetic approach created mice with a KD of GR primarily confined to hypothalamic cell groups, including the PVN, sparing GR expression in other HPA axis limbic regulatory regions, and the pituitary. There were no differences in circadian nadir and peak corticosterone concentrations between male PVN GR KD mice and male littermate controls. However, reduction of PVN GR increased ACTH and corticosterone responses to acute, but not chronic stress, indicating that PVN GR is critical for limiting neuroendocrine responses to acute stress in males. Loss of PVN GR induced an opposite neuroendocrine phenotype in females, characterized by increased circadian nadir corticosterone levels and suppressed ACTH responses to acute restraint stress, without a concomitant change in corticosterone responses under acute or chronic stress conditions. PVN GR deletion had no effect on depression-like behavior in either sex in the forced swim test. Overall, these findings reveal pronounced sex differences in the PVN GR dependence of acute stress feedback regulation of HPA axis function. In addition, these data further indicate that glucocorticoid control of HPA axis responses after chronic stress operates via a PVN-independent mechanism.

  19. Characterization of a novel non-steroidal glucocorticoid receptor antagonist

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qun-Yi; Zhang, Meng [The National Center for Drug Screening, Shanghai (China); State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai (China); Hallis, Tina M.; DeRosier, Therese A. [Cell Systems Division, Invitrogen, Madison, WI (United States); Yue, Jian-Min; Ye, Yang [State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai (China); Mais, Dale E. [The National Center for Drug Screening, Shanghai (China); MPI Research, Mattawan, MI (United States); Wang, Ming-Wei, E-mail: wangmw@mail.shcnc.ac.cn [The National Center for Drug Screening, Shanghai (China); State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai (China)

    2010-01-15

    Selective antagonists of the glucocorticoid receptor (GR) are desirable for the treatment of hypercortisolemia associated with Cushing's syndrome, psychic depression, obesity, diabetes, neurodegenerative diseases, and glaucoma. NC3327, a non-steroidal small molecule with potent binding affinity to GR (K{sub i} = 13.2 nM), was identified in a high-throughput screening effort. As a full GR antagonist, NC3327 greatly inhibits the dexamethasone (Dex) induction of marker genes involved in hepatic gluconeogenesis, but has a minimal effect on matrix metalloproteinase 9 (MMP-9), a GR responsive pro-inflammatory gene. Interestingly, the compound recruits neither coactivators nor corepressors to the GR complex but competes with glucocorticoids for the interaction between GR and a coactivator peptide. Moreover, NC3327 does not trigger GR nuclear translocation, but significantly blocks Dex-induced GR transportation to the nucleus, and thus appears to be a 'competitive' GR antagonist. Therefore, the non-steroidal compound, NC3327, may represent a new class of GR antagonists as potential therapeutics for a variety of cortisol-related endocrine disorders.

  20. Analysis of Chromatin Dynamics during Glucocorticoid Receptor Activation

    Science.gov (United States)

    Burd, Craig J.; Ward, James M.; Crusselle-Davis, Valerie J.; Kissling, Grace E.; Phadke, Dhiral; Shah, Ruchir R.

    2012-01-01

    Steroid hormone receptors initiate a genetic program tightly regulated by the chromatin environment of the responsive regions. Using the glucocorticoid receptor (GR) as a model factor for transcriptional initiation, we classified chromatin structure through formaldehyde-assisted isolation of regulatory elements (FAIRE). We looked at dynamic changes in FAIRE signals during GR activation specifically at regions of receptor interaction. We found a distribution of GR-responsive regions with diverse responses to activation and chromatin modulation. The majority of GR binding regions demonstrate increases in FAIRE signal in response to ligand. However, the majority GR-responsive regions shared a similar FAIRE signal in the basal chromatin state, suggesting a common chromatin structure for GR recruitment. Supporting this notion, global FAIRE sequencing (seq) data indicated an enrichment of signal surrounding the GR binding site prior to activation. Brg-1 knockdown showed response element-specific effects of ATPase-dependent chromatin remodeling. FAIRE induction was universally decreased by Brg-1 depletion, but to varying degrees in a target specific manner. Taken together, these data suggest classes of nuclear receptor response regions that react to activation through different chromatin regulatory events and identify a chromatin structure that classifies the majority of response elements tested. PMID:22451486

  1. Structural variants of glucocorticoid receptor binding sites and different versions of positive glucocorticoid responsive elements: Analysis of GR-TRRD database.

    Science.gov (United States)

    Merkulov, Vasily M; Merkulova, Tatyana I

    2009-05-01

    The GR-TRRD section of the TRRD database contains the presently largest sample of published nucleotide sequences with experimentally confirmed binding to the glucocorticoid hormone receptor (GR). This sample comprises 160 glucocorticoid receptor binding sites (GRbs) from 77 vertebrate glucocorticoid-regulated genes. Analysis of this sample has demonstrated that the structure of only half GRbs (54%) corresponds to the generally accepted organization of glucocorticoid response element (GRE) as an inverted repeat of the TGTTCT hexanucleotide. As many as 40% of GRbs contain only the hexanucleotide, and the majority of such "half-sites" belong to the glucocorticoid-inducible genes. An expansion of the sample allowed the consensus of GRbs organized as an inverted repeat to be determined more precisely. Several possible mechanisms underlying the role of the noncanonical receptor binding sites (hexanucleotide half-sites) in the glucocorticoid induction are proposed based on analysis of the literature data.

  2. Live cell imaging unveils multiple domain requirements for in vivo dimerization of the glucocorticoid receptor

    DEFF Research Database (Denmark)

    Presman, Diego M; Ogara, M Florencia; Stortz, Martín

    2014-01-01

    Glucocorticoids are essential for life, but are also implicated in disease pathogenesis and may produce unwanted effects when given in high doses. Glucocorticoid receptor (GR) transcriptional activity and clinical outcome have been linked to its oligomerization state. Although a point mutation wi...

  3. Polymorphisms in the glucocorticoid receptor gene and their associations with metabolic parameters and body composition

    NARCIS (Netherlands)

    S.W.J. Lamberts (Steven); E.F.C. van Rossum (Liesbeth)

    2004-01-01

    textabstractMost actions of glucocorticoids (GCs) are mediated by the glucocorticoid receptor (GR). The interindividual response to GCs varies considerably, as demonstrated by a variable suppressive response to 0.25-mg dexamethasone (DEX). Several polymorphisms in the gene coding

  4. Regulation of structural plasticity and neurogenesis during stress and diabetes; protective effects of glucocorticoid receptor antagonists

    NARCIS (Netherlands)

    Lucassen, P.J.; Fitzsimons, C.P.; Vreugdenhil, E.; Hu, P.; Oomen, C.; Revsin, Y.; Joëls, M.; de Kloet, E.R.; Gravanis, A.G.; Mellon, S.H.

    2011-01-01

    In this chapter, we will review changes in structural plasticity of the adult hippocampus during stress and exposure to glucocorticoids (GCs). We further discuss the protective and normalizing role of glucocorticoid receptor (GR) antagonist treatment under these conditions and its implications for

  5. Silencing Mediator of Retinoid and Thyroid Hormone Receptors (SMRT) regulates glucocorticoid action in adipocytes.

    Science.gov (United States)

    Emont, Margo P; Mantis, Stelios; Kahn, Jonathan H; Landeche, Michael; Han, Xuan; Sargis, Robert M; Cohen, Ronald N

    2015-05-15

    Local modulation of glucocorticoid action in adipocytes regulates adiposity and systemic insulin sensitivity. However, the specific cofactors that mediate glucocorticoid receptor (GR) action in adipocytes remain unclear. Here we show that the silencing mediator of retinoid and thyroid hormone receptors (SMRT) is recruited to GR in adipocytes and regulates ligand-dependent GR function. Decreased SMRT expression in adipocytes in vivo increases expression of glucocorticoid-responsive genes. Moreover, adipocytes with decreased SMRT expression exhibit altered glucocorticoid regulation of lipolysis. We conclude that SMRT regulates the metabolic functions of GR in adipocytes in vivo. Modulation of GR-SMRT interactions in adipocytes represents a novel approach to control the local degree of glucocorticoid action and thus influence adipocyte metabolic function. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Liver X Receptors Regulate the Transcriptional Activity of the Glucocorticoid Receptor: Implications for the Carbohydrate Metabolism

    Science.gov (United States)

    Nader, Nancy; Ng, Sinnie Sin Man; Wang, Yonghong; Abel, Brent S.; Chrousos, George P.; Kino, Tomoshige

    2012-01-01

    GLUCOCORTICOIDS are steroid hormones that strongly influence intermediary carbohydrate metabolism by increasing the transcription rate of glucose-6-phosphatase (G6Pase), a key enzyme of gluconeogenesis, and suppress the immune system through the glucocorticoid receptor (GR). The liver X receptors (LXRs), on the other hand, bind to cholesterol metabolites, heterodimerize with the retinoid X receptor (RXR), and regulate the cholesterol turnover, the hepatic glucose metabolism by decreasing the expression of G6Pase, and repress a set of inflammatory genes in immune cells. Since the actions of these receptors overlap with each other, we evaluated the crosstalk between the GR- and LXR-mediated signaling systems. Transient transfection-based reporter assays and gene silencing methods using siRNAs for LXRs showed that overexpression/ligand (GW3965) activation of LXRs/RXRs repressed GR-stimulated transactivation of certain glucocorticoid response element (GRE)-driven promoters in a gene-specific fashion. Activation of LXRs by GW3965 attenuated dexamethasone-stimulated elevation of circulating glucose in rats. It also suppressed dexamethasone-induced mRNA expression of hepatic glucose-6-phosphatase (G6Pase) in rats, mice and human hepatoma HepG2 cells, whereas endogenous, unliganded LXRs were required for dexamethasone-induced mRNA expression of phosphoenolpyruvate carboxylase. In microarray transcriptomic analysis of rat liver, GW3965 differentially regulated glucocorticoid-induced transcriptional activity of about 15% of endogenous glucocorticoid-responsive genes. To examine the mechanism through which activated LXRs attenuated GR transcriptional activity, we examined LXRα/RXRα binding to GREs. Endogenous LXRα/RXRα bound GREs and inhibited GR binding to these DNA sequences both in in vitro and in vivo chromatin immunoprecipitation assays, while their recombinant proteins did so on classic or G6Pase GREs in gel mobility shift assays. We propose that administration of

  7. The glucocorticoid receptor in the distal nephron is not necessary for the development or maintenance of dexamethasone-induced hypertension.

    Science.gov (United States)

    Goodwin, Julie E; Zhang, Junhui; Velazquez, Heino; Geller, David S

    2010-04-02

    Glucocorticoids are used as a treatment for a variety of conditions and hypertension is a well-recognized side effect of their use. The mechanism of glucocorticoid-induced hypertension is incompletely understood and has traditionally been attributed to promiscuous activation of the mineralocorticoid receptor by cortisol. Multiple lines of evidence, however, point to the glucocorticoid receptor as an important mediator as well. We have developed a mouse model of glucocorticoid-induced hypertension, which is dependent on the glucocorticoid receptor. To determine the site(s) of glucocorticoid receptor action relevant to the development of hypertension, we studied glucocorticoid-induced hypertension in a mouse with a tissue-specific knockout of the glucocorticoid receptor in the distal nephron. Although knockout mice had similar body weight, nephron number and renal histology compared to littermate controls, their baseline blood pressure was mildly elevated. Nevertheless, distal nephron glucocorticoid receptor knockout mice and controls had a similar hypertensive response to dexamethasone. Urinary excretion of electrolytes, both before and after administration of glucocorticoid was also indistinguishable between the two groups. We conclude that the glucocorticoid receptor in the distal nephron is not necessary for the development or maintenance of dexamethasone-induced hypertension in our model. 2010 Elsevier Inc. All rights reserved.

  8. Genetic, functional and molecular features of glucocorticoid receptor binding.

    Directory of Open Access Journals (Sweden)

    Francesca Luca

    Full Text Available Glucocorticoids (GCs are key mediators of stress response and are widely used as pharmacological agents to treat immune diseases, such as asthma and inflammatory bowel disease, and certain types of cancer. GCs act mainly by activating the GC receptor (GR, which interacts with other transcription factors to regulate gene expression. Here, we combined different functional genomics approaches to gain molecular insights into the mechanisms of action of GC. By profiling the transcriptional response to GC over time in 4 Yoruba (YRI and 4 Tuscans (TSI lymphoblastoid cell lines (LCLs, we suggest that the transcriptional response to GC is variable not only in time, but also in direction (positive or negative depending on the presence of specific interacting transcription factors. Accordingly, when we performed ChIP-seq for GR and NF-κB in two YRI LCLs treated with GC or with vehicle control, we observed that features of GR binding sites differ for up- and down-regulated genes. Finally, we show that eQTLs that affect expression patterns only in the presence of GC are 1.9-fold more likely to occur in GR binding sites, compared to eQTLs that affect expression only in its absence. Our results indicate that genetic variation at GR and interacting transcription factors binding sites influences variability in gene expression, and attest to the power of combining different functional genomic approaches.

  9. Improved androgen specificity of AR-EcoScreen by CRISPR based glucocorticoid receptor knockout.

    Science.gov (United States)

    Zwart, Nick; Andringa, Dave; de Leeuw, Willem-Jan; Kojima, Hiroyuki; Iida, Mitsuru; Houtman, Corine J; de Boer, Jacob; Kool, Jeroen; Lamoree, Marja H; Hamers, Timo

    2017-12-01

    The AR-EcoScreen is a widely used reporter assay for the detection of androgens and anti-androgens. Endogenous expression of glucocorticoid receptors and their affinity for the androgen responsive element that drives reporter expression, however, makes the reporter cells sensitive to interference by glucocorticoids and less specific for (anti-)androgens. To create a glucocorticoid insensitive derivative of the AR-EcoScreen, CRISPR/Cas9 genome editing was used to develop glucocorticoid receptor knockout mutants by targeting various sites in the glucocorticoid gene. Two mutant cell lines were further characterized and validated against the unmodified AR-EcoScreen with a set of 19 environmentally relevant chemicals and a series of environmental passive sampler extracts with (anti-)androgenic activity. Sequencing of the targeted sites revealed premature stop codons following frame-shift mutations, leading to an absence of functional glucocorticoid receptor expression. The introduced mutations rendered cell lines insensitive to glucocorticoid activation and caused no significant difference in the responsiveness towards (anti-)androgens, compared to the unmodified AR-EcoScreen cells, allowing the selective, GR-independent, determination of (anti-)androgenicity in environmental passive sampler extracts. The increase in selectivity for (anti-)androgens improves reliability of the AR-EcoScreen and will provide higher accuracy in determining (anti-)androgenic potential when applied in toxicity screening and environmental monitoring of both single compounds and mixtures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Pathway interactions between MAPKs, mTOR, PKA, and the glucocorticoid receptor in lymphoid cells

    Directory of Open Access Journals (Sweden)

    Thompson E Brad

    2007-03-01

    Full Text Available Abstract Background Glucocorticoids are frequently used as a primary chemotherapeutic agent in many types of human lymphoid malignancies because they induce apoptosis through activation of the glucocorticoid receptor, with subsequent alteration of a complex network of cellular mechanisms. Despite clinical usage for over fifty years, the complete mechanism responsible for glucocorticoid-related apoptosis or resistance remains elusive. The mitogen-activated protein kinase pathway is a signal transduction network that influences a variety of cellular responses through phosphorylation of specific target substrates, including the glucocorticoid receptor. In this study we have evaluated the pharmaceutical scenarios which converge on the mitogen-activated protein kinase pathway to alter glucocorticoid sensitivity in clones of human acute lymphoblastic CEM cells sensitive and refractory to apoptosis in response to the synthetic glucocorticoid dexamethasone. Results The glucocorticoid-resistant clone CEM-C1-15 displays a combination of high constitutive JNK activity and dexamethasone-induced ERK activity with a weak induction of p38 upon glucocorticoid treatment. The cells become sensitive to glucocorticoid-evoked apoptosis after: (1 inhibition of JNK and ERK activity, (2 stimulation of the cAMP/PKA pathway with forskolin, or (3 inhibition of mTOR with rapamycin. Treatments 1–3 in combination with dexamethasone alter the intracellular balance of phospho-MAPKs by lowering JNK phosphorylation and increasing the level of glucocorticoid receptor phosphorylated at serine 211, a modification known to enhance receptor activity. Conclusion Our data support the hypothesis that mitogen-activated protein kinases influence the ability of certain malignant lymphoid cells to undergo apoptosis when treated with glucocorticoid. Activated/phosphorylated JNK and ERK appear to counteract corticoid-dependent apoptosis. Inhibiting these MAPKs restores corticoid sensitivity

  11. Distinct modifications of hippocampal glucocorticoid receptor phosphorylation and FKBPs by lipopolysaccharide in depressive female and male rats.

    Science.gov (United States)

    Brkic, Zeljka; Francija, Ester; Petrovic, Zorica; Franic, Dusanka; Lukic, Iva; Mitic, Milos; Adzic, Miroslav

    2017-09-01

    Inflammation plays a critical role in pathogenesis of depression and can affect the hypothalamic-pituitary-adrenal axis activity. Accordingly, in this study we investigated the role of hippocampal glucocorticoid receptor in mediating the effects of inflammation on behaviour of female and male Wistar rats. We studied the effects of lipopolysaccharide on the levels of glucocorticoid receptors and its co-chaperones FK506 binding protein 52 and FK506 binding protein 51, the levels of glucocorticoid receptor phospho-isoforms, pGR-232 and pGR-246, and glucocorticoid receptor up-stream kinases. In order to assess transcriptional activity of glucocorticoid receptor, we measured mRNA levels of several glucocorticoid receptor-regulated genes. We demonstrated that lipopolysaccharide induced depressive-like behaviour and elevated serum corticosterone in both sexes. However, it affected glucocorticoid receptor signalling in the nucleus of females and males differently - in females it elevated levels of glucocorticoid receptors, pGR-246 and FK506 binding protein 52, while in males it decreased levels of glucocorticoid receptor, both co-chaperons and pGR-246. Alterations in pGR-246 were associated with alterations of c-Jun N-terminal kinases. Altered nuclear levels of total glucocorticoid receptors and pGR-246 were accompanied by sex-specific reduction in brain-derived neurotrophic factor and cyclooxygenase-2 mRNA and sex-unspecific reduction in the expression of p11 and glucocorticoid receptor genes. These alterations may ultimately affect different glucocorticoid receptor -associated processes involved in depressive-like behaviour in males and females.

  12. Effects of histamine H1 receptor signaling on glucocorticoid receptor activity. Role of canonical and non-canonical pathways

    NARCIS (Netherlands)

    Zappia, C.D.; Granja-Galeano, G.; Fernández, N.; Shayo, C.; Davio, C.; Fitzsimons, C.P.; Monczor, F.

    2015-01-01

    Histamine H1 receptor (H1R) antagonists and glucocorticoid receptor (GR) agonists are used to treat inflammatory conditions such as allergic rhinitis, atopic dermatitis and asthma. Consistent with the high morbidity levels of such inflammatory conditions, these receptors are the targets of a vast

  13. Developmental programming of adult adrenal structure and steroidogenesis: effects of fetal glucocorticoid excess and postnatal dietary omega-3 fatty acids.

    Science.gov (United States)

    Waddell, Brendan J; Bollen, Maike; Wyrwoll, Caitlin S; Mori, Trevor A; Mark, Peter J

    2010-05-01

    Fetal glucocorticoid excess programs a range of detrimental outcomes in the adult phenotype, at least some of which may be due to altered adult adrenocortical function. In this study, we determined the effects of maternal dexamethasone treatment on offspring adrenal morphology and function, as well as the interactive effects of postnatal dietary omega-3 (n-3) fatty acids. This postnatal dietary intervention has been shown to alleviate many of the programming outcomes in this model, but whether this is via the effects on adrenal function is unknown. Dexamethasone acetate was administered to pregnant rats (0.75 microg/ml drinking water) from day 13 to term. Cross-fostered offspring were raised on either a standard or high-n-3 diet. Adrenal weight (relative to body weight) at 6 months of age was unaffected by prenatal dexamethasone, regardless of postnatal diet, and stereological analysis showed no effect of dexamethasone on the volumes of adrenal components (zona glomerulosa, zona fasciculata/reticularis or adrenal medulla). Expression of key steroidogenic genes (Cyp11a1 and Star) was unaffected by either prenatal dexamethasone or postnatal diet. In contrast, adrenal expression of Mc2r mRNA, which encodes the ACTH receptor, was higher in offspring of dexamethasone-treated mothers, an effect partially attenuated by the Hn3 diet. Moreover, stress-induced levels of plasma and urinary corticosterone and urinary aldosterone were elevated in offspring of dexamethasone-treated mothers, indicative of enhanced adrenal responsiveness. In conclusion, this study shows that prenatal exposure to dexamethasone does not increase basal adrenocortical activity but does result in a more stress-responsive adrenal phenotype, possibly via increased Mc2r expression.

  14. Glucocorticoid receptor polymorphisms and haplotypes associated with chronic fatigue syndrome.

    Science.gov (United States)

    Rajeevan, M S; Smith, A K; Dimulescu, I; Unger, E R; Vernon, S D; Heim, C; Reeves, W C

    2007-03-01

    Chronic fatigue syndrome (CFS) is a significant public health problem of unknown etiology, the pathophysiology has not been elucidated, and there are no characteristic physical signs or laboratory abnormalities. Some studies have indicated an association of CFS with deregulation of immune functions and hypothalamic-pituitary-adrenal (HPA) axis activity. In this study, we examined the association of sequence variations in the glucocorticoid receptor gene (NR3C1) with CFS because NR3C1 is a major effector of the HPA axis. There were 137 study participants (40 with CFS, 55 with insufficient symptoms or fatigue, termed as ISF, and 42 non-fatigued controls) who were clinically evaluated and identified from the general population of Wichita, KS. Nine single nucleotide polymorphisms (SNPs) in NR3C1 were tested for association of polymorphisms and haplotypes with CFS. We observed an association of multiple SNPs with chronic fatigue compared to non-fatigued (NF) subjects (P fatigue (by the Multidimensional Fatigue Inventory) and with symptoms (assessed by the Centers for Disease Control Symptom Inventory). Subjects homozygous for the major allele of all associated SNPs were at increased risk for CFS with odds ratios ranging from 2.61 (CI 1.05-6.45) to 3.00 (CI 1.12-8.05). Five SNPs, covering a region of approximately 80 kb, demonstrated high linkage disequilibrium (LD) in CFS, but LD gradually declined in ISF to NF subjects. Furthermore, haplotype analysis of the region in LD identified two associated haplotypes with opposite alleles: one protective and the other conferring risk of CFS. These results demonstrate NR3C1 as a potential mediator of chronic fatigue, and implicate variations in the 5' region of NR3C1 as a possible mechanism through which the alterations in HPA axis regulation and behavioural characteristics of CFS may manifest.

  15. Activation of glucocorticoid receptors increases 5-HT2A receptor levels

    DEFF Research Database (Denmark)

    Trajkovska, Viktorija; Kirkegaard, Lisbeth; Krey, Gesa

    2009-01-01

    Major depression is associated with both dysregulation of the hypothalamic pituitary adrenal axis and serotonergic deficiency, not the least of the 5-HT2A receptor. However, how these phenomena are linked to each other, and whether a low 5-HT2A receptor level is a state or a trait marker of depre......Major depression is associated with both dysregulation of the hypothalamic pituitary adrenal axis and serotonergic deficiency, not the least of the 5-HT2A receptor. However, how these phenomena are linked to each other, and whether a low 5-HT2A receptor level is a state or a trait marker...... of depression is unknown. In mice with altered glucocorticoid receptor (GR) expression we investigated 5-HT2A receptor levels by Western blot and 3H-MDL100907 receptor binding. Serotonin fibre density was analyzed by stereological quantification of serotonin transporter immunopositive fibers. To establish...... an effect of GR activation on 5-HT2A levels, mature organotypic hippocampal cultures were exposed to corticosterone with or without GR antagonist mifepristone and mineralocorticoid receptor (MR) antagonist spironolactone. In GR under-expressing mice, hippocampal 5-HT2A receptor protein levels were decreased...

  16. Pioneer Factors FOXA1 and FOXA2 Assist Selective Glucocorticoid Receptor Signaling in Human Endometrial Cells.

    Science.gov (United States)

    Whirledge, Shannon; Kisanga, Edwina P; Taylor, Robert N; Cidlowski, John A

    2017-11-01

    Successful pregnancy relies on dynamic control of cell signaling to achieve uterine receptivity and the necessary biological changes required for endometrial decidualization, embryo implantation, and fetal development. Glucocorticoids are master regulators of intracellular signaling and can directly regulate embryo implantation and endometrial remodeling during murine pregnancy. In immortalized human uterine cells, we have shown that glucocorticoids and estradiol (E2) coregulate thousands of genes. Recently, glucocorticoids and E2 were shown to coregulate the expression of Left-right determination factor 1 (LEFTY1), previously implicated in the regulation of decidualization. To elucidate the molecular mechanism by which glucocorticoids and E2 regulate the expression of LEFTY1, immortalized and primary human endometrial cells were evaluated for gene expression and receptor recruitment to regulatory regions of the LEFTY1 gene. Glucocorticoid administration induced expression of LEFTY1 messenger RNA and protein and recruitment of the glucocorticoid receptor (GR) and activated polymerase 2 to the promoter of LEFTY1. Glucocorticoid-mediated recruitment of GR was dependent on pioneer factors FOXA1 and FOXA2. E2 was found to antagonize glucocorticoid-mediated induction of LEFTY1 by reducing recruitment of GR, FOXA1, FOXA2, and activated polymerase 2 to the LEFTY1 promoter. Gene expression analysis identified several genes whose glucocorticoid-dependent induction required FOXA1 and FOXA2 in endometrial cells. These results suggest a molecular mechanism by which E2 antagonizes GR-dependent induction of specific genes by preventing the recruitment of the pioneer factors FOXA1 and FOXA2 in a physiologically relevant model. Copyright © 2017 Endocrine Society.

  17. Identifying a Mechanism for Crosstalk Between the Estrogen and Glucocorticoid Receptors | Center for Cancer Research

    Science.gov (United States)

    Estrogen has long been known to play important roles in the development and progression of breast cancer. Its receptor (ER), a member of the steroid receptor family, binds to estrogen response elements (EREs) in DNA and regulates gene transcription. More recently, another steroid receptor family member, the glucocorticoid receptor (GR), has been implicated in breast cancer progression, and ER/GR status is an important predictor of breast cancer outcome.

  18. Glucocorticoid receptor effects on the immune system and infl ammation

    NARCIS (Netherlands)

    E.L.T. van den Akker (Erica)

    2008-01-01

    textabstractThomas Addison’s discovery in the mid-1800s that the adrenal cortex was essential for survival preceded by nearly a century the demonstration that this gland produced at least two distinct hormones, each essential for normal life. How glucocorticoids sustained life remained a mystery for

  19. How does stress affect human being—a molecular dynamic simulation study on cortisol and its glucocorticoid receptor

    Directory of Open Access Journals (Sweden)

    Dan Zhang

    2017-03-01

    Full Text Available Stress can be either positive or negative to human beings. Under stressful conditions, the mental and physical conditions of human can be affected. There exists certain relation between stress and illness. The cortisol and other glucocorticoids bind to the same receptor, which is called glucocorticoid receptor. Some evidences indicated that cortisol molecule binding to its glucocorticoid receptor was necessary for the stress response. Up to now, the structure–function relationships between cortisol molecule and its glucocorticoid receptor have not been deliberated from the atomic-level. In order to get a detailed understanding of the structure–function relationships between the cortisol molecule and glucocorticoids receptor, we have carried out molecular dynamic (MD simulations on glucocorticoid receptor (Apo system and cortisol with its glucocorticoid receptor complex (HCY system. On the basis of molecular dynamic simulations, a couple of key residues were identified, which were crucial for the binding of cortisol molecule. The results of binding free energy calculations are in good agreement with the experiment data. Our research gives clear insights from atomic-level into the structural–functional aspects of cortisol molecule and its glucocorticoid receptor, and also provides valuable information for the design of drug which can treat stress related illnesses.

  20. Electroconvulsive stimulations normalizes stress-induced changes in the glucocorticoid receptor and behaviour

    DEFF Research Database (Denmark)

    Hageman, Ida; Nielsen, Marianne; Wörtwein, Gitta

    2009-01-01

    Animal models of chronic stress, such as 21 days of 6h/daily restraint stress cause changes in neuronal morphology in the hippocampus and alter behaviour. These changes are partly mediated by the glucocorticoids. The objective of this study was threefold: (1) to study how this particular chronic...... stress paradigm influences expression of hippocampal glucocorticoid receptor mRNA, (2) to study the effect of previous repeated restraint stress on the behaviours executed in the forced swim test (FST) (e.g. a novel inescapable stress situation) and (3) to investigate the modulating effect...... of electroconvulsive stimulations (ECS) on the neural and behavioural effects of the stress paradigm. The study shows that restraint stress lowered glucocorticoid receptor mRNA levels in all hippocampal regions, including the CA3 region which is the site of the characteristic dendritic reorganization seen...

  1. Peripheral CLOCK Regulates Target-Tissue Glucocorticoid Receptor Transcriptional Activity in a Circadian Fashion in Man

    Science.gov (United States)

    Charmandari, Evangelia; Chrousos, George P.; Lambrou, George I.; Pavlaki, Aikaterini; Koide, Hisashi; Ng, Sinnie Sin Man; Kino, Tomoshige

    2011-01-01

    Context and Objective Circulating cortisol fluctuates diurnally under the control of the “master” circadian CLOCK, while the peripheral “slave” counterpart of the latter regulates the transcriptional activity of the glucocorticoid receptor (GR) at local glucocorticoid target tissues through acetylation. In this manuscript, we studied the effect of CLOCK-mediated GR acetylation on the sensitivity of peripheral tissues to glucocorticoids in humans. Design and Participants We examined GR acetylation and mRNA expression of GR, CLOCK-related and glucocorticoid-responsive genes in peripheral blood mononuclear cells (PBMCs) obtained at 8 am and 8 pm from 10 healthy subjects, as well as in PBMCs obtained in the morning and cultured for 24 hours with exposure to 3-hour hydrocortisone pulses every 6 hours. We used EBV-transformed lymphocytes (EBVLs) as non-synchronized controls. Results GR acetylation was higher in the morning than in the evening in PBMCs, mirroring the fluctuations of circulating cortisol in reverse phase. All known glucocorticoid-responsive genes tested responded as expected to hydrocortisone in non-synchronized EBVLs, however, some of these genes did not show the expected diurnal mRNA fluctuations in PBMCs in vivo. Instead, their mRNA oscillated in a Clock- and a GR acetylation-dependent fashion in naturally synchronized PBMCs cultured ex vivo in the absence of the endogenous glucocorticoid, suggesting that circulating cortisol might prevent circadian GR acetylation-dependent effects in some glucocorticoid-responsive genes in vivo. Conclusions Peripheral CLOCK-mediated circadian acetylation of the human GR may function as a target-tissue, gene-specific counter regulatory mechanism to the actions of diurnally fluctuating cortisol, effectively decreasing tissue sensitivity to glucocorticoids in the morning and increasing it at night. PMID:21980503

  2. Peripheral CLOCK regulates target-tissue glucocorticoid receptor transcriptional activity in a circadian fashion in man.

    Directory of Open Access Journals (Sweden)

    Evangelia Charmandari

    Full Text Available Circulating cortisol fluctuates diurnally under the control of the "master" circadian CLOCK, while the peripheral "slave" counterpart of the latter regulates the transcriptional activity of the glucocorticoid receptor (GR at local glucocorticoid target tissues through acetylation. In this manuscript, we studied the effect of CLOCK-mediated GR acetylation on the sensitivity of peripheral tissues to glucocorticoids in humans.We examined GR acetylation and mRNA expression of GR, CLOCK-related and glucocorticoid-responsive genes in peripheral blood mononuclear cells (PBMCs obtained at 8 am and 8 pm from 10 healthy subjects, as well as in PBMCs obtained in the morning and cultured for 24 hours with exposure to 3-hour hydrocortisone pulses every 6 hours. We used EBV-transformed lymphocytes (EBVLs as non-synchronized controls.GR acetylation was higher in the morning than in the evening in PBMCs, mirroring the fluctuations of circulating cortisol in reverse phase. All known glucocorticoid-responsive genes tested responded as expected to hydrocortisone in non-synchronized EBVLs, however, some of these genes did not show the expected diurnal mRNA fluctuations in PBMCs in vivo. Instead, their mRNA oscillated in a Clock- and a GR acetylation-dependent fashion in naturally synchronized PBMCs cultured ex vivo in the absence of the endogenous glucocorticoid, suggesting that circulating cortisol might prevent circadian GR acetylation-dependent effects in some glucocorticoid-responsive genes in vivo.Peripheral CLOCK-mediated circadian acetylation of the human GR may function as a target-tissue, gene-specific counter regulatory mechanism to the actions of diurnally fluctuating cortisol, effectively decreasing tissue sensitivity to glucocorticoids in the morning and increasing it at night.

  3. Longitudinal changes in glucocorticoid receptor exon 1(F) methylation and psychopathology after military deployment

    NARCIS (Netherlands)

    Schur, R. R.; Boks, M. P.; Rutten, B. P. F.; Daskalakis, N. P.; de Nijs, L.; van Zuiden, M.; Kavelaars, A.; Heijnen, C. J.; Joels, M.; Kahn, R. S.; Geuze, E.; Vermetten, E.; Vinkers, C. H.

    2017-01-01

    Several cross-sectional studies have demonstrated the relevance of DNA methylation of the glucocorticoid receptor exon 1(F) region (GR-1(F)) for trauma-related psychopathology. We conducted a longitudinal study to examine GR-1(F) methylation changes over time in relation to trauma exposure and the

  4. Antisense to the glucocorticoid receptor in hippocampal dentate gyrus reduces immobility in forced swim test

    NARCIS (Netherlands)

    Korte, S.M.; de Kloet, E.R.; Buwalda, B; Bouman, S.D.; Bohus, B

    1996-01-01

    Immobility time of rats in the forced swim test was reduced after bilateral infusion of an 18-mer antisense phosphorothioate oligodeoxynucleotide targeted to the glucocorticoid receptor mRNA into the dentate gyrus of the hippocampus. Vehicle-, sense- and scrambled sequence-treated animals spent

  5. Glucocorticoid-induced hypertension.

    Science.gov (United States)

    Goodwin, Julie E; Geller, David S

    2012-07-01

    Glucocorticoid-induced hypertension is a common clinical problem that is poorly understood, thus rendering treatment strategies sub-optimal. This form of hypertension has been commonly thought to be mediated by excess sodium and water reabsorption by the renal mineralocorticoid receptor. However, experimental and clinical data in both humans and animal models suggest important roles for the glucocorticoid receptor as well, in both the pathogenesis and maintenance of this hypertension. The glucocorticoid receptor is widely expressed in a number of organ systems relevant to blood pressure regulation, including the kidney, the brain and the vasculature. In vitro studies in isolated kidney tissues as well as in vascular smooth muscle and vascular endothelial cells have attempted to elucidate the molecular physiology of glucocorticoid-induced hypertension, but have generally been limited by the inability to study signaling pathways in an intact organism. More recently, the power of mouse genetics has been employed to examine the tissue-specific contributions of vascular and extra-vascular tissues to this form of hypertension. Here we review recent developments in our understanding of the pathogenesis of glucocorticoid-induced hypertension.

  6. Antenatal glucocorticoid treatment and polymorphisms of the glucocorticoid and mineralocorticoid receptors are associated with IQ and behavior in young adults born very preterm.

    Science.gov (United States)

    van der Voorn, Bibian; Wit, Jan M; van der Pal, Sylvia M; Rotteveel, Joost; Finken, Martijn J J

    2015-02-01

    Preterm survivors exhibit neurodevelopmental impairments. Whether this association is influenced by antenatal glucocorticoid treatment and glucocorticoid sensitivity is unknown. This study aimed to study the effects of antenatal glucocorticoid treatment and glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) polymorphisms on behavior and intelligence quotient (IQ). This study was part of the 19-year follow-up of the Project On Preterm and Small-for-gestational-age birth cohort. Multicenter study. Three hundred forty-four 19-year-olds born very preterm (gestational age Behavior (Young Adult Self Report and Young Adult Behavior Checklist for parents) and IQ (digital Multicultural Capacity Test-intermediate level). Data were analyzed by linear regression and presented as regression coefficient (95% confidence interval [CI]). Sex ratio, GR (R23K; N363S) and MR (-2G/C; I180V) genotypes were equally distributed between treated and nontreated subjects. Independent of treatment, R23K carriers had improved IQ scores (β 9.3; 95% CI, 3.4 to 15.1) and a tendency toward more favorable total problem behavior scores (β -8.5; 95% CI, -17.3 to 0.2) ; -2G/C CC carriers had poorer IQ scores (β -6.2; 95% CI, -10.5 to -1.9); I180V carriers had more favorable internalizing behavior scores (β -2.0; 95% CI, -3.9 to -0.1). Antenatal glucocorticoid treatment was associated with more unfavorable behavior scores, especially internalizing behavior (β 2.4; 95% CI, 0.3 to 4.5). Interaction between GR and MR polymorphisms and antenatal glucocorticoid treatment was observed, with poorer IQ scores for exposed N363S carriers; poorer intellectual subdomain scores for exposed I180V-carriers; more favorable total problem behavior scores for exposed R23K carriers. Genetic variations in glucocorticoid sensitivity and antenatal glucocorticoid treatment are associated with IQ and behavior in young adult preterm survivors.

  7. [Effect of atopy on serum glucocorticoid receptor levels in children with bronchiolitis].

    Science.gov (United States)

    Yao, Huan-Yin; Liu, Wei-Rong; Zhang, Hang-Hu; Li, Hua-Jun; Wang, Xiao-Xian; Liu, Shu-Mei; Chen, Xiao-Hong

    2017-02-01

    To investigate the effect of atopy on the expression of glucocorticoid receptors in children with bronchiolitis. ELISA was used to measure the changes in the serum levels of glucocorticoid receptor α (GRα) and glucocorticoid receptor β (GRβ) in the bronchiolitis group (77 children, including 34 children with atopy) and pneumonia group (68 children). Thirty-eight children who were prepared to undergo surgeries for non-infectious diseases and had no atopy or family history of allergic diseases were enrolled as the control group. The bronchiolitis group and the pneumonia group had significant increases in the serum levels of GRα and GRβ compared with the control group (Pbronchiolitis group had significant increases in these levels compared with the pneumonia group (Pbronchiolitis group had a significant increase in the GRα/GRβ ratio (Pbronchiolitis group had significant increases in the serum levels of GRα and GRβ (Pbronchiolitis group had a significant increase in the serum level of GRβ compared with the atopic children (Pbronchiolitis group had a significant increase in the GRα/GRβ ratio compared with the control group and non-atopic children in the bronchiolitis group (Pbronchiolitis have increased serum levels of GRα and GRβ. The children with atopy have an increased GRα/GRβ ratio, suggesting that the atopic children with bronchiolitis are highly sensitive to glucocorticoids.

  8. Role of glucocorticoids in the physiopathology of excessive fat deposition and insulin resistance.

    Science.gov (United States)

    Asensio, C; Muzzin, P; Rohner-Jeanrenaud, F

    2004-12-01

    Glucocorticoids are important hormones in the regulation of metabolic homeostasis. We infused normal rats with dexamethasone given intracerebroventricularly (i.c.v.) for 3 days. This resulted in hyperphagia, hyperinsulinemia, and marked insulin resistance. Similar metabolic defects were observed following i.c.v. infusion of neuropeptide Y (NPY) in normal rats. As central dexamethasone infusion enhanced NPY content in the arcuate nucleus, it suggested that its metabolic effects are mediated by NPY. Moreover, due to the lack of effects observed in vagotomized animals, activation of the parasympathetic nervous system by central dexamethasone infusion is proposed. Glucocorticoid action is known to involve prereceptor metabolism by enzymes such as 11beta-HSD-1 that converts inactive into active glucocorticoids. Mice overexpressing 11beta-HSD-1 in adipose tissue were shown to be obese and insulin resistant. We recently observed that adipose tissue 11beta-HSD-1 mRNA expression is increased at the onset of high-fat diet-induced obesity and positively correlated with the degree of hyperglycemia. In human obesity, increased adipose tissue 11beta-HSD-1 expression and activity were also reported. Resistin is a new adipose tissue-secreted hormone shown to play a role in glucose homeostasis by increasing hepatic glucose production and inhibiting muscle and adipose tissue glucose utilization. We observed increased adipose tissue resistin expression in the early phase of high-fat diet-induced obesity as well as decreased resistin expression in response to leptin. A positive correlation between glycemia and adipose tissue resistin expression further suggested a role of this hormone in the development of insulin resistance. The melanocortin system is another important player in the regulation of energy balance. Peripheral administration of a melanocortin agonist decreased food intake and body weight and favored lipid oxidation, effects that were more marked in obese than in lean

  9. Glucocorticoid receptor action in metabolic and neuronal function [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Michael J. Garabedian

    2017-07-01

    Full Text Available Glucocorticoids via the glucocorticoid receptor (GR have effects on a variety of cell types, eliciting important physiological responses via changes in gene expression and signaling. Although decades of research have illuminated the mechanism of how this important steroid receptor controls gene expression using in vitro and cell culture–based approaches, how GR responds to changes in external signals in vivo under normal and pathological conditions remains elusive. The goal of this review is to highlight recent work on GR action in fat cells and liver to affect metabolism in vivo and the role GR ligands and receptor phosphorylation play in calibrating signaling outputs by GR in the brain in health and disease. We also suggest that both the brain and fat tissue communicate to affect physiology and behavior and that understanding this “brain-fat axis” will enable a more complete understanding of metabolic diseases and inform new ways to target them.

  10. Loss of glucocorticoid receptor expression by DNA methylation prevents glucocorticoid induced apoptosis in human small cell lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Paul Kay

    Full Text Available Human small cell lung cancer (SCLC is highly aggressive, and quickly develops resistance to therapy. SCLC cells are typically insensitive to glucocorticoids due to impaired glucocorticoid receptor (GR expression. This is important as we have previously shown that expression of a GR transgene induces cell death in-vitro, and inhibits tumor growth in-vivo. However, the underlying mechanism for loss of GR expression is unknown. The SCLC cell line, DMS79, has low GR expression, compared to non-SCLC cell lines and normal bronchial epithelial cells. Retroviral GR expression in DMS79 cells caused activation of the apoptotic pathway as evidenced by marked induction of caspase-3 activity. Methylation analysis of the GR promoter revealed some methylation in the 1D, and 1E promoters of the GR gene, however the ubiquitous constitutively active 1C promoter was heavily methylated. In the 1C promoter there was a highly significant increase in DNA methylation in a panel of 14 human SCLC cell lines compared to a mixed panel of GR expressing, and non-expressing cell lines, and to peripheral blood mononuclear cells. Furthermore, within the panel of SCLC cell lines there was a significant negative correlation seen between methylation of the 1C promoter, and GR protein expression. Reversal of GR gene methylation with DNA methyltransferase inhibition caused increased GR mRNA and protein expression in SCLC but not non-SCLC cells. This resulted in increased Gc sensitivity, decreased Bcl-2 expression and increased caspase-3 activity in SCLC cells. These data suggest that DNA methylation decreases GR gene expression in human SCLC cells, in a similar manner to that for conventional tumor suppressor genes.

  11. Malignant aldosterone-producing adrenal tumour : reoccurrence with glucocorticoid excess without hyperaldosteronism

    NARCIS (Netherlands)

    Abma, E. M.; Kluin, P. M.; Dullaart, R. P. F.

    We describe a case of hypokalaemic hypertension due to hyperaldosteronism caused by a unilateral adrenocortical tumour with unfavourable histopathology suggestive of malignancy. After removal, the aldosterone excess disappeared. The patient's clinical course was uneventful, until she presented with

  12. Blocking Mineralocorticoid Receptors Impairs, Blocking Glucocorticoid Receptors Enhances Memory Retrieval in Humans

    Science.gov (United States)

    Rimmele, Ulrike; Besedovsky, Luciana; Lange, Tanja; Born, Jan

    2013-01-01

    Memory retrieval is impaired at very low as well as very high cortisol levels, but not at intermediate levels. This inverted-U-shaped relationship between cortisol levels and memory retrieval may originate from different roles of the mineralocorticoid (MR) and glucocorticoid receptor (GR) that bind cortisol with distinctly different affinity. Here, we examined the role of MRs and GRs in human memory retrieval using specific receptor antagonists. In two double-blind within-subject, cross-over designed studies, young healthy men were asked to retrieve emotional and neutral texts and pictures (learnt 3 days earlier) between 0745 and 0915 hours in the morning, either after administration of 400 mg of the MR blocker spironolactone vs placebo (200 mg at 2300 hours and 200 mg at 0400 hours, Study I) or after administration of the GR blocker mifepristone vs placebo (200 mg at 2300 hours, Study II). Blockade of MRs impaired free recall of both texts and pictures particularly for emotional material. In contrast, blockade of GRs resulted in better memory retrieval for pictures, with the effect being more pronounced for neutral than emotional materials. These findings indicate indeed opposing roles of MRs and GRs in memory retrieval, with optimal retrieval at intermediate cortisol levels likely mediated by high MR but concurrently low GR activation. PMID:23303058

  13. Evaluation of Ginkgo biloba extract as an activator of human glucocorticoid receptor.

    Science.gov (United States)

    Lau, Aik Jiang; Yang, Guixiang; Rajaraman, Ganesh; Baucom, Christie C; Chang, Thomas K H

    2013-01-30

    Ginkgo biloba, which is one of the most frequently used herbal medicines, is commonly used in the management of several conditions, including memory impairment. Previously, it was reported to decrease the expression of peripheral benzodiazepine receptor and the biosynthesis of glucocorticoids, thereby regulating glucocorticoid levels. However, it is not known whether Ginkgo biloba extract regulates the function of the glucocorticoid receptor. We determined whether Ginkgo biloba extract and several of its chemical constituents affect the activity of human glucocorticoid receptor (hGR). A hGR-dependent reporter gene assay was conducted in HepG2 human hepatocellular carcinoma cells and hGR target gene expression assays were performed in primary cultures of human hepatocytes. Multiple lots and concentrations of the extract and several of its chemical constituents (ginkgolide A, ginkgolide B, ginkgolide C, ginkgolide J, and bilobalide) did not increase hGR activity, as assessed by a cell-based luciferase reporter gene assay. The extract did not influence the expression of hGR target genes, including tyrosine aminotransferase (hTAT), constitutive androstane receptor (hCAR), or pregnane X receptor (hPXR), in primary cultures of human hepatocytes. Moreover, hGR antagonism by mifepristone (also known as RU486) did not attenuate the extent of induction of hCAR- and hPXR-regulated target genes CYP2B6 and CYP3A4 by Ginkgo biloba extract. Ginkgo biloba extract, ginkgolide A, ginkgolide B, ginkgolide C, ginkgolide J, and bilobalide are not activators of hGR. Furthermore, the extract does not influence the hGR-hCAR or the hGR-hPXR signaling pathway in primary cultures of human hepatocytes. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. Modulation of central glucocorticoid receptors in short- and long-term experimental hyperthyroidism.

    Science.gov (United States)

    Nikolopoulou, Elena; Mytilinaios, Dimitrios; Calogero, Aldo E; Kamilaris, Themis C; Troupis, Theodore; Chrousos, George P; Johnson, Elizabeth O

    2015-08-01

    Hyperthyroidism is associated with a significant increase in circulating glucocorticoid levels and hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis. The aim of this study was to examine whether the HPA axis hyperactivity observed in hyperthyroidism may be explained by a disturbed feedback inhibition of endogenous glucocorticoids through two specific intracellular receptors in the brain: the high affinity mineralocorticoid receptor (MR) and the lower affinity glucocorticoid receptor (GR). Cytosolic receptor binding and gene expression was assessed in rats with short (7 days) and long standing (60 days) eu- and hyperthyroidism. Glucocorticoid receptor number and binding affinity (Kd) in the hippocampus were measured using [(3)H2]-dexamethasone radioreceptor assay. In situ hybridization was employed to examine the effects of hyperthyroidism on the GR and MR mRNA levels in the hippocampus and the pituitary. Both short- and long-term hyperthyroid rats showed pronounced reduction in the concentration of cytosolic GR in the hippocampus, without changes in binding affinity or changes in GR expression. In contrast, GR mRNA in the pituitary increased after 7 days and decreased after 60 days of thyroxin treatment. MR mRNA was moderately affected. Hyperthyroidism is associated with significant decreases in hippocampal GR levels supporting the hypothesis that hyperactivity of the HPA axis observed in experimentally induced hyperthyroidism may be attributed, at least in part, to decreased negative feedback at the level of the hippocampus. These findings further support the notion that a central locus is principally responsible for the hyperactivity of the HPA axis observed in hyperthyroidism.

  15. DC-SCRIPT regulates glucocorticoid receptor function and expression of its target GILZ in dendritic cells.

    Science.gov (United States)

    Hontelez, Saartje; Karthaus, Nina; Looman, Maaike W; Ansems, Marleen; Adema, Gosse J

    2013-04-01

    Dendritic cells (DCs) play a central role in the immune system; they can induce immunity or tolerance depending on diverse factors in the DC environment. Pathogens, but also tissue damage, hormones, and vitamins, affect DC activation and maturation. In particular, glucocorticoids (GCs) are known for their immunosuppressive effect on DCs, creating tolerogenic DCs. GCs activate the type I nuclear receptor (NR) glucocorticoid receptor (GR), followed by induced expression of the transcription factor glucocorticoid-inducible leucine zipper (GILZ). GILZ has been shown to be necessary and sufficient for GC-induced tolerogenic DC generation. Recently, we have identified the DC-specific transcript (DC-SCRIPT) as an NR coregulator, suppressing type I steroid NRs estrogen receptor and progesterone receptor. In this study, we analyzed the effect of DC-SCRIPT on GR activity. We demonstrate that DC-SCRIPT coexists with GR in protein complexes and functions as a corepressor of GR-mediated transcription. Coexpression of DC-SCRIPT and GR is shown in human monocyte-derived DCs, and DC-SCRIPT knockdown enhances GR-dependent upregulation of GILZ mRNA expression in DCs. This demonstrates that DC-SCRIPT serves an important role in regulating GR function in DCs, corepressing GR-dependent upregulation of the tolerance-inducing transcription factor GILZ. These data imply that by controlling GR function and GILZ expression DC-SCRIPT is potentially involved in the balance between tolerance and immunity.

  16. Cytokine-induced loss of glucocorticoid function: effect of kinase inhibitors, long-acting β(2-adrenoceptor [corrected] agonist and glucocorticoid receptor ligands.

    Directory of Open Access Journals (Sweden)

    Christopher F Rider

    Full Text Available Acting on the glucocorticoid receptor (NR3C1, glucocorticoids are widely used to treat inflammatory diseases. However, glucocorticoid resistance often leads to suboptimal asthma control. Since glucocorticoid-induced gene expression contributes to glucocorticoid activity, the aim of this study was to use a 2 × glucocorticoid response element (GRE reporter and glucocorticoid-induced gene expression to investigate approaches to combat cytokine-induced glucocorticoid resistance. Pre-treatment with tumor necrosis factor-α (TNF or interleukin-1β inhibited dexamethasone-induced mRNA expression of the putative anti-inflammatory genes RGS2 and TSC22D3, or just TSC22D3, in primary human airway epithelial and smooth muscle cells, respectively. Dexamethasone-induced DUSP1 mRNA was unaffected. In human bronchial epithelial BEAS-2B cells, dexamethasone-induced TSC22D3 and CDKN1C expression (at 6 h was reduced by TNF pre-treatment, whereas DUSP1 and RGS2 mRNAs were unaffected. TNF pre-treatment also reduced dexamethasone-dependent 2×GRE reporter activation. This was partially reversed by PS-1145 and c-jun N-terminal kinase (JNK inhibitor VIII, inhibitors of IKK2 and JNK, respectively. However, neither inhibitor affected TNF-dependent loss of dexamethasone-induced CDKN1C or TSC22D3 mRNA. Similarly, inhibitors of the extracellular signal-regulated kinase, p38, phosphoinositide 3-kinase or protein kinase C pathways failed to attenuate TNF-dependent repression of the 2×GRE reporter. Fluticasone furoate, fluticasone propionate and budesonide were full agonists relative to dexamethasone, while GSK9027, RU24858, des-ciclesonide and GW870086X were partial agonists on the 2×GRE reporter. TNF reduced reporter activity in proportion with agonist efficacy. Full and partial agonists showed various degrees of agonism on RGS2 and TSC22D3 expression, but were equally effective at inducing CDKN1C and DUSP1, and did not affect the repression of CDKN1C or TSC22D3

  17. Mapping the Dynamics of the Glucocorticoid Receptor within the Nuclear Landscape.

    Science.gov (United States)

    Stortz, Martin; Presman, Diego M; Bruno, Luciana; Annibale, Paolo; Dansey, Maria V; Burton, Gerardo; Gratton, Enrico; Pecci, Adali; Levi, Valeria

    2017-07-24

    The distribution of the transcription machinery among different sub-nuclear domains raises the question on how the architecture of the nucleus modulates the transcriptional response. Here, we used fluorescence fluctuation analyses to quantitatively explore the organization of the glucocorticoid receptor (GR) in the interphase nucleus of living cells. We found that this ligand-activated transcription factor diffuses within the nucleus and dynamically interacts with bodies enriched in the coregulator NCoA-2, DNA-dependent foci and chromatin targets. The distribution of the receptor among the nuclear compartments depends on NCoA-2 and the conformation of the receptor as assessed with synthetic ligands and GR mutants with impaired transcriptional abilities. Our results suggest that the partition of the receptor in different nuclear reservoirs ultimately regulates the concentration of receptor available for the interaction with specific targets, and thus has an impact on transcription regulation.

  18. Live cell imaging unveils multiple domain requirements for in vivo dimerization of the glucocorticoid receptor.

    Directory of Open Access Journals (Sweden)

    Diego M Presman

    2014-03-01

    Full Text Available Glucocorticoids are essential for life, but are also implicated in disease pathogenesis and may produce unwanted effects when given in high doses. Glucocorticoid receptor (GR transcriptional activity and clinical outcome have been linked to its oligomerization state. Although a point mutation within the GR DNA-binding domain (GRdim mutant has been reported as crucial for receptor dimerization and DNA binding, this assumption has recently been challenged. Here we have analyzed the GR oligomerization state in vivo using the number and brightness assay. Our results suggest a complete, reversible, and DNA-independent ligand-induced model for GR dimerization. We demonstrate that the GRdim forms dimers in vivo whereas adding another mutation in the ligand-binding domain (I634A severely compromises homodimer formation. Contrary to dogma, no correlation between the GR monomeric/dimeric state and transcriptional activity was observed. Finally, the state of dimerization affected DNA binding only to a subset of GR binding sites. These results have major implications on future searches for therapeutic glucocorticoids with reduced side effects.

  19. The antidepressant fluoxetine normalizes the nuclear glucocorticoid receptor evoked by psychosocial stress

    Science.gov (United States)

    Mitić, M.; Simić, I.; Djordjević, J.; Radojčić, M. B.; Adžić, M.

    2011-12-01

    Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis has been implicated in the pathophysiology of depression and stress disorders. Glucocorticoids, key regulators of the stress response, exert diverse effects on cellular processes in the hippocampus. Beside non-genomic pathways, glucocorticoid effects are mediated through activation of the glucocorticoid receptor (GR), a ligand activated transcriptional factor that belongs to the nuclear hormone receptor superfamily. We analysed the GR protein levels both in the cytoplasmic and nuclear compartments of the hippocampus of Wistar rats exposed to chronic psychosocial isolation stress upon chronic fluoxetine (FLU) treatment. Under chronic stress, corticosterone levels (CORT) were decreased compared to the control, and treatment with FLU did not change its level in the stressed rats. At the molecular level, FLU normalized the level of nuclear GR protein in the hippocampus of the stressed rats. Discrepancy between normalization of nuclear GR in the hippocampus and lack of normalization of HPA axis activity judged by CORT, suggests that other brain structures such as the amygdale and prefrontal cortex that also regulate HPA axis activity, seem not to be normalized by the FLU treatment used in our study.

  20. NeuroD Factors Discriminate Mineralocorticoid From Glucocorticoid Receptor DNA Binding in the Male Rat Brain.

    Science.gov (United States)

    van Weert, Lisa T C M; Buurstede, Jacobus C; Mahfouz, Ahmed; Braakhuis, Pamela S M; Polman, J Annelies E; Sips, Hetty C M; Roozendaal, Benno; Balog, Judit; de Kloet, E Ronald; Datson, Nicole A; Meijer, Onno C

    2017-05-01

    In the limbic brain, mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) both function as receptors for the naturally occurring glucocorticoids (corticosterone/cortisol) but mediate distinct effects on cellular physiology via transcriptional mechanisms. The transcriptional basis for specificity of these MR- vs GR-mediated effects is unknown. To address this conundrum, we have identified the extent of MR/GR DNA-binding selectivity in the rat hippocampus using chromatin immunoprecipitation followed by sequencing. We found 918 and 1450 nonoverlapping binding sites for MR and GR, respectively. Furthermore, 475 loci were co-occupied by MR and GR. De novo motif analysis resulted in a similar binding motif for both receptors at 100% of the target loci, which matched the known glucocorticoid response element (GRE). In addition, the Atoh/NeuroD consensus sequence was found in co-occurrence with all MR-specific binding sites but was absent for GR-specific or MR-GR overlapping sites. Basic helix-loop-helix family members Neurod1, Neurod2, and Neurod6 showed hippocampal expression and were hypothesized to bind the Atoh motif. Neurod2 was detected at rat hippocampal MR binding sites but not at GR-exclusive sites. All three NeuroD transcription factors acted as DNA-binding-dependent coactivators for both MR and GR in reporter assays in heterologous HEK293 cells, likely via indirect interactions with the receptors. In conclusion, a NeuroD family member binding to an additional motif near the GRE seems to drive specificity for MR over GR binding at hippocampal binding sites. Copyright © 2017 Endocrine Society.

  1. Doubling the Size of the Glucocorticoid Receptor Ligand Binding Pocket by Deacylcortivazol

    Energy Technology Data Exchange (ETDEWEB)

    Suino-Powell, Kelly; Xu, Yong; Zhang, Chenghai; Tao, Yong-guang; Tolbert, W. David; Simons, Jr., S. Stoney; Xu, H. Eric (NIH)

    2010-03-08

    A common feature of nuclear receptor ligand binding domains (LBD) is a helical sandwich fold that nests a ligand binding pocket within the bottom half of the domain. Here we report that the ligand pocket of glucocorticoid receptor (GR) can be continuously extended into the top half of the LBD by binding to deacylcortivazol (DAC), an extremely potent glucocorticoid. It has been puzzling for decades why DAC, which contains a phenylpyrazole replacement at the conserved 3-ketone of steroid hormones that are normally required for activation of their cognate receptors, is a potent GR activator. The crystal structure of the GR LBD bound to DAC and the fourth LXXLL motif of steroid receptor coactivator 1 reveals that the GR ligand binding pocket is expanded to a size of 1,070 {angstrom}{sup 3}, effectively doubling the size of the GR dexamethasone-binding pocket of 540 {angstrom}{sup 3} and yet leaving the structure of the coactivator binding site intact. DAC occupies only {approx}50% of the space of the pocket but makes intricate interactions with the receptor around the phenylpyrazole group that accounts for the high-affinity binding of DAC. The dramatic expansion of the DAC-binding pocket thus highlights the conformational adaptability of GR to ligand binding. The new structure also allows docking of various nonsteroidal ligands that cannot be fitted into the previous structures, thus providing a new rational template for drug discovery of steroidal and nonsteroidal glucocorticoids that can be specifically designed to reach the unoccupied space of the expanded pocket.

  2. A genome-wide signature of glucocorticoid receptor binding in neuronal PC12 cells

    Directory of Open Access Journals (Sweden)

    Polman J Annelies E

    2012-10-01

    Full Text Available Abstract Background Glucocorticoids, secreted by the adrenals in response to stress, profoundly affect structure and plasticity of neurons. Glucocorticoid action in neurons is mediated by glucocorticoid receptors (GR that operate as transcription factors in the regulation of gene expression and either bind directly to genomic glucocorticoid response elements (GREs or indirectly to the genome via interactions with bound transcription factors. These two modes of action, respectively called transactivation and transrepression, result in the regulation of a wide variety of genes important for neuronal function. The objective of the present study was to identify genome-wide glucocorticoid receptor binding sites in neuronal PC12 cells using Chromatin ImmunoPrecipitation combined with next generation sequencing (ChIP-Seq. Results In total we identified 1183 genomic binding sites of GR, the majority of which were novel and not identified in other ChIP-Seq studies on GR binding. More than half (58% of the binding sites contained a GRE. The remaining 42% of the GBS did not harbour a GRE and therefore likely bind GR via an intermediate transcription factor tethering GR to the DNA. While the GRE-containing binding sites were more often located nearby genes involved in general cell functions and processes such as apoptosis, cell motion, protein dimerization activity and vasculature development, the binding sites without a GRE were located nearby genes with a clear role in neuronal processes such as neuron projection morphogenesis, neuron projection regeneration, synaptic transmission and catecholamine biosynthetic process. A closer look at the sequence of the GR binding sites revealed the presence of several motifs for transcription factors that are highly divergent from those previously linked to GR-signaling, including Gabpa, Prrx2, Zfp281, Gata1 and Zbtb3. These transcription factors may represent novel crosstalk partners of GR in a neuronal context

  3. Serine / threonine protein phosphatase 5 (PP5 participates in the regulation of glucocorticoid receptor nucleocytoplasmic shuttling

    Directory of Open Access Journals (Sweden)

    Bueno Manuel

    2001-05-01

    Full Text Available Abstract Background In most cells glucocorticoid receptors (GR reside predominately in the cytoplasm. Upon hormone binding, the GR translocates into the nucleus, where the hormone-activated GR-complex regulates the transcription of GR-responsive genes. Serine/threonine protein phosphatase type 5 (PP5 associates with the GR-heat-shock protein-90 complex, and the suppression of PP5 expression with ISIS 15534 stimulates the activity of GR-responsive reporter plasmids, without affecting the binding of hormone to the GR. Results To further characterize the mechanism by which PP5 affects GR-induced gene expression, we employed immunofluorescence microscopy to track the movement of a GR-green fluorescent fusion protein (GR-GFP that retained hormone binding, nuclear translocation activity and specific DNA binding activity, but is incapable of transactivation. In the absence of glucocorticoids, GR-GFP localized mainly in the cytoplasm. Treatment with dexamethasone results in the efficient translocation of GR-GFPs into the nucleus. The nuclear accumulation of GR-GFP, without the addition of glucocorticoids, was also observed when the expression of PP5 was suppressed by treatment with ISIS 15534. In contrast, ISIS 15534 treatment had no apparent effect on calcium induced nuclear translocation of NFAT-GFP. Conclusion These studies suggest that PP5 participates in the regulation of glucocorticoid receptor nucleocytoplasmic shuttling, and that the GR-induced transcriptional activity observed when the expression of PP5 is suppressed by treatment with ISIS 15534 results from the nuclear accumulation of GR in a form that is capable of binding DNA yet still requires agonist to elicit maximal transcriptional activation.

  4. Association of glucocorticoid receptor polymorphisms with clinical and metabolic profiles in polycystic ovary syndrome

    Directory of Open Access Journals (Sweden)

    Gustavo A.Rosa Maciel

    2014-03-01

    Full Text Available OBJECTIVES: We aimed to investigate whether glucocorticoid receptor gene polymorphisms are associated with clinical and metabolic profiles in patients with polycystic ovary syndrome. Polycystic ovary syndrome is a complex endocrine disease that affects 5-8% of women and may be associated with metabolic syndrome, which is a risk factor for cardiovascular disease. Cortisol action and dysregulation account for metabolic syndrome development in the general population. As glucocorticoid receptor gene (NR3C1 polymorphisms regulate cortisol sensitivity, we hypothesized that variants of this gene may be involved in the adverse metabolic profiles of patients with polycystic ovary syndrome. METHOD: Clinical, metabolic and hormonal profiles were evaluated in 97 patients with polycystic ovary syndrome who were diagnosed according to the Rotterdam criteria. The alleles of the glucocorticoid gene were genotyped. Association analyses were performed using the appropriate statistical tests. RESULTS: Obesity and metabolic syndrome were observed in 42.3% and 26.8% of patients, respectively. Body mass index was positively correlated with blood pressure, triglyceride, LDL-c, total cholesterol, glucose and insulin levels as well as HOMA-IR values and inversely correlated with HDL-c and SHBG levels. The BclI and A3669G variants were found in 24.7% and 13.4% of alleles, respectively. BclI carriers presented a lower frequency of insulin resistance compared with wild-type subjects. CONCLUSION: The BclI variant is associated with a lower frequency of insulin resistance in women with polycystic ovary syndrome. Glucocorticoid gene polymorphism screening during treatment of the syndrome may be useful for identifying subgroups of at-risk patients who would benefit the most from personalized treatment.

  5. Evaluation of glucocorticoid receptor function in COPD lung macrophages using beclomethasone-17-monopropionate.

    Directory of Open Access Journals (Sweden)

    Jonathan Plumb

    Full Text Available Previous studies of glucocorticoid receptor (GR function in COPD lung macrophages have used dexamethasone to evaluate inhibition of cytokine production. We have now used the clinically relevant corticosteroid beclomethasone-17-monopropionate (17-BMP to assess GR function in COPD lung macrophages, and investigated the transactivation of glucocorticoid sensitive genes and GR phosphorylation in addition to cytokine production. Lung macrophages were purified from surgically acquired lung tissue, from patients with COPD, smokers, and non-smokers. The transactivation of glucocorticoid sensitive genes (FKBP51 and GILZ by 17-BMP were analysed by polymerase chain reaction. 17-BMP suppression of LPS-induced TNFα, IL-6 and CXCL8 was measured by ELISA and GR phosphorylation was measured by immunohistochemistry and Western blot. 17-BMP reduced cytokine release in a concentration dependent manner, with >70% inhibition of all cytokines, and no difference between COPD patients and controls. Similarly, the transactivation of FKBP51 and GILZ, and GR phosphorylation was similar between COPD patients and controls. In this context, GR function in COPD lung macrophages is unaltered. 17-BMP effectively suppresses cytokine production in COPD lung macrophages.

  6. Non-canonical Glucocorticoid Receptor Transactivation of gilz by Alcohol Suppresses Cell Inflammatory Response

    Directory of Open Access Journals (Sweden)

    Hang Pong Ng

    2017-06-01

    Full Text Available Acute alcohol exposure suppresses cell inflammatory response. The underlying mechanism has not been fully defined. Here we report that alcohol was able to activate glucocorticoid receptor (GR signaling in the absence of glucocorticoids (GCs and upregulated glucocorticoid-induced leucine zipper (gilz, a prominent GC-responsive gene. Such a non-canonical activation of GR was not blocked by mifepristone, a potent GC competitor. The proximal promoter of gilz, encompassing five GC-responsive elements (GREs, was incorporated and tested in a luciferase reporter system. Deletion and/or mutation of the GREs abrogated the promoter responsiveness to alcohol. Thus, the GR–GRE interaction transduced the alcohol action on gilz. Alcohol induced GR nuclear translocation, which was enhanced by the alcohol dehydrogenase inhibitor fomepizole, suggesting that it was alcohol, not its metabolites, that engendered the effect. Gel mobility shift assay showed that unliganded GR was able to bind GREs and such interaction withstood clinically relevant levels of alcohol. GR knockout via CRISPR/Cas9 gene targeting or GILZ depletion via small RNA interference diminished alcohol suppression of cell inflammatory response to LPS. Thus, a previously unrecognized, non-canonical GR activation of gilz is involved in alcohol modulation of cell immune response.

  7. A Pharmacokinetic/Pharmacodynamic Study of the Glucocorticoid Receptor Antagonist Mifepristone Combined with Enzalutamide in Castrate-Resistant Prostate Cancer

    Science.gov (United States)

    2016-12-01

    Enzalutamide; Mifepristone; Pharmacokinetic (PK) Pharmacodynamic (PD); Prostate specific antigen ( PSA ) 16. SECURITY CLASSIFICATION OF: 17...Androgen Receptor (AR) Glucocorticoid receptor (GR) Enzalutamide Mifepristone Pharmacokinetic (PK) Pharmacodynamic (PD) Prostate specific antigen ( PSA ...open internally due to financial limitations of this award. The trial will be opening at NorthShore University (D. Shevrin PI ) and is being

  8. Insights on Glucocorticoid Receptor Activity Modulation through the Binding of Rigid Steroids

    Science.gov (United States)

    Presman, Diego M.; Alvarez, Lautaro D.; Levi, Valeria; Eduardo, Silvina; Digman, Michelle A.; Martí, Marcelo A.; Veleiro, Adriana S.; Burton, Gerardo; Pecci, Adali

    2010-01-01

    Background The glucocorticoid receptor (GR) is a transcription factor that regulates gene expression in a ligand-dependent fashion. This modular protein is one of the major pharmacological targets due to its involvement in both cause and treatment of many human diseases. Intense efforts have been made to get information about the molecular basis of GR activity. Methodology/Principal Findings Here, the behavior of four GR-ligand complexes with different glucocorticoid and antiglucocorticoid properties were evaluated. The ability of GR-ligand complexes to oligomerize in vivo was analyzed by performing the novel Number and Brightness assay. Results showed that most of GR molecules form homodimers inside the nucleus upon ligand binding. Additionally, in vitro GR-DNA binding analyses suggest that ligand structure modulates GR-DNA interaction dynamics rather than the receptor's ability to bind DNA. On the other hand, by coimmunoprecipitation studies we evaluated the in vivo interaction between the transcriptional intermediary factor 2 (TIF2) coactivator and different GR-ligand complexes. No correlation was found between GR intranuclear distribution, cofactor recruitment and the homodimerization process. Finally, Molecular determinants that support the observed experimental GR LBD-ligand/TIF2 interaction were found by Molecular Dynamics simulation. Conclusions/Significance The data presented here sustain the idea that in vivo GR homodimerization inside the nucleus can be achieved in a DNA-independent fashion, without ruling out a dependent pathway as well. Moreover, since at least one GR-ligand complex is able to induce homodimer formation while preventing TIF2 coactivator interaction, results suggest that these two events might be independent from each other. Finally, 21-hydroxy-6,19-epoxyprogesterone arises as a selective glucocorticoid with potential pharmacological interest. Taking into account that GR homodimerization and cofactor recruitment are considered essential

  9. Insights on glucocorticoid receptor activity modulation through the binding of rigid steroids.

    Directory of Open Access Journals (Sweden)

    Diego M Presman

    Full Text Available BACKGROUND: The glucocorticoid receptor (GR is a transcription factor that regulates gene expression in a ligand-dependent fashion. This modular protein is one of the major pharmacological targets due to its involvement in both cause and treatment of many human diseases. Intense efforts have been made to get information about the molecular basis of GR activity. METHODOLOGY/PRINCIPAL FINDINGS: Here, the behavior of four GR-ligand complexes with different glucocorticoid and antiglucocorticoid properties were evaluated. The ability of GR-ligand complexes to oligomerize in vivo was analyzed by performing the novel Number and Brightness assay. Results showed that most of GR molecules form homodimers inside the nucleus upon ligand binding. Additionally, in vitro GR-DNA binding analyses suggest that ligand structure modulates GR-DNA interaction dynamics rather than the receptor's ability to bind DNA. On the other hand, by coimmunoprecipitation studies we evaluated the in vivo interaction between the transcriptional intermediary factor 2 (TIF2 coactivator and different GR-ligand complexes. No correlation was found between GR intranuclear distribution, cofactor recruitment and the homodimerization process. Finally, Molecular determinants that support the observed experimental GR LBD-ligand/TIF2 interaction were found by Molecular Dynamics simulation. CONCLUSIONS/SIGNIFICANCE: The data presented here sustain the idea that in vivo GR homodimerization inside the nucleus can be achieved in a DNA-independent fashion, without ruling out a dependent pathway as well. Moreover, since at least one GR-ligand complex is able to induce homodimer formation while preventing TIF2 coactivator interaction, results suggest that these two events might be independent from each other. Finally, 21-hydroxy-6,19-epoxyprogesterone arises as a selective glucocorticoid with potential pharmacological interest. Taking into account that GR homodimerization and cofactor recruitment are

  10. Cortisol Induces Reactive Oxygen Species Through a Membrane Glucocorticoid Receptor in Rainbow Trout Myotubes.

    Science.gov (United States)

    Espinoza, Marlen B; Aedo, Jorge E; Zuloaga, Rodrigo; Valenzuela, Cristian; Molina, Alfredo; Valdés, Juan A

    2017-04-01

    Cortisol is an essential regulator of neuroendocrine stress responses in teleosts. Cortisol predominantly affects target tissues through the genomic pathway, which involves interacting with cytoplasmic glucocorticoid receptors, and thereby, modulating stress-response gene expressions. Cortisol also produces rapid effects via non-genomic pathways, which do not involve gene transcription. Although cortisol-mediated genomic pathways are well documented in teleosts, non-genomic pathways are not fully understood. Moreover, no studies have focused on the contribution of non-genomic cortisol pathways in compensatory stress responses in fish. In this study, rainbow trout (Oncorhynchus mykiss) skeletal myotubes were stimulated with physiological concentrations of cortisol and cortisol-BSA, a membrane-impermeable agent, resulting in an early induction of reactive oxygen species (ROS). This production was not suppressed by transcription or translation inhibitors, suggesting non-genomic pathway involvement. Moreover, myotube preincubation with RU486 and NAC completely suppressed cortisol- and cortisol-BSA-induced ROS production. Subcellular fractionation analysis revealed the presence of cell membrane glucocorticoid receptors. Finally, cortisol-BSA induced a significant increase in ERK1/2 and CREB phosphorylation, as well as in CREB-dependent transcriptional activation of the pgc1a gene expression. The obtained results strongly suggest that cortisol acts through a non-genomic glucocorticoid receptor-mediated pathway to induce ROS production and contribute to ERK/CREB/PGC1-α signaling pathway activation as stress compensation mechanisms. J. Cell. Biochem. 118: 718-725, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. The evolution, structure and function of the ray finned fish (Actinopterygii) glucocorticoid receptors.

    Science.gov (United States)

    Bury, Nic R

    2017-09-15

    Basal ray-finned fish (Actinopterygii) possess a single glucocorticoid receptor (GR) and when compared to the lobe-finned vertebrate (Sarcopterygii) GR possess nine additional amino acids between the zinc-finger of the DNA binding domain. A whole genome duplication event which occurred between 320 and 350MYA in the teleost lineage following the split from the basal ray-finned fish resulted in 2 GRs: one GR group, GR1, has retained the 9 amino acids insert whereas the other group, GR2, has not. The exception to this is the zebrafish, that have lost one of the GRs, but they do possess 2 GRs with a splice variant that lacks the C-terminal portion of the GR to form GRβ which acts as a dominant-repressor of the wildtype GR. Another splice variant sees the basal ray-finned GR and teleost GR1 without the 9 amino acids insert. The molecular basis for GRs retention is beginning to be unravelled. In Pantadon buchholzi, rainbow trout, carp, marine and Japanese medaka GR2 is more sensitive to glucocorticoids (GC), thus potentially playing a more significant role in regulating gene expression at basal circulatory GC concentrations. However, this division in GC sensitivity is not seen in other species. The few studies to evaluate the significance of the 9 amino acid insert have shown that it affect maximal transactivational activity the extent to which is dependent on the number of glucocorticoid response elements (GREs) present in the reporter plasmid. The retention of these GRs would suggest there was an evolutionary advantage, which saw the development of a complex regulatory process to mediate the actions of the glucocorticoids. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Developmental Expression and Glucocorticoid Control of the Leptin Receptor in Fetal Ovine Lung.

    Directory of Open Access Journals (Sweden)

    Miles J De Blasio

    Full Text Available The effects of endogenous and synthetic glucocorticoids on fetal lung maturation are well-established, although the role of leptin in lung development before birth is unclear. This study examined mRNA and protein levels of the signalling long-form leptin receptor (Ob-Rb in fetal ovine lungs towards term, and after experimental manipulation of glucocorticoid levels in utero by fetal cortisol infusion or maternal dexamethasone treatment. In fetal ovine lungs, Ob-Rb protein was localised to bronchiolar epithelium, bronchial cartilage, vascular endothelium, alveolar macrophages and type II pneumocytes. Pulmonary Ob-Rb mRNA abundance increased between 100 (0.69 fractional gestational age and 144 days (0.99 of gestation, and by 2-4-fold in response to fetal cortisol infusion and maternal dexamethasone treatment. In contrast, pulmonary Ob-Rb protein levels decreased near term and were halved by glucocorticoid treatment, without any significant change in phosphorylated signal transducer and activator of transcription-3 (pSTAT3 at Ser727, total STAT3 or the pulmonary pSTAT3:STAT3 ratio. Leptin mRNA was undetectable in fetal ovine lungs at the gestational ages studied. These findings demonstrate differential control of pulmonary Ob-Rb transcript abundance and protein translation, and/or post-translational processing, by glucocorticoids in utero. Localisation of Ob-Rb in the fetal ovine lungs, including alveolar type II pneumocytes, suggests a role for leptin signalling in the control of lung growth and maturation before birth.

  13. Structural analysis of the evolution of steroid specificity in the mineralocorticoid and glucocorticoid receptors

    Directory of Open Access Journals (Sweden)

    Ollikainen Noah

    2007-02-01

    Full Text Available Abstract Background The glucocorticoid receptor (GR and mineralocorticoid receptor (MR evolved from a common ancestor. Still not completely understood is how specificity for glucocorticoids (e.g. cortisol and mineralocorticoids (e.g. aldosterone evolved in these receptors. Results Our analysis of several vertebrate GRs and MRs in the context of 3D structures of human GR and MR indicates that with the exception of skate GR, a cartilaginous fish, there is a deletion in all GRs, at the position corresponding to Ser-949 in human MR. This deletion occurs in a loop before helix 12, which contains the activation function 2 (AF2 domain, which binds coactivator proteins and influences transcriptional activity of steroids. Unexpectedly, we find that His-950 in human MR, which is conserved in the MR in chimpanzee, orangutan and macaque, is glutamine in all teleost and land vertebrate MRs, including New World monkeys and prosimians. Conclusion Evolution of differences in the responses of the GR and MR to corticosteroids involved deletion in the GR of a residue corresponding to Ser-949 in human MR. A mutation corresponding to His-950 in human MR may have been important in physiological changes associated with emergence of Old World monkeys from prosimians.

  14. The N363S polymorphism of the glucocorticoid receptor and metabolic syndrome factors in men

    DEFF Research Database (Denmark)

    Buemann, Benjamin; Black, Eva; Holst, Claus

    2005-01-01

    OBJECTIVE: To test the associations between the N363S polymorphism of the glucocorticoid receptor gene (NR3C1) and factors related to the metabolic syndrome in middle-aged men with and without juvenile-onset obesity. RESEARCH METHODS AND PROCEDURES: This study included two groups of middle-aged men...... with the obese men (n = 299; age, 50 +/- 7 years). The subjects were genotyped for the N363S polymorphism by polymerase chain reaction-restriction fragment length polymorphism. Body composition was measured by DXA. Glucose metabolism was evaluated by an oral glucose tolerance test, and the Matsudas index...

  15. Isoform switching of steroid receptor co-activator-1 attenuates glucocorticoid-induced anxiogenic amygdala CRH expression.

    Science.gov (United States)

    Zalachoras, I; Verhoeve, S L; Toonen, L J; van Weert, L T C M; van Vlodrop, A M; Mol, I M; Meelis, W; de Kloet, E R; Meijer, O C

    2016-12-01

    Maladaptive glucocorticoid effects contribute to stress-related psychopathology. The glucocorticoid receptor (GR) that mediates many of these effects uses multiple signaling pathways. We have tested the hypothesis that manipulation of downstream factors ('coregulators') can abrogate potentially maladaptive GR-mediated effects on fear-motivated behavior that are linked to corticotropin releasing hormone (CRH). For this purpose the expression ratio of two splice variants of steroid receptor coactivator-1 (SRC-1) was altered via antisense-mediated 'exon-skipping' in the central amygdala of the mouse brain. We observed that a change in splicing towards the repressive isoform SRC-1a strongly reduced glucocorticoid-induced responsiveness of Crh mRNA expression and increased methylation of the Crh promoter. The transcriptional GR target gene Fkbp5 remained responsive to glucocorticoids, indicating gene specificity of the effect. The shift of the SRC-1 splice variants altered glucocorticoid-dependent exploratory behavior and attenuated consolidation of contextual fear memory. In conclusion, our findings demonstrate that manipulation of GR signaling pathways related to the Crh gene can selectively diminish potentially maladaptive effects of glucocorticoids.

  16. Glucocorticoids induce CCN5/WISP-2 expression and attenuate invasion in oestrogen receptor-negative human breast cancer cells.

    Science.gov (United States)

    Ferrand, Nathalie; Stragier, Emilien; Redeuilh, Gérard; Sabbah, Michèle

    2012-10-01

    CCN5 (cysteine-rich 61/connective tissue growth factor/nephroblastoma overexpressed 5)/WISP-2 [WNT1 (wingless-type MMTV integration site family, member 1)-inducible signalling pathway protein 2] is an oestrogen-regulated member of the CCN family. CCN5 is a transcriptional repressor of genes associated with the EMT (epithelial-mesenchymal transition) and plays an important role in maintenance of the differentiated phenotype in ER (oestrogen receptor)-positive breast cancer cells. In contrast, CCN5 is undetectable in more aggressive ER-negative breast cancer cells. We now report that CCN5 is induced in ER-negative breast cancer cells such as MDA-MB-231 following glucocorticoid exposure, due to interaction of the endogenous glucocorticoid receptor with a functional glucocorticoid-response element in the CCN5 gene promoter. Glucocorticoid treatment of MDA-MB-231 cells is accompanied by morphological alterations, decreased invasiveness and attenuated expression of mesenchymal markers, including vimentin, cadherin 11 and ZEB1 (zinc finger E-box binding homeobox 1). Interestingly, glucocorticoid exposure did not increase CCN5 expression in ER-positive breast cancer cells, but rather down-regulated ER expression, thereby attenuating oestrogen pathway signalling. Taken together, our results indicate that glucocorticoid treatment of ER-negative breast cancer cells induces high levels of CCN5 expression and is accompanied by the appearance of a more differentiated and less invasive epithelial phenotype. These findings propose a novel therapeutic strategy for high-risk breast cancer patients.

  17. Selective Glucocorticoid Receptor Properties of GSK866 Analogs with Cysteine Reactive Warheads

    Directory of Open Access Journals (Sweden)

    Chandra S. Chirumamilla

    2017-11-01

    Full Text Available Synthetic glucocorticoids (GC are the mainstay therapy for treatment of acute and chronic inflammatory disorders. Due to the high adverse effects associated with long-term use, GC pharmacology has focused since the nineties on more selective GC ligand-binding strategies, classified as selective glucocorticoid receptor (GR agonists (SEGRAs or selective glucocorticoid receptor modulators (SEGRMs. In the current study, GSK866 analogs with electrophilic covalent-binding warheads were developed with potential SEGRA properties to improve their clinical safety profile for long-lasting topical skin disease applications. Since the off-rate of a covalently binding drug is negligible compared to that of a non-covalent drug, its therapeutic effects can be prolonged and typically, smaller doses of the drug are necessary to reach the same level of therapeutic efficacy, thereby potentially reducing systemic side effects. Different analogs of SEGRA GSK866 coupled to cysteine reactive warheads were characterized for GR potency and selectivity in various biochemical and cellular assays. GR- and NFκB-dependent reporter gene studies show favorable anti-inflammatory properties with reduced GR transactivation of two non-steroidal GSK866 analogs UAMC-1217 and UAMC-1218, whereas UAMC-1158 and UAMC-1159 compounds failed to modulate cellular GR activity. These results were further supported by GR immuno-localization and S211 phospho-GR western analysis, illustrating significant GR phosphoactivation and nuclear translocation upon treatment of GSK866, UAMC-1217, or UAMC-1218, but not in case of UAMC-1158 or UAMC-1159. Furthermore, mass spectrometry analysis of tryptic peptides of recombinant GR ligand-binding domain (LBD bound to UAMC-1217 or UAMC-1218 confirmed covalent cysteine-dependent GR binding. Finally, molecular dynamics simulations, as well as glucocorticoid receptor ligand-binding domain (GR-LBD coregulator interaction profiling of the GR-LBD bound to GSK866 or

  18. Epigenetic modification of the glucocorticoid receptor gene is linked to traumatic memory and post-traumatic stress disorder risk in genocide survivors

    NARCIS (Netherlands)

    Vukojevic, V.; Kolassa, I.T.; Fastenrath, M.; Gschwind, L.; Spalek, K.; Milnik, A.; Heck, A.; Vogler, C.; Wilker, S.; Demougin, P.; Peter, F.; Atucha Trevino, E.; Stetak, A.; Roozendaal, B.; Elbert, T.; Papassotiropoulos, A.; Quervain, D.J. de

    2014-01-01

    Recent evidence suggests that altered expression and epigenetic modification of the glucocorticoid receptor gene (NR3C1) are related to the risk of post-traumatic stress disorder (PTSD). The underlying mechanisms, however, remain unknown. Because glucocorticoid receptor signaling is known to

  19. Changes in 5-HT4 receptor and 5-HT transporter binding in olfactory bulbectomized and glucocorticoid receptor heterozygous mice

    DEFF Research Database (Denmark)

    Licht, Cecilie L; Kirkegaard, Lisbeth; Zueger, Maha

    2010-01-01

    ]citalopram in two murine models of depression-related states, olfactory bulbectomy and glucocorticoid receptor heterozygous (GR(+/-)) mice. The olfactory bulbectomy model is characterized by 5-HT system changes, while the GR(+/-) mice have a deficit in hypothalamic-pituitary-adrenal (HPA) system control....... The olfactory bulbectomized mice displayed increased activity in the open field test, a characteristic depression-like feature of this model. After bulbectomy, 5-HT(4) receptor binding was increased in the ventral hippocampus (12%) but unchanged in the dorsal hippocampus, frontal and caudal caudate putamen....... Among post hoc analyzed regions, there was a 14% decrease in 5-HT(4) receptor binding in the olfactory tubercles. The 5-HTT binding was unchanged in the hippocampus and caudate putamen of bulbectomized mice but post hoc analysis showed small decreases in lateral septum and lateral globus pallidus...

  20. Ovarian hormones modify anxiety behavior and glucocorticoid receptors after chronic social isolation stress.

    Science.gov (United States)

    Ramos-Ortolaza, Dinah L; Doreste-Mendez, Raura J; Alvarado-Torres, John K; Torres-Reveron, Annelyn

    2017-06-15

    Chronic social isolation could lead to a disruption in the Hypothalamic-Pituitary-Adrenal (HPA) axis, resulting in anxiety and depressive-like behaviors but cycling estrogens could modify these behaviors. The aim of this study was to determine if changes in ovarian hormones during the normal cycle could interact with social isolation to alter anxiety and depressive-like behaviors. In parallel, we examined the expression of glucocorticoid receptor (GR) and synaptic vesicle protein synaptophysin in the hippocampus and hypothalamus of Sprague Dawley normal cycling female rats. We assigned rats to either isolated or paired housing for 8 weeks. To assess anxiety and depressive-like behaviors, we used the open field test and forced swim test, respectively. Female rats were tested at either diestrus, estrus, or proestrus stage of the estrous cycle. After behaviors, rats were perfused and brains collected. Brain sections containing hippocampus and hypothalamus were analyzed using immunohistochemistry for synaptophysin and glucocorticoid receptor (GR) levels. We found an increase in depressive-like behaviors for isolated animals compared to paired housed rats, regardless of the estrous cycle stage. Interestingly, we found a decrease in anxiety behaviors in females in the estrus stage accompanied by a decrease in GR expression in hippocampal DG and CA3. However, no changes in synaptophysin were observed in any of the areas of studied. Our results support the beneficial effects of circulating ovarian hormones in anxiety, possibly by decreasing GR expression. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Selective Glucocorticoid Receptor (GR-II Antagonist Reduces Body Weight Gain in Mice

    Directory of Open Access Journals (Sweden)

    Tomoko Asagami

    2011-01-01

    Full Text Available Previous research has shown that mifepristone can prevent and reverse weight gain in animals and human subjects taking antipsychotic medications. This proof-of-concept study tested whether a more potent and selective glucocorticoid receptor antagonist could block dietary-induced weight gain and increase insulin sensitivity in mice. Ten-week-old, male, C57BL/6J mice were fed a diet containing 60% fat calories and water supplemented with 11% sucrose for 4 weeks. Groups (=8 received one of the following: CORT 108297 (80 mg/kg QD, CORT 108297 (40 mg/kg BID, mifepristone (30 mg/kg BID, rosiglitazone (10 mg/kg QD, or vehicle. Compared to mice receiving a high-fat, high-sugar diet plus vehicle, mice receiving a high-fat, high-sugar diet plus either mifepristone or CORT 108297 gained significantly less weight. At the end of the four week treatment period, mice receiving CORT 108297 40 mg/kg BID or CORT 108297 80 mg/kg QD also had significantly lower steady plasma glucose than mice receiving vehicle. However, steady state plasma glucose after treatment was not highly correlated with reduced weight gain, suggesting that the effect of the glucocorticoid receptor antagonist on insulin sensitivity may be independent of its mitigating effect on weight gain.

  2. Distribution and Abundance of Glucocorticoid and Mineralocorticoid Receptors throughout the Brain of the Great Tit (Parus major.

    Directory of Open Access Journals (Sweden)

    Rebecca A Senft

    Full Text Available The glucocorticoid stress response, regulated by the hypothalamic-pituitary-adrenal (HPA axis, enables individuals to cope with stressors through transcriptional effects in cells expressing the appropriate receptors. The two receptors that bind glucocorticoids-the mineralocorticoid receptor (MR and glucocorticoid receptor (GR-are present in a variety of vertebrate tissues, but their expression in the brain is especially important. Neural receptor patterns have the potential to integrate multiple behavioral and physiological traits simultaneously, including self-regulation of glucocorticoid secretion through negative feedback processes. In the present work, we quantified the expression of GR and MR mRNA throughout the brain of a female great tit (Parus major, creating a distribution map encompassing 48 regions. This map, the first of its kind for P. major, demonstrated a widespread but not ubiquitous distribution of both receptor types. In the paraventricular nucleus of the hypothalamus (PVN and the hippocampus (HP-the two brain regions that we sampled from a total of 25 birds, we found high GR mRNA expression in the former and, unexpectedly, low MR mRNA in the latter. We examined the covariation of MR and GR levels in these two regions and found a strong, positive relationship between MR in the PVN and MR in the HP and a similar trend for GR across these two regions. This correlation supports the idea that hormone pleiotropy may constrain an individual's behavioral and physiological phenotype. In the female song system, we found moderate GR in hyperstriatum ventrale, pars caudalis (HVC, and moderate MR in robust nucleus of the arcopallium (RA. Understanding intra- and interspecific patterns of glucocorticoid receptor expression can inform us about the behavioral processes (e.g. song learning that may be sensitive to stress and stimulate future hypotheses concerning the relationships between receptor expression, circulating hormone concentrations

  3. Interactions between N-Ethylmaleimide-sensitive factor and GluA2 contribute to effects of glucocorticoid hormones on AMPA receptor function in the rodent hippocampus.

    NARCIS (Netherlands)

    Xiong, H.; Cassé, F.; Zhou, M.; Xiong, Z.Q.; Joels, M.; Martin, S.; Krugers, H.J.

    2016-01-01

    Glucocorticoid hormones, via activation of their receptors, promote memory consolidation, but the exact underlying mechanisms remain elusive. We examined how corticosterone regulates AMPA receptor (AMPAR) availability in the synapse, which is important for synaptic plasticity and memory formation.

  4. Interactions between N-Ethylmaleimide-Sensitive Factor and GluA2 contribute to effects of glucocorticoid hormones on AMPA receptor function in the rodent hippocampus

    NARCIS (Netherlands)

    Xiong, Hui; Cassé, Frédéric; Zhou, Ming; Xiong, Zhi-Qi; Joels, Marian; Martin, Stéphane; Krugers, Harm J

    Glucocorticoid hormones, via activation of their receptors, promote memory consolidation, but the exact underlying mechanisms remain elusive. We examined how corticosterone regulates AMPA receptor (AMPAR) availability in the synapse, which is important for synaptic plasticity and memory formation.

  5. Are receptor concentrations correlated across tissues within individuals? A case study examining glucocorticoid and mineralocorticoid receptor binding.

    Science.gov (United States)

    Lattin, Christine R; Keniston, Daniel E; Reed, J Michael; Romero, L Michael

    2015-04-01

    Hormone receptors are a necessary (although not sufficient) part of the process through which hormones like corticosterone create physiological responses. However, it is currently unknown to what extent receptor concentrations across different target tissues may be correlated within individual animals. In this study, we examined this question using a large dataset of radioligand binding data for glucocorticoid receptors (GRs) and mineralocorticoid receptors (MRs) in 13 different tissues in the house sparrow (Passer domesticus) (n=72). Our data revealed that individual house sparrows tended to exhibit higher or lower receptor binding across all tissues, which could be part of what creates the physiological and behavioral syndromes associated with different hormonal profiles. However, although statistically significant, the correlations between tissues were very weak. Thus, when each tissue was independently regressed on receptor concentrations in the other tissues, multivariate analysis revealed significant relationships only for sc fat (for GR) and whole brain, hippocampus, kidney, omental fat, and sc fat (for MR). We also found significant pairwise correlations only between receptor concentrations in brain and hippocampus, and brain and kidney (both for MR). This research reveals that although there are generalized individual consistencies in GR and MR concentrations, possibly due to such factors as hormonal regulation and genetic effects, the ability of 2 different tissues to respond to the same hormonal signal appears to be affected by additional factors that remain to be identified.

  6. Glucocorticoids facilitate the transcription from the human cytomegalovirus major immediate early promoter in glucocorticoid receptor- and nuclear factor-I-like protein-dependent manner

    Energy Technology Data Exchange (ETDEWEB)

    Inoue-Toyoda, Maki [Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575 (Japan); Kato, Kohsuke [Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575 (Japan); Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575 (Japan); Nagata, Kyosuke, E-mail: knagata@md.tsukuba.ac.jp [University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575 (Japan); Yoshikawa, Hiroyuki [Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575 (Japan); Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575 (Japan)

    2015-02-27

    Human cytomegalovirus (HCMV) is a common and usually asymptomatic virus agent in healthy individuals. Initiation of HCMV productive infection depends on expression of the major immediate early (MIE) genes. The transcription of HCMV MIE genes is regulated by a diverse set of transcription factors. It was previously reported that productive HCMV infection is triggered probably by elevation of the plasma hydroxycorticoid level. However, it is poorly understood whether the transcription of MIE genes is directly regulated by glucocorticoid. Here, we found that the dexamethasone (DEX), a synthetic glucocorticoid, facilitates the transcription of HCMV MIE genes through the MIE promoter and enhancer in a glucocorticoid receptor (GR)-dependent manner. By competitive EMSA and reporter assays, we revealed that an NF-I like protein is involved in DEX-mediated transcriptional activation of the MIE promoter. Thus, this study supports a notion that the increased level of hydroxycorticoid in the third trimester of pregnancy reactivates HCMV virus production from the latent state. - Highlights: • DEX facilitates the transcription from the HCMV MIE promoter. • GR is involved in DEX-dependent transcription from the HCMV MIE promoter. • A 17 bp repeat is responsible for the HCMV MIE promoter activation by DEX. • An NF-I-like protein is involved in the HCMV MIE promoter activation by DEX.

  7. Expression of glucocorticoid receptor and glucose transporter-1 during placental development in the diabetic rat

    Directory of Open Access Journals (Sweden)

    Ramazan Demir

    2011-07-01

    Full Text Available In various tissues, glucocorticoids (GCs are known to downregulate glucose transport systems; however, their effects on glucose transporters (GLUTs in the placenta of a diabetic rat are unknown. Glucocorticoid hormone action within the cell is regulated by the glucocorticoid receptor (GR. Thus, this study was designed to investigate the relationship between GR and glucose transporter expression in the placenta of the diabetic rat. Our immunohistochemical results indicated that GR and glucose transporter protein 1 (GLUT 1 are expressed ubiquitously in the trophoblast and endothelial cells of the labyrinthine zone, where maternal fetal transport takes place in the rat placenta. Expression of GR in the junctional zone of the rat placenta was detected in giant cells, and in some spongiotrophoblast cells, but not in the glycogen cells. GLUT 1 was present, especially in glycogen cells during early pregnancy, and in the spongiotrophoblast cells of the junctional zone during late pregnancy. Amounts of GR and GLUT 1 protein were increased towards the end of gestation both in the control and the diabetic placenta. However, at days 17 and 19 of gestation, only the placental GR protein was significantly increased in the streptozotocin-induced diabetic rats compared to control rats. Diabetes led to a significant decrease in placental weight at gestation day 15. In contrast, at gestational days 17 and 21, the weights of the diabetic placenta were significantly increased as compared with the controls. Moreover, diabetes induced fetus intrauterine growth retardation at gestational days 13, 17 and 21. In conclusion, the localization pattern of GR and GLUT 1 proteins in the same cell types led us to believe that there might be a relationship between GR and GLUT 1 expressions at the cellular level. GLUT 1 does not play a pivotal role in diabetic pregnancies. However, placental growth abnormalities during diabetic pregnancy may be related to the amount of GR

  8. Modifications to glucocorticoid and progesterone receptors alter cell fate in breast cancer.

    Science.gov (United States)

    Leehy, Katherine A; Regan Anderson, Tarah M; Daniel, Andrea R; Lange, Carol A; Ostrander, Julie H

    2016-04-01

    Steroid hormone receptors (SRs) are heavily posttranslationally modified by the reversible addition of a variety of molecular moieties, including phosphorylation, acetylation, methylation, SUMOylation, and ubiquitination. These rapid and dynamic modifications may be combinatorial and interact (i.e. may be sequential, complement, or oppose each other), creating a vast array of uniquely modified receptor subspecies that allow for diverse receptor behaviors that enable highly sensitive and context-dependent hormone action. For example, in response to hormone or growth factor membrane-initiated signaling events, posttranslational modifications (PTMs) to SRs alter protein-protein interactions that govern the complex process of promoter or gene-set selection coupled to transcriptional repression or activation. Unique phosphorylation events allow SRs to associate or disassociate with specific cofactors that may include pioneer factors and other tethering partners, which specify the resulting transcriptome and ultimately change cell fate. The impact of PTMs on SR action is particularly profound in the context of breast tumorigenesis, in which frequent alterations in growth factor-initiated signaling pathways occur early and act as drivers of breast cancer progression toward endocrine resistance. In this article, with primary focus on breast cancer relevance, we review the mechanisms by which PTMs, including reversible phosphorylation events, regulate the closely related SRs, glucocorticoid receptor and progesterone receptor, allowing for precise biological responses to ever-changing hormonal stimuli. © 2016 Society for Endocrinology.

  9. Adenosine Receptor Stimulation Improves Glucocorticoid-Induced Osteoporosis in a Rat Model.

    Science.gov (United States)

    Pizzino, Gabriele; Irrera, Natasha; Galfo, Federica; Oteri, Giacomo; Atteritano, Marco; Pallio, Giovanni; Mannino, Federica; D'Amore, Angelica; Pellegrino, Enrica; Aliquò, Federica; Anastasi, Giuseppe P; Cutroneo, Giuseppina; Squadrito, Francesco; Altavilla, Domenica; Bitto, Alessandra

    2017-01-01

    Glucocorticoid-induced osteoporosis (GIO) is a secondary cause of bone loss. Bisphosphonates approved for GIO, might induce jaw osteonecrosis; thus additional therapeutics are required. Adenosine receptor agonists are positive regulators of bone remodeling, thus the efficacy of adenosine receptor stimulation for treating GIO was tested. In a preventive study GIO was induced in Sprague-Dawley rats by methylprednisolone (MP) for 60 days. Animals were randomly assigned to receive polydeoxyribonucleotide (PDRN), an adenosine A2 receptor agonist, or PDRN and DMPX (3,7-dimethyl-1-propargylxanthine, an A 2 antagonist), or vehicle (0.9% NaCl). Another set of animals was used for a treatment study, following the 60 days of MP-induction rats were randomized to receive (for additional 60 days) PDRN, or PDRN and DMPX (an adenosine A2 receptor antagonist), or zoledronate (as control for gold standard treatment), or vehicle. Control animals were administered with vehicle for either 60 or 120 days. Femurs were analyzed after treatments for histology, imaging, and breaking strength analysis. MP treatment induced severe bone loss, the concomitant use of PDRN prevented the developing of osteoporosis. In rats treated for 120 days, PDRN restored bone architecture and bone strength; increased b-ALP, osteocalcin, osteoprotegerin and stimulated the Wnt canonical and non-canonical pathway. Zoledronate reduced bone resorption and ameliorated the histological features, without significant effects on bone formation. Our results suggest that adenosine receptor stimulation might be useful for preventing and treating GIO.

  10. Adenosine Receptor Stimulation Improves Glucocorticoid-Induced Osteoporosis in a Rat Model

    Directory of Open Access Journals (Sweden)

    Gabriele Pizzino

    2017-09-01

    Full Text Available Glucocorticoid-induced osteoporosis (GIO is a secondary cause of bone loss. Bisphosphonates approved for GIO, might induce jaw osteonecrosis; thus additional therapeutics are required. Adenosine receptor agonists are positive regulators of bone remodeling, thus the efficacy of adenosine receptor stimulation for treating GIO was tested. In a preventive study GIO was induced in Sprague-Dawley rats by methylprednisolone (MP for 60 days. Animals were randomly assigned to receive polydeoxyribonucleotide (PDRN, an adenosine A2 receptor agonist, or PDRN and DMPX (3,7-dimethyl-1-propargylxanthine, an A2 antagonist, or vehicle (0.9% NaCl. Another set of animals was used for a treatment study, following the 60 days of MP-induction rats were randomized to receive (for additional 60 days PDRN, or PDRN and DMPX (an adenosine A2 receptor antagonist, or zoledronate (as control for gold standard treatment, or vehicle. Control animals were administered with vehicle for either 60 or 120 days. Femurs were analyzed after treatments for histology, imaging, and breaking strength analysis. MP treatment induced severe bone loss, the concomitant use of PDRN prevented the developing of osteoporosis. In rats treated for 120 days, PDRN restored bone architecture and bone strength; increased b-ALP, osteocalcin, osteoprotegerin and stimulated the Wnt canonical and non-canonical pathway. Zoledronate reduced bone resorption and ameliorated the histological features, without significant effects on bone formation. Our results suggest that adenosine receptor stimulation might be useful for preventing and treating GIO.

  11. Glucocorticoid-like effects of antihepatocarcinogen Rotenone are mediated via enhanced serum corticosterone levels: Molecular Fitting and Receptor Activation Studies

    Directory of Open Access Journals (Sweden)

    Badr Mostafa

    2003-01-01

    diminished similarity with a value of 1 or higher excluding any such similarities. Results Although the stimulatory effect exerted by rotenone on hepatocellular apoptosis was in the opposite direction of that produced by the glucocorticoid antagonist RU 486, data suggested that rotenone does not directly activate the glucocorticoid receptor. Molecular fitting of rotenone to glucocorticoid receptor agonists and antagonists as well as examination of the transcriptional activation of a glucocorticoid-responsive reporter gene (Mouse MammaryTumorVirus in response to rotenone indicated that it is highly unlikely that rotenone interacts directly with the glucocorticoid receptor. However, feeding male B6C3F1 mice a diet containing rotenone (600 ppm for 7 days resulted in a 3-fold increase in serum levels of corticosterone relative to control animals. Corticosterone is the major glucocorticoid in rodents. Conclusion Rotenone does not interact directly with the glucocorticoid receptor. Elevation of serum corticosterone levels in response to rotenone may explain the glucocorticoid-like effects of this compound, and may play a role in its anti-hepatocarcinogenic effect.

  12. Glucocorticoid-like effects of antihepatocarcinogen Rotenone are mediated via enhanced serum corticosterone levels: Molecular Fitting and Receptor Activation Studies.

    Science.gov (United States)

    Youssef, Jihan; Elbi, Cem; Warren, Barbour; Yourtee, David; Nagarur, Raghavendra; Molteni, Agostino; Cunningham, Michael L; Badr, Mostafa

    2003-02-14

    diminished similarity with a value of 1 or higher excluding any such similarities. RESULTS: Although the stimulatory effect exerted by rotenone on hepatocellular apoptosis was in the opposite direction of that produced by the glucocorticoid antagonist RU 486, data suggested that rotenone does not directly activate the glucocorticoid receptor. Molecular fitting of rotenone to glucocorticoid receptor agonists and antagonists as well as examination of the transcriptional activation of a glucocorticoid-responsive reporter gene (Mouse MammaryTumorVirus) in response to rotenone indicated that it is highly unlikely that rotenone interacts directly with the glucocorticoid receptor. However, feeding male B6C3F1 mice a diet containing rotenone (600 ppm for 7 days) resulted in a 3-fold increase in serum levels of corticosterone relative to control animals. Corticosterone is the major glucocorticoid in rodents. CONCLUSION: Rotenone does not interact directly with the glucocorticoid receptor. Elevation of serum corticosterone levels in response to rotenone may explain the glucocorticoid-like effects of this compound, and may play a role in its anti-hepatocarcinogenic effect.

  13. Hypothalamic-pituitary-adrenal axis activity, personality traits, and BCL1 and N363S polymorphisms of the glucocorticoid receptor gene in metabolically obese normal-weight women.

    Science.gov (United States)

    Porzezińska-Furtak, Joanna; Krzyżanowska-Świniarska, Barbara; Miazgowski, Tomasz; Safranow, Krzysztof; Kamiński, Ryszard

    2014-09-01

    We sought associations among metabolic profiles, copeptin levels, emotional control, personality traits, and hypothalamic-pituitary-adrenal axis activity in metabolically obese normal-weight young women (MONW). We assessed body composition, including fat-free mass; body fat (BF) and android and gynoid fat depots; fasting blood glucose, insulin, copeptin, cortisol (baseline and after dexamethasone), adrenocorticotropin (ACTH), triglycerides, total cholesterol, low- (LDL) and high-density (HDL) lipoproteins; and the BCL1 and N363S polymorphisms of the glucocorticoid receptor gene in 59 MONW and 71 healthy women aged 20-40 years. We also evaluated personality traits using the NEO-Five Factor Inventory and the subjective extent of emotional suppression by the Courtauld Emotional Control Scale. Compared to the controls, MONW had significantly higher insulin, cholesterol, LDL, triglycerides, and waist circumference, but lower HDL. MONW also had increased BF (>30 % of weight) and unfavorable regional fat distribution with excess android fat. The android/BF ratio was 8.29 % (MONW) versus 7.89 % (controls) (p = 0.005), while the gynoid/BF ratio was 31.99 versus 34.1 %, respectively (p = 0.008). Despite similar ACTH levels in both groups, MONW had higher cortisol levels both at the baseline (p < 0.001) and in the dexamethasone suppression test (p = 0.003). Copeptin levels and the distribution of glucocorticoid receptor polymorphisms were similar in both groups. There were also no significant differences in psychological features between MONW and controls. In conclusion, the MONW phenotype was associated with hypothalamic-pituitary-adrenal axis dysregulation, unfavorable metabolic profiles, and fat accumulation, but normal distribution of glucocorticoid receptor gene polymorphisms and copeptin levels, and no significant differences in psychological features between MONW and controls.

  14. Differential targeting of androgen and glucocorticoid receptors induces ER stress and apoptosis in prostate cancer cells

    Science.gov (United States)

    Bhalla, Pankaj; Yang, Ximing; Ugolkov, Andrey; Iwadate, Kenichi; Karseladze, Apollon; Budunova, Irina

    2012-01-01

    Androgen (AR) and glucocorticoid (GR) receptor signaling play opposing roles in prostate tumorigenesis: in prostate, AR acts as an oncogene, and GR is a tumor suppressor. Recently, we found that non-steroidal phyto-chemical compound A (CpdA) is AR/GR modulator acting as anti-inflammatory anti-androgen. CpdA inhibits AR and prevents GR transactivation while enhancing GR transrepression. GR and AR are controlled by proteasomal degradation. We found that prolonged exposure of LNCaP, LNCaP-GR, DU145 and PC3 prostate carcinoma (PCa) cells to proteasome inhibitor Bortezomib (BZ) caused AR degradation and GR accumulation. BZ enhanced CpdA ability to inhibit AR and to augment GR transrepression. We also found that CpdA+BZ differentially regulated GR/AR to cooperatively suppress PCa cell growth and survival and to induce endoplasmic reticulum stress (ERS). Importantly, CpdA+BZ differentially regulated GR-responsive genes. CpdA+BZ blocked activation of glucocorticoid-responsive pro-survival genes, including SGK1, but activated BZ-induced ERS-related genes BIP/HSPA5 and CHOP/GADD153. Using ChIP, we showed that SGK1, BIP/HSPA5 and CHOP regulation was due to effects of CpdA and CpdA+BZ on GR loading on their promoters. We also found that AR and GR are abundant in advanced PCa from patients treated by androgen ablation and/or chemotherapy: 56% of carcinomas from treated patients expressed both receptors, and the other 27% expressed either GR or AR. Overall, our data validate the concept of dual AR/GR targeting in prostate cancer (PC) and suggest that BZ combination with dual-target steroid receptor modulator CpdA has high potential for PC therapy. PMID:22223138

  15. The BclI polymorphism of the glucocorticoid receptor gene is associated with emotional memory performance in healthy individuals.

    Science.gov (United States)

    Ackermann, Sandra; Heck, Angela; Rasch, Björn; Papassotiropoulos, Andreas; de Quervain, Dominique J-F

    2013-07-01

    Glucocorticoids, stress hormones released from the adrenal cortex, are important players in the regulation of emotional memory. Specifically, in animals and in humans, glucocorticoids enhance memory consolidation of emotionally arousing experiences, but impair memory retrieval. These glucocorticoid actions are partly mediated by glucocorticoid receptors in the hippocampus, amygdala and prefrontal cortex, key brain regions for emotional memory. In a recent study in patients who underwent cardiac surgery, the BclI polymorphism of the glucocorticoid receptor gene (NR3C1) was associated with traumatic memories and posttraumatic stress disorder symptoms after intensive care therapy. Based on this finding, we investigated if the BclI polymorphism is also associated with emotional memory in healthy young subjects (N=841). We used a picture-learning task consisting of learning and recalling neutral and emotional photographs on two consecutive days. The BclI variant was associated with short-delay recall of emotional pictures on both days, with GG carriers showing increased emotional memory performance as compared to GC and CC carriers. We did not detect a genotype-dependent difference in recall performance for neutral pictures. These findings suggest that the Bcll polymorphism contributes to inter-individual differences in emotional memory also in healthy humans. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Characterization of a novel gain of function glucocorticoid receptor knock-in mouse.

    Science.gov (United States)

    Zhang, Junhui; Ge, Renshang; Matte-Martone, Catherine; Goodwin, Julie; Shlomchik, Warren D; Mamula, Mark J; Kooshkabadi, Ali; Hardy, Matthew P; Geller, David

    2009-03-06

    Glucocorticoids (GCs) exert profound influences on many physiologic functions by virtue of their diverse roles in growth, development, and maintenance of homeostasis. We previously created a novel gain of function in the human glucocorticoid receptor (hGR), hGRM604L, which is active at GC concentrations 5-10-fold lower than wild-type GR. To gain a greater insight into GC physiology in vivo, we inserted this mutant GR (GRM610L in mice) into mice via homologous recombination. Mice expressing the allele are phenotypically normal with respect to GC function. However, corticosterone levels, ACTH levels, and adrenocortical size are markedly reduced, suggesting they are phenotypically normal because the mutant GR alters the basal regulation of the hypothalamic-pituitary-adrenal axis. We demonstrate via physiologic and immunologic studies that GRM610L mice have increased sensitivity to GCs in vivo. Sensitivity to the actions of endogenous GCs may be an important factor underlying the development of many human diseases including hypertension, obesity, and diabetes. Our model may provide a new and powerful tool for the study of GC physiological and pathological processes in vivo.

  17. Control of energy balance by hypothalamic gene circuitry involving two nuclear receptors, neuron-derived orphan receptor 1 and glucocorticoid receptor.

    Science.gov (United States)

    Kim, Sun-Gyun; Lee, Bora; Kim, Dae-Hwan; Kim, Juhee; Lee, Seunghee; Lee, Soo-Kyung; Lee, Jae W

    2013-10-01

    Nuclear receptors (NRs) regulate diverse physiological processes, including the central nervous system control of energy balance. However, the molecular mechanisms for the central actions of NRs in energy balance remain relatively poorly defined. Here we report a hypothalamic gene network involving two NRs, neuron-derived orphan receptor 1 (NOR1) and glucocorticoid receptor (GR), which directs the regulated expression of orexigenic neuropeptides agouti-related peptide (AgRP) and neuropeptide Y (NPY) in response to peripheral signals. Our results suggest that the anorexigenic signal leptin induces NOR1 expression likely via the transcription factor cyclic AMP response element-binding protein (CREB), while the orexigenic signal glucocorticoid mobilizes GR to inhibit NOR1 expression by antagonizing the action of CREB. Also, NOR1 suppresses glucocorticoid-dependent expression of AgRP and NPY. Consistently, relative to wild-type mice, NOR1-null mice showed significantly higher levels of AgRP and NPY and were less responsive to leptin in decreasing the expression of AgRP and NPY. These results identify mutual antagonism between NOR1 and GR to be a key rheostat for peripheral metabolic signals to centrally control energy balance.

  18. Glucocorticoids curtail stimuli-induced CREB phosphorylation in TRH neurons through interaction of the glucocorticoid receptor with the catalytic subunit of protein kinase A.

    Science.gov (United States)

    Sotelo-Rivera, Israim; Cote-Vélez, Antonieta; Uribe, Rosa-María; Charli, Jean-Louis; Joseph-Bravo, Patricia

    2017-03-01

    Corticosterone prevents cold-induced stimulation of thyrotropin-releasing hormone (Trh) expression in rats, and the stimulatory effect of dibutyryl cyclic-adenosine monophosphate (dB-cAMP) on Trh transcription in hypothalamic cultures. We searched for the mechanism of this interference. Immunohistochemical analyses of phosphorylated cAMP-response element binding protein (pCREB) were performed in the paraventricular nucleus (PVN) of Wistar rats, and in cell cultures of 17-day old rat hypothalami, or neuroblastoma SH-SY5Y cells. Cultures were incubated 1h with dB-cAMP, dexamethasone and both drugs combined; their nuclear extracts were used for chromatin immunoprecipitation; cytosolic or nuclear extracts for coimmunoprecipitation analyses of catalytic subunit of protein kinase A (PKAc) and of glucocorticoid receptor (GR); their subcellular distribution was analyzed by immunocytochemistry. Cold exposure increased pCREB in TRH neurons of rats PVN, effect blunted by corticosterone previous injection. Dexamethasone interfered with forskolin increase in nuclear pCREB and its binding to Trh promoter; antibodies against histone deacetylase-3 precipitated chromatin from nuclear extracts of hypothalamic cells treated with tri-iodothyronine but not with dB-cAMP + dexamethasone, discarding chromatin compaction as responsible mechanism. Co-immunoprecipitation analyses of cytosolic or nuclear extracts showed protein:protein interactions between activated GR and PKAc. Immunocytochemical analyses of hypothalamic or SH-SY5Y cells revealed diminished nuclear translocation of PKAc and GR in cells incubated with forskolin + dexamethasone, compared to either forskolin or dexamethasone alone. Glucocorticoids and cAMP exert mutual inhibition of Trh transcription through interaction of activated glucocorticoid receptor with protein kinase A catalytic subunit, reducing their nuclear translocation, limiting cAMP-response element binding protein phosphorylation and its binding to Trh promoter.

  19. Cancer cell-selective promoter recognition accompanies antitumor effect by glucocorticoid receptor-targeted gold nanoparticle

    Science.gov (United States)

    Sau, Samaresh; Agarwalla, Pritha; Mukherjee, Sudip; Bag, Indira; Sreedhar, Bojja; Pal-Bhadra, Manika; Patra, Chitta Ranjan; Banerjee, Rajkumar

    2014-05-01

    Nanoparticles, such as gold nanoparticles (GNP), upon convenient modifications perform multi tasks catering to many biomedical applications. However, GNP or any other type of nanoparticles is yet to achieve the feat of intracellular regulation of endogenous genes of choice such as through manipulation of a gene-promoter in a chromosome. As for gene modulation and delivery, GNP (or other nanoparticles) showed only limited gene therapy potential, which relied on the delivery of `exogenous' genes invoking gene knockdown or replacement. Practically, there are no instances for the nanoparticle-mediated promoter regulation of `endogenous' genes, more so, as a cancer selective phenomenon. In this regard, we report the development of a simple, easily modifiable GNP-formulation, which promoted/up-regulated the expression of a specific category of `endogenous' genes, the glucocorticoid responsive genes. This genetic up-regulation was induced in only cancer cells by modified GNP-mediated transcriptional activation of its cytoplasmic receptor, glucocorticoid receptor (GR). Normal cells and their GR remained primarily unperturbed by this GNP-formulation. The most potent gene up-regulating GNP-formulation down-regulated a cancer-specific proliferative signal, phospho-Akt in cancer cells, which accompanied retardation of tumor growth in the murine melanoma model. We show that GR-targeted GNPs may find potential use in the targeting and modulation of genetic information in cancer towards developing novel anticancer therapeutics.Nanoparticles, such as gold nanoparticles (GNP), upon convenient modifications perform multi tasks catering to many biomedical applications. However, GNP or any other type of nanoparticles is yet to achieve the feat of intracellular regulation of endogenous genes of choice such as through manipulation of a gene-promoter in a chromosome. As for gene modulation and delivery, GNP (or other nanoparticles) showed only limited gene therapy potential, which relied

  20. Glucocorticoid receptor gene inactivation in dopamine-innervated areas selectively decreases behavioral responses to amphetamine

    Directory of Open Access Journals (Sweden)

    Sebastien eParnaudeau

    2014-02-01

    Full Text Available The meso-cortico-limbic system, via dopamine release, encodes the rewarding and reinforcing properties of natural rewards. It is also activated in response to abused substances and is believed to support drug-related behaviors. Dysfunctions of this system lead to several psychiatric conditions including feeding disorders and drug addiction. These disorders are also largely influenced by environmental factors and in particular stress exposure. Stressors activate the corticotrope axis ultimately leading to glucocorticoid hormone (GCs release. GCs bind the glucocorticoid receptor (GR a transcription factor ubiquitously expressed including within the meso-cortico-limbic tract. While the GR within dopamine-innervated areas drives cocaine’s behavioral responses, its implication in responses to other psychostimulants such as amphetamine has never been clearly established. Moreover, while extensive work has been made to uncover the role of this receptor in addicted behaviors, its contribution to the rewarding and reinforcing properties of food has yet to be investigated. Using mouse models carrying GR gene inactivation in either dopamine neurons or in dopamine-innervated areas, we found that GR in dopamine responsive neurones is essential to properly build amphetamine-induced conditioned place preference and locomotor sensitization. c-Fos quantification in the nucleus accumbens further confirmed defective neuronal activation following amphetamine injection. These diminished neuronal and behavioral responses to amphetamine may involve alterations in glutamate transmission as suggested by the decreased MK801-elicited hyperlocomotion and by the hyporeactivity to glutamate of a subpopulation of medium spiny neurons. In contrast, GR inactivation did not affect rewarding and reinforcing properties of food suggesting that responding for natural reward under basal conditions is preserved in these mice.

  1. Glucocorticoid receptor, but not mineralocorticoid receptor, mediates cortisol regulation of epidermal ionocyte development and ion transport in zebrafish (danio rerio.

    Directory of Open Access Journals (Sweden)

    Shelly Abad Cruz

    Full Text Available Cortisol is the major endogenous glucocorticoid (GC both in human and fish, mediated by corticosteroid receptors. Due to the absence of aldosterone production in teleost fish, cortisol is also traditionally accepted to function as mineralocorticoid (MC; but whether it acts through the glucocorticoid receptor (GR or the mineralocorticoid receptor (MR remains a subject of debate. Here, we used loss-of-function and rescue assays to determine whether cortisol affects zebrafish epidermal ionocyte development and function via the GR and/or the MR. GR knockdown morphants displayed a significant decrease in the major ionocytes, namely Na(+-K(+-ATPase-rich cells (NaRCs and H(+-ATPase-rich cells (HRCs, as well as other cells, including epidermal stem cells (ESCs, keratinocytes, and mucus cells; conversely, cell numbers were unaffected in MR knockdown morphants. In agreement, GR morphants, but not MR morphants, exhibited decreased NaRC-mediated Ca(2+ uptake and HRC-mediated H(+ secretion. Rescue via GR capped mRNA injection or exogenous cortisol incubation normalized the number of epidermal ionocytes in GR morphants. We also provide evidence for GR localization in epidermal cells. At the transcript level, GR mRNA is ubiquitously expressed in gill sections and present in both NaRCs and HRCs, supporting the knockdown and functional assay results in embryo. Altogether, we have provided solid molecular evidence that GR is indeed present on ionocytes, where it mediates the effects of cortisol on ionocyte development and function. Hence, cortisol-GR axis performs the roles of both GC and MC in zebrafish skin and gills.

  2. Quantitation of glucocorticoid receptor DNA-binding dynamics by single-molecule microscopy and FRAP.

    Science.gov (United States)

    Groeneweg, Femke L; van Royen, Martin E; Fenz, Susanne; Keizer, Veer I P; Geverts, Bart; Prins, Jurrien; de Kloet, E Ron; Houtsmuller, Adriaan B; Schmidt, Thomas S; Schaaf, Marcel J M

    2014-01-01

    Recent advances in live cell imaging have provided a wealth of data on the dynamics of transcription factors. However, a consistent quantitative description of these dynamics, explaining how transcription factors find their target sequences in the vast amount of DNA inside the nucleus, is still lacking. In the present study, we have combined two quantitative imaging methods, single-molecule microscopy and fluorescence recovery after photobleaching, to determine the mobility pattern of the glucocorticoid receptor (GR) and the mineralocorticoid receptor (MR), two ligand-activated transcription factors. For dexamethasone-activated GR, both techniques showed that approximately half of the population is freely diffusing, while the remaining population is bound to DNA. Of this DNA-bound population about half the GRs appeared to be bound for short periods of time (∼ 0.7 s) and the other half for longer time periods (∼ 2.3 s). A similar pattern of mobility was seen for the MR activated by aldosterone. Inactive receptors (mutant or antagonist-bound receptors) show a decreased DNA binding frequency and duration, but also a higher mobility for the diffusing population. Likely, very brief (≤ 1 ms) interactions with DNA induced by the agonists underlie this difference in diffusion behavior. Surprisingly, different agonists also induce different mobilities of both receptors, presumably due to differences in ligand-induced conformational changes and receptor complex formation. In summary, our data provide a consistent quantitative model of the dynamics of GR and MR, indicating three types of interactions with DNA, which fit into a model in which frequent low-affinity DNA binding facilitates the search for high-affinity target sequences.

  3. Quantitation of glucocorticoid receptor DNA-binding dynamics by single-molecule microscopy and FRAP.

    Directory of Open Access Journals (Sweden)

    Femke L Groeneweg

    Full Text Available Recent advances in live cell imaging have provided a wealth of data on the dynamics of transcription factors. However, a consistent quantitative description of these dynamics, explaining how transcription factors find their target sequences in the vast amount of DNA inside the nucleus, is still lacking. In the present study, we have combined two quantitative imaging methods, single-molecule microscopy and fluorescence recovery after photobleaching, to determine the mobility pattern of the glucocorticoid receptor (GR and the mineralocorticoid receptor (MR, two ligand-activated transcription factors. For dexamethasone-activated GR, both techniques showed that approximately half of the population is freely diffusing, while the remaining population is bound to DNA. Of this DNA-bound population about half the GRs appeared to be bound for short periods of time (∼ 0.7 s and the other half for longer time periods (∼ 2.3 s. A similar pattern of mobility was seen for the MR activated by aldosterone. Inactive receptors (mutant or antagonist-bound receptors show a decreased DNA binding frequency and duration, but also a higher mobility for the diffusing population. Likely, very brief (≤ 1 ms interactions with DNA induced by the agonists underlie this difference in diffusion behavior. Surprisingly, different agonists also induce different mobilities of both receptors, presumably due to differences in ligand-induced conformational changes and receptor complex formation. In summary, our data provide a consistent quantitative model of the dynamics of GR and MR, indicating three types of interactions with DNA, which fit into a model in which frequent low-affinity DNA binding facilitates the search for high-affinity target sequences.

  4. Treadmill Slope Modulates Inflammation, Fiber Type Composition, Androgen, and Glucocorticoid Receptors in the Skeletal Muscle of Overtrained Mice

    Directory of Open Access Journals (Sweden)

    Alisson L. da Rocha

    2017-10-01

    Full Text Available Overtraining (OT may be defined as an imbalance between excessive training and adequate recovery period. Recently, a downhill running-based overtraining (OTR/down protocol induced the nonfunctional overreaching state, which is defined as a performance decrement that may be associated with psychological and hormonal disruptions and promoted intramuscular and systemic inflammation. To discriminate the eccentric contraction effects on interleukin 1beta (IL-1β, IL-6, IL-10, IL-15, and SOCS-3, we compared the release of these cytokines in OTR/down with other two OT protocols with the same external load (i.e., the product between training intensity and volume, but performed in uphill (OTR/up and without inclination (OTR. Also, we evaluated the effects of these OT models on the muscle morphology and fiber type composition, serum levels of fatigue markers and corticosterone, as well as androgen receptor (AR and glucocorticoid receptor (GR expressions. For extensor digitorum longus (EDL, OTR/down and OTR groups increased the cytokines and exhibited micro-injuries with polymorphonuclear infiltration. While OTR/down group increased the cytokines in soleus muscle, OTR/up group only increased IL-6. All OT groups presented micro-injuries with polymorphonuclear infiltration. In serum, while OTR/down and OTR/up protocols increased IL-1β, IL-6, and tumor necrosis factor alpha, OTR group increased IL-1β, IL-6, IL-15, and corticosterone. The type II fibers in EDL and soleus, total and phosphorylated AR levels in soleus, and total GR levels in EDL and soleus were differentially modulated by the OT protocols. In summary, the proinflammatory cytokines were more sensitive for OTR/down than for OTR/up and OTR. Also, the specific treadmill inclination of each OT model influenced most of the other evaluated parameters.

  5. Intracellular glucocorticoid receptors in spleen, but not skin, vary seasonally in wild house sparrows (Passer domesticus).

    Science.gov (United States)

    Lattin, Christine R; Waldron-Francis, K; Romero, L Michael

    2013-04-07

    Over the short-term and at physiological doses, acute increases in corticosterone (CORT) titres can enhance immune function. There are predictable seasonal patterns in both circulating CORT and immune function across many animal species, but whether CORT receptor density in immune tissues varies seasonally is currently unknown. Using radioligand binding assays, we examined changes in concentrations of glucocorticoid receptors (GR) and mineralocorticoid receptors (MR) in spleen and skin in wild-caught house sparrows in Massachusetts during six different life-history stages: moult, early winter, late winter, pre-egg-laying, breeding and late breeding. Splenic GR and MR binding were highest during the pre-laying period. This may help animals respond to immune threats through increased lymphocyte proliferation and/or an increase in delayed-type hypersensitivity reactions, both of which CORT can stimulate and in which spleen is involved. A decrease in splenic GR and MR during the late breeding period coincides with low baseline and stress-induced CORT, suggesting immune function in spleen may be relatively CORT-independent during this period. We saw no seasonal patterns in GR or MR in skin, suggesting skin's response to CORT is modulated primarily via changes in circulating CORT titres and/or via local production of CORT in response to wounding and other noxious stimuli.

  6. Relationship of a common polymorphism of the glucocorticoid receptor gene to traumatic memories and posttraumatic stress disorder in patients after intensive care therapy

    NARCIS (Netherlands)

    Hauer, Daniela; Weis, Florian; Papassotiropoulos, Andreas; Schmoeckel, Michael; Beiras-Fernandez, Andres; Lieke, Julia; Kaufmann, Ines; Kirchhoff, Fabian; Vogeser, Michael; Roozendaal, Benno; Briegel, Josef; de Quervain, Dominique; Schelling, Gustav

    Objective: Glucocorticoids play a major role in the consolidation and retrieval of traumatic information. They act through the glucocorticoid receptor, for which, in humans, several polymorphisms have been described. In particular, the BclI single-nucleotide polymorphism is associated with

  7. The glucocorticoid receptor and KLF15 regulate gene expression dynamics and integrate signals through feed-forward circuitry.

    Science.gov (United States)

    Sasse, Sarah K; Mailloux, Christina M; Barczak, Andrea J; Wang, Qian; Altonsy, Mohammed O; Jain, Mukesh K; Haldar, Saptarsi M; Gerber, Anthony N

    2013-06-01

    The glucocorticoid receptor (GR) regulates adaptive transcriptional programs that alter metabolism in response to stress. Network properties that allow GR to tune gene expression to match specific physiologic demands are poorly understood. We analyzed the transcriptional consequences of GR activation in murine lungs deficient for KLF15, a transcriptional regulator of amino acid metabolism that is induced by glucocorticoids and fasting. Approximately 7% of glucocorticoid-regulated genes had altered expression in Klf15-knockdown (Klf15(-/-)) mice. KLF15 formed coherent and incoherent feed-forward circuits with GR that correlated with the expression dynamics of the glucocorticoid response. Coherent feed-forward gene regulation by GR and KLF15 was characterized by combinatorial activation of linked GR-KLF15 regulatory elements by both factors and increased GR occupancy, while expression of KLF15 reduced GR occupancy at the incoherent target, MT2A. Serum deprivation, which increased KLF15 expression in a GR-independent manner in vitro, enhanced glucocorticoid-mediated induction of feed-forward targets of GR and KLF15, such as the loci for the amino acid-metabolizing enzymes proline dehydrogenase and alpha-aminoadipic semialdehyde synthase. Our results establish feed-forward architecture as an organizational principle for the GR network and provide a novel mechanism through which GR integrates signals and regulates expression dynamics.

  8. Timing is critical for effective glucocorticoid receptor mediated repression of the cAMP-induced CRH gene.

    Directory of Open Access Journals (Sweden)

    Siem van der Laan

    Full Text Available Glucocorticoid negative feedback of the hypothalamus-pituitary-adrenal axis is mediated in part by direct repression of gene transcription in glucocorticoid receptor (GR expressing cells. We have investigated the cross talk between the two main signaling pathways involved in activation and repression of corticotrophin releasing hormone (CRH mRNA expression: cyclic AMP (cAMP and GR. We report that in the At-T20 cell-line the glucocorticoid-mediated repression of the cAMP-induced human CRH proximal promoter activity depends on the relative timing of activation of both signaling pathways. Activation of the GR prior to or in conjunction with cAMP signaling results in an effective repression of the cAMP-induced transcription of the CRH gene. In contrast, activation of the GR 10 minutes after onset of cAMP treatment, results in a significant loss of GR-mediated repression. In addition, translocation of ligand-activated GR to the nucleus was found as early as 10 minutes after glucocorticoid treatment. Interestingly, while both signaling cascades counteract each other on the CRH proximal promoter, they synergize on a synthetic promoter containing 'positive' response elements. Since the order of activation of both signaling pathways may vary considerably in vivo, we conclude that a critical time-window exists for effective repression of the CRH gene by glucocorticoids.

  9. Glucocorticoid control of gene transcription in neural tissue

    NARCIS (Netherlands)

    Morsink, Maarten Christian

    2007-01-01

    Glucocorticoid hormones exert modulatory effects on neural function in a delayed genomic fashion. The two receptor types that can bind glucocorticoids, the mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR), are ligand-inducible transcription factors. Therefore, changes in gene

  10. A polymorphism in the glucocorticoid receptor gene is associated with refractory hypotension in premature infants.

    Science.gov (United States)

    Ogasawara, Kei; Sato, Maki; Hashimoto, Koichi; Imamura, Takashi; Go, Hayato; Hosoya, Mitsuaki

    2017-09-27

    Glucocorticoids play an important role in endocrine control. The association of glucocorticoid receptor (GR) gene polymorphisms with altered sensitivity to glucocorticoid therapy has been reported in adults. However, there are few such reports in infants. The present study analyzed the prevalence of four GR polymorphisms in preterm infants born before 30 weeks of gestation and determined the associations between these polymorphisms and clinical outcomes in the infants. Totally, 41 preterm infants born at two hospitals in Fukushima were retrospectively screened for the presence of four GR gene polymorphisms, using a TaqMan single-nucleotide polymorphism genotyping assay. The effect of GR gene polymorphisms on clinical outcomes during hospitalization was evaluated. The following primary clinical outcomes were assessed: refractory hypotension in the acute phase and/or severe bronchopulmonary dysplasia, maximum dopamine and dobutamine doses administered, and total hydrocortisone dose administered in the first 48 h of life. Multivariate analysis with logistic regression was used to assess the association between clinical factors and refractory hypotension. Of the four GR polymorphisms, only the BclI polymorphism was detected. The genotype distribution was as follows: C/C, 33; C/G, 8; and G/G, 0 infants. Significant differences were observed between the C/C and C/G genotypes with respect to the following variables: refractory hypotension (6% vs. 50%), dopamine dose [3.0 (2.0-4.0) vs. 4.8 (4.0-7.5) μg/kg/min], dobutamine dose [2.4 (0.0-3.6) vs. 4.0 (0-10.0) μg/kg/min], and total hydrocortisone dose administered in the first 48 h of life [2.0 (0-10.0) vs. 6.0 (0-12.0) mg/kg]. Multivariate analysis showed that the BclI genotype (C/C) was significantly less associated with refractory hypotension in the acute phase (odds ratio, 0.008; 95% confidence interval, 0.000-0.371; p = 0.013). The incidence of refractory hypotension in infants with the C/C genotype was initially

  11. Glucocorticoid receptor represses brain-derived neurotrophic factor expression in neuron-like cells.

    Science.gov (United States)

    Chen, Hui; Lombès, Marc; Le Menuet, Damien

    2017-04-12

    Brain-derived neurotrophic factor (BDNF) is involved in many functions such as neuronal growth, survival, synaptic plasticity and memorization. Altered expression levels are associated with many pathological situations such as depression, epilepsy, Alzheimer's, Huntington's and Parkinson's diseases. Glucocorticoid receptor (GR) is also crucial for neuron functions, via binding of glucocorticoid hormones (GCs). GR actions largely overlap those of BDNF. It has been proposed that GR could be a regulator of BDNF expression, however the molecular mechanisms involved have not been clearly defined yet. Herein, we analyzed the effect of a GC agonist dexamethasone (DEX) on BDNF expression in mouse neuronal primary cultures and in the newly characterized, mouse hippocampal BZ cell line established by targeted oncogenesis. Mouse Bdnf gene exhibits a complex genomic structure with 8 untranslated exons (I to VIII) splicing onto one common and unique coding exon IX. We found that DEX significantly downregulated total BDNF mRNA expression by around 30%. Expression of the highly expressed exon IV and VI containing transcripts was also reduced by DEX. The GR antagonist RU486 abolished this effect, which is consistent with specific GR-mediated action. Transient transfection assays allowed us to define a short 275 bp region within exon IV promoter responsible for GR-mediated Bdnf repression. Chromatin immunoprecipitation experiments demonstrated GR recruitment onto this fragment, through unidentified transcription factor tethering. Altogether, GR downregulates Bdnf expression through direct binding to Bdnf regulatory sequences. These findings bring new insights into the crosstalk between GR and BDNF signaling pathways both playing a major role in physiology and pathology of the central nervous system.

  12. Hepatic growth hormone and glucocorticoid receptor signaling in body growth, steatosis and metabolic liver cancer development

    Science.gov (United States)

    Mueller, Kristina M.; Themanns, Madeleine; Friedbichler, Katrin; Kornfeld, Jan-Wilhelm; Esterbauer, Harald; Tuckermann, Jan P.; Moriggl, Richard

    2012-01-01

    Growth hormone (GH) and glucocorticoids (GCs) are involved in the control of processes that are essential for the maintenance of vital body functions including energy supply and growth control. GH and GCs have been well characterized to regulate systemic energy homeostasis, particular during certain conditions of physical stress. However, dysfunctional signaling in both pathways is linked to various metabolic disorders associated with aberrant carbohydrate and lipid metabolism. In liver, GH-dependent activation of the transcription factor signal transducer and activator of transcription (STAT) 5 controls a variety of physiologic functions within hepatocytes. Similarly, GCs, through activation of the glucocorticoid receptor (GR), influence many important liver functions such as gluconeogenesis. Studies in hepatic Stat5 or GR knockout mice have revealed that they similarly control liver function on their target gene level and indeed, the GR functions often as a cofactor of STAT5 for GH-induced genes. Gene sets, which require physical STAT5–GR interaction, include those controlling body growth and maturation. More recently, it has become evident that impairment of GH-STAT5 signaling in different experimental models correlates with metabolic liver disease, ranging from hepatic steatosis to hepatocellular carcinoma (HCC). While GH-activated STAT5 has a protective role in chronic liver disease, experimental disruption of GC-GR signaling rather seems to ameliorate metabolic disorders under metabolic challenge. In this review, we focus on the current knowledge about hepatic GH-STAT5 and GC-GR signaling in body growth, metabolism, and protection from fatty liver disease and HCC development. PMID:22564914

  13. Region-specific alterations in glucocorticoid receptor expression in the postmortem brain of teenage suicide victims.

    Science.gov (United States)

    Pandey, Ghanshyam N; Rizavi, Hooriyah S; Ren, Xinguo; Dwivedi, Yogesh; Palkovits, Miklós

    2013-11-01

    Abnormal function of the hypothalamic-pituitary-adrenal (HPA) axis has been implicated in the pathophysiology of depression and suicide. The purpose of this study was to test the hypothesis that the reported dysregulation of the HPA axis in suicide may be related to a disturbed feedback inhibition caused by decreased corticoid receptors in the brain. We therefore determined the protein and gene expression of glucocorticoid (GR) and mineralocorticoid receptors (MR) in the postmortem brain of teenage suicide victims and matched normal controls. Protein and mRNA expression of GR (GR-α and GR-β) and MR and the mRNA expression of glucocorticoid-induced leucine zipper (GILZ), a target gene for GR were determined by immunolabeling using Western blot technique and the real-time RT-polymerase chain reaction (qPCR) technique in the prefrontal cortex (PFC), hippocampus, subiculum, and amygdala obtained from 24 teenage suicide victims and 24 teenage control subjects. We observed that protein and gene expression of GR-α was significantly decreased in the PFC and amygdala, but not in the hippocampus or subiculum, of teenage suicide victims compared with normal control subjects. Also, the mRNA levels of GR inducible target gene GILZ was significantly decreased in PFC and amygdaloid nuclei but not in hippocampus compared with controls. In contrast, no significant differences were observed in protein or gene expression of MR in any of the areas studied between teenage suicide victims and normal control subjects. There was no difference in the expression of GR-β in the PFC between suicide victims and normal controls. These results suggested that the observed dysregulation of the HPA axis in suicide may be related to a decreased expression of GR-α and GR inducible genes in the PFC and amygdala of teenage suicide victims. The reason why GR receptors are not dysregulated in the hippocampus or subiculum, presumably two sites of stress action, are not clear at this time. Copyright

  14. Transfection of chicken cerebellar granule neurons used to study glucocorticoid receptor regulation by nuclear receptor 4A (NR4A).

    Science.gov (United States)

    Strøm, Bjørn O; Aden, Petra; Mathisen, Gro H; Lømo, Jon; Davanger, Svend; Paulsen, Ragnhild E

    2010-10-30

    Transfection is a useful tool for studying molecular signalling pathways. However, neurons have proven hard to transfect. In the present paper we have optimized a new electroporation procedure using the Cellaxess(®) system for transient transfection of adherent primary neurons from chicken (Gallus gallus) and compared it to a liposome based procedure using Metafectene(®) Pro. In order to evaluate the two methods, glucocorticoid receptor (GR) function was chosen as a test. GRs are expressed in high amounts in the cerebellum. GR is regulated by another nuclear receptor (NGFI-B, the first member found in the NR4A family). We first showed that forskolin and phorbol ester activated an NR4A-dependent reporter gene indicating that members of the NR4A nuclear receptor family are present endogenously and upregulated by external stimuli. Then, transfected NGFI-B was shown to antagonize the dexamethasone-activated transcriptional activation by endogenous GR, leading to the conclusion that NR4A-family members are important modulators of GR mediated regulatory processes in the cerebellum, as in other cell types. Both transfection methods proved useful. While the electroporation technique yielded small rings with many transfected cells optimal for microscopy studies, the liposome based method resulted in transfected cells evenly distributed in the dish rendering this method well suited for biochemical studies. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. A hotspot in the glucocorticoid receptor DNA-binding domain susceptible to loss of function mutation.

    Science.gov (United States)

    Banuelos, Jesus; Shin, Soon Cheon; Lu, Nick Z

    2015-04-01

    Glucocorticoids (GCs) are used to treat a variety of inflammatory disorders and certain cancers. However, GC resistance occurs in subsets of patients. We found that EL4 cells, a GC-resistant mouse thymoma cell line, harbored a point mutation in their GC receptor (GR) gene, resulting in the substitution of arginine 493 by a cysteine in the second zinc finger of the DNA-binding domain. Allelic discrimination analyses revealed that the R493C mutation occurred on both alleles. In the absence of GCs, the GR in EL4 cells localized predominantly in the cytoplasm and upon dexamethasone treatment underwent nuclear translocation, suggesting that the ligand binding ability of the GR in EL4 cells was intact. In transient transfection assays, the R493C mutant could not transactivate the MMTV-luciferase reporter. Site-directed mutagenesis to revert the R493C mutation restored the transactivation activity. Cotransfection experiments showed that the R493C mutant did not inhibit the transcriptional activities of the wild-type GR. In addition, the R493C mutant did not repress either the AP-1 or NF-κB reporters as effectively as WT GR. Furthermore, stable expression of the WT GR in the EL4 cells enabled GC-mediated gene regulation, specifically upregulation of IκBα and downregulation of interferon γ and interleukin 17A. Arginine 493 is conserved among multiple species and all human nuclear receptors and its mutation has also been found in the human GR, androgen receptor, and mineralocorticoid receptor. Thus, R493 is necessary for the transcriptional activity of the GR and a hotspot for mutations that result in GC resistance. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. DHEA prevents mineralo- and glucocorticoid receptor-induced chronotropic and hypertrophic actions in isolated rat cardiomyocytes.

    Science.gov (United States)

    Mannic, Tiphaine; Mouffok, Mounira; Python, Magaly; Yoshida, Takehisa; Maturana, Andres D; Vuilleumier, Nicolas; Rossier, Michel F

    2013-03-01

    Corticosteroids have been involved in the genesis of ventricular arrhythmias associated with pathological heart hypertrophy, although molecular mechanisms responsible for these effects have not been completely explained. Because mineralocorticoid receptor (MR) antagonists have been demonstrated to be beneficial on the cardiac function, much attention has been given to the action of aldosterone on the heart. However, we have previously shown that both aldosterone and corticosterone in vitro induce a marked acceleration of the spontaneous contractions, as well as a significant cell hypertrophy in isolated neonate rat ventricular cardiomyocytes. Moreover, a beneficial role of the steroid hormone dehydroepiandrosterone (DHEA) has been also proposed, but the mechanism of its putative cardioprotective function is not known. We found that DHEA reduces both the chronotropic and the hypertrophic responses of cardiomyocytes upon stimulation of MR and glucocorticoid receptor (GR) in vitro. DHEA inhibitory effects were accompanied by a decrease of T-type calcium channel expression and activity, as assessed by quantitative PCR and the patch-clamp technique. Prevention of cell hypertrophy by DHEA was also revealed by measuring the expression of A-type natriuretic peptide and BNP. The kinetics of the negative chronotropic effect of DHEA, and its sensitivity to actinomycin D, pointed out the presence of both genomic and nongenomic mechanisms of action. Although the genomic action of DHEA was effective mostly upon MR activation, its rapid, nongenomic response appeared related to DHEA antioxidant properties. On the whole, these results suggest new mechanisms for a putative cardioprotective role of DHEA in corticosteroid-associated heart diseases.

  17. Endogenous hepatic glucocorticoid receptor signaling coordinates sex-biased inflammatory gene expression.

    Science.gov (United States)

    Quinn, Matthew A; Cidlowski, John A

    2016-02-01

    An individual's sex affects gene expression and many inflammatory diseases present in a sex-biased manner. Glucocorticoid receptors (GRs) are regulators of inflammatory genes, but their role in sex-specific responses is unclear. Our goal was to evaluate whether GR differentially regulates inflammatory gene expression in male and female mouse liver. Twenty-five percent of the 251 genes assayed by nanostring analysis were influenced by sex. Of these baseline sexually dimorphic inflammatory genes, 82% was expressed higher in female liver. Pathway analyses defined pattern-recognition receptors as the most sexually dimorphic pathway. We next exposed male and female mice to the proinflammatory stimulus LPS. Female mice had 177 genes regulated by treatment with LPS, whereas males had 149, with only 66% of LPS-regulated genes common between the sexes. To determine the contribution of GR to sexually dimorphic inflammatory genes we performed nanostring analysis on liver-specific GR knockout (LGRKO) mice in the presence or absence of LPS. Comparing LGRKO to GR(flox/flox) revealed that 36 genes required GR for sexually dimorphic expression, whereas 24 genes became sexually dimorphic in LGRKO. Fifteen percent of LPS-regulated genes in GR(flox/flox) were not regulated in male and female LGRKO mice treated with LPS. Thus, GR action is influenced by sex to regulate inflammatory gene expression. © FASEB.

  18. Corticosterone induces rapid spinogenesis via synaptic glucocorticoid receptors and kinase networks in hippocampus.

    Directory of Open Access Journals (Sweden)

    Yoshimasa Komatsuzaki

    Full Text Available BACKGROUND: Modulation of dendritic spines under acute stress is attracting much attention. Exposure to acute stress induces corticosterone (CORT secretion from the adrenal cortex, resulting in rapid increase of CORT levels in plasma and the hippocampus. METHODOLOGY/PRINCIPAL FINDINGS: Here we demonstrated the mechanisms of rapid effect (∼1 h of CORT on the density and morphology of spines by imaging neurons in adult male rat hippocampal slices. The application of CORT at 100-1000 nM induced a rapid increase in the density of spines of CA1 pyramidal neurons. The density of small-head spines (0.2-0.4 µm was increased even at low CORT levels (100-200 nM. The density of middle-head spines (0.4-0.5 µm was increased at high CORT levels between 400-1000 nM. The density of large-head spines (0.5-1.0 µm was increased only at 1000 nM CORT. Co-administration of RU486, an antagonist of glucocorticoid receptor (GR, abolished the effect of CORT. Blocking a single kinase, such as MAPK, PKA, PKC or PI3K, suppressed CORT-induced enhancement of spinogenesis. Blocking NMDA receptors suppressed the CORT effect. CONCLUSIONS/SIGNIFICANCE: These results imply that stress levels of CORT (100-1000 nM drive the spinogenesis via synaptic GR and multiple kinase pathways.

  19. Sustained Interleukin-1β Exposure Modulates Multiple Steps in Glucocorticoid Receptor Signaling, Promoting Split-Resistance to the Transactivation of Prominent Anti-Inflammatory Genes by Glucocorticoids

    Directory of Open Access Journals (Sweden)

    Pedro Escoll

    2015-01-01

    Full Text Available Clinical treatment with glucocorticoids (GC can be complicated by cytokine-induced glucocorticoid low-responsiveness (GC-resistance, GCR, a condition associated with a homogeneous reduction in the expression of GC-receptor- (GR- driven anti-inflammatory genes. However, GR level and phosphorylation changes modify the expression of individual GR-responsive genes differently. As sustained IL-1β exposure is key in the pathogenesis of several major diseases with prevalent GCR, we examined GR signaling and the mRNA expression of six GR-driven genes in cells cultured in IL-1β and afterwards challenged with GC. After a GC challenge, sustained IL-1β exposure reduced the cytoplasmic GR level, GRSer203 and GRSer211 phosphorylation, and GR nuclear translocation and led to selective GCR in the expression of the studied genes. Compared to GC alone, in a broad range of GC doses plus sustained IL-1β, FKBP51 mRNA expression was reduced by 1/3, TTP by 2/3, and IRF8 was completely knocked down. In contrast, high GC doses did not change the expression of GILZ and DUSP1, while IGFBP1 was increased by 5-fold. These effects were cytokine-selective, IL-1β dose- and IL-1R1-dependent. The integrated gain and loss of gene functions in the “split GCR” model may provide target cells with a survival advantage by conferring resistance to apoptosis, chemotherapy, and GC.

  20. Inhibition by insulin of glucocorticoid-induced gene transcription: involvement of the ligand-binding domain of the glucocorticoid receptor and independence from the phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways.

    Science.gov (United States)

    Pierreux, C E; Ursø, B; De Meyts, P; Rousseau, G G; Lemaigre, F P

    1998-09-01

    Insulin can inhibit the stimulatory effect of glucocorticoid hormones on the transcription of genes coding for enzymes involved in glucose metabolism. We reported earlier that insulin inhibits the glucocorticoid-stimulated transcription of the gene coding for liver 6-phosphofructo-2-kinase (PFK-2). To elucidate the mechanism of these hormonal effects, we have studied the regulatory regions of the PFK-2 gene in transfection experiments. We found that both glucocorticoids and insulin act via the glucocorticoid response unit (GRU) located in the first intron. Footprinting experiments showed that the GRU binds not only the glucocorticoid receptor (GR), but also ubiquitous [nuclear factor I (NF-I)] and liver-enriched [hepatocyte nuclear factor (HNF)-3, HNF-6, CAAT/enhancer binding protein (C/EBP)] transcription factors. Site-directed mutational analysis of the GRU revealed that these factors modulate glucocorticoid action but that none of them seems to be individually involved in the inhibitory effect of insulin. We did not find an insulin response element in the GRU, but we showed that insulin targets the GR. Insulin-induced inhibition of the glucocorticoid stimulation required the ligand-binding domain of the GR. Finally, the insulin-signaling cascade involved was independent of the phosphatidylinositol-3-kinase and mitogen-activated protein kinase pathways. Together, these results suggest that insulin acts on the PFK-2 gene via another pathway and targets either the GR in its ligand-binding domain or a cofactor interacting with this domain.

  1. PPAR-α and glucocorticoid receptor synergize to promote erythroid progenitor self-renewal.

    Science.gov (United States)

    Lee, Hsiang-Ying; Gao, Xiaofei; Barrasa, M Inmaculada; Li, Hu; Elmes, Russell R; Peters, Luanne L; Lodish, Harvey F

    2015-06-25

    Many acute and chronic anaemias, including haemolysis, sepsis and genetic bone marrow failure diseases such as Diamond-Blackfan anaemia, are not treatable with erythropoietin (Epo), because the colony-forming unit erythroid progenitors (CFU-Es) that respond to Epo are either too few in number or are not sensitive enough to Epo to maintain sufficient red blood cell production. Treatment of these anaemias requires a drug that acts at an earlier stage of red cell formation and enhances the formation of Epo-sensitive CFU-E progenitors. Recently, we showed that glucocorticoids specifically stimulate self-renewal of an early erythroid progenitor, burst-forming unit erythroid (BFU-E), and increase the production of terminally differentiated erythroid cells. Here we show that activation of the peroxisome proliferator-activated receptor α (PPAR-α) by the PPAR-α agonists GW7647 and fenofibrate synergizes with the glucocorticoid receptor (GR) to promote BFU-E self-renewal. Over time these agonists greatly increase production of mature red blood cells in cultures of both mouse fetal liver BFU-Es and mobilized human adult CD34(+) peripheral blood progenitors, with a new and effective culture system being used for the human cells that generates normal enucleated reticulocytes. Although Ppara(-/-) mice show no haematological difference from wild-type mice in both normal and phenylhydrazine (PHZ)-induced stress erythropoiesis, PPAR-α agonists facilitate recovery of wild-type but not Ppara(-/-) mice from PHZ-induced acute haemolytic anaemia. We also show that PPAR-α alleviates anaemia in a mouse model of chronic anaemia. Finally, both in control and corticosteroid-treated BFU-E cells, PPAR-α co-occupies many chromatin sites with GR; when activated by PPAR-α agonists, additional PPAR-α is recruited to GR-adjacent sites and presumably facilitates GR-dependent BFU-E self-renewal. Our discovery of the role of PPAR-α agonists in stimulating self-renewal of early erythroid

  2. Evidence for a divergence in function between two glucocorticoid receptors from a basal teleost.

    Science.gov (United States)

    Li, Yi; Sturm, Armin; Cunningham, Phil; Bury, Nicolas R

    2012-08-03

    Duplicated glucocorticoid receptors (GR) are present in most teleost fish. The evolutionary advantage of retaining two GRs is unclear, as no subtype specific functional traits or physiological roles have been defined. To identify factors driving the retention of duplicate GRs in teleosts, the current study examined GRs in representatives of two basal ray-finned fish taxa that emerged either side of the teleost lineage whole genome duplication event (WGD) event, the acipenseriform, Acipenser ruthenus, (pre-WGD) and the osteoglossimorph, Pantodon buchholzi, (post-WGD). The study identified a single GR in A. ruthenus (ArGR) and two GRs in P. buchholzi (PbGR1 and PbGR2). Phylogenetic analyses showed that ArGR formed a distinct branch separate from the teleosts GRs. The teleost GR lineage was subdivded into two sublineages, each of which contained one of the two P. buchholzi GRs. ArGR, PbGR1 and PbGR2 all possess the unique 9 amino acid insert between the zinc-fingers of the DNA-binding domain that is present in one of the teleost GR lineages (GR1), but not the other (GR2). A splice variant of PbGR2 produces an isoform that lacked these 9 amino acids (PbGR2b). Cortisol stimulated transactivation activity of ArGR, PbGR2b and PbGR1 in vitro; with PbGR2b and PbGR1, the glucocorticoid 11-deoxycortisol was a more potent agonist than cortisol. The hormone sensitivity of PbGR2b and PbGR1 differed in the transactivation assay, with PbGR2b having lower EC50 values and greater fold induction. The difference in transactivation activity sensitivity between duplicated GRs of P. buchholzi suggests potential functional differences between the paralogs emerged early in the teleost lineage. Given the pleiotropic nature of GR function in vertebrates, this finding is in accordance with the hypothesis that duplicated GRs were potentially retained through subfunctionalisation followed by gene sharing. A 9 amino acid insert in the DNA-binding domain emerged in basal ray-finned fish GRs

  3. Differential contribution of mineralocorticoid and glucocorticoid receptors to memory formation during sleep.

    Science.gov (United States)

    Groch, Sabine; Wilhelm, Ines; Lange, Tanja; Born, Jan

    2013-12-01

    Corticosteroids are known to modulate the consolidation of memories during sleep, specifically in the hippocampus-dependent declarative memory system. However, effects of the major human corticosteroid cortisol are conveyed via two different receptors, i.e., mineralocorticoid (MRs) and glucocorticoid receptors (GRs) whose specific contributions to memory consolidation are unclear. Whereas a shift in the balance between MR and GR activation toward predominant GR activation has been found to impair sleep-dependent consolidation of declarative memories, the effect of predominant MR activation is not well characterized. Here, we examined differential corticosteroid receptor contributions to memory consolidation during post-learning sleep in two placebo-controlled double-blind studies in humans, by comparing the effects of the selective MR agonist fludrocortisone (0.2 mg, orally, Study 1) and of hydrocortisone (22 mg, intravenously, Study 2) with strong binding affinity to both MR and GR. We hypothesized increased activation of MRs during sleep to enhance declarative memory consolidation, but the joint MR/GR activation to impair it. Participants (16 men in each study) learned a declarative (word pair associates) and a procedural task (mirror tracing) before a 7-h period of nocturnal retention sleep, with the substances administered before sleep (Study 1) and during sleep (Study 2), respectively. As hypothesized, retention of word pairs, but not of mirror tracing skill, was selectively enhanced by the MR agonist fludrocortisone. An impairing effect of hydrocortisone on word pair retention remained non-significant possibly reflecting that hydrocortisone administration failed to establish robust predominance of GR activation. Our results show that predominant MR activation benefits declarative memory consolidation presumably by enhancing the sleep-dependent reactivation of hippocampal memories and resultant synaptic plastic processes. The effect is counteracted by

  4. Region-specific alterations in the corticotropin-releasing factor and glucocorticoid receptors in the postmortem brain of suicide victims

    OpenAIRE

    Ghanshyam N. Pandey

    2012-01-01

    Rationale : Abnormalities of hypothalamic–pituitary–adrenal (HPA) axis in depression and suicide are among the most consistent findings in biological psychiatry. However, the specific molecular mechanism associated with HPA axis abnormality in the brain of depressed or suicidal subjects is not clear. It is believed that abnormal HPA axis is caused by increased levels of corticotropin-releasing factor (CRF) and decreased levels of glucocorticoid receptor (GR) in the brain of depr...

  5. Antenatal Hypoxia Induces Epigenetic Repression of Glucocorticoid Receptor and Promotes Ischemic-Sensitive Phenotype in the Developing Heart

    OpenAIRE

    Xiong, Fuxia; Lin, Thant; Song, Minwoo; Ma, Qingyi; Martinez, Shannalee R.; LV, Juanxiu; MataGreenwood, Eugenia; Xiao, Daliao; Xu, Zhice; Zhang, Lubo

    2016-01-01

    Large studies in humans and animals have demonstrated a clear association of an adverse intrauterine environment with an increased risk of cardiovascular disease later in life. Yet mechanisms remain largely elusive. The present study tested the hypothesis that gestational hypoxia leads to promoter hypermethylation and epigenetic repression of the glucocorticoid receptor (GR) gene in the developing heart, resulting in increased heart susceptibility to ischemia and reperfusion injury in offspri...

  6. Viral infection increases glucocorticoid-induced interleukin-10 production through ERK-mediated phosphorylation of the glucocorticoid receptor in dendritic cells: potential clinical implications.

    Directory of Open Access Journals (Sweden)

    Sinnie Sin Man Ng

    Full Text Available The hypothalamic-pituitary-adrenal axis plays a central role in the adaptive response to stress including infection of pathogens through glucocorticoids. Physical and/or mental stress alter susceptibility to viral infection possibly by affecting this regulatory system, thus we explored potential cellular targets and mechanisms that underlie this phenomenon in key immune components dendritic cells (DCs. Dexamethasone (DEX treatment and subsequent Newcastle disease virus (NDV infection most significantly and cooperatively stimulated mRNA expression of the interleukin (IL-10 in murine bone marrow-derived DCs among 89 genes involved in the Toll-like receptor signaling pathways. NDV increased DEX-induced IL-10 mRNA and protein expression by 7- and 3-fold, respectively, which was observed from 3 hours after infection. Conventional DCs (cDCs, but not plasmacytoid DCs (pDCs were major sources of IL-10 in bone marrow-derived DCs treated with DEX and/or infected with NDV. Murine cytomegalovirus and DEX increased serum IL-10 cooperatively in female mice. Pre-treatment of DCs with the extracellular signal-regulated kinase (ERK inhibitor U0126 abolished cooperative induction of IL-10 by DEX and NDV. Further, ERK overexpression increased IL-10 promoter activity stimulated by wild-type human GR but not by its mutant defective in serine 203, whereas ERK knockdown abolished NDV/DEX cooperation on IL-10 mRNA and phosphorylation of the mouse GR at serine 213. NDV also increased DEX-induced mRNA expression of three known glucocorticoid-responsive genes unrelated to the Toll-like receptor signaling pathways in DCs. These results indicate that virus and glucocorticoids cooperatively increase production of anti-inflammatory cytokine IL-10 by potentiating the transcriptional activity of GR in DCs, through which virus appears to facilitate its own propagation in infected hosts. The results may further underlie in part known exacerbation of IL-10/T helper-2-related

  7. Viral Infection Increases Glucocorticoid-Induced Interleukin-10 Production through ERK-Mediated Phosphorylation of the Glucocorticoid Receptor in Dendritic Cells: Potential Clinical Implications

    Science.gov (United States)

    Ng, Sinnie Sin Man; Li, Andrew; Pavlakis, George N.; Ozato, Keiko; Kino, Tomoshige

    2013-01-01

    The hypothalamic-pituitary-adrenal axis plays a central role in the adaptive response to stress including infection of pathogens through glucocorticoids. Physical and/or mental stress alter susceptibility to viral infection possibly by affecting this regulatory system, thus we explored potential cellular targets and mechanisms that underlie this phenomenon in key immune components dendritic cells (DCs). Dexamethasone (DEX) treatment and subsequent Newcastle disease virus (NDV) infection most significantly and cooperatively stimulated mRNA expression of the interleukin (IL)-10 in murine bone marrow-derived DCs among 89 genes involved in the Toll-like receptor signaling pathways. NDV increased DEX-induced IL-10 mRNA and protein expression by 7- and 3-fold, respectively, which was observed from 3 hours after infection. Conventional DCs (cDCs), but not plasmacytoid DCs (pDCs) were major sources of IL-10 in bone marrow-derived DCs treated with DEX and/or infected with NDV. Murine cytomegalovirus and DEX increased serum IL-10 cooperatively in female mice. Pre-treatment of DCs with the extracellular signal-regulated kinase (ERK) inhibitor U0126 abolished cooperative induction of IL-10 by DEX and NDV. Further, ERK overexpression increased IL-10 promoter activity stimulated by wild-type human GR but not by its mutant defective in serine 203, whereas ERK knockdown abolished NDV/DEX cooperation on IL-10 mRNA and phosphorylation of the mouse GR at serine 213. NDV also increased DEX-induced mRNA expression of three known glucocorticoid-responsive genes unrelated to the Toll-like receptor signaling pathways in DCs. These results indicate that virus and glucocorticoids cooperatively increase production of anti-inflammatory cytokine IL-10 by potentiating the transcriptional activity of GR in DCs, through which virus appears to facilitate its own propagation in infected hosts. The results may further underlie in part known exacerbation of IL-10/T helper-2-related allergic disorders

  8. A novel point mutation of the human glucocorticoid receptor gene causes primary generalized glucocorticoid resistance through impaired interaction with the LXXLL motif of the p160 coactivators: dissociation of the transactivating and transreppressive activities.

    Science.gov (United States)

    Nicolaides, Nicolas C; Roberts, Michael L; Kino, Tomoshige; Braatvedt, Geoffrey; Hurt, Darrell E; Katsantoni, Eleni; Sertedaki, Amalia; Chrousos, George P; Charmandari, Evangelia

    2014-05-01

    Primary generalized glucocorticoid resistance is a rare genetic disorder characterized by generalized, partial, target-tissue insensitivity to glucocorticoids. The molecular basis of the condition has been ascribed to inactivating mutations in the human glucocorticoid receptor (hGR) gene. The objective of the study was to present three new cases caused by a novel mutation in the hGR gene and to delineate the molecular mechanisms through which the mutant receptor impairs glucocorticoid signal transduction. The index case (father) and his two daughters presented with increased urinary free cortisol excretion and resistance of the hypothalamic-pituitary-adrenal axis to dexamethasone suppression in the absence of clinical manifestations suggestive of Cushing syndrome. All subjects harbored a novel, heterozygous, point mutation (T→G) at nucleotide position 1724 of the hGR gene, which resulted in substitution of valine by glycine at amino acid 575 of the receptor. Compared with the wild-type receptor, the hGRαV575G demonstrated a significant (33%) reduction in its ability to transactivate the mouse mammary tumor virus promoter in response to dexamethasone, a 50% decrease in its affinity for the ligand, and a 2.5-fold delay in nuclear translocation. Although it did not exert a dominant negative effect on the wild-type receptor and preserved its ability to bind to DNA, hGRαV575G displayed significantly enhanced (∼80%) ability to transrepress the nuclear factor-κΒ signaling pathway. Finally, the mutant receptor hGRαV575G demonstrated impaired interaction with the LXXLL motif of the glucocorticoid receptor-interacting protein 1 coactivator in vitro and in computer-based structural simulation via its defective activation function-2 (AF-2) domain. The natural mutant receptor hGRαV575G causes primary generalized glucocorticoid resistance by affecting multiple steps in the glucocorticoid signaling cascade, including the affinity for the ligand, the time required for

  9. Kaposi's sarcoma-associated herpesvirus-encoded LANA associates with glucocorticoid receptor and enhances its transcriptional activities

    Energy Technology Data Exchange (ETDEWEB)

    Togi, Sumihito; Nakasuji, Misa; Muromoto, Ryuta; Ikeda, Osamu; Okabe, Kanako; Kitai, Yuichi; Kon, Shigeyuki [Department of Immunology, Graduate School of Pharmaceutical Sciences Hokkaido University, Sapporo 060-0812 (Japan); Oritani, Kenji [Department of Hematology and Oncology, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871 (Japan); Matsuda, Tadashi, E-mail: tmatsuda@pharm.hokudai.ac.jp [Department of Immunology, Graduate School of Pharmaceutical Sciences Hokkaido University, Sapporo 060-0812 (Japan)

    2015-07-31

    Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded latency-associated nuclear antigen (LANA), which interacts with cellular proteins, plays a central role in modification of viral and/or cellular gene expression. Here, we show that LANA associates with glucocorticoid receptor (GR), and that LANA enhances the transcriptional activity of GR. Co-immunoprecipitation revealed a physical interaction between LANA and GR in transiently transfected 293T and HeLa cells. In human B-lymphoma cells, LANA overexpression enhanced GR activity and cell growth suppression following glucocorticoid stimulation. Furthermore, confocal microscopy showed that activated GR was bound to LANA and accumulated in the nucleus, leading to an increase in binding of activated GR to the glucocorticoid response element of target genes. Taken together, KSHV-derived LANA acts as a transcriptional co-activator of GR. Our results might suggest a careful use of glucocorticoids in the treatment of patients with KSHV-related malignancies such as Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman disease. - Highlights: • KSHV-LANA enhances the transcriptional activity of GR in 293T and HeLa cells. • KSHV-LANA physically associates with GR. • KSHV-LANA enhances GR activation and cell growth suppression in human B-lymphocytes. • KSHV-LANA influences the nuclear retention and DNA binding activity of GR.

  10. Genetic engineering of the glucocorticoid receptor by fusion with the herpes viral protein VP22 causes selective loss of transactivation.

    Science.gov (United States)

    Soden, J; Stevens, A; Ray, D W

    2002-03-01

    The development of methods for engineering proteins with novel properties opens the way to manipulating intracellular processes in a therapeutically useful way. Glucocorticoids, acting via glucocorticoid receptors (GR), are potent anti-inflammatory agents, acting to oppose nuclear factor kappa B (NF kappa B) function. The herpes viral protein, VP22, has been reported to confer intercellular trafficking activity on 'cargo' proteins, potentially facilitating gene therapy with intracellular proteins. VP22GR, resulting from the addition of VP22 to the N terminal of GR, was equipotent with the wild-type GR in opposing NF kappa B p65-driven expression of an NF kappa B reporter gene. Surprisingly, VP22GR was incapable of inducing transactivation of positive glucocorticoid reporter genes (MMTV-luc and TAT3-luc). Furthermore, the VP22GR had powerful dominant negative activity on both endogenous and exogenous GR transactivation. VP22GR was cytoplasmic in quiescent cells, and after hormone addition underwent nuclear translocation to share the same distribution as the GR. The ability of the VP22GR to selectively confer and enhance glucocorticoid-dependent transrepression of NF kappa B may be of use therapeutically in e.g. transplant rejection, inflammatory arthritis or asthma.

  11. Exogenous glucocorticoids and adverse cerebral effects in children

    DEFF Research Database (Denmark)

    Damsted, Sara K.; Born, A P; Paulson, Olaf B

    2011-01-01

    Glucocorticoids are commonly used in treatment of paediatric diseases, but evidence of associated adverse cerebral effects is accumulating. The various pharmacokinetic profiles of the exogenous glucocorticoids and the changes in pharmacodynamics during childhood, result in different exposure...... of nervous tissue to exogenous glucocorticoids. Glucocorticoids activate two types of intracellular receptors, the mineralocorticoid receptor and the glucocorticoid receptor. The two receptors differ in cerebral distribution, affinity and effects. Exogenous glucocorticoids favor activation...... of the glucocorticoid receptor, which is associated with unfavorable cellular outcomes. Prenatal treatment with glucocorticoids can compromise brain growth and is associated with periventricular leukomalacia, attentions deficits and poorer cognitive performance. In the neonatal period exposure to glucocorticoids...

  12. Negative Correlation between the Diffusion Coefficient and Transcriptional Activity of the Glucocorticoid Receptor.

    Science.gov (United States)

    Mikuni, Shintaro; Yamamoto, Johtaro; Horio, Takashi; Kinjo, Masataka

    2017-08-25

    The glucocorticoid receptor (GR) is a transcription factor, which interacts with DNA and other cofactors to regulate gene transcription. Binding to other partners in the cell nucleus alters the diffusion properties of GR. Raster image correlation spectroscopy (RICS) was applied to quantitatively characterize the diffusion properties of EGFP labeled human GR (EGFP-hGR) and its mutants in the cell nucleus. RICS is an image correlation technique that evaluates the spatial distribution of the diffusion coefficient as a diffusion map. Interestingly, we observed that the averaged diffusion coefficient of EGFP-hGR strongly and negatively correlated with its transcriptional activities in comparison to that of EGFP-hGR wild type and mutants with various transcriptional activities. This result suggests that the decreasing of the diffusion coefficient of hGR was reflected in the high-affinity binding to DNA. Moreover, the hyper-phosphorylation of hGR can enhance the transcriptional activity by reduction of the interaction between the hGR and the nuclear corepressors.

  13. High glucocorticoid receptor expression predicts short progression-free survival in ovarian cancer.

    Science.gov (United States)

    Veneris, Jennifer Taylor; Darcy, Kathleen M; Mhawech-Fauceglia, Paulette; Tian, Chunqiao; Lengyel, Ernst; Lastra, Ricardo R; Pejovic, Tanja; Conzen, Suzanne D; Fleming, Gini F

    2017-07-01

    To investigate the association of tumor glucocorticoid receptor (GR) expression and patient outcome in ovarian cancer. GR expression was evaluated by immunohistochemistry using tissue microarrays of specimens from 481 patients with ovarian cancer and 4 patients with benign conditions. Low GR expression was defined as an intensity of 0 or 1+ and high GR as 2+ or 3+ in >1% of tumor cells. Analyses were performed to evaluate the relationship of GR expression with clinical characteristics, progression-free survival (PFS) and overall survival (OS). GR protein was highly expressed in 133 of 341 (39.0%) tumors from patients who underwent upfront cytoreduction surgery followed by adjuvant chemotherapy. High GR expression was more common in serous tumors (p<0.001), high grade tumors (p<0.001), and advanced stage tumors (p=0.037). Median PFS was significantly decreased in cases with high GR (20.4months) compared to those with low GR (36.0months, HR=1.66, 95% CI 1.29-2.14, p<0.001). GR remained an independent prognostic factor for PFS in multivariate analysis. OS was not associated with GR status. These data suggest that high GR expression correlates with poor prognosis and support the hypothesis that modulating GR activity in combination with chemotherapy may improve outcomes. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Adult-Onset Hypothyroidism Enhances Fear Memory and Upregulates Mineralocorticoid and Glucocorticoid Receptors in the Amygdala

    Science.gov (United States)

    Montero-Pedrazuela, Ana; Fernández-Lamo, Iván; Alieva, María; Pereda-Pérez, Inmaculada; Venero, César; Guadaño-Ferraz, Ana

    2011-01-01

    Hypothyroidism is the most common hormonal disease in adults, which is frequently accompanied by learning and memory impairments and emotional disorders. However, the deleterious effects of thyroid hormones deficiency on emotional memory are poorly understood and often underestimated. To evaluate the consequences of hypothyroidism on emotional learning and memory, we have performed a classical Pavlovian fear conditioning paradigm in euthyroid and adult-thyroidectomized Wistar rats. In this experimental model, learning acquisition was not impaired, fear memory was enhanced, memory extinction was delayed and spontaneous recovery of fear memory was exacerbated in hypothyroid rats. The potentiation of emotional memory under hypothyroidism was associated with an increase of corticosterone release after fear conditioning and with higher expression of glucocorticoid and mineralocorticoid receptors in the lateral and basolateral nuclei of the amygdala, nuclei that are critically involved in the circuitry of fear memory. Our results demonstrate for the first time that adult-onset hypothyroidism potentiates fear memory and also increases vulnerability to develop emotional memories. Furthermore, our findings suggest that enhanced corticosterone signaling in the amygdala is involved in the pathophysiological mechanisms of fear memory potentiation. Therefore, we recommend evaluating whether inappropriate regulation of fear in patients with post-traumatic stress and other mental disorders is associated with abnormal levels of thyroid hormones, especially those patients refractory to treatment. PMID:22039511

  15. Adult-onset hypothyroidism enhances fear memory and upregulates mineralocorticoid and glucocorticoid receptors in the amygdala.

    Directory of Open Access Journals (Sweden)

    Ana Montero-Pedrazuela

    Full Text Available Hypothyroidism is the most common hormonal disease in adults, which is frequently accompanied by learning and memory impairments and emotional disorders. However, the deleterious effects of thyroid hormones deficiency on emotional memory are poorly understood and often underestimated. To evaluate the consequences of hypothyroidism on emotional learning and memory, we have performed a classical Pavlovian fear conditioning paradigm in euthyroid and adult-thyroidectomized Wistar rats. In this experimental model, learning acquisition was not impaired, fear memory was enhanced, memory extinction was delayed and spontaneous recovery of fear memory was exacerbated in hypothyroid rats. The potentiation of emotional memory under hypothyroidism was associated with an increase of corticosterone release after fear conditioning and with higher expression of glucocorticoid and mineralocorticoid receptors in the lateral and basolateral nuclei of the amygdala, nuclei that are critically involved in the circuitry of fear memory. Our results demonstrate for the first time that adult-onset hypothyroidism potentiates fear memory and also increases vulnerability to develop emotional memories. Furthermore, our findings suggest that enhanced corticosterone signaling in the amygdala is involved in the pathophysiological mechanisms of fear memory potentiation. Therefore, we recommend evaluating whether inappropriate regulation of fear in patients with post-traumatic stress and other mental disorders is associated with abnormal levels of thyroid hormones, especially those patients refractory to treatment.

  16. Glucocorticoid receptor DNA methylation and childhood trauma in chronic fatigue syndrome patients.

    Science.gov (United States)

    Vangeel, Elise Beau; Kempke, Stefan; Bakusic, Jelena; Godderis, Lode; Luyten, Patrick; Van Heddegem, Leen; Compernolle, Veerle; Persoons, Philippe; Lambrechts, Diether; Izzi, Benedetta; Freson, Kathleen; Claes, Stephan

    2018-01-01

    Although the precise mechanisms are not yet understood, previous studies have suggested that chronic fatigue syndrome (CFS) is associated with hypothalamic-pituitary-adrenal (HPA) axis dysregulation and trauma in early childhood. Consistent with findings suggesting that early life stress-induced DNA methylation changes may underlie dysregulation of the HPA axis, we previously found evidence for the involvement of glucocorticoid receptor (GR) gene (NR3C1) methylation in whole blood of CFS patients. In the current study, we assessed NR3C1-1F region DNA methylation status in peripheral blood from a new and independent sample of 80 female CFS patients and 91 female controls. In CFS patients, history of childhood trauma subtypes was evaluated using the Childhood Trauma Questionnaire short form (CTQ-SF). Although absolute methylation differences were small, the present study confirms our previous findings of NR3C1-1F DNA hypomethylation at several CpG sites in CFS patients as compared to controls. Following multiple testing correction, only CpG_8 remained significant (DNA methylation difference: 1.3% versus 1.5%, pfatigue as well as with childhood emotional abuse in CFS patients, although these findings were not significant after correction for multiple testing. In conclusion, we replicated findings of NR3C1-1F DNA hypomethylation in CFS patients versus controls. Our results support the hypothesis of HPA axis dysregulation and enhanced GR sensitivity in CFS. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Glucocorticoid receptors in the locus coeruleus mediate sleep disorders caused by repeated corticosterone treatment.

    Science.gov (United States)

    Wang, Zi-Jun; Zhang, Xue-Qiong; Cui, Xiang-Yu; Cui, Su-Ying; Yu, Bin; Sheng, Zhao-Fu; Li, Sheng-Jie; Cao, Qing; Huang, Yuan-Li; Xu, Ya-Ping; Zhang, Yong-He

    2015-03-24

    Stress induced constant increase of cortisol level may lead to sleep disorder, but the mechanism remains unclear. Here we described a novel model to investigate stress mimicked sleep disorders induced by repetitive administration of corticosterone (CORT). After 7 days treatment of CORT, rats showed significant sleep disturbance, meanwhile, the glucocorticoid receptor (GR) level was notably lowered in locus coeruleus (LC). We further discovered the activation of noradrenergic neuron in LC, the suppression of GABAergic neuron in ventrolateral preoptic area (VLPO), the remarkable elevation of norepinephrine in LC, VLPO and hypothalamus, as well as increase of tyrosine hydroxylase in LC and decrease of glutamic acid decarboxylase in VLPO after CORT treatment. Microinjection of GR antagonist RU486 into LC reversed the CORT-induced sleep changes. These results suggest that GR in LC may play a key role in stress-related sleep disorders and support the hypothesis that repeated CORT treatment may decrease GR levels and induce the activation of noradrenergic neurons in LC, consequently inhibit GABAergic neurons in VLPO and result in sleep disorders. Our findings provide novel insights into the effect of stress-inducing agent CORT on sleep and GRs' role in sleep regulation.

  18. Yin Yang 1 Promotes Hepatic Gluconeogenesis Through Upregulation of Glucocorticoid Receptor

    Science.gov (United States)

    Lu, Yan; Xiong, Xuelian; Wang, Xiaolin; Zhang, Zhijian; Li, Jin; Shi, Guojun; Yang, Jian; Zhang, Huijie; Ning, Guang; Li, Xiaoying

    2013-01-01

    Gluconeogenesis is critical in maintaining blood glucose levels in a normal range during fasting. In this study, we investigated the role of Yin Yang 1 (YY1), a key transcription factor involved in cell proliferation and differentiation, in the regulation of hepatic gluconeogenesis. Our data showed that hepatic YY1 expression levels were induced in mice during fasting conditions and in a state of insulin resistance. Overexpression of YY1 in livers augmented gluconeogenesis, raising fasting blood glucose levels in C57BL/6 mice, whereas liver-specific ablation of YY1 using adenoviral shRNA ameliorated hyperglycemia in wild-type and diabetic db/db mice. At the molecular level, we further demonstrated that the major mechanism of YY1 in the regulation of hepatic glucose production is to modulate the expression of glucocorticoid receptor. Therefore, our study uncovered for the first time that YY1 participates in the regulation of hepatic gluconeogenesis, which implies that YY1 might serve as a potential therapeutic target for hyperglycemia in diabetes. PMID:23193188

  19. Seasonal changes in cortisol sensitivity and glucocorticoid receptor affinity and number in leukocytes of coho salmon

    Science.gov (United States)

    Maule, Alec G.; Schreck, Carl B.; Sharpe, Cameron

    1993-01-01

    To determine if there were organ-specific changes in immune responses or immune-endocrine interaction, we monitored in vitro immune response, cortisol sensitivity and number and affinity of glucocorticoid receptors (GR) in leukocytes from freshwater-adapted juvenile coho salmon (Oncorhynchus kisutch) during the physiological changes that prepare them to enter the marine environment. During this period, absolute immune response declined, but splenic leukocytes generated more antibody-producing cells than did cells from anterior kidney. Splenic leukocytes were initially more sensitive to the suppressive effects of cortisol and had fewer GR than leukocytes from the anterior kidney. Leukocytes from the anterior kidney were initially insensitive to cortisol but developed sensitivity at about the same time as the dissociation constant and number of GR increased. In vitro incubation of anterior kidney leukocytes in cortisol altered GR variables when experiments were conducted during March through September but not during November through February. In some years, changes in GR or immune responses were correlated with plasma cortisol titers, but in other years there was no correlation. Thus, the exact relation between cortisol, GR and immune response in anadromous salmonids is unclear and other factors are involved.

  20. Glucocorticoid receptor ChIP-sequencing of subcutaneous fat reveals modulation of inflammatory pathways.

    Science.gov (United States)

    Singh, Puneet; Brock, Clifton O; Volden, Paul A; Hernandez, Kyle; Skor, Maxwell; Kocherginsky, Masha; Park, Julie E; Brady, Matthew J; Conzen, Suzanne D

    2015-11-01

    To identify glucocorticoid receptor (GR)-associated chromatin sequences and target genes in primary human abdominal subcutaneous fat. GR chromatin immunoprecipitation (ChIP)-sequencing (seq) methodology in subcutaneous human adipocytes treated ex vivo with dexamethasone (dex) was optimized to identify genome-wide dex-dependent GR-binding regions (GBRs). Gene expression analyses were performed in parallel ± dex treatment. Fat was obtained from four female surgical patients without obesity with a median age of 50.5 years. ChIP-seq analysis revealed 219 dex-associated GBRs. Of these, 136 GBRs were located within 100 kb of the transcriptional start site and associated with 123 genes. Combining these data with dex-induced gene expression, 70 of the 123 putative direct target genes were significantly up- or downregulated following 4 hours of dex treatment. Gene expression analysis demonstrated that the top 10 pathways reflected regulation of cellular metabolism and inflammation. DEPTOR, an inhibitor of mTOR, was identified as a potential direct GR target gene. This is the first report of genome-wide GR ChIP-seq and gene expression analysis in human fat. The results implicate regulation of key GR target genes that are involved in dampening inflammation and promoting cellular metabolism. © 2015 The Obesity Society.

  1. Autophagy protects meniscal cells from glucocorticoids-induced apoptosis via inositol trisphosphate receptor signaling.

    Science.gov (United States)

    Shen, Chao; Gu, Wen; Cai, Gui-Quan; Peng, Jian-Ping; Chen, Xiao-Dong

    2015-09-01

    Intra-articular injection of glucocorticoids (GCs) has been widely used in the management of osteoarthritis and rheumatoid arthritis. Nevertheless, several studies showed that GCs had toxic effects on chondrocytes as well as synovial cells. Previously we reported the protective role of autophagy in the degeneration of meniscal tissues. However, the effects of GCs on autophagy in the meniscal cells have not been fully elucidated. To investigate whether GCs can regulate autophagy in human meniscal cells, the meniscal cells were cultured in vitro and exposed in the presence of dexamethasone. The levels of apoptosis and autophagy were investigated via flow cytometry as well as western blotting analysis. The changes of the aggrecanases were measured using real-time PCR. The role of autophagy in dexamethasone-induced apoptosis was investigated using pharmacological agents and RNA interference technique. An agonist of inositol 1,4,5-trisphosphate receptor (IP3R) was used to investigate the mechanism of dexamethasone-induced autophagy. The results showed that dexamethasone induced autophagy as well as apoptosis in normal human meniscal cells. Using RNA interference technique and pharmacological agents, our results showed that autophagy protected the meniscal cells from dexamethasone-induced apoptosis. Our results also indicated that dexamethasone increased the mRNA levels of aggrecanases. This catabolic effect of dexamethasone was enhanced by 3-MA, the autophagy inhibitor. Furthermore, our results showed that dexamethasone induced autophagy via suppressing the phosphorylation of IP3R. In summary, our results indicated that autophagy protected meniscal cells from GCs-induced apoptosis via inositol trisphosphate receptor signaling.

  2. Individual differences in the effects of chronic prazosin hydrochloride treatment on hippocampal mineralocorticoid and glucocorticoid receptors.

    Science.gov (United States)

    Kabbaj, Mohamed; Morley-Fletcher, Sara; Le Moal, Michel; Maccari, Stefania

    2007-06-01

    The aim of this study was to investigate the noradrenergic regulation of mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) in high responder (HR) and low responder (LR) male rats, an animal model of individual differences in hypothalamo-pituitary-adrenal axis activity and vulnerability to drugs of abuse. The effects of a chronic treatment with the noradrenergic alpha(1) antagonist (1-[4-amino-6,7-dimethoxy-2-quinazolinyl]-4-[2-furanylcarbonyl] piperazine) hydrochloride (prazosin) (0.5 mg/kg, i.p., 35 days) were assessed on stress-induced corticosterone (CORT) secretion and on hippocampal MRs and GRs in adrenally intact rats. In order to ascertain whether the effects of chronic prazosin treatment on hippocampal MRs and GRs were direct or indirect, through prazosin-induced CORT secretion, we also assessed the effects of the same treatment on adrenalectomized rats with CORT substitutive therapy. When compared with LR rats, HR rats exhibited a delayed return to the basal level of CORT following acute restraint stress; this was associated with a lower binding of MRs and GRs in HR rats than in LR rats. Chronic prazosin treatment had no effect in HR animals but markedly reduced hippocampal MRs and GRs, and increased stress-induced CORT secretion in LR rats. In LR adrenalectomized rats, prazosin reduced hipppocampal MRs but did not change GRs. Our results provide evidence of a differential regulation by noradrenaline of hippocampal MRs and GRs in HR and LR rats. These data could have clinical implications in terms of individual differences in the resistance to antidepressant treatments and individual differences in drug abuse.

  3. Novel regulation of 25-hydroxyvitamin D3 24-hydroxylase (24(OH)ase) transcription by glucocorticoids: cooperative effects of the glucocorticoid receptor, C/EBP beta, and the Vitamin D receptor in 24(OH)ase transcription.

    Science.gov (United States)

    Dhawan, Puneet; Christakos, Sylvia

    2010-08-15

    Glucocorticoid-induced bone loss has been proposed to involve direct effects on bone cells as well as alterations in calcium absorption and excretion. Since vitamin D is important for the maintenance of calcium homeostasis, in the present study the effects of glucocorticoids on vitamin D metabolism through the expression of 24(OH)ase, an enzyme involved in the catabolism of 1,25(OH)(2)D(3), were examined. Injection of vitamin D replete mice with dexamethasone (dex) resulted in a significant induction in 24(OH)ase mRNA in kidney, indicating a regulatory effect of glucocorticoids on vitamin D metabolism. Whether glucocorticoids can affect 24(OH)ase transcription is not known. Here we demonstrate for the first time a glucocorticoid receptor (GR) dependent enhancement of 1,25(OH)(2)D(3)-induced 24(OH)ase transcription. Dex treatment of GR and vitamin D receptor (VDR) transfected COS-7 cells and dex treatment of osteoblastic cells (in which VDR and GR are present endogenously) potentiated 1,25(OH)(2)D(3)-induced 24(OH)ase transcription. In addition, GR was found to cooperate with C/EBP beta to enhance VDR-mediated 24(OH)ase transcription. Using the rat 24(OH)ase promoter with the C/EBP site mutated, GR-mediated potentiation of 1,25(OH)(2)D(3)-induced 24(OH)ase transcription was inhibited. Immunoprecipitation indicated that that GR can interact with C/EBP beta and ChIP/re-ChIP analysis showed that C/EBP beta and GR bind simultaneously to the 24(OH)ase promoter. These findings indicate a novel mechanism whereby glucocorticoids can alter VDR-mediated 24(OH)ase transcription through functional cooperation between C/EBP beta and GR that results in an enhanced ability of C/EBP beta to cooperate with VDR in the regulation of 24(OH)ase. (c) 2010 Wiley-Liss, Inc.

  4. The effect of perinatal hormonal imprinting with 13-cis-retinoic acid (isotretinoin) on the thymic glucocorticoid receptors of female and testosterone level of male adult rats.

    Science.gov (United States)

    Csaba, G; Gaál, A; Inczefi-Gonda, A

    1999-09-01

    In earlier experiments, the long-term effect of perinatal treatment (hormonal imprinting) with all-trans-retinol and all-trans-retinoic acid on the thymic glucocorticoid and uterine estrogen receptors was studied and was found effective. In the present experiments, the imprinting effect of four retinoids (13-cis-retinaldehyde, 13-cis-retinoic acid, 9-cis-retinaldehyde and 9-cis-retinoic acid) was investigated, using receptor kinetic analysis and sexual hormone (testosterone and progesterone) level determinations. Exclusively 13-cis-retinoic acid (isotretinoin) had an effect, significantly decreasing glucocorticoid receptor affinity and increasing serum testosterone level. Relationships with RAR-RXR receptor binding and teratogenicity is discussed.

  5. Immunohistochemical expression of alpha-smooth muscle actin and glucocorticoid and calcitonin receptors in central giant-cell lesions.

    Science.gov (United States)

    Maiz, Nancy Noya; de la Rosa-García, Estela; Camacho, María Esther Irigoyen

    2016-04-01

    Central giant-cell lesions (CGCLs) are reactive lesions that consist histologically of spindle-shaped stromal cells, (fibroblasts and myofibroblasts) loosely arranged in a fibrous stroma, multinucleated giant cells and mononuclear cells with haemorrhagic areas. This study identified the immunoexpression of alpha-smooth muscle actin in spindle-shaped stromal cells, and glucocorticoid and calcitonin receptors in multinucleated giant cells and mononuclear cells. Their association with the clinical and radiographic characteristics of these lesions was identified. Thirty-five cases of CGCLs were studied. Expression of alpha-smooth muscle actin, glucocorticoid and calcitonin was evaluated by immunohistochemistry. The labelling index was 100 times the quotient of the number of positive cells divided by the total number of cells of each type. Logistic regression analysis was applied. Alpha-smooth muscle actin was positive (54%) for spindle stromal cells (myofibroblasts). A significant association was observed with root resorption (P = 0.004) and cortical bone destruction (P = 0.024). Glucocorticoid immunoexpression was positive for 99% of the giant cells and 86.7% of the mononuclear cells. Glucocorticoid immunoexpression in the mononuclear cells was associated with root resorption (P = 0.031). A longer evolution time was associated with lower immunoexpression of glucocorticoid (OR 12.4: P = 0.047). Calcitonin immunoexpression was positive in 86% of the giant cells. Immunoexpression of calcitonin was associated with age (P = 0.040). Myofibroblasts are important components of CGCLs, stromal cells and alpha-smooth muscle. Actin immunoexpression was associated with root and cortical bone resorption. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. 9β Polymorphism of the glucocorticoid receptor gene appears to have limited impact in patients with Addison's disease.

    Directory of Open Access Journals (Sweden)

    Ian Louis Ross

    Full Text Available BACKGROUND: Addison's disease (AD has been associated with an increased risk of cardiovascular disease. Glucocorticoid receptor polymorphisms that alter glucocorticoid sensitivity may influence metabolic and cardiovascular risk factors in patients with AD. The 9β polymorphism of the glucocorticoid receptor gene is associated with relative glucocorticoid resistance and has been reported to increase the risk of myocardial infarction in the elderly. We explored the impact of this polymorphism in patients with AD. MATERIALS AND METHODS: 147 patients with AD and 147 age, gender and ethnicity matched healthy controls were recruited. Blood was taken in a non-fasted state for plasma lipid determination, measurement of cardiovascular risk factors and DNA extraction. RESULTS: Genotype data for the 9β polymorphism was available for 139 patients and 146 controls. AD patients had a more atherogenic lipid profile characterized by an increase in the prevalence of small dense LDL (p = 0.003, increased triglycerides (p = 0.002, reduced HDLC (p<0.001 an elevated highly sensitive C-reactive protein (p = 0.01, compared with controls. The 9β polymorphism (at least one G allele was found in 28% of patients and controls respectively. After adjusting for age, gender, ethnicity, BMI and hydrocortisone dose per metre square of body surface area in patients, there were no significant metabolic associations with this polymorphism and hydrocortisone doses were not higher in patients with the polymorphism. CONCLUSIONS: This study did not identify any associations between the 9β polymorphism and cardiovascular risk factors or hydrocortisone dose and determination of this polymorphism is therefore unlikely to be of clinical benefit in the management of patients with AD.

  7. Differences in mouse maternal care behavior - is there a genetic impact of the glucocorticoid receptor?

    Directory of Open Access Journals (Sweden)

    Sabine Chourbaji

    Full Text Available Depressive episodes are frequently preceded by stressful life events. Evidence from genetic association studies suggests a role for the glucocorticoid receptor (GR, an essential element in the regulation of stress responses, in the pathophysiology of the disorder. Since the stress response system is affected by pregnancy and postpartum-associated changes, it has also been implicated in the pathophysiology of postpartum depression. Using a 2 × 2 factorial design, we investigated whether a heterozygous deletion of GR would influence maternal care behavior in C57BL/6 and Balb/c mice, two inbred strains known to display qualitative differences in this behavior. Behavioral observation was carried out between postnatal days 1 and 7, followed by a pup retrieval test on postnatal days 7 or 8. While previously noted inter-strain differences were confirmed for different manifestations of caring behavior, self-maintenance and neglecting behaviors as well as the pup retrieval test, no strain-independent effect of the GR mutation was noted. However, an interaction between GR genotype and licking/grooming behavior was observed: it was down-regulated in heterozygous C57BL/6 mice to the level recorded for Balb/c mice. Home cage observation poses minimal disturbance of the dam and her litter as compared to more invasive assessments of dams' emotional behavior. This might be a reason for the absence of any overall effects of the GR mutation, particularly since GR heterozygous animals display a depressive-like phenotype under stressful conditions only. Still, the subtle effect we observed may point towards a role of GR in postpartum affective disorders.

  8. Promoter methylation of glucocorticoid receptor gene is associated with subclinical atherosclerosis: A monozygotic twin study.

    Science.gov (United States)

    Zhao, Jinying; An, Qiang; Goldberg, Jack; Quyyumi, Arshed A; Vaccarino, Viola

    2015-09-01

    Endothelial dysfunction assessed by brachial artery flow-mediated dilation (FMD) is a marker of early atherosclerosis. Glucocorticoid receptor gene (NR3C1) regulates many biological processes, including stress response, behavioral, cardiometabolic and immunologic functions. Genetic variants in NR3C1 have been associated with atherosclerosis and related risk factors. This study investigated the association of NR3C1 promoter methylation with FMD, independent of genetic and family-level environmental factors. We studied 84 middle-aged, male-male monozygotic twin pairs recruited from the Vietnam Era Twin Registry. Brachial artery FMD was measured by ultrasound. DNA methylation levels at 22 CpG residues in the NR3C1 exon 1F promoter region were quantified by bisulfite pyrosequencing in genomic DNA isolated from peripheral blood leukocytes. Co-twin control analyses were conducted to examine the association of methylation variation with FMD, adjusting for smoking, physical activity, body mass index, lipids, blood pressure, fasting glucose, and depressive symptoms. Multiple testing was corrected using the false discovery rate. Mean methylation level across the 22 studied CpG sites was 2.02%. Methylation alterations at 12 out of the 22 CpG residues were significantly associated with FMD. On average, a 1% increase in the intra-pair difference in mean DNA methylation was associated with 2.83% increase in the intra-pair difference in FMD (95% CI: 1.46-4.20; P subclinical atherosclerosis, independent of genetic, early family environmental and other risk factors. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Glucocorticoid-induced tumor necrosis factor receptor expression in patients with cervical human papillomavirus infection

    Directory of Open Access Journals (Sweden)

    Cacilda Tezelli Junqueira Padovani

    2013-06-01

    Full Text Available Introduction The progression of human papillomavirus (HPV infection in the anogenital tract has been associated with the involvement of cells with regulatory properties. Evidence has shown that glucocorticoid-induced tumor necrosis factor receptor (GITR is an important surface molecule for the characterization of these cells and proposes that GITR ligand may constitute a rational treatment for many cancer types. We aimed to detect the presence of GITR and CD25 in cervical stroma cells with and without pathological changes or HPV infection to better understand the immune response in the infected tissue microenvironment. Methods We subjected 49 paraffin-embedded cervical tissue samples to HPV DNA detection and histopathological analysis, and subsequently immunohistochemistry to detect GITR and CD25 in lymphocytes. Results We observed that 76.9% of all samples with high GITR expression were HPV-positive regardless of histopathological findings. High GITR expression (77.8% was predominant in samples with ≥1,000 RLU/PCB. Of the HPV-positive samples negative for intraepithelial lesion and malignancy, 62.5% had high GITR expression. High GITR expression was observed in both carcinoma and high-grade squamous intraepithelial lesion (HSIL samples (p = 0.16. CD25 was present in great quantities in all samples. Conclusions The predominance of high GITR expression in samples with high viral load that were classified as HSIL and carcinoma suggests that GITR+ cells can exhibit regulatory properties and may contribute to the progression of HPV-induced cervical neoplasia, emphasizing the importance of GITR as a potential target for immune therapy of cervical cancer and as a disease evolution biomarker.

  10. I.c.v. administration of the nonsteroidal glucocorticoid receptor antagonist, CP-472555, prevents exacerbated hypoglycemia during repeated insulin administration.

    Science.gov (United States)

    Kale, A Y; Paranjape, S A; Briski, K P

    2006-06-30

    Hypoglycemia elicits an integrated array of CNS-mediated counterregulatory responses, including activation of the hypothalamic-pituitary-adrenal axis. The role of antecedent adrenocortical hypersecretion in impaired glucose counterregulation remains controversial. The present studies utilized the selective, nonsteroidal glucocorticoid receptor antagonist, CP-472555, as a pharmacological tool to investigate the hypothesis that hypoglycemic hypercorticosteronemia modulates CNS efferent autonomic and neuroendocrine motor responses to recurring insulin-induced hypoglycemia via glucocorticoid receptor-dependent mechanisms. Groups of adult male rats were injected s.c. with either one or four doses of the intermediate-acting insulin, Humulin neutral protamine Hagedorn (NPH), on as many days, while controls were injected with diluent alone. Animals injected with four doses of insulin were pretreated by i.c.v. administration of graded doses of the glucocorticoid receptor antagonist or vehicle alone prior to the first three doses of insulin. Repeated daily injection of NPH exacerbated hypoglycemia, attenuated patterns of glucagon and epinephrine secretion, and diminished neuronal transcriptional activation in discrete CNS metabolic loci, including the lateral hypothalamic area, dorsomedial hypothalamic nucleus, paraventricular hypothalamic nucleus, and nucleus of the solitary tract. While i.c.v. delivery of 25 or 100 ng doses of CP-472555 did not alter any of these parameters, animals treated with 500 ng exhibited circulating glucose, glucagon, and epinephrine levels that were similar to those in rats injected with one dose of insulin, as well as a reversal of recurring insulin-induced hypoglycemia-associated reductions in Fos immunolabeling in the lateral hypothalamic area, dorsomedial hypothalamic nucleus, and paraventricular hypothalamic nucleus. These results provide unique pharmacological evidence that antecedent activation of central glucocorticoid receptor is required

  11. DHEA modulates the effect of cortisol on RACK1 expression via interference with the splicing of the glucocorticoid receptor

    Science.gov (United States)

    Pinto, Antonella; Malacrida, Beatrice; Oieni, Jacopo; Serafini, Melania Maria; Davin, Annalisa; Galbiati, Valentina; Corsini, Emanuela; Racchi, Marco

    2015-01-01

    Background and Purpose Dehydroepiandrosterone (DHEA) is thought to be an anti-glucocorticoid hormone known to be fully functional in young people but deficient in aged humans. Our previous data suggest that DHEA not only counteracts the effect of cortisol on RACK1 expression, a protein required both for the correct functioning of immune cells and for PKC-dependent pathway activation, but also modulates the inhibitory effect of cortisol on LPS-induced cytokine production. The purpose of this study was to investigate the effect of DHEA on the splicing mechanism of the human glucocorticoid receptor (GR). Experimental Approach The THP1 monocytic cell line was used as a cellular model. Cytokine production was measured by specific elisa. Western blot and real-time RT-PCR were used, where appropriate, to determine the effect of DHEA on GRs, serine/arginine-rich proteins (SRp), and RACK1 protein and mRNA. Small-interfering RNA was used to down-regulate GRβ. Key Results DHEA induced a dose-related up-regulation of GRβ and GRβ knockdown completely prevented DHEA-induced RACK1 expression and modulation of cytokine release. Moreover, we showed that DHEA influenced the expression of some components of the SRps found within the spliceosome, the main regulators of the alternative splicing of the GR gene. Conclusions and Implications These data contribute to our understanding of the mechanism of action of DHEA and its effect on the immune system and as an anti-glucocorticoid agent. PMID:25626076

  12. Neurotrophic-priming of glucocorticoid receptor signaling is essential for neuronal plasticity to stress and antidepressant treatment.

    Science.gov (United States)

    Arango-Lievano, Margarita; Lambert, W Marcus; Bath, Kevin G; Garabedian, Michael J; Chao, Moses V; Jeanneteau, Freddy

    2015-12-22

    Neurotrophins and glucocorticoids are robust synaptic modifiers, and deregulation of their activities is a risk factor for developing stress-related disorders. Low levels of brain-derived neurotrophic factor (BDNF) increase the desensitization of glucocorticoid receptors (GR) and vulnerability to stress, whereas higher levels of BDNF facilitate GR-mediated signaling and the response to antidepressants. However, the molecular mechanism underlying neurotrophic-priming of GR function is poorly understood. Here we provide evidence that activation of a TrkB-MAPK pathway, when paired with the deactivation of a GR-protein phosphatase 5 pathway, resulted in sustained GR phosphorylation at BDNF-sensitive sites that is essential for the transcription of neuronal plasticity genes. Genetic strategies that disrupted GR phosphorylation or TrkB signaling in vivo impaired the neuroplasticity to chronic stress and the effects of the antidepressant fluoxetine. Our findings reveal that the coordinated actions of BDNF and glucocorticoids promote neuronal plasticity and that disruption in either pathway could set the stage for the development of stress-induced psychiatric diseases.

  13. Adipocyte Glucocorticoid Receptors Mediate Fat-To-Brain Signaling Short Title: Adipocyte GR Mediate Fat-To-Brain Feedback

    Science.gov (United States)

    de Kloet, Annette D.; Krause, Eric G.; Solomon, Matia B.; Flak, Jonathan N.; Scott, Karen A.; Kim, Dong-Hoon; Myers, Brent; Ulrich-Lai, Yvonne M.; Woods, Stephen C.; Seeley, Randy J.; Herman, James P.

    2015-01-01

    Stress-related (e.g., depression) and metabolic pathologies (e.g., obesity) are important and often co-morbid public health concerns. Here we identify a connection between peripheral glucocorticoid receptor (GR) signaling originating in fat with the brain control of both stress and metabolism. Mice with reduced adipocyte GR hypersecrete glucocorticoids following acute psychogenic stress and are resistant to diet-induced obesity. This hypersecretion gives rise to deficits in responsiveness to exogenous glucocorticoids, consistent with reduced negative feedback via adipocytes. Increased stress reactivity occurs in the context of elevated hypothalamic expression of hypothalamic-pituitary-adrenal (HPA) axis-excitatory neuropeptides and in the absence of altered adrenal sensitivity, consistent with a central cite of action. Our results identify a novel mechanism whereby activation of the adipocyte GR promotes peripheral energy storage while inhibiting the HPA axis, and provide functional evidence for a fat-to-brain regulatory feedback network that serves to regulate not just homeostatic energy balance but also responses to psychogenic stimuli. PMID:25808702

  14. DHEA modulates the effect of cortisol on RACK1 expression via interference with the splicing of the glucocorticoid receptor.

    Science.gov (United States)

    Pinto, Antonella; Malacrida, Beatrice; Oieni, Jacopo; Serafini, Melania Maria; Davin, Annalisa; Galbiati, Valentina; Corsini, Emanuela; Racchi, Marco

    2015-06-01

    Dehydroepiandrosterone (DHEA) is thought to be an anti-glucocorticoid hormone known to be fully functional in young people but deficient in aged humans. Our previous data suggest that DHEA not only counteracts the effect of cortisol on RACK1 expression, a protein required both for the correct functioning of immune cells and for PKC-dependent pathway activation, but also modulates the inhibitory effect of cortisol on LPS-induced cytokine production. The purpose of this study was to investigate the effect of DHEA on the splicing mechanism of the human glucocorticoid receptor (GR). The THP1 monocytic cell line was used as a cellular model. Cytokine production was measured by specific elisa. Western blot and real-time RT-PCR were used, where appropriate, to determine the effect of DHEA on GRs, serine/arginine-rich proteins (SRp), and RACK1 protein and mRNA. Small-interfering RNA was used to down-regulate GRβ. DHEA induced a dose-related up-regulation of GRβ and GRβ knockdown completely prevented DHEA-induced RACK1 expression and modulation of cytokine release. Moreover, we showed that DHEA influenced the expression of some components of the SRps found within the spliceosome, the main regulators of the alternative splicing of the GR gene. These data contribute to our understanding of the mechanism of action of DHEA and its effect on the immune system and as an anti-glucocorticoid agent. © 2015 The British Pharmacological Society.

  15. Influences of maternal and paternal PTSD on epigenetic regulation of the glucocorticoid receptor gene in Holocaust survivor offspring.

    Science.gov (United States)

    Yehuda, Rachel; Daskalakis, Nikolaos P; Lehrner, Amy; Desarnaud, Frank; Bader, Heather N; Makotkine, Iouri; Flory, Janine D; Bierer, Linda M; Meaney, Michael J

    2014-08-01

    Differential effects of maternal and paternal posttraumatic stress disorder (PTSD) have been observed in adult offspring of Holocaust survivors in both glucocorticoid receptor sensitivity and vulnerability to psychiatric disorder. The authors examined the relative influences of maternal and paternal PTSD on DNA methylation of the exon 1F promoter of the glucocorticoid receptor (GR-1F) gene (NR3C1) in peripheral blood mononuclear cells and its relationship to glucocorticoid receptor sensitivity in Holocaust offspring. Adult offspring with at least one Holocaust survivor parent (N=80) and demographically similar participants without parental Holocaust exposure or parental PTSD (N=15) completed clinical interviews, self-report measures, and biological procedures. Blood samples were collected for analysis of GR-1F promoter methylation and of cortisol levels in response to low-dose dexamethasone, and two-way analysis of covariance was performed using maternal and paternal PTSD as main effects. Hierarchical clustering analysis was used to permit visualization of maternal compared with paternal PTSD effects on clinical variables and GR-1F promoter methylation. A significant interaction demonstrated that in the absence of maternal PTSD, offspring with paternal PTSD showed higher GR-1F promoter methylation, whereas offspring with both maternal and paternal PTSD showed lower methylation. Lower GR-1F promoter methylation was significantly associated with greater postdexamethasone cortisol suppression. The clustering analysis revealed that maternal and paternal PTSD effects were differentially associated with clinical indicators and GR-1F promoter methylation. This is the first study to demonstrate alterations of GR-1F promoter methylation in relation to parental PTSD and neuroendocrine outcomes. The moderation of paternal PTSD effects by maternal PTSD suggests different mechanisms for the intergenerational transmission of trauma-related vulnerabilities.

  16. Morphological changes of the cartilage and bone in newborn piglets evoked by experimentally induced glucocorticoid excess during pregnancy.

    Science.gov (United States)

    Tomaszewska, E; Dobrowolski, P; Puzio, I

    2013-08-01

    The study examined articular and growth plate cartilages as well as bone tissues in the offspring of sows treated with glucocorticoid during the last 45 days of pregnancy (dexamethasone at the dose of 0.03 mg/kg body weight intramuscularly, every second day). The offspring were tested at the birth and basal morphology for both articular and growth plate cartilages, and the histomorphometry of trabeculae of the epiphysis and metaphysis of femur and tibia were established. The concentration of selected cytokines and the activity of bone alkaline phosphatase were determined in blood serum. Maternal dexamethasone (DEX) administration reduced the thickness of proliferative, resting and hypertrophic zones of growth plate of femur and tibia of male piglets when compared with the control. DEX significantly reduced the thickness of the resting zone in both bones. It also elongated proliferative and hypertrophic zones of the growth plate in the femur as well as the hypertrophic zone in the tibia of female piglets when compared with the control group. Moreover, DEX decreased the articular cartilage thickness of the tibia in female piglets and enhanced the articular cartilage thickness of the femur in male piglets. Articular cartilage was highly cellular, and chondrocytes were separated by thin septa of matrix. An analysis of the trabecular bone architecture in male piglets showed a loss of the trabecular bone by thinning and DEX-related increase in trabecular porosity. Moreover, the cortical bone looked similar to the trabeculae because of trabecularization of the cortex. There was a DEX that reduced serum osteocalcin and BAP concentrations in both female and male newborn piglets, whereas the serum IL-1 and Il-6 was reduced only in male piglets. The obtained results demonstrated that DEX administration to sows during the last 45 days of pregnancy might cause the growth to slow and eventually to stop, especially in male piglets. It might lead to an alteration within the

  17. In vitro and in silico assessment of the structure-dependent binding of bisphenol analogues to glucocorticoid receptor.

    Science.gov (United States)

    Zhang, Jie; Zhang, Tiehua; Guan, Tianzhu; Yu, Hansong; Li, Tiezhu

    2017-03-01

    Widespread use of bisphenol A (BPA) and other bisphenol analogues has attracted increasing attention for their potential adverse effects. As environmental endocrine-disrupting compounds (EDCs), bisphenols (BPs) may activate a variety of nuclear receptors, including glucocorticoid receptor (GR). In this work, the binding of 11 BPs to GR was investigated by fluorescence polarization (FP) assay in combination with molecular dynamics simulations. The human glucocorticoid receptor was prepared as a soluble recombinant protein. A fluorescein-labeled dexamethasone derivative (Dex-fl) was employed as tracer. Competitive displacement of Dex-fl from GR by BPs showed that the binding affinities of bisphenol analogues were largely dependent on their characteristic functional groups. In order to further understand the relationship between BPs structures and their GR-mediated activities, molecular docking was utilized to explore the binding modes at the atomic level. The results confirmed that structural variations of bisphenol analogues contributed to different interactions of BPs with GR, potentially causing distinct toxic effects. Comparison of the calculated binding energies vs. experimental binding affinities yielded a good correlation (R 2 = 0.8266), which might be helpful for the design of environmentally benign materials with reduced toxicities. In addition, the established FP assay based on GR exhibited the potential to offer an alternative to traditional methods for the detection of bisphenols.

  18. Abnormal Glucocorticoid Receptor mRNA and Protein Isoform Expression in the Prefrontal Cortex in Psychiatric Illness

    Science.gov (United States)

    Sinclair, Duncan; Tsai, Shan Yuan; Woon, Heng Giap; Weickert, Cynthia Shannon

    2011-01-01

    Stress has been implicated in the onset and illness course of schizophrenia and bipolar disorder. The effects of stress in these disorders may be mediated by abnormalities of the hypothalamic–pituitary–adrenal axis, and its corticosteroid receptors. We investigated mRNA expression of the glucocorticoid receptor (GR) and mineralocorticoid receptor (MR), and protein expression of multiple GRα isoforms, in the prefrontal cortex of 37 schizophrenia cases and 37 matched controls. Quantitative real-time PCR, western blotting, and luciferase assays were employed. In multiple regression analysis, schizophrenia diagnosis was a significant predictor of total GR mRNA expression (pschizophrenia cases relative to controls. No significant effect of diagnosis on MR mRNA was detected. At the protein level, no significant predictors of total GRα protein or the full-length GRα isoform were identified. However, schizophrenia diagnosis was a strong predictor (pschizophrenia cases (80.4%) relative to controls. This finding was replicated in a second cohort of 35 schizophrenia cases, 34 bipolar disorder cases, and 35 controls, in which both schizophrenia and bipolar disorder diagnoses were significant predictors of putative GRα-D1 abundance (pschizophrenia cases. Luciferase assays demonstrated that the GRα-D1 isoform can activate transcription at glucocorticoid response elements. These findings confirm total GR mRNA reductions in schizophrenia and provide the first evidence of GR protein isoform abnormalities in schizophrenia and bipolar disorder. PMID:21881570

  19. Biochemical characterization of nuclear receptors for vitamin D{sub 3} and glucocorticoids in prostate stroma cell microenvironment

    Energy Technology Data Exchange (ETDEWEB)

    Hidalgo, Alejandro A. [Laboratory of Molecular Endocrinology, Department of Physiopathology, University of Concepcion, Concepcion (Chile); Department of Molecular Pharmacology and Therapeutics, NY (United States); Montecinos, Viviana P.; Paredes, Roberto; Godoy, Alejandro S.; McNerney, Eileen M.; Tovar, Heribelt; Pantoja, Diego [Laboratory of Molecular Endocrinology, Department of Physiopathology, University of Concepcion, Concepcion (Chile); Johnson, Candace [Department of Molecular Pharmacology and Therapeutics, NY (United States); Trump, Donald [Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY (United States); Onate, Sergio A., E-mail: sergio.onate@udec.cl [Laboratory of Molecular Endocrinology, Department of Physiopathology, University of Concepcion, Concepcion (Chile); Department of Urology, State University of New York at Buffalo, NY (United States)

    2011-08-19

    Highlights: {yields} Fibroblasts from benign and carcinoma-associated stroma were biochemically characterized for VDR and GR function as transcription factors in prostate stroma cell microenvironment. {yields} Decreased SRC-1/CBP coactivators recruitment to VDR and GR may result in hormone resistance to 1,25D{sub 3} in stromal cell microenvironment prostate cancer. {yields} 1a,25-Dyhidroxyvitamin D{sub 3} (1,25D{sub 3}) and glucocorticoids, either alone or in combination, may not be an alternative for 'some' advanced prostate cancers that fails androgen therapies. -- Abstract: The disruption of stromal cell signals in prostate tissue microenvironment influences the development of prostate cancer to androgen independence. 1{alpha},25-Dihydroxyvitamin D{sub 3} (1,25D{sub 3}) and glucocorticoids, either alone or in combination, have been investigated as alternatives for the treatment of advanced prostate cancers that fails androgen therapies. The effects of glucocorticoids are mediated by the intracellular glucocorticoid receptor (GR). Similarly, the effect of 1,25D{sub 3} is mediated by the 1,25D{sub 3} nuclear receptor (VDR). In this study, fibroblasts from benign- (BAS) and carcinoma-associated stroma (CAS) were isolated from human prostates to characterize VDR and GR function as transcription factors in prostate stroma. The VDR-mediated transcriptional activity assessed using the CYP24-luciferase reporter was limited to 3-fold induction by 1,25D{sub 3} in 9 out of 13 CAS (70%), as compared to >10-fold induction in the BAS clinical sample pair. Expression of His-tagged VDR (Ad-his-VDR) failed to recover the low transcriptional activity of the luciferase reporter in 7 out of 9 CAS. Interestingly, expression of Ad-his-VDR successfully recovered receptor-mediated induction in 2 out of the 9 CAS analyzed, suggesting that changes in the receptor protein itself was responsible for decreased response and resistance to 1,25D{sub 3} action. Conversely, VDR

  20. Stability analysis of a hypothalamic-pituitary-adrenal axis model with inclusion of glucocorticoid receptor and memory

    Science.gov (United States)

    Kaslik, Eva; Navolan, Dan Bogdan; Neamţu, Mihaela

    2017-01-01

    This paper analyzes a four-dimensional model of the hypothalamic-pituitary-adrenal (HPA) axis that includes the influence of the glucocorticoid receptor in the pituitary. Due to the spatial separation between the hypothalamus, pituitary and adrenal glands, distributed time delays are introduced in the mathematical model. The existence of the positive equilibrium point is proved and a local stability and bifurcation analysis is provided, considering several types of delay kernels. The fractional-order model with discrete time delays is also taken into account. Numerical simulations are provided to illustrate the effectiveness of the theoretical findings.

  1. Keratinocyte-targeted overexpression of the glucocorticoid receptor delays cutaneous wound healing.

    Directory of Open Access Journals (Sweden)

    Ana Sanchis

    Full Text Available Delayed wound healing is one of the most common secondary adverse effects associated to the therapeutic use of glucocorticoid (GC analogs, which act through the ligand-dependent transcription factor GC-receptor (GR. GR function is exerted through DNA-binding-dependent and -independent mechanisms, classically referred to as transactivation (TA and transrepression (TR. Currently both TA and TR are thought to contribute to the therapeutical effects mediated by GR; however their relative contribution to unwanted side effects such as delayed wound healing is unknown. We evaluated skin wound healing in transgenic mice with keratinocyte-restricted expression of either wild type GR or a mutant GR that is TA-defective but efficient in TR (K5-GR and K5-GR-TR mice, respectively. Our data show that at days (d 4 and 8 following wounding, healing in K5-GR mice was delayed relative to WT, with reduced recruitment of granulocytes and macrophages and diminished TNF-α and IL-1β expression. TGF-β1 and Kgf expression was repressed in K5-GR skin whereas TGF-β3 was up-regulated. The re-epithelialization rate was reduced in K5-GR relative to WT, as was formation of granulation tissue. In contrast, K5-GR-TR mice showed delays in healing at d4 but re-established the skin breach at d8 concomitant with decreased repression of pro-inflammatory cytokines and growth factors relative to K5-GR mice. Keratinocytes from both transgenic mice closed in vitro wounds slower relative to WT, consistent with the in vivo defects in cell migration. Overall, the delay in the early stages of wound healing in both transgenic models is similar to that elicited by systemic treatment with dexamethasone. Wound responses in the transgenic keratinocytes correlated with reduced ERK activity both in vivo and in vitro. We conclude that the TR function of GR is sufficient for negatively regulating early stages of wound closure, while TA by GR is required for delaying later stages of healing.

  2. Short-day aggression is independent of changes in cortisol or glucocorticoid receptors in male Siberian hamsters (Phodopus sungorus).

    Science.gov (United States)

    Scotti, Melissa-Ann L; Rendon, Nikki M; Greives, Timothy J; Romeo, Russell D; Demas, Gregory E

    2015-06-01

    Testosterone mediates aggression in many vertebrates. In some species, aggression remains high during the non-breeding season (e.g., winter), when testosterone levels are low. In Siberian hamsters (Phodopus sungorus), we have demonstrated photoperiodic changes in aggression with hamsters housed in short, "winter-like" days displaying significantly more territorial aggression than long-day animals, despite low levels of testosterone. The mechanisms by which photoperiod regulates aggression, however, remain largely unknown. Adrenocortical hormones (e.g., glucocorticoids) have been implicated in mediating seasonal aggression; circulating concentrations of these hormones have been correlated with aggression in some species. The goal of this study was to examine the role of cortisol and glucocorticoid receptors in mediating photoperiodic changes in aggression in male Siberian hamsters. Males were housed in long or short days and treated with either exogenous cortisol or vehicle. Circulating levels of cortisol, adrenal cortisol content, and aggression were quantified. Lastly, photoperiodic effects on glucocorticoid receptor (GR) protein levels were quantified in limbic brain regions associated with aggression, including medial prefrontal cortex, amygdala, and hippocampus. Short-day hamsters were more aggressive than long-day hamsters, however cortisol treatment did not affect aggression. Photoperiod had no effect on serum or adrenal cortisol or GR levels in the brain regions examined. Taken together, these data suggest that increases in cortisol levels do not cause increases associated with short-day aggression, and further that GR protein levels are not associated with photoperiodic changes in aggression. The results of this study contribute to our understanding of the role of adrenocortical steroids in mediating seasonal aggression. © 2015 Wiley Periodicals, Inc.

  3. The glucocorticoid receptor in the limbic system of the human brain

    NARCIS (Netherlands)

    Wang, Qian

    2016-01-01

    Glucocorticoid hormones (GCs) are important mediators of the stress response in mammals including humans. GCs are released from the adrenal in response to stress and affect numerous processes in the body and brain. Their levels are controlled via negative feedback exerted by GC binding to brain

  4. Glucocorticoid receptor number predicts increase in amygdala activity after severe stress

    NARCIS (Netherlands)

    Geuze, Elbert; van Wingen, Guido A.; van Zuiden, Mirjam; Rademaker, Arthur R.; Vermetten, Eric; Kavelaars, Annemieke; Fernández, Guillén; Heijnen, Cobi J.

    2012-01-01

    Introduction: Individuals who are exposed to a traumatic event are at increased risk of developing psychiatric disorders such as posttraumatic stress disorder (PTSD). Studies have shown that increased amygdala activity is frequently found in patients with PTSD. In addition, pre-trauma glucocorticoid

  5. Low Concentrations of Corticosterone Exert Stimulatory Effects on Macrophage Function in a Manner Dependent on Glucocorticoid Receptors

    Directory of Open Access Journals (Sweden)

    He-Jiang Zhong

    2013-01-01

    Full Text Available Endogenous glucocorticoids (GCs have both stimulatory and suppressive effects on immune cells depending on the concentration. However, the mechanisms underlying the stimulatory effects of GCs remain elusive. Rat peritoneal macrophages were treated with different concentrations of corticosterone (0, 30 nM, 150 nM, and 3 μM. To inhibit the glucocorticoid receptor (GR activity, macrophages were preincubated with the GR antagonist RU486 (mifepristone, 10 μM for 30 min before treatment with corticosterone (150 nM. In the absence of immune stimuli, the chemotactic and phagocytic activities of macrophages were markedly enhanced by low concentrations of corticosterone (30 and 150 nM when compared with vehicle-treated controls. However, these effects were not observed at a high concentration of corticosterone (3 μM. Furthermore, blocking GR activity inhibited 150 nM corticosterone-enhanced chemotaxis and phagocytosis of macrophages. Meanwhile, after treatment with corticosterone (150 nM for 1 h and 3 h, GR protein expression increased to 1.4- and 2.2-fold, respectively, compared to untreated macrophages. These effects were inhibited by RU486. However, mineralocorticoid receptor (MR protein expression was not influenced by 150 nM corticosterone. These results demonstrate that low concentrations of corticosterone exert stimulatory effects on macrophage function in the absence of immune stimuli, and GR is at least partially responsible for these effects.

  6. Expression of glucocorticoid receptor is associated with aggressive primary endometrial cancer and increases from primary to metastatic lesions.

    Science.gov (United States)

    Tangen, Ingvild L; Veneris, Jennifer Taylor; Halle, Mari K; Werner, Henrica M; Trovik, Jone; Akslen, Lars A; Salvesen, Helga B; Conzen, Suzanne D; Fleming, Gini F; Krakstad, Camilla

    2017-12-01

    Glucocorticoid receptor (GR) has emerged as an important steroid nuclear receptor in hormone dependent cancers, however few data are available regarding a potential role of GR in endometrial cancer. The aim of this study was to investigate expression of GR in primary and metastatic endometrial cancer lesions, and to assess the relationship between GR expression and clinical and histopathological variables and survival. Expression of GR was investigated by IHC in 724 primary tumors and 289 metastatic lesions (from 135 patients), and correlations with clinical and histopathological data and survival were explored. Expression of GR was significantly increased in non-endometrioid tumors compared to endometrioid tumors, and was associated with markers of aggressive disease and poor survival both in univariate and multivariate analysis after correcting for age, FIGO stage and histologic grade. Within the subgroups of hormone receptor negative tumors (loss of androgen receptor, estrogen receptor or progesterone receptor) expression of GR was highly significantly associated with poor disease specific survival. There was an overall increase in GR expression from primary to metastatic lesions, and the majority of metastases expressed GR. GR expression in primary endometrial cancer is associated with aggressive disease and poor survival. The majority of metastatic endometrial cancer lesions express GR; therefore GR may represent a therapeutic target in the adjuvant therapy of poor prognosis early-stage as well as metastatic endometrial cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. A substitution in the ligand binding domain of the porcine glucocorticoid receptor affects activity of the adrenal gland.

    Directory of Open Access Journals (Sweden)

    Eduard Murani

    Full Text Available Glucocorticoids produced in the adrenal cortex under the control of the hypothalamic-pituitary axis play a vital role in the maintenance of basal and stress-related homeostasis and influence health and well-being. To identify loci affecting regulation of the hypothalamic-pituitary-adrenal (HPA axis in the pig we performed a genome-wide association study for two parameters of acute and long-term adrenal activity: plasma cortisol level and adrenal weight. We detected a major quantitative trait locus at the position of the glucocorticoid receptor gene (NR3C1 - a key regulator of HPA axis activity. To determine the causal variant(s, we resequenced the coding region of NR3C1 and found three missense single nucleotide polymorphisms (SNPs. SNP c.1829C>T, leading to a p.Ala610Val substitution in the ligand binding domain, showed large (about 0.6× and 1.2× phenotypic standard deviations for cortisol level and adrenal weight, respectively, and highly significant (2.1E-39≤log10(1/p≤1.7E+0 negative effects on both traits. We were able to replicate the association in three commercial pig populations with different breed origins. We analyzed effects of the p.Ala610Val substitution on glucocorticoid-induced transcriptional activity of porcine glucocorticoid receptor (GR in vitro and determined that the substitution introduced by SNP c.1829C>T increased sensitivity of GR by about two-fold. Finally, we found that non-coding polymorphisms in linkage disequilibrium with SNP c.1829C>T have only a minor effect on the expression of NR3C1 in tissues related to the HPA axis. Our findings provide compelling evidence that SNP c.1829C>T in porcine NR3C1 is a gain-of-function mutation with a major effect on the activity of the adrenal gland. Pigs carrying this SNP could provide a new animal model to study neurobiological and physiological consequences of genetically based GR hypersensitivity and adrenal hypofunction.

  8. Contribution of mineralocorticoid and glucocorticoid receptors to the chronotropic and hypertrophic actions of aldosterone in neonatal rat ventricular myocytes.

    Science.gov (United States)

    Rossier, Michel F; Python, Magaly; Maturana, Andrés D

    2010-06-01

    Mineralocorticoids and glucocorticoids have been involved in the genesis of ventricular arrhythmias associated with pathological heart hypertrophy. We previously observed, using isolated neonate rat ventricular cardiomyocytes, that both aldosterone (Aldo) and corticosterone induced in vitro a marked acceleration of the spontaneous contractions of these cells, a phenomenon dependent on the expression of the low threshold T-type calcium channels. Because both mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) mediated the chronotropic response to corticosteroids, we characterized the role of each receptor using spironolactone and mifepristone (RU-486) as specific antagonists. We first observed that GR antagonism, but not MR antagonism, completely disrupted the significant correlation existing between the level of T channel mRNA and the beating frequency; this difference could not be explained by a specific regulation of channel expression or activity by one of the receptors. Moreover, the chronotropic action of Aldo was additive to that of forskolin, a direct activator of the cAMP pathway. This additive response was selectively abolished upon GR inhibition. Finally, myocyte hypertrophy induced in vitro by Aldo was completely prevented by GR antagonism, whereas spironolactone had only a marginal effect. These results suggest that, in isolated rat ventricular cardiomyocytes, the activation of both MR and GR is necessary for a complete electrical remodeling and a maximal chronotropic response to corticosteroids. However, GR alone appears involved in the sensitization of the cells to the chronotropic regulation through the cAMP pathway and in the hypertrophic response to steroids. These observations have therapeutic implications given the fact that MR becomes a major target of pharmacological drugs in the clinical practice for preventing cardiac function decompensation and evolution toward heart failure and lethal arrhythmias.

  9. Mineralocorticoid and glucocorticoid receptors differentially regulate NF-kappaB activity and pro-inflammatory cytokine production in murine BV-2 microglial cells

    Directory of Open Access Journals (Sweden)

    Chantong Boonrat

    2012-11-01

    Full Text Available Abstract Background Microglia, the resident macrophage-like cells in the brain, regulate innate immune responses in the CNS to protect neurons. However, excessive activation of microglia contributes to neurodegenerative diseases. Corticosteroids are potent modulators of inflammation and mediate their effects by binding to mineralocorticoid receptors (MR and glucocorticoid receptors (GR. Here, the coordinated activities of GR and MR on the modulation of the nuclear factor-κB (NF-κB pathway in murine BV-2 microglial cells were studied. Methods BV-2 cells were treated with different corticosteroids in the presence or absence of MR and GR antagonists. The impact of the glucocorticoid-activating enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1 was determined by incubating cells with 11-dehydrocorticosterone, with or without selective inhibitors. Expression of interleukin-6 (IL-6, tumor necrosis factor receptor 2 (TNFR2, and 11β-HSD1 mRNA was analyzed by RT-PCR and IL-6 protein expression by ELISA. NF-κB activation and translocation upon treatment with various corticosteroids were visualized by western blotting, immunofluorescence microscopy, and translocation assays. Results GR and MR differentially regulate NF-κB activation and neuroinflammatory parameters in BV-2 cells. By converting inactive 11-dehydrocorticosterone to active corticosterone, 11β-HSD1 essentially modulates the coordinated action of GR and MR. Biphasic effects were observed for 11-dehydrocorticosterone and corticosterone, with an MR-dependent potentiation of IL-6 and tumor necrosis factor-α (TNF-α expression and NF-κB activation at low/moderate concentrations and a GR-dependent suppression at high concentrations. The respective effects were confirmed using the MR ligand aldosterone and the antagonist spironolactone as well as the GR ligand dexamethasone and the antagonist RU-486. NF-κB activation could be blocked by spironolactone and the inhibitor of NF

  10. Glucocorticoid effects on the programming of AT1b angiotensin receptor gene methylation and expression in the rat.

    Directory of Open Access Journals (Sweden)

    Irina Bogdarina

    2010-02-01

    Full Text Available Adverse events in pregnancy may 'programme' offspring for the later development of cardiovascular disease and hypertension. Previously, using a rodent model of programmed hypertension we have demonstrated the role of the renin-angiotensin system in this process. More recently we showed that a maternal low protein diet resulted in undermethylation of the At1b angiotensin receptor promoter and the early overexpression of this gene in the adrenal of offspring. Here, we investigate the hypothesis that maternal glucocorticoid modulates this effect on fetal DNA methylation and gene expression. We investigated whether treatment of rat dams with the 11beta-hydroxylase inhibitor metyrapone, could prevent the epigenetic and gene expression changes we observed. Offspring of mothers subjected to a low protein diet in pregnancy showed reduced adrenal Agtr1b methylation and increased adrenal gene expression as we observed previously. Treatment of mothers with metyrapone for the first 14 days of pregnancy reversed these changes and prevented the appearance of hypertension in the offspring at 4 weeks of age. As a control for non-specific effects of programmed hypertension we studied offspring of mothers treated with dexamethasone from day 15 of pregnancy and showed that, whilst they had raised blood pressure, they failed to show any evidence of Agtr1b methylation or increase in gene expression. We conclude that maternal glucocorticoid in early pregnancy may induce changes in methylation and expression of the Agtr1b gene as these are clearly reversed by an 11 beta-hydroxylase inhibitor. However in later pregnancy a converse effect with dexamethasone could not be demonstrated and this may reflect either an alternative mechanism of this glucocorticoid or a stage-specific influence.

  11. Circadian rhythm transcription factor CLOCK regulates the transcriptional activity of the glucocorticoid receptor by acetylating its hinge region lysine cluster: potential physiological implications

    Science.gov (United States)

    Nader, Nancy; Chrousos, George P.; Kino, Tomoshige

    2009-01-01

    Glucocorticoids, end products of the hypothalamic-pituitary-adrenal axis, influence functions of virtually all organs and tissues through the glucocorticoid receptor (GR). Circulating levels of glucocorticoids fluctuate naturally in a circadian fashion and regulate the transcriptional activity of GR in target tissues. The basic helix-loop-helix protein CLOCK, a histone acetyltransferase (HAT), and its heterodimer partner BMAL1 are self-oscillating transcription factors that generate circadian rhythms in both the central nervous system and periphery. We found that CLOCK/BMAL1 repressed GR-induced transcriptional activity in a HAT-activity- dependent fashion. In serum-shock-synchronized cells, transactivational activity of GR, accessed by mRNA expression of an endogenous-responsive gene, fluctuated spontaneously in a circadian fashion in reverse phase with CLOCK/BMAL1 mRNA expression. CLOCK and GR interacted with each other physically, and CLOCK suppressed binding of GR to its DNA recognition sequences by acetylating multiple lysine residues located in its hinge region. These findings indicate that CLOCK/BMAL1 functions as a reverse-phase negative regulator of glucocorticoid action in target tissues, possibly by antagonizing biological actions of diurnally fluctuating circulating glucocorticoids. Further, these results suggest that a peripheral target tissue circadian rhythm indirectly influences the functions of every organ and tissue inside the body through modulation of the ubiquitous and diverse actions of glucocorticoids.—Nader, N., Chrousos, G. P., Kino, T. Circadian rhythm transcription factor CLOCK regulates the transcriptional activity of the glucocorticoid receptor by acetylating its hinge region lysine cluster: potential physiological implications. PMID:19141540

  12. Effects of formaldehyde exposure on anxiety-like and depression-like behavior, cognition, central levels of glucocorticoid receptor and tyrosine hydroxylase in mice.

    Science.gov (United States)

    Li, Yani; Song, Zhuoyi; Ding, Yujuan; Xin, Ye; Wu, Tong; Su, Tao; He, Rongqiao; Tai, Fadao; Lian, Zhenmin

    2016-02-01

    Formaldehyde exposure is toxic to the brains of mammals, but the mechanism remains unclear. We investigated the effects of inhaled formaldehyde on anxiety, depression, cognitive capacity and central levels of glucocorticoid receptor and tyrosine hydroxylase in mice. After exposure to 0, 1 or 2 ppm gaseous formaldehyde for one week, we measured anxiety-like behavior using open field and elevated plus-maze tests, depression-like behavior using a forced swimming test, learning and memory using novel object recognition tests, levels of glucocorticoid receptors in the hippocampus and tyrosine hydroxylase in the Arc, MPOA, ZI and VTA using immuhistochemistry. We found that inhalation of 1 ppm formaldehyde reduced levels of anxiety-like behavior. Inhalation of 2 ppm formaldehyde reduced body weight, but increased levels of depression-like behavior, impaired novel object recognition, and lowered the numbers of glucocorticoid receptor immonureactive neurons in the hippocampus and tyrosine hydroxylase immonureactive neurons in the ventral tegmental area and the zona incerta, medial preoptic area. Different concentrations of gaseous formaldehyde result in different effects on anxiety, depression-like behavior and cognition ability which may be associated with alterations in hippocampal glucocorticoid receptors and brain tyrosine hydroxylase levels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Increased expression of the glucocorticoid receptor-A translational isoform as a result of the ER22/23EK polymorphism.

    NARCIS (Netherlands)

    H. Russcher (Henk); E.F.C. van Rossum (Liesbeth); F.H. de Jong (Frank); A.O. Brinkmann (Albert); S.W.J. Lamberts (Steven); J.W. Koper (Jan)

    2005-01-01

    textabstractOne of the most intriguing polymorphisms in the GR [glucocorticoid (GC) receptor] gene is in codons 22 and 23 [GAGAGG(GluArg) --> GAAAAG (GluLys)]. This polymorphism is associated with a reduced GC sensitivity, a better metabolic and cardiovascular health profile, and an increased

  14. Cytological Differences in the Localization of Glucocorticoid Receptor-Like Imnunoreactivity in the Normal and Transplanted Pituitary Pars Intermedia

    Science.gov (United States)

    Iturriza, Fermlín C.; Dumm, César L. A. Gómez

    1992-01-01

    Glucocorticoid receptor-like immunoreactivity (GCRI) was found in the normal pituitary pars intermedia (PI) when immunohistochemistry was used. Since in previous studies we described two kinds of cells in the denervated (grafted) PI, i.e., “light cells” (overactive cells which do not contain detectable melanocyte stimulating hormone) and “dark cells” (hypoactive cells which contain the hormone), it was decided to investigate whether different patterns of distribution of the receptors could be detected in the grafted gland when compared with the intact PI. Intact glands showed the receptors located in the nucleus. In transplanted glands, it was observed that light cells showed receptors in both the nuclei and the cytoplasm; on the other hand, dark cells displayed them in the nuclei only, as is the case in all cells of the normal PI. We had previously interpreted dark cells as dopamine-indifferent, whereas light cells were considered dopamine-sensitive. The changes in the distribution of GCR after denervation by grafting, which only affected the light cells, support the view of other authors that GCR of. the pars intermedia are under the influence of dopamine and reinforce our opinion that dark cells are dopamine-indifferent PMID:1571397

  15. Inhibition of dehydration-induced water intake by glucocorticoids is associated with activation of hypothalamic natriuretic peptide receptor-A in rat.

    Directory of Open Access Journals (Sweden)

    Chao Liu

    Full Text Available Atrial natriuretic peptide (ANP provides a potent defense mechanism against volume overload in mammals. Its primary receptor, natriuretic peptide receptor-A (NPR-A, is localized mostly in the kidney, but also is found in hypothalamic areas involved in body fluid volume regulation. Acute glucocorticoid administration produces potent diuresis and natriuresis, possibly by acting in the renal natriuretic peptide system. However, chronic glucocorticoid administration attenuates renal water and sodium excretion. The precise mechanism underlying this paradoxical phenomenon is unclear. We assume that chronic glucocorticoid administration may activate natriuretic peptide system in hypothalamus, and cause volume depletion by inhibiting dehydration-induced water intake. Volume depletion, in turn, compromises renal water excretion. To test this postulation, we determined the effect of dexamethasone on dehydration-induced water intake and assessed the expression of NPR-A in the hypothalamus. The rats were deprived of water for 24 hours to have dehydrated status. Prior to free access to water, the water-deprived rats were pretreated with dexamethasone or vehicle. Urinary volume and water intake were monitored. We found that dexamethasone pretreatment not only produced potent diuresis, but dramatically inhibited the dehydration-induced water intake. Western blotting analysis showed the expression of NPR-A in the hypothalamus was dramatically upregulated by dexamethasone. Consequently, cyclic guanosine monophosphate (the second messenger for the ANP content in the hypothalamus was remarkably increased. The inhibitory effect of dexamethasone on water intake presented in a time- and dose-dependent manner, which emerged at least after 18-hour dexamethasone pretreatment. This effect was glucocorticoid receptor (GR mediated and was abolished by GR antagonist RU486. These results indicated a possible physiologic role for glucocorticoids in the hypothalamic control of

  16. Expression and function of nuclear receptor coregulators in brain : understanding the cell-specific effects of glucocorticoids

    NARCIS (Netherlands)

    Laan, Siem van der

    2008-01-01

    Currently, the raising awareness of the role of glucocorticoids in the onset of numerous (neuro)-pathologies constitutes the increasing necessity of understanding the mechanisms of action of glucocorticoids in bodily processes and brain functioning. Glucocorticoids mediate their effects by binding

  17. Inactivación selectiva del receptor de glucocorticoides en la epidermis de ratón. Defectos en el desarrollo y cáncer de piel

    OpenAIRE

    Latorre, Víctor

    2014-01-01

    Los glucocorticoides y su receptor Los glucocorticoides (GCs) son hormonas esteroideas que se sintetizan y secretan en las glándulas adrenales como respuesta a señales de estrés externas y cuya síntesis está regulada por el eje hipotálamo-pituitaria-adrenal (HPA) (Taves et al., 2011). Los GCs, cortisol en humanos y corticosterona en ratones, regulan numerosos procesos fisiológicos como el metabolismo de glucosa y lípidos, la respuesta inflamatoria e inmune, el desarrollo fetal y la prolife...

  18. Possible involvement of the glucocorticoid receptor (NR3C1) and selected NR3C1 gene variants in regulation of human testicular function

    DEFF Research Database (Denmark)

    Nordkap, L; Almstrup, K; Nielsen, J E

    2017-01-01

    Perceived stress has been associated with decreased semen quality but the mechanisms have not been elucidated. It is not known whether cortisol, the major stress hormone in humans, can act directly via receptors in the testis, and whether variants in the gene encoding the glucocorticoid receptor...... is limited, the results substantiate a suggested link between stress and testicular function. Hence this investigation should be regarded as a discovery study generating hypotheses for future studies....

  19. Impaired imprinting and social behaviors in chicks exposed to mifepristone, a glucocorticoid receptor antagonist, during the final week of embryogenesis.

    Science.gov (United States)

    Nishigori, Hideo; Kagami, Keisuke; Nishigori, Hidekazu

    2014-03-15

    The effects of glucocorticoid receptor dysfunction during embryogenesis on the imprinting abilities and social behaviors of hatchlings were examined using "fertile hen's egg-embryo-chick" system. Of embryos treated with mifepristone (0.4μmol/egg) on day 14, over 75% hatched a day later than the controls (day 22) without external anomalies. The mifepristone-treated hatchlings were assayed for imprinting ability on post-hatching day 2 and for social behaviors on day 3. The findings were as follows: imprinting ability (expressed as preference score) was significantly lower in mifepristone-treated hatchlings than in controls (0.65±0.06 vs. 0.92±0.02, P<0.005). Aggregation tests to evaluate the speed (seconds) required for four chicks, individually isolated with cardboard dividers in a box, to form a group after removal of the barriers showed that aggregation was significantly slower in mifepristone-treated hatchlings than in controls (8.7±1.1 vs. 2.6±0.3, P<0.001). In belongingness tests to evaluate the speed (seconds) for a chick isolated at a corner to join a group of three chicks placed at the opposite corner, mifepristone-treated hatchlings took significantly longer than controls (4.5±0.4/40 cm vs. 2.4±0.08/40 cm, P<0.001). In vocalization tests, using a decibel meter to measure average decibel level/30s (chick vocalization), mifepristone-treated hatchlings had significantly weaker vocalizations than controls (14.2±1.9/30s vs. 26.4±1.3/30s P<0.001). In conclusion, glucocorticoid receptor dysfunction during the last week embryogenesis altered the programming of brain development, resulting in impaired behavioral activities in late life. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. The selective glucocorticoid receptor modulator CORT108297 restores faulty hippocampal parameters in Wobbler and corticosterone-treated mice.

    Science.gov (United States)

    Meyer, Maria; Gonzalez Deniselle, Maria Claudia; Hunt, Hazel; de Kloet, E Ronald; De Nicola, Alejandro F

    2014-09-01

    Mutant Wobbler mice are models for human amyotrophic lateral sclerosis (ALS). In addition to spinal cord degeneration, Wobbler mice show high levels of blood corticosterone, hyperactivity of the hypothalamic-pituitary-adrenal axis and abnormalities of the hippocampus. Hypersecretion of glucocorticoids increase hippocampus vulnerability, a process linked to an enriched content of glucocorticoid receptors (GR). Hence, we studied if a selective GR antagonist (CORT108297) with null affinity for other steroid receptors restored faulty hippocampus parameters of Wobbler mice. Three months old genotyped Wobbler mice received s.c. vehicle or CORT108297 during 4 days. We compared the response of doublecortin (DCX)+ neuroblasts in the subgranular layer of the dentate gyrus (DG), NeuN+ cells in the hilus of the DG, glial fibrillary acidic protein (GFAP)+ astrocytes and the phenotype of Iba1+ microglia in CORT108297-treated and vehicle-treated Wobblers. The number of DCX+ cells in Wobblers was lower than in control mice, whereas CORT108297 restored this parameter. After CORT108297 treatment, Wobblers showed diminished astrogliosis, and changed the phenotype of Iba1+ microglia from an activated to a quiescent form. These changes occurred without alterations in the hypercorticosteronemia or the number of NeuN+ cells of the Wobblers. In a separate experiment employing control NFR/NFR mice, treatment with corticosterone for 5 days reduced DCX+ neuroblasts and induced astrocyte hypertrophy, whereas treatment with CORT108297 antagonized these effects. Normalization of neuronal progenitors, astrogliosis and microglial phenotype by CORT108297 indicates the usefulness of this antagonist to normalize hippocampus parameters of Wobbler mice. Thus, CORT108297 opens new therapeutic options for the brain abnormalities of ALS patients and hyperadrenocorticisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Maternal obesity in the ewe increases cardiac ventricular expression of glucocorticoid receptors, proinflammatory cytokines and fibrosis in adult male offspring.

    Directory of Open Access Journals (Sweden)

    Adel B Ghnenis

    Full Text Available Obesity during human pregnancy predisposes offspring to obesity and cardiovascular disease in postnatal life. In a sheep model of maternal overnutrition/obesity we have previously reported myocardial inflammation and fibrosis, as well as cardiac dysfunction in late term fetuses, in association with chronically elevated blood cortisol. Significant research has suggested a link between elevated glucocorticoid exposure in utero and hypertension and cardiovascular disease postnatally. Here we examined the effects of maternal obesity on myocardial inflammation and fibrosis of their adult offspring. Adult male offspring from control (CON mothers fed 100% of National Research Council (NRC recommendations (n = 6 and male offspring from obese mothers (MO fed 150% NRC (n = 6, were put on a 12-week ad libitum feeding challenge then necropsied. At necropsy, plasma cortisol and left and right ventricular thickness were markedly increased (P<0.05 in adult male MO offspring. Myocardial collagen content and collagen-crosslinking were greater (P<0.05 in MO offspring compared to CON offspring in association with increased mRNA and protein expression of glucocorticoid receptors (GR. No group difference was found in myocardial mineralocorticoids receptor (MR protein expression. Further, mRNA expression for the proinflammatory cytokines: cluster of differentiation (CD-68, transforming growth factor (TGF-β1, and tumor necrosis factor (TNF-α were increased (P < 0.05, and protein expression of CD-68, TGF-β1, and TNF-α tended to increase (P<0.10 in MO vs. CON offspring. These data provide evidence for MO-induced programming of elevated plasma cortisol and myocardial inflammation and fibrosis in adult offspring potentially through increased GR.

  2. Mapracorat, a selective glucocorticoid receptor agonist, causes apoptosis of eosinophils infiltrating the conjunctiva in late-phase experimental ocular allergy

    Directory of Open Access Journals (Sweden)

    Baiula M

    2014-06-01

    Full Text Available Monica Baiula,1 Andrea Bedini,1 Jacopo Baldi,1 Megan E Cavet,2 Paolo Govoni,3 Santi Spampinato11Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy; 2Global Pharmaceutical R&D, Bausch & Lomb Inc., Rochester, NY, USA; 3Department of Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma, ItalyBackground: Mapracorat, a novel nonsteroidal selective glucocorticoid receptor agonist, has been proposed for the topical treatment of inflammatory disorders as it binds with high affinity and selectivity to the human glucocorticoid receptor and displays a potent anti-inflammatory activity, but seems to be less effective in transactivation of a number of genes, resulting in a lower potential for side effects. Contrary to classical glucocorticoids, mapracorat displays a reduced ability to increase intraocular pressure and in inducing myocilin, a protein linked to intraocular pressure elevation. Allergic conjunctivitis is the most common form of ocular allergy and can be divided into an early phase, developing immediately after allergen exposure and driven primarily by mast cell degranulation, and a late phase, developing from 6–10 hours after the antigen challenge, and characterized by conjunctival infiltration of eosinophils and other immune cells as well as by the production of cytokines and chemokines.Methods: In this study, mapracorat was administered into the conjunctival sac of ovalbumin (OVA-sensitized guinea pigs 2 hours after the induction of allergic conjunctivitis, with the aim of investigating its activity in reducing clinical signs of the late-phase ocular reaction and to determine its mechanism of anti-allergic effects with respect to apoptosis of conjunctival eosinophils and expression of the chemokines C-C motif ligand 5 (CCL5, C-C motif ligand 11 (CCL11, and interleukin-8 (IL-8 and the proinflammatory cytokines interleukin-1β (IL-1β and tumor necrosis factor-α (TNF

  3. Response to metal stress of Nicotiana langsdorffii plants wild-type and transgenic for the rat glucocorticoid receptor gene.

    Science.gov (United States)

    Fuoco, Roger; Bogani, Patrizia; Capodaglio, Gabriele; Del Bubba, Massimo; Abollino, Ornella; Giannarelli, Stefania; Spiriti, Maria Michela; Muscatello, Beatrice; Doumett, Saer; Turetta, Clara; Zangrando, Roberta; Zelano, Vincenzo; Buiatti, Marcello

    2013-05-01

    Recently our findings have shown that the integration of the gene coding for the rat gluco-corticoid receptor (GR receptor) in Nicotiana langsdorffii plants induced morphophysiological effects in transgenic plants through the modification of their hormonal pattern. Phytohormones play a key role in plant responses to many different biotic and abiotic stresses since a modified hormonal profile up-regulates the activation of secondary metabolites involved in the response to stress. In this work transgenic GR plants and isogenic wild type genotypes were exposed to metal stress by treating them with 30ppm cadmium(II) or 50ppm chromium(VI). Hormonal patterns along with changes in key response related metabolites were then monitored and compared. Heavy metal up-take was found to be lower in the GR plants. The transgenic plants exhibited higher values of S-abscisic acid (S-ABA) and 3-indole acetic acid (IAA), salicylic acid and total polyphenols, chlorogenic acid and antiradical activity, compared to the untransformed wild type plants. Both Cd and Cr treatments led to an increase in hormone concentrations and secondary metabolites only in wild type plants. Analysis of the results suggests that the stress responses due to changes in the plant's hormonal system may derive from the interaction between the GR receptor and phytosteroids, which are known to play a key role in plant physiology and development. Copyright © 2013 Elsevier GmbH. All rights reserved.

  4. Clinical aspects of glucocorticoid sensitivity

    OpenAIRE

    Lamberts, Steven; Huizenga, Nannette; Lange, Pieter; Jong, Frank; Koper, Jan

    1996-01-01

    textabstractRecent studies demonstrate that primary (hereditary) abnormalities in the glucocorticoid receptor gene make 6.6% of the normal population relatively 'hypersensitive' to glucocorticoids, while 2.3% are relatively 'resistant.' These abnormalities might explain why some individuals develop severe adverse effects during low dose glucocorticoid therapy, while others do not develop side effects even during long-term therapy with a much higher dose. Awareness of this heterogeneity in glu...

  5. Tall stature in familial glucocorticoid deficiency.

    Science.gov (United States)

    Elias, L L; Huebner, A; Metherell, L A; Canas, A; Warne, G L; Bitti, M L; Cianfarani, S; Clayton, P E; Savage, M O; Clark, A J

    2000-10-01

    Familial glucocorticoid deficiency (FGD) has frequently been associated with tall stature in affected individuals. The clinical, biochemical and genetic features of five such patients were studied with the aim of clarifying the underlying mechanisms of excessive growth in these patients. Five patients with a clinical diagnosis of FGD are described in whom the disorder resulted from a variety of novel or previously described missense or nonsense mutations of the ACTH receptor (MC2-R). All patients demonstrated excessive linear growth over that predicted from parental indices and increased head circumference. Growth hormone and IGF-I-values were normal. Growth charts suggest that the excessive growth is reduced to normal following the introduction of glucocorticoid replacement. A characteristic facial appearance including hypertelorism, marked epicanthic folds and prominent frontal bossing was noted. These findings indicate that ACTH resistance resulting from a defective ACTH receptor may be associated with abnormalities of cartilage and/or bone growth independently of the GH-IGF-I axis, but probably dependent on ACTH actions through other melanocortin receptors.

  6. Stress and glucocorticoid receptor-dependent mechanisms in long-term memory: from adaptive responses to psychopathologies

    Science.gov (United States)

    Finsterwald, Charles; Alberini, Cristina M.

    2013-01-01

    A proper response against stressors is critical for survival. In mammals, the stress response is primarily mediated by secretion of glucocorticoids via the hypothalamic-pituitaryadrenocortical (HPA) axis and release of catecholamines through adrenergic neurotransmission. Activation of these pathways results in a quick physical response to the stress and, in adaptive conditions, mediates long-term changes in the brain that lead to the formation of long-term memories of the experience. These long-term memories are an essential adaptive mechanism that allows an animal to effectively face similar demands again. Indeed, a moderate stress level has a strong positive effect on memory and cognition, as a single arousing or moderately stressful event can be remembered for up to a lifetime. Conversely, exposure to extreme, traumatic, or chronic stress can have the opposite effect and cause memory loss, cognitive impairments, and stress-related psychopathologies such as anxiety disorders, depression and post-traumatic stress disorder (PTSD). While more effort has been devoted to the understanding of the effects of the negative effects of chronic stress, much less has been done thus far on the identification of the mechanisms engaged in the brain when stress promotes long-term memory formation. Understanding these mechanisms will provide critical information for use in ameliorating memory processes in both normal and pathological conditions. Here, we will review the role of glucocorticoids and glucocorticoid receptors (GRs) in memory formation and modulation. Furthermore, we will discuss recent findings on the molecular cascade of events underlying the effect of GR activation in adaptive levels of stress that leads to strong, long-lasting memories. Our recent data indicate that the positive effects of GR activation on memory consolidation critically engage the brain-derived neurotrophic factor (BDNF) pathway. We propose and will discuss the hypothesis that stress promotes the

  7. Stress and glucocorticoid receptor-dependent mechanisms in long-term memory: from adaptive responses to psychopathologies.

    Science.gov (United States)

    Finsterwald, Charles; Alberini, Cristina M

    2014-07-01

    A proper response against stressors is critical for survival. In mammals, the stress response is primarily mediated by secretion of glucocorticoids via the hypothalamic-pituitary-adrenocortical (HPA) axis and release of catecholamines through adrenergic neurotransmission. Activation of these pathways results in a quick physical response to the stress and, in adaptive conditions, mediates long-term changes in the brain that lead to the formation of long-term memories of the experience. These long-term memories are an essential adaptive mechanism that allows an animal to effectively face similar demands again. Indeed, a moderate stress level has a strong positive effect on memory and cognition, as a single arousing or moderately stressful event can be remembered for up to a lifetime. Conversely, exposure to extreme, traumatic, or chronic stress can have the opposite effect and cause memory loss, cognitive impairments, and stress-related psychopathologies such as anxiety disorders, depression and post-traumatic stress disorder (PTSD). While more effort has been devoted to the understanding of the negative effects of chronic stress, much less has been done thus far on the identification of the mechanisms engaged in the brain when stress promotes long-term memory formation. Understanding these mechanisms will provide critical information for use in ameliorating memory processes in both normal and pathological conditions. Here, we will review the role of glucocorticoids and glucocorticoid receptors (GRs) in memory formation and modulation. Furthermore, we will discuss recent findings on the molecular cascade of events underlying the effect of GR activation in adaptive levels of stress that leads to strong, long-lasting memories. Our recent data indicate that the positive effects of GR activation on memory consolidation critically engage the brain-derived neurotrophic factor (BDNF) pathway. We propose and will discuss the hypothesis that stress promotes the formation of

  8. The role of 'mineralocorticoids' in teleost fish: relative importance of glucocorticoid signaling in the osmoregulation and 'central' actions of mineralocorticoid receptor.

    Science.gov (United States)

    Takahashi, Hideya; Sakamoto, Tatsuya

    2013-01-15

    It has long been held that cortisol, a glucocorticoid in many vertebrates, performs glucocorticoid and mineralocorticoid actions in the teleost fish since it lacks aldosterone. However, in addition to the counterparts of tetrapod mineralocorticoid receptors (MRs), 11-deoxycorticosterone (DOC) has been recently identified as a specific endogenous ligand for the MRs in teleosts. Here, we point out the minor role of mineralocorticoid signaling (i.e., DOC-MR) in the osmoregulation compared with those of glucocorticoid signaling (i.e., cortisol-glucocorticoid receptor [GR]), and review the current findings on the physiological roles of the DOC-MR in teleosts. Cortisol promotes both freshwater and seawater adaptation via the GRs in the osmoregulatory organs such as gills and gastrointestinal tracts, but the expressions of MR mRNA are abundant in the brains especially in the key components of the stress axis and cerebellums. Together with the behavioral effects of intracerebroventricular injection with DOC, the MR is suggested to play an important role in the brain dependent behaviors. Since the abundant expression of central MRs has been reported also in higher vertebrates and the MR is thought to be ancestral to the GR, the role of MR in fish might reflect the principal and original function of corticosteroid signaling. Functional evolution of corticosteroid systems is summarized and areas in need of research like our on-going experiments with MR-knockout medaka are outlined. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Decreased comfort food intake and allostatic load in adolescents carrying the A3669G variant of the glucocorticoid receptor gene.

    Science.gov (United States)

    Rodrigues, Danitsa Marcos; Reis, Roberta Sena; Dalle Molle, Roberta; Machado, Tania Diniz; Mucellini, Amanda Brondani; Bortoluzzi, Andressa; Toazza, Rudineia; Pérez, Juliano Adams; Salum, Giovanni Abrahão; Agranonik, Marilyn; Minuzzi, Luciano; Levitan, Robert D; Buchweitz, Augusto; Franco, Alexandre Rosa; Manfro, Gisele Gus; Silveira, Patrícia Pelufo

    2017-09-01

    The A3669G single nucleotide polymorphism (SNP) of the glucocorticoid receptor (GR) gene NR3C1 is associated with altered tissue sensitivity to glucocorticoids (GCs). GCs modulate the food reward circuitry and are implicated in increased intake of palatable foods, which can lead to the metabolic syndrome and obesity. We hypothesized that presence of the G variant of the A3669G SNP would affect preferences for palatable foods and alter metabolic, behavioural, and neural outcomes. One hundred thirty-one adolescents were genotyped for the A3669G polymorphism, underwent anthropometric assessment and nutritional evaluations, and completed behavioural measures. A subsample of 74 subjects was followed for 5 years and performed a brain functional magnetic resonance imaging (fMRI) paradigm to verify brain activity in response to food cues. Sugar and total energy consumption were lower in A3669G G allele variant carriers. On follow-up, this group also had reduced serum insulin concentrations, increased insulin sensitivity, and lower anxiety scores. Because of our unbalanced sample sizes (31/37 participants non-G allele carriers/total), our imaging data analysis failed to find whole brain-corrected significant results in between-group t-tests. These results highlight that a genetic variation in the GR gene is associated, at the cellular level, with significant reduction in GC sensitivity, which, at cognitive and behavioural levels, translates to altered food intake and emotional stress response. This genetic variant might play a major role in decreasing risk for metabolic and psychiatric diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Cistrome-based Cooperation between Airway Epithelial Glucocorticoid Receptor and NF-κB Orchestrates Anti-inflammatory Effects.

    Science.gov (United States)

    Kadiyala, Vineela; Sasse, Sarah K; Altonsy, Mohammed O; Berman, Reena; Chu, Hong W; Phang, Tzu L; Gerber, Anthony N

    2016-06-10

    Antagonism of pro-inflammatory transcription factors by monomeric glucocorticoid receptor (GR) has long been viewed as central to glucocorticoid (GC) efficacy. However, the mechanisms and targets through which GCs exert therapeutic effects in diseases such as asthma remain incompletely understood. We previously defined a surprising cooperative interaction between GR and NF-κB that enhanced expression of A20 (TNFAIP3), a potent inhibitor of NF-κB. Here we extend this observation to establish that A20 is required for maximal cytokine repression by GCs. To ascertain the global extent of GR and NF-κB cooperation, we determined genome-wide occupancy of GR, the p65 subunit of NF-κB, and RNA polymerase II in airway epithelial cells treated with dexamethasone, TNF, or both using chromatin immunoprecipitation followed by deep sequencing. We found that GR recruits p65 to dimeric GR binding sites across the genome and discovered additional regulatory elements in which GR-p65 cooperation augments gene expression. GR targets regulated by this mechanism include key anti-inflammatory and injury response genes such as SERPINA1, which encodes α1 antitrypsin, and FOXP4, an inhibitor of mucus production. Although dexamethasone treatment reduced RNA polymerase II occupancy of TNF targets such as IL8 and TNFAIP2, we were unable to correlate specific binding sequences for GR or occupancy patterns with repressive effects on transcription. Our results suggest that cooperative anti-inflammatory gene regulation by GR and p65 contributes to GC efficacy, whereas tethering interactions between GR and p65 are not universally required for GC-based gene repression. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Response Element Composition Governs Correlations between Binding Site Affinity and Transcription in Glucocorticoid Receptor Feed-forward Loops*

    Science.gov (United States)

    Sasse, Sarah K.; Zuo, Zheng; Kadiyala, Vineela; Zhang, Liyang; Pufall, Miles A.; Jain, Mukesh K.; Phang, Tzu L.; Stormo, Gary D.; Gerber, Anthony N.

    2015-01-01

    Combinatorial gene regulation through feed-forward loops (FFLs) can bestow specificity and temporal control to client gene expression; however, characteristics of binding sites that mediate these effects are not established. We previously showed that the glucocorticoid receptor (GR) and KLF15 form coherent FFLs that cooperatively induce targets such as the amino acid-metabolizing enzymes AASS and PRODH and incoherent FFLs exemplified by repression of MT2A by KLF15. Here, we demonstrate that GR and KLF15 physically interact and identify low affinity GR binding sites within glucocorticoid response elements (GREs) for PRODH and AASS that contribute to combinatorial regulation with KLF15. We used deep sequencing and electrophoretic mobility shift assays to derive in vitro GR binding affinities across sequence space. We applied these data to show that AASS GRE activity correlated (r2 = 0.73) with predicted GR binding affinities across a 50-fold affinity range in transfection assays; however, the slope of the linear relationship more than doubled when KLF15 was expressed. Whereas activity of the MT2A GRE was even more strongly (r2 = 0.89) correlated with GR binding site affinity, the slope of the linear relationship was sharply reduced by KLF15, consistent with incoherent FFL logic. Thus, GRE architecture and co-regulator expression together determine the functional parameters that relate GR binding site affinity to hormone-induced transcriptional responses. Utilization of specific affinity response functions and GR binding sites by FFLs may contribute to the diversity of gene expression patterns within GR-regulated transcriptomes. PMID:26088140

  12. Response Element Composition Governs Correlations between Binding Site Affinity and Transcription in Glucocorticoid Receptor Feed-forward Loops.

    Science.gov (United States)

    Sasse, Sarah K; Zuo, Zheng; Kadiyala, Vineela; Zhang, Liyang; Pufall, Miles A; Jain, Mukesh K; Phang, Tzu L; Stormo, Gary D; Gerber, Anthony N

    2015-08-07

    Combinatorial gene regulation through feed-forward loops (FFLs) can bestow specificity and temporal control to client gene expression; however, characteristics of binding sites that mediate these effects are not established. We previously showed that the glucocorticoid receptor (GR) and KLF15 form coherent FFLs that cooperatively induce targets such as the amino acid-metabolizing enzymes AASS and PRODH and incoherent FFLs exemplified by repression of MT2A by KLF15. Here, we demonstrate that GR and KLF15 physically interact and identify low affinity GR binding sites within glucocorticoid response elements (GREs) for PRODH and AASS that contribute to combinatorial regulation with KLF15. We used deep sequencing and electrophoretic mobility shift assays to derive in vitro GR binding affinities across sequence space. We applied these data to show that AASS GRE activity correlated (r(2) = 0.73) with predicted GR binding affinities across a 50-fold affinity range in transfection assays; however, the slope of the linear relationship more than doubled when KLF15 was expressed. Whereas activity of the MT2A GRE was even more strongly (r(2) = 0.89) correlated with GR binding site affinity, the slope of the linear relationship was sharply reduced by KLF15, consistent with incoherent FFL logic. Thus, GRE architecture and co-regulator expression together determine the functional parameters that relate GR binding site affinity to hormone-induced transcriptional responses. Utilization of specific affinity response functions and GR binding sites by FFLs may contribute to the diversity of gene expression patterns within GR-regulated transcriptomes. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Glucocorticoid receptor binding to chromatin is selectively controlled by the coregulator Hic-5 and chromatin remodeling enzymes.

    Science.gov (United States)

    Lee, Brian H; Stallcup, Michael R

    2017-06-02

    The steroid hormone-activated glucocorticoid receptor (GR) regulates cellular stress pathways by binding to genomic regulatory elements of target genes and recruiting coregulator proteins to remodel chromatin and regulate transcription complex assembly. The coregulator hydrogen peroxide-inducible clone 5 (Hic-5) is required for glucocorticoid (GC) regulation of some genes but not others and blocks the regulation of a third gene set by inhibiting GR binding. How Hic-5 exerts these gene-specific effects and specifically how it blocks GR binding to some genes but not others is unclear. Here we show that site-specific blocking of GR binding is due to gene-specific requirements for ATP-dependent chromatin remodeling enzymes. By depletion of 11 different chromatin remodelers, we found that ATPases chromodomain helicase DNA-binding protein 9 (CHD9) and Brahma homologue (BRM, a product of the SMARCA2 gene) are required for GC-regulated expression of the blocked genes but not for other GC-regulated genes. Furthermore, CHD9 and BRM were required for GR occupancy and chromatin remodeling at GR-binding regions associated with blocked genes but not at GR-binding regions associated with other GC-regulated genes. Hic-5 selectively inhibits GR interaction with CHD9 and BRM, thereby blocking chromatin remodeling and robust GR binding at GR-binding sites associated with blocked genes. Thus, Hic-5 regulates GR binding site selection by a novel mechanism, exploiting gene-specific requirements for chromatin remodeling enzymes to selectively influence DNA occupancy and gene regulation by a transcription factor. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Nesfatin-1/NUCB2 in the amygdala influences visceral sensitivity via glucocorticoid and mineralocorticoid receptors in male maternal separation rats.

    Science.gov (United States)

    Zhou, X-P; Sha, J; Huang, L; Li, T-N; Zhang, R-R; Tang, M-D; Lin, L; Li, X-L

    2016-10-01

    Nesfatin-1, a recently identified satiety molecule derived from nucleobindin 2 (NUCB2), is associated with visceral hypersensitivity in rats and is expressed in the amygdala. We tested the hypothesis that nesfatin-1 expression in the amygdala is involved in the pathogenesis of irritable bowel syndrome (IBS) visceral hypersensitivity. An animal model of IBS-like visceral hypersensitivity was established using maternal separation (MS) during postnatal days 2-16. The role of nesfatin-1 in the amygdala on visceral sensitivity was evaluated. Rats subjected to MS showed a significantly increased mean abdominal withdrawal reflex (AWR) score and electromyographic (EMG) activity at 40, 60, and 80 mmHg colorectal distension. Plasma concentrations of nesfatin-1 and corticosterone were significantly higher than in non-handled (NH) rats. mRNA and protein expression of nesfatin-1/NUCB2 in the amygdala were increased in MS rats, but not in NH rats. In MS rats, AWR scores and EMG activity were significantly decreased after anti-nesfatin-1/NUCB2 injection. In normal rats, mean AWR score, EMG activity, and corticosterone expression were significantly increased after nesfatin-1 injection into the amygdala. Nesfatin-1-induced visceral hypersensitivity was abolished following application of glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) antagonists. Elevated expression of nesfatin-1/NUCB2 in the amygdala in MS rats suggests a potential role in the pathogenesis of visceral hypersensitivity, which could potentially take place via activation of GR and MR signaling pathways. © 2016 John Wiley & Sons Ltd.

  15. Clinical aspects of glucocorticoid sensitivity

    NARCIS (Netherlands)

    S.W.J. Lamberts (Steven); N.A.T.M. Huizenga (Nannette); P. de Lange (Pieter); F.H. de Jong (Frank); J.W. Koper (Jan)

    1996-01-01

    textabstractRecent studies demonstrate that primary (hereditary) abnormalities in the glucocorticoid receptor gene make 6.6% of the normal population relatively 'hypersensitive' to glucocorticoids, while 2.3% are relatively 'resistant.' These abnormalities might explain why some individuals develop

  16. Neuropeptide Y1 Receptor Regulates Glucocorticoid-Induced Inhibition of Osteoblast Differentiation in Murine MC3T3-E1 Cells via ERK Signaling

    Directory of Open Access Journals (Sweden)

    Wei Yu

    2016-12-01

    Full Text Available High dose glucocorticoid (GC administration impairs the viability and function of osteoblasts, thus causing osteoporosis and osteonecrosis. Neuropeptide Y1 receptor (Y1 receptor is expressed in bone tissues and cells, and regulates bone remodeling. However, the role of Y1 receptor in glucocorticoid-induced inhibition of osteoblast differentiation remains unknown. In the present study, osteoblastic cell line MC3T3-E1 cultured in osteogenic differentiation medium was treated with or without of 10−7 M dexamethasone (Dex, Y1 receptor shRNA interference, Y1 receptor agonist [Leu31, Pro34]-NPY, and antagonist BIBP3226. Cell proliferation and apoptosis were assessed by cell counting kit-8 (CCK-8 assay and cleaved caspase expression, respectively. Osteoblast differentiation was evaluated by Alizarin Red S staining and osteogenic marker gene expressions. Protein expression was detected by Western blot analysis. Dex upregulated the expression of Y1 receptor in MC3T3-E1 cells associated with reduced osteogenic gene expressions and mineralization. Blockade of Y1 receptor by shRNA transfection and BIBP3226 significantly attenuated the inhibitory effects of Dex on osteoblastic activity. Y1 receptor signaling modulated the activation of extracellular signal-regulated kinases (ERK as well as the expressions of osteogenic genes. Y1 receptor agonist inhibited ERK phosphorylation and osteoblast differentiation, while Y1 receptor blockade exhibited the opposite effects. Activation of ERK signaling by constitutive active mutant of MEK1 (caMEK abolished Y1 receptor-mediated Dex inhibition of osteoblast differentiation in MC3T3-E1 cells. Taken together, Y1 receptor regulates Dex-induced inhibition of osteoblast differentiation in murine MC3T3-E1 cells via ERK signaling. This study provides a novel role of Y1 receptor in the process of GC-induced suppression in osteoblast survival and differentiation.

  17. Selective glucocorticoid receptor modulator compound A, in contrast to prednisolone, does not induce leptin or the leptin receptor in human osteoarthritis synovial fibroblasts.

    Science.gov (United States)

    Malaise, Olivier; Relic, Biserka; Quesada-Calvo, Florence; Charlier, Edith; Zeddou, Mustapha; Neuville, Sophie; Gillet, Philippe; Louis, Edouard; de Seny, Dominique; Malaise, Michel G

    2015-06-01

    Glucocorticoids are powerful anti-inflammatory compounds that also induce the expression of leptin and leptin receptor (Ob-R) in synovial fibroblasts through TGF-βsignalling and Smad1/5 phosphorylation. Compound A (CpdA), a selective glucocorticoid receptor agonist, reduces inflammation in murine arthritis models and does not induce diabetes or osteoporosis, thus offering an improved risk:benefit ratio in comparison with glucocorticoids. Due to the detrimental role of leptin in OA pathogenesis, we sought to determine whether CpdA also induced leptin and Ob-R protein expression as observed with prednisolone. Human synovial fibroblasts and chondrocytes were isolated from the synovium and cartilage of OA patients after joint surgery. The cells were treated with prednisolone, TGF-β1, TNF-α and/or CpdA. Levels of leptin, IL-6, IL-8, MMP-1 and MMP-3 were measured by ELISA and expression levels of Ob-R phospho-Smad1/5, phospho-Smad2, α-tubulin and glyceraldehyde 3-phosphate dehydrogenase were analysed by western blotting. CpdA, unlike prednisolone, did not induce leptin secretion or Ob-R protein expression in OA synovial fibroblasts. Moreover, CpdA decreased endogenous Ob-R expression and down-regulated prednisolone-induced leptin secretion and Ob-R expression. Mechanistically, CpdA, unlike prednisolone, did not induce Smad1/5 phosphorylation. CpdA, similarly to prednisolone, down-regulated endogenous and TNF-α-induced IL-6, IL-8, MMP-1 and MMP-3 protein secretion. The dissociative effect of CpdA was confirmed using chondrocytes with no induction of leptin secretion, but with a significant decrease in IL-6, IL-8, MMP-1 and MMP-3 protein secretion. CpdA, unlike prednisolone, did not induce leptin or Ob-R in human OA synovial fibroblasts, thereby demonstrating an improved risk:benefit ratio. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Mutations of glucocorticoid receptor differentially affect AF2 domain activity in a steroid-selective manner to alter the potency and efficacy of gene induction and repression†

    Science.gov (United States)

    Tao, Yong-guang; Xu, Yong; Xu, H. Eric; Simons, S. Stoney

    2009-01-01

    The transcriptional activity of steroid hormones is intimately associated with their structure. Deacylcortivazol (DAC) contains several features that were predicted to make it an inactive glucocorticoid. Nevertheless, gene induction and repression by complexes of glucocorticoid receptor (GR) with DAC occurs with greater potency (lower EC50) than, and equal efficacy (maximal activity, or Amax) to, the very active and smaller synthetic glucocorticoid dexamethasone (Dex). Guided by a recent x-ray structure of DAC bound to the GR ligand binding domain (LBD), we now report that several point mutants in the LBD have little effect on the binding of either agonist steroid. However, these same mutations dramatically alter the Amax and/or EC50 of exogenous and endogenous genes in a manner that depends on steroid structure. In some cases, Dex is no longer a full agonist. These properties appear to result from a preferential inactivation of the AF2 activation domain in the GR LBD of Dex-, but not DAC-, bound receptors. The Dex-bound receptors display normal binding to, but greatly reduced response to, the coactivator TIF2, thus indicating a defect in the transmission efficiency of GR-steroid complex information to the coactivator TIF2. In addition, all GR mutants that are active in gene induction with either Dex or DAC have greatly reduced activity in gene repression. This contrasts with the reports of GR mutations preferentially suppressing GR-mediated induction. The properties of these GR mutants in gene induction support the hypothesis that the Amax and EC50 of GR-controlled gene expression can be independently modified, indicate that the receptor can be modified to favor activity with a specific agonist steroid, and suggest that new ligands with suitable substituents may be able to affect the same LBD conformational changes and thereby broaden the therapeutic applications of glucocorticoid steroids PMID:18578507

  19. Mutations of glucocorticoid receptor differentially affect AF2 domain activity in a steroid-selective manner to alter the potency and efficacy of gene induction and repression.

    Science.gov (United States)

    Tao, Yong-guang; Xu, Yong; Xu, H Eric; Simons, S Stoney

    2008-07-22

    The transcriptional activity of steroid hormones is intimately associated with their structure. Deacylcortivazol (DAC) contains several features that were predicted to make it an inactive glucocorticoid. Nevertheless, gene induction and repression by complexes of glucocorticoid receptor (GR) with DAC occur with potency (lower EC 50) greater than and efficacy (maximal activity, or A max) equal to those of the very active and smaller synthetic glucocorticoid dexamethasone (Dex). Guided by a recent X-ray structure of DAC bound to the GR ligand binding domain (LBD), we now report that several point mutants in the LBD have little effect on the binding of either agonist steroid. However, these same mutations dramatically alter the A max and/or EC 50 of exogenous and endogenous genes in a manner that depends on steroid structure. In some cases, Dex is no longer a full agonist. These properties appear to result from a preferential inactivation of the AF2 activation domain in the GR LBD of Dex-bound, but not DAC-bound, receptors. The Dex-bound receptors display normal binding to, but a greatly reduced response to, the coactivator TIF2, thus indicating a defect in the transmission efficiency of GR-steroid complex information to the coactivator TIF2. In addition, all GR mutants that are active in gene induction with either Dex or DAC have greatly reduced activity in gene repression. This contrasts with the reports of GR mutations preferentially suppressing GR-mediated induction. The properties of these GR mutants in gene induction support the hypothesis that the A max and EC 50 of GR-controlled gene expression can be independently modified, indicate that the receptor can be modified to favor activity with a specific agonist steroid, and suggest that new ligands with suitable substituents may be able to affect the same LBD conformational changes and thereby broaden the therapeutic applications of glucocorticoid steroids.

  20. Glucocorticoid Receptor-Mediated Repression of Pro-Inflammatory Genes in Rheumatoid Arthritis

    Science.gov (United States)

    2015-10-01

    centripetal obesity (86). Excess GC promote gluconeogenesis in the liver and antagonize the effects of insulin on peripheral glucose utilization, thereby...the TCA cycle. Insulin suppresses glucose production by inhibiting glycogenolysis and gluconeogenesis . In the postabsorptive period (during fasting...insulin drops, and net glucose production by the liver increases via gluconeogenesis (91). In the liver, GC is essential for maintaining normal blood

  1. Epigenetic modification of the glucocorticoid receptor gene is linked to traumatic memory and post-traumatic stress disorder risk in genocide survivors.

    Science.gov (United States)

    Vukojevic, Vanja; Kolassa, Iris-T; Fastenrath, Matthias; Gschwind, Leo; Spalek, Klara; Milnik, Annette; Heck, Angela; Vogler, Christian; Wilker, Sarah; Demougin, Philippe; Peter, Fabian; Atucha, Erika; Stetak, Attila; Roozendaal, Benno; Elbert, Thomas; Papassotiropoulos, Andreas; de Quervain, Dominique J-F

    2014-07-30

    Recent evidence suggests that altered expression and epigenetic modification of the glucocorticoid receptor gene (NR3C1) are related to the risk of post-traumatic stress disorder (PTSD). The underlying mechanisms, however, remain unknown. Because glucocorticoid receptor signaling is known to regulate emotional memory processes, particularly in men, epigenetic modifications of NR3C1 might affect the strength of traumatic memories. Here, we found that increased DNA methylation at the NGFI-A (nerve growth factor-induced protein A) binding site of the NR3C1 promoter was associated with less intrusive memory of the traumatic event and reduced PTSD risk in male, but not female survivors of the Rwandan genocide. NR3C1 methylation was not significantly related to hyperarousal or avoidance symptoms. We further investigated the relationship between NR3C1 methylation and memory functions in a neuroimaging study in healthy subjects. Increased NR3C1 methylation-which was associated with lower NR3C1 expression-was related to reduced picture recognition in male, but not female subjects. Furthermore, we found methylation-dependent differences in recognition memory-related brain activity in men. Together, these findings indicate that an epigenetic modification of the glucocorticoid receptor gene promoter is linked to interindividual and gender-specific differences in memory functions and PTSD risk. Copyright © 2014 the authors 0270-6474/14/3310274-11$15.00/0.

  2. Effect of Mycoplasma fermentans on brain PGE(2): role of glucocorticoids and their receptors.

    Science.gov (United States)

    Wohlman, A; Yirmiya, R; Gallily, R; Weidenfeld, J

    2001-01-01

    Mycoplasmas are a group of eubacteria, which cause various diseases in animals and in humans, and can contribute to diseases produced by other infectious agents, particularly HIV. We have recently reported that intracerebral administration of Mycoplasma fermentans (MF) produces both neuroendocrine and behavioral alterations. Some of these responses were mediated by MF-induced production of prostaglandin E(2 )(PGE(2)). The aim of this study was to examine the role of glucocorticoids (GC) in regulating MF-induced brain prostaglandin production. Male rats were injected intracerebroventricularly with various doses of heat-inactivated MF, LPS or IL-1 beta and the following parameters were measured: (1) ex vivo production of hippocampal PGE(2), (2) serum levels of ACTH and corticosterone, and (3) binding capacity of [(3)H]-dexamethasone (DEX) to hippocampal cytosol. MF caused a small increase in hippocampal PGE(2) production, but higher doses failed to produce a further increase. In contrast, the effects of LPS or IL-1 beta on PGE(2) were dose-dependent. Removal of circulating GC by bilateral adrenalectomy significantly enhanced MF-induced brain PGE(2) production. The three immune stimulators increased serum levels of ACTH and corticosterone to the same extent. Finally, MF, but not IL-1 beta increased the specific binding of [(3)H]-DEX to hippocampal cytosol. Brain PGE(2) induced by MF is regulated by endogenous GC. These hormones have an attenuating effect on PGE(2 )production, probably through an MF-induced increase in GC binding by brain tissue. This mechanism may be important in the pathological effect of MF within the brain of AIDS patients. Copyright 2001 S. Karger AG, Basel

  3. The Role of Glucocorticoid Receptors in Dexamethasone-Induced Apoptosis of Neuroprogenitor Cells in the Hippocampus of Rat Pups

    Directory of Open Access Journals (Sweden)

    Chun-I Sze

    2013-01-01

    Full Text Available Background. Dexamethasone (Dex has been used to reduce inflammation in preterm infants with assistive ventilation and to prevent chronic lung diseases. However, Dex treatment results in adverse effects on the brain. Since the hippocampus contains a high density of glucocorticoid receptors (GCRs, we hypothesized that Dex affects neurogenesis in the hippocampus through inflammatory mediators. Methods. Albino Wistar rat pups first received a single dose of Dex (0.5 mg/kg on postnatal day 1 (P1 and were sacrificed on P2, P3, P5, and P7. One group of Dex-treated pups (Dex-treated D1D2 was given mifepristone (RU486, a GCR antagonist on P1 and sacrificed on P2. Hippocampi were isolated for western blot analysis, TUNEL, cleaved-caspase 3 staining for cell counts, and morphological assessment. Control pups received normal saline (NS. Results. Dex reduced the developmental gain in body weight, but had no effect on brain weight. In the Dex-treated D1D2 group, apoptotic cells increased in number based on TUNEL and cleaved-caspase 3 staining. Most of the apoptotic cells expressed the neural progenitor cell marker nestin. Dex-induced apoptosis in P1 pups was markedly reduced (60% by pretreatment with RU486, indicating the involvement of GCRs. Conclusion. Early administration of Dex results in apoptosis of neural progenitor cells in the hippocampus and this is mediated through GCRs.

  4. Histone acetylation characterizes chromatin presetting by NF1 and Oct1 and enhances glucocorticoid receptor binding to the MMTV promoter

    Energy Technology Data Exchange (ETDEWEB)

    Astrand, Carolina, E-mail: ca340@cam.ac.uk [Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm (Sweden); Belikov, Sergey, E-mail: Sergey.Belikov@ki.se [Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm (Sweden); Wrange, Orjan, E-mail: Orjan.Wrange@ki.se [Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm (Sweden)

    2009-09-10

    Transcription from the mouse mammary tumor virus (MMTV) promoter is induced by the glucocorticoid receptor (GR). This switch was reconstituted in Xenopus oocytes. Previously, we showed that Nuclear Factor 1 (NF1) and Octamer Transcription Factor 1 (Oct1) bind constitutively to the MMTV promoter and thereby induce translational nucleosome positioning representing an intermediary, i.e. preset, state of nucleosome organization. Here we further characterize this NF1 and Oct1 induced preset chromatin in relation to the inactive and the hormone-activated state. The preset chromatin exhibits increased histone acetylation but does not cause dissociation of histone H1 as oppose to the hormone-activated state. Furthermore, upon hormone induction the preset MMTV chromatin displays an enhanced and prolonged GR binding capacity and transcription during an intrinsic and time-dependent silencing of the injected template. The silencing process correlates with a reduced histone acetylation. However, a histone deacetylase inhibitor, trichostatin A (TSA), does not counteract silencing in spite of its distinct stimulation of GR-DNA binding. The latter indicates the importance of histone acetylation to maintain DNA access for inducible factor binding. We discuss how constitutively bound factors such as NF1 and Oct1 may participate in the maintenance of tissue specificity of hormone responsive genes.

  5. Effect of steviol, steviol glycosides and stevia extract on glucocorticoid receptor signaling in normal and cancer blood cells.

    Science.gov (United States)

    Panagiotou, Christina; Mihailidou, Chrysovalantou; Brauhli, George; Katsarou, Olga; Moutsatsou, Paraskevi

    2017-07-25

    The use of steviol glycosides as non-caloric sweeteners has proven to be beneficial for patients with type 2 diabetes mellitus (T2D), obesity, and metabolic syndrome. However, recent data demonstrate that steviol and stevioside might act as glucocorticoid receptor (GR) agonists and thus correlate with adverse effects on metabolism. Herein, we evaluated the impact of steviol, steviol glycosides, and a Greek-derived stevia extract on a number of key steps of GR signaling cascade in peripheral blood mononuclear cells (PBMCs) and in Jurkat leukemia cells. Our results revealed that none of the tested compounds altered the expression of primary GR-target genes (GILZ, FKPB5), GR protein levels or GR subcellular localization in PBMCs; those compounds increased GILZ and FKPB5 mRNA levels as well as GRE-mediated luciferase activity, inducing in parallel GR nuclear translocation in Jurkat cells. The GR-modulatory activity demonstrated by stevia-compounds in Jurkat cells but not in PBMCs may be due to a cell-type specific effect. Copyright © 2017. Published by Elsevier B.V.

  6. Glucocorticoid Receptor (NR3C1 Variants Associate with the Muscle Strength and Size Response to Resistance Training.

    Directory of Open Access Journals (Sweden)

    Garrett I Ash

    Full Text Available Glucocorticoid receptor (NR3C1 polymorphisms associate with obesity, muscle strength, and cortisol sensitivity. We examined associations among four NR3C1 polymorphisms and the muscle response to resistance training (RT. European-American adults (n = 602, 23.8±0.4yr completed a 12 week unilateral arm RT program. Maximum voluntary contraction (MVC assessed isometric strength (kg and MRI assessed biceps size (cm2 pre- and post-resistance training. Subjects were genotyped for NR3C1 -2722G>A, -1887G>A, -1017T>C, and +363A>G. Men carrying the -2722G allele gained less relative MVC (17.3±1.2vs33.5±6.1% (p = 0.010 than AA homozygotes; men with -1887GG gained greater relative MVC than A allele carriers (19.6±1.4vs13.2±2.3% (p = 0.016. Women carrying the -1017T allele gained greater relative size (18.7±0.5vs16.1±0.9% (p = 0.016 than CC homozygotes. We found sex-specific NR3C1 associations with the muscle strength and size response to RT. Future studies should investigate whether these associations are partially explained by cortisol's actions in muscle tissue as they interact with sex differences in cortisol production.

  7. Novel Antidepressant-Like Activity of Caffeic Acid Phenethyl Ester Is Mediated by Enhanced Glucocorticoid Receptor Function in the Hippocampus

    Directory of Open Access Journals (Sweden)

    Mi-Sook Lee

    2014-01-01

    Full Text Available Caffeic acid phenethyl ester (CAPE is an active component of propolis that has a variety of potential pharmacological effects. Although we previously demonstrated that propolis has antidepressant-like activity, the effect of CAPE on this activity remains unknown. The present study assessed whether treatment with CAPE (5, 10, and 20 µmol/kg for 21 days has an antidepressant-like effect in mice subjected to chronic unpredictable stress via tail suspension (TST and forced swim (FST tests. CAPE administration induced behaviors consistent with an antidepressant effect, evidenced by decreased immobility in the TST and FST independent of any effect on serum corticosterone secretion. Western blots, conducted subsequent to behavioral assessment, revealed that CAPE significantly decreased glucocorticoid receptor phosphorylation at S234 (pGR(S234, resulting in an increased pGR(S220/S234 ratio. We also observed negative correlations between pGR(S220/(S234 and p38 mitogen-activated protein kinase (p38MAPK phosphorylation, which was decreased by CAPE treatment. These findings suggest that CAPE treatment exerts an antidepressant-like effect via downregulation of p38MAPK phosphorylation, thereby contributing to enhanced GR function.

  8. Regulation of the glucocorticoid receptor mRNA levels in the gills of Atlantic salmon (Salmo salar during smoltification

    Directory of Open Access Journals (Sweden)

    MAZURAIS D.

    1998-07-01

    Full Text Available The regulation of the Glucocorticoid Receptor (GR transcript was investigated in the gills of Atlantic salmon (Salmo salar during the parr-smolt transformation. Sampling of parr and smolt fish was performed between December and July and in particular during the smoltification period occurring in spring. Quantification of GR transcripts revealed differences between the two groups in March and at the beginning of April. During these dates, the amounts of GR mRNA in parr gills were respectively three and two fold lower than those measured in smolts. In order to determine which factors are responsible for these differences, we studied the long-term effects of prolactin and Cortisol treatments on GR transcript in the gills of presmolt fish. The plasma levels of these two hormones respectively drop and rise during smoltification. Contrary to Cortisol long-term treatment which did not modify the amount of gill GR transcript, short-term treatment induced a significant decrease within 12 hours. Prolactin long-term treatment caused a significant increase of GR transcript abundance after 13 days of implant treatment. This result is unexpected with regard to those obtained in the smoltification analysis but is in agreement with previous studies performed in mammary gland revealing a positive control of PRL on GR in epithelial cells. Our data suggest that the regulation of the GR transcript during the parr-smolt transformation probably involves several hormonal factors.

  9. The relationship between glucocorticoid receptor polymorphisms, stressful life events, social support, and post-traumatic stress disorder.

    Science.gov (United States)

    Lian, Yulong; Xiao, Jing; Wang, Qian; Ning, Li; Guan, Suzhen; Ge, Hua; Li, Fuye; Liu, Jiwen

    2014-08-12

    It is debatable whether or not glucocorticoid receptor (GR) polymorphisms moderate susceptibility to PTSD. Our objective was to examine the effects of stressful life events, social support, GR genotypes, and gene-environment interactions on the etiology of PTSD. Three tag single nucleotide polymorphisms, trauma events, stressful life events, and social support were assessed in 460 patients with PTSD and 1158 control subjects from a Chinese Han population. Gene-environment interactions were analyzed by generalized multifactor dimensionality reduction (GMDR). Variation in GR at rs41423247 and rs258747, stressful life events, social support, and the number of traumatic events were each separately associated with the risk for PTSD. A gene-environment interaction among the polymorphisms, rs41423247 and rs258747, the number of traumatic events, stressful life events, and social support resulted in an increased risk for PTSD. High-risk individuals (a large number of traumatic events, G allele of rs258747 and rs41423247, high level stressful life events, and low social support) had a 3.26-fold increased risk of developing PTSD compared to low-risk individuals. The association was statistically significant in the sub-groups with and without childhood trauma. Our data support the notion that stressful life events, the number of trauma events, and social support may play a contributing role in the risk for PTSD by interacting with GR gene polymorphisms.

  10. Epigenetic changes in the hypothalamic proopiomelanocortin and glucocorticoid receptor genes in the ovine fetus after periconceptional undernutrition.

    Science.gov (United States)

    Stevens, Adam; Begum, Ghazala; Cook, Alice; Connor, Kristin; Rumball, Christopher; Oliver, Mark; Challis, John; Bloomfield, Frank; White, Anne

    2010-08-01

    Maternal food restriction is associated with the development of obesity in offspring. This study examined how maternal undernutrition in sheep affects the fetal hypothalamic glucocorticoid receptor (GR) and the appetite-regulating neuropeptides, proopiomelanocortin (POMC) and neuropeptide Y, which it regulates. In fetuses from ewes undernourished from -60 to +30 d around conception, there was increased histone H3K9 acetylation (1.63-fold) and marked hypomethylation (62% decrease) of the POMC gene promoter but no change in POMC expression. In the same group, acetylation of histone H3K9 associated with the hypothalamic GR gene was increased 1.60-fold and the GR promoter region was hypomethylated (53% decrease). In addition, there was a 4.7-fold increase in hypothalamic GR expression but no change in methylation of GR gene expression in the anterior pituitary or hippocampus. Interestingly, hypomethylation of both POMC and GR promoter markers in fetal hypothalami was also identified after maternal undernutrition from -60 to 0 d and -2 to +30 d. In comparison, the Oct4 gene, was hypermethylated in both control and underfed groups. Periconceptional undernutrition is therefore associated with marked epigenetic changes in hypothalamic genes. Increase in GR expression in the undernourished group may contribute to fetal programming of a predisposition to obesity, via altered GR regulation of POMC and neuropeptide Y. These epigenetic changes in GR and POMC in the hypothalamus may also predispose the offspring to altered regulation of food intake, energy expenditure, and glucose homeostasis later in life.

  11. Antenatal hypoxia induces epigenetic repression of glucocorticoid receptor and promotes ischemic-sensitive phenotype in the developing heart.

    Science.gov (United States)

    Xiong, Fuxia; Lin, Thant; Song, Minwoo; Ma, Qingyi; Martinez, Shannalee R; Lv, Juanxiu; MataGreenwood, Eugenia; Xiao, Daliao; Xu, Zhice; Zhang, Lubo

    2016-02-01

    Large studies in humans and animals have demonstrated a clear association of an adverse intrauterine environment with an increased risk of cardiovascular disease later in life. Yet mechanisms remain largely elusive. The present study tested the hypothesis that gestational hypoxia leads to promoter hypermethylation and epigenetic repression of the glucocorticoid receptor (GR) gene in the developing heart, resulting in increased heart susceptibility to ischemia and reperfusion injury in offspring. Hypoxic treatment of pregnant rats from day 15 to 21 of gestation resulted in a significant decrease of GR exon 14, 15, 16, and 17 transcripts, leading to down-regulation of GR mRNA and protein in the fetal heart. Functional cAMP-response elements (CREs) at -4408 and -3896 and Sp1 binding sites at -3425 and -3034 were identified at GR untranslated exon 1 promoters. Hypoxia significantly increased CpG methylation at the CREs and Sp1 binding sites and decreased transcription factor binding to GR exon 1 promoter, accounting for the repression of the GR gene in the developing heart. Of importance, treatment of newborn pups with 5-aza-2'-deoxycytidine reversed hypoxia-induced promoter methylation, restored GR expression and prevented hypoxia-mediated increase in ischemia and reperfusion injury of the heart in offspring. The findings demonstrate a novel mechanism of epigenetic repression of the GR gene in fetal stress-mediated programming of ischemic-sensitive phenotype in the heart. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Prenatal alcohol exposure modifies glucocorticoid receptor subcellular distribution in the medial prefrontal cortex and impairs frontal cortex-dependent learning.

    Directory of Open Access Journals (Sweden)

    Andrea M Allan

    Full Text Available Prenatal alcohol exposure (PAE has been shown to impair learning, memory and executive functioning in children. Perseveration, or the failure to respond adaptively to changing contingencies, is a hallmark on neurobehavioral assessment tasks for human fetal alcohol spectrum disorder (FASD. Adaptive responding is predominantly a product of the medial prefrontal cortex (mPFC and is regulated by corticosteroids. In our mouse model of PAE we recently reported deficits in hippocampal formation-dependent learning and memory and a dysregulation of hippocampal formation glucocorticoid receptor (GR subcellular distribution. Here, we examined the effect of PAE on frontal cortical-dependent behavior, as well as mPFC GR subcellular distribution and the levels of regulators of intracellular GR transport. PAE mice displayed significantly reduced response flexibility in a Y-maze reversal learning task. While the levels of total nuclear GR were reduced in PAE mPFC, levels of GR phosphorylated at serines 203, 211 and 226 were not significantly changed. Cytosolic, but not nuclear, MR levels were elevated in the PAE mPFC. The levels of critical GR trafficking proteins, FKBP51, Hsp90, cyclophilin 40, dynamitin and dynein intermediate chain, were altered in PAE mice, in favor of the exclusion of GR from the nucleus, indicating dysregulation of GR trafficking. Our findings suggest that there may be a link between a deficit in GR nuclear localization and frontal cortical learning deficits in prenatal alcohol-exposed mice.

  13. Glucocorticoid receptor ChIP-sequencing of primary human abdominal subcutaneous fat reveals modulation of inflammatory pathways

    Science.gov (United States)

    Singh, Puneet; Brock, Clifton O.; Volden, Paul A.; Hernandez, Kyle; Skor, Maxwell; Kocherginsky, Masha; Park, Julie E.; Brady, Matthew J.; Conzen, Suzanne D.

    2016-01-01

    Objective To identify glucocorticoid receptor (GR)-associated chromatin sequences and target genes in primary human abdominal subcutaneous fat. Methods GR chromatin immunoprecipitation (ChIP)-sequencing methodology in subcutaneous human adipocytes treated ex-vivo with dexamethasone (dex) was optimized to identify genome-wide dex-dependent GR binding regions (GBRs). Gene expression analyses were performed in parallel ± dex treatment. Results Fat was obtained from four non-obese female surgical patients with a median age of 50.5 years. ChIP-seq analysis revealed 219 dex-associated GBRs. Of these, 136 GBRs were located within 100 kb of the transcriptional start site and associated with 123 genes. Combining these data with dex-induced gene expression, 70 of the 123 putative direct target genes were significantly up- or downregulated following four hours of dex treatment. Gene expression analysis demonstrated that the top 10 pathways reflected regulation of cellular metabolism and inflammation. DEPTOR, an inhibitor of mTOR, was identified as a potential direct GR target gene. Conclusions To our knowledge, this is the first report of genome-wide GR ChIP-seq and gene expression analysis in human fat. The results implicate regulation of key GR target genes that are involved in dampening inflammation and promoting cellular metabolism. PMID:26408078

  14. PCB disruption of the hypothalamus-pituitary-interrenal axis involves brain glucocorticoid receptor downregulation in anadromous Arctic charr

    Science.gov (United States)

    Aluru, N.; Jorgensen, E.H.; Maule, A.G.; Vijayan, M.M.

    2004-01-01

    We examined whether brain glucocorticoid receptor (GR) modulation by polychlorinated biphenyls (PCBs) was involved in the abnormal cortisol response to stress seen in anadromous Arctic charr (Salvelinus alpinus). Fish treated with Aroclor 1254 (0, 1, 10, and 100 mg/kg body mass) were maintained for 5 mo without feeding in the winter to mimic their seasonal fasting cycle, whereas a fed group with 0 and 100 mg/kg Aroclor was maintained for comparison. Fasting elevated plasma cortisol levels and brain GR content but depressed heat shock protein 90 (hsp90) and interrenal cortisol production capacity. Exposure of fasted fish to Aroclor 1254 resulted in a dose-dependent increase in brain total PCB content. This accumulation in fish with high PCB dose was threefold higher in fasted fish compared with fed fish. PCBs depressed plasma cortisol levels but did not affect in vitro interrenal cortisol production capacity in fasted charr. At high PCB dose, the brain GR content was significantly lower in the fasted fish and this corresponded with a lower brain hsp70 and hsp90 content. The elevation of plasma cortisol levels and upregulation of brain GR content may be an important adaptation to extended fasting in anadromous Arctic charr, and this response was disrupted by PCBs. Taken together, the hypothalamus-pituitary- interrenal axis is a target for PCB impact during winter emaciation in anadromous Arctic charr.

  15. Glucocorticoid receptor expression in the cortex of the neonatal rat brain with and without focal cerebral ischemia.

    Science.gov (United States)

    Lee, Ben H; Wen, Tong-Chun; Rogido, Marta; Sola, Augusto

    2007-01-01

    Glucocorticoid receptors (GR) mediate cellular processes which may be neuroprotective and/or neurotoxic to the neonatal rat brain. Our aim was to describe GR ontogeny in the developing rat brain cortex and changes in GR expression after permanent neonatal focal cerebral ischemia (FCI). GR Western blots and immunohistochemical stains were performed on neonatal rat cortices on P1, P3, P7, P10, P15, and P30 and on P7 at 1 h, 3 h, 6 h, 12 h, 24 h, and 72 h after FCI or sham-operation (S-O), 8 per group. Nissl staining was performed on FCI or S-O P7 cortical samples. Cortical GR expression was increased by 65.2% at P7, 110.1% at P15, and 87.0% at P30, compared to P1. On P7, GR expression decreased in the ischemic cortex after 6 h and in the non-ischemic cortex after 24 h of FCI (p cortex after 6 h and in the non-ischemic cortex after 24 h of FCI. Thus, cortical GR may play important roles in normal brain development and neonatal brain injury responses.

  16. Polymorphisms of the glucocorticoid receptor and avascular necrosis of the femoral heads after treatment with corticosteroids

    NARCIS (Netherlands)

    R. Bouamar (Rachida); J.W. Koper (Jan); E.F.C. van Rossum (Liesbeth); W. Weimar (Willem); T. van Gelder (Teun)

    2009-01-01

    textabstractA female patient developed avascular necrosis of the femoral heads after receiving low doses of glucocorticosteroids (GC) for 3 months. Genotyping of the GC receptor (GR) showed that she was heterozygous for the Bcl-1 allele and heterozygous for the N363S allele. Interestingly, these GR

  17. Structural bisphenol analogues differentially target steroidogenesis in murine MA-10 Leydig cells as well as the glucocorticoid receptor.

    Science.gov (United States)

    Roelofs, Maarke J E; van den Berg, Martin; Bovee, Toine F H; Piersma, Aldert H; van Duursen, Majorie B M

    2015-03-02

    Although much information on the endocrine activity of bisphenol A (BPA) is available, a proper human hazard assessment of analogues that are believed to have a less harmful toxicity profile is lacking. Here the possible effects of BPA, bisphenol F (BPF), bisphenol S (BPS), as well as the brominated structural analogue and widely used flame retardant tetrabromobisphenol A (TBBPA) on human glucocorticoid and androgen receptor (GR and AR) activation were assessed. BPA, BPF, and TBBPA showed clear GR and AR antagonism with IC50 values of 67 μM, 60 μM, and 22 nM for GR, and 39 μM, 20 μM, and 982 nM for AR, respectively, whereas BPS did not affect receptor activity. In addition, murine MA-10 Leydig cells exposed to the bisphenol analogues were assessed for changes in secreted steroid hormone levels. Testicular steroidogenesis was altered by all bisphenol analogues tested. TBBPA effects were more directed towards the male end products and induced testosterone synthesis, while BPF and BPS predominantly increased the levels of progestagens that are formed in the beginning of the steroidogenic pathway. The MA-10 Leydig cell assay shows added value over the widely used H295R steroidogenesis assay because of its fetal-like characteristics and specificity for the physiologically more relevant testicular Δ4 steroidogenic pathway. Therefore, adding an in vitro assay covering fetal testicular steroidogenesis, such as the MA-10 cell line, to the panel of tests used to screen potential endocrine disruptors, is highly recommendable. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Role of hippocampal β-adrenergic and glucocorticoid receptors in the novelty-induced enhancement of fear extinction.

    Science.gov (United States)

    Liu, Jian-Feng; Yang, Chang; Deng, Jia-Hui; Yan, Wei; Wang, Hui-Min; Luo, Yi-Xiao; Shi, Hai-Shui; Meng, Shi-Qiu; Chai, Bai-Sheng; Fang, Qin; Chai, Ning; Xue, Yan-Xue; Sun, Jia; Chen, Chen; Wang, Xue-Yi; Wang, Ji-Shi; Lu, Lin

    2015-05-27

    Fear extinction forms a new memory but does not erase the original fear memory. Exposure to novelty facilitates transfer of short-term extinction memory to long-lasting memory. However, the underlying cellular and molecular mechanisms are still unclear. Using a classical contextual fear-conditioning model, we investigated the effect of novelty on long-lasting extinction memory in rats. We found that exposure to a novel environment but not familiar environment 1 h before or after extinction enhanced extinction long-term memory (LTM) and reduced fear reinstatement. However, exploring novelty 6 h before or after extinction had no such effect. Infusion of the β-adrenergic receptor (βAR) inhibitor propranolol and glucocorticoid receptor (GR) inhibitor RU486 into the CA1 area of the dorsal hippocampus before novelty exposure blocked the effect of novelty on extinction memory. Propranolol prevented activation of the hippocampal PKA-CREB pathway, and RU486 prevented activation of the hippocampal extracellular signal-regulated kinase 1/2 (Erk1/2)-CREB pathway induced by novelty exposure. These results indicate that the hippocampal βAR-PKA-CREB and GR-Erk1/2-CREB pathways mediate the extinction-enhancing effect of novelty exposure. Infusion of RU486 or the Erk1/2 inhibitor U0126, but not propranolol or the PKA inhibitor Rp-cAMPS, into the CA1 before extinction disrupted the formation of extinction LTM, suggesting that hippocampal GR and Erk1/2 but not βAR or PKA play critical roles in this process. These results indicate that novelty promotes extinction memory via hippocampal βAR- and GR-dependent pathways, and Erk1/2 may serve as a behavioral tag of extinction. Copyright © 2015 the authors 0270-6474/15/358308-14$15.00/0.

  19. Changes in 5-HT4 receptor and 5-HT transporter binding in olfactory bulbectomized and glucocorticoid receptor heterozygous mice

    DEFF Research Database (Denmark)

    Licht, Cecilie Löe; Kirkegaard, Lisbeth; Zueger, Maha

    2010-01-01

    . Among post hoc analyzed regions, there was a 14% decrease in 5-HT(4) receptor binding in the olfactory tubercles. The 5-HTT binding was unchanged in the hippocampus and caudate putamen of bulbectomized mice but post hoc analysis showed small decreases in lateral septum and lateral globus pallidus....... In comparison, GR(+/-) mice had increased 5-HT(4) receptor (11%) binding in the caudal caudate putamen and decreased 5-HTT binding in the frontal caudate putamen but no changes in dorsal and ventral hippocampus. Post hoc analysis showed increased 5-HT(4) receptor binding in the olfactory tubercles of GR...

  20. Glucocorticoid receptor activation selectively hampers N-methyl-d-aspartate receptor dependent hippocampal synaptic plasticity in vitro.

    NARCIS (Netherlands)

    Wiegert, O.; Pu, Z.; Shor, S.; Joëls, M.; Krugers, H.

    2005-01-01

    Corticosterone and exposure to stressful experiences have been reported to decrease hippocampal synaptic plasticity, in particular when relatively mild stimulation paradigms-presumably activating predominantly N-methyl-d-aspartate receptors-are being used. Using various stimulation paradigms and

  1. Insights from the predicted interactions of plant derived compounds to the gluco-corticoid receptor as an alternative to dexa-methasone.

    Science.gov (United States)

    Sarmah, Rajeev

    2012-01-01

    Dexamethasone (DEX) an anti-inflamatory 9-fluoro-glucocorticoid, activates the cytosolic glucocorticoid receptor (GR) binding to its Ligand Binding Domain (LBD). The GR-ligand complex then translocates to the nucleus and binds to the Glucocorticoid Response Element (GRE) resulting up-regulation of target gene expression of anti-inflamatory proteins. DEX is one of the most effective ligand for GR activation but comply to side effects. Therefore, alternative for DEX - plant metabolites of Calotropis sp and Swertia chirata were screened using docking appraoch. These plants compounds were selected because; parts of these plants are widely used againsts inflamation, allergy, asthma etc. Three metabolites of Swertia chirata namely Gentianine (GENT), Xanthone (XANT) and Swerchirin (SWER) are found to be occupying the same binding pocket in the LBD of the GR (PDB ID 1M2Z). The binding affinity as reflected by binding energies of GENT-1M2Z, XANT-1M2Z and SWER-1M2Z are -5.6, -6.7 and -6.7, and all the output parameter of the respective compounds positively correlates with that of DEX-1M2Z with r = 0.9, 0.6 and 0.6 respectively indicating similar GR activation function. Visualization analysis of the models clearly indicates that GENT and SWER may be GR activators. Rest of the compounds mostly docked onto the surface of the receptor molecule.

  2. [Glucocorticoids and metabolism].

    Science.gov (United States)

    Tourniaire, J; Daumont, M

    1976-01-01

    After a brief historical account, the physiological effect of glucocorticoid hormones are analysed. Their main point of impact is neoglucogenesis from proteins. To this is added their direct action on carbohydrates, their intervention in the use of lipids, and in the movement of water and salts. Cortisone penetrates into the cell, is fixed by a cortisone receptor in order to be transferred into the nucleus and to act on the transformation of ADN-ARN. Its relationships with cyclic AMP are discussed. The hormonal correlations of glucocorticoids are numerous. (insulin, catecholamine, glucagon, growth hormone, androgen). Synthetic cordicoids have biological actions which are close to those of glucocorticoids, but vary depending on their structure. These physiological and pharmacological notions imply certain precautions in the use of this type of hormone derivative.

  3. C/EBP maintains chromatin accessibility in liver and facilitates glucocorticoid receptor recruitment to steroid response elements

    DEFF Research Database (Denmark)

    Grøntved, Lars; John, Sam; Baek, Songjoon

    2013-01-01

    Mechanisms regulating transcription factor interaction with chromatin in intact mammalian tissues are poorly understood. Exploiting an adrenalectomized mouse model with depleted endogenous glucocorticoids, we monitor changes of the chromatin landscape in intact liver tissue following glucocortico...

  4. Polyclonal Anti-Peptide Antibodies Against Both Activated and Unactivated Forms of the Human Glucocorticoid Receptor

    Science.gov (United States)

    1993-04-30

    milk and a 1:100, 1 : 500, or 1 : 1000 dilution of preimmune sera, polyclonal a n ti- huma n GR antisera AC40 . or test sera from rabbits 709. 710...8217.nti-hGR antisera were generated in three lle’’’’ Zealand vlhi tE: rabbits . Immunoabsorption of [ 3H ] tr i a n cinolone acetonide ([3HjTA) -labeled...et al . . 1986) . In addition, thi s superfamily includes a number of orphan receptors whose ligands have not been identified and i-lhose

  5. Omeprazole and lansoprazole enantiomers induce CYP3A4 in human hepatocytes and cell lines via glucocorticoid receptor and pregnane X receptor axis.

    Science.gov (United States)

    Novotna, Aneta; Dvorak, Zdenek

    2014-01-01

    Benzimidazole drugs lansoprazole and omeprazole are used for treatment of various gastrointestinal pathologies. Both compounds cause drug-drug interactions because they activate aryl hydrocarbon receptor and induce CYP1A genes. In the current paper, we examined the effects of lansoprazole and omeprazole enantiomers on the expression of key drug-metabolizing enzyme CYP3A4 in human hepatocytes and human cancer cell lines. Lansoprazole enantiomers, but not omeprazole, were equipotent inducers of CYP3A4 mRNA in HepG2 cells. All forms (S-, R-, rac-) of lansoprazole and omeprazole induced CYP3A4 mRNA and protein in human hepatocytes. The quantitative profiles of CYP3A4 induction by individual forms of lansoprazole and omeprazole exerted enantiospecific patterns. Lansoprazole dose-dependently activated pregnane X receptor PXR in gene reporter assays, and slightly modulated rifampicin-inducible PXR activity, with similar potency for each enantiomer. Omeprazole dose-dependently activated PXR and inhibited rifampicin-inducible PXR activity. The effects of S-omeprazole were much stronger as compared to those of R-omeprazole. All forms of lansoprazole, but not omeprazole, slightly activated glucocorticoid receptor and augmented dexamethasone-induced GR transcriptional activity. Omeprazole and lansoprazole influenced basal and ligand inducible expression of tyrosine aminotransferase, a GR-target gene, in HepG2 cells and human hepatocytes. Overall, we demonstrate here that omeprazole and lansoprazole enantiomers induce CYP3A4 in HepG2 cells and human hepatocytes. The induction comprises differential interactions of omeprazole and lansoprazole with transcriptional regulators PXR and GR, and some of the effects were enantiospecific. The data presented here might be of toxicological and clinical importance, since the effects occurred in therapeutically relevant concentrations.

  6. Glucocorticoid receptor mRNA and protein isoform alterations in the orbitofrontal cortex in schizophrenia and bipolar disorder

    Science.gov (United States)

    2012-01-01

    Background The orbitofrontal cortex (OFC) may play a role in the pathogenesis of psychiatric illnesses such as bipolar disorder and schizophrenia, in which hypothalamic-pituitary-adrenal (HPA) axis abnormalities are observed and stress has been implicated. A critical component of the HPA axis which mediates cellular stress responses in the OFC, and has been implicated in psychiatric illness, is the glucocorticoid receptor (GR). Methods In the lateral OFC, we employed quantitative real-time PCR and western blotting to investigate GR mRNA and protein expression in 34 bipolar disorder cases, 35 schizophrenia cases and 35 controls. Genotype data for eleven GR gene (NR3C1) polymorphisms was also used to explore possible effects of NR3C1 sequence variation on GR mRNA and protein expression in the lateral OFC. Results We found no diagnostic differences in pan GR, GR-1C or GR-1F mRNA expression. However, the GR-1B mRNA transcript variant was decreased (14.3%) in bipolar disorder cases relative to controls (p schizophrenia cases relative to controls (p disorder (56.1%, p schizophrenia (31.5% p < 0.05). Using genotype data for eleven NR3C1 polymorphisms, we found no evidence of effects of NR3C1 genotype on GR mRNA or GRα protein expression in the OFC. Conclusions These findings reveal selective abnormalities of GR mRNA expression in the lateral OFC in psychiatric illness, which are more specific and may be less influenced by NR3C1 genotype than those of the dorsolateral prefrontal cortex reported previously. Our results suggest that the GRα-D1 protein isoform may be up-regulated widely across the frontal cortex in psychiatric illness. PMID:22812453

  7. Differential effects of antidepressants on glucocorticoid receptors in human primary blood cells and human monocytic U-937 cells.

    Science.gov (United States)

    Heiske, Andreas; Jesberg, Jutta; Krieg, Jürgen-Christian; Vedder, Helmut

    2003-04-01

    A number of data support the assumption that antidepressants (ADs) normalize the altered function of the hypothalamic-pituitary-adrenocortical (HPA) system involved in the pathophysiology of depressive disorder via direct effects on glucocorticoid receptors (GRs). In the present study, we examined the tricyclic ADs desipramine (DESI) and imipramine (IMI), the noradrenaline reuptake inhibitor maprotiline (MAPRO), and the noradrenergic and specific serotonergic AD (NaSSA) mirtazapine (MIR) for their effects on GR expression in primary human leukocytes and in monocytic U-937 cells. Semiquantitative RT-PCR indicated that the ADs exert differential effects on GR-mRNA levels in both primary human leukocytes and U-937 cells: whereas MAPRO and IMI did not induce pronounced changes in GR-mRNA levels, DESI and MIR significantly decreased the amounts of GR-mRNA in both cell systems. Further characterization of the effects of MIR revealed a time dependency of the regulation with an initial increase of GR-mRNA levels above control levels after 2.5 h of treatment and a decrease after 4, 24, and 48 h of incubation. A dose-response analysis demonstrated maximal effects of MIR at a concentration of 10(-7) M. Immunohistochemical studies showed that MIR increased the GR protein levels in a time-dependent manner and that this upregulation appeared earlier by additional treatment with dexamethasone (DEX). A translocation of the GR protein from the cytoplasm to the nucleus was induced between 24 and 48 h of treatment with MIR and MIR/DEX, respectively. Taken together, our data further support the assumption that ADs influence the neuroendocrine and immune system via effects on cellular GRs.

  8. Dexamethasone stimulated gene expression in peripheral blood indicates glucocorticoid-receptor hypersensitivity in job-related exhaustion.

    Science.gov (United States)

    Menke, Andreas; Arloth, Janine; Gerber, Markus; Rex-Haffner, Monika; Uhr, Manfred; Holsboer, Florian; Binder, Elisabeth B; Holsboer-Trachsler, Edith; Beck, Johannes

    2014-06-01

    Work-related stress can lead to various health problems ranging from job-related exhaustion to psychiatric and somatic diseases. Biomarkers of job-related exhaustion could help to improve our understanding of the biological mechanisms and might be useful to guide prevention and treatment strategies. The present study included 12 male cases suffering from job-related exhaustion and 12 matched healthy controls. Severity of exhaustion was assessed with the Maslach Burnout Inventory (MBI) and the Shirom-Melamed Burnout Measure (SMBM). Whole genome expression profiles derived from whole blood cells (baseline and following glucocorticoid-receptor (GR) stimulation with 1.5mg dexamethasone p.o.) and corresponding plasma cortisol levels were analyzed. All cases participated in regular aerobic exercise for 12 consecutive weeks and were then re-assessed at follow-up for exhaustion symptoms as well as for cortisol levels and gene expression profiles. At baseline, we found increased basal cortisol levels and an enhanced suppression of plasma cortisol concentrations following dexamethasone in cases suffering from job-related exhaustion. Gene expression analysis revealed that 1.6-fold more transcripts were significantly regulated by dexamethasone in cases as compared to controls. At follow-up after 12 weeks of regular exercise training which was accompanied by significantly improved exhaustion severity scores, cortisol levels and gene expression profiles of cases normalized to the levels observed in controls. In conclusion, we detected GR-induced neuroendocrine and gene expression changes in cases suffering from job-related exhaustion which are in line with an increased sensitivity of GR function. This GR dysregulation normalized with symptom recovery. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Common genes associated with antidepressant response in mouse and man identify key role of glucocorticoid receptor sensitivity.

    Directory of Open Access Journals (Sweden)

    Tania Carrillo-Roa

    2017-12-01

    Full Text Available Response to antidepressant treatment in major depressive disorder (MDD cannot be predicted currently, leading to uncertainty in medication selection, increasing costs, and prolonged suffering for many patients. Despite tremendous efforts in identifying response-associated genes in large genome-wide association studies, the results have been fairly modest, underlining the need to establish conceptually novel strategies. For the identification of transcriptome signatures that can distinguish between treatment responders and nonresponders, we herein submit a novel animal experimental approach focusing on extreme phenotypes. We utilized the large variance in response to antidepressant treatment occurring in DBA/2J mice, enabling sample stratification into subpopulations of good and poor treatment responders to delineate response-associated signature transcript profiles in peripheral blood samples. As a proof of concept, we translated our murine data to the transcriptome data of a clinically relevant human cohort. A cluster of 259 differentially regulated genes was identified when peripheral transcriptome profiles of good and poor treatment responders were compared in the murine model. Differences in expression profiles from baseline to week 12 of the human orthologues selected on the basis of the murine transcript signature allowed prediction of response status with an accuracy of 76% in the patient population. Finally, we show that glucocorticoid receptor (GR-regulated genes are significantly enriched in this cluster of antidepressant-response genes. Our findings point to the involvement of GR sensitivity as a potential key mechanism shaping response to antidepressant treatment and support the hypothesis that antidepressants could stimulate resilience-promoting molecular mechanisms. Our data highlight the suitability of an appropriate animal experimental approach for the discovery of treatment response-associated pathways across species.

  10. Prednisolone-induced differential gene expression in mouse liver carrying wild type or a dimerization-defective glucocorticoid receptor

    Directory of Open Access Journals (Sweden)

    Dokter Wim

    2010-06-01

    Full Text Available Abstract Background Glucocorticoids (GCs control expression of a large number of genes via binding to the GC receptor (GR. Transcription may be regulated either by binding of the GR dimer to DNA regulatory elements or by protein-protein interactions of GR monomers with other transcription factors. Although the type of regulation for a number of individual target genes is known, the relative contribution of both mechanisms to the regulation of the entire transcriptional program remains elusive. To study the importance of GR dimerization in the regulation of gene expression, we performed gene expression profiling of livers of prednisolone-treated wild type (WT and mice that have lost the ability to form GR dimers (GRdim. Results The GR target genes identified in WT mice were predominantly related to glucose metabolism, the cell cycle, apoptosis and inflammation. In GRdim mice, the level of prednisolone-induced gene expression was significantly reduced compared to WT, but not completely absent. Interestingly, for a set of genes, involved in cell cycle and apoptosis processes and strongly related to Foxo3a and p53, induction by prednisolone was completely abolished in GRdim mice. In contrast, glucose metabolism-related genes were still modestly upregulated in GRdim mice upon prednisolone treatment. Finally, we identified several novel GC-inducible genes from which Fam107a, a putative histone acetyltransferase complex interacting protein, was most strongly dependent on GR dimerization. Conclusions This study on prednisolone-induced effects in livers of WT and GRdim mice identified a number of interesting candidate genes and pathways regulated by GR dimers and sheds new light onto the complex transcriptional regulation of liver function by GCs.

  11. Functional glucocorticoid receptor gene variants do not underlie the high variability of 17-hydroxyprogesterone screening values in healthy newborns.

    Science.gov (United States)

    Schreiner, Felix; Tozakidou, Magdalini; Maslak, Rita; Holtkamp, Ute; Peter, Michael; Gohlke, Bettina; Woelfle, Joachim

    2009-04-01

    17-Hydroxyprogesterone (17-OHP) screening for classical congenital adrenal hyperplasia (CAH) is part of many newborn screening programs worldwide. Cut-off values are relatively high, and screening sensitivity does not reach 100%. Recently, the glucocorticoid receptor (GR) N363S-variant has been linked to relatively low degree of virilization and comparatively lower 17-OHP serum concentrations in clinically diagnosed female CAH patients. We sought to determine whether functional GR gene variants, either increasing (N363S, BclI) or decreasing GR sensitivity (R23K), underlie the variable 17-OHP screening levels in healthy newborns. GR genotypes were compared with 17-OHP screening values in 1000 random samples from routine screening. 17-OHP was measured by conventional immunoassay (TRFIA) and a liquid chromatography-tandem mass spectrometry method (LC-MS/MS), which has been shown to increase screening specificity by steroid profiling and avoiding cross-reactions of the 17-OHP-antibody. There was no significant association of 17-OHP with GR genotypes, even after inclusion of gestational and postnatal age as covariates. However, among LC-MS/MS steroid measurements, we observed some unexpected trends, including lower 11-deoxycortisol concentrations in both 363S- and 23K-carriers. For carriers of the frequent BclI variant, linear regression analysis revealed a significant increase of 4-androstenedione levels with every mutant allele inherited. Functional GR variants do not underlie the variation of 17-OHP values observed in healthy individuals. However, whether and to which extent genetically determined differences in individual GR sensitivity influence 17-OHP screening levels in conditions of a pathological hypothalamus-pituitary-adrenal gland-axis stimulation and thus may explain false-negative screening results in those affected by CAH remains to be investigated.

  12. [ASSOCIATION OF CYCLIC CITRULLINATED PEPTIDE ANTIBODIES LEVEL WITH RHEUMATOID ARTHRITIS ACTIVITY BASED ON GLUCOCORTICOID RECEPTOR GENE BBL1 POLYMORPHISM].

    Science.gov (United States)

    Prystupa, L; Savchenko, O; Koroza, S

    2015-10-01

    The ambiguity of facts on connection between glucocorticoid receptor gene (GR) Bcl1 polymorphism in rheumatoid arthritis (RA) and its activity as well as lack of facts on its association with serological variants of the desease, makes ir reasonable to investigate its connections between cyclic citrullinated peptide antibodiss (ACCP) concentration and clinico-laboratorial parameters of RA (DAS 28 desease activity score, C-reactive protein concentration (CRP) and erythrocyte sedimentation rate (ESR) level based on GR gene Bcl1 polymorphism. Study involved 161 RA patients aged over 40 as well as 96 healthy individuals. Routine examination of RA diagnostics, anthropometric and molecular genetic methods were used in the research. Statistical analysis of the results was performed using SPSS-17 program. It has been proved that there is no significant difference in GR gene Bcl1 polymorphism distribution based on DAS 28 RA desease activity score, ACCP concentration and ESR level. However, we have found out that G/G genotype bearers have positive correlation relationship between ACCP titre and RA activity by laboratorial parameters (CRP, ESR),DAS 28 score and rheumatoid factor (RF) which has not been found in C/C and C/G genotype bearing patients. The above indicates the association of G/G genotype by GR gene Bcl1 polymorphism with clinico-laboratorial parameters of RA inflammatory activity. In course of the study we have identified the existance of correlation relationship between ACCP concentration and DAS 28 score of RA activity, CRP concentration and ESR level in individuals bearing G/G gene by GR gene Bcl11 polymorphism gene. The association between GR gene Bcl1 polymorphism and clinico-laboratorial parameters of RA inflammatory activity has not been found.

  13. In ovo leptin administration modulates glucocorticoid receptor mRNA expression specifically in the hypothalamus of broiler chickens.

    Science.gov (United States)

    Yuan, Lixia; Wang, Yufeng; Hu, Yan; Zhao, Ruqian

    2017-01-18

    The glucocorticoid receptor (GR) is well documented to play a crucial role in the central control of energy homeostasis in mammals. However, the distribution and function of the GR in the chicken brain are less clear. Leptin is a key hormone regulating energy homeostasis in mammals, yet its action in the chicken is still under debate. In this study, the distribution of GR mRNA in the chicken brain and the effects of in ovo administration of leptin and its antagonist on early post-hatch growth and GR mRNA expression in different hypothalamic nuclei were investigated via in situ hybridization (ISH) and quantitative PCR. GR mRNA was widely expressed in the chicken brain, mainly in the corpus striatum, nucleus rotundus, dorsolateral nucleus, nucleus ovoidalis, nucleus reticularis superior and the hippocampus (Hp) and in the preoptic area of the hypothalamus. High doses of leptin (5.0μg) significantly promoted post-hatch growth, resulting in a significant high body weight increased by 24.64% at day (D) 21 of life. Meanwhile, hypothalamic expression of GR mRNA in the LL and HL groups was down-regulated significantly by 7.02% and 13.65% respectively (Phypothalamus of D21 broiler chickens. The leptin antagonist was able to reverse the effect of leptin on the growth rate and hypothalamic GR mRNA expression. These results provide evidence that in ovo administration of leptin influences early post-hatch growth and the hypothalamic expression of GR mRNA in broiler chickens. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. The effect of sex and irritable bowel syndrome on HPA axis response and peripheral glucocorticoid receptor expression

    Science.gov (United States)

    Videlock, Elizabeth J.; Shih, Wendy; Adeyemo, Mopelola; Mahurkar-Joshi, Swapna; Presson, Angela P.; Polytarchou, Christos; Alberto, Melissa; Iliopoulos, Dimitrios; Mayer, Emeran A.; Chang, Lin

    2016-01-01

    Background and aims Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis has been reported in irritable bowel syndrome (IBS). Enhanced HPA axis response has been associated with reduced glucocorticoid receptor (GR) mediated negative feedback inhibition. We aimed to study the effects of IBS status, sex, or presence of early adverse life events (EAL) on the cortisol response to corticotropin-releasing factor (CRF) and adrenocorticotropic hormone (ACTH), and on GR mRNA expression in peripheral blood mononuclear cells (PBMCs). Methods Rome III+ IBS patients and healthy controls underwent CRF (1 μg/kg ovine) and ACTH (250 μg) stimulation tests with serial plasma ACTH and cortisol levels measured (n = 116). GR mRNA levels were measured using quantitative PCR (n = 143). Area under the curve (AUC) and linear mixed effects models were used to compare ACTH and cortisol response measured across time between groups. Results There were divergent effects of IBS on the cortisol response to ACTH by sex. In men, IBS was associated with an increased AUC (p = 0.009), but in women AUC was blunted in IBS (p = 0.006). Men also had reduced GR mRNA expression (p = 0.007). Cumulative exposure to EALs was associated with an increased HPA response. Lower GR mRNA was associated with increased pituitary HPA response and increased severity of overall symptoms and abdominal pain in IBS. Conclusion This study highlights the importance of considering sex in studies of IBS and the stress response in general. Our findings also provide support for PBMC GR mRNA expression as a peripheral marker of central HPA response. PMID:27038676

  15. Novel aspects of hypothalamic-pituitary-adrenal axis regulation and glucocorticoid actions

    Science.gov (United States)

    Uchoa, Ernane Torres; Aguilera, Greti; Herman, James P.; Fiedler, Jenny L.; Deak, Terrence; Cordeiro de Sousa, Maria Bernardete

    2014-01-01

    Normal hypothalamic-pituitary-adrenal (HPA) axis activity leading to rhythmic and episodic release of adrenal glucocorticoids is essential for body homeostasis and survival during stress. Acting through specific intracellular receptors in the brain and periphery, glucocorticoids regulate behavior, metabolic, cardiovascular, immune, and neuroendocrine activities. In contrast to chronic elevated levels, circadian and acute stress-induced increases in glucocorticoids are necessary for hippocampal neuronal survival and memory acquisition and consolidation, through inhibiting apoptosis, facilitating glutamate transmission and inducing immediate early genes and spine formation. In addition to its metabolic actions leading to increasing energy availability, glucocorticoids have profound effects on feeding behavior, mainly through modulation of orexigenic and anorixegenic neuropeptides. Evidence is also emerging that in addition to the recognized immune suppressive actions of glucocorticoids by counteracting adrenergic proinflammatory actions, circadian elevations have priming effects in the immune system, potentiating acute defensive responses. In addition, negative feedback by glucocorticoids involves multiple mechanisms leading to limiting HPA axis activation and preventing deleterious effects of excessive glucocorticoid production. Adequate glucocorticoid secretion to meet body demands is tightly regulated by a complex neural circuitry controlling hypothalamic corticotrophin releasing hormone (CRH) and vasopressin secretion, the main regulators of pituitary adrenocorticotrophic hormone (ACTH). Rapid feedback mechanisms, likely involving non-genomic actions of glucocorticoids, mediate immediate inhibition of hypothalamic CRH and ACTH secretion, while intermediate and delayed mechanisms mediated by genomic actions involve modulation of limbic circuitry and peripheral metabolic messengers. Consistent with their key adaptive roles, HPA axis components are evolutionarily

  16. Stress Signals, Mediated by Membranous Glucocorticoid Receptor, Activate PLC/PKC/GSK-3β/β-catenin Pathway to Inhibit Wound Closure.

    Science.gov (United States)

    Jozic, Ivan; Vukelic, Sasa; Stojadinovic, Olivera; Liang, Liang; Ramirez, Horacio A; Pastar, Irena; Tomic Canic, Marjana

    2017-05-01

    Glucocorticoids (GCs), key mediators of stress signals, are also potent wound healing inhibitors. To understand how stress signals inhibit wound healing, we investigated the role of membranous glucocorticoid receptor (mbGR) by using cell-impermeable BSA-conjugated dexamethasone. We found that mbGR inhibits keratinocyte migration and wound closure by activating a Wnt-like phospholipase (PLC)/ protein kinase C (PKC) signaling cascade. Rapid activation of mbGR/PLC/PKC further leads to activation of known biomarkers of nonhealing found in patients, β-catenin and c-myc. Conversely, a selective inhibitor of PKC, calphostin C, blocks mbGR/PKC pathway, and rescues GC-mediated inhibition of keratinocyte migration in vitro and accelerates wound epithelialization of human wounds ex vivo. This novel signaling mechanism may have a major impact on understanding how stress response via GC signaling regulates homeostasis and its role in development and treatments of skin diseases, including wound healing. To test tissue specificity of this nongenomic signaling mechanism, we tested retinal and bronchial human epithelial cells and fibroblasts. We found that mbGR/PLC/PKC signaling cascade exists in all cell types tested, suggesting a more general role. The discovery of this nongenomic signaling pathway, in which glucocorticoids activate Wnt pathway via mbGR, provides new insights into how stress-mediated signals may activate growth signals in various epithelial and mesenchymal tissues. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Pharmacological Inhibition of O-GlcNAcase Does Not Increase Sensitivity of Glucocorticoid Receptor-Mediated Transrepression.

    Directory of Open Access Journals (Sweden)

    Peter J Stivers

    Full Text Available Glucocorticoid signaling regulates target genes by multiple mechanisms, including the repression of transcriptional activities of nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB though direct protein-protein interactions and subsequent O-GlcNAcylation of RNA polymerase II (pol II. Recent studies have shown that overexpression of O-linked β-N-acetylglucosamine transferase (OGT, which adds an O-linked β-N-acetylglucosamine (O-GlcNAc group to the C-terminal domain of RNA pol II, increases the transrepression effects of glucocorticoids (GC. As O-GlcNAcase (OGA is an enzyme that removes O-GlcNAc from O-GlcNAcylated proteins, we hypothesized that the potentiation of GC effects following OGT overexpression could be similarly observed via the direct inhibition of OGA, inhibiting O-GlcNAc removal from pol II. Here we show that despite pharmacological evidence of target engagement by a selective small molecule inhibitor of OGA, there is no evidence for a sensitizing effect on glucocorticoid-mediated effects on TNF-α promoter activity, or gene expression generally, in human cells. Furthermore, inhibition of OGA did not potentiate glucocorticoid-induced apoptosis in several cancer cell lines. Thus, despite evidence for O-GlcNAc modification of RNA pol II in GR-mediated transrepression, our data indicate that pharmacological inhibition of OGA does not potentiate or enhance glucocorticoid-mediated transrepression.

  18. The selective glucocorticoid receptor agonist mapracorat displays a favourable safety-efficacy ratio for the topical treatment of inflammatory skin diseases in dogs.

    Science.gov (United States)

    Bäumer, Wolfgang; Rossbach, Kristine; Schmidt, Bernard H

    2017-02-01

    Mapracorat is a nonsteroidal Selective Glucocorticoid Receptor Agonist (SEGRA) that is presumed to have a better therapeutic index compared to classical glucocorticoids. To compare the efficacy and safety of mapracorat with classical glucocorticoids used for the treatment of allergic skin diseases in dogs. Six laboratory beagles. The effect of mapracorat on lipopolysaccharide-induced TNFα secretion from canine peripheral blood derived mononuclear cells (PBMC) was tested. In vivo, mapracorat was compared to triamcinolone acetonide using a skin inflammation model. Skin fold thickness was determined after daily administration of mapracorat and triamcinolone acetonide over 14 days. Mapracorat concentration dependently inhibited TNFα secretion from activated canine PBMC with a half maximal inhibitory concentration (IC50 ) value of approximately 0.2 nmol/L. Intradermal injection of compound 48/80 (50 μg in 50 μL saline) resulted in a clear wheal and flare reaction over the 60 min observation period. Topical pre-treatment with mapracorat (0.1%) and triamcinolone acetonide (0.015%) led to significant reduction in the wheal and flare responses compared to vehicle (acetone) treated areas. However, once daily topical administration of triamcinolone acetonide significantly reduced skin fold thickness from day 8 to 14, whereas no such reduction was observed for mapracorat. These results demonstrate that mapracorat has comparable anti-inflammatory efficacy to classical steroidal glucocorticoids under these experimental settings and maintenance of skin fold thickness indicates a better safety profile compared to triamcinolone acetonide at equipotent concentrations. This profile further suggests that SEGRAs show promise in the management of inflammatory and pruritic skin diseases in dogs. © 2016 ESVD and ACVD.

  19. Membrane-bound glucocorticoid receptors on distinct nociceptive neurons as potential targets for pain control through rapid non-genomic effects.

    Science.gov (United States)

    Shaqura, Mohammed; Li, Xiongjuan; Al-Khrasani, Mahmoud; Shakibaei, Mehdi; Tafelski, Sascha; Fürst, Susanna; Beyer, Antje; Kawata, Mitsuhiro; Schäfer, Michael; Mousa, Shaaban A

    2016-12-01

    Glucocorticoids were long believed to primarily function through cytosolic glucocorticoid receptor (GR) activation and subsequent classical genomic pathways. Recently, however, evidence has emerged that suggests the presence of rapid non-genomic GR-dependent signaling pathways within the brain, though their existence in spinal and peripheral nociceptive neurons remains elusive. In this paper, we aim to systemically identify GR within the spinal cord and periphery, to verify their putative membrane location and to characterize possible G protein coupling and pain modulating properties. Double immunofluorescence confocal microscopy revealed that GR predominantly localized in peripheral peptidergic and non-peptidergic nociceptive C- and Aδ-neurons and existed only marginally in myelinated mechanoreceptive and proprioreceptive neurons. Within the spinal cord, GR predominantly localized in incoming presynaptic nociceptive neurons, in pre- and postsynaptic structures of the dorsal horn, as well as in microglia. GR saturation binding revealed that these receptors are linked to the cell membrane of sensory neurons and, upon activation, they trigger membrane targeted [(35)S]GTPγS binding, indicating G protein coupling to a putative receptor. Importantly, subcutaneous dexamethasone immediately and dose-dependently attenuated acute nociceptive behavior elicited in an animal model of formalin-induced pain hypersensitivity compared to naive rats. Overall, this study provides firm evidence for a novel neuronal mechanism of GR agonists that is rapid, non-genomic, dependent on membrane binding and G protein coupling, and acutely modulates nociceptive behavior, thus unraveling a yet unconsidered mechanism of pain relief. Copyright © 2016. Published by Elsevier Ltd.

  20. Inhibition of IRE1 signaling affects the expression of genes encoded glucocorticoid receptor and some related factors and their hypoxic regulation in U87 glioma cells

    Directory of Open Access Journals (Sweden)

    Minchenko D.O.

    2016-07-01

    Full Text Available Objective. The aim of the present investigation was to examine the effect of inhibition of endoplasmic reticulum stress signaling, mediated by IRE1 (inositol requiring enzyme 1, which is a central mediator of the unfolded protein response on the expression of genes encoding glucocorticoid receptor (NR3C1 and some related proteins (SGK1, SGK3, NCOA1, NCOA2, ARHGAP35, NNT and their hypoxic regulation in U87 glioma cells for evaluation of their possible significance in the control of the glioma growth.

  1. Overexpression of pregnane X and glucocorticoid receptors and the regulation of cytochrome P450 in human epileptic brain endothelial cells.

    Science.gov (United States)

    Ghosh, Chaitali; Hossain, Mohammed; Solanki, Jesal; Najm, Imad M; Marchi, Nicola; Janigro, Damir

    2017-04-01

    Recent evidence suggests a metabolic contribution of cytochrome P450 enzymes (CYPs) to the drug-resistant phenotype in human epilepsy. However, the upstream molecular regulators of CYP in the epileptic brain remain understudied. We therefore investigated the expression and function of pregnane xenobiotic (PXR) and glucocorticoid (GR) nuclear receptors in endothelial cells established from post-epilepsy surgery brain samples. PXR/GR localization was evaluated by immunohistochemistry in specimens from subjects who underwent temporal lobe resections to relieve drug-resistant seizures. We used primary cultures of endothelial cells obtained from epileptic brain tissues (EPI-ECs; n = 8), commercially available human brain microvascular endothelial cells (HBMECs; n = 8), and human hepatocytes (n = 3). PXR/GR messenger RNA (mRNA) levels in brain ECs was initially determined by complementary DNA (cDNA) microarrays. The expression of PXR/GR proteins was quantified by Western blot. PXR and GR silencing was performed in EPI-ECs (n = 4), and the impact on downstream CYP expression was determined. PXR/GR expression was detected by immunofluorescence in ECs and neurons in the human temporal lobe samples analyzed. Elevated mRNA and protein levels of PXR and GR were found in EPI-ECs versus control HBMECs. Hepatocytes, used as a positive control, displayed the highest levels of PXR/GR expression. We confirmed expression of PXR/GR in cytoplasmic-nuclear subcellular fractions, with a significant increase of PXR/GR in EPI-ECs versus controls. CYP3A4, CYP2C9, and CYP2E1 were overexpressed in EPI-ECs versus control, whereas CYP2D6 and CYP2C19 were downregulated or absent in EPI-ECs. GR silencing in EPI-ECs led to decreased CYP3A4, CYP2C9, and PXR expression. PXR silencing in EPI-ECs resulted in the specific downregulation of CYP3A4 expression. Our results indicate increased PXR and GR in primary ECs derived from human epileptic brains. PXR or GR may be responsible for a local drug brain

  2. C2C12 myotubes inhibit the proliferation and differentiation of 3T3-L1 preadipocytes by reducing the expression of glucocorticoid receptor gene

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Weiwei; Wei, Wei; Yu, Shigang; Han, Haiyin; Shi, Xiaoli [College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Sun, Wenxing [College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); College of Public Health, Nantong University, Nantong 226019 (China); Gao, Ying [College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095 (China); Zhang, Lifan [College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Chen, Jie, E-mail: jiechen@njau.edu.cn [College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China)

    2016-03-25

    Obesity is a well-established risk factor to health for its relationship with insulin resistance, diabetes and metabolic syndrome. Myocyte-adipocyte crosstalk model plays a significant role in studying the interaction of muscle and adipose development. Previous related studies mainly focus on the effects of adipocytes on the myocytes activity, however, the influence of myotubes on the preadipocytes development remains unclear. The present study was carried out to settle this issue. Firstly, the co-culture experiment showed that the proliferation, cell cycle, and differentiation of 3T3-L1 preadipocytes were arrested, and the apoptosis was induced, by differentiated C2C12 myotubes. Next, the sensitivity of 3T3-L1 preadipocytes to glucocorticoids (GCs), which was well known as cell proliferation, differentiation, apoptosis factor, was decreased after co-cultured with C2C12 myotubes. What's more, our results showed that C2C12 myotubes suppressed the mRNA and protein expression of glucocorticoid receptor (GR) in 3T3-L1 preadipocytes, indicating the potential mechanism of GCs sensitivity reduction. Taken together, we conclude that C2C12 myotubes inhibited 3T3-L1 preadipocytes proliferation and differentiation by reducing the expression of GR. These data suggest that decreasing GR by administration of myokines may be a promising therapy for treating patients with obesity or diabetes. - Highlights: • C2C12 myotubes inhibited proliferation and differentiation of 3T3-L1 preadipocytes. • C2C12 myotubes arrested cell cycle of 3T3-L1 preadipocytes. • C2C12 myotubes induced apoptosis of 3T3-L1 preadipocytes. • C2C12 inhibit 3T3-L1 cells by reducing the expression of glucocorticoid receptor gene.

  3. Effects of Glucocorticoid Receptor Small Interfering RNA Delivered Using Poly Lactic-Co-Glycolic Acid Microparticles on Proliferation and Differentiation Capabilities of Human Mesenchymal Stromal Cells

    Science.gov (United States)

    Wei, Na; Joshi, Vijaya; Yu, Yang; Kim, NaJung; Krishnamachari, Yogita; Zhang, Qiang

    2012-01-01

    Bone marrow–derived mesenchymal stem cells (MSC) are a potential attractive source of cells for stem cell–based tissue regeneration, but the small number and reduced capabilities of MSC proliferation and differentiation due to in vitro replicative senescence and donor-associated pathophysiological factors, including age and estrogen depletion, severely restrict their potential usefulness in clinical applications. Glucocorticoids (GC) are well-known steroid hormones that regulate MSC proliferation and differentiation, but the defined effects and underlying mechanisms of endogenous glucocorticoids on MSC characteristics are not understood. This study investigated the effects of the blockage of endogenous GC using glucocorticoid receptor (GR) small interfering RNA (siRNA) delivered using biodegradable poly(lactic-co-glycolic acid) (PLGA) microparticles on proliferation and differentiation capabilities of human MSC in vitro. The results show that we can prepare PLGA microparticles as a delivery system for GR siRNA and maintain release of siRNA up to 40 days in vitro. Transfection of GR siRNA significantly downregulates GR and upregulates the expression of fibroblast growth factor-2 and Sox-11 of human MSC. MSC that have proliferated with endogenous GC blocked in vitro have greater proliferation rates and exhibit upregulated expression of osteogenic markers (alkaline phosphatase and core binding factor alpha 1) under differentiation stimulation after 1 week. Under adipogenic differentiation, MSC proliferated in vitro with siRNA transfection, resulting in significantly lower adipogenic markers (peroxisome proliferator-activated receptor and lipoprotein lipase) than controls. In conclusion, PLGA particles can serve as a tool for delivery of GR siRNA to effectively block the effects of endogenous GC on MSC, which has the potential to improve the capabilities of human MSC for clinical application by preventing replicative senescence. PMID:21988716

  4. The plant-derived glucocorticoid receptor agonist Endiandrin A acts as co-stimulator of colonic epithelial sodium channels (ENaC via SGK-1 and MAPKs.

    Directory of Open Access Journals (Sweden)

    Dana Kuntzsch

    Full Text Available In a search for secondary plant compounds that bind to the glucocorticoid receptor (GR, the cyclobutane lignan endiandrin A was discovered from the rainforest tree Endiandra anthropophagorum Domin. Our present study aims to characterize the effect of endiandrin A on GR-dependent induction of colonic sodium transport. The effect of endiandrin A was analyzed in GR-expressing colonic HT-29/B6 cells (HT-29/B6-GR. GR transactivation and subcellular localization were investigated by reporter gene assay and immunofluorescence. Epithelial sodium channel (ENaC was analyzed by qRT-PCR and by measuring amiloride-sensitive short-circuit current (I(sc in Ussing chambers. Endiandrin A (End A has been identified as GR receptor binder. However, it did not cause significant GR transactivation as pGRE-luciferase activity was only 7% of that of the maximum effect of dexamethasone. Interestingly, endiandrin A had a significant impact on dexamethasone-dependent sodium absorption in cells co-exposed to tumor necrosis factor (TNF-α. This was in part due to up-regulation of β- and γ-ENaC subunit expression. Endiandrin A potentiated GR-mediated transcription by increasing GR protein expression and phosphorylation. It inhibited c-Jun N-terminal kinase (JNK activation induced by dexamethasone and/or TNF-α and increased levels of GR localized to the nucleus. Additionally, endiandrin A increased the serum- and glucocorticoid-induced kinase (sgk-1 via activation of p38. Finally, the regulation of ENaC function by endiandrin A was confirmed in rat native colon. In conclusion, endiandrin A potentiates glucocorticoid-driven activation of colonic epithelial sodium channels via JNK inhibition and p38 activation due to transcriptional up-regulation of β- and γ-ENaC-subunits along with induction of sgk-1.

  5. The first X-ray crystal structure of the glucocorticoid receptor bound to a non-steroidal agonist

    Energy Technology Data Exchange (ETDEWEB)

    Madauss, Kevin P.; Bledsoe, Randy K.; Mclay, Iain; Stewart, Eugene L.; Uings, Iain J.; Weingarten, Gordon; Williams, Shawn P. (GSKNC); (GSK)

    2009-07-23

    The amino-pyrazole 2,6-dichloro-N-ethyl benzamide 1 is a selective GR agonist with dexamethasone-like in vitro potency. Its X-ray crystal structure in the GR LBD (Glucocorticoid ligand-binding domain) is described and compared to other reported structures of steroidal GR agonists in the GR LBD (3E7C).

  6. Suppression of cortisol responses to exogenous adrenocorticotrophic hormone, and the occurrence of side effects attributable to glucocorticoid excess, in cats during therapy with megestrol acetate and prednisolone.

    Science.gov (United States)

    Middleton, D J; Watson, A D; Howe, C J; Caterson, I D

    1987-01-01

    The major purpose of this investigation was to determine the effect of prednisolone and megestrol acetate in cats on the adrenal cortisol response to exogenous adrenocorticotrophic hormone during drug administration at dose rates employed for management of some inflammatory feline dermatoses. Prednisolone (at least 2 mg/kg/day) and megestrol acetate (5 mg/cat/day) were each administered orally to seven cats from days 1 to 16. Three additional cats received no therapy. Basal and stimulated cortisol concentrations, food and water intake, hematology, blood biochemistry, urinalyses, and hepatic and cutaneous histology were studied in all cats before, during, and two weeks following the end of treatment. Cats given prednisolone or megestrol acetate had significant suppression of stimulated cortisol levels on day 8. This change was more marked on day 15, when the suppression in cats given megestrol acetate was also significantly more severe than in those receiving prednisolone. Recovery of adrenal reserve was considered present on day 30 in six of seven cats given prednisolone, but in only three of seven receiving megestrol acetate. Eosinopenia, glycosuria and hepatocyte swelling from glycogen deposition were occasionally recorded in treated cats of both groups, providing additional circumstantial evidence for glucocorticoid activity of megestrol acetate in cats. It is advised that abrupt withdrawal of prednisolone or megestrol acetate therapy be avoided in this species to reduce the chance of precipitating clinical signs of hypoadrenocorticism, even after treatment for as little as one week. Images Fig. 2. PMID:3032391

  7. Regulation of Corticoid and Serotonin Receptor Brain System following Early Life Exposure of Glucocorticoids: Long Term Implications for the Neurobiology of Mood

    Science.gov (United States)

    Vázquez, Delia M.; Neal, Charles R.; Patel, Paresh D.; Kaciroti, Niko; López, Juan F.

    2011-01-01

    Potent glucocorticoids (GC) administered early in life has improved premature infant survival dramatically. However, these agents may increase the risk for physical, neurological and behavior alterations. Anxiety, depression and attention difficulties are commonly described in adolescent and young adult survivors of prematurity. In the present study we administered vehicle, dexamethasone, or hydrocortisone to Sprague-Dawley rat pups on postnatal days 5 and 6, mimicking a short term clinical protocol commonly used in human infants. Two systems that are implicated in the regulation of stress and behavior were assessed: the limbic-hypothalamic-pituitary-adrenal axis [LHPA, glucocorticoid and mineralocorticoid receptors within] and the Serotonin (5-HT) system. We found that as adults, male Sprague-Dawley pups treated with GC showed agent specific altered growth, anxiety-related behavior, changes in corticoid response to novelty and gene expression changes within LHPA and 5-HT–related circuitry. The data suggest that prolonged GC-receptor stimulation during the early neonatal period can contribute to the development of individual differences in stress response and anxiety-related behavior later in life. PMID:21855221

  8. The Immunoexpression of Glucocorticoid Receptors in Breast Carcinomas, Lactational Change, and Normal Breast Epithelium and Its Possible Role in Mammary Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Raja Alyusuf

    2017-01-01

    Full Text Available The role of estrogen and progesterone receptors in breast cancer biology is well established. In contrast, other steroid hormones are less well studied. Glucocorticoids (GCs are known to play a role in mammary development and differentiation; thus, it is of interest to attempt to delineate their immunoexpression across a spectrum of mammary epithelia. Aim. To delineate the distribution pattern of glucocorticoid receptors (GRs in malignant versus nonmalignant epithelium with particular emphasis on lactational epithelium. Materials and Methods. Immunohistochemistry (IHC for GRs was performed on archival formalin-fixed paraffin-embedded tissue blocks of 96 cases comprising 52 invasive carcinomas, 21 cases with lactational change, and 23 cases showing normal mammary tissue histology. Results. Results reveal an overexpression of GRs in mammary malignant epithelium as compared to both normal and lactational groups individually and combined. GR overexpression is significantly more pronounced in HER-2-negative cancers. Discussion. This is the first study to compare GR expression in human lactating epithelium versus malignant and normal epithelium. The article discusses the literature related to the pathobiology of GCs in the breast with special emphasis on breast cancer. Conclusion. The lactational epithelium did not show overexpression of GR, while GR was overexpressed in mammary NST (ductal carcinoma, particularly HER-2-negative cancers.

  9. Physiology and molecular mechanism of glucocorticoid action

    Directory of Open Access Journals (Sweden)

    Andrzej Nagalski

    2010-03-01

    Full Text Available Endogenous glucocorticoids (GCs are secreted into the systemic circulation from the adrenal cortex. This release is under the control of the circadian clock and can be enhanced at any time in response to a stressor. The levels of circulating GC are regulated systemically by the hypothalamo-pituitary-adrenal axis and locally by access to target cells and pre-receptor metabolism by 11β-hydroxysteroids dehydrogenase enzymes. GCs mediate their genomic action by binding to two different ligand-inducible transcription factors: high-affinity mineralocorticoid receptor (MR and 10-fold lower affinity glucocorticoid receptors (GRs. Responses to GCs vary among individuals, cells, and tissues. The diversity and specificity in the steroid hormone’s response in the cell is controlled at different levels, including receptor translocation, interaction with specific transcription factors and coregulators, and the regulation of receptor protein levels by microRNA. Moreover, multiple GR isoforms are generated from one single GR gene by alternative splicing and alternative translation initiation. These isoforms all have unique tissue distribution patterns and transcriptional regulatory profiles. Furthermore, each is subjected to various post-translational modifications that affect receptor function. Deciphering the molecular mechanisms of GC action is further complicated by the realization that GCs can induce rapid, non-genomic effects within the cytoplasm. A tight regulation of GC secretion and their cell-specific activity is essential for proper organism function. This is particularly seen under conditions of GC deficiency or excess, as in Addison’s disease and Cushing’s syndrome, respectively.

  10. Depth-of-Focus Correction in Single-Molecule Data Allows Analysis of 3D Diffusion of the Glucocorticoid Receptor in the Nucleus.

    Directory of Open Access Journals (Sweden)

    Rolf Harkes

    Full Text Available Single-molecule imaging of proteins in a 2D environment like membranes has been frequently used to extract diffusive properties of multiple fractions of receptors. In a 3D environment the apparent fractions however change with observation time due to the movements of molecules out of the depth-of-field of the microscope. Here we developed a mathematical framework that allowed us to correct for the change in fraction size due to the limited detection volume in 3D single-molecule imaging. We applied our findings on the mobility of activated glucocorticoid receptors in the cell nucleus, and found a freely diffusing fraction of 0.49±0.02. Our analysis further showed that interchange between this mobile fraction and an immobile fraction does not occur on time scales shorter than 150 ms.

  11. Hyperactivity of Hypothalamic-Pituitary-Adrenal Axis Due to Dysfunction of the Hypothalamic Glucocorticoid Receptor in Sigma-1 Receptor Knockout Mice.

    Science.gov (United States)

    Di, Tingting; Zhang, Suyun; Hong, Juan; Zhang, Tingting; Chen, Ling

    2017-01-01

    Sigma-1 receptor knockout (σ1R-KO) mice exhibit a depressive-like phenotype. Because σ1R is highly expressed in the neuronal cells of hypothalamic paraventricular nuclei (PVN), this study investigated the influence of σ1R deficiency on the regulation of the hypothalamic-pituitary-adrenocortical (HPA) axis. Here, we show that the levels of basal serum corticosterone (CORT), adrenocorticotropic hormone (ACTH) and corticotrophin releasing factor (CRF) as well as the level of CRF mRNA in PVN did not significantly differ between adult male σ1R-KO mice and wild-type (WT) mice. Acute mild restraint stress (AMRS) induced a higher and more sustainable increase in activity of HPA axis and CRF expression in σ1R-KO mice. Percentage of dexamethasone (Dex)-induced reduction in level of CORT was markedly attenuated in σ1R-/- mice. The levels of glucocorticoid receptor (GR) and protein kinase C (PKC) phosphorylation were reduced in the PVN of σ1R-KO mice and σ1R antagonist NE100-treated WT mice. The exposure to AMRS in σ1R-KO mice induced a stronger phosphorylation of cAMP-response element binding protein (CREB) in PVN than that in WT mice. Intracerebroventricular (i.c.v.) injection of PKC activator PMA for 3 days in σ1R-KO mice not only recovered the GR phosphorylation and the percentage of Dex-reduced CORT but also corrected the AMRS-induced hyperactivity of HPA axis and enhancement of CRF mRNA and CREB phosphorylation. Furthermore, the injection (i.c.v.) of PMA in σ1R-KO mice corrected the prolongation of immobility time in forced swim test (FST) and tail suspension test (TST). These results indicate that σ1R deficiency causes down-regulation of GR by reducing PKC phosphorylation, which attenuates GR-mediated feedback inhibition of HPA axis and facilitates the stress response of HPA axis leading to the production of depressive-like behaviors.

  12. Hyperactivity of Hypothalamic-Pituitary-Adrenal Axis Due to Dysfunction of the Hypothalamic Glucocorticoid Receptor in Sigma-1 Receptor Knockout Mice

    Directory of Open Access Journals (Sweden)

    Tingting Di

    2017-09-01

    Full Text Available Sigma-1 receptor knockout (σ1R-KO mice exhibit a depressive-like phenotype. Because σ1R is highly expressed in the neuronal cells of hypothalamic paraventricular nuclei (PVN, this study investigated the influence of σ1R deficiency on the regulation of the hypothalamic-pituitary-adrenocortical (HPA axis. Here, we show that the levels of basal serum corticosterone (CORT, adrenocorticotropic hormone (ACTH and corticotrophin releasing factor (CRF as well as the level of CRF mRNA in PVN did not significantly differ between adult male σ1R-KO mice and wild-type (WT mice. Acute mild restraint stress (AMRS induced a higher and more sustainable increase in activity of HPA axis and CRF expression in σ1R-KO mice. Percentage of dexamethasone (Dex-induced reduction in level of CORT was markedly attenuated in σ1R−/− mice. The levels of glucocorticoid receptor (GR and protein kinase C (PKC phosphorylation were reduced in the PVN of σ1R-KO mice and σ1R antagonist NE100-treated WT mice. The exposure to AMRS in σ1R-KO mice induced a stronger phosphorylation of cAMP-response element binding protein (CREB in PVN than that in WT mice. Intracerebroventricular (i.c.v. injection of PKC activator PMA for 3 days in σ1R-KO mice not only recovered the GR phosphorylation and the percentage of Dex-reduced CORT but also corrected the AMRS-induced hyperactivity of HPA axis and enhancement of CRF mRNA and CREB phosphorylation. Furthermore, the injection (i.c.v. of PMA in σ1R-KO mice corrected the prolongation of immobility time in forced swim test (FST and tail suspension test (TST. These results indicate that σ1R deficiency causes down-regulation of GR by reducing PKC phosphorylation, which attenuates GR-mediated feedback inhibition of HPA axis and facilitates the stress response of HPA axis leading to the production of depressive-like behaviors.

  13. Demonstration by transfection studies that mutations in the adrenocorticotropin receptor gene are one cause of the hereditary syndrome of glucocorticoid deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Naville, D.; Barjhoux, L.; Jaillard, C. [Hopital Debrousse, Tours (France)] [and others

    1996-04-01

    The hereditary syndrome of unresponsiveness to ACTH is a rare autosomal recessive disorder characterized by low levels of serum cortisol and high levels of plasma ACTH. There is no cortisol response to exogenous ACTH. Recent cloning of the human ACTH receptor gene has enabled us to study this gene in patients with glucocorticoid deficiency. By using the PCR to amplify the coding sequence of the ACTH receptor gene, we identified three mutations in two unrelated patients. One mutation present in homozygous form converted the negatively charged Asp{sup 107}, located in the third transmembrane domain, to an uncharged Asn residue. The second patient was a compound heterozygote: the paternal allele contained a one-nucleotide insertion leading to a stop codon within the third extracellular loop, and the maternal allele contained a point mutation converting Cys{sup 235} to Phe, also in the third extracellular loop. Normal and mutant ACTH receptor genes were expressed in the M3 cell line, and intracellular cAMP production in response to ACTH was measured. For the mutant receptors, no response to physiological ACTH concentrations was detected, suggesting an impaired binding of ACTH to the receptors and/or an altered coupling to the adenylate cyclase effector. 24 refs., 6 figs., 2 tabs.

  14. Knockdown of the glucocorticoid receptor alters functional integration of newborn neurons in the adult hippocampus and impairs fear-motivated behavior.

    Science.gov (United States)

    Fitzsimons, C P; van Hooijdonk, L W A; Schouten, M; Zalachoras, I; Brinks, V; Zheng, T; Schouten, T G; Saaltink, D J; Dijkmans, T; Steindler, D A; Verhaagen, J; Verbeek, F J; Lucassen, P J; de Kloet, E R; Meijer, O C; Karst, H; Joels, M; Oitzl, M S; Vreugdenhil, E

    2013-09-01

    Glucocorticoids (GCs) secreted after stress reduce adult hippocampal neurogenesis, a process that has been implicated in cognitive aspects of psychopathology, amongst others. Yet, the exact role of the GC receptor (GR), a key mediator of GC action, in regulating adult neurogenesis is largely unknown. Here, we show that GR knockdown, selectively in newborn cells of the hippocampal neurogenic niche, accelerates their neuronal differentiation and migration. Strikingly, GR knockdown induced ectopic positioning of a subset of the new granule cells, altered their dendritic complexity and increased their number of mature dendritic spines and mossy fiber boutons. Consistent with the increase in synaptic contacts, cells with GR knockdown exhibit increased basal excitability parallel to impaired contextual freezing during fear conditioning. Together, our data demonstrate a key role for the GR in newborn hippocampal cells in mediating their synaptic connectivity and structural as well as functional integration into mature hippocampal circuits involved in fear memory consolidation.

  15. Efficacy and Tolerability of an Inhaled Selective Glucocorticoid Receptor Modulator - AZD5423 - in Chronic Obstructive Pulmonary Disease Patients: Phase II Study Results.

    Science.gov (United States)

    Kuna, Piotr; Aurivillius, Magnus; Jorup, Carin; Prothon, Susanne; Taib, Ziad; Edsbäcker, Staffan

    2017-10-01

    AZD5423 is a novel, inhaled, selective glucocorticoid receptor modulator (SGRM), which in an allergen challenge model in asthma patients improved lung function and airway hyper-reactivity. In the current trial, AZD5423 was for the first time tested in patients with chronic obstructive pulmonary disease (COPD). In this double-blind, randomized and parallel group study, we examined airway and systemic effects of two doses of AZD5423, inhaled via Turbuhaler for 12 weeks, in 353 symptomatic patients with COPD (average pre-bronchodilator forced expiratory volume in one-second (FEV1) at screening was 50-52% of predicted normal). Pre-bronchodilator FEV1 was primary variable, with other lung function parameters plus symptoms and 24-hr plasma cortisol being secondary variables. Plasma concentrations of AZD5423 were also measured. Effects were compared against placebo and a reference glucocorticoid receptor agonist control. Neither AZD5423, at doses which have shown to be efficacious in allergen-induced asthma, nor the reference control, at double the approved dose, had any clinically meaningful effect in the patient population studied in regard to lung function or markers of inflammation. Both GR modulators were well tolerated and did suppress 24-hr cortisol. This study suggests that the selected population of patients with COPD does not respond to treatment with AZD5423 as regards lung function, while showing the expected systemic effects. It cannot be ruled out that a favourable lung function response of AZD5423 can be evoked using another experimental setting and/or within a different population of patients with COPD. © 2017 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  16. EMF radiation at 2450 MHz triggers changes in the morphology and expression of heat shock proteins and glucocorticoid receptors in rat thymus.

    Science.gov (United States)

    Misa-Agustiño, M J; Leiro-Vidal, J M; Gomez-Amoza, J L; Jorge-Mora, M T; Jorge-Barreiro, F J; Salas-Sánchez, A A; Ares-Pena, F J; López-Martín, E

    2015-04-15

    Electromagnetic fields (EMFs) can act as inducers or mediators of stress response through the production of heat shock proteins (HSPs) that modulate immune response and thymus functions. In this study, we analyzed cellular stress levels in rat thymus after exposure of the rats to a 2.45 GHz radio frequency (RF) using an experimental diathermic model in a Gigahertz Transverse Electromagnetic (GTEM) chamber. In this experiment, we used H&E staining, the ELISA test and immunohistochemistry to examine Hsp70 and Hsp90 expression in the thymus and glucocorticoid receptors (GR) of 64 female Sprague–Dawley rats exposed individually to 2.45 GHz (at 0, 1.5, 3.0 or 12.0 W power). The 1 g averaged peak and mean SAR values in the thymus and whole body of each rat to ensure that sub-thermal levels of radiation were being reached. The thymus tissue presented several morphological changes, including increased distribution of blood vessels along with the appearance of red blood cells and hemorrhagic reticuloepithelial cells. Levels of Hsp90 decreased in the thymus when animals were exposed to the highest power level (12 W), but only one group did not show recovery after 24 h. Hsp70 presented no significant modifications in any of the groups. The glucocorticoid receptors presented greater immunomarking on the thymic cortex in exposed animals. Our results indicate that non-ionizing sub-thermal radiation causes changes in the endothelial permeability and vascularization of the thymus, and is a tissue-modulating agent for Hsp90 and GR.

  17. Biological Roles of Hydroxysteroid (11-Beta) Dehydrogenase 1 (HSD11B1), HSD11B2, and Glucocorticoid Receptor (NR3C1) in Sheep Conceptus Elongation.

    Science.gov (United States)

    Brooks, Kelsey; Burns, Gregory; Spencer, Thomas E

    2015-08-01

    In sheep, the elongating conceptus synthesizes and secretes interferon tau (IFNT) as well as prostaglandins (PGs) and cortisol. The enzymes, hydroxysteroid (11-beta) dehydrogenase 1 (HSD11B1) and HSD11B2 interconvert cortisone and cortisol. In sheep, HSD11B1 is expressed and active in the conceptus trophectoderm as well as in the endometrial luminal epithelia; in contrast, HSD11B2 expression is most abundant in conceptus trophectoderm. Cortisol is a biologically active glucocorticoid and ligand for the glucocorticoid receptor (NR3C1 or GR) and mineralocorticoid receptor (NR3C2 or MR). Expression of MR is not detectable in either the ovine endometrium or conceptus during early pregnancy. In tissues that do not express MR, HSD11B2 protects cells from the growth-inhibiting and/or proapoptotic effects of cortisol, particularly during embryonic development. In study one, an in utero loss-of-function analysis of HSD11B1 and HSD11B2 was conducted in the conceptus trophectoderm using morpholino antisense oligonucleotides (MAOs) that inhibit mRNA translation. Elongating, filamentous conceptuses were recovered on Day 14 from ewes infused with control morpholino or HSD11B2 MAO. In contrast, HSD11B1 MAO resulted in severely growth-retarded conceptuses or conceptus fragments with apoptotic trophectoderm. In study two, clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 genome editing was used to determine the role of GR in conceptus elongation and development. Elongating, filamentous-type conceptuses (12-14 cm in length) were recovered from ewes gestating control embryos (n = 7/7) and gestating GR-edited embryos (n = 6/7). These results support the idea that the effects of HSD11B1-derived cortisol on conceptus elongation are indirectly mediated by the endometrium and are not directly mediated through GR in the trophectoderm. © 2015 by the Society for the Study of Reproduction, Inc.

  18. Sex-dependent effects of developmental arsenic exposure on methylation capacity and methylation regulation of the glucocorticoid receptor system in the embryonic mouse brain

    Directory of Open Access Journals (Sweden)

    Andrea M. Allan

    2015-01-01

    Full Text Available Previously we have shown that prenatal moderate arsenic exposure (50 ppb disrupts glucocorticoid receptor (GR programming and that these changes continue into adolescence in males. However, it was not clear what the molecular mechanisms were promoting these GR programming changes or if these changes occurred in arsenic-exposed females. In the present studies, we assessed the effects of arsenic on protein and mRNA of the glucocorticoid receptor (GR and 11β-hydroxysteroid dehydrogenase (Hsd isozymes and compared the levels of methylation within the promoters of the Nr3c1 and Hsd11b1 genes in female fetal brain at embryonic days (E 14 and 18. Prenatal arsenate exposure produced sex specific effects on the glucocorticoid system. Compared to males, females were resistant to arsenic induced changes in GR, 11β-Hsd-1 and 11β-Hsd-2 protein levels despite observed elevations in Nr3c1 and Hsd11b2 mRNA. This sex-specific effect was not due to differences in the methylation of the GR promoter as methylation of the Nr3c1 gene was either unchanged (region containing the egr-1 binding site or similarly reduced (region containing the SP-1 transcription factor binding site in both males and females exposed to arsenic. Arsenic did produce sex and age-specific changes in the methylation of Hsd11b1 gene, producing increased methylation in females at E14 and decreased methylation at E18.These changes were not attributed to changes in DNMT levels. Since arsenate metabolism could interfere with the generation of methyl donor groups, we assessed glutathione (GSH, S-adenosylmethionine (SAM and As 3 methyltransferase (As3MT. Exposed males and females had similar levels of As3MT and SAM; however, females had higher levels of GSH/GSSH. It is possible that this greater anti-oxidative capacity within the females provides protection against low to moderate arsenate. Our data suggest that the GR signaling system in female offspring was not as affected by prenatal arsenic

  19. CRF1 but not glucocorticoid receptor antagonists reduce separation-induced distress vocalizations in guinea pig pups and CRF overexpressing mouse pups. A combination study with paroxetine.

    Science.gov (United States)

    Verdouw, P Monika; van Esterik, Joantine C J; Peeters, Bernard W M M; Millan, Mark J; Groenink, Lucianne

    2017-03-01

    Given the large number of patients that does not respond sufficiently to currently available treatment for anxiety disorders, there is a need for improved treatment. We evaluated the anxiolytic effects of corticotropin releasing factor (CRF)1 receptor antagonists and glucocorticoid receptor (GR) antagonists in the separation-induced vocalization test in guinea pigs and transgenic mice with central CRF overexpression. Furthermore, we explored effects of these drugs when given in combination with a suboptimal dose of a selective serotonin re-uptake inhibitor (SSRI). In guinea pig pups, the CRF1 receptor antagonists CP-154,526 and DMP695, and the GR antagonists mifepristone and Org34517 (all at 2.5, 10 and 40mg/kg intraperitoneally (IP)) were tested alone or in combination with 0.63mg/kg paroxetine IP. In CRF overexpressing mouse pups and wild type littermates, effects of CP-154,526 (10, 20 and 40mg/kg subcutaneously (SC)) and mifepristone (5, 15, 45mg/kg SC) were studied alone or in combination with 0.03mg/kg paroxetine SC. CRF1 but not GR antagonists reduced the number of calls relative to vehicle in guinea pigs and mice, independent of genotype. Treatment of CRF1 receptor or GR antagonists with paroxetine had no combined effect in guinea pigs, wild type or CRF overexpressing mice. Current results indicate robust anxiolytic properties of CRF1 receptor antagonists in guinea pigs and mice overexpressing CRF, and lack thereof of GR antagonists. Although no combined treatment effects were observed, it would be interesting to study combined treatment of CRF1 receptor antagonists with SSRIs following chronic drug administration. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Inhibition of nerve growth factor-induced neurite outgrowth from PC12 cells by dexamethasone: signaling pathways through the glucocorticoid receptor and phosphorylated Akt and ERK1/2.

    Directory of Open Access Journals (Sweden)

    Kazuki Terada

    Full Text Available Glucocorticoids are important mediators of the stress response and are commonly employed as drugs for the suppression of immune rejection after organ transplantation. Previous investigations uncovered the possibility of mood depression in patients undergoing long-term treatment with synthetic glucocorticoids, including dexamethasone (DEX. Exogenous glucocorticoids and their synthetic derivatives can also adversely affect the development of the central nervous system. Although neurite extension from rat pheochromocytoma-derived PC12 cells and a variety of primary neurons is stimulated by nerve growth factor (NGF, and signaling pathways triggered by the binding of NGF to tyrosine kinase receptor type 1 (TrkA function in both neurite outgrowth and neuronal survival, the effect of DEX on the activation of regulatory proteins and pathways downstream of TrkA has not been well characterized. To analyze the influence of DEX on NGF-induced neurite outgrowth and signaling, PC12 cells, a widely utilized model of neuronal differentiation, were pretreated with the glucocorticoid prior to NGF induction. NGF-induced neurite outgrowth was attenuated by pretreatment with DEX, even in the absence of DEX after the addition of NGF. Moreover, DEX suppressed the phosphorylation of Akt and extracellular-regulated kinase 1/2 (ERK1/2 in the neurite outgrowth signaling cascade initiated by NGF. Finally, the glucocorticoid receptor (GR antagonist, RU38486, counteracted the inhibitory effect of DEX pretreatment, not only on the phosphorylation of Akt and ERK1/2, but also on neurite extension from PC12 cells. These results suggest that DEX binding to the GR impairs NGF-promoted neurite outgrowth by interfering with the activation/phosphorylation of Akt and ERK1/2. These novel findings are likely to be useful for elucidating the central nervous system depressive mechanism(s of action of DEX and other glucocorticoids.

  1. Inhibition of nerve growth factor-induced neurite outgrowth from PC12 cells by dexamethasone: signaling pathways through the glucocorticoid receptor and phosphorylated Akt and ERK1/2.

    Science.gov (United States)

    Terada, Kazuki; Kojima, Yoshitsugu; Watanabe, Takayuki; Izumo, Nobuo; Chiba, Koji; Karube, Yoshiharu

    2014-01-01

    Glucocorticoids are important mediators of the stress response and are commonly employed as drugs for the suppression of immune rejection after organ transplantation. Previous investigations uncovered the possibility of mood depression in patients undergoing long-term treatment with synthetic glucocorticoids, including dexamethasone (DEX). Exogenous glucocorticoids and their synthetic derivatives can also adversely affect the development of the central nervous system. Although neurite extension from rat pheochromocytoma-derived PC12 cells and a variety of primary neurons is stimulated by nerve growth factor (NGF), and signaling pathways triggered by the binding of NGF to tyrosine kinase receptor type 1 (TrkA) function in both neurite outgrowth and neuronal survival, the effect of DEX on the activation of regulatory proteins and pathways downstream of TrkA has not been well characterized. To analyze the influence of DEX on NGF-induced neurite outgrowth and signaling, PC12 cells, a widely utilized model of neuronal differentiation, were pretreated with the glucocorticoid prior to NGF induction. NGF-induced neurite outgrowth was attenuated by pretreatment with DEX, even in the absence of DEX after the addition of NGF. Moreover, DEX suppressed the phosphorylation of Akt and extracellular-regulated kinase 1/2 (ERK1/2) in the neurite outgrowth signaling cascade initiated by NGF. Finally, the glucocorticoid receptor (GR) antagonist, RU38486, counteracted the inhibitory effect of DEX pretreatment, not only on the phosphorylation of Akt and ERK1/2, but also on neurite extension from PC12 cells. These results suggest that DEX binding to the GR impairs NGF-promoted neurite outgrowth by interfering with the activation/phosphorylation of Akt and ERK1/2. These novel findings are likely to be useful for elucidating the central nervous system depressive mechanism(s) of action of DEX and other glucocorticoids.

  2. Association Between N363S and BclI Polymorphisms of the Glucocorticoid Receptor Gene (NR3C1 and Glucocorticoid Side Effects During Childhood Acute Lymphoblastic Leukemia Treatment

    Directory of Open Access Journals (Sweden)

    Meriç Kaymak Cihan

    2017-06-01

    Full Text Available Objective: Glucocorticoids (GCs are the key drugs for the treatment of pediatric acute lymphoblastic leukemia (ALL. Herein, investigation of the relationship between the N363S and BclI polymorphisms of the GC receptor gene (NR3C1 and the side effects of GCs during pediatric ALL therapy was aimed. Materials and Methods: N363S and BclI polymorphisms were analyzed in 49 patients with ALL treated between 2000 and 2012. The control group consisted of 46 patients with benign disorders. The side effects of GCs noted during the induction and reinduction periods were evaluated retrospectively according to the National Cancer Institute’s Common Terminology Criteria for Adverse Events, version 4.0. Results: The BclI allele and genotype frequencies were found similar in the two groups. No N363S polymorphism was detected in either of the groups. During induction, dyspepsia was found more frequently in the CG than in the CC (wild-type genotype (36.4% vs. 5.3%, p=0.018 and depression symptoms more frequent in patients with the G allele (CG+GG than the CC genotype (39.3% vs. 10.5%, p=0.031. During reinduction, Cushingoid changes, dyspepsia, and depression symptoms were more frequent in patients with the G allele (CG+GG than in patients with the CC genotype (48.1% vs. 17.6%, p=0.041; 29.6% vs. 0.0%, p=0.016; 40.7% vs. 11.8%, p=0.040, respectively. Conclusion: In our study, patients with the BclI polymorphism were found to have developed more frequent side effects. We think that the BclI polymorphism should be considered while designing individualized therapies in childhood ALL.

  3. Glucocorticoids as mediators of developmental programming effects.

    Science.gov (United States)

    Khulan, Batbayar; Drake, Amanda J

    2012-10-01

    Epidemiological evidence suggests that exposure to an adverse environment in early life is associated with an increased risk of cardio-metabolic and behavioral disorders in adulthood, a phenomenon termed 'early life programming'. One major hypothesis for early life programming is fetal glucocorticoid overexposure. In animal studies, prenatal glucocorticoid excess as a consequence of maternal stress or through exogenous administration to the mother or fetus is associated with programming effects on cardiovascular and metabolic systems and on the brain. These effects can be transmitted to subsequent generations. Studies in humans provide some evidence that prenatal glucocorticoid exposure may exert similar programming effects on glucose/insulin homeostasis, blood pressure and neurodevelopment. The mechanisms by which glucocorticoids mediate these effects are unclear but may include a role for epigenetic modifications. This review discusses the evidence for glucocorticoid programming in animal models and in humans. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Prevalence and cardiometabolic associations of the glucocorticoid receptor gene polymorphisms N363S and BclI in obese and non-obese black and white Mississippians.

    Science.gov (United States)

    Melcescu, Eugen; Griswold, Michael; Xiang, Lianbin; Belk, Sheila; Montgomery, Denise; Bray, Marilyn; Del Ben, Kevin S; Uwaifo, Gabriel I; Marshall, Gailen D; Koch, Christian A

    2012-01-01

    Polymorphisms (SNP) in the glucocorticoid receptor (GR) gene can alter sensitivity to glucocorticoids. Previous studies of the N363S and BclI SNP in the GR gene have shown a metabolic syndrome phenotype in mostly non-African populations. The obesity phenotype of African Americans (AA) seems to be more severe than that of Caucasians. We aimed to assess the prevalence of N363S and BclI in obese and non-obese Caucasian (n=26) and African (n=23) Mississippians (age: 23-63 years) to investigate associations with body composition (body mass index/BMI, waist-to-hip ratio), metabolic parameters (salivary cortisol, fasting glucose and insulin, hemoglobin A1C, fructosamine, HOMA-IR index), and psychological stress perception (blood pressure/BP, perceived stress scale/PSS). All subjects were homozygous for wildtype N363N. BclI polymorphism genotype frequencies among the 23 AA were: homozygous CC (57%), GG (4%), and heterozygous CG (39%), and among the 26 white women: homozygous CC (35%), GG (19%), and heterozygous CG (46%). Linear and logistic regression analyses including a parsimonious model identified BMI as a statistically significant parameter between the two ethnic groups (BMI was 3.13 kg/m2 higher in AA). Within the AA group, BMI, waist-to-hip ratio, log (HOMA-IR), PSS scores, BP, and hyperlipidemia showed no statistically significant relationships for the BclI polymorphism. PSS scores were 15.2 for AA vs. 14.7 for white women (normal mean: 14.7 vs. 12.8). Black Mississippians have a higher BMI than whites, which may be related to the presence of the BclI polymorphism and increased glucocorticoid sensitivity. Although more blacks (52%) than whites (38%) had elevated BP, PSS scores in both groups suggest that a high BMI is not regarded as abnormal or stressful. This might negatively impact behavior change regarding lifestyle modifications with increased physical activity and healthier food choices. Larger studies, particularly in African populations, are needed to

  5. Glucocorticoid receptor alpha and beta variant expression is associated with ASF/SF2 splicing factor upregulation in HT-29 colon cancer and MCF-7 breast carcinoma cells.

    Science.gov (United States)

    Piotrowska, Hanna; Jagodzinski, Pawel P

    2009-04-01

    Transcriptional activity of NF-kappaB is inhibited by the liganded glucocorticoid receptor (GR), which exists mainly in two splice variants as functional GRalpha and nonfunctional GRbeta. We investigated the effect of 5-aza-2'-deoxycytidine (5-dAzaC), trichostatin A (TSA), and sodium butyrate (NaBu) on GRalpha,GRbeta and ASF/SF2 splicing factor expression in HT-29 colon and MCF-7 breast carcinoma cells. HT-29 and MCF-7 cells were cultured in the absence or in the presence of 5-dAzaC, TSA, and NaBu, followed by RNA and protein isolation. The transcript and protein levels of GRalpha, GRbeta ASF/SF2 were determined by reverse transcription, real-time quantitative PCR and Western blot analysis. We found that 5-dAzaC, TSA, and NaBu lead to an increase in GRalpha and ASF/SF2 transcript levels and a decrease in GRbeta transcript levels in HT-29 and MCF-7 cells. The 5-dAzaC, TSA, and NaBu resulted in increased GRalpha and ASF/SF2 protein levels and GRbeta protein downregulation in HT-29 cells. The most increased GRalpha protein expression in MCF-7 cells was observed with NaBu. However, all of these compounds inhibited GRbeta protein expression in MCF-7 cells. The MCF-7 cells treated with NaBu demonstrated a remarkable increase in ASF/SF2 protein expression. Because NF-kappaB is considered to be a factor in the augmentation of malignant properties of cells, treatment of tumors with 5-dAzaC, TSA, and NaBu may provide a novel approach to the enhancement of therapeutic effects of glucocorticoids in epithelial carcinomas.

  6. Impact of glucocorticoid receptor density on ligand-independent dimerization, cooperative ligand-binding and basal priming of transactivation: a cell culture model.

    Science.gov (United States)

    Robertson, Steven; Rohwer, Johann M; Hapgood, Janet P; Louw, Ann

    2013-01-01

    Glucocorticoid receptor (GR) levels vary between tissues and individuals and are altered by physiological and pharmacological effectors. However, the effects and implications of differences in GR concentration have not been fully elucidated. Using three statistically different GR concentrations in transiently transfected COS-1 cells, we demonstrate, using co-immunoprecipitation (CoIP) and fluorescent resonance energy transfer (FRET), that high levels of wild type GR (wtGR), but not of dimerization deficient GR (GRdim), display ligand-independent dimerization. Whole-cell saturation ligand-binding experiments furthermore establish that positive cooperative ligand-binding, with a concomitant increased ligand-binding affinity, is facilitated by ligand-independent dimerization at high concentrations of wtGR, but not GRdim. The down-stream consequences of ligand-independent dimerization at high concentrations of wtGR, but not GRdim, are shown to include basal priming of the system as witnessed by ligand-independent transactivation of both a GRE-containing promoter-reporter and the endogenous glucocorticoid (GC)-responsive gene, GILZ, as well as ligand-independent loading of GR onto the GILZ promoter. Pursuant to the basal priming of the system, addition of ligand results in a significantly greater modulation of transactivation potency than would be expected solely from the increase in ligand-binding affinity. Thus ligand-independent dimerization of the GR at high concentrations primes the system, through ligand-independent DNA loading and transactivation, which together with positive cooperative ligand-binding increases the potency of GR agonists and shifts the bio-character of partial GR agonists. Clearly GR-levels are a major factor in determining the sensitivity to GCs and a critical factor regulating transcriptional programs.

  7. Glucocorticoid receptor mRNA expression in peripheral blood mononuclear cells in high trained compared to low trained athletes and untrained subjects.

    Science.gov (United States)

    Bonifazi, M; Mencarelli, M; Fedele, V; Ceccarelli, I; Pecorelli, A; Grasso, G; Aloisi, A M; Muscettola, M

    2009-11-01

    Physiological needs during prolonged exercise are a potent stimulus for the hypothalamic-pituitary-adrenal (HPA) axis. Hence, athletes undergoing daily endurance training sessions may have frequent and prolonged phases of endogenous hypercortisolism. Since chronic glucocorticoids treatment leads to down-regulation of glucocorticoid receptor alpha (GR-alpha) mRNA expression, endurance training could lead to modulation of GR expression. The aim of the study was to evaluate GR-alpha and GR-beta mRNA expressions in peripheral blood mononuclear cells and plasma cortisol, ACTH and cortisol binding globulin (CBG) concentrations at rest in subjects undergoing different training regimes. Nine high trained (HT) swimmers (training volume: 21.6+/-1.7 hours/week in 10-12 sessions) were compared with two age-matched control groups represented by 8 low trained (LT) runners (training volume: 6.4+/-2.6 h/week in 3-5 sessions) and 9 untrained subjects. Expression of GR was determined by RT-PCR of total RNA. Hormone levels were determined by radioimmunoassay methods. HT athletes showed 10 times less GR-alpha mRNA expression than the untrained subjects, while LT athletes exhibited values about twofold less than the untrained subjects. GR-beta mRNA expression was undetectable in all subjects. No differences were observed among the three groups in hormone levels. GR- alpha mRNA expression is repressed in proportion to the amount and frequency of the stressful stimuli due to training. Hence, this down-regulation may be a consequence of the frequent and prolonged exposure to cortisol acute elevations induced by training. GR-beta did not play an important role in inducing the down-regulation of GR-alpha mRNA expression observed.

  8. The 23K variant of the R23K polymorphism in the glucocorticoid receptor gene protects against postnatal growth failure and insulin resistance after preterm birth.

    Science.gov (United States)

    Finken, Martijn J J; Meulenbelt, Ingrid; Dekker, Friedo W; Frölich, Marijke; Romijn, Johannes A; Slagboom, P Eline; Wit, Jan M

    2007-12-01

    Preterm birth is associated with postnatal growth failure, abdominal fat accumulation, insulin resistance, and hypertension, resembling increased glucocorticoid bioactivity. We tested the effects of the R23K and N363S polymorphisms in the glucocorticoid receptor gene, associated with decreased and increased sensitivity to cortisol, respectively, on linear growth and the adult metabolic profile in a cohort (n = 249) of men and women born less than 32 gestational weeks and followed up prospectively from birth until 19 yr of age. This was a birth cohort study that included 249 19-yr-old survivors born at a gestational age less than 32 wk from the Dutch Project on Preterm and Small-for-Gestational-Age Infants cohort. This project was a nationwide multicenter follow-up study. Linear growth and adult body composition, fasting cortisol, glucose, insulin, and cholesterol concentrations, and blood pressure were measured. The 23K variant (n = 24) was associated with lower fasting insulin levels [mean difference after log transformation: -0.09 (95% confidence interval -0.16, -0.01) mU/liter] and a lower homeostatic model assessment for insulin resistance index [mean difference after log transformation: -0.09 (95% confidence interval -0.16, -0.01)] as well as with a taller stature departing from the age of 1 yr onward. 23K carriers showed complete catch-up growth between the ages of 3 months and 1 yr, and attained height was similar to the population reference mean, whereas stature in noncarriers was on average 0.5 sd below this mean. In contrast, the N363S polymorphism was not associated with any of the outcomes. Carriers of the 23K variant are, at least in part, protected against postnatal growth failure and insulin resistance after preterm birth.

  9. Influence of the A3669G Glucocorticoid Receptor Gene Polymorphism on the Metabolic Profile of Pediatric Patients with Congenital Adrenal Hyperplasia

    Directory of Open Access Journals (Sweden)

    Ricardo P. P. Moreira

    2014-01-01

    Full Text Available Background. Pediatric CAH patients have an increased risk of cardiovascular disease, and it remains unknown if genetic predisposition is a contributing factor. Glucocorticoid receptor gene (NR3C1 polymorphisms are associated with an adverse metabolic profile. Our aim was to analyze the association between the NR3C1 polymorphisms and the metabolic profile of pediatric CAH patients. Methods. Forty-one patients (26SW/15SV received glucocorticoid (GC replacement therapy to achieve normal androgen levels. Obesity was defined by BMI≥95th percentile. NR3C1 alleles were genotyped, and association analyses with phenotype were done with Chi-square, t-test, and multivariate and regression analysis. Results. Obesity was observed in 31.7% of patients and was not correlated with GC doses and treatment duration. Z-score BMI was positively correlated with blood pressure, triglycerides, LDL-c levels, and HOMA-IR. NR3C1 polymorphisms, BclI and A3669G, were found in 23.1% and 9.7% of alleles, respectively. A3669G carriers presented higher LDL-c levels compared to wild-type subjects. BclI-carriers and noncarriers did not differ. Conclusion. Our results suggest that A3669G-polymorphism could be involved with a susceptibility to adverse lipid profile in pediatric CAH patients. This study provides new insight into the GR screening during CAH treatment, which could help to identify the subgroup of at-risk patients who would most benefit from preventive therapeutic action.

  10. The injectable-only contraceptive medroxyprogesterone acetate, unlike norethisterone acetate and progesterone, regulates inflammatory genes in endocervical cells via the glucocorticoid receptor.

    Directory of Open Access Journals (Sweden)

    Yashini Govender

    Full Text Available Clinical studies suggest that the injectable contraceptive medroxyprogesterone acetate (MPA increases susceptibility to infections such as HIV-1, unlike the injectable contraceptive norethisterone enanthate (NET-EN. We investigated the differential effects, molecular mechanism of action and steroid receptor involvement in gene expression by MPA as compared to NET and progesterone (P4 in the End1/E6E7 cell line model for the endocervical epithelium, a key point of entry for pathogens in the female genital mucosa. MPA, unlike NET-acetate (NET-A and P4, increases mRNA expression of the anti-inflammatory GILZ and IκBα genes. Similarly, MPA unlike NET-A, decreases mRNA expression of the pro-inflammatory IL-6, IL-8 and RANTES genes, and IL-6 and IL-8 protein levels. The predominant steroid receptor expressed in the End1/E6E7 and primary endocervical epithelial cells is the glucocorticoid receptor (GR, and GR knockdown experiments show that the anti-inflammatory effects of MPA are mediated by the GR. Chromatin-immunoprecipitation results suggest that MPA, unlike NET-A and P4, represses pro-inflammatory cytokine gene expression in cervical epithelial cells via a mechanism involving recruitment of the GR to cytokine gene promoters, like the GR agonist dexamethasone. This is at least in part consistent with direct effects on transcription, without a requirement for new protein synthesis. Dose response analysis shows that MPA has a potency of ∼ 24 nM for transactivation of the anti-inflammatory GILZ gene and ∼ 4-20 nM for repression of the pro-inflammatory genes, suggesting that these effects are likely to be relevant at injectable contraceptive doses of MPA. These findings suggest that in the context of the genital mucosa, these GR-mediated glucocorticoid-like effects of MPA in cervical epithelial cells are likely to play a critical role in discriminating between the effects on inflammation caused by different progestins and P4 and hence

  11. Modifications of glucocorticoid receptors mRNA expression in the hypothalamic-pituitary-adrenal axis in response to early-life stress in female Japanese quail.

    Science.gov (United States)

    Zimmer, C; Spencer, K A

    2014-12-01

    Stress exposure during early-life development can programme individual brain and physiology. The hypothalamic-pituitary-adrenal (HPA) axis is one of the primary targets of this programming, which is generally associated with a hyperactive HPA axis, indicative of a reduced negative-feedback. This reduced feedback efficiency usually results from a reduced level of the glucocorticoid receptor (GR) and/or the mineralocorticoid receptor (MR) within the HPA axis. However, a few studies have shown that early-life stress exposure results in an attenuated physiological stress response, suggesting an enhance feedback efficiency. In the present study, we aimed to determine whether early-life stress had long-term consequences on GR and MR levels in quail and whether the effects on the physiological response to acute stress observed in prenatally stressed individuals were underpinned by changes in GR and/or MR levels in one or more HPA axis components. We determined GR and MR mRNA expression in the hippocampus, hypothalamus and pituitary gland in quail exposed to elevated corticosterone during prenatal development, postnatal development, or both, and in control individuals exposed to none of the stressors. We showed that prenatal stress increased the GR:MR ratio in the hippocampus, GR and MR expression in the hypothalamus and GR expression in the pituitary gland. Postnatal stress resulted in a reduced MR expression in the hippocampus. Both early-life treatments permanently affected the expression of both receptor types in HPA axis regions. The effects of prenatal stress are in accordance with a more efficient negative-feedback within the HPA axis and thus can explain the attenuated stress response observed in these birds. Therefore, these changes in receptor density or number as a consequence of early-life stress exposure might be the mechanism that allows an adaptive response to later-life stressful conditions. © 2014 The Authors. Journal of Neuroendocrinology published by

  12. Corticotropin-Releasing Factor in the Basolateral Amygdala Enhances Memory Consolidation via an Interaction with the β-Adrenoceptor-cAMP Pathway: Dependence on Glucocorticoid Receptor Activation

    Science.gov (United States)

    Roozendaal, Benno; Schelling, Gustav; McGaugh, James L.

    2008-01-01

    Extensive evidence indicates that stress hormone effects on the consolidation of emotionally influenced memory involve noradrenergic activation of the basolateral complex of the amygdala (BLA). The present experiments examined whether corticotropin-releasing factor (CRF) modulates memory consolidation via an interaction with the β-adrenoceptor-adenosine 3′,5′-cyclic monophosphate (cAMP) system in the BLA. In a first experiment, male Sprague-Dawley rats received bilateral infusions of the CRF-binding protein ligand inhibitor CRF6-33 into the BLA either alone or together with the CRF receptor antagonist α-helical CRF9-41 immediately after inhibitory avoidance training. CRF6-33 induced dose-dependent enhancement of 48-h retention latencies, which was blocked by co-administration of α-helical CRF9-41, suggesting that CRF6-33 enhances memory consolidation by displacing CRF from its binding protein, thereby increasing ‘free’ endogenous CRF concentrations. In a second experiment, intra-BLA infusions of atenolol (β-adrenoceptor antagonist) and Rp-cAMPS (cAMP inhibitor), but not prazosin (α1-adrenoceptor antagonist), blocked CRF6-33-induced retention enhancement. In a third experiment, the CRF receptor antagonist α-helical CRF9-41 administered into the BLA immediately after training attenuated the dose-response effects of concurrent intra-BLA infusions of clenbuterol (β-adrenoceptor agonist). In contrast, α-helical CRF9-41 did not alter retention enhancement induced by posttraining intra-BLA infusions of either cirazoline (α1-adrenoceptor agonist) or 8-br-cAMP (cAMP analog). These findings suggest that CRF facilitates the memory-modulatory effects of noradrenergic stimulation in the BLA via an interaction with the β-adrenoceptor-cAMP cascade, at a locus between the membrane-bound β-adrenoceptor and the intracellular cAMP formation site. Moreover, consistent with evidence that glucocorticoids enhance memory consolidation via a similar interaction with the

  13. There is no correlation between glucocorticoid receptor mRNA expression and protein binding in the brains of house sparrows (Passer domesticus).

    Science.gov (United States)

    Medina, Carlos O; Lattin, Christine R; McVey, M; Romero, L Michael

    2013-11-01

    The stress response represents an animal's attempt to cope with a noxious stimulus through a rapid release of corticosterone or cortisol (CORT) into the bloodstream, resulting in a suite of physiological and behavioral changes. These changes are mediated in large part through CORT's binding to two different intracellular receptors, the high-affinity mineralocorticoid receptor (MR) and the lower-affinity glucocorticoid receptor (GR). We tested the hypothesis that GR and MR mRNA expression would correlate with functional protein expression in neuronal tissue of wild-caught house sparrows (Passer domesticus). To test this hypothesis, we performed a parallel procedure in which protein concentrations were quantified in one half of house sparrow brains (n=16) using radioligand binding assays, and mRNA levels were quantified in the other brain half using reverse-transcriptase quantitative PCR (RT-qPCR). Two reference genes, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and TATA-box binding protein (TBP), were used for relative quantification of GR and MR mRNA. Quantifications showed that these two reference genes were not correlated with each other. Furthermore, there was no correlation between mRNA and protein levels for GR or MR using either reference gene, suggesting that regulation of mRNA and protein levels for MR and GR is not tightly linked. This study provides insight into the importance of regulatory steps between mRNA expression and the creation and stability of a functional protein. The overall conclusion is that mRNA expression cannot be used as a proxy for GR or MR binding in house sparrows. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. 11β-Hydroxysteroid Dehydrogenases: Intracellular Gate-Keepers of Tissue Glucocorticoid Action

    Science.gov (United States)

    Chapman, Karen; Holmes, Megan

    2013-01-01

    Glucocorticoid action on target tissues is determined by the density of “nuclear” receptors and intracellular metabolism by the two isozymes of 11β-hydroxysteroid dehydrogenase (11β-HSD) which catalyze interconversion of active cortisol and corticosterone with inert cortisone and 11-dehydrocorticosterone. 11β-HSD type 1, a predominant reductase in most intact cells, catalyzes the regeneration of active glucocorticoids, thus amplifying cellular action. 11β-HSD1 is widely expressed in liver, adipose tissue, muscle, pancreatic islets, adult brain, inflammatory cells, and gonads. 11β-HSD1 is selectively elevated in adipose tissue in obesity where it contributes to metabolic complications. Similarly, 11β-HSD1 is elevated in the ageing brain where it exacerbates glucocorticoid-associated cognitive decline. Deficiency or selective inhibition of 11β-HSD1 improves multiple metabolic syndrome parameters in rodent models and human clinical trials and similarly improves cognitive function with ageing. The efficacy of inhibitors in human therapy remains unclear. 11β-HSD2 is a high-affinity dehydrogenase that inactivates glucocorticoids. In the distal nephron, 11β-HSD2 ensures that only aldosterone is an agonist at mineralocorticoid receptors (MR). 11β-HSD2 inhibition or genetic deficiency causes apparent mineralocorticoid excess and hypertension due to inappropriate glucocorticoid activation of renal MR. The placenta and fetus also highly express 11β-HSD2 which, by inactivating glucocorticoids, prevents premature maturation of fetal tissues and consequent developmental “programming.” The role of 11β-HSD2 as a marker of programming is being explored. The 11β-HSDs thus illuminate the emerging biology of intracrine control, afford important insights into human pathogenesis, and offer new tissue-restricted therapeutic avenues. PMID:23899562

  15. Effects of 5-azacytidine on natural killer cell activating receptor expression in patients with refractory anemia with excess of blasts

    Directory of Open Access Journals (Sweden)

    Régis T. Costello

    2015-01-01

    Full Text Available Epigenetic drugs modify DNA methylation and are used in refractory anemia with excess of blasts (RAEB. These drugs may reactivate anti-oncogene expression and restore a normal phenotype instead of inducing antitumor toxicity, although they also have immunosuppressive effects on T-lymphocytes [1] In RAEB and acute myeloid leukemia, a defect in natural killer (NK cell cytotoxicity has been shown, which relies on abnormal expression of activating receptors. Previous study has shown that 5-azacytidine impaired mRNA synthesis and induced apoptosis in NK cells [2]. In this study we investigated the effect of the demethylating drug 5-azacytidine (Vidaza® on NK receptors with the hypothesis that demethylation of the promoters of activating NK receptor genes induces gene reactivation and thus may increase their expression.

  16. Localization of the glucocorticoid receptor mRNA in cartilage and bone cells of the rat. An in situ hybridization study

    Directory of Open Access Journals (Sweden)

    G Silvestrini

    2009-06-01

    Full Text Available The in vivo localization of glucocorticoid receptor (GR mRNA expression was studied in the cartilage and bone cells of the femur of young adult rats to compare its distribution with that of the GR protein, which had previously been shown histochemically in the same areas. To achieve this, we used a synthetic oligodeoxynucleotide as a probe, in line with the published human GR (hGR cDNA sequence. The probe was coupled to fluorescein (FL, applying a rapid Fast-Tag TM FL nucleic acid labeling method. Negative controls were achieved by using sense sequences of the hGR oligoprobe, similarly coupled by using the Fast-Tag TM FL labeling kit. Dewaxed sections were treated for in situ hybridization (ISH histochemistry with the antisense and sense oligoprobes. The ISH reaction product was more intense in the cytoplasm of proliferative and maturative chondrocytes of the growth plate cartilage than in that shown in the hypertrophic ones. In the metaphyseal secondary ossification zone, osteoblasts (OBs and osteocytes (OCs were variably labeled, whereas osteoclasts (OCLs were always intensely stained. The labeling was also visible in some bone marrow cells, in articular chondrocytes, in the cells of tendon-bone junctions, and in the perichondrium and periosteal cells. Our results confirm a cellular co-location of GR protein and mRNA. In agreement with GR immunolocalization, the variability of labeling appeared to be related to the cell cycle, the stage of differentiation and cell-type differences.

  17. Association of suboptimal health status with psychosocial stress, plasma cortisol and mRNA expression of glucocorticoid receptor α/β in lymphocyte.

    Science.gov (United States)

    Yan, Yu-Xiang; Dong, Jing; Liu, You-Qin; Zhang, Jie; Song, Man-Shu; He, Yan; Wang, Wei

    2015-01-01

    Suboptimal health status (SHS) has become a new public health challenge in China. This study investigated whether high SHS is associated with psychosocial stress, changes in cortisol level and/or glucocorticoid receptor (GR) isoform expression. Three-hundred eighty-six workers employed in three companies in Beijing were recruited. The SHS score was derived from data collection in the SHS questionnaire (SHSQ-25). The short standard version of the Copenhagen Psychosocial Questionnaire (COPSOQ) was used to assess job-related psychosocial stress. The mean value of the five scales of COPSOQ and distribution of plasma cortisol and mRNA expression of GRα/GRβ between the high level of SHS group and the low level of SHS group were compared using a general linear model procedure. Multiple linear regression analysis was used to analyze the effect of psychosocial stress on SHS. We identified three factors that were predictive of SHS, including "demands at work", "interpersonal relations and leadership" and "insecurity at work". Significantly higher levels of plasma cortisol and GRβ/GRα mRNA ratio were observed among the high SHS group. High level of SHS is associated with decreased mRNA expression of GRα. This study confirmed the association between chronic psychosocial stress and SHS, indicating that improving the psychosocial work environment may reduce SHS and then prevent chronic diseases effectively.

  18. Effects of chronic academic stress on mental state and expression of glucocorticoid receptor α and β isoforms in healthy Japanese medical students.

    Science.gov (United States)

    Kurokawa, Ken; Tanahashi, Toshihito; Murata, Akiho; Akaike, Yoko; Katsuura, Sakurako; Nishida, Kensei; Masuda, Kiyoshi; Kuwano, Yuki; Kawai, Tomoko; Rokutan, Kazuhito

    2011-07-01

    Chronic academic stress responses were assessed by measuring mental state, salivary cortisol levels, and the glucocorticoid receptor (GR) gene expression in healthy Japanese medical students challenging the national medical license examination. Mental states of 17 male and 9 female medical undergraduates, aged 25.0 ± 1.2 years (mean ± SD), were assessed by the State and Trait Anxiety Inventory (STAI) and the Self-Rating Depression Scale (SDS) 2 months before, 2 days before, and 1 month after the examination. At the same time points, saliva and blood were collected. STAI-state scores peaked 2 days before the examination. Scores on STAI-trait and SDS, and salivary cortisol levels were consistently higher during the pre-examination period. One month after the examination, all these measures had significantly decreased to baseline levels. Real-time reverse transcription PCR showed that this chronic anxious state did not change the expression of the functional GRα mRNA isoform in peripheral leukocytes, while it resulted in reduced expression of the GRβ isoform 2 days before the examination. Our results replicate and extend a significant impact of chronic academic stressors on the mental state of healthy Japanese medical students and suggest a possible association of GRβ gene in response to psychological stress.

  19. Increments in insulin sensitivity during intensive treatment are closely correlated with decrements in glucocorticoid receptor mRNA in skeletal muscle from patients with Type II diabetes

    DEFF Research Database (Denmark)

    Vestergaard, H; Bratholm, P; Christensen, N J

    2001-01-01

    /alpha 2 GCR and beta(2)-AR mRNA levels in diabetic patients. The total glucose disposal rate was measured by the euglycaemic hyperinsulinaemic (2 m-units x min(-1) x kg(-1)) clamp technique, and mRNA levels were assessed by reverse transcriptase-PCR and HPLC for separation of standard and unknown......To test the hypothesis that changes in the expression of the glucocorticoid receptor (GCR) and the beta(2)-adrenoceptor (beta(2)-AR) contribute significantly to the abnormal glucose metabolism in skeletal muscle from patients with Type II diabetes, we have examined (1) the levels of total GCR...... (alpha+beta isoforms), the alpha/alpha 2 isoform of GCR and beta(2)-AR mRNAs in skeletal muscle from insulin-resistant patients with Type II diabetes (n=10) and healthy controls (n=15), and (2) the effects of 8 weeks of intensive treatment on the whole-body glucose disposal rate and on total GCR, alpha...

  20. The Kampo Medicine Yokukansan Decreases MicroRNA-18 Expression and Recovers Glucocorticoid Receptors Protein Expression in the Hypothalamus of Stressed Mice

    Directory of Open Access Journals (Sweden)

    Shoko Shimizu

    2015-01-01

    Full Text Available It is well known that glucocorticoid receptor (GR signaling regulates the hypothalamic-pituitary-adrenal (HPA axis, and GR expression level is associated with HPA axis activity. Recent studies revealed that microRNA- (miR- 18 and/or 124a are candidate negative regulators of GR in the brain. The Kampo medicine Yokukansan (YKS can affect psychological symptoms such as depression and anxiety that are associated with stress responses. In this study, we evaluated the effect of YKS on miR-18 and 124a and GR levels in mice exposed to stress. We found that YKS pretreatment normalized elevated plasma corticosterone levels in stress-exposed mice. In addition, GR mRNA levels were downregulated in the brain following stress exposure. While miR-124a expression levels were not altered in the hypothalamus of stress-exposed mice, miR-18 levels decreased in the hypothalamus of YKS-pretreated mice after stress exposure. Finally, GR protein levels in the paraventricular nucleus (PVN of the hypothalamus after stress exposure recovered in YKS-pretreated mice. Collectively, these data suggest that YKS normalizes GR protein levels by regulating miR-18 expression in the hypothalamus, thus normalizing HPA axis activity following stress exposure.

  1. Synergistic Anti-Tumor Activity of EZH2 Inhibitors and Glucocorticoid Receptor Agonists in Models of Germinal Center Non-Hodgkin Lymphomas.

    Directory of Open Access Journals (Sweden)

    Sarah K Knutson

    Full Text Available Patients with non-Hodgkin lymphoma (NHL are treated today with a cocktail of drugs referred to as CHOP (Cyclophosphamide, Hydroxyldaunorubicin, Oncovin, and Prednisone. Subsets of patients with NHL of germinal center origin bear oncogenic mutations in the EZH2 histone methyltransferase. Clinical testing of the EZH2 inhibitor EPZ-6438 has recently begun in patients. We report here that combining EPZ-6438 with CHOP in preclinical cell culture and mouse models results in dramatic synergy for cell killing in EZH2 mutant germinal center NHL cells. Surprisingly, we observe that much of this synergy is due to Prednisolone - a glucocorticoid receptor agonist (GRag component of CHOP. Dramatic synergy was observed when EPZ-6438 is combined with Prednisolone alone, and a similar effect was observed with Dexamethasone, another GRag. Remarkably, the anti-proliferative effect of the EPZ-6438+GRag combination extends beyond EZH2 mutant-bearing cells to more generally impact germinal center NHL. These preclinical data reveal an unanticipated biological intersection between GR-mediated gene regulation and EZH2-mediated chromatin remodeling. The data also suggest the possibility of a significant and practical benefit of combining EZH2 inhibitors and GRag that warrants further investigation in a clinical setting.

  2. The relation between two polymorphisms in the glucocorticoid receptor gene and body mass index, blood pressure and cholesterol in obese patients.

    Science.gov (United States)

    Di Blasio, Anna Maria; van Rossum, Elisabeth F C; Maestrini, Sabrina; Berselli, Maria Elisa; Tagliaferri, Mariantonella; Podestà, Francesca; Koper, Jan W; Liuzzi, Antonio; Lamberts, Steven W J

    2003-07-01

    We have recently reported that, in healthy elderly Dutch individuals, a N363S polymorphism in the glucocorticoid receptor (GR) gene is associated with higher sensitivity to low-dose dexamethasone (0.25 mg), evaluated as both cortisol suppression and insulin response, and with an increased body mass index (BMI). In the present study we investigated the role of the N363S polymorphism, and a BclI restriction site polymorphism in a group of Italian patients with severe obesity. Two hundred and seventy-nine patients (mean BMI 45.9 +/- 0.9 kg/m2) were genotyped using both PCR-restriction fragment length polymorphism analysis and Taqman Sequence Detection System. Determination of several metabolic and antropometric parameters was also performed in order to correlate them to the genotype. In this group of obese patients, 13 subjects (eight female, five males) were heterozygous for the N363S variant (allelic frequency 2.3%) and had significantly higher BMI (P fat more efficiently. Furthermore, these data suggest that N363S carriers who carry the BclI polymorphism as well, tend to have a slightly unfavourable cardiovascular profile.

  3. Role of G3BP1 in glucocorticoid receptor-mediated microRNA-15b and microRNA-23a biogenesis in endothelial cells

    KAUST Repository

    Kwok, Hoi-Hin

    2017-05-18

    MicroRNAs (miRNAs) are a family of non-coding RNAs that play crucial roles in regulating various normal cellular responses. Recent studies revealed that the canonical miRNA biogenesis pathway is subject to sophisticated regulation. Hormonal control of miRNA biogenesis by androgen and estrogen has been demonstrated, but the direct effects of the glucocorticoid receptor (GR) on miRNA biogenesis are unknown. This study revealed the role of GR in miRNA maturation. We showed that two GR agonists, dexamethasone and ginsenoside-Rg1 rapidly suppressed the expression of mature miR-15b, miR-23a, and miR-214 in human endothelial cells. RNA pulldown coupled with proteomic analysis identified GTPase-activating protein (SH3 domain) binding protein 1 (G3BP1) as one of the RNA-binding proteins mediating GR-regulated miRNA maturation. Activated GR induced phosphorylation of v-AKT Murine Thymoma Viral Oncogene Homologue (AKT) kinase, which in turn phosphorylated and promoted nuclear translocation of G3BP1. The nuclear G3BP1 bound to the G3BP1 consensus sequence located on primary miR-15b~16-2 and miR-23a~27a~24-2 to inhibit their maturation. The findings from this study have advanced our understanding of the non-genomic effects of GR in the vascular system.

  4. Nutritional Omega-3 Deficiency Alters Glucocorticoid Receptor-Signaling Pathway and Neuronal Morphology in Regionally Distinct Brain Structures Associated with Emotional Deficits

    Directory of Open Access Journals (Sweden)

    Thomas Larrieu

    2016-01-01

    Full Text Available Extensive evidence suggests that long term dietary n-3 polyunsaturated fatty acids (PUFAs deficiency results in altered emotional behaviour. We have recently demonstrated that n-3 PUFAs deficiency induces emotional alterations through abnormal corticosterone secretion which leads to altered dendritic arborisation in the prefrontal cortex (PFC. Here we show that hypothalamic-pituitary-adrenal (HPA axis feedback inhibition was not compromised in n-3 deficient mice. Rather, glucocorticoid receptor (GR signaling pathway was inactivated in the PFC but not in the hippocampus of n-3 deficient mice. Consequently, only dendritic arborisation in PFC was affected by dietary n-3 PUFAs deficiency. In addition, occlusion experiment with GR blockade altered GR signaling in the PFC of control mice, with no further alterations in n-3 deficient mice. In conclusion, n-3 PUFAs deficiency compromised PFC, leading to dendritic atrophy, but did not change hippocampal GR function and dendritic arborisation. We argue that this GR sensitivity contributes to n-3 PUFAs deficiency-related emotional behaviour deficits.

  5. Impact of glucocorticoid receptor gene polymorphisms on the metabolic profile of adult patients with the classical form of 21-hydroxylase deficiency.

    Directory of Open Access Journals (Sweden)

    Ricardo P P Moreira

    Full Text Available BACKGROUND: CAH patients have an increased risk of cardiovascular disease, and it remains unknown if lifelong glucocorticoid (GC treatment is a contributing factor. In the general population, glucocorticoid receptor gene (NR3C1 polymorphisms are associated with an adverse metabolic profile. Our aim was to analyze the association between the NR3C1 polymorphisms and the metabolic profile of CAH patients. METHODOLOGY: Sixty-eight adult patients (34SV/34SW with a mean age of 28.4±9 years received dexamethasone (mean 0.27±0.11 mg/day to obtain normal androgen levels. SW patients also received fludrocortisone (50 µg/day. Metabolic syndrome (MetS was defined by the NCEP ATPIII criteria and obesity by BMI ≥30 kg/m². NR3C1 alleles were genotyped, and association analyses with phenotype were carried out with Chi-square, t-test and regression analysis. RESULTS: Obesity and MetS were observed in 23.5% and 7.3% of patients, respectively, and were not correlated with GC doses and treatment duration. BMI was positively correlated with blood pressure (BP, triglycerides (TG, LDL-c levels and HOMA-IR and inversely correlated with HDL-c levels. BclI and A3669G variants were found in 26.4% and 9.6% of alleles, respectively. Heterozygotes for the BclI polymorphism presented with higher BMI (29 kg/m²±5.3 vs. 26 kg/m²±5.3, respectively and waist circumference (89 cm±12.7 vs. 81 cm±13, respectively compared to wild-type subjects. Hypertension was found in 12% of patients and heterozygotes for the BclI polymorphism presented higher systolic BP than wild type subjects. Low HDL-c and high TG levels were identified in 30% and 10% of patients, respectively, and were not associated with the NR3C1 polymorphisms. A3669G carriers and non-carriers did not differ. CONCLUSION: In addition to GC therapy, the BclI GR variant might play an important role in obesity susceptibility in CAH patients. Genotyping of GR polymorphisms could result in the identification of a

  6. Impact of Glucocorticoid Receptor Gene Polymorphisms on the Metabolic Profile of Adult Patients with the Classical Form of 21-Hydroxylase Deficiency

    Science.gov (United States)

    Moreira, Ricardo P. P.; Gomes, Larissa G.; Mendonca, Berenice B.; Bachega, Tânia A. S. S.

    2012-01-01

    Background CAH patients have an increased risk of cardiovascular disease, and it remains unknown if lifelong glucocorticoid (GC) treatment is a contributing factor. In the general population, glucocorticoid receptor gene (NR3C1) polymorphisms are associated with an adverse metabolic profile. Our aim was to analyze the association between the NR3C1 polymorphisms and the metabolic profile of CAH patients. Methodology Sixty-eight adult patients (34SV/34SW) with a mean age of 28.4±9 years received dexamethasone (mean 0.27±0.11 mg/day) to obtain normal androgen levels. SW patients also received fludrocortisone (50 µg/day). Metabolic syndrome (MetS) was defined by the NCEP ATPIII criteria and obesity by BMI ≥30 kg/m2. NR3C1 alleles were genotyped, and association analyses with phenotype were carried out with Chi-square, t-test and regression analysis. Results Obesity and MetS were observed in 23.5% and 7.3% of patients, respectively, and were not correlated with GC doses and treatment duration. BMI was positively correlated with blood pressure (BP), triglycerides (TG), LDL-c levels and HOMA-IR and inversely correlated with HDL-c levels. BclI and A3669G variants were found in 26.4% and 9.6% of alleles, respectively. Heterozygotes for the BclI polymorphism presented with higher BMI (29 kg/m2±5.3 vs. 26 kg/m2±5.3, respectively) and waist circumference (89 cm±12.7 vs. 81 cm±13, respectively) compared to wild-type subjects. Hypertension was found in 12% of patients and heterozygotes for the BclI polymorphism presented higher systolic BP than wild type subjects. Low HDL-c and high TG levels were identified in 30% and 10% of patients, respectively, and were not associated with the NR3C1 polymorphisms. A3669G carriers and non-carriers did not differ. Conclusion In addition to GC therapy, the BclI GR variant might play an important role in obesity susceptibility in CAH patients. Genotyping of GR polymorphisms could result in the identification of a subgroup at risk

  7. Alternate splicing of interleukin-1 receptor type II (IL1R2 in vitro correlates with clinical glucocorticoid responsiveness in patients with AIED.

    Directory of Open Access Journals (Sweden)

    Andrea Vambutas

    Full Text Available Autoimmune Inner Ear Disease (AIED is poorly characterized clinically, with no definitive laboratory test. All patients suspected of having AIED are given glucocorticoids during periods of acute hearing loss, however, only half initially respond, and still fewer respond over time.We hypothesized that AIED is a systemic autoimmune disease characterized by dysfunctional peripheral blood mononuclear cells (PBMC responses to a unique cochlear antigen(s. To test this hypothesis, we examined end-stage AIED patients undergoing cochlear implant surgery and compared autologous perilymph stimulated PBMC from AIED patients to controls. We determined that autologous perilymph from AIED patients was unable to induce expression of a long membrane-bound Interleukin-1 Receptor Type II (mIL1R2 transcript in PBMC as compared with controls, despite similar expression of the short soluble IL1R2 (sIL1R2 transcript (p<0.05. IL1R2 is a molecular decoy that traps interleukin-1beta (IL-1beta and does not initiate subsequent signaling events, thereby suppressing an inflammatory response. IL1R2 transcript length is regulated by alternate splicing, and the major inhibitory function is attributed to the full-length mIL1R2. In addition, IL1R2 expression is induced by dexamethasone.Separately, we prospectively examined patients with newer onset glucocorticoid-responsive AIED. Immediately prior to clinical treatment for acute deterioration of hearing thresholds, their PBMC demonstrated a robust induction of mIL1R2 in PBMC in response to dexamethasone in vitro that correlated with a clinical response to prednisone in vivo (p<0.0001 as measured by hearing restoration. In contrast, clinically steroid unresponsive patients demonstrated high basal levels of mIL1R2 in their PBMC and only minimally augmented expression in response to dexamethasone. Thus, induced expression of mIL1R2 appears to be a protective mechanism in hearing homeostasis and warrants further investigation in a

  8. [Glucocorticoids in rheumatology].

    Science.gov (United States)

    Dziurla, R; Buttgereit, F

    2008-11-01

    Glucocorticoids (GC) are effective drugs which are often used in rheumatology. However, they have a considerable potential for frequent and sometimes serious side effects that restrict their use. Their mechanisms of action are either receptor dependent (specific) or independent (unspecific) on the genomic as well as the non-genomic level. Many adverse effects are predominantly caused by transactivation while the desired effects are mostly mediated by transrepression. Treatment strategies are sub-classified into low, medium, high, very high dose and pulse therapy based on criteria such as dose, indication, duration of treatment and potential risk of adverse events. The musculoskeletal, gastrointestinal, neuro-endocrino-immunological, opthalmological and neuropsychiatric systems are examples where adverse effects may occur.

  9. Adolescent stress-induced epigenetic control of dopaminergic neurons via glucocorticoids

    National Research Council Canada - National Science Library

    Niwa, Minae; Jaaro-Peled, Hanna; Tankou, Stephanie; Seshadri, Saurav; Hikida, Takatoshi; Matsumoto, Yurie; Cascella, Nicola G; Kano, Shin-ichi; Ozaki, Norio; Nabeshima, Toshitaka; Sawa, Akira

    2013-01-01

    .... Accordingly, excess stressors result in adult-onset neuropsychiatric disorders. We describe an underlying mechanism in which glucocorticoids link adolescent stressors to epigenetic controls in neurons...

  10. Reduced expression of glucocorticoid-inducible genes GILZ and SGK-1: high IL-6 levels are associated with reduced hippocampal volumes in major depressive disorder.

    LENUS (Irish Health Repository)

    Frodl, T

    2012-01-01

    Neuroplasticity may have a core role in the pathophysiology of major depressive disorder (MDD), a concept supported by experimental studies that found that excessive cortisol secretion and\\/or excessive production of inflammatory cytokines impairs neuronal plasticity and neurogenesis in the hippocampus. The objective of this study was to examine how changes in the glucocorticoid and inflammatory systems may affect hippocampal volumes in MDD. A multimodal approach with structural neuroimaging of hippocampus and amygdala, measurement of peripheral inflammatory proteins interleukin (IL)-6 and C-reactive protein (CRP), glucocorticoid receptor (GR) mRNA expression, and expression of glucocorticoid-inducible genes (glucocorticoid-inducible genes Leucin Zipper (GILZ) and glucocorticoid-inducible kinase-1 (SGK-1)) was used in 40 patients with MDD and 43 healthy controls (HC). Patients with MDD showed smaller hippocampal volumes and increased inflammatory proteins IL-6 and CRP compared with HC. Childhood maltreatment was associated with increased CRP. Patients with MDD, who had less expression of the glucocorticoid-inducible genes GILZ or SGK-1 had smaller hippocampal volumes. Regression analysis showed a strong positive effect of GILZ and SGK-1 mRNA expression, and further inverse effects of IL-6 concentration, on hippocampal volumes. These findings suggest that childhood maltreatment, peripheral inflammatory and glucocorticoid markers and hippocampal volume are interrelated factors in the pathophysiology of MDD. Glucocorticoid-inducible genes GILZ and SGK-1 might be promising candidate markers for hippocampal volume changes relevant for diseases like MDD. Further studies need to explore the possible clinical usefulness of such a blood biomarker, for example, for diagnosis or prediction of therapy response.

  11. X-ray Crystal Structure of the Novel Enhanced-Affinity Glucocorticoid Agonist Fluticasone Furoate in the Glucocorticoid Receptor−Ligand Binding Domain

    Energy Technology Data Exchange (ETDEWEB)

    Biggadike, Keith; Bledsoe, Randy K.; Hassell, Anne M.; Kirk, Barrie E.; McLay, Iain M.; Shewchuk, Lisa M.; Stewart, Eugene L. (GSKNC); (GSK)

    2008-07-08

    An X-ray crystal structure is reported for the novel enhanced-affinity glucocorticoid agonist fluticasone furoate (FF) in the ligand binding domain of the glucocorticoid receptor. Comparison of this structure with those of dexamethasone and fluticasone propionate shows the 17{alpha} furoate ester to occupy more fully the lipophilic 17{alpha} pocket on the receptor, which may account for the enhanced glucocorticoid receptor binding of FF.

  12. Antioxidant Treatment Induces Hyperactivation of the HPA Axis by Upregulating ACTH Receptor in the Adrenal and Downregulating Glucocorticoid Receptors in the Pituitary

    Directory of Open Access Journals (Sweden)

    Jessika P. Prevatto

    2017-01-01

    Full Text Available Glucocorticoid (GC production is physiologically regulated through a negative feedback loop mediated by the GC, which appears disrupted in several pathological conditions. The inability to perform negative feedback of the hypothalamus-pituitary-adrenal (HPA axis in several diseases is associated with an overproduction of reactive oxygen species (ROS; however, nothing is known about the effects of ROS on the functionality of the HPA axis during homeostasis. This study analyzed the putative impact of antioxidants on the HPA axis activity and GC-mediated negative feedback upon the HPA cascade. Male Wistar rats were orally treated with N-acetylcysteine (NAC or vitamin E for 18 consecutive days. NAC-treated rats were then subjected to a daily treatment with dexamethasone, which covered the last 5 days of the antioxidant therapy. We found that NAC and vitamin E induced an increase in plasma corticosterone levels. NAC intensified MC2R and StAR expressions in the adrenal and reduced GR and MR expressions in the pituitary. NAC also prevented the dexamethasone-induced reduction in plasma corticosterone levels. Furthermore, NAC decreased HO-1 and Nrf2 expression in the pituitary. These findings show that antioxidants induce hyperactivity of the HPA axis via upregulation of MC2R expression in the adrenal and downregulation of GR and MR in the pituitary.

  13. Bronchiolitis obliterans syndrome is associated with increased p-glycoprotein expression and loss of glucocorticoid receptor from steroid resistant pro-inflammatory CD8+T cells.

    Science.gov (United States)

    Hodge, Greg; Hodge, Sandra; Nguyen, Phan Tien; Yeo, Aeneas; Sarkar, Parama; Badiei, Arash; Holmes-Liew, C L; Reynolds, Paul N; Holmes, Mark

    2018-01-20

    Immunosuppressive therapy fails to suppress the production of pro-inflammatory cytokines, particularly by CD8+T cells, in stable lung transplant recipients and those undergoing chronic rejection, suggesting that some patients may become relatively resistant to immunosuppressants such as glucocorticoids (GC). We have shown loss of GC receptor (GCR) from the CD8+ cells, and we hypothesized that the drug membrane efflux pump, p-glycoprotein-1 (Pgp), may also be involved in lymphocyte steroid resistance following lung transplant. Pgp/GCR expression and IFNγ/TNFα pro-inflammatory cytokine production was measured in blood lymphocytes from 15 stable lung transplant patients, 10 patients with bronchiolitis obliterans syndrome (BOS) and 10 healthy aged-matched controls (± prednisolone ± Pgp inhibitor, cyclosporin A ± GCR activator, Compound A) using flow cytometry. Both Pgp+ and Pgp- lymphocyte subsets from all subjects produced IFNγ/TNFα pro-inflammatory cytokines. Pgp expression was increased in CD8+Pgp+T cells and correlated with IFNγ/TNFα expression and BOS grade. Reduced GCR was observed in CD8+Pgp-T, NKT-like and NK cells from stable patients compared with controls, and further reduced in CD8+Pgp-T cells in BOS. Addition of 2.5ng/ml cyclosporine A and 1µM prednisolone significantly inhibit IFNγ/TNFα production by CD8+Pgp+ T cells from BOS patients. Addition of 10µM Compound A and 1µM prednisolone significantly inhibit IFNγ/TNFα production by CD8+Pgp- T cells from BOS patients. BOS is associated with increased Pgp expression and loss of GCR from steroid resistant pro-inflammatory CD8+T cells. Treatments that inhibit Pgp and upregulate GCR in CD8+T cells may improve graft survival. This article is protected by copyright. All rights reserved. © 2018 British Society for Immunology.

  14. Reduced peripheral expression of the glucocorticoid receptor α isoform in individuals with posttraumatic stress disorder: a cumulative effect of trauma burden.

    Science.gov (United States)

    Gola, Hannah; Engler, Andrea; Morath, Julia; Adenauer, Hannah; Elbert, Thomas; Kolassa, Iris-Tatjana; Engler, Harald

    2014-01-01

    Posttraumatic stress disorder (PTSD) is a serious psychiatric condition that was found to be associated with altered functioning of the hypothalamic-pituitary-adrenal (HPA) axis and changes in glucocorticoid (GC) responsiveness. The physiological actions of GCs are primarily mediated through GC receptors (GR) of which isoforms with different biological activities exist. This study aimed to investigate whether trauma-experience and/or PTSD are associated with altered expression of GR splice variants. GRα and GRβ mRNA expression levels were determined by real-time quantitative PCR in whole blood samples of individuals with chronic and severe forms of PTSD (n = 42) as well as in ethnically matched reference subjects (non-PTSD, n = 35). Individuals suffering from PTSD exhibited significantly lower expression of the predominant and functionally active GRα isoform compared to non-PTSD subjects. This effect remained significant when accounting for gender, smoking, psychotropic medication or comorbid depression. Moreover, the GRα expression level was significantly negatively correlated with the number of traumatic event types experienced, both in the whole sample and within the PTSD patient group. Expression of the less abundant and non-ligand binding GRβ isoform was comparable between patient and reference groups. Reduced expression of the functionally active GRα isoform in peripheral blood cells of individuals with PTSD seems to be a cumulative effect of trauma burden rather than a specific feature of PTSD since non-PTSD subjects with high trauma load showed an intermediate phenotype between PTSD patients and individuals with no or few traumatic experiences.

  15. Reduced peripheral expression of the glucocorticoid receptor α isoform in individuals with posttraumatic stress disorder: a cumulative effect of trauma burden.

    Directory of Open Access Journals (Sweden)

    Hannah Gola

    Full Text Available BACKGROUND: Posttraumatic stress disorder (PTSD is a serious psychiatric condition that was found to be associated with altered functioning of the hypothalamic-pituitary-adrenal (HPA axis and changes in glucocorticoid (GC responsiveness. The physiological actions of GCs are primarily mediated through GC receptors (GR of which isoforms with different biological activities exist. This study aimed to investigate whether trauma-experience and/or PTSD are associated with altered expression of GR splice variants. METHODS: GRα and GRβ mRNA expression levels were determined by real-time quantitative PCR in whole blood samples of individuals with chronic and severe forms of PTSD (n = 42 as well as in ethnically matched reference subjects (non-PTSD, n = 35. RESULTS: Individuals suffering from PTSD exhibited significantly lower expression of the predominant and functionally active GRα isoform compared to non-PTSD subjects. This effect remained significant when accounting for gender, smoking, psychotropic medication or comorbid depression. Moreover, the GRα expression level was significantly negatively correlated with the number of traumatic event types experienced, both in the whole sample and within the PTSD patient group. Expression of the less abundant and non-ligand binding GRβ isoform was comparable between patient and reference groups. CONCLUSIONS: Reduced expression of the functionally active GRα isoform in peripheral blood cells of individuals with PTSD seems to be a cumulative effect of trauma burden rather than a specific feature of PTSD since non-PTSD subjects with high trauma load showed an intermediate phenotype between PTSD patients and individuals with no or few traumatic experiences.

  16. Acute oral administration of the novel, competitive and selective glucocorticoid receptor antagonist ORG 34517 reduces the severity of ethanol withdrawal and related hypothalamic-pituitary-adrenal axis activation.

    Science.gov (United States)

    Reynolds, Anna R; Saunders, Meredith A; Brewton, Honoree' W; Winchester, Sydney R; Elgumati, Ibrahim S; Prendergast, Mark A

    2015-09-01

    The development of ethanol dependence is associated with alterations in hypothalamic-pituitary-adrenal (HPA) axis and activation of type II glucocorticoid receptors (GR). These effects may contribute to withdrawal-associated anxiety, craving and relapse to drinking. The present studies examined acute and oral administration of the novel, selective and competitive GR antagonist ORG 34517 on the severity of ethanol withdrawal. Adult, male Sprague-Dawley rats were administered ethanol (4g/kg/i.g.) twice daily for 5 days followed by 2 days of withdrawal for 1, 2 or 3 consecutive cycles. Blood ethanol levels (BELs) were determined at 0930 on Day 4 of each week, while blood corticosterone levels (BCLs) were obtained at 11:00hours on the first day of each ethanol withdrawal. During early withdrawal, subjects received oral administration of ORG 345617 (60mg/kg/i.g.) or a placebo and withdrawal was monitored. Peak BELs of 225.52mg/dl were observed during the third week. Withdrawal from three cycles of the regimen produced marked behavioral abnormalities (e.g., aggression, rigidity, and hypoactivity) and significant increases in BCLs of ethanol-dependent subjects. Acute, oral administration of ORG 34517 during early withdrawal significantly reduced both the severity of ethanol withdrawal, as reflected in reduced rigidity, aggression, and hypoactivity, and elevations in BCL without producing any sedative-like effects. The present findings demonstrate that repeated ethanol exposure and withdrawal is associated with significant behavioral abnormalities and dysregulation of HPA axis activation. Further these data suggest that selective GR antagonists should be further considered as putative pharmacotherapies for treatment of ethanol dependence. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Influence of Pre-reproductive Maternal Enrichment on Coping Response to Stress and Expression of c-Fos and Glucocorticoid Receptors in Adolescent Offspring.

    Science.gov (United States)

    Cutuli, Debora; Berretta, Erica; Pasqualini, Greta; De Bartolo, Paola; Caporali, Paola; Laricchiuta, Daniela; Sampedro-Piquero, Patricia; Gelfo, Francesca; Pesoli, Matteo; Foti, Francesca; Begega, Azucena; Petrosini, Laura

    2017-01-01

    Environmental enrichment (EE) is an experimental setting broadly used for investigating the effects of complex social, cognitive, and sensorimotor stimulations on brain structure and function. Recent studies point out that parental EE experience, even occurring in the pre-reproductive phase, affects neural development and behavioral trajectories of the offspring. In the present study we investigated the influences of pre-reproductive EE of female rats on maternal behavior and adolescent male offspring's coping response to an inescapable stressful situation after chronic social isolation. For this purpose female Wistar rats were housed from weaning to breeding age in enriched or standard environments. Subsequently, all females were mated and housed in standard conditions until offspring weaning. On the first post partum day (ppd 1), mother-pup interactions in undisturbed conditions were recorded. Further, after weaning the male pups were reared for 2 weeks under social isolation or in standard conditions, and then submitted or not to a single-session Forced Swim Test (FST). Offspring's neuronal activation and plastic changes were identified by immunohistochemistry for c-Fos and glucocorticoid receptors (GRs), and assessed by using stereological analysis. The biochemical correlates were measured in the hippocampus, amygdala and cingulate cortex, structures involved in hypothalamic-pituitary-adrenocortical axis regulation. Enriched dams exhibited increased Crouching levels in comparison to standard reared dams. In the offspring of both kinds of dams, social isolation reduced body weight, decreased Immobility, and increased Swimming during FST. Moreover, isolated offspring of enriched dams exhibited higher levels of Climbing in comparison to controls. Interestingly, in the amygdala of both isolated and control offspring of enriched dams we found a lower number of c-Fos immunopositive cells in response to FST and a higher number of GRs in comparison to the offspring of

  18. The effect of pre-eclampsia-like syndrome induced by L-NAME on learning and memory and hippocampal glucocorticoid receptor expression: A rat model.

    Science.gov (United States)

    Zhu, Hao; Zhu, Weimin; Hu, Rong; Wang, Huijun; Ma, Duan; Li, Xiaotian

    2017-02-01

    We aimed to study the impacts of pre-eclampsia on the cognitive and learning capabilities of adolescent rat offspring and to explore the possible underlying mechanisms at the molecular level. Pregnant rats were subcutaneously injected with saline solution (control) (n = 16) or NG-nitro-L-arginine methyl ester (L-NAME) (n = 16) from the 13th day of gestation until parturition. The brain tissues from fetal rats delivered by cesarean section were examined in both groups with hematoxylin and eosin (H&E) staining. Rats born vaginally in both groups were subjected to the Morris water maze test when 8-week-old and their hippocampi were analyzed for glucocorticoid receptor (GR) expression. A pre-eclampsia-like model was successfully built in pregnant rats by infusion of the NO synthase inhibitor L-NAME, including phenotypes as maternal hypertension and proteinuria, high stillbirth rate, and fetal growth retardation. Neuroepithelial cell proliferation was found in the hippocampus of fetal rats in the L-NAME group. Grown to 8-week-old, the L-NAME group showed significantly longer escape latency than the control group in the beginning as well as in the end of navigation trials. At the same time, the swimming distance achieved by the L-NAME group was significantly longer than that of the control group. Such differences in cognitive and learning capabilities between the two groups were not gender dependent. Besides, the 8-week-old rats in the L-NAME group had increased GR expression in the hippocampus than the control group. Pre-eclampsia would impair cognitive and learning capabilities in adolescent offspring, and the upregulated expression of hippocampal GR may be involved in the underlying mechanisms.

  19. Maternal separation in early life modifies anxious behavior and Fos and glucocorticoid receptor expression in limbic neurons after chronic stress in rats: effects of tianeptine.

    Science.gov (United States)

    Trujillo, Verónica; Durando, Patricia E; Suárez, Marta M

    2016-01-01

    Early-life adversity can lead to long-term consequence persisting into adulthood. Here, we assess the implications of an adverse early environment on vulnerability to stress during adulthood. We hypothesized that the interplay between early and late stress would result in a differential phenotype regarding the number of neurons immunoreactive for glucocorticoid receptor (GR-ir) and neuronal activity as assessed by Fos immunoreactivity (Fos-ir) in brain areas related to stress responses and anxiety-like behavior. We also expected that the antidepressant tianeptine could correct some of the alterations induced in our model. Male Wistar rats were subjected to daily maternal separation (MS) for 4.5 h during the first 3 weeks of life. As adults, the rats were exposed to chronic stress for 24 d and they were treated daily with tianeptine (10 mg/kg intraperitoneal) or vehicle (isotonic saline). Fos-ir was increased by MS in all structures analyzed. Chronic stress reduced Fos-ir in the hippocampus, but increased it in the paraventricular nucleus. Furthermore, chronic stress increased GR-ir in hippocampus (CA1) and amygdala in control non-MS rats. By contrast, when MS and chronic stress were combined, GR-ir was decreased in these structures. Additionally, whereas tianeptine did not affect Fos-ir, it regulated GR-ir in a region-dependent manner, in hippocampus and amygdala opposing in some cases the stress or MS effects. Furthermore, tianeptine reversed the MS- or stress-induced anxious behavior. The interplay between MS and chronic stress observed indicates that MS rats have a modified phenotype, which is expressed when they are challenged by stress in later life.

  20. Immunoprofiling of human uterine mast cells identifies three phenotypes and expression of ERβ and glucocorticoid receptor [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Bianca De Leo

    2017-06-01

    Full Text Available Background: Human mast cells (MCs are long-lived tissue-resident immune cells characterised by granules containing the proteases chymase and/or tryptase. Their phenotype is modulated by their tissue microenvironment. The human uterus has an outer muscular layer (the myometrium surrounding the endometrium, both of which play an important role in supporting a pregnancy. The endometrium is a sex steroid target tissue consisting of epithelial cells (luminal, glandular surrounded by a multicellular stroma, with the latter containing an extensive vascular compartment as well as fluctuating populations of immune cells that play an important role in regulating tissue function. The role of MCs in the human uterus is poorly understood with little known about their regulation or the impact of steroids on their differentiation status. The current study had two aims: 1 To investigate the spatial and temporal location of uterine MCs and determine their phenotype; 2 To determine whether MCs express receptors for steroids implicated in uterine function, including oestrogen (ERα, ERβ, progesterone (PR and glucocorticoids (GR. Methods: Tissue samples from women (n=46 were used for RNA extraction (n=26 or fixed (n=20 for immunohistochemistry. Results: Messenger RNAs encoded by TPSAB1 (tryptase and CMA1 (chymase were detected in endometrial tissue homogenates. Immunohistochemistry revealed the relative abundance of tryptase MCs was myometrium>basal endometrium>functional endometrium. We show for the first time that uterine MCs are predominantly of the classical MC subtypes: (positive, +; negative, - tryptase+/chymase- and tryptase+/chymase+, but a third subtype was also identified (tryptase-/chymase+. Tryptase+ MCs were of an ERβ+/ERα-/PR-/GR+ phenotype mirroring other uterine immune cell populations, including natural killer cells. Conclusions: Endometrial tissue resident immune MCs have three protease-specific phenotypes. Expression of both ERβ and GR in MCs

  1. Impaired Spinal Glucocorticoid Receptor Signaling Contributes to the Attenuating Effect of Depression on Mechanical Allodynia and Thermal Hyperalgesia in Rats with Neuropathic Pain

    Directory of Open Access Journals (Sweden)

    Xiao Wei

    2017-05-01

    Full Text Available Although depression-induced altered pain perception has been described in several laboratory and clinical studies, its neurobiological mechanism in the central nervous system (CNS, particularly in the spinal dorsal horn, remains unclear. Therefore, in this study, we aimed to clarify whether nociceptive sensitivity of neuropathic pain is altered in the olfactory bulbectomy (OB model of depression and whether glucocorticoid receptor (GR, which is involved in the etio-pathologic mechanisms of both major depression and neuropathic pain, contributes to these processes in the spinal dorsal horn of male Sprague-Dawley rats. The results showed that mechanical allodynia and thermal hyperalgesia induced by spinal nerve ligation (SNL were attenuated in OB-SNL rats with decreased spinal GR expression and nuclear translocation, whereas non-olfactory bulbectomy (NOB-SNL rats showed increased spinal GR nuclear translocation. In addition, decreased GR nuclear translocation with normal mechanical nociception and hypoalgesia of thermal nociception were observed in OB-Sham rats. Intrathecal injection (i.t. of GR agonist dexamethasone (Dex; 4 μg/rat/day for 1 week eliminated the attenuating effect of depression on nociceptive hypersensitivity in OB-SNL rats and aggravated neuropathic pain in NOB-SNL rats, which was associated with the up-regulation of brain-derived neurotrophic factor (BDNF, TrkB and NR2B expression in the spinal dorsal horn. The present study shows that depression attenuates the mechanical allodynia and thermal hyperalgesia of neuropathic pain and suggests that altered spinal GR-BDNF-TrkB signaling may be one of the reasons for depression-induced hypoalgesia.

  2. Immunoprofiling of human uterine mast cells identifies three phenotypes and expression of ERβ and glucocorticoid receptor [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Bianca De Leo

    2017-05-01

    Full Text Available Background: Human mast cells (MCs are long-lived tissue-resident immune cells characterised by granules containing the proteases chymase and/or tryptase. Their phenotype is modulated by their tissue microenvironment. The human uterus has an outer muscular layer (the myometrium surrounding the endometrium, both of which play an important role in supporting a pregnancy. The endometrium is a sex steroid target tissue consisting of epithelial cells (luminal, glandular surrounded by a multicellular stroma, with the latter containing an extensive vascular compartment as well as fluctuating populations of immune cells that play an important role in regulating tissue function. The role of MCs in the human uterus is poorly understood with little known about their regulation or the impact of steroids on their differentiation status. The current study had two aims: 1 To investigate the spatial and temporal location of uterine MCs and determine their phenotype; 2 To determine whether MCs express receptors for steroids implicated in uterine function, including oestrogen (ERα, ERβ, progesterone (PR and glucocorticoids (GR. Methods: Tissue samples from women (n=46 were used for RNA extraction or fixed for immunohistochemistry. Results: Messenger RNAs encoded by TPSAB1 (tryptase and CMA1 (chymase were detected in endometrial tissue homogenates. Immunohistochemistry revealed the relative abundance of tryptase MCs was myometrium>basal endometrium>functional endometrium. We show for the first time that uterine MCs are predominantly of the classical MC subtypes: (positive, +; negative, - tryptase+/chymase- and tryptase+/chymase+, but a third subtype was also identified (tryptase-/chymase+. Tryptase+ MCs were of an ERβ+/ERα-/PR-/GR+ phenotype mirroring other uterine immune cell populations, including natural killer cells. Conclusions: Endometrial tissue resident immune MCs have three protease-specific phenotypes. Expression of both ERβ and GR in MCs mirrors

  3. Dexamethasone-Induced Myeloid-Derived Suppressor Cells Prolong Allo Cardiac Graft Survival through iNOS- and Glucocorticoid Receptor-Dependent Mechanism

    Directory of Open Access Journals (Sweden)

    Yang Zhao

    2018-02-01

    Full Text Available How to induce immune tolerance without long-term need for immunosuppressive drugs has always been a central problem in solid organ transplantation. Modulating immunoregulatory cells represents a potential target to resolve this problem. Myeloid-derived suppressor cells (MDSCs are novel key immunoregulatory cells in the context of tumor development or transplantation, and can be generated in vitro. However, none of current systems for in vitro differentiation of MDSCs have successfully achieved long-term immune tolerance. Herein, we combined dexamethasone (Dex, which is a classic immune regulatory drug in the clinic, with common MDSCs inducing cytokine granulocyte macrophage colony stimulating factor (GM-CSF to generate MDSCs in vitro. Addition of Dex into GM-CSF system specifically increased the number of CD11b+ Gr-1int/low MDSCs with an enhanced immunosuppressive function in vitro. Adoptive transfer of these MDSCs significantly prolonged heart allograft survival and also favored the expansion of regulatory T cells in vivo. Mechanistic studies showed that inducible nitric oxide sythase (iNOS signaling was required for MDSCs in the control of T-cell response and glucocorticoid receptor (GR signaling played a critical role in the recruitment of transferred MDSCs into allograft through upregulating CXCR2 expression on MDSCs. Blockade of GR signaling with its specific inhibitor or genetic deletion of iNOS reversed the protective effect of Dex-induced MDSCs on allograft rejection. Together, our results indicated that co-application of Dex and GM-CSF may be a new and important strategy for the induction of potent MDSCs to achieve immune tolerance in organ transplantation.

  4. FKBP5 and specific microRNAs via glucocorticoid receptor in the basolateral amygdala involved in the susceptibility to depressive disorder in early adolescent stressed rats.

    Science.gov (United States)

    Xu, Jingjing; Wang, Rui; Liu, Yuan; Liu, Dexiang; Jiang, Hong; Pan, Fang

    2017-12-01

    Exposure to stressful events induces depressive-like symptoms and increases susceptibility to depression. However, the molecular mechanisms are not fully understood. Studies reported that FK506 binding protein51 (FKBP5), the co-chaperone protein of glucocorticoid receptors (GR), plays a crucial role. Further, miR-124a and miR-18a are involved in the regulation of FKBP5/GR function. However, few studies have referred to effects of early life stress on depressive-like behaviours, GR and FKBP5, as well as miR-124a and miR-18a in the basolateral amygdala (BLA) from adolescence to adulthood. This study aimed to examine the dynamic alternations of depressive-like behaviours, GR and FKBP5, as well as miR-124a and miR-18a expressions in the BLA of chronic unpredictable mild stress (CUMS) rats and dexamethasone administration rats during the adolescent period. Meanwhile, the GR antagonist, RU486, was used as a means of intervention. We found that CUMS and dexamethasone administration in the adolescent period induced permanent depressive-like behaviours and memory impairment, decreased GR expression, and increased FKBP5 and miR-124a expression in the BLA of both adolescent and adult rats. However, increased miR-18a expression in the BLA was found only in adolescent rats. Depressive-like behaviours were positively correlated with the level of miR-124a, whereas GR levels were negatively correlated with those in both adolescent and adult rats. Our results suggested FKBP5/GR and miR-124a in the BLA were associated with susceptibility to depressive disorder in the presence of stressful experiences in early life. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Chronic Fatigue Syndrome and DNA Hypomethylation of the Glucocorticoid Receptor Gene Promoter 1F Region: Associations With HPA Axis Hypofunction and Childhood Trauma.

    Science.gov (United States)

    Vangeel, Elise; Van Den Eede, Filip; Hompes, Titia; Izzi, Benedetta; Del Favero, Jurgen; Moorkens, Greta; Lambrechts, Diether; Freson, Kathleen; Claes, Stephan

    2015-10-01

    Chronic fatigue syndrome (CFS) has been associated with hypothalamic-pituitary-adrenal axis hypofunction and enhanced glucocorticoid receptor (GR) sensitivity. In addition, childhood trauma is considered a major risk factor for the syndrome. This study examines DNA methylation of the GR gene (NR3C1) in CFS and associations with childhood sexual and physical trauma. Quantification of DNA methylation within the 1F promoter region of NR3C1 was performed in 76 female patients (46 with no/mild and 30 with moderate/severe childhood trauma) and 19 healthy controls by using Sequenom EpiTYPER. Further, we examined the association of NR3C1-1F promoter methylation with the outcomes of the low-dose (0.5 mg) dexamethasone/corticotropin-releasing factor test in a subset of the study population. Mann-Whitney U tests and Spearman correlations were used for statistical analyses. Overall NR3C1-1F DNA methylation was lower in patients with CFS than in controls. After cytosine guanine dinucleotide (CpG)-specific analysis, CpG_1.5 remained significant after Bonferroni correction (adjusted p = .0014). Within the CFS group, overall methylation (ρ = 0.477, p = .016) and selective CpG units (CpG_1.5: ρ = 0.538, p = .007; CpG_12.13: ρ = 0.448, p = .025) were positively correlated with salivary cortisol after dexamethasone administration. There was no significant difference in NR3C1-1F methylation between traumatized and nontraumatized patients. We found evidence of NR3C1 promoter hypomethylation in female patients with CFS and the functional relevance of these differences was consistent with the hypothalamic-pituitary-adrenalaxis hypofunction hypothesis (GR hypersuppression). However, we found no evidence of an additional effect of childhood trauma on CFS via alterations in NR3C1 methylation.

  6. Alteration of 11β-Hydroxysteroid Dehydrogenase Type 1 and Glucocorticoid Receptor by Ethanol in Rat Liver and Mouse Hepatoma Cells

    Directory of Open Access Journals (Sweden)

    Zhaojie Meng

    2013-01-01

    for 3 months and 100 mM for 48 h, respectively. Glucose and insulin tolerance tests in vivo were performed, and protein levels of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1 and glucocorticoid receptor (GR in liver and Hepa 1–6 cells were measured. Alterations of key enzymes of gluconeogenesis phosphoenolpyruvate carboxykinase (PEPCK and glucose 6 phosphatase (G6Pase, as well as glycogen synthase kinase 3a (GSK3α, were also examined. The results revealed that glucose levels were increased, and insulin sensitivity was impaired accompanied with liver injury in rats exposed to ethanol compared with controls. The 11β-HSD1, GR, PEPCK, G6Pase, and GSK3α proteins were increased in the liver of rats treated with ethanol compared with controls. Ethanol-exposed Hepa 1–6 cells also showed higher expression of 11β-HSD1, GR, PEPCK, G6Pase, and GSK3α proteins than control cells. After treatment of Hepa 1–6 cells exposed to ethanol with the GR inhibitor RU486, the expression of 11β-HSD1 and GR was significantly decreased. At the same time the increases in PEPCK, G6Pase, and GSK3α levels induced by ethanol in Hepa 1–6 cells were also attenuated by RU486. The results indicate that ethanol causes glucose intolerance by increasing hepatic expression of 11β-HSD1 and GR, which leads to increased expression of gluconeogenic and glycogenolytic enzymes.

  7. Nucleus Accumbens Shell and mPFC but not Insula Orexin-1 Receptors Promote Excessive Alcohol Drinking

    Directory of Open Access Journals (Sweden)

    Kelly Lei

    2016-08-01

    Full Text Available Addiction to alcohol remains a major social and economic problem, in part because of the high motivation for alcohol that humans exhibit and the hazardous binge intake this promotes. Orexin-1-type receptors (OX1Rs promote reward intake under conditions of strong drives for reward, including excessive alcohol intake. While systemic modulation of OX1Rs can alter alcohol drinking, the brain regions that mediate this OX1R enhancement of excessive drinking remain unknown. Given the importance of the nucleus accumbens (NAc and anterior insular cortex (aINS in driving many addictive behaviors, including OX1Rs within these regions, we examined the importance of OX1Rs in these regions on excessive alcohol drinking in C57BL/6 mice during limited-access alcohol drinking in the dark cycle. Inhibition of OX1Rs with the widely used SB-334867 within the medial NAc Shell (mNAsh significantly reduced drinking of alcohol, with no effect on saccharin intake, and no effect on alcohol consumption when infused above the mNAsh. In contrast, intra-mNAsh infusion of the orexin-2 receptor TCS-OX2-29 had no impact on alcohol drinking. In addition, OX1R inhibition within the aINS had no effect on excessive drinking, which was surprising given the importance of aINS-NAc circuits in promoting alcohol consumption and the role for aINS OX1Rs in driving nicotine intake. However, OX1R inhibition within the mPFC did reduce alcohol drinking, indicating cortical OXR involvement in promoting intake. Also, in support of the critical role for mNAsh OX1Rs, SB within the mNAsh also significantly reduced operant alcohol self-administration in rats. Finally, orexin ex vivo enhanced firing in mNAsh neurons from alcohol-drinking mice, with no effect on evoked EPSCs or input resistance; a similar orexin increase in firing without a change in input resistance was observed in alcohol-naïve mice. Taken together, our results strongly suggest that OX1Rs within the mNAsh, but not the aINS, play a

  8. Excessive penile norepinephrine level underlies impaired erectile function in adenosine A1 receptor deficient mice.

    Science.gov (United States)

    Ning, Chen; Qi, Lin; Wen, Jiaming; Zhang, Yujin; Zhang, Weiru; Wang, Wei; Blackburn, Michael; Kellems, Rodney; Xia, Yang

    2012-10-01

    Penile erection is a complex neurovascular physiological event controlled by multiple factors and signaling pathways. A considerable amount of evidence indicates that adenosine plays a significant role in cavernosal smooth muscle relaxation. However, the specific role of adenosine and its receptors in erectile physiology and pathology is not fully understood. To determine the role of the adenosine A1 receptor (ADORA1) in penile erection. Adenosine A1 receptor deficient (Adora1-/-) mice and aged-matched wild-type (WT) mice were utilized. We evaluated the in vivo erectile function by measuring the intracavernosal pressure (ICP) in response to cavernous nerve stimulation (CNS). Enzyme-linked immunosorbent assay was used to measure the norepinephrine (NE) plasma concentration in the corpus cavernosum and systemic circulation. We also evaluated the myosin light chain phosphorylation (p-MLC) in penile tissue pre- and post-CNS. The main outcome measurement of this research was the evaluation of in vivo erectile response to CNS by measuring the ICP in Adora1-/- mice and WT mice and to identify the localization and specific neuron types of ADORA1 expression by dual immunostaining and immunofluorescence co-localization. In vivo, both the ratio of CNS-induced Maximum ICP to mean arterial pressure and CNS-induced slope in Adora1-/- mice were significantly lower than WT mice. At the cellular level in penile tissue, we determined that ADORA1 was highly abundant in neuronal cells. During penile erection, Adora1-/- mice exhibited a higher level of NE plasma concentration in the penis than WT mice. And WT mice had a significantly greater reduction in p-MLC compared to Adora1-/- mice. Our results show that ADORA1 is enriched on neuron cells where it functions to control NE release. Activation of this receptor during penile erection results in reduced NE release and reduced cavernosal smooth muscle contraction, therefore facilitating penile erection. © 2012 International Society for

  9. Early life stress and serotonin transporter gene variation interact to affect the transcription of the glucocorticoid and mineralocorticoid receptors, and the co-chaperone FKBP5, in the adult rat brain.

    Directory of Open Access Journals (Sweden)

    Rick H. A. Van der Doelen

    2014-10-01

    Full Text Available The short allelic variant of the serotonin transporter (5-HTT promoter-linked polymorphic region (5-HTTLPR has been associated with the etiology of major depression by interaction with early life stress (ELS. A frequently observed endophenotype in depression is the abnormal regulation of levels of stress hormones such as glucocorticoids. It is hypothesized that altered central glucocorticoid influence on stress-related behavior and memory processes could underlie the depressogenic interaction of 5-HTTLPR and ELS. One possible mechanism could be the altered expression of the genes encoding the glucocorticoid and mineralocorticoid receptor (GR, MR and their inhibitory regulator FK506-binding protein 51 (FKBP5 in stress-related forebrain areas. To test this notion, we exposed heterozygous (5-HTT+/- and homozygous (5-HTT-/- serotonin transporter knockout rats and their wildtype littermates (5-HTT+/+ to daily 3 h maternal separations from postnatal day 2 to 14. In the medial prefrontal cortex (mPFC and hippocampus of the adult male offspring, we found that GR, MR and FKBP5 mRNA levels were affected by ELS x 5-HTT genotype interaction. Specifically, 5-HTT+/+ rats exposed to ELS showed decreased GR and FKBP5 mRNA in the dorsal and ventral mPFC, respectively. In contrast, 5-HTT+/- rats showed increased MR mRNA levels in the hippocampus and 5-HTT-/- rats showed increased FKBP5 mRNA in the ventral mPFC after ELS exposure. These findings indicate that 5-HTT genotype determines the specific adaptation of GR, MR and FKBP5 expression in response to early life adversity. Therefore, altered extra-hypothalamic glucocorticoid signaling should be considered to play a role in the depressogenic interaction of ELS and 5-HTTLPR.

  10. Lack of renal 11 beta-hydroxysteroid dehydrogenase type 2 at birth, a targeted temporal window for neonatal glucocorticoid action in human and mice.

    Directory of Open Access Journals (Sweden)

    Laetitia Martinerie

    Full Text Available BACKGROUND: Glucocorticoid hormones play a major role in fetal organ maturation. Yet, excessive glucocorticoid exposure in utero can result in a variety of detrimental effects, such as growth retardation and increased susceptibility to the development of hypertension. To protect the fetus, maternal glucocorticoids are metabolized into inactive compounds by placental 11beta-hydroxysteroid dehydrogenase type2 (11βHSD2. This enzyme is also expressed in the kidney, where it prevents illicit occupation of the mineralocorticoid receptor by glucocorticoids. We investigated the role of renal 11βHSD2 in the control of neonatal glucocorticoid metabolism in the human and mouse. METHODS: Cortisol (F and cortisone (E concentrations were measured in maternal plasma, umbilical cord blood and human newborn urine using HPLC. 11βHSD2 activity was indirectly assessed by comparing the F/E ratio between maternal and neonatal plasma (placental activity and between plasma and urine in newborns (renal activity. Direct measurement of renal 11βHSD2 activity was subsequently evaluated in mice at various developmental stages. Renal 11βHSD2 mRNA and protein expression were analyzed by quantitative RT-PCR and immunohistochemistry during the perinatal period in both species. RESULTS: We demonstrate that, at variance with placental 11βHSD2 activity, renal 11βHSD2 activity is weak in newborn human and mouse and correlates with low renal mRNA levels and absence of detectable 11βHSD2 protein. CONCLUSIONS: We provide evidence for a weak or absent expression of neonatal renal 11βHSD2 that is conserved among species. This temporal and tissue-specific 11βHSD2 expression could represent a physiological window for glucocorticoid action yet may constitute an important predictive factor for adverse outcomes of glucocorticoid excess through fetal programming.

  11. Inhibition of IRE1 signaling affects the expression of genes encoded glucocorticoid receptor and some related factors and their hypoxic regulation in U87 glioma cells.

    Science.gov (United States)

    Minchenko, D O; Riabovol, O O; Tsymbal, D O; Ratushna, O O; Minchenko, O H

    2016-07-01

    The aim of the present investigation was to examine the effect of inhibition of endoplasmic reticulum stress signaling, mediated by IRE1 (inositol requiring enzyme 1), which is a central mediator of the unfolded protein response on the expression of genes encoding glucocorticoid receptor (NR3C1) and some related proteins (SGK1, SGK3, NCOA1, NCOA2, ARHGAP35, NNT) and their hypoxic regulation in U87 glioma cells for evaluation of their possible significance in the control of the glioma growth. The expression of NR3C1,SGK1,SGK3, NCOA1, NCOA2, ARHGAP35, and NNT genes in U87 glioma cells, transfected by empty vector pcDNA3.1 (control) and cells without IRE1 signaling enzyme function (transfected by dnIRE1) upon hypoxia, was studied by quantitative polymerase chain reaction. Inhibition of IRE1 signaling enzyme function up-regulates the expression of NR3C1, SGK1, NCOA1, NCOA2, ARHGAP35, and NNT genes in U87 glioma cells in comparison with the control glioma cells, with more significant changes for NR3C1, SGK1, and NNT genes. At the same time, the expression of SGK3 gene is strongly down-regulated in glioma cells upon inhibition of IRE1. We have also shown that hypoxia increases the expression of NR3C1, SGK1, NCOA2, ARHGAP35, and NNT genes but decreases SGK3 and NCOA1 genes expression in control glioma cells. Moreover, the inhibition of both enzymatic activities (kinase and endoribonuclease) of IRE1 in U87 glioma cells enhances the eff ect of hypoxia on the expression of SGK1, SGK3, and NNT genes, but decreases the sensitivity of NR3C1 gene to hypoxic condition. Furthermore, the expression of NCOA1 gene is resistant to hypoxia in control glioma cells, but NCOA2 and ARHGAP35 genes are resistant to this condition in glioma cells without functional activity of IRE1 signaling enzyme. Results of this investigation demonstrate that inhibition of IRE1 signaling enzyme function affects the expression of NR3C1, SGK1, SGK3, NCOA1, NCOA2, ARHGAP35, and NNT genes in U87 glioma cells

  12. Glucocorticoid-induced TNF receptor family related protein ligand [GITR-L] is requisite for optimal functioning of regulatory CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Gongxian eLiao

    2014-02-01

    Full Text Available Glucocorticoid-Induced Tumor necrosis factor Receptor family-related protein (GITR, TNFRSF18, CD357 is constitutively expressed on regulatory T cells (Tregs and is inducible on effector T cells (Teffs. In this report, we examine the role of GITR-Ligand (GITR-L, which is expressed by antigen presenting cells, on the development and expansion of Tregs. We found that GITR-L is dispensable for the development of naturally occurring FoxP3+ Treg cells in the thymus. However, the expansion of Treg in GITR-L-/- mice is impaired after injection of the dendritic cells (DCs inducing factor Flt3 ligand. Furthermore, DCs from the liver of GITR-L-/- mice were less efficient in inducing proliferation of antigen-specific Treg cells in vitro than the same cells from WT littermates. Upon gene transfer of ovalbumin into hepatocytes of GITR-L-/- FoxP3(GFP reporter mice using adeno-associated virus (AAV8-OVA the number of antigen-specific Treg in liver and spleen is reduced. The reduced number of Tregs resulted in an increase in the number of ovalbumin specific CD8+ T effector cells. This is highly significant because proliferation of antigen specific CD8+ cells itself is dependent on the presence of GITR-L, as shown by in vitro experiments and by adoptive transfers into GITR-L-/-Rag-/- and Rag-/- mice that had received AAV8-OVA. Surprisingly, administering αCD3 significantly reduced the numbers of FoxP3+ Treg cells in the liver and spleen of GITR-L-/- but not WT mice. Because soluble Fc-GITR-L partially rescues αCD3 induced in vitro depletion of the CD103+ subset of FoxP3+CD4+ Treg cells, we conclude that expression of GITR-L by antigen presenting cells is requisite for optimal Treg-mediated regulation of immune responses including those in response during gene transfer.

  13. Influence of Pre-reproductive Maternal Enrichment on Coping Response to Stress and Expression of c-Fos and Glucocorticoid Receptors in Adolescent Offspring

    Directory of Open Access Journals (Sweden)

    Debora Cutuli

    2017-05-01

    Full Text Available Environmental enrichment (EE is an experimental setting broadly used for investigating the effects of complex social, cognitive, and sensorimotor stimulations on brain structure and function. Recent studies point out that parental EE experience, even occurring in the pre-reproductive phase, affects neural development and behavioral trajectories of the offspring. In the present study we investigated the influences of pre-reproductive EE of female rats on maternal behavior and adolescent male offspring's coping response to an inescapable stressful situation after chronic social isolation. For this purpose female Wistar rats were housed from weaning to breeding age in enriched or standard environments. Subsequently, all females were mated and housed in standard conditions until offspring weaning. On the first post partum day (ppd 1, mother-pup interactions in undisturbed conditions were recorded. Further, after weaning the male pups were reared for 2 weeks under social isolation or in standard conditions, and then submitted or not to a single-session Forced Swim Test (FST. Offspring's neuronal activation and plastic changes were identified by immunohistochemistry for c-Fos and glucocorticoid receptors (GRs, and assessed by using stereological analysis. The biochemical correlates were measured in the hippocampus, amygdala and cingulate cortex, structures involved in hypothalamic-pituitary-adrenocortical axis regulation. Enriched dams exhibited increased Crouching levels in comparison to standard reared dams. In the offspring of both kinds of dams, social isolation reduced body weight, decreased Immobility, and increased Swimming during FST. Moreover, isolated offspring of enriched dams exhibited higher levels of Climbing in comparison to controls. Interestingly, in the amygdala of both isolated and control offspring of enriched dams we found a lower number of c-Fos immunopositive cells in response to FST and a higher number of GRs in comparison to

  14. Glucocorticoid-induced osteoporosis – a disorder of mesenchymal stromal cells?

    Directory of Open Access Journals (Sweden)

    Mark Stuart Cooper

    2011-08-01

    Full Text Available Glucocorticoids are a class of steroid hormones that are essential to life but cause serious harm in excess. The main clinical features of glucocorticoid excess are due to adverse effects on cells and tissues that arise from a common developmental precursor – the mesenchymal stromal cell (MSC; sometimes referred to as the mesenchymal stem cell. Interestingly glucocorticoids appear essential for the differentiation of cells and tissues that arise from MSCs. High levels of glucocorticoids are used in tissue engineering strategies to enhance the formation of tissues such as bone, cartilage and muscle. This article discusses the paradox that glucocorticoids both enhance and impair MSC development and function. It will describe how endogenous glucocorticoids are likely to be important in these processes in vivo and will discuss the implications for therapies aimed at reducing the damage associated with the use of therapeutic glucocorticoids.

  15. Chronic restraint stress causes anxiety- and depression-like behaviors, downregulates glucocorticoid receptor expression, and attenuates glutamate release induced by brain-derived neurotrophic factor in the prefrontal cortex.

    Science.gov (United States)

    Chiba, Shuichi; Numakawa, Tadahiro; Ninomiya, Midori; Richards, Misty C; Wakabayashi, Chisato; Kunugi, Hiroshi

    2012-10-01

    Stress and the resulting increase in glucocorticoid levels have been implicated in the pathophysiology of depressive disorders. We investigated the effects of chronic restraint stress (CRS: 6 hours × 28 days) on anxiety- and depression-like behaviors in rats and on the possible changes in glucocorticoid receptor (GR) expression as well as brain-derived neurotrophic factor (BDNF)-dependent neural function in the prefrontal cortex (PFC). We observed significant reductions in body weight gain, food intake and sucrose preference from 1 week after the onset of CRS. In the 5th week of CRS, we conducted open-field (OFT), elevated plus-maze (EPM) and forced swim tests (FST). We observed a decrease in the number of entries into open arms during the EPM (anxiety-like behavior) and increased immobility during the FST (depression-like behavior). When the PFC was removed after CRS and subject to western blot analysis, the GR expression reduced compared with control, while the levels of BDNF and its receptors remained unchanged. Basal glutamate concentrations in PFC acute slice which were measured by high performance liquid chromatography were not influenced by CRS. However, BDNF-induced glutamate release was attenuated after CRS. These results suggest that reduced GR expression and altered BDNF function may be involved in chronic stress-induced anxiety--and depression-like behaviors. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Context Modulates Outcome of Perinatal Glucocorticoid Action in the Brain

    Directory of Open Access Journals (Sweden)

    Edo Ronald ede Kloet

    2014-07-01

    Full Text Available Prematurely born infants may be at risk, because of inadequate maturation of tissues. If there are signs of preterm birth, it has become common practice therefore to treat either antenatally the mother or postnatally the infant with glucocorticoids to accelerate tissue development, particularly of the lung. However, this life-saving early glucocorticoid treatment was found to increase the risk of adverse outcome in later life. In one animal study the authors reported a 25% shorter lifespan of rats treated as newborns with the synthetic glucocorticoid dexamethasone, but sofar this finding has not been replicated. After a brief clinical introduction, we discuss studies in rodents designed to examine how perinatal glucocorticoid action affects the developing brain. It appears that the perinatal action of the glucocorticoid depends on the context and the timing as well as the type of administered steroid. The type of steroid is important because the endogenous glucocorticoids cortisol and corticosterone bind to two distinct receptor populations, i.e. mineralocorticoid (MR and glucocorticoid receptors (GR, while synthetic glucocorticoids predominantly bind to the GR. In addition, if given antenatally hydrocortisone is inactivated in the placenta by 11β-HSD type 2, and dexamethasone is not. With respect to timing, the outcome of glucocorticoid effects is different in early vs late phases of brain development. The context refers to the environmental input that can affect the susceptibility to glucocorticoid action in the newborn rodent brain; early handling of pups and maternal care obliterate effects of postnatal dexamethasone treatment. Context also refers to coping with environmental conditions in later life, for which the individual may have been programmed epigenetically by early life experience. This knowledge of determinants affecting the outcome of perinatal glucocorticoid exposure may have clinical implications for the treatment of

  17. Context modulates outcome of perinatal glucocorticoid action in the brain.

    Science.gov (United States)

    de Kloet, E Ronald; Claessens, Sanne E F; Kentrop, Jiska

    2014-01-01

    Prematurely born infants may be at risk, because of inadequate maturation of tissues. If there are signs of preterm birth, it has become common practice therefore to treat either antenatally the mother or postnatally the infant with glucocorticoids to accelerate tissue development, particularly of the lung. However, this life-saving early glucocorticoid treatment was found to increase the risk of adverse outcome in later life. In one animal study, the authors reported a 25% shorter lifespan of rats treated as newborns with the synthetic glucocorticoid dexamethasone, but so far this finding has not been replicated. After a brief clinical introduction, we discuss studies in rodents designed to examine how perinatal glucocorticoid action affects the developing brain. It appears that the perinatal action of the glucocorticoid depends on the context and the timing as well as the type of administered steroid. The type of steroid is important because the endogenous glucocorticoids cortisol and corticosterone bind to two distinct receptor populations, i.e., mineralocorticoid and glucocorticoid receptors (GR), while synthetic glucocorticoids predominantly bind to the GR. In addition, if given antenatally hydrocortisone is inactivated in the placenta by 11β-HSD type 2, and dexamethasone is not. With respect to timing, the outcome of glucocorticoid effects is different in early vs. late phases of brain development. The context refers to the environmental input that can affect the susceptibility to glucocorticoid action in the newborn rodent brain; early handling of pups and maternal care obliterate effects of post-natal dexamethasone treatment. Context also refers to coping with environmental conditions in later life, for which the individual may have been programed epigenetically by early-life experience. This knowledge of determinants affecting the outcome of perinatal glucocorticoid exposure may have clinical implications for the treatment of prematurely born infants.

  18. Stress and memory: opposing effects of glucocorticoids on memory consolidation and memory retrieval.

    Science.gov (United States)

    Roozendaal, Benno

    2002-11-01

    It is well established that glucocorticoid hormones, secreted by the adrenal cortex after a stressful event, influence cognitive performance. Some studies have found glucocorticoid-induced memory enhancement. However, many studies have reported impairing effects of glucocorticoids on memory function. This paper reviews recent findings from this laboratory on the acute effects of glucocorticoids in rats on specific memory phases, i.e., memory consolidation and memory retrieval. The evidence suggests that the consequences of glucocorticoid activation on cognition depend largely on the different memory phases investigated. Posttraining activation of glucocorticoid-sensitive pathways involving glucocorticoid receptors enhances memory consolidation in a pattern highly similar to that previously described for adrenal catecholamines. Also, similar to catecholamine effects on memory consolidation, glucocorticoid influences on memory consolidation depend on noradrenergic activation of the basolateral complex of the amygdala and interactions with other brain regions. By contrast, memory retrieval processes are usually impaired with high circulating levels of glucocorticoids or following infusions of glucocorticoid receptor agonists into the hippocampus. The hypothesis is proposed that these apparently dual effects of glucocorticoids on memory consolidation and memory retrieval might be related and that the basolateral complex of the amygdala is a key structure in a memory-modulatory system that regulates, in concert with other brain regions, stress and glucocorticoid effects on both memory consolidation and memory retrieval. Copyright 2002 Elsevier Science (USA)

  19. Glucocorticoid receptor knockdown decreases the antioxidant protection of B16 melanoma cells: an endocrine system-related mechanism that compromises metastatic cell resistance to vascular endothelium-induced tumor cytotoxicity.

    Science.gov (United States)

    Obrador, Elena; Valles, Soraya L; Benlloch, María; Sirerol, J Antoni; Pellicer, José A; Alcácer, Javier; Coronado, Javier Alcácer-F; Estrela, José M

    2014-01-01

    We previously reported an interorgan system in which stress-related hormones (corticosterone and noradrenaline), interleukin-6, and glutathione (GSH) coordinately regulate metastatic growth of highly aggressive B16-F10 melanoma cells. Corticosterone, at levels measured in tumor-bearing mice, also induces apoptotic cell death in metastatic cells with low GSH content. In the present study we explored the potential role of glucocorticoids in the regulation of metastatic cell death/survival during the early stages of organ invasion. Glucocorticoid receptor (GCR) knockdown decreased the expression and activity of γ-glutamylcysteine synthetase (γ-GCS), the rate-limiting step in GSH synthesis, in metastatic cells in vivo independent of the tumor location (liver, lung, or subcutaneous). The decrease in γ-GCS activity was associated with lower intracellular GSH levels. Nrf2- and p53-dependent down-regulation of γ-GCS was associated with a decrease in the activities of superoxide dismutase 1 and 2, catalase, glutathione peroxidase, and glutathione reductase, but not of the O2--generating NADPH oxidase. The GCR knockdown-induced decrease in antioxidant protection caused a drastic decrease in the survival of metastatic cells during their interaction with endothelial cells, both in vitro and in vivo; only 10% of cancer cells attached to the endothelium survived compared to 90% survival observed in the controls. This very low rate of metastatic cell survival was partially increased (up to 52%) in vivo by inoculating B16-F10 cells preloaded with GSH ester, which enters the cell and delivers free GSH. Taken together, our results indicate that glucocorticoid signaling influences the survival of metastatic cells during their interaction with the vascular endothelium.

  20. Analysis of the stress response in rats trained in the water-maze: differential expression of corticotropin-releasing hormone, CRH-R1, glucocorticoid receptors and brain-derived neurotrophic factor in limbic regions.

    Science.gov (United States)

    Aguilar-Valles, Argel; Sánchez, Edith; de Gortari, Patricia; Balderas, Israela; Ramírez-Amaya, Víctor; Bermúdez-Rattoni, Federico; Joseph-Bravo, Patricia

    2005-01-01

    Glucocorticoids and corticotropin-releasing hormone (CRH) are key regulators of stress responses. Different types of stress activate the CRH system; in hypothalamus, CRH expression and release are increased by physical or psychological stressors while in amygdala, preferentially by psychological stress. Learning and memory processes are modulated by glucocorticoids and stress at different levels. To characterize the kind of stress provoked by a hippocampal-dependent task such as spatial learning, we compared the expression profile of glucocorticoid receptor (GR), pro-CRH and CRH-R1 mRNAs (analyzed by RT-PCR), in amygdala, hippocampus and hypothalamus and quantified serum corticosterone levels by radioimmunoassay at different stages of training. mRNA levels of brain-derived neurotrophic factor (BDNF) were also quantified due to its prominent role in learning and memory processes. Male Wistar rats trained for 1, 3 or 5 days in the Morris water-maze (10 trials/day) were sacrificed 5-60 min the after last trial. A strong stress response occurred at day one in both yoked and trained animals (increased corticosterone and hypothalamic pro-CRH and CRH-R1 mRNA levels); changes gradually diminished as the test progressed. In amygdala, pro-CRH mRNA levels decreased while those of BDNF augmented when stress was highest, in yoked and trained animals. Hippocampi, of both yoked and trained groups, had decreased levels of GR mRNA on days 1 and 3, normalizing by day 5, while those of pro-CRH and CRH-R1 increased after the 3rd day. Increased gene expression, specifically due to spatial learning, occurred only for hippocampal BDNF since day 3. These results show that the Morris water-maze paradigm induces a strong stress response that is gradually attenuated. Inhibition of CRH expression in amygdala suggests that the stress inflicted is of physical but not of psychological nature and could lead to reduced fear or anxiety.

  1. A critical role for vascular smooth muscle in acute glucocorticoid-induced hypertension.

    Science.gov (United States)

    Goodwin, Julie E; Zhang, Junhui; Geller, David S

    2008-07-01

    Although glucocorticoid (GC)-induced hypertension has commonly been attributed to promiscuous activation of the mineralocorticoid receptor by cortisol, thereby promoting excess reabsorption of sodium and water, numerous lines of evidence indicate that this is not the only or perhaps even the primary mechanism. GC induce a number of effects on vascular smooth muscle (VSM) in vitro that may be pertinent to hypertension, but their contribution in vivo is unknown. To address this question, a mouse model with a tissue-specific knockout (KO) of the GC receptor in the VSM was created and characterized. Similar to control mice, KO mice exhibited normal baseline BP and, interestingly, showed normal circadian variation in BP. When dexamethasone was administered, however, the acute hypertensive response was markedly attenuated in KO mice, and there was a trend toward a decreased chronic hypertensive response. These data suggest that the GC receptor in VSM plays a critical role in the acute hypertensive response to GC in vivo.

  2. Nonsteroidal selective glucocorticoid modulators: the effect of C-10 substitution on receptor selectivity and functional potency of 5-allyl-2,5-dihydro-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolines.

    Science.gov (United States)

    Kym, Philip R; Kort, Michael E; Coghlan, Michael J; Moore, Jimmie L; Tang, Rui; Ratajczyk, James D; Larson, Daniel P; Elmore, Steven W; Pratt, John K; Stashko, Michael A; Falls, H Douglass; Lin, Chun W; Nakane, Masake; Miller, Loan; Tyree, Curtis M; Miner, Jeffery N; Jacobson, Peer B; Wilcox, Denise M; Nguyen, Phong; Lane, Benjamin C

    2003-03-13

    The preparation and characterization of a series of C-10 substituted 5-allyl-2,5-dihydro-2,2,4-trimethyl-1H-[1]benzopyrano[3,4-f]quinolines as a novel class of selective ligands for the glucocorticoid receptor is described. Substitution at the C-10 position of the tetracyclic core with linear, two-atom appendages (OCH(3), OCF(2)H, NHMe, SMe, CH=CH(2), Ctbd1;CH, CH(2)OH) provided molecules of high affinity (K(i) = 2-8 nM) for the human glucocorticoid receptor (hGR) with limited cross-reactivity with other steroid receptors (PR, MR, AR, ER). Optimal analogues showed slightly less potent but highly efficacious E-selectin repression with reduced levels of GRE activation efficacy in reporter gene assays relative to prednisolone. Preliminary SAR of analogues containing substitution at the C-9 and C-10 positions identified the 9-OH, 10-OMe analogue 50 and the 9-OH, 10-Cl analogue 58 as compounds that demonstrated potent, GR-mediated inhibition in a conconavalin A stimulated T-cell proliferation assay in both rodent and human whole blood monocytes. When evaluated for their in vivo effects in carrageenan-induced paw edema in rats, 50, 58, and 10-OCF(2)H analogue 35 showed dose-dependent anti-inflammatory effects (50, ED(50) = 16 mg/kg; 58, ED(50) = 15 mg/kg; 35, ED(50) = 21 mg/kg vs ED(50) = 15 mg/kg for 18 and ED(50) = 4 mg/kg for prednisolone).

  3. [Glucocorticoids in pediatrics].

    Science.gov (United States)

    Radmanović, S Z

    1995-06-01

    Glucocorticoids (GCs) are among the most commonly used drugs. They have been employed to treat almost every known disease, from urticaria to leukemia. GCs are so termed because of their action to increase plasma glucose as a result of enhanced hepatic gluconeogenesis, but they play, also, key regulatory roles in a wide variety of physiologic processes. They are essential for survival under stress. GC effect is mediated through receptors localised in cytosol. Receptor-GC complexes bind to hormone response elements in nuclear DNA, affect transcription of genes, either stimulating or inhibiting mRNAs. Proteins so produced (enzymes, hormones) are responsible for the steroid response. There is one type of GC receptor and all GCs will affect all tissues in the same way. At present rational use of GCs falls into two categories: replacement therapy (in Addison's diseasse and in congenital adrenal hyperplasia) and pharmacotherapy, mostly for their anti-inflammatory and immunosuppressive properties, but also to lyse leukemic lymphocytes or to reduce brain edema. GC therapy does not cure the primary disease--it only ameliorates its manifestations and provides time for the body natural defenses to work. After the withdrawal of steroid therapy manifestations of primary process usually return. So, as a result, there is no positive effect on long-term prognosis. Most common indications for prologned high-dose GC therapy are in organ transplantation, tumour chemotherapy, collagen vascular syndromes, ulcerative colitis, nephrotic syndrome and regional enteritis. Asthma, allergic diseases, inflammatory eye diseases and blood dyscrasias are also often treated with GCs. Used in pharmacological doses GCs have a number of adverse side effects. The use of alternate 0 day therapy can decrease most GC side effects (less suppression of hypothalamic-pituitary-adrenal axis, growth inhibition, cushingoid features, infections and myopathy). Discontinuation of long-term therapy is potentially

  4. A novel mutation of the adrenocorticotropin receptor (ACTH-R) gene in a family with the syndrome of isolated glucocorticoid deficiency, but no ACTH-R abnormalities in two families with the triple A syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Tsigos, C.; Arai, K.; Latronico, A.C. [National Inst. of Child Health and Human Development, Bethesda, MD (United States)]|[Temple Univ. School of Medicine, Philadelphia, PA (United States)]|[Children`s Hospital of New Jersey, Newark, NJ (United States)] [and others

    1995-07-01

    Isolated glucocorticoid deficiency (IGD) is an autosomal recessive disorder characterized by primary adrenocortical insufficiency, usually without mineralocorticoid deficiency. Occasionally, the disorder is associated with alacrima and achalasia of the esophagus (triple A syndrome), suggesting potential heterogeneity in its etiology. Mutations in the ACTH receptor gene have been reported in several families with IGD. We have amplified and directly sequenced the entire intronless ACTH receptor gene in 1 other family with IGD and 2 famlies with triple A syndrome. The proband with IGD was a homozygote for an A {r_arrow}G substitution, changing tyrosine 254 to cysteine in the third extracellular loop of the receptor protein, probably interfering with ligand binding. Both of her parents were heterozygotes for this mutation, which was not detected in 100 normal alleles. No mutations were identified in the entire coding area of the ACTH receptor in the 2 families with triple A syndrome, supporting the idea of a developmental or postreceptor defect in this syndrome. 19 refs., 1 fig.

  5. Vitamin D3 Adjuvant Treatment Stimulate Interleukin-10 Expression in Children with Nephrotic Syndrome Without Affecting to Clinical Outcome and Glucocorticoid Receptor Expression

    Directory of Open Access Journals (Sweden)

    Husnul Asariati

    2014-11-01

    Full Text Available Idiopathic nephrotic syndrome (INS is the most glomerular disease that occurred in childhood with high rate morbidity. Glucocorticoid is drug of choice for INS and responsiveness to this drug determined prognosis.Glucocorticoid upregulate transcription of anti-inflammatory cytokines such as IL-4 and IL-10. IL-10 is an anti-inflammatory cytokine and has multiple role in immune response include modulate Th1/Th2 response. Vitamin D3 interact with glucocorticoid signaling. Administered active form of vitamin D3 increase dexamethasone-induced IL-10 expression by regulatory T cells in steroid resistant asthmatic patient. Here we showed increase of CD4+ IL10+ expression after treatment both prednisone only and combination prednison with vitamin D3. Both in new-onset NS or rare relaps NS, combination treatment prednisone + vitamin D3 increase CD4+ IL10+ expression significantly compared to prednisone-only treated group (p= 0.003, which first group (new-onset nephrotic syndrome + prednisone and vitamin D3 treatment showed the most CD4+ IL10+ expression enhancement (9.53±3.89. However this study failed to show a correlation between CD4+ IL-10+ expression after prednisone and vitamin D3 treatment with clinical outcome (linear regression test, p= 0,125. This study also showed that there was a no correlation between CD4+ IL-10+ expression and CD3+ GR expression after prednison + vitamin D3 treatment (p= 0.088. CD4+ IL-10+ expression in new-onset and rarely relapsing nephrotic syndrome patients higher in prednisone + vitamin D3 treated group than prednisone-only treated group. There is no correlation between CD4+ IL-10+ expression and CD3+ GR expression nor CD4+ IL-10+ expression and clinical outcome.

  6. The sex-dependent role of the glucocorticoid receptor in depression: variations in the NR3C1 gene are associated with major depressive disorder in women but not in men.

    Science.gov (United States)

    Sarubin, Nina; Hilbert, Sven; Naumann, Felix; Zill, Peter; Wimmer, Anna-Maria; Nothdurfter, Caroline; Rupprecht, Rainer; Baghai, Thomas C; Bühner, Markus; Schüle, Cornelius

    2017-03-01

    Genetic variations in the glucocorticoid receptor (GR) and the mineralocorticoid receptor (MR) have been associated with maladaptive stress responses and major depressive disorder (MDD). In a case-control study design, we examined whether single nucleotide polymorphisms (SNPs) and haploid genotype (haplotype) associations of MR gene NR3C2, GR gene NR3C1 and genes of GR chaperone molecules FK506 binding protein 5 (FKBP5) and corticotrophin-releasing hormone receptor 1 (CRHR1) differed between healthy subjects (n = 634) and inpatients with major depressive disorder (n = 412). All analyses were conducted for women and men separately. After conservative correction of Type-I-error to obtain reliable p values, one SNP in the NR3C1 gene, namely rs6195, showed a significant association with the presence of a major depression (p = 0.048) in females. In contrast, NR3C2, FKBP5 and CRHR1 polymorphisms were not significantly associated with MDD. No haplotype effects could be identified. Our results support the notion of an association between variants of GR-related genes in women and the pathophysiology of depression: females suffering from MDD showed a more than three times higher frequency of the T/C polymorphism compared to controls, which thus seems to increase the vulnerability to depression in females.

  7. Identifying Androgen Receptor-Independent Mechanisms of Prostate Cancer Resistance to Second-Generation Antiandrogen Therapy

    Science.gov (United States)

    2016-08-01

    cancers. 15. SUBJECT TERMS Glucocorticoid Receptor, Serum and glucocorticoid -regulated kinase 1, SGK1, epithelial- mesenchymal transition, EMT 16...receptor transcription factor, glucocorticoid receptor (GR), can activate an overlapping set of AR target genes and can mediate resistance to enzalutamide... glucocorticoid -regulated kinase 1 (SGK1), a target gene of the GR transcriptional program, might be more suitable for targeted inhibition. GR and

  8. Osteoporosis inducida por glucocorticoides Glucocorticoid induced osteoporosis

    OpenAIRE

    R. Gutiérrez-Polo

    2003-01-01

    Los glucocorticoides son un grupo de fármacos que se emplean muy frecuentemente en la práctica médica por su indiscutible utilidad. La osteoporosis inducida por éstos supone el principal efecto adverso derivado de su administración sistémica y prolongada, constituyendo la causa más frecuente de osteoporosis secundaria. Comporta además una importante repercusión sanitaria y socioeconómica como consecuencia de las complicaciones que ocasiona, como son las diferentes fracturas óseas por fragilid...

  9. Glucocorticoid Regulation of Reproduction.

    Science.gov (United States)

    Geraghty, Anna C; Kaufer, Daniela

    2015-01-01

    It is well accepted that stress, measured by increased glucocorticoid secretion, leads to profound reproductive dysfunction. In times of stress, glucocorticoids activate many parts of the fight or flight response, mobilizing energy and enhancing survival, while inhibiting metabolic processes that are not necessary for survival in the moment. This includes reproduction, an energetically costly procedure that is very finely regulated. In the short term, this is meant to be beneficial, so that the organism does not waste precious energy needed for survival. However, long-term inhibition can lead to persistent reproductive dysfunction, even if no longer stressed. This response is mediated by the increased levels of circulating glucocorticoids, which orchestrate complex inhibition of the entire reproductive axis. Stress and glucocorticoids exhibits both central and peripheral inhibition of the reproductive hormonal axis. While this has long been recognized as an issue, understanding the complex signaling mechanism behind this inhibition remains somewhat of a mystery. What makes this especially difficult is attempting to differentiate the many parts of both of these hormonal axes, and new neuropeptide discoveries in the last decade in the reproductive field have added even more complexity to an already complicated system. Glucocorticoids (GCs) and other hormones within the hypothalamic-pituitary-adrenal (HPA) axis (as well as contributors in the sympathetic system) can modulate the hypothalamic-pituitary-gonadal (HPG) axis at all levels-GCs can inhibit release of GnRH from the hypothalamus, inhibit gonadotropin synthesis and release in the pituitary, and inhibit testosterone synthesis and release from the gonads, while also influencing gametogenesis and sexual behavior. This chapter is not an exhaustive review of all the known literature, however is aimed at giving a brief look at both the central and peripheral effects of glucocorticoids on the reproductive function.

  10. Insulin inhibition of glucocorticoid-stimulated gene transcription: requirement for an insulin response element?

    Science.gov (United States)

    Pierreux, C E; Rousseau, G G; Lemaigre, F P

    1999-01-25

    The glucocorticoid hormone receptor binds to regulatory elements of target genes and activates transcription through interactions with coactivators. For a subset of genes, glucocorticoid receptor activity is inhibited by insulin. The present paper analyzes recent data on the molecular mechanisms whereby insulin exerts this antiglucocorticoid effect. Two models are proposed. In the first model insulin controls the activity of an insulin-responsive factor bound to an insulin-responsive DNA element. In a second model, insulin targets a non-DNA bound coactivator of the glucocorticoid receptor. Here, the gene-specificity of the effect of insulin is conferred by the combined action of the glucocorticoid receptor, of DNA-bound transcription factors and of coactivators, which form a higher order structure that binds to a DNA sequence called glucocorticoid/insulin responsive unit.

  11. Regulation of corticotropin releasing hormone receptor type 1 messenger RNA level in Y-79 retinoblastoma cells: potential implications for human stress response and immune/inflammatory reaction

    Directory of Open Access Journals (Sweden)

    N. C. Vamvakopoulos

    1996-01-01

    Full Text Available We report the regulation of type 1 receptor mRNA in Y-79 human retinoblastoma cells, grown in the absence or presence of pharmacological levels of phorbol esters, forskolin, glucocorticoids and their combinations. To control for inducibility and for assessing the sensitivity of the Y-79 system to glucocorticoids, corticotropin releasing hormone mRNA levels were measured in parallel. All treatments stimulated corticotropin releasing hormone receptor type 1 gene expression relative to baseline. A weak suppression of corticotropin releasing hormone mRNA level was observed during dexamethasone treatment. The cell line expressed ten-fold excess of receptor to ligand mRNA under basal conditions. The findings predict the presence of functional phorbol ester, cyclic AMP and glucocorticoid response elements in the promoter region of corticotropin releasing hormone receptor type 1 gene and support a potential role for its product during chronic stress and immune/inflammatory reaction.

  12. [Glucocorticoid and Bone. The effect of glucocorticoid and PTH in osteoblast apoptosis and differentiation via interleukin 11 expression].

    Science.gov (United States)

    Endo, Itsuro

    2014-09-01

    Intermittent PTH administration stimulates bone formation and counteracts the inhibition of bone formation by glucocorticoid excess. We have previously demonstrated that PTH enhances interleukin (IL) -11 gene transcription by a rapid induction of delta-fosB expression and Smad1/5 phosphorylation. On the other hand, glucocorticoid can suppress osteoblast differentiation and enhance apoptosis of osteoblast cells via down-regulation of IL-11 expression. PTH could reverse glucocorticoid-induced these damage of osteoblast via stimulation of IL-11 expression. Our data also suggested that IL-11 mediates stimulatory and inhibitory signals of osteoblast differentiation by affecting Wnt signaling. These data demonstrates that PTH and glucocorticoid may regulate osteoblast differentiation and apoptosis via their effect on IL-11 expression.

  13. Vitamin A decreases pre-receptor amplification of glucocorticoids in obesity: study on the effect of vitamin A on 11beta-hydroxysteroid dehydrogenase type 1 activity in liver and visceral fat of WNIN/Ob obese rats

    Directory of Open Access Journals (Sweden)

    Ayyalasomayajula Vajreswari

    2011-06-01

    Full Text Available Abstract Background 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1 catalyzes the conversion of inactive glucocorticoids to active glucocorticoids and its inhibition ameliorates obesity and metabolic syndrome. So far, no studies have reported the effect of dietary vitamin A on 11β-HSD1 activity in visceral fat and liver under normal and obese conditions. Here, we studied the effect of chronic feeding of vitamin A-enriched diet (129 mg/kg diet on 11β-HSD1 activity in liver and visceral fat of WNIN/Ob lean and obese rats. Methods Male, 5-month-old, lean and obese rats of WNIN/Ob strain (n = 16 for each phenotype were divided into two subgroups consisting of 8 rats of each phenotype. Control groups received stock diet containing 2.6 mg vitamin A/kg diet, where as experimental groups received diet containing 129 mg vitamin A/Kg diet for 20 weeks. Food and water were provided ad libitum. At the end of the experiment, tissues were collected and 11β-HSD1 activity was assayed in liver and visceral fat. Results Vitamin A supplementation significantly decreased body weight, visceral fat mass and 11β-HSD1 activity in visceral fat of WNIN/Ob obese rats. Hepatic 11β-HSD1 activity and gene expression were significantly reduced by vitamin A supplementation in both the phenotypes. CCAAT/enhancer binding protein α (C/EBPα, the main transcription factor essential for the expression of 11β-HSD1, decreased in liver of vitamin A fed-obese rats, but not in lean rats. Liver × receptor α (LXRα, a nuclear transcription factor which is known to downregulate 11β-HSD1 gene expression was significantly increased by vitamin A supplementation in both the phenotypes. Conclusions This study suggests that chronic consumption of vitamin A-enriched diet decreases 11β-HSD1 activity in liver and visceral fat of WNIN/Ob obese rats. Decreased 11β-HSD1 activity by vitamin A may result in decreased levels of active glucocorticoids in adipose tissue and possibly

  14. Fetal glucocorticoid exposure is associated with preadolescent brain development.

    Science.gov (United States)

    Davis, Elysia Poggi; Sandman, Curt A; Buss, Claudia; Wing, Deborah A; Head, Kevin

    2013-11-01

    Glucocorticoids play a critical role in normative regulation of fetal brain development. Exposure to excessive levels may have detrimental consequences and disrupt maturational processes. This may especially be true when synthetic glucocorticoids are administered during the fetal period, as they are to women in preterm labor. This study investigated the consequences for brain development and affective problems of fetal exposure to synthetic glucocorticoids. Brain development and affective problems were evaluated in 54 children (56% female), aged 6 to 10, who were full term at birth. Children were recruited into two groups: those with and without fetal exposure to synthetic glucocorticoids. Structural magnetic resonance imaging scans were acquired and cortical thickness was determined. Child affective problems were assessed using the Child Behavior Checklist. Children in the fetal glucocorticoid exposure group showed significant and bilateral cortical thinning. The largest group differences were in the rostral anterior cingulate cortex (rACC). More than 30% of the rACC was thinner among children with fetal glucocorticoid exposure. Furthermore, children with more affective problems had a thinner left rACC. Fetal exposure to synthetic glucocorticoids has neurologic consequences that persist for at least 6 to 10 years. Children with fetal glucocorticoid exposure had a thinner cortex primarily in the rACC. Our data indicating that the rACC is associated with affective problems in conjunction with evidence that this region is involved in affective disorders raise the possibility that glucocorticoid-associated neurologic changes increase vulnerability to mental health problems. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  15. Excess adenosine A2B receptor signaling contributes to priapism through HIF-1α mediated reduction of PDE5 gene expression

    Science.gov (United States)

    Ning, Chen; Wen, Jiaming; Zhang, Yujin; Dai, Yingbo; Wang, Wei; Zhang, Weiru; Qi, Lin; Grenz, Almut; Eltzschig, Holger K.; Blackburn, Michael R.; Kellems, Rodney E.; Xia, Yang

    2014-01-01

    Priapism is featured with prolonged and painful penile erection and is prevalent among males with sickle cell disease (SCD). The disorder is a dangerous urological and hematological emergency since it is associated with ischemic tissue damage and erectile disability. Here we report that phosphodiesterase-5 (PDE5) gene expression and PDE activity is significantly reduced in penile tissues of two independent priapic models: SCD mice and adenosine deaminase (ADA)-deficient mice. Moreover, using ADA enzyme therapy to reduce adenosine or a specific antagonist to block A2B adenosine receptor (ADORA2B) signaling, we successfully attenuated priapism in both ADA−/− and SCD mice by restoring penile PDE5 gene expression to normal levels. This finding led us to further discover that excess adenosine signaling via ADORA2B activation directly reduces PDE5 gene expression in a hypoxia-inducible factor-1α (HIF-1α)-dependent manner. Overall, we reveal that excess adenosine-mediated ADORA2B signaling underlies reduced penile PDE activity by decreasing PDE5 gene expression in a HIF-1α-dependent manner and provide new insight for the pathogenesis of priapism and novel therapies for the disease.—Ning, C., Wen, J., Zhang, Y., Dai, Y., Wang, W., Zhang, W., Qi, L., Grenz, A., Eltzschig, H. K., Blackburn, M. R., Kellems, R. E., Xia, Y. Excess adenosine A2B receptor signaling contributes to priapism through HIF-1α mediated reduction of PDE5 gene expression. PMID:24614760

  16. TAK1 targeting by glucocorticoids determines JNK and IκB regulation in Toll-like receptor–stimulated macrophages

    Science.gov (United States)

    Ratajczak, Christine K.; Vogt, Sherri K.; Kelley, Crystal; Colonna, Marco; Schreiber, Robert D.; Muglia, Louis J.

    2010-01-01

    Glucocorticoids potently attenuate the production of inflammatory mediators by macrophages, a primary effector of innate immunity. Activation of different macrophage Toll-like receptors (TLRs) by their respective ligands presents a powerful system by which to evaluate stimulus-dependent glucocorticoid effects in the same cell type. Here, we test the hypothesis that glucocorticoids, acting through the glucocorticoid receptor, modulate macrophage activation preferentially depending upon the TLR-selective ligand and TLR adapters. We established that 2 adapters, Trif, MyD88, or both, determine the ability of glucocorticoids to suppress inhibitor of κB (IκB) degradation or Janus kinase (JNK) activation. Moreover, the sensitivity of transforming growth factor β–activated kinase 1 (TAK1) activation to glucocorticoids determines these effects. These findings identify TAK1 as a novel target for glucocorticoids that integrates their anti-inflammatory action in innate immunity signaling pathways. PMID:20065289

  17. Relationship of glucocorticoid receptor expression in peripheral blood mononuclear cells and the cochlea of guinea pigs and effects of dexamethasone administration.

    Directory of Open Access Journals (Sweden)

    Ling Lu

    Full Text Available BACKGROUND: Glucocorticoids (GCs are widely used to treat sudden sensorineural hearing loss (SSNHL and significantly improve hearing. However, GC insensitivity has been observed in some patients of SSNHL. OBJECTIVE: To study the correlation between GR expression in peripheral blood mononuclear cells (PBMCs and in the cochlea of guinea pigs at mRNA and protein levels. METHODS: One group of guinea pigs received dexamethasone (10 mg/kg/day intraperitoneally for 7 consecutive days (dexamethasone group, and another group of guinea pigs received normal saline (control group. Real time PCR and Western blotting were used to detect the expression of GR mRNA and GR protein in PBMCs and the cochleae. RESULTS: The GR mRNA and GR protein were detected in both PBMCs and the cochlear tissue of guinea pigs. GR mRNA and GR protein levels in PBMCs were positively correlated with those in the cochlea. The expression of GR mRNA and GR protein was significantly increased in the dexamethasone group compared to the control group. CONCLUSIONS: Levels of GR mRNA and GR protein in the PBMCs were positively correlated with those in the cochlea of guinea pigs. Systemic dexamethasone treatment can significantly up-regulate GR expression in PBMCs and in the cochlea. Measurement of the GR level in PBMCs could be used as an indicator of GR level in the cochlea.

  18. Antcin A, a steroid-like compound from Antrodia camphorata, exerts anti-inflammatory effect via mimicking glucocorticoids.

    Science.gov (United States)

    Chen, Yi-ching; Liu, Ya-lin; Li, Feng-yin; Chang, Chi-I; Wang, Sheng-yang; Lee, Kuo-yang; Li, Shun-lai; Chen, Yi-peng; Jinn, Tzyy-rong; Tzen, Jason T C

    2011-07-01

    To determine the active ingredient of Niuchangchih (Antrodia camphorata) responsible for its anti-inflammatory effects and the relevant molecular mechanisms. Five major antcins (A, B, C, H, and K) were isolated from fruiting bodies of Niuchangchih. Structural similarity between the antcins and 2 glucocorticoids (cortisone and dexamethasone) was compared. After incubation with each compound, the cytosolic glucocorticoid receptor (GR) was examined for its migration into the nucleus. Mo lecular docking was performed to model the tertiary structure of GR associated with antcins. Incubation with cortisone, dexamethasone or antcin A (but not antcins B, C, H, and K) led to the migration of glucocorticoid receptor into the nucleus. The minimal concentration of antcin A, cortisone and dexamethasone to induce nuclear migration of glucocorticoid receptor was 10, 1, and 0.1 mol/L, respectively. The results are in agreement with the simulated binding affinity scores of these three ligands docking to the glucocorticoid receptor. Molecular modeling indicates that C-7 of antcin A or glucocorticoids is exposed to a hydrophobic region in the binding cavity of the glucocorticoid receptor, and the attachment of a hydrophilic group to C-7 of the other four antcins presumably results in their being expelled when docking to the cavity. The anti-inflammatory effect of Niuchangchih is, at least, partly attributed to antcin A that mimics glucocorticoids and triggers translocation of glucocorticoid receptor into nucleus to initiate the suppressing inflammation.

  19. Identifying candidate drivers of alcohol dependence-induced excessive drinking by assembly and interrogation of brain-specific regulatory networks.

    Science.gov (United States)

    Repunte-Canonigo, Vez; Shin, William; Vendruscolo, Leandro F; Lefebvre, Celine; van der Stap, Lena; Kawamura, Tomoya; Schlosburg, Joel E; Alvarez, Mariano; Koob, George F; Califano, Andrea; Sanna, Pietro Paolo

    2015-02-02

    A systems biology approach based on the assembly and interrogation of gene regulatory networks, or interactomes, was used to study neuroadaptation processes associated with the transition to alcohol dependence at the molecular level. Using a rat model of dependent and non-dependent alcohol self-administration, we reverse engineered a global transcriptional regulatory network during protracted abstinence, a period when relapse rates are highest. We then interrogated the network to identify master regulator genes that mechanistically regulate brain region-specific signatures associated with dependent and non-dependent alcohol self-administration. Among these, the gene coding for the glucocorticoid receptor was independently identified as a master regulator in multiple brain regions, including the medial prefrontal cortex, nucleus accumbens, central nucleus of the amygdala, and ventral tegmental area, consistent with the view that brain reward and stress systems are dysregulated during protracted abstinence. Administration of the glucocorticoid antagonist mifepristone in either the nucleus accumbens or ventral tegmental area selectively decreased dependent, excessive, alcohol self-administration in rats but had no effect on non-dependent, moderate, alcohol self-administration. Our study suggests that assembly and analysis of regulatory networks is an effective strategy for the identification of key regulators of long-term neuroplastic changes within specific brain regions that play a functional role in alcohol dependence. More specifically, our results support a key role for regulatory networks downstream of the glucocorticoid receptor in excessive alcohol drinking during protracted alcohol abstinence.

  20. A Mixed Glucocorticoid/Mineralocorticoid Selective Modulator With Dominant Antagonism in the Male Rat Brain

    NARCIS (Netherlands)

    Atucha, E.; Zalachoras, I.; Heuvel, J.K. van den; Weert, L.T.C.M. van; Melchers, D.; Mol, I.M.; Belanoff, J.K.; Houtman, R.; Hunt, H.; Roozendaal, B.; Meijer, O.C.

    2015-01-01

    Adrenal glucocorticoid hormones are potent modulators of brain function in the context of acute and chronic stress. Both mineralocorticoid (MRs) and glucocorticoid receptors (GRs) can mediate these effects. We studied the brain effects of a novel ligand, C118335, with high affinity for GRs and

  1. FXR agonist GW4064 increases plasma glucocorticoid levels in C57BL/6 mice

    NARCIS (Netherlands)

    Hoekstra, Menno; van der Sluis, Ronald J.; Li, Zhaosha; Oosterveer, Maaike H.; Groen, Albert K.; Van Berkel, Theo J. C.

    2012-01-01

    Since high expression of farnesoid X receptor (FXR) has been detected in glucocorticoid-producing adrenocortical cells, we evaluated the potential role of FXR in adrenal glucocorticoid production. FXR agonist GW4064 increased fasting plasma corticosterone levels (+45%; P <0.01) in C57BL/6 mice,

  2. Fructose and stress induce opposite effects on lipid metabolism in the visceral adipose tissue of adult female rats through glucocorticoid action.

    Science.gov (United States)

    Kovačević, Sanja; Nestorov, Jelena; Matić, Gordana; Elaković, Ivana

    2017-09-01

    Daily exposure to stress and excessive fructose intake coincides with the growing rate of obesity and related disorders, to which women are more prone than men. Glucocorticoids, the main regulators of energy balance and response to stress, have been associated with the development of metabolic disturbances. The aim of the present study was to examine the effects of fructose overconsumption and/or chronic stress on glucocorticoid signalization and lipid metabolism in female rat adipose tissue. We examined the effects of fructose-enriched diet and chronic unpredictable stress, separately and in combination, on glucocorticoid signaling in terms of 11β-hydroxysteroid dehydrogenase 1 (HSD1)-catalyzed corticosterone regeneration, glucocorticoid receptor (GR) intracellular distribution, hormone binding and transcriptional regulation of genes involved in lipolysis (hormone-sensitive lipase) and lipogenesis (lipoprotein lipase, acetyl-CoA carboxylase, fatty acid synthase and phosphoenolpyruvate carboxykinase) in the visceral adipose tissue (VAT) of adult female rats. Additionally, the nuclear level of the peroxisomal proliferator-activated receptor γ (PPARγ) was analyzed. The combination of stress and fructose-enriched diet led to an elevation in HSD1 expression and intracellular corticosterone concentration, whereas GR nuclear accumulation was enhanced after separate treatments. Furthermore, fructose was shown to induce the expression of all examined lipogenic genes and nuclear accumulation of PPARγ, thereby stimulating adipogenesis, while stress upregulated HSL, reducing the adipose tissue mass regardless of fructose consumption. Prolonged overconsumption of fructose and chronic exposure to stress promote opposite effects on lipid metabolism in the VAT of adult female rats and suggest that these effects could be mediated by glucocorticoids.

  3. Glucocorticoids suppress inflammation via the upregulation of negative regulator IRAK-M

    Science.gov (United States)

    Miyata, Masanori; Lee, Ji-Yun; Susuki-Miyata, Seiko; Wang, Wenzhuo Y.; Xu, Haidong; Kai, Hirofumi; Kobayashi, Koichi S.; Flavell, Richard A.; Li, Jian-Dong

    2015-01-01

    Glucocorticoids are among the most commonly used anti-inflammatory agents. Despite the enormous efforts in elucidating the glucocorticoid-mediated anti-inflammatory actions, how glucocorticoids tightly control overactive inflammatory response is not fully understood. Here we show that glucocorticoids suppress bacteria-induced inflammation by enhancing IRAK-M, a central negative regulator of Toll-like receptor signalling. The ability of glucocorticoids to suppress pulmonary inflammation induced by non-typeable Haemophilus influenzae is significantly attenuated in IRAK-M-deficient mice. Glucocorticoids improve the survival rate after a lethal non-typeable Haemophilus influenzae infection in wild-type mice, but not in IRAK-M-deficient mice. Moreover, we show that glucocorticoids and non-typeable Haemophilus influenzae synergistically upregulate IRAK-M expression via mutually and synergistically enhancing p65 and glucocorticoid receptor binding to the IRAK-M promoter. Together, our studies unveil a mechanism by which glucocorticoids tightly control the inflammatory response and host defense via the induction of IRAK-M and may lead to further development of anti-inflammatory therapeutic strategies. PMID:25585690

  4. Variants of the orexin2/hcrt2 receptor gene identified in patients with excessive daytime sleepiness and patients with Tourette's syndrome comorbidity.

    Science.gov (United States)

    Thompson, Miles D; Comings, David E; Abu-Ghazalah, Rashid; Jereseh, Yousef; Lin, Leo; Wade, Judy; Sakurai, Takeshi; Tokita, Shigeru; Yoshida, Tetsuo; Tanaka, Hirokazu; Yanagisawa, Masashi; Burnham, W McIntyre; Moldofsky, Harvey

    2004-08-15

    The orexin-2/hypocretin-2 (OX2R) receptor gene is mutated in canine narcolepsy and disruption of the prepro-orexin/hypocretin ligand gene results in both an animal model of narcolepsy and sporadic cases of the human disease. This evidence suggests that the structure of the OX2R gene, and its homologue, the OX1R gene, both members of the G protein-coupled receptor (GPCR) family, and the gene encoding the peptide ligands, the prepro-orexin/hypocretin gene, may be variables in the etiology of sleep disorders. We report a single stranded conformational polymorphism (SSCP) analysis of the coding regions of these genes in idiopathic sleep disorder patients diagnosed with excessive daytime sleepiness (EDS) (n = 28), narcolepsy (n = 28), Tourette's syndrome/chronic vocal or motor tic disorder (n = 70), and control subjects (n = 110). Two EDS patients showed a Pro11Thr change. One Tourette's syndrome patient was found to have a Pro10Ser alteration. The Pro10Ser and Pro11Thr variants were not found in non-disease populations. Analysis of the ability of the mutant receptors to mobilize calcium compared to the wild-type receptor in response to orexin agonists indicated that they resulted in decreased potency at high (etaM) concentrations of orexin ligands. Further work is warranted to study the variability of the orexin/hypocretin system in a variety of disorders characterized by EDS. Copyright 2004 Wiley-Liss, Inc.

  5. The influence of glucocorticoid signaling on tumor progression.

    Science.gov (United States)

    Volden, Paul A; Conzen, Suzanne D

    2013-03-01

    The diagnosis of cancer elicits a broad range of well-characterized stress-related biobehavioral responses. Recent studies also suggest that an individual's neuroendocrine stress response can influence tumor biology. One of the major physiological pathways altered by the response to unrelenting social stressors is the hypothalamic-pituitary-adrenal or HPA axis. Initially following acute stress exposure, an increased glucocorticoid response is observed; eventually, chronic stress exposure can lead to a blunting of the normal diurnal cortisol pattern. Interestingly, recent evidence also links high primary tumor glucocorticoid receptor expression (and associated increased glucocorticoid-mediated gene expression) to more rapid estrogen-independent breast cancer progression. Furthermore, animal models of human breast cancer suggest that glucocorticoids inhibit tumor cell apoptosis. These findings provide a conceptual basis for understanding the molecular mechanisms underlying the influence of the individual's stress response, and specifically glucocorticoid action, on breast cancer and other solid tumor biology. How this increased glucocorticoid signaling might contribute to cancer progression is the subject of this review. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. An Undergraduate Laboratory Experiment that Utilizes a Glass Fiber Filter Assay to Determine the Steroid Specificity and Equilibrium Binding Properties of Glucocorticoid Receptors.

    Science.gov (United States)

    John, Nancy J.; Firestone, Gary L.

    1987-01-01

    Describes two complementary laboratory exercises that use the glass fiber assay to assess receptor specificity and hormone binding affinity in rat liver cytoplasmic extracts. Details the methods, materials and protocol of the experiments. Discusses the basic concepts illustrated and the feasibility of using the experiments at the undergraduate…

  7. Temporal control of glucocorticoid neurodynamics and its relevance for brain homeostasis, neuropathology and glucocorticoid-based therapeutics.

    Science.gov (United States)

    Kalafatakis, Konstantinos; Russell, Georgina M; Zarros, Apostolos; Lightman, Stafford L

    2016-02-01

    Glucocorticoids mediate plethora of actions throughout the human body. Within the brain, they modulate aspects of immune system and neuroinflammatory processes, interfere with cellular metabolism and viability, interact with systems of neurotransmission and regulate neural rhythms. The influence of glucocorticoids on memory and emotional behaviour is well known and there is increasing evidence for their involvement in many neuropsychiatric pathologies. These effects, which at times can be in opposing directions, depend not only on the concentration of glucocorticoids but also the duration of their presence, the temporal relationship between their fluctuations, the co-influence of other stimuli, and the overall state of brain activity. Moreover, they are region- and cell type-specific. The molecular basis of such diversity of effects lies on the orchestration of the spatiotemporal interplay between glucocorticoid- and mineralocorticoid receptors, and is achieved through complex dynamics, mainly mediated via the circadian and ultradian pattern of glucocorticoid secretion. More sophisticated methodologies are therefore required to better approach the study of these hormones and improve the effectiveness of glucocorticoid-based therapeutics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Signals from activation of B-cell receptor with anti-IgD can override the stimulatory effects of excess BAFF on mature B cells in vivo.

    Science.gov (United States)

    Nguyen, Tue G; Morris, Jonathan M

    2014-09-01

    The selection and maturation of B-cell clones are critically determined by tonic signals from activated B cell receptors (BCR) and survival signals from BAFF cytokine. These finely tuned and coordinated signals provide a net positive signal that can promote the selection, maturation, proliferation and differentiation of a developing B cell. Stimulation with an anti-IgD antibody can also activate BCR but can lead to depletion and an arrest of mature B-cell development in vivo. It is not known whether survival signals from excess BAFF can override the suppressive effects of treatment with anti-IgD on mature B cells in vivo. Herein, we examined the effects of co-treatment of BAFF and anti-IgD on the mature B-cell compartment and antibody production in vivo by treating mice with either 1mg/kg BAFF or anti-IgD alone or in combination for 3 consecutive days. We found that co-treatment with anti-IgD significantly abrogated these stimulatory effects of BAFF treatment on splenic CD19+ B cells as well as mature CD19+IgD(hi)IgM+ B cells in vivo. Anti-IgD down-regulated the expression of the BCR complex (mIgM, mIgD and CD19) and the BAFF receptor TACI without regard to the presence of BAFF. Anti-IgD treatment also significantly negated BAFF-induced IgM production in vivo. Both BAFF and anti-IgD could individually stimulate IL-10 synthesis in B cells but did not affect one another. Taken together, our data suggest that activation of BCR with an anti-IgD antibody can override the stimulatory effects from excess BAFF on B cell proliferation and antibody production by down-regulating the expression of BCR complex and BAFF receptors. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Glucocorticoid-induced leucine zipper (GILZ) is involved in glucocorticoid-induced and mineralocorticoid-induced leptin production by osteoarthritis synovial fibroblasts.

    Science.gov (United States)

    Malaise, Olivier; Relic, Biserka; Charlier, Edith; Zeddou, Mustapha; Neuville, Sophie; Deroyer, Céline; Gillet, Philippe; Louis, Edouard; Malaise, Michel G; de Seny, Dominique

    2016-10-04

    Glucocorticoid-induced leucine zipper (GILZ) is a mediator of the anti-inflammatory activities of glucocorticoids. However, GILZ deletion does not impair the anti-inflammatory activities of exogenous glucocorticoids in mice arthritis models and GILZ could also mediate some glucocorticoid-related adverse events. Osteoarthritis (OA) is a metabolic disorder that is partly attributed to adipokines such as leptin, and we previously observed that glucocorticoids induced leptin secretion in OA synovial fibroblasts. The purpose of this study was to position GILZ in OA through its involvement in the anti-inflammatory activities of glucocorticoids and/or in the metabolic pathway of leptin induction. The influences of mineralocorticoids on GILZ and leptin expression were also investigated. Human synovial fibroblasts were isolated from OA patients during knee replacement surgery. Then, the cells were treated with a glucocorticoid (prednisolone), a mineralocorticoid (aldosterone), a glucocorticoid receptor (GR) antagonist (mifepristone), a selective glucocorticoid receptor agonist (Compound A), mineralocorticoid receptor (MR) antagonists (eplerenone and spironolactone), TNF-α or transforming growth factor (TGF)-β. Cells were transfected with shRNA lentiviruses for the silencing of GILZ and GR. The leptin, IL-6, IL-8 and matrix metalloproteinase (MMP)-1 levels were measured by ELISA. Leptin, the leptin receptor (Ob-R), GR and GILZ expression levels were analyzed by western blotting and/or RT-qPCR. (1) The glucocorticoid prednisolone and the mineralocorticoid aldosterone induced GILZ expression dose-dependently in OA synovial fibroblasts, through GR but not MR. Similar effects on leptin and Ob-R were observed: leptin secretion and Ob-R expression were also induced by prednisolone and aldosterone through GR; (2) GILZ silencing experiments demonstrated that GILZ was involved in the glucocorticoid-induced and mineralocorticoid-induced leptin secretion and Ob-R expression in OA

  10. Glucocorticoids, chronic stress, and obesity

    NARCIS (Netherlands)

    Dallman, Mary F.; Pecoraro, Norman C.; la Fleur, Susanne E.; Warne, James P.; Ginsberg, Abigail B.; Akana, Susan F.; Laugero, Kevin C.; Houshyar, Hani; Strack, Alison M.; Bhatnagar, Seema; Bell, Mary E.

    2006-01-01

    Glucocorticoids either inhibit or sensitize stress-induced activity in the hypothalamo-pituitary-adrenal (HPA) axis, depending on time after their administration, the concentration of the steroids, and whether there is a concurrent stressor input. When there are high glucocorticoids together with a

  11. Chromatin Architecture Defines the Glucocorticoid Response

    Science.gov (United States)

    Burd, Craig J.; Archer, Trevor K.

    2013-01-01

    The glucocorticoid receptor (GR) functions to regulate a wide group of physiological processes through hormone inducible interaction with genomic loci and subsequent manipulation of the transcriptional output of target genes. Despite expression in a wide variety of tissues, the GR has diverse roles that are regulated tightly in a cell type specific manner. With the advent of whole genome approaches, the details of that diversity and the mechanisms regulating them are beginning to be elucidated. This review aims describe the recent advances detailing the role chromatin structure plays in dictating GR specificity. PMID:23545159

  12. INVITED REVIEW: The usefulness of measuring glucocorticoids for assessing animal welfare.

    Science.gov (United States)

    Ralph, C R; Tilbrook, A J

    2016-02-01

    Glucocorticoids (corticosterone in birds and rodents and cortisol in all other mammals) are glucoregulatory hormones that are synthesized in response to a range of stimuli including stress and are regularly measured in the assessment of animal welfare. Glucocorticoids have many normal or non-stress-related functions, and glucocorticoid synthesis can increase in response to pleasure, excitement, and arousal as well as fear, anxiety, and pain. Often, when assessing animal welfare, little consideration is given to normal non-stress-related glucocorticoid functions or the complex mechanisms that regulate the effects of glucocorticoids on physiology. In addition, it is rarely acknowledged that increased glucocorticoid synthesis can indicate positive welfare states or that a stress response can increase fitness and improve the welfare of an animal. In this paper, we review how and when glucocorticoid synthesis increases, the actions mediated through type I and type II glucocorticoid receptors, the importance of corticosteroid-binding globulin, the role of 11 β-hydroxysteroid dehydrogenase, and the key aspects of neurophysiology relevant to activating the hypothalamo-pituitary-adrenal axis. This is discussed in the context of animal welfare assessment, particularly under the biological functioning and affective states frameworks. We contend that extending the assessment of animal welfare to key brain regions afferent to the hypothalamus and incorporating the aspects of glucocorticoid physiology that affect change in target tissue will advance animal welfare science and inspire more comprehensive assessment of the welfare of animals.

  13. Excess adenosine in murine penile erectile tissues contributes to priapism via A2B adenosine receptor signaling

    Science.gov (United States)

    Mi, Tiejuan; Abbasi, Shahrzad; Zhang, Hong; Uray, Karen; Chunn, Janci L.; Xia, Ling Wei; Molina, Jose G.; Weisbrodt, Norman W.; Kellems, Rodney E.; Blackburn, Michael R.; Xia, Yang

    2008-01-01

    Priapism, abnormally prolonged penile erection in the absence of sexual excitation, is associated with ischemia-mediated erectile tissue damage and subsequent erectile dysfunction. It is common among males with sickle cell disease (SCD), and SCD transgenic mice are an accepted model of the disorder. Current strategies to manage priapism suffer from a poor fundamental understanding of the molecular mechanisms underlying the disorder. Here we report that mice lacking adenosine deaminase (ADA), an enzyme necessary for the breakdown of adenosine, displayed unexpected priapic activity. ADA enzyme therapy successfully corrected the priapic activity both in vivo and in vitro, suggesting that it was dependent on elevated adenosine levels. Further genetic and pharmacologic evidence demonstrated that A2B adenosine receptor–mediated (A2BR-mediated) cAMP and cGMP induction was required for elevated adenosine–induced prolonged penile erection. Finally, priapic activity in SCD transgenic mice was also caused by elevated adenosine levels and A2BR activation. Thus, we have shown that excessive adenosine accumulation in the penis contributes to priapism through increased A2BR signaling in both Ada–/– and SCD transgenic mice. These findings provide insight regarding the molecular basis of priapism and suggest that strategies to either reduce adenosine or block A2BR activation may prove beneficial in the treatment of this disorder. PMID:18340377

  14. Excessive somnolence

    Directory of Open Access Journals (Sweden)

    Stella Tavares

    Full Text Available Excessive somnolence can be quite a incapacitating manifestation, and is frequently neglected by physicians and patients. This article reviews the determinant factors, the evaluation and quantification of diurnal somnolence, and the description and treatment of the main causes of excessive somnolence.

  15. Excessive somnolence.

    Science.gov (United States)

    Tavares, S; Alóe, F; Gentil, V; Scaff, M

    1996-01-01

    Excessive somnolence can be quite a incapacitating manifestation, and is frequently neglected by physicians and patients. This article reviews the determinant factors, the evaluation and quantification of diurnal somnolence, and the description and treatment of the main causes of excessive somnolence.

  16. Chronic restraint stress upregulates erythropoiesis through glucocorticoid stimulation.

    Directory of Open Access Journals (Sweden)

    Jeffrey L Voorhees

    Full Text Available In response to elevated glucocorticoid levels, erythroid progenitors rapidly expand to produce large numbers of young erythrocytes. Previous work demonstrates hematopoietic changes in rodents exposed to various physical and psychological stressors, however, the effects of chronic psychological stress on erythropoiesis has not be delineated. We employed laboratory, clinical and genomic analyses of a murine model of chronic restraint stress (RST to examine the influence of psychological stress on erythropoiesis. Mice exposed to RST demonstrated markers of early erythroid expansion involving the glucocorticoid receptor. In addition, these RST-exposed mice had increased numbers of circulating reticulocytes and increased erythropoiesis in primary and secondary erythroid tissues. Mice also showed increases in erythroid progenitor populations and elevated expression of the erythroid transcription factor KLF1 in these cells. Together this work reports some of the first evidence of psychological stress affecting erythroid homeostasis through glucocorticoid stimulation.

  17. 11beta-hydroxysteroid dehydrogenase type 1 regulates glucocorticoid-induced insulin resistance in skeletal muscle.

    LENUS (Irish Health Repository)

    Morgan, Stuart A

    2009-11-01

    Glucocorticoid excess is characterized by increased adiposity, skeletal myopathy, and insulin resistance, but the precise molecular mechanisms are unknown. Within skeletal muscle, 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) converts cortisone (11-dehydrocorticosterone in rodents) to active cortisol (corticosterone in rodents). We aimed to determine the mechanisms underpinning glucocorticoid-induced insulin resistance in skeletal muscle and indentify how 11beta-HSD1 inhibitors improve insulin sensitivity.

  18. Excessive Reversal of Epidermal Growth Factor Receptor and Ephrin Signaling Following Tracheal Occlusion in Rabbit Model of Congenital Diaphragmatic Hernia.

    Science.gov (United States)

    Varisco, Brian M; Sbragia, Lourenco; Chen, Jing; Scorletti, Federico; Joshi, Rashika; Wong, Hector R; Lopes-Figueira, Rebecca; Oria, Marc; Peiro, Jose

    2016-07-19

    Congenital diaphragmatic hernia (CDH) causes severe pulmonary hypoplasia from herniation of abdominal contents into the thorax. Tracheal occlusion (TO) for human CDH improves survival, but morbidity and mortality remain high, and we do not fully understand the cellular pathways and processes most severely impacted by CDH and TO. We created a left diaphragmatic hernia (DH) in rabbit fetuses with subsequent TO and collected left lung sections for NextGen mRNA sequencing. DH, TO, and DHTO fetuses had comparable body and organ growth to control except for lower lung weights in DH (p<0.05). Of 13,687 expressed genes, DHTO had 687 differentially expressed genes compared to DH, but no other group-group comparison had more than 10. Considering genes in combination, many of the genes reduced in DH were more highly expressed in DHTO than in control. Benchmarking fetal rabbit lung gene expression to published lung development data, both DH and DHTO lungs were more highly correlated with the gene expression of immature lung. DNA synthesis was upregulated in DHTO compared to DH and ribosome and protein synthesis pathways were downregulated. DH reduced total and epithelial cell proliferation by half and two-thirds respectively, and DHTO increased proliferation by 2.5 and 3.4-fold respectively. Signaling pathways downregulated by DH and upregulated in DHTO were epidermal growth factor receptor signaling, ephrin signaling, and cell migration; however, levels of ephrin and EGFR signaling in DHTO exceeded that of control. Identification and inhibition of the ligands responsible for this dysregulated signaling could improve lung development in CDH.

  19. Pharmacologically Counteracting a Phenotypic Difference in Cerebellar GABAA Receptor Response to Alcohol Prevents Excessive Alcohol Consumption in a High Alcohol-Consuming Rodent Genotype.

    Science.gov (United States)

    Kaplan, Josh Steven; Nipper, Michelle A; Richardson, Ben D; Jensen, Jeremiah; Helms, Melinda; Finn, Deborah Ann; Rossi, David James

    2016-08-31

    Cerebellar granule cell GABAA receptor responses to alcohol vary as a function of alcohol consumption phenotype, representing a potential neural mechanism for genetic predilection for alcohol abuse (Kaplan et al., 2013; Mohr et al., 2013). However, there are numerous molecular targets of alcohol in the cerebellum, and it is not known how they interact to affect cerebellar processing during consumption of socially relevant amounts of alcohol. Importantly, direct evidence for a causative role of the cerebellum in alcohol consumption phenotype is lacking. Here we determined that concentrations of alcohol that would be achieved in the blood after consumption of 1-2 standard units (9 mm) suppresses transmission through the cerebellar cortex in low, but not high, alcohol consuming rodent genotypes (DBA/2J and C57BL/6J mice, respectively). This genotype-selective suppression is mediated exclusively by enhancement of granule cell GABAA receptor currents, which only occurs in DBA/2J mice. Simulating the DBA/2J cellular phenotype in C57BL/6J mice by infusing the GABAA receptor agonist, 4,5,6,7-tetrahydroisoxazolo-[5,4-c]pyridine-3-ol hydrochloride, into cerebellar lobules IV-VI, in vivo, significantly reduced their alcohol consumption and blood alcohol concentrations achieved. 4,5,6,7-Tetrahydroisoxazolo-[5,4-c]pyridine-3-ol hydrochloride infusions also significantly decreased sucrose consumption, but they did not affect consumption of water or general locomotion. Thus, genetic differences in cerebellar response to alcohol contributes to alcohol consumption phenotype, and targeting the cerebellar GABAA receptor system may be a clinically viable therapeutic strategy for reducing excessive alcohol consumption. Alcohol abuse is a leading cause of preventable death and illness; and although alcohol use disorders are 50%-60% genetically determined, the cellular and molecular mechanisms of such genetic influences are largely unknown. Here we demonstrate that genetic differences in

  20. Glucocorticoid regulation of ATP release from spinal astrocytes underlies diurnal exacerbation of neuropathic mechanical allodynia

    Science.gov (United States)

    Koyanagi, Satoru; Kusunose, Naoki; Taniguchi, Marie; Akamine, Takahiro; Kanado, Yuki; Ozono, Yui; Masuda, Takahiro; Kohro, Yuta; Matsunaga, Naoya; Tsuda, Makoto; Salter, Michael W.; Inoue, Kazuhide; Ohdo, Shigehiro

    2016-01-01

    Diurnal variations in pain hypersensitivity are common in chronic pain disorders, but the underlying mechanisms are enigmatic. Here, we report that mechanical pain hypersensitivity in sciatic nerve-injured mice shows pronounced diurnal alterations, which critically depend on diurnal variations in glucocorticoids from the adrenal glands. Diurnal enhancement of pain hypersensitivity is mediated by glucocorticoid-induced enhancement of the extracellular release of ATP in the spinal cord, which stimulates purinergic receptors on microglia in the dorsal horn. We identify serum- and glucocorticoid-inducible kinase-1 (SGK-1) as the key molecule responsible for the glucocorticoid-enhanced release of ATP from astrocytes. SGK-1 protein levels in spinal astrocytes are increased in response to glucocorticoid stimuli and enhanced ATP release by opening the pannexin-1 hemichannels. Our findings reveal an unappreciated circadian machinery affecting pain hypersensitivity caused by peripheral nerve injury, thus opening up novel approaches to the management of chronic pain. PMID:27739425

  1. Glucocorticoids specifically enhance L-type calcium current amplitude and affect calcium channel subunit expression in the mouse hippocampus

    NARCIS (Netherlands)

    Chameau, P.; Qin, Y.; Spijker, S.; Smit, A.B.; Joels, M.

    2007-01-01

    Previous studies have shown that corticosterone enhances whole cell calcium currents in CA1 pyramidal neurons, through a pathway involving binding of glucocorticoid receptor homodimers to the DNA. We examined whether glucocorticoids show selectivity for L- over N-type of calcium currents. Moreover,

  2. Glucocorticoids specifically enhance L-type calcium current amplitude and affect calcium channel subunit expression in the mouse hippocampus.

    NARCIS (Netherlands)

    Chameau, P.J.P.; Qin, Y.J.; Smit, G.; Joëls, M.

    2007-01-01

    Previous studies have shown that corticosterone enhances whole cell calcium currents in CA1 pyramidal neurons, through a pathway involving binding of glucocorticoid receptor homodimers to the DNA. We examined whether glucocorticoids show selectivity for L- over N-type of calcium currents. Moreover,

  3. Maternal PTSD associates with greater glucocorticoid sensitivity in offspring of Holocaust survivors.

    Science.gov (United States)

    Lehrner, Amy; Bierer, Linda M; Passarelli, Vincent; Pratchett, Laura C; Flory, Janine D; Bader, Heather N; Harris, Iris R; Bedi, Aarti; Daskalakis, Nikolaos P; Makotkine, Iouri; Yehuda, Rachel

    2014-02-01

    Intergenerational effects of trauma have been observed clinically in a wide range of populations, and parental PTSD has been associated with an increased risk for psychopathology in offspring. In studies of Holocaust survivor offspring, parental PTSD, and particularly maternal PTSD, has been associated with increased risk for PTSD, low basal urinary cortisol excretion and enhanced cortisol suppression in response to dexamethasone. Such findings implicate maternally derived glucocorticoid programming in the intergenerational transmission of trauma-related consequences, potentially resulting from in utero influences or early life experiences. This study investigated the relative influence of Holocaust exposure and PTSD in mothers and fathers on glucocorticoid sensitivity in offspring. Eighty Holocaust offspring and 15 offspring of non-exposed Jewish parents completed evaluations and provided blood and urine samples. Glucocorticoid sensitivity was evaluated using the lysozyme suppression test (LST), an in vitro measure of glucocorticoid receptor sensitivity in a peripheral tissue, the dexamethasone suppression test (DST), and 24-h urinary cortisol excretion. Maternal PTSD was associated with greater glucocorticoid sensitivity in offspring across all three measures of glucocorticoid function. An interaction of maternal and paternal PTSD on the DST and 24-h urinary cortisol showed an effect of decreased glucocorticoid sensitivity in offspring with paternal, but not maternal, PTSD. Although indirect, these findings are consistent with the hypothesis that epigenetic programming may be involved in the intergenerational transmission of trauma-related effects on glucocorticoid regulation. Published by Elsevier Ltd.

  4. The different roles of glucocorticoids in the hippocampus and hypothalamus in chronic stress-induced HPA axis hyperactivity.

    Science.gov (United States)

    Zhu, Li-Juan; Liu, Meng-Ying; Li, Huan; Liu, Xiao; Chen, Chen; Han, Zhou; Wu, Hai-Yin; Jing, Xing; Zhou, Hai-Hui; Suh, Hoonkyo; Zhu, Dong-Ya; Zhou, Qi-Gang

    2014-01-01

    Hypothalamus-pituitary-adrenal (HPA) hyperactivity is observed in many patients suffering from depression and the mechanism underling the dysfunction of HPA axis is not well understood. Chronic stress has a causal relationship with the hyperactivity of HPA axis. Stress induces the over-synthesis of glucocorticoids, which will arrive at all the body containing the brain. It is still complicated whether glucocorticoids account for chronic stress-induced HPA axis hyperactivity and in which part of the brain the glucocorticoids account for chronic stress-induced HPA axis hyperactivity. Here, we demonstrated that glucocorticoids were indispensable and sufficient for chronic stress-induced hyperactivity of HPA axis. Although acute glucocorticoids elevation in the hippocampus and hypothalamus exerted a negative regulation of HPA axis, we found that chronic glucocorticoids elevation in the hippocampus but not in the hypothalamus accounted for chronic stress-induced hyperactivity of HPA axis. Chronic glucocorticoids exposure in the hypothalamus still exerted a negative regulation of HPA axis activity. More importantly, we found mineralocorticoid receptor (MR) - neuronal nitric oxide synthesis enzyme (nNOS) - nitric oxide (NO) pathway mediated the different roles of glucocorticoids in the hippocampus and hypothalamus in regulating HPA axis activity. This study suggests that the glucocorticoids in the hippocampus play an important role in the development of HPA axis hyperactivity and the glucocorticoids in the hypothalamus can't induce hyperactivity of HPA axis, revealing new insights into understanding the mechanism of depression.

  5. The Different Roles of Glucocorticoids in the Hippocampus and Hypothalamus in Chronic Stress-Induced HPA Axis Hyperactivity

    Science.gov (United States)

    Liu, Xiao; Chen, Chen; Han, Zhou; Wu, Hai-Yin; Jing, Xing; Zhou, Hai-Hui; Suh, Hoonkyo; Zhu, Dong-Ya; Zhou, Qi-Gang

    2014-01-01

    Hypothalamus-pituitary-adrenal (HPA) hyperactivity is observed in many patients suffering from depression and the mechanism underling the dysfunction of HPA axis is not well understood. Chronic stress has a causal relationship with the hyperactivity of HPA axis. Stress induces the over-synthesis of glucocorticoids, which will arrive at all the body containing the brain. It is still complicated whether glucocorticoids account for chronic stress-induced HPA axis hyperactivity and in which part of the brain the glucocorticoids account for chronic stress-induced HPA axis hyperactivity. Here, we demonstrated that glucocorticoids were indispensable and sufficient for chronic stress-induced hyperactivity of HPA axis. Although acute glucocorticoids elevation in the hippocampus and hypothalamus exerted a negative regulation of HPA axis, we found that chronic glucocorticoids elevation in the hippocampus but not in the hypothalamus accounted for chronic stress-induced hyperactivity of HPA axis. Chronic glucocorticoids exposure in the hypothalamus still exerted a negative regulation of HPA axis activity. More importantly, we found mineralocorticoid receptor (MR) - neuronal nitric oxide synthesis enzyme (nNOS) - nitric oxide (NO) pathway mediated the different roles of glucocorticoids in the hippocampus and hypothalamus in regulating HPA axis activity. This study suggests that the glucocorticoids in the hippocampus play an important role in the development of HPA axis hyperactivity and the glucocorticoids in the hypothalamus can't induce hyperactivity of HPA axis, revealing new insights into understanding the mechanism of depression. PMID:24831808

  6. The different roles of glucocorticoids in the hippocampus and hypothalamus in chronic stress-induced HPA axis hyperactivity.

    Directory of Open Access Journals (Sweden)

    Li-Juan Zhu

    Full Text Available Hypothalamus-pituitary-adrenal (HPA hyperactivity is observed in many patients suffering from depression and the mechanism underling the dysfunction of HPA axis is not well understood. Chronic stress has a causal relationship with the hyperactivity of HPA axis. Stress induces the over-synthesis of glucocorticoids, which will arrive at all the body containing the brain. It is still complicated whether glucocorticoids account for chronic stress-induced HPA axis hyperactivity and in which part of the brain the glucocorticoids account for chronic stress-induced HPA axis hyperactivity. Here, we demonstrated that glucocorticoids were indispensable and sufficient for chronic stress-induced hyperactivity of HPA axis. Although acute glucocorticoids elevation in the hippocampus and hypothalamus exerted a negative regulation of HPA axis, we found that chronic glucocorticoids elevation in the hippocampus but not in the hypothalamus accounted for chronic stress-induced hyperactivity of HPA axis. Chronic glucocorticoids exposure in the hypothalamus still exerted a negative regulation of HPA axis activity. More importantly, we found mineralocorticoid receptor (MR - neuronal nitric oxide synthesis enzyme (nNOS - nitric oxide (NO pathway mediated the different roles of glucocorticoids in the hippocampus and hypothalamus in regulating HPA axis activity. This study suggests that the glucocorticoids in the hippocampus play an important role in the development of HPA axis hyperactivity and the glucocorticoids in the hypothalamus can't induce hyperactivity of HPA axis, revealing new insights into understanding the mechanism of depression.

  7. Estrès i resposta immuno-endocrina en peixos caracterització del receptor glucocorticoide en l'orada (Sparus Aurata) i el seu paper en la resposta inflamatòria /

    OpenAIRE

    Acerete Rodríguez, Laura

    2006-01-01

    Consultable des del TDX Títol obtingut de la portada digitalitzada El cortisol és el principal glucocorticoide en peixos teleostis, assumint també funcions com a mineralocorticoide. És el principal indicador de la resposta a l'estrès, però també participa en diverses vies metabòliques, és immunosupresor amb funcions antiinflamatòries i és la principal hormona osmorreguladora en peixos. Al fetge, els glucocorticoides augmenten la transcripció de gens implicats en la gluconeogènesi, en el...

  8. O eixo hipotálamo-pituitária-adrenal, a função dos receptores de glicocorticóides e sua importância na depressão The Hypothalamic Pituitary Adrenal axis, Glucocorticoid receptor function and relevance to depression

    Directory of Open Access Journals (Sweden)

    Mario F Juruena

    2004-09-01

    abordagem eficaz para maximizar os efeitos terapêuticos dos antidepressivos. Hipóteses referentes aos mecanismos destes receptores envolvem compostos não esteróides que regulam a função dos RGs via segundos mensageiros. A pesquisa nesta área trará novos entendimentos à fisiopatologia e ao tratamento dos transtornos afetivos, em especial na depressão.OBJECTIVES: Changes in the hypothalamic-pituitary-adrenocortical (HPA system are characteristic of depression. Because the effects of glucocorticoids are mediated by intracellular receptors including, most notably, the glucocorticoid receptor (GR, several studies have examined the number and/or function of GRs in depressed patients. METHODS: Review scientific evidences have consistently demonstrated that GR function is impaired in major depression, resulting in reduced GR-mediated negative feedback on the HPA axis and increased production and secretion of CRF in various brain regions postulated to be involved in the causality of depression. RESULTS: This article summarizes the literature on GR in depression and on the impact of antidepressants on the GR in clinical and preclinical studies, and supports the concept that impaired GR signalling is a key mechanism in the pathogenesis of depression, in the absence of clear evidence of decreased GR expression. The data also indicate that antidepressants have direct effects on the GR, leading to enhanced GR function and increased GR expression. Although the effects of antidepressants on glucocorticoid hormones and their receptors are relevant for the therapeutic action of these drugs, the molecular mechanisms underlying these effects are unclear. We propose that antidepressants in humans could inhibit steroid transporters localised on the blood-brain barrier and in neurones, like the multidrug resistance p-glycoprotein, and thus increase the access of cortisol to the brain and the glucocorticoid-mediated negative feedback on the HPA axis. CONCLUSION: Enhanced cortisol action

  9. Excessive signal transduction of gain-of-function variants of the calcium-sensing receptor (CaSR are associated with increased ER to cytosol calcium gradient.

    Directory of Open Access Journals (Sweden)

    Marianna Ranieri

    Full Text Available In humans, gain-of-function mutations of the calcium-sensing receptor (CASR gene are the cause of autosomal dominant hypocalcemia or type 5 Bartter syndrome characterized by an abnormality of calcium metabolism with low parathyroid hormone levels and excessive renal calcium excretion. Functional characterization of CaSR activating variants has been so far limited at demonstrating an increased sensitivity to external calcium leading to lower Ca-EC50. Here we combine high resolution fluorescence based techniques and provide evidence that for the efficiency of calcium signaling system, cells expressing gain-of-function variants of CaSR monitor cytosolic and ER calcium levels increasing the expression of the Sarco-Endoplasmic Reticulum Calcium-ATPase (SERCA and reducing expression of Plasma Membrane Calcium-ATPase (PMCA. Wild-type CaSR (hCaSR-wt and its gain-of-function (hCaSR-R990G; hCaSR-N124K variants were transiently transfected in HEK-293 cells. Basal intracellular calcium concentration was significantly lower in cells expressing hCaSR-wt and its gain of function variants compared to mock. In line, FRET studies using the D1ER probe, which detects [Ca2+]ER directly, demonstrated significantly higher calcium accumulation in cells expressing the gain of function CaSR variants compared to hCaSR-wt. Consistently, cells expressing activating CaSR variants showed a significant increase in SERCA activity and expression and a reduced PMCA expression. This combined parallel regulation in protein expression increases the ER to cytosol calcium gradient explaining the higher sensitivity of CaSR gain-of-function variants to external calcium. This control principle provides a general explanation of how cells reliably connect (and exacerbate receptor inputs to cell function.

  10. Excessive Signal Transduction of Gain-of-Function Variants of the Calcium-Sensing Receptor (CaSR) Are Associated with Increased ER to Cytosol Calcium Gradient

    Science.gov (United States)

    Di Mise, Annarita; Vezzoli, Giuseppe; Soldati, Laura; Svelto, Maria; Valenti, Giovanna

    2013-01-01

    In humans, gain-of-function mutations of the calcium-sensing receptor (CASR) gene are the cause of autosomal dominant hypocalcemia or type 5 Bartter syndrome characterized by an abnormality of calcium metabolism with low parathyroid hormone levels and excessive renal calcium excretion. Functional characterization of CaSR activating variants has been so far limited at demonstrating an increased sensitivity to external calcium leading to lower Ca-EC50. Here we combine high resolution fluorescence based techniques and provide evidence that for the efficiency of calcium signaling system, cells expressing gain-of-function variants of CaSR monitor cytosolic and ER calcium levels increasing the expression of the Sarco-Endoplasmic Reticulum Calcium-ATPase (SERCA) and reducing expression of Plasma Membrane Calcium-ATPase (PMCA). Wild-type CaSR (hCaSR-wt) and its gain-of-function (hCaSR-R990G; hCaSR-N124K) variants were transiently transfected in HEK-293 cells. Basal intracellular calcium concentration was significantly lower in cells expressing hCaSR-wt and its gain of function variants compared to mock. In line, FRET studies using the D1ER probe, which detects [Ca2+]ER directly, demonstrated significantly higher calcium accumulation in cells expressing the gain of function CaSR variants compared to hCaSR-wt. Consistently, cells expressing activating CaSR variants showed a significant increase in SERCA activity and expression and a reduced PMCA expression. This combined parallel regulation in protein expression increases the ER to cytosol calcium gradient explaining the higher sensitivity of CaSR gain-of-function variants to external calcium. This control principle provides a general explanation of how cells reliably connect (and exacerbate) receptor inputs to cell function. PMID:24244430

  11. Potential significance of physiological and pharmacological glucocorticoids in early pregnancy.

    Science.gov (United States)

    Michael, Anthony E; Papageorghiou, Aris T

    2008-01-01

    Despite extensive studies of the developmental consequences of increased glucocorticoid exposure in mid- to late pregnancy, relatively little is known regarding the significance of glucocorticoids in early pregnancy. The objective of this review was to consider potential roles for this family of corticosteroids that might relate to early pregnancy. Although this is a narrative review, 249 source articles addressing potential effects of glucocorticoids on aspects of early pregnancy and development (published between 1997 and 2007) were identified using a systematic literature search. Additional articles (115) were identified if cited by the primary reference articles identified in the systematic phase of the review. Much of the evidence to implicate glucocorticoids in early pregnancy comes from studies of steroid receptors and the 11beta-hydroxysteroid dehydrogenase enzymes, which modulate cortisol action in the endometrium/decidua, trophoblast, placenta and embryo/fetus. The evidence reviewed suggests that in early pregnancy the actions of glucocorticoids are balanced between positive effects that would promote pregnancy (e.g. stimulation of hCG secretion, suppression of uterine natural killer cells, and promotion of trophoblast growth/invasion) versus adverse effects that would be expected to compromise the pregnancy (e.g. inhibition of cytokine-prostaglandin signalling, restriction of trophoblast invasion following up-regulation of plasminogen activation inhibitor-1, induction of apoptosis, and inhibition of embryonic and placental growth). Glucocorticoids exert many actions that could impact both negatively and positively on key aspects of early pregnancy. These steroids may also be implicated in obstetric complications, including intra-uterine growth restriction, pre-term labour, pre-eclampsia and chorio-aminionitis.

  12. Transmembrane Tumor Necrosis Factor Controls Myeloid-Derived Suppressor Cell Activity via TNF Receptor 2 and Protects from Excessive Inflammation during BCG-Induced Pleurisy

    Directory of Open Access Journals (Sweden)

    Leslie Chavez-Galan

    2017-08-01

    Full Text Available Pleural tuberculosis (TB is a form of extra-pulmonary TB observed in patients infected with Mycobacterium tuberculosis. Accumulation of myeloid-derived suppressor cells (MDSC has been observed in animal models of TB and in human patients but their role remains to be fully elucidated. In this study, we analyzed the role of transmembrane TNF (tmTNF in the accumulation and function of MDSC in the pleural cavity during an acute mycobacterial infection. Mycobacterium bovis BCG-induced pleurisy was resolved in mice expressing tmTNF, but lethal in the absence of tumor necrosis factor. Pleural infection induced MDSC accumulation in the pleural cavity and functional MDSC required tmTNF to suppress T cells as did pleural wild-type MDSC. Interaction of MDSC expressing tmTNF with CD4 T cells bearing TNF receptor 2 (TNFR2, but not TNFR1, was required for MDSC suppressive activity on CD4 T cells. Expression of tmTNF attenuated Th1 cell-mediated inflammatory responses generated by the acute pleural mycobacterial infection in association with effective MDSC expressing tmTNF and interacting with CD4 T cells expressing TNFR2. In conclusion, this study provides new insights into the crucial role played by the tmTNF/TNFR2 pathway in MDSC suppressive activity required during acute pleural infection to attenuate excessive inflammation generated by the infection.

  13. Glucocorticoid programming of neuroimmune function.

    Science.gov (United States)

    Walker, David J; Spencer, Karen A

    2018-01-15

    Throughout life physiological systems strive to maintain homeostasis and these systems are susceptible to exposure to maternal or environmental perturbations, particularly during embryonic development. In some cases, these perturbations may influence genetic and physiological processes that permanently alter the functioning of these physiological systems; a process known as developmental programming. In recent years, the neuroimmune system has garnered attention for its fundamental interactions with key hormonal systems, such as the hypothalamic pituitary adrenal (HPA) axis. The ultimate product of this axis, the glucocorticoid hormones, play a key role in modulating immune responses within the periphery and the CNS as part of the physiological stress response. It is well-established that elevated glucocorticoids induced by developmental stress exert profound short and long-term physiological effects, yet there is relatively little information of how these effects are manifested within the neuroimmune system. Pre and post-natal periods are prime candidates for manipulation in order to uncover the physiological mechanisms that underlie glucocorticoid programming of neuroimmune responses. Understanding the potential programming role of glucocorticoids may be key in uncovering vulnerable windows of CNS susceptibility to stressful experiences during embryonic development and improve our use of glucocorticoids as therapeutics in the treatment of neurodegenerative diseases. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  14. Impact of glucocorticoid hormones on adipokine secretion and human adipose tissue metabolism.

    Science.gov (United States)

    Fain, John N

    2013-08-01

    The glucocorticoid hormones alter the metabolism of the adipose tissue after an approximately 2-h lag period. The effects are mediated through the nuclear receptors that alter the expression of a wide variety of genes through the mechanisms that are similar to those seen in the other cells. There are many direct metabolic effects of the glucocorticoids on the adipose tissue metabolism, and every year, new effects are added to the list of proteins whose expression is influenced by the glucocorticoids. Furthermore, some enzymatic processes are affected by these hormones only in the presence of the other hormones such as growth hormone (GH) or insulin. Most of the effects of the glucocorticoids are on the gene transcription, and the effects on the mRNA are reflected in the altered levels of the target proteins. The glucocorticoids enhance the leptin release, while reducing that of the inflammatory adipokines and stimulating that of the lipoprotein lipase (LPL) in the presence of insulin. The activity of 11β-hydroxysteroid dehydrogenase type 1 (HSD1) is enhanced by the glucocorticoids along with that of α1 glycoprotein 1 and serum amyloid A release by the adipose tissue. In contrast, the tumor necrosis factor α (TNF)-stimulated lipolysis in the adipose tissue is blocked by the glucocorticoids. It is still unclear which, if any, of these effects account for the insulin resistance due to the glucocorticoids in the adipose tissue. However, recent work suggests that, at least in mice, the reduction in the osteocalcin release by the osteoblasts in the presence of the glucocorticoids accounts for much of the in vivo insulin resistance. In summary, there are multiple direct effects of the glucocorticoids, both anti-inflammatory and proinflammatory, on the adipose tissue.

  15. Epidermal growth factor receptor inhibitor ameliorates excessive astrogliosis and improves the regeneration microenvironment and functional recovery in adult rats following spinal cord injury.

    Science.gov (United States)

    Li, Zai-Wang; Li, Ji-Jun; Wang, Lan; Zhang, Jian-Ping; Wu, Jing-Jing; Mao, Xu-Qiang; Shi, Guo-Feng; Wang, Qian; Wang, Feng; Zou, Jian

    2014-04-05

    Astrogliosis is a common phenomenon after spinal cord injury (SCI). Although this process exerts positive effects on axonal regeneration, excessive astrogliosis imparts negative effects on neuronal repair and recovery. Epidermal growth factor receptor (EGFR) pathway is critical to the regulation of reactive astrogliosis, and therefore is a potential target of therapeutics to better control the response. In this report, we aim to investigate whether blocking EGFR signaling using an EGFR tyrosine kinase specific inhibitor can attenuate reactive astrogliosis and promote functional recovery after a traumatic SCI. The astrocyte scratch injury model in vitro and the weight-drop SCI model in vivo were used as model systems. PD168393 was used to inhibit EGFR signaling activation. Astrocytic activation and phosphorylated EGFR (pEGFR) were observed after immunofluorescence staining and Western blot analysis. The rate of proliferation was determined by immunofluorescence detection of BrdU-incorporating cells located next to the wound. The levels of TNF-α, iNOS, COX-2 and IL-1β in the culture medium under different conditions were assayed by ELISA. Western blot was performed to semi-quantify the expression of EGFR/pEGFR, glial fibrillary acid protein (GFAP) and chondroitin sulfate proteoglycans (CSPGs). Myelin was stained by Luxol Fast Blue Staining. Cresyl violet eosin staining was performed to analyze the lesion cavity volume and neuronal survival following injury. Finally, functional scoring and residual urine recording were performed to show the rats' recovery. EGFR phosphorylation was found to parallel astrocyte activation, and EGFR inhibitor PD168393 potently inhibited scratch-induced reactive astrogliosis and proinflammatory cytokine/mediator secretion of reactive astrocytes in vitro. Moreover, local administration of PD168393 in the injured area suppressed CSPGs production and glial scar formation, and resulted in reduced demyelination and neuronal loss, which

  16. Genistein inhibits glucocorticoid amplification in adipose tissue by suppression of 11β-hydroxysteroid dehydrogenase type 1.

    Science.gov (United States)

    Tagawa, Noriko; Kubota, Sayaka; Kobayashi, Yoshiharu; Kato, Ikuo

    2015-01-01

    Excess glucocorticoids promote visceral obesity, hyperlipidemia, and insulin resistance. The main regulator of intracellular glucocorticoid levels is 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), which converts inactive glucocorticoids into bioactive forms such as cortisol in humans and corticosterone in rodents. Hexose-6-phosphate dehydrogenase (H6PD), which is colocalized with 11β-HSD1 in the intralumen of the endoplasmic reticulum, supplies a crucial coenzyme, NADPH, for full reductase activity of 11β-HSD1. Therefore, it is possible that inhibition of 11β-HSD1 will become a considerable medical treatment for metabolic diseases including obesity and diabetes. Genistein, a soy isoflavone, has received attention for its therapeutic potential for obesity, diabetes, and cardiovascular disease, and has been proposed as a promising compound for the treatment of metabolic disorders. However, the mechanisms underlying the pleiotropic anti-obesity effects of genistein have not been fully clarified. Here, we demonstrate that genistein was able to inhibit 11β-HSD1 and H6PD activities within 10 or 20min, in dose- and time-dependent manners. Inhibition of 11β-HSD2 activity was not observed in rat kidney microsomes. The inhibition was not reversed by two estrogen receptor antagonists, tamoxifen and ICI182,780. A kinetic study revealed that genistein acted as a non-competitive inhibitor of 11β-HSD1, and its apparent Km value for 11-dehydrocorticosterone was 0.5μM. Genistein also acted as a non-competitive inhibitor of H6PD, and its apparent Km values for G6P and NADP were 0.9 and 3.3μM, respectively. These results suggest that genistein may exert its inhibitory effect by interacting with these enzymes. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Effects of a single glucocorticoid injection on propylene glycol-treated cows with clinical ketosis.

    Science.gov (United States)

    van der Drift, Saskia G A; Houweling, Martin; Bouman, Marina; Koets, Ad P; Tielens, Aloysius G M; Nielen, Mirjam; Jorritsma, Ruurd

    2015-05-01

    This study investigated the metabolic effects of glucocorticoids when administered to propylene glycol-treated cows with clinical ketosis. Clinical ketosis was defined by depressed feed intake and milk production, and a maximal score for acetoacetate in urine. All cows received 250 mL oral propylene glycol twice daily for 3 days and were randomly assigned to a single intramuscular injection with sterile isotonic saline solution (n = 14) or dexamethasone-21-isonicotinate (n = 17). Metabolic blood variables were monitored for 6 days and adipose tissue variables for 3 days. β-Hydroxybutyrate (BHBA) concentrations in blood decreased in all cows during treatment, but were lower in glucocorticoid-treated cows. Cows treated with glucocorticoids had higher plasma glucose and insulin concentrations, whereas concentrations of non-esterified fatty acids, 3-methylhistidine and growth hormone were unaffected. mRNA expression of hormone-sensitive lipase, BHBA receptor and peroxisome proliferator-activated receptor type γ in adipose tissue was not affected. This shows that lipolytic effects do not appear to be important in ketotic cows when glucocorticoids are combined with PG. Plasma 3-methyl histidine concentrations were similar in both groups, suggesting that glucocorticoids did not increase muscle breakdown and that the greater rise in plasma glucose in glucocorticoid-treated cows may not be due to increased supply of glucogenic amino acids from muscle. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Use of glucocorticoids during pregnancy and risk of attention-deficit/hyperactivity disorder in offspring

    DEFF Research Database (Denmark)

    Laugesen, Kristina; Byrjalsen, Anna; Frøslev, Trine

    2017-01-01

    OBJECTIVE: Prenatal exposure to excess endogenous glucocorticoid (GC) has been linked to attention-deficit/hyperactivity disorder (ADHD). We investigated whether prenatal exposure to exogenous GC is associated with ADHD. DESIGN: Nationwide cohort study. SETTING: A cohort of 875 996 singletons born...

  19. A pilot study evaluating therapeutic response of different dosage of oral glucocorticoid in two children with familial glucocorticoid deficiency presenting with diffuse mucocutaneous hyperpigmentation

    Directory of Open Access Journals (Sweden)

    Uttam Kumar Sarkar

    2017-01-01

    Full Text Available Introduction: Familial glucocorticoid deficiency (FGD is a rare autosomal recessive potentially life-threatening condition, characterized by glucocorticoid deficiency, preserved aldosterone/renin secretion, and secondary rise in plasma adrenocorticotropic hormone level. This occurs due to either mutation in adrenocorticotropic receptor (25%, FGD Type-1 or in the MC2 receptor accessory protein (15%–20%. However, in about 50% patients, no identifiable mutations have been identified. Clinically, it manifests with weakness, fatigue, weight loss, anorexia, nausea, vomiting, diarrhea, abdominal pain, hypoglycemia, and hypothermia. Progressive mucocutaneous pigmentation is a conspicuous presentation. Repeated hypoglycemia may result in seizure, persistent neurological, severe mental disability, and even sudden death. Standard therapy is oral glucocorticoids (10–15 mg/m2. Patients and Results: Two familial cases of FGD were put on progressively increasing doses of oral glucocorticoids (10 mg, 15 mg, and 20 mg/m2/day, each for 6 weeks to achieve the best response without any adverse effects. One patient had excellent improvement with 15 mg/m2/day, and another required 20 mg/m2/day. The latter patient had excellent overall improvement with only moderate improvement in pigmentation. Conclusion: Glucocorticoids replacement with optimum dose is necessary in FGD to promote physical and neurological growth and to prevent adrenal crises, hypotension, hypoglycemia, and sudden death. Higher dose than mentioned in literature (15 mg/m2/day may be required in selected cases. Mucocutaneous pigmentation may require even higher dose than we used. More studies are required.

  20. Ex vivo stimulation of whole blood as a means to determine glucocorticoid sensitivity

    Directory of Open Access Journals (Sweden)

    Burnsides C

    2012-08-01

    Full Text Available Christopher Burnsides,1,* Jacqueline Corry,1,* Jacob Alexander,1 Catherine Balint,1 David Cosmar,1 Gary Phillips,2 Jeanette I Webster Marketon1,31Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Internal Medicine, 2Center for Biostatistics, 3Institute for Behavioral Medicine Research, Wexner Medical Center at The Ohio State University, Columbus, OH, USA*JC and CB have equally contributed to this workPurpose: Glucocorticoids are commonly prescribed to treat a number of diseases including the majority of inflammatory diseases. Despite considerable interpersonal variability in response to glucocorticoids, an insensitivity rate of about 30%, and the risk of adverse side effects of glucocorticoid therapy, currently no assay is performed to determine sensitivity.Patients and methods: Here we propose a whole blood ex vivo stimulation assay to interrogate known glucocorticoid receptor (GR up- and downregulated genes to indicate glucocorticoid sensitivity. We have chosen to employ real-time PCR in order to provide a relatively fast and inexpensive assay.Results: We show that the GR-regulated genes, GILZ and FKBP51, are upregulated in whole blood by treatment with dexamethasone and that LPS-induction of cytokines (IL-6 and TNFα are repressed by dexamethasone in a dose responsive manner. There is considerable interpersonal variability in the maximum induction of these genes but little variation in the EC50 and IC50 concentrations. The regulation of the GR-induced genes differs throughout the day whereas the suppression of LPS-induced cytokines is not as sensitive to time of day.Conclusion: In all, this assay would provide a method to determine glucocorticoid receptor responsiveness in whole blood.Keywords: glucocorticoid responsiveness, gene regulation, nuclear receptor, GILZ, FKBP51, cytokines

  1. Standardised nomenclature for glucocorticoid dosages and glucocorticoid treatment regimens : current questions and tentative answers in rheumatology

    NARCIS (Netherlands)

    Buttgereit, F; da Silva, JAP; Burmester, GR; Cutolo, M; Jacobs, J; Kirwan, J; Kohler, L; van Riel, P; Vischer, T; Bijlsma, JWJ

    In rheumatology and other medical specialties there is a discrepancy between the widespread use and the imprecise designation of glucocorticoid treatment regimens. Verbal descriptions of glucocorticoid treatment regimens used in various phases of diseases vary between countries and institutions.

  2. Hormetic Influence of Glucocorticoids on Human Memory

    OpenAIRE

    Lupien, Sonia J.; Buss, Claudia; Schramek, Tania E.; Maheu, Francoise; Pruessner, Jens

    2005-01-01

    In this paper, we discuss the effects of glucocorticoids on human learning and memory using the recent model of hormesis proposed by Calabrese and collaborators. Although acute increases in glucocorticoids have been shown to impair memory function in humans, other studies report no such impairments or, in contrast, beneficial effects of acute glucocorticoid increases on human memory function. We summarize these studies and assess whether the wealth of data obtained in humans with regard to th...

  3. The Role and Mechanisms of Action of Glucocorticoid Involvement in Memory Storage

    Science.gov (United States)

    Sandi, Carmen

    1998-01-01

    Adrenal steroid hormones modulate learning and memory processes by interacting with specific glucocorticoid receptors at different brain areas. In this article, certain components of the physiological response to stress elicited by learning situations are proposed to form an integral aspect of the neurobiological mechanism underlying memory formation. By reviewing the work carried out in different learning models in chicks (passive avoidance learning) and rats (spatial orientation in the Morris water maze and contextual fear conditioning), a role for brain corticosterone action through the glucocorticoid receptor type on the mechanisms of memory consolidation is hypothesized. Evidence is also presented to relate post-training corticosterone levels to the strength of memory storage. Finally, the possible molecular mechanisms that might mediate the influences of glucocorticoids in synaptic plasticity subserving long-term memory formation are considered, mainly by focusing on studies implicating a steroid action through (i) glutamatergic transmission and (ii) cell adhesion molecules. PMID:9920681

  4. Peripheral and Central Glucocorticoid Signaling Contributes to Positive Energy Balance in Rats.

    Science.gov (United States)

    Borba, Tássia Karin; Galindo, Lígia Cristina Monteiro; Ferraz-Pereira, Kelli Nogueira; da Silva Aragão, Raquel; Toscano, Ana Elisa; Guzmán-Quevedo, Omar; Manhães-de-Castro, Raul

    2017-06-01

    The obesity epidemic has been the target of several studies to understand its etiology. The pathophysiological processes that take to obesity generally relate to the rupture of energy balance. This imbalance can result from environmental and/or endogenous events. Among the endogenous events, the hypothalamic-pituitary-adrenal axis, which promotes stress response via glucocorticoid activity, is considered a modulator of energy balance. However, it remains controversial whether the increase in plasma levels of glucocorticoids results in a positive or negative energy balance. Furthermore, there are no studies comparing different routes of administration of glucocorticoids in this context. Here, we investigated the effects of intraperitoneal (i.p.) or intracerebroventricular (i.c.v.) administration of a specific agonist for glucocorticoid receptors on food intake and energy expenditure in rats. Sixty-day old rats were treated with i.p. or i.c.v. dexamethasone. Food intake and satiety were evaluated, as well as locomotor activity in order to determine energy expenditure. Both i.p. and i.c.v. dexamethasone increased food intake and decreased energy expenditure. Moreover, i.c.v. dexamethasone delayed the onset of satiety. Together, these results confirm that central glucocorticoid signaling promotes a positive energy balance and supports the role of the glucocorticoid system as the underlying cause of psychological stress-induced obesity. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Glucocorticoid Cell Priming Enhances Transfection Outcomes in Adult Human Mesenchymal Stem Cells

    Science.gov (United States)

    Kelly, Abby M; Plautz, Sarah A; Zempleni, Janos; Pannier, Angela K

    2016-01-01

    Human mesenchymal stem cells (hMSCs) are one of the most widely researched stem cell types with broad applications from basic research to therapeutics, the majority of which require introduction of exogenous DNA. However, safety and scalability issues hinder viral delivery, while poor efficiency hinders nonviral gene delivery, particularly to hMSCs. Here, we present the use of a pharmacologic agent (glucocorticoid) to overcome barriers to hMSC DNA transfer to enhance transfection using three common nonviral vectors. Glucocorticoid priming significantly enhances transfection in hMSCs, demonstrated by a 3-fold increase in efficiency, 4–15-fold increase in transgene expression, and prolonged transgene expression when compared to transfection without glucocorticoids. These effects are dependent on glucocorticoid receptor binding and caused in part by maintenance of normal metabolic function and increased cellular (5-fold) and nuclear (6–10-fold) DNA uptake over hMSCs transfected without glucocorticoids. Results were consistent across five human donors and in cells up to passage five. Glucocorticoid cell priming is a simple and effective technique to significantly enhance nonviral transfection of hMSCs that should enhance their clinical use, accelerate new research, and decrease reliance on early passage cells. PMID:26478250

  6. A Mixed Glucocorticoid/Mineralocorticoid Selective Modulator With Dominant Antagonism in the Male Rat Brain.

    Science.gov (United States)

    Atucha, Erika; Zalachoras, Ioannis; van den Heuvel, José K; van Weert, Lisa T C M; Melchers, Diana; Mol, Isabel M; Belanoff, Joseph K; Houtman, René; Hunt, Hazel; Roozendaal, Benno; Meijer, Onno C

    2015-11-01

    Adrenal glucocorticoid hormones are potent modulators of brain function in the context of acute and chronic stress. Both mineralocorticoid (MRs) and glucocorticoid receptors (GRs) can mediate these effects. We studied the brain effects of a novel ligand, C118335, with high affinity for GRs and modest affinity for MRs. In vitro profiling of receptor-coregulator interactions suggested that the compound is a "selective modulator" type compound for GRs that can have both agonistic and antagonistic effects. Its molecular profile for MRs was highly similar to those of the full antagonists spironolactone and eplerenone. C118335 showed predominantly antagonistic effects on hippocampal mRNA regulation of known glucocorticoid target genes. Likewise, systemic administration of C118335 blocked the GR-mediated posttraining corticosterone-induced enhancement of memory consolidation in an inhibitory avoidance task. Posttraining administration of C118335, however, gave a strong and dose-dependent impairment of memory consolidation that, surprisingly, reflected involvement of MRs and not GRs. Finally, C118335 treatment acutely suppressed the hypothalamus-pituitary-adrenal axis as measured by plasma corticosterone levels. Mixed GR/MR ligands, such as C118335, can be used to unravel the mechanisms of glucocorticoid signaling. The compound is also a prototype of mixed GR/MR ligands that might alleviate the harmful effects of chronic overexposure to endogenous glucocorticoids.

  7. Advances in Glucocorticoid-induced Osteoporosis

    NARCIS (Netherlands)

    den Uyl, D.; Bultink, I.E.M.; Lems, W.F.

    2011-01-01

    Glucocorticoid-induced osteoporosis (GIOP) is one of the most important side effects of glucocorticoid use, as it leads to an increased risk of fractures. Recently, many published studies have focused on the cellular and molecular mechanisms of bone metabolism, the pathophysiology of GIOP, and the

  8. Endocannabinoids in the rat basolateral amygdala enhance memory consolidation and enable glucocorticoid modulation of memory

    NARCIS (Netherlands)

    Campolongo, Patrizia; Roozendaal, Benno; Trezza, Viviana; Hauer, Daniela; Schelling, Gustav; McGaugh, James L.; Cuomo, Vincenzo

    2009-01-01

    Extensive evidence indicates that the basolateral complex of the amygdala (BLA) modulates the consolidation of memories for emotionally arousing experiences, an effect that involves the activation of the glucocorticoid system. Because the BLA expresses high densities of cannabinoid CB1 receptors,

  9. Hormetic Influence of Glucocorticoids on Human Memory

    Science.gov (United States)

    Lupien, Sonia J.; Buss, Claudia; Schramek, Tania E.; Maheu, Francoise; Pruessner, Jens

    2005-01-01

    In this paper, we discuss the effects of glucocorticoids on human learning and memory using the recent model of hormesis proposed by Calabrese and collaborators. Although acute increases in glucocorticoids have been shown to impair memory function in humans, other studies report no such impairments or, in contrast, beneficial effects of acute glucocorticoid increases on human memory function. We summarize these studies and assess whether the wealth of data obtained in humans with regard to the effects of acute increase of glucocorticoids on human cognition are in line with a hormetic function. We then discuss several factors that will have to be taken into account in order to confirm the presence of a hormetic function between glucocorticoids and human cognitive performance. PMID:19330155

  10. Exogenous Cushing's syndrome and glucocorticoid withdrawal.

    Science.gov (United States)

    Hopkins, Rachel L; Leinung, Matthew C

    2005-06-01

    Glucocorticoid therapy in various forms is extremely common for a wide range of inflammatory, autoimmune, and neoplastic disorders. It is therefore important for the physician to be aware of the possibility of both iatrogenic and factitious Cushing's syndrome. Although most common with oral therapy, it is also important to be alert to the fact that all forms of glucocorticoid delivery have the potential to cause Cushing's syndrome. Withdrawal from chronic glucocorticoid therapy presents significant challenges. These include the possibility of adrenal insufficiency after discontinuation of steroid therapy, recurrence of underlying disease as the glucocorticoid is being withdrawn, and the possibility of steroid withdrawal symptoms. Nonetheless, with patience and persistence, a reasonable approach to withdrawal of glucocorticoid therapy can be achieved.

  11. Hypothalamic-Pituitary-Adrenal Axis Modulation of Glucocorticoids in the Cardiovascular System

    Directory of Open Access Journals (Sweden)

    Natalie G. Burford

    2017-10-01

    Full Text Available The collective of endocrine organs acting in homeostatic regulation—known as the hypothalamic-pituitary-adrenal (HPA axis—comprises an integration of the central nervous system as well as peripheral tissues. These organs respond to imminent or perceived threats that elicit a stress response, primarily culminating in the release of glucocorticoids into the systemic circulation by the adrenal glands. Although the secretion of glucocorticoids serves to protect and maintain homeostasis in the typical operation at baseline levels, inadequate regulation can lead to physiologic and psychologic pathologies. The cardiovascular system is especially susceptible to prolonged dysregulation of the HPA axis and glucocorticoid production. There is debate about whether cardiovascular health risks arise from the direct detrimental effects of stress axis activation or whether pathologies develop secondary to the accompanying metabolic strain of excess glucocorticoids. In this review, we will explore the emerging research that indicates stress does have direct effects on the cardiovascular system via the HPA axis activation, with emphasis on the latest research on the impact of glucocorticoids signaling in the vasculature and the heart.

  12. Hypothalamic-Pituitary-Adrenal Axis Modulation of Glucocorticoids in the Cardiovascular System

    Science.gov (United States)

    Burford, Natalie G.; Webster, Natalia A.; Cruz-Topete, Diana

    2017-01-01

    The collective of endocrine organs acting in homeostatic regulation—known as the hypothalamic-pituitary-adrenal (HPA) axis—comprises an integration of the central nervous system as well as peripheral tissues. These organs respond to imminent or perceived threats that elicit a stress response, primarily culminating in the release of glucocorticoids into the systemic circulation by the adrenal glands. Although the secretion of glucocorticoids serves to protect and maintain homeostasis in the typical operation at baseline levels, inadequate regulation can lead to physiologic and psychologic pathologies. The cardiovascular system is especially susceptible to prolonged dysregulation of the HPA axis and glucocorticoid production. There is debate about whether cardiovascular health risks arise from the direct detrimental effects of stress axis activation or whether pathologies develop secondary to the accompanying metabolic strain of excess glucocorticoids. In this review, we will explore the emerging research that indicates stress does have direct effects on the cardiovascular system via the HPA axis activation, with emphasis on the latest research on the impact of glucocorticoids signaling in the vasculature and the heart. PMID:29035323

  13. Hypothalamic-Pituitary-Adrenal Axis Modulation of Glucocorticoids in the Cardiovascular System.

    Science.gov (United States)

    Burford, Natalie G; Webster, Natalia A; Cruz-Topete, Diana

    2017-10-16

    The collective of endocrine organs acting in homeostatic regulation-known as the hypothalamic-pituitary-adrenal (HPA) axis-comprises an integration of the central nervous system as well as peripheral tissues. These organs respond to imminent or perceived threats that elicit a stress response, primarily culminating in the release of glucocorticoids into the systemic circulation by the adrenal glands. Although the secretion of glucocorticoids serves to protect and maintain homeostasis in the typical operation at baseline levels, inadequate regulation can lead to physiologic and psychologic pathologies. The cardiovascular system is especially susceptible to prolonged dysregulation of the HPA axis and glucocorticoid production. There is debate about whether cardiovascular health risks arise from the direct detrimental effects of stress axis activation or whether pathologies develop secondary to the accompanying metabolic strain of excess glucocorticoids. In this review, we will explore the emerging research that indicates stress does have direct effects on the cardiovascular system via the HPA axis activation, with emphasis on the latest research on the impact of glucocorticoids signaling in the vasculature and the heart.

  14. Preclinical analysis of the gamma-secretase inhibitor PF-03084014 in combination with glucocorticoids in T-cell acute lymphoblastic leukemia

    Science.gov (United States)

    Samon, Jeremy B.; Castillo-Martin, Mireia; Hadler, Michael; Ambesi-Impiobato, Alberto; Paietta, Elisabeth; Racevskis, Janis; Wiernik, Peter H.; Rowe, Jacob M.; Jakubczak, John; Randolph, Sophia; Cordon-Cardo, Carlos; Ferrando, Adolfo A.

    2012-01-01

    T-cell acute lymphoblastic leukemias and lymphomas (T-ALL) are aggressive hematologic cancers frequently associated with activating mutations in NOTCH1. Early studies identified NOTCH1 as an attractive therapeutic target for the treatment of T-ALL through the use of γ-secretase inhibitors (GSIs). Here, we characterized the interaction between PF-03084014, a clinically-relevant GSI, and dexamethasone in preclinical models of glucocorticoid-resistant T-ALL. Combination treatment of the GSI PF-03084014 with glucocorticoids induced a synergistic antileukemic effect in human T-ALL cell lines and primary human T-ALL patient samples. Mechanistically PF-03084014 plus glucocorticoid treatment induced increased transcriptional upregulation of the glucocorticoid receptor and glucocorticoid target genes. Treatment with PF-03084014 and glucocorticoids in combination was highly efficacious in vivo, with enhanced reduction of tumor burden in a xenograft model of T-ALL. Finally, glucocorticoid treatment effectively reversed PF-03084014-induced gastrointestinal toxicity via inhibition of goblet cell metaplasia. These results warrant the analysis of PF-03084014 and glucocorticoids in combination for the treatment of glucocorticoid-resistant T-ALL. PMID:22504949

  15. Preclinical analysis of the γ-secretase inhibitor PF-03084014 in combination with glucocorticoids in T-cell acute lymphoblastic leukemia.

    Science.gov (United States)

    Samon, Jeremy B; Castillo-Martin, Mireia; Hadler, Michael; Ambesi-Impiobato, Alberto; Paietta, Elisabeth; Racevskis, Janis; Wiernik, Peter H; Rowe, Jacob M; Jakubczak, John; Randolph, Sophia; Cordon-Cardo, Carlos; Ferrando, Adolfo A

    2012-07-01

    T-cell acute lymphoblastic leukemias (T-ALL) and lymphomas are aggressive hematologic cancers frequently associated with activating mutations in NOTCH1. Early studies identified NOTCH1 as an attractive therapeutic target for the treatment of T-ALL through the use of γ-secretase inhibitors (GSI). Here, we characterized the interaction between PF-03084014, a clinically relevant GSI, and dexamethasone in preclinical models of glucocorticoid-resistant T-ALL. Combination treatment of the GSI PF-03084014 with glucocorticoids induced a synergistic antileukemic effect in human T-ALL cell lines and primary human T-ALL patient samples. Mechanistically PF-03084014 plus glucocorticoid treatment induced increased transcriptional upregulation of the glucocorticoid receptor and glucocorticoid target genes. Treatment with PF-03084014 and glucocorticoids in combination was highly efficacious in vivo, with enhanced reduction of tumor burden in a xenograft model of T-ALL. Finally, glucocorticoid treatment effectively reversed PF-03084014-induced gastrointestinal toxicity via inhibition of goblet cell metaplasia. These results warrant the analysis of PF-03084014 and glucocorticoids in combination for the treatment of glucocorticoid-resistant T-ALL. ©2012 AACR.

  16. Low affinity glucocorticoid binding site ligands as potential anti-fibrogenics

    OpenAIRE

    Marek, Carylyn J; Wallace, Karen; Durward, Elaine; Koruth, Matthew; Leel, Val; Leiper, Lucy J.; Wright, Matthew C.

    2009-01-01

    Background Pregnane X receptor (PXR) agonists inhibit liver fibrosis. However, the rodent PXR activator pregnenolone 16? carbonitrile (PCN) blocks, in vitro, hepatic stellate cell-to-myofibroblast trans-differentiation and proliferation in cells from mice with a disrupted PXR gene, suggesting there is an additional anti-fibrogenic drug target for PCN. The role of the low affinity glucocorticoid binding site (LAGS) ? which may be identical or associated with the progesterone receptor membrane ...

  17. Early Life Stress Effects on the Glucocorticoid - BDNF interplay in the Hippocampus

    Directory of Open Access Journals (Sweden)

    Nikolaos P Daskalakis

    2015-11-01

    Full Text Available Early life stress (ELS is implicated in the etiology of multiple psychiatric disorders. Important biological effects of ELS are manifested in stress-susceptible regions of the hippocampus and are partially mediated by long-term effects on glucocorticoid and/or neurotrophin signaling pathways. Glucocorticoid (GC signaling mediates the regulation of the stress response to maintain homeostasis, while neurotrophin signaling plays a key role in neuronal outgrowth and is crucial for axonal guidance and synaptic integrity. The neurotrophin and glucocorticoid signaling pathways co-exist throughout the central nervous system (CNS, particularly in the hippocampus, which has high expression of glucocorticoid and mineralocorticoid receptors (GR and MR as well as brain-derived neurotrophic factor (BDNF and its receptor, tropomyosin-related kinase receptor B (TrkB. This review addresses the effects of ELS paradigms on GC- and BDNF- dependent mechanisms and their crosstalk in the hippocampus, including potential implications for the pathogenesis of common stress-related disorders.

  18. Timing of glucocorticoid therapy for liver failure

    Directory of Open Access Journals (Sweden)

    MENG Qinghua

    2017-09-01

    Full Text Available There are still controversies over the use of glucocorticoids in the treatment of liver failure, and current guidelines for liver failure recommend that glucocorticoids should be used with great caution. However, some latest studies have shown that the use of glucocorticoid therapy in the early stage of liver failure can bring more benefits to patients. Age, disease progression rate and severity, and complications of liver failure may affect the treatment outcome. Further studies are still needed for the selection of right patients, drugs and dose, and treatment timing.

  19. Fat-brain connections: Adipocyte glucocorticoid control of stress and metabolism.

    Science.gov (United States)

    de Kloet, Annette D; Herman, James P

    2017-10-16

    Glucocorticoids act via multiple mechanisms to mobilize energy for maintenance and restoration of homeostasis. In adipose tissue, glucocorticoids can promote lipolysis and facilitate adipocyte differentiation/growth, serving both energy-mobilizing and restorative processes during negative energy balance. Recent data suggest that adipose-dependent feedback may also be involved in regulation of stress responses. Adipocyte glucocorticoid receptor (GR) deletion causes increased HPA axis stress reactivity, due to a loss of negative feedback signals into the CNS. The fat-to-brain signal may be mediated by neuronal mechanisms, release of adipokines or increased lipolysis. The ability of adipose GRs to inhibit psychogenic as well as metabolic stress responses suggests that (1) feedback regulation of the HPA axis occurs across multiple bodily compartments, and (2) fat tissue integrates psychogenic stress signals. These studies support a link between stress biology and energy metabolism, a connection that has clear relevance for numerous disease states and their comorbidities. Copyright © 2017. Published by Elsevier Inc.

  20. Blocking mineralocorticoid receptors prior to retrieval reduces contextual fear memory in mice

    NARCIS (Netherlands)

    Zhou, M.; Kindt, M.; Joëls, M.; Krugers, H.J.

    2011-01-01

    Background Corticosteroid hormones regulate appraisal and consolidation of information via mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) respectively. How activation of these receptors modulates retrieval of fearful information and the subsequent expression of fear is largely

  1. The hippocampus mediates glucocorticoid-induced impairment of spatial memory retrieval: Dependence on the basolateral amygdala

    Science.gov (United States)

    Roozendaal, Benno; Griffith, Qyana K.; Buranday, Jason; de Quervain, Dominique J.-F.; McGaugh, James L.

    2003-01-01

    Previous studies have indicated that stress-activated glucocorticoid hormones induce temporary memory retrieval impairment. The present study examined whether adrenal steroid receptors in the hippocampus mediate such glucocorticoid effects on spatial memory retrieval. The specific glucocorticoid receptor (GR) agonist 11β, 17β-dihydroxy-6,21-dimethyl-17α-pregna-4,6-trien-20yn-3-one (RU 28362; 5 or 15 ng) infused into the hippocampus of male Sprague–Dawley rats 60 min before water-maze retention testing, 24 h after training, dose-dependently impaired probe-trial retention performance, as assessed both by time spent in the training quadrant and initial latency to cross the platform location. The GR agonist did not affect circulating corticosterone levels immediately after the probe trial, indicating that RU 28362 infusions did not influence retention by altering glucocorticoid feedback mechanisms. As infusions of the GR agonist into the hippocampus 60 min before training did not influence water-maze acquisition or immediate recall, the findings indicated that the GR agonist-induced retention impairment was induced selectively by an influence on information retrieval. In contrast, pretest infusions of the GR agonist administered into the basolateral complex of the amygdala (BLA; 2 or 6 ng) did not alter retention performance in the water maze. However, N-methyl-d-aspartate-induced lesions of the BLA, made 1 week before training, blocked the memory retrieval impairment induced by intrahippocampal infusions of RU 28362 given 60 min before the retention test. These findings indicate that the effects of glucocorticoids on retrieval of long-term spatial memory depend on the hippocampus and, additionally, that neuronal input from the BLA is critical in enabling hippocampal glucocorticoid effects on memory retrieval. PMID:12538851

  2. VBP15, a glucocorticoid analogue, is effective at reducing allergic lung inflammation in mice.

    Directory of Open Access Journals (Sweden)

    Jesse M Damsker

    Full Text Available Asthma is a chronic inflammatory condition of the lower respiratory tract associated with airway hyperreactivity and mucus obstruction in which a majority of cases are due to an allergic response to environmental allergens. Glucocorticoids such as prednisone have been standard treatment for many inflammatory diseases for the past 60 years. However, despite their effectiveness, long-term treatment is often limited by adverse side effects believed to be caused by glucocorticoid receptor-mediated gene transcription. This has led to the pursuit of compounds that retain the anti-inflammatory properties yet lack the adverse side effects associated with traditional glucocorticoids. We have developed a novel series of steroidal analogues (VBP compounds that have been previously shown to maintain anti-inflammatory properties such as NFκB-inhibition without inducing glucocorticoid receptor-mediated gene transcription. This study was undertaken to determine the effectiveness of the lead compound, VBP15, in a mouse model of allergic lung inflammation. We show that VBP15 is as effective as the traditional glucocorticoid, prednisolone, at reducing three major hallmarks of lung inflammation--NFκB activity, leukocyte degranulation, and pro-inflammatory cytokine release from human bronchial epithelial cells obtained from patients with asthma. Moreover, we found that VBP15 is capable of reducing inflammation of the lung in vivo to an extent similar to that of prednisone. We found that prednisolone--but not VBP15 shortens the tibia in mice upon a 5 week treatment regimen suggesting effective dissociation of side effects from efficacy. These findings suggest that VBP15 may represent a potent and safer alternative to traditional glucocorticoids in the treatment of asthma and other inflammatory diseases.

  3. Glucocorticoids are ineffective in alcoholic hepatitis

    DEFF Research Database (Denmark)

    Christensen, E; Gluud, C

    1995-01-01

    The aim of this study was to perform a meta-analysis of controlled clinical trials of glucocorticoid treatment in clinical alcoholic hepatitis, adjusting for prognostic variables and their possible interaction with therapy, because these trials have given appreciably different results. Weighted...... may be different (beneficial or harmful) in special patient subgroups. These results do not support the routine use of glucocorticoids in patients with alcoholic hepatitis, including those with encephalopathy. Whether other subgroups may benefit needs further investigation using the individual patient...

  4. Glucocorticoids Have Opposing Effects on Liver Fibrosis in Hepatic Stellate and Immune Cells

    OpenAIRE

    Kim, Kang Ho; Lee, Jae Man; Zhou, Ying; Harpavat, Sanjiv; Moore, David D.

    2016-01-01

    Liver fibrosis is a reversible wound-healing process that is protective in the short term, but prolonged fibrotic responses lead to excessive accumulation of extracellular matrix components that suppresses hepatocyte regeneration, resulting in permanent liver damage. Upon liver damage, nonparenchymal cells including immune cells and hepatic stellate cells (HSCs) have crucial roles in the progression and regression of liver fibrosis. Here, we report differential roles of the glucocorticoid rec...

  5. Glucocorticoids and fetal programming part 2: Mechanisms.

    Science.gov (United States)

    Moisiadis, Vasilis G; Matthews, Stephen G

    2014-07-01

    The lifelong health of an individual is shaped during critical periods of development. The fetus is particularly susceptible to internal and external stimuli, many of which can alter developmental trajectories and subsequent susceptibility to disease. Glucocorticoids are critical in normal development of the fetus, as they are involved in the growth and maturation of many organ systems. The surge in fetal glucocorticoid levels that occurs in most mammalian species over the last few days of pregnancy is an important developmental switch leading to fundamental changes in gene regulation in many organs, including the brain. These changes are important for the transition to postnatal life. Exposure of the fetus to increased levels of glucocorticoids, resulting from maternal stress or treatment with synthetic glucocorticoids, can lead to long-term 'programming' of hypothalamic-pituitary-adrenal function and behaviours. Glucocorticoids act at multiple levels within the fetal brain. Growing evidence indicates that they can exert powerful effects on the epigenome, including on DNA methylation, histone acetylation and microRNA, to influence gene expression. Such influences probably represent a critical component of the 'programming' process, and might be partly responsible for the transgenerational effects of antenatal glucocorticoid exposure on neurologic, cardiovascular and metabolic function.

  6. An overgrowth disorder associated with excessive production of cGMP due to a gain-of-function mutation of the natriuretic peptide receptor 2 gene.

    Directory of Open Access Journals (Sweden)

    Kohji Miura

    Full Text Available We describe a three-generation family with tall stature, scoliosis and macrodactyly of the great toes and a heterozygous p.Val883Met mutation in Npr2, the gene that encodes the CNP receptor NPR2 (natriuretic peptide receptor 2. When expressed in HEK293A cells, the mutant Npr2 cDNA generated intracellular cGMP (cyclic guanosine monophosphate in the absence of CNP ligand. In the presence of CNP, cGMP production was greater in cells that had been transfected with the mutant Npr2 cDNA compared to wild-type cDNA. Transgenic mice in which the mutant Npr2 was expressed in chondrocytes driven by the promoter and intronic enhancer of the Col11a2 gene exhibited an enhanced production of cGMP in cartilage, leading to a similar phenotype to that observed in the patients. In addition, blood cGMP concentrations were elevated in the patients. These results indicate that p.Val883Met is a constitutive active gain-of-function mutation and elevated levels of cGMP in growth plates lead to the elongation of long bones. Our findings reveal a critical role for NPR2 in skeletal growth in both humans and mice, and may provide a potential target for prevention and treatment of diseases caused by impaired production of cGMP.

  7. Red blood cells of sickle cell disease patients exhibit abnormally high abundance of N-methyl D-aspartate receptors mediating excessive calcium uptake.

    Science.gov (United States)

    Hänggi, Pascal; Makhro, Asya; Gassmann, Max; Schmugge, Markus; Goede, Jeroen S; Speer, Oliver; Bogdanova, Anna

    2014-10-01

    Recently we showed that N-methyl D-aspartate receptors (NMDARs) are expressed in erythroid precursors (EPCs) and present in the circulating red blood cells (RBCs) of healthy humans, regulating intracellular Ca(2+) in these cells. This study focuses on investigating the possible role of NMDARs in abnormally high Ca(2+) permeability in the RBCs of patients with sickle cell disease (SCD). Protein levels of the NMDAR subunits in the EPCs of SCD patients did not differ from those in EPCs of healthy humans. However, the number and activity of the NMDARs in circulating SCD-RBCs was substantially up-regulated, being particularly high during haemolytic crises. The number of active NMDARs correlated negatively with haematocrit and haemoglobin levels in the blood of SCD patients. Calcium uptake via these non-selective cation channels was induced by RBC treatment with glycine, glutamate and homocysteine and was facilitated by de-oxygenation of SCD-RBCs. Oxidative stress and RBC dehydration followed receptor stimulation and Ca(2+) uptake. Inhibition of the NMDARs with an antagonist memantine caused re-hydration and largely prevented hypoxia-induced sickling. The EPCs of SCD patients showed higher tolerance to memantine than those of healthy subjects. Consequently, NMDARs in the RBCs of SCD patients appear to be an attractive target for pharmacological intervention. © 2014 The Authors. British Journal of Haematology published by John Wiley & Sons Ltd.

  8. Glucocorticoid Regulation of Food-Choice Behavior in Humans: Evidence from Cushing's Syndrome.

    Science.gov (United States)

    Moeller, Scott J; Couto, Lizette; Cohen, Vanessa; Lalazar, Yelena; Makotkine, Iouri; Williams, Nia; Yehuda, Rachel; Goldstein, Rita Z; Geer, Eliza B

    2016-01-01

    The mechanisms by which glucocorticoids regulate food intake and resulting body mass in humans are not well-understood. One potential mechanism could involve modulation of reward processing, but human stress models examining effects of glucocorticoids on behavior contain important confounds. Here, we studied individuals with Cushing's syndrome, a rare endocrine disorder characterized by chronic excess endogenous glucocorticoids. Twenty-three patients with Cushing's syndrome (13 with active disease; 10 with disease in remission) and 15 controls with a comparably high body mass index (BMI) completed two simulated food-choice tasks (one with "explicit" task contingencies and one with "probabilistic" task contingencies), during which they indicated their objective preference for viewing high calorie food images vs. standardized pleasant, unpleasant, and neutral images. All participants also completed measures of food craving, and approximately half of the participants provided 24-h urine samples for assessment of cortisol and cortisone concentrations. Results showed that on the explicit task (but not the probabilistic task), participants with active Cushing's syndrome made fewer food-related choices than participants with Cushing's syndrome in remission, who in turn made fewer food-related choices than overweight controls. Corroborating this group effect, higher urine cortisone was negatively correlated with food-related choice in the subsample of all participants for whom these data were available. On the probabilistic task, despite a lack of group differences, higher food-related choice correlated with higher state and trait food craving in active Cushing's patients. Taken together, relative to overweight controls, Cushing's patients, particularly those with active disease, displayed a reduced vigor of responding for food rewards that was presumably attributable to glucocorticoid abnormalities. Beyond Cushing's, these results may have relevance for elucidating

  9. A search for variables predicting cortisol response to low-dose corticotropin stimulation following supraphysiological doses of glucocorticoids.

    Science.gov (United States)

    Wildi-Runge, Stefanie; Deladoëy, Johnny; Bélanger, Carole; Deal, Cheri L; Van Vliet, Guy; Alos, Nathalie; Huot, Céline

    2013-08-01

    To determine which biological or clinical variables may predict cortisol response to low-dose adrenocorticotropic hormone (ACTH) stimulation following supraphysiological doses of glucocorticoids in children. This retrospective study included all patients who underwent ACTH testing (1 μg) between October 2008 and June 2010 at the Sainte-Justine University Hospital Center, Montreal, after supraphysiological doses of glucocorticoids. Data from 103 patients (median age, 8.0 years; range, 0.6-18.5 years; 57 girls) were analyzed, revealing growth deceleration in 37% and excessive weight gain in 33%. Reasons for glucocorticoid treatment included asthma (n = 30) and hematologic (n = 22), dermatologic (n = 19), rheumatologic (n = 16), and miscellaneous (n = 16) disorders. The following information was recorded: duration of glucocorticoid treatment (median, 374 days; range, 5-4226 days); duration of physiological hydrocortisone replacement (median, 118 days; range, 0-1089 days); maximum daily (median, 200 mg/m(2)/day; range, 12-3750 mg/m(2)/day) and cumulative (median, 16 728 mg/m(2); range, 82-178 209 mg/m(2)) doses, in hydrocortisone equivalents; and interval since the last dose (median, 43 days; range, 1-1584 days). Sixty-two patients (58%) exhibited a normal response (ie, peak cortisol >500 nmol/L) to ACTH stimulation. Peak cortisol level was not related to sex, prior morning cortisol level, duration of treatment, or cumulative glucocorticoid dose; 28% of the patients with normal baseline cortisol levels nevertheless demonstrated a subnormal response to ACTH. Given the absence of clinical or biological predictors of the cortisol response to ACTH after suppressive doses of glucocorticoids, physicians have only 2 options: (1) empirically advocate glucocorticoid stress coverage during 18 months after cessation of high-dose glucocorticoid treatment; or (2) perform serial ACTH testing in all such patients until a normal peak cortisol level is attained. Copyright © 2013

  10. MicroRNA-29a mitigates glucocorticoid induction of bone loss and fatty marrow by rescuing Runx2 acetylation.

    Science.gov (United States)

    Ko, Jih-Yang; Chuang, Pei-Chin; Ke, Huei-Jin; Chen, Yu-Shan; Sun, Yi-Chih; Wang, Feng-Sheng

    2015-12-01

    Glucocorticoid treatment reportedly increases the morbidity of osteoporotic or osteonecrotic disorders. Exacerbated bone acquisition and escalated marrow adipogenesis are prominent pathological features of glucocorticoid-mediated skeletal disorders. MicroRNAs reportedly modulate tissue metabolism and remodeling. This study was undertaken to investigate the biological roles of microRNA-29a (miR-29a) in skeletal and fat metabolism in the pathogenesis of glucocorticoid-induced osteoporosis. Transgenic mice overexpressing miR-29a precursor or wild-type mice were given methylprednisolone. Bone mass, microarchitecture and histology were assessed by dual energy X-ray absorptiometry, μCT and histomorphometry. Differential gene expression and signaling components were delineated by quantitative RT-PCR and immunoblotting. Glucocorticoid treatment accelerated bone loss and marrow fat accumulation in association with decreased miR-29a expression. The miR-29a transgenic mice had high bone mineral density, trabecular microarchitecture and cortical thickness. miR-29a overexpression mitigated the glucocorticoid-induced impediment of bone mass, skeletal microstructure integrity and mineralization reaction and attenuated fatty marrow histopathology. Ex vivo, miR-29a increased osteogenic differentiation capacity and alleviated the glucocorticoid-induced promotion of adipocyte formation in primary bone-marrow mesenchymal progenitor cell cultures. Through inhibition of histone deacetylase 4 (HDAC4) expression, miR-29a restored acetylated Runx2 and β-catenin abundances and reduced RANKL, leptin and glucocorticoid receptor expression in glucocorticoid-mediated osteoporosis bone tissues. Taken together, glucocorticoid suppression of miR-29a signaling disturbed the balances between osteogenic and adipogenic activities, and thereby interrupted bone formation and skeletal homeostasis. miR-29a inhibition of HDAC4 stabilized the acetylation state of Runx2 and β-catenin that ameliorated the

  11. Role of Adrenal Glucocorticoid Signaling in Prefrontal Cortex Gene Expression and Acute Behavioral Responses to Ethanol

    Science.gov (United States)

    Costin, Blair N.; Wolen, Aaron R.; Fitting, Sylvia; Shelton, Keith L.; Miles, Michael F.

    2012-01-01

    Background Glucocorticoid hormones modulate acute and chronic behavioral and molecular responses to drugs of abuse including psychostimulants and opioids. There is growing evidence that glucocorticoids might also modulate behavioral responses to ethanol. Acute ethanol activates the HPA axis, causing release of adrenal glucocorticoid hormones. Our prior genomic studies suggest glucocorticoids play a role in regulating gene expression in the prefrontal cortex (PFC) of DBA2/J (D2) mice following acute ethanol administration. However, few studies have analyzed the role of glucocorticoid signaling in behavioral responses to acute ethanol. Such work could be significant, given the predictive value for level of response to acute ethanol in the risk for alcoholism. Methods We studied whether the glucocorticoid receptor (GR) antagonist, RU-486, or adrenalectomy (ADX) altered male D2 mouse behavioral responses to acute (locomotor activation, anxiolysis or loss-of-righting reflex (LORR)) or repeated (sensitization) ethanol treatment. Whole genome microarray analysis and bioinformatics approaches were used to identify PFC candidate genes possibly responsible for altered behavioral responses to ethanol following ADX. Results ADX and RU-486 both impaired acute ethanol (2 g/kg) induced locomotor activation in D2 mice without affecting basal locomotor activity. However, neither ADX nor RU-486 altered initiation of ethanol sensitization (locomotor activation or jump counts), ethanol-induced anxiolysis or LORR. ADX mice showed microarray gene expression changes in PFC that significantly overlapped with acute ethanol-responsive gene sets derived by our prior microarray studies. Q-rtPCR analysis verified that ADX decreased PFC expression of Fkbp5 while significantly increasing Gpr6 expression. In addition, high dose RU-486 pre-treatment blunted ethanol-induced Fkbp5 expression. Conclusions Our studies suggest that ethanol’s activation of adrenal glucocorticoid release and subsequent

  12. Glucocorticoid-cholinergic interactions in the dorsal striatum in memory consolidation of inhibitory avoidance training

    Science.gov (United States)

    Sánchez-Resendis, Oscar; Medina, Andrea C.; Serafín, Norma; Prado-Alcalá, Roberto A.; Roozendaal, Benno; Quirarte, Gina L.

    2012-01-01

    Extensive evidence indicates that glucocorticoid hormones act in a variety of brain regions to enhance the consolidation of memory of emotionally motivated training experiences. We previously reported that corticosterone, the major glucocorticoid in the rat, administered into the dorsal striatum immediately after inhibitory avoidance training dose-dependently enhances memory consolidation of this training. There is also abundant evidence that the intrinsic cholinergic system of the dorsal striatum is importantly involved in memory consolidation of inhibitory avoidance training. However, it is presently unknown whether these two neuromodulatory systems interact within the dorsal striatum in the formation of long-term memory. To address this issue, we first investigated in male Wistar rats whether the muscarinic receptor agonist oxotremorine administered into the dorsal striatum immediately after inhibitory avoidance training enhances 48 h retention of the training. Subsequently, we examined whether an attenuation of glucocorticoid signaling by either a systemic administration of the corticosterone-synthesis inhibitor metyrapone or an intra-striatal infusion of the glucocorticoid receptor (GR) antagonist RU 38486 would block the memory enhancement induced by oxotremorine. Our findings indicate that oxotremorine dose-dependently enhanced 48 h retention latencies, but that the administration of either metyrapone or RU 38486 prevented the memory-enhancing effect of oxotremorine. In the last experiment, corticosterone was infused into the dorsal striatum together with the muscarinic receptor antagonist scopolamine immediately after inhibitory avoidance training. Scopolamine blocked the enhancing effect of corticosterone on 48 h retention performance. These findings indicate that there are mutual interactions between glucocorticoids and the striatal cholinergic system in enhancing the consolidation of memory of inhibitory avoidance training. PMID:22737110

  13. Systemic PD149163, a neurotensin receptor 1 agonist, decreases methamphetamine self-administration in DBA/2J mice without causing excessive sedation.

    Directory of Open Access Journals (Sweden)

    Amanda L Sharpe

    Full Text Available Methamphetamine (METH is a psychostimulant that exhibits significant abuse potential. Although METH addiction is a major health and societal concern, no drug is currently approved for its therapeutic management. METH activates the central dopaminergic "reward" circuitry, and with repeated use increases levels of the neuromodulatory peptide neurotensin in the nucleus accumbens and ventral tegmental area. Previous studies in rats suggest that neurotensin agonism decreases METH self-administration, but these studies did not examine the effect of neurotensin agonism on the pattern of self-administration or open field locomotion. In our studies, we established intravenous METH self-administration in male, DBA/2J mice (fixed ratio 3, 2 hr sessions and examined the effect of pretreatment with the NTS1 receptor agonist PD149163 on METH self-administration behavior. Locomotion following PD149163 was also measured up to 2 hours after injection on a rotarod and in an open field. Pretreatment with PD149163 (0.05 and 0.10 mg/kg, s.c. significantly decreased METH self-administration. The pattern of responding suggested that PD149163 decreased motivation to self-administer METH initially in the session with more normal intake in the second hour of access. Voluntary movement in the open-field was significantly decreased by both 0.05 and 0.10 mg/kg (s.c. PD149163 from 10-120 minutes after injection, but rotarod performance suggested that PD149163 did not cause frank sedation. These results suggest that a systemically delivered NTS1 receptor agonist decreases METH self-administration in mice. The pattern of self-administration suggests that PD149163 may acutely decrease motivation to self-administer METH before the drug is experienced, but cannot rule out that depression of voluntary movement plays a role in the decreased self-administration.

  14. Diallylsulfide attenuates excessive collagen production and apoptosis in a rat model of bleomycin induced pulmonary fibrosis through the involvement of protease activated receptor-2

    Energy Technology Data Exchange (ETDEWEB)

    Kalayarasan, Srinivasan, E-mail: kalaivasanbio@gmail.com; Sriram, Narayanan; Soumyakrishnan, Syamala; Sudhandiran, Ganapasam, E-mail: sudhandiran@yahoo.com

    2013-09-01

    Pulmonary fibrosis (PF) can be a devastating lung disease. It is primarily caused by inflammation leading to severe damage of the alveolar epithelial cells. The pathophysiology of PF is not yet been clearly defined, but studying lung parenchymal injury by involving reactive oxygen species (ROS) through the activation of protease activated receptor-2 (PAR-2) may provide promising results. PAR-2 is a G-protein coupled receptor is known to play an important role in the development of PF. In this study, we investigated the inhibitory role of diallylsulfide (DAS) against ROS mediated activation of PAR-2 and collagen production accompanied by epithelial cell apoptosis. Bleomycin induced ROS levels may prompt to induce the expression of PAR-2 as well as extracellular matrix proteins (ECM), such as MMP 2 and 9, collagen specific proteins HSP-47, α-SMA, and cytokines IL-6, and IL-8RA. Importantly DAS treatment effectively decreased the expression of all these proteins. The inhibitory effect of DAS on profibrotic molecules is mediated by blocking the ROS level. To identify apoptotic signaling as a mediator of PF induction, we performed apoptotic protein expression, DNA fragmentation analysis and ultrastructural details of the lung tissue were performed. DAS treatment restored all these changes to near normalcy. In conclusion, treatment of PF bearing rats with DAS results in amelioration of the ROS production, PAR-2 activation, ECM production, collagen synthesis and alveolar epithelial cell apoptosis during bleomycin induction. We attained the first evidence that treatment of DAS decreases the ROS levels and may provide a potential therapeutic effect attenuating bleomycin induced PF. - Highlights: • DAS inhibits PAR-2 activity; bleomycin stimulates PAR-2 activity. • Increase in PAR-2 activity is correlated with pulmonary fibrosis • DAS reduces pro-inflammatory activity linked to facilitating pulmonary fibrosis. • DAS inhibits apoptosis of alveolar epithelial cells.

  15. Glucocorticoid: A potential role in microgravity-induced bone loss

    Science.gov (United States)

    Yang, Jiancheng; Yang, Zhouqi; Li, Wenbin; Xue, Yanru; Xu, Huiyun; Li, Jingbao; Shang, Peng

    2017-11-01

    Exposure of animals and humans to conditions of microgravity, including actual spaceflight and simulated microgravity, results in numerous negative alterations to bone structure and mechanical properties. Although there are abundant researches on bone loss in microgravity, the explicit mechanism is not completely understood. At present, it is widely accepted that the absence of mechanical stimulus plays a predominant role in bone homeostasis disorders in conditions of weightlessness. However, aside from mechanical unloading, nonmechanical factors such as various hormones, cytokines, dietary nutrition, etc. are important as well in microgravity induced bone loss. The stress-induced increase in endogenous glucocorticoid (GC) levels is inevitable in microgravity environments. Moreover, it is well known that GCs have a detrimental effect to bone health at excess concentrations. Therefore, GC plays a potential role in microgravity-induced bone loss. This review summarizeds several studies and their prospective solutions to this hypothesis.

  16. Glucocorticoids in the prefrontal cortex enhance memory consolidation and impair working memory by a common neural mechanism

    Science.gov (United States)

    Barsegyan, Areg; Mackenzie, Scott M.; Kurose, Brian D.; McGaugh, James L.; Roozendaal, Benno

    2010-01-01

    It is well established that acute administration of adrenocortical hormones enhances the consolidation of memories of emotional experiences and, concurrently, impairs working memory. These different glucocorticoid effects on these two memory functions have generally been considered to be independently regulated processes. Here we report that a glucocorticoid receptor agonist administered into the medial prefrontal cortex (mPFC) of male Sprague-Dawley rats both enhances memory consolidation and impairs working memory. Both memory effects are mediated by activation of a membrane-bound steroid receptor and depend on noradrenergic activity within the mPFC to increase levels of cAMP-dependent protein kinase. These findings provide direct evidence that glucocorticoid effects on both memory consolidation and working memory share a common neural influence within the mPFC. PMID:20810923

  17. Covariation among glucocorticoid regulatory elements varies seasonally in house sparrows.

    Science.gov (United States)

    Liebl, Andrea L; Shimizu, Toru; Martin, Lynn B

    2013-03-01

    Glucocorticoids (GCs) help individuals cope with changes throughout life; one such change is the seasonal transition through life-history stages. Previous research shows that many animals exhibit seasonal variation in baseline GCs and GC responses to stressors, but the effects of season on other aspects of GC regulation have been less studied. Moreover, whether elements of GC regulation covary within individuals and whether covariation changes seasonally has been not been investigated. Evolutionarily, strong linkages among GC regulatory elements is predicted to enhance system efficiency and regulation, however may reduce the plasticity necessary to ensure appropriate responses under varying conditions. Here, we measured corticosterone (CORT), the major avian GC, at baseline, after exposure to a restraint stressor, and in response to dexamethasone (to assess negative feedback capacity) in wild house sparrows (Passer domesticus) during the breeding and molting seasons. We also measured hippocampal mRNA expression of the two receptors primarily responsible for CORT regulation: the mineralocorticoid and glucocorticoid receptors (MR and GR, respectively). Consistent with previous studies, restraint-induced CORT was lower during molt than breeding, but negative-feedback was not influenced by season. Receptor gene expression was affected by season, however, as during breeding, the ratio of MR to GR expression was significantly lower than during molt. Furthermore, MR expression was negatively correlated with CORT released in response to a stressor, but only during molt. We found that individuals that most strongly up-regulated CORT in response to restraint were also most effective at reducing CORT via negative feedback; although these relationships were independent of season, they were stronger during molt. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. A zebrafish model of glucocorticoid resistance shows serotonergic modulation of the stress response

    Directory of Open Access Journals (Sweden)

    Brian eGriffiths

    2012-10-01

    Full Text Available One function of glucocorticoids is to restore homeostasis after an acute stress response by providing negative feedback to stress circuits in the brain. Loss of this negative feedback leads to elevated physiological stress and may contribute to depression, anxiety and post-traumatic stress disorder. We investigated the early, developmental effects of glucocorticoid signaling deficits on stress physiology and related behaviors using a mutant zebrafish, grs357, with non-functional glucocorticoid receptors. These mutants are morphologically inconspicuous and adult-viable. A previous study of adult grs357 mutants showed loss of glucocorticoid-mediated negative feedback and elevated physiological and behavioral stress markers. Already at five days post-fertilization, mutant larvae had elevated whole body cortisol, increased expression of pro-opiomelanocortin (POMC, the precursor of adrenocorticotropic hormone (ACTH, and failed to show normal suppression of stress markers after dexamethasone treatment. Mutant larvae had larger auditory-evoked startle responses compared to wildtype sibling controls (grwt, despite having lower spontaneous activity levels. Fluoxetine (Prozac treatment in mutants decreased startle responding and increased spontaneous activity, making them behaviorally similar to wildtype. This resu