Sample records for exceptional flaring activity

  1. Gamma-Ray Activity in the Crab Nebula: The Exceptional Flare of April 2011 (United States)

    Buehler, R.; Scargle, J. D.; Blandford, R. D.; Baldini, L; Baring, M. G.; Belfiore, A.; Charles, E.; Chiang, J.; DAmmando, F.; Dermer, C. D.; hide


    The Large Area Telescope on board the Fermi satellite observed a gamma-ray flare in the Crab nebula lasting for approximately nine days in April of 2011. The source, which at optical wavelengths has a size of approximately 11 ly across, doubled its gamma-ray flux within eight hours. The peak photon flux was (186 +/- 6) x 10(exp -7) /square cm/s above 100 MeV, which corresponds to a 30-fold increase compared to the average value. During the flare, a new component emerged in the spectral energy distribution, which peaked at an energy of (375 +/- 26) MeV at flare maximum. The observations imply that the emission region was relativistically beamed toward us and that variations in its motion are responsible for the observed spectral variability.

  2. The Blob Crashes into the Mirror: Modeling the Exceptional γ-Ray Flaring Activity of 3C 454.3 in 2010 November (United States)

    Vittorini, V.; Tavani, M.; Cavaliere, A.; Striani, E.; Vercellone, S.


    3C 454.3 is a prominent flat-spectrum radio quasar that in recent years attracted considerable attention because of its variable high-energy emissions. In this paper, we focus on the exceptional flaring activity of 3C 454.3 that was detected by AGILE and by Fermi-LAT in 2010 November. In the light of the time-varying data ranging from the radio, optical, and X-ray up to GeV γ-ray bands, we discuss a theoretical framework addressing all data in their overall evolution. For two weeks, the source has shown a plateau of enhanced GeV emission preceding a sudden major flare lasting about three days before decaying. The γ-ray flare onset is abrupt (about six hours), and is characterized by a prominent "Compton dominance" with the GeV flux exceeding the pre-flare values by a factor of four to five. During this episode, the optical and X-ray fluxes increased by a factor of around two. Within the standard framework of a jet launched with a Lorentz bulk factor Γ ~ 10 from a central black hole, we explore the yields of two alternatives. Case 1, with high-energy emission originating within the broad line region (BLR); and Case 2, with most of it produced outside at larger distances of a few parsecs. We show that Case 1 has considerable problems in explaining the whole set of multifrequency data. Case 2, instead, leads to a consistent and interesting interpretation based on the enhanced inverse Compton radiation that is produced as the jet crashes onto a mirror cloud positioned at parsec scales. This model explains the γ-ray versus optical/X-ray behavior of 3C 454.3, including the otherwise puzzling phenomena such as the prominent "orphan" optical flare, and the enhanced line emission with no appreciable γ-ray counterpart that preceded the GeV γ-ray flare. It also accounts for the delayed onset of the latter on top of the long plateau. Our modeling of the exceptional 3C 454.3 γ-ray flare shows that while emission inside the canonical BLR is problematic, major and rapid

  3. MAGIC observation of an exceptional TeV gamma-ray flare in the active galaxy IC 310

    Energy Technology Data Exchange (ETDEWEB)

    Glawion, Dorit; Mannheim, Karl; Elsaesser, Dominik; Kadler, Matthias; Schulz, Robert [ITPA Wuerzburg (Germany); Sitarek, Julian [IFAE Barcelona (Spain); Ros, Eduardo; Bach, Uwe [Max-Planck-Institut fuer Radioastronomie, Bonn (Germany); Krauss, Felicia; Wilms, Joern [ECAP Erlangen, Dr. Karl Remeis-Sternwarte, Bamberg (Germany); Collaboration: MAGIC-Collaboration


    The AGN IC 310 has been identified as a gamma-ray emitter based on observations at very high energies (VHE,E>100 GeV) with the MAGIC telescopes. Despite IC 310 having been classified as a radio galaxy with the jet observed at an angle>10 degrees, it exhibits a mixture of multiwavelength properties of a radio galaxy and a blazar, possibly making it a transitional object. On the night of 12/13th of November 2012 the MAGIC telescopes observed a series of strong outbursts from the direction of IC 310 with flux-doubling time scales faster than 5 min and a peculiar spectrum spreading over two orders of magnitude. Such fast variability constrains the size of the emission region to be smaller than 20% of the gravitational radius of its central black hole. In fact, the measurement challenges the shock acceleration models, commonly used in explanation of gamma-ray radiation from active galaxies. We show that this emission can be associated with pulsar-like particle acceleration by the electric field across a magnetospheric gap at the base of the jet.

  4. The Crab Nebula flaring activity

    Directory of Open Access Journals (Sweden)

    G. Montani


    Full Text Available The discovery made by AGILE and Fermi of a short time scale flaring activity in the gamma-ray energy emission of the Crab Nebula is a puzzling and unexpected feature, challenging particle acceleration theory. In the present work we propose the shock-induced magnetic reconnection as a viable mechanism to explain the Crab flares. We postulate that the emitting region is located at ∼1015 cm from the central pulsar, well inside the termination shock, which is exactly the emitting region size as estimated by the overall duration of the phenomenon ∼1 day. We find that this location corresponds to the radial distance at which the shock-induced magnetic reconnection process is able to accelerate the electrons up to a Lorentz factor ∼109, as required by the spectral fit of the observed Crab flare spectrum. The main merit of the present analysis is to highlight the relation between the observational constraints to the flare emission and the radius at which the reconnection can trigger the required Lorentz factor. We also discuss different scenarios that can induce the reconnection. We conclude that the existence of a plasma instability affecting the wind itself as the Weibel instability is the privileged scenario in our framework.

  5. Statistical properties of solar Hα flare activity

    Directory of Open Access Journals (Sweden)

    Deng Linhua


    Full Text Available Magnetic field structures on the solar atmosphere are not symmetric distribution in the northern and southern hemispheres, which is an important aspect of quasi-cyclical evolution of magnetic activity indicators that are related to solar dynamo theories. Three standard analysis techniques are applied to analyze the hemispheric coupling (north-south asymmetry and phase asynchrony of monthly averaged values of solar Hα flare activity over the past 49 years (from 1966 January to 2014 December. The prominent results are as follows: (1 from a global point of view, solar Hα flare activity on both hemispheres are strongly correlated with each other, but the northern hemisphere precedes the southern one with a phase shift of 7 months; (2 the long-range persistence indeed exists in solar Hα flare activity, but the dynamical complexities in the two hemispheres are not identical; (3 the prominent periodicities of Hα flare activity are 17 years full-disk activity cycle and 11 years Schwabe solar cycle, but the short- and mid-term periodicities cannot determined by monthly time series; (4 by comparing the non-parametric rescaling behavior on a point-by-point basis, the hemispheric asynchrony of solar Hα flare activity are estimated to be ranging from several months to tens of months with an average value of 8.7 months. The analysis results could promote our knowledge on the long-range persistence, the quasi-periodic variation, and the hemispheric asynchrony of solar Hα flare activity on both hemispheres, and possibly provide valuable information for the hemispheric interrelation of solar magnetic activity.


    Energy Technology Data Exchange (ETDEWEB)

    Hawley, Suzanne L.; Davenport, James R. A.; Kowalski, Adam F.; Wisniewski, John P.; Deitrick, Russell; Hilton, Eric J. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Hebb, Leslie, E-mail: [Department of Physics, Hobart and William Smith Colleges, 300 Pulteney Street, Geneva, NY 14456 (United States)


    We analyzed Kepler short-cadence M dwarf observations. Spectra from the Astrophysical Research Consortium 3.5 m telescope identify magnetically active (Hα in emission) stars. The active stars are of mid-M spectral type, have numerous flares, and have well-defined rotational modulation due to starspots. The inactive stars are of early M type, exhibit less starspot signature, and have fewer flares. A Kepler to U-band energy scaling allows comparison of the Kepler flare frequency distributions with previous ground-based data. M dwarfs span a large range of flare frequency and energy, blurring the distinction between active and inactive stars designated solely by the presence of Hα. We analyzed classical and complex (multiple peak) flares on GJ 1243, finding strong correlations between flare energy, amplitude, duration, and decay time, with only a weak dependence on rise time. Complex flares last longer and have higher energy at the same amplitude, and higher energy flares are more likely to be complex. A power law fits the energy distribution for flares with log E{sub K{sub p}}> 31 erg, but the predicted number of low-energy flares far exceeds the number observed, at energies where flares are still easily detectable, indicating that the power-law distribution may flatten at low energy. There is no correlation of flare occurrence or energy with starspot phase, the flare waiting time distribution is consistent with flares occurring randomly in time, and the energies of consecutive flares are uncorrelated. These observations support a scenario where many independent active regions on the stellar surface are contributing to the observed flare rate.


    Energy Technology Data Exchange (ETDEWEB)

    Archambault, S. [Physics Department, McGill University, Montreal, QC H3A 2T8 (Canada); Archer, A.; Buckley, J. H.; Bugaev, V. [Department of Physics, Washington University, St. Louis, MO 63130 (United States); Aune, T.; Buchovecky, M. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Barnacka, A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Benbow, W.; Cerruti, M. [Fred Lawrence Whipple Observatory, Harvard-Smithsonian Center for Astrophysics, Amado, AZ 85645 (United States); Bird, R.; Collins-Hughes, E. [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Byrum, K. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Cardenzana, J. V; Dickinson, H. J.; Eisch, J. D. [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Chen, X. [Institute of Physics and Astronomy, University of Potsdam, D-14476 Potsdam-Golm (Germany); Ciupik, L. [Astronomy Department, Adler Planetarium and Astronomy Museum, Chicago, IL 60605 (United States); Connolly, M. P. [School of Physics, National University of Ireland Galway, University Road, Galway (Ireland); Cui, W. [Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907 (United States); Dumm, J., E-mail: [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); and others


    The TeV binary system LS I +61° 303 is known for its regular, non-thermal emission pattern that traces the orbital period of the compact object in its 26.5 day orbit around its B0 Ve star companion. The system typically presents elevated TeV emission around apastron passage with flux levels between 5% and 15% of the steady flux from the Crab Nebula (>300 GeV). In this article, VERITAS observations of LS I +61° 303 taken in late 2014 are presented, during which bright TeV flares around apastron at flux levels peaking above 30% of the Crab Nebula flux were detected. This is the brightest such activity from this source ever seen in the TeV regime. The strong outbursts have rise and fall times of less than a day. The short timescale of the flares, in conjunction with the observation of 10 TeV photons from LS I +61° 303 during the flares, provides constraints on the properties of the accelerator in the source.

  8. Flare Activity of Wide Binary Stars with Kepler (United States)

    Clarke, Riley W.; Davenport, James R. A.; Covey, Kevin R.; Baranec, Christoph


    We present an analysis of flare activity in wide binary stars using a combination of value-added data sets from the NASA Kepler mission. The target list contains a set of previously discovered wide binary star systems identified by proper motions in the Kepler field. We cross-matched these systems with estimates of flare activity for ∼200,000 stars in the Kepler field, allowing us to compare relative flare luminosity between stars in coeval binaries. From a sample of 184 previously known wide binaries in the Kepler field, we find 58 with detectable flare activity in at least 1 component, 33 of which are similar in mass (q > 0.8). Of these 33 equal-mass binaries, the majority display similar (±1 dex) flare luminosity between both stars, as expected for stars of equal mass and age. However, we find two equal-mass pairs where the secondary (lower mass) star is more active than its counterpart, and two equal-mass pairs where the primary star is more active. The stellar rotation periods are also anomalously fast for stars with elevated flare activity. Pairs with discrepant rotation and activity qualitatively seem to have lower mass ratios. These outliers may be due to tidal spin-up, indicating these wide binaries could be hierarchical triple systems. We additionally present high-resolution adaptive optics images for two wide binary systems to test this hypothesis. The demographics of stellar rotation and magnetic activity between stars in wide binaries may be useful indicators for discerning the formation scenarios of these systems.


    Energy Technology Data Exchange (ETDEWEB)

    Sorriso-Valvo, L.; De Vita, G. [IMIP-CNR, U.O.S. LICRYL di Cosenza, Ponte P. Bucci, Cubo 31C, I-87036 Rende (Italy); Kazachenko, M. D.; Krucker, S.; Welsch, B. T.; Fisher, G. H. [Space Sciences Laboratory, University of California, 7 Gauss Way, Berkeley 94720, California (United States); Primavera, L.; Servidio, S.; Lepreti, F.; Carbone, V. [Dipartimento di Fisica, Università della Calabria, Ponte P. Bucci, Cubo 31C, I-87036 Rende (Italy); Vecchio, A., E-mail: [INGV, Sede di Cosenza, Ponte P. Bucci, Cubo 30C, I-87036 Rende (Italy)


    Solar Active Region NOAA 11158 has hosted a number of strong flares, including one X2.2 event. The complexity of current density and current helicity are studied through cancellation analysis of their sign-singular measure, which features power-law scaling. Spectral analysis is also performed, revealing the presence of two separate scaling ranges with different spectral index. The time evolution of parameters is discussed. Sudden changes of the cancellation exponents at the time of large flares and the presence of correlation with Extreme-Ultra-Violet and X-ray flux suggest that eruption of large flares can be linked to the small-scale properties of the current structures.

  10. A magnetic bald-patch flare in solar active region 11117 (United States)

    Jiang, Chao-Wei; Feng, Xue-Shang; Wu, Shi-Tsan; Hu, Qiang


    With SDO observations and a data-constrained magnetohydrodynamics (MHD) model, we identify a confined multi-ribbon flare that occurred on 2010 October 25 in solar active region 11117 as a magnetic bald patch (BP) flare with strong evidence. From the photospheric magnetic field observed by SDO/HMI, we find there are indeed magnetic BPs on the polarity inversion lines (PILs) which match parts of the flare ribbons. From the 3D coronal magnetic field derived from an MHD relaxation model constrained by the vector magnetograms, we find strikingly good agreement of the BP separatrix surface (BPSS) footpoints with the flare ribbons, and the BPSS itself with the hot flaring loop system. Moreover, the triggering of the BP flare can be attributed to a small flux emergence under the lobe of the BPSS, and the relevant change of coronal magnetic field through the flare is reproduced well by the pre-flare and post-flare MHD solutions, which match the corresponding pre- and post-flare AIA observations, respectively. Our work contributes to the study of non-typical flares that constitute the majority of solar flares but which cannot be explained by the standard flare model.

  11. Soft electron beams in solar active and flare region

    Energy Technology Data Exchange (ETDEWEB)

    Korneev, V.V.; Mandelshtam, S.L.; Oparin, S.N.; Urnov, A.M.; Zhitnik, I.A.


    On the basis of the experimental data obtained from the high resolution X-ray spectra for solar flares and active regions the suprathermal electron model (SEM) was proposed. This model suggests the existance of the multi-temperature structure of the solar plasma emitting Fe and Ca X-rays and the presence of additional electrons with low energies (no more than 10 keV) and small densities of about 1-5 percent relative to the thermal component.

  12. Flare Activity and UV Habitability in Extrasolar Planets (United States)

    Abrevaya, Ximena; Cortón, E.; Mauas, P. J. D.


    Usually, dwarf M stars are targets in the search for extraterrestrial life outside of our solar system. They are choose among other stars because they are the most abundant in the galaxy, the liquid- water habitable zone (LW-HZ) is closer to these colder stars and it would be therefore easier to detect a terrestrial planet inside it. However, it is believed that planets in the LW-HZ should be tidally locked, which implies that this planetary body would have a hot face and a cold one, but recent atmospheric modeling provided evidences that the heat in the hot face could be transferred to the cold face. Furthermore there is another factor to analyze if planets around these stars in the LW-HZ could be suitable for life due flare activity in many of these stars (dMe stars), could have a strong impact over potential life beings. In particular in this work we analyze the capability of UV-resistant microorganisms such as halophilic archaea, to survive the strong UV radiation characteristic of flare activity in dMe stars. Our results showed that the microorganisms can survive at the tested doses, showing that this kind of life could thrive in these extreme environments from the UV point of view.

  13. Investigation of relationships between parameters of solar nano-flares and solar activity (United States)

    Safari, Hossein; Javaherian, Mohsen; Kaki, Bardia


    Solar flares are one of the important coronal events which are originated in solar magnetic activity. They release lots of energy during the interstellar medium, right after the trigger. Flare prediction can play main role in avoiding eventual damages on the Earth. Here, to interpret solar large-scale events (e.g., flares), we investigate relationships between small-scale events (nano-flares) and large-scale events (e.g., flares). In our method, by using simulations of nano-flares based on Monte Carlo method, the intensity time series of nano-flares are simulated. Then, the solar full disk images taken at 171 angstrom recorded by SDO/AIA are employed. Some parts of the solar disk (quiet Sun (QS), coronal holes (CHs), and active regions (ARs)) are cropped and the time series of these regions are extracted. To compare the simulated intensity time series of nano-flares with the intensity time series of real data extracted from different parts of the Sun, the artificial neural networks is employed. Therefore, we are able to extract physical parameters of nano-flares like both kick and decay rate lifetime, and the power of their power-law distributions. The procedure of variations in the power value of power-law distributions within QS, CH is similar to AR. Thus, by observing the small part of the Sun, we can follow the procedure of solar activity.

  14. Magnetic Properties of Solar Active Regions that Govern Large Solar Flares and Eruptions (United States)

    Toriumi, Shin; Schrijver, Carolus J.; Harra, Louise; Hudson, Hugh S.; Nagashima, Kaori


    Strong flares and CMEs are often produced from active regions (ARs). In order to better understand the magnetic properties and evolutions of such ARs, we conducted statistical investigations on the SDO/HMI and AIA data of all flare events with GOES levels >M5.0 within 45 deg from the disk center for 6 years from May 2010 (from the beginning to the declining phase of solar cycle 24). Out of the total of 51 flares from 29 ARs, more than 80% have delta-sunspots and about 15% violate Hale’s polarity rule. We obtained several key findings including (1) the flare duration is linearly proportional to the separation of the flare ribbons (i.e., scale of reconnecting magnetic fields) and (2) CME-eruptive events have smaller sunspot areas. Depending on the magnetic properties, flaring ARs can be categorized into several groups, such as spot-spot, in which a highly-sheared polarity inversion line is formed between two large sunspots, and spot-satellite, where a newly-emerging flux next to a mature sunspot triggers a compact flare event. These results point to the possibility that magnetic structures of the ARs determine the characteristics of flares and CMEs. In the presentation, we will also show new results from the systematic flux emergence simulations of delta-sunspot formation and discuss the evolution processes of flaring ARs.

  15. Non-neutralized Electric Currents in Solar Active Regions and Flare Productivity (United States)

    Kontogiannis, Ioannis; Georgoulis, Manolis K.; Park, Sung-Hong; Guerra, Jordan A.


    We explore the association of non-neutralized currents with solar flare occurrence in a sizable sample of observations, aiming to show the potential of such currents in solar flare prediction. We used the high-quality vector magnetograms that are regularly produced by the Helioseismic Magnetic Imager, and more specifically, the Space weather HMI Active Region Patches (SHARP). Through a newly established method that incorporates detailed error analysis, we calculated the non-neutralized currents contained in active regions (AR). Two predictors were produced, namely the total and the maximum unsigned non-neutralized current. Both were tested in AR time-series and a representative sample of point-in-time observations during the interval 2012 - 2016. The average values of non-neutralized currents in flaring active regions are higher by more than an order of magnitude than in non-flaring regions and correlate very well with the corresponding flare index. The temporal evolution of these parameters appears to be connected to physical processes, such as flux emergence and/or magnetic polarity inversion line formation, that are associated with increased solar flare activity. Using Bayesian inference of flaring probabilities, we show that the total unsigned non-neutralized current significantly outperforms the total unsigned magnetic flux and other well-established current-related predictors. It therefore shows good prospects for inclusion in an operational flare-forecasting service. We plan to use the new predictor in the framework of the FLARECAST project along with other highly performing predictors.

  16. Flare activity and photospheric analysis of Proxima Centauri (United States)

    Pavlenko, Y.; Suárez Mascareño, A.; Rebolo, R.; Lodieu, N.; Béjar, V. J. S.; González Hernández, J. I.


    Context. We present the analysis of emission lines in high-resolution optical spectra of the planet-host star Proxima Centauri (Proxima) classified as a M5.5V. Aims: We carry out a detailed analysis of the observed spectra to get a better understanding of the physical conditions of the atmosphere of this star. Methods: We identify the emission lines in a series of 147 high-resolution optical spectra of the star at different levels of activity and compare them with the synthetic spectra computed over a wide spectral range. Results: Our synthetic spectra computed with the PHOENIX 2900/5.0/0.0 model atmosphere fits the observed spectral energy distribution from optical to near-infrared quite well. However, modelling strong atomic lines in the blue spectrum (3900-4200 Å) requires implementing additional opacity. We show that high-temperature layers in Proxima Centauri consist of at least three emitting parts: a) a stellar chromosphere where numerous emission lines form; we suggest that some emission cores of strong absorption lines of metals form there; b) flare regions above the chromosphere, where hydrogen Balmer lines up to high transition levels (10-2) form; and c) a stellar wind component with Vr = -30 km s-1 seen in some Balmer lines as blueshifted emission lines. We believe that the observed He line at 4026 Å in emission can be formed in that very hot region. Conclusions: We show that the real structure of the atmosphere of Proxima is rather complicated. The photosphere of the star is best fit by a normal M5 dwarf spectrum. On the other hand, emission lines form in the chromosphere, flare regions, and extended hot envelope. The movies are available at

  17. The impact of patients reported flares on functional impairment in rheumatoid arthritis patients with low-disease activity

    DEFF Research Database (Denmark)

    Küttel, Dorota Paulina; Christensen, R.; Primdahl, J.


    Background: Flares - episodes of worsening in disease activity - are common features in patients with rheumatoid arthritis (RA), even in remission or in low disease activity state. There are different definitions of flare. It is unknown whether patient reported flares lead to suboptimal long-term...

  18. Near Infrared Activity Close to the Crab Pulsar Correlated with Giant Gamma-ray Flares (United States)

    Rudy, Alexander R.; Max, Claire E.; Weisskopf, Martin C.


    We describe activity observed in the near-infrared correlated with a giant gamma-ray flare in the Crab Pulsar. The Crab Pulsar has been observed by the Fermi and AGILE satellites to flare for a period of 3 to 7 days, once every 1-1.5 years, increasing in brightness by a factor of 3-10 between 100MeV and 1GeV. We used Keck NIRC2 laser guide star adaptive optics imaging to observe the Crab Pulsar and environs before and during the March 2013 flare. We discuss the evidence for the knot as the location of the flares, and the theoretical implications of these observations. Ongoing target-of-opportunity programs hope to confirm this correlation for future flares.


    Energy Technology Data Exchange (ETDEWEB)

    Schrijver, Carolus J., E-mail: [Lockheed Martin Advanced Technology Center (A021S, Bldg. 252), 3251 Hanover Street, Palo Alto, CA 94304 (United States)


    Flares and eruptions from solar active regions (ARs) are associated with atmospheric electrical currents accompanying distortions of the coronal field away from a lowest-energy potential state. In order to better understand the origin of these currents and their role in M- and X-class flares, I review all AR observations made with Solar Dynamics Observatory (SDO)/Helioseismic and Magnetic Imager and SDO/Atmospheric Imaging Assembly from 2010 May through 2014 October within ≈40° from the disk center. I select the roughly 4% of all regions that display a distinctly nonpotential coronal configuration in loops with a length comparable to the scale of the AR, and all that emit GOES X-class flares. The data for 41 regions confirm, with a single exception, that strong-field, high-gradient polarity inversion lines (SHILs) created during emergence of magnetic flux into, and related displacement within, pre-existing ARs are associated with X-class flares. Obvious nonpotentiality in the AR-scale loops occurs in six of ten selected regions with X-class flares, all with relatively long SHILs along their primary polarity inversion line, or with a long internal filament there. Nonpotentiality can exist in ARs well past the flux-emergence phase, often with reduced or absent flaring. I conclude that the dynamics of the flux involved in the compact SHILs is of pre-eminent importance for the large-flare potential of ARs within the next day, but that their associated currents may not reveal themselves in AR-scale nonpotentiality. In contrast, AR-scale nonpotentiality, which can persist for many days, may inform us about the eruption potential other than those from SHILs which is almost never associated with X-class flaring.

  20. Statistical study of free magnetic energy and flare productivity of solar active regions

    Energy Technology Data Exchange (ETDEWEB)

    Su, J. T.; Jing, J.; Wang, S.; Wang, H. M. [Space Weather Research Laboratory, New Jersey Institute of Technology, University Heights, Newark, NJ 07102-1982 (United States); Wiegelmann, T., E-mail: [Max-Planck-Institut fur Sonnensystemforschung, Max-Planck-Strasse 2, D-37191 Katlenburg-Lindau (Germany)


    Photospheric vector magnetograms from the Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory are utilized as the boundary conditions to extrapolate both nonlinear force-free and potential magnetic fields in solar corona. Based on the extrapolations, we are able to determine the free magnetic energy (FME) stored in active regions (ARs). Over 3000 vector magnetograms in 61 ARs were analyzed. We compare FME with the ARs' flare index (FI) and find that there is a weak correlation (<60%) between FME and FI. FME shows slightly improved flare predictability relative to the total unsigned magnetic flux of ARs in the following two aspects: (1) the flare productivity predicted by FME is higher than that predicted by magnetic flux and (2) the correlation between FI and FME is higher than that between FI and magnetic flux. However, this improvement is not significant enough to make a substantial difference in time-accumulated FI, rather than individual flare, predictions.

  1. Cool Spot and Flare Activities of a RS CVn Binary KIC 7885570 (United States)

    Kunt, M.; Dal, H. A.


    We present here the results of our studies on the physical nature and chromospheric activity of a RS CVn binary KIC 7885570 based on the Kepler Mission data. Assuming the primary component temperature, 6530 K, the temperature of the secondary component was found to be 5732±4 K. The mass ratio of the components (q) was found to be 0.43±0.01, while the inclination (i) of the system - 80.6°±0.1°. Additionally, the data were separated into 35 subsets to model the sinusoidal variation due to the rotational modulation, using the SpotModel program, as the light curve analysis indicated the chromospherically active secondary component. It was found that there are generally two spotted areas, whose radii, longitudes and latitudes are rapidly changing, located around the latitudes of +50° and +90° on the active component. Moreover, 113 flares were detected and their parameters were computed from the available data. The One Phase Exponential Association function model was derived from the parameters of these flares. Using the regression calculations, the Plateau value was found to be 1.9815±0.1177, while the half-life value was computed as 3977.2 s. In addition, the flare frequency (N1) - the flare number per hour, was estimated to be 0.00362 h-1, while flare frequency (N2) - the flare-equivalent duration emitted per hour, was computed as 0.00001. Finally, the times of eclipses were computed for 278 minima of the light curves, whose analysis indicated that the chromosphere activity nature of the system causes some effects on these minima times. Comparing the chromospheric activity patterns with the analogues of the secondary component, it is seen that the magnetic activity level is remarkably low. However, it is still at the expected level according to the B-V color index of 0.643 mag for the secondary component.

  2. The influence of active region information on the prediction of solar flares: an empirical model using data mining

    Directory of Open Access Journals (Sweden)

    M. Núñez


    Full Text Available Predicting the occurrence of solar flares is a challenge of great importance for many space weather scientists and users. We introduce a data mining approach, called Behavior Pattern Learning (BPL, for automatically discovering correlations between solar flares and active region data, in order to predict the former. The goal of BPL is to predict the interval of time to the next solar flare and provide a confidence value for the associated prediction. The discovered correlations are described in terms of easy-to-read rules. The results indicate that active region dynamics is essential for predicting solar flares.

  3. Block-induced Complex Structures Building the Flare-productive Solar Active Region 12673

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shuhong; Zhang, Jun [CAS Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Zhu, Xiaoshuai [Max-Planck Institute for Solar System Research, D-37077 Göttingen (Germany); Song, Qiao, E-mail: [Key Laboratory of Space Weather, National Center for Space Weather, China Meteorological Administration, Beijing 100081 (China)


    Solar active region (AR) 12673 produced 4 X-class, 27 M-class, and numerous lower-class flares during its passage across the visible solar disk in 2017 September. Our study is to answer the questions why this AR was so flare-productive and how the X9.3 flare, the largest one of the past decade, took place. We find that there was a sunspot in the initial several days, and then two bipolar regions emerged nearby it successively. Due to the standing of the pre-existing sunspot, the movement of the bipoles was blocked, while the pre-existing sunspot maintained its quasi-circular shaped umbra only with the disappearance of a part of penumbra. Thus, the bipolar patches were significantly distorted, and the opposite polarities formed two semi-circular shaped structures. After that, two sequences of new bipolar regions emerged within the narrow semi-circular zone, and the bipolar patches separated along the curved channel. The new bipoles sheared and interacted with the previous ones, forming a complex topological system, during which numerous flares occurred. At the highly sheared region, a great deal of free energy was accumulated. On September 6, one negative patch near the polarity inversion line began to rapidly rotate and shear with the surrounding positive fields, and consequently the X9.3 flare erupted. Our results reveal that the block-induced complex structures built the flare-productive AR and the X9.3 flare was triggered by an erupting filament due to the kink instability. To better illustrate this process, a block-induced eruption model is proposed for the first time.

  4. Block-induced Complex Structures Building the Flare-productive Solar Active Region 12673 (United States)

    Yang, Shuhong; Zhang, Jun; Zhu, Xiaoshuai; Song, Qiao


    Solar active region (AR) 12673 produced 4 X-class, 27 M-class, and numerous lower-class flares during its passage across the visible solar disk in 2017 September. Our study is to answer the questions why this AR was so flare-productive and how the X9.3 flare, the largest one of the past decade, took place. We find that there was a sunspot in the initial several days, and then two bipolar regions emerged nearby it successively. Due to the standing of the pre-existing sunspot, the movement of the bipoles was blocked, while the pre-existing sunspot maintained its quasi-circular shaped umbra only with the disappearance of a part of penumbra. Thus, the bipolar patches were significantly distorted, and the opposite polarities formed two semi-circular shaped structures. After that, two sequences of new bipolar regions emerged within the narrow semi-circular zone, and the bipolar patches separated along the curved channel. The new bipoles sheared and interacted with the previous ones, forming a complex topological system, during which numerous flares occurred. At the highly sheared region, a great deal of free energy was accumulated. On September 6, one negative patch near the polarity inversion line began to rapidly rotate and shear with the surrounding positive fields, and consequently the X9.3 flare erupted. Our results reveal that the block-induced complex structures built the flare-productive AR and the X9.3 flare was triggered by an erupting filament due to the kink instability. To better illustrate this process, a block-induced eruption model is proposed for the first time.

  5. Properties of quasi-periodic pulsations in solar flares from a single active region (United States)

    Pugh, C. E.; Nakariakov, V. M.; Broomhall, A.-M.; Bogomolov, A. V.; Myagkova, I. N.


    Context. Quasi-periodic pulsations (QPPs) are a common feature of solar and stellar flares, and so the nature of these pulsations should be understood in order to fully understand flares. Aims: We investigate the properties of a set of solar flares originating from a single active region (AR) that exhibit QPPs, and in particular look for any indication of QPP periods relating to AR properties, as might be expected if the characteristic timescale of the pulsations corresponds to a characteristic length scale of the structure from which the pulsations originate. The three AR properties used for this study are the photospheric area, bipole separation distance, and average magnetic field strength at the photosphere. The AR studied, known as NOAA 12172/12192/12209, was unusually long-lived and persisted for over three Carrington rotations between September and November 2014. During this time a total of 181 flares were observed by GOES. Methods: Data from the GOES/XRS, SDO/EVE/ESP, Fermi/GBM, Vernov/DRGE and Nobeyama Radioheliograph observatories were used to determine if QPPs were present in the flares. For the soft X-ray GOES/XRS and EVE/ESP data, the time derivative of the signal was used so that any variability in the impulsive phase of the flare was emphasised. Periodogram power spectra of the time series data, without any form of detrending, were inspected and flares with a peak above the 95% confidence level in the power spectrum were labelled as having candidate QPPs. The confidence levels were determined taking full account of data uncertainties and the possible presence of red noise. Active region properties were determined using SDO/HMI line of sight magnetogram data. Results: A total of 37 flares, i.e. 20% of the sample, show good evidence of having stationary or weakly non-stationary QPPs, and some of the pulsations can be seen in data from multiple instruments and in different wavebands. Because the detection method used was rather conservative, this may be

  6. Confrontation Between Judicial Activism and State of Exception

    Directory of Open Access Journals (Sweden)

    Alexandre Pedro Moura D’Almeida


    Full Text Available The judiciary has excelled in the international and national scene, reaching role of great importance, thus creating opposition to the legislative and executive powers. The center of gravity of the sovereign power of the state moves toward the judiciary, that happens to have a more active role and controlling of the others powers, but also appears as a great defender of social and fundamental rights causes, seeking to make an effective constitution. Its great public notoriety has attracted great distrust of various sectors of society, especially by the two powers that have an increasing interference. Arises, therefore, a speech that the judiciary would be reversing into a big and uncontrollable power, increasing the suspicion that now it would be living in a real dictatorship of the judiciary through judicial activism. There is a growing concern with the expansion of activism and the role of the judiciary. The purpose of this work is to conceptualize and approach the judicial activism and the state of exception to search and reveal if there is any similarity, to then draw up a possible answer to the concern of forming a dictatorship of the judiciary. The state of exception is one of the rule of law paradoxes, while activism is a political manifestation of the judiciary. The similarity between the institutes appears as appalling in a dynamic expansion of political power of a state institution exercising judicial function, putting in check who would be the sovereign in a rule of law and democratic state.

  7. Comparison of long-term trend of solar radius with sunspot activity and flare index (United States)

    Kilic, H.; Golbasi, O.


    Results are presented from a study of solar radius measurements taken with the solar astrolabe at the TUBITAK National Observatory (TUG) over seven years, 2001-2007. The data series with standard deviation of 0.35 arcsec shows the long-term variational trend with 0.04 arcsec/year. On the other hand, the data series of solar radius are compared with the data of sunspot activity and H- α flare index for the same period. Over the seven year trend, we have found significant linear anti-correlations between the solar radius and other indicators such as sunspot numbers, sunspot areas, and H- α flare index. While the solar radius displays the strongest anti-correlation (-0.7676) with sunspot numbers, it shows a significant anti-correlation of -0.6365 with sunspot areas. But, the anti-correlation between the solar radius and H- α flare index is found to be -0.4975, slightly lower than others. In addition, we computed Hurst exponent of the data sets ranging between 0.7214 and 0.7996, exhibiting the persistent behavior for the long term trend. In the light of the strong correlations with high significance, we may suggest that there are a causal relationship between the solar radius and solar time series such as sunspot activity and H- α flare index.


    Energy Technology Data Exchange (ETDEWEB)

    Braun, D. C., E-mail: [NorthWest Research Associates, 3380 Mitchell Lane, Boulder, CO 80301 (United States)


    We use helioseismic holography to study the association of shallow flows with solar flare activity in about 250 large sunspot groups observed between 2010 and 2014 with the Helioseismic and Magnetic Imager on the Solar Dynamics Observatory. Four basic flow parameters: horizontal speed, horizontal component of divergence, vertical component of vorticity, and a vertical kinetic helicity proxy, are mapped for each active region (AR) during its passage across the solar disk. Flow indices are derived representing the mean and standard deviation of these parameters over magnetic masks and compared with contemporary measures of flare X-ray flux. A correlation exists for several of the flow indices, especially those based on the speed and the standard deviation of all flow parameters. However, their correlation with X-ray flux is similar to that observed with the mean unsigned magnetic flux density over the same masks. The temporal variation of the flow indices are studied, and a superposed epoch analysis with respect to the occurrence to 70 M and X-class flares is made. While flows evolve with the passage of the ARs across the disk, no discernible precursors or other temporal changes specifically associated with flares are detected.

  9. Why Is the Great Solar Active Region 12192 Flare-rich but CME-poor? (United States)

    Sun, Xudong; Bobra, Monica G.; Hoeksema, J. Todd; Liu, Yang; Li, Yan; Shen, Chenglong; Couvidat, Sebastien; Norton, Aimee A.; Fisher, George H.


    Solar active region (AR) 12192 of 2014 October hosts the largest sunspot group in 24 years. It is the most prolific flaring site of Cycle 24 so far, but surprisingly produced no coronal mass ejection (CME) from the core region during its disk passage. Here, we study the magnetic conditions that prevented eruption and the consequences that ensued. We find AR 12192 to be “big but mild” its core region exhibits weaker non-potentiality, stronger overlying field, and smaller flare-related field changes compared to two other major flare-CME-productive ARs (11429 and 11158). These differences are present in the intensive-type indices (e.g., means) but generally not the extensive ones (e.g., totals). AR 12192's large amount of magnetic free energy does not translate into CME productivity. The unexpected behavior suggests that AR eruptiveness is limited by some relative measure of magnetic non-potentiality over the restriction of background field, and that confined flares may leave weaker photospheric and coronal imprints compared to their eruptive counterparts.

  10. Super Active Regions, X-ray Flares and Geo-magnetic Storm (United States)

    Tian, L.; Wang, J.

    It is important to know which active region is most likely to produce major flares, on- set of Coronal Mass Ejections and solar storms that hazard space weather. We inves- tigate more than 20 Super Active Regions (SARs) in the 22nd and 23rd cycles by five parameters: area of sunspot, X-ray flare Index, radio peak flux, proton flux and geo- magnetic index (A_p). The data include the vector magnetograms from Huairou Solar Observatory in Beijing and space data from Web ( Magnetic structure of the active regions are classified three kinds. We try to iden- tify which magnetic structure is most likely to produce major flares and solar storms, where these active regions located and in which case they produce the space weather hazards. Magnetic flux, twist and tilt of magnetic fields are studied to investigate the causes of onset of CMEs and solar storms. We especially pay attention to the middle and small active regions which produced and major geo-magnetic storms because they are easy to be looked down in the prediction.

  11. Influence of solar activity on fibrinolysis and fibrinogenolysis. [statistical correlation between solar flare and blood coagulation indices (United States)

    Marchenko, V. I.


    During periods of high solar activity fibrinolysis and fibrinogenolysis are increased. A direct correlative relationship is established between the indices of fibrinolysis, fibrinogenolysis and solar flares which were recorded two days before the blood was collected for analysis.

  12. Platelet-activating factor (PAF) induces wheal and flare skin reactions independent of mast cell degranulation. (United States)

    Krause, K; Giménez-Arnau, A; Martinez-Escala, E; Farré-Albadalejo, M; Abajian, M; Church, M K; Maurer, M


    Platelet-activating factor (PAF) causes wheal and flare responses which are abrogated by H1-antihistamines giving rise to the hypothesis that PAF-induced wheal development is secondary to histamine release from dermal mast cells. But is this hypothesis correct? Wheal and flare responses were induced by intradermal injection of PAF, codeine and histamine in 14 healthy volunteers. Dermal histamine and PGD2 contractions were measured using microdialysis. PAF, unlike histamine and codeine, did not cause a statistically significant rise in mean histamine levels with ten persons showing negligible histamine release. Codeine caused a significant but variable histamine release, ranging from 29 to 282 ng/ml. Codeine, but not PAF or histamine, caused a small but statistically significant release of PGD2. Wheal and flare reactions in human skin induced by PAF are not associated with histamine release and, therefore, appear to be independent of mast cell degranulation. © 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  13. Dynamic Precursors of Flares in Active Region NOAA 10486

    Indian Academy of Sciences (India)


    potentiality of a specific area of the active region, i.e., it captures the temporal variation of the weighted horizontal gradient of magnetic flux summed up for the region where opposite magnetic polarities are highly mixed. The third one ...

  14. Fibromyalgia Flares: A Qualitative Analysis. (United States)

    Vincent, Ann; Whipple, Mary O; Rhudy, Lori M


    Patients with fibromyalgia report periods of symptom exacerbation, colloquially referred to as "flares" and despite clinical observation of flares, no research has purposefully evaluated the presence and characteristics of flares in fibromyalgia. The purpose of this qualitative study was to describe fibromyalgia flares in a sample of patients with fibromyalgia. Using seven open-ended questions, patients were asked to describe how they perceived fibromyalgia flares and triggers and alleviating factors associated with flares. Patients were also asked to describe how a flare differs from their typical fibromyalgia symptoms and how they cope with fibromyalgia flares. Content analysis was used to analyze the text. A total of 44 participants completed the survey. Responses to the seven open-ended questions revealed three main content areas: causes of flares, flare symptoms, and dealing with a flare. Participants identified stress, overdoing it, poor sleep, and weather changes as primary causes of flares. Symptoms characteristic of flares included flu-like body aches/exhaustion, pain, fatigue, and variety of other symptoms. Participants reported using medical treatments, rest, activity and stress avoidance, and waiting it out to cope with flares. Our results demonstrate that periods of symptom exacerbation (i.e., flares) are commonly experienced by patients with fibromyalgia and symptoms of flares can be differentiated from every day or typical symptoms of fibromyalgia. Our study is the first of its kind to qualitatively explore characteristics, causes, and management strategies of fibromyalgia flares. Future studies are needed to quantitatively characterize fibromyalgia flares and evaluate mechanisms of flares. © 2015 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail:

  15. Rapid photometry of EZ Canis Majoris - Searching for flare activity in Wolf-Rayet stars (United States)

    Matthews, J. M.; Moffat, A. F. J.; Marchenko, S. V.


    EZ CMa was chosen for a trial run of high-speed photometry to search for flare activity in W-R stars. Data were collected during UT November 27-December 2, 1991 with the 1.0-telescope + ASCAP photometer and the 0.6-m telescope + manual photometer of the Cerro Tololo Inter-American Observatory. A period near 22.7 min was found. A brightness increase of about 1 percent, lasting for about 10 min in the otherwise smooth light curve, was observed. Fourier analysis of the data sets an upper limit of 0.0005 mag on any variations with periods less than about 10 min.

  16. The warming effect of the flare of natural gas on soil biological activity (United States)

    Yevdokimov, Ilya; Yusupov, Irek; Shavnin, Sergey


    Simulation of global warming is one of the key issues of international efforts to study climatic changes. A number of manipulation experiments with soil warming have been established throughout the world in the last decades. We used warming with natural gas flare near the pine forest as a kind of manipulation experiment to assess the synergistic effect of drying and warming on plant-soil-microbial interactions. The experimental area is situated in a pine forest subzone of the forest zone of the Western Siberia near Pokachi, Yugra (61o73'N, 75o49'E). The experimental plots were established in a young Scotch pine forest on sandy podzolic soil at three distances of 70, 90 and 130 m from the flare of natural gas, with trees exposed to strong (S) moderate (M), and weak (W) impact, respectively. Increase of soil temperature in summer time were moderate: on average 0.7oC and 1.3oC for the plots M and S, respectively, compared to the plot W. The plot S demonstrated increase in CO2 efflux from the soil surface, mainly due to intensifying plant root respiration, by 18% compared to the plot W as well as increase in SOM content by 31%, with intensive accumulation of recalcitrant humus. By contrast, microbial biomass, labile SOM pool and basal respiration were higher in soil with weak flaring impact by 74%, 33% and 24%, respectively. Thus, three trends in plant-soil-microbe system exposed to warming and drying were revealed: i) SOM accumulation, ii) suppression of microbial activity, and iii) stimulation of root respiration. The research was supported by the Russian Science Foundation and Russian Foundation for Basic Researches.

  17. Comparative activity of cetirizine and mizolastine on histamine-induced skin wheal and flare responses at 24 h. (United States)

    Purohit, A; Mélac, M; Pauli, G; Frossard, N


    The aim of our study was to compare the activity of cetirizine 10 mg with that of mizolastine 10 mg vs placebo at 24 h after intake in healthy volunteers. This was a double-blind, randomized, placebo controlled, three-way cross-over study with a wash-out period of 7 +/- 2 days between each period. The study included 36 healthy volunteers (18--50 years, mean age = 32 years; 9 males). The objective measurement was the cutaneous reactivity to increasing concentrations of histamine (0, 5, 10, 20, 40, 80, 160 mg ml(-1)) administered by prick tests. The reactivity was evaluated by the wheal and flare areas (mm2). The AUC (area under curves) values of the wheal and flare areas as a function of the log2 transformed histamine concentration were calculated for each subject and treatment, and compared. A highly significant treatment effect was evidenced both for wheal and flare responses (P = 0.0001). This indicates the good activity of both cetirizine 10 mg and mizolastine 10 mg in inhibiting skin wheal and flare reactions to histamine. In addition, the mean AUC values significantly differed between cetirizine and mizolastine (64.8 and 117.8 log2 (mg ml(-1)) x mm2 for wheal, and 939.4 and 2340.8 for flare, respectively; P = 0.0001), with a superior activity of cetirizine than mizolastine at 24 h after intake both on wheal and flare responses. The tolerance of cetirizine and mizolastine was good. The severity of the adverse events was never more than 'moderate', 'fatigue' being the most frequent reported symptom [cetirizine (6 subjects), placebo (3), mizolastine (5)], followed by 'somnolence' [cetirizine (0), placebo (1), mizolastine (3)]. There was no serious adverse event. This study shows that cetirizine (10 mg) suppresses skin reactivity to histamine more effectively than mizolastine (10 mg) 24 h after intake in healthy volunteers.

  18. Structure-activity relationships for some substance P-related peptides that cause wheal and flare reactions in human skin. (United States)

    Foreman, J C; Jordan, C C; Oehme, P; Renner, H


    Substance P (6.25-25 p-mole) produced dose-dependent flare and wheal responses when injected intradermally into the volar surface of the human forearm. The maximum flare response was obtained within the first 3 min of injection and declined thereafter. The wheal response reached a maximum after 12 min following the injection. Only those peptides having one or more basic residues in the N-terminal region were effective in producing a flare reaction. Eledoisin-related peptide and SP1-9 were 17 and 7 times less active than substance P respectively, whilst [D-pro2, D-phe7, D-trp9]SP1-11 was twice as active. The N-terminal tetrapeptide, SP1-4 and eledoisin were inactive in the dose range tested. Wheal-producing activity was not dependent on the presence of basic residues and the rank order of relative potencies was: physalaemin (2.0): [D-pro2, D-phe7, D-trp9]SP1-11 (1.1): SP1-11 (1.0): SP4-11 (0.4): SP1-9 (0.15): eledoisin-related peptide (0.08): eledoisin (0.06). The N-terminal tetrapeptide failed to produce a wheal response in the dose range tested. Substance P was approximately equi-active with poly-L-arginine in the production of wheal and flare and both of these agents were about 10 times more potent than histamine. Adenosine triphosphate (25-400 n-mole) produced dose-dependent wheal and flare responses and was 10,000 times less potent than substance P. Pre-treatment of the subjects with the H1 histamine antagonist, chlorpheniramine, (20 mg I.V.) reduced the wheal and flare responses to substance P. Local anaesthetic injection into the skin reduced the spread of the flare response but did not affect the development of the wheal response. Pre-treatment of the skin with capsaicin reduced the flare but not the wheal response to intradermal injection of histamine. The results are discussed in relation to the mechanism of the 'axon reflex' vasodilatation in skin. This is thought to involve mast cells in addition to substance P-containing primary afferent neurones.


    Energy Technology Data Exchange (ETDEWEB)

    He Haoning; Wang Xiangyu [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Zhang Binbin; Meszaros, Peter [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Li Zhuo [Department of Astronomy, Peking University, Beijing 100871 (China)


    Recently, Fermi-LAT detected GeV emission during the X-ray flaring activity in GRB 100728A. We study various scenarios for its origin. The hard spectrum of the GeV emission favors the external inverse Compton (EIC) origin in which X-ray flare photons are up-scattered by relativistic electrons in the external forward shock. This EIC scenario, with anisotropic scattering effect taken into account, can reproduce the temporal and spectral properties of the GeV emission in GRB 100728A.

  20. A Polyphenylene Support for Pd Catalysts with Exceptional Catalytic Activity

    DEFF Research Database (Denmark)

    Wang, Feng; Mielby, Jerrik Jørgen; Richter, Felix Herrmann


    We describe a solid polyphenylene support that serves as an excellent platform for metal-catalyzed reactions that are normally carried out under homogeneous conditions. The catalyst is synthesized by palladium-catalyzed Suzuki coupling which directly results in formation of palladium nanoparticles...... confined to a porous polyphenylene network. The composite solid is in turn highly active for further Suzuki coupling reactions, including non-activated substrates that are challenging even for molecular catalysts....

  1. A Comparative Study of the Eruptive and Non-eruptive Flares Produced by the Largest Active Region of Solar Cycle 24 (United States)

    Sarkar, Ranadeep; Srivastava, Nandita


    We investigate the morphological and magnetic characteristics of solar active region (AR) NOAA 12192. AR 12192 was the largest region of Solar Cycle 24; it underwent noticeable growth and produced 6 X-class flares, 22 M-class flares, and 53 C-class flares in the course of its disc passage. However, the most peculiar fact of this AR is that it was associated with only one CME in spite of producing several X-class flares. In this work, we carry out a comparative study between the eruptive and non-eruptive flares produced by AR 12192. We find that the magnitude of abrupt and permanent changes in the horizontal magnetic field and Lorentz force are significantly smaller in the case of the confined flares compared to the eruptive one. We present the areal evolution of AR 12192 during its disc passage. We find the flare-related morphological changes to be weaker during the confined flares, whereas the eruptive flare exhibits a rapid and permanent disappearance of penumbral area away from the magnetic neutral line after the flare. Furthermore, from the extrapolated non-linear force-free magnetic field, we examine the overlying coronal magnetic environment over the eruptive and non-eruptive zones of the AR. We find that the critical decay index for the onset of torus instability was achieved at a lower height over the eruptive flaring region, than for the non-eruptive core area. These results suggest that the decay rate of the gradient of overlying magnetic-field strength may play a decisive role to determine the CME productivity of the AR. In addition, the magnitude of changes in the flare-related magnetic characteristics are found to be well correlated with the nature of solar eruptions.

  2. Short-term evolution and coexistence of spots, plages and flare activity on LQ Hydrae (United States)

    Flores Soriano, M.; Strassmeier, K. G.


    Aims: We aim to study the short-term evolution of the chromospheric and photospheric activity of the young, single K2 dwarf LQ Hya. Methods: Four months of quasi-simultaneous spectroscopic and photometric observations were used to study the variations of the photometric light curve, the evolution of the chromospheric activity from the Hα and Hβ lines, and the distribution of cool spots from Doppler maps. Results: During our observations one side of the star was more active than the other. The equivalent width of the Hα line from the least active hemisphere increased from ≈0.7 Å at the beginning of the observation to 1.0 Å at the end. The basal emission of the most active hemisphere remained roughly constant at EWHαt1.0 Å. Intense flare activity was observed during the first twenty days, where at least four different events were detected. The line asymmetries of the Hα line suggest that one of the flares could have produced a mass ejection with a maximum projected speed of 70kms-1. The rotational modulation of the V-band photometry showed clear anti-correlation with the chromospheric activity. The difference in brightness between the opposite hemispheres decreased from 0.m16 to 0.m09 in two months. Three spots gradually moving apart from each other are dominating the photospheric Doppler maps. The comparison between the maps and the Hα line as the star rotates reveals the spatial coexistence of chromospheric Hα emission and photospheric spots. Conclusions: Our results indicate that the active regions of LQ Hya can live for at least four months. The detected changes in the photometric light curve and the spectroscopic Doppler images seem to be more a consequence of the spatial redistribution of the active regions rather than due to changes in their strength. Only one of the active regions shows significant changes in its chromospheric emission. Based on data obtained with the STELLA robotic telescope in Tenerife, an AIP facility jointly operated by AIP

  3. Do Physical Activities Trigger Flare-ups During an Acute Low Back Pain Episode?A Longitudinal Case-Crossover Feasibility Study. (United States)

    Suri, Pradeep; Rainville, James; de Schepper, Evelien; Martha, Julia; Hartigan, Carol; Hunter, David J


    Prospective, longitudinal case-crossover study. To determine whether physical activities trigger flare-ups of pain during the course of acute low back pain (LBP). There exist no evidence-based estimates for the transient risk of pain flare-ups associated with specific physical activities, during acute LBP. Participants with LBP of duration up, defined as 'a period of increased pain lasting at least 2 hours, when your pain intensity is distinctly worse than it has been recently'. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated for associations between potential triggers over the past 24 hours, and the risk of LBP flare-ups, using conditional logistic regression. Of 48 participants followed longitudinally, 30 participants had both case ('flare') and control periods and contributed data to the case-crossover analysis. There were 81 flare periods and 247 control periods, an average of 11 periods per participant. Prolonged sitting (> 6 hours) was the only activity that was significantly associated with flare-ups(OR 4.4, 95% CI 2.0-9.7; p ups (OR 2.5, 95% CI 1.0-6.0; p = 0.04). In multivariable analyses, prolonged sitting(OR 4.2, 95% CI 1.9-9.1; p up risk. Among participants with acute LBP, prolonged sitting (>6 hours) and stress or depression triggered LBP flare-ups. Physical therapy was a deterrent of flare-ups. 2.

  4. Numerical Simulations of Flare-productive Active Regions: δ-sunspots, Sheared Polarity Inversion Lines, Energy Storage, and Predictions (United States)

    Toriumi, Shin; Takasao, Shinsuke


    Solar active regions (ARs) that produce strong flares and coronal mass ejections (CMEs) are known to have a relatively high non-potentiality and are characterized by δ-sunspots and sheared magnetic structures. In this study, we conduct a series of flux emergence simulations from the convection zone to the corona and model four types of active regions that have been observationally suggested to cause strong flares, namely the spot–spot, spot–satellite, quadrupole, and inter-AR cases. As a result, we confirm that δ-spot formation is due to the complex geometry and interaction of emerging magnetic fields, and we find that the strong-field, high-gradient, highly sheared polarity inversion line (PIL) is created by the combined effect of the advection, stretching, and compression of magnetic fields. We show that free magnetic energy builds up in the form of a current sheet above the PIL. It is also revealed that photospheric magnetic parameters that predict flare eruptions reflect the stored free energy with high accuracy, while CME-predicting parameters indicate the magnetic relationship between flaring zones and entire ARs.

  5. Which of Kepler's Stars Flare? (United States)

    Kohler, Susanna


    The habitability of distant exoplanets is dependent upon many factors one of which is the activity of their host stars. To learn about which stars are most likely to flare, a recent study examines tens of thousands of stellar flares observed by Kepler.Need for a Broader SampleArtists rendering of a flaring dwarf star. [NASAs Goddard Space Flight Center/S. Wiessinger]Most of our understanding of what causes a star to flare is based on observations of the only star near enough to examine in detail the Sun. But in learning from a sample size of one, a challenge arises: we must determine which conclusions are unique to the Sun (or Sun-like stars), and which apply to other stellar types as well.Based on observations and modeling, astronomers think that stellar flares result from the reconnection of magnetic field lines in a stars outer atmosphere, the corona. The magnetic activity is thought to be driven by a dynamo caused by motions in the stars convective zone.HR diagram of the Kepler stars, with flaring main-sequence (yellow), giant (red) and A-star (green) stars in the authors sample indicated. [Van Doorsselaere et al. 2017]To test whether these ideas are true generally, we need to understand what types of stars exhibit flares, and what stellar properties correlate with flaring activity. A team of scientists led by Tom Van Doorsselaere (KU Leuven, Belgium) has now used an enormous sample of flares observed by Kepler to explore these statistics.Intriguing TrendsVan Doorsselaere and collaborators used a new automated flare detection and characterization algorithm to search through the raw light curves from Quarter 15 of the Kepler mission, building a sample of 16,850 flares on 6,662 stars. They then used these to study the dependence of the flare occurrence rate, duration, energy, and amplitude on the stellar spectral type and rotation period.This large statistical study led the authors to several interesting conclusions, including:Flare star incidence rate as a a

  6. HMI Data Driven Magnetohydrodynamic Model Predicted Active Region Photospheric Heating Rates: Their Scale Invariant, Flare Like Power Law Distributions, and Their Possible Association With Flares (United States)

    Goodman, Michael L.; Kwan, Chiman; Ayhan, Bulent; Shang, Eric L.


    A data driven, near photospheric, 3 D, non-force free magnetohydrodynamic model predicts time series of the complete current density, and the resistive heating rate Q at the photosphere in neutral line regions (NLRs) of 14 active regions (ARs). The model is driven by time series of the magnetic field B observed by the Helioseismic and Magnetic Imager on the Solar Dynamics Observatory (SDO) satellite. Spurious Doppler periods due to SDO orbital motion are filtered out of the time series for B in every AR pixel. Errors in B due to these periods can be significant. The number of occurrences N(q) of values of Q > or = q for each AR time series is found to be a scale invariant power law distribution, N(Q) / Q-s, above an AR dependent threshold value of Q, where 0.3952 or = E obeys the same type of distribution, N(E) / E-S, above an AR dependent threshold value of E, with 0.38 < or approx. S < or approx. 0.60, also with little variation among ARs. Within error margins the ranges of s and S are nearly identical. This strong similarity between N(Q) and N(E) suggests a fundamental connection between the process that drives coronal flares and the process that drives photospheric NLR heating rates in ARs. In addition, results suggest it is plausible that spikes in Q, several orders of magnitude above background values, are correlated with times of the subsequent occurrence of M or X flares.

  7. Solar Flares (United States)

    Savage, Sabrina


    Because the Earth resides in the atmosphere of our nearest stellar neighbor, events occurring on the Sun's surface directly affect us by interfering with satellite operations and communications, astronaut safety, and, in extreme circumstances, power grid stability. Solar flares, the most energetic events in our solar system, are a substantial source of hazardous space weather affecting our increasingly technology-dependent society. While flares have been observed using ground-based telescopes for over 150 years, modern space-bourne observatories have provided nearly continuous multi-wavelength flare coverage that cannot be obtained from the ground. We can now probe the origins and evolution of flares by tracking particle acceleration, changes in ionized plasma, and the reorganization of magnetic fields. I will walk through our current understanding of why flares occur and how they affect the Earth and also show several examples of these fantastic explosions.

  8. Comparative activity of cetirizine and desloratadine on histamine-induced wheal-and-flare responses during 24 hours. (United States)

    Purohit, Ashok; Melac, Michel; Pauli, Gabrielle; Frossard, Nelly


    Cetirizine and desloratadine are antihistamines active in the treatment of symptoms associated with seasonal allergic rhinitis and chronic urticaria. To compare the antihistamine activity of desloratadine, the active metabolite of loratadine, with that of cetirizine in the skin wheal-and-flare responses during 24 hours. This was a double-blind, randomized, placebo-controlled, single oral dose, crossover study. Skin reaction to histamine (100 mg/mL), administered by prick tests, was measured by the wheal and flare surface areas for 24 hours (before treatment and at 0.5, 1, 2, 3, 4, 6, 8, 10, 12, and 24 hours). Eighteen healthy volunteers (mean age, 33.9 years; 13 women) participated in this study. The areas under the curves of the wheal-and-flare responses as a function of time (primary efficacy variables) were compared using analysis of variance. A highly significant overall treatment effect (P wheal and flare inhibition, with the activity of cetirizine and desloratadine significantly superior to that of placebo (P wheal inhibition of at least 70%, occurring between 2 and 4 hours, whereas all subjects using cetirizine reached a wheal inhibition of at least 70% between 0.5 and 3 hours (median time, 1.7 hours). The difference between the 2 active drugs was highly significant (P wheal inhibition of at least 70% was zero with placebo and desloratadine and was 21.9 hours with cetirizine (P skin reactivity to histamine compared with desloratadine during 24 hours after a single dose, with a consistent duration of action for cetirizine, as previously reported.

  9. Evaluation of the Disease Activity Score in Twenty-Eight Joints-Based Flare Definitions in Rheumatoid Arthritis: Data From a Three-Year Clinical Trial. (United States)

    Dougados, Maxime; Huizinga, Tom W J; Choy, Ernest H; Bingham, Clifton O; Aassi, Maher; Bernasconi, Corrado


    To assess the flare rate using published criteria (Disease Activity Score in 28 joints [DAS28-2] increase between visits of >1.2 or >0.6 if current DAS28 ≥3.2) in patients receiving constant treatment, and to compare published flare criteria to criteria used by study investigators after biologic treatment discontinuation in the ACT-RAY study. Patients with rheumatoid arthritis (n = 553) were randomized to add tocilizumab to ongoing methotrexate, or switch to tocilizumab plus placebo. If DAS28 ≤3.2 occurred at week 24, treatment remained constant until week 52; here we assessed the DAS28-2 flare rate. Between weeks 52 and 104, patients in sustained remission (DAS28 <2.6 at 2 consecutive visits 12 weeks apart) discontinued tocilizumab and were assessed every 4 weeks. Per protocol, flare was defined as a worsening of disease activity that required treatment beyond the permitted therapy based on investigator opinions (investigator flare) and was compared with the DAS28-2 definition. After tocilizumab discontinuation, DAS28-2 was sensitive (88-100%), but not specific (57-65%), for detecting investigator flare. Under constant treatment, DAS28-2 criteria were met in 136 cases per 100 patient-years despite stable disease activity. Sustained flares were infrequent. Other DAS28-based criteria led to similar conclusions. DAS28-based flare occurred more often than investigator-defined flares after biologic agent discontinuation. More stringent criteria may be more appropriate for clinical practice. © 2015, American College of Rheumatology.

  10. The solar flare myth (United States)

    Gosling, J. T.


    Many years of research have demonstrated that large, nonrecurrent geomagnetic storms, shock wave disturbances in the solar wind, and energetic particle events in interplanetary space often occur in close association with large solar flares. This result has led to a pradigm of cause and effect - that large solar flares are the fundamental cause of these events in the near-Earth space environmemt. This paradigm, which I call 'the solar flare myth,' dominates the popular perception of the relationship between solar activity and interplanetary and geomagnetic events and has provided much of the pragmatic rationale for the study of the solar flare phenomenon. Yet there is good evidence that this paradigm is wrong and that flares do not generally play a central role in producing major transient disturbances in the near-Earth space environment. In this paper I outline a different paradigm of cause and effect that removes solar flares from their central position in the chain of events leading from the Sun to near-Earth space. Instead, this central role is given to events known as coronal mass ejections.

  11. HMI Data Driven Magnetohydrodynamic Model Predicted Active Region Photospheric Heating Rates: Their Scale Invariant, Flare Like Power Law Distributions, and Their Possible Association With Flares (United States)

    Goodman, Michael L.; Kwan, Chiman; Ayhan, Bulent; Shang, Eric L.


    There are many flare forecasting models. For an excellent review and comparison of some of them see Barnes et al. (2016). All these models are successful to some degree, but there is a need for better models. We claim the most successful models explicitly or implicitly base their forecasts on various estimates of components of the photospheric current density J, based on observations of the photospheric magnetic field B. However, none of the models we are aware of compute the complete J. We seek to develop a better model based on computing the complete photospheric J. Initial results from this model are presented in this talk. We present a data driven, near photospheric, 3 D, non-force free magnetohydrodynamic (MHD) model that computes time series of the total J, and associated resistive heating rate in each pixel at the photosphere in the neutral line regions (NLRs) of 14 active regions (ARs). The model is driven by time series of B measured by the Helioseismic & Magnetic Imager (HMI) on the Solar Dynamics Observatory (SDO) satellite. Spurious Doppler periods due to SDO orbital motion are filtered out of the time series of B in every AR pixel. Errors in B due to these periods can be significant.

  12. Probing quantum gravity using photons from a flare of the active galactic nucleus Markarian 501 observed by the MAGIC telescope

    CERN Document Server

    Albert, J; Anderhub, H; Antonelli, L A; Antoranz, P; Backes, M; Baixeras, C; Barrio, J A; Bartko, H; Bastieri, D; Becker, J K; Bednarek, W; Berger, K; Bernardini, E; Bigongiari, C; Biland, A; Bock, R K; Bordas, P; Bosch-Ramon, V; Bretz, T; Britvitch, I; Camara, M; Carmona, E; Chilingarian, A; Commichau, S; Contreras, J L; Cortina, J; Costado, M T; Covino, S; Dazzi, F; De Angelis, A; De Cea del Pozo, E; Delgado Mendez, C; de los Reyes, R; De Lotto, B; De Maria, M; De Sabata, F; Dominguez, A; Dorner, D; Doro, M; Errando, M; Fagiolini, M; Ferenc, D; Fernández, E; Firpo, R; Fonseca, M V; Font, L; Galante, N; García-López, R J; Garczarczyk, M; Gaug, M; Göbel, F; Hayashida, M; Herrero, A; Höhne, D; Hose, J; Hsu, C C; Huber, S; Jogler, T; Kranich, D; La Barbera, A; Laille, A; Leonardo, E; Lindfors, E; Lombardi, S; Longo, F; López, M; Lorenz, E; Majumdar, P; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Mariotti, M; Martínez, M; Mazin, D; Meucci, M; Meyer, M; Miranda, J M; Mirzoyan, R; Moles, M; Moralejo, A; Nieto, D; Nilsson, K; Ninkovic, J; Otte, N; Oya, I; Panniello, M; Paoletti, R; Paredes, J M; Pasanen, M; Pascoli, D; Pauss, F; Pegna, R; Pérez-Torres, M A; Persic, M; Peruzzo, L; Piccioli, A; Prada, F; Puchades, N; Raymers, A; Ribó, M; Rico, J; Rissi, M; Robert, A; Rügamer, S; Saggion, A; Saitô, T; Salvati, M; Sanchez-Conde, M; Sartori, P; Satalecka, K; Scalzotto, V; Scapin, V; Schmitt, R; Schweizer, T; Shayduk, M; Shinozaki, K; Sidro, N; Sierpowska-Bartosik, A; Sillanpää, A; Spanier, F; Stamerra, A; Stark, L S; Takalo, L; Tavecchio, F; Temnikov, P; Tescaro, D; Teshima, M; Tluczykont, M; Torres, D F; Turini, N; Vankov, H; Venturini, A; Vitale, V; Wagner, R M; Wittek, W; Zabalza, M; Zandanel, F; Zanin, R; Ellis, Jonathan Richard; Mavromatos, N E; Nanopoulos, D V; Sakharov, Alexander S; Sarkisyan-Grinbaum, E


    We use the timing of photons observed by the MAGIC gamma-ray telescope during a flare of the active galaxy Markarian 501 to probe a vacuum refractive index ~ 1-(E/M_QGn)^n, n = 1,2, that might be induced by quantum gravity. The peaking of the flare is found to maximize for quantum-gravity mass scales M_QG1 ~ 0.4x10^18 GeV or M_QG2 ~ 0.6x10^11 GeV, and we establish lower limits M_QG1 > 0.26x10^18 GeV or M_QG2 > 0.39x10^11 GeV at the 95% C.L. Monte Carlo studies confirm the MAGIC sensitivity to propagation effects at these levels. Thermal plasma effects in the source are negligible, but we cannot exclude the importance of some other source effect.

  13. Flare Observations

    Directory of Open Access Journals (Sweden)

    Benz Arnold O.


    Full Text Available Solar flares are observed at all wavelengths from decameter radio waves to gamma-rays at 100 MeV. This review focuses on recent observations in EUV, soft and hard X-rays, white light, and radio waves. Space missions such as RHESSI, Yohkoh, TRACE, and SOHO have enlarged widely the observational base. They have revealed a number of surprises: Coronal sources appear before the hard X-ray emission in chromospheric footpoints, major flare acceleration sites appear to be independent of coronal mass ejections (CMEs, electrons, and ions may be accelerated at different sites, there are at least 3 different magnetic topologies, and basic characteristics vary from small to large flares. Recent progress also includes improved insights into the flare energy partition, on the location(s of energy release, tests of energy release scenarios and particle acceleration. The interplay of observations with theory is important to deduce the geometry and to disentangle the various processes involved. There is increasing evidence supporting reconnection of magnetic field lines as the basic cause. While this process has become generally accepted as the trigger, it is still controversial how it converts a considerable fraction of the energy into non-thermal particles. Flare-like processes may be responsible for large-scale restructuring of the magnetic field in the corona as well as for its heating. Large flares influence interplanetary space and substantially affect the Earth’s lower ionosphere. While flare scenarios have slowly converged over the past decades, every new observation still reveals major unexpected results, demonstrating that solar flares, after 150 years since their discovery, remain a complex problem of astrophysics including major unsolved questions.

  14. Flare Observations

    Directory of Open Access Journals (Sweden)

    Arnold O. Benz


    Full Text Available Abstract Solar flares are observed at all wavelengths from decameter radio waves to gamma-rays beyond 1 GeV. This review focuses on recent observations in EUV, soft and hard X-rays, white light, and radio waves. Space missions such as RHESSI, Yohkoh, TRACE, SOHO, and more recently Hinode and SDO have enlarged widely the observational base. They have revealed a number of surprises: Coronal sources appear before the hard X-ray emission in chromospheric footpoints, major flare acceleration sites appear to be independent of coronal mass ejections, electrons, and ions may be accelerated at different sites, there are at least 3 different magnetic topologies, and basic characteristics vary from small to large flares. Recent progress also includes improved insights into the flare energy partition, on the location(s of energy release, tests of energy release scenarios and particle acceleration. The interplay of observations with theory is important to deduce the geometry and to disentangle the various processes involved. There is increasing evidence supporting magnetic reconnection as the basic cause. While this process has become generally accepted as the trigger, it is still controversial how it converts a considerable fraction of the energy into non-thermal particles. Flare-like processes may be responsible for large-scale restructuring of the magnetic field in the corona as well as for its heating. Large flares influence interplanetary space and substantially affect the Earth’s ionosphere. Flare scenarios have slowly converged over the past decades, but every new observation still reveals major unexpected results, demonstrating that solar flares, after 150 years since their discovery, remain a complex problem of astrophysics including major unsolved questions.

  15. Flare Observations (United States)

    Benz, Arnold O.


    Solar flares are observed at all wavelengths from decameter radio waves to gamma-rays beyond 1 GeV. This review focuses on recent observations in EUV, soft and hard X-rays, white light, and radio waves. Space missions such as RHESSI, Yohkoh, TRACE, SOHO, and more recently Hinode and SDO have enlarged widely the observational base. They have revealed a number of surprises: Coronal sources appear before the hard X-ray emission in chromospheric footpoints, major flare acceleration sites appear to be independent of coronal mass ejections, electrons, and ions may be accelerated at different sites, there are at least 3 different magnetic topologies, and basic characteristics vary from small to large flares. Recent progress also includes improved insights into the flare energy partition, on the location(s) of energy release, tests of energy release scenarios and particle acceleration. The interplay of observations with theory is important to deduce the geometry and to disentangle the various processes involved. There is increasing evidence supporting magnetic reconnection as the basic cause. While this process has become generally accepted as the trigger, it is still controversial how it converts a considerable fraction of the energy into non-thermal particles. Flare-like processes may be responsible for large-scale restructuring of the magnetic field in the corona as well as for its heating. Large flares influence interplanetary space and substantially affect the Earth's ionosphere. Flare scenarios have slowly converged over the past decades, but every new observation still reveals major unexpected results, demonstrating that solar flares, after 150 years since their discovery, remain a complex problem of astrophysics including major unsolved questions.

  16. MAG4 Versus Alternative Techniques for Forecasting Active-Region Flare Productivity (United States)

    Falconer, David A.; Moore, Ronald L.; Barghouty, Abdulnasser F.; Khazanov, Igor


    MAG4 (Magnetogram Forecast), developed originally for NASA/SRAG (Space Radiation Analysis Group), is an automated program that analyzes magnetograms from the HMI (Helioseismic and Magnetic Imager) instrument on NASA SDO (Solar Dynamics Observatory), and automatically converts the rate (or probability) of major flares (M- and X-class), Coronal Mass Ejections (CMEs), and Solar Energetic Particle Events. MAG4 does not forecast that a flare will occur at a particular time in the next 24 or 48 hours; rather the probability of one occurring.

  17. Unprecedented study of the broadband emission of Mrk 421 during flaring activity in March 2010 (United States)

    Aleksić, J.; Ansoldi, S.; Antonelli, L. A.; Antoranz, P.; Babic, A.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Biasuzzi, B.; Biland, A.; Blanch, O.; Boller, A.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Carmona, E.; Carosi, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Caneva, G.; De Lotto, B.; de Oña Wilhelmi, E.; Delgado Mendez, C.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher, D.; Elsaesser, D.; Fonseca, M. V.; Font, L.; Frantzen, K.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Garrido Terrats, D.; Gaug, M.; Godinović, N.; González Muñoz, A.; Gozzini, S. R.; Hadasch, D.; Hanabata, Y.; Hayashida, M.; Herrera, J.; Hildebrand, D.; Hose, J.; Hrupec, D.; Hughes, G.; Idec, W.; Kadenius, V.; Kellermann, H.; Knoetig, M. L.; Kodani, K.; Konno, Y.; Krause, J.; Kubo, H.; Kushida, J.; La Barbera, A.; Lelas, D.; Lewandowska, N.; Lindfors, E.; Lombardi, S.; López, M.; López-Coto, R.; López-Oramas, A.; Lorenz, E.; Lozano, I.; Makariev, M.; Mallot, K.; Maneva, G.; Mankuzhiyil, N.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Miranda, J. M.; Mirzoyan, R.; Moralejo, A.; Munar-Adrover, P.; Nakajima, D.; Niedzwiecki, A.; Nilsson, K.; Nishijima, K.; Noda, K.; Orito, R.; Overkemping, A.; Paiano, S.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Persic, M.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Reinthal, R.; Rhode, W.; Ribó, M.; Rico, J.; Rodriguez Garcia, J.; Rügamer, S.; Saito, T.; Saito, K.; Satalecka, K.; Scalzotto, V.; Scapin, V.; Schultz, C.; Schweizer, T.; Sun, S.; Shore, S. N.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Spanier, F.; Stamatescu, V.; Stamerra, A.; Steinbring, T.; Steinke, B.; Storz, J.; Strzys, M.; Takalo, L.; Takami, H.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Thaele, J.; Tibolla, O.; Torres, D. F.; Toyama, T.; Treves, A.; Uellenbeck, M.; Vogler, P.; Zanin, R.; MAGIC Collaboration; Archambault, S.; Archer, A.; Beilicke, M.; Benbow, W.; Berger, K.; Bird, R.; Biteau, J.; Buckley, J. H.; Bugaev, V.; Cerruti, M.; Chen, X.; Ciupik, L.; Collins-Hughes, E.; Cui, W.; Eisch, J. D.; Falcone, A.; Feng, Q.; Finley, J. P.; Fortin, P.; Fortson, L.; Furniss, A.; Galante, N.; Gillanders, G. H.; Griffin, S.; Gyuk, G.; Håkansson, N.; Holder, J.; Johnson, C. A.; Kaaret, P.; Kar, P.; Kertzman, M.; Kieda, D.; Lang, M. J.; McArthur, S.; McCann, A.; Meagher, K.; Millis, J.; Moriarty, P.; Ong, R. A.; Otte, A. N.; Perkins, J. S.; Pichel, A.; Pohl, M.; Popkow, A.; Prokoph, H.; Pueschel, E.; Ragan, K.; Reyes, L. C.; Reynolds, P. T.; Richards, G. T.; Roache, E.; Rovero, A. C.; Sembroski, G. H.; Shahinyan, K.; Staszak, D.; Telezhinsky, I.; Tucci, J. V.; Tyler, J.; Varlotta, A.; Wakely, S. P.; Welsing, R.; Wilhelm, A.; Williams, D. A.; VERITAS Collaboration; Buson, S.; Finke, J.; Villata, M.; Raiteri, C.; Aller, H. D.; Aller, M. F.; Cesarini, A.; Chen, W. P.; Gurwell, M. A.; Jorstad, S. G.; Kimeridze, G. N.; Koptelova, E.; Kurtanidze, O. M.; Kurtanidze, S. O.; Lähteenmäki, A.; Larionov, V. M.; Larionova, E. G.; Lin, H. C.; McBreen, B.; Moody, J. W.; Morozova, D. A.; Marscher, A. P.; Max-Moerbeck, W.; Nikolashvili, M. G.; Perri, M.; Readhead, A. C. S.; Richards, J. L.; Ros, J. A.; Sadun, A. C.; Sakamoto, T.; Sigua, L. A.; Smith, P. S.; Tornikoski, M.; Troitsky, I. S.; Wehrle, A. E.; Jordan, B.


    Context. Because of its proximity, Mrk 421 is one of the best sources on which to study the nature of BL Lac objects. Its proximity allows us to characterize its broadband spectral energy distribution (SED). Aims: The goal is to better understand the mechanisms responsible for the broadband emission and the temporal evolution of Mrk 421. These mechanisms may also apply to more distant blazars that cannot be studied with the same level of detail. Methods: A flare occurring in March 2010 was observed for 13 consecutive days (from MJD 55 265 to MJD 55 277) with unprecedented wavelength coverage from radio to very high energy (VHE; E> 100 GeV) γ-rays with MAGIC, VERITAS, Whipple, Fermi-LAT, MAXI, RXTE, Swift, GASP-WEBT, and several optical and radio telescopes. We modeled the day-scale SEDs with one-zone and two-zone synchrotron self-Compton (SSC) models, investigated the physical parameters, and evaluated whether the observed broadband SED variability can be associated with variations in the relativistic particle population. Results: The activity of Mrk 421 initially was high and then slowly decreased during the 13-day period. The flux variability was remarkable at the X-ray and VHE bands, but it was minor or not significant at the other bands. The variability in optical polarization was also minor. These observations revealed an almost linear correlation between the X-ray flux at the 2-10 keV band and the VHE γ-ray flux above 200 GeV, consistent with the γ-rays being produced by inverse-Compton scattering in the Klein-Nishina regime in the framework of SSC models. The one-zone SSC model can describe the SED of each day for the 13 consecutive days reasonably well, which once more shows the success of this standard theoretical scenario to describe the SEDs of VHE BL Lacs such as Mrk 421. This flaring activity is also very well described by a two-zone SSC model, where one zone is responsible for the quiescent emission, while the other smaller zone, which is spatially

  18. Disparity in Crohn's disease activity between home and clinics is associated with unscheduled hospital visits due to disease flares. (United States)

    Kim, Eun Soo; Lee, Yoo Jin; Jang, Byung Ik; Kim, Kyeong Ok; Kim, Eun Young; Lee, Hyun Seok; Jeon, Seong Woo; Kwak, Sang Gyu


    E-health technologies have been implemented for the management of Crohn's disease (CD). We aimed to identify differences between patient activities at home and at routine clinic visits using a web-based self-reporting CD symptom diary (CDSD) and to determine the impact of this disparity on clinical outcomes. Patients with CD from three tertiary hospitals were invited to assess their symptoms at least once a week using CDSD. We identified patients who showed disparities in disease activity (high activity at home but normal at the next hospital visit) and evaluated clinical outcomes of these patients such as unscheduled visits due to flares using Kaplan-Meier analyses. One hundred and forty-three patients recorded their symptoms weekly for at least 3 consecutive months and were included. Forty-eight patients (33.6%) showed disparate disease activities between at home and at the next outpatient clinic visit. The cumulative risk of unscheduled visits was significantly higher in this disparity group than in the concordant group (p = 0.001). Disparity in activity (p = 0.003), and anti-tumor necrosis factor use (p = 0.002) were independent risk factors of unscheduled visits due to disease flares. Disparity in disease activity is considerable in CD patients and is related to the risk of unscheduled hospital visit.

  19. Magnetic Field Amplification and Blazar Flares

    Directory of Open Access Journals (Sweden)

    Chen Xuhui


    Full Text Available Recent multiwavelength observations of PKS 0208-512 by SMARTS, Fermi, and Swift revealed that γ-ray and optical light curves of this flat spectrum radio quasars are highly correlated, but with an exception of one large optical flare having no corresponding gamma-ray activity or even detection. On the other hand, recent advances in SNRs observations and plasma simulations both reveal that magnetic field downstream of astrophysical shocks can be largely amplified beyond simple shock compression. These amplifications, along with their associated particle acceleration, might contribute to blazar flares, including the peculiar flare of PKS 0208-512. Using our time dependent multizone blazar emission code, we evaluate several scenarios that may represent such phenomena. This code combines Monte Carlo method that tracks the radiative processes including inverse Compton scattering, and Fokker-Planck equation that follows the cooling and acceleration of particles. It is a comprehensive time dependent code that fully takes into account the light travel time effects. In this study, both the changes of the magnetic field and acceleration efficiency are explored as the cause of blazar flares. Under these assumption, synchrotron self-Compton and external Compton scenarios produce distinct features that favor the external Compton scenario. The optical flares with/without gamma-ray counterparts can be explained by different allocations of energy between the magnetization and particle acceleration, which in turn can be affected by the relative orientation between the magnetic field and the shock flow. We compare the details of the observations and simulation, and highlight what implications this study has on our understanding of relativistic jets.


    Energy Technology Data Exchange (ETDEWEB)

    Davenport, James R. A.; Hawley, Suzanne L.; Johnson, Emily C.; Peraza, Jesus; Jansen, Tiffany C.; Larsen, Daniel M. [Department of Astronomy, University of Washington, P.O. Box 351580, Seattle, WA 98195 (United States); Hebb, Leslie [Department of Physics, Hobart and William Smith Colleges, 300 Pulteney Street, Geneva, NY 14456 (United States); Wisniewski, John P.; Malatesta, Michael; Keil, Marcus; Silverberg, Steven M.; Scheffler, Matthew S.; Berdis, Jodi R. [HL Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W Brooks Street, Norman, OK 73019 (United States); Kowalski, Adam F. [NASA Goddard Space Flight Center, Code 671, Greenbelt, MD 20771 (United States); Hilton, Eric J., E-mail: [Universe Sandbox, 911 E. Pike Street #333, Seattle, WA 98122 (United States)


    We present the largest sample of flares ever compiled for a single M dwarf, the active M4 star GJ 1243. Over 6100 individual flare events, with energies ranging from 10{sup 29} to 10{sup 33} erg, are found in 11 months of 1 minute cadence data from Kepler. This sample is unique for its completeness and dynamic range. We have developed automated tools for finding flares in short-cadence Kepler light curves, and performed extensive validation and classification of the sample by eye. From this pristine sample of flares we generate a median flare template. This template shows that two exponential cooling phases are present during the white-light flare decay, providing fundamental constraints for models of flare physics. The template is also used as a basis function to decompose complex multi-peaked flares, allowing us to study the energy distribution of these events. Only a small number of flare events are not well fit by our template. We find that complex, multi-peaked flares occur in over 80% of flares with a duration of 50 minutes or greater. The underlying distribution of flare durations for events 10 minutes and longer appears to follow a broken power law. Our results support the idea that sympathetic flaring may be responsible for some complex flare events.

  1. Optical flare events on the RS Canum Venaticorum star UX Arietis (United States)

    Cao, Dong-Tao; Gu, Sheng-Hong


    Based on long-term high-resolution spectroscopic observations obtained during five observing runs from 2001 to 2004, we study optical flare events and chromospheric activity variability of the very active RS CVn star UX Ari. By means of the spectral subtraction technique, several optical chromospheric activity indicators (including the He i D3, Na i D1, D2 doublet, Hα and Ca ii IRT lines) covered in our echelle spectra were analyzed. Four large optical flare events were detected on UX Ari during our observations, which show prominent He i D3 line emission together with great enhancement in emission of the Hα and Ca ii IRT lines and strong filled-in or emission reversal features in the Na i D1, D2 doublet lines. The newly detected flares are much more energetic than previous discoveries, especially for the flare identified during the 2002 December observing run. Optical flare events on UX Ari are more likely to be observed around two quadratures of the system, except for our optical flares detected during the 2004 November observing run. Moreover, we have found rotational modulation of chromospheric activity in the Hα and Ca ii IRT lines, which suggests the presence of chromospherically active longitudes over the surface of UX Ari. The change in chromospherically active longitudes among our observing runs, as well as the variation in chromospheric activity level from 2001 to 2004, indicates a long-term evolution of active regions.

  2. Gamma-Ray Flaring Activity from the Gravitationally Lensed Blazar PKS 1830-211 Observed by Fermi LAT

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A. A.; et al.


    The Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope routinely detects the MeV-peaked flat-spectrum radio quasar PKS 1830–211 (z = 2.507). Its apparent isotropic γ-ray luminosity (E > 100 MeV), averaged over ~3 years of observations and peaking on 2010 October 14/15 at 2.9 × 10(50) erg s(–)(1), makes it among the brightest high-redshift Fermi blazars. No published model with a single lens can account for all of the observed characteristics of this complex system. Based on radio observations, one expects time-delayed variability to follow about 25 days after a primary flare, with flux about a factor of 1.5 less. Two large γ-ray flares of PKS 1830–211 have been detected by the LAT in the considered period, and no substantial evidence for such a delayed activity was found. This allows us to place a lower limit of about 6 on the γ-ray flux ratio between the two lensed images. Swift XRT observations from a dedicated Target of Opportunity program indicate a hard spectrum with no significant correlation of X-ray flux with the γ-ray variability. The spectral energy distribution can be modeled with inverse Compton scattering of thermal photons from the dusty torus. The implications of the LAT data in terms of variability, the lack of evident delayed flare events, and different radio and γ-ray flux ratios are discussed. Microlensing effects, absorption, size and location of the emitting regions, the complex mass distribution of the system, an energy-dependent inner structure of the source, and flux suppression by the lens galaxy for one image path may be considered as hypotheses for understanding our results.

  3. [Comparative activity of antihistamines on area under dose-response curve from histamine-induced wheal and flare responses in human skin]. (United States)

    Wang, Rui-Qi; Zhang, Hong-Yu


    To compare the activity of antihistamines by the index of area under dose-response curve (AUDRC) obtained from histamine-induced wheal and flare reactions. Mizolastine 10 mg, loratadine 10 mg, and placebo were given to 90 healthy volunteers and 60 allergic patients in a double-blind and randomized manner. Histamine titration tests (histamine concentrations 54.3, 20.0, 7.3, and 2.7 mmol/L) were performed for each one before dosing and 2, 4, and 24 hours after dosing. The reactivity was evaluated by histamine-induced wheal and flare areas. The AUDRC values of the wheal and flare areas as a function of the natural logarithm transformed histamine concentration were calculated for each subject, and compared. There was no significant difference of the wheal and flare areas between health volunteers and allergic patients. The AUDRC(27-54.3 mmol/l.) for wheal and flare of mizolastine was 115.7, 23.4, 7.7, 49.8 and 902.1, 40.9, 2.6, 46.9 ln (mmol/L) x mm2 at each time (before dosing and 2, 4, 24 hours after dosing) respectively. Compared with loratadine [116.2, 80.2, 49.7, 71.9 and 957.6, 495.3, 153.5, 205.9 ln (mmol/L) x mm2], mizolastine decreased AUDRC(2.7 - 54.3 mmol/L significantly (P wheal and flare inhibition test is a reliable pharmacodynamic model for antihistamines, and AUDRC may be an useful index to predict antihistamines pharmacodynamic activity.

  4. Solar flares increased in 1982 (United States)

    Geomagnetic storms and solar flares occurred more frequently in 1982 (3 years after the solar maximum of the current 11-year sunspot cycle) than is usual for that portion of the cycle. Among the most notable events were two X-12 flares and one X-7 flare. Although less intense, the X-7 flare triggered the most fierce geomagnetic storm in a decade; it distorted the earth's magnetic field, disrupted long-range communications and low-frequency navigational systems, interfered with ham radio activities, and spread a brilliant auroral display over much of the nation.Solar flares are divided into three classes depending on the output of X radiation: the common C class, the moderate M class, and the intensive X class. The numerical designation indicates the level of radiation intensity; an X-12, which is t h e most intense that instruments can measure, is 12 times more intense than an X-1 . An X-1 flare releases 10 times more radiation than an M-1, and 100 times more than a C-1.

  5. Correlated optical, X-ray, and γ-ray flaring activity seen with INTEGRAL during the 2015 outburst of V404 Cygni

    DEFF Research Database (Denmark)

    Rodriguez, J.; Cadolle Bel, M.; Alfonso-Garzón, J.


    of the off-flare and flare periods shows that the variation in intensity is likely to be only due to variations of a cut-off power-law component. The optical flares seem to be at least of two different types: one occurring in simultaneity with the X-ray flares, the other showing a delay greater than 10 min......After 25 years of quiescence, the microquasar V404 Cyg entered a new period of activity in June 2015. This X-ray source is known to undergo extremely bright and variable outbursts seen at all wavelengths. It is therefore an object of prime interest to understand the accretion-ejection connections....... These can, however, only be probed through simultaneous observations at several wavelengths. We made use of the INTEGRAL instruments to obtain long, almost uninterrupted observations from 2015 June 20, 15:50 UTC to June 25, 4:05 UTC, from the optical V band up to the soft y-rays. V404 Cyg was extremely...

  6. Toward an Efficient Prediction of Solar Flares: Which Parameters, and How?

    Directory of Open Access Journals (Sweden)

    Manolis K. Georgoulis


    Full Text Available Solar flare prediction has become a forefront topic in contemporary solar physics, with numerous published methods relying on numerous predictive parameters, that can even be divided into parameter classes. Attempting further insight, we focus on two popular classes of flare-predictive parameters, namely multiscale (i.e., fractal and multifractal and proxy (i.e., morphological parameters, and we complement our analysis with a study of the predictive capability of fundamental physical parameters (i.e., magnetic free energy and relative magnetic helicity. Rather than applying the studied parameters to a comprehensive statistical sample of flaring and non-flaring active regions, that was the subject of our previous studies, the novelty of this work is their application to an exceptionally long and high-cadence time series of the intensely eruptive National Oceanic and Atmospheric Administration (NOAA active region (AR 11158, observed by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. Aiming for a detailed study of the temporal evolution of each parameter, we seek distinctive patterns that could be associated with the four largest flares in the AR in the course of its five-day observing interval. We find that proxy parameters only tend to show preflare impulses that are practical enough to warrant subsequent investigation with sufficient statistics. Combining these findings with previous results, we conclude that: (i carefully constructed, physically intuitive proxy parameters may be our best asset toward an efficient future flare-forecasting; and (ii the time series of promising parameters may be as important as their instantaneous values. Value-based prediction is the only approach followed so far. Our results call for novel signal and/or image processing techniques to efficiently utilize combined amplitude and temporal-profile information to optimize the inferred solar-flare probabilities.

  7. Spectroscopy of Very Hot Plasma in Non-flaring Parts of a Solar Limb Active Region: Spatial and Temporal Properties (United States)

    Parenti, Susanna; del Zanna, Giulio; Petralia, Antonino; Reale, Fabio; Teriaca, Luca; Testa, Paola; Mason, Helen E.


    In this work we investigate the thermal structure of an off-limb active region (AR) in various non-flaring areas, as it provides key information on the way these structures are heated. In particular, we concentrate on the very hot component (> 3 {MK}) as it is a crucial element to distinguish between different heating mechanisms. We present an analysis using Fe and Ca emission lines from both the Solar Ultraviolet Measurement of Emitted Radiation (SUMER) on board the Solar and Heliospheric Observatory (SOHO) and the EUV Imaging Spectrometer (EIS) on board Hinode. A data set covering all ionization stages from Fe x to Fe xix has been used for the thermal analysis (both differential emission measure and emission measure, EM). Ca xiv is used for the SUMER-EIS radiometric cross calibration. We show that the very hot plasma is present and persistent almost everywhere in the core of the limb AR. The off-limb AR is clearly structured in Fe xviii. Almost everywhere, the EM analysis reveals plasma at 10 MK (visible in Fe xix emission), which is down to 0.1% of EM of the main 3 {MK} plasma. We estimate the power-law index of the hot tail of the EM to be between -8.5 and -4.4. However, the question about the possible existence of a small minor peak at around 10 {MK} remains open. The absence in some part of the AR of the Fe xix and Fe xxiii lines (which fall into our spectral range) enables us to determine an upper limit on the EM at these temperatures. Our results include a new Ca xiv 943.59 Å atomic model.

  8. Statistical Distributions of Optical Flares from Gamma-Ray Bursts (United States)

    Yi, Shuang-Xi; Yu, Hai; Wang, F. Y.; Dai, Zi-Gao


    We statistically study gamma-ray burst (GRB) optical flares from the Swift/UVOT catalog. We compile 119 optical flares, including 77 flares with redshift measurements. Some tight correlations among the timescales of optical flares are found. For example, the rise time is correlated with the decay time, and the duration time is correlated with the peak time of optical flares. These two tight correlations indicate that longer rise times are associated with longer decay times of optical flares and also suggest that broader optical flares peak at later times, which are consistent with the corresponding correlations of X-ray flares. We also study the frequency distributions of optical flare parameters, including the duration time, rise time, decay time, peak time, and waiting time. Similar power-law distributions for optical and X-ray flares are found. Our statistic results imply that GRB optical flares and X-ray flares may share the similar physical origin, and both of them are possibly related to central engine activities.

  9. Ultraviolet and radio flares from UX Arietis and HR 1099 (United States)

    Lang, Kenneth R.; Willson, Robert F.


    Simultaneous observations of the RS CVn systems UX Ari and HR 1099 with the IUE satellite and the VLA are presented. Flaring activity is observed at ultraviolet wavelengths with the IUE when none is detected at radio wavelengths with the VLA. Radio flares with no detectable ultraviolet activity have also been observed. Thus, flares in the two spectral regions are either uncorrelated or weakly correlated. The flaring emission probably originates in different regions at the two wavelengths. Radio flares from RS CVn stars may originate in sources that are larger than, or comparable to, a star in size. This is in sharp contrast to compact, coherent radio flares from dwarf M stars. The ultraviolet flares from RS CVn stars probably originate in sources that are smaller than a component star.

  10. A Randomized, Double-Blind, Active- and Placebo-Controlled Efficacy and Safety Study of Arhalofenate for Reducing Flare in Patients With Gout. (United States)

    Poiley, Jeffrey; Steinberg, Alexandra S; Choi, Yun-Jung; Davis, Charles S; Martin, Robert L; McWherter, Charles A; Boudes, Pol F


    Arhalofenate is a novel antiinflammatory uricosuric agent. The objective of this study was to evaluate its antiflare activity in patients with gout. This was a 12-week, randomized, double-blind, controlled phase IIb study. Eligible patients had had ≥3 flares of gout during the previous year, had discontinued urate-lowering therapy and colchicine, and had a serum uric acid (UA) level of 7.5-12 mg/dl. Patients were randomly assigned at a 2:2:2:2:1 ratio to receive 600 mg arhalofenate, 800 mg arhalofenate, 300 mg allopurinol, 300 mg allopurinol plus 0.6 mg colchicine, or placebo once a day. The primary outcome measure was the flare incidence (number of flares divided by time of exposure). The serum UA level was a secondary outcome measure. A total of 239 gout patients were randomized and took at least 1 dose of study medication. The primary outcome measure comparing flare incidence between 800 mg arhalofenate and 300 mg allopurinol was achieved, with a 46% decrease in the 800 mg arhalofenate group (0.66 versus 1.24; P = 0.0056). Treatment with 800 mg arhalofenate was also significantly better than placebo (P = 0.049) and not significantly different from treatment with 300 mg allopurinol plus 0.6 mg colchicine (P = 0.091). Mean changes in serum UA level were -12.5% with 600 mg arhalofenate and -16.5% with 800 mg arhalofenate (P = 0.001 and P = 0.0001, respectively, versus -0.9% with placebo). There were no meaningful differences in adverse events (AEs) between groups, and there were no serious AEs related to arhalofenate. Urinary calculus occurred in 1 patient receiving 300 mg allopurinol. No abnormal serum creatinine values >1.5-fold the baseline value were observed in the arhalofenate-treated groups. Arhalofenate at a dosage of 800 mg decreased gout flares significantly compared to allopurinol at a dosage of 300 mg. Arhalofenate was well tolerated and appeared safe. Arhalofenate is the first urate-lowering antiflare therapy. © 2016 The Authors

  11. Solar Flares: Magnetohydrodynamic Processes

    Directory of Open Access Journals (Sweden)

    Kazunari Shibata


    Full Text Available This paper outlines the current understanding of solar flares, mainly focused on magnetohydrodynamic (MHD processes responsible for producing a flare. Observations show that flares are one of the most explosive phenomena in the atmosphere of the Sun, releasing a huge amount of energy up to about 10^32 erg on the timescale of hours. Flares involve the heating of plasma, mass ejection, and particle acceleration that generates high-energy particles. The key physical processes for producing a flare are: the emergence of magnetic field from the solar interior to the solar atmosphere (flux emergence, local enhancement of electric current in the corona (formation of a current sheet, and rapid dissipation of electric current (magnetic reconnection that causes shock heating, mass ejection, and particle acceleration. The evolution toward the onset of a flare is rather quasi-static when free energy is accumulated in the form of coronal electric current (field-aligned current, more precisely, while the dissipation of coronal current proceeds rapidly, producing various dynamic events that affect lower atmospheres such as the chromosphere and photosphere. Flares manifest such rapid dissipation of coronal current, and their theoretical modeling has been developed in accordance with observations, in which numerical simulations proved to be a strong tool reproducing the time-dependent, nonlinear evolution of a flare. We review the models proposed to explain the physical mechanism of flares, giving an comprehensive explanation of the key processes mentioned above. We start with basic properties of flares, then go into the details of energy build-up, release and transport in flares where magnetic reconnection works as the central engine to produce a flare.

  12. 17 CFR 247.721 - Defined terms relating to the trust and fiduciary activities exception from the definition of... (United States)


    ... percentage for each trust or fiduciary account of the bank is greater than 50 percent. (2) The relationship... percentage for a trust or fiduciary account shall be (i) Equal to the relationship compensation attributable... trust and fiduciary activities exception from the definition of âbroker.â 247.721 Section 247.721...


    Energy Technology Data Exchange (ETDEWEB)

    Davenport, James R. A. [Department of Physics and Astronomy, Western Washington University, 516 High Street, Bellingham, WA 98225 (United States); Kipping, David M. [Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027 (United States); Sasselov, Dimitar [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Matthews, Jaymie M. [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); Cameron, Chris [Department of Mathematics, Physics and Geology, Cape Breton University, 1250 Grand Lake Road, Sydney, NS B1P 6L2 (Canada)


    We present a study of white-light flares from the active M5.5 dwarf Proxima Centauri using the Canadian microsatellite Microvariability and Oscillations of STars . Using 37.6 days of monitoring data from 2014 to 2015, we have detected 66 individual flare events, the largest number of white-light flares observed to date on Proxima Cen. Flare energies in our sample range from 10{sup 29} to 10{sup 31.5} erg. The flare rate is lower than that of other classic flare stars of a similar spectral type, such as UV Ceti, which may indicate Proxima Cen had a higher flare rate in its youth. Proxima Cen does have an unusually high flare rate given its slow rotation period, however. Extending the observed power-law occurrence distribution down to 10{sup 28} erg, we show that flares with flux amplitudes of 0.5% occur 63 times per day, while superflares with energies of 10{sup 33} erg occur ∼8 times per year. Small flares may therefore pose a great difficulty in searches for transits from the recently announced 1.27 M {sub ⊕} Proxima b, while frequent large flares could have significant impact on the planetary atmosphere.

  14. Flare Characteristics from X-ray Light Curves (United States)

    Gryciuk, M.; Siarkowski, M.; Sylwester, J.; Gburek, S.; Podgorski, P.; Kepa, A.; Sylwester, B.; Mrozek, T.


    A new methodology is given to determine basic parameters of flares from their X-ray light curves. Algorithms are developed from the analysis of small X-ray flares occurring during the deep solar minimum of 2009, between Solar Cycles 23 and 24, observed by the Polish Solar Photometer in X-rays (SphinX) on the Complex Orbital Observations Near-Earth of Activity of the Sun-Photon (CORONAS- Photon) spacecraft. One is a semi-automatic flare detection procedure that gives start, peak, and end times for single ("elementary") flare events under the assumption that the light curve is a simple convolution of a Gaussian and exponential decay functions. More complex flares with multiple peaks can generally be described by a sum of such elementary flares. Flare time profiles in the two energy ranges of SphinX (1.16 - 1.51 keV, 1.51 - 15 keV) are used to derive temperature and emission measure as a function of time during each flare. The result is a comprehensive catalogue - the SphinX Flare Catalogue - which contains 1600 flares or flare-like events and is made available for general use. The methods described here can be applied to observations made by Geosynchronous Operational Environmental Satellites (GOES), the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and other broad-band spectrometers.

  15. Three-Dimensional Magnetic Restructuring in Two Homologous Solar Flares in the Seismically Active NOAA AR 11283 (United States)

    Liu, Chang; Deng, Na; Lee, Jeongwoo; Wiegelmann, Thomas; JIang, Chaowei; Dennis, Brian R.; Su, Yang; Donea, Alina; Wang, Haimin


    We carry out a comprehensive investigation comparing the three-dimensional magnetic field restructuring, flare energy release, and the helioseismic response of two homologous flares, the 2011 September 6 X2.1 (FL1) and September 7 X1.8 (FL2) flares in NOAA AR 11283. In our analysis, (1) a twisted flux rope (FR) collapses onto the surface at a speed of 1.5 km s(exp-1) after a partial eruption in FL1. The FR then gradually grows to reach a higher altitude and collapses again at 3 km s(exp-1) after a fuller eruption in FL2. Also, FL2 shows a larger decrease of the flux-weighted centroid separation of opposite magnetic polarities and a greater change of the horizontal field on the surface. These imply a more violent coronal implosion with corresponding more intense surface signatures in FL2. (2) The FR is inclined northward and together with the ambient fields, it undergoes a southward turning after both events. This agrees with the asymmetric decay of the penumbra observed in the peripheral regions. (3) The amounts of free magnetic energy and nonthermal electron energy released during FL1 are comparable to those of FL2 within the uncertainties of the measurements. (4) No sunquake was detected in FL1; in contrast, FL2 produced two seismic emission sources S1 and S2 both lying in the penumbral regions. Interestingly, S1 and S2 are connected by magnetic loops, and the stronger source S2 has a weaker vertical magnetic field. We discuss these results in relation to the implosion process in the low corona and the sunquake generation.

  16. A Tool for Empirical Forecasting of Major Flares, Coronal Mass Ejections, and Solar Particle Events from a Proxy of Active-Region Free Magnetic Energy (United States)

    Barghouty, A. F.; Falconer, D. A.; Adams, J. H., Jr.


    This presentation describes a new forecasting tool developed for and is currently being tested by NASA s Space Radiation Analysis Group (SRAG) at JSC, which is responsible for the monitoring and forecasting of radiation exposure levels of astronauts. The new software tool is designed for the empirical forecasting of M and X-class flares, coronal mass ejections, as well as solar energetic particle events. Its algorithm is based on an empirical relationship between the various types of events rates and a proxy of the active region s free magnetic energy, determined from a data set of approx.40,000 active-region magnetograms from approx.1,300 active regions observed by SOHO/MDI that have known histories of flare, coronal mass ejection, and solar energetic particle event production. The new tool automatically extracts each strong-field magnetic areas from an MDI full-disk magnetogram, identifies each as an NOAA active region, and measures a proxy of the active region s free magnetic energy from the extracted magnetogram. For each active region, the empirical relationship is then used to convert the free magnetic energy proxy into an expected event rate. The expected event rate in turn can be readily converted into the probability that the active region will produce such an event in a given forward time window. Descriptions of the datasets, algorithm, and software in addition to sample applications and a validation test are presented. Further development and transition of the new tool in anticipation of SDO/HMI is briefly discussed.

  17. Exceptional phenomenology

    DEFF Research Database (Denmark)

    Aggerholm, Kenneth; Moltke Martiny, Kristian

    . Through exceptional cases we can gain a deeper understanding of the ordinary. This was already a guiding thread in Merleau-Ponty’s phenomenological investigations, but this paper will take the idea further by grounding the methodology in ‘hands on’ research in elite sport (football) and pathological cases...

  18. Characteristics of the Polarity Inversion Line and Solar Flare Forecasts (United States)

    Sadykov, Viacheslav M.; Kosovichev, Alexander G.


    Studying connection between solar flares and properties of magnetic field in active regions is very important for understanding the flare physics and developing space weather forecasts. In this work, we analyze relationship between the flare X-ray peak flux from the GOES satellite, and characteristics of the line-of-sight (LOS) magnetograms obtained by the SDO/HMI instrument during the period of April, 2010 - June, 2016. We try to answer two questions: 1) What characteristics of the LOS magnetic field are most important for the flare initiation and magnitude? 2) Is it possible to construct a reliable forecast of ≥ M1.0 and ≥ X1.0 class flares based only on the LOS magnetic field characteristics? To answer these questions, we apply a Polarity Inversion Line (PIL) detection algorithm, and derive various properties of the PIL and the corresponding Active Regions (AR). The importance of these properties for flare forecasting is determined by their ability to separate flaring cases from non-flaring, and their Fisher ranking score. It is found that the PIL characteristics are of special importance for the forecasts of both ≥ M1.0 and ≥ X1.0 flares, while the global AR characteristics become comparably discriminative only for ≥ X1.0 flares. We use the Support Vector Machine (SVM) classifier and train it on the six characteristics of the most importance for each case. The obtained True Skill Statistics (TSS) values of 0.70 for ≥ M1.0 flares and 0.64 for ≥ X1.0 flares are better than the currently-known expert-based predictions. Therefore, the results confirm the importance of the LOS magnetic field data and, in particular, the PIL region characteristics for flare forecasts.

  19. The exceptional clauses in the contractual activity on the public administration: freedom of choice or legislative imposition

    Directory of Open Access Journals (Sweden)

    Néstor David Osorio Moreno


    Full Text Available The contracting activity of public administration in Colombia has generally allowed, by order of constitutional and legislative norms, the application of the principle of autonomy, so that those subjects within a public legal transaction can build and establish the conditions governing their contract. The scope of the principle of autonomy must be analyzed and subjected to reflection, especially considering the institution of exception clauses in common law used by State agencies and their legal relationship with contractors. The existence of exception clauses has been justified by the interests of the State (and in particular the public interest without strictly analyzing the essence of the figure. The application of this institution in contractual relations of the State has advanced greatly, but it is still uncertain if the true nature of the figure is caused by the autonomy of the parties in order to celebrate the contract, or if it comes as privileges conferred and imposed by the legislator as a way to concise the principle of legality. This paper concludes that exception clauses in common law, clearly applied in contractual activity within public administration, consist of special privileges imposed by the legislator to State entities, and are therefore opposed to the essence of the clause and the principle of autonomy.

  20. Global ionospheric flare detection system (GIFDS) (United States)

    Wenzel, Daniela; Jakowski, Norbert; Berdermann, Jens; Mayer, Christoph; Valladares, Cesar; Heber, Bernd


    The Global Ionospheric Flare Detection System (GIFDS) is currently under development at the German Aerospace Center as a ground based detector for continuous monitoring of the solar flare activity in order to provide real time warnings on solar X-ray events. GIFDS is using Very Low Frequency (VLF) radio transmissions in the northern hemisphere which respond to enhanced ionization in the bottomside ionosphere caused by X-ray flares. Since solar flares can only be detected during daytime, VLF receivers have to be installed around the globe to guarantee continuous records at the dayside sector. GIFDS consists of a network of Perseus SDR (Software Defined Radio) receivers equipped with a MiniWhip antenna each. Reliable detection of solar flares is ensured by recording multiple frequency channels ranging from 0 to 500 kHz. The applicability of the system is demonstrated in a first analysis by comparing VLF measurements with GOES's (Geostationary Operational Environmental Satellite) X-ray flux data. The high potential of GIFDS for a permanent monitoring of solar flares in near real time is discussed.

  1. Solar Features - Solar Flares (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A solar flare is a short-lived sudden increase in the intensity of radiation emitted in the neighborhood of sunspots. For many years it was best monitored in the...

  2. Exceptional Reductions

    CERN Document Server

    Marrani, Alessio; Riccioni, Fabio


    Starting from basic identities of the group E8, we perform progressive reductions, namely decompositions with respect to the maximal and symmetric embeddings of E7xSU(2) and then of E6xU(1). This procedure provides a systematic approach to the basic identities involving invariant primitive tensor structures of various irreprs. of finite-dimensional exceptional Lie groups. We derive novel identities for E7 and E6, highlighting the E8 origin of some well known ones. In order to elucidate the connections of this formalism to four-dimensional Maxwell-Einstein supergravity theories based on symmetric scalar manifolds (and related to irreducible Euclidean Jordan algebras, the unique exception being the triality-symmetric N = 2 stu model), we then derive a fundamental identity involving the unique rank-4 symmetric invariant tensor of the 0-brane charge symplectic irrepr. of U-duality groups, with potential applications in the quantization of the charge orbits of supergravity theories, as well as in the study of mult...

  3. Lattice-Strain Control of Exceptional Activity in Dealloyed Core-Shell Fuel Cell Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Strasser, Peter


    We present a combined experimental and theoretical approach to demonstrate how lattice strain can be used to continuously tune the catalytic activity of the oxygen reduction reaction (ORR) on bimetallic nanoparticles that have been dealloyed. The sluggish kinetics of the ORR is a key barrier to the adaptation of fuel cells and currently limits their widespread use. Dealloyed Pt-Cu bimetallic nanoparticles, however, have been shown to exhibit uniquely high reactivity for this reaction. We first present evidence for the formation of a core-shell structure during dealloying, which involves removal of Cu from the surface and subsurface of the precursor nanoparticles. We then show that the resulting Pt-rich surface shell exhibits compressive strain that depends on the composition of the precursor alloy. We next demonstrate the existence of a downward shift of the Pt d-band, resulting in weakening of the bond strength of intermediate oxygenated species due to strain. Finally, we combine synthesis, strain, and catalytic reactivity in an experimental/theoretical reactivity-strain relationship which provides guidelines for the rational design of strained oxygen reduction electrocatalysts. The stoichiometry of the precursor, together with the dealloying conditions, provides experimental control over the resulting surface strain and thereby allows continuous tuning of the surface electrocatalytic reactivity - a concept that can be generalized to other catalytic reactions.

  4. Lupus flare in a manifestation of consecutive hypotony maculopathy after trabeculectomy

    Directory of Open Access Journals (Sweden)

    Ke-Hung Chien


    Full Text Available Systemic lupus erythematosus (SLE up-raises the surgical risk due to its unpredictable perioperative disease activity. Lupus flare represents an important issue because of its potential threat in organ damage and drug toxicity after adjusting the dosage of immune-modulating agents. A 34-year-old female was referred for trabeculectomy surgery for her poor-controlled steroid-related glaucoma with a 5-year history of SLE under systemic steroids control. Remission status was confirmed with normal serum complement levels. However, lupus flare with clinical ocular findings as hypotony maculopathy presented 1-week after uneventful surgery. Early and effective treatment with pulse corticosteroid therapy was conducted, and this patient recovered her ocular performance 1-month later except preexisting glaucomatous visual field deficits. SLE flare may be seen in any form of postoperative complications, even masked with consecutive hypotony maculopathy. This case reminds early detection of systemic lupus flare and different therapeutic plan is prompt in postoperative follow-up.

  5. The Miniature X-ray Solar Spectrometer (MinXSS) CubeSats: instrument capabilities and early science analysis on the quiet Sun, active regions, and flares. (United States)

    Moore, Christopher S.; Woods, Tom; Caspi, Amir; Dennis, Brian R.; MinXSS Instrument Team, NIST-SURF Measurement Team


    Detection of soft X-rays (sxr) from the Sun provide direct information on coronal plasma at temperatures in excess of ~1 MK, but there have been relatively few solar spectrally resolved measurements from 0.5 – 10. keV. The Miniature X-ray Solar Spectrometer (MinXSS) CubeSat is the first solar science oriented CubeSat mission flown for the NASA Science Mission Directorate, and has provided measurements from 0.8 -12 keV, with resolving power ~40 at 5.9 keV, at a nominal ~10 second time cadence. MinXSS design and development has involved over 40 graduate students supervised by professors and professionals at the University of Colorado at Boulder. Instrument radiometric calibration was performed at the National Institute for Standard and Technology (NIST) Synchrotron Ultraviolet Radiation Facility (SURF) and spectral resolution determined from radioactive X-ray sources. The MinXSS spectra allow for determining coronal abundance variations for Fe, Mg, Ni, Ca, Si, S, and Ar in active regions and during flares. Measurements from the first of the twin CubeSats, MinXSS-1, have proven to be consistent with the Geostationary Operational Environmental Satellite (GOES) 0.1 – 0.8 nm energy flux. Simultaneous MinXSS-1 and Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) observations have provided the most complete sxr spectral coverage of flares in recent years. These combined measurements are vital in estimating the heating flare loops by non-thermal accelerated electrons. MinXSS-1 measurements have been combined with the Hinode X-ray Telescope (XRT) and Solar Dynamics Observatory Atmospheric Imaging Assembly (SDO-AIA) to further constrain the coronal temperature distribution during quiescent times. The structure of the temperature distribution (especially for T > 5 MK) is important for deducing heating processes in the solar atmosphere. MinXSS-1 observations yield some of the tightest constraints on the high temperature component of the coronal plasma, in the

  6. ASAS-SN Detection of Strong Flaring Activity from a Known Blazar PKS 1510-089 and a New Blazar Candidate ASASSN-15ha (United States)

    Stanek, K. Z.; Prieto, J. L.; Holoien, T. W.-S.; Kochanek, C. S.; Danilet, A. B.; Simonian, G.; Basu, U.; Goss, N.; Beacom, J. F.; Thompson, T. A.; Shappee, B. J.; Bersier, D.; Brimacombe, J.; Dong, Subo; Falco, E.; Wozniak, P. R.; Szczygiel, D.; Pojmanski, G.


    Flaring blazar PKS 1510-089 (e.g., ATel #6366) is in a field regularly observed by ASAS-SN robotic telescope network. Images obtained on UT 2015-04-13.29 reveal a strong (delta V~1 mag) V-band flare of that object, see this figure for last 30 days of ASAS-SN photometry.


    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Ryosuke; Fukazawa, Yasushi; Tanaka, Yasuyuki T. [Department of Physical Sciences, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Abe, Yuhei [Department of Cosmosciences, Graduate School of Science, Hokkaido University, Kita-ku, Sapporo 060-0810 (Japan); Akitaya, Hiroshi; Kawabata, Koji S.; Moritani, Yuki [Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Arai, Akira [Nishi-Harima Astronomical Observatory, Center for Astronomy, University of Hyogo, 407-2 Nishigaichi, Sayo-cho, Sayo, Hyogo 679-5313 (Japan); Hayashi, Masahiko [National Astronomical Observatory of Japan, Osawa 2-21-2, Mitaka, Tokyo 181-8588 (Japan); Hori, Takafumi; Nakata, Chikako [Department of Astronomy, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan); Isogai, Mizuki [Koyama Astronomical Observatory, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto-City 603-8555 (Japan); Izumiura, Hideyuki; Kuroda, Daisuke [Okayama Astrophysical Observatory, National Astronomical Observatory of Japan, Honjo 3037-5, Kamogata, Asakuchi, Okayama 719-0232 (Japan); Kawai, Nobuyuki [Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan); Miyanoshita, Ryo [Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065 (Japan); Morokuma, Tomoki [Institute of Astronomy, Graduate School of Science, The University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Nagayama, Takahiro [Department of Astrophysics, Nagoya University, Chikusa-ku, Nagoya 464-8602 (Japan); Nakamoto, Jumpei [Department of Earth and Planetary Sciences, School of Science, Hokkaido University, Kita-ku, Sapporo 060-0810 (Japan); Oasa, Yumiko, E-mail: [Faculty of Education, Saitama University, 255 Shimo-Okubo, Sakura, Saitama, 338-8570 (Japan); and others


    CTA 102, classified as a flat spectrum radio quasar at z = 1.037, produced an exceptionally bright optical flare in 2012 September. Following the Fermi Large Area Telescope detection of enhanced {gamma}-ray activity, we closely monitored this source in the optical and near-infrared bands for the 10 subsequent nights using 12 telescopes in Japan and South Africa. On MJD 56197 (2012 September 27, four to five days after the peak of bright {gamma}-ray flare), polarized flux showed a transient increase, while total flux and polarization angle (PA) remained almost constant during the ''orphan polarized-flux flare.'' We also detected an intra-night and prominent flare on MJD 56202. The total and polarized fluxes showed quite similar temporal variations, but the PA again remained constant during the flare. Interestingly, the PAs during the two flares were significantly different from the jet direction. The emergence of a new emission component with a high polarization degree (PD) up to 40% would be responsible for the observed two flares, and such a high PD indicates the presence of a highly ordered magnetic field at the emission site. We argue that the well-ordered magnetic field and even the observed directions of the PA, which is grossly perpendicular to the jet, are reasonably accounted for by transverse shock(s) propagating down the jet.

  8. Identifying flares in rheumatoid arthritis

    DEFF Research Database (Denmark)

    Bykerk, Vivian P; Bingham, Clifton O; Choy, Ernest H


    to flare, with escalation planned in 61%. CONCLUSIONS: Flares are common in rheumatoid arthritis (RA) and are often preceded by treatment reductions. Patient/MD/DAS agreement of flare status is highest in patients worsening from R/LDA. OMERACT RA flare questions can discriminate between patients with...... Set. METHODS: Candidate flare questions and legacy measures were administered at consecutive visits to Canadian Early Arthritis Cohort (CATCH) patients between November 2011 and November 2014. The American College of Rheumatology (ACR) core set indicators were recorded. Concordance to identify flares...

  9. Construction and characterization of an anti-CD20 mAb nanocomb with exceptionally excellent lymphoma-suppressing activity. (United States)

    Li, Hua-Fei; Wu, Cong; Chen, Ting; Zhang, Ge; Zhao, He; Ke, Chang-Hong; Xu, Zheng


    The CD20-directed monoclonal antibody rituximab (RTX) established a new era in the treatment of non-Hodgkin lymphoma (NHL); however, suboptimal response and/or resistance to RTX still limit its clinical merits. Although four effector mechanisms are validated to participate in CD20-based immunotherapy, including complement-dependent cytotoxicity, antibody-dependent cell-mediated cytotoxicity, caspase-dependent apoptosis, and lysosome-mediated programmed cell death (PCD), they could hardly be synchronously activated by any anti-CD20 mAb or mAb derivative until now. Herein, a novel mAb nanocomb (polyethylenimine polymer-RTX-tositumomab [PPRT nanocomb]) was firstly constructed through mass arming two different anti-CD20 mAbs (RTX and tositumomab) to one polymer by nanotechnology. Comparing with free mAbs, PPRT nanocomb possesses a comparable binding ability and reduced "off-rate" to surface CD20 of NHL cells. When treated by PPRT nanocomb, the caspase-dependent apoptosis was remarkably enhanced except for concurrently eliciting complement-dependent cytotoxicity, antibody-dependent cell-mediated cytotoxicity, and lysosome-mediated PCD. Besides, "cross-cell link"-assisted homotypic adhesion by PPRT nanocomb further enhanced the susceptibility to PCD of lymphoma cells. Pharmacokinetic assays revealed that PPRT nanocomb experienced a relatively reduced clearance from peripheral blood compared with free antibodies. With the cooperation of all the abovementioned superiorities, PPRT nanocomb exhibits exceptionally excellent in vivo antitumor activities in both disseminated and localized human NHL xenotransplant models.


    Directory of Open Access Journals (Sweden)

    Oana-Andreea Pirnuta


    Full Text Available In an interconnected world where foreign relations matter not only for resources or military alliances but also for cultural relationships, it is highly important to have a better understanding of the power relations among nations. The information carries certain meanings that have important outcomes thus defining the power of a given nation. Foreign policy is the channel through which global politics is exercised. International politics is a hierarchy of power being determined by important cultural, economic as well as geographical aspects. The reasons and strategies that are used in order to reach the outcomes in global politics represent the focus of the present paper. The United States has been the leader in international politics since the early 20th century due to its vast resources and wealth as well as its cultural output. America’s interest in preserving a democratic and free world has its foundation in the beliefs and values it stands for the aim of this paper is to question whether or not there is a concrete premise for the idea of American exceptionalism.

  11. Max 1991: Flare Research at the Next Solar Maximum. Workshop 1: Scientific Objectives (United States)

    Canfield, Richard C.; Dennis, Brian R.


    The purpose of the Max 1991 program is to gather coordinated sets of solar flare and active region data and to perform interpretive and theoretical research aimed at understanding flare energy storage and release, particle acceleration, flare energy transport, and the propagation of flare effects to Earth. The workshop was divided into four areas of concern: energy storage, energy release, particle acceleration, and energy transport.

  12. The Solar Flare Complex Network (United States)

    Gheibi, Akbar; Safari, Hossein; Javaherian, Mohsen


    We investigate the characteristics of the solar flare complex network. The limited predictability, nonlinearity, and self-organized criticality of the flares allow us to study systems of flares in the field of the complex systems. Both the occurrence time and the location of flares detected from 2006 January 1 to 2016 July 21 are used to design the growing flares network. The solar surface is divided into cells with equal areas. The cells, which include flares, are considered nodes of the network. The related links are equivalent to sympathetic flaring. The extracted features demonstrate that the network of flares follows quantitative measures of complexity. The power-law nature of the connectivity distribution with a degree exponent greater than three reveals that flares form a scale-free and small-world network. A large value for the clustering coefficient, a small characteristic path length, and a slow change of the diameter are all characteristics of the flares network. We show that the degree correlation of the flares network has the characteristics of a disassortative network. About 11% of the large energetic flares (M and X types in GOES classification) that occurred in the network hubs cover 3% of the solar surface.

  13. Efficacy and tolerability of rupatadine at four times the recommended dose against histamine- and platelet-activating factor-induced flare responses and ex vivo platelet aggregation in healthy males. (United States)

    Church, M K


    European guidelines recommend increasing H1-antihistamine doses up to fourfold in poorly responding patients with urticaria. To assess the efficacy and tolerability of high-dose rupatadine (40 mg) against platelet-activating factor (PAF)- and histamine-induced flare responses in human skin and to verify its anti-PAF activity by assessing its inhibition of PAF-induced platelet aggregation in the blood of subjects receiving rupatadine 40 mg. In the flare study, six male volunteers received a single dose of rupatadine 40 mg. Flares were induced before dosing and up to 96 h afterwards by intradermal PAF and histamine. In the ex vivo study, four male volunteers received an oral dose of rupatadine 40 mg and blood samples were taken 4 h afterwards. Platelet aggregation was assessed in platelet-rich plasma by incubation for 5 min with PAF. Rupatadine 40 mg reached maximal plasma levels of 15·1 ± 4·4 ng mL⁻¹)1 at 1 h and its metabolite, desloratadine, 5·2 ± 0·9 ng mL⁻¹)1 at 2 h. Neither was detectable at 12 h. Inhibition of histamine- and PAF-induced flares was significant within 2 h, maximal at 6 h (87·8 ± 3·1% and 87·1 ± 2·5% inhibition, respectively, P Rupatadine 40 mg inhibited PAF-induced platelet aggregation ex vivo by 82 ± 9% (P = 0·023). A single oral dose of rupatadine 40 mg was well tolerated with mild transient somnolence being reported. A single dose of rupatadine at four times the recommended dose is well tolerated, highly effective for up to 72 h against PAF- and histamine-induced dermal flares and has demonstrable PAF-receptor antagonism ex vivo.

  14. Future flare compositions

    NARCIS (Netherlands)

    Lingen, J.L.N. van; Meuken, D.; Hackspik, M.M.; Mäkeläinen, T.; Weiser, V.; Poulson, G.W.


    This poster describes the work done within the Category B joint research project under the European Defence Agency (EDA) on Future Flare Compositions [1]. Contributing members were Finland, Germany, United Kingdom and the Netherlands. The program was aimed to identify the technology gaps that apply

  15. Establishing a core domain set to measure rheumatoid arthritis flares

    DEFF Research Database (Denmark)

    Bykerk, Vivian P; Lie, Elisabeth; Bartlett, Susan J


    Filter 2.0 methodology. RESULTS: A pre-meeting combined Delphi exercise for defining flare identified 9 domains as important (>70% consensus from patients or HCP). Four new patient-reported domains beyond those included in the RA disease activity core set were proposed for inclusion (fatigue......OBJECTIVE: The OMERACT Rheumatoid Arthritis (RA) Flare Group (FG) is developing a data-driven, patient-inclusive, consensus-based RA flare definition for use in clinical trials, longterm observational studies, and clinical practice. At OMERACT 11, we sought endorsement of a proposed core domain set...... to measure RA flare. METHODS: Patient and healthcare professional (HCP) qualitative studies, focus groups, and literature review, followed by patient and HCP Delphi exercises including combined Delphi consensus at Outcome Measures in Rheumatology 10 (OMERACT 10), identified potential domains to measure flare...

  16. Developing a Construct to Evaluate Flares in Rheumatoid Arthritis: A Conceptual Report of the OMERACT RA Flare Definition Working Group

    DEFF Research Database (Denmark)

    Alten, Rieke; Choy, Ernest H; Christensen, Robin


    is intended to enhance patient-HCP communication. This article describes the conceptual framework being used by the OMERACT RA Flare Definition Working Group in developing a standardized method for description and measurement of "flare in RA" to guide individual patient treatment.......Rheumatoid arthritis (RA) patients and healthcare professionals (HCP) recognize that episodic worsening disease activity, often described as a "flare," is a common feature of RA that can contribute to impaired function and disability. However, there is no standard definition to enable measurement...... of its intensity and impact. The conceptual framework of the Outcome Measures in Rheumatology Clinical Trials (OMERACT) RA Flare Definition Working Group includes an anchoring statement, developed at OMERACT 9 in 2008: "flare in RA" is defined as worsening of signs and symptoms of sufficient intensity...

  17. Synergistic anti-tumor therapy by a comb-like multifunctional antibody nanoarray with exceptionally potent activity (United States)

    Li, Huafei; Sun, Yun; Chen, Di; Zhao, He; Zhao, Mengxin; Zhu, Xiandi; Ke, Changhong; Zhang, Ge; Jiang, Cheng; Zhang, Li; Zhang, Fulei; Wei, Huafeng; Li, Wei


    Simultaneously blocking multiple mediators offers new hope for the treatment of complex diseases. However, the curative potential of current combination therapy by chronological administration of separate monoclonal antibodies (mAbs) or multi-specific mAbs is still moderate due to inconvenient manipulation, low cooperative effectors, poor pharmacokinetics and insufficient tumor accumulation. Here, we describe a facile strategy that arms distinct mAbs with cooperative effectors onto a long chain to form a multicomponent comb-like nano mAb. Unlike dissociative parental mAbs, the multifunctional mAb nanoarray (PL-RB) constructed from type I/II anti-CD20 mAbs shows good pharmacokinetics. This PL-RB simultaneously targets distinct epitopes on a single antigen (Ag) and neighboring Ags on different lymphocytes. This unique intra- and intercellular Ag cross-linking endows the multifunctional mAb nanoarray with potent apoptosis activity. The exceptional apoptosis, complement-dependent cytotoxicity (CDC), antibody-dependent cellular cytotoxicity (ADCC) that are synchronously evoked by the nano PL-RB are further synergistically promoted via enhanced permeability and retention (EPR), which resulted in high intratumor accumulation and excellent anti-lymphoma efficiency.

  18. A query into the source of proton emission from solar flares, report 2 (United States)

    Martin, S. F.


    Seven solar flares that were followed by major proton events were examined to determine the diverse and common properties of major flares. The most probable site of primary proton acceleration is cospatial with the site and instant of formation of coronal loops. Because loop formation occurs through the entire duration of major solar flares over significantly large areas of active centers, it is proposed that proton injection occurs from a relatively large volume of space in the corona of active centers and is continuous throughout, and possibly even after, the visible duration of the related chromospheric flare. The flare veil is hypothesized to occur as a result of proton charge exchange taking place in the white-light transient. The Kopp and Pneuman model of loop formation by magnetic reconnection is suggested as an adequate and satisfactory model for all major flares with the provision that the beginning of rapid magnetic field reconnection is coincident with flare start.

  19. Data Mining Solar X-Ray Flares Triggered by Emerging Magnetic Flux (United States)

    Loftus, Kaitlyn; Saar, Steven H.; Schanche, Nicole


    We investigate the association between emerging magnetic flux and solar X-ray flares to identify, and if possible quantify, distinguishing physical properties of flares triggered by flux emergence versus those triggered by other sources. Our study uses as its basis GOES-classified solar flares from March 2011 through June 2016 that have been identified by the Space Weather Prediction Center’s flare detection algorithm. The basic X-ray flare data is then enriched with data about related EUV-spectrum flares, emerging fluxes, active regions, eruptions, and sigmoids, which are all characterized by event-specific keywords, identified via SDO feature finding tools, and archived in the Heliophysics Events Knowledgebase (HEK). Using appropriate spatial and temporal parameters for each event type to determine association, we create a catalogue of solar events associated with each GOES-classified flare. After accounting for the primitive state of many of these event detection algorithms, we statistically analyze the compiled dataset to determine the effects of an emerging flux trigger on flare properties. A two-sample Kolmogorov-Smirnov test confirms with 99.9% confidence that flares triggered by emerging flux have a different peak flux distribution than non-emerging-flux-associated flares. We observe no linear or logarithmic correlations between flares’ and their associated emerging fluxes’ individual properties and find flares triggered by emerging flux are ~ 10% more likely to cause an eruption inside an active region while outside of an active region, the flare’s association with emerging flux has no effect on its likeliness to cause an eruption. We also compare the morphologies of the flares triggered by emerging flux and flares not via a superposed epoch analysis of lightcurves. Our results will be of interest for predicting flare behavior as a function of magnetic activity (where we can use enhanced rates of emerging flux as a proxy for heightened stellar

  20. Study of Flare Assessment in Systemic Lupus Erythematosus Based on Paper Patients. (United States)

    Isenberg, D; Sturgess, J; Allen, E; Aranow, C; Askanase, A; Sang-Cheol, B; Bernatsky, S; Bruce, I; Buyon, J; Cervera, R; Clarke, A; Dooley, Mary Anne; Fortin, P; Ginzler, E; Gladman, D; Hanly, J; Inanc, M; Jacobsen, S; Kamen, D; Khamashta, M; Lim, S; Manzi, S; Nived, O; Peschken, C; Petri, M; Kalunian, K; Rahman, A; Ramsey-Goldman, R; Romero-Diaz, J; Ruiz-Irastorza, G; Sanchez-Guerrero, J; Steinsson, K; Sturfelt, G; Urowitz, M; van Vollenhoven, R; Wallace, D J; Zoma, A; Merrill, J; Gordon, C


    To determine the level of agreement of disease flare severity (distinguishing severe, moderate, and mild flare and persistent disease activity) in a large paper-patient exercise involving 988 individual cases of systemic lupus erythematosus. A total of 988 individual lupus case histories were assessed by 3 individual physicians. Complete agreement about the degree of flare (or persistent disease activity) was obtained in 451 cases (46%), and these provided the reference standard for the second part of the study. This component used 3 flare activity instruments (the British Isles Lupus Assessment Group [BILAG] 2004, Safety of Estrogens in Lupus Erythematosus National Assessment [SELENA] flare index [SFI] and the revised SELENA flare index [rSFI]). The 451 patient case histories were distributed to 18 pairs of physicians, carefully randomized in a manner designed to ensure a fair case mix and equal distribution of flare according to severity. The 3-physician assessment of flare matched the level of flare using the 3 indices, with 67% for BILAG 2004, 72% for SFI, and 70% for rSFI. The corresponding weighted kappa coefficients for each instrument were 0.82, 0.59, and 0.74, respectively. We undertook a detailed analysis of the discrepant cases and several factors emerged, including a tendency to score moderate flares as severe and persistent activity as flare, especially when the SFI and rSFI instruments were used. Overscoring was also driven by scoring treatment change as flare, even if there were no new or worsening clinical features. Given the complexity of assessing lupus flare, we were encouraged by the overall results reported. However, the problem of capturing lupus flare accurately is not completely solved. © 2017, The Authors. Arthritis Care & Research published by Wiley Periodicals, Inc. on behalf of American College of Rheumatology.


    Energy Technology Data Exchange (ETDEWEB)

    Pihajoki, P.; Berdyugin, A.; Lindfors, E.; Reinthal, R.; Sillanpaeae, A.; Takalo, L. [Tuorla Observatory, Department of Physics and Astronomy, University of Turku, FI-21500 Piikkioe (Finland); Valtonen, M.; Nilsson, K. [Finnish Centre for Astronomy with ESO, University of Turku, FI-21500 Piikkioe (Finland); Zola, S.; Koziel-Wierzbowska, D. [Astronomical Observatory, Jagiellonian University, ul. Orla 171, PL-30-244 Krakow (Poland); Liakos, A. [Department of Astrophysics, Astronomy and Mechanics, University of Athens, GR 157 84 Zografos, Athens, Hellas (Greece); Drozdz, M.; Winiarski, M.; Ogloza, W. [Mount Suhora Observatory, Pedagogical University, ul. Podchorazych 2, PL-30-084 Krakow (Poland); Provencal, J. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Santangelo, M. M. M. [O.A.C. Osservatorio Astronomico di Capannori, Via di Valle, I-55060 Vorno, Capannori (Italy); Salo, H. [Department of Physical Sciences, University of Oulu, P.O. Box 3000, FI-90014 University of Oulu (Finland); Chandra, S.; Ganesh, S.; Baliyan, K. S., E-mail: [Astronomy and Astrophysics Division, Physical Research Laboratory, Ahmedabad 380009 (India); and others


    We have studied three most recent precursor flares in the light curve of the blazar OJ 287 while invoking the presence of a precessing binary black hole in the system to explain the nature of these flares. Precursor flare timings from the historical light curves are compared with theoretical predictions from our model that incorporate effects of an accretion disk and post-Newtonian description for the binary black hole orbit. We find that the precursor flares coincide with the secondary black hole descending toward the accretion disk of the primary black hole from the observed side, with a mean z-component of approximately z{sub c} = 4000 AU. We use this model of precursor flares to predict that precursor flare of similar nature should happen around 2020.96 before the next major outburst in 2022.

  2. Study on Precursor Activity of the X1.6 Flare in the Great AR 12192 with SDO, IRIS, and Hinode (United States)

    Bamba, Yumi; Lee, Kyoung-Sun; Imada, Shinsuke; Kusano, Kanya


    The physical properties and their contribution to the onset of a solar flare are still uncleare even though chromospheric brightening is considered a precursor phenomenon of a flare. Many studies suggested that photospheric magnetic field changes cause destabilization of large-scale coronal structure. We aim to understand how a small photospheric change contributes to a flare and to reveal how the intermediary chromosphere behaves in the precursor phase. We analyzed the precursor brightening of the X1.6 flare on 2014 October 22 in the AR 12192 using the Interface Region Imaging Spectrograph (IRIS) and Hinode/EUV Imaging Spectrometer (EIS) data. We investigated a localized jet with the strong precursor brightening, and compared the intensity, Doppler velocity, and line width in C II, Mg II k, and Si IV lines by IRIS and He II, Fe xii, and Fe xv lines by Hinode/EIS. We also analyzed the photospheric magnetic field and chromospheric/coronal structures using the Solar Dynamics Observatory (SDO)/Helioseismic and Magnetic Imager and Atmospheric Imaging Assembly. We found a significant blueshift (˜100 km s-1), which is related to the strong precursor brightening over a characteristic magnetic field structure, and the blueshift was observed at all of the temperatures. This might indicate that the flow is accelerated by Lorentz force. Moreover, the large-scale coronal loop that connects the foot points of the flare ribbons was destabilized just after the precursor brightening with the blueshift. It suggests that magnetic reconnection locally occurred in the lower chromosphere and it triggered magnetic reconnection of the X1.6 flare in the corona.

  3. Generation Mechanisms of Quasi-parallel and Quasi-circular Flare Ribbons in a Confined Flare (United States)

    Hernandez-Perez, Aaron; Thalmann, Julia K.; Veronig, Astrid M.; Su, Yang; Gömöry, Peter; Dickson, Ewan C.


    We analyze a confined multiple-ribbon M2.1 flare (SOL2015-01-29T11:42) that originated from a fan-spine coronal magnetic field configuration, within active region NOAA 12268. The observed ribbons form in two steps. First, two primary ribbons form at the main flare site, followed by the formation of secondary ribbons at remote locations. We observe a number of plasma flows at extreme-ultraviolet temperatures during the early phase of the flare (as early as 15 minutes before the onset) propagating toward the formation site of the secondary ribbons. The secondary ribbon formation is co-temporal with the arrival of the pre-flare generated plasma flows. The primary ribbons are co-spatial with Ramaty High Energy Spectroscopic Imager (RHESSI) hard X-ray sources, whereas no enhanced X-ray emission is detected at the secondary ribbon sites. The (E)UV emission, associated with the secondary ribbons, peaks ˜1 minute after the last RHESSI hard X-ray enhancement. A nonlinear force-free model of the coronal magnetic field reveals that the secondary flare ribbons are not directly connected to the primary ribbons, but to regions nearby. Detailed analysis suggests that the secondary brightenings are produced due to dissipation of kinetic energy of the plasma flows (heating due to compression), and not due to non-thermal particles accelerated by magnetic reconnection, as is the case for the primary ribbons.

  4. Thermodynamic Spectrum of Solar Flares Based on SDO/EVE Observations: Techniques and First Results (United States)

    Wang, Yuming; Zhou, Zhenjun; Zhang, Jie; Liu, Kai; Liu, Rui; Shen, Chenglong; Chamberlin, Phillip C.


    The Solar Dynamics Observatory (SDO)/EUV Variability Experiment (EVE) provides rich information on the thermodynamic processes of solar activities, particularly on solar flares. Here, we develop a method to construct thermodynamic spectrum (TDS) charts based on the EVE spectral lines. This tool could potentially be useful for extreme ultraviolet (EUV) astronomy to learn about the eruptive activities on distant astronomical objects. Through several cases, we illustrate what we can learn from the TDS charts. Furthermore, we apply the TDS method to 74 flares equal to or greater than the M5.0 class, and reach the following statistical results. First, EUV peaks are always behind the soft X-ray (SXR) peaks and stronger flares tend to have faster cooling rates. There is a power-law correlation between the peak delay times and the cooling rates, suggesting a coherent cooling process of flares from SXR to EUV emissions. Second, there are two distinct temperature drift patterns, called Type I and Type II. For Type I flares, the enhanced emission drifts from high to low temperature like a quadrilateral, whereas for Type II flares the drift pattern looks like a triangle. Statistical analysis suggests that Type II flares are more impulsive than Type I flares. Third, for late-phase flares, the peak intensity ratio of the late phase to the main phase is roughly correlated with the flare class, and the flares with a strong late phase are all confined. We believe that the re-deposition of the energy carried by a flux rope, which unsuccessfully erupts out, into thermal emissions is responsible for the strong late phase found in a confined flare. Furthermore, we show the signatures of the flare thermodynamic process in the chromosphere and transition region in the TDS charts. These results provide new clues to advance our understanding of the thermodynamic processes of solar flares and associated solar eruptions, e.g., coronal mass ejections.

  5. Reconstruction of a Large-scale Pre-flare Coronal Current Sheet Associated with a Homologous X-shaped Flare (United States)

    Jiang, Chaowei; Yan, Xiaoli; Feng, Xueshang; Duan, Aiying; Hu, Qiang; Zuo, Pingbing; Wang, Yi


    As a fundamental magnetic structure in the solar corona, electric current sheets (CSs) can form either prior to or during a solar flare, and they are essential for magnetic energy dissipation in the solar corona because they enable magnetic reconnection. However, the static reconstruction of a CS is rare, possibly due to limitations that are inherent in the available coronal field extrapolation codes. Here we present the reconstruction of a large-scale pre-flare CS in solar active region 11967 using an MHD-relaxation model constrained by the SDO/HMI vector magnetogram. The CS is associated with a set of peculiar homologous flares that exhibit unique X-shaped ribbons and loops occurring in a quadrupolar magnetic configuration.This is evidenced by an ’X’ shape, formed from the field lines traced from the CS to the photosphere. This nearly reproduces the shape of the observed flare ribbons, suggesting that the flare is a product of the dissipation of the CS via reconnection. The CS forms in a hyperbolic flux tube, which is an intersection of two quasi-separatrix layers. The recurrence of the X-shaped flares might be attributed to the repetitive formation and dissipation of the CS, as driven by the photospheric footpoint motions. These results demonstrate the power of a data-constrained MHD model in reproducing a CS in the corona as well as providing insight into the magnetic mechanism of solar flares.

  6. Developing a construct to evaluate flares in rheumatoid arthritis: a conceptual report of the OMERACT RA Flare Definition Working Group. (United States)

    Alten, Rieke; Pohl, Christof; Choy, Ernest H; Christensen, Robin; Furst, Daniel E; Hewlett, Sarah E; Leong, Amye; May, James E; Sanderson, Tessa C; Strand, Vibeke; Woodworth, Thasia G; Bingham, Clifton O


    Rheumatoid arthritis (RA) patients and healthcare professionals (HCP) recognize that episodic worsening disease activity, often described as a "flare," is a common feature of RA that can contribute to impaired function and disability. However, there is no standard definition to enable measurement of its intensity and impact. The conceptual framework of the Outcome Measures in Rheumatology Clinical Trials (OMERACT) RA Flare Definition Working Group includes an anchoring statement, developed at OMERACT 9 in 2008: "flare in RA" is defined as worsening of signs and symptoms of sufficient intensity and duration to lead to change in therapy. Subsequently, domains characterizing flare have been identified by comprehensive literature review, patient focus groups, and patient/HCP Delphi exercises. This led to a consensus regarding preliminary domains and a research agenda at OMERACT 10 in May 2010. The conceptual framework of flare takes into account validated approaches to measurement in RA: (1) various disease activity indices (e.g., Disease Activity Score, Clinical Disease Activity Index, Simplified Disease Activity Index); (2) use of patient-reported outcomes (PRO); and (3) characterization of minimally clinically detectable and important differences (MCDD, MCID). The measurement of RA flare is composed of data collection assessing a range of unique domains describing key features of RA worsening at the time of patient self-report of flare, and then periodically for the duration of the flare. The components envisioned are: (1) Patient self-report using a "patient global question" with well characterized and validated anchors; (2) Patient assessment using a flare questionnaire and PRO available at the time of each self-report; (3) Physician/HCP assessment of disease activity status; and (4) Physician's determination whether to change treatment. In randomized controlled trials and observational studies, such a conceptual approach is intended to lead to a valid measure of

  7. A study of flare assessment in systemic lupus erythematosus (SLE) based on paper patients


    Isenberg, D.; Sturgess, J; Allen, Jeannette E.; Aranow, C.; Askanase, Anca; Sang-Cheol, B; Bernatsky, S; Bruce, I; Buyon, Jp; Cervera, R.; Clarke, A; Dooley, Mary Anne; Fortin, P.; Ginzler, E.; Gladman, D D


    OBJECTIVE: To determine the level of agreement of disease flare severity (distinguishing severe, moderate and mild flare and persistent disease activity) in a large paper patient exercise involving 988 individual cases of systemic lupus erythematosus.METHODS: 988 individual lupus case histories were assessed by three individual physicians. Complete agreement about the degree of flare (or persistent disease activity) was obtained in 451 cases (46%) and these provided the reference standard for...

  8. Forecast of a Major Flare Occurrence Rate within a Day Using SDO/HMI Data (United States)

    Lim, Daye; Moon, Yong-Jae; Park, J.-Y.


    We present the relationship between vector magnetic field parameters and solar major flare occurrence rate. Based on this we are developing the forecast of major flare (M and X-class) occurrence rate within a day using Space-weather HMI Active Region Patch (SHARP) vector magnetic field hourly data from May 2010 to December 2016. In order to reduce the projection effect, we use SHARP data whose longitudes are smaller than 60 degrees. We consider six SHARP magnetic parameters (the total unsigned current helicity, the total photospheric magnetic free energy density, the total unsigned vertical current, the absolute value of the net current helicity, the sum of the net current emanating from each polarity, the total unsigned magnetic flux) with high F-scores as useful predictors of flaring activity from Bobra et al. (2015). All magnetic parameters are divided into 100 groups to estimate the corresponding flare occurrence rates. The flare identification is determined by using LMSAL flare locations, giving more numbers of flares than the NGDC flare list. 70% of the data are used for setting up a flare model, and the other for test. Major results are as follows. First, flare occurrence rates (X-class and M & X-class) are well correlated with six magnetic parameters. Second, the occurrence rate ranges from 0.001 to 1 for M and X-class flares. Third, the logarithmic values of flaring rates are well approximated by two linear equations with different slopes: steeper one at lower values. Fourth, the sum of the net current emanating from each polarity gives the minimum RMS error between actual flare rate and predicted one.

  9. Dynamic evolution of the eruptive and confined flares observed by IRIS and RHESSI (United States)

    Chen, N. H.; Yang, Y. H.; Kim, S.; Kim, R. S.


    The catastrophic eruption with huge energy released is the well-known characteristic of solar flares. Some flares followed by coronal mass ejection (CME) are named as eruptive flares while those CME-less are confined. In this study, we tracked the flare-productive active region 12297 from 2015 March 11 to 13. It produced a series of X and M flares during the disk passage, of which one X-class erupted flare and two M-class confined flares are investigated. We combine the Interface Region Imaging Spectrometer (IRIS) together with RHESSI hard X-ray observations to derive the flare energetics, including thermal and non-thermal energy of plasma in the transition region and above. IRIS FUV/NUV imaging spectroscopy and simultaneous HXR observations are used to characterize the flare kernels. The Fe XXI lines spectra obtained in IRIS, which represents the high temperature emission, shows highly blued-shifted in these kernels, suggesting hot plasma upflow. We also utilize the IRIS lines to diagnose the electron number density during the impulsive phase of flare.

  10. Search for neutrinos from flaring blazars

    Energy Technology Data Exchange (ETDEWEB)

    Kreter, Michael [Lehrstuhl fuer Astronomie, Universitaet Wuerzburg, Emil-Fischer-Strasse 31, 97074 Wuerzburg (Germany); ECAP, Universitaet Erlangen-Nuernberg, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Eberl, Thomas; James, Clancy [ECAP, Universitaet Erlangen-Nuernberg, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Kadler, Matthias [Lehrstuhl fuer Astronomie, Universitaet Wuerzburg, Emil-Fischer-Strasse 31, 97074 Wuerzburg (Germany); Collaboration: ANTARES-KM3NeT-Erlangen-Collaboration


    Jets from Active Galactic Nuclei (AGN) are among the best candidates for the recently detected extraterrestrial neutrino flux. Hadronic AGN jet-emission models predict a tight correlation between the neutrino flux and the time-variable gamma-ray emission. At the same time, the atmospheric-background (noise) signal, which often dominates in neutrino-astronomical observations, can be substantially reduced by rejecting long-lasting periods of low flux. For these reasons, short high-amplitude gamma-ray flares, as often observed in blazars, can be used to substantially increase the sensitivity of neutrino telescopes in point-source searches. We develop a strategy to search for TeV neutrinos from flaring blazar jets from the TANAMI sample using the ANTARES telescope and Fermi gamma-ray light curves. An unbinned maximum-likelihood method is applied to optimize the probability of a neutrino detection from TANAMI sources.

  11. Ensemble Forecasting of Major Solar Flares

    CERN Document Server

    Guerra, J A; Uritsky, V M


    We present the results from the first ensemble prediction model for major solar flares (M and X classes). Using the probabilistic forecasts from three models hosted at the Community Coordinated Modeling Center (NASA-GSFC) and the NOAA forecasts, we developed an ensemble forecast by linearly combining the flaring probabilities from all four methods. Performance-based combination weights were calculated using a Monte Carlo-type algorithm by applying a decision threshold $P_{th}$ to the combined probabilities and maximizing the Heidke Skill Score (HSS). Using the probabilities and events time series from 13 recent solar active regions (2012 - 2014), we found that a linear combination of probabilities can improve both probabilistic and categorical forecasts. Combination weights vary with the applied threshold and none of the tested individual forecasting models seem to provide more accurate predictions than the others for all values of $P_{th}$. According to the maximum values of HSS, a performance-based weights ...

  12. Use of simulation in flare countermeasure development

    CSIR Research Space (South Africa)

    Delport, JP


    Full Text Available ● Assume enough flare energy ● Questions addressed ● Timing ● Geometry ● Dispense logic ● Obscuration ● Physics based, spectrally correct ● Question addressed ● Flare spectrum ● Environmental influences © CSIR 2008 AOC Conference – 12 November... November 2008 Slide 12 Engagement Scenarios & Simulations ● Aircraft with flares versus missile ● Flight conditions ● Flare dispense logic ● Flare pod placement, angles ● Multitude of simulated launches ● Visualisation...

  13. Chandra Captures Flare From Brown Dwarf (United States)


    The first flare ever seen from a brown dwarf, or failed star, was detected by NASA's Chandra X-ray Observatory. The bright X-ray flare has implications for understanding the explosive activity and origin of magnetic fields of extremely low mass stars. Chandra detected no X-rays at all from LP 944-20 for the first nine hours of a twelve hour observation, then the source flared dramatically before it faded away over the next two hours. "We were shocked," said Dr. Robert Rutledge of the California Institute of Technology in Pasadena, the lead author on the discovery paper to appear in the July 20 issue of Astrophysical Journal Letters. "We didn't expect to see flaring from such a lightweight object. This is really the 'mouse that roared.'" Chandra LP 944-20 X-ray Image Press Image and Caption The energy emitted in the brown dwarf flare was comparable to a small solar flare, and was a billion times greater than observed X-ray flares from Jupiter. The flaring energy is believed to come from a twisted magnetic field. "This is the strongest evidence yet that brown dwarfs and possibly young giant planets have magnetic fields, and that a large amount of energy can be released in a flare," said Dr. Eduardo Martin, also of Caltech and a member of the team. Professor Gibor Basri of the University of California, Berkeley, the principal investigator for this observation, speculated that the flare "could have its origin in the turbulent magnetized hot material beneath the surface of the brown dwarf. A sub-surface flare could heat the atmosphere, allowing currents to flow and give rise to the X-ray flare -- like a stroke of lightning." LP 944-20 is about 500 million years old and has a mass that is about 60 times that of Jupiter, or 6 percent that of the Sun. Its diameter is about one-tenth that of the Sun and it has a rotation period of less than five hours. Located in the constellation Fornax in the southern skies, LP 944-20 is one of the best studied brown dwarfs because it is

  14. Solar flares induced D-region ionospheric and geomagnetic perturbations (United States)

    Selvakumaran, R.; Maurya, Ajeet K.; Gokani, Sneha A.; Veenadhari, B.; Kumar, Sushil; Venkatesham, K.; Phanikumar, D. V.; Singh, Abhay K.; Siingh, Devendraa; Singh, Rajesh


    The D-region ionospheric perturbations caused by solar flares which occurred during January 2010-February 2011, a low solar activity period of current solar cycle 24, have been examined on NWC transmitter signal (19.8 kHz) recorded at an Indian low latitude station, Allahabad (Geographic lat. 25.75°N, long. 81.85°E). A total of 41 solar flares, including 21 C-class, 19 M-class and 01 X-class, occurred during the daylight part of the NWC-Allahabad transmitter receiver great circle path. The local time dependence of solar flare effects on the change in the VLF amplitude, time delay between VLF peak amplitude and X-ray flux peak have been studied during morning, noon and evening periods of local daytime. Using the Long Wave Propagation Capability code V 2.1 the D-region reference height (H/) and sharpness factor (β) for each class of solar flare (C, M and X) have been estimated. It is found that D-region ionospheric parameters (H/, β) strongly depend on the local time of flare's occurrence and their classes. The flare time electron density estimated by using H/ and β shows maximum increase in the electron density of the order of ~80 times as compared to the normal day values. The electron density was found to increase exponentially with increase in the solar flux intensity. The solar flare effect on horizontal component (H) of the Earth's magnetic field over an equatorial station, Tirunelveli (Geographic lat., 8.7°N, long., 77.8°E, dip lat., 0.4°N), shows a maximum increase in H of ~8.5% for M class solar flares. The increase in H is due to the additional magnetic field produced by the ionospheric electrojet over the equatorial station.

  15. Solar Features - Solar Flares - Patrol (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The H-alpha Flare Patrol identifies time periods each day when the sun is being continuously monitored by select ground-based solar observatories.

  16. 40mm Floating Flare Development

    National Research Council Canada - National Science Library

    Renfroe, Donald W


    The 40mm Floating Flare can be launched from either the M79 or the M203 Grenade Launcher and provides troops with a standoff capability for marking a target or position in inundated areas during hours of darkness...

  17. Automated Flare Prediction Using Extreme Learning Machine

    Directory of Open Access Journals (Sweden)

    Yuqing Bian


    Full Text Available Extreme learning machine (ELM is a fast learning algorithm of single-hidden layer feedforward neural networks (SLFNs. Compared with the traditional neural networks, the ELM algorithm has the advantages of fast learning speed and good generalization. At the same time, an ordinal logistic regression (LR is a statistical method which is conceptually simple and algorithmically fast. In this paper, in order to improve the real-time performance, a flare forecasting method is introduced which is the combination of the LR model and the ELM algorithm. The predictive variables are three photospheric magnetic parameters, that is, the total unsigned magnetic flux, length of the strong-gradient magnetic polarity inversion line, and total magnetic energy dissipation. The LR model is used to map these three magnetic parameters of each active region into four probabilities. Consequently, the ELM is used to map the four probabilities into a binary label which is the final output. The proposed model is used to predict the occurrence of flares with a certain level over 24 hours following the time when the magnetogram is recorded. The experimental results show that the cascade algorithm not only improves learning speed to realize timely prediction but also has higher accuracy of X-class flare prediction in comparison with other methods.

  18. Comparison of emission properties of two homologous flares in AR 11283

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yan; Jing, Ju; Wang, Shuo; Wang, Haimin, E-mail: [Space Weather Research Lab, Center for Solar-Terrestrial Research, New Jersey Institute of Technology 323 Martin Luther King Boulevard, Newark, NJ 07102-1982 (United States)


    Large, complex, active regions may produce multiple flares within a certain period of one or two days. These flares could occur in the same location with similar morphologies, commonly referred to as 'homologous flares'. In 2011 September, active region NOAA 11283 produced a pair of homologous flares on the 6th and 7th, respectively. Both of them were white-light (WL) flares, as captured by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory in visible continuum at 6173 Å which is believed to originate from the deep solar atmosphere. We investigate the WL emission of these X-class flares with HMI's seeing-free imaging spectroscopy. The durations of impulsive peaks in the continuum are about 4 minutes. We compare the WL with hard X-ray (HXR) observations for the September 6 flare and find a good correlation between the continuum and HXR both spatially and temporally. In absence of RHESSI data during the second flare on September 7, the derivative of the GOES soft X-ray is used and also found to be well correlated temporally with the continuum. We measure the contrast enhancements, characteristic sizes, and HXR fluxes of the twin flares, which are similar for both flares, indicating analogous triggering and heating processes. However, the September 7 flare was associated with conspicuous sunquake signals whereas no seismic wave was detected during the flare on September 6. Therefore, this comparison suggests that the particle bombardment may not play a dominant role in producing the sunquake events studied in this paper.

  19. Analysis of fifty year Gas Flaring Emissions from oil/gas companies in Africa (United States)

    Doumbia, E. H. T.; Liousse, C.; Granier, L.; Granier, C.; Rosset, R.; Oda, T.; Hsu, F. C.


    Flaring is a process during which waste gases are burned in an open atmosphere. The quantification of gas flaring emissions represents a major scientific concern due to its magnitude and related uncertainties. In global/regional emission inventories, this source, though releasing large amounts of pollutants in the atmosphere, is still poorly quantified if not missing. It can represent the main emission source of gaseous compounds and particles in some areas, as observed during the AMMA project in the Gulf of Guinea. Our study focuses on Africa, and includes Nigeria, which is one of the largest natural oil and gas reserve in the world. Africa is an important gas flaring area, since technologies for the exploitation of this energy source and the reduction of flaring activities have been only recently implemented. We have developed an emission inventory for gases and particles from flaring in Africa. We have first compiled the few published available dataset of fuel consumption from flaring. The spatial distribution of CO2 and black carbon (BC) emissions from gas flaring in 2011 is estimated using a methodology based on field reports and remote sensing (DMSP satellite data). Our results point out to the importance of flaring activities into the regional anthropogenic emissions in Africa over the period 1960-2011. Finally, the contribution of flaring to total anthropogenic emission can be large and needs to be accurately quantified.

  20. Analysis of Optical Activity in Terms of Bonds and Lone-Pairs: The Exceptionally Large Optical Rotation of Norbornenone. (United States)

    Moore, Barry; Srebro, Monika; Autschbach, Jochen


    Norbornenone, which has both a C═O and a C═C chromophore in a rigid bicyclic hydrocarbon framework, exhibits optical rotation (OR) an order of magnitude larger than that of similar molecules with only one of these chromophores (e.g., α-pinene). Its OR is also very sensitive to approximations in electronic structure calculations. The present study demonstrates a novel approach to interpret optical rotation using familiar concepts of chemical bonding, aided by first-principles calculations. A theoretical procedure is developed for analyzing the OR tensor components of a molecule in terms of individual bonds and lone pairs. The link between the chemist's bond and quantum mechanics is provided by localized molecular orbitals obtained from density functional theory (DFT) calculations. Delocalization of π orbitals is shown to play a crucial role in the large OR of norbornenone, as hinted by the DFT delocalization error inherent in many standard functionals and confirmed by detailed analysis. The OR contributions generated by the double bond in α-pinene are even stronger than that of norbornenone. The isotropic average, observed in solution or in gas phase, is small as a result of cancellation of tensor components with opposite signs. The electronic coupling and delocalization of the C═C π bond and the C═O oxygen π lone pair in norbornenone selectively enhance one of the OR tensor components, resulting in the exceptionally large negative isotropic OR.

  1. Modeling the Soft X-Ray During Solar Flares (United States)

    Leaman, C. J.


    Solar Radiation can effect our communication and navigation systems here on Earth. In particular, solar X-ray (SXR) and extreme ultraviolet (EUV) radiation is responsible for ionizing (charging) earth's upper atmosphere, and sudden changes in the ionosphere can disrupt high frequency communication systems (e.g. airplane-to-ground) and degrade the location accuracy for GPS navigation. New soft X-ray flare data are needed to study the sources for the SXR radiation and variability of the solar flares and thus help to answer questions if all flares follow the same trend or have different plasma characteristics? In December 2015, the Miniature X-Ray Solar Spectrometer (MinXSS) launched from Cape Canaveral Florida to answer those questions. The MinXSS CubeSat is a miniature satellite that was designed to measure the soft X-ray spectra and study flares in the 1-15 Å wavelength range. So far, the CubeSat has observed more than ten flares. The MinXSS flare data are plotted in energy vs irradiance to display the soft X-ray spectra, and these spectra are compared with different types of CHIANTI models of the soft X-ray radiation. One comparison is for non-flaring spectra using AIA EUV images to identify solar features called active regions, coronal holes, and quiet sun, and then using the fractional area of each feature to calculate a CHIANTI-based spectrum. This comparison reveals how important the active region radiation is for the SXR spectra. A second comparison is for flare spectra to several isothermal models that were created using CHIANTI. The isothermal model comparisons were done with both the raw count spectra from MinXSS and the derived irradiance spectra. This dual comparison helps to validate the irradiance conversion algorithm for MinXSS. Comparisons of the MinXSS data to the models show that flares tend to follow a temperature pattern. Analysis of the MinXSS data can help us understand our sun better, could lead to better forecasts of solar flares, and thus

  2. Trends and exceptions of physical properties on antibacterial activity for Gram-positive and Gram-negative pathogens. (United States)

    Brown, Dean G; May-Dracka, Tricia L; Gagnon, Moriah M; Tommasi, Ruben


    To better understand the difficulties surrounding the identification of novel antibacterial compounds from corporate screening collections, physical properties of ∼3200 antibacterial project compounds with whole cell activity against Gram-negative or Gram-positive pathogens were profiled and compared to actives found from high throughput (HTS) screens conducted on both biochemical and phenotypic bacterial targets. The output from 23 antibacterial HTS screens illustrated that when compared to the properties of the antibacterial project compounds, the HTS actives were significantly more hydrophobic than antibacterial project compounds (typically 2-4 log units higher), and furthermore, for 14/23 HTS screens, the average clogD was higher than the screening collection average (screening collection clogD = 2.45). It was found that the consequences of this were the following: (a) lead identification programs often further gained hydrophobic character with increased biochemical potency, making the separation even larger between the physicochemical properties of known antibacterial agents and the HTS active starting point, (b) the probability of plasma protein binding and cytotoxicity are often increased, and (c) cell-based activity in Gram-negative bacteria was severely limited or, if present, demonstrated significant efflux. Our analysis illustrated that compounds least susceptible to efflux were those which were highly polar and small in MW or very large and typically zwitterionic. Hydrophobicity was often the dominant driver for HTS actives but, more often than not, precluded whole cell antibacterial activity. However, simply designing polar compounds was not sufficient for antibacterial activity and pointed to a lack of understanding of complex and specific bacterial penetration mechanisms.

  3. Feature Selection, Flaring Size and Time-to-Flare Prediction Using Support Vector Regression, and Automated Prediction of Flaring Behavior Based on Spatio-Temporal Measures Using Hidden Markov Models (United States)

    Al-Ghraibah, Amani

    Solar flares release stored magnetic energy in the form of radiation and can have significant detrimental effects on earth including damage to technological infrastructure. Recent work has considered methods to predict future flare activity on the basis of quantitative measures of the solar magnetic field. Accurate advanced warning of solar flare occurrence is an area of increasing concern and much research is ongoing in this area. Our previous work 111] utilized standard pattern recognition and classification techniques to determine (classify) whether a region is expected to flare within a predictive time window, using a Relevance Vector Machine (RVM) classification method. We extracted 38 features which describing the complexity of the photospheric magnetic field, the result classification metrics will provide the baseline against which we compare our new work. We find a true positive rate (TPR) of 0.8, true negative rate (TNR) of 0.7, and true skill score (TSS) of 0.49. This dissertation proposes three basic topics; the first topic is an extension to our previous work [111, where we consider a feature selection method to determine an appropriate feature subset with cross validation classification based on a histogram analysis of selected features. Classification using the top five features resulting from this analysis yield better classification accuracies across a large unbalanced dataset. In particular, the feature subsets provide better discrimination of the many regions that flare where we find a TPR of 0.85, a TNR of 0.65 sightly lower than our previous work, and a TSS of 0.5 which has an improvement comparing with our previous work. In the second topic, we study the prediction of solar flare size and time-to-flare using support vector regression (SVR). When we consider flaring regions only, we find an average error in estimating flare size of approximately half a GOES class. When we additionally consider non-flaring regions, we find an increased average

  4. Study of Flare Assessment in Systemic Lupus Erythematosus Based on Paper Patients

    DEFF Research Database (Denmark)

    Isenberg, D; Sturgess, J; Allen, E


    OBJECTIVE: To determine the level of agreement of disease flare severity (distinguishing severe, moderate, and mild flare and persistent disease activity) in a large paper-patient exercise involving 988 individual cases of systemic lupus erythematosus. METHODS: A total of 988 individual lupus cas...

  5. Study of Flare Assessment in Systemic Lupus Erythematosus Based on Paper Patients

    NARCIS (Netherlands)

    Isenberg, D.; Sturgess, J.; Allen, E.; Aranow, C.; Askanase, A.; Sang-Cheol, B.; Bernatsky, S.; Bruce, I.; Buyon, J.; Cervera, R.; Clarke, A.; Dooley, Mary Anne; Fortin, P.; Ginzler, E.; Gladman, D.; Hanly, J.; Inanc, M.; Jacobsen, S.; Kamen, D.; Khamashta, M.; Lim, S.; Manzi, S.; Nived, O.; Peschken, C.; Petri, M.; Kalunian, K.; Rahman, A.; Ramsey-Goldman, R.; Romero-Diaz, J.; Ruiz-Irastorza, G.; Sanchez-Guerrero, J.; Steinsson, K.; Sturfelt, G.; Urowitz, M.; van Vollenhoven, R.; Wallace, D. J.; Zoma, A.; Merrill, J.; Gordon, C.


    To determine the level of agreement of disease flare severity (distinguishing severe, moderate, and mild flare and persistent disease activity) in a large paper-patient exercise involving 988 individual cases of systemic lupus erythematosus. A total of 988 individual lupus case histories were

  6. Water treatment with exceptional virus inactivation using activated carbon modified with silver (Ag) and copper oxide (CuO) nanoparticles. (United States)

    Shimabuku, Quelen Letícia; Arakawa, Flávia Sayuri; Fernandes Silva, Marcela; Ferri Coldebella, Priscila; Ueda-Nakamura, Tânia; Fagundes-Klen, Márcia Regina; Bergamasco, Rosangela


    Continuous flow experiments (450 mL min -1 ) were performed in household filter in order to investigate the removal and/or inactivation of T4 bacteriophage, using granular activated carbon (GAC) modified with silver and/or copper oxide nanoparticles at different concentrations. GAC and modified GAC were characterized by X-ray diffractometry, specific surface area, pore size and volume, pore average diameter, scanning electron microscopy, transmission electron microscopy, zeta potential and atomic absorption spectroscopy. The antiviral activity of the produced porous media was evaluated by passing suspensions of T4 bacteriophage (∼10 5  UFP/mL) through filters. The filtered water was analyzed for the presence of the bacteriophage and the release of silver and copper oxide. The porous media containing silver and copper oxide nanoparticles showed high inactivation capacity, even reaching reductions higher than 3 log. GAC6 (GAC/Ag0.5%Cu1.0%) was effective in the bacteriophage inactivation, reaching 5.53 log reduction. The levels of silver and copper released in filtered water were below the recommended limits (100 ppb for silver and 1000 ppb for copper) in drinking water. From this study, it is possible to conclude that activated carbon modified with silver and copper oxide nanoparticles can be used as a filter for virus removal in the treatment of drinking water.

  7. A swirling flare-related EUV jet (United States)

    Zhang, Q. M.; Ji, H. S.


    Aims: We report our observations of a swirling flare-related extreme-ultraviolet (EUV) jet on 2011 October 15 at the edge of NOAA active region 11314. Methods: We used the multiwavelength observations in the EUV passbands from the Atmospheric Imaging Assembly (AIA) aboard the Solar Dynamics Observatory (SDO). We extracted a wide slit along the jet axis and 12 thin slits across its axis to investigate the longitudinal motion and transverse rotation. We also used data from the Extreme-Ultraviolet Imager (EUVI) aboard the Solar TErrestrial RElations Observatory (STEREO) spacecraft to investigate the three-dimensional (3D) structure of the jet. Ground-based Hα images from the El Teide Observatory, a member of the Global Oscillation Network Group (GONG), provide a good opportunity to explore the relationship between the cool surge and the hot jet. Line-of-sight magnetograms from the Helioseismic and Magnetic Imager (HMI) aboard SDO enable us to study the magnetic evolution of the flare/jet event. We carried out potential-field extrapolation to calculate the magnetic configuration associated with the jet. Results: The onset of jet eruption coincided with the start time of the C1.6 flare impulsive phase. The initial velocity and acceleration of the longitudinal motion were 254 ± 10 km s-1 and -97 ± 5 m s-2, respectively. The jet presented helical structure and transverse swirling motion at the beginning of its eruption. The counter-clockwise rotation slowed down from an average velocity of ~122 km s-1 to ~80 km s-1. The interwinding thick threads of the jet untwisted into multiple thin threads during the rotation that lasted for one cycle with a period of ~7 min and an amplitude that increases from ~3.2 Mm at the bottom to ~11 Mm at the upper part. Afterwards, the curtain-like leading edge of the jet continued rising without rotation, leaving a dimming region behind, before falling back to the solar surface. The appearance/disappearance of dimming corresponded to the


    Energy Technology Data Exchange (ETDEWEB)

    Fajardo-Mendieta, W. G.; Alvarado-Gómez, J. D.; Calvo-Mozo, B. [Observatorio Astronómico Nacional, Universidad Nacional de Colombia, Bogotá (Colombia); Martinez-Oliveros, J. C., E-mail:, E-mail:, E-mail:, E-mail: [Space Sciences Laboratory, UC Berkeley, Berkeley, CA 94720 (United States)


    Three phases are typically observed during solar flares: the preflare, impulsive, and decay phases. During the impulsive phase, it is believed that the electrons and other particles are accelerated after the stored energy in the magnetic field is released by reconnection. The impulsivity of a solar flare is a quantifiable property that shows how quickly this initial energy release occurs. It is measured via the impulsivity parameter, which we define as the inverse of the overall duration of the impulsive phase. We take the latter as the raw width of the most prominent nonthermal emission of the flare. We computed this observable over a work sample of 48 M-class events that occurred during the current Solar Cycle 24 by using three different methods. The first method takes into account all of the nonthermal flare emission and gives very accurate results, while the other two just cover fixed energy intervals (30–40 keV and 25–50 keV) and are useful for fast calculations. We propose an alternative way to classify solar flares according to their impulsivity parameter values, defining three different types of impulsivity, namely, high, medium, and low. This system of classification is independent of the manner used to calculated the impulsivity parameter. Lastly, we show the relevance of this tool as a discriminator of different HXR generation processes.

  9. Photospheric Current Spikes as Possible Predictors of Flares (United States)

    Goodman, Michael L.; Kwan, Chiman; Ayhan, Bulent; Shang, Eric L.


    Flares involve generation of the largest current densities in the solar atmosphere. This suggests the hypothesis that prior to a large (M,X) flare there are related time dependent changes in the photospheric current distribution, and hence in the resistive heating rate in neutral line regions (NLRs). If this is true, these changes might be useful predictors of flares. Preliminary evidence supporting this hypothesis is presented. Results from a data driven, near photospheric, 3D magnetohydrodynamic type model suggest the model might be useful for predicting M and X flares several hours to several days in advance. The model takes as input the photospheric magnetic field observed by the Helioseismic and Magnetic Imager (HMI) on the Solar Dynamics Observatory (SDO) satellite. The model computes quantities in every active region (AR) pixel for 14 ARs, with spurious Doppler periods due to SDO orbital motion filtered out of the time series of the magnetic field for each pixel. Spikes in the NLR resistive heating rate Q, appearing as increases by orders of magnitude above background values in the time series of Q are found to occur, and appear to be correlated with the occurrence of M or X flares a few hours to a few days later. The subset of spikes analyzed at the pixel level are found to occur on HMI and granulation scales of 1 arcsec and 12 minutes. Spikes are found in NLRs with and without M or X flares, and outside as well as inside NLRs, but the largest spikes are localized in the NLRs of ARs with M or X flares, and associated with horizontal magnetic field strengths approximately several hG, and vertical magnetic field strengths several orders of magnitude smaller. The spikes may be signatures of horizontal current sheets associated with emerging magnetic flux.

  10. Risk factors for flare and treatment of disease flares during pregnancy in rheumatoid arthritis and axial spondyloarthritis patients. (United States)

    van den Brandt, Stephanie; Zbinden, Astrid; Baeten, Dominique; Villiger, Peter M; Østensen, Monika; Förger, Frauke


    During pregnancy, patients with rheumatoid arthritis (RA) and axial spondyloarthritis (axSpA) can experience active disease, which might be influenced by adjustment of treatment around conception. The aim of this study was to identify possible risk factors of disease flares during pregnancy and to evaluate the effect of treatment in pregnant patients experiencing a flare. Pregnant patients with RA and axSpA were prospectively followed before, during, and after pregnancy. Disease activity and flares of disease activity were analyzed in regard to medication. Among 136 pregnant patients, disease flares during pregnancy occurred in 29% of patients with RA and in 25% of patients with axSpA. In both diseases, active disease and tumor necrosis factor inhibitor (TNFi) discontinuation in early pregnancy were identified as risk factors for disease flares during pregnancy. Of 75 patients with RA, 15 patients were on TNFi and discontinued the treatment at the time of the positive pregnancy test. After stopping TNFi, disease activity increased, which was reflected by peaking C-reactive protein levels at the first trimester. The relative risk of flare in patients with RA stopping TNFi was 3.33 (95% CI 1.8-6.1). Initiation of TNFi or glucocorticosteroid (GC) treatment in 60% of these patients resulted in disease improvement at the second and third trimesters. In comparison, patients with RA without TNFi in the preconception period, most of whom had used pregnancy-compatible antirheumatic drugs, showed mild and stable disease activity before and during pregnancy. Of 61 patients with axSpA, 24 patients were on TNFi and discontinued the treatment at the time of the positive pregnancy test. In patients with axSpA stopping TNFi, a disease aggravation at the second trimester could be observed. The relative risk of flare in this group was 3.08 (95% CI 1.2-7.9). In spite of initiated TNFi or GC treatment in 62.5% of these patients, disease activity remained elevated throughout pregnancy

  11. Statistical analysis of tiny SXR flares observed by SphinX (United States)

    Gryciuk, Magdalena; Siarkowski, Marek; Sylwester, Janusz; Kepa, Anna; Gburek, Szymon; Mrozek, Tomasz; Podgórski, Piotr


    The Solar Photometer in X-rays (SphinX) was designed to observe soft X-ray solar emission in the energy range between ~1 keV and 15 keV with the resolution better than 0.5 keV. The instrument operated from February until November 2009 aboard CORONAS-Photon satellite, during the phase of exceptionally low minimum of solar activity. Here we use SphinX data for analysis of micro-flares and brightenings. Despite a very low activity more than a thousand small X-ray events have been recognized by semi-automatic inspection of SphinX light curves. A catalogue of temporal and physical characteristics of these events is shown and discussed and results of the statistical analysis of the catalogue data are presented.

  12. Prediction of Solar Flares Using Unique Signatures of Magnetic Field Images (United States)

    Raboonik, Abbas; Safari, Hossein; Alipour, Nasibe; Wheatland, Michael S.


    Prediction of solar flares is an important task in solar physics. The occurrence of solar flares is highly dependent on the structure and topology of solar magnetic fields. A new method for predicting large (M- and X-class) flares is presented, which uses machine learning methods applied to the Zernike moments (ZM) of magnetograms observed by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory for a period of six years from 2010 June 2 to 2016 August 1. Magnetic field images consisting of the radial component of the magnetic field are converted to finite sets of ZMs and fed to the support vector machine classifier. ZMs have the capability to elicit unique features from any 2D image, which may allow more accurate classification. The results indicate whether an arbitrary active region has the potential to produce at least one large flare. We show that the majority of large flares can be predicted within 48 hr before their occurrence, with only 10 false negatives out of 385 flaring active region magnetograms and 21 false positives out of 179 non-flaring active region magnetograms. Our method may provide a useful tool for the prediction of solar flares, which can be employed alongside other forecasting methods.

  13. Engineering hybrid between nickel oxide and nickel cobaltate to achieve exceptionally high activity for oxygen reduction reaction (United States)

    Cui, Zhentao; Wang, Shuguang; Zhang, Yihe; Cao, Minhua


    The porous NiO/NiCo2O4 nanotubes are prepared via a coaxial electrospinning technique followed by an annealing treatment. The resultant NiO/NiCo2O4 hybrid is developed as a highly efficient electrocatalyst, which exhibits significantly enhanced electrocatalytic activity, long-term operation stability, and tolerance to crossover effect compared to NiO nanofibers, NiCo2O4 nanofibers and commercial Pt(20%)/C for oxygen reduction reactions (ORR) in alkaline environment. The excellent electrocatalytic performance may be attributed to the unique microstructures of the porous NiO/NiCo2O4 nanotubes, such as heterogeneous hybrid structure, open porous tubular structure, and the well dispersity of the two components. Moreover, the promising and straightforward coaxial electrospinning proves itself to be an efficient pathway for the preparation of nanomaterials with tubular architectures and it can be used for large-scale production of catalysts in fuel cells.

  14. A Case Study Examining Egypt, Nigeria, and Venezuela and their Flaring Behavior Utilizing VIIRS Satellite Data (United States)

    Englander, J. G.; Austin, A. T.; Brandt, A. R.


    The need to quantify flaring by oil and gas fields is receiving more scrutiny, as there has been scientific and regulatory interest in quantifying the greenhouse gas (GHG) impact of oil and gas production. The National Oceanic and Atmospheric Administration (NOAA) has developed a method to track flaring activity using a Visible Infrared Imaging Radiometer Suite (VIIRS) satellite.[1] This reports data on the average size, power, and light intensity of each flare. However, outside of some small studies, the flaring intensity has generally been estimated at the country level.[2]While informative, country-level assessments cannot provide guidance about the sustainability of particular crude streams or products produced. In this work we generate detailed oil-field-level flaring intensities for a number of global oilfield operations. We do this by merging the VIIRS dataset with global oilfield atlases and other spatial data sources. Joining these datasets together with production data allows us to provide better estimates for the GHG intensity of flaring at the field level for these countries.[3]First, we compute flaring intensities at the field level for 75 global oil fields representing approximately 25% of global production. In addition, we examine in detail three oil producing countries known to have high rates of flaring: Egypt, Nigeria, and Venezuela. For these countries we compute the flaring rate for all fields in the country and explore within-and between-country variation. The countries' fields will be analyzed to determine the correlation of flare activity to a certain field type, crude type, region, or production method. [1] Cao, C. "Visible Infrared Imaging Radiometer Suite (VIIRS)." NOAA NPP VIIRS. NOAA, 2013. Web. 30 July 2016. [2] Elvidge, C. D. et al., "A Fifteen Year Record of Global Natural Gas Flaring Derived from Satellite Data," Energies, vol. 2, no. 3, pp. 595-622, Aug. 2009. [3] World Energy Atlas. 6th ed. London: Petroleum Economist, 2011. Print.

  15. Energy conservation in flare purging systems

    Energy Technology Data Exchange (ETDEWEB)

    Herbert, K.J.; Rawlings, R.L.


    A major source of energy consumption in flare systems is the purge gas flow. At very low flaring rates, combustion tends to retreat into the flare tip. Sustained burning within the tip will result in damage and eventual failure of the tip. The purge gas flow is normally adjusted until a visible flame is noticeable at grade. This paper presents a method of calculating purge gas flow rates for basic pipe flares based on an extensive research effort.

  16. Pre-resonance enhancement of exceptional intensity in Aggregation-Induced Raman Optical Activity (AIROA) spectra of lutein derivatives (United States)

    Zajac, G.; Lasota, J.; Dudek, M.; Kaczor, A.; Baranska, M.


    Recently reported new phenomenon of Aggregation-Induced Raman Optical Activity is demonstrated here for the first time in the pre-resonance conditions for lutein diacetate and 3‧-epi-lutein supramolecular self-assembles. We demonstrate that minor alterations in the lutein structure (e.g. acetylation of hydroxyl groups or different configuration at one of the chiral center) can lead to definitely different spectral profiles and optical properties due to formation of aggregates of different structure and type. Lutein forms only H-aggregates, lutein diacetate only J-aggregates, while 3‧-epi-lutein can occur in both forms simultaneously. Variety of aggregates' structures is so large that not only the type of aggregation is different, but also their chirality. It is remarkable that even in the pre-resonance conditions, aggregation of lutein derivatives can lead to the intense ROA signal, and moreover, 3‧-epi-lutein demonstrated the highest resonance ROA CID ratio that has ever been reported.

  17. What's an Asthma Flare-Up? (United States)

    ... Pregnancy Healthy Food Shopping Healthy Drinks for Kids Asthma Flare-Ups KidsHealth > For Parents > Asthma Flare-Ups ... español ¿Qué es una crisis asmática? What Are Asthma Flare-Ups? Keeping asthma under control helps kids ...

  18. Statistical properties of solar flares and coronal mass ejections through the solar cycle

    Energy Technology Data Exchange (ETDEWEB)

    Telloni, Daniele; Antonucci, Ester [INAF-Astrophysical Observatory of Torino, Via Osservatorio 20, 10025 Pino Torinese (Italy); Carbone, Vincenzo [University of Calabria, Department of Physics, Ponte P. Bucci Cubo 31C, 87036 Rende (Italy); CNR-Institute for Chemical-Physical Processes, Ponte P. Bucci Cubo 33B, 87036 Rende (Italy); Lepreti, Fabio [University of Calabria, Department of Physics, Ponte P. Bucci Cubo 31C, 87036 Rende (Italy)


    Waiting Time Distributions (WTDs) of solar flares are investigated all through the solar cycle. The same approach applied to Coronal Mass Ejections (CMEs) in a previous work is considered here for flare occurrence. Our analysis reveals that flares and CMEs share some common statistical properties, which result dependent on the level of solar activity. Both flares and CMEs seem to independently occur during minimum solar activity phases, whilst their WTDs significantly deviate from a Poisson function at solar maximum, thus suggesting that these events are correlated. The characteristics of WTDs are constrained by the physical processes generating those eruptions associated with flares and CMEs. A scenario may be drawn in which different mechanisms are actively at work during different phases of the solar cycle. Stochastic processes, most likely related to random magnetic reconnections of the field lines, seem to play a key role during solar minimum periods. On the other hand, persistent processes, like sympathetic eruptions associated to the variability of the photospheric magnetism, are suggested to dominate during periods of high solar activity. Moreover, despite the similar statistical properties shown by flares and CMEs, as it was mentioned above, their WTDs appear different in some aspects. During solar minimum periods, the flare occurrence randomness seems to be more evident than for CMEs. Those persistent mechanisms generating interdependent events during maximum periods of solar activity can be suggested to play a more important role for CMEs than for flares, thus mitigating the competitive action of the random processes, which seem instead strong enough to weaken the correlations among flare event occurrence during solar minimum periods. However, it cannot be excluded that the physical processes at the basis of the origin of the temporal correlation between solar events are different for flares and CMEs, or that, more likely, more sophisticated effects are

  19. Instant CloudFlare starter

    CERN Document Server

    Dickey, Jeff


    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. Written as a practical guide, CloudFlare Starter will show you all you need to know in order to effectively improve your online presence in a multitude of different ways. ""Instant CloudFlare Starter"" is a practical yet accessible guide for website owners looking to optimize their site for optimum security and maximum performance.

  20. Impact of patient-reported flares on radiographic progression and functional impairment in patients with rheumatoid arthritis

    DEFF Research Database (Denmark)

    Kuettel, D; Primdahl, J; Christensen, R


    OBJECTIVE: To investigate the impact of patient-reported flares on radiographic damage and disability in rheumatoid arthritis (RA). METHOD: Patients with low-active (Disease Activity Score based on 28-joint count with C-reactive protein ... questionnaires about incidence of flares, three 'flare phenotypes' were distinguished: no flares (NF), transient flares (TF), and a mixed category reporting persistent joint complaints (PJC) in at least one year. Baseline and 2 year radiographs of hands and feet were evaluated according to the Sharp/van der...... with statistically significant impairment in function (odds ratio 4.47, 95% confidence interval 1.87-10.69) compared to NF. CONCLUSION: In RA patients with low disease activity, the incidence of radiographic progression and functional impairment was higher in patients with flares and persistent complaints, compared...

  1. Can Sgr A* flares reveal the molecular gas density PDF? (United States)

    Churazov, E.; Khabibullin, I.; Sunyaev, R.; Ponti, G.


    Illumination of dense gas in the Central Molecular Zone by powerful X-ray flares from Sgr A* leads to prominent structures in the reflected emission that can be observed long after the end of the flare. By studying this emission, we learn about past activity of the supermassive black hole in our Galactic Center and, at the same time, we obtain unique information on the structure of molecular clouds that is essentially impossible to get by other means. Here we discuss how X-ray data can improve our knowledge of both sides of the problem. Existing data already provide (I) an estimate of the flare age, (II) a model-independent lower limit on the luminosity of Sgr A* during the flare and (III) an estimate of the total emitted energy during Sgr A* flare. On the molecular clouds side, the data clearly show a voids-and-walls structure of the clouds and can provide an almost unbiased probe of the mass/density distribution of the molecular gas with the hydrogen column densities lower than few 1023 cm-2. For instance, the probability distribution function of the gas density PDF(ρ) can be measured this way. Future high energy resolution X-ray missions will provide the information on the gas velocities, allowing, for example, a reconstruction of the velocity field structure functions and cross-matching the X-ray and molecular data based on positions and velocities.

  2. H-alpha manifestation of an energetic limb flare, June 21, 1980 (United States)

    Mccabe, M. K.


    H-alpha observations of a limb flare, which were associated with exceptional gamma-ray and hard X-ray emission, are presented and discussed. The good spatial and temporal resolution of the H-alpha data allow investigation of the detailed structure of the elevated flare loops and the intensity variations of the loops, footpoints and surrounding chromosphere during each phase of the flare event. A delay time of about 12 s was found between at least one of the hard X-ray (28-485 keV) peaks and corresponding H-alpha intensity maximum at a loop footpoint. A comparison is made between this event and another well-observed limb flare with many similar characteristics, to seek evidence for the large difference in their levels of energy release.

  3. GRB 060714: No Clear Dividing Line Between Prompt Emission and X-Ray Flares

    Energy Technology Data Exchange (ETDEWEB)

    Krimm, Hans A.; /NASA, Goddard /Universities Space Research Assoc.; Granot, J.; /KIPAC, Menlo Park; Marshal, F.; /NASA, Goddard; Perri, M.; /ASDC, Frascati; Barthelmy, S.D.; /NASA, Goddard; Burrows, D.N.; /Penn State U., Astron. Astrophys.; Gehrels, N.; /NASA, Goddard; Meszaros, P.; Morris, D.; /Penn State U., Astron. Astrophys.


    The long gamma-ray burst GRB 060714 was observed to exhibit a series of five X-ray flares beginning {approx} 70 s after the burst trigger T{sub 0} and continuing until {approx} T{sub 0} + 200 s. The first two flares were detected by the Burst Alert Telescope (BAT) on the Swift satellite, before Swift had slewed to the burst location, while the last three flares were strongly detected by the X-Ray Telescope (XRT) but only weakly detected by the BAT. This burst provides an unusual opportunity to track a complete sequence of flares over a wide energy range. The flares were very similar in their light curve morphology, showing power-law rise and fall components, and in most cases significant sub-structure. The flares also showed strong evolution with time, both spectrally and temporally. The small time scale and large amplitude variability observed are incompatible with an external shock origin for the flares, and support instead late time sporadic activity either of the central source or of localized dissipation events within the outflow. We show that the flares in GRB 060714 cannot be the result of internal shocks in which the contrast in the Lorentz factor of the colliding shells is very small, and that this mechanism faces serious difficulties in most Swift GRBs. The morphological similarity of the flares and the prompt emission and the gradual and continual evolution of the flares with time makes it difficult and arbitrary to draw a dividing line between the prompt emission and the flares.

  4. Reconnection Fluxes in Eruptive and Confined Flares and Implications for Superflares on the Sun (United States)

    Tschernitz, Johannes; Veronig, Astrid M.; Thalmann, Julia K.; Hinterreiter, Jürgen; Pötzi, Werner


    We study the energy release process of a set of 51 flares (32 confined, 19 eruptive) ranging from GOES class B3 to X17. We use Hα filtergrams from Kanzelhöhe Observatory together with Solar Dynamics Observatory HMI and Solar and Heliospheric Observatory MDI magnetograms to derive magnetic reconnection fluxes and rates. The flare reconnection flux is strongly correlated with the peak of the GOES 1–8 Å soft X-ray flux (c = 0.92, in log–log space) for both confined and eruptive flares. Confined flares of a certain GOES class exhibit smaller ribbon areas but larger magnetic flux densities in the flare ribbons (by a factor of 2). In the largest events, up to ≈50% of the magnetic flux of the active region (AR) causing the flare is involved in the flare magnetic reconnection. These findings allow us to extrapolate toward the largest solar flares possible. A complex solar AR hosting a magnetic flux of 2 × 1023 Mx, which is in line with the largest AR fluxes directly measured, is capable of producing an X80 flare, which corresponds to a bolometric energy of about 7 × 1032 erg. Using a magnetic flux estimate of 6 × 1023 Mx for the largest solar AR observed, we find that flares of GOES class ≈X500 could be produced (E bol ≈ 3 × 1033 erg). These estimates suggest that the present day’s Sun is capable of producing flares and related space weather events that may be more than an order of magnitude stronger than have been observed to date.

  5. A surge in anti-dsDNA titer predicts a severe lupus flare within six months. (United States)

    Pan, N; Amigues, I; Lyman, S; Duculan, R; Aziz, F; Crow, M K; Kirou, K A


    Rising anti-double-stranded (ds) DNA titers have been shown by some, but not all, studies to be predictive of disease flares in systemic lupus erythematosus (SLE). We hypothesized that a rapid and substantial rise in anti-dsDNA titer (anti-dsDNA surge) would be a good predictor of a clinically important SLE flare. A matched case-control study was conducted in an academic rheumatology practice setting. Our primary endpoint was the occurrence of a severe SELENA-SLEDAI (SS) flare within six months of an anti-dsDNA surge, and secondary endpoints were mild/moderate SS flares, as well as BILAG A and B renal flares. Cases were identified as those patients whose disease course included a surge of anti-dsDNA, defined as an increase of anti-dsDNA titer by the Crithidia luciliae immunofluorescence (CLIF) assay from 0 to 3+/4+, or from 1+ to 4+, within a period of less than 12 months. The date of the anti-dsDNA surge was defined as Day 0. Two control SLE patients were identified for each case and were matched for age, sex, race, and visit date closest to case Day 0, but without an anti-dsDNA surge. Logistic regression models were used to detect associations between anti-dsDNA surges and severe SS flares. A higher proportion of cases, compared to controls, experienced a severe SS flare within six months of Day 0 (OR 6.3 (95% confidence intervals 2.0-19.9), p = 0.02). Associations with all flares and hospitalizations for flares were also observed. However, an anti-dsDNA surge was not predictive of a renal flare. An anti-dsDNA surge predicts the subsequent development of a severe SS flare within six months. Physicians should closely monitor such patients and treat promptly at the first sign of clinical activity.

  6. Flared natural gas-based onsite atmospheric water harvesting (AWH) for oilfield operations (United States)

    Wikramanayake, Enakshi D.; Bahadur, Vaibhav


    Natural gas worth tens of billions of dollars is flared annually, which leads to resource waste and environmental issues. This work introduces and analyzes a novel concept for flared gas utilization, wherein the gas that would have been flared is instead used to condense atmospheric moisture. Natural gas, which is currently being flared, can alternatively power refrigeration systems to generate the cooling capacity for large scale atmospheric water harvesting (AWH). This approach solves two pressing issues faced by the oil-gas industry, namely gas flaring, and sourcing water for oilfield operations like hydraulic fracturing, drilling and water flooding. Multiple technical pathways to harvest atmospheric moisture by using the energy of natural gas are analyzed. A modeling framework is developed to quantify the dependence of water harvest rates on flared gas volumes and ambient weather. Flaring patterns in the Eagle Ford Shale in Texas and the Bakken Shale in North Dakota are analyzed to quantify the benefits of AWH. Overall, the gas currently flared annually in Texas and North Dakota can harvest enough water to meet 11% and 65% of the water consumption in the Eagle Ford and the Bakken, respectively. Daily harvests of upto 30 000 and 18 000 gallons water can be achieved using the gas currently flared per well in Texas and North Dakota, respectively. In fifty Bakken sites, the water required for fracturing or drilling a new well can be met via onsite flared gas-based AWH in only 3 weeks, and 3 days, respectively. The benefits of this concept are quantified for the Eagle Ford and Bakken Shales. Assessments of the global potential of this concept are presented using data from countries with high flaring activity. It is seen that this waste-to-value conversion concept offers significant economic benefits while addressing critical environmental issues pertaining to oil-gas production.

  7. Gas flare characterisation with Sentinel-3 (United States)

    Caseiro, Alexandre; Kaiser, Johannes W.; Ruecker, Gernot; Tiemann, Joachim; Leimbach, David


    Gas Flaring (GF) is the process of burning waste gases at the tip of a stack. It is widely used in the upstream oil and gas industry. It is a contributor to the imbalance of the greenhouse gases (GHG) concentration in the earth's atmosphere, which prompts global warming. Besides GHG, GF also emits black carbon (BC), a known carcinogen and climate active species. At higher latitudes, GF has been estimated as the main input of atmospheric BC, alongside vegetation fires. The consideration of GF as a source to global budgets has been hindered by technical difficulties of in-situ measurements and the inexistence of a systematic reporting system. Remote sensing offers the possibility of a continuous, global and systematic monitoring of GF over extended periods. Being a high temperature process, GF can be detected from space using measurements at appropriate wavelengths. Considering 1800K as a typical GF temperature and Wien's displacement law, the peak emission will be in the short-wave infrared region. This spectral region is observed by two channels (S5 and S6) of the SLSTR instrument aboard ESA's newly launched Sentinel-3 satellite. Because of solar contamination, only night-time observations are used. In order to characterise the identified gas flares in terms of temperature and area, two Planck curves are fitted to SLSTR radiance observations in five spectral channels (S5 through S9, with F1 and F2). In this work, we present the methodology in detail as well as results for known flaring regions around the world. A comparison with VIIRS on Suomi-NPP and with HSRS on TET-1 over known GF locations is also considered.

  8. Effects of acrivastine, loratadine and cetirizine on histamine-induced wheal and flare responses. (United States)

    Bayramgürler, D; Bilen, N; Apaydýn, R; Altintaş, L; Sal, G; Dökmeci, S; Utkan, T


    It is accepted that studies evaluating histamine-induced wheal and flare reactions in the skin represent a simple and reliable method for demonstrating pharmacodynamic activity and pharmacokinetics of the H1-receptor antagonists. In this study, the effects of single oral doses of acrivastine (8 mg), loratadine (10 mg) and cetirizine (10 mg) on the histamine-induced wheal and flare reactions were compared in 60 healthy volunteers. The wheal and flare responses were produced by prick test using 1% histamine solution. Measurements were performed before the ingestion of antihistamines (baseline values) and afterwards at 15, 30, 90, 240, 360 min and 24 h. The values obtained for each antihistamine were compared with each other and with baseline values. Cetirizine was found to be superior to acrivastine and loratadine for the suppression of wheal and flare responses at 240, 360 min and 24 h (P response at 30 min (P wheal and flare reactions in urticaria when compared to acrivastine and loratadine.

  9. Center-to-Limb Variability of Hot Coronal EUV Emissions During Solar Flares (United States)

    Thiemann, E. M. B.; Chamberlin, P. C.; Eparvier, F. G.; Epp, L.


    It is generally accepted that densities of quiet-Sun and active region plasma are sufficiently low to justify the optically thin approximation, and this is commonly used in the analysis of line emissions from plasma in the solar corona. However, the densities of solar flare loops are substantially higher, compromising the optically thin approximation. This study begins with a radiative transfer model that uses typical solar flare densities and geometries to show that hot coronal emission lines are not generally optically thin. Furthermore, the model demonstrates that the observed line intensity should exhibit center-to-limb variability (CTLV), with flares observed near the limb being dimmer than those occurring near disk center. The model predictions are validated with an analysis of over 200 flares observed by the EUV Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO), which uses six lines, with peak formation temperatures between 8.9 and 15.8 MK, to show that limb flares are systematically dimmer than disk-center flares. The data are then used to show that the electron column density along the line of sight typically increases by 1.76 × 10^{19} cm^{-2} for limb flares over the disk-center flare value. It is shown that the CTLV of hot coronal emissions reduces the amount of ionizing radiation propagating into the solar system, and it changes the relative intensities of lines and bands commonly used for spectral analysis.

  10. Optical discovery of probable stellar tidal discruption flares

    NARCIS (Netherlands)

    van Velzen, S.; Farrar, G.R.; Gezari, S.; Morrell, N.; Zaritsky, D.; Ostman, L.; Smith, M.; Gelfand, J.; Drake, A.J.


    Using archival Sloan Digital Sky Survey (SDSS) multi-epoch imaging data (Stripe 82), we have searched for the tidal disruption of stars by supermassive black holes in non-active galaxies. Two candidate tidal disruption events (TDEs) are identified. The TDE flares have optical blackbody temperatures


    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuming; Zhou, Zhenjun; Liu, Kai; Liu, Rui; Shen, Chenglong [CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zhang, Jie [School of Physics, Astronomy and Computational Sciences, George Mason University, 4400 University Drive, MSN 6A2, Fairfax, VA 22030 (United States); Chamberlin, Phillip C., E-mail: [Solar Physics Laboratory, Heliophysics Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)


    The Solar Dynamics Observatory (SDO)/EUV Variability Experiment (EVE) provides rich information on the thermodynamic processes of solar activities, particularly on solar flares. Here, we develop a method to construct thermodynamic spectrum (TDS) charts based on the EVE spectral lines. This tool could potentially be useful for extreme ultraviolet (EUV) astronomy to learn about the eruptive activities on distant astronomical objects. Through several cases, we illustrate what we can learn from the TDS charts. Furthermore, we apply the TDS method to 74 flares equal to or greater than the M5.0 class, and reach the following statistical results. First, EUV peaks are always behind the soft X-ray (SXR) peaks and stronger flares tend to have faster cooling rates. There is a power-law correlation between the peak delay times and the cooling rates, suggesting a coherent cooling process of flares from SXR to EUV emissions. Second, there are two distinct temperature drift patterns, called Type I and Type II. For Type I flares, the enhanced emission drifts from high to low temperature like a quadrilateral, whereas for Type II flares the drift pattern looks like a triangle. Statistical analysis suggests that Type II flares are more impulsive than Type I flares. Third, for late-phase flares, the peak intensity ratio of the late phase to the main phase is roughly correlated with the flare class, and the flares with a strong late phase are all confined. We believe that the re-deposition of the energy carried by a flux rope, which unsuccessfully erupts out, into thermal emissions is responsible for the strong late phase found in a confined flare. Furthermore, we show the signatures of the flare thermodynamic process in the chromosphere and transition region in the TDS charts. These results provide new clues to advance our understanding of the thermodynamic processes of solar flares and associated solar eruptions, e.g., coronal mass ejections.

  12. Statistical Analyses of White-Light Flares: Two Main Results about Flare Behaviour (United States)

    Dal, Hasan Ali


    We present two main results, based on models and the statistical analyses of 1672 U-band flares. We also discuss the behaviour of white-light flares. In addition, the parameters of the flares detected from two years of observations on CR Dra are presented. By comparing with flare parameters obtained from other UV Ceti-type stars, we examine the behaviour of the optical flare processes along with the spectral types. Moreover, we aimed, using large white-light flare data, to analyse the flare time-scales with respect to some results obtained from X-ray observations. Using SPSS V17.0 and GraphPad Prism V5.02 software, the flares detected from CR Dra were modelled with the OPEA function, and analysed with the t-Test method to compare similar flare events in other stars. In addition, using some regression calculations in order to derive the best histograms, the time-scales of white-light flares were analysed. Firstly, CR Dra flares have revealed that white-light flares behave in a similar way as their counterparts observed in X-rays. As can be seen in X-ray observations, the electron density seems to be a dominant parameter in white-light flare process, too. Secondly, the distributions of the flare time-scales demonstrate that the number of observed flares reaches a maximum value in some particular ratios, which are 0.5, or its multiples, and especially positive integers. The thermal processes might be dominant for these white-light flares, while non-thermal processes might be dominant in the others. To obtain better results for the behaviour of the white-light flare process along with the spectral types, much more stars in a wide spectral range, from spectral type dK5e to dM6e, must be observed in white-light flare patrols.

  13. Predicting Solar Flares Using SDO/HMI Vector Magnetic Data Products and the Random Forest Algorithm (United States)

    Liu, Chang; Deng, Na; Wang, Jason T. L.; Wang, Haimin


    Adverse space-weather effects can often be traced to solar flares, the prediction of which has drawn significant research interests. The Helioseismic and Magnetic Imager (HMI) produces full-disk vector magnetograms with continuous high cadence, while flare prediction efforts utilizing this unprecedented data source are still limited. Here we report results of flare prediction using physical parameters provided by the Space-weather HMI Active Region Patches (SHARP) and related data products. We survey X-ray flares that occurred from 2010 May to 2016 December and categorize their source regions into four classes (B, C, M, and X) according to the maximum GOES magnitude of flares they generated. We then retrieve SHARP-related parameters for each selected region at the beginning of its flare date to build a database. Finally, we train a machine-learning algorithm, called random forest (RF), to predict the occurrence of a certain class of flares in a given active region within 24 hr, evaluate the classifier performance using the 10-fold cross-validation scheme, and characterize the results using standard performance metrics. Compared to previous works, our experiments indicate that using the HMI parameters and RF is a valid method for flare forecasting with fairly reasonable prediction performance. To our knowledge, this is the first time that RF has been used to make multiclass predictions of solar flares. We also find that the total unsigned quantities of vertical current, current helicity, and flux near the polarity inversion line are among the most important parameters for classifying flaring regions into different classes.

  14. Realistic radiative MHD simulation of a solar flare (United States)

    Rempel, Matthias D.; Cheung, Mark; Chintzoglou, Georgios; Chen, Feng; Testa, Paola; Martinez-Sykora, Juan; Sainz Dalda, Alberto; DeRosa, Marc L.; Viktorovna Malanushenko, Anna; Hansteen, Viggo H.; De Pontieu, Bart; Carlsson, Mats; Gudiksen, Boris; McIntosh, Scott W.


    We present a recently developed version of the MURaM radiative MHD code that includes coronal physics in terms of optically thin radiative loss and field aligned heat conduction. The code employs the "Boris correction" (semi-relativistic MHD with a reduced speed of light) and a hyperbolic treatment of heat conduction, which allow for efficient simulations of the photosphere/corona system by avoiding the severe time-step constraints arising from Alfven wave propagation and heat conduction. We demonstrate that this approach can be used even in dynamic phases such as a flare. We consider a setup in which a flare is triggered by flux emergence into a pre-existing bipolar active region. After the coronal energy release, efficient transport of energy along field lines leads to the formation of flare ribbons within seconds. In the flare ribbons we find downflows for temperatures lower than ~5 MK and upflows at higher temperatures. The resulting soft X-ray emission shows a fast rise and slow decay, reaching a peak corresponding to a mid C-class flare. The post reconnection energy release in the corona leads to average particle energies reaching 50 keV (500 MK under the assumption of a thermal plasma). We show that hard X-ray emission from the corona computed under the assumption of thermal bremsstrahlung can produce a power-law spectrum due to the multi-thermal nature of the plasma. The electron energy flux into the flare ribbons (classic heat conduction with free streaming limit) is highly inhomogeneous and reaches peak values of about 3x1011 erg/cm2/s in a small fraction of the ribbons, indicating regions that could potentially produce hard X-ray footpoint sources. We demonstrate that these findings are robust by comparing simulations computed with different values of the saturation heat flux as well as the "reduced speed of light".

  15. The magnetohydrodynamic development of two-ribbon flares or a five-finger theory for solar flares

    NARCIS (Netherlands)

    Kaastra, J.S.


    A semi-analytical model for the electrodynamic development of two-ribbon flares is presented. A current filament above a bipolar active region starts rising according to the model of Van Tend and Kuperus. Due to this motion large induced electric fields arise at a magnetic neutral line far below the

  16. Exceptionally Potent Anti-Tumor Bystander Activity of an scFv:sTRAIL Fusion Protein with Specificity for EGP2 Toward Target Antigen-Negative Tumor Cells

    Directory of Open Access Journals (Sweden)

    Edwin Bremer


    Full Text Available Previously, we reported on the target cell-restricted fratricide apoptotic activity of scFvC54:sTRAIL, a fusion protein comprising human-soluble tumor necrosis factor-related apoptosis-inducing ligand (TRAIL genetically linked to the antibody fragment scFvC54 specific for the cell surface target antigen EGP2. In the present study, we report that the selective binding of scFvC54:sTRAIL to EGP2-positive target cells conveys an exceptionally potent pro-apoptotic effect toward neighboring tumor cells that are devoid of EGP2 expression (bystander cells. The anti-tumor bystander activity of scFvC54:sTRAIL was detectable at target-tobystander cell ratios as low as 1:100. Treatment in the presence of EGP2-blocking or TRAIL-neutralizing antibody strongly inhibited apoptosis in both target and bystander tumor cells. In the absence of target cells, bystander cell apoptosis induction was abrogated. The bystander apoptosis activity of scFvC54:sTRAIL did not require internalization, enzymatic conversion, diffusion, or communication (gap junctional intracellular communication between target and bystander cells. Furthermore, scFvC54:sTRAIL showed no detectable signs of innocent bystander activity toward freshly isolated blood cells. Further development of this new principle is warranted for approaches where cancer cells can escape from antibody-based therapy due to partial loss of target antigen expression.

  17. Observed characteristics of flare energy release. I. Magnetic structure at the energy release site

    Energy Technology Data Exchange (ETDEWEB)

    Machado, M.E.; Moore, R.L.; Hagyard, M.J.; Hernandez, A.M.; Rovira, M.G.


    It is shown that flaring activity as seen in X-rays usually encompasses two or more interacting magnetic bipoles within an active region. Soft and hard X-ray spatiotemporal evolution is considered as well as the time dependence of the thermal energy content in different magnetic bipoles participating in the flare, the hardness and impulsivity of the hard X-ray emission, and the relationship between the X-ray behavior and the strength and observable shear of the magnetic field. It is found that the basic structure of a flare usually consists of an initiating closed bipole plus one or more adjacent closed bipoles impacted against it. 119 references.

  18. The Effects of Flare Definitions on the Statistics of Derived Flare Distrubtions (United States)

    Ryan, Daniel; Dominique, Marie; Seaton, Daniel B.; Stegen, Koen; White, Arthur


    The statistical examination of solar flares is crucial to revealing their global characteristics and behaviour. However, statistical flare studies are often performed using standard but basic flare detection algorithms relying on arbitrary thresholds which may affect the derived flare distributions. We explore the effect of the arbitrary thresholds used in the GOES event list and LYRA Flare Finder algorithms. We find that there is a small but significant relationship between the power law exponent of the GOES flare peak flux frequency distribution and the algorithms’ flare start thresholds. We also find that the power law exponents of these distributions are not stable but appear to steepen with increasing peak flux. This implies that the observed flare size distribution may not be a power law at all. We show that depending on the true value of the exponent of the flare size distribution, this deviation from a power law may be due to flares missed by the flare detection algorithms. However, it is not possible determine the true exponent from GOES/XRS observations. Additionally we find that the PROBA2/LYRA flare size distributions are clearly non-power law. We show that this is consistent with an insufficient degradation correction which causes LYRA absolute irradiance values to be unreliable. This means that they should not be used for flare statistics or energetics unless degradation is adequately accounted for. However they can be used to study time variations over shorter timescales and for space weather monitoring.

  19. Incidence and factors related to flare-ups in a graduate endodontic programme. (United States)

    Iqbal, M; Kurtz, E; Kohli, M


    To investigate the incidence and factors related to endodontic flare-ups in nonsurgical root canal treatment (NSRCT) cases completed by graduate endodontic residents at University of Pennsylvania, USA. Residents at University of Pennsylvania enter all clinical patient records into an electronic database called PennEndo database. Analysis of records of 6580 patients treated from September 2000 to July 2005 revealed a total of 26 patients with flare-ups (0.39%). Patients were categorized to have undergone flare-up when they attended for an unscheduled visit and active treatment, and when they suffered from severe pain and or swelling after initiation or continuation of NSRCT. SAS software was used to develop a logistic regression model with flare-up as a dependent variable. Independent variables included in the model were: history of previous pain, one vs. two visit NSRCT, periapical diagnosis, tooth type, rotary versus hand instrumentation, and lateral versus vertical compaction of gutta-percha. The odds for developing a flare-up in teeth with a periapical radiolucency were 9.64 times greater than teeth without a periapical radiolucency (P = 0.0090). There was no statistically significant difference in flare-ups between one and two visits NSRCT. The odds of developing a flare-up increased 40 fold when NSRCT was completed in three or more visits. However, this result may have been confounded by addition of an unscheduled visit in patients suffering from flare-ups. Other independent variables did not have any statistically significant correlations. A low percentage of patients experienced flare-ups during NSRCT procedures. The presence of a periapical lesion was the single most important predictor of flare-ups during NSRCT.

  20. Helium (3) Rich Solar Flares (United States)

    Colgate, S. A.; Audouze, J.; Fowler, W. A.


    The extreme enrichment of {sup 3} He {sup 4} He greater than or equal to 1 in some solar flares as due to spallation and the subsequent confinement of the products in a high temperature, kT approx. = 200 keV, high density, n{sub e} approx. = 3 x 10{sup 15} cm {sup -3} plasma associated with the magnetic instability producing the flare is interpreted. The pinch or filament is a current of high energy protons that creates the spallation and maintains the temperature that produces the high energy x-ray spectrum and depletes other isotopes D, Li, Be, and B as observed. Finally the high temperature plasma is a uniquely efficient spallation target that is powered by the interaction of stellar convection and self generated magnetic field.

  1. Hard X-Ray Emission from Partially Occulted Solar Flares: RHESSI Observations in Two Solar Cycles (United States)

    Effenberger, Frederic; Rubio da Costa, Fatima; Oka, Mitsuo; Saint-Hilaire, Pascal; Liu, Wei; Petrosian, Vahé; Glesener, Lindsay; Krucker, Säm


    Flares close to the solar limb, where the footpoints are occulted, can reveal the spectrum and structure of the coronal looptop source in X-rays. We aim at studying the properties of the corresponding energetic electrons near their acceleration site, without footpoint contamination. To this end, a statistical study of partially occulted flares observed with Reuven Ramaty High-Energy Solar Spectroscopic Imager is presented here, covering a large part of solar cycles 23 and 24. We perform detailed spectra, imaging, and light curve analyses for 116 flares and include contextual observations from SDO and STEREO when available, providing further insights into flare emission that were previously not accessible. We find that most spectra are fitted well with a thermal component plus a broken power-law, non-thermal component. A thin-target kappa distribution model gives satisfactory fits after the addition of a thermal component. X-ray imaging reveals small spatial separation between the thermal and non-thermal components, except for a few flares with a richer coronal source structure. A comprehensive light curve analysis shows a very good correlation between the derivative of the soft X-ray flux (from GOES) and the hard X-rays for a substantial number of flares, indicative of the Neupert effect. The results confirm that non-thermal particles are accelerated in the corona and estimated timescales support the validity of a thin-target scenario with similar magnitudes of thermal and non-thermal energy fluxes.

  2. Impulsive Phase of Solar Flares (United States)


    10- WoOVtt Il/il octur quite often ltear thle netil.1 line of thle magnectic field. a% deteifned by lte Iitlatri/ation mapls of 6-cmn -a tive regions...totter material - C~tW~tittii~ito I c XXV 1.9 A .tpilean toi Lomte Iorn .ohics overlying this sitructurec. Ili a stow-tising flare. R~ust el al. (1975) t

  3. Solar Indices - Solar Flares (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of indices related to solar activity contributed by a number of national and private solar observatories located worldwide. This...

  4. Magnetic field changes associated with a sub-flare and surge (United States)

    Hagyard, M. J.; West, E. A.; Smith, J. E.


    A sub-flare and surge were observed on June 13, 1990, with the Marshall Space Flight Center vector magnetograph and coaligned H-alpha telescope. This activity occurred at the site of a parasitic polarity near a large, mature sunspot. Analysis of the vector magnetic field showed that while flux emergence and other field changes occurred sporadically throughout a period of four days, the sub-flare and surge only took place after an increase in magnetic shear in the field of the parasitic polarity. This event also provided an example of relaxation of magnetic shear following the flare and surging.

  5. Expanding CME-flare relations to other stellar systems (United States)

    Moschou, Sofia P.; Drake, Jeremy J.; Cohen, Ofer


    Stellar activity is one of the main parameters in exoplanet habitability studies. While the effects of UV to X-ray emission from extreme flares on exoplanets are beginning to be investigated, the impact of coronal mass ejections is currently highly speculative because CMEs and their properties cannot yet be directly observed on other stars. An extreme superflare was observed in X-rays on the Algol binary system on August 30 1997, emitting a total of energy 1.4x 10^{37} erg and making it a great candidate for studying the upper energy limits of stellar superflares in solar-type (GK) stars. A simultaneous increase and subsequent decline in absorption during the flare was also observed and interpretted as being caused by a CME. Here we investigate the dynamic properties of a CME that could explain such time-dependent absorption and appeal to trends revealed from solar flare and CME statistics as a guide. Using the ice-cream cone model that is extensively used in solar physics to describe the three-dimensional CME structure, in combination with the temporal profile of the hydrogen column density evolution, we are able to characterize the CME and estimate its kinetic energy and mass. We examine the mass, kinetic and flare X-ray fluence in the context of solar relations to examine the extent to which such relations can be extrapolated to much more extreme stellar events.

  6. Sixteen years of X-ray monitoring of Sagittarius A*: Evidence for a decay of the faint flaring rate from 2013 August, 13 months before a rise in the bright flaring rate (United States)

    Mossoux, Enmanuelle; Grosso, Nicolas


    Context. X-ray flaring activity from the closest supermassive black hole Sagittarius A* (Sgr A*) located at the center of our Galaxy has been observed since 2000 October 26 thanks to the current generation of X-ray facilities. In a study of X-ray flaring activity from Sgr A* using Chandra and XMM-Newton public observations from 1999 to 2014 and Swift monitoring in 2014, it was argued that the "bright and very bright" flaring rate has increased from 2014 August 31. Aims: As a result of additional observations performed in 2015 with Chandra, XMM-Newton, and Swift (total exposure of 482 ks), we seek to test the significance and persistence of this increase of flaring rate and to determine the threshold of unabsorbed flare flux or fluence leading to any change of flaring rate. Methods: We reprocessed the Chandra, XMM-Newton, and Swift data from 1999 to 2015 November 2. From these data, we detected the X-ray flares via our two-step Bayesian blocks algorithm with a prior on the number of change points properly calibrated for each observation. We improved the Swift data analysis by correcting the effects of the target variable position on the detector and we detected the X-ray flares with a 3σ threshold on the binned light curves. The mean unabsorbed fluxes of the 107 detected flares were consistently computed from the extracted spectra and the corresponding calibration files, assuming the same spectral parameters. We constructed the observed distribution of flare fluxes and durations from the XMM-Newton and Chandra detections. We corrected this observed distribution from the detection biases to estimate the intrinsic distribution of flare fluxes and durations. From this intrinsic distribution, we determined the average flare detection efficiency for each XMM-Newton, Chandra, and Swift observation. We finally applied the Bayesian blocks algorithm on the arrival times of the flares corrected from the corresponding efficiency. Results: We confirm a constant overall flaring

  7. Predicting Solar Flares Using SDO/HMI Vector Magnetic Data Product and Random Forest Algorithm (United States)

    Liu, Chang; Deng, Na; Wang, Jason; Wang, Haimin


    Adverse space weather effects can often be traced to solar flares, prediction of which has drawn significant research interests. Many previous forecasting studies used physical parameters derived from photospheric line-of-sight field or ground-based vector field observations. The Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory produces full-disk vector magnetograms with continuous high-cadence, while flare prediction efforts utilizing this unprecedented data source are still limited. Here we report results of flare prediction using physical parameters provided by the Space-weather HMI Active Region Patches (SHARP) and related data products. We survey X-ray flares occurred from 2010 May to 2016 December, and categorize their source regions into four classes (B, C, M, and X) according to the maximum GOES magnitude of flares they generated. We then retrieve SHARP related parameters for each selected region at the beginning of its flare date to build a database. Finally, we train a machine-learning algorithm, called random forest (RF), to predict the occurrence of a certain class of flares in a given active region within 24 hours, evaluate the classifier performance using the 10-fold cross validation scheme, and characterize the results using standard performace metrics. Compared to previous works, our experiments indicate that using the HMI parameters and RF is a valid method for flare forecasting with fairly reasonable prediction performance. We also find that the total unsigned quantities of vertical current, current helicity, and flux near polarity inversion line are among the most important parameters for classifying flaring regions into different classes.

  8. Isolation and characterization of a French bean hemagglutinin with antitumor, antifungal, and anti-HIV-1 reverse transcriptase activities and an exceptionally high yield. (United States)

    Lam, S K; Ng, T B


    A dimeric 64-kDa hemagglutinin was isolated with a high yield from dried Phaseolus vulgaris cultivar "French bean number 35" seeds using a chromatographic protocol that involved Blue-Sepharose, Q-Sepharose, and Superdex 75. The yield was exceptionally high (1.1g hemagglutinin per 100g seed), which is around 10-85 times higher than other Phaseolus cultivars. Its N-terminal sequence resembled those of other Phaseolus hemagglutinins. The hemagglutinating activity of the hemagglutinin was stable in the pH range 6-8, and in the temperature range 0 degrees C-50 degrees C. It inhibited HIV-1 reverse transcriptase with an IC50 of 2microM. It suppressed mycelial growth in Valsa mali with an IC50 of 10microM. It inhibited proliferation of hepatoma HepG2 cells and breast cancer MCF-7 cells with an IC50 of 100 and 2microM, respectively. It had no antiproliferative effect on normal embryonic liver WRL68 cells. Copyright 2009 Elsevier GmbH. All rights reserved.

  9. Perceived risk for sexually transmitted infections aligns with sexual risk behavior with the exception of condom nonuse: data from a nonclinical sample of sexually active young adult women. (United States)

    Pollack, Lance M; Boyer, Cherrie B; Weinstein, Neil D


    Research on the relationship between sexual risk behavior and perceived risk for contracting a sexually transmitted infection (STI) has yielded mixed results. The objective of this study is to investigate the extent to which 3 measures of perceived risk accurately reflect 5 sexual risk behaviors in a sample of healthy, sexually active young adult women. A positive monotonic relationship between sexual risk behavior and perceived risk for STIs is hypothesized. A sample of 1192 female U.S. Marine Corps on their first duty assignment 10 to 11 months (on average) after graduation from recruit training answered a self-administered paper-and-pencil questionnaire as part of a larger study evaluating an intervention to prevent STIs and unintended pregnancy that was administered during recruit training. All but 1 of the 15 bivariate associations between sexual risk behavior and perceived risk for STIs was statistically significant. The expected positive monotonic relationship was observed except for condom use. Women who never used condoms during intercourse reported lower levels of perceived risk than occasional users and, in some subgroups, consistent condom users. Multivariate analyses further explored the relationship between condom use and perceived risk. The results suggest that interventions directed at raising awareness of susceptibility to STIs should emphasize how the individual's own behavior puts them at risk, regardless of situation or context.

  10. Giant flares in soft gamma-ray repeaters and short GRBs. (United States)

    Zane, S


    Soft gamma-ray repeaters (SGRs) are a peculiar family of bursting neutron stars that, occasionally, have been observed to emit extremely energetic giant flares (GFs), with energy release up to approximately 10(47) ergs(-1). These are exceptional and rare events. It has been recently proposed that GFs, if emitted by extragalactic SGRs, may appear at Earth as short gamma-ray bursts. Here, I will discuss the properties of the GFs observed in SGRs, with particular emphasis on the spectacular event registered from SGR 1806-20 in December 2004. I will review the current scenario for the production of the flare, within the magnetar model, and the observational implications.

  11. Prior Flaring as a Complement to Free Magnetic Energy for Forecasting Solar Eruptions (United States)

    Falconer, David A.; Moore, Ronald L.; Barghouty, Abdulnasser F.; Khazanov, Igor


    From a large database of (1) 40,000 SOHO/MDI line-of-sight magnetograms covering the passage of 1,300 sunspot active regions across the 30 deg radius central disk of the Sun, (2) a proxy of each active region's free magnetic energy measured from each of the active region's central-disk-passage magnetograms, and (3) each active region's full-disk-passage history of production of major flares and fast coronal mass ejections (CMEs), we find new statistical evidence that (1) there are aspects of an active region's magnetic field other than the free energy that are strong determinants of the active region's productivity of major flares and fast CMEs in the coming few days, (2) an active region's recent productivity of major flares, in addition to reflecting the amount of free energy in the active region, also reflects these other determinants of coming productivity of major eruptions, and (3) consequently, the knowledge of whether an active region has recently had a major flare, used in combination with the active region's free-energy proxy measured from a magnetogram, can greatly alter the forecast chance that the active region will have a major eruption in the next few days after the time of the magnetogram. The active-region magnetic conditions that, in addition to the free energy, are reflected by recent major flaring are presumably the complexity and evolution of the field.

  12. Exceptional Cable Television. (United States)

    Hunt, Edmund B.; Reid, John E., Jr.


    Ways in which the resources of a university's special education, communication arts, and library services can be combined with those of special education consortiums or parent organizations to provide exceptional children and their parents and teachers with high-quality cable educational television programs that meet their varied needs are…

  13. On exceptional instanton strings

    NARCIS (Netherlands)

    Del Zotto, M.; Lockhart, G.

    According to a recent classification of 6d (1, 0) theories within F-theory there are only six “pure” 6d gauge theories which have a UV superconformal fixed point. The corresponding gauge groups are SU(3), SO(8), F4, E6, E7, and E8. These exceptional models have BPS strings which are also instantons

  14. Diagnostics of solar flare reconnection

    Directory of Open Access Journals (Sweden)

    M. Karlický


    Full Text Available We present new diagnostics of the solar flare reconnection, mainly based on the plasma radio emission. We propose that the high-frequency (600-2000 MHz slowly drifting pulsating structures map the flare magnetic field reconnection. These structures correspond to the radio emission from plasmoids which are formed in the extended current sheet due to tearing and coalescence processes. An increase of the frequency drift of the drifting structures is interpreted as an increase of the reconnection rate. Using this model, time scales of slowly drifting pulsating structure observed during the 12 April 2001 flare by the Trieste radiopolarimeter with high time resolution (1 ms are interpreted as a radio manifestation of electron beams accelerated in the multi-scale reconnection process. For short periods Fourier spectra of the observed structure have a power-law form with power-law indices in the 1.3-1.6 range. For comparison the 2-D MHD numerical modeling of the multi-scale reconnection is made and it is shown that Fourier spectrum of the reconnection dissipation power has also a power-law form, but with power-law index 2. Furthermore, we compute a time evolution of plasma parameters (density, magnetic field etc in the 2-D MHD model of the reconnection. Then assuming a plasma radio emission from locations, where the 'double-resonance' instability generates the upper-hybrid waves due to unstable distribution function of suprathermal electrons, we model radio spectra. Effects of the MHD turbulence are included. The resulting spectra are compared with those observed. It is found, that depending on model parameters the lace bursts and the decimetric spikes can be reproduced. Thus, it is shown that the model can be used for diagnostics of the flare reconnection process. We also point out possible radio signatures of reconnection outflow termination shocks. They are detected as type II-like herringbone structures in the 200-700 MHz frequency range. Finally

  15. Prevalence and Characteristics of Flare-ups of Chronic Non-specific Back Pain in Primary Care: A Telephone Survey (United States)

    Suri, Pradeep; Saunders, Kathleen W.; Von Korff, Michael


    Objectives To describe the prevalence and characteristics of flare-ups of chronic non-specific back pain (CNSBP) among primary care patients, and to examine associations with measures of pain severity and psychosocial factors. Methods Six hundred and thirty-four subjects with nonspecific back pain were interviewed by telephone 2 years after an initial primary care visit for back pain. Subjects experiencing flare-ups in the last 6 months reported on frequency, duration, and other characteristics of flare-ups. Using bivariate and multivariate analyses, we compared individuals with and without CNSBP flare-ups with respect to demographic characteristics, measures of pain severity, and psychosocial factors. Results 51% of subjects reported flare-ups. Physical activities, including lifting and bending, were the most common perceived triggers of flare-ups. Subjects with flare-ups experienced greater levels of pain intensity, disability, opioid medication use, and psychosocial comorbidities. After adjustment for demographic factors, pain intensity, and pain frequency, subjects with flare-ups were more disabled than those without (mean [95% confidence interval] disability score 4.2 [3.9– 4.4] vs. 3.3 [2.9– 3.6]; p ups of CNSBP are common among primary care patients, and are independently associated with higher levels of pain intensity, disability, and passive coping. The presence of flare-ups and the perception of activity as a trigger may predispose patients with flare-ups to experience disability not explained by pain intensity alone. Further longitudinal studies are required to better characterize CNSBP flare-ups and determine their clinical implications. PMID:22699128

  16. Prevalence and characteristics of flare-ups of chronic nonspecific back pain in primary care: a telephone survey. (United States)

    Suri, Pradeep; Saunders, Kathleen W; Von Korff, Michael


    To describe the prevalence and characteristics of flare-ups of chronic nonspecific back pain (CNSBP) among primary care patients, and to examine associations with measures of pain severity and psychosocial factors. Six hundred thirty-four participants with nonspecific back pain were interviewed by telephone 2 years after an initial primary care visit for back pain. Participants experiencing flare-ups in the last 6 months reported on frequency, duration, and other characteristics of flare-ups. Using bivariate and multivariate analyses, we compared individuals with and without CNSBP flare-ups with respect to demographic characteristics, measures of pain severity, and psychosocial factors. Approximately 51% of the participants reported flare-ups. Physical activities, including lifting and bending, were the most common perceived triggers of flare-ups. Participants with flare-ups experienced greater levels of pain intensity, disability, opioid medication use, and psychosocial comorbidities. After adjustment for demographic factors, pain intensity, and pain frequency, participants with flare-ups were more disabled than those without [mean (95% confidence interval) disability score 4.2 (3.9-4.4) vs. 3.3 (2.9-3.6); Pups of CNSBP are common among primary care patients, and are independently associated with higher levels of pain intensity, disability, and passive coping. The presence of flare-ups and the perception of activity as a trigger may predispose patients with flare-ups to experience disability not explained by pain intensity alone. Further longitudinal studies are required to better characterize CNSBP flare-ups and determine their clinical implications.

  17. Excitation of XUV radiation in solar flares (United States)

    Emslie, A. Gordon


    The goal of the proposed research was to understand the means by which XUV radiation in solar flares is excited, and to use this radiation as diagnostics of the energy release and transport processes occurring in the flare. Significant progress in both of these areas, as described, was made.

  18. X-ray Studies of Flaring Plasma

    Indian Academy of Sciences (India)

    We present some methods of X-ray data analysis employed in our laboratory for deducing the physical parameters of flaring plasma. For example, we have used a flare well observed with Polish instrument RESIK aboard Russian CORONAS-F satellite. Based on a careful instrument calibration, the absolute fluxes in a ...

  19. GRB Flares: A New Detection Algorithm, Previously Undetected Flares, and Implications on GRB Physics (United States)

    Swenson, Craig A.; Roming, P.


    Flares in GRB light curves have been observed since shortly after the discovery of the first GRB afterglow. However, it was not until the launch of the Swift satellite that it was realized how common flares are, appearing in nearly 50% of all X-ray afterglows as observed by the XRT instrument. The majority of these observed X-ray flares are easily distinguishable by eye and have been measured to have up to as much fluence as the original prompt emission. Through studying large numbers of these X-ray flares it has been determined that they likely result from a distinct emission source different than that powering the GRB afterglow. These findings could be confirmed if similar results were found using flares in other energy ranges. However, until now, the UVOT instrument on Swift seemed to have observed far fewer flares in the uv/optical than were seen in the X-ray. This was primarily due to poor sampling and data being spread across multiple filters, but a new optimal co-addition and normalization of the UVOT data has allowed us to search for flares in the uv/optical that have previously gone undetected. Using a flare finding algorithm based on the Bayesian Information Criterion, we have analyzed the light curves in the Second UVOT GRB Catalog and present the finding of at least 118 unique flares detected in 68 GRB afterglows. We have also analyzed the XRT observed afterglows from the same time period using the flare finding algorithm, in an attempt to find smaller, previously unreported X-ray flares. Here we report our initial findings of this analysis on the X-ray afterglows and the number of flares detected. The cross-correlation of these two flare catalogs will better constrain the precise origin of flares, and also lead to a better understanding of the nature of the central engine, one of the likely origin candidates.

  20. Energetic Particle Estimates for Stellar Flares (United States)

    Youngblood, Allison; Chamberlin, Phil; Woods, Tom


    In the heliosphere, energetic particles are accelerated away from the Sun during solar flares and/or coronal mass ejections where they frequently impact the Earth and other solar system bodies. Solar (or stellar) energetic particles (SEPs) not only affect technological assets, but also influence mass loss and chemistry in planetary atmospheres (e.g., depletion of ozone). SEPs are increasingly recognized as an important factor in assessing exoplanet habitability, but we do not yet have constraints on SEP emission from any stars other than the Sun. Until indirect measurements are available, we must assume solar-like particle production and apply correlations between solar flares and SEPs detected near Earth to stellar flares. We present improved scaling relations between solar far-UV flare flux and >10 MeV proton flux near Earth. We apply these solar scaling relations to far-UV flares from exoplanet host stars and discuss the implications for modeling chemistry and mass loss in exoplanet atmospheres.

  1. Exceptionalism and globalism

    Directory of Open Access Journals (Sweden)

    John Cairns Jr


    Full Text Available ABSTRACT: Achieving sustainable use of the planet will require ethical judgments in both sciences and environmental politics. The purpose of this editorial is to discuss two paradigms, exceptionalism and globalism, that are important in this regard. Exceptionalism is the insistence that one set of rules or behaviors is acceptable for an individual or country but that a different set should be used for the rest of the world. For example, the disparity in per capita consumption of resources and economic status has increased dramatically in the last century, but the consumers of great amounts of resources do not feel a proportionate responsibility for addressing this issue. Globalism is defined as individual and societal willingness to diminish, postpone or forgo individual natural resource use to protect and enhance the integrity of the global ecological life support system. Increasing affluence and the still increasing human population, coupled with wide dissemination of information and an increasing awareness that humans occupy a finite planet, exacerbate this already difficult situation. Increased interest in sustainable use of the planet makes open discussion of these issues mandatory because individuals cannot function in isolation from the larger society of which they are a part. Similarly, no country can function in isolation from other countries, which collectively form an interactive mosaic. This discussion identifies some of the crucial issues related to exceptionalism and globalism, which must be addressed before sustainable use of the planet can be achieved.

  2. Characterization of Gas Flaring in North Dakota using the Satellite Data Product, VIIRS Nightfire (United States)

    Baugh, K.


    Oil production in the North Dakota, USA Bakken Formation has increased dramatically over the last decade. The natural gas associated with this oil production is typically burned off, or flared, if there does not exist infrastructure to transport the natural gas to market. This flaring activity can be characterized using the satellite Nightfire data product, generated at NOAA NCEI. Nightfire uses nighttime data from the infrared bands of the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument, onboard the Suomi National Polar-orbiting Partnership (NPP) platform, and identifies hotspots at the time of overpass. In addition, Nightfire gives estimates of the temperature, size, and radiant heat of the hotspots. This presentation will show the spatial and temporal distribution of gas flaring in North Dakota from 2012-2015. In addition, a summary of calibration work to estimate flared gas volumes from Nightfire detections will be presented.

  3. Optical follow-up of ongoing flaring of BL Lacertae (United States)

    Chandra, S.; Ganesh, S.; Baliyan, K. S.; Ahmad, N.; Jain, J. K.; Rajpurohit, G. S.


    We report the optical photometry of blazar BL Lacertae and confirm its ongoing flaring activity. This object was reported with flux enhancements in H band observations (ATel #5518, Carrasco et al). Later observations reported by many other groups present an increasing trend in NIR/Optical flux starting from mid October, 2013 (ATel 5550,5558). Historical peak flux was reported by Larionov et al. (ATel:#5597, R~12.34 mag) on 23rd November 2013.

  4. Identifying core domains to assess flare in rheumatoid arthritis

    DEFF Research Database (Denmark)

    Bartlett, Susan J; Hewlett, Sarah; Bingham, Clifton O


    For rheumatoid arthritis (RA), there is no consensus on how to define and assess flare. Variability in flare definitions impairs understanding of findings across studies and limits ability to pool results. The OMERACT RA Flare Group sought to identify domains to define RA flares from patient...

  5. VLA-Max '91 tests of high energy flare physics (United States)

    Lang, Kenneth R.; Willson, Robert F.


    The potential for the Very Large Array (VLA) contributions during the coming maximum in solar activity is illustrated by unpublished observations of solar flares on 28 May, 8 June, 24 June, and 30 September 1988. Some of this data appears in the two papers by Willson et al., referenced in this article. The VLA can be used to spatially resolve flaring active regions and their magnetic fields. These results can be compared with simultaneous x ray and gamma ray observations from space. Examples are provided in which spatially separated radio sources are resolved for the pre-burst, impulsive and decay phases of solar flares. The emergence of precursor coronal loops probably triggers the release of stored magnetic energy in adjacent coronal loops. Noise storm enhancements can originate in large-scale coronal loops on opposite sides of the visible solar disk. An interactive feedback mechanism may exist between activity in high-lying 90 cm coronal loops and lower-lying 20 cm ones.

  6. Predicting the Where and the How Big of Solar Flares (United States)

    Barnes, Graham; Leka, K. D.; Gilchrist, Stuart


    The approach to predicting solar flares generally characterizes global properties of a solar active region, for example the total magnetic flux or the total length of a sheared magnetic neutral line, and compares new data (from which to make a prediction) to similar observations of active regions and their associated propensity for flare production. We take here a different tack, examining solar active regions in the context of their energy storage capacity. Specifically, we characterize not the region as a whole, but summarize the energy-release prospects of different sub-regions within, using a sub-area analysis of the photospheric boundary, the CFIT non-linear force-free extrapolation code, and the Minimum Current Corona model. We present here early results from this approach whose objective is to understand the different pathways available for regions to release stored energy, thus eventually providing better estimates of the where (what sub-areas are storing how much energy) and the how big (how much energy is stored, and how much is available for release) of solar flares.

  7. Particle Acceleration in High-Energy Solar Flares Detected by the Fermi Large Area Telescope (United States)

    Omodei, N.; Pesce-Rollins, M.; Petrosian, V.; Liu, W.; Rubio da Costa, F.


    The Fermi Large Area Telescope (LAT) is the most sensitive instrument ever deployed in space for observing gamma-ray emission above 100 MeV. LAT observations of the active Sun have increased the number of detected solar flares by almost a factor of 10 with respect to previous space observations. We will present an overview of these observations, which include detections of impulsive and sustained emission, extending up to 20 hours in the case of the X-class flare occurred on 2012 March 7. Of particular interest is the first detection of >100 MeV gamma-ray emission from three solar flares whose positions behind the limb were confirmed by the STEREO spacecrafts. These observations sample flares from active regions originating from behind both the eastern and western limbs and present a unique opportunity to diagnose the mechanisms of high-energy emission and particle acceleration in solar flares. We will present the Fermi-LAT, RHESSI and STEREO observations of these flares and discuss how these observations provide constrains on different emission mechanisms.

  8. Exceptionality in vowel harmony (United States)

    Szeredi, Daniel

    Vowel harmony has been of great interest in phonological research. It has been widely accepted that vowel harmony is a phonetically natural phenomenon, which means that it is a common pattern because it provides advantages to the speaker in articulation and to the listener in perception. Exceptional patterns proved to be a challenge to the phonetically grounded analysis as they, by their nature, introduce phonetically disadvantageous sequences to the surface form, that consist of harmonically different vowels. Such forms are found, for example in the Finnish stem tuoli 'chair' or in the Hungarian suffixed form hi:d-hoz 'to the bridge', both word forms containing a mix of front and back vowels. There has recently been evidence shown that there might be a phonetic level explanation for some exceptional patterns, as the possibility that some vowels participating in irregular stems (like the vowel [i] in the Hungarian stem hi:d 'bridge' above) differ in some small phonetic detail from vowels in regular stems. The main question has not been raised, though: does this phonetic detail matter for speakers? Would they use these minor differences when they have to categorize a new word as regular or irregular? A different recent trend in explaining morphophonological exceptionality by looking at the phonotactic regularities characteristic of classes of stems based on their morphological behavior. Studies have shown that speakers are aware of these regularities, and use them as cues when they have to decide what class a novel stem belongs to. These sublexical phonotactic regularities have already been shown to be present in some exceptional patterns vowel harmony, but many questions remain open: how is learning the static generalization linked to learning the allomorph selection facet of vowel harmony? How much does the effect of consonants on vowel harmony matter, when compared to the effect of vowel-to-vowel correspondences? This dissertation aims to test these two ideas

  9. Counter measures to effectively reduce end flare (United States)

    Moneke, Matthias; Groche, Peter


    Roll forming is a manufacturing process, whose profitability is predicated on its high output. When roll formed profiles are cut to length, process related residual stresses are released and increased deformation at the profile ends at the cut-off occurs, also known as end flare. U-profiles typically show a flaring in at the lead end and a flaring out at the tail end. Due to this deformation, deviations from the dimensional accuracy can occur, which cause problems during further processing of the parts. Additional operations are necessary to compensate for the end flare, thereby increasing plant deployment time and production costs. Recent research focused on the cause of the residual stresses and it was shown, that a combination of residual longitudinal stresses and residual shear stresses are responsible for end flare. By exploiting this knowledge, it is possible to determine, depending on the flaring of the profile, in which part of the profile residual longitudinal or residual shear stresses are prevalent and which counter measures can specifically counteract the responsible residual stresses. For this purpose numerical and experimental investigations on a U-, Hat- and C-Profile were conducted. It could be shown that overbending and bending back of the profile is most effective in reducing end flare. Another developed method is lowering and elevating the profile to reduce residual longitudinal stresses.

  10. A New Paradigm for Flare Particle Acceleration (United States)

    Guidoni, Silvina E.; Karpen, Judith T.; DeVore, C. Richard


    The mechanism that accelerates particles to the energies required to produce the observed high-energy impulsive emission and its spectra in solar flares is not well understood. Here, we propose a first-principle-based model of particle acceleration that produces energy spectra that closely resemble those derived from hard X-ray observations. Our mechanism uses contracting magnetic islands formed during fast reconnection in solar flares to accelerate electrons, as first proposed by Drake et al. (2006) for kinetic-scale plasmoids. We apply these ideas to MHD-scale islands formed during fast reconnection in a simulated eruptive flare. A simple analytic model based on the particles’ adiabatic invariants is used to calculate the energy gain of particles orbiting field lines in our ultrahigh-resolution, 2.5D, MHD numerical simulation of a solar eruption (flare + coronal mass ejection). Then, we analytically model electrons visiting multiple contracting islands to account for the observed high-energy flare emission. Our acceleration mechanism inherently produces sporadic emission because island formation is intermittent. Moreover, a large number of particles could be accelerated in each macroscopic island, which may explain the inferred rates of energetic-electron production in flares. We conclude that island contraction in the flare current sheet is a promising candidate for electron acceleration in solar eruptions. This work was supported in part by the NASA LWS and H-SR programs..

  11. Diurnal Variation of Anterior Chamber Flare

    Directory of Open Access Journals (Sweden)

    Mehmet Adam


    Full Text Available Objectives: To investigate the ideal time and reproducibility of anterior chamber flare measurements. Materials and Methods: Anterior chamber flare measurements were performed with laser flaremetre device at 8 am to 45 volunteers and these measurements were repeated on the same day at 12 pm and 4 pm. Results: Twenty-five (55.5% of the volunteers were women and 20 (44.5% were men; mean age was 28.67±7.40 (18-49 years. The mean anterior chamber flare measurements taken following the ophthalmologic examination were 5.94±1.41 foton/msn at 8 am, 5.65±1.45 foton/msn at 12 pm, and 5.79±1.20 foton/msn at 4 pm. No statistical difference was found between the measurements (p=0.08. Subgroup analysis according to eye color, revealed no significant difference between flare measurements in brown, hazel, and green eyes (p=0.21. Correlation analysis demonstrated association between age and all flare measurements within the day (r=0.24, p=0.03; r=0.41, p=0.01, r=0.27, p=0.01. Conclusion: No significant diurnal change was detected in the flare measurements of our study subjects but positive correlation with age was observed. Hence, all flare measurements within a day are reliable and have high repeatability in healthy subjects. (Turk J Ophthalmol 2015; 45: 52-5

  12. UV-B and B-band Optical Flare Search in AR Lacertae, II Pegasi, and UX Arietis Star Systems (United States)

    Vander Haagen, G. A.


    A high-cadence search was conducted on the known RS CVn-type flare stars AR Lac, II Peg, and UX Ari. Two optical flares were observed in the B-band on AR Lac at 5 milliseconds (ms) resolution for a rate of 0.04 fl/hr. Flare energy of the two B-band fast-flares ranged from 0.55 to 16.7 × 1033 ergs. The UV-B and B-band search of II Peg for 44.5 hours at 5 and 10 ms resolution and UV-B band search of UX Ari for 25.6 hours at 10 ms resolution detected no flare activity.

  13. A satellite-based analysis of the Val d'Agri (South of Italy) Oil Center gas flaring emissions (United States)

    Faruolo, M.; Coviello, I.; Filizzola, C.; Lacava, T.; Pergola, N.; Tramutoli, V.


    In this paper the Robust Satellite Techniques (RST), a multi-temporal scheme of satellite data analysis, was implemented to analyze the flaring activity of the largest Italian gas and oil pre-treatment plant (i.e. the Ente Nazionale Idrocarburi - ENI - Val d'Agri Oil Center - COVA). For this site, located in an anthropized area characterized by a~large environmental complexity, flaring emissions are mainly related to emergency conditions (i.e. waste flaring), being the industrial process regulated by strict regional laws. With reference to the peculiar characteristics of COVA flaring, the main aim of this work was to assess the performances of RST in terms of sensitivity and reliability in providing independent estimations of gas flaring volumes in such conditions. In detail, RST was implemented on thirteen years of Moderate Resolution Imaging Spectroradiometer (MODIS) medium and thermal infrared data in order to identify the highly radiant records associated to the COVA flare emergency discharges. Then, exploiting data provided by ENI about gas flaring volumes in the period 2003-2009, a MODIS-based regression model was developed and tested. Achieved results indicate that such a model is able to estimate, with a good level of accuracy (R2 of 0.83), emitted gas flaring volumes at COVA.

  14. A satellite-based analysis of the Val d'Agri Oil Center (southern Italy) gas flaring emissions (United States)

    Faruolo, M.; Coviello, I.; Filizzola, C.; Lacava, T.; Pergola, N.; Tramutoli, V.


    In this paper, the robust satellite techniques (RST), a multi-temporal scheme of satellite data analysis, was implemented to analyze the flaring activity of the Val d'Agri Oil Center (COVA), the largest Italian gas and oil pre-treatment plant, owned by Ente Nazionale Idrocarburi (ENI). For this site, located in an anthropized area characterized by a large environmental complexity, flaring emissions are mainly related to emergency conditions (i.e., waste flaring), as industrial processes are regulated by strict regional laws. While regarding the peculiar characteristics of COVA flaring, the main aim of this work was to assess the performances of RST in terms of sensitivity and reliability in providing independent estimations of gas flaring volumes in such conditions. In detail, RST was implemented for 13 years of Moderate Resolution Imaging Spectroradiometer (MODIS) medium and thermal infrared data in order to identify the highly radiant records associated with the COVA flare emergency discharges. Then, using data provided by ENI about gas flaring volumes in the period 2003-2009, a MODIS-based regression model was developed and tested. The results achieved indicate that the such a model is able to estimate, with a good level of accuracy (R2 of 0.83), emitted gas flaring volumes at COVA.

  15. Clues on high-energy emission mechanism from blazar 3C 454.3 during 2015 August flare (United States)

    Shah, Zahir; Sahayanathan, S.; Mankuzhiyil, Nijil; Kushwaha, Pankaj; Misra, Ranjeev; Iqbal, Naseer


    We perform a detailed spectral study of a recent flaring activity from the flat spectrum radio quasar (FSRQ), 3C 454.3, observed simultaneously in optical, UV, X-ray and γ-ray energies during 2015 August 16-28. The source reached its peak γ-ray flux of (1.9 ± 0.2) × 10-05 ph cm-2 s-1 on August 22. The time-averaged broad-band spectral energy distribution (SED) is obtained for three time periods, namely 'flaring state', covering the peak γ-ray flux; 'post-flaring state', immediately following the peak flare and 'quiescent state', separated from the flaring event and following the post-flaring state. The SED corresponding to the flaring state is investigated using different emission models involving synchrotron, synchrotron self-Compton (SSC) and external Compton (EC) mechanisms. Our study suggests that the X-ray and γ-ray emission from 3C 454.3 cannot be attributed to a single emission mechanism and instead, one needs to consider both SSC and EC mechanisms. Moreover, the target photon energy responsible for the EC process corresponds to an equivalent temperature of 564 K, suggesting that the flare location lies beyond the broad line emitting region of the FSRQ. The SED fitting of the other two flux states further supports these inferences.

  16. Characteristics of Gamma-Ray Line Flares, (United States)


    extended-burst flares (Royng, Brown, and van Beek 1976). The R a classifications of these flares are 3B. The next veill -observed gamma-ray line flare...R.., Kiplinger, A. L., Orwig, L. K., and Frost, K. J. 1983a, Solar Phys. (in press ). Bai, T., Hudson, H. S., Pelling, R. M., Lin, R. P., Schwartz, R...409. 32 112________k__________ ____________1983, Solar Phys. (in press ). Chupp, E. L., Forrest, D. J., Higbie, P. R., Suni, A. N., Tsai, C., and Dunphy

  17. The magnetic evolution of AR 6555 which lead to two impulsive, readily compact, X-type flares (United States)

    Ambastha, A.; Fontenla, J. M.; Kalman, B.; Csepura, GY.


    We study the evolution of the vector magnetic field and the sunspot motions observed in AR 6555 during 23-26 Mar. 1991. This region displays two locations of large magnetic shear that were also sites of flare activity. The first location produced two large (X-class) flares during the period covered by our observations. The second location had larger magnetic shear than the first, but produced only small (M- and C-class) flares during our observations. We study the evolution of the photospheric magnetic field in relation to the large flares in the first location. These flares occurred around the same included polarity, and have very similar characteristics (soft X-ray light curves, energies, etc.). However, the whole active region has changed substantially in the period between them. We found several characteristics of the region that appear related to the occurrence of these flares. (1) The flares occurred near regions of large magnetic 'shear,' but not at the locations of maximum shear or maximum field. (2) Potential field extrapolations of the observed field suggest that the topology changed, prior to the first of the two flares, in such a way that a null appeared in the coarse magnetic field. (3) This null was located close to both X-class flares, and remained in that location for a few days while the two flares were observed. (4) The flaring region has a pattern of vector field and sunspot motions in which material is 'squeezed' along the polarity inversion line. This pattern is very different from that usually associated with shearing arcades, but it is similar to that suggested previously by Fontenla and Davis. The vertical electric currents, inferred from the transverse field, are consistent with this pattern. (5) A major reconfiguration of the longitudinal field and the vertical electric currents occurred just prior to the first of the two flares. Both changes imply substantial variations of the magnetic structure of the region. On the basis of the

  18. The Magnetic Evolution of AR 6555 which led to Two Impulsive, Relatively Compact, X-Type Flares (United States)

    Fontenla, J. M.; Ambastha, A.; Kalman, B.; Csepura, Gy.


    We study the evolution of the vector magnetic field and the sunspot motions observed in AR 6555 during 1991 March 23-26. This region displays two locations of large magnetic shear that were also sites of flare activity. The first location produced two large (X-class) flares during the period covered by our observations. The second location had larger magnetic shear than the first but produced only small (M- and C-class) flares during our observations. We study the evolution of the photospheric magnetic field in relation to the large flares in the first location. These flares occurred around the same included polarity and have very similar characteristics (soft X-ray light curves, energies, etc,). However, the whole active region has changed substantially in the period between them. We found several characteristics of the region that appear related to the occurrence of these flares: (1) The flares occurred near regions of large magnetic 'shear' but not at the locations of maximum shear or maximum field. (2) Potential field extrapolations of the observed field suggest that the topology changed, prior to the first of the two flares, in such a way that a null appeared in the coarse magnetic field. (3) This null was located close to both X-class flares and remained in that location for a few days while the two flares were observed. (4) The flaring region has a pattern of vector field and sunspot motions in which material is 'squeezed' along the polarity inversion line. This pattern is very different from that usually associated with shearing arcades, but it is similar to that suggested previously by Fontenia and Davis. The vertical electric currents, inferred from the transverse field, are consistent with this pattern. (5) A major reconfiguration of the longitudinal field and the vertical electric currents occurred just prior to the first of the two flares. Both changes imply substantial variations of the magnetic structure of the region. On the basis of the available

  19. Flaring down project for Algeria

    Energy Technology Data Exchange (ETDEWEB)

    Bienek, S. [Joh. Heinr. Bornemann GmbH, Obernkirchen (Germany)


    Multiphase boosting as a production scenario for lowering wellhead backpressure, avoiding field separation stations, and achieving longer flow distances is widely accepted by major oil companies. Flaring down of gas is no longer necessary and therefore the use of multiphase pumps has a positive impact on a healthy environment. The twin-screw pump plays a major role when selecting the equipment. Due to its volumetric character heavy slugging, varying water content and other typical multiphase operating challenges, this pump type is well suited for this purpose. With its low speed the fluid is treated very sensitively, so as to widely avoid emulsifying oil and water - a definite advantage for the later separation of the phases. (orig.)

  20. An unprecedented UV/optical flare in TV Columbae (United States)

    Szkody, P.; Mateo, M.


    A surprising, 2 mag, short time scale (hr) outburst of TV Col (2A 0526-328) was observed simultaneously at IUE and optical wavelengths in 1982 November. During this 'flare', the IUE emission lines of N v 1240, C IV 1550, and He II 1640, intensified by more than an order of magnitude and developed P Cygni profiles, indicating mass loss. Continuum fits with a power-law plus a blackbody from the UV through the optical showed a steepening of the UV power-law component and an increase in the temperature and size of the blackbody component during the flare activity. This unusual behavior is discussed in terms of an accretion disk instability.

  1. Flare forecasting at the Met Office Space Weather Operations Centre (United States)

    Murray, S. A.; Bingham, S.; Sharpe, M.; Jackson, D. R.


    The Met Office Space Weather Operations Centre produces 24/7/365 space weather guidance, alerts, and forecasts to a wide range of government and commercial end-users across the United Kingdom. Solar flare forecasts are one of its products, which are issued multiple times a day in two forms: forecasts for each active region on the solar disk over the next 24 h and full-disk forecasts for the next 4 days. Here the forecasting process is described in detail, as well as first verification of archived forecasts using methods commonly used in operational weather prediction. Real-time verification available for operational flare forecasting use is also described. The influence of human forecasters is highlighted, with human-edited forecasts outperforming original model results and forecasting skill decreasing over longer forecast lead times.

  2. A randomized controlled trial of mindfulness-based stress reduction to prevent flare-up in patients with inactive ulcerative colitis. (United States)

    Jedel, S; Hoffman, A; Merriman, P; Swanson, B; Voigt, R; Rajan, K B; Shaikh, M; Li, H; Keshavarzian, A


    The primary therapeutic goals in ulcerative colitis (UC) are to maintain excellent quality of life (QOL) by treating flare-ups when they occur, and preventing flare-ups. Since stress can trigger UC flare-ups, we investigated the efficacy of mindfulness-based stress reduction (MBSR) to reduce flare-ups and improve QOL. Patients with moderately severe UC, in remission, were randomized to MBSR or time/attention control. Primary outcome was disease status. Secondary outcomes were changes in markers of inflammation and disease activity, markers of stress and psychological assessments. 55 subjects were randomized. Absence of flares, time to flare and severity of flare over 1 year were similar between the two groups. However, post hoc analysis showed that MBSR decreased the proportion of participants with at least one flare-up among those with top tertile urinary cortisol and baseline perceived stress (30 vs. 70%; p MBSR patients who flared demonstrated significantly lower stress at the last visit compared to flared patients in the control group (p = 0.04). Furthermore, MBSR prevented a drop in the Inflammatory Bowel Disease Quality of Life Questionnaire during flare (p MBSR did not affect the rate or severity of flare-ups in UC patients in remission. However, MBSR might be effective for those with high stress reactivity (high perceived stress and urinary cortisol) during remission. MBSR appears to improve QOL in UC patients by minimizing the negative impact of flare-ups on QOL. Further studies are needed to identify a subset of patients for whom MBSR could alter disease course.

  3. The Effect of Magnetic Topology on the Escape of Flare Particles (United States)

    Antiochos, S. K.; Masson, S.; DeVore, C. R.


    Magnetic reconnection in the solar atmosphere is believed to be the driver of most solar explosive phenomena. Therefore, the topology of the coronal magnetic field is central to understanding the solar drivers of space weather. Of particular importance to space weather are the impulsive Solar Energetic particles that are associated with some CME/eruptive flare events. Observationally, the magnetic configuration of active regions where solar eruptions originate appears to agree with the standard eruptive flare model. According to this model, particles accelerated at the flare reconnection site should remain trapped in the corona and the ejected plasmoid. However, flare-accelerated particles frequently reach the Earth long before the CME does. We present a model that may account for the injection of energetic particles onto open magnetic flux tubes connecting to the Earth. Our model is based on the well-known 2.5D breakout topology, which has a coronal null point (null line) and a four-flux system. A key new addition, however, is that we include an isothermal solar wind with open-flux regions. Depending on the location of the open flux with respect to the null point, we find that the flare reconnection can consist of two distinct phases. At first, the flare reconnection involves only closed field, but if the eruption occurs close to the open field, we find a second phase involving interchange reconnection between open and closed. We argue that this second reconnection episode is responsible for the injection of flare-accelerated particles into the interplanetary medium. We will report on our recent work toward understanding how flare particles escape to the heliosphere. This work uses high-resolution 2.5D MHD numerical simulations performed with the Adaptively Refined MHD Solver (ARMS).

  4. Flare Energy Release: Internal Conflict, Contradiction with High Resolution Observations, Possible Solutions (United States)

    Pustilnik, L.


    All accepted paradigm of solar and stellar flares energy release based on 2 whales: 1. Source of energy is free energy of non-potential force free magnetic field in atmosphere above active region; 2. Process of ultrafast dissipation of magnetic fields is Reconnection in Thin Turbulent Current Sheet (RTTCS). Progress in observational techniques in last years provided ultra-high spatial resolution and in physics of turbulent plasma showed that real situation is much more complicated and standard approach is in contradiction both with observations and with problem of RTTCS stability. We present critical analysis of classic models of pre-flare energy accumulation and its dissipation during flare energy release from pioneer works Giovanelli (1939, 1947) up to topological reconnection. We show that all accepted description of global force-free fields as source of future flare cannot be agreed with discovered in last years fine and ultra-fine current-magnetic structure included numerouse arcs-threads with diameters up to 100 km with constant sequence from photosphere to corona. This magnetic skeleton of thin current magnetic threads with strong interaction between them is main source of reserved magnetic energy insolar atmosphere. Its dynamics will be controlled by percolation of magnetic stresses through network of current-magnetic threads with transition to flare state caused by critical value of global current. We show that thin turbulent current sheet is absolutely unstable configuration both caused by splitting to numerous linear currents by dissipative modes like to tearing, and as sequence of suppress of plasma turbulence caused by anomalous heating of turbulent plasma. In result of these factors primary RTTCS will be disrupted in numerous turbulent and normal plasma domains like to resistors network. Current propagation through this network will have percolation character with all accompanied properties of percolated systems: self-organization with formation power

  5. Is India the Exception?

    DEFF Research Database (Denmark)

    Nielsen, Klaus; Storm, Rasmus K.

    India is still the extreme under-achiever in international sport competitions. Whereas in China high growth rates have been accompanied by a huge improvement in its ranking in international sport events a similar impact of extraordinary growth rates is seemingly totally absent in the case of India....... Is India an exception? Several econometric studies have shown that income per capita is a significant variable explaining elite sport results such as results in the Olympic Games. From this stylized fact follows the hypothesis that 'above/below average' growth rates lead to relative improvements....../deterioration of elite sport results (with a time lag)’. However, this has not previously been tested, and the contingencies explaining the seemingly widely different developments in countries such as China and India have not been explored. This paper tests the above hypothesis by means of a study of the correlation...

  6. Is India the Exception?

    DEFF Research Database (Denmark)

    Nielsen, Klaus; Storm, Rasmus K.


    India is the extreme under-achiever in international sport competitions. This has only marginally changed with the recent promotion of the Indian economy into the league of BRIC nations. Whereas in China high growth rates have been accompanied by a huge improvement of its performance in internati......India is the extreme under-achiever in international sport competitions. This has only marginally changed with the recent promotion of the Indian economy into the league of BRIC nations. Whereas in China high growth rates have been accompanied by a huge improvement of its performance...... in international sport events a similar impact of extraordinary growth rates has been almost totally absent in the case of India. Is India an exception? Several econometric studies have shown that income per capita is a significant variable explaining elite sport results such as results in the Olympic Games. From...

  7. Giftedness: an exceptionality examined. (United States)

    Robinson, A; Clinkenbeard, P R


    The study of giftedness has practical origins. High-level performance intrigues people. Theoretically, the study of giftedness is related to the psychology of individual differences and has focused on the constructs of intelligence, creativity, and motivation. At a practical level, the research is largely related to school and family contexts, which develop gifts and talents in children and youth. Although broadened definitions of giftedness have emerged, the most extensive body of research available for review concentrates on intellectual giftedness. The varying definitions of giftedness and the impact of social context and diversity on the development of talent pose significant challenges for the field. Finally, the study of exceptionally advanced performance provides insight into basic psychological processes and the school contexts that develop talents in children and youth.


    Energy Technology Data Exchange (ETDEWEB)

    Troja, E. [Center for Research and Exploration in Space Science and Technology, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Piro, L. [INAF-IAPS, Via Fosso del Cavaliere 100, I-00133 Rome (Italy); Vasileiou, V. [Laboratoire Univers et Particules de Montpellier, Universite Montpellier 2, and CNRS/IN2P3, Montpellier (France); Omodei, N. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Burgess, J. M.; Connaughton, V. [University of Alabama in Huntsville, NSSTC, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Cutini, S. [ASI Science Data Center, via Galileo Galilei, I-00044 Frascati (Italy); McEnery, J. E., E-mail:, E-mail:, E-mail: [Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)


    Simultaneous Swift and Fermi observations of gamma-ray bursts (GRBs) offer a unique broadband view of their afterglow emission, spanning more than 10 decades in energy. We present the sample of X-ray flares observed by both Swift and Fermi during the first three years of Fermi operations. While bright in the X-ray band, X-ray flares are often undetected at lower (optical), and higher (MeV to GeV) energies. We show that this disfavors synchrotron self-Compton processes as the origin of the observed X-ray emission. We compare the broadband properties of X-ray flares with the standard late internal shock model, and find that in this scenario, X-ray flares can be produced by a late-time relativistic (Γ > 50) outflow at radii R ∼ 10{sup 13}-10{sup 14} cm. This conclusion holds only if the variability timescale is significantly shorter than the observed flare duration, and implies that X-ray flares can directly probe the activity of the GRB central engine.

  9. Swift and Fermi Observations of X-Ray Flares: The Case of Late Internal Shock (United States)

    Troja, E.; Piro, L.; Vasileiou, V.; Omodei, N.; Burgess, J. M.; Cutini, S.; Connaughton, V.; McEnery, J. E.


    Simultaneous Swift and Fermi observations of gamma-ray bursts (GRBs) offer a unique broadband view of their afterglow emission, spanning more than 10 decades in energy. We present the sample of X-ray flares observed by both Swift and Fermi during the first three years of Fermi operations. While bright in the X-ray band, X-ray flares are often undetected at lower (optical), and higher (MeV to GeV) energies. We show that this disfavors synchrotron self-Compton processes as the origin of the observed X-ray emission. We compare the broadband properties of X-ray flares with the standard late internal shock model, and find that in this scenario, X-ray flares can be produced by a late-time relativistic (gamma greater than 50) outflow at radii R approximately 10(exp 13) - 10(exp 14) cm. This conclusion holds only if the variability timescale is significantly shorter than the observed flare duration, and implies that X-ray flares can directly probe the activity of the GRB central engine.

  10. Hadronic Synchrotron Mirror Model for Orphan TeV Flares in Blazars (United States)

    Boettcher, M.; Postnikov, S.


    Very-high-energy gamma-ray flares of TeV blazars are generally accompanied by simultaneous flaring activity in X-rays. The recent observations by the Whipple collaboration of an ``orphan'' TeV flare of 1ES 1959+650 (without simultaneous X-ray flare) is very hard to reconcile with standard leptonic SSC model routinely and usually very successfully employed to explain the SED and spectral variability of TeV blazars. In this paper, we suggest an alternative scenario in which the ``orphan'' TeV flare may originate from relativistic protons, interacting with an external photon field supplied by electron-synchrotron radiation reflected off a dilute ``synchrotron mirror'' located at a few pc from the central black hole. While the external photons will be virtually ``invisible'' to the co-moving ultrarelativistic electrons in the jet due to Klein-Nishina effects, their Doppler boosted energy is high enough to excite the Delta resonance from relativistic protons with Lorentz factors of 103 - 104. This model is capable of explaining the ``orphan'' TeV flare of 1ES 1959+650 with plausible parameters, thus constraining the number and characteristic energy of relativistic protons in the jet of this blazar.

  11. Solar Flare Magnetic Fields and Plasmas

    CERN Document Server

    Fisher, George


    This volume is devoted to the dynamics and diagnostics of solar magnetic fields and plasmas in the Sun’s atmosphere. Five broad areas of current research in Solar Physics are presented: (1) New techniques for incorporating radiation transfer effects into three-dimensional magnetohydrodynamic models of the solar interior and atmosphere, (2) The connection between observed radiation processes occurring during flares and the underlying flare energy release and transport mechanisms, (3) The global balance of forces and momenta that occur during flares, (4) The data-analysis and theoretical tools needed to understand and assimilate vector magnetogram observations and (5) Connecting flare and CME phenomena to the topological properties of the magnetic field in the Solar Atmosphere. The role of the Sun’s magnetic field is a major emphasis of this book, which was inspired by a workshop honoring Richard C. (Dick) Canfield.  Dick has been making profound contributions to these areas of research over a long and pro...

  12. A Cold Flare With Delayed Heating


    Fleishman, Gregory D.; Pal'shin, Valentin D.; Meshalkina, Natalia; Lysenko, Alexandra L.; Kashapova, Larisa K.; Altyntsev, Alexander T.


    Recently, a number of peculiar flares have been reported, which demonstrate significant non-thermal particle signatures with a low, if any, thermal emission, that implies close association of the observed emission with the primary energy release/electron acceleration region. This paper presents a flare that appears a "cold" one at the impulsive phase, while displaying a delayed heating later on. Using HXR data from \\kw, microwave observations by SSRT, RSTN, NoRH and NoRP, context observations...

  13. Solar eruptions: The CME-flare relationship (United States)

    Vršnak, B.


    Coronal mass ejections (CMEs), caused by large-scale eruptions of the coronal magnetic field, often are accompanied by a more localized energy release in the form of flares, as a result of dissipative magnetic-field reconfiguration. Morphology and evolution of such flares, also denoted as dynamical flares are often explained as a consequence of reconnection of the arcade magnetic field, taking place below the erupting magnetic flux rope. A close relationship of the CME acceleration and the flare energy release is evidenced by various statistical correlations between parameters describing CMEs and flares, as well as by the synchronization of the CME acceleration phase with the impulsive phase of the associated flare. Such behavior implies that there must be a feedback relation between the dynamics of the CME and the flare-associated reconnection process. From the theoretical standpoint, magnetic reconnection affects the CME dynamics in several ways. First, it reduces the tension of the overlying arcade magnetic field and increases the magnetic pressure below the flux rope, and in this way enhances the CME acceleration. Furthermore, it supplies the poloidal magnetic flux to the flux rope, which helps sustaining the electric current in the rope and prolonging the action of the driving Lorentz force to large distances. The role of these processes, directly relating solar flares and CMEs, is illustrated by employing a simple model, where the erupting structure is represented by a curved flux rope anchored at both sides in the dense/inert photosphere, being subject to the kink and torus instability. It is shown that in most strongly accelerated ejections, where values on the order of 10 km s-2 are attained, the poloidal flux supplied to the erupting rope has to be several times larger than was the initial flux.

  14. Modelling blazar flaring using a time-dependent fluid jet emission model - an explanation for orphan flares and radio lags (United States)

    Potter, William J.


    Blazar jets are renowned for their rapid violent variability and multiwavelength flares, however, the physical processes responsible for these flares are not well understood. In this paper, we develop a time-dependent inhomogeneous fluid jet emission model for blazars. We model optically thick radio flares for the first time and show that they are delayed with respect to the prompt optically thin emission by ∼months to decades, with a lag that increases with the jet power and observed wavelength. This lag is caused by a combination of the travel time of the flaring plasma to the optically thin radio emitting sections of the jet and the slow rise time of the radio flare. We predict two types of flares: symmetric flares - with the same rise and decay time, which occur for flares whose duration is shorter than both the radiative lifetime and the geometric path-length delay time-scale; extended flares - whose luminosity tracks the power of particle acceleration in the flare, which occur for flares with a duration longer than both the radiative lifetime and geometric delay. Our model naturally produces orphan X-ray and γ-ray flares. These are caused by flares that are only observable above the quiescent jet emission in a narrow band of frequencies. Our model is able to successfully fit to the observed multiwavelength flaring spectra and light curves of PKS1502+106 across all wavelengths, using a transient flaring front located within the broad-line region.

  15. Long- and Mid-Term Variations of the Soft X-ray Flare Type in Solar Cycles (United States)

    Chertok, I. M.; Belov, A. V.


    Using data from the Geostationary Operational Environmental Satellites (GOES) spacecraft in the 1 - 8 Å wavelength range for Solar Cycles 23, 24, and part of Cycles 21 and 22, we compare mean temporal parameters (rise and decay times, and duration) and the proportion of impulsive short-duration events (SDE) and gradual long-duration events (LDE) among C- and ≥ M1.0-class flares. It is found that the fraction of the SDE ≥ M1.0-class flares (including spikes) in Cycle 24 exceeds that in Cycle 23 in all three temporal parameters at the maximum phase and in the decay time during the ascending cycle phase. However, Cycles 23 and 24 barely differ in the fraction of the SDE C-class flares. The temporal parameters of SDEs, their fraction, and consequently the relationship between the SDE and LDE flares do not remain constant, but reveal regular changes within individual cycles and during the transition from one cycle to another. In all phases of all four cycles, these changes have the character of pronounced, large-amplitude "quasi-biennial" oscillations (QBOs). In different cycles and at the separate phases of individual cycles, such QBOs are superimposed on various systematic trends displayed by the analyzed temporal flare parameters. In Cycle 24, the fraction of the SDE ≥ M1.0-class flares from the N- and S-hemispheres displays the most pronounced synchronous QBOs. The QBO amplitude and general variability of the intense ≥ M1.0-class flares almost always markedly exceeds those of the moderate C-class flares. The ordered quantitative and qualitative variations of the flare type revealed in the course of the solar cycles are discussed within the framework of the concept that the SDE flares are associated mainly with small sunspots (including those in developed active regions) and that small and large sunspots behave differently during cycles and form two distinct populations.

  16. Current-driven flare and CME models (United States)

    Melrose, D. B.


    Roles played by the currents in the impulsive phase of a solar flare and in a coronal mass ejection (CME) are reviewed. Solar flares are magnetic explosions: magnetic energy stored in unneutralized currents in coronal loops is released into energetic electrons in the impulsive phase and into mass motion in a CME. The energy release is due to a change in current configuration effectively reducing the net current path. A flare is driven by the electromotive force (EMF) due to the changing magnetic flux. The EMF drives a flare-associated current whose cross-field closure is achieved by redirection along field lines to the chromosphere and back. The essential roles that currents play are obscured in the "standard" model and are described incorrectly in circuit models. A semiquantitative treatment of the energy and the EMF is provided by a multicurrent model, in which the currents are constant and the change in the current paths is described by time-dependent inductances. There is no self-consistent model that includes the intrinsic time dependence, the EMF, the flare-associated current, and the internal energy transport during a flare. The current, through magnetic helicity, plays an important role in a CME, with twist converted into writhe allowing the kink instability plus reconnection to lead to a new closed loop and with the current-current force accelerating the CME through the torus instability.

  17. Statistical methods for solar flare probability forecasting (United States)

    Vecchia, D. F.; Tryon, P. V.; Caldwell, G. A.; Jones, R. W.


    The Space Environment Services Center (SESC) of the National Oceanic and Atmospheric Administration provides probability forecasts of regional solar flare disturbances. This report describes a statistical method useful to obtain 24 hour solar flare forecasts which, historically, have been subjectively formulated. In Section 1 of this report flare classifications of the SESC and the particular probability forecasts to be considered are defined. In Section 2 we describe the solar flare data base and outline general principles for effective data management. Three statistical techniques for solar flare probability forecasting are discussed in Section 3, viz, discriminant analysis, logistic regression, and multiple linear regression. We also review two scoring measures and suggest the logistic regression approach for obtaining 24 hour forecasts. In Section 4 a heuristic procedure is used to select nine basic predictors from the many available explanatory variables. Using these nine variables logistic regression is demonstrated by example in Section 5. We conclude in Section 6 with band broad suggestions regarding continued development of objective methods for solar flare probability forecasting.

  18. Effects of flare definitions on the statistics of derived flare distributions (United States)

    Ryan, D. F.; Dominique, M.; Seaton, D.; Stegen, K.; White, A.


    The statistical examination of solar flares is crucial to revealing their global characteristics and behaviour. Such examinations can tackle large-scale science questions or give context to detailed single-event studies. However, they are often performed using standard but basic flare detection algorithms relying on arbitrary thresholds. This arbitrariness may lead to important scientific conclusions being drawn from results caused by subjective choices in algorithms rather than the true nature of the Sun. In this paper, we explore the effect of the arbitrary thresholds used in the Geostationary Operational Environmental Satellite (GOES) event list and Large Yield RAdiometer (LYRA) Flare Finder algorithms. We find that there is a small but significant relationship between the power law exponent of the GOES flare peak flux frequency distribution and the flare start thresholds of the algorithms. We also find that the power law exponents of these distributions are not stable, but appear to steepen with increasing peak flux. This implies that the observed flare size distribution may not be a power law at all. We show that depending on the true value of the exponent of the flare size distribution, this deviation from a power law may be due to flares missed by the flare detection algorithms. However, it is not possible determine the true exponent from GOES/XRS observations. Additionally we find that the PROBA2/LYRA flare size distributions are artificially steep and clearly non-power law. We show that this is consistent with an insufficient degradation correction. This means that PROBA2/LYRA should not be used for flare statistics or energetics unless degradation is adequately accounted for. However, it can be used to study variations over shorter timescales and for space weather monitoring.

  19. On exceptional instanton strings (United States)

    Del Zotto, Michele; Lockhart, Guglielmo


    According to a recent classification of 6d (1 , 0) theories within F-theory there are only six "pure" 6d gauge theories which have a UV superconformal fixed point. The corresponding gauge groups are SU(3) , SO(8) , F 4 , E 6 , E 7, and E 8. These exceptional models have BPS strings which are also instantons for the corresponding gauge groups. For G simply-laced, we determine the 2d N=(0,4) worldsheet theories of such BPS instanton strings by a simple geometric engineering argument. These are given by a twisted S 2 compactification of the 4d N=2 theories of type H 2 , D 4 , E 6 , E 7 and E 8 (and their higher rank generalizations), where the 6d instanton number is mapped to the rank of the corresponding 4d SCFT. This determines their anomaly polynomials and, via topological strings, establishes an interesting relation among the corresponding T 2 × S 2 partition functions and the Hilbert series for moduli spaces of G instantons. Such relations allow to bootstrap the corresponding elliptic genera by modularity. As an example of such procedure, the elliptic genera for a single instanton string are determined. The same method also fixes the elliptic genus for case of one F 4 instanton. These results unveil a rather surprising relation with the Schur index of the corresponding 4d N=2 models.

  20. New Nordic Exceptionalism

    DEFF Research Database (Denmark)

    Danbolt, Mathias


    . This article takes Kim and Einhorn’s intervention as a starting point for a critical discussion of the history and politics of Nordic image-building. The article suggests that the reason Kim and Einhorn’s speech passed as a serious proposal was due to its meticulous mimicking of two discursive formations...... that have been central to the debates on the branding of Nordicity over the last decades: on the one hand, the discourse of “Nordic exceptionalism,” that since the 1960s has been central to the promotion of a Nordic political, socio-economic, and internationalist “third way” model, and, on the other hand......, the discourse on the “New Nordic,” that emerged out of the New Nordic Food-movement in the early 2000s, and which has given art and culture a privileged role in the international re-fashioning of the Nordic brand. Through an analysis of Kim and Einhorn’s United Nations of Norden (UNN)-performance, the article...

  1. Exceptional composite dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Ballesteros, Guillermo [Universite Paris Saclay, CEA, CNRS, Institut de Physique Theorique, Gif-sur-Yvette (France); Carmona, Adrian [CERN, Theoretical Physics Department, Geneva (Switzerland); Chala, Mikael [Universitat de Valencia y IFIC, Universitat de Valencia-CSIC, Departament de Fisica Teorica, Burjassot, Valencia (Spain)


    We study the dark matter phenomenology of non-minimal composite Higgs models with SO(7) broken to the exceptional group G{sub 2}. In addition to the Higgs, three pseudo-Nambu-Goldstone bosons arise, one of which is electrically neutral. A parity symmetry is enough to ensure this resonance is stable. In fact, if the breaking of the Goldstone symmetry is driven by the fermion sector, this Z{sub 2} symmetry is automatically unbroken in the electroweak phase. In this case, the relic density, as well as the expected indirect, direct and collider signals are then uniquely determined by the value of the compositeness scale, f. Current experimental bounds allow one to account for a large fraction of the dark matter of the Universe if the dark matter particle is part of an electroweak triplet. The totality of the relic abundance can be accommodated if instead this particle is a composite singlet. In both cases, the scale f and the dark matter mass are of the order of a few TeV. (orig.)

  2. Flare-induced changes of the photospheric magnetic field in a δ-spot deduced from ground-based observations (United States)

    Gömöry, P.; Balthasar, H.; Kuckein, C.; Koza, J.; Veronig, A. M.; González Manrique, S. J.; Kučera, A.; Schwartz, P.; Hanslmeier, A.


    Aims: Changes of the magnetic field and the line-of-sight velocities in the photosphere are being reported for an M-class flare that originated at a δ-spot belonging to active region NOAA 11865. Methods: High-resolution ground-based near-infrared spectropolarimetric observations were acquired simultaneously in two photospheric spectral lines, Fe i 10783 Å and Si i 10786 Å, with the Tenerife Infrared Polarimeter at the Vacuum Tower Telescope (VTT) in Tenerife on 2013 October 15. The observations covered several stages of the M-class flare. Inversions of the full-Stokes vector of both lines were carried out and the results were put into context using (extreme)-ultraviolet filtergrams from the Solar Dynamics Observatory (SDO). Results: The active region showed high flaring activity during the whole observing period. After the M-class flare, the longitudinal magnetic field did not show significant changes along the polarity inversion line (PIL). However, an enhancement of the transverse magnetic field of approximately 550 G was found that bridges the PIL and connects umbrae of opposite polarities in the δ-spot. At the same time, a newly formed system of loops appeared co-spatially in the corona as seen in 171 Å filtergrams of the Atmospheric Imaging Assembly (AIA) on board SDO. However, we cannot exclude that the magnetic connection between the umbrae already existed in the upper atmosphere before the M-class flare and became visible only later when it was filled with hot plasma. The photospheric Doppler velocities show a persistent upflow pattern along the PIL without significant changes due to the flare. Conclusions: The increase of the transverse component of the magnetic field after the flare together with the newly formed loop system in the corona support recent predictions of flare models and flare observations. The movie associated to Figs. 4 and 5 is available at

  3. Flare magnetic reconnection fluxes as possible signatures of flare contributions to gradual SEP events (United States)

    Kahler, S. W.; Kazachenko, M.; Lynch, B. J.; Welsch, B. T.


    The primary sources of solar energetic (E > 20 MeV) particle (SEP) events are flares and CME-driven shocks. Some studies claim that even up to GeV energies solar flares are major contributors to SEP events. There are several candidate flare processes for producing SEPs, but acceleration in magnetic reconnection regions is probably the most efficient. Previous studies have relied on flare radiation signatures to determine the times and locations of SEP injections. An alternative approach is to use the amount of magnetic flux that gets reconnected during solar flares. The photospheric magnetic flux swept out by flare ribbons is thought to be directly related to the amount of magnetic reconnection in the corona and is therefore a key diagnostic tool for understanding the physical processes in flares and CMEs. We use the database of flare magnetic reconnection fluxes to compare these parameters with peak intensities of SEP events. We find that while sizes of 15 ∼25-MeV SEP events in the western hemisphere correlate with both CME speeds and reconnection fluxes, there are many cases of large reconnection fluxes with no observed SEP events. The occurrence of large reconnection fluxes accompanied by slow CMEs but no SEP events suggests that the CME shocks are the primary, if not the only, sources of high energy (E > 100 MeV) SEP events.

  4. Application of digital imaging techniques to flare monitoring (United States)

    Rodrigues, Shaun J.; Yan, Yong


    This paper presents a technique for detecting and monitoring flares in harsh industrial environments with the use of an imaging sensor combined with digital image processing. Flare images are captured via an imaging fibre and analysed to detect the flare's presence and region of interest. The flare characteristics are then determined using various image processing algorithms. A prototype system is designed, constructed and evaluated on a purpose built laboratory scale flare test rig. Results indicate that the imaging based technique has potential for the detection, monitoring and analysis of flares amidst various background conditions in the chemical and oil industries for plant safety, pollution prevention and control.

  5. High-Resolution Observations of Flares in an Arch Filament System (United States)

    Su, Yingna; Liu, Rui; Li, Shangwei; Cao, Wenda; Ji, Haisheng


    We present high-resolution observations of five sequential solar flares occurring in NOAA Active Region (AR) 12396 taken with the 1.6-m New Solar Telescope at the Big Bear Solar Observatory, complemented by IRIS and SDO observations. The main flaring region is an arch filament system (AFS) consisting of multiple bundles of dark filament threads enclosed by scattered flare brightenings. We study the magnetic configuration and evolution of the active region by constructing coronal magnetic field models based on SDO/HMI magnetograms using two independent methods, i.e., the nonlinear force-free field (NLFFF) extrapolation and the flux rope insertion method. We are able to identify multiple flux ropes based on magnetic twist derived from the extrapolated NLFFF, which is consistent with the NST observations of multiple filaments. Both models suggest that the filament bundles may posses mixed signs of helicity, i.e., positive (negative) in the north (south). The footprints of quasi-separatrix layers (QSLs) derived from the extrapolated NLFFF compare favorably with the observed flare ribbons. Moreover, magnetic field lines traced along the semi-circular footprint of a dome-like QSL surrounding the flaring region are connected to the regions of significant helicity and Poynting flux injection. An interesting double-ribbon fine structure located at the east border of the AFS is consistent with the fine structure of the QSL's footprint. The maps of magnetic twist show that positive twist became dominant as time progressed, which is consistent with the injection of positive helicity during a 26 hour interval before the flares. The trigger mechanisms and detailed dynamics of the observed flares are also discussed.

  6. Fermi Large Area Telescope and Multi-wavelength Observations of the Flaring Activity of PKS 1510-089 between 2008 September and 2009 June (United States)

    Abdo, A. A.; Ackermann, M.; Agudo, I.; Ajello, M.; Allafort, A.; Aller, H. D.; Aller, M. F.; Antolini, E.; Arkharov, A. A.; Axelsson, M.; Bach, U.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berdyugin, A.; Berenji, B.; Blandford, R. D.; Blinov, D. A.; Bloom, E. D.; Boettcher, M.; Bonamente, E.; Borgland, A. W.; Bouvier, A.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Buehler, R.; Buemi, C. S.; Burnett, T. H.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Carosati, D.; Carrigan, S.; Casandjian, J. M.; Cavazzuti, E.; Cecchi, C.; Çelik, Ö.; Chekhtman, A.; Chen, W. P.; Cheung, C. C.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Corbel, S.; Costamante, L.; Dermer, C. D.; de Angelis, A.; de Palma, F.; Donato, D.; Silva, E. do Couto e.; Drell, P. S.; Dubois, R.; Dumora, D.; Farnier, C.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Forné, E.; Fortin, P.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giebels, B.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grove, J. E.; Guiriec, S.; Gurwell, M. A.; Gusbar, C.; Gómez, J. L.; Hadasch, D.; Hagen-Thorn, V. A.; Hayashida, M.; Hays, E.; Horan, D.; Hughes, R. E.; Jóhannesson, G.; Johnson, A. S.; Johnson, W. N.; Kamae, T.; Katagiri, H.; Kataoka, J.; Kawai, N.; Kimeridze, G.; Knödlseder, J.; Konstantinova, T. S.; Kopatskaya, E. N.; Koptelova, E.; Kovalev, Y. Y.; Kurtanidze, O. M.; Kuss, M.; Lahteenmaki, A.; Lande, J.; Larionov, V. M.; Larionova, E. G.; Larionova, L. V.; Larsson, S.; Latronico, L.; Lee, S.-H.; Leto, P.; Lister, M. L.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Makeev, A.; Massaro, E.; Mazziotta, M. N.; McConville, W.; McEnery, J. E.; McHardy, I. M.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Morozova, D. A.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Naumann-Godo, M.; Nikolashvili, M. G.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohno, M.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Ormes, J. F.; Ozaki, M.; Paneque, D.; Panetta, J. H.; Parent, D.; Pasanen, M.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Piron, F.; Porter, T. A.; Pushkarev, A. B.; Rainò, S.; Raiteri, C. M.; Rando, R.; Razzano, M.; Reimer, A.; Reimer, O.; Reinthal, R.; Ripken, J.; Ritz, S.; Roca-Sogorb, M.; Rodriguez, A. Y.; Roth, M.; Roustazadeh, P.; Ryde, F.; Sadrozinski, H. F.-W.; Sander, A.; Scargle, J. D.; Sgrò, C.; Sigua, L. A.; Smith, P. D.; Sokolovsky, K.; Spandre, G.; Spinelli, P.; Starck, J.-L.; Strickman, M. S.; Suson, D. J.; Takahashi, H.; Takahashi, T.; Takalo, L. O.; Tanaka, T.; Taylor, B.; Thayer, J. B.; Thayer, J. G.; Thompson, D. J.; Tibaldo, L.; Tornikoski, M.; Torres, D. F.; Tosti, G.; Tramacere, A.; Trigilio, C.; Troitsky, I. S.; Umana, G.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Vilchez, N.; Villata, M.; Vitale, V.; Waite, A. P.; Wang, P.; Winer, B. L.; Wood, K. S.; Yang, Z.; Ylinen, T.; Ziegler, M.


    We report on the multi-wavelength observations of PKS 1510-089 (a flat spectrum radio quasar (FSRQ) at z = 0.361) during its high activity period between 2008 September and 2009 June. During this 11 month period, the source was characterized by a complex variability at optical, UV, and γ-ray bands, on timescales down to 6-12 hr. The brightest γ-ray isotropic luminosity, recorded on 2009 March 26, was sime2 × 1048 erg s-1. The spectrum in the Fermi Large Area Telescope energy range shows a mild curvature described well by a log-parabolic law, and can be understood as due to the Klein-Nishina effect. The γ-ray flux has a complex correlation with the other wavelengths. There is no correlation at all with the X-ray band, a weak correlation with the UV, and a significant correlation with the optical flux. The γ-ray flux seems to lead the optical one by about 13 days. From the UV photometry, we estimated a black hole mass of sime5.4 × 108 M sun and an accretion rate of sime0.5 M sun yr-1. Although the power in the thermal and non-thermal outputs is smaller compared to the very luminous and distant FSRQs, PKS 1510-089 exhibits a quite large Compton dominance and a prominent big blue bump (BBB) as observed in the most powerful γ-ray quasars. The BBB was still prominent during the historical maximum optical state in 2009 May, but the optical/UV spectral index was softer than in the quiescent state. This seems to indicate that the BBB was not completely dominated by the synchrotron emission during the highest optical state. We model the broadband spectrum assuming a leptonic scenario in which the inverse Compton emission is dominated by the scattering of soft photons produced externally to the jet. The resulting model-dependent jet energetic content is compatible with a scenario in which the jet is powered by the accretion disk, with a total efficiency within the Kerr black hole limit.

  7. Wavelength Dependence of Solar Irradiance Enhancement During X-Class Flares and Its Influence on the Upper Atmosphere (United States)

    Huang, Yanshi; Richmond, Arthur D.; Deng, Yue; Chamberlin, Phillip C.; Qian, Liying; Solomon, Stanley C.; Roble, Raymond G.; Xiao, Zuo


    The wavelength dependence of solar irradiance enhancement during flare events is one of the important factors in determining how the Thermosphere-Ionosphere (T-I) system responds to flares. To investigate the wavelength dependence of flare enhancement, the Flare Irradiance Spectral Model (FISM) was run for 61 X-class flares. The absolute and the percentage increases of solar irradiance at flare peaks, compared to pre-flare conditions, have clear wavelength dependences. The 0-14 nm irradiance increases much more (approx. 680% on average) than that in the 14-25 nm waveband (approx. 65% on average), except at 24 nm (approx. 220%). The average percentage increases for the 25-105 nm and 122-190 nm wavebands are approx. 120% and approx. 35%, respectively. The influence of 6 different wavebands (0-14 nm, 14-25 nm, 25-105 nm, 105- 120 nm, 121.56 nm, and 122-175 nm) on the thermosphere was examined for the October 28th, 2003 flare (X17-class) event by coupling FISM with the National Center for Atmospheric Research (NCAR) Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM) under geomagnetically quiet conditions (Kp=1). While the enhancement in the 0-14 nm waveband caused the largest enhancement of the globally integrated solar heating, the impact of solar irradiance enhancement on the thermosphere at 400 km is largest for the 25-105 nm waveband (EUV), which accounts for about 33 K of the total 45 K temperature enhancement, and approx. 7.4% of the total approx. 11.5% neutral density enhancement. The effect of 122-175 nm flare radiation on the thermosphere is rather small. The study also illustrates that the high-altitude thermospheric response to the flare radiation at 0-175 nm is almost a linear combination of the responses to the individual wavebands. The upper thermospheric temperature and density enhancements peaked 3-5 h after the maximum flare radiation.

  8. Application of Convolution Neural Network to the forecasts of flare classification and occurrence using SOHO MDI data (United States)

    Park, Eunsu; Moon, Yong-Jae


    A Convolutional Neural Network(CNN) is one of the well-known deep-learning methods in image processing and computer vision area. In this study, we apply CNN to two kinds of flare forecasting models: flare classification and occurrence. For this, we consider several pre-trained models (e.g., AlexNet, GoogLeNet, and ResNet) and customize them by changing several options such as the number of layers, activation function, and optimizer. Our inputs are the same number of SOHO)/MDI images for each flare class (None, C, M and X) at 00:00 UT from Jan 1996 to Dec 2010 (total 1600 images). Outputs are the results of daily flare forecasting for flare class and occurrence. We build, train, and test the models on TensorFlow, which is well-known machine learning software library developed by Google. Our major results from this study are as follows. First, most of the models have accuracies more than 0.7. Second, ResNet developed by Microsoft has the best accuracies : 0.86 for flare classification and 0.84 for flare occurrence. Third, the accuracies of these models vary greatly with changing parameters. We discuss several possibilities to improve the models.

  9. Global energetics of solar flares. I. Magnetic energies

    Energy Technology Data Exchange (ETDEWEB)

    Aschwanden, Markus J. [Lockheed Martin, Solar and Astrophysics Laboratory, Org. A021S, Bldg. 252, 3251 Hanover Street, Palo Alto, CA 94304 (United States); Xu, Yan; Jing, Ju, E-mail:, E-mail:, E-mail: [Space Weather Research Laboratory, Center for Solar-Terrestrial Research, New Jersey Institute of Technology, 323 Martin Luther King Boulevard, Newark, NJ 07102-1982 (United States)


    We present the first part of a project on the global energetics of solar flares and coronal mass ejections that includes about 400 M- and X-class flares observed with Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). We calculate the potential (E{sub p} ), the nonpotential (E {sub np}) or free energies (E {sub free} = E {sub np} – E{sub p} ), and the flare-dissipated magnetic energies (E {sub diss}). We calculate these magnetic parameters using two different NLFFF codes: the COR-NLFFF code uses the line-of-sight magnetic field component B{sub z} from HMI to define the potential field, and the two-dimensional (2D) coordinates of automatically detected coronal loops in six coronal wavelengths from AIA to measure the helical twist of coronal loops caused by vertical currents, while the PHOT-NLFFF code extrapolates the photospheric three-dimensional (3D) vector fields. We find agreement between the two codes in the measurement of free energies and dissipated energies within a factor of ≲ 3. The size distributions of magnetic parameters exhibit powerlaw slopes that are approximately consistent with the fractal-diffusive self-organized criticality model. The magnetic parameters exhibit scaling laws for the nonpotential energy, E{sub np}∝E{sub p}{sup 1.02}, for the free energy, E{sub free}∝E{sub p}{sup 1.7} and E{sub free}∝B{sub φ}{sup 1.0}L{sup 1.5}, for the dissipated energy, E{sub diss}∝E{sub p}{sup 1.6} and E{sub diss}∝E{sub free}{sup 0.9}, and the energy dissipation volume, V∝E{sub diss}{sup 1.2}. The potential energies vary in the range of E{sub p} = 1 × 10{sup 31}-4 × 10{sup 33} erg, while the free energy has a ratio of E {sub free}/E{sub p} ≈ 1%-25%. The Poynting flux amounts to F {sub flare} ≈ 5 × 10{sup 8}-10{sup 10} erg cm{sup –2} s{sup –1} during flares, which averages to F {sub AR} ≈ 6 × 10{sup 6} erg cm{sup –2} s{sup –1} during the entire observation

  10. Solar flare forecasting from 1 to 7 days in the Kiev State University astronomic observatory during 1976-1980 years

    Energy Technology Data Exchange (ETDEWEB)

    Romanchuk, P.R.; Izotova, I.Yu.; Krivodubskij, V.N.; Adamenko, A.S.; Babij, V.P.


    A study has been made of the relashionship between the daily solar flares of Importance <= 1 in sunspot groups and the average number of centers in a group during the group passage on the solar disk, and of the values for the total area of sunspots in the sunspot group evolution maximum. Presented is the information on the reliability of the predictions of the flare activity in the sunspot groups basing on this relationship as well as on two others (the dependence of the flare activity on the sunspot Zurich classes and on the sizes of convective elements). For the period since January 1, 1977 till June 3, 1979, that coincides with most complete data observed, the 60% and 80% confidence is shown for the prediction of subflares (525 predictions) and Importance 1 flares (388 predictions), respectively, with the systematic error taken into account.

  11. Study of practical TAT reduction approaches for EUV flare correction (United States)

    Inanami, Ryoichi; Mashita, Hiromitsu; Takaki, Takamasa; Kotani, Toshiya; Kyoh, Suigen; Tanaka, Satoshi


    We introduce techniques of flare compensation for Extreme Ultraviolet Lithography that can reduce the calculation time of a flare map and flare correction. In the first approach, the range of a flare point spread function is divided into several regions and the size of meshes for the flare map in each region is selected. In the second approach, the size of the mask pattern is controlled by referring to the flare map in the mask-making process. In the third approach, dosage of each point in a mask corresponding to the flare map is modulated when transferring the mask pattern onto the resist. Use of these approaches in the proper combination is effective for TAT reduction and accuracy of the flare compensation.

  12. Solar flare loops observations and interpretations

    CERN Document Server

    Huang, Guangli; Ji, Haisheng; Ning, Zongjun


    This book provides results of analysis of typical solar events, statistical analysis, the diagnostics of energetic electrons and magnetic field, as well as the global behavior of solar flaring loops such as their contraction and expansion. It pays particular attention to analyzing solar flare loops with microwave, hard X-ray, optical and EUV emissions, as well as the theories of their radiation, and electron acceleration/transport. The results concerning influence of the pitch-angle anisotropy of non-thermal electrons on their microwave and hard X-ray emissions, new spectral behaviors in X-ray and microwave bands, and results related to the contraction of flaring loops, are widely discussed in the literature of solar physics. The book is useful for graduate students and researchers in solar and space physics.

  13. 22 CFR 1423.28 - Briefs in support of exceptions; oppositions to exceptions; cross-exceptions. (United States)


    ... 22 Foreign Relations 2 2010-04-01 2010-04-01 true Briefs in support of exceptions; oppositions to exceptions; cross-exceptions. 1423.28 Section 1423.28 Foreign Relations FOREIGN SERVICE LABOR RELATIONS BOARD... FOREIGN SERVICE IMPASSE DISPUTES PANEL FOREIGN SERVICE LABOR RELATIONS BOARD AND GENERAL COUNSEL OF THE...

  14. X-Ray Flares from Sagittarius A* and Black Hole Universe

    Directory of Open Access Journals (Sweden)

    Zhang T. X.


    active galactic centers. This study develops a new physical mechanism for the origin of X-ray flares from galactic centers and deepens our understanding t o the black hole dynamics, galactic activities, and cosmological evolutions.

  15. Analysis of selected microflares observed by SphinX over the last minimum of solar activity (United States)

    Siarkowski, Marek; Sylwester, Janusz; Sylwester, Barbara; Gryciuk, Magdalena

    The Solar Photometer in X-rays (SphinX) was designed to observe soft X-ray solar emission in the energy range between 1 keV and 15 keV with the resolution better than 0.5 keV. The instrument operated from February until November 2009 aboard CORONAS-Photon satellite, during the phase of exceptionally low minimum of solar activity. Here we use SphinX data for analysis of selected microflare-class events. We selected events of unusual lightcurves or location. Our study involves determination of temporal characteristics (times of start, maximum and end of flares) and analysis of physical conditions in flaring plasma (temperature, emission measure). Dedicated method has been used in order to remove emission not related to flare. Supplementary information about morphology and evolution of investigated events has been derived from the analysis of XRT/Hinode and SECCHI /STEREO images.

  16. Soot and SO2 contribution to the supersites in the MILAGRO campaign from elevated flares in the Tula Refinery


    Almanza, V. H.; Molina, L. T.; Sosa, G.


    This work presents a simulation of the plume trajectory emitted by flaring activities of the Miguel Hidalgo Refinery in Mexico. The flame of a representative sour gas flare is modeled with a CFD combustion code in order to estimate emission rates of combustion by-products of interest for air quality: acetylene, ethylene, nitrogen oxides, carbon monoxide, soot and sulfur dioxide. The emission rates of NO2 and SO2 were compared with measurements obtained at Tula as part of MILAGRO field campaig...

  17. Relationship of Non-potentiality and Flaring: Intercomparison for an ...

    Indian Academy of Sciences (India)


    We have made an attempt to obtain relationship of magnetic shear and vertical currents in NOAA AR7321. Intercomparison of changes observed at several flaring and non-flaring sites associated with an M4/2B flare observed on October 26, 1992 is reported.

  18. The Effect of Synthetic Vision Enhancements on Landing Flare Performance

    NARCIS (Netherlands)

    Le Ngoc, L.; Borst, C.; Mulder, M.; Van Paassen, M.M.


    The usage of heads-down, non-conformal synthetic vision displays for landings below minimums has inherent problems during the flare due to minification effects. Literature showed that pilots can use four visual cues to perform a manual flare maneuver. Amongst their strategies, the Jacobson flare

  19. A complicated multisystem flare of systemic lupus erythematosus during pregnancy. (United States)

    Webster, Philip; Nelson-Piercy, Catherine; Lightstone, Liz


    We report a case of systemic lupus erythematosus (SLE) in a young woman who became pregnant amid a severe flare. She continued to have active disease in the face of aggressive treatments complicated by several side effects of immunosuppressive drugs including recurrent sepsis and gestational diabetes. Her fetus was at risk for congenital heart block during the second and third trimesters. Despite an extremely guarded prognosis, she delivered a healthy baby girl. This case highlights the complexities of SLE management during pregnancy. We discuss the therapeutic options available in pregnancy, and highlight the importance of cross-specialty multidisciplinary care in these women. 2017 BMJ Publishing Group Ltd.

  20. SphinX catalogue of small flares and brightenings (United States)

    Gryciuk, Magdalena; Sylwester, Janusz; Gburek, Szymon; Siarkowski, Marek; Mrozek, Tomasz; Kepa, Anna

    The Solar Photometer in X-rays (SphinX) was designed to measure soft X-ray solar emission in the energy range between 1 keV and 15 keV. The instrument operated from February until November 2009 aboard CORONAS-Photon satellite, during the phase of extraordinary low minimum of solar activity. Thanks to its very high sensitivity SphinX was able to record large number of tiny flares and brightenings. A catalogue of events observed by SphinX will be presented. Results of statistical analysis of events’ characteristics will be discussed.

  1. Solar flares as harbinger of new physics

    CERN Document Server

    Zioutas, K; Semertzidis, Y.; Papaevangelou, T.; Georgiopoulou, E.; Gardikiotis, A.; Dafni, T.; Tsagri, M.; Semertzidis, Y.; Papaevangelou, T.; Dafni, T.


    This work provides additional evidence on the involvement of exotic particles like axions and/or other WISPs, following recent measurements during the quietest Sun and flaring Sun. Thus, SPHINX mission observed a minimum basal soft X-rays emission in the extreme solar minimum in 2009. The same scenario (with ~17 meV axions) fits also the dynamical behaviour of white-light solar flares, like the measured spectral components in the visible and in soft X-rays, and, the timing between them. Solar chameleons remain a viable candidate, since they may preferentially convert to photons in outer space.


    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Sarah J. [Leibniz-Institute for Astrophysics Potsdam (AIP), An der Sternwarte 16, D-14482, Potsdam (Germany); Shappee, Benjamin J.; Seibert, Mark [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Gagné, Jonathan [Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015 (United States); Stanek, K. Z.; Holoien, Thomas W.-S.; Kochanek, C. S. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Prieto, José L. [Núcleo de Astronomía de la Facultad de Ingenierá, Universidad Diego Portales, Av. Ejército 441, Santiago (Chile); Chomiuk, Laura; Strader, Jay [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Dong, Subo, E-mail: [Kavli Institute for Astronomy and Astrophysics, Peking University, Yi He Yuan Road 5, Hai Dian District, Beijing 100871 (China)


    We report the discovery and classification of SDSS J053341.43+001434.1 (SDSS0533), an early-L dwarf first discovered during a powerful Δ V< −11 magnitude flare observed as part of the ASAS-SN survey. Optical and infrared spectroscopy indicate a spectral type of L0 with strong H α emission and a blue NIR spectral slope. Combining the photometric distance, proper motion, and radial velocity of SDSS0533 yields three-dimensional velocities of ( U , V , W ) = (14 ± 13, −35 ± 14, −94 ± 22) km s{sup −1}, indicating that it is most likely part of the thick disk population and probably old. The three detections of SDSS0533 obtained during the flare are consistent with a total V -band flare energy of at least 4.9 × 10{sup 33} erg (corresponding to a total thermal energy of at least E {sub tot} > 3.7 × 10{sup 34} erg), placing it among the strongest detected M dwarf flares. The presence of this powerful flare on an old L0 dwarf may indicate that stellar-type magnetic activity persists down to the end of the main sequence and on older ML transition dwarfs.

  3. Hydroxychloroquine and pregnancy on lupus flares in Korean patients with systemic lupus erythematosus. (United States)

    Koh, J H; Ko, H S; Kwok, S-K; Ju, J H; Park, S-H


    We investigated the clinical and laboratory characteristics of pregnancies with systemic lupus erythematosus (SLE) and identified lupus flare predictors during pregnancy. Additionally, we examined lupus activity and pregnancy outcomes in SLE patients who continued, discontinued or underwent no hydroxychloroquine (HCQ) treatment during pregnancy. We retrospectively analyzed 179 pregnancies in 128 SLE patients at Seoul St. Mary's Hospital, Korea, between 1998 and 2012 and then assessed the clinical profiles and maternal and fetal outcomes. Overall, 90.5% of pregnancies resulted in a successful delivery and were divided into two groups: those who experienced lupus flares (80 pregnancies, 44.7%) and those who did not (99 pregnancies, 55.3%). Increased preeclampsia, preterm births, low birth weight, intrauterine growth restriction (IUGR), and low 1-minute Apgar scores occurred in pregnancies with lupus flares compared to pregnancies in quiescent disease. Lupus flares were predicted by HCQ discontinuation, a history of lupus nephritis, high pre-pregnancy serum uric acid and low C4 levels. Our study indicates that achieving pre-pregnancy remission and continuing HCQ treatment during pregnancy are important for preventing lupus flares. © The Author(s) 2014 Reprints and permissions:

  4. Time-resolved UVES observations of a stellar flare on the planet host HD 189733 during primary transit (United States)

    Klocová, T.; Czesla, S.; Khalafinejad, S.; Wolter, U.; Schmitt, J. H. M. M.


    Context. HD 189733 is an exoplanetary system consisting of a transiting hot Jupiter and an active K2V-type main sequence star. Rich manifestations of a stellar activity, like photometric spots or chromospheric flares were repeatedly observed in this system in optical, UV and X-rays. Aims: We aim to use VLT/UVES high resolution (R = 60 000) echelle spectra to study a stellar flare. Methods: We have performed simultaneous analyses of the temporal evolution in several chromospheric stellar lines, namely, the Ca ii H & K lines (3933, 3968 Å), H α (6563 Å), H β (4861 Å), H γ (4341 Å), H δ (4102 Å), H ɛ (3970 Å), the Ca ii infrared triplet lines (8498, 8542 and 8662 Å), and He i D3 (5875.6 Å). Observations were carried out with a time resolution of approximately 1 min for a duration of four hours, including a complete planetary transit. Results: We determine the energy released during the flare in all studied chromospheric lines combined to be about 8.7 × 1031 erg, which puts this event at the upper end of flare energies observed on the Sun. Our analysis does not reveal any significant delay of the flare peak observed in the Balmer and Ca ii H & K lines, although we find a clear difference in the temporal evolution of these lines. The He i D3 shows additional absorption possibly related to the flare event. Based on the flux released in Ca ii H & K lines during the flare, we estimate the soft X-ray flux emission to be 7 × 1030 erg. Conclusions: The observed flare can be ranked as a moderate flare on a K-type star and confirms a rather high activity level of HD 189733 host star. The cores of the studied chromospheric lines demonstrate the same behavior and let us study the flare evolution. We demonstrate that the activity of an exoplanet host star can play an important role in the detection of exoplanet atmospheres, since these are frequently discovered as an additional absorption in the line cores. A possible star-planet interaction responsible for a flare

  5. Trends in Modern Exception Handling

    Directory of Open Access Journals (Sweden)

    Marcin Kuta


    Full Text Available Exception handling is nowadays a necessary component of error proof information systems. The paper presents overview of techniques and models of exception handling, problems connected with them and potential solutions. The aspects of implementation of propagation mechanisms and exception handling, their effect on semantics and general program efficiency are also taken into account. Presented mechanisms were adopted to modern programming languages. Considering design area, formal methods and formal verification of program properties we can notice exception handling mechanisms are weakly present what makes a field for future research.

  6. An in situ vapour phase hydrothermal surface doping approach for fabrication of high performance Co3O4 electrocatalysts with an exceptionally high S-doped active surface. (United States)

    Tan, Zhijin; Liu, Porun; Zhang, Haimin; Wang, Yun; Al-Mamun, Mohammad; Yang, Hua Gui; Wang, Dan; Tang, Zhiyong; Zhao, Huijun


    A facile in situ vapour phase hydrothermal (VPH) surface doping approach has been developed for fabrication of high performance S-doped Co3O4 electrocatalysts with an unprecedentedly high surface S content (>47%). The demonstrated VPH doping approach could be useful for enrichment of surface active sites for other metal oxide electrocatalysts.

  7. X-ray Emission from Solar Flares

    Indian Academy of Sciences (India)


    Jan 27, 2016 ... Solar X-ray Spectrometer (SOXS), the first space-borne solar astronomy experiment of India was designed to improve our current understanding of X-ray emission from the Sun in general and solar flares in particular. SOXS mission is composed of two solid state detectors, viz., Si and CZT semiconductors ...

  8. The thermal infrared continuum in solar flares (United States)

    Fletcher, Lyndsay; Simoes, Paulo; Kerr, Graham Stewart; Hudson, Hugh S.; Gimenez de Castro, C. Guillermo; Penn, Matthew J.


    Observations of the Sun with the Atacama Large Millimeter Array have now started, and the thermal infrared will regularly be accessible from the NSF’s Daniel K. Inouye Solar Telescope. Motivated by the prospect of these new observations, and by recent flare detections in the mid infrared, we set out here to model and understand the source of the infrared continuum in flares, and to explore its diagnostic capability for the physical conditions in the flare atmosphere. We use the 1D radiation hydrodynamics code RADYN to calculate mid-infrared continuum emission from model atmospheres undergoing sudden deposition of energy by non-thermal electrons. We identify and characterise the main continuum thermal emission processes relevant to flare intensity enhancement in the mid- to far-infrared (2-200 micron) spectral range as free-free emission on neutrals and ions. We find that the infrared intensity evolution tracks the energy input to within a second, albeit with a lingering intensity enhancement, and provides a very direct indication of the evolution of the atmospheric ionization. The prediction of highly impulsive emission means that, on these timescales, the atmospheric hydrodynamics need not be considered in analysing the mid-IR signatures.

  9. Verification of operational solar flare forecast: Case of Regional Warning Center Japan (United States)

    Kubo, Yûki; Den, Mitsue; Ishii, Mamoru


    In this article, we discuss a verification study of an operational solar flare forecast in the Regional Warning Center (RWC) Japan. The RWC Japan has been issuing four-categorical deterministic solar flare forecasts for a long time. In this forecast verification study, we used solar flare forecast data accumulated over 16 years (from 2000 to 2015). We compiled the forecast data together with solar flare data obtained with the Geostationary Operational Environmental Satellites (GOES). Using the compiled data sets, we estimated some conventional scalar verification measures with 95% confidence intervals. We also estimated a multi-categorical scalar verification measure. These scalar verification measures were compared with those obtained by the persistence method and recurrence method. As solar activity varied during the 16 years, we also applied verification analyses to four subsets of forecast-observation pair data with different solar activity levels. We cannot conclude definitely that there are significant performance differences between the forecasts of RWC Japan and the persistence method, although a slightly significant difference is found for some event definitions. We propose to use a scalar verification measure to assess the judgment skill of the operational solar flare forecast. Finally, we propose a verification strategy for deterministic operational solar flare forecasting. For dichotomous forecast, a set of proposed verification measures is a frequency bias for bias, proportion correct and critical success index for accuracy, probability of detection for discrimination, false alarm ratio for reliability, Peirce skill score for forecast skill, and symmetric extremal dependence index for association. For multi-categorical forecast, we propose a set of verification measures as marginal distributions of forecast and observation for bias, proportion correct for accuracy, correlation coefficient and joint probability distribution for association, the

  10. Temporal and Spatial Relationship of Flare Signatures and the Force-free Coronal Magnetic Field (United States)

    Thalmann, J. K.; Veronig, A.; Su, Y.


    We investigate the plasma and magnetic environment of active region NOAA 11261 on 2011 August 2 around a GOES M1.4 flare/CME (SOL2011-08-02T06:19). We compare coronal emission at the (extreme) ultraviolet and X-ray wavelengths, using SDO AIA and RHESSI images, in order to identify the relative timing and locations of reconnection-related sources. We trace flare ribbon signatures at ultraviolet wavelengths in order to pin down the intersection of previously reconnected flaring loops in the lower solar atmosphere. These locations are used to calculate field lines from three-dimensional (3D) nonlinear force-free magnetic field models, established on the basis of SDO HMI photospheric vector magnetic field maps. Using this procedure, we analyze the quasi-static time evolution of the coronal model magnetic field previously involved in magnetic reconnection. This allows us, for the first time, to estimate the elevation speed of the current sheet’s lower tip during an on-disk observed flare as a few kilometers per second. A comparison to post-flare loops observed later above the limb in STEREO EUVI images supports this velocity estimate. Furthermore, we provide evidence for an implosion of parts of the flaring coronal model magnetic field, and identify the corresponding coronal sub-volumes associated with the loss of magnetic energy. Finally, we spatially relate the build up of magnetic energy in the 3D models to highly sheared fields, established due to the dynamic relative motions of polarity patches within the active region.

  11. Field Measurements of Black Carbon Yields from Gas Flaring. (United States)

    Conrad, Bradley M; Johnson, Matthew R


    Black carbon (BC) emissions from gas flaring in the oil and gas industry are postulated to have critical impacts on climate and public health, but actual emission rates remain poorly characterized. This paper presents in situ field measurements of BC emission rates and flare gas volume-specific BC yields for a diverse range of flares. Measurements were performed during a series of field campaigns in Mexico and Ecuador using the sky-LOSA optical measurement technique, in concert with comprehensive Monte Carlo-based uncertainty analyses. Parallel on-site measurements of flare gas flow rate and composition were successfully performed at a subset of locations enabling direct measurements of fuel-specific BC yields from flares under field conditions. Quantified BC emission rates from individual flares spanned more than 4 orders of magnitude (up to 53.7 g/s). In addition, emissions during one notable ∼24-h flaring event (during which the plume transmissivity dropped to zero) would have been even larger than this maximum rate, which was measured as this event was ending. This highlights the likely importance of superemitters to global emission inventories. Flare gas volume-specific BC yields were shown to be strongly correlated with flare gas heating value. A newly derived correlation fitting current field data and previous lab data suggests that, in the context of recent studies investigating transport of flare-generated BC in the Arctic and globally, impacts of flaring in the energy industry may in fact be underestimated.

  12. 75 FR 28306 - Excepted Service (United States)


    ... MANAGEMENT Excepted Service AGENCY: U.S. Office of Personnel Management (OPM). ACTION: Notice. SUMMARY: This... excepted service as required by 5 CFR 213.103. FOR FURTHER INFORMATION CONTACT: Roland Edwards, Senior Executive Resource Services, Employee Services, 202-606-2246. SUPPLEMENTARY INFORMATION: Appearing in the...

  13. 75 FR 3947 - Excepted Service (United States)


    ... MANAGEMENT Excepted Service AGENCY: U.S. Office of Personnel Management (OPM). ACTION: Notice. SUMMARY: This... excepted service as required by 5 CFR 213.103. FOR FURTHER INFORMATION CONTACT: Roland Edwards, Senior Executive Resource Services, Employee Services, 202-606-2246. SUPPLEMENTARY INFORMATION: Appearing in the...

  14. X-ray Emission from Solar Flares Rajmal Jain, Malini Aggarwal ...

    Indian Academy of Sciences (India)

    ray line and thermal ... and during the flare provide a wonderful opportunity to study the soft X-ray characteristics of active region. 125 .... observed spectrum. The multi-thermal power-law function enables us to measure the emission measure,.

  15. Five years of gas flaring by country, oil field or flare observed by the Suomi NPP satellite (United States)

    Zhizhin, M. N.; Elvidge, C.; Baugh, K.; Hsu, F. C.


    We will present a new methodology and the resulting interactive map and statistical estimates of flared gas volumes in 2012-2016 using multispectral infrared images from VIIRS radiometer at the Suomi NPP satellite. The high temperature gas flares are detected at the night side of the Earth with the Nightfire algorithm. Gas flares are distinct from biomass burning and industrial heat sources because they have higher temperatures. Sums of the radiative heat from the detected flares are calibrated with country-level flared volumes reported by CEDIGAZ. Statistical analysis of the database with accumulated 5 years of the Nightfire detections makes it possible to estimate instant flow rate for an individual flare, as well as integral flared volumes and long term trends for all the countries or oil and gas fields.

  16. Quasi-oscillatory dynamics observed in ascending phase of the flare on March 6, 2012 (United States)

    Philishvili, E.; Shergelashvili, B. M.; Zaqarashvili, T. V.; Kukhianidze, V.; Ramishvili, G.; Khodachenko, M.; Poedts, S.; De Causmaecker, P.


    Context. The dynamics of the flaring loops in active region (AR) 11429 are studied. The observed dynamics consist of several evolution stages of the flaring loop system during both the ascending and descending phases of the registered M-class flare. The dynamical properties can also be classified by different types of magnetic reconnection, related plasma ejection and aperiodic flows, quasi-periodic oscillatory motions, and rapid temperature and density changes, among others. The focus of the present paper is on a specific time interval during the ascending (pre-flare) phase. Aims: The goal is to understand the quasi-periodic behavior in both space and time of the magnetic loop structures during the considered time interval. Methods: We have studied the characteristic location, motion, and periodicity properties of the flaring loops by examining space-time diagrams and intensity variation analysis along the coronal magnetic loops using AIA intensity and HMI magnetogram images (from the Solar Dynamics Observatory). Results: We detected bright plasma blobs along the coronal loop during the ascending phase of the solar flare, the intensity variations of which clearly show quasi-periodic behavior. We also determined the periods of these oscillations. Conclusions: Two different interpretations are presented for the observed dynamics. Firstly, the oscillations are interpreted as the manifestation of non-fundamental harmonics of longitudinal standing acoustic oscillations driven by the thermodynamically non-equilibrium background (with time variable density and temperature). The second possible interpretation we provide is that the observed bright blobs could be a signature of a strongly twisted coronal loop that is kink unstable.

  17. The solar energetic particle propagation of solar flare events on 24th solar cycle. (United States)

    Paluk, P.; Khumlumlert, T.; Kanlayaprasit, N.; Aiemsa-ad, N.


    Now the Sun is in the 24th solar cycle. The peak of solar cycle correspond to the number of the Sun activities, which one of them is solar flare. The solar flare is the violent explosion at the solar atmosphere and releases the high energy ion from the Sun to the interplanetary medium. Solar energetic particles or solar cosmic ray have important effect on the Earth, such as disrupt radio communication. We analyze the particle transport of the solar flare events on August 9, 2011, January 27, 2012, and November 3, 2013 in 24th solar cycle. The particle data for each solar flare was obtained from SIS instrument on ACE spacecraft. We simulate the particle transport with the equation of Ruffolo 1995, 1998. We solve the transport equation with the numerical technique of finite different. We find the injection duration from the Sun to the Earth by the compared fitting method of piecewise linear function between the simulation results and particle data from spacecraft. The position of these solar flare events are on the west side of the Sun, which are N18W68, N33W85, and S12W16. We found that mean free path is roughly constant for a single event. This implies that the interplanetary scattering is approximately energy independent, but the level of scattering varies with time. The injection duration decreases with increasing energy. We found the resultant variation of the highest energy and lowest energy, because the effect of space environments and the number of the detected data was small. The high mean free path of the high energy particles showed the transport capability of particles along to the variable magnetic field line. The violent explosion of these solar flares didn’t affect on the Earth magnetic field with Kp-index less than 3.

  18. Observation of a Large-scale Quasi-circular Secondary Ribbon Associated with Successive Flares and a Halo CME (United States)

    Lim, Eun-Kyung; Yurchyshyn, Vasyl; Kumar, Pankaj; Cho, Kyuhyoun; Jiang, Chaowei; Kim, Sujin; Yang, Heesu; Chae, Jongchul; Cho, Kyung-Suk; Lee, Jeongwoo


    Solar flare ribbons provide an important clue to the magnetic reconnection process and associated magnetic field topology in the solar corona. We detected a large-scale secondary flare ribbon of a circular shape that developed in association with two successive M-class flares and one coronal mass ejection. The ribbon revealed interesting properties such as (1) a quasi-circular shape and enclosing the central active region (AR); (2) the size as large as 500″ by 650″ (3) successive brightenings in the clockwise direction at a speed of 160 km s-1 starting from the nearest position to the flaring sunspots; (4) radial contraction and expansion in the northern and the southern part, respectively, at speeds of ≤10 km s-1. Using multi-wavelength data from Solar Dynamics Observatory, RHESSI, XRT, and Nobeyama, along with magnetic field extrapolations, we found that: (1) the secondary ribbon location is consistent with those of the field line footpoints of a fan-shaped magnetic structure that connects the flaring region and the ambient decaying field; (2) the second M2.6 flare occurred when the expanding coronal loops driven by the first M2.0 flare encountered the background decayed field; (3) immediately after the second flare, the secondary ribbon developed along with dimming regions. Based on our findings, we suggest that interaction between the expanding sigmoid field and the overlying fan-shaped field triggered the secondary reconnection that resulted in the field opening and formation of the quasi-circular secondary ribbon. We thus conclude that interaction between the AR and the ambient large-scale fields should be taken into account to fully understand the entire eruption process.

  19. Solar flares and variation of local geomagnetic field: Measurements by the Huancayo Observatory over 2001-2010

    Directory of Open Access Journals (Sweden)

    Carlos Reyes Rafael E.


    Full Text Available We study the local variation of the geomagnetic field measured by the Huancayo Geomagnetic Observatory, Peru, during 2001-2010. Initially, we sought to relate the SFI values, stored daily in the NOAA's National Geophysical Data Center, with the corresponding geomagnetic index; however, no relation was observed. Nonetheless, subsequently, a comparison between the monthly geomagnetic-activity index and the monthly SFI average allowed observing a temporal correlation between these average indices. This correlation shows that the effect of the solar flares does not simultaneously appear on the corresponding magnetic indices. To investigate this, we selected the most intense X-class flares; then, we checked the magnetic field disturbances observed in the Huancayo Geomagnetic Observatory magnetograms. We found some disturbances of the local geomagnetic field in the second and third day after the corresponding solar flare; however, the disturbance strength of the local geomagnetic field is not correlated with the X-class of the solar flare. Finally, there are some disturbances of the local geomagnetic field that are simultaneous with the X-class solar flares and they show a correlation with the total flux of the solar flare.

  20. Solar Flares and Variation of Local Geomagnetic Field: Measurements by the Huancayo Observatory over 2001-2010 (United States)

    Carlos Reyes, Rafael E.; Gárate Ayesta, Gabriel A.; Reyes Navarro, Felipe A.


    We study the local variation of the geomagnetic field measured by the Huancayo Geomagnetic Observatory, Peru, during 2001-2010. Initially, we sought to relate the SFI values, stored daily in the NOAA's National Geophysical Data Center, with the corresponding geomagnetic index; however, no relation was observed. Nonetheless, subsequently, a comparison between the monthly geomagnetic-activity index and the monthly SFI average allowed observing a temporal correlation between these average indices. This correlation shows that the effect of the solar flares does not simultaneously appear on the corresponding magnetic indices. To investigate this, we selected the most intense X-class flares; then, we checked the magnetic field disturbances observed in the Huancayo Geomagnetic Observatory magnetograms. We found some disturbances of the local geomagnetic field in the second and third day after the corresponding solar flare; however, the disturbance strength of the local geomagnetic field is not correlated with the X-class of the solar flare. Finally, there are some disturbances of the local geomagnetic field that are simultaneous with the X-class solar flares and they show a correlation with the total flux of the solar flare.

  1. Cobalt selenide hollow nanorods array with exceptionally high electrocatalytic activity for high-efficiency quasi-solid-state dye-sensitized solar cells (United States)

    Jin, Zhitong; Zhang, Meirong; Wang, Min; Feng, Chuanqi; Wang, Zhong-Sheng


    In quasi-solid-state dye-sensitized solar cells (QSDSSCs), electron transport through a random network of catalyst in the counter electrode (CE) and electrolyte diffusion therein are limited by the grain boundaries of catalyst particles, thus diminishing the electrocatalytic performance of CE and the corresponding photovoltaic performance of QSDSSCs. We demonstrate herein an ordered Co0.85Se hollow nanorods array film as the Pt-free CE of QSDSSCs. The Co0.85Se hollow nanorods array displays excellent electrocatalytic activity for the reduction of I3- in the quasi-solid-state electrolyte with extremely low charge transfer resistance at the CE/electrolyte interface, and the diffusion of redox species within the Co0.85Se hollow nanorods array CE is pretty fast. The QSDSSC device with the Co0.85Se hollow nanorods array CE produces much higher photovoltaic conversion efficiency (8.35%) than that (4.94%) with the Co0.85Se randomly packed nanorods CE, against the control device with the Pt CE (7.75%). Moreover, the QSDSSC device based on the Co0.85Se hollow nanorods array CE presents good long-term stability with only 4% drop of power conversion efficiency after 1086 h one-sun soaking.

  2. Florid urticarial vasculitis heralding a flare up of ulcerative colitis. (United States)

    Boules, Evon; Lyon, Calum


    A 75-year-old man with ulcerative colitis (UC) and diet controlled diabetes mellitus presented with a 3-week history of slightly itchy, red plaques on both lower limbs ascending gradually to cover the trunk and arms. One week later, he developed a flare up of his UC. Routine blood tests showed modest drop in haemoglobin (122 g/L) and C reactive protein (85 mg/L). Serology was remarkable for high antiproteinase 3 (c-ANCA). Serum electrophoresis showed a mildly positive paraprotein band (γ region). Stool culture was negative. Urine analysis showed proteinuria. Skin biopsy showed features of urticarial vasculitis (UV). He underwent a flexible sigmoidoscopy after the flare up showed mildly active UC. The patient was given hydrocortisone for 7 days and then prednisolone. Both rash and UC subsided. Electrophoresis was repeated 4 weeks later showing normal pattern. Prednisolone has been gradually reduced. Although rare, UV can be considered as one of the skin manifestations of UC. 2014 BMJ Publishing Group Ltd.

  3. VizieR Online Data Catalog: Catalog of Kepler flare stars (Van Doorsselaere+, 2017) (United States)

    van Doorsselaere, T.; Shariati, H.; Debosscher, J.


    With an automated detection method, we have identified stellar flares in the long cadence observations of Kepler during quarter 15. We list each flare time for the respective Kepler objects. Furthermore, we list the flare amplitude and decay time after fitting the flare light curve with an exponential decay. Flare start times in long cadence data of Kepler during quarter 15. (1 data file).

  4. A new MODIS based approach for gas flared volumes estimation: the case of the Val d'Agri Oil Center (Southern Italy) (United States)

    Lacava, T.; Faruolo, M.; Coviello, I.; Filizzola, C.; Pergola, N.; Tramutoli, V.


    Gas flaring is one of the most controversial energetic and environmental issues the Earth is facing, moreover contributing to the global warming and climate change. According to the World Bank, each year about 150 Billion Cubic Meter of gas are being flared globally, that is equivalent to the annual gas use of Italy and France combined. Besides, about 400 million tons of CO2 (representing about 1.2% of global CO2 emissions) are added annually into the atmosphere. Efforts to evaluate the impact of flaring on the surrounding environment are hampered by lack of official information on flare locations and volumes. Suitable satellite based techniques could offers a potential solution to this problem through the detection and subsequent mapping of flare locations as well as gas emissions estimation. In this paper a new methodological approach, based on the Robust Satellite Techniques (RST), a multi-temporal scheme of satellite data analysis, was developed to analyze and characterize the flaring activity of the largest Italian gas and oil pre-treatment plant (ENI-COVA) located in Val d'Agri (Basilicata) For this site, located in an anthropized area characterized by a large environmental complexity, flaring emissions are mainly related to emergency conditions (i.e. waste flaring), being the industrial process regulated by strict regional laws. With reference to the peculiar characteristics of COVA flaring, the RST approach was implemented on 13 years of EOS-MODIS (Earth Observing System - Moderate Resolution Imaging Spectroradiometer) infrared data to detect COVA-related thermal anomalies and to develop a regression model for gas flared volume estimation. The methodological approach, the whole processing chain and the preliminarily achieved results will be shown and discussed in this paper. In addition, the possible implementation of the proposed approach on the data acquired by the SUOMI NPP - VIIRS (National Polar-orbiting Partnership - Visible Infrared Imaging

  5. Plasma Astrophysics, Part II Reconnection and Flares

    CERN Document Server

    Somov, Boris V


    This two-part book is devoted to classic fundamentals and current practices and perspectives of modern plasma astrophysics. This second part discusses the physics of magnetic reconnection and flares of electromagnetic origin in space plasmas in the solar system, single and double stars, relativistic objects, accretion disks and their coronae. More than 25% of the text is updated from the first edition, including the additions of new figures, equations and entire sections on topics such as topological triggers for solar flares and the magnetospheric physics problem. This book is aimed at professional researchers in astrophysics, but it will also be useful to graduate students in space sciences, geophysics, applied physics and mathematics, especially those seeking a unified view of plasma physics and fluid mechanics.

  6. Millimeter Observation of Solar Flares with Polarization (United States)

    Silva, D. F.; Valio, A. B. M.


    We present the investigation of two solar flares on February 17 and May 13, 2013, studied in radio from 5 to 405 GHz (RSTN, POEMAS, SST), and in X-rays up to 300 keV (FERMI and RHESSI). The objective of this work is to study the evolution and energy distribution of the population of accelerated electrons and the magnetic field configuration. For this we constructed and fit the radio spectrum by a gyro synchrotron model. The optically thin spectral indices from radio observations were compared to that of the hard X-rays, showing that the radio spectral index is harder than the latter by 2. These flares also presented 10-15 % circular polarized emission at 45 and 90 GHz that suggests that the sources are located at different legs of an asymmetric loop.

  7. Forecasting Solar Flares Using Magnetogram-based Predictors and Machine Learning (United States)

    Florios, Kostas; Kontogiannis, Ioannis; Park, Sung-Hong; Guerra, Jordan A.; Benvenuto, Federico; Bloomfield, D. Shaun; Georgoulis, Manolis K.


    We propose a forecasting approach for solar flares based on data from Solar Cycle 24, taken by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) mission. In particular, we use the Space-weather HMI Active Region Patches (SHARP) product that facilitates cut-out magnetograms of solar active regions (AR) in the Sun in near-realtime (NRT), taken over a five-year interval (2012 - 2016). Our approach utilizes a set of thirteen predictors, which are not included in the SHARP metadata, extracted from line-of-sight and vector photospheric magnetograms. We exploit several machine learning (ML) and conventional statistics techniques to predict flares of peak magnitude {>} M1 and {>} C1 within a 24 h forecast window. The ML methods used are multi-layer perceptrons (MLP), support vector machines (SVM), and random forests (RF). We conclude that random forests could be the prediction technique of choice for our sample, with the second-best method being multi-layer perceptrons, subject to an entropy objective function. A Monte Carlo simulation showed that the best-performing method gives accuracy ACC=0.93(0.00), true skill statistic TSS=0.74(0.02), and Heidke skill score HSS=0.49(0.01) for {>} M1 flare prediction with probability threshold 15% and ACC=0.84(0.00), TSS=0.60(0.01), and HSS=0.59(0.01) for {>} C1 flare prediction with probability threshold 35%.

  8. Influence of the Chungkookjang on histamine-induced wheal and flare skin response: a randomized, double-blind, placebo controlled trial

    National Research Council Canada - National Science Library

    Kwon, Dae-Young; Yang, Hye-Jeong; Kim, Min-Jeong; Kang, Hee-Joo; Kim, Hyun-Jin; Ha, Ki-Chan; Back, Hyang-Im; Kim, Sun-Young; Park, Eun-Ok; Kim, Min-Gul; Yun, Seok-Kwon; Chae, Soo-Wan; Cho, Back-Hwan


    ...) has been reported to exhibit antiallergic inflammatory activity. Therefore, the aim of the study is to examine the effects of the CKJ to reduce histamine-induced wheal and flare skin responses...

  9. Physics of Coupled CME and Flare Systems (United States)


    principal components, machine learning and discriminant analysis), classification algorithms, and magnetic field modeling. 15. SUBJECT TERMS Solar...lines A, B, C, D and E. Figure 3 shows flux rope eruption moving beyond the local region depicted and the dipolar and quadrupolar regions relaxing...of the eruption itself. Two ribbon flares have an elongated axis that makes it favorable for field lines to connect to regions tangentially aligned

  10. Solar and stellar flare observations using WATCH

    DEFF Research Database (Denmark)

    Brandt, Søren; Lund, Niels; Rao, A. R.


    The Danish experiment WATCH (Wide Angle Telescope for Cosmic Hard X-rays) is to be flown on board the Soviet satellite GRANAT in middle of 1989. The performance characteristics of the WATCH instrument is described. It is estimated that WATCH can detect about 100 solar hard X-ray bursts per day....... WATCH can also detect about 40 energetic stellar soft X-ray flares, similar to the fast transient X-ray emissions detected by the Ariel V satellite....

  11. Flare Systems Exploitation and Impact on Permafrost (United States)

    Filimonov, M. Yu; Vaganova, N. A.


    Mathematical models and numerical algorithms of horizontal and vertical flare systems exploitation in northern oil and gas fields located in permafrost zone are developed. Computations of long-term forecasts of permafrost degradation around such constructions have been carried out for various types of operation, including emergency situations, which cause a short-term increase in the heat flow near the ground surface, which leads to an additional soil temperature increasing.

  12. Modeling Meteor Flares for Spacecraft Safety (United States)

    Ehlert, Steven


    NASA's Meteoroid Environment Office (MEO) is tasked with assisting spacecraft operators and engineers in quantifying the threat the meteoroid environment poses to their individual missions. A more complete understanding of the meteoroid environment for this application requires extensive observations. One manner by which the MEO observes meteors is with dedicated video camera systems that operate nightly. Connecting the observational data from these video cameras to the relevant physical properties of the ablating meteoroids, however, is subject to sizable observational and theoretical uncertainties. Arguably the most troublesome theoretical uncertainty in ablation is a model for the structure of meteoroids, as observations clearly show behaviors wholly inconsistent with meteoroids being homogeneous spheres. Further complicating the interpretation of the observations in the context of spacecraft risk is the ubiquitous process of fragmentation and the flares it can produce, which greatly muddles any attempts to estimating initial meteoroid masses. In this talk a method of estimating the mass distribution of fragments in flaring meteors using high resolution video observations will be dis- cussed. Such measurements provide an important step in better understanding of the structure and fragmentation process of the parent meteoroids producing these flares, which in turn may lead to better constraints on meteoroid masses and reduced uncertainties in spacecraft risk.

  13. The history of AIDS exceptionalism

    Directory of Open Access Journals (Sweden)

    Smith Julia H


    Full Text Available Abstract In the history of public health, HIV/AIDS is unique; it has widespread and long-lasting demographic, social, economic and political impacts. The global response has been unprecedented. AIDS exceptionalism - the idea that the disease requires a response above and beyond "normal" health interventions - began as a Western response to the originally terrifying and lethal nature of the virus. More recently, AIDS exceptionalism came to refer to the disease-specific global response and the resources dedicated to addressing the epidemic. There has been a backlash against this exceptionalism, with critics claiming that HIV/AIDS receives a disproportionate amount of international aid and health funding. This paper situations this debate in historical perspective. By reviewing histories of the disease, policy developments and funding patterns, it charts how the meaning of AIDS exceptionalism has shifted over three decades. It argues that while the connotation of the term has changed, the epidemic has maintained its course, and therefore some of the justifications for exceptionalism remain.

  14. Thermal Characteristics and the Differential Emission Measure Distribution During a B8.3 Flare on 2009 July 4 (United States)

    Awasthi, Arun Kumar; Sylwester, Barbara; Sylwester, Janusz; Jain, Rajmal


    We investigate the evolution of the differential emission measure distribution (DEM[T]) in various phases of a B8.3 flare which occurred on 2009 July 04. We analyze the soft X-ray (SXR) emission in the 1.6-8.0 keV range, recorded collectively by the Solar Photometer in X-rays (SphinX; Polish) and the Solar X-ray Spectrometer (Indian) instruments. We conduct a comparative investigation of the best-fit DEM[T] distributions derived by employing various inversion schemes, namely, single Gaussian, power-law functions and a Withbroe-Sylwester (W-S) maximum likelihood algorithm. In addition, the SXR spectrum in three different energy bands, that is, 1.6-5.0 keV (low), 5.0-8.0 keV (high), and 1.6-8.0 keV (combined), is analyzed to determine the dependence of the best-fit DEM[T] distribution on the selection of the energy interval. The evolution of the DEM[T] distribution, derived using a W-S algorithm, reveals multi-thermal plasma during the rise to the maximum phase of the flare, and isothermal plasma in the post-maximum phase of the flare. The thermal energy content is estimated by considering the flare plasma to be (1) isothermal and (2) multi-thermal in nature. We find that the energy content during the flare, estimated using the multi-thermal approach, is in good agreement with that derived using the isothermal assumption, except during the flare maximum. Furthermore, the (multi-) thermal energy estimated while employing the low-energy band of the SXR spectrum results in higher values than that derived from the combined energy band. On the contrary, the analysis of the high-energy band of the SXR spectrum leads to lower thermal energy than that estimated from the combined energy band.

  15. Spots and White Light Flares in an L Dwarf (United States)


    Program GN-2012A-Q-37) GMOS spectrograph (Hook et al. 2004) when a series of flares occurred. A spectrum of the most powerful flare in its impulsive...10:14 Hα HeI HeI HeI OI Fig. 4. Gemini-North GMOS spectra of W1906+40 in quiescence (below) and in flare. Note the broad Hα, atomic emission lines

  16. Investigation of physical parameters in stellar flares observed by GINGA (United States)

    Stern, Robert A.


    This program involves analysis and interpretation of results from GINGA Large Area Counter (LAC) observations from a group of large stellar x-ray flares. All LAC data are re-extracted using the standard Hayashida method of LAC background subtraction and analyzed using various models available with the XSPEC spectral fitting program. Temperature-emission measure histories are available for a total of 5 flares observed by GINGA. These will be used to compare physical parameters of these flares with solar and stellar flare models.

  17. Effect of pre-flaring and file size on the accuracy of two electronic apex locators

    Directory of Open Access Journals (Sweden)

    Manoel Brito-Júnior


    Full Text Available OBJECTIVE: This ex vivo study evaluated the effect of pre-flaring and file size on the accuracy of the Root ZX and Novapex electronic apex locators (EALs. MATERIAL AND METHODS: The actual working length (WL was set 1 mm short of the apical foramen in the palatal root canals of 24 extracted maxillary molars. The teeth were embedded in an alginate mold, and two examiners performed the electronic measurements using #10, #15, and #20 K-files. The files were inserted into the root canals until the "0.0" or "APEX" signals were observed on the LED or display screens for the Novapex and Root ZX, respectively, retracting to the 1.0 mark. The measurements were repeated after the preflaring using the S1 and SX Pro-Taper instruments. Two measurements were performed for each condition and the means were used. Intra-class correlation coefficients (ICCs were calculated to verify the intra- and inter-examiner agreement. The mean differences between the WL and electronic length values were analyzed by the three-way ANOVA test (p0.8 and the results demonstrated a similar accuracy for both EALs (p>0.05. Statistically significant accurate measurements were verified in the pre-flared canals, except for the Novapex using a #20 K-file. CONCLUSIONS: The tested EALs showed acceptable accuracy, whereas the pre-flaring procedure revealed a more significant effect than the used file size.

  18. Unusual Emissions at Various Energies Prior to the Impulsive Phase of the Large Solar Flare and Coronal Mass Ejection of 4 November 2003 (United States)

    Kaufmann, Pierre; Holman, Gordon D.; Su, Yang; de Castro, C. Guillermo Gimenez; Correia, Emilia; Fernandes, Luis O. T.; de Souza, Rodney V.; Marun, Adolfo; Pereyra, Pablo


    The GOES X28 flare of 4 November 2003 was the largest ever recorded in its class. It produced the first evidence for two spectrally separated emission components, one at microwaves and the other in the THz range of frequencies.We analyzed the pre-flare phase of this large flare, twenty minutes before the onset of the major impulsive burst. This periodis characterized by unusual activity in X-rays, sub-THz frequencies, H, and microwaves.The CME onset occurred before the onset of the large burst by about 6 min.

  19. EMLA cream for pain reduction in diagnostic allergy skin testing: effects on wheal and flare responses. (United States)

    Sicherer, S H; Eggleston, P A


    The use of a topical anesthetic cream containing prilocaine and lidocaine (EMLA) has been considered to reduce the pain of diagnostic allergy skin testing, but the effects of the cream on interpretation of skin tests is unclear. To determine the effects of the cream for pain reduction using prick and ID skin tests and for possible alteration of wheal and flare responses to allergen, saline, and histamine. In a randomized, double-masked, placebo-controlled design, 20 adult volunteers with a history of positive allergen tests had EMLA and placebo cream placed according to the manufacturer's recommendations on the volar aspect of the arms. Paired skin tests were placed and subjects rated the tests on a pain scale from 0 to 5 and average wheal and flare diameters were determined. Mean pain scores (+/-SEM) were significantly reduced from 2.5 +/- 0.7 to 1.1 +/- 0.6 for prick tests (n = 20, P wheal sizes for allergen prick tests, allergen ID tests, and histamine ID tests were identical in comparing placebo to EMLA-treated skin. Flare responses were reduced on the actively treated skin, on average, as follows: allergen skin tests- 52% (P response, all on the EMLA treated skin. EMLA significantly reduced the pain associated with diagnostic allergy skin testing and with no effect on the size of the wheal response. It reduces the flare response, in some cases inhibiting it completely, which must be taken into consideration in interpreting results.

  20. Triggers of oral lichen planus flares and the potential role of trigger avoidance in disease management. (United States)

    Chen, Hannah X; Blasiak, Rachel; Kim, Edwin; Padilla, Ricardo; Culton, Donna A


    Many patients with oral lichen planus (OLP) report triggers of flares, some of which overlap with triggers of other oral diseases, including oral allergy syndrome and oral contact dermatitis. The purpose of this study was to evaluate the prevalence of commonly reported triggers of OLP flares, their overlap with triggers of other oral diseases, and the potential role of trigger avoidance as a management strategy. Questionnaire-based survey of 51 patients with biopsy-proven lichen planus with oral involvement seen in an academic dermatology specialty clinic and/or oral pathology clinic between June 2014 and June 2015. Of the participants, 94% identified at least one trigger of their OLP flares. Approximately half of the participants (51%) reported at least one trigger that overlapped with known triggers of oral allergy syndrome, and 63% identified at least one trigger that overlapped with known triggers of oral contact dermatitis. Emotional stress was the most commonly reported trigger (77%). Regarding avoidance, 79% of the study participants reported avoiding their known triggers in daily life. Of those who actively avoided triggers, 89% reported an improvement in symptoms and 70% reported a decrease in the frequency of flares. Trigger identification and avoidance can play a potentially effective role in the management of OLP. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Observations of recent flares of the blazar 1ES1959+650 with VERITAS (United States)

    Zhou, Yuyang; Santander, Marcos; VERITAS Collaboration


    VERITAS (Very Energetic Radiation Imaging Telescope Array System) is a an array of imaging atmospheric Cherenkov telescopes that carries out an extensive observation program of the gamma-ray sky at energies above 0.1 TeV. Blazars, active galactic nuclei powered by supermassive black holes, are gamma-ray sources of major interest. The relativistic jets they emit are among the most energetic phenomena in the universe and constitute a significant amount of study in high energy astrophysics. In particular, the blazar 1ES 1959+650 (z=0.048) has garnered special attention due to its emission of an ``orphan'' flare in 2002. An orphan flare is an extremely bright emission in gamma rays that is not coupled to X-rays. This phenomenon is incompatible with our current model of gamma-ray production, the self-synchrotron Compton (SSC) process. This study aims to characterize recent TeV flares of this source by analyzing the time variability of its light curve and spectrum and comparing these findings to observations made in other wavelengths. We hope to determine if these recent flares have also been orphan in nature, put an upper limit on the size of the emission region, and understand the nature of the gamma-ray emission in the source.

  2. On the signatures of flare-induced global waves in the Sun: GOLF and VIRGO observations (United States)

    Kumar, Brajesh; Mathur, Savita; García, Rafael A.; Jiménez, Antonio


    Recently, several efforts have been made to identify the seismic signatures of flares and magnetic activity in the Sun and Sun-like stars. In this work, we have analysed the disc-integrated velocity and intensity observations of the Sun obtained from the Global Oscillations at Low Frequencies (GOLF) and Variability of solar IRradiance and Gravity Oscillations/Sun photometers (VIRGO/SPM) instruments, respectively, on board the Solar and Heliospheric Observatory space mission covering several successive flare events, for the period from 2011 February 11 to 2011 February 17, of which 2011 February 11 remained a relatively quiet day and served as a `null test' for the investigation. Application of the spectral analysis to these disc-integrated Sun-as-a-star velocity and intensity signals indicates that there is enhanced power of the global modes of oscillations in the Sun during the flares, as compared to the quiet day. The GOLF instrument obtains velocity observations using the Na i D lines which are formed in the upper solar photosphere, while the intensity data used in our analysis are obtained by VIRGO/SPM instrument at 862 nm, which is formed within the solar photosphere. Despite the fact that the two instruments sample different layers of the solar atmosphere using two different parameters (velocity versus intensity), we have found that both these observations show the signatures of flare-induced global waves in the Sun. These results could suffice in identifying the asteroseismic signatures of stellar flares and magnetic activity in the Sun-like stars.

  3. Solar Flare Prediction Model with Three Machine-learning Algorithms using Ultraviolet Brightening and Vector Magnetograms (United States)

    Nishizuka, N.; Sugiura, K.; Kubo, Y.; Den, M.; Watari, S.; Ishii, M.


    We developed a flare prediction model using machine learning, which is optimized to predict the maximum class of flares occurring in the following 24 hr. Machine learning is used to devise algorithms that can learn from and make decisions on a huge amount of data. We used solar observation data during the period 2010-2015, such as vector magnetograms, ultraviolet (UV) emission, and soft X-ray emission taken by the Solar Dynamics Observatory and the Geostationary Operational Environmental Satellite. We detected active regions (ARs) from the full-disk magnetogram, from which ˜60 features were extracted with their time differentials, including magnetic neutral lines, the current helicity, the UV brightening, and the flare history. After standardizing the feature database, we fully shuffled and randomly separated it into two for training and testing. To investigate which algorithm is best for flare prediction, we compared three machine-learning algorithms: the support vector machine, k-nearest neighbors (k-NN), and extremely randomized trees. The prediction score, the true skill statistic, was higher than 0.9 with a fully shuffled data set, which is higher than that for human forecasts. It was found that k-NN has the highest performance among the three algorithms. The ranking of the feature importance showed that previous flare activity is most effective, followed by the length of magnetic neutral lines, the unsigned magnetic flux, the area of UV brightening, and the time differentials of features over 24 hr, all of which are strongly correlated with the flux emergence dynamics in an AR.

  4. Advances in solar flare science through modeling of the magnetic field in the solar atmosphere (Arne Richter Award for Outstanding ECSs Lecture) (United States)

    Thalmann, Julia K.


    Ever since we know of the phenomenon of solar flares and coronal mass ejections, we try to unravel the secrets of the underlying physical processes. The magnetic field in the Sun's atmosphere is the driver of any solar activity. Therefore, the combined study of the surface (photosphere) magnetic field and the magnetic field in the atmosphere above (the chromosphere and corona) is essential. At present, direct measurements of the solar magnetic field are regularly available only for the solar surface, so that we have to rely on models to reconstruct the magnetic field in the corona. Corresponding model-based research on the magnetic field within flaring active regions is inevitable for the understanding of the key physical processes of flares and possibly associated mass ejections, as well as their time evolution. I will focus on recent advances in the understanding of the magnetic processes in solar flares based on quasi-static force-free coronal magnetic field modeling. In particular, I will discuss aspects such as the structure (topology) of the coronal magnetic field, its flare-induced reconfiguration, as well as the associated modifications to the inherent magnetic energy and helicity. I will also discuss the potential and limitations of studies trying to cover the complete chain of action, i.e., to relate the (magnetic) properties of solar flares to that of the associated disturbances measured in-situ at Earth, as induced by flare-associated coronal mass ejections after passage of the interplanetary space separating Sun and Earth. Finally, I will discuss future prospects regarding model-based research of the coronal magnetic field in the course of flares, including possible implications for improved future flare forecasting attempts.


    Energy Technology Data Exchange (ETDEWEB)

    Kuhar, Matej; Krucker, Säm [University of Applied Sciences and Arts Northwestern Switzerland, Bahnhofstrasse 6, 5210 Windisch (Switzerland); Hannah, Iain G.; Wright, Paul J. [SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Glesener, Lindsay [School of Physics and Astronomy, University of Minnesota—Twin Cities, Minneapolis, MN 55455 (United States); Saint-Hilaire, Pascal; Hudson, Hugh S.; Boggs, Steven E.; Craig, William W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720-7450 (United States); Grefenstette, Brian W.; Harrison, Fiona A. [Cahill Center for Astrophysics, 1216 E. California Boulevard, California Institute of Technology, Pasadena, CA 91125 (United States); White, Stephen M. [Air Force Research Laboratory, Albuquerque, NM (United States); Smith, David M.; Marsh, Andrew J. [Physics Department and Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Christensen, Finn E. [DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Hailey, Charles J. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Zhang, William W. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)


    We present observations of the occulted active region AR 12222 during the third Nuclear Spectroscopic Telescope ARray ( NuSTAR ) solar campaign on 2014 December 11, with concurrent Solar Dynamics Observatory ( SDO )/AIA and FOXSI-2 sounding rocket observations. The active region produced a medium-size solar flare 1 day before the observations, at ∼18 UT on 2014 December 10, with the post-flare loops still visible at the time of NuSTAR observations. The time evolution of the source emission in the SDO/ AIA 335 Å channel reveals the characteristics of an extreme-ultraviolet late-phase event, caused by the continuous formation of new post-flare loops that arch higher and higher in the solar corona. The spectral fitting of NuSTAR observations yields an isothermal source, with temperature 3.8–4.6 MK, emission measure (0.3–1.8) × 10{sup 46} cm{sup −3}, and density estimated at (2.5–6.0) × 10{sup 8} cm{sup −3}. The observed AIA fluxes are consistent with the derived NuSTAR temperature range, favoring temperature values in the range of 4.0–4.3 MK. By examining the post-flare loops’ cooling times and energy content, we estimate that at least 12 sets of post-flare loops were formed and subsequently cooled between the onset of the flare and NuSTAR observations, with their total thermal energy content an order of magnitude larger than the energy content at flare peak time. This indicates that the standard approach of using only the flare peak time to derive the total thermal energy content of a flare can lead to a large underestimation of its value.

  6. Evidence of Significant Energy Input in the Late Phase of A Solar Flare from NuSTAR X-Ray Observations (United States)

    Kuhar, Matej; Krucker, Sam; Hannah, Iain G.; Glesener, Lindsay; Saint-Hilaire, Pascal; Grefenstette, Brian W.; Hudson, Hugh S.; White, Stephen M.; Smith, David M.; Marsh, Andrew J.; hide


    We present observations of the occulted active region AR 12222 during the third Nuclear Spectroscopic Telescope ARray (NuSTAR) solar campaign on 2014 December 11, with concurrent Solar Dynamics Observatory (SDO)/ AIA and FOXSI-2 sounding rocket observations. The active region produced a medium-size solar flare 1 day before the observations, at approximately 18 UT on 2014 December 10, with the post-flare loops still visible at the time of NuSTAR observations. The time evolution of the source emission in the SDO/AIA 335 Å channel reveals the characteristics of an extreme-ultraviolet late-phase event, caused by the continuous formation of new post-flare loops that arch higher and higher in the solar corona. The spectral fitting of NuSTAR observations yields an isothermal source, with temperature 3.8-4.6 MK, emission measure (0.3-1.8) × 1046 cm-3, and density estimated at (2.5-6.0) × 108 cm-3. The observed AIA fluxes are consistent with the derived NuSTAR temperature range, favoring temperature values in the range of 4.0-4.3 MK. By examining the post-flare loops' cooling times and energy content, we estimate that at least 12 sets of post-flare loops were formed and subsequently cooled between the onset of the flare and NuSTAR observations, with their total thermal energy content an order of magnitude larger than the energy content at flare peak time. This indicates that the standard approach of using only the flare peak time to derive the total thermal energy content of a flare can lead to a large underestimation of its value.

  7. Exception handling for sensor fusion (United States)

    Chavez, G. T.; Murphy, Robin R.


    This paper presents a control scheme for handling sensing failures (sensor malfunctions, significant degradations in performance due to changes in the environment, and errant expectations) in sensor fusion for autonomous mobile robots. The advantages of the exception handling mechanism are that it emphasizes a fast response to sensing failures, is able to use only a partial causal model of sensing failure, and leads to a graceful degradation of sensing if the sensing failure cannot be compensated for. The exception handling mechanism consists of two modules: error classification and error recovery. The error classification module in the exception handler attempts to classify the type and source(s) of the error using a modified generate-and-test procedure. If the source of the error is isolated, the error recovery module examines its cache of recovery schemes, which either repair or replace the current sensing configuration. If the failure is due to an error in expectation or cannot be identified, the planner is alerted. Experiments using actual sensor data collected by the CSM Mobile Robotics/Machine Perception Laboratory's Denning mobile robot demonstrate the operation of the exception handling mechanism.

  8. Exceptional cognitive ability: the phenotype. (United States)

    Lubinski, David


    Characterizing the outcomes related to the phenotype of exceptional cognitive abilities has been feasible in recent years due to the availability of large samples of intellectually precocious adolescents identified by modern talent searches that have been followed-up longitudinally over multiple decades. The level and pattern of cognitive abilities, even among participants within the top 1% of general intellectual ability, are related to differential developmental trajectories and important life accomplishments: The likelihood of earning a doctorate, earning exceptional compensation, publishing novels, securing patents, and earning tenure at a top university (and the academic disciplines within which tenure is most likely to occur) all vary as a function of individual differences in cognitive abilities assessed decades earlier. Individual differences that distinguish the able (top 1 in 100) from the exceptionally able (top 1 in 10,000) during early adolescence matter in life, and, given the heritability of general intelligence, they suggest that understanding the genetic and environmental origins of exceptional abilities should be a high priority for behavior genetic research, especially because the results for extreme groups could differ from the rest of the population. In addition to enhancing our understanding of the etiology of general intelligence at the extreme, such inquiry may also reveal fundamental determinants of specific abilities, like mathematical versus verbal reasoning, and the distinctive phenotypes that contrasting ability patterns are most likely to eventuate in at extraordinary levels.

  9. 78 FR 4881 - Excepted Service (United States)


    ... MANAGEMENT Excepted Service AGENCY: U.S. Office of Personnel Management (OPM). ACTION: Notice. SUMMARY: This... Executive Resources Services, Executive Resources and Employee Development, Employee Services, 202- 606-2246.../2012 Headquarters Services. Office of Assistant Speechwriter......... DD130012 11/9/2012 Secretary of...

  10. Exceptional and Spinorial Conformal Windows

    DEFF Research Database (Denmark)

    Mojaza, Matin; Pica, Claudio; Ryttov, Thomas


    We study the conformal window of gauge theories containing fermionic matter fields, where the gauge group is any of the exceptional groups with the fermions transforming according to the fundamental and adjoint representations and the orthogonal groups where the fermions transform according...

  11. Learned Helplessness in Exceptional Children. (United States)

    Brock, Herman B.; Kowitz, Gerald T.

    The research literature on learned helplessness in exceptional children is reviewed and the authors' efforts to identify and retrain learning disabled (LD) children who have characteristics typical of learned helplessness are reported. Twenty-eight elementary aged LD children viewed as "learned helpless" were randomly assigned to one of four…

  12. Identifying Preliminary Domains to Detect and Measure Rheumatoid Arthritis Flares: Report of the OMERACT 10 RA Flare Workshop

    DEFF Research Database (Denmark)

    Bingham, Clifton O; Alten, Rieke; Bartlett, Susan J


    an international research project to understand the specific characteristics and impact of episodic disease worsening, or "flare," so that outcome measures can be developed or modified to reflect this uncommonly measured, but very real and sometimes disabling RA disease feature. Patient research partners provided......, a preliminary list of key domains has been identified to evaluate flare. RESULTS: At OMERACT 10, consensus was achieved identifying features of flare in addition to the existing core set for RA, including fatigue, stiffness, symptom persistence, systemic features, and participation. Patient self-report of flare...

  13. Infrared Flares from M Dwarfs: a Hinderance to Future Transiting Exoplanet Studies


    Davenport, James R. A.


    Many current and future exoplanet missions are pushing to infrared (IR) wavelengths where the flux contrast between the planet and star is more favorable (Deming et al. 2009), and the impact of stellar magnetic activity is decreased. Indeed, a recent analysis of starspots and faculae found these forms of stellar activity do not substantially impact the transit signatures or science potential for FGKM stars with JWST (Zellem et al. 2017). However, this is not true in the case of flares, which ...

  14. Very Strong 0.3-10 keV Flare in the HBL Source 1ES 1959+650 (United States)

    Kapanadze, Bidzina


    Since 2017 June 12, the nearby TeV-detected HBL source 1ES 1959+650 (z=0.048) is showing another cycle of a very strong X-ray flaring activity, which is the fourth since 2015 August (see Kapanadze B. et al. "A recent strong X-ray flaring activity of 1ES 1959+650 with possibly less efficient stochastic acceleration"; ATel#9949,9694,9205,9121,8468,8342, 8289,8014,10439; see

  15. Chromospheric Inversions of a Micro-flaring Region

    Energy Technology Data Exchange (ETDEWEB)

    Reid, A.; Henriques, V.; Mathioudakis, M. [Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, BT7 1NN, Northern Ireland (United Kingdom); Doyle, J. G. [Armagh Observatory and Planetarium, College Hill, Armagh, BT61 9DG (United Kingdom); Ray, T., E-mail: [Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland)


    We use spectropolarimetric observations of the Ca ii 8542 Å line, taken from the Swedish 1 m Solar Telescope, in an attempt to recover dynamic activity in a micro-flaring region near a sunspot via inversions. These inversions show localized mean temperature enhancements of ∼1000 K in the chromosphere and upper photosphere, along with co-spatial bi-directional Doppler shifting of 5–10 km s{sup −1}. This heating also extends along a nearby chromospheric fibril, which is co-spatial to 10–15 km s{sup −1} downflows. Strong magnetic flux cancellation is also apparent in one of the footpoints, and is concentrated in the chromosphere. This event more closely resembles that of an Ellerman Bomb, though placed slightly higher in the atmosphere than what is typically observed.

  16. Brown Tumor Shown Flare Phenomenon On Bone Scan After Parathyroidectomy

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Kwang Ho; Park, Seol Hoon; Baek, So Ra; Chae, Sun Young; Koh, Jung Min; Kim, Jae Seung; Moon, Dae Hyuk; Ryu, Jin Sook [Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of)


    Brown tumor is the benign bone lesion consists of woven bone and fibrous tissue without matrix, which develop due to chronic excessive osteoclastic activity such as hyperparathyroidism. Usually they appear with normal uptake or occasionally focally increased uptake on bone scan. We present a case with brown tumor shown more increased uptake and more number of lesions on bone scan after parathyroidectomy, and lesser increased uptake on serial bone scans without any other treatment through several months. This finding is thought to be similar to 'flare phenomenon' which is occasionally seen after treatment of metastatic bone lesions of malignant cancer, and may represent curative process of brown tumor with rapid normal bone formation.

  17. Flare Comparisons of the Flare Irradiance Spectral Model (FISM) to Preliminary SDO EVE Data (United States)

    Chamberlon, Phillip C.


    The Solar Dynamics Observatory (SDO) launched February 11, 2010 from Kennedy Space Center and started normal science operations in April 2010. One of the instruments onboard SDO, the EUV Variability- Experiment (EVE), will measure the solar EUV irradiance from 0.1-105 nm with 0.1 nm spectral resolution as well as a measure of the broad-band Lyman-Alpha emission (121.0 rim), all with less than 10 percent uncertainties. One of the biggest improvements of EVE over its predecessors is its ability to continuously measure the complete spectrum ever y 10 seconds, 24 hours a day, 7 days a week. This temporal coverage and cadence will greatly enhance the knowledge of the solar EUV variations during solar flares. This paper will present a comparison of the Flare Irradiance Spectral Model (FISM), which can produce an estimated EUV spectrum at 10 seconds temporal resolution, to the preliminary flare observation results from SDO EVE. The discussion will focus on the short-term EUV flare variations and evolution.

  18. Early X-Ray Flares in GRBs (United States)

    Ruffini, R.; Wang, Y.; Aimuratov, Y.; Barres de Almeida, U.; Becerra, L.; Bianco, C. L.; Chen, Y. C.; Karlica, M.; Kovacevic, M.; Li, L.; Melon Fuksman, J. D.; Moradi, R.; Muccino, M.; Penacchioni, A. V.; Pisani, G. B.; Primorac, D.; Rueda, J. A.; Shakeri, S.; Vereshchagin, G. V.; Xue, S.-S.


    We analyze the early X-ray flares in the GRB “flare–plateau–afterglow” (FPA) phase observed by Swift-XRT. The FPA occurs only in one of the seven GRB subclasses: the binary-driven hypernovae (BdHNe). This subclass consists of long GRBs with a carbon–oxygen core and a neutron star (NS) binary companion as progenitors. The hypercritical accretion of the supernova (SN) ejecta onto the NS can lead to the gravitational collapse of the NS into a black hole. Consequently, one can observe a GRB emission with isotropic energy {E}{iso}≳ {10}52 erg, as well as the associated GeV emission and the FPA phase. Previous work had shown that gamma-ray spikes in the prompt emission occur at ∼ {10}15{--}{10}17 cm with Lorentz Gamma factors {{Γ }}∼ {10}2{--}{10}3. Using a novel data analysis, we show that the time of occurrence, duration, luminosity, and total energy of the X-ray flares correlate with E iso. A crucial feature is the observation of thermal emission in the X-ray flares that we show occurs at radii ∼1012 cm with {{Γ }}≲ 4. These model-independent observations cannot be explained by the “fireball” model, which postulates synchrotron and inverse-Compton radiation from a single ultrarelativistic jetted emission extending from the prompt to the late afterglow and GeV emission phases. We show that in BdHNe a collision between the GRB and the SN ejecta occurs at ≃1010 cm, reaching transparency at ∼1012 cm with {{Γ }}≲ 4. The agreement between the thermal emission observations and these theoretically derived values validates our model and opens the possibility of testing each BdHN episode with the corresponding Lorentz Gamma factor.

  19. The Exceptional State in Africa

    DEFF Research Database (Denmark)

    Suzuki, Shogo


    China's relations with African states have undergone significant changes in recent years. China has projected its relationship with Africa as one of equality and ‘mutual help’. Such perceptions of foreign policy stem from the Five Principles of Peaceful Coexistence and the shared experience...... of imperialist domination and economic underdevelopment. Moreover, various public statements by China's elites suggest that China is expected to play a much more prominent, even exceptional role in Africa. This purportedly entails moving beyond the hegemonic West's interventionist aid or security policies......, and is also implicitly designed to highlight the West's shortcomings in promoting African economic growth or peace. Yet where does this perception of exceptionalism come from? Why does Beijing feel that it has to play a leading role in Africa's development? How can Beijing distinguish itself from the nations...

  20. Comparison between rotary and conventional flaring processes (United States)

    Tamang, Subha; Bylya, Olga; Ward, Michael; Luo, Xichun; Halliday, Steven; Tuffs, Martin


    Rotary forming is one of the promising incremental processes. However, a wide industrial implementation of it strongly depends on the deep understanding of the mechanics of this process. This paper attempts to develop this understanding via a comparison of the rotary forming process with conventional flaring. Both the processes were simulated using commercial metal forming software QForm. The results of the simulation were validated by comparison with the experimental trials. The main focus was made on the triaxiality states taking place during forming, as it seems to be the main factor determining the success of the process.

  1. Geometric phase around exceptional points


    Mailybaev, Alexei; Kirillov, Oleg; Seyranian, Alexander,


    A wave function picks up, in addition to the dynamic phase, the geometric (Berry) phase when traversing adiabatically a closed cycle in parameter space. We develop a general multidimensional theory of the geometric phase for (double) cycles around exceptional degeneracies in non-Hermitian Hamiltonians. We show that the geometric phase is exactly $\\pi$ for symmetric complex Hamiltonians of arbitrary dimension and for nonsymmetric non-Hermitian Hamiltonians of dimension 2. For nonsymmetric non-...

  2. Temporal Evolution and Spatial Distribution of White-light Flare Kernels in a Solar Flare (United States)

    Kawate, Tomoko; Ishii, Takako; Nakatani, Yoshikazu; Ichimoto, Kiyoshi; Asai, Ayumi; Morita, Satoshi; Masuda, Satoshi


    On 2011 September 6, we observed an X2.1-class flare in continuum and Hα with a frame rate of about 30 Hz. After processing images of the event by using a speckle-masking image reconstruction, we identified white-light (WL) flare ribbons on opposite sides of the magnetic neutral line. We derive the light curve decay times of the WL flare kernels at each resolution element by assuming that the kernels consist of one or two components that decay exponentially, starting from the peak time. As a result, 42% of the pixels have two decay-time components with average decay times of 15.6 and 587 s, whereas the average decay time is 254 s for WL kernels with only one decay-time component. The peak intensities of the shorter decay-time component exhibit good spatial correlation with the WL intensity, whereas the peak intensities of the long decay-time components tend to be larger in the early phase of the flare at the inner part of the flare ribbons, close to the magnetic neutral line. The average intensity of the longer decay-time components is 1.78 times higher than that of the shorter decay-time components. If the shorter decay time is determined by either the chromospheric cooling time or the nonthermal ionization timescale and the longer decay time is attributed to the coronal cooling time, this result suggests that WL sources from both regions appear in 42% of the WL kernels and that WL emission of the coronal origin is sometimes stronger than that of chromospheric origin.

  3. Sgr A* flares: tidal disruption of asteroids and planets?

    NARCIS (Netherlands)

    Zubovas, K.; Nayakshin, S.; Markoff, S.


    It is theoretically expected that a supermassive black hole (SMBH) in the centre of a typical nearby galaxy disrupts a solar-type star every ∼105 yr, resulting in a bright flare lasting for months. Sgr A*, the resident SMBH of the Milky Way, produces (by comparison) tiny flares that last only hours

  4. An Interactive Multi-instrument Database of Solar Flares (United States)

    Sadykov, Viacheslav M.; Kosovichev, Alexander G.; Oria, Vincent; Nita, Gelu M.


    Solar flares are complicated physical phenomena that are observable in a broad range of the electromagnetic spectrum, from radio waves to γ-rays. For a more comprehensive understanding of flares, it is necessary to perform a combined multi-wavelength analysis using observations from many satellites and ground-based observatories. For an efficient data search, integration of different flare lists, and representation of observational data, we have developed the Interactive Multi-Instrument Database of Solar Flares (IMIDSF, The web-accessible database is fully functional and allows the user to search for uniquely identified flare events based on their physical descriptors and the availability of observations by a particular set of instruments. Currently, the data from three primary flare lists (Geostationary Operational Environmental Satellites, RHESSI, and HEK) and a variety of other event catalogs (Hinode, Fermi GBM, Konus-W IND, the OVSA flare catalogs, the CACTus CME catalog, the Filament eruption catalog) and observing logs (IRIS and Nobeyama coverage) are integrated, and an additional set of physical descriptors (temperature and emission measure) is provided along with an observing summary, data links, and multi-wavelength light curves for each flare event since 2002 January. We envision that this new tool will allow researchers to significantly speed up the search of events of interest for statistical and case studies.


    Energy Technology Data Exchange (ETDEWEB)

    Kuridze, D.; Mathioudakis, M.; Kennedy, M.; Keenan, F. P. [Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast BT7 1NN (United Kingdom); Simões, P. J. A.; Voort, L. Rouppe van der; Fletcher, L. [SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Carlsson, M.; Jafarzadeh, S. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway); Allred, J. C.; Kowalski, A. F. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Graham, D. [INAF-Ossevatorio Astrofisico di Arcetri, I-50125 Firenze (Italy)


    The asymmetries observed in the line profiles of solar flares can provide important diagnostics of the properties and dynamics of the flaring atmosphere. In this paper the evolution of the Hα and Ca ii λ8542 lines are studied using high spatial, temporal, and spectral resolution ground-based observations of an M1.1 flare obtained with the Swedish 1 m Solar Telescope. The temporal evolution of the Hα line profiles from the flare kernel shows excess emission in the red wing (red asymmetry) before flare maximum and excess in the blue wing (blue asymmetry) after maximum. However, the Ca ii λ8542 line does not follow the same pattern, showing only a weak red asymmetry during the flare. RADYN simulations are used to synthesize spectral line profiles for the flaring atmosphere, and good agreement is found with the observations. We show that the red asymmetry observed in Hα is not necessarily associated with plasma downflows, and the blue asymmetry may not be related to plasma upflows. Indeed, we conclude that the steep velocity gradients in the flaring chromosphere modify the wavelength of the central reversal in the Hα line profile. The shift in the wavelength of maximum opacity to shorter and longer wavelengths generates the red and blue asymmetries, respectively.

  6. Gas flaring: Carbon dioxide contribution to global warming ...

    African Journals Online (AJOL)

    Flaring been a source of anthropogenic carbon dioxide, is a concern to skeptics and local oil producing communities as a significant contributor to global warming, environmental degradation, health risk and economic loss. The purpose of the study was to ascertain the impacts of gas flaring on global warming and the local ...

  7. Effect of Prolong Exposure to Gas Flaring on some Haematological ...

    African Journals Online (AJOL)

    The objective of this study was to examine the deterioration effect, if any, of prolonged exposure to gas flaring on hematological parameters. Subjects for the study were drawn from the represented groups in the oil and gas production environments and compared to the non gas flaring environment. Venous blood samples ...

  8. Phase Relationship Between Sunspot Number, Flare Index and ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy; Volume 33; Issue 4. Phase Relationship Between ... The flare index has a noticeable time lead with respect to sunspot number for cycles 20 and 23 in the northern hemisphere and for cycles 22 and 23 in the southern hemisphere. For the entire Sun, the flare index ...

  9. Relationships of a growing magnetic flux region to flares

    NARCIS (Netherlands)

    Schadee, A.; Martin, S.F.; Bentley, R.D.; Antalova, A.; Kucera, A.; Dezs, L.; Gesztelyi, L.; Harvey, K.L.; Jones, H.; Livi, S.H.B.; Wang, J.


    Some sites for solar flares are known to develop where new magnetic flux emerges and becomes abutted against opposite polarity pre-existing magnetic flux (review by Galzauskas/1/). We have identified and analyzed the evolution of such flare sites at the boundaries of a major new and growing magnetic

  10. Interactive Multi-Instrument Database of Solar Flares (IMIDSF) (United States)

    Sadykov, Viacheslav M.; Nita, Gelu M.; Oria, Vincent; Kosovichev, Alexander G.


    Solar flares represent a complicated physical phenomenon observed in a broad range of the electromagnetic spectrum, from radiowaves to gamma-rays. For a complete understanding of the flares it is necessary to perform a combined multi-wavelength analysis using observations from many satellites and ground-based observatories. For efficient data search, integration of different flare lists and representation of observational data, we have developed the Interactive Multi-Instrument Database of Solar Flares ( The web database is fully functional and allows the user to search for uniquely-identified flare events based on their physical descriptors and availability of observations of a particular set of instruments. Currently, data from three primary flare lists (GOES, RHESSI and HEK) and a variety of other event catalogs (Hinode, Fermi GBM, Konus-Wind, OVSA flare catalogs, CACTus CME catalog, Filament eruption catalog) and observing logs (IRIS and Nobeyama coverage), are integrated. An additional set of physical descriptors (temperature and emission measure) along with observing summary, data links and multi-wavelength light curves is provided for each flare event since January 2002. Results of an initial statistical analysis will be presented.

  11. Observational and Model Analysis of a Two-ribbon Flare Possibly Induced by a Neighboring Blowout Jet (United States)

    Joshi, Bhuwan; Thalmann, Julia K.; Mitra, Prabir K.; Chandra, Ramesh; Veronig, Astrid M.


    In this paper, we present unique observations of a blowout coronal jet that possibly triggered a two-ribbon confined C1.2 flare in bipolar solar active region NOAA 12615 on 2016 December 5. The jet activity initiates at chromospheric/transition region heights with a small brightening that eventually increases in volume, with well-developed standard morphological jet features, viz., base and spire. The spire widens up with a collimated eruption of cool and hot plasma components, observed in the 304 and 94 Å channels of AIA, respectively. The speed of the plasma ejection, which forms the jet’s spire, was higher for the hot component (˜200 km s-1) than the cooler one (˜130 km s-1). The NLFF model of coronal fields at the pre- and post-jet phases successfully reveals openings of previously closed magnetic field lines with a rather inclined/low-lying jet structure. The peak phase of the jet emission is followed by the development of a two-ribbon flare that shows coronal loop emission in HXRs up to ˜25 keV energy. The coronal magnetic fields rooted at the location of EUV flare ribbons, derived from the NLFF model, demonstrate the pre-flare phase to exhibit an “X-type” configuration, while the magnetic fields at the post-flare phase are more or less oriented parallel. Comparisons of multi-wavelength measurements with the magnetic field extrapolations suggest that the jet activity likely triggered the two-ribbon flare by perturbing the field in the interior of the active region.

  12. A Comparison of Ground Level Event e/p and Fe/O Ratios with Associated Solar Flare and CME Characteristics (Postprint) (United States)


    the solar corona . When this picture was challenged by a survey of large SEP events through 2005 showing a broad range of event Fe/O values at E > 25...which requires the higher seed particle threshold energies of remnant flare particles in the corona (Tylka and Lee 2006). If the concept of extending...analytic approach is to compare the particle abundance parameters statistically with various flare, active region (AR), and CME param- eters given in Table

  13. Models of the Solar Atmospheric Response to Flare Heating (United States)

    Allred, Joel


    I will present models of the solar atmospheric response to flare heating. The models solve the equations of non-LTE radiation hydrodynamics with an electron beam added as a flare energy source term. Radiative transfer is solved in detail for many important optically thick hydrogen and helium transitions and numerous optically thin EUV lines making the models ideally suited to study the emission that is produced during flares. I will pay special attention to understanding key EUV lines as well the mechanism for white light production. I will also present preliminary results of how the model solar atmosphere responds to Fletcher & Hudson type flare heating. I will compare this with the results from flare simulations using the standard thick target model.

  14. Solar Flares and the High Energy Solar Spectroscopic Imager (HESSI) (United States)

    Holman, Gordon D.; Fisher, Richard R. (Technical Monitor)


    Solar flares are the biggest explosions in the solar system. They are important both for understanding explosive events in the Universe and for their impact on human technology and communications. The satellite-based HESSI is designed to study the explosive release of energy and the acceleration of electrons, protons, and other charged particles to high energies in solar flares. HESSI produces "color" movies of the Sun in high-energy X rays and gamma rays radiated by these energetic particles. HESSI's X-ray and gamma-ray images of flares are obtained using techniques similar to those used in radio interferometry. Ground-based radio observations of the Sun provide an important complement to the HESSI observations of solar flares. I will describe the HESSI Project and the high-energy aspects of solar flares, and how these relate to radio astronomy techniques and observations.


    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, Cormac; Hurley-Walker, Natasha [ICRAR-Curtin University, GPO Box U1987, Perth, Western Australia, 6102 (Australia); Punsly, Brian [1415 Granvia Altamira, Palos Verdes Estates, CA 90274 (United States); O' Dea, Christopher P., E-mail:, E-mail: [Laboratory for Multiwavelength Astrophysics, School of Physics and Astronomy, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States)


    Radio monitoring of the broad absorption line quasar (BALQSO) Mrk 231 from 13.9 GHz to 17.6 GHz detected a strong flat spectrum flare. Even though BALQSOs are typically weak radio sources, the 17.6 GHz flux density doubled in ≈150 days, from ≈135 mJy to ≈270 mJy. It is demonstrated that the elapsed rise time in the quasar rest frame and the relative magnitude of the flare is typical of some of the stronger flares in blazars that are usually associated with the ejection of discrete components on parsec scales. The decay of a similar flare was found in a previous monitoring campaign at 22 GHz. We conclude that these flares are not rare. The implication is that Mrk 231 seems to be a quasar in which the physical mechanism that produces the broad absorption line wind is in tension with the emergence of a fledgling blazar.

  16. CMS : An exceptional load for an exceptional work site

    CERN Multimedia


    Components of the CMS vacuum tank have been delivered to the detector assembly site at Cessy. The complete inner shell was delivered to CERN by special convoy while the outer shell is being assembled in situ. The convoy transporting the inner shell of the CMS vacuum tank took a week to cover the distance between Lons-le-Saunier and Point 5 at Cessy. Left: the convoy making its way down from the Col de la Faucille. With lights flashing, flanked by police outriders and with roads temporarily closed, the exceptional load that passed through the Pays de Gex on Monday 20 May was accorded the same VIP treatment as a leading state dignitary. But this time it was not the identity of the passenger but the exceptional size of the object being transported that made such arrangements necessary. A convoy of two lorries was needed to transport the load, an enormous 13-metre long, 6 metre diameter cylinder weighing 120 tonnes. It took a week to cover the 120 kilometres between Lons-le-Saunier and the assembly site for...

  17. Study of non-thermal photon production under different scenarios in solar flares. 1: Scenarios and formulations (United States)

    Perez-Peraza, J.; Alvarez, M.; Gallegos, A.


    In order to study the overall phenomenology involved in solar flares, it is necessary to understand their individual manifestation before building a corresponding description of the global phenomenon. Here the concern is with the production of X and gamma rays in solar flares. Flares are initiated very often within the closed magnetic field configurations of active centers. According (2) when beta = kinetic energy density/magnetic energy density approximately 0.2, the magnetic trap configuration is destructed within the time scale of the impulsive phase of flares ( 100 s). A first particle acceleration stage occurs during this phase as indicated by impulsive microwave and hard X-rays bursts. In some flare events, when the field strength beta is very high, the broken field lines may close again, such that later, in the course of the flash and main phases more hot plasma of very high conductivity is created, and so, the field and frozen plasma expand outward, as the kinetic pressure inside the closed loops increases. The magnetically trapped particles excite strong Alfven wave turbulence of small transverse scale.

  18. Solar flares as proxy for the young Sun: satellite observed thermosphere response to an X17.2 flare of Earth's upper atmosphere

    Directory of Open Access Journals (Sweden)

    S. Krauss


    Full Text Available We analyzed the measured thermospheric response of an extreme solar X17.2 flare that irradiated the Earth's upper atmosphere during the so-called Halloween events in late October/early November 2003. We suggest that such events can serve as proxies for the intense electromagnetic and corpuscular radiation environment of the Sun or other stars during their early phases of evolution. We applied and compared empirical thermosphere models with satellite drag measurements from the GRACE satellites and found that the Jacchia-Bowman 2008 model can reproduce the drag measurements very well during undisturbed solar conditions but gets worse during extreme solar events. By analyzing the peak of the X17.2 flare spectra and comparing it with spectra of young solar proxies, our results indicate that the peak flare radiation flux corresponds to a hypothetical Sun-like star or the Sun at the age of approximately 2.3 Gyr. This implies that the peak extreme ultraviolet (EUV radiation is enhanced by a factor of about 2.5 times compared to today's Sun. On the assumption that the Sun emitted an EUV flux of that magnitude and by modifying the activity indices in the Jacchia-Bowman 2008 model, we obtain an average exobase temperature of 1950 K, which corresponds with previous theoretical studies related to thermospheric heating and expansion caused by the solar EUV flux.

  19. Solar flares as proxy for the young Sun: satellite observed thermosphere response to an X17.2 flare of Earth's upper atmosphere

    Directory of Open Access Journals (Sweden)

    S. Krauss


    Full Text Available We analyzed the measured thermospheric response of an extreme solar X17.2 flare that irradiated the Earth's upper atmosphere during the so-called Halloween events in late October/early November 2003. We suggest that such events can serve as proxies for the intense electromagnetic and corpuscular radiation environment of the Sun or other stars during their early phases of evolution. We applied and compared empirical thermosphere models with satellite drag measurements from the GRACE satellites and found that the Jacchia-Bowman 2008 model can reproduce the drag measurements very well during undisturbed solar conditions but gets worse during extreme solar events. By analyzing the peak of the X17.2 flare spectra and comparing it with spectra of young solar proxies, our results indicate that the peak flare radiation flux corresponds to a hypothetical Sun-like star or the Sun at the age of approximately 2.3 Gyr. This implies that the peak extreme ultraviolet (EUV radiation is enhanced by a factor of about 2.5 times compared to today's Sun. On the assumption that the Sun emitted an EUV flux of that magnitude and by modifying the activity indices in the Jacchia-Bowman 2008 model, we obtain an average exobase temperature of 1950 K, which corresponds with previous theoretical studies related to thermospheric heating and expansion caused by the solar EUV flux.

  20. Adiabatic heating in impulsive solar flares (United States)

    Maetzler, C.; Bai, T.; Crannell, C. J.; Frost, K. J.


    A study is made of adiabatic heating in two impulsive solar flares on the basis of dynamic X-ray spectra in the 28-254 keV range, H-alpha, microwave, and meter-wave radio observations. It is found that the X-ray spectra of the events are like those of thermal bremsstrahlung from single-temperature plasmas in the 10-60 keV range if photospheric albedo is taken into account. The temperature-emission correlation indicates adiabatic compression followed by adiabatic expansion and that the electron distribution remains isotropic. H-alpha data suggest compressive energy transfer. The projected areas and volumes of the flares are estimated assuming that X-ray and microwave emissions are produced in a single thermal plasma. Electron densities of about 10 to the 9th/cu cm are found for homogeneous, spherically symmetric sources. It is noted that the strong self-absorption of hot-plasma gyrosynchrotron radiation reveals low magnetic field strengths.

  1. Exceptional groups from open strings


    Gaberdiel, Matthias R.; Zwiebach, Barton


    We consider type IIB theory compactified on a two-sphere in the presence of mutually nonlocal 7-branes. The BPS states associated with the gauge vectors of exceptional groups are seen to arise from open strings connecting the 7-branes, and multi-pronged open strings capable of ending on more than two 7-branes. These multi-pronged strings are built from open string junctions that arise naturally when strings cross 7-branes. The different string configurations can be multiplied as traditional o...

  2. Exceptional Family Member Program EFM (United States)


    patient facilities. e6 Points of Contact for the Exceptional Family Member Program ’ American Cleft Palate National Association for Foundation Alzheimer’s 1...area, D 0 Contact the Easter Seal Society regarding the Early Intervention Program for infants with special needs. 3 0 "!i I . . Other’Resources...800-24- CLEFT - (412) 481-1370 1-800-272-3900 -- (312) 335-8700 American Liver Foundation National Cancer Institute 1-800-223-0171) - (201) 256-2550 1

  3. Exceptional geometry and Borcherds superalgebras

    Energy Technology Data Exchange (ETDEWEB)

    Palmkvist, Jakob [Mitchell Institute for Fundamental Physics and Astronomy, Texas A& M University,College Station, TX 77843 (United States)


    We study generalized diffeomorphisms in exceptional geometry with U-duality group E{sub n(n)} from an algebraic point of view. By extending the Lie algebra e{sub n} to an infinite-dimensional Borcherds superalgebra, involving also the extension to e{sub n+1}, the generalized Lie derivatives can be expressed in a simple way, and the expressions take the same form for any n≤7. The closure of the transformations then follows from the Jacobi identity and the grading of e{sub n+1} with respect to e{sub n}.

  4. Exceptional geometry and Borcherds superalgebras (United States)

    Palmkvist, Jakob


    We study generalized diffeomorphisms in exceptional geometry with U-duality group E n( n) from an algebraic point of view. By extending the Lie algebra {e}_n to an infinite-dimensional Borcherds superalgebra, involving also the extension to {e}_{n+1} , the generalized Lie derivatives can be expressed in a simple way, and the expressions take the same form for any n ≤ 7. The closure of the transformations then follows from the Jacobi identity and the grading of {e}_{n+1} with respect to {e}_n.

  5. Exceptional Visible-Light Activities of TiO2-Coupled N-Doped Porous Perovskite LaFeO3 for 2,4-Dichlorophenol Decomposition and CO2 Conversion. (United States)

    Humayun, Muhammad; Qu, Yang; Raziq, Fazal; Yan, Rui; Li, Zhijun; Zhang, Xuliang; Jing, Liqiang


    In this work, TiO2-coupled N-doped porous perovskite-type LaFeO3 nanocomposites as highly efficient, cheap, stable, and visible-light photocatalysts have successfully been prepared via wet chemical processes. It is shown that the amount-optimized nanocomposite exhibits exceptional visible-light photocatalytic activities for 2,4-dichlorophenol (2,4-DCP) degradation by ∼3-time enhancement and for CO2 conversion to fuels by ∼4-time enhancement, compared to the resulting porous LaFeO3 with rather high photoactivity due to its large surface area. It is clearly demonstrated, by means of various experimental data, especially for the ·OH amount evaluation, that the obviously enhanced photoactivities are attributed to the increased specific surface area by introducing pores, to the extended visible-light absorption by doping N to create surface states, and to the promoted charge transfer and separation by coupling TiO2. Moreover, it is confirmed from radical trapping experiments that the photogenerated holes are the predominant oxidants in the photocatalytic degradation of 2,4-DCP. Furthermore, a possible photocatalytic degradation mechanism for 2,4-DCP is proposed mainly based on the resultant crucial intermediate, 2-chlorosuccinic acid with m/z = 153, that readily transform into CO2 and H2O. This work opens up a new feasible route to synthesize visible-light-responsive high-activity perovskite-type nanophotocatalysts for efficient environmental remediation and energy production.

  6. Lupus flares in two established end-stage renal disease patients with on-line hemodiafiltration during pregnancy - case series. (United States)

    Althaf, M M; Abdelsalam, M S; Alfurayh, O I


    Many patients with established end-stage renal disease on maintenance dialysis as a result of lupus nephritis are young females in their reproductive years. We report two such patients dialyzed with on-line hemodiafiltration who developed reactivation of lupus disease activity only when they conceived after initial systemic lupus erythematosus burnout. We believe that the flare was triggered by both efficient dialysis and hormonal changes during pregnancy. The flares were treated with oral corticosteroids with an excellent response. Both patients had live births but delivered preterm. © The Author(s) 2014 Reprints and permissions:

  7. A Rapidly Evolving Active Region NOAA 8032 observed on April ...

    Indian Academy of Sciences (India)



    Apr 15, 1997 ... The GOES X-ray data showed a number of sub-flares and two C-class flares during the 8-9 hours of its evolution. ... (1991), where they observed X-class flares near the sites of. EFR. Wang & Shi (1993) suggested that ... region using the USΟ video magnetograph (Mathew et al. 1998). The active region. 233 ...

  8. Loops in exceptional field theory

    Energy Technology Data Exchange (ETDEWEB)

    Bossard, Guillaume [Centre de Physique Théorique, Ecole Polytechnique, CNRS, Université Paris-Saclay,91128 Palaiseau cedex (France); Kleinschmidt, Axel [Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut),Am Mühlenberg 1, DE-14476 Potsdam (Germany); International Solvay Institutes,ULB-Campus Plaine CP231, BE-1050 Brussels (Belgium)


    We study certain four-graviton amplitudes in exceptional field theory in dimensions D≥4 up to two loops. As the formulation is manifestly invariant under the U-duality group E{sub 11−D}(ℤ), our resulting expressions can be expressed in terms of automorphic forms. In the low energy expansion, we find terms in the M-theory effective action of type R{sup 4}, ∇{sup 4}R{sup 4} and ∇{sup 6}R{sup 4} with automorphic coefficient functions in agreement with independent derivations from string theory. This provides in particular an explicit integral formula for the exact string theory ∇{sup 6}R{sup 4} threshold function. We exhibit moreover that the usual supergravity logarithmic divergences cancel out in the full exceptional field theory amplitude, within an appropriately defined dimensional regularisation scheme. We also comment on terms of higher derivative order and the role of the section constraint for possible counterterms.

  9. Infliximab Does Not Worsen Outcomes During Flare-ups Associated with Cytomegalovirus Infection in Patients with Ulcerative Colitis. (United States)

    Pillet, Sylvie; Jarlot, Camille; Courault, Mathilde; Del Tedesco, Emilie; Chardon, Renaud; Saint-Sardos, Pierre; Presles, Emilie; Phelip, Jean-Marc; Berthelot, Philippe; Pozzetto, Bruno; Roblin, Xavier


    Immunosuppressive therapies used for treating ulcerative colitis are known to favor chronic and latent viral diseases. This study aimed at evaluating prospectively the association between colonic cytomegalovirus (CMV) reactivation and anti-tumor necrosis factor (TNF) monoclonal antibodies (mabs) by comparison to azathioprine (AZA) in a series of flare-ups occurring in consecutive ulcerative colitis patients. A total of 109 flare-ups were recorded in 73 patients receiving a maintenance therapy by anti-TNF mabs (n = 69) or AZA (n = 40). The CMV DNA load in colonic tissue was determined by reverse transcription polymerase chain reaction on a pair of biopsies. The number of CMV reactivation was of 35% and 38% in patients receiving anti-TNF mabs and AZA, respectively. The median of CMV DNA load was 378 [10-29,800] and 8300 [10-3,25,000] copies/mg of tissue in patients treated by anti-TNF mabs and AZA, respectively (P = 0.11 by Mann-Whitney U test). In a subgroup of 45 patients under anti-TNF mabs requiring an optimized treatment by infliximab, clinical remission (partial Mayo score up (P = 0.52). Twenty of these patients underwent a second colonic biopsy 8 weeks after the initiation of flare-up therapy; except for 3 patients, the colonic CMV DNA load was stable or decreased. Patients under anti-TNF maintenance therapy are not at higher risk of CMV reactivation in case of flare-up. No reciprocal adverse influence was observed between anti-TNF mabs and CMV infection, suggesting that these drugs must be considered for treating flare-ups associated to CMV reactivation.

  10. Modelling combustion reactions for gas flaring and its resulting emissions

    Directory of Open Access Journals (Sweden)

    O. Saheed Ismail


    Full Text Available Flaring of associated petroleum gas is an age long environmental concern which remains unabated. Flaring of gas maybe a very efficient combustion process especially steam/air assisted flare and more economical than utilization in some oil fields. However, it has serious implications for the environment. This study considered different reaction types and operating conditions for gas flaring. Six combustion equations were generated using the mass balance concept with varying air and combustion efficiency. These equations were coded with a computer program using 12 natural gas samples of different chemical composition and origin to predict the pattern of emission species from gas flaring. The effect of key parameters on the emission output is also shown. CO2, CO, NO, NO2 and SO2 are the anticipated non-hydrocarbon emissions of environmental concern. Results show that the quantity and pattern of these chemical species depended on percentage excess/deficiency of stoichiometric air, natural gas type, reaction type, carbon mass content, impurities, combustion efficiency of the flare system etc. These emissions degrade the environment and human life, so knowing the emission types, pattern and flaring conditions that this study predicts is of paramount importance to governments, environmental agencies and the oil and gas industry.

  11. Evolution of flare ribbons, electric currents, and quasi-separatrix layers during an X-class flare (United States)

    Janvier, M.; Savcheva, A.; Pariat, E.; Tassev, S.; Millholland, S.; Bommier, V.; McCauley, P.; McKillop, S.; Dougan, F.


    Context. The standard model for eruptive flares has been extended to three dimensions (3D) in the past few years. This model predicts typical J-shaped photospheric footprints of the coronal current layer, forming at similar locations as the quasi-separatrix layers (QSLs). Such a morphology is also found for flare ribbons observed in the extreme ultraviolet (EUV) band, and in nonlinear force-free field (NLFFF) magnetic field extrapolations and models. Aims: We study the evolution of the photospheric traces of the current density and flare ribbons, both obtained with the Solar Dynamics Observatory instruments. We aim to compare their morphology and their time evolution, before and during the flare, with the topological features found in a NLFFF model. Methods: We investigated the photospheric current evolution during the 06 September 2011 X-class flare (SOL2011-09-06T22:20) occurring in NOAA AR 11283 from observational data of the magnetic field obtained with the Helioseismic and Magnetic Imager aboard the Solar Dynamics Observatory. We compared this evolution with that of the flare ribbons observed in the EUV filters of the Atmospheric Imager Assembly. We also compared the observed electric current density and the flare ribbon morphology with that of the QSLs computed from the flux rope insertion method-NLFFF model. Results: The NLFFF model shows the presence of a fan-spine configuration of overlying field lines, due to the presence of a parasitic polarity, embedding an elongated flux rope that appears in the observations as two parts of a filament. The QSL signatures of the fan configuration appear as a circular flare ribbon that encircles the J-shaped ribbons related to the filament ejection. The QSLs, evolved via a magnetofrictional method, also show similar morphology and evolution as both the current ribbons and the EUV flare ribbons obtained several times during the flare. Conclusions: For the first time, we propose a combined analysis of the photospheric

  12. The strongest ever gamma-ray source in the sky: the December 2009 flare of 3C 454.3 (United States)

    Pacciani, Luigi; Vittorini, Valerio; Sakamoto, Takanori; Elena, Pian; Fiocchi, Mariateresa; Raiteri, Claudia Maria; Villata, Massimo; Striani, Edoardo; Vercellone, Stefano; D'Ammando, Filippo; Fugazza, Dino; Tiengo, Andrea; Tavani, Marco; Trispec BLAZAR Team; AGILE Collaboration; Swift Collaboration; Gasp-Webt Collaboration; Fabiani, Sergio

    In December 2009 the instruments aboard AGILE satellite detected a giant gamma-ray flare from the flat spectrum radio quasar 3C 454.3, reaching a peak flux of 2000.E-8 ph/cm2/s (E > 100M eV ) for one day, and showing a flux in excess of 800.E-8 ph/cm2/s for almost two weeks. AGILE observed spectral hardening of the source during the major flare. Before, during and after the giant flare, the source were monitored in radio, optical, x-ray, as well as in gamma-ray. The gamma-ray activity is not accompanied by a comparable increase in optical flux, as instead observed in the previous high activity periods of the source. The x-ray flux increased as expected, but started to fade one week earlier than the gamma-ray. We report the measurements obtained with kanata, the GASP-WEBT, REM, GRT, Swift, Rossi, and AGILE. Based the observed variability and spectra, we will discuss on the nature of the high gamma-ray activity, and on the jet physics, focusing on the giant flare, and on the similarities and differences with respect to the high activity periods observed in the last two years for the source.

  13. ATel 7453: Fermi LAT detection of a GeV flare from the FSRQ PKS 2032+107 (United States)

    Orienti, M.; D'Ammando, F.; Fermi Large Area Telescope Collaboration


    The Large Area Telescope (LAT), on board the Fermi Gamma-ray Space Telescope, has observed gamma-ray flaring activity from a source positionally consistent with the flat spectrum radio quasar PKS 2032+107 (also known as 3FGL J2035.3+1055, Acero et al. ...

  14. Further Exploration of Post-Flare Giant Arches (United States)

    West, Matthew; Seaton, Daniel B.; Dennis, Brian R.; feng, Li


    Recent observations from the SWAP EUV imager on-board PROBA2 and SXI X-ray observations from the GOES satellite have shown that post-flare giant arches and regular post-flare loops are one and the same thing. However, it is still not clear how certain loop systems are able to sustain prolonged growth to heights of approximately 400000 km (>0.5 solar-radii). In this presentation we further explore the energy deposition rate above post-flare loop systems through high-energy RHESSI observations. We also explore the difference between the loop systems through a multi-wavelength epoch analysis.

  15. Exceptional recurrence of flank destabilizations in the recent activity of the Colima volcanic complex, Mexico; Recurrence exceptionnelle de destabilisations de flanc dans l`activite recente du complexe volcanique du Colima, Mexique

    Energy Technology Data Exchange (ETDEWEB)

    Komorowski, J.C. [IPGP, (Mexico); Siebe, C. [Institut de Geofisica, UNAM (Mexico); Rodriguez, S. [Institut de Geologia, UNAM (Mexico); Cortes, A.; Navarro, C.; Gavilanes, J.C.


    This short paper reports on new {sup 14}C datings of debris flow units from the Nevado de Colima and Fuego de Colima volcanoes in Mexico. These new datings in connection with a detailed stratigraphic study in the deep canyons around the volcanoes has revealed an exceptional recurrence of flank destabilizations of the Fuego de Colima during the last 45000 years. The cumulated volume of debris in the whole Colima massif is estimated to 60-100 km{sup 3}. The correlation between Landsat satellite pictures and the distribution and age of the debris flows shows that both volcanoes are made of several post-destabilization remaining structures, and that both volcanoes were active and simultaneously collapsed 18500 years ago. The numerous fluvial-lacustrine sequences intercalated between the successive flows indicate that the debris flow were partially sedimented under water and could have led to catastrophic tsunamis towards the Pacific coast. Implications of this work are important because a population of more than 200000 inhabitants is living in a zone covered by several debris flows. (J.S.).

  16. Plasma Astrophysics, part II Reconnection and Flares

    CERN Document Server

    Somov, Boris V


    This well-illustrated monograph is devoted to classic fundamentals, current practice, and perspectives of modern plasma astrophysics. The first part is unique in covering all the basic principles and practical tools required for understanding and working in plasma astrophysics. The second part presents the physics of magnetic reconnection and flares of electromagnetic origin in space plasmas within the solar system; single and double stars, relativistic objects, accretion disks, and their coronae are also covered. This book is designed mainly for professional researchers in astrophysics. However, it will also be interesting and useful to graduate students in space sciences, geophysics, as well as advanced students in applied physics and mathematics seeking a unified view of plasma physics and fluid mechanics.

  17. Voriconazole-induced periostitis causing arthralgias mimicking a flare of granulomatosis with polyangiitis. (United States)

    Gladue, Heather S; Fox, David A


    We describe a case of voriconazole-induced periostitis that occurred in a 68-year-old woman with granulomatosis with polyangiitis. Our patient presented with months of severe hip pain limiting her daily activities, which was initially felt to be a flare of her granulomatosis with polyangiitis. However, upon further review, she had an elevated alkaline phosphatase and periostitis on her hip radiograph; voriconazole was held, and within 2 days she had marked improvement in her pain. Although this clinical syndrome is well documented in transplant patients, it is a rare complication in patients with autoimmune disorders. However, it is important because it may cause severe arthralgias that can mimic a flare of rheumatic diseases.

  18. Magnetic Field Modeling of Hot Channels in four Flare/CME Events (United States)

    Liu, Tie; Su, Yingna


    We study the magnetic structure and 3D geometrical morphology of four active regions with sigmoidal hot channels which produced flare/CME events. Observational study has been done by Cheng & Ding (2016). Using the flux rope insertion method developed by van Ballegooijen (2004), we construct a series of magnetic field models of the four flare/CME events. Through comparing with non-potential coronal loops observed by SDO/AIA , we find that the critical stable model (i.e.,a magnetic field configuration at the boundary between stable and unstable states in parameter space) and the best-fit preflare model (unstable model) which best matches observations for every case, and we think that the real preflare magnetic field configuration may lie between the two models. Finally we calculate the magnetic energy free energy and magnetic helicity of the two selected models,and study the eruption mechanism.


    Energy Technology Data Exchange (ETDEWEB)

    Doschek, G. A.; Warren, H. P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Dennis, B. R. [Solar Physics Laboratory, Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Reep, J. W. [Department of Physics and Astronomy, Rice University, Houston, TX 77005 (United States); Caspi, A. [Southwest Research Institute, Boulder, CO 80302 (United States)


    The Extreme-ultraviolet Imaging Spectrometer (EIS) on the Hinode spacecraft observed flare footpoint regions coincident with a surge for an M3.7 flare observed on 2011 September 25 at N12 E33 in active region 11302. The flare was observed in spectral lines of O vi, Fe x, Fe xii, Fe xiv, Fe xv, Fe xvi, Fe xvii, Fe xxiii, and Fe xxiv. The EIS observations were made coincident with hard X-ray bursts observed by RHESSI. Overlays of the RHESSI images on the EIS raster images at different wavelengths show a spatial coincidence of features in the RHESSI images with the EIS upflow and downflow regions, as well as loop-top or near-loop-top regions. A complex array of phenomena were observed, including multiple evaporation regions and the surge, which was also observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly telescopes. The slit of the EIS spectrometer covered several flare footpoint regions from which evaporative upflows in Fe xxiii and Fe xxiv lines were observed with Doppler speeds greater than 500 km s{sup −1}. For ions such as Fe xv both evaporative outflows (∼200 km s{sup −1}) and downflows (∼30–50 km s{sup −1}) were observed. Nonthermal motions from 120 to 300 km s{sup −1} were measured in flare lines. In the surge, Doppler speeds are found from about 0 to over 250 km s{sup −1} in lines from ions such as Fe xiv. The nonthermal motions could be due to multiple sources slightly Doppler-shifted from each other or turbulence in the evaporating plasma. We estimate the energetics of the hard X-ray burst and obtain a total flare energy in accelerated electrons of ≥7 × 10{sup 28} erg. This is a lower limit because only an upper limit can be determined for the low-energy cutoff to the electron spectrum. We find that detailed modeling of this event would require a multithreaded model owing to its complexity.

  20. 42 CFR 423.578 - Exceptions process. (United States)


    ... 42 Public Health 3 2010-10-01 2010-10-01 false Exceptions process. 423.578 Section 423.578 Public..., Redeterminations, and Reconsiderations § 423.578 Exceptions process. (a) Requests for exceptions to a plan's tiered... sponsor may design its exception process so that very high cost or unique drugs are not eligible for a...

  1. Flares from a candidate Galactic magnetar suggest a missing link to dim isolated neutron stars. (United States)

    Castro-Tirado, A J; de Ugarte Postigo, A; Gorosabel, J; Jelínek, M; Fatkhullin, T A; Sokolov, V V; Ferrero, P; Kann, D A; Klose, S; Sluse, D; Bremer, M; Winters, J M; Nuernberger, D; Pérez-Ramírez, D; Guerrero, M A; French, J; Melady, G; Hanlon, L; McBreen, B; Leventis, K; Markoff, S B; Leon, S; Kraus, A; Aceituno, F J; Cunniffe, R; Kubánek, P; Vítek, S; Schulze, S; Wilson, A C; Hudec, R; Durant, M; González-Pérez, J M; Shahbaz, T; Guziy, S; Pandey, S B; Pavlenko, L; Sonbas, E; Trushkin, S A; Bursov, N N; Nizhelskij, N A; Sánchez-Fernández, C; Sabau-Graziati, L


    Magnetars are young neutron stars with very strong magnetic fields of the order of 10(14)-10(15) G. They are detected in our Galaxy either as soft gamma-ray repeaters or anomalous X-ray pulsars. Soft gamma-ray repeaters are a rare type of gamma-ray transient sources that are occasionally detected as bursters in the high-energy sky. No optical counterpart to the gamma-ray flares or the quiescent source has yet been identified. Here we report multi-wavelength observations of a puzzling source, SWIFT J195509+261406. We detected more than 40 flaring episodes in the optical band over a time span of three days, and a faint infrared flare 11 days later, after which the source returned to quiescence. Our radio observations confirm a Galactic nature and establish a lower distance limit of approximately 3.7 kpc. We suggest that SWIFT J195509+261406 could be an isolated magnetar whose bursting activity has been detected at optical wavelengths, and for which the long-term X-ray emission is short-lived. In this case, a new manifestation of magnetar activity has been recorded and we can consider SWIFT J195509+261406 to be a link between the 'persistent' soft gamma-ray repeaters/anomalous X-ray pulsars and dim isolated neutron stars.

  2. Understanding extreme quasar optical variability with CRTS - I. Major AGN flares (United States)

    Graham, Matthew J.; Djorgovski, S. G.; Drake, Andrew J.; Stern, Daniel; Mahabal, Ashish A.; Glikman, Eilat; Larson, Steve; Christensen, Eric


    There is a large degree of variety in the optical variability of quasars and it is unclear whether this is all attributable to a single (set of) physical mechanism(s). We present the results of a systematic search for major flares in active galactic nucleus (AGN) in the Catalina Real-time Transient Survey as part of a broader study into extreme quasar variability. Such flares are defined in a quantitative manner as being atop of the normal, stochastic variability of quasars. We have identified 51 events from over 900 000 known quasars and high-probability quasar candidates, typically lasting 900 d and with a median peak amplitude of Δm = 1.25 mag. Characterizing the flare profile with a Weibull distribution, we find that nine of the sources are well described by a single-point single-lens model. This supports the proposal by Lawrence et al. that microlensing is a plausible physical mechanism for extreme variability. However, we attribute the majority of our events to explosive stellar-related activity in the accretion disc: superluminous supernovae, tidal disruption events and mergers of stellar mass black holes.

  3. The 2009 December Gamma-ray Flare of 3C 454.3: The Multifrequency Campaign (United States)

    Pacciani, L.; Vittorini, V.; Tavani, M.; Fiocchi, M. T.; Vercellone, S.; D'Ammando, F.; Sakamoto, T.; Pian, E.; Raiteri, C. M.; Villata, M.; Sasada, M.; Itoh, R.; Yamanaka, M.; Uemura, M.; Striani, E.; Fugazza, D.; Tiengo, A.; Krimm, H. A.; Stroh, M. C.; Falcone, A. D.; Curran, P. A.; Sadun, A. C.; Lahteenmaki, A.; Tornikoski, M.; Aller, H. D.; Aller, M. F.; Lin, C. S.; Larionov, V. M.; Leto, P.; Takalo, L. O.; Berdyugin, A.; Gurwell, M. A.; Bulgarelli, A.; Chen, A. W.; Donnarumma, I.; Giuliani, A.; Longo, F.; Pucella, G.; Argan, A.; Barbiellini, G.; Caraveo, P.; Cattaneo, P. W.; Costa, E.; De Paris, G.; Del Monte, E.; Di Cocco, G.; Evangelista, Y.; Ferrari, A.; Feroci, M.; Fiorini, M.; Fuschino, F.; Galli, M.; Gianotti, F.; Labanti, C.; Lapshov, I.; Lazzarotto, F.; Lipari, P.; Marisaldi, M.; Mereghetti, S.; Morelli, E.; Moretti, E.; Morselli, A.; Pellizzoni, A.; Perotti, F.; Piano, G.; Picozza, P.; Pilia, M.; Prest, M.; Rapisarda, M.; Rappoldi, A.; Rubini, A.; Sabatini, S.; Soffitta, P.; Trifoglio, M.; Trois, A.; Vallazza, E.; Zanello, D.; Colafrancesco, S.; Pittori, C.; Verrecchia, F.; Santolamazza, P.; Lucarelli, F.; Giommi, P.; Salotti, L.


    During the month of 2009 December, the blazar 3C 454.3 became the brightest gamma-ray source in the sky, reaching a peak flux F ~ 2000 × 10-8 photons cm-2 s-1 for E > 100 MeV. Starting in 2009 November intensive multifrequency campaigns monitored the 3C 454 gamma-ray outburst. Here, we report on the results of a two-month campaign involving AGILE, INTEGRAL, Swift/XRT, Swift/BAT, and Rossi XTE for the high-energy observations and Swift/UVOT, KANATA, Goddard Robotic Telescope, and REM for the near-IR/optical/UV data. GASP/WEBT provided radio and additional optical data. We detected a long-term active emission phase lasting ~1 month at all wavelengths: in the gamma-ray band, peak emission was reached on 2009 December 2-3. Remarkably, this gamma-ray super-flare was not accompanied by correspondingly intense emission in the optical/UV band that reached a level substantially lower than the previous observations in 2007-2008. The lack of strong simultaneous optical brightening during the super-flare and the determination of the broadband spectral evolution severely constrain the theoretical modeling. We find that the pre- and post-flare broadband behavior can be explained by a one-zone model involving synchrotron self-Compton plus external Compton emission from an accretion disk and a broad-line region. However, the spectra of the 2009 December 2-3 super-flare and of the secondary peak emission on 2009 December 9 cannot be satisfactorily modeled by a simple one-zone model. An additional particle component is most likely active during these states.

  4. Light Stops at Exceptional Points (United States)

    Goldzak, Tamar; Mailybaev, Alexei A.; Moiseyev, Nimrod


    Almost twenty years ago, light was slowed down to less than 10-7 of its vacuum speed in a cloud of ultracold atoms of sodium. Upon a sudden turn-off of the coupling laser, a slow light pulse can be imprinted on cold atoms such that it can be read out and converted into a photon again. In this process, the light is stopped by absorbing it and storing its shape within the atomic ensemble. Alternatively, the light can be stopped at the band edge in photonic-crystal waveguides, where the group speed vanishes. Here, we extend the phenomenon of stopped light to the new field of parity-time (P T ) symmetric systems. We show that zero group speed in P T symmetric optical waveguides can be achieved if the system is prepared at an exceptional point, where two optical modes coalesce. This effect can be tuned for optical pulses in a wide range of frequencies and bandwidths, as we demonstrate in a system of coupled waveguides with gain and loss.

  5. Gas Flaring: Carbon dioxide Contribution to Global Warming ...

    African Journals Online (AJOL)


    .info and Gas Flaring: Carbon dioxide Contribution to Global Warming. *AMAECHI ... contributor to global warming, environmental degradation, health risk and economic loss. The ... risks of climate change. Meeting ...

  6. A static model of chromospheric heating in solar flares (United States)

    Ricchiazzi, P. J.; Canfield, R. C.


    The response of the solar chromosphere to flare processes, namely nonthermal electrons, thermal conduction, and coronal pressure, is modeled. Finite difference methods employing linearization and iteration are used in obtaining simultaneous solutions to the equations of steady-state energy balance, hydrostatic equilibrium, radiative transfer, and atomic statistical equilibrium. The atmospheric response is assumed to be confined to one dimension by a strong vertical magnetic field. A solution is obtained to the radiative transfer equation for the most important optically thick transitions of hydrogen, magnesium, and calcium. The theoretical atmospheres discussed here are seen as elucidating the role of various physical processes in establishing the structure of flare chromospheres. At low coronal pressures, conduction is found to be more important than nonthermal electrons in establishing the position of the transition region. Only thermal conduction can adequately account for the chromospheric evaporation in compact flares. Of the mechanisms considered, only nonthermal electrons bring about significant heating below the flare transition region.

  7. Gamma-Ray Imager Polarimeter for Solar Flares Project (United States)

    National Aeronautics and Space Administration — We propose here to develop the Gamma-Ray Imager/Polarimeter for Solar flares (GRIPS), the next-generation instrument for high-energy solar observations. GRIPS will...

  8. Gamma-ray flares from the Crab Nebula. (United States)

    Abdo, A A; Ackermann, M; Ajello, M; Allafort, A; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bouvier, A; Brandt, T J; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Cannon, A; Caraveo, P A; Casandjian, J M; Çelik, Ö; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Costamante, L; Cutini, S; D'Ammando, F; Dermer, C D; de Angelis, A; de Luca, A; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Drlica-Wagner, A; Dubois, R; Dumora, D; Favuzzi, C; Fegan, S J; Ferrara, E C; Focke, W B; Fortin, P; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; Hayashi, K; Hayashida, M; Hays, E; Horan, D; Itoh, R; Jóhannesson, G; Johnson, A S; Johnson, T J; Khangulyan, D; Kamae, T; Katagiri, H; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Latronico, L; Lee, S-H; Lemoine-Goumard, M; Longo, F; Loparco, F; Lubrano, P; Madejski, G M; Makeev, A; Marelli, M; Mazziotta, M N; McEnery, J E; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Naumann-Godo, M; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Okumura, A; Omodei, N; Ormes, J F; Ozaki, M; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Pierbattista, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Ray, P S; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Romani, R W; Sadrozinski, H F-W; Sanchez, D; Saz Parkinson, P M; Scargle, J D; Schalk, T L; Sgrò, C; Siskind, E J; Smith, P D; Spandre, G; Spinelli, P; Strickman, M S; Suson, D J; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Troja, E; Uchiyama, Y; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Wang, P; Wood, K S; Yang, Z; Ziegler, M


    A young and energetic pulsar powers the well-known Crab Nebula. Here, we describe two separate gamma-ray (photon energy greater than 100 mega-electron volts) flares from this source detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The first flare occurred in February 2009 and lasted approximately 16 days. The second flare was detected in September 2010 and lasted approximately 4 days. During these outbursts, the gamma-ray flux from the nebula increased by factors of four and six, respectively. The brevity of the flares implies that the gamma rays were emitted via synchrotron radiation from peta-electron-volt (10(15) electron volts) electrons in a region smaller than 1.4 × 10(-2) parsecs. These are the highest-energy particles that can be associated with a discrete astronomical source, and they pose challenges to particle acceleration theory.

  9. Intralesional triamcinolone for flares of hidradenitis suppurativa (HS)

    DEFF Research Database (Denmark)

    Riis, Peter Theut; Boer, Jurr; Prens, Errol P


    BACKGROUND: Hidradenitis suppurativa (HS) is a chronic inflammatory disease of the hair follicle. Standard practice of managing acute flares with corticosteroid injection lacks scientific evidence. OBJECTIVE: We sought to assess the outcomes of routine treatment using intralesional triamcinolone ...

  10. A physically-based approach for lens flare simulation


    Keshmirian, Arash


    In this thesis, we present a physically-based method for the computer graphics simulation of lens flare phenomena in photographic lenses. The proposed method can be used to render lens flares from nearly all types of lenses regardless of optical construction. The method described in this thesis utilizes the photon mapping technique (Jensen, 2001) to simulate the flow of light within the lens, and captures the visual effects of internal reflections and scattering within (and between) the optic...

  11. Electron and proton kinetics and dynamics in flaring atmospheres

    CERN Document Server

    Zharkova, Valentina


    This timely book presents new research results on high-energy particle physics related to solar flares, covering the theory and applications of the reconnection process in a clear and comprehensible way. It investigates particle kinetics and dynamics in flaring atmospheres and their diagnostics from spectral observations, while providing an analysis of the observation data and techniques and comparing various models. Written by an internationally acclaimed expert, this is vital reading for all solar, astro-, and plasma physicists working in the field.

  12. Reexamining the "Serbian exceptionalism" thesis

    Directory of Open Access Journals (Sweden)

    Vujačić Veljko


    Full Text Available Although former Yugoslavia constituted what was widely held to be the most "promising" communist country in terms of potentials for economic reform and political democratization, Serbia remained the only East European country in which the former communist elite managed to defeat its opponents in a series of elections and preserve important elements of institutional and ideological continuity with the old system. Moreover, its regime played a conspicuous role in Yugoslavia's violent collapse. In the specialist literature, the "Serbian exceptionalism" thesis has been elaborated in a number of forms. These are critically reviewed in the first part of the paper, classifying the paradigms according to whether they emphasize: 1 Serbian traditionalist, authoritarian, and collectivist political culture, 2 the affinity between traditional Serbian national populism, Russophile anti-Westernism, and communism, 3 the exclusivist and assimilating character of Serbian nationalism, or 4 the appeals of the contemporary Serbian political elite led by S. Milošević. In the second part of the paper an alternative explanation is presented that seeks to be both interpretively adequate and causally plausible. It rests on five basic factors: 1 historical legacy (the distinctive character of the Serbian collective historical experience and the relationship between Serbian and Yugoslav identities; 2 institutional analysis (the unintended consequences of communist federalism; 3 ideology (the revival of narratives of "Serbian victimization" by Serbian intellectuals; 4 leadership and social base (the peculiar nature of Milošević's appeals in the period of the terminal crisis of communism; and 5 the role of the Diaspora (the perceived ethnic threat among Serbs in Croatia and Bosnia. .

  13. SmartFlares fail to reflect their target transcripts levels. (United States)

    Czarnek, Maria; Bereta, Joanna


    SmartFlare probes have recently emerged as a promising tool for visualisation and quantification of specific RNAs in living cells. They are supposed to overcome the common drawbacks of current methods for RNA analysis: the need of cell fixation or lysis, or the requirements for genetic manipulations. In contrast to the traditional methods, SmartFlare probes are also presumed to provide information on RNA levels in single cells. Disappointingly, the results of our comprehensive study involving probes specific to five different transcripts, HMOX1, IL6, PTGS2, Nrg1, and ERBB4, deny the usefulness of SmartFlare probes for RNA analysis. We report a total lack of correlation between fluorescence intensities of SmartFlare probes and the levels of corresponding RNAs assessed by RT-qPCR. To ensure strong differences in the levels of analysed RNAs, their expression was modified via: (i) HMOX1-knockdown generated by CRISPR-Cas9 genome editing, (ii) hemin-mediated stimulation of HMOX1- and IL1β-mediated stimulation of IL6- and PTGS2 transcription, (iii) lentiviral vector-mediated Nrg1 overexpression. Additionally, ERBB4-specific SmartFlare probe failed to distinguish between ERBB4-expressing and non-expressing cell lines. Finally, we demonstrated that fluorescence intensity of HMOX1-specific SmartFlare probe corresponds to the efficacy of its uptake and/or accumulation.

  14. Simulation of hard X-ray time delays in solar flares

    Directory of Open Access Journals (Sweden)

    Yuri E. Charikov


    The spectra were derived from HXR integral over the active region. They were interpreted on the basis of a model of kinetics of accelerated electrons propagating in the flaring loop with the given plasma concentration distribution and magnetic field configuration. The kinetics in question is governed by the processes of Coulomb scattering, reflecting in the converging magnetic field, and with the return current factored in. Solving the time-dependent relativistic Fokker–Planck equation for the given initial conditions allowed to find the time-dependent electron distribution function along the loop. The brightness distribution of the bremsstrahlung of HXR derived from the electron distribution functions was calculated for different quantum energies along the flaring loop and used to plot the time-delays spectra. The calculated data showed that decreasing time-delay spectra were tractable assuming regions of electrons acceleration and injection were separated. The distinction between time-delays spectra from the looptop and footpoints was established. Hence the measurements with high resolving power may produce comprehensive data on the processes of electron transport and acceleration during solar flares.

  15. SoFAST: Automated Flare Detection with the PROBA2/SWAP EUV Imager (United States)

    Bonte, K.; Berghmans, D.; De Groof, A.; Steed, K.; Poedts, S.


    The Sun Watcher with Active Pixels and Image Processing (SWAP) EUV imager onboard PROBA2 provides a non-stop stream of coronal extreme-ultraviolet (EUV) images at a cadence of typically 130 seconds. These images show the solar drivers of space-weather, such as flares and erupting filaments. We have developed a software tool that automatically processes the images and localises and identifies flares. On one hand, the output of this software tool is intended as a service to the Space Weather Segment of ESA's Space Situational Awareness (SSA) program. On the other hand, we consider the PROBA2/SWAP images as a model for the data from the Extreme Ultraviolet Imager (EUI) instrument prepared for the future Solar Orbiter mission, where onboard intelligence is required for prioritising data within the challenging telemetry quota. In this article we present the concept of the software, the first statistics on its effectiveness and the online display in real time of its results. Our results indicate that it is not only possible to detect EUV flares automatically in an acquired dataset, but that quantifying a range of EUV dynamics is also possible. The method is based on thresholding of macropixelled image sequences. The robustness and simplicity of the algorithm is a clear advantage for future onboard use.

  16. X-ray flaring from Sagittarius A*: exploring the Milky Way black hole through its brightest flares (United States)

    Nynka, Melania; Haggard, Daryl


    Sagittarius A* is the supermassive black hole at the center of our own Milky Way galaxy. Ambitious monitoring campaigns have yielded rich multiwavelength, time-resolved data, which have the power to probe the physical processes that underlie Sgr A*'s quiescent and flare emission. In 2013 and 2014 the Chandra X-ray Observatory captured two extremely luminous flares from Sgr A*, the two brightest ever detected in X-ray. I will describe the spectral and temporal properties of these flares, how they compare to previous analysis, and the possible physical processes driving the Sgr A* variability. I will also discuss the power spectral densities of the flares which may contain information about the black hole's ISCO and spin.

  17. Solar Flare Track Exposure Ages in Regolith Particles: A Calibration for Transmission Electron Microscope Measurements (United States)

    Berger, Eve L.; Keller, Lindsay P.


    Mineral grains in lunar and asteroidal regolith samples provide a unique record of their interaction with the space environment. Space weathering effects result from multiple processes including: exposure to the solar wind, which results in ion damage and implantation effects that are preserved in the rims of grains (typically the outermost 100 nm); cosmic ray and solar flare activity, which result in track formation; and impact processes that result in the accumulation of vapor-deposited elements, impact melts and adhering grains on particle surfaces. Determining the rate at which these effects accumulate in the grains during their space exposure is critical to studies of the surface evolution of airless bodies. Solar flare energetic particles (mainly Fe-group nuclei) have a penetration depth of a few millimeters and leave a trail of ionization damage in insulating materials that is readily observable by transmission electron microscope (TEM) imaging. The density of solar flare particle tracks is used to infer the length of time an object was at or near the regolith surface (i.e., its exposure age). Track measurements by TEM methods are routine, yet track production rate calibrations have only been determined using chemical etching techniques [e.g., 1, and references therein]. We used focused ion beam-scanning electron microscope (FIB-SEM) sample preparation techniques combined with TEM imaging to determine the track density/exposure age relations for lunar rock 64455. The 64455 sample was used earlier by [2] to determine a track production rate by chemical etching of tracks in anorthite. Here, we show that combined FIB/TEM techniques provide a more accurate determination of a track production rate and also allow us to extend the calibration to solar flare tracks in olivine.

  18. Oilfield Flare Gas Electricity Systems (OFFGASES Project)

    Energy Technology Data Exchange (ETDEWEB)

    Rachel Henderson; Robert Fickes


    The Oilfield Flare Gas Electricity Systems (OFFGASES) project was developed in response to a cooperative agreement offering by the U.S. Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) under Preferred Upstream Management Projects (PUMP III). Project partners included the Interstate Oil and Gas Compact Commission (IOGCC) as lead agency working with the California Energy Commission (CEC) and the California Oil Producers Electric Cooperative (COPE). The project was designed to demonstrate that the entire range of oilfield 'stranded gases' (gas production that can not be delivered to a commercial market because it is poor quality, or the quantity is too small to be economically sold, or there are no pipeline facilities to transport it to market) can be cost-effectively harnessed to make electricity. The utilization of existing, proven distribution generation (DG) technologies to generate electricity was field-tested successfully at four marginal well sites, selected to cover a variety of potential scenarios: high Btu, medium Btu, ultra-low Btu gas, as well as a 'harsh', or high contaminant, gas. Two of the four sites for the OFFGASES project were idle wells that were shut in because of a lack of viable solutions for the stranded noncommercial gas that they produced. Converting stranded gas to useable electrical energy eliminates a waste stream that has potential negative environmental impacts to the oil production operation. The electricity produced will offset that which normally would be purchased from an electric utility, potentially lowering operating costs and extending the economic life of the oil wells. Of the piloted sites, the most promising technologies to handle the range were microturbines that have very low emissions. One recently developed product, the Flex-Microturbine, has the potential to handle the entire range of oilfield gases. It is deployed at an oilfield near Santa Barbara to run on waste gas

  19. The effect of a strong stellar flare on the atmospheric chemistry of an earth-like planet orbiting an M dwarf. (United States)

    Segura, Antígona; Walkowicz, Lucianne M; Meadows, Victoria; Kasting, James; Hawley, Suzanne


    Main sequence M stars pose an interesting problem for astrobiology: their abundance in our galaxy makes them likely targets in the hunt for habitable planets, but their strong chromospheric activity produces high-energy radiation and charged particles that may be detrimental to life. We studied the impact of the 1985 April 12 flare from the M dwarf AD Leonis (AD Leo), simulating the effects from both UV radiation and protons on the atmospheric chemistry of a hypothetical, Earth-like planet located within its habitable zone. Based on observations of solar proton events and the Neupert effect, we estimated a proton flux associated with the flare of 5.9 × 10⁸ protons cm⁻² sr⁻¹ s⁻¹ for particles with energies >10 MeV. Then we calculated the abundance of nitrogen oxides produced by the flare by scaling the production of these compounds during a large solar proton event called the Carrington event. The simulations were performed with a 1-D photochemical model coupled to a 1-D radiative/convective model. Our results indicate that the UV radiation emitted during the flare does not produce a significant change in the ozone column depth of the planet. When the action of protons is included, the ozone depletion reaches a maximum of 94% two years after the flare for a planet with no magnetic field. At the peak of the flare, the calculated UV fluxes that reach the surface, in the wavelength ranges that are damaging for life, exceed those received on Earth during less than 100 s. Therefore, flares may not present a direct hazard for life on the surface of an orbiting habitable planet. Given that AD Leo is one of the most magnetically active M dwarfs known, this conclusion should apply to planets around other M dwarfs with lower levels of chromospheric activity.

  20. Variability in the Reporting of Serum Urate and Flares in Gout Clinical Trials

    DEFF Research Database (Denmark)

    Stamp, Lisa K; Morillon, Melanie B; Taylor, William J


    OBJECTIVE: To describe the ways in which serum urate (SU) and gout flares are reported in clinical trials, and to propose minimum reporting requirements. METHODS: This analysis was done as part of a systematic review aiming to validate SU as a biomarker for gout. The ways in which SU and flares.......3%) of these reporting at more than just the final study visit. Two ways of reporting gout flares were identified: mean flare rate and percentage of participants with flares. There was variability in time periods over which flares rates were reported. CONCLUSION: There is inconsistent reporting of SU and flares in gout...... studies. Reporting the percentage of participants who achieve a target SU reflects international treatment guidelines. SU should also be reported as a continuous variable with a relevant central and dispersion estimate. Gout flares should be reported as both percentage of participants and mean flare rates...


    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, Adam F. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Mathioudakis, Mihalis [Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast, BT7 1NN (United Kingdom); Hawley, Suzanne L.; Hilton, Eric J. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Wisniewski, John P. [HL Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W Brooks Street, Norman, OK 73019 (United States); Dhillon, Vik S. [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Marsh, Tom R. [Department of Physics, Gibbet Hill Road, University of Warwick, Coventry CV4 7AL (United Kingdom); Brown, Benjamin P., E-mail: [Laboratory for Atmospheric and Space Physics and Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, Colorado 80309 (United States)


    We present a large data set of high-cadence dMe flare light curves obtained with custom continuum filters on the triple-beam, high-speed camera system ULTRACAM. The measurements provide constraints for models of the near-ultraviolet (NUV) and optical continuum spectral evolution on timescales of ≈1 s. We provide a robust interpretation of the flare emission in the ULTRACAM filters using simultaneously obtained low-resolution spectra during two moderate-sized flares in the dM4.5e star YZ CMi. By avoiding the spectral complexity within the broadband Johnson filters, the ULTRACAM filters are shown to characterize bona fide continuum emission in the NUV, blue, and red wavelength regimes. The NUV/blue flux ratio in flares is equivalent to a Balmer jump ratio, and the blue/red flux ratio provides an estimate for the color temperature of the optical continuum emission. We present a new “color–color” relationship for these continuum flux ratios at the peaks of the flares. Using the RADYN and RH codes, we interpret the ULTRACAM filter emission using the dominant emission processes from a radiative-hydrodynamic flare model with a high nonthermal electron beam flux, which explains a hot, T ≈ 10{sup 4} K, color temperature at blue-to-red optical wavelengths and a small Balmer jump ratio as observed in moderate-sized and large flares alike. We also discuss the high time resolution, high signal-to-noise continuum color variations observed in YZ CMi during a giant flare, which increased the NUV flux from this star by over a factor of 100.

  2. A tool to identify recent or present rheumatoid arthritis flare from both patient and physician perspectives: the 'FLARE' instrument. (United States)

    Berthelot, Jean-Marie; De Bandt, Michel; Morel, Jacques; Benatig, Fatima; Constantin, Arnaud; Gaudin, Philippe; Le Loet, Xavier; Maillefert, Jean-Francis; Meyer, Olivier; Pham, Thao; Saraux, Alain; Solau-Gervais, Elisabeth; Spitz, Elisabeth; Wendling, Daniel; Fautrel, Bruno; Guillemin, Francis


    There is a lack of consensus about the definition of flare of rheumatoid arthritis (RA) and a measurement tool. To develop a self-administered tool integrating the perspectives of the patient and the rheumatologist, enabling the detection of present or recent-past RA flare. The patient perspective was explored by semistructured individual interviews of patients with RA. Two health psychologists conducted a content analysis to extract items best describing flare from the interviews. The physician's perspective was explored through a Delphi exercise conducted among a panel of 13 rheumatologists. A comprehensive list of items produced in the first round was reduced in a four-round Delphi process to select items cited by at least 75% of the respondents. The identified elements were assembled in domains-each converted into a statement-to constitute the final self-administered Flare Assessment in Rheumatoid Arthritis (FLARE) questionnaire. The content of 99 patient interviews was analysed, and 10 domains were identified: joint swelling or pain, night pain, fatigue and different emotional consequences, as well as analgesic intake. The Delphi process for physicians identified eight domains related to objective RA symptoms and drug intake, of which only four were common to domains for patients. Finally, 13 domains were retained in the FLARE questionnaire, formulated as 13 statements with a Likert-scale response modality of six answers ranging from 'absolutely true' to 'completely untrue'. Two different methods, for patient and physician perspectives, were used to develop the FLARE self-administered questionnaire, which can identify past or present RA flare.

  3. Ultraviolet Spectroscopy of Tidal Disruption Flares (United States)

    Cenko, Stephen B.


    When a star passes within the sphere of disruption of a massive black hole, tidal forces will overcome self-gravity and unbind the star. While approximately half of the stellar debris is ejected at high velocities, the remaining material stays bound to the black hole and accretes, resulting in a luminous, long-lived transient known as a tidal disruption flare (TDF). In addition to serving as unique laboratories for accretion physics,TDFs offer the hope of measuring black hole masses in galaxies much too distant for resolved kinematic studies.In order to realize this potential, we must better understand the detailed processes by which the bound debris circularizes and forms an accretion disk. Spectroscopy is critical to this effort, as emission and absorption line diagnostics provide insight into the location and physical state (velocity, density, composition) of the emitting gas (in analogy with quasars). UV spectra are particularly critical, as most strong atomic features fall in this bandpass, and high-redshift TDF discoveries from LSST will sample rest-frame UV wavelengths.Here I present recent attempts to obtain UV spectra of tidal disruption flares. I describe the UV spectrum of ASASSN-14li, in which we detect three classes of features: narrow absorption from the Milky Way (probably a high-velocity cloud), and narrow absorption and broad (2000-8000 km s-1) emission lines at or near the systemic host velocity. The absorption lines are blueshifted with respect to the emission lines by 250-400 km s-1. Due both to this velocity offset and the lack of common low-ionization features (Mg II, Fe II), we argue these arise from the same absorbing material responsible for the low-velocity outflow discovered at X-ray wavelengths. The broad nuclear emission lines display a remarkable abundance pattern: N III], N IV], and He II are quite prominent, while the common quasar emission lines of C III] and Mg II are weak or entirely absent. Detailed modeling of this spectrum will

  4. Serf studies of mass motions arising in flares. [Study of Energy Release in Flares (United States)

    Wagner, W. J.


    It is believed that radio type IVs, co-spatial with dense hot plasmoids, may be the result of a plasma radiation emission mechanism. The injection of mass into the corona was recently observed in chromospheric and coronal lines with magnetic field changes and also at very high speeds into loops. The start time of coronal loop transients, if extrapolated to the chromosphere, in most cases precedes flare H-alpha or X-ray emission. Observational inferences from polarization and other studies are seen as favoring the three-dimensional bubble over the planar loop as a description of coronal mass motions.

  5. Active Region Photospheric Magnetic Properties Derived from Line-of-Sight and Radial Fields (United States)

    Guerra, J. A.; Park, S.-H.; Gallagher, P. T.; Kontogiannis, I.; Georgoulis, M. K.; Bloomfield, D. S.


    The effect of using two representations of the normal-to-surface magnetic field to calculate photospheric measures that are related to the active region (AR) potential for flaring is presented. Several AR properties were computed using line-of-sight (B_{los}) and spherical-radial (Br) magnetograms from the Space-weather HMI Active Region Patch (SHARP) products of the Solar Dynamics Observatory, characterizing the presence and features of magnetic polarity inversion lines, fractality, and magnetic connectivity of the AR photospheric field. The data analyzed correspond to {≈ }4{,}000 AR observations, achieved by randomly selecting 25% of days between September 2012 and May 2016 for analysis at 6-hr cadence. Results from this statistical study include: i) the Br component results in a slight upwards shift of property values in a manner consistent with a field-strength underestimation by the B_{los} component; ii) using the Br component results in significantly lower inter-property correlation in one-third of the cases, implying more independent information as regards the state of the AR photospheric magnetic field; iii) flaring rates for each property vary between the field components in a manner consistent with the differences in property-value ranges resulting from the components; iv) flaring rates generally increase for higher values of properties, except the Fourier spectral power index that has flare rates peaking around a value of 5/3. These findings indicate that there may be advantages in using Br rather than B_{los} in calculating flare-related AR magnetic properties, especially for regions located far from central meridian.

  6. Social Factors Contributing to Exceptional Navajo Children (United States)

    Leslie, Ernest


    Factors leading to exceptionality in Navajo children are explored, reactions of Navajo families to exceptionality and mental retardation are considered, and problems in providing special education services to this population are pointed out. (SBH)

  7. Adapting American Policymaking to Overcome American Exceptionalism (United States)


    permission of the author 14. ABSTRACT the thesis begins with the etymology of American exceptionalism and the way in which its connotation has changed...Author. ABSTRACT The thesis begins with the etymology of American exceptionalism and the way in which its connotation has changed throughout American...impact. CONTENTS CHAPTER 1: INTRODUCTION I The Etymology and History of American Exceptionalism 3 CHAPTER 2: AMERICAN EXCEPTIONALISM, THE EARLY YEARS 7

  8. A transactional model for automatic exception handling


    Cabral, Bruno Miguel Brás


    Tese de doutoramento em Engenharia Informática apresentada à Fac. de Ciências e Tecnologia da Univ. de Coimbra Exception handling mechanisms have been around for more than 30 years. Although modern exceptions systems are not very different from the early models, the large majority of modern programming languages rely on exception handling constructs for dealing with errors and abnormal situations. Exceptions have several advantages over other error handling mechanisms, such as the return o...

  9. Effects of oil exploration on the anatomy and antimicrobial activity of ...

    African Journals Online (AJOL)

    Nigeria flares much natural gas associated with oil exploration like many other countries of the world. A major problem of gas flaring is the release of large amounts of methane, which has the potential to affect medicinal plants. The effects of gas flaring on the anatomy and antimicrobial activities of Annona muricata, used by ...

  10. Giant Radio Flare of Cygnus X-3 in September 2016 (United States)

    Trushkin, S. A.; Nizhelskij, N. A.; Tsybulev, P. G.; Zhekanis, G. V.


    In the long-term multi-frequency monitoring program of the microquasars with RATAN-600 we discovered the giant flare from X-ray binary Cyg X-3 on 13 September 2016. It happened after 2000 days of the 'quiescent state' of the source passed after the former giant flare (˜18 Jy) in March 2011. We have found that during this quiet period the hard X-ray flux (Swift/BAT, 15-50 keV) and radio flux (RATAN-600, 11 GHz) have been strongly anti-correlated. Both radio flares occurred after transitions of the microquasar to a 'hypersoft' X-ray state that occurred in February 2011 and in the end of August 2016. The giant flare was predicted by us in the first ATel (Trushkin et al. (2016)). Indeed after dramatic decrease of the hard X-ray Swift 15-50 keV flux and RATAN 4- 11 GHz fluxes (a 'quenched state') a small flare (0.7 Jy at 4-11 GHz) developed on MJD 57632 and then on MJD 57644.5 almost simultaneously with X-rays radio flux rose from 0.01 to 15 Jy at 4.6 GHz during few days. The rise of the flaring flux is well fitted by a exponential law that could be a initial phase of the relativistic electrons generation by internal shock waves in the jets. Initially spectra were optically thick at frequencies lower 2 GHz and optically thin at frequencies higher 8 GHz with typical spectral index about -0.5. After maximum of the flare radio fluxes at all frequencies faded out with exponential law.

  11. Spectrally adapted red flare tracers with superior spectral performance

    Directory of Open Access Journals (Sweden)

    Ramy Sadek


    Full Text Available The production of bright light, with vivid color, is the primary purpose of signaling, illuminating devices, and fire control purposes. This study, reports on the development of red flame compositions with enhanced performance in terms of luminous intensity, and color quality. The light intensity and the imprint spectra of developed red flame compositions to standard NATO red tracer (R-284 NATO were measured using digital luxmeter, and UV–Vis. spectrometer. The main giving of this study is that the light intensity of standard NATO red tracer was increased by 72%, the color quality was also improved by 60% (over the red band from 650 to 780 nm. This enhanced spectral performance was achieved by means of deriving the combustion process to maximize the formation of red color emitting species in the combustion flame. Thanks to the optimum ratio of color source to color intensifier using aluminum metal fuel; this approach offered the highest intensity and color quality. Upon combustion, aluminum was found to maximize the formation SrCL (the main reactive red color emitting species and to minimize the interfering incandescent emission resulted from MgO and SrO. Quantification of active red color emitting species in the combustion flame was conducted using chemical equilibrium thermodynamic code named ICT. The improvement in red flare performance, established the rule that the color intensifier should be in the range from 10 to 15 Wt % of the total composition.

  12. Improving Flare Irradiance Models with the Low Pass Filter Relation Between EUV Flare Emissions with Differing Formation Temperatures (United States)

    Thiemann, Edward M. B.; Eparvier, Francis G.


    Solar flares are the result of magnetic reconnection in the solar corona which converts magnetic energy into kinetic energy resulting in the rapid heating of solar plasma. As this plasma cools, extreme ultraviolet (EUV) line emission intensities evolve as the plasma temperature passes through line formation temperatures, resulting in emission lines with cooler formation temperatures peaking after those with hotter formation temperatures. At the 2016 American Astronomical Society Solar Physics Division Meeting in Boulder (SPD2016), we showed that Fe XVIII solar flare light curves are highly correlated with Fe XXIII light curves that have been subjected to the single-pole Low Pass Filter Equation (LPFE) with a time constant equal to the time difference between the peak emissions. The single-pole (or equivalently, RC) LPFE appears frequently in analyses of systems which both store and dissipate heat, and the flare LPFE effect is believed to be related to the underlying cooling processes. Because the LPFE is constrained by a single parameter, this effect has implications for both operational EUV flare irradiance models and understanding thermal processes that occur in post-flare loops. At the time of SPD2016, it was ambiguous as to whether the LPFE effect relates hot thermal bremsstrahlung soft x-ray (SXR) or EUV line emissions with cooler EUV line emissions since Fe XXIII flare light curves are highly correlated with SXR flare light curves. In this study, we present new results characterizing the LPFE relation between multiple emission lines with differing formation temperatures ranging from 107.2 to 105.7 K observed by SDO/EVE and SXR thermal bremsstrahlung emissions observed by GOES/XRS. We show that the LPFE equation relates Fe XVIII with cooler EUV line emissions, providing unambiguous evidence that the LPFE effect exists between EUV line emissions rather than thermal bremsstrahlung and line emissions exclusively. The exact nature of this effect remains an open

  13. Fermi-LAT Detection of Gravitational Lens Delayed Gamma-Ray Flares from Blazar B0218+357 (United States)

    Cheung, C. C.; Larsson, S.; Scargle, J. D.; Amin, M. A.; Blandford, R. D.; Bulmash, D.; Chiang, J.; Ciprini, S.; Corbet, R. D. H.; Falco, E. E.; hide


    Using data from the Fermi Large Area Telescope (LAT), we report the first clear gamma-ray measurement of a delay between flares from the gravitationally lensed images of a blazar. The delay was detected in B0218+357, a known double-image lensed system, during a period of enhanced gamma-ray activity with peak fluxes consistently observed to reach greater than 20-50 times its previous average flux. An auto-correlation function analysis identified a delay in the gamma-ray data of 11.46 plus or minus 0.16 days (1 sigma) that is approximately 1 day greater than previous radio measurements. Considering that it is beyond the capabilities of the LAT to spatially resolve the two images, we nevertheless decomposed individual sequences of superposing gamma-ray flares/delayed emissions. In three such approximately 8-10 day-long sequences within an approximately 4-month span, considering confusion due to overlapping flaring emission and flux measurement uncertainties, we found flux ratios consistent with approximately 1, thus systematically smaller than those from radio observations. During the first, best-defined flare, the delayed emission was detailed with a Fermi pointing, and we observed flux doubling timescales of approximately 3-6 hours implying as well extremely compact gamma-ray emitting regions.


    Energy Technology Data Exchange (ETDEWEB)

    Yurchyshyn, V. [Big Bear Solar Observatory, New Jersey Institute of Technology, Big Bear City, CA 92314 (United States); Kumar, P.; Cho, K.-S.; Lim, E.-K. [Korea Astronomy and Space Science Institute, 776 Daedeok-daero, Yuseong-gu, Daejeon, 305-348 (Korea, Republic of); Abramenko, V. I. [Central Astronomical Observatory of the Russian Academy of Sciences at Pulkovo, 196140, Pulkovskoye chaussee 65, Saint-Petersburg (Russian Federation)


    Using multiwavelength observations, we studied a slow-rise, multistep X1.6 flare that began on 2014 November 7 as a localized eruption of core fields inside a δ-sunspot and later engulfed the entire active region (AR). This flare event was associated with formation of two systems of post-eruption arcades (PEAs) and several J-shaped flare ribbons showing extremely fine details, irreversible changes in the photospheric magnetic fields, and it was accompanied by a fast and wide coronal mass ejection. Data from the Solar Dynamics Observatory and IRIS spacecraft, along with the ground-based data from the New Solar Telescope, present evidence that (i) the flare and the eruption were directly triggered by a flux emergence that occurred inside a δ-sunspot at the boundary between two umbrae; (ii) this event represented an example of the formation of an unstable flux rope observed only in hot AIA channels (131 and 94 Å) and LASCO C2 coronagraph images; (iii) the global PEA spanned the entire AR and was due to global-scale reconnection occurring at heights of about one solar radius, indicating the global spatial and temporal scale of the eruption.

  15. “Dandelion” Filament Eruption and Coronal Waves Associated with a Solar Flare on 2011 February 16

    Energy Technology Data Exchange (ETDEWEB)

    Cabezas, Denis P.; Ishitsuka, Mutsumi; Ishitsuka, José K. [Geophysical Institute of Peru, Calle Badajoz 169, Mayorazgo IV Etapa, Ate Vitarte, Lima (Peru); Martínez, Lurdes M.; Buleje, Yovanny J. [Centro de Investigación del Estudio de la Actividad Solar y sus Efectos Sobre la Tierra, Facultad de Ciencias, Universidad Nacional San Luis Gonzaga de Ica, Av. Los Maestros S/N, Ica (Peru); Morita, Satoshi [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo, 181-8588 (Japan); Asai, Ayumi [Unit of Synergetic Studies for Space, Kyoto University, Sakyo, Kyoto, 606-8502 (Japan); UeNo, Satoru; Ishii, Takako T.; Kitai, Reizaburo; Takasao, Shinsuke; Yoshinaga, Yusuke; Otsuji, Kenichi; Shibata, Kazunari, E-mail: [Kwasan and Hida Observatories, Kyoto University, Yamashina, Kyoto, 607-8471 (Japan)


    Coronal disturbances associated with solar flares, such as H α Moreton waves, X-ray waves, and extreme ultraviolet (EUV) coronal waves, are discussed herein in relation to magnetohydrodynamic fast-mode waves or shocks in the corona. To understand the mechanism of coronal disturbances, full-disk solar observations with high spatial and temporal resolution over multiple wavelengths are of crucial importance. We observed a filament eruption, whose shape is like a “dandelion,” associated with the M1.6 flare that occurred on 2011 February 16 in H α images taken by the Flare Monitoring Telescope at Ica University, Peru. We derive the three-dimensional velocity field of the erupting filament. We also identify winking filaments that are located far from the flare site in the H α images, whereas no Moreton wave is observed. By comparing the temporal evolution of the winking filaments with those of the coronal wave seen in the EUV images data taken by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory and by the Extreme Ultraviolet Imager on board the Solar Terrestrial Relations Observatory-Ahead , we confirm that the winking filaments were activated by the EUV coronal wave.

  16. Elemental abundances of flaring solar plasma - Enhanced neon and sulfur (United States)

    Schmelz, J. T.


    Elemental abundances of two flares observed with the SMM Flat Crystal Spectrometer are compared and contrasted. The first had a gradual rise and a slow decay, while the second was much more impulsive. Simultaneous spectra of seven bright soft X-ray resonance lines provide information over a broad temperature range and are available throughout both flares, making these events unique in the SMM data base. For the first flare, the plasma seemed to be characterized by coronal abundances but, for the second, the plasma composition could not be coronal, photospheric, or a linear combination of both. A good differential emission measure fit required enhanced neon such that Ne/O = 0.32 +/- 0.02, a value which is inconsistent with the current models of coronal abundances based on the elemental first-ionization potential. Similar values of enhanced neon are found for flaring plasma observed by the SMM gamma-ray spectrometer, in (He-3)-rich solar energetic particle events, and in the decay phase of several long duration soft X-ray events. Sulfur is also enhanced in the impulsive flare, but not as dramatically as neon. These events are compared with two models which attempt to explain the enhanced values of neon and sulfur.

  17. Common SphinX and RHESSI observations of solar flares (United States)

    Mrozek, T.; Gburek, S.; Siarkowski, M.; Sylwester, B.; Sylwester, J.; Gryciuk, M.

    The Polish X-ray spectrofotometer SphinX has observed a great number of solar flares in the year 2009 - during the most quiet solar minimum almost over the last 100 years. Hundreds of flares have been recorded due to excellent sensitivity of SphinX's detectors. The Si-PIN diodes are about 100 times more sensitive to X-rays than GOES X-ray Monitors. SphinX detectors were absolutely calibrated on Earth with a use of the BESSY synchrotron. In space observations were made in the range 1.2-15~keV with 480~eV energy resolution. SphinX data overlap with the low-energy end of the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) data. RHESSI detectors are quite old (7 years in 2009), but still sensitive enough to provide us with observations of extremely weak solar flares such as those which occurred in 2009. We have selected a group of flares simultaneously observed by RHESSI and SphinX and performed a spectroscopic analysis of the data. Moreover, we compared the physical parameters of these flares plasma. Preliminary results of the comparison show very good agreement between both instruments.

  18. Modelling Quasi-Periodic Pulsations in Solar and Stellar Flares (United States)

    McLaughlin, J. A.; Nakariakov, V. M.; Dominique, M.; Jelínek, P.; Takasao, S.


    Solar flare emission is detected in all EM bands and variations in flux density of solar energetic particles. Often the EM radiation generated in solar and stellar flares shows a pronounced oscillatory pattern, with characteristic periods ranging from a fraction of a second to several minutes. These oscillations are referred to as quasi-periodic pulsations (QPPs), to emphasise that they often contain apparent amplitude and period modulation. We review the current understanding of quasi-periodic pulsations in solar and stellar flares. In particular, we focus on the possible physical mechanisms, with an emphasis on the underlying physics that generates the resultant range of periodicities. These physical mechanisms include MHD oscillations, self-oscillatory mechanisms, oscillatory reconnection/reconnection reversal, wave-driven reconnection, two loop coalescence, MHD flow over-stability, the equivalent LCR-contour mechanism, and thermal-dynamical cycles. We also provide a histogram of all QPP events published in the literature at this time. The occurrence of QPPs puts additional constraints on the interpretation and understanding of the fundamental processes operating in flares, e.g. magnetic energy liberation and particle acceleration. Therefore, a full understanding of QPPs is essential in order to work towards an integrated model of solar and stellar flares.

  19. Bright X-ray flares from Sgr A* (United States)

    Karssen, G. D.; Bursa, M.; Eckart, A.; Valencia-S, M.; Dovčiak, M.; Karas, V.; Horák, J.


    We address a question whether the observed light curves of X-ray flares originating deep in galactic cores can give us independent constraints on the mass of the central supermassive black hole. To this end, we study four brightest flares which have been recorded from Sagittarius A*. They all exhibit an asymmetric shape consistent with a combination of two intrinsically separate peaks which occur at a certain time delay with respect to each other, and are characterized by their mutual flux ratio and the profile of raising/declining parts. Such asymmetric shapes arise naturally in the scenario of a temporary flash from a source orbiting near a supermassive black hole, at a radius of only ˜10-20 gravitational radii. An interplay of relativistic effects is responsible for the modulation of the observed light curves: Doppler boosting, gravitational redshift, light focusing and light-travel time delays. We find the flare properties to be in agreement with the simulations (our ray-tracing code sim5lib). The inferred mass for each of the flares comes out in agreement with previous estimates based on orbits of stars; the latter have been observed at radii and over time-scales two orders of magnitude larger than those typical for the X-ray flares, so the two methods are genuinely different. We test the reliability of the method by applying it to another object, namely, the Seyfert I galaxy RE J1034+396.

  20. Real-Time flare detection using guided filter (United States)

    Lin, Jiaben; Deng, Yuanyong; Yuan, Fei; Guo, Juan


    A procedure is introduced for the automatic detection of solar flare using full-disk solar images from Huairou Solar Observing Station (HSOS), National Astronomical Observatories of China. In image preprocessing, median filter is applied to remove the noises. And then we adopt guided filter, which is first introduced into the astronomical image detection, to enhance the edges of flares and restrain the solar limb darkening. Flares are then detected by modified Otsu algorithm and further threshold processing technique. Compared with other automatic detection procedure, the new procedure has some advantages such as real time and reliability as well as no need of image division and local threshold. Also, it reduces the amount of computation largely, which is benefited from the efficient guided filter algorithm. The procedure has been tested on one month sequences (December 2013) of HSOS full-disk solar images and the result of flares detection shows that the number of flares detected by our procedure is well consistent with the manual one.

  1. Solar Flare Five-Day Predictions from Quantum Detectors of Dynamical Space Fractal Flow Turbulence: Gravitational Wave Diminution and Earth Climate Cooling

    Directory of Open Access Journals (Sweden)

    Cahill R. T.


    Full Text Available Space speed fluctuations, which have a 1 / f spectrum, are shown to be the cause of solar flares. The direction and magnitude of the space flow has been detected from numer- ous different experimental techniques, and is close to the normal to the plane of the ecliptic. Zener diode data shows that the fluctuations in the space speed closely match the Sun Solar Cycle 23 flare count, and reveal that major solar flares follow major space speed fluctuations by some 6 days. This implies that a warning period of some 5 days in predicting major solar flares is possible using such detectors. This has significant conse- quences in being able to protect various spacecraft and Earth located electrical systems from the subsequent arrival of ejected plasma from a solar flare. These space speed fluctuations are the actual gravitational waves, and have a significant magnitude. This discovery is a significant application of the dynamical space phenomenon and theory. We also show that space flow turbulence impacts on the Earth’s climate, as such tur- bulence can input energy into systems, which is the basis of the Zener Diode Quantum Detector. Large scale space fluctuations impact on both the sun and the Earth, and as well explain temperature correlations with solar activity, but that the Earth temperatures are not caused by such solar activity. This implies that the Earth climate debate has been missing a key physical process. Observed diminishing gravitational waves imply a cooling epoch for the Earth for the next 30 years.

  2. Sagittarius A* High-energy X-Ray Flare Properties during NuStar Monitoring of the Galactic Center from 2012 to 2015

    DEFF Research Database (Denmark)

    Zhang, Shuo; Baganoff, Frederick K.; Ponti, Gabriele


    Understanding the origin of the flaring activity from the Galactic center supermassive black hole Sagittarius A* is a major scientific goal of the NuSTAR Galactic plane survey campaign. We report on the data obtained between 2012 July and 2015 April, including 27 observations on Sgr A*, with a to......Understanding the origin of the flaring activity from the Galactic center supermassive black hole Sagittarius A* is a major scientific goal of the NuSTAR Galactic plane survey campaign. We report on the data obtained between 2012 July and 2015 April, including 27 observations on Sgr A...

  3. A Technique for Automated Determination of Flare Ribbon Separation and Energy Release (United States)

    Maurya, R. A.; Ambastha, A.


    We present a technique for automatic determination of flare ribbon separation and the energy released during the course of two-ribbon flares. We have used chromospheric Hα filtergrams and photospheric line-of-sight magnetograms to analyse flare ribbon separation and magnetic field structures, respectively. Flare ribbons were first enhanced and then extracted by the technique of “region growing”, i.e., a morphological operator to help resolve the flare ribbons. Separation of flare ribbons was then estimated from the magnetic-polarity reversal line using an automatic technique implemented into an Interactive Data Language (IDLTM) platform. Finally, the rate of flare-energy release was calculated using photospheric magnetic field data and the corresponding separation of the chromospheric Hα flare ribbons. This method could be applied to measure the motion of any feature of interest ( e.g., intensity, magnetic, Doppler) from a given point of reference.

  4. Appraisal of the validity of histamine-induced wheal and flare to predict the clinical efficacy of antihistamines. (United States)

    Monroe, E W; Daly, A F; Shalhoub, R F


    Antihistaminic drugs have been used successfully for many years in the treatment of allergic diseases. Second-generation antihistamines have fewer sedating side effects than first-generation agents, and the number of newer drugs available for clinical use is growing. Various methods have been used to assess antihistaminic activity, the most popular of which is the epicutaneous histamine-induced wheal and flare. This test relies on the ability of epicutaneously injected histamine to bring about the wheal and flare, a neurovascular response that involves reflex vasodilation (flare) and local swelling caused by plasma extravasation (wheal). Antihistamines have been compared on the basis of their ability to block the histamine-induced wheal and flare in the skin. Results of these trials have been applied to predict the global antiallergic efficacy of various antihistamines. The review has examined the reliability of suppression of the histamine wheal and flare reaction in the skin to predict an antihistamine's clinical efficacy in two common allergic diseases seasonal allergic rhinitis and chronic idiopathic urticaria. Although histamine is one mediator in the allergic response in the skin and nasal mucosa, many other agents are important modulators of the allergic response. In addition, the major structural and functional differences that exist between the nasal mucosa and the skin affect the type of local response. These manifest themselves as differences between the responses to antigen and histamine challenge in the skin and the nose. The allergic responses in these tissues are not simply the consequence of one chemical but are the result of a cascade of interactions among various cells and mediators. The clinical manifestations of these complex interactions obviously cannot be fully replicated by injection of one chemical mediator, histamine, into the outer layer of the skin. Studies with antihistamines have shown that certain drugs, such as cetirizine, are more

  5. Relativistic simulations of long-lived reverse shocks in stratified ejecta: the origin of flares in GRB afterglows (United States)

    Lamberts, A.; Daigne, F.


    The X-ray light curves of the early afterglow phase from gamma-ray bursts (GRBs) present a puzzling variability, including flares. The origin of these flares is still debated, and often associated with a late activity of the central engine. We discuss an alternative scenario where the central engine remains short-lived and flares are produced by the propagation of a long-lived reverse shock in a stratified ejecta. Here we focus on the hydrodynamics of the shock interactions. We perform one-dimensional ultrarelativistic hydrodynamic simulations with different initial internal structure in the GRB ejecta. We use them to extract bolometric light curves and compare with a previous study based on a simplified ballistic model. We find a good agreement between both approaches, with similar slopes and variability in the light curves, but identify several weaknesses in the ballistic model: the density is underestimated in the shocked regions, and more importantly, late shock reflections are not captured. With accurate dynamics provided by our hydrodynamic simulations, we confirm that internal shocks in the ejecta lead to the formation of dense shells. The interaction of the long-lived reverse shock with a dense shell then produces a fast and intense increase of the dissipated power. Assuming that the emission is due to the synchrotron radiation from shock-accelerated electrons, and that the external forward shock is radiatively inefficient, we find that this results in a bright flare in the X-ray light curve, with arrival times, shapes, and duration in agreement with the observed properties of X-ray flares in GRB afterglows.

  6. The Flare Irradiance Spectral Model (FISM) and its Contributions to Space Weather Research, the Flare Energy Budget, and Instrument Design (United States)

    Chamberlin, Phillip


    The Flare Irradiance Spectral Model (FISM) is an empirical model of the solar irradiance spectrum from 0.1 to 190 nm at 1 nm spectral resolution and on a 1-minute time cadence. The goal of FISM is to provide accurate solar spectral irradiances over the vacuum ultraviolet (VUV: 0-200 nm) range as input for ionospheric and thermospheric models. The seminar will begin with a brief overview of the FISM model, and also how the Solar Dynamics Observatory (SDO) EUV Variability Experiment (EVE) will contribute to improving FISM. Some current studies will then be presented that use FISM estimations of the solar VUV irradiance to quantify the contributions of the increased irradiance from flares to Earth's increased thermospheric and ionospheric densites. Initial results will also be presented from a study looking at the electron density increases in the Martian atmosphere during a solar flare. Results will also be shown quantifying the VUV contributions to the total flare energy budget for both the impulsive and gradual phases of solar flares. Lastly, an example of how FISM can be used to simplify the design of future solar VUV irradiance instruments will be discussed, using the future NOAA GOES-R Extreme Ultraviolet and X-Ray Sensors (EXIS) space weather instrument.

  7. High-energy particles associated with solar flares (United States)

    Sakurai, K.; Klimas, A. J.


    High-energy particles, the so-called solar cosmic rays, are often generated in association with solar flares, and then emitted into interplanetary space. These particles, consisting of electrons, protons, and other heavier nuclei, including the iron-group, are accelerated in the vicinity of the flare. By studying the temporal and spatial varation of these particles near the earth's orbit, their storage and release mechanisms in the solar corona and their propagation mechanism can be understood. The details of the nuclear composition and the rigidity spectrum for each nuclear component of the solar cosmic rays are important for investigating the acceleration mechanism in solar flares. The timing and efficiency of the acceleration process can also be investigated by using this information. These problems are described in some detail by using observational results on solar cosmic rays and associated phenomena.

  8. NICER and MAXI Observations of Two Large X-ray Flares from RS CVn Binaries (United States)

    Drake, Stephen A.; Hamaguchi, Kenji; Corcoran, Michael Francis; Iwakiri, Wataru; Sasaki, Ryo; Kawai, Hiroki; Tsuboi, Yohko; Enoto, Teruaki; NICER Science Team


    NICER has observed two giant X-ray flares on the active binary systems, GT Mus and UX Ari, in response to their detections by the MAXI all-sky X-ray monitor onboard the ISS, with a delay of about a day in each case. The large effective area of the NICER X-ray optics means that high signal-to-noise spectra with more than 200,000 counts were obtained in relatively short exposures totaling less than an hour in each set of observations.MAXI detected a transient of 5.5 x 10^-10 erg/s/cm2 at the position of the active RS CVn binary GT Mus (G5/8 III + ?) early on 2017 July 19. NICER started its observations about 1 day later, and intermittently monitored the decay for the next 2.5 days, accumulating about 1,600 seconds exposure. The NICER light curve shows a smooth, gradual flux decline by a factor of two for the first 2 days, followed by an apparent flattening in the last half day. The dominant plasma temperature remained at ~40 million K during this period, suggesting an ongoing continuous heating during the decay phase.NICER also followed up another MAXI-detected flare in October 2017, this one from the nearby active system, UX Ari. NICER's X-ray spectrum shows clear neon and oxygen lines, while the emissionfrom iron ions is not as prominent as it is in most flares, implying an abundance of only ~10% solar which is significantly lower than previous inferred coronal Fe abundances for this star, although this result is dependent on the NICER gain correction.

  9. Thermodynamics of supra-arcade downflows in solar flares (United States)

    Chen, Xin; Liu, Rui; Deng, Na; Wang, Haimin


    Context. Supra-arcade downflows (SADs) have been frequently observed during the gradual phase of solar flares near the limb. In coronal emission lines sensitive to flaring plasmas, they appear as tadpole-like dark voids against the diffuse fan-shaped "haze" above, flowing toward the well-defined flare arcade. Aims: We aim to investigate the evolution of SADs' thermal properties, and to shed light on the formation mechanism and physical processes of SADs. Methods: We carefully studied several selected SADs from two flare events and calculated their differential emission measures (DEMs) as well as DEM-weighted temperatures using data obtained by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamic Observatory. Results: Our analysis shows that SADs are associated with a substantial decrease in DEM above 4 MK, which is 1-3 orders of magnitude smaller than the surrounding haze as well as the region before or after the passage of SADs, but comparable to the quiet corona. There is no evidence for the presence of the SAD-associated hot plasma (>20 MK) in the AIA data, and this decrease in DEM does not cause any significant change in the DEM distribution as well as the DEM-weighted temperature, which supports this idea that SADs are density depletion. This depression in DEM rapidly recovers in the wake of the SADs studied, generally within a few minutes, suggesting that they are discrete features. In addition, we found that SADs in one event are spatio-temporally associated with the successive formation of post-flare loops along the flare arcade. Movies associated to Figs. A.1 and A.2 are available at

  10. Homologous Circular-ribbon Flares Driven by Twisted Flux Emergence (United States)

    Xu, Z.; Yang, K.; Guo, Y.; Zhao, J.; Zhao, Z. J.; Kashapova, L.


    In this paper, we report two homologous circular-ribbon flares associated with two filament eruptions. They were well observed by the New Vacuum Solar Telescope and the Solar Dynamics Observatory on 2014 March 5. Prior to the flare, two small-scale filaments enclosed by a circular pre-flare brightening lie along the circular polarity inversion line around the parasitic polarity, which has shown a continuous rotation since its first appearance. Two filaments eventually erupt in sequence associated with two homologous circular-ribbon flares and display an apparent writhing signature. Supplemented by the nonlinear force-free field extrapolation and the magnetic field squashing factor investigation, the following are revealed. (1) This event involves the emergence of magnetic flux ropes into a pre-existing polarity area, which yields the formation of a 3D null-point topology in the corona. (2) Continuous input of the free energy in the form of a flux rope from beneath the photosphere may drive a breakout-type reconnection occurring high in the corona, supported by the pre-flare brightening. (3) This initiation reconnection could release the constraint on the flux rope and trigger the MHD instability to first make filament F1 lose equilibrium. The subsequent more violent magnetic reconnection with the overlying flux is driven during the filament rising. In return, the eruption of filament F2 is further facilitated by the reduction of the magnetic tension force above. These two processes form a positive feedback to each other to cause the energetic mass eruption and flare.

  11. Accessing the exceptional points of parity-time symmetric acoustics (United States)

    Shi, Chengzhi; Dubois, Marc; Chen, Yun; Cheng, Lei; Ramezani, Hamidreza; Wang, Yuan; Zhang, Xiang


    Parity-time (PT) symmetric systems experience phase transition between PT exact and broken phases at exceptional point. These PT phase transitions contribute significantly to the design of single mode lasers, coherent perfect absorbers, isolators, and diodes. However, such exceptional points are extremely difficult to access in practice because of the dispersive behaviour of most loss and gain materials required in PT symmetric systems. Here we introduce a method to systematically tame these exceptional points and control PT phases. Our experimental demonstration hinges on an active acoustic element that realizes a complex-valued potential and simultaneously controls the multiple interference in the structure. The manipulation of exceptional points offers new routes to broaden applications for PT symmetric physics in acoustics, optics, microwaves and electronics, which are essential for sensing, communication and imaging. PMID:27025443

  12. Methods for Global Survey of Natural Gas Flaring from Visible Infrared Imaging Radiometer Suite Data

    Directory of Open Access Journals (Sweden)

    Christopher D. Elvidge


    Full Text Available A set of methods are presented for the global survey of natural gas flaring using data collected by the National Aeronautics and Space Administration/National Oceanic and Atmospheric Administration NASA/NOAA Visible Infrared Imaging Radiometer Suite (VIIRS. The accuracy of the flared gas volume estimates is rated at ±9.5%. VIIRS is particularly well suited for detecting and measuring the radiant emissions from gas flares through the collection of shortwave and near-infrared data at night, recording the peak radiant emissions from flares. In 2012, a total of 7467 individual flare sites were identified. The total flared gas volume is estimated at 143 (±13.6 billion cubic meters (BCM, corresponding to 3.5% of global production. While the USA has the largest number of flares, Russia leads in terms of flared gas volume. Ninety percent of the flared gas volume was found in upstream production areas, 8% at refineries and 2% at liquified natural gas (LNG terminals. The results confirm that the bulk of natural gas flaring occurs in upstream production areas. VIIRS data can provide site-specific tracking of natural gas flaring for use in evaluating efforts to reduce and eliminate routine flaring.

  13. On the Importance of the Flare's Late Phase for the Solar Extreme Ultraviolet Irradiance (United States)

    Woods, Thomas N.; Eparvier, Frank; Jones, Andrew R.; Hock, Rachel; Chamberlin, Phillip C.; Klimchuk, James A.; Didkovsky, Leonid; Judge, Darrell; Mariska, John; Bailey, Scott; hide


    The new solar extreme ultraviolet (EUV) irradiance observations from NASA Solar Dynamics Observatory (SDO) have revealed a new class of solar flares that are referred to as late phase flares. These flares are characterized by the hot 2-5 MK coronal emissions (e.g., Fe XVI 33.5 nm) showing large secondary peaks that appear many minutes to hours after an eruptive flare event. In contrast, the cool 0.7-1.5 MK coronal emissions (e.g., Fe IX 17.1 nm) usually dim immediately after the flare onset and do not recover until after the delayed second peak of the hot coronal emissions. We refer to this period of 1-5 hours after the fl amrea sin phase as the late phase, and this late phase is uniquely different than long duration flares associated with 2-ribbon flares or large filament eruptions. Our analysis of the late phase flare events indicates that the late phase involves hot coronal loops near the flaring region, not directly related to the original flaring loop system but rather with the higher post-eruption fields. Another finding is that space weather applications concerning Earth s ionosphere and thermosphere need to consider these late phase flares because they can enhance the total EUV irradiance flare variation by a factor of 2 when the late phase contribution is included.

  14. The Flares Associated with the Dynamics of the Sunspots K. M. ...

    Indian Academy of Sciences (India)

    Kodaikanal Observatory white light pictures and occurrence of Hα flares. From the daily ... flares. Using six year (1969–1974) observations of Kodaikanal Observatory white light pictures, Hiremath ..... longitudinal minimum separation for different classes of flares: the square in blue color represents f (faint), the with green ...

  15. 46 CFR 122.614 - Portable watertight containers for distress flares and smoke signals. (United States)


    ... 46 Shipping 4 2010-10-01 2010-10-01 false Portable watertight containers for distress flares and smoke signals. 122.614 Section 122.614 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... flares and smoke signals. Portable watertight containers for distress flares and smoke signals shall be...

  16. Detection of the Acceleration Site in a Solar Flare (United States)

    Fleishman, Gregory D.; Kontar, E. P.; Nita, G. M.; Gary, D. E.


    We report the observation of an unusual cold, tenuous solar flare (ApJL, v. 731, p. L19, 2011), which reveals itself via numerous and prominent non-thermal manifestations, while lacking any noticeable thermal emission signature. RHESSI hard X-rays and 0.1-18 GHz radio data from OVSA and Phoenix-2 show copious electron acceleration (1035 electrons per second above 10 keV) typical for GOES M-class flares with electrons energies up to 100 keV, but GOES temperatures not exceeding 6.1 MK. The HXR footpoints and coronal radio sources belong, supposedly, to a single magnetic loop, which departs strongly from the corresponding potential loop (obtained from a photospheric extrapolation) in agreement with the apparent need of a non-potential magnetic field structure to produce a flare. The imaging, temporal, and spectral characteristics of the flare have led us to a firm conclusion that the bulk of the microwave continuum emission from this flare was produced directly in the acceleration region. We found that the electron acceleration efficiency is very high in the flare, so almost all available thermal electrons are eventually accelerated. However, given a relatively small flaring volume and rather low thermal density at the flaring loop, the total energy release turned out to be insufficient for a significant heating of the coronal plasma or for a prominent chromospheric response giving rise to chromospheric evaporation. Some sort of stochastic acceleration process is needed to account for an approximately energy-independent lifetime of about 3 s for the electrons in the acceleration region. This work was supported in part by NSF grants AGS-0961867, AST-0908344, and NASA grants NNX10AF27G and NNX11AB49G to New Jersey Institute of Technology. This work was supported by a UK STFC rolling grant, STFC/PPARC Advanced Fellowship, and the Leverhulme Trust, UK. Financial support by the European Commission through the SOLAIRE and HESPE Networks is gratefully acknowledged.

  17. Acceleration of runaway electrons and Joule heating in solar flares (United States)

    Holman, G. D.


    The electric field acceleration of electrons out of a thermal plasma and the simultaneous Joule heating of the plasma are studied. Acceleration and heating timescales are derived and compared, and upper limits are obtained on the acceleration volume and the rate at which electrons can be accelerated. These upper limits, determined by the maximum magnetic field strength observed in flaring regions, place stringent restrictions upon the acceleration process. The role of the plasma resistivity in these processes is examined, and possible sources of anomalous resistivity are summarized. The implications of these results for the microwave and hard X-ray emission from solar flares are examined.

  18. 3-D Structure of Arcade Type Flares Deduced from Soft X-Ray Observations of a Homologous Flare Series (United States)

    Morita, S.; Uchida, Y.; Hirose, S.


    In the solar flare problems, no ultimate model that matches observations has been established. One of the reasons for this is due to the restrictions in the observational data lacking information about the third dimension. Thus, many researchers have tried to get information about the three dimensional (3-D) coronal structures by using various techniques or ideas; like movie analysis, calculations using vector or line-of-sight components of photospheric magnetic data, and etc.. In the near future, a mission named STEREO which will obtain information about the 3-D coronal structures from two satellites, is planned. In the present paper, we noted the homology in a homologous flare series of February 1992. We derived a 3-D coronal structures by making use of the images obtained from the three different sight-lines at some common phases in them with Yohkoh SXT. The result of this analysis has made it clear that the so-called ``cusped arcade'' at the maximum phase in the well-known 1992 February 21 flare is, contrary to the general views, an ``elongated arch'' seen with a shallow oblique angle. It is not the ``flare arcade'' seen axis-on as widely conceived. This elongated arch coincides roughly with a diagonal of the main body of the "soft X-ray arcade" that came up later. The magnetic structure causing the flare as a whole turned out in this analysis to be a structure with quadruple magnetic sources. The relative locations of these four characteristic sources stayed almost the same throughout the period of this homologous flare series, determining the fundamental shape of this homologous series. We also examined the corresponding features for other similar events, also using information from other satellites, and will report the results.

  19. Audio-Tutorial Programming with Exceptional Children (United States)

    Hofmeister, Alan


    The findings from the application of audio-tutorial programing in three curriculum areas with three groups of exceptional children are reported. The findings suggest that audio-tutorial programing has qualities capable of meeting some of the instructional needs of exceptional children. (Author)

  20. Comparing SSN Index to X-ray Flare and Coronal Mass Ejection Rates from Solar Cycles 22-24


    Winter, Lisa M.; Pernak, Rick; Balasubramaniam, K. S.


    The newly revised sunspot number series allows for placing historical geoeffective storms in the context of several hundred years of solar activity. Using statistical analyses of the Geostationary Operational Environmental Satellites (GOES) X-ray observations from the past ~30 years and the Solar and Heliospheric Observatory (SOHO) Large Angle and Spectrometric Coronagraph (LASCO) Coronal Mass Ejection (CME) catalog (1996-present), we present sunspot-number-dependent flare and CME rates. In p...

  1. Flaring and pollution detection in the Niger Delta using Remote Sensing


    Morakinyo, Barnabas Ojo


    Merged with duplicate record 10026.1/6553 on 28.02.2017 by CS (TIS) Abstract Through the Global Gas Flaring Reduction (GGFR) initiative a substantial amount of effort and international attention has been focused on the reduction of gas flaring since 2002 (Elvidge et al., 2009). Nigeria is rated as the second country in the world for gas flaring, after Russia. In an attempt to reduce and eliminate gas flaring the federal government of Nigeria has implemented a number of gas flaring reduc...

  2. Gas Flaring, Environmental Pollution and Abatement Measures in ...

    African Journals Online (AJOL)

    The environmental impact of gas flaring on the oil bearing enclave of the Niger Delta, Nigeria, was examined with a view to evaluating the abatement measures put in place by the Federal government of Nigeria and the oil producing companies. Primary and secondary information and data were analyzed during the study.

  3. Analysis of the 9th November 1990 flare

    Indian Academy of Sciences (India)



    Nov 9, 1990 ... analysis of 9th November 1990 flare, with the aid of isodensitometry and image processing of photographic Ha ... help of a positional densitometer system (PDS) and analysis has been carried out at. UPSO (Joshi 1996). ... expressed in arbitrary scale and area is in millionths of solar disk. It is clear from the.

  4. Elimination of Perchlorate Oxidizers from Yellow Pyrotechnic Flare Compositions (United States)


    Conference Presentation 3. DATES COVERED (From - To) 2002-2015 4. TITLE AND SUBTITLE Elimination of Perchlorate Oxidizers from Yellow Pyrotechnic ...ABSTRACT Fielded pyrotechnic compositions containing the environmentally-hazardous oxidizer potassium perchlorate are highly scrutinized due to...environmentally friendly, flare, pyrotechnic 16. SECURITY CLASSIFICATION OF: U 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF

  5. Non-Equilibrium Ionization Effects Induced During Coronal Flares (United States)

    Orlando, S.; Peres, G.; Reale, F.; Rosner, R.; Siegel, A.

    We present preliminary results of hydrodynamic modeling of flares occurring in plasma confined in coronal loops. Our analysis focuses on the deviations from ionization equilibrium on the population fractions of the most abundant elements in astrophysical plasmas, and on the possible implications for plasma diagnostics.

  6. Phase Relationship Between Sunspot Number, Flare Index and ...

    Indian Academy of Sciences (India)

    sunspot number, flare index and solar radio flux at 2800 MHz from. January 1966 to May 2008 by using ..... Sunspots have a life time longer than one solar rotation. Wilson et al. (1987) think that the number of ... The authors would also like to thank the staff of all the websites that provided the data for public download.

  7. Can we observe neutrino flares in coincidence with explosive transients? (United States)

    Guépin, Claire; Kotera, Kumiko


    The new generation of powerful instruments is reaching sensitivities and temporal resolutions that will allow multi-messenger astronomy of explosive transient phenomena, with high-energy neutrinos as a central figure. We derive general criteria for the detectability of neutrinos from powerful transient sources for given instrument sensitivities. In practice, we provide the minimum photon flux necessary for neutrino detection based on two main observables: the bolometric luminosity and the time variability of the emission. This limit can be compared to the observations in specified wavelengths in order to target the most promising sources for follow-ups. Our criteria can also help distinguishing false associations of neutrino events with a flaring source. We find that relativistic transient sources such as high- and low-luminosity gamma-ray bursts (GRBs), blazar flares, tidal disruption events, and magnetar flares could be observed with IceCube, as they have a good chance to occur within a detectable distance. Of the nonrelativistic transient sources, only luminous supernovae appear as promising candidates. We caution that our criterion should not be directly applied to low-luminosity GRBs and type Ibc supernovae, as these objects could have hosted a choked GRB, leading to neutrino emission without a relevant counterpart radiation. We treat a set of concrete examples and show that several transients, some of which are being monitored by IceCube, are far from meeting the criterion for detectability (e.g., Crab flares or Swift J1644+57).

  8. Formation of the thermal infrared continuum in solar flares (United States)

    Simões, Paulo J. A.; Kerr, Graham S.; Fletcher, Lyndsay; Hudson, Hugh S.; Giménez de Castro, C. Guillermo; Penn, Matt


    Aims: Observations of the Sun with the Atacama Large Millimeter Array have now started, and the thermal infrared will regularly be accessible from the NSF's Daniel K. Inouye Solar Telescope. Motivated by the prospect of these new data, and by recent flare observations in the mid infrared, we set out here to model and understand the source of the infrared continuum in flares, and to explore its diagnostic capability for the physical conditions in the flare atmosphere. Methods: We use the one-dimensional (1D) radiation hydrodynamics code RADYN to calculate mid-infrared continuum emission from model atmospheres undergoing sudden deposition of energy by non-thermal electrons. Results: We identify and characterise the main continuum thermal emission processes relevant to flare intensity enhancement in the mid- to far-infrared (2-200 μm) spectral range as free-free emission on neutrals and ions. We find that the infrared intensity evolution tracks the energy input to within a second, albeit with a lingering intensity enhancement, and provides a very direct indication of the evolution of the atmospheric ionisation. The prediction of highly impulsive emission means that, on these timescales, the atmospheric hydrodynamics need not be considered in analysing the mid-IR signatures.

  9. Solar flare effects and storm sudden commencement even in ...

    African Journals Online (AJOL)


    Variations in the three components of geomagnetic field were observed at the twenty-two geomagnetic Euro-African Observatories during the solar flare that occurred on the 6 May, 1998 at 0080UT and storm sudden commencement that took place on May 8, 1998 at 15.00 UT. The geomagnetic field on 6 May, 1998 was ...

  10. Disk--Jet Coupling Following a Stellar Tidal Disruption Flare (United States)

    Ranga Reddy Pasham, Deeraj; van Velzen, Sjoert


    Tidal disruption of stars by supermassive black holes can result in transient radio emission. The electrons producing these synchrotron radio flares could be accelerated inside a relativistic jet or externally by shocks resulting from the interaction of an outflow with the circumnuclear medium. Until now, evidence for internal emission has been lacking and nearly all tidal disruption flare studies have adopted the external shock model to explain the observed properties of radio flares. I will talk about our recent discovery of a correlation between the changes in the x-ray and the radio flux of a tidal disruption flare. The radio lags the x-ray emission by about 13 days. This demonstrates that the x-ray emitting accretion disk regulates the radio emission. This coupling is inconsistent with all previous external models but is naturally explained if the radio emission originates from a freely expanding jet. I will also discuss the importance of similar observations in the future to understand how jets evolve in their earliest stages.

  11. High Peak Power Gain Switched Flared Waveguide Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Chow, W.W.; Indik, R.; Koch, S.W.; Mar, Alan, Vawter, G. Allen; Moloney, J.


    We gain-switch flared waveguide lasers to obtain 14.5 W peak powers and 0.5 nJ pulse energies with laser structures compatible with the generation of diffraction-limited beams. The results are in excellent agreement with a microscopic laser model.

  12. Solar flare impulsive phase emission observed with SDO/EVE

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, Michael B.; Milligan, Ryan O.; Mathioudakis, Mihalis; Keenan, Francis P., E-mail: [Astrophysics Research Centre, School of Mathematics and Physics, Queen' s University Belfast, University Road, Belfast BT7 1NN (United Kingdom)


    Differential emission measures (DEMs) during the impulsive phase of solar flares were constructed using observations from the EUV Variability Experiment (EVE) and the Markov-Chain Monte Carlo method. Emission lines from ions formed over the temperature range log T{sub e} = 5.8-7.2 allow the evolution of the DEM to be studied over a wide temperature range at 10 s cadence. The technique was applied to several M- and X-class flares, where impulsive phase EUV emission is observable in the disk-integrated EVE spectra from emission lines formed up to 3-4 MK and we use spatially unresolved EVE observations to infer the thermal structure of the emitting region. For the nine events studied, the DEMs exhibited a two-component distribution during the impulsive phase, a low-temperature component with peak temperature of 1-2 MK, and a broad high-temperature component from 7 to 30 MK. A bimodal high-temperature component is also found for several events, with peaks at 8 and 25 MK during the impulsive phase. The origin of the emission was verified using Atmospheric Imaging Assembly images to be the flare ribbons and footpoints, indicating that the constructed DEMs represent the spatially average thermal structure of the chromospheric flare emission during the impulsive phase.

  13. High energy particle acceleration in solar flares Observational evidence (United States)

    Chupp, E. L.


    The recent gamma ray and neutron observations made by the SMM Gamma Ray Spectrometer are reviewed. The implication these observations hold for understanding particle acceleration in solar flares are discussed. The data require that both electrons and ions must be accelerated together to relativistic energies and interact with matter in a time scale of seconds.

  14. Obama’s Dual Discourse on American Exceptionalism

    Directory of Open Access Journals (Sweden)

    Hrnjaz Miloš


    Full Text Available This paper analyses the highly contested concept of American exceptionalism, as described in the speeches of Barak Obama. The authors of the paper use discourse analysis to show that Obama is using the idea of American exceptionalism on two levels: US foreign policy and the US stance towards international law. Our conclusion is that Obama uses an implicit dual discourse in both these fields. Obama favours active US foreign policy, based on soft power instruments and multilateralism. He insists that American exceptionalism does not mean that the US can exempt itself from the norms of international law, however, he does not think the US should always have a very active foreign policy. He makes room for unilateral acting and the use of hard power instruments in foreign policy. He allows for the use of force even if is not in accordance with the norms of international law, when US national interests are threatened.

  15. A flare observed in coronal, transition region, and helium I 10830 Å emissions

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Zhicheng; Cao, Wenda [Center for Solar-Terrestrial Research, New Jersey Institute of Technology, 323 Martin Luther King Boulevard, Newark, NJ 07102 (United States); Qiu, Jiong [Department of Physics, Montana State University, Bozeman, MT 59717-3840 (United States); Judge, Philip G. [High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO 80307-3000 (United States)


    On 2012 June 17, we observed the evolution of a C-class flare associated with the eruption of a filament near a large sunspot in the active region NOAA 11504. We obtained high spatial resolution filtergrams using the 1.6 m New Solar Telescope at the Big Bear Solar Observatory in broadband TiO at 706 nm (bandpass: 10 Å) and He I 10830 Å narrow band (bandpass: 0.5 Å, centered 0.25 Å to the blue). We analyze the spatio-temporal behavior of the He I 10830 Å data, which were obtained over a 90''×90'' field of view with a cadence of 10 s. We also analyze simultaneous data from the Atmospheric Imaging Assembly and Extreme Ultraviolet Variability Experiment instruments on board the Solar Dynamics Observatory spacecraft, and data from the Reuven Ramaty High Energy Solar Spectroscopic Imager and GOES spacecrafts. Non-thermal effects are ignored in this analysis. Several quantitative aspects of the data, as well as models derived using the '0D' enthalpy-based thermal evolution of loops model code, indicate that the triplet states of the 10830 Å multiplet are populated by photoionization of chromospheric plasma followed by radiative recombination. Surprisingly, the He II 304 Å line is reasonably well matched by standard emission measure calculations, along with the C IV emission which dominates the Atmosphere Imaging Assembly 1600 Å channel during flares. This work lends support to some of our previous work combining X-ray, EUV, and UV data of flares to build models of energy transport from corona to chromosphere.


    Energy Technology Data Exchange (ETDEWEB)

    Paliya, Vaidehi S.; Stalin, C. S. [Indian Institute of Astrophysics, Block II, Koramangala, Bangalore-560034 (India); Diltz, Chris; Böttcher, Markus [Astrophysical Institute, Department of Physics and Astronomy, Ohio University, Athens, OH 45701 (United States); Buckley, David, E-mail: [South African Astronomical Observatory, P.O. Box 9, Observatory 7935, Cape Town (South Africa)


    The blazar 3C 279 exhibited twin γ-ray flares of similar intensity in 2013 December and 2014 April. In this work, we present a detailed multi-wavelength analysis of the 2013 December flaring event. Multi-frequency observations reveal the uncorrelated variability patterns with X-ray and optical–UV fluxes peaking after the γ-ray maximum. The broadband spectral energy distribution (SED) at the peak of the γ-ray activity shows a rising γ-ray spectrum but a declining optical–UV flux. This observation along with the detection of uncorrelated variability behavior rules out the one-zone leptonic emission scenario. We, therefore, adopt two independent methodologies to explain the SED: a time-dependent lepto-hadronic modeling and a two-zone leptonic radiative modeling approach. In the lepto-hadronic modeling, a distribution of electrons and protons subjected to a randomly orientated magnetic field produces synchrotron radiation. Electron synchrotron is used to explain the IR to UV emission while proton synchrotron emission is used to explain the high-energy γ-ray emission. A combination of both electron synchrotron self-Compton emission and proton synchrotron emission is used to explain the X-ray spectral break seen during the later stage of the flare. In the two-zone modeling, we assume a large emission region emitting primarily in IR to X-rays and γ-rays to come primarily from a fast-moving compact emission region. We conclude by noting that within a span of four months, 3C 279 has shown the dominance of a variety of radiative processes over each other and this reflects the complexity involved in understanding the physical properties of blazar jets in general.

  17. Living on a Flare: Relativistic Reflection in V404 Cyg Observed by NuSTAR during Its Summer 2015 Outburst (United States)

    Walton, D. J.; Mooley, K.; King, A. L.; Tomsick, J. A.; Miller, J. M.; Dauser, T.; García, J. A.; Bachetti, M.; Brightman, M.; Fabian, A. C.; Forster, K.; Fürst, F.; Gandhi, P.; Grefenstette, B. W.; Harrison, F. A.; Madsen, K. K.; Meier, D. L.; Middleton, M. J.; Natalucci, L.; Rahoui, F.; Rana, V.; Stern, D.


    We present first results from a series of NuSTAR observations of the black hole X-ray binary V404 Cyg obtained during its summer 2015 outburst, primarily focusing on observations during the height of this outburst activity. The NuSTAR data show extreme variability in both the flux and spectral properties of the source. This is partly driven by strong and variable line-of-sight absorption, similar to previous outbursts. The latter stages of this observation are dominated by strong flares, reaching luminosities close to Eddington. During these flares, the central source appears to be relatively unobscured and the data show clear evidence for a strong contribution from relativistic reflection, providing a means to probe the geometry of the innermost accretion flow. Based on the flare properties, analogies with other Galactic black hole binaries, and also the simultaneous onset of radio activity, we argue that this intense X-ray flaring is related to transient jet activity during which the ejected plasma is the primary source of illumination for the accretion disk. If this is the case, then our reflection modeling implies that these jets are launched in close proximity to the black hole (as close as a few gravitational radii), consistent with expectations for jet launching models that tap either the spin of the central black hole, or the very innermost accretion disk. Our analysis also allows us to place the first constraints on the black hole spin for this source, which we find to be {a}* > 0.92 (99% statistical uncertainty, based on an idealized lamp-post geometry).

  18. Exceptional Cosmetic surgeries on $S^3$


    Ravelomanana, Huygens C.


    This paper concerns the truly or purely cosmetic surgery conjecture. We give a survey on exceptional surgeries and cosmetic surgeries. We prove that the slope of an exceptional truly cosmetic surgery on a hyperbolic knot in $S^3$ must be $\\pm 1$ and the surgery must be toroidal but not Seifert fibred. As consequence we show that there are no exceptional truly cosmetic surgeries on certain types of hyperbolic knot in $S^3$. We also give some properties of Heegaard Floer correction terms and to...

  19. The 2010 Very High Energy Gamma-Ray Flare and 10 Years of Multi-Wavelength Observations of M87 (United States)

    Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A G.; Anton, G.; Balzer, A.; Barnacka, A.; Barres de Almeida, U.; Becherini, Y.; Becker, J.; hide


    EVN, is used to further investigate the origin of the VHE gamma -ray emission. No unique, common MWL signature of the three VHE flares has been identified. In the outer kpc jet region, in particular in HST-1, no enhanced MWL activity was detected in 2008 and 2010, disfavoring it as the origin of the VHE flares during these years. Shortly after two of the three flares (2008 and 2010), the X-ray core was observed to be at a higher flux level than its characteristic range (determined from more than 60 monitoring observations: 2002-2009). In 2005, the strong flux dominance of HST-1 could have suppressed the detection of such a feature. Published models for VHE gamma -ray emission from M87 are reviewed in the light of the new data.


    Energy Technology Data Exchange (ETDEWEB)

    Abramowski, A. [Institut fuer Experimentalphysik, Universitaet Hamburg, Luruper Chaussee 149, D 22761 Hamburg (Germany); Acero, F. [Laboratoire Univers et Particules de Montpellier, Universite Montpellier 2, CNRS/IN2P3, CC 72, Place Eugene Bataillon, F-34095 Montpellier Cedex 5 (France); Aharonian, F.; Bernloehr, K.; Bochow, A. [Max-Planck-Institut fuer Kernphysik, P.O. Box 103980, D 69029 Heidelberg (Germany); Akhperjanian, A. G. [National Academy of Sciences of the Republic of Armenia, 24 Marshall Baghramian Avenue, 0019 Yerevan (Armenia); Anton, G.; Balzer, A. [Physikalisches Institut, Universitaet Erlangen-Nuernberg, Erwin-Rommel-Str. 1, D 91058 Erlangen (Germany); Barnacka, A. [Nicolaus Copernicus Astronomical Center, ul. Bartycka 18, 00-716 Warsaw (Poland); Barres de Almeida, U. [Department of Physics, University of Durham, South Road, Durham DH1 3LE (United Kingdom); Becherini, Y. [Astroparticule et Cosmologie (APC), CNRS, Universite Paris 7 Denis Diderot, 10, rue Alice Domon et Leonie Duquet, F-75205 Paris Cedex 13 (France); Becker, J. [Institut fuer Theoretische Physik, Lehrstuhl IV: Weltraum und Astrophysik, Ruhr-Universitaet Bochum, D 44780 Bochum (Germany); Behera, B. [Landessternwarte, Universitaet Heidelberg, Koenigstuhl, D 69117 Heidelberg (Germany); Birsin, E. [Institut fuer Physik, Humboldt-Universitaet zu Berlin, Newtonstr. 15, D 12489 Berlin (Germany); Biteau, J. [Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS/IN2P3, F-91128 Palaiseau (France); Boisson, C. [LUTH, Observatoire de Paris, CNRS, Universite Paris Diderot, 5 Place Jules Janssen, 92190 Meudon (France); Bolmont, J. [LPNHE, Universite Pierre et Marie Curie Paris 6, Universite Denis Diderot Paris 7, CNRS/IN2P3, 4 Place Jussieu, F-75252, Paris Cedex 5 (France); Bordas, P., E-mail: [Institut fuer Astronomie und Astrophysik, Universitaet Tuebingen, Sand 1, D 72076 Tuebingen (Germany); Collaboration: H.E.S.S. Collaboration; MAGIC Collaboration; VERITAS Collaboration; and others


    ) light curve of M 87, spanning from radio to VHE and including data from Hubble Space Telescope, Liverpool Telescope, Very Large Array, and European VLBI Network, is used to further investigate the origin of the VHE {gamma}-ray emission. No unique, common MWL signature of the three VHE flares has been identified. In the outer kiloparsec jet region, in particular in HST-1, no enhanced MWL activity was detected in 2008 and 2010, disfavoring it as the origin of the VHE flares during these years. Shortly after two of the three flares (2008 and 2010), the X-ray core was observed to be at a higher flux level than its characteristic range (determined from more than 60 monitoring observations: 2002-2009). In 2005, the strong flux dominance of HST-1 could have suppressed the detection of such a feature. Published models for VHE {gamma}-ray emission from M 87 are reviewed in the light of the new data.

  1. A Fifteen Year Record of Global Natural Gas Flaring Derived from Satellite Data

    Directory of Open Access Journals (Sweden)

    Mikhail Zhizhin


    Full Text Available We have produced annual estimates of national and global gas flaring and gas flaring efficiency from 1994 through 2008 using low light imaging data acquired by the Defense Meteorological Satellite Program (DMSP. Gas flaring is a widely used practice for the disposal of associated gas in oil production and processing facilities where there is insufficient infrastructure for utilization of the gas (primarily methane. Improved utilization of the gas is key to reducing global carbon emissions to the atmosphere. The DMSP estimates of flared gas volume are based on a calibration developed with a pooled set of reported national gas flaring volumes and data from individual flares. Flaring efficiency was calculated as the volume of flared gas per barrel of crude oil produced. Global gas flaring has remained largely stable over the past fifteen years, in the range of 140 to 170 billion cubic meters (BCM. Global flaring efficiency was in the seven to eight cubic meters per barrel from 1994 to 2005 and declined to 5.6 m3 per barrel by 2008. The 2008 gas flaring estimate of 139 BCM represents 21% of the natural gas consumption of the USA with a potential retail market value of $68 billion. The 2008 flaring added more than 278 million metric tons of carbon dioxide equivalent (CO2e into the atmosphere. The DMSP estimated gas flaring volumes indicate that global gas flaring has declined by 19% since 2005, led by gas flaring reductions in Russia and Nigeria, the two countries with the highest gas flaring levels. The flaring efficiency of both Russia and Nigeria improved from 2005 to 2008, suggesting that the reductions in gas flaring are likely the result of either improved utilization of the gas, reinjection, or direct venting of gas into the atmosphere, although the effect of uncertainties in the satellite data cannot be ruled out. It is anticipated that the capability to estimate gas flaring volumes based on satellite data will spur improved utilization of

  2. 28 CFR 42.711 - Exception; authorized by law. (United States)


    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Exception; authorized by law. 42.711 Section 42.711 Judicial Administration DEPARTMENT OF JUSTICE NONDISCRIMINATION; EQUAL EMPLOYMENT OPPORTUNITY; POLICIES AND PROCEDURES Nondiscrimination on the Basis of Age in Federally Assisted Programs or Activities; Implementation of the Age...

  3. 36 CFR 71.13 - Exceptions, exclusions, and exemptions. (United States)


    ... INTERIOR RECREATION FEES § 71.13 Exceptions, exclusions, and exemptions. In the application of the... Area. (d) No Federal recreation fee shall be charged for commercial or other activities not related to... any recreation facilities for which a fee waiver is requested must relate directly to scientific or...

  4. β-Hydroxybutyrate Deactivates Neutrophil NLRP3 Inflammasome to Relieve Gout Flares

    Directory of Open Access Journals (Sweden)

    Emily L. Goldberg


    Full Text Available Aging and lipotoxicity are two major risk factors for gout that are linked by the activation of the NLRP3 inflammasome. Neutrophil-mediated production of interleukin-1β (IL-1β drives gouty flares that cause joint destruction, intense pain, and fever. However, metabolites that impact neutrophil inflammasome remain unknown. Here, we identified that ketogenic diet (KD increases β-hydroxybutyrate (BHB and alleviates urate crystal-induced gout without impairing immune defense against bacterial infection. BHB inhibited NLRP3 inflammasome in S100A9 fibril-primed and urate crystal-activated macrophages, which serve to recruit inflammatory neutrophils in joints. Consistent with reduced gouty flares in rats fed a ketogenic diet, BHB blocked IL-1β in neutrophils in a NLRP3-dependent manner in mice and humans irrespective of age. Mechanistically, BHB inhibited the NLRP3 inflammasome in neutrophils by reducing priming and assembly steps. Collectively, our studies show that BHB, a known alternate metabolic fuel, is also an anti-inflammatory molecule that may serve as a treatment for gout.

  5. Simultaneous, multi-wavelength flare observations of nearby low-mass stars (United States)

    Thackeray, Beverly; Barclay, Thomas; Quintana, Elisa; Villadsen, Jacqueline; Wofford, Alia; Schlieder, Joshua; Boyd, Patricia


    Low-mass stars are the most common stars in the Galaxy and have been targeted in the tens-of-thousands by K2, the re-purposed Kepler mission, as they are prime targets to search for and characterize small, Earth-like planets. Understanding how these fully convective stars drive magnetic activity that manifests as stochastic, short-term brightenings, or flares, provides insight into the prospects of planetary habitability. High energy radiation and energetic particle emission associated with these stars can erode atmospheres, and impact habitability. An innovative campaign to study low mass stars through simultaneous multi-wavelength observations is currently underway with observations ongoing in the X-ray, UV, optical, and radio. I will present early results of our pilot study of the nearby M-Dwarf star Wolf 359 (CN Leo) using K2, SWIFT, and ground based radio observatories, forming a comprehensive picture of flare activity from an M-Dwarf, and discuss the potential impact of these results on exoplanets. "This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE1322106. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation."

  6. Distinct kinetics in the frequency of peripheral CD4+ T cells in patients with ulcerative colitis experiencing a flare during treatment with mesalazine or with a herbal preparation of myrrh, chamomile, and coffee charcoal. (United States)

    Langhorst, Jost; Frede, Annika; Knott, Markus; Pastille, Eva; Buer, Jan; Dobos, Gustav J; Westendorf, Astrid M


    = 0.0461; CD4+CD25high baseline/flare p = 0.0269 and pre-flare/flare p = 0.0032). In contrast, no changes in the expression of Foxp3 cells were detected within the subsets of CD4+CD25high regulatory T cells. Of note, no alterations were detected in the suppressive capability of CD4+CD25high regulatory T cells isolated from the peripheral blood of healthy donors, from patients in remission, or from patients with clinical flare. In patients with UC experiencing acute flare, the CD4+ T compartment demonstrates a distinctly different pattern during treatment with myrrh, chamomile extract, and coffee charcoal than during treatment with mesalazine. These findings suggest an active repopulation of regulatory T cells during active disease. EU Clinical Trials Register 2007-007928-18/DE.

  7. Cognitive function in families with exceptional survival

    DEFF Research Database (Denmark)

    Barral, Sandra; Cosentino, Stephanie; Costa, Rosann


    members in the offspring generation demonstrate significantly better performance on multiple tasks requiring attention, working memory, and semantic processing when compared with individuals without a family history of exceptional survival, suggesting that cognitive performance may serve as an important...

  8. 48 CFR 8.605 - Exceptions. (United States)


    ... REQUIRED SOURCES OF SUPPLIES AND SERVICES Acquisition From Federal Prison Industries, Inc. 8.605 Exceptions... determination that the FPI item of supply is not comparable to supplies available from the private sector that...

  9. 7 CFR 1944.75 - Exception authority. (United States)


    ...) PROGRAM REGULATIONS (CONTINUED) HOUSING Housing Application Packaging Grants § 1944.75 Exception authority... supported with documentation to explain the adverse effect on the Government's interest and/or impact on the...

  10. Exceptional cosmetic surgeries on homology spheres


    Ravelomanana, Huygens C.


    The cosmetic surgery conjecture is a longstanding conjecture in 3-manifold theory. We present a theorem about exceptional cosmetic surgery for homology spheres. Along the way we prove that if the surgery is not a small seifert $\\mathbb{Z}/2\\mathbb{Z}$-homology sphere or a toroidal irreducible non-Seifert surgery then there is at most one pair of exceptional truly cosmetic slope. We also prove that toroidal truly cosmetic surgeries on integer homology spheres must be integer homology spheres.

  11. Signatures of the impact of flare-ejected plasma on the photosphere of a sunspot light bridge (United States)

    Felipe, T.; Collados, M.; Khomenko, E.; Rajaguru, S. P.; Franz, M.; Kuckein, C.; Asensio Ramos, A.


    Aims: We investigate the properties of a sunspot light bridge, focusing on the changes produced by the impact of a plasma blob ejected from a C-class flare. Methods: We observed a sunspot in active region NOAA 12544 using spectropolarimetric raster maps of the four Fe I lines around 15 655 Å with the GREGOR Infrared Spectrograph, narrow-band intensity images sampling the Fe I 6173 Å line with the GREGOR Fabry-Pérot Interferometer, and intensity broad-band images in G-band and Ca II H-band with the High-resolution Fast Imager. All these instruments are located at the GREGOR telescope at the Observatorio del Teide, Tenerife, Spain. The data cover the time before, during, and after the flare event. The analysis is complemented with Atmospheric Imaging Assembly and Helioseismic and Magnetic Imager data from the Solar Dynamics Observatory. The physical parameters of the atmosphere at differents heights were inferred using spectral-line inversion techniques. Results: We identify photospheric and chromospheric brightenings, heating events, and changes in the Stokes profiles associated with the flare eruption and the subsequent arrival of the plasma blob to the light bridge, after traveling along an active region loop. Conclusions: The measurements suggest that these phenomena are the result of reconnection events driven by the interaction of the plasma blob with the magnetic field topology of the light bridge. Movies attached to Figs. 1 and 3 are available at

  12. A flare for decommissioning : a push to close flare pits in B.C. earns Petro-Canada an industry award for environmental stewardship

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, J.


    Flaring is widely used to dispose of natural gas liberated during oil production and processing in remote areas where there is no pipeline on site to make use of the gas. Sources of flaring include well testing, solution gas from oil wells, underbalanced drilling, gas gathering systems and gas processing plants. Flaring is a source of pollution and a waste of energy. This article described Petro-Canada's efforts to eliminate flaring. In the late 1990s, the company began environmental assessments of its flare pits in British Columbia (BC). Since 2005, the producer has decommissioned 106 of its 108 pits in the province and ring-fenced the other 2. As the staff advanced the task of decommissioning, it often consolidated flaring hardware, installing a single, vertical flare stack to serve where 3 or 4 flare pits had previously served as many well sites. Before decommissioning began, Petro-Canada carried out its own environmental protocol and assessed its pits for the presence of contaminants and for their potential to leach into local waterways. Monitoring of groundwater through wells drilled on the company's BC flare pit sites will continue for some time, particularly on sites with bodies of water. BC's Oil and Gas Commission estimated that between 1996 and 2006, conservation of solution gas rose from 87 to 97 per cent among the province's producers. Petro-Canada was commended for being among the first to secure all flare pits under its control in BC. It was estimated that 49 per cent of all flare pits decommission in BC by 2007 were completed by Petro-Canada. 2 refs., 2 figs.

  13. Exceptional outburst of the blazar CTA 102 in 2012: the GASP-WEBT campaign and its extension (United States)

    Larionov, V. M.; Villata, M.; Raiteri, C. M.; Jorstad, S. G.; Marscher, A. P.; Agudo, I.; Smith, P. S.; Acosta-Pulido, J. A.; ˙arévalo, M. J.; Arkharov, A. A.; Bachev, R.; Blinov, D. A.; Borisov, G.; Borman, G. A.; Bozhilov, V.; Bueno, A.; Carnerero, M. I.; Carosati, D.; Casadio, C.; Chen, W. P.; Clemens, D. P.; Di Paola, A.; Ehgamberdiev, Sh. A.; Gómez, J. L.; González-Morales, P. A.; Griñón-Marín, A.; Grishina, T. S.; Hagen-Thorn, V. A.; Ibryamov, S.; Itoh, R.; Joshi, M.; Kopatskaya, E. N.; Koptelova, E.; Lázaro, C.; Larionova, E. G.; Larionova, L. V.; Manilla-Robles, A.; Metodieva, Y.; Milanova, Yu. V.; Mirzaqulov, D. O.; Molina, S. N.; Morozova, D. A.; Nazarov, S. V.; Ovcharov, E.; Peneva, S.; Ros, J. A.; Sadun, A. C.; Savchenko, S. S.; Semkov, E.; Sergeev, S. G.; Strigachev, A.; Troitskaya, Yu. V.; Troitsky, I. S.


    After several years of quiescence, the blazar CTA 102 underwent an exceptional outburst in 2012 September-October. The flare was tracked from γ-ray to near-infrared (NIR) frequencies, including Fermi and Swift data as well as photometric and polarimetric data from several observatories. An intensive Glast-Agile support programme of the Whole Earth Blazar Telescope (GASP-WEBT) collaboration campaign in optical and NIR bands, with an addition of previously unpublished archival data and extension through fall 2015, allows comparison of this outburst with the previous activity period of this blazar in 2004-2005. We find remarkable similarity between the optical and γ-ray behaviour of CTA 102 during the outburst, with a time lag between the two light curves of ≈1 h, indicative of cospatiality of the optical and γ-ray emission regions. The relation between the γ-ray and optical fluxes is consistent with the synchrotron self-Compton (SSC) mechanism, with a quadratic dependence of the SSC γ-ray flux on the synchrotron optical flux evident in the post-outburst stage. However, the γ-ray/optical relationship is linear during the outburst; we attribute this to changes in the Doppler factor. A strong harder-when-brighter spectral dependence is seen both the in γ-ray and optical non-thermal emission. This hardening can be explained by convexity of the UV-NIR spectrum that moves to higher frequencies owing to an increased Doppler shift as the viewing angle decreases during the outburst stage. The overall pattern of Stokes parameter variations agrees with a model of a radiating blob or shock wave that moves along a helical path down the jet.

  14. A Year of Exceptional Achievements FY 2008

    Energy Technology Data Exchange (ETDEWEB)

    devore, L; Chrzanowski, P


    2008 highlights: (1) Stockpile Stewardship and Complex Transformation - LLNL achieved scientific breakthroughs that explain some of the key 'unknowns' in nuclear weapons performance and are critical to developing the predictive science needed to ensure the safety, reliability, and security of the U.S. nuclear deterrent without nuclear testing. In addition, the National Ignition Facility (NIF) passed 99 percent completion, an LLNL supercomputer simulation won the 2007 Gordon Bell Prize, and a significant fraction of our inventory of special nuclear material was shipped to other sites in support of complex transformation. (2) National and Global Security - Laboratory researchers delivered insights, technologies, and operational capabilities that are helping to ensure national security and global stability. Of particular note, they developed advanced detection instruments that provide increased speed, accuracy, specificity, and resolution for identifying and characterizing biological, chemical, nuclear, and high-explosive threats. (3) Exceptional Science and Technology - The Laboratory continued its tradition of scientific excellence and technical innovation. LLNL scientists made significant contributions to Nobel Prize-winning work on climate change. LLNL also received three R&D 100 awards and six Nanotech 50 awards, and dozens of Laboratory scientists and engineers were recognized with professional awards. These honors provide valuable confirmation that peers and outside experts recognize the quality of our staff and our work. (4) Enhanced Business and Operations - A major thrust under LLNS is to make the Laboratory more efficient and cost competitive. We achieved roughly $75 million in cost savings for support activities through organizational changes, consolidation of services, improved governance structures and work processes, technology upgrades, and systems shared with Los Alamos National Laboratory. We realized nonlabor cost savings of $23 million

  15. The Photospheric Flow near the Flare Locations of Active Regions

    Indian Academy of Sciences (India)


    and merged following a certain procedure to produce a data cube. The most important requirement for the Doppler shift measurements is the repeatability of the wavelength steps. In the recent improvement, the filter tuning was achieved with accuracy better than 0.3 mA by using an optical encoder. However, it has been ...

  16. On the response of the upper atmosphere to solar flares (United States)

    Pawlowski, David J.

    Over the past several decades, modern civilizations have become increasingly dependent on spacecraft that reside in the near-Earth space environment. For this reason, scientists and engineers have been interested in understanding the causes of perturbations to the background state of the Earth's upper atmosphere, and to quantify the impact of these events. As a result of the states of the thermosphere and ionosphere being directly dependent on the incident radiation from the sum, it is expected that sudden changes in the solar radiative output should cause significant changes in the upper atmosphere. Such dynamics are investigated in this study, specifically the manner in which solar flares affect the density, circulation, and temperature of the Earth's thermosphere and ionosphere. A global model of this region is used to examine how the upper atmosphere responds to such transient events. In order to quantify the response, the model is run during realistic events in order to understand the magnitudes of the resulting perturbations to the global ionosphere-thermosphere system. In the thermosphere, density perturbations of approximately 15% are found to occur on the dayside within 1.5 hours after the start of a solar flare. The addition of solar energy to the dayside launches a traveling atmospheric disturbance which propagates towards the night-side at the local sound speed plus the background velocity. As the disturbance converges on itself near the midnight sector, density enhancements almost as large as those seen on the day-side can occur. Furthermore, these night-side neutral perturbations cause both enhancements and depletions in the night-side electron density. In addition, theoretical simulations are performed to study the effects that the major characteristics of solar flares have on the atmosphere. In particular, dynamics resulting from changes in the total integrated energy, flare magnitude, and relevant time scales are investigated. The most important


    Energy Technology Data Exchange (ETDEWEB)

    Oks, E. [Physics Department, 206 Allison Lab., Auburn University, Auburn, AL 36849 (United States); Gershberg, R. E. [Crimean Astrophysical Observatory, Nauchny, Bakhchisaray region, Crimea, 298409 (Russian Federation)


    We present a spectroscopic method for diagnosing a low-frequency electrostatic plasma turbulence (LEPT) in plasmas of flare stars. This method had been previously developed by one of us and successfully applied to diagnosing the LEPT in solar flares. In distinction to our previous applications of the method, here we use the latest advances in the theory of the Stark broadening of hydrogen spectral lines. By analyzing observed emission Balmer lines, we show that it is very likely that the LEPT was developed in several flares of AD Leo, as well as in one flare of EV Lac. We found the LEPT (though of different field strengths) both in the explosive/impulsive phase and at the phase of the maximum, as well as at the gradual phase of the stellar flares. While for solar flares our method allows diagnosing the LEPT only in the most powerful flares, for the flare stars it seems that the method allows revealing the LEPT practically in every flare. It should be important to obtain new and better spectrograms of stellar flares, allowing their analysis by the method outlined in the present paper. This can be the most favorable way to the detailed understanding of the nature of nonthermal astrophysical phenomena.

  18. The Lived Experience of Lupus Flares: Features, Triggers, and Management in an Australian Female Cohort

    Directory of Open Access Journals (Sweden)

    Marline L. Squance


    Full Text Available Individuals living with lupus commonly experience daily backgrounds of symptoms managed to acceptable tolerance levels to prevent organ damage. Despite management, exacerbation periods (flares still occur. Varied clinical presentations and unpredictable symptom exacerbation patterns provide management and assessment challenges. Patient perceptions of symptoms vary with perceived impact, lifestyles, available support, and self-management capacity. Therefore, to increase our understanding of lupus’ health impacts and management, it was important to explore lupus flare characteristics from the patient viewpoint. Lupus flares in 101 Australian female patients were retrospectively explored with the use of a novel flare definition. Qualitative methods were used to explore patient-perceived flare symptoms, triggers, and management strategies adopted to alleviate symptom exacerbations. A mean of 29.9 flare days, with 6.8 discrete flares, was experienced. The study confirmed that patients perceive stress, infection, and UV light as flare triggers and identified new potential triggers of temperature and weather changes, work, and chemical exposure from home cleaning. The majority of flares were self-managed with patients making considered management choices without medical input. Barriers to seeking medical support included appointment timings and past negative experiences reflecting incongruence between clinician and patient views of symptom impact, assessment, and ultimately flare occurrence.

  19. Space Science IS Accessible to Students with Exceptional Needs: Results from Exceptional Needs Workshops (United States)

    Runyon, C. J.; Merritt, M.; Guimond, K.


    The majority of students with disabilities in the US are required to achieve the same academic levels as their non-impaired peers. Unfortunately, there are few specialized materials to help these exceptional students. To assist students in meeting their goals, SERCH, a NASA Office of Space Science Broker/Facilitator, has been working with NASA education product developers and educators from informal and formal settings to identify what kinds of materials they need and what mediums will work best. As a result of both direct classrooms observations and hands-on workshops we have begun generating adaptive lessons plans that meet the national standards for Science, Technology, Engineering and Mathematics. During the workshops, participants simulate various disabilities (e.g., hearing, vision, orthopedic impairments, learning difficulties) while working through Space Science activities and discuss necessary adaptations/modifications in real-time. For example, we modified the Solar System Distance activity first designed by ASU to include the use of larger beads or pom-poms instead of the suggested small plastic beads. This simple adaptation permits students with orthopedic impairments to more readily take part in the lesson and to actively "observe" the distance between the planets. Examples of this activity and more will be illustrated. In addition to making modifications and suggestions for adaptations, workshop participants shared many simple recommendations that can help ALL learners participate more readily in classroom activities and discussions. Among these are: (1) Use simple, sans-serif fonts and high contrast presentation media (e.g., white text on black is most effective); (2) Repetition and use of multiple presentation modes is very helpful. (3) Actively involve the learner, and (4) Keep things simple to begin with, then work toward the more complex - think of the audience, the ultimate user.

  20. The CHAIN-Project and Installation of Flare Monitoring Telescopes in Developing Countries

    Directory of Open Access Journals (Sweden)

    S UeNo


    Full Text Available The Flare Monitoring Telescope (FMT was constructed in 1992 at Hida Observatory in Japan to investigate the long-term variation of solar activity and explosive events. It has five solar imaging telescopes that simultaneously observe the full-disk Sun at different wavelengths around the H-alpha absorption line or in different modes. Therefore, the FMT can measure the three-dimensional velocity field of moving structures on the full solar disk. The science target of the FMT is to monitor solar flares and erupting filaments continuously all over the solar disk and to investigate correlation between the characteristics of the erupting phenomena and the geoeffectiveness of the corresponding coronal mass ejections (CMEs. We are planning to start up a new worldwide project, the Continuous H-alpha Imaging Network (CHAIN project, as an important IHY project of our observatories. As part of this project, we are examining the possibility of installing telescopes similar to the FMT in developing countries. We have selected Peru and Algeria as the countries where the first and second overseas FMTs will be installed, and we are aiming to start operation of these FMTs by the end of 2010 before the maximum phase of solar cycle 24. To create such an international network, it will be necessary to improve the information technologies applied in our observation-system. In this paper, we explain the current status and future areas of work regarding our system.


    Energy Technology Data Exchange (ETDEWEB)

    Machabeli, George; Rogava, Andria; Shapakidze, David, E-mail: [Centre of Theoretical Astrophysics, Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia (United States)


    We consider parametric generation of electrostatic waves in the magnetosphere of the pulsar PSR0531. The suggested mechanism allows us to convert the pulsar rotational energy into the energy of Langmuir waves. The maximum growth rate is achieved in the “superluminal” area, where the phase velocity of perturbations exceeds the speed of light. Therefore, electromagnetic waves do not damp on particles. Instead, they create plasmon condensate, which is carried out outside of the pulsar magnetosphere and reaches the Crab Nebula. It is shown that the transfer of the energy of the plasmon condensate from the light cylinder to the active region of the nebula happens practically without losses. Unlike the plasma of the magnetosphere, the one of the nebula contains ions, i.e., it may sustain modulation instability, that leads to the collapse of the Langmuir condensate. Langmuir wave collapse, in turn, leads to the acceleration of the distribution function particles. Furthermore, the processes that lead to self-trapping of the synchrotron radiation are discussed. The self-trapping results in the growth of the radiation intensity, which manifests itself observationally as a flare. The condition for the self-trapping onset is derived, showing that if the phenomenon takes place at 100 MeV, then it does not happen at lower (or higher) energies. This specific kind of higher-/lower-energy cutoff could explain why when we observe the flare at 100 MeV that no enhanced emission is observed at lower/higher energies!.

  2. Behaviour of Electron Content in the Ionospheric D-Region During Solar X-Ray Flares (United States)

    Todorović Drakul, M.; Čadež, V. M.; Bajčetić, J.; Popović, L. Č.; Blagojević, D.; Nina, A.


    One of the most important parameters in ionospheric plasma research, also having a wide practical application in wireless satellite telecommunications, is the total electron content (TEC) representing the columnal electron number density. The F-region with high electron density provides the biggest contribution to TEC while the relatively weakly ionized plasma of the D-region (60 km - 90 km above Earth's surface) is often considered as a negligible cause of satellite signal disturbances. However, sudden intensive ionization processes, like those induced by solar X-ray flares, can cause relative increases of electron density that are significantly larger in the D-region than in regions at higher altitudes. Therefore, one cannot exclude a priori the D-region from investigations of ionospheric influences on propagation of electromagnetic signals emitted by satellites. We discuss here this problem which has not been sufficiently treated in literature so far. The obtained results are based on data collected from the D-region monitoring by very low frequency radio waves and on vertical TEC calculations from the Global Navigation Satellite System (GNSS) signal analyses, and they show noticeable variations in the D-region's electron content (TEC_{D) during activity of a solar X-ray flare (it rises by a factor of 136 in the considered case) when TEC_{D} contribution to TEC can reach several percent and which cannot be neglected in practical applications like global positioning procedures by satellites.

  3. Using Supra-Arcade Downflows as Probes of Particle Acceleration in Solar Flares (United States)

    Savage, Sabrina


    Extracting information from coronal features above flares has become more reliable with the availability of increasingly higher spatial- and temporal-resolution data in recent decades. We are now able to sufficiently probe the region high above long-duration flaring active regions where reconnection is expected to be continually occurring. Flows in the supra-arcade region, first observed with Yohkoh/SXT, have been theorized to be associated with newly-reconnected outflowing loops. High resolution data appears to confirm these assertions. Assuming that these flows are indeed reconnection outflows, then the detection of those directed toward the solar surface (i.e. downflowing) should be associated with particle acceleration between the current sheet and the loop footpoints rooted in the chromosphere. RHESSI observations of highly energetic particles with respect to downflow detections could potentially constrain electron acceleration models. We provide measurements of these supra-arcade downflows (SADs) in relation to reconnection model parameters and present preliminary findings comparing the downflow timings with high-energy RHESSI lightcurves.

  4. Using Supra-Arcade Downflows as Probes of Electron Acceleration During Solar Flares (United States)

    Savage, Sabrina L.


    Extracting information from coronal features above flares has become more reliable with the availability of increasingly higher spatial and temporal-resolution data in recent decades. We are now able to sufficiently probe the region high above long-duration flaring active regions where reconnection is expected to be continually occurring. Flows in the supra-arcade region, first observed with Yohkoh/SXT, have been theorized to be associated with newly-reconnected outflowing loops. High resolution data appears to confirm these assertions. Assuming that these flows are indeed reconnection outflows, then the detection of those directed toward the solar surface (i.e. downflowing) should be associated with particle acceleration between the current sheet and the loop footpoints rooted in the chromosphere. RHESSI observations of highly energetic particles with respect to downflow detections could potentially constrain electron acceleration models. I will discuss measurements of these supra-arcade downflows (SADs) in relation to reconnection model parameters and present preliminary findings comparing the downflow timings with high-energy RHESSI lightcurves.

  5. Statistical tests to compare motif count exceptionalities

    Directory of Open Access Journals (Sweden)

    Vandewalle Vincent


    Full Text Available Abstract Background Finding over- or under-represented motifs in biological sequences is now a common task in genomics. Thanks to p-value calculation for motif counts, exceptional motifs are identified and represent candidate functional motifs. The present work addresses the related question of comparing the exceptionality of one motif in two different sequences. Just comparing the motif count p-values in each sequence is indeed not sufficient to decide if this motif is significantly more exceptional in one sequence compared to the other one. A statistical test is required. Results We develop and analyze two statistical tests, an exact binomial one and an asymptotic likelihood ratio test, to decide whether the exceptionality of a given motif is equivalent or significantly different in two sequences of interest. For that purpose, motif occurrences are modeled by Poisson processes, with a special care for overlapping motifs. Both tests can take the sequence compositions into account. As an illustration, we compare the octamer exceptionalities in the Escherichia coli K-12 backbone versus variable strain-specific loops. Conclusion The exact binomial test is particularly adapted for small counts. For large counts, we advise to use the likelihood ratio test which is asymptotic but strongly correlated with the exact binomial test and very simple to use.

  6. X-ray flares from postmerger millisecond pulsars. (United States)

    Dai, Z G; Wang, X Y; Wu, X F; Zhang, B


    Recent observations support the suggestion that short-duration gamma-ray bursts are produced by compact star mergers. The x-ray flares discovered in two short gamma-ray bursts last much longer than the previously proposed postmerger energy-release time scales. Here, we show that they can be produced by differentially rotating, millisecond pulsars after the mergers of binary neutron stars. The differential rotation leads to windup of interior poloidal magnetic fields and the resulting toroidal fields are strong enough to float up and break through the stellar surface. Magnetic reconnection-driven explosive events then occur, leading to multiple x-ray flares minutes after the original gamma-ray burst.

  7. [Sarcoidosis flare after autologous stem cell transplantation: An immune paradox? (United States)

    Marchal, A; Charlotte, F; Maksud, P; Haroche, J; Lifferman, F; Miyara, M; Choquet, S; Amoura, Z; Cohen Aubart, F


    Sarcoidosis is a systemic granulomatous disorder of unknown cause. Apparition or flare of previously diagnosed sarcoidosis following hematopoietic stem cell transplantation (HSCT) has rarely been reported. We report a 62-year-old woman who presented a radiological flare of sarcoidosis post-autologous stem cell transplantation for a POEMS syndrome. Imaging findings and lymph node histology, which revealed non-caseating granuloma, were consistent with the sarcoidosis diagnosis. The patient was asymptomatic and was kept free of treatment. Sarcoidosis must be considered ahead of compatible clinicoradiological presentation occurring after HSCT. Sarcoidosis can mimic metastatic cancer or lymphatic relapse. Tissue biopsies and exclusion of differential diagnosis of granuloma diseases are warranted to confirm sarcoidosis diagnosis. Copyright © 2017 Société Nationale Française de Médecine Interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  8. The effect of a gamma ray flare on Schumann resonances

    Directory of Open Access Journals (Sweden)

    A. P. Nickolaenko


    Full Text Available We describe the ionospheric modification by the SGR 1806-20 gamma flare (27 December 2004 seen in the global electromagnetic (Schumann resonance. The gamma rays lowered the ionosphere over the dayside of the globe and modified the Schumann resonance spectra. We present the extremely low frequency (ELF data monitored at the Moshiri observatory, Japan (44.365° N, 142.24° E. Records are compared with the expected modifications, which facilitate detection of the simultaneous abrupt change in the dynamic resonance pattern of the experimental record. The gamma flare modified the current of the global electric circuit and thus caused the "parametric" ELF transient. Model results are compared with observations enabling evaluation of changes in the global electric circuit.

  9. Beam electrons as a source of Hα flare ribbons. (United States)

    Druett, Malcolm; Scullion, Eamon; Zharkova, Valentina; Matthews, Sarah; Zharkov, Sergei; Rouppe Van der Voort, Luc


    The observations of solar flare onsets show rapid increase of hard and soft X-rays, ultra-violet emission with large Doppler blue shifts associated with plasma upflows, and Hα hydrogen emission with red shifts up to 1-4 Å. Modern radiative hydrodynamic models account well for blue-shifted emission, but struggle to reproduce closely the red-shifted Hα lines. Here we present a joint hydrodynamic and radiative model showing that during the first seconds of beam injection the effects caused by beam electrons can reproduce Hα line profiles with large red-shifts closely matching those observed in a C1.5 flare by the Swedish Solar Telescope. The model also accounts closely for timing and magnitude of upward motion to the corona observed 29 s after the event onset in 171 Å by the Atmospheric Imaging Assembly/Solar Dynamics Observatory.

  10. Constraints on neutron star crusts from oscillations in giant flares. (United States)

    Steiner, Andrew W; Watts, Anna L


    We show that the fundamental seismic shear mode, observed as a quasiperiodic oscillation in giant flares emitted by highly magnetized neutron stars, is particularly sensitive to the nuclear physics of the crust. The identification of an oscillation at approximately 30 Hz as the fundamental crustal shear mode requires a nuclear symmetry energy that depends very weakly on density near saturation. If the nuclear symmetry energy varies more strongly with density, then lower frequency oscillations, previously identified as torsional Alfvén modes of the fluid core, could instead be associated with the crust. If this is the case, then future observations of giant flares should detect oscillations at around 18 Hz. An accurate measurement of the neutron-skin thickness of lead will also constrain the frequencies predicted by the model.

  11. Beam electrons as a source of Hα flare ribbons (United States)

    Druett, Malcolm; Scullion, Eamon; Zharkova, Valentina; Matthews, Sarah; Zharkov, Sergei; Rouppe Van der Voort, Luc


    The observations of solar flare onsets show rapid increase of hard and soft X-rays, ultra-violet emission with large Doppler blue shifts associated with plasma upflows, and Hα hydrogen emission with red shifts up to 1–4 Å. Modern radiative hydrodynamic models account well for blue-shifted emission, but struggle to reproduce closely the red-shifted Hα lines. Here we present a joint hydrodynamic and radiative model showing that during the first seconds of beam injection the effects caused by beam electrons can reproduce Hα line profiles with large red-shifts closely matching those observed in a C1.5 flare by the Swedish Solar Telescope. The model also accounts closely for timing and magnitude of upward motion to the corona observed 29 s after the event onset in 171 Å by the Atmospheric Imaging Assembly/Solar Dynamics Observatory. PMID:28653670

  12. High-Energy Aspects of Solar Flares: Observations and Models

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei [Lockheed Martin Solar and Astrophysics Laboratory; Guo, Fan [Los Alamos National Laboratory


    The paper begins by describing the structure of the Sun, with emphasis on the corona. The Sun is a unique plasma laboratory, which can be probed by Sun-grazing comets, and is the driver of space weather. Energization and particle acceleration mechanisms in solar flares is presented; magnetic reconnection is key is understanding stochastic acceleration mechanisms. Then coupling between kinetic and fluid aspects is taken up; the next step is feedback of atmospheric response to the acceleration process – rapid quenching of acceleration. Future challenges include applications of stochastic acceleration to solar energetic particles (SEPs), Fermi γ-rays observations, fast-mode magnetosonic wave trains in a funnel-shaped wave guide associated with flare pulsations, and the new SMEX mission IRIS (Interface Region Imaging Spectrograph),

  13. Detection of Three-minute Oscillations in Full-disk Ly α Emission during a Solar Flare

    Energy Technology Data Exchange (ETDEWEB)

    Milligan, Ryan O.; Fletcher, Lyndsay [SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ (United Kingdom); Fleck, Bernhard [ESA Directorate of Science, Operations Department, c/o NASA/GSFC Code 671, Greenbelt, MD 20071 (United States); Ireland, Jack; Dennis, Brian R. [Solar Physics Laboratory (Code 671), Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)


    In this Letter we report the detection of chromospheric 3-minute oscillations in disk-integrated EUV irradiance observations during a solar flare. A wavelet analysis of detrended Ly α (from GOES /EUVS) and Lyman continuum (from Solar Dynamics Observatory ( SDO )/EVE) emission from the 2011 February 15 X-class flare (SOL2011-02-15T01:56) revealed a ∼3 minute period present during the flare’s main phase. The formation temperature of this emission locates this radiation at the flare’s chromospheric footpoints, and similar behavior is found in the SDO /Atmospheric Imaging Assembly 1600 and 1700 Å channels, which are dominated by chromospheric continuum. The implication is that the chromosphere responds dynamically at its acoustic cutoff frequency to an impulsive injection of energy. Since the 3-minute period was not found at hard X-ray (HXR) energies (50–100 keV) in Reuven Ramaty High Energy Solar Spectroscopic Imager data we can state that this 3-minute oscillation does not depend on the rate of energization of non-thermal electrons. However, a second period of 120 s found in both HXR and chromospheric lightcurves is consistent with episodic electron energization on 2-minute timescales. Our finding on the 3-minute oscillation suggests that chromospheric mechanical energy should be included in the flare energy budget, and the fluctuations in the Ly α line may influence the composition and dynamics of planetary atmospheres during periods of high activity.

  14. Petrogenesis of Na-rich paralava formed by methane flares associated with mud volcanism, Altyn-Emel National Park, Kazakhstan (United States)

    Grapes, Rodney; Sokol, Ella; Kokh, Svetlana; Kozmenko, Olga; Fishman, Ilia


    High-Na slag-like rocks (paralava) with 4.5-11 % Na2O from the Altyn-Emel mud volcanic field, Kazakhstan, are the products of melting of sediment + salt mixtures by methane flares associated with mud extrusion. The main minerals of the paralavas are diopside and wollastonite which have quench morphologies. Other high-temperature phases (crystallizing from melt and vapour phase) are tridymite, cristobalite, chlorapatite, alkali feldspar, pyrrhotite, native iron and silicon, iron phosphides, titanite, rutile, and carbon. The paralavas lack the Na-Ca silicates devitrite and combeite, but have high-Na and Na-K glasses that have not been homogenized despite low viscosities of <10-3.5 Pa s. The large number of ignition foci in the Altyn-Emel mud volcano field indicates gas venting from small, shallow reservoirs. The methane flares are inferred to have been small and the fire events short-lived. Fires were extinguished once overpressure released during eruption, methane venting stopped and melted rocks rapidly quenched. The periodicity of eruptions and methane flaring most likely depends on the recurrence of earthquakes ( M < 5) which are frequent in this tectonically active area.

  15. A Rapidly Evolving Active Region NOAA 8032 observed on April ...

    Indian Academy of Sciences (India)


    The active region NOAA 8032 of April 15, 1997 was observed to evolve rapidly. The GOES X-ray data showed a number of sub-flares and two C-class flares during the 8-9 hours of its evolution. The magnetic evolution of this region is studied to ascertain its role in flare production. Large changes were observed in magnetic ...

  16. Steroid-Free Over-the-Counter Eczema Skin Care Formulations Reduce Risk of Flare, Prolong Time to Flare, and Reduce Eczema Symptoms in Pediatric Subjects With Atopic Dermatitis. (United States)

    Weber, Teresa M; Samarin, Frank; Babcock, Michael J; Filbry, Alexander; Rippke, Frank


    Atopic dermatitis (AD) is a chronic skin condition associated with decreased barrier function resulting in periodic flare-ups of erythematous and pruritic lesions. Guidelines recommend daily treatment of atopic skin with emollient moisturizers for prevention of flares and maintenance of the flare-free state. This study evaluated the efficacy of 2 steroid-free, nonprescription eczema skin care formulations for reducing the risk of flare and relieving symptoms in infants and children with AD: Body Cream for the daily maintenance treatment of atopic skin and Flare Treatment for the treatment of atopic flares. After a 2-week washout period, subjects (N=45; mean age 3.5 years) were randomized to cleanser plus daily moisturizing with Body Cream (moisturizer group) or cleanser only (control group) for 6 months or until flare. Subjects experiencing flare received Flare Treatment for 4 weeks. The incidence of flare was significantly lower in the moisturizer group compared with the control group (21% vs 65%; P=.006), while the median time to flare was shorter in the control group (28 vs >180 days). Risk of flare was reduced by 44.1% after 6 months of Body Cream application. Flare Treatment reduced overall eczema symptom severity at week 2 and week 4; 78.9% of flares had improved or cleared at week 4. Body Cream reduced the incidence of flare and the time to flare, reinforcing guidelines that daily emollient therapy should be an integral part of the maintenance treatment plan for the prevention of disease flares. Body Cream and Flare Treatment are effective over-the-counter steroid-free options for management of AD in children.

  17. Solar flare particle acceleration in collapsing magnetic traps


    Grady, Keith J.


    The topic of this thesis is a detailed investigation of different aspects of the particle acceleration mechanisms operating in Collapsing Magnetic Traps (CMTs), which have been suggested as one possible mechanism for particle acceleration during solar flares. The acceleration processes in CMTs are investigated using guiding centre test particle calculations. Results including terms of different orders in the guiding centre approximation are compared to help identify which of the terms a...

  18. Hydrogen Balmer Line Broadening in Solar and Stellar Flares

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, Adam F. [Department of Astrophysical and Planetary Sciences, University of Colorado Boulder, 2000 Colorado Avenue, Boulder, CO 80305 (United States); Allred, Joel C. [NASA/Goddard Space Flight Center, Code 671, Greenbelt, MD 20771 (United States); Uitenbroek, Han [National Solar Observatory, University of Colorado Boulder, 3665 Discovery Drive, Boulder, CO 80303 (United States); Tremblay, Pier-Emmanuel [Department of Physics, University of Warwick, Coventry CV47AL (United Kingdom); Brown, Stephen [School of Physics and Astronomy, Kelvin Building, University of Glasgow, G12 8QQ (United Kingdom); Carlsson, Mats [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway); Osten, Rachel A. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Wisniewski, John P. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks Street, Norman, OK 73019 (United States); Hawley, Suzanne L., E-mail: [University of Washington Department of Astronomy, 3910 15th Avenue NE, Seattle, WA 98195 (United States)


    The broadening of the hydrogen lines during flares is thought to result from increased charge (electron, proton) density in the flare chromosphere. However, disagreements between theory and modeling prescriptions have precluded an accurate diagnostic of the degree of ionization and compression resulting from flare heating in the chromosphere. To resolve this issue, we have incorporated the unified theory of electric pressure broadening of the hydrogen lines into the non-LTE radiative-transfer code RH. This broadening prescription produces a much more realistic spectrum of the quiescent, A0 star Vega compared to the analytic approximations used as a damping parameter in the Voigt profiles. We test recent radiative-hydrodynamic (RHD) simulations of the atmospheric response to high nonthermal electron beam fluxes with the new broadening prescription and find that the Balmer lines are overbroadened at the densest times in the simulations. Adding many simultaneously heated and cooling model loops as a “multithread” model improves the agreement with the observations. We revisit the three-component phenomenological flare model of the YZ CMi Megaflare using recent and new RHD models. The evolution of the broadening, line flux ratios, and continuum flux ratios are well-reproduced by a multithread model with high-flux nonthermal electron beam heating, an extended decay phase model, and a “hot spot” atmosphere heated by an ultrarelativistic electron beam with reasonable filling factors: ∼0.1%, 1%, and 0.1% of the visible stellar hemisphere, respectively. The new modeling motivates future work to understand the origin of the extended gradual phase emission.

  19. Correlations between histamine-induced wheal, flare and itch. (United States)

    Darsow, U; Ring, J; Scharein, E; Bromm, B


    Correlations between the skin reactions wheal and flare and the subjectively reported degree of itch were investigated in response to 1% histamine, intradermally applied by standardized skin prick and by iontophoresis. Experiments were performed with 15 male volunteers using a threefold repeated measures design (skin prick, and iontophoresis with 0.13 mA for 10 s and with 2.0 mA for 10 s). Skin reactions (perpendicular diameters) were determined at the time of their maximum (10 min). Itch was rated on a computerized visual analogue scale which was anchored upon the individual scratch threshold. Most effective in producing itch was the skin prick which caused strong sensations markedly above the scratch threshold during the entire period of measurement (30 min), whereas iontophoresis induced only transient itch sensations. On the other hand, the largest wheals were generated by iontophoresis of both intensities (mean 10 or 14 mm vs 6 mm with skin prick). The higher current induced higher itch, wheal and flare responses, but after eliminating this effect of stimulus intensity, no correlations were found. In contrast, skin prick-induced flare reactions varied with the degree of itch above the scratch threshold (r = 0.56; P skin prick compared with iontophoresis. It is hypothesized that in iontophoresis the brief (10-s) histamine bolus passed the most superficial pruritoceptive C fibres too quickly to induce long-lasting itch sensations, whereas the skin prick caused a deposit at the dermal-epidermal junction releasing histamine during the entire time of measurement. Consequently, both the C fibre-mediated itch and the axon reflex flare were more pronounced with the skin prick, and the wheal resulting from a permeability increase in the postcapillary venule walls was an independent phenomenon.

  20. Far-IR and Radio Thermal Continua in Solar Flares

    Czech Academy of Sciences Publication Activity Database

    Kašparová, Jana; Heinzel, Petr; Karlický, Marian; Moravec, Z.; Varady, M.


    Roč. 33, - (2009), s. 309-315 ISSN 1845-8319 R&D Projects: GA ČR GA205/04/0358; GA ČR GP205/06/P135; GA ČR GA205/07/1100 Institutional research plan: CEZ:AV0Z10030501 Keywords : solar flares * radiative hydrodynamics * continuum emission Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  1. Coupled flare attractors – a discrete prototype for economic modelling

    Directory of Open Access Journals (Sweden)

    Georg C. Hartmann


    Full Text Available A chaotic environment can give rise to “flares” if an autocatalytic variable responds in a multiplicative, threshold-type fashion to the environmental forcing. An “economic unit” similarly depends in its growth behavior on the unpredictable (chaotic? buying habits of its customers, say. It turns out that coupled flare attractors are surprisingly robust in the sense that the resulting “economy” is largely independent of the extent of diffusive coupling used. Some simulations are presented.

  2. Microwave type III pair bursts in solar flares

    Czech Academy of Sciences Publication Activity Database

    Tan, B.; Mészárosová, Hana; Karlický, Marian; Huang, G.; Tan, C.M.


    Roč. 819, č. 1 (2016), 42/1-42/9 ISSN 0004-637X R&D Projects: GA ČR GAP209/12/0103 EU Projects: European Commission(XE) 295272 - Radiosun Institutional support: RVO:67985815 Keywords : Sun * corona * flares Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics; BN - Astronomy, Celestial Mechanics, Astrophysics (ASU-R) Impact factor: 5.533, year: 2016

  3. Post-exceptionalism in public policy

    DEFF Research Database (Denmark)

    Daugbjerg, Carsten; Feindt, Peter H.


    Framing the special issue on the transformation of Food and Agricultural Policy, this article introduces the concept of post-exceptionalism in public policies. The analysis of change in agri-food policy serves as a generative example to conceptualize current transformations in sectoral policy......, institutions, interest constellations and policy instruments. It reflects the more complex, open, contested and fluid nature of contemporary policy fields that nevertheless still maintain their policy heritage. Discussing stability, the authors distinguish between complementary and tense post-exceptionalism....

  4. Session-based Choreography with Exceptions

    DEFF Research Database (Denmark)

    Carbone, Marco


    Choreography has recently emerged as a pragmatic and concise way of describing communication-based systems such as web services and financial protocols. Recent studies have investigated the transition from the design stage of a system to its implementation providing an automatic way of mapping...... a choreograhy into executable code. In this work, we focus on an extension of choreography with a communication-based (interactional) exception mechanism by giving its formal semantics. In particular, we discuss through some examples how interactional exceptions at choreography level can be implemented into end...

  5. Can we observe neutrino flares in coincidence with explosive transients? (United States)

    Guépin, C.; Kotera, K.


    The new generation of powerful instruments is reaching sensitivities and temporal resolutions that will allow multi-messenger astronomy of explosive transient phenomena, with high-energy neutrinos as a central figure. We derive general criteria for the detectability of neutrinos from powerful transient sources for given instrument sensitivities. In practice, we provide the minimum photon flux necessary for neutrino detection based on two main observables: the bolometric luminosity and the time variability of the emission. This limit can be compared to the observations in specified wavelengths in order to target the most promising sources for follow-ups. Our criteria can also help distinguishing false associations of neutrino events with a flaring source. We find that relativistic transient sources such as high- and low-luminosity gamma-ray bursts (GRBs), blazar flares, tidal disruption events, and magnetar flares could be observed with IceCube, as they have a good chance to occur within a detectable distance. Of the nonrelativistic transient sources, only luminous supernovae appear as promising candidates. We caution that our criterion should not be directly applied to low-luminosity GRBs and type Ibc supernovae, as these objects could have hosted a choked GRB, leading to neutrino emission without a relevant counterpart radiation. We treat the concrete example of PKS 1424-418 major outburst and the possible association with an IceCube event IC 35.

  6. Wheal and flare responses to muscle relaxants in humans. (United States)

    Levy, J H; Adelson, D; Walker, B


    Chemically and pharmacologically unrelated molecules release histamine in humans to produce both cutaneous and systemic responses. It has been suggested that molecular changes in the new benzylisoquinoline-derived muscle relaxant, atracurium, make it less likely to cause histamine release. We therefore injected volunteers intradermally with equimolar concentrations of various muscle relaxants, morphine, papaverine (a benzylisoquinoline), and histamine, to evaluate the relative ability of these drugs to cause wheal and flare responses, and mast-cell degranulation. There were no significant differences in wheal and flare responses among the three benzylisoquinoline-derived muscle relaxants, D-tubocurarine, metocurine, and atracurium. The cutaneous effects of morphine were significantly greater than those of the benzylisoquinoline muscle relaxants, suggesting both direct vascular changes and histamine release. Papaverine injection was followed by a significant wheal but no flare. Skin biopsies from vecuronium- and papaverine-induced wheals revealed normal intact mast-cell granules, suggesting a direct cutaneous vascular response rather than histamine release. Skin biopsies after morphine and atracurium injections revealed mast-cell degranulation. All evaluated benzylisoquinoline muscle relaxants are equipotent histamine releasers at equimolar concentrations. A hydrogenated, benzylisoquinoline-nitrogen-containing ring, present in atracurium but not in papaverine, appears to be the molecular conformation responsible for mast-cell degranulation by atracurium.

  7. Quantifying Gas Flaring CH4 Consumption Using VIIRS

    Directory of Open Access Journals (Sweden)

    Xiaodong Zhang


    Full Text Available A method was developed to estimate the consumption of CH4 and the release of CO2 by gas flaring using VIIRS nighttime data. The results agreed with the field data collected at six stations in Bakken field, North Dakota, USA, within ±50%, as measured by mean relative errors and with a correlation coefficient of 0.75. This improved over the NOAA NightFire estimates, likely due to: (1 more stringent data selection using only the middle portion of cloud-free VIIRS nighttime imagery; (2 the use of a lower heating rate, which is more suitable for the field condition; and (3 more accurate efficiency factors in calculating completeness in combustion and conversion of total reaction energy into radiant energy that can be sensed by a satellite sensor. While using atmospherically-corrected data can further improve the estimate of CH4 consumption by ~10%, the major uncertainty remains as being the form factor of the flares, particularly the ratio of total surface area of a flare to the cross-section area that was seen by a satellite sensor.

  8. Multi-band implications of external-IC flares (United States)

    Richter, Stephan; Spanier, Felix


    Very fast variability on scales of minutes is regularly observed in Blazars. The assumption that these flares are emerging from the dominant emission zone of the very high energy (VHE) radiation within the jet challenges current acceleration and radiation models. In this work we use a spatially resolved and time dependent synchrotron-self-Compton (SSC) model that includes the full time dependence of Fermi-I acceleration. We use the (apparent) orphan γ -ray flare of Mrk501 during MJD 54952 and test various flare scenarios against the observed data. We find that a rapidly variable external radiation field can reproduce the high energy lightcurve best. However, the effect of the strong inverse Compton (IC) cooling on other bands and the X-ray observations are constraining the parameters to rather extreme ranges. Then again other scenarios would require parameters even more extreme or stronger physical constraints on the rise and decay of the source of the variability which might be in contradiction with constraints derived from the size of the black hole's ergosphere.

  9. Exceptionally potent anti-tumor bystander activity of an scFv : sTRAIL fusion protein with specificity for EGP2 toward target antigen-negative tumor cells

    NARCIS (Netherlands)

    Bremer, E; Samplonius, D; Kroesen, BJ; van Genne, L; de Leij, L; Helfrich, W


    Previously, we reported on the target cell-restricted fratricide apoptotic activity of scFvC54:sTRAIL, a fusion protein comprising human-soluble tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) genetically linked to the antibody fragment scFvC54 specific for the cell surface target

  10. Prediction of M and X Solar flares by Using Machine Learning Algorithm (United States)

    Raboonik, Abbas; Safari, Hossein; Dadashi, Neda; Alipour, Nasibeh


    The study and prediction of the solar flares are very important due to their thorough impact on the Earth's climate, space weather, and telecommunications. Flares are abrupt magnetic explosions in the atmosphere of the Sun. The exact mechanism(s) for the energy release and occurrence of the flares is(are) still unknown. The only way for prediction of the solar flares is based on the probabilistic methods. Observations strongly suggest that their occurrence is highly dependent on the magnetic structures of the solar atmospheric features. The occurrence probabilities for M and X class flares are calculated up to 18 hours before the ignition of them using solar magnetic field data recorded by HMI/SDO. To achieve this goal, Zernike moments and "Support Vector Machine algorithm" are applied to analyze the data. Our calculations guarantee almost 94 percent accuracy in the prediction of solar flares.

  11. Hypersonic Wind Tunnel Test of a Flare-type Membrane Aeroshell for Atmospheric Entry Capsules (United States)

    Yamada, Kazuhiko; Koyama, Masashi; Kimura, Yusuke; Suzuki, Kojiro; Abe, Takashi; Koichi Hayashi, A.

    A flexible aeroshell for atmospheric entry vehicles has attracted attention as an innovative space transportation system. In this study, hypersonic wind tunnel tests were carried out to investigate the behavior, aerodynamic characteristics and aerodynamic heating environment in hypersonic flow for a previously developed capsule-type vehicle with a flare-type membrane aeroshell made of ZYLON textile sustained by a rigid torus frame. Two different models with different flare angles (45º and 60º) were tested to experimentally clarify the effect of flare angle. Results indicate that flare angle of aeroshell has significant and complicate effect on flow field and aerodynamic heating in hypersonic flow at Mach 9.45 and the flare angle is very important parameter for vehicle design with the flare-type membrane aeroshell.

  12. Radiation field consideration of biconical horn antenna with different flare angles (United States)

    Nagasawa, Koji; Matsuzuka, Isamu


    The radiation fields of a biconical horn antenna with different flare angles are computed from both the fields of an equivalent Huygens source on the spherical-surface aperture and the infinite biconical horn antenna with spherical TEM wave. Experimental results are first presented for the symmetrical biconical horn antenna, ka = 1.57 and 3.14 (where k is the propagation constant and a is the cone length), with equal flare angle. Curves of beamwidth versus cone length are then given for various flare angles. At flare angles above about 75 deg, the beamwidth increases with the cone length, while at lower flare angles the beamwidth decreases with the cone length. For the asymmetrical biconical horn antennas (including a conical coaxial type and a discone type), it is shown that the main lobe direction may be adjusted by using suitable flare angles.


    Energy Technology Data Exchange (ETDEWEB)

    Al-Marzouk, A. A.; Araya, E. D. [Physics Department, Western Illinois University, 1 University Circle, Macomb, IL 61455 (United States); Hofner, P. [Physics Department, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801 (United States); Kurtz, S. [Centro de Radioastronomia y Astrofisica, Universidad Nacional Autonoma de Mexico, Apdo. Postal 3-72, 58090, Morelia, Michoacan (Mexico); Linz, H. [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Olmi, L. [INAF, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy)


    We report the discovery of 6.035 GHz hydroxyl (OH) maser flares toward the massive star-forming region IRAS 18566+0408 (G37.55+0.20), which is the only region known to show periodic formaldehyde (4.8 GHz H{sub 2}CO) and methanol (6.7 GHz CH{sub 3}OH) maser flares. The observations were conducted between 2008 October and 2010 January with the 305 m Arecibo Telescope in Puerto Rico. We detected two flare events, one in 2009 March and one in 2009 September to November. The OH maser flares are not simultaneous with the H{sub 2}CO flares, but may be correlated with CH{sub 3}OH flares from a component at corresponding velocities. A possible correlated variability of OH and CH{sub 3}OH masers in IRAS 18566+0408 is consistent with a common excitation mechanism (IR pumping) as predicted by theory.

  14. Patient and clinical characteristics associated with gout flares in an integrated healthcare system. (United States)

    Rashid, Nazia; Levy, Gerald D; Wu, Yi-Lin; Zheng, Chengyi; Koblick, River; Cheetham, T Craig


    Gout flares have been challenging to identify in retrospective databases due to gout flares not being well documented by diagnosis codes, making it difficult to conduct accurate database studies. Previous studies have used different algorithms, and in this study, we used a computer-based method to identify gout flares. The objectives of this study were to identify gout flares in gout patients newly initiated on urate-lowering therapy and evaluate factors associated with a patient experiencing gout flares after starting drug treatment. This was a retrospective cohort study identifying gout patients newly initiated on a urate-lowering therapy (ULT) during the study time period of January 1, 2007-December 31, 2010. The index date was the first dispensed ULT prescription during the study time period. Patients had to be ≥18 years of age on index date, have no history of prior ULT prescription during 12 months before index date, and were required to have 12 months of continuous membership with drug benefit during pre-/post-index. Electronic chart notes were reviewed to identify gout flares; these reviews helped create a validated computer-based method to further identify patients with gout flares and were categorized into 0 gout flares, 1-2 gout flares, and ≥3 gout flares during the 12 months post-index period. Multivariable logistic regression was used to examine patient and clinical factors associated with gout flares during the 12-month follow-up period. There were 8905 patients identified as the final cohort and 68 % of these patients had one or more gout flares during the 12-month follow-up: 2797 patients (31 %) had 0 gout flares, 4836 (54 %) had 1-2 gout flares, and 1272 patients (14 %) had ≥3 gout flares. Using a multivariate regression analyses, factors independently associated with 1-2 gout flares and ≥3 gout flares versus no gout flares were similar, however, with slight differences, such as younger patients were more likely to have 1-2 gout flares and

  15. Learning Disabilities - Programs: Exceptional Child Bibliography Series. (United States)

    Council for Exceptional Children, Reston, VA. Information Center on Exceptional Children.

    One in a series of over 50 similar selected listings relating to handicapped and gifted children, the bibliography contains 96 references selected from Exceptional Child Education Abstracts concerning programing for children with learning disabilities. References include conference papers, journal articles, texts for parents and teachers, and…

  16. Post-exceptionalism in public policy

    NARCIS (Netherlands)

    Daugbjerg, Carsten; Feindt, Peter H.


    Framing the special issue on the transformation of Food and Agricultural Policy, this article introduces the concept of post-exceptionalism in public policies. The analysis of change in agri-food policy serves as a generative example to conceptualize current transformations in sectoral policy

  17. 7 CFR 774.24 - Exception. (United States)


    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Exception. 774.24 Section 774.24 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY, DEPARTMENT OF AGRICULTURE... interest of the Government and not inconsistent with the authorizing statute or other applicable law. ...

  18. 7 CFR 773.23 - Exception. (United States)


    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Exception. 773.23 Section 773.23 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY, DEPARTMENT OF AGRICULTURE... Government and not inconsistent with the authorizing statute or other applicable law. ...

  19. FAPE Model of Exceptional Student Education Leadership (United States)

    Dubberly, Russell G.


    The FAPE Model of Exceptional Education Leadership is defined as facilitative, affiliative, praising and rewarding, and experiential and empirical. The FAPE administrator uses a facilitative approach that guides and coaches to help employees find a pathway to success. This leader works to build emotional capacity between all members of the…

  20. Leiomyosarcoma of the Penis, an Exceptional Entity

    Directory of Open Access Journals (Sweden)

    Edwin Javier Romero Gonzalez


    Full Text Available In tumors of the penis, mesenchymal tumors are extremely rare and within them, sarcomas are exceptional. We report a patient with a sarcomatous lesion treated with conservative surgery with good surgical outcome and the review of the literature, to present the latest advances in the treatment of this unusual entity.

  1. Seeing and Supporting Twice-Exceptional Learners (United States)

    Lee, Chin-Wen; Ritchotte, Jennifer A.


    Through a four-part discussion, this essay advocates for seeing the characteristics and special needs of gifted students with disabilities and using best practices to support their learning. Part 1 delineates the evolution of the legislative acts and professional initiatives regarding twice exceptionality. Part 2 discusses the educational rights…

  2. Transition and Students with Twice Exceptionality (United States)

    Prior, Susan


    "Twice exceptional" is one of the terms used to describe students who have giftedness and a disability. This is a small heterogeneous population of individual learners who are underserved in special, gifted, and mainstream education settings. Despite the availability of research on transition for students with disabilities, there is…

  3. 32 CFR 811.1 - Exceptions. (United States)


    ... Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE SALES AND SERVICES RELEASE, DISSEMINATION, AND SALE OF VISUAL INFORMATION MATERIALS § 811.1 Exceptions. The regulations in this part do not apply to: (a) Visual information (VI) materials made for the Air Force Office of Special Investigations for use...

  4. 12 CFR 229.13 - Exceptions. (United States)


    ...) Redeposited checks. Sections 229.10(c) and 229.12 do not apply to a check that has been returned unpaid and redeposited by the customer or the depositary bank. This exception does not apply— (1) To a check that has... doubt collectibility—(1) In general. Sections 229.10(c) and 229.12 do not apply to a check deposited in...

  5. 31 CFR 211.3 - Exceptions. (United States)


    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false Exceptions. 211.3 Section 211.3 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) FISCAL SERVICE, DEPARTMENT OF THE TREASURY FINANCIAL MANAGEMENT SERVICE DELIVERY OF CHECKS AND WARRANTS TO ADDRESSES OUTSIDE THE...

  6. 31 CFR 101.7 - Exceptions. (United States)


    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Exceptions. 101.7 Section 101.7 Money and Finance: Treasury Regulations Relating to Money and Finance MITIGATION OF FORFEITURE OF... smelting the gold coins exceeds the value of the gold bullion to be returned. ...

  7. Working with Navajo Parents of Exceptional Children. (United States)

    Jones, Doris; And Others

    Undergraduate students at Northern Arizona University interviewed and surveyed 20 staff members at Kayenta Unified School District (KUSD) on the Navajo Reservation and 14 parents of exceptional Navajo children enrolled in KUSD. Both groups were asked to identify challenges affecting the working relationship between parents and school on a rural…

  8. A Statistical Study of Photospheric Magnetic Field Changes During 75 Solar Flares (United States)

    Castellanos Durán, J. S.; Kleint, L.; Calvo-Mozo, B.


    Abrupt and permanent changes of photospheric magnetic fields have been observed during solar flares. The changes seem to be linked to the reconfiguration of magnetic fields, but their origin is still unclear. We carried out a statistical analysis of permanent line-of-sight magnetic field ({B}{LOS}) changes during 18 X-, 37 M-, 19 C-, and 1 B-class flares using data from the Solar Dynamics Observatory/Helioseismic and Magnetic Imager. We investigated the properties of permanent changes, such as frequency, areas, and locations. We detected changes of {B}{LOS} in 59/75 flares. We find that strong flares are more likely to show changes, with all flares ≥M1.6 exhibiting them. For weaker flares, permanent changes are observed in 6/17 C-flares. 34.3% of the permanent changes occurred in the penumbra and 18.9% in the umbra. Parts of the penumbra appeared or disappeared in 23/75 flares. The area where permanent changes occur is larger for stronger flares. Strong flares also show a larger change of flux, but there is no dependence of the magnetic flux change on the heliocentric angle. The mean rate of change of flare-related magnetic field changes is 20.7 Mx cm‑2 min‑1. The number of permanent changes decays exponentially with distance from the polarity inversion line. The frequency of the strength of permanent changes decreases exponentially, and permanent changes up to 750 Mx cm‑2 were observed. We conclude that permanent magnetic field changes are a common phenomenon during flares, and future studies will clarify their relation to accelerated electrons, white-light emission, and sunquakes to further investigate their origin.

  9. Money Talks: Why Nigeria’s Petroleum Industry Bill will Fail to End Gas Flaring (United States)

    2012-11-02 jinn /wp-content/uploads/2010/04/ JINN -2010-Gas-Flaring-an-overview.pdf. 12 Cocks, Tim, Reuters, Accessed 20 September, 2012, http...17 Justice in Nigeria Now, "Gas Flaring in Nigeria: an Overview April 2010," Accessed 12 September, 2012, jinn /wp...content/uploads/2010/04/ JINN -2010-Gas-Flaring-an-overview.pdf. 18 Friday, Oluduro Olubisi, "Climate Change - A Global and National Perspective: the

  10. Discovery of decaHz flaring in SAX J1808.4-3658

    NARCIS (Netherlands)

    Bult, P.


    We report on the discovery of strong decaHz flaring in the early decay of two out of five outbursts of the accreting millisecond X-ray pulsar SAX J1808.4-3658. The decaHz flaring switches on and, after ~3 days, off again, on a time scale of 1-2 hours. When the flaring is present, the total 0.05-10

  11. High-resolution Observations of Photospheric Structural Evolution Associated with a Flare (United States)

    Liu, Chang; Xu, Yan; Ahn, Kwangsu; Jing, Ju; Deng, Na; Cao, Wenda; Wang, Haimin


    The structural evolution of the photosphere not only play an important role in contributing to the accumulation of free energy in the corona that powers solar flares, but also may response to the restructuring of coronal field as a result of flare energy release. A better understanding of these issues may be achieved by high-resolution observations of the photospheric structure covering the entire flaring period, which are, however, still rare. Here we present photospheric vector magnetograms and TiO images (at 0.2" and 0.09" resolution, respectively) from before to after a major flare, taken by the 1.6 m New Solar Telescope at Big Bear Solar Observatory. In the pre-flare state, a small-scale magnetic structure of opposite-polarity configuration is seen near the footpoints of sheared magnetic loops; its magnetic fluxes and currents enhance till the flare start time and decline afterwards. During the main phase, as one flare ribbon sweeps across a sunspot, its different portions accelerate at different times corresponding to peaks of flare hard X-ray emission. We suggest that the small-scale flux emergence between the two sheared flux systems triggers the flare reconnection, and that the sunspot rotation is driven by the surface Lorentz-force change due to the coronal back reaction.

  12. Very Short-Duration UV-B Optical Flares in RS CVn-type Star Systems (United States)

    Vander Haagen, G. A.


    Very short duration UV-B optical flares were observed during a high-cadence search for conventional flares on three RS CVn type stars: AR Lac, II Peg, and UX Ari. A statistical criterion was developed for isolating these short-duration optical flares from random photon events. Five flares, ranging in duration from 30 to 85 ms with peaks 0.29-0.51 mag. above the mean, were detected within the 132 hours of monitoring time. The time resolution of the observations was 5 ms for AR Lac and 10 ms for II Peg and UX Ari.

  13. Incidence of Endodontic Flare-ups and Its Related Factors: A Retrospective Study. (United States)

    Nair, Manuja; Rahul, J; Devadathan, A; Mathew, Josey


    The aim and objective of the study were to determine the incidence of flare-ups during endodontic treatment and to identify the risk factors associated with flare-ups. A total of 1725 patients who were treated during the time period of 2009-2014 by the same endodontist were reviewed. Incidence of flare-up, patients' age, gender, status of pulp, tooth position, number of roots, and treatment provided were taken from their dental records. Relationship between these factors and flare-ups was examined. Statistical analysis was done using Pearson Chi-square test and Fisher's exact test. A total of 2% incidence of endodontic flare-ups was seen out of 1725 cases. Patient's age, gender, and diagnosis had a significant effect on the development of flare-ups (P up incidence. Diagnosis plays an important role in predicting the incidence of flare-ups. Patients in the age group of 40-60 years had a higher risk of developing flare-ups. Women compared to men are more prone to flare-ups.

  14. The Natural History of Flare-Ups in Fibrodysplasia Ossificans Progressiva (FOP): A Comprehensive Global Assessment. (United States)

    Pignolo, Robert J; Bedford-Gay, Christopher; Liljesthröm, Moira; Durbin-Johnson, Blythe P; Shore, Eileen M; Rocke, David M; Kaplan, Frederick S


    Fibrodysplasia ossificans progressiva (FOP) leads to disabling heterotopic ossification (HO) from episodic flare-ups. However, the natural history of FOP flare-ups is poorly understood. A 78-question survey on FOP flare-ups, translated into 15 languages, was sent to 685 classically-affected patients in 45 countries (six continents). Five hundred patients or knowledgeable informants responded (73%; 44% males, 56% females; ages: 1 to 71 years; median: 23 years). The most common presenting symptoms of flare-ups were swelling (93%), pain (86%), or decreased mobility (79%). Seventy-one percent experienced a flare-up within the preceding 12 months (52% spontaneous; 48% trauma-related). Twenty-five percent of those who had received an intramuscular injection reported an immediate flare-up at the injection site, 84% of whom developed HO. Axial flare-ups most frequently involved the back (41.6%), neck (26.4%), or jaw (19.4%). Flare-ups occurred more frequently in the upper limbs before 8 years of age, but more frequently in the lower limbs thereafter. Appendicular flare-ups occurred more frequently at proximal than at distal sites without preferential sidedness. Seventy percent of patients reported functional loss from a flare-up. Thirty-two percent reported complete resolution of at least one flare-up and 12% without any functional loss (mostly in the head or back). The most disabling flare-ups occurred at the shoulders or hips. Surprisingly, 47% reported progression of FOP without obvious flare-ups. Worldwide, 198 treatments were reported; anti-inflammatory agents were most common. Seventy-five percent used short-term glucocorticoids as a treatment for flare-ups at appendicular sites. Fifty-five percent reported that glucocorticoids improved symptoms occasionally whereas 31% reported that they always did. Only 12% reported complete resolution of a flare-up with glucocorticoids. Forty-three percent reported rebound symptoms within 1 to 7 days after completing a course of

  15. Prevalence of inter-appointment endodontic flare-ups and host-related factors. (United States)

    Azim, Adham A; Azim, Katharina A; Abbott, Paul V


    The aims of this study were to report the prevalence of inter-appointment flare-ups following adequate root canal disinfection and to investigate the host factors contributing to its occurrence. One thousand five hundred patient records were reviewed and the prevalence of flare-up was recorded. Patients' root canal space status (vital, non-vital or retreatment), medical condition and demographics (age, gender, tooth type and position) were recorded from their dental records. Statistical analyses were performed to determine the impact of the recorded factors on flare-up occurrence. Nine hundred fifty-one patient records met the inclusion criteria. The prevalence of flare-up was 2.3 %. There was a correlation between the canal space status and patient's age with flare-up development (P up occurrence and tooth type, location, gender or medical condition (P > 0.5). The root canal space status was the primary factor affecting flare-up occurrence. Patients >50 years had the highest risk in developing flare-ups. This article provides evidence that patients suffering from inflamed pulp will not develop flare-up if adequate cleaning and shaping of the root canal space was performed. It also shows that patients above the age of 50 are a high-risk group that is prone to flare-up development.

  16. Risk of tumor flare after nivolumab treatment in patients with irradiated field recurrence. (United States)

    Yoshida, Tatsuya; Furuta, Hiromi; Hida, Toyoaki


    Nivolumab offers a statistically superior survival benefit over docetaxel in patients with advanced, previously treated squamous and non-squamous non-small-cell lung cancer (NSCLC). However, we unexpectedly encountered "tumor flare" that was associated with initially increased tumor lesion size and subsequently decreased tumor burden in patients with NSCLC treated with nivolumab, which is known as pseudoprogression. Tumor flare with rapid progression related to accelerated progression after nivolumab treatment has also been observed. Here we report two patients having early irradiated field recurrence who experienced "tumor flare" that showed pseudoprogression and rapid progression. In addition, we present a brief literature review on "tumor flare" after nivolumab treatment.

  17. Spectroscopic Inversions of the Ca ii 8542 Å Line in a C-class Solar Flare (United States)

    Kuridze, D.; Henriques, V.; Mathioudakis, M.; Koza, J.; Zaqarashvili, T. V.; Rybák, J.; Hanslmeier, A.; Keenan, F. P.


    We study the C8.4-class solar flare SOL2016-05-14T11:34 UT using high-resolution spectral imaging in the Ca ii 8542 Å line obtained with the CRISP imaging spectropolarimeter on the Swedish 1 m Solar Telescope. Spectroscopic inversions of the Ca ii 8542 Å line using the non-LTE code NICOLE are used to investigate the evolution of the temperature and velocity structure in the flaring chromosphere. A comparison of the temperature stratification in flaring and non-flaring areas reveals strong footpoint heating during the flare peak in the lower atmosphere. The temperature of the flaring footpoints between {log} {τ }500 ≈ -2.5 {and} -3.5, where τ 500 is the continuum optical depth at 500 nm, is ˜ 5{--}6.5 {kK} close to the flare peak, reducing gradually to ˜ 5 {kK}. The temperature in the middle and upper chromosphere, between {log} {τ }500≈ -3.5 and -5.5, is estimated to be ˜6.5-20 kK, decreasing to preflare temperatures, ˜5-10 kK, after approximately 15 minutes. However, the temperature stratification of the non-flaring areas is unchanged. The inverted velocity fields show that the flaring chromosphere is dominated by weak downflowing condensations at the formation height of Ca ii 8542 Å.

  18. Cyclical Variability of Prominences, CMEs and Flares

    Indian Academy of Sciences (India)


    those with "opposite polarity" (emergent polar crown). The kinematic model of the solar cycle tries to explain the polar crown "rush" to the poles as the consequence of diffusion of magnetic fields which accumulated from the dispersion of active regions earlier in the solar cycle. Then, the movement of the polar crown should ...

  19. Exceptional longevity does not result in excessive levels of disability

    DEFF Research Database (Denmark)

    Christensen, Kaare; McGue, Matt; Petersen, Inge


    of the entire Danish 1905 cohort from 1998 to 2005 to assess the loss of physical and cognitive independence in the age range of 92 to 100 years. Multiple functional outcomes were studied, including independence, which was defined as being able to perform basic activities of daily living without assistance from...... of independence. For society, mortality reductions are not expected to result in exceptional levels of disability in cohorts of the very old....

  20. Effect of the X5.4 Class Solar Flare Event of Solar Cycle 24 ON the GPS Signal Reception in Peninsular Malaysia (United States)

    Ismail, S.; Musa, T. A.; Aris, W. A. W.; Gopir, G.


    In this paper, we examine the effect of solar flare event on the Global Positioning System (GPS) signal reception in Peninsular Malaysia during the X5.4 class solar flare on 7th March 2012, 00:24 UT at active region AR1429. GPS data from six MyRTKnet stations that cover the northern, southern, western and eastern regions of Peninsular Malaysia were used, namely Langkawi (Kedah), Bandar Baharu (Pulau Pinang), Pekan (Pahang), Mersing (Johor), Tanjung Pengelih (Johor) and Malacca (Malacca). The total electron content (TEC) was estimated based on the single layer ionospheric model. Next, the ionospheric delay for each GPS frequency of L1 (1575.42 MHz), L2 (1227.60 MHz) and L5 (1176.45 MHz) was then calculated. The results show that solar flare event can influence the GPS signal reception in Peninsular Malaysia where the X5.4 class solar flare shows significant effect of the ionospheric delay within the range of 9 m - 20 m. These research findings will significantly contribute to space weather study and its effects on space-based positioning system such as the GPS.