WorldWideScience

Sample records for exceeded water quality

  1. Relating road salt to exceedances of the water quality standard for chloride in New Hampshire streams.

    Science.gov (United States)

    Trowbridge, Philip R; Kahl, J Steve; Sassan, Dari A; Heath, Douglas L; Walsh, Edward M

    2010-07-01

    Six watersheds in New Hampshire were studied to determine the effects of road salt on stream water quality. Specific conductance in streams was monitored every 15 min for one year using dataloggers. Chloride concentrations were calculated from specific conductance using empirical relationships. Stream chloride concentrations were directly correlated with development in the watersheds and were inversely related to streamflow. Exceedances of the EPA water quality standard for chloride were detected in the four watersheds with the most development. The number of exceedances during a year was linearly related to the annual average concentration of chloride. Exceedances of the water quality standard were not predicted for streams with annual average concentrations less than 102 mg L(-1). Chloride was imported into three of the watersheds at rates ranging from 45 to 98 Mg Cl km(-2) yr(-1). Ninety-one percent of the chloride imported was road salt for deicing roadways and parking lots. A simple, mass balance equation was shown to predict annual average chloride concentrations from streamflow and chloride import rates to the watershed. This equation, combined with the apparent threshold for exceedances of the water quality standard, can be used for screening-level TMDLs for road salt in impaired watersheds.

  2. Development of Thresholds and Exceedance Probabilities for Influent Water Quality to Meet Drinking Water Regulations

    Science.gov (United States)

    Reeves, K. L.; Samson, C.; Summers, R. S.; Balaji, R.

    2017-12-01

    Drinking water treatment utilities (DWTU) are tasked with the challenge of meeting disinfection and disinfection byproduct (DBP) regulations to provide safe, reliable drinking water under changing climate and land surface characteristics. DBPs form in drinking water when disinfectants, commonly chlorine, react with organic matter as measured by total organic carbon (TOC), and physical removal of pathogen microorganisms are achieved by filtration and monitored by turbidity removal. Turbidity and TOC in influent waters to DWTUs are expected to increase due to variable climate and more frequent fires and droughts. Traditional methods for forecasting turbidity and TOC require catchment specific data (i.e. streamflow) and have difficulties predicting them under non-stationary climate. A modelling framework was developed to assist DWTUs with assessing their risk for future compliance with disinfection and DBP regulations under changing climate. A local polynomial method was developed to predict surface water TOC using climate data collected from NOAA, Normalized Difference Vegetation Index (NDVI) data from the IRI Data Library, and historical TOC data from three DWTUs in diverse geographic locations. Characteristics from the DWTUs were used in the EPA Water Treatment Plant model to determine thresholds for influent TOC that resulted in DBP concentrations within compliance. Lastly, extreme value theory was used to predict probabilities of threshold exceedances under the current climate. Results from the utilities were used to produce a generalized TOC threshold approach that only requires water temperature and bromide concentration. The threshold exceedance model will be used to estimate probabilities of exceedances under projected climate scenarios. Initial results show that TOC can be forecasted using widely available data via statistical methods, where temperature, precipitation, Palmer Drought Severity Index, and NDVI with various lags were shown to be important

  3. Estimating risks for water-quality exceedances of total-copper from highway and urban runoff under predevelopment and current conditions with the Stochastic Empirical Loading and Dilution Model (SELDM)

    Science.gov (United States)

    Granato, Gregory E.; Jones, Susan C.; Dunn, Christopher N.; Van Weele, Brian

    2017-01-01

    The stochastic empirical loading and dilution model (SELDM) was used to demonstrate methods for estimating risks for water-quality exceedances of event-mean concentrations (EMCs) of total-copper. Monte Carlo methods were used to simulate stormflow, total-hardness, suspended-sediment, and total-copper EMCs as stochastic variables. These simulations were done for the Charles River Basin upstream of Interstate 495 in Bellingham, Massachusetts. The hydrology and water quality of this site were simulated with SELDM by using data from nearby, hydrologically similar sites. Three simulations were done to assess the potential effects of the highway on receiving-water quality with and without highway-runoff treatment by a structural best-management practice (BMP). In the low-development scenario, total copper in the receiving stream was simulated by using a sediment transport curve, sediment chemistry, and sediment-water partition coefficients. In this scenario, neither the highway runoff nor the BMP effluent caused concentration exceedances in the receiving stream that exceed the once in three-year threshold (about 0.54 percent). In the second scenario, without the highway, runoff from the large urban areas in the basin caused exceedances in the receiving stream in 2.24 percent of runoff events. In the third scenario, which included the effects of the urban runoff, neither the highway runoff nor the BMP effluent increased the percentage of exceedances in the receiving stream. Comparison of the simulated geometric mean EMCs with data collected at a downstream monitoring site indicates that these simulated values are within the 95-percent confidence interval of the geometric mean of the measured EMCs.

  4. Water Quality Index for measuring drinking water quality in rural Bangladesh: a cross-sectional study.

    Science.gov (United States)

    Akter, Tahera; Jhohura, Fatema Tuz; Akter, Fahmida; Chowdhury, Tridib Roy; Mistry, Sabuj Kanti; Dey, Digbijoy; Barua, Milan Kanti; Islam, Md Akramul; Rahman, Mahfuzar

    2016-02-09

    Public health is at risk due to chemical contaminants in drinking water which may have immediate health consequences. Drinking water sources are susceptible to pollutants depending on geological conditions and agricultural, industrial, and other man-made activities. Ensuring the safety of drinking water is, therefore, a growing problem. To assess drinking water quality, we measured multiple chemical parameters in drinking water samples from across Bangladesh with the aim of improving public health interventions. In this cross-sectional study conducted in 24 randomly selected upazilas, arsenic was measured in drinking water in the field using an arsenic testing kit and a sub-sample was validated in the laboratory. Water samples were collected to test water pH in the laboratory as well as a sub-sample of collected drinking water was tested for water pH using a portable pH meter. For laboratory testing of other chemical parameters, iron, manganese, and salinity, drinking water samples were collected from 12 out of 24 upazilas. Drinking water at sample sites was slightly alkaline (pH 7.4 ± 0.4) but within acceptable limits. Manganese concentrations varied from 0.1 to 5.5 mg/L with a median value of 0.2 mg/L. The median iron concentrations in water exceeded WHO standards (0.3 mg/L) at most of the sample sites and exceeded Bangladesh standards (1.0 mg/L) at a few sample sites. Salinity was relatively higher in coastal districts. After laboratory confirmation, arsenic concentrations were found higher in Shibchar (Madaripur) and Alfadanga (Faridpur) compared to other sample sites exceeding WHO standard (0.01 mg/L). Of the total sampling sites, 33 % had good-quality water for drinking based on the Water Quality Index (WQI). However, the majority of the households (67 %) used poor-quality drinking water. Higher values of iron, manganese, and arsenic reduced drinking water quality. Awareness raising on chemical contents in drinking water at household level is required to

  5. Water quality criteria for lead

    Energy Technology Data Exchange (ETDEWEB)

    Nagpal, N.K.

    1987-01-01

    This report is one in a series that establishes water quality criteria for British Columbia. The report sets criteria for lead to protect a number of water uses, including drinking water, freshwater and marine aquatic life, wildlife, livestock, irrigation, and recreation. The criteria are set as either maximum concentrations of total lead that should not be exceeded at any time, or average concentrations that should not be exceeded over a 30-day period. Actual values are summarized.

  6. 40 CFR 141.87 - Monitoring requirements for water quality parameters.

    Science.gov (United States)

    2010-07-01

    ... § 141.87 Monitoring requirements for water quality parameters. All large water systems, and all small- and medium-size systems that exceed the lead or copper action level shall monitor water quality... methods. (i) Tap samples shall be representative of water quality throughout the distribution system...

  7. Ground-water quality for Grainger County, Tennessee

    Science.gov (United States)

    Weaver, J.D.; Patel, A.R.; Hickey, A.C.

    1994-01-01

    The residents of Grainger County depend on ground water for many of their daily needs including personal consumption and crop irrigation. To address concerns associated with ground-water quality related to domestic use, the U.S. Geological Survey collected water samples from 35 wells throughout the county during the summer 1992. The water samples were analyzed to determine if pesticides, nutrients, bacteria, and other selected constituents were present in the ground water. Wells selected for the study were between 100 and 250 feet deep and yielded 10 to 50 gallons of water per minute. Laboratory analyses of the water found no organic pesticides at concentrations exceeding the primary maximum contaminant levels established by the State of Tennessee for wells used for public supply. However, fecal coliform bacteria were detected at concentrations exceeding the State's maximum contaminant level in water from 15 of the 35 wells sampled. Analyses also indicated several inorganic compounds were present in the water samples at concentrations exceeding the secondary maximum contaminant level.

  8. Private drinking water quality in rural Wisconsin.

    Science.gov (United States)

    Knobeloch, Lynda; Gorski, Patrick; Christenson, Megan; Anderson, Henry

    2013-03-01

    Between July 1, 2007, and December 31, 2010, Wisconsin health departments tested nearly 4,000 rural drinking water supplies for coliform bacteria, nitrate, fluoride, and 13 metals as part of a state-funded program that provides assistance to low-income families. The authors' review of laboratory findings found that 47% of these wells had an exceedance of one or more health-based water quality standards. Test results for iron and coliform bacteria exceeded safe limits in 21% and 18% of these wells, respectively. In addition, 10% of the water samples from these wells were high in nitrate and 11% had an elevated result for aluminum, arsenic, lead, manganese, or strontium. The high percentage of unsafe test results emphasizes the importance of water quality monitoring to the health of nearly one million families including 300,000 Wisconsin children whose drinking water comes from a privately owned well.

  9. [Study on the optimization of monitoring indicators of drinking water quality during health supervision].

    Science.gov (United States)

    Ye, Bixiong; E, Xueli; Zhang, Lan

    2015-01-01

    To optimize non-regular drinking water quality indices (except Giardia and Cryptosporidium) of urban drinking water. Several methods including drinking water quality exceed the standard, the risk of exceeding standard, the frequency of detecting concentrations below the detection limit, water quality comprehensive index evaluation method, and attribute reduction algorithm of rough set theory were applied, redundancy factor of water quality indicators were eliminated, control factors that play a leading role in drinking water safety were found. Optimization results showed in 62 unconventional water quality monitoring indicators of urban drinking water, 42 water quality indicators could be optimized reduction by comprehensively evaluation combined with attribute reduction of rough set. Optimization of the water quality monitoring indicators and reduction of monitoring indicators and monitoring frequency could ensure the safety of drinking water quality while lowering monitoring costs and reducing monitoring pressure of the sanitation supervision departments.

  10. Evaluation Of Water Quality At River Bian In Merauke Papua

    Science.gov (United States)

    Djaja, Irba; Purwanto, P.; Sunoko, H. R.

    2018-02-01

    River Bian in Merauke Regency has been utilized by local people in Papua (the Marind) who live along the river for fulfilling their daily needs, such as shower, cloth and dish washing, and even defecation, waste disposal, including domestic waste, as well as for ceremonial activities related to the locally traditional culture. Change in land use for other necessities and domestic activities of the local people have mounted pressures on the status of the River Bian, thus decreasing the quality of the river. This study had objectives to find out and to analyze river water quality and water quality status of the River Bian, and its compliance with water quality standards for ideal use. The study determined sample point by a purposive sampling method, taking the water samples with a grab method. The analysis of the water quality was performed by standard and pollution index methods. The study revealed that the water quality of River Bian, concerning BOD, at the station 3 had exceeded quality threshold. COD parameter for all stations had exceeded the quality threshold for class III. At three stations, there was a decreasing value due to increasing PI, as found at the stations 1, 2, and 3. In other words, River Bian had been lightly contaminated.

  11. Evaluation Of Water Quality At River Bian In Merauke Papua

    Directory of Open Access Journals (Sweden)

    Djaja Irba

    2018-01-01

    Full Text Available River Bian in Merauke Regency has been utilized by local people in Papua (the Marind who live along the river for fulfilling their daily needs, such as shower, cloth and dish washing, and even defecation, waste disposal, including domestic waste, as well as for ceremonial activities related to the locally traditional culture. Change in land use for other necessities and domestic activities of the local people have mounted pressures on the status of the River Bian, thus decreasing the quality of the river. This study had objectives to find out and to analyze river water quality and water quality status of the River Bian, and its compliance with water quality standards for ideal use. The study determined sample point by a purposive sampling method, taking the water samples with a grab method. The analysis of the water quality was performed by standard and pollution index methods. The study revealed that the water quality of River Bian, concerning BOD, at the station 3 had exceeded quality threshold. COD parameter for all stations had exceeded the quality threshold for class III. At three stations, there was a decreasing value due to increasing PI, as found at the stations 1, 2, and 3. In other words, River Bian had been lightly contaminated.

  12. Water-quality reconnaissance of the north Dade County solid-waste facility, Florida

    Science.gov (United States)

    McKenzie, D.J.

    1982-01-01

    A water-quality sampling reconnaissance of the north Dade County solid-waste disposal facility (landfill) near Carol City, Florida, was conducted during 1977-78. The purpose of the reconnaissance was to determine selected quality characteristics of the surface- and ground-water of the landfill and contiguous area; and to assess, generally, if leachate produced by the decomposition of landfill wastes was adversely impacting the downgradient water quality. Sampling results indicated that several water-quality characteristics were present in landfill ground water at significantly higher levels than in ground water upgradient or downgradient from the landfill. Moreover, many of these water-quality characteristics were found at slightly higher levels at down gradient site 5 than at upgradient site 1 which suggested that some downgradient movement of landfill leachate had occurred. For example, chloride and alkalinity in ground water had average concentrations of 20 and 290 mg/L at background wells (site 1), 144 and 610 mg/L at landfill wells (sites 2 and 4), and 29 and 338 mg/L at downgradient wells (site 5). A comparison of the 1977-78 sampling results with the National Primary and Secondary Drinking Water Regulations indicated that levels of iron and color in ground water of the study area frequently exceeded national maximum contaminant levels, dissolved solids, turbidity, lead, and manganese occasionally exceeded regulations. Concentrations of iron and levels of color and turbidity in some surface water samples also exceeded National maximum contaminant levels. (USGS)

  13. Stormwater Priority Pollutants Versus Surface Water Quality Criteria

    DEFF Research Database (Denmark)

    Eriksson, Eva; Ledin, Anna; Baun, Anders

    2011-01-01

    Stormwater in urban areas comprises of a substantial part of the urban water cycle, dominating the flow in many small urban streams, and the pollution levels are sizeable. No stormwater quality criteria were found here and no European or national emission limit values exist. Stormwater pollutants...... however are present in levels exceeding most of the regulated surface water quality criteria and environmental quality standards. Therefore catchment characterisation is needed to chose suitable treatment prior to discharge into receiving surface waters, as the mixing may be insufficient in small streams....

  14. Ground-water-quality assessment of the Central Oklahoma aquifer, Oklahoma; hydrologic, water-quality, and quality-assurance data 1987-90

    Science.gov (United States)

    Ferree, D.M.; Christenson, S.C.; Rea, A.H.; Mesander, B.A.

    1992-01-01

    This report presents data collected from 202 wells between June 1987 and September 1990 as part of the Central Oklahoma aquifer pilot study of the National Water-Quality Assessment Program. The report describes the sampling networks, the sampling procedures, and the results of the ground-water quality and quality-assurance sample analyses. The data tables consist of information about the wells sampled and the results of the chemical analyses of ground water and quality-assurance sampling. Chemical analyses of ground-water samples in four sampling networks are presented: A geochemical network, a low-density survey bedrock network, a low-density survey alluvium and terrace deposits network, and a targeted urban network. The analyses generally included physical properties, major ions, nutrients, trace substances, radionuclides, and organic constituents. The chemical analyses of the ground-water samples are presented in five tables: (1) Physical properties and concentrations of major ions, nutrients, and trace substances; (2) concentrations of radionuclides and radioactivities; (3) carbon isotope ratios and delta values (d-values) of selected isotopes; (4) concentrations of organic constituents; and (5) organic constituents not reported in ground-water samples. The quality of the ground water sampled varied substantially. The sum of constituents (dissolved solids) concentrations ranged from 71 to 5,610 milligrams per liter, with 38 percent of the wells sampled exceeding the Secondary Maximum Contaminant Level of 500 milligrams per liter established under the Safe Drinking Water Act. Values of pH ranged from 5.7 to 9.2 units with 20 percent of the wells outside the Secondary Maximum Contaminant Level of 6.5 to 8.5 units. Nitrite plus nitrate concentrations ranged from less than 0.1 to 85 milligrams per liter with 8 percent of the wells exceeding the proposed Maximum Contaminant Level of 10 milligrams per liter. Concentrations of trace substances were highly variable

  15. Monitoring and Assessment of Youshui River Water Quality in Youyang

    Science.gov (United States)

    Wang, Xue-qin; Wen, Juan; Chen, Ping-hua; Liu, Na-na

    2018-02-01

    By monitoring the water quality of Youshui River from January 2016 to December 2016, according to the indicator grading and the assessment standard of water quality, the formulas for 3 types water quality indexes are established. These 3 types water quality indexes, the single indicator index Ai, single moment index Ak and the comprehensive water quality index A, were used to quantitatively evaluate the quality of single indicator, the water quality and the change of water quality with time. The results show that, both total phosphorus and fecal coliform indicators exceeded the standard, while the other 16 indicators measured up to the standard. The water quality index of Youshui River is 0.93 and the grade of water quality comprehensive assessment is level 2, which indicated that the water quality of Youshui River is good, and there is room for further improvement. To this end, several protection measures for Youshui River environmental management and pollution treatment are proposed.

  16. Status of and changes in water quality monitored for the Idaho statewide surface-water-quality network, 1989—2002

    Science.gov (United States)

    Hardy, Mark A.; Parliman, Deborah J.; O'Dell, Ivalou

    2005-01-01

    The Idaho statewide surface-water-quality monitoring network consists of 56 sites that have been monitored from 1989 through 2002 to provide data to document status and changes in the quality of Idaho streams. Sampling at 33 sites has covered a wide range of flows and seasons that describe water-quality variations representing both natural conditions and human influences. Targeting additional high- or low-flow sampling would better describe conditions at 20 sites during hydrologic extremes. At the three spring site types, sampling covered the range of flow conditions from 1989 through 2002 well. However, high flows at these sites since 1989 were lower than historical high flows as a result of declining ground-water levels in the Snake River Plain. Summertime stream temperatures at 45 sites commonly exceeded 19 and 22 degrees Celsius, the Idaho maximum daily mean and daily maximum criteria, respectively, for the protection of coldwater aquatic life. Criteria exceedances in stream basins with minimal development suggest that such high temperatures may occur naturally in many Idaho streams. Suspended-sediment concentrations were generally higher in southern Idaho than in central and northern Idaho, and network data suggest that the turbidity criteria are most likely to be exceeded at sites in southern Idaho and other sections of the Columbia Plateaus geomorphic province. This is probably because this province has more fine-grained soils that are subject to erosion and disturbance by land uses than the Northern Rocky Mountains province of northern and central

  17. Wave energy level and geographic setting correlate with Florida beach water quality.

    Science.gov (United States)

    Feng, Zhixuan; Reniers, Ad; Haus, Brian K; Solo-Gabriele, Helena M; Kelly, Elizabeth A

    2016-03-15

    Many recreational beaches suffer from elevated levels of microorganisms, resulting in beach advisories and closures due to lack of compliance with Environmental Protection Agency guidelines. We conducted the first statewide beach water quality assessment by analyzing decadal records of fecal indicator bacteria (enterococci and fecal coliform) levels at 262 Florida beaches. The objectives were to depict synoptic patterns of beach water quality exceedance along the entire Florida shoreline and to evaluate their relationships with wave condition and geographic location. Percent exceedances based on enterococci and fecal coliform were negatively correlated with both long-term mean wave energy and beach slope. Also, Gulf of Mexico beaches exceeded the thresholds significantly more than Atlantic Ocean ones, perhaps partially due to the lower wave energy. A possible linkage between wave energy level and water quality is beach sand, a pervasive nonpoint source that tends to harbor more bacteria in the low-wave-energy environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Drinking water quality assessment in Southern Sindh (Pakistan).

    Science.gov (United States)

    Memon, Mehrunisa; Soomro, Mohammed Saleh; Akhtar, Mohammad Saleem; Memon, Kazi Suleman

    2011-06-01

    The southern Sindh province of Pakistan adjoins the Arabian Sea coast where drinking water quality is deteriorating due to dumping of industrial and urban waste and use of agrochemicals and yet has limited fresh water resources. The study assessed the drinking water quality of canal, shallow pumps, dug wells, and water supply schemes from the administrative districts of Thatta, Badin, and Thar by measuring physical, chemical, and biological (total coliform) quality parameters. All four water bodies (dug wells, shallow pumps canal water, and water supply schemes) exceeded WHO MPL for turbidity (24%, 28%, 96%, 69%), coliform (96%, 77%, 92%, 81%), and electrical conductivity (100%, 99%, 44%, 63%), respectively. However, the turbidity was lower in underground water, i.e., 24% and 28% in dug wells and shallow pumps as compared to open water, i.e., 96% and 69% in canal and water supply schemes, respectively. In dug wells and shallow pumps, limits for TDS, alkalinity, hardness, and sodium exceeded, respectively, by 63% and 33%; 59% and 70%, 40% and 27%, and 78% and 26%. Sodium was major problem in dug wells and shallow pumps of district Thar and considerable percent in shallow pumps of Badin. Iron was major problem in all water bodies of district Badin ranging from 50% to 69% and to some extent in open waters of Thatta. Other parameters as pH, copper, manganese, zinc, and phosphorus were within standard permissible limits of World Health Organization. Some common diseases found in the study area were gastroenteritis, diarrhea and vomiting, kidney, and skin problems.

  19. Analysis of water quality on several waters affected by contamination in West Sumbawa Regency

    Science.gov (United States)

    Dewi, N. N.; Satyantini, W. H.; Sahidu, A. M.; Sari, L. A.; Mukti, A. T.

    2018-04-01

    This study reports the result of water quality in several waters in West Sumbawa Regency. The load of waste input from anthropogenic activity becomes an indication of the decrease of water quality in West Sumbawa Regency Waters. The existence of illegal mining activities around the water has the potential to cause water pollution. Sample of water were collected on April 2017 in four location such as Sejorong 1, Sejorong 2, Tongo, and Taliwang. Sample were analyzed as insitu and exsitu parameters. The result of this research showed that Sejorong 2 have the highest value of pollution index but generally four site on West Sumbawa Regency Waters were categorized lightly contaminated. Concentration of heavy metal cadmium at four locations exceed the water quality standard for fisheries and drinking water. However, the trophic classification using TSI and TRIX of all location was oligothropic water.

  20. Chemical, physical, and radiological quality of selected public water supplies in Florida, January-May 1979. Water-resources investigations

    International Nuclear Information System (INIS)

    Franks, B.J.; Irwin, G.A.

    1980-01-01

    Most public water supplies sampled in Florida meet the National Interim Primary and Proposed Secondary Drinking Water Regulations. This conclusion is based on a water quality reconnaissance of 131 raw and treated public supplies throughout the State during the period January through May 1979. In a few public supplies, primary drinking water regulation maximum contaminant levels were exceeded for mercury, turbidity, and gross alpha particle activity. Secondary drinking water regulations were also occasionally exceeded in some public supplies for such parameters as chloride, pH, color, dissolved solids, iron, and manganese

  1. Quality of surface-water supplies in the Triangle area of North Carolina, water year 2009

    Science.gov (United States)

    Pfeifle, C. A.; Giorgino, M. J.; Rasmussen, R. B.

    2014-01-01

    Surface-water supplies are important sources of drinking water for residents in the Triangle area of North Carolina, which is located within the upper Cape Fear and Neuse River Basins. Since 1988, the U.S. Geological Survey and a consortium of governments have tracked water-quality conditions and trends in several of the area’s water-supply lakes and streams. This report summarizes data collected through this cooperative effort, known as the Triangle Area Water Supply Monitoring Project, during October 2008 through September 2009. Major findings for this period include: - Annual precipitation was approximately 20 percent below the long-term mean (average) annual precipitation. - Streamflow was below the long-term mean at the 10 project streamgages during most of the year. - More than 7,000 individual measurements of water quality were made at a total of 26 sites—15 in the Neuse River Basin and 11 in the Cape Fear River Basin. Forty-seven water-quality properties and constituents were measured. - All observations met North Carolina water-quality standards for water temperature, pH, hardness, chloride, fluoride, sulfate, nitrate, arsenic, cadmium, chromium, lead, nickel, and selenium. - North Carolina water-quality standards were exceeded one or more times for dissolved oxygen, dissolved oxygen percent saturation, chlorophyll a, mercury, copper, iron, manganese, silver, and zinc. Exceedances occurred at 23 sites—13 in the Neuse River Basin and 10 in the Cape Fear River Basin. - Stream samples collected during storm events contained elevated concentrations of 18 water-quality constituents compared to samples collected during non-storm events. - Concentrations of nitrogen and phosphorus were within ranges observed during previous years. - Five reservoirs had chlorophyll a concentrations in excess of 40 micrograms per liter at least once during 2009: Little River Reservoir, Falls Lake, Cane Creek Reservoir, University Lake, and Jordan Lake.

  2. The role of the water tankers market in water stressed semi-arid urban areas:Implications on water quality and economic burden.

    Science.gov (United States)

    Constantine, Kinda; Massoud, May; Alameddine, Ibrahim; El-Fadel, Mutasem

    2017-03-01

    Population growth and development are associated with increased water demand that often exceeds the capacity of existing resources, resulting in water shortages, particularly in urban areas, where more than 60% of the world's population resides. In many developing communities, shortages often force households to depend on water tankers amongst other potential sources for the delivery of water for domestic and/or potable use. While water tankers have become an integral part of the water supply system in many countries, the sector is often unregulated and operates with little governmental supervision. Users are invariably unaware of the origin or the quality of purchased water. In an effort to better assess this sector, a field survey of water vending wells and tankers coupled with a water quality sampling and analysis program was implemented in a pilot semi-arid urban area (Beirut, Lebanon) to shed light on the environmental and socio-economic impacts of the water tanker sector. Total dissolved solids (TDS), chloride (Cl - ), and microbial loads exceeded drinking water quality standards. While TDS and Cl - levels were mostly due to saltwater intrusion in coastal wells, tankers were found to be a significant source of total coliforms. Delivered water costs varied depending on the tanker size, the quality of the distributed water, and pre-treatment used, with a markup of nearly 8-24 folds of the public water supply and an equivalent economic burden of 16% of the average household income excluding environmental externalities of water quality. The study concludes with a management framework towards consumer protection under integrated supply and demand side measures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Water quality and benthic macroinvertebrate bioassessment of Gallinas Creek, San Miguel County, New Mexico, 1987-90

    Science.gov (United States)

    Garn, H.S.; Jacobi, G.Z.

    1996-01-01

    Upper Gallinas Creek in north-central New Mexico serves as the public water supply for the City of Las Vegas. The majority of this 84-square-mile watershed is within national forest lands managed by the U.S. Forest Service. In 1985, the Forest Service planned to conduct timber harvesting in the headwaters of Gallinas Creek. The City of Las Vegas was concerned about possible effects from logging on water quality and on water-supply treatment costs. The U.S. Geological Survey began a cooperative study in 1987 to (1) assess the baseline water-quality characteristics of Gallinas Creek upstream from the Las Vegas water-supply diversion, (2) relate water quality to State water- quality standards, and (3) determine possible causes for spatial differences in quality. During 1987-90, water-quality constituents and aquatic benthic macroinvertebrates were collected and analyzed at five sampling sites in the watershed. Specific conductance, pH, total hardness, total alkalinity, and calcium concentrations increased in a downstream direction, probably in response to differences in geology in the watershed. The water-quality standard for temperature was exceeded at the two most downstream sites probably due to a lack of riparian vegetation and low streamflow conditions. The standards for pH and turbidity were exceeded at all sites except the most upstream one. Concentrations of nitrogen species and phosphorus generally were small at all sites. The maximum total nitrogen concentration of 2.1 milligrams per liter was at the mouth of Porvenir Canyon; only one sample at this site exceeded the water-quality standard for total inorganic nitrogen. At each of the sites, 10 to 15 percent of the samples exceeded the total phosphorus standard of less than 0.1 milligram per liter. Except for aluminum and iron, almost all samples tested for trace elements contained concentrations less than the laboratory detection limit. No trace-element concentrations exceeded the State standard for domestic

  4. Early warning of limit-exceeding concentrations of cyanobacteria and cyanotoxins in drinking water reservoirs by inferential modelling.

    Science.gov (United States)

    Recknagel, Friedrich; Orr, Philip T; Bartkow, Michael; Swanepoel, Annelie; Cao, Hongqing

    2017-11-01

    An early warning scheme is proposed that runs ensembles of inferential models for predicting the cyanobacterial population dynamics and cyanotoxin concentrations in drinking water reservoirs on a diel basis driven by in situ sonde water quality data. When the 10- to 30-day-ahead predicted concentrations of cyanobacteria cells or cyanotoxins exceed pre-defined limit values, an early warning automatically activates an action plan considering in-lake control, e.g. intermittent mixing and ad hoc water treatment in water works, respectively. Case studies of the sub-tropical Lake Wivenhoe (Australia) and the Mediterranean Vaal Reservoir (South Africa) demonstrate that ensembles of inferential models developed by the hybrid evolutionary algorithm HEA are capable of up to 30days forecasts of cyanobacteria and cyanotoxins using data collected in situ. The resulting models for Dolicospermum circinale displayed validity for up to 10days ahead, whilst concentrations of Cylindrospermopsis raciborskii and microcystins were successfully predicted up to 30days ahead. Implementing the proposed scheme for drinking water reservoirs enhances current water quality monitoring practices by solely utilising in situ monitoring data, in addition to cyanobacteria and cyanotoxin measurements. Access to routinely measured cyanotoxin data allows for development of models that predict explicitly cyanotoxin concentrations that avoid to inadvertently model and predict non-toxic cyanobacterial strains. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Assessment of water quality of Obueyinomo River, Ovia North East ...

    African Journals Online (AJOL)

    The high WQI values in all the stations studied which exceeded the benchmark of 100 showed that the water from this river is unfit for drinking purposes and should be treated before consumption by inhabitants of the area. Keywords: Physicochemical parameters, River, Water quality index, Contamination ...

  6. Chemical quality of water and bottom sediment, Stillwater National Wildlife Refuge, Lahontan Valley, Nevada

    Science.gov (United States)

    Thodal, Carl E.

    2017-12-28

    The U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service collected data on water and bottom-sediment chemistry to be used to evaluate a new water rights acquisition program designed to enhance wetland habitat in Stillwater National Wildlife Refuge and in Lahontan Valley, Churchill County, Nevada. The area supports habitat critical to the feeding and resting of migratory birds travelling the Pacific Flyway. Information about how water rights acquisitions may affect the quality of water delivered to the wetlands is needed by stakeholders and Stillwater National Wildlife Refuge managers in order to evaluate the effectiveness of this approach to wetlands management. A network of six sites on waterways that deliver the majority of water to Refuge wetlands was established to monitor the quality of streamflow and bottom sediment. Each site was visited every 4 to 6 weeks and selected water-quality field parameters were measured when flowing water was present. Water samples were collected at varying frequencies and analyzed for major ions, silica, and organic carbon, and for selected species of nitrogen and phosphorus, trace elements, pharmaceuticals, and other trace organic compounds. Bottom-sediment samples were collected for analysis of selected trace elements.Dissolved-solids concentrations exceeded the recommended criterion for protection of aquatic life (500 milligrams per liter) in 33 of 62 filtered water samples. The maximum arsenic criterion (340 micrograms per liter) was exceeded twice and the continuous criterion was exceeded seven times. Criteria protecting aquatic life from continuous exposure to aluminum, cadmium, lead, and mercury (87, 0.72, 2.5, and 0.77 micrograms per liter, respectively) were exceeded only once in filtered samples (27, 40, 32, and 36 samples, respectively). Mercury was the only trace element analyzed in bottom-sediment samples to exceed the published probable effect concentration (1,060 micrograms per kilogram).

  7. Chemical and physical quality of selected public water supplies in Florida, August-September 1976

    Science.gov (United States)

    Irwin, G.A.; Healy, Henry G.

    1978-01-01

    Results of a 1976 water-quality reconnaissance made by the U.S. Geological Survey indicated that, with few exceptions, all public water supplies in Florida are of high quality and meet the standards set forth in the National Interim Primary Drinking Water Regulations. Occasionally the concentrations of fluoride, turbidity, cadmium, chromium, and lead approximated, equaled, or exceeded maximum contaminant levels with exceedences occurring very infrequently. The pesticides 2,4-D and silvex, were detected in some public supplies throughout the State mainly in surface water. Although pesticides were not detected in concentrations approaching the maximum levels established in the regulations, their presence does signal that the activities of man are beginning to affect some water resources. (Woodard-USGS)

  8. 40 CFR 141.209 - Special notice for nitrate exceedances above MCL by non-community water systems (NCWS), where...

    Science.gov (United States)

    2010-07-01

    ... Water Violations § 141.209 Special notice for nitrate exceedances above MCL by non-community water... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Special notice for nitrate exceedances above MCL by non-community water systems (NCWS), where granted permission by the primacy agency under Â...

  9. Assessment of Groundwater Quality of Ilorin Metropolis using Water Quality Index Approach

    Directory of Open Access Journals (Sweden)

    J. A. Olatunji

    2015-06-01

    Full Text Available Groundwater as a source of potable water is becoming more important in Nigeria. Therefore, the need to ascertain the continuing potability of the sources cannot be over emphasised. This study is aimed at assessing the quality of selected groundwater samples from Ilorin metropolis, Nigeria, using the water quality index (WQI method. Twenty two water samples were collected, 10 samples from boreholes and 12 samples from hand dug wells. All these were analysed for their physico – chemical properties. The parameters used for calculating the water quality index include the following: pH, total hardness, total dissolved solid, calcium, fluoride, iron, potassium, sulphate, nitrate and carbonate. The water quality index for the twenty two samples ranged from 0.66 to 756.02 with an average of 80.77. Two of the samples exceeded 100, which is the upper limit for safe drinking water. The high values of WQI from the sampling locations are observed to be due to higher values of iron and fluoride. This study reveals that the investigated groundwaters are mostly potable and can be consumed without treatment. Nonetheless, the sources identified to be unsafe should be treated before consumption.

  10. An assessment of groundwater quality using water quality index in Chennai, Tamil Nadu, India

    Directory of Open Access Journals (Sweden)

    I Nanda Balan

    2012-01-01

    Full Text Available Context : Water, the elixir of life, is a prime natural resource. Due to rapid urbanization in India, the availability and quality of groundwater have been affected. According to the Central Groundwater Board, 80% of Chennai′s groundwater has been depleted and any further exploration could lead to salt water ingression. Hence, this study was done to assess the groundwater quality in Chennai city. Aim : To assess the groundwater quality using water quality index in Chennai city. Materials and Methods: Chennai city was divided into three zones based on the legislative constituency and from these three zones three locations were randomly selected and nine groundwater samples were collected and analyzed for physiochemical properties. Results: With the exception of few parameters, most of the water quality assessment parameters showed parameters within the accepted standard values of Bureau of Indian Standards (BIS. Except for pH in a single location of zone 1, none of the parameters exceeded the permissible values for water quality assessment as prescribed by the BIS. Conclusion: This study demonstrated that in general the groundwater quality status of Chennai city ranged from excellent to good and the groundwater is fit for human consumption based on all the nine parameters of water quality index and fluoride content.

  11. Agricultural drainage water quality

    International Nuclear Information System (INIS)

    Madani, A.; Gordon, R.

    2002-01-01

    'Full text:' Agricultural drainage systems have been identified as potential contributors of non-point source pollution. Two of the major concerns have been with nitrate-nitrogen (NO3 - -N) concentrations and bacteria levels exceeding the Maximum Acceptable Concentration in drainage water. Heightened public awareness of environmental issues has led to greater pressure to maintain the environmental quality of water systems. In an ongoing field study, three experiment sites, each with own soil properties and characteristics, are divided into drainage plots and being monitored for NO3 - -N and fecal coliforms contamination. The first site is being used to determine the impact of the rate of manure application on subsurface drainage water quality. The second site is being used to determine the difference between hog manure and inorganic fertilizer in relation to fecal coliforms and NO3-N leaching losses under a carrot rotation system. The third site examines the effect of timing of manure application on water quality, and is the only site equipped with a surface drainage system, as well as a subsurface drainage system. Each of the drains from these fields lead to heated outflow buildings to allow for year-round measurements of flow rates and water samples. Tipping buckets wired to data-loggers record the outflow from each outlet pipe on an hourly basis. Water samples, collected from the flowing drains, are analyzed for NO3 - -N concentrations using the colorimetric method, and fecal coliforms using the Most Probable Number (MPN) method. Based on this information, we will be able better positioned to assess agricultural impacts on water resources which will help towards the development on industry accepted farming practices. (author)

  12. Proactive modeling of water quality impacts of extreme precipitation events in a drinking water reservoir.

    Science.gov (United States)

    Jeznach, Lillian C; Hagemann, Mark; Park, Mi-Hyun; Tobiason, John E

    2017-10-01

    Extreme precipitation events are of concern to managers of drinking water sources because these occurrences can affect both water supply quantity and quality. However, little is known about how these low probability events impact organic matter and nutrient loads to surface water sources and how these loads may impact raw water quality. This study describes a method for evaluating the sensitivity of a water body of interest from watershed input simulations under extreme precipitation events. An example application of the method is illustrated using the Wachusett Reservoir, an oligo-mesotrophic surface water reservoir in central Massachusetts and a major drinking water supply to metropolitan Boston. Extreme precipitation event simulations during the spring and summer resulted in total organic carbon, UV-254 (a surrogate measurement for reactive organic matter), and total algae concentrations at the drinking water intake that exceeded recorded maximums. Nutrient concentrations after storm events were less likely to exceed recorded historical maximums. For this particular reservoir, increasing inter-reservoir transfers of water with lower organic matter content after a large precipitation event has been shown in practice and in model simulations to decrease organic matter levels at the drinking water intake, therefore decreasing treatment associated oxidant demand, energy for UV disinfection, and the potential for formation of disinfection byproducts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Effect of beach management policies on recreational water quality.

    Science.gov (United States)

    Kelly, Elizabeth A; Feng, Zhixuan; Gidley, Maribeth L; Sinigalliano, Christopher D; Kumar, Naresh; Donahue, Allison G; Reniers, Adrianus J H M; Solo-Gabriele, Helena M

    2018-04-15

    When beach water monitoring programs identify poor water quality, the causes are frequently unknown. We hypothesize that management policies play an important role in the frequency of fecal indicator bacteria (FIB) exceedances (enterococci and fecal coliform) at recreational beaches. To test this hypothesis we implemented an innovative approach utilizing large amounts of monitoring data (n > 150,000 measurements per FIB) to determine associations between the frequency of contaminant exceedances and beach management practices. The large FIB database was augmented with results from a survey designed to assess management policies for 316 beaches throughout the state of Florida. The FIB and survey data were analyzed using t-tests, ANOVA, factor analysis, and linear regression. Results show that beach geomorphology (beach type) was highly associated with exceedance of regulatory standards. Low enterococci exceedances were associated with open coast beaches (n = 211) that have sparse human densities, no homeless populations, low densities of dogs and birds, bird management policies, low densities of seaweed, beach renourishment, charge access fees, employ lifeguards, without nearby marinas, and those that manage storm water. Factor analysis and a linear regression confirmed beach type as the predominant factor with secondary influences from grooming activities (including seaweed densities and beach renourishment) and beach access (including charging fees, employing lifeguards, and without nearby marinas). Our results were observable primarily because of the very large public FIB database available for analyses; similar approaches can be adopted at other beaches. The findings of this research have important policy implications because the selected beach management practices that were associated with low levels of FIB can be implemented in other parts of the US and around the world to improve recreational beach water quality. Copyright © 2018 Elsevier Ltd. All

  14. Drinking water insecurity: water quality and access in coastal south-western Bangladesh.

    Science.gov (United States)

    Benneyworth, Laura; Gilligan, Jonathan; Ayers, John C; Goodbred, Steven; George, Gregory; Carrico, Amanda; Karim, Md Rezaul; Akter, Farjana; Fry, David; Donato, Katherine; Piya, Bhumika

    2016-01-01

    National drinking water assessments for Bangladesh do not reflect local variability, or temporal differences. This paper reports on the findings of an interdisciplinary investigation of drinking water insecurity in a rural coastal south-western Bangladesh. Drinking water quality is assessed by comparison of locally measured concentrations to national levels and water quality criteria; resident's access to potable water and their perceptions are based on local social surveys. Residents in the study area use groundwater far less than the national average; salinity and local rainwater scarcity necessitates the use of multiple water sources throughout the year. Groundwater concentrations of arsenic and specific conductivity (SpC) were greater than surface water (pond) concentrations; there was no statistically significant seasonal difference in mean concentrations in groundwater, but there was for ponds, with arsenic higher in the dry season. Average arsenic concentrations in local water drinking were 2-4 times times the national average. All of the local groundwater samples exceeded the Bangladesh guidance for SpC, although the majority of residents surveyed did not perceive their water as having a 'bad' or 'salty' taste.

  15. Evaluation of drinking water quality in Rawalpindi and Islamabad

    International Nuclear Information System (INIS)

    Uzaira, R.; Sumreen, I.; Uzma, R.

    2005-01-01

    Drinking water quality of Rawalpindi and Islamabad was determined in terms of its microbiological and physicochemical characteristics. Water samples were collected from fifty schools of cantonment area Rawalpindi and fifty houses of Sector G-9/4 Islamabad. Survey revealed that surface and ground water are the two major sources of drinking water. Efficiency of domestic filtration units was determined by taking samples before and after filtration, whereas, level of contamination was assessed by collecting samples from storage and dispensing devices in schools. Water quality was determined by pH, conductivity, total dissolved solids, total hardness, concentration of anions and cations, coliforms, viable and colony counts using multiple tube fermentation, titrimetry, UV-Visible spectrophotometry and flame emission photometry. Drinking water quality of Islamabad was found to be better than Rawalpindi. However filtration showed no significant impact in improving water quality due to improper cleaning of filters. Samples were found to exceed WHO guidelines and EPA standards for total dissolved solids and microbiological parameters (WHO, 1996 and EPA, 1980) making water unfit for use due to poor sanitation and cross contamination with sewers in distribution network. (author)

  16. Investigation of selected water quality parameters in the Amargosa Drainage Basin

    International Nuclear Information System (INIS)

    Elliott, B.

    1982-08-01

    The purpose of this investigation was to determine whether Amargoso Desert water quality meets established federal drinking water standards. Samples were collected at selected drinking water supply sites and were analyzed for inorganic chemical constituents and radioactivity. The findings indicate that no concentrations of radioactivity in the drinking water exceeded the standards; however, some naturally occurring chemical constituent analysis indicate concentrations above federal drinking water standards. 18 references, 3 figures, 4 tables. (MF)

  17. Temporal variability in water quality parameters--a case study of drinking water reservoir in Florida, USA.

    Science.gov (United States)

    Toor, Gurpal S; Han, Lu; Stanley, Craig D

    2013-05-01

    Our objective was to evaluate changes in water quality parameters during 1983-2007 in a subtropical drinking water reservoir (area: 7 km(2)) located in Lake Manatee Watershed (area: 338 km(2)) in Florida, USA. Most water quality parameters (color, turbidity, Secchi depth, pH, EC, dissolved oxygen, total alkalinity, cations, anions, and lead) were below the Florida potable water standards. Concentrations of copper exceeded the potable water standard of water quality threshold of 20 μg l(-1). Concentrations of total N showed significant increase from 1983 to 1994 and a decrease from 1997 to 2007. Total P showed significant increase during 1983-2007. Mean concentrations of total N (n = 215; 1.24 mg l(-1)) were lower, and total P (n = 286; 0.26 mg l(-1)) was much higher than the EPA numeric criteria of 1.27 mg total N l(-1) and 0.05 mg total P l(-1) for Florida's colored lakes, respectively. Seasonal trends were observed for many water quality parameters where concentrations were typically elevated during wet months (June-September). Results suggest that reducing transport of organic N may be one potential option to protect water quality in this drinking water reservoir.

  18. An assessment of stream water quality of the Rio San Juan, Nuevo Leon, Mexico, 1995-1996.

    Science.gov (United States)

    Flores Laureano, José Santos; Návar, José

    2002-01-01

    Good water quality of the Rio San Juan is critical for economic development of northeastern Mexico. However, water quality of the river has rapidly degraded during the last few decades. Societal concerns include indications of contamination problems and increased water diversions for agriculture, residential, and industrial water supplies. Eight sampling sites were selected along the river where water samples were collected monthly for 10 mo (October 1995-July 1996). The concentration of heavy metals and chemical constituents and measurements of bacteriological and physical parameters were determined on water samples. In addition, river discharge was recorded. Constituent concentrations in 18.7% of all samples exceeded at least one water quality standard. In particular, concentrations of fecal and total coliform bacteria, sulfate, detergent, dissolved solids, Al, Ba, Cr, Fe, and Cd, exceeded several water quality standards. Pollution showed spatial and temporal variations and trends. These variations were statistically explained by spatial and temporal changes of constituent inputs and discharge. Samples collected from the site upstream of El Cuchillo reservoir had large constituent concentrations when discharge was small; this reservoir supplies domestic and industrial water to the city of Monterrey.

  19. Water quality in the Mahoning River and selected tributaries in Youngstown, Ohio

    Science.gov (United States)

    Stoeckel, Donald M.; Covert, S. Alex

    2002-01-01

    The lower reaches of the Mahoning River in Youngstown, Ohio, have been characterized by the Ohio Environmental Protection Agency (OEPA) as historically having poor water quality. Most wastewater-treatment plants (WWTPs) in the watershed did not provide secondary sewage treatment until the late 1980s. By the late 1990s, the Mahoning River still received sewer-overflow discharges from 101 locations within the city of Youngstown, Ohio. The Mahoning River in Youngstown and Mill Creek, a principal tributary to the Mahoning River in Youngstown, have not met biotic index criteria since the earliest published assessment by OEPA in 1980. Youngstown and the OEPA are working together toward the goal of meeting water-quality standards in the Mahoning River. The U.S. Geological Survey collected information to help both parties assess water quality in the area of Youngstown and to estimate bacteria and inorganic nitrogen contributions from sewer-overflow discharges to the Mahoning River. Two monitoring networks were established in the lower Mahoning River: the first to evaluate hydrology and microbiological and chemical water quality and the second to assess indices of fish and aquatic-macroinvertebrate-community health. Water samples and water-quality data were collected from May through October 1999 and 2000 to evaluate where, when, and for how long water quality was affected by sewer-overflow discharges. Water samples were collected during dry- and wet-weather flow, and biotic indices were assessed during the first year (1999). The second year of sample collection (2000) was directed toward evaluating changes in water quality during wet-weather flow, and specifically toward assessing the effect of sewer-overflow discharges on water quality in the monitoring network. Water-quality standards for Escherichia coli (E. coli) concentration and draft criteria for nitrate plus nitrite and total phosphorus were the regulations most commonly exceeded in the Mahoning River and Mill

  20. Determination of Groundwater and Surface Water Qualities at Si Racha, Chon Buri

    International Nuclear Information System (INIS)

    Wangsawang, Jarinee; Naenorn, Warinlada; Khuntong, Soontree; Wongsorntam, Krirk; Udomsomporn, Suchin

    2011-06-01

    Full text: Groundwater (13 wells) and surface water (7 ponds) at Si Racha, Chon Buri province were collected for measurement of water qualities and radionuclides. The water qualities included physical and chemical analysis such as pH, EC, TS, TDS, TSS, TKN, total phosphate, BOD, COD, total hardness and FOG based on standard methods for examination of water and wastewater. Heavy metals (Cd, Cu, Cr, Fe, Mn, Ni and Zn) were analyzed by ICP-AES while total coliform was determined by Multiple Tube Methods. Moreover, radionuclides were analyzed by gamma spectrometer and gross beta and gross alpha were obtained from low background gas proportional counter. Values of most parameters in groundwater were below water qualities standards but all parameters in surface water samples were exceeded water qualities standards. It was found that all radionuclides in water samples were originated from natural uranium and thorium series. The data obtained enabled evaluation of pollutants in groundwater and surface water

  1. Tidal Influence on Water Quality of Kapuas Kecil River Downstream

    Science.gov (United States)

    Purnaini, Rizki; Sudarmadji; Purwono, Suryo

    2018-02-01

    The Kapuas Kecil River is strongly influenced by tidal, in the dry season the intrusion of surface water is often a problem for the WTP because it causes the change of raw water quality to be processed. The purpose of this study was to examine the effect of sea tides on water quality of the Kapuas Kecil River. The study was conducted in Kapuas River downstream along ± 30 km from the upper boundary to the estuary. Water sampling is carried out during the dry and rainy season, when the tidal conditions at 7 (seven) locations of the monitoring station. Descriptive analysis methods and regression-correlation statistics are used to determine the effect of tides on water quality in Kapuas River downstream. In general, the water quality of the Kapuas Kecil River has exceeded the criteria of first class water quality, ie water that can be used for drinking water. The status of water quality of the Kapuas Kecil River based on the pollution index calculation shows the condition of the river is "mild to medium pollutants". The result of multiple linear regression analysis got the value of coefficient of determination (adjusted R square) = 0,760, which in whole show that independent variable (tidal and distance) influence to dependent variable (value of TDS) equal to 76%.

  2. Water splitting-biosynthetic system with CO₂ reduction efficiencies exceeding photosynthesis.

    Science.gov (United States)

    Liu, Chong; Colón, Brendan C; Ziesack, Marika; Silver, Pamela A; Nocera, Daniel G

    2016-06-03

    Artificial photosynthetic systems can store solar energy and chemically reduce CO2 We developed a hybrid water splitting-biosynthetic system based on a biocompatible Earth-abundant inorganic catalyst system to split water into molecular hydrogen and oxygen (H2 and O2) at low driving voltages. When grown in contact with these catalysts, Ralstonia eutropha consumed the produced H2 to synthesize biomass and fuels or chemical products from low CO2 concentration in the presence of O2 This scalable system has a CO2 reduction energy efficiency of ~50% when producing bacterial biomass and liquid fusel alcohols, scrubbing 180 grams of CO2 per kilowatt-hour of electricity. Coupling this hybrid device to existing photovoltaic systems would yield a CO2 reduction energy efficiency of ~10%, exceeding that of natural photosynthetic systems. Copyright © 2016, American Association for the Advancement of Science.

  3. Quality Management of Lontar Village Coastal Waters, Banten

    Directory of Open Access Journals (Sweden)

    Ani Rahmawati

    2017-11-01

    Full Text Available The coastal waters of Lontar Village is located in Tirtayasa District, Banten. The coastal waters of Lontar Village is also used for fishing activities that become the livelihood of the surrounding community. Communities around the coast of Lontar village dispose of household waste directly into the waters so that the waters become dirty. The existence of these activities can cause the condition of the waters to decrease even can lead to contamination. Decrease in water conditions will affect the living biota inside. Waters quality can be determined by measuring physical, chemical, biological and heavy metal parameters. Physical parameters include brightness, turbidity, and temperature. Chemical parameters are salinity, pH, dissolved oxygen, nitrate, phosphate, BOD, TSS. The biological parameter is total coliform. The parameters of heavy metals are lead and copper. The purpose of this study is to analyze the quality of coastal waters of Lontar Village based on physical, chemical, biological and heavy metal parameters. The results showed that most of the parameters of water quality (physics, chemistry, biology and heavy metals are still in accordance with the value of water quality standards (Decree of the Minister of Environment No. 51 of 2004 only the value of lead metals exceeding the standard quality. It must be overcome so as not to disrupt the life of biota in the waters. Management that can be done is utilize aquatic biota that can absorb heavy metal content such as green shell (shell should not be consumed, reducing oil spilled from the activity of motor boats (giving box shelter under motor boat engines so that oil does not directly spill into the waters.

  4. Chemical, physical, and radiological quality of selected public water supplies in Florida, November 1977-February 1978. Water-resources investigations

    International Nuclear Information System (INIS)

    Irwin, G.A.; Hull, R.W.

    1979-04-01

    Virtually all treated public water supplies sampled in Florida meet the National Interim Primary and Proposed Secondary Drinking Water Regulations. These findings are based on a water-quality reconnaissance of 129 treated public supplies throughout the State during the period November 1977 through February 1978. While primary drinking water regulation exceedences were infrequent, lead, selenium, and gross alpha radioactivity in a very few water supplies were above established maximum contaminant levels. Additionally, the secondary drinking water regulation parameters--dissolved solids, chloride, sulfate, iron, color, and pH--were occasionally detected in excess of the proposed Federal regulations. The secondary regulations, however, pertain mainly to the aesthetic quality of drinking water and not directly to public health aspects

  5. QUALITY WATER BALANCE AS A BASE FOR WETLANDS RESTORATION IN THE UPPER BIEBRZA VALLEY

    Directory of Open Access Journals (Sweden)

    Piotr Banaszuk

    2016-06-01

    Full Text Available Main goal of presented research was the assessment of the influence of water damming in existing land reclamation systems on the surface water quality of the Upper Biebrza River catchment. Surface water quality was assessed on the concentration of BOD5, total phosphorus (TP and total nitrogen (TN recorded in 2014 at several monitoring points along Biebrza River and its tributaries. The upper Biebrza R. has a little (at the Sztabin gauging point even an insufficient absorption capacity of organic pollutants and a high capacity for self-purifying and absorbing of TP and TN. The phosphorus binding capacity decreases along the river and in its upper reach it is necessary to reduce the load of P by 20% to maintain the river quality objectives. Water quality monitoring data and information about pollution sources showed high absorption capacities of TN in the monitored tributaries, which can receive an additional flux of this constituent in the amount exceeding the actual load up to several times. The absorption capacity of BOD5 and TP is lower by an order of magnitude. For Kropiwna R., it is required to reduce the load of organic components (measured as BOD5, which exceeds the requirements for the 1st quality class.

  6. Quality of groundwater and surface water, Wood River Valley, south-central Idaho, July and August 2012

    Science.gov (United States)

    Hopkins, Candice B.; Bartolino, James R.

    2013-01-01

    Residents and resource managers of the Wood River Valley of south-central Idaho are concerned about the effects that population growth might have on the quality of groundwater and surface water. As part of a multi-phase assessment of the groundwater resources in the study area, the U.S. Geological Survey evaluated the quality of water at 45 groundwater and 5 surface-water sites throughout the Wood River Valley during July and August 2012. Water samples were analyzed for field parameters (temperature, pH, specific conductance, dissolved oxygen, and alkalinity), major ions, boron, iron, manganese, nutrients, and Escherichia coli (E.coli) and total coliform bacteria. This study was conducted to determine baseline water quality throughout the Wood River Valley, with special emphasis on nutrient concentrations. Water quality in most samples collected did not exceed U.S. Environmental Protection Agency standards for drinking water. E. coli bacteria, used as indicators of water quality, were detected in all five surface-water samples and in two groundwater samples collected. Some analytes have aesthetic-based recommended drinking water standards; one groundwater sample exceeded recommended iron concentrations. Nitrate plus nitrite concentrations varied, but tended to be higher near population centers and in agricultural areas than in tributaries and less populated areas. These higher nitrate plus nitrite concentrations were not correlated with boron concentrations or the presence of bacteria, common indicators of sources of nutrients to water. None of the samples collected exceeded drinking-water standards for nitrate or nitrite. The concentration of total dissolved solids varied considerably in the waters sampled; however a calcium-magnesium-bicarbonate water type was dominant (43 out of 50 samples) in both the groundwater and surface water. Three constituents that may be influenced by anthropogenic activity (chloride, boron, and nitrate plus nitrite) deviate from this

  7. Indices of water quality and metal pollution of Nile River, Egypt

    Directory of Open Access Journals (Sweden)

    Amaal M. Abdel-Satar

    2017-03-01

    Full Text Available Nile River is the valued natural and exclusive source of fresh water in Egypt, where the drinking water supply is limited to the river. The water quality of 24 sites between Aswan and Cairo along the Nile was investigated. To evaluate the suitability of water for aquatic life and drinking purposes, the indices of water quality (WQI, heavy metal pollution (HPI and contamination (Cd were computed. The water quality variations were mainly related to inorganic nutrients and heavy metals, where, the sites affected by intensive load of urban, agricultural and industrial wastewater showed serious deterioration of water quality compared with other sites. The anthropogenic impact sites showed high HPI and Cd values and associated with high risks, where, most of the studied metals often exceeded the drinking water and aquatic life limits. The aquatic WQI indicated that the Nile water quality deteriorated and extended from poor to marginal, while drinking WQI varied from marginal to good. Accordingly, the river becoming unfit for aquatic life and the situation is getting worse by decreases in the water budget from the Nile in Egypt by building of the Grand Ethiopian Renaissance Dam, where the dilution strength of the Nile system will reduce.

  8. Analysis of postfire hydrology, water quality, and sediment transport for selected streams in areas of the 2002 Hayman and Hinman fires, Colorado

    Science.gov (United States)

    Stevens, Michael R.

    2013-01-01

    The U.S. Geological Survey (USGS) began a 5-year study in 2003 that focused on postfire stream-water quality and postfire sediment load in streams within the Hayman and Hinman fire study areas. This report compares water quality of selected streams receiving runoff from unburned areas and burned areas using concentrations and loads, and trend analysis, from seasonal data (approximately April–November) collected 2003–2007 at the Hayman fire study area, and data collected from 1999–2000 (prefire) and 2003 (postfire) at the Hinman fire study area. The water-quality data collected during this study include onsite measurements of streamflow, specific conductance, and turbidity, laboratory-determined pH, and concentrations of major ions, nutrients, organic carbon, trace elements, and suspended sediment. Postfire floods and effects on water quality of streams, lakes and reservoirs, drinking-water treatment, and the comparison of measured concentrations to applicable water quality standards also are discussed. Exceedances of Colorado water-quality standards in streams of both the Hayman and Hinman fire study areas only occurred for concentrations of five trace elements (not all trace-element exceedances occurred in every stream). Selected samples analyzed for total recoverable arsenic (fixed), dissolved copper (acute and chronic), total recoverable iron (chronic), dissolved manganese (acute, chronic, and fixed) and total recoverable mercury (chronic) exceeded Colorado aquatic-life standards.

  9. Water-Quality Data

    Science.gov (United States)

    ... Water Quality? [1.7MB PDF] Past featured science... Water Quality Data Today's Water Conditions Get continuous real- ... list of USGS water-quality data resources . USGS Water Science Areas Water Resources Groundwater Surface Water Water ...

  10. Water quality

    Science.gov (United States)

    Aquatic animals are healthiest and grow best when environmental conditions are within certain ranges that define, for a particular species, “good” water quality. From the outset, successful aquaculture requires a high-quality water supply. Water quality in aquaculture systems also deteriorates as an...

  11. Environmental impact of municipal dumpsite leachate on ground-water quality in Jawaharnagar, Rangareddy, Telangana, India

    Science.gov (United States)

    Soujanya Kamble, B.; Saxena, Praveen Raj

    2017-10-01

    The aim of the present work was to study the impact of dumpsite leachate on ground-water quality of Jawaharnagar village. Leachate and ground-water samples were investigated for various physico-chemical parameters viz., pH, total dissolved solids (TDS), total hardness (TH), calcium (Ca2+), magnesium (Mg2+), sodium (Na+), potassium (K+), chloride (Cl-), carbonates (CO3 2-), bicarbonates (HCO3 -), nitrates (NO3 -), and sulphates (SO4 2-) during dry and wet seasons in 2015 and were reported. The groundwater was hard to very hard in nature, and the concentrations of total dissolved solids, chlorides, and nitrates were found to be exceeding the permissible levels of WHO drinking water quality standards. Piper plots revealed that the dominant hydrochemical facies of the groundwater were of calcium chloride (CaCl2) type and alkaline earths (Ca2+ and Mg2+) exceed the alkali (Na+ and SO4 2-), while the strong acids (Cl- and SO4 2-) exceed the weak acids (CO3 2- and HCO3 -). According to USSL diagram, all the ground-water samples belong to high salinity and low-sodium type (C3S1). Overall, the ground-water samples collected around the dumpsite were found to be polluted and are unfit for human consumption but can be used for irrigation purpose with heavy drainage and irrigation patterns to control the salinity.

  12. Interpretation of drinking water quality guidelines – The case of arsenic

    African Journals Online (AJOL)

    ... both in the creation of sound drinking water quality guidelines or standards, and in the problem of how to interpret the risk to human health when guideline values are exceeded. In this paper this problem is discussed using the case of arsenic, where the definition of the boundaries of the grey area is particularly uncertain.

  13. Real-time water quality monitoring and providing water quality ...

    Science.gov (United States)

    EPA and the U.S. Geological Survey (USGS) have initiated the “Village Blue” research project to provide real-time water quality monitoring data to the Baltimore community and increase public awareness about local water quality in Baltimore Harbor and the Chesapeake Bay. The Village Blue demonstration project complements work that a number of state and local organizations are doing to make Baltimore Harbor “swimmable and fishable” 2 by 2020. Village Blue is designed to build upon EPA’s “Village Green” project which provides real-time air quality information to communities in six locations across the country. The presentation, “Real-time water quality monitoring and providing water quality information to the Baltimore Community”, summarizes the Village Blue real-time water quality monitoring project being developed for the Baltimore Harbor.

  14. Water quality relationships and evaluation using a new water quality index

    International Nuclear Information System (INIS)

    Said, A.; Stevens, D.; Sehlke, G.

    2002-01-01

    Water quality is dependent on a variety of measures, including dissolved oxygen, microbial contamination, turbidity, nutrients, temperature, pH, and other constituents. Determining relationships between water quality parameters can improve water quality assessment, and watershed management. In addition, these relationships can be very valuable in case of evaluating water quality in watersheds that have few water quality data. (author)

  15. Assessment of historical surface-water quality data in southwestern Colorado, 1990-2005

    Science.gov (United States)

    Miller, Lisa D.; Schaffrath, Keelin R.; Linard, Joshua I.

    2013-01-01

    The spatial and temporal distribution of selected physical and chemical surface-water-quality characteristics were analyzed at stream sites throughout the Dolores and San Juan River Basins in southwestern Colorado using historical data collected from 1990 through 2005 by various local, State, Tribal, and Federal agencies. Overall, streams throughout the study area were well oxygenated. Values of pH generally were near neutral to slightly alkaline throughout most of the study area with the exception of the upper Animas River Basin near Silverton where acidic conditions existed at some sites because of hydrothermal alteration and(or) historical mining. The highest concentrations of dissolved aluminum, total recoverable iron, dissolved lead, and dissolved zinc were measured at sites located in the upper Animas River Basin. Thirty-two sites throughout the study area had at least one measured concentration of total mercury that exceeded the State chronic aquatic-life criterion of 0.01 μg/L. Concentrations of dissolved selenium at some sites exceeded the State chronic water-quality standard of 4.6 μg/L. Total ammonia, nitrate, nitrite, and total phosphorus concentrations generally were low throughout the study area. Overall, results from the trend analyses indicated improvement in water-quality conditions as a result of operation of the Paradox Valley Unit in the Dolores River Basin and irrigation and water-delivery system improvements made in the McElmo Creek Basin (Lower San Juan River Basin) and Mancos River Valley (Upper San Juan River Basin).

  16. Chemical drinking water quality in Ghana: Water costs and scope for advanced treatment

    Energy Technology Data Exchange (ETDEWEB)

    Rossiter, Helfrid M.A. [School of Engineering, The University of Edinburgh, Edinburgh, EH9 3JL (United Kingdom); Owusu, Peter A.; Awuah, Esi [Department of Civil Engineering, Kwame Nkrumah University of Science and Technology, Kumasi (Ghana); MacDonald, Alan M. [British Geological Survey, Murchison House, West Mains Road, Edinburgh, EH9 3LA (United Kingdom); Schaefer, Andrea I., E-mail: Andrea.Schaefer@ed.ac.uk [School of Engineering, The University of Edinburgh, Edinburgh, EH9 3JL (United Kingdom)

    2010-05-01

    To reduce child mortality and improve health in Ghana boreholes and wells are being installed across the country by the private sector, NGO's and the Ghanaian government. Water quality is not generally monitored once a water source has been improved. Water supplies were sampled across Ghana from mostly boreholes, wells and rivers as well as some piped water from the different regions and analysed for the chemical quality. Chemical water quality was found to exceed the WHO guidelines in 38% of samples, while pH varied from 3.7 to 8.9. Excess levels of nitrate (NO{sub 3}{sup -}) were found in 21% of the samples, manganese (Mn) and fluoride (F{sup -}) in 11% and 6.7%, respectively. Heavy metals such as lead (Pb), arsenic (As) and uranium (U) were localised to mining areas. Elements without health based guideline values such as aluminium (Al, 95%) and chloride (Cl, 5.7%) were found above the provisional guideline value. Economic information was gathered to identify water costs and ability to pay. Capital costs of wells and boreholes are about Pounds 1200 and Pounds 3800 respectively. The majority of installation costs are generally paid by the government or NGO's, while the maintenance is expected to be covered by the community. At least 58% of the communities had a water payment system in place, either an annual fee/one-off fee or 'pay-as-you-fetch'. The annual fee was between Pounds 0.3-21, while the boreholes had a water collection fee of Pounds 0.07-0.7/m{sup 3}, many wells were free. Interestingly, the most expensive water ( Pounds 2.9-3.5/m{sup 3}) was brought by truck. Many groundwater sources were not used due to poor chemical water quality. Considering the cost of unsuccessful borehole development, the potential for integrating suitable water treatment into the capital and maintenance costs of water sources is discussed. Additionally, many sources were not in use due to lack of water capacity, equipment malfunction or lack of economic

  17. Chemical drinking water quality in Ghana: Water costs and scope for advanced treatment

    International Nuclear Information System (INIS)

    Rossiter, Helfrid M.A.; Owusu, Peter A.; Awuah, Esi; MacDonald, Alan M.; Schaefer, Andrea I.

    2010-01-01

    To reduce child mortality and improve health in Ghana boreholes and wells are being installed across the country by the private sector, NGO's and the Ghanaian government. Water quality is not generally monitored once a water source has been improved. Water supplies were sampled across Ghana from mostly boreholes, wells and rivers as well as some piped water from the different regions and analysed for the chemical quality. Chemical water quality was found to exceed the WHO guidelines in 38% of samples, while pH varied from 3.7 to 8.9. Excess levels of nitrate (NO 3 - ) were found in 21% of the samples, manganese (Mn) and fluoride (F - ) in 11% and 6.7%, respectively. Heavy metals such as lead (Pb), arsenic (As) and uranium (U) were localised to mining areas. Elements without health based guideline values such as aluminium (Al, 95%) and chloride (Cl, 5.7%) were found above the provisional guideline value. Economic information was gathered to identify water costs and ability to pay. Capital costs of wells and boreholes are about Pounds 1200 and Pounds 3800 respectively. The majority of installation costs are generally paid by the government or NGO's, while the maintenance is expected to be covered by the community. At least 58% of the communities had a water payment system in place, either an annual fee/one-off fee or 'pay-as-you-fetch'. The annual fee was between Pounds 0.3-21, while the boreholes had a water collection fee of Pounds 0.07-0.7/m 3 , many wells were free. Interestingly, the most expensive water ( Pounds 2.9-3.5/m 3 ) was brought by truck. Many groundwater sources were not used due to poor chemical water quality. Considering the cost of unsuccessful borehole development, the potential for integrating suitable water treatment into the capital and maintenance costs of water sources is discussed. Additionally, many sources were not in use due to lack of water capacity, equipment malfunction or lack of economic resources to repair and maintain equipment

  18. Chemical drinking water quality in Ghana: water costs and scope for advanced treatment.

    Science.gov (United States)

    Rossiter, Helfrid M A; Owusu, Peter A; Awuah, Esi; Macdonald, Alan M; Schäfer, Andrea I

    2010-05-01

    To reduce child mortality and improve health in Ghana boreholes and wells are being installed across the country by the private sector, NGO's and the Ghanaian government. Water quality is not generally monitored once a water source has been improved. Water supplies were sampled across Ghana from mostly boreholes, wells and rivers as well as some piped water from the different regions and analysed for the chemical quality. Chemical water quality was found to exceed the WHO guidelines in 38% of samples, while pH varied from 3.7 to 8.9. Excess levels of nitrate (NO(3)(-)) were found in 21% of the samples, manganese (Mn) and fluoride (F(-)) in 11% and 6.7%, respectively. Heavy metals such as lead (Pb), arsenic (As) and uranium (U) were localised to mining areas. Elements without health based guideline values such as aluminium (Al, 95%) and chloride (Cl, 5.7%) were found above the provisional guideline value. Economic information was gathered to identify water costs and ability to pay. Capital costs of wells and boreholes are about pound1200 and pound3800 respectively. The majority of installation costs are generally paid by the government or NGO's, while the maintenance is expected to be covered by the community. At least 58% of the communities had a water payment system in place, either an annual fee/one-off fee or "pay-as-you-fetch". The annual fee was between pound0.3-21, while the boreholes had a water collection fee of pound0.07-0.7/m(3), many wells were free. Interestingly, the most expensive water ( pound2.9-3.5/m(3)) was brought by truck. Many groundwater sources were not used due to poor chemical water quality. Considering the cost of unsuccessful borehole development, the potential for integrating suitable water treatment into the capital and maintenance costs of water sources is discussed. Additionally, many sources were not in use due to lack of water capacity, equipment malfunction or lack of economic resources to repair and maintain equipment. Those

  19. Choices in recreational water quality monitoring: new opportunities and health risk trade-offs

    Science.gov (United States)

    Nevers, Meredith B.; Byappanahalli, Muruleedhara N.; Whitman, Richard L.

    2013-01-01

    With the recent release of new recreational water quality monitoring criteria, there are more options for regulatory agencies seeking to protect beachgoers from waterborne pathogens. Included are methods that can reduce analytical time, providing timelier estimates of water quality, but the application of these methods has not been examined at most beaches for expectation of health risk and management decisions. In this analysis, we explore health and monitoring outcomes expected at Lake Michigan beaches using protocols for indicator bacteria including culturable Escherichia coli (E. coli; EC), culturable enterococci (ENT), and enterococci as analyzed by qPCR (QENT). Correlations between method results were generally high, except at beaches with historically high concentrations of EC. The “beach action value” was exceeded most often when using EC or ENT as the target indicator; QENT exceeded the limit far less frequently. Measured water quality between years was varied. Although methods with equivalent health expectation have been established, the lack of relationship among method outcomes and annual changes in mean indicator bacteria concentrations complicates the decision-making process. The monitoring approach selected by beach managers may be a combination of available tools that maximizes timely health protection, cost efficiency, and collaboration among beach jurisdictions.

  20. A fresh look at road salt: aquatic toxicity and water-quality impacts on local, regional, and national scales.

    Science.gov (United States)

    Corsi, Steven R; Graczyk, David J; Geis, Steven W; Booth, Nathaniel L; Richards, Kevin D

    2010-10-01

    A new perspective on the severity of aquatic toxicity impact of road salt was gained by a focused research effort directed at winter runoff periods. Dramatic impacts were observed on local, regional, and national scales. Locally, samples from 7 of 13 Milwaukee, Wisconsin area streams exhibited toxicity in Ceriodaphnia dubia and Pimephales promelas bioassays during road-salt runoff. Another Milwaukee stream was sampled from 1996 to 2008 with 72% of 37 samples exhibiting toxicity in chronic bioassays and 43% in acute bioassays. The maximum chloride concentration was 7730 mg/L. Regionally, in southeast Wisconsin, continuous specific conductance was monitored as a chloride surrogate in 11 watersheds with urban land use from 6.0 to 100%. Elevated specific conductance was observed between November and April at all sites, with continuing effects between May and October at sites with the highest specific conductance. Specific conductance was measured as high as 30,800 μS/cm (Cl = 11,200 mg/L). Chloride concentrations exceeded U.S. Environmental Protection Agency (USEPA) acute (860 mg/L) and chronic (230 mg/L) water-quality criteria at 55 and 100% of monitored sites, respectively. Nationally, U.S. Geological Survey historical data were examined for 13 northern and 4 southern metropolitan areas. Chloride concentrations exceeded USEPA water-quality criteria at 55% (chronic) and 25% (acute) of the 168 monitoring locations in northern metropolitan areas from November to April. Only 16% (chronic) and 1% (acute) of sites exceeded criteria from May to October. At southern sites, very few samples exceeded chronic water-quality criteria, and no samples exceeded acute criteria.

  1. A sediment resuspension and water quality model of Lake Okeechobee

    Science.gov (United States)

    James, R.T.; Martin, J.; Wool, T.; Wang, P.-F.

    1997-01-01

    The influence of sediment resuspension on the water quality of shallow lakes is well documented. However, a search of the literature reveals no deterministic mass-balance eutrophication models that explicitly include resuspension. We modified the Lake Okeeehobee water quality model - which uses the Water Analysis Simulation Package (WASP) to simulate algal dynamics and phosphorus, nitrogen, and oxygen cycles - to include inorganic suspended solids and algorithms that: (1) define changes in depth with changes in volume; (2) compute sediment resuspension based on bottom shear stress; (3) compute partition coefficients for ammonia and ortho-phosphorus to solids; and (4) relate light attenuation to solids concentrations. The model calibration and validation were successful with the exception of dissolved inorganic nitrogen species which did not correspond well to observed data in the validation phase. This could be attributed to an inaccurate formulation of algal nitrogen preference and/or the absence of nitrogen fixation in the model. The model correctly predicted that the lake is lightlimited from resuspended solids, and algae are primarily nitrogen limited. The model simulation suggested that biological fluxes greatly exceed external loads of dissolved nutrients; and sedimentwater interactions of organic nitrogen and phosphorus far exceed external loads. A sensitivity analysis demonstrated that parameters affecting resuspension, settling, sediment nutrient and solids concentrations, mineralization, algal productivity, and algal stoichiometry are factors requiring further study to improve our understanding of the Lake Okeechobee ecosystem.

  2. Groundwater-quality characteristics for the Wyoming Groundwater-Quality Monitoring Network, November 2009 through September 2012

    Science.gov (United States)

    Boughton, Gregory K.

    2014-01-01

    Groundwater samples were collected from 146 shallow (less than or equal to 500 feet deep) wells for the Wyoming Groundwater-Quality Monitoring Network, from November 2009 through September 2012. Groundwater samples were analyzed for physical characteristics, major ions and dissolved solids, trace elements, nutrients and dissolved organic carbon, uranium, stable isotopes of hydrogen and oxygen, volatile organic compounds, and coliform bacteria. Selected samples also were analyzed for gross alpha radioactivity, gross beta radioactivity, radon, tritium, gasoline range organics, diesel range organics, dissolved hydrocarbon gases (methane, ethene, and ethane), and wastewater compounds. Water-quality measurements and concentrations in some samples exceeded numerous U.S. Environmental Protection Agency (EPA) drinking water standards. Physical characteristics and constituents that exceeded EPA Maximum Contaminant Levels (MCLs) in some samples were arsenic, selenium, nitrite, nitrate, gross alpha activity, and uranium. Total coliforms and Escherichia coli in some samples exceeded EPA Maximum Contaminant Level Goals. Measurements of pH and turbidity and concentrations of chloride, sulfate, fluoride, dissolved solids, aluminum, iron, and manganese exceeded EPA Secondary Maximum Contaminant Levels in some samples. Radon concentrations in some samples exceeded the alternative MCL proposed by the EPA. Molybdenum and boron concentrations in some samples exceeded EPA Health Advisory Levels. Water-quality measurements and concentrations also exceeded numerous Wyoming Department of Environmental Quality (WDEQ) groundwater standards. Physical characteristics and constituents that exceeded WDEQ Class I domestic groundwater standards in some samples were measurements of pH and concentrations of chloride, sulfate, dissolved solids, iron, manganese, boron, selenium, nitrite, and nitrate. Measurements of pH and concentrations of chloride, sulfate, dissolved solids, aluminum, iron

  3. Water quality in Atlantic rainforest mountain rivers (South America): quality indices assessment, nutrients distribution, and consumption effect.

    Science.gov (United States)

    Avigliano, Esteban; Schenone, Nahuel

    2016-08-01

    The South American Atlantic rainforest is a one-of-a-kind ecosystem considered as a biodiversity hotspot; however, in the last decades, it was intensively reduced to 7 % of its original surface. Water resources and water quality are one of the main goods and services this system provides to people. For monitoring and management recommendations, the present study is focused on (1) determining the nutrient content (nitrate, nitrite, ammonium, and phosphate) and physiochemical parameters (temperature, pH, electrical conductivity, turbidity, dissolved oxygen, and total dissolved solids) in surface water from 24 rainforest mountain rivers in Argentina, (2) analyzing the human health risk, (3) assessing the environmental distribution of the determined pollutants, and (4) analyzing water quality indices (WQIobj and WQImin). In addition, for total coliform bacteria, a dataset was used from literature. Turbidity, total dissolved solids, and nitrite (NO2 (-)) exceeded the guideline value recommended by national or international guidelines in several sampling stations. The spatial distribution pattern was analyzed by Principal Component Analysis and Factor Analysis (PCA/FA) showing well-defined groups of rivers. Both WQI showed good adjustment (R (2) = 0.89) and rated water quality as good or excellent in all sampling sites (WQI > 71). Therefore, this study suggests the use of the WQImin for monitoring water quality in the region and also the water treatment of coliform, total dissolved solids, and turbidity.

  4. Water quality index for assessment of water quality of river ravi at ...

    African Journals Online (AJOL)

    Water quality of River Ravi, a tributary of Indus River System was evaluated by Water Quality Index (WQI) technique. A water quality index provides a single number that expresses overall water quality at a certain location and time based on several water quality parameters. The objective of an index is to turn complex water ...

  5. Evaluation of the Eureka Manta2 Water-Quality Multiprobe Sonde

    Science.gov (United States)

    Tillman, Evan F.

    2017-11-08

    Two Eureka Manta2 3.5 water-quality multiprobe sondes by Eureka Water Probes were tested at the U.S. Geological Survey (USGS) Hydrologic Instrumentation Facility (HIF) against known standards over the sonde operating temperatures to verify the manufacturer’s stated accuracy specifications for pH, specific conductance (SC) at 25 degrees Celsius (°C), dissolved oxygen (DO), and turbidity. The Manta2 sondes were evaluated for compliance with the USGS National Field Manual for the Collection of Water-Quality Data (NFM) criteria for continuous water-quality monitors, and for compliance with the manufacturer’s technical specifications. The Manta2 was also evaluated for its compliance to Serial Digital Interface at 1200 baud (SDI-12) version 1.3.The Manta2 met the NFM recommendations and manufacturer’s accuracy specifications for DO and turbidity at all values tested. The Manta2 pH sensors met the NFM recommendations and manufacturer’s accuracy specification for nominal pH values of 10 and lower. One of the two sensors was out of compliance by 1.2 units for pH 11.16 at 15 °C and by 0.25 unit for pH 10.78 at 40 °C. The Manta2 sensors were within the NFM recommendations for SC, except at 100 microsiemens (μS/cm) at 40 °C, where the SC sensor exceeded the test standard value by as much as 25 percent. One of two sensors was within manufacturer’s accuracy specifications at 25 °C for all the tested SC values, while the other SC sensor was outside the manufacturer’s accuracy specifications at 100 μS/cm, exceeding the test standard value by 9 percent. One of two sensors was outside the manufacturer’s accuracy specifications at 10,000 μS/cm at 15°C, exceeding the test standard value by 3 percent. One Manta2 passed SDI-12 compliance testing with a NR Systems SDI-12 Verifier. One Manta2 was field tested for 6 weeks at USGS station 02492620, National Space Technology Laboratories (NSTL) Station, Mississippi, on the Pearl River and showed overall good agreement

  6. Water quality and aquatic communities of upland wetlands, Cumberland Island National Seashore, Georgia, April 1999 to July 2000

    Science.gov (United States)

    Frick, Elizabeth A.; Gregory, M. Brian; Calhoun, Daniel L.; Hopkins, Evelyn H.

    2002-01-01

    alkalinity). Fecal-coliform bacteria concentrations were measured, but not detected, in samples collected from two domestic water-supply wells. During the 12-month period from April 1999 to March 2000 when water-quality and aquatic-community samples were collected, rainfall was 12.93 inches below the 30-year average rainfall. Constituent concentrations were highly variable among the different wetlands during the study period. Rainfall and tidal surges associated with tropical storms and hurricanes substantially influenced water quantity and quality, particularly in wetland areas directly influenced by tidal surges. Although surface waters on Cumberland Island are not used as sources of drinking water, exceedances of U.S. Environmental Protection Agency primary and secondary standards for drinking water were noted for comparative purposes. A nitrate concentration of 12 milligrams per liter in one sample from Whitney outflow was the only exceedance of a maximum contaminant level. Secondary standards were exceeded in 26 surface-water samples for the following constituents: pH (10 exceedances), chloride (8), sulfate (5), total dissolved solids (4), iron (2), fluoride (1), and manganese (1). The total-dissolved-solids concentrations and the relative abundance of major ions in surface-water samples collected from wetlands on Cumberland Island provide some insight into potential sources of water and influences on water quality. Major-ion chemistries of water samples from Whitney Lake, Willow Pond, and South End Pond 3 were sodium-chloride dominated, indicating direct influence from rainwater, salt aerosol, or inundation of marine waters. The remaining wetlands sampled had low total-dissolved-solids concentrations and mixed major-ion chemistries--North Cut Pond 2A was magnesium-sodium-chloride-sulfate dominated and Lake Retta and the two beach outflows were sodium-calcium-bicarbonate-chloride dominated. The higher percent calcium and bicarbonate in some wetlands sugg

  7. Microbiological Water Quality in Relation to Water-Contact Recreation, Cuyahoga River, Cuyahoga Valley National Park, Ohio, 2000 and 2002

    Science.gov (United States)

    Bushon, Rebecca N.; Koltun, G.F.

    2004-01-01

    The microbiological water quality of a 23-mile segment of the Cuyahoga River within the Cuyahoga Valley National Park was examined in this study. This segment of the river receives discharges of contaminated water from stormwater, combined-sewer overflows, and incompletely disinfected wastewater. Frequent exceedances of Ohio microbiological water-quality standards result in a health risk to the public who use the river for water-contact recreation. Water samples were collected during the recreational season of May through October at four sites on the Cuyahoga River in 2000, at three sites on the river in 2002, and from the effluent of the Akron Water Pollution Control Station (WPCS) both years. The samples were collected over a similar range in streamflow in 2000 and 2002. Samples were analyzed for physical and chemical constituents, as well as the following microbiological indicators and pathogenic organisms: Escherichia coli (E. coli), Salmonella, F-specific and somatic coliphage, enterovirus, infectious enterovirus, hepatitis A virus, Clostridium perfringens (C. perfringens), Cryptosporidium, and Giardia. The relations of the microorganisms to each other and to selected water-quality measures were examined. All microorganisms analyzed for, except Cryptosporidium, were detected at least once at each sampling site. Concentrations of E. coli exceeded the Ohio primary-contact recreational standard (298 colonies per 100 milliliters) in approximately 87 percent of the river samples and generally were higher in the river samples than in the effluent samples. C. perfringens concentrations were positively and significantly correlated with E. coli concentrations in the river samples and generally were higher in the effluent samples than in the river samples. Several of the river samples that met the Ohio E. coli secondary-contact recreational standard (576 colonies per 100 milliliters) had detections of enterovirus, infectious enterovirus, hepatitis A virus, and

  8. Primer on Water Quality

    Science.gov (United States)

    ... water quality. What do we mean by "water quality"? Water quality can be thought of as a measure ... is suitable for a particular use. How is water quality measured? Some aspects of water quality can be ...

  9. Climate Change Impact Assessment for Sustainable Water Quality Management

    Directory of Open Access Journals (Sweden)

    Ching-Pin Tung

    2012-01-01

    Full Text Available The goal of sustainable water quality management is to keep total pollutant discharges from exceeding the assimilation capacity of a water body. Climate change may influence streamflows, and further alter assimilation capacity and degrade river sustainability. The purposes of this study are to evaluate the effect of climate change on sustainable water quality management and design an early warning indicator to issue warnings on river sustainability. A systematic assessment procedure is proposed here, including a weather generation model, the streamflow component of GWLF, QUAL2E, and an optimization model. The Touchen creek in Taiwan is selected as the study area. Future climate scenarios derived from projections of four global climate models (GCMs and two pollutant discharge scenarios, as usual and proportional to population, are considered in this study. The results indicate that streamflows may very likely increase in humid seasons and decrease in arid seasons, respectively. The reduction of streamflow in arid seasons may further degrade water quality and assimilation capacity. In order to provide warnings to trigger necessary adaptation strategies, an early warning indicator is designed and its 30-year moving average is calculated. Finally, environmental monitoring systems and methods to prioritize adaptation strategies are discussed for further studies in the future.

  10. Water quality of streams in the Red River of the North Basin, Minnesota, North Dakota, and South Dakota, 1970-2001

    Science.gov (United States)

    Tornes, Lan H.

    2005-01-01

    Data for the Red River of the North (Red River) Basin in Minnesota, North Dakota, and South Dakota were analyzed to determine whether the water quality of streams in the basin is adequate to meet future needs. For the Red River at Emerson, Manitoba, site, pH values, water temperatures, and dissolved-oxygen concentrations generally were within the criteria established for the protection of aquatic life. Dissolved-solids concentrations ranged from 245 to 1,100 milligrams per liter. Maximum sulfate and chloride concentrations were near, but did not exceed, the established secondary maximum contaminant level. The trace elements considered potentially harmful generally were at concentrations that were less than the established guidelines, standards, and criteria. The concentrations of lead that were detected may have occurred as a result of sample contamination.  For the Red River upstream from Emerson, Manitoba, sites, pH and other field values rarely exceeded the criteria established for the protection of aquatic life. Many constituent concentrations for the Red River below Fargo, N. site exceeded water-quality guidelines, standards, and criteria. However, the trace-element exceedances could be natural or could be related to pollution or sample contamination. Many of the tributaries in the western part of the Red River Basin had median specific-conductance values that were greater than 1,000 microsiemens per centimeter. Sulfate concentrations occasionally exceeded the established drinking-water standard. Median arsenic concentrations were 6 micrograms per liter or less, and maximum concentrations rarely exceeded the 10-microgram-per-liter drinking-water standard that is scheduled to take effect in 2006. The small concentrations of lead, mercury, and selenium that occasionally were detected may have been a result of sample contamination or other factors. The tributaries in the eastern part of the Red River Basin had median specific-conductance values that were less

  11. Application of statistical classification methods for predicting the acceptability of well-water quality

    Science.gov (United States)

    Cameron, Enrico; Pilla, Giorgio; Stella, Fabio A.

    2018-01-01

    The application of statistical classification methods is investigated—in comparison also to spatial interpolation methods—for predicting the acceptability of well-water quality in a situation where an effective quantitative model of the hydrogeological system under consideration cannot be developed. In the example area in northern Italy, in particular, the aquifer is locally affected by saline water and the concentration of chloride is the main indicator of both saltwater occurrence and groundwater quality. The goal is to predict if the chloride concentration in a water well will exceed the allowable concentration so that the water is unfit for the intended use. A statistical classification algorithm achieved the best predictive performances and the results of the study show that statistical classification methods provide further tools for dealing with groundwater quality problems concerning hydrogeological systems that are too difficult to describe analytically or to simulate effectively.

  12. Field screening of water quality, bottom sediment, and biota associated with irrigation drainage in and near Walker River Indian Reservation, Nevada 1994-95

    Science.gov (United States)

    Thodal, Carl E.; Tuttle, Peter L.

    1996-01-01

    A study was begun in 1994 to determine whether the quality of irrigation drainage from the Walker River Indian Reservation, Nevada, has caused or has potential to cause harmful effects on human health or on fish and wildlife, or may adversely affect the suitability of the Walker River for other beneficial uses. Samples of water, bottom sediment, and biota were collected during June-August 1994 (during a drought year) from sites upstream from and on the Walker River Indian Reservation for analyses of trace elements. Other analyses included physical characteristics, major dissolved constituents, selected species of water-soluble nitrogen and phosphorus, and selected pesticides in bottom sediment. Water samples were collected again from four sites on the Reservation in August 1995 (during a wetterthan- average year) to provide data for comparing extreme climatic conditions. Water samples collected from the Walker River Indian Reservation in 1994 equaled or exceeded the Nevada water-quality standard or level of concern for at least one of the following: water temperature, pH, dissolved solids, unionized ammonia, phosphate, arsenic, boron, chromium, lead, and molybdenum; in 1995, only a single sample from one site exceeded a Nevada water-quality standard for molybdenum. Levels of concern for trace elements in bottom sediment collected in 1994 were equaled or exceeded for arsenic, iron, manganese, and zinc. Concentrations of organochiorine pesticide residues in bottom sediment were below analytical reporting limits. Levels of concern for trace-elements in samples of biota were equaled or exceeded for arsenic, boron, copper, and mercury. Results of toxicity testing indicate that only water samples from Walker Lake caused a toxic response in test bacteria. Arsenic and boron concentrations in water, bottom sediment, and biological tissue exceeded levels of concern throughout the Walker River Basin, but most commonly in the lower Walker River Basin. Mercury also was elevated

  13. Characterization of the quality of water, bed sediment, and fish in Mittry Lake, Arizona, 2014–15

    Science.gov (United States)

    Hermosillo, Edyth; Coes, Alissa L.

    2017-03-01

    Water, bed-sediment, and fish sampling was conducted in Mittry Lake, Arizona, in 2014–15 to establish current water-quality conditions of the lake. The parameters of temperature, dissolved-oxygen concentration, specific conductance, and alkalinity were measured in the field. Water samples were collected and analyzed for dissolved major ions, dissolved trace elements, dissolved nutrients, dissolved organic carbon, dissolved pesticides, bacteria, and suspended-sediment concentrations. Bed-sediment and fish samples were analyzed for trace elements, halogenated compounds, total mercury, and methylmercury.U.S. Environmental Protection Agency secondary maximum contaminant levels in drinking water were exceeded for sulfate, chloride, and manganese in the water samples. Trace-element concentrations were relatively similar between the inlet, middle, and outlet locations. Concentrations for nutrients in all water samples were below the Arizona Department of Environmental Quality’s water-quality standards for aquatic and wildlife uses, and all bacteria levels were below the Arizona Department of Environmental Quality’s recommended recreational water-quality criteria. Three out of 81 pesticides were detected in the water samples.Trace-element concentrations in bed sediment were relatively consistent between the inlet, middle, and outlet locations. Lead, manganese, nickel, and zinc concentrations, however, decreased from the inlet to outlet locations. Concentrations for lead, nickel, and zinc in some bed-sediment samples exceeded consensus-based sediment-quality guidelines probable effect concentrations. Eleven out of 61 halogenated compounds were detected in bed sediment at the inlet location, whereas three were detected at the middle location, and five were detected at the outlet location. No methylmercury was detected in bed sediment. Total mercury was detected in bed sediment at concentrations below the consensus-based sediment-quality guidelines probable effect

  14. Water quality and water rights in Colorado

    International Nuclear Information System (INIS)

    MacDonnell, L.J.

    1989-07-01

    The report begins with a review of early Colorado water quality law. The present state statutory system of water quality protection is summarized. Special attention is given to those provisions of Colorado's water quality law aimed at protecting water rights. The report then addresses several specific issues which involve the relationship between water quality and water use. Finally, recommendations are made for improving Colorado's approach to integrating quality and quantity concerns

  15. Water-quality assessment of the Cypress Creek watershed, Warrick County, Indiana

    Science.gov (United States)

    Bobo, Linda L.; Peters, Charles A.

    1980-01-01

    The U.S. Soil Conservation Service needs chemical, biological, microbiological, and hydrological data to prepare an environmental evaluation of the water quality in the Cypress Creek watershed, Warrick County, Ind., before plans can be devised to (1) improve water quality, (2) minimize flooding, (3) reduce sedimentation, and (4) provide adequate outlets for drainage in the watershed. The U.S. Geological Survey obtained these data for the Soil Conservation Service in a water-quality survey of the watershed from March to August 1979. Past and present surface coal mining is the factor having the greatest impact on water quality in the watershed. The upper reaches of Cypress Creek receive acid-mine drainage from a coal-mine waste slurry during periods of intense rainfall. All the remaining tributaries, except Summer Pecka ditch, drain mined or reclaimed lands. The general water type of Cypress Creek and most of its tributaries is calcium and magnesium sulfate. In contrast, the water type at background site 21 on Summer Pecka ditch is calcium sulfate. Specific conductance ranged from 470 to 4,730 micromhos per centimeter at 25 degrees Celsius, and pH ranged from 1.2 to 8.8. Specific conductance, hardness, and concentrations of major ions and dissolved solids were highest in tributaries affected by mining. The pH was lowest in the same tributaries. Concentrations of iron, manganese, and sulfate in water samples and chlordane, DDT, and PCB 's in streambed samples exceeded water-quality limits set by the U.S. Environmental Protection Agency. (USGS)

  16. Evaluation of drinking water quality indices (case study: Bushehr province, Iran

    Directory of Open Access Journals (Sweden)

    Nematollah Jafarzadeh

    2017-05-01

    Full Text Available Background: Internal corrosion and the formation of scale in water distribution pipes are the most important problems for an urban water distribution system. Physical, chemical, or biological factors can lead to these two processes. Internal corrosion and scale formation can impact health, economy, and aesthetics. This study assessed the physicochemical quality parameters and evaluated the potential for corrosion and scale formation in drinking water at the distribution systems of 5 selected cities in Bushehr province (Kangan, Dashtestan, Dashti, Bushehr, and Ganaveh from 2009-2012. Methods: This study was carried out based on laboratory data collected from monthly samplings of tap water in the Water and Wastewater Company of Bushehr province during the years 2009-2012. Internal corrosion and scale formation rates were calculated using the Ryznar, Langelier, Aggressive, and Puckorius indices. Results: The results of the Ryznar, Puckorius, Aggressive and Langelier indices indicated that the drinking water in the 5 selected cities of Bushehr province was corrosive. Moreover, the majority of parameters used to determine water quality exceeded Iran’s national standards. Conclusion: It is concluded that there is problem of water corrosion and scaling in drinking water of distribution systems in selected cities.

  17. Hydrogeology and chemical quality of water and soil at Carroll Island, Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Tenbus, F.J.; Phillips, S.W.

    1996-01-01

    Carroll Island was used for open-air testing of chemical warfare agents from the late 1940's until 1971. Testing and disposal activities weresuspected of causing environmental contamination at 16 sites on the island. The hydrogeology and chemical quality of ground water, surface water, and soil at these sites were investigated with borehole logs, environmental samples, water-level measurements, and hydrologic tests. A surficial aquifer, upper confining unit, and upper confined aquifer were defined. Ground water in the surficial aquifer generally flows from the east-central part of the island toward the surface-water bodies, butgradient reversals caused by evapotranspiration can occur during dry seasons. In the confined aquifer, hydraulic gradients are low, and hydraulic head is affected by tidal loading and by seasonal pumpage from the west. Inorganic chemistry in the aquifers is affected by brackish-water intrusion from gradient reversals and by dissolution ofcarboniferous shell material in the confining unit.The concentrations of most inorganic constituents probably resulted from natural processes, but some concentrations exceeded Federal water-quality regulations and criteria. Organic compounds were detected in water and soil samples at maximum concentrations of 138 micrograms per liter (thiodiglycol in surface water) and 12 micrograms per gram (octadecanoic acid in soil).Concentrations of organic compounds in ground water exceeded Federal drinking-water regulations at two sites. The organic compounds that weredetected in environmental samples were variously attributed to natural processes, laboratory or field- sampling contamination, fallout from industrial air pollution, and historical military activities.

  18. Real-time water quality monitoring at a Great Lakes National Park

    Science.gov (United States)

    Byappanahalli, Muruleedhara; Nevers, Meredith; Shively, Dawn; Spoljaric, Ashley; Otto, Christopher

    2018-01-01

    Quantitative polymerase chain reaction (qPCR) was used by the USEPA to establish new recreational water quality criteria in 2012 using the indicator bacteria enterococci. The application of this method has been limited, but resource managers are interested in more timely monitoring results. In this study, we evaluated the efficacy of qPCR as a rapid, alternative method to the time-consuming membrane filtration (MF) method for monitoring water at select beaches and rivers of Sleeping Bear Dunes National Lakeshore in Empire, MI. Water samples were collected from four locations (Esch Road Beach, Otter Creek, Platte Point Bay, and Platte River outlet) in 2014 and analyzed for culture-based (MF) and non-culture-based (i.e., qPCR) endpoints using Escherichia coli and enterococci bacteria. The MF and qPCR enterococci results were significantly, positively correlated overall (r = 0.686, p Water quality standard exceedances based on enterococci levels by qPCR were lower than by MF method: 3 and 16, respectively. Based on our findings, we conclude that qPCR may be a viable alternative to the culture-based method for monitoring water quality on public lands. Rapid, same-day results are achievable by the qPCR method, which greatly improves protection of the public from water-related illnesses.

  19. Water quality in the central Columbia Plateau, Washington and Idaho, 1992-95

    Science.gov (United States)

    Williamson, Alex K.; Munn, Mark D.; Ryker, Sarah J.; Wagner, Richard J.; Ebbert, James C.; Vanderpool, Ann M.

    1998-01-01

    Water quality in the Central Columbia Plateau of eastern Washington and western Idaho has been adversely affected by agriculture, especially in irrigated areas, according to the results of a five-year investigation by the U. S. Geological Survey (USGS). Some improvements, however, are noticeable, such as less sediment being washed into streams. These improvements may be the result of increased use of best management practices (BMPs) by area farmers. Areas with intensive fertilizer use and irrigation, such as in the Columbia Basin Irrigation Project (CBIP), showed the greatest impacts on ground-water quality. (The CBIP includes parts of Franklin, Grant, and Adams counties in eastern Washington.) by the U.S. Environmental Protection Agency.) 'The story on pesticides is a mixed bag,' Williamson said. 'We found at least one pesticide in nearly half of the drinking water wells sampled, but pesticide levels were only a very small fraction of their MCLs.' As a cautionary note, however, Williamson said that about half of the pesticides detected in Central Columbia Plateau wells do not have MCLs established. A lack of information makes it difficult to assess the significance of finding pesticides in drinking water. 'As scientists, we don't know enough yet about what happens when these pesticides are combined,' he said. 'In some of the very shallow wells that the USGS installed for monitoring purposes, we found up to seven different pesticides.' Encouraging news is that none of the newer pesticides, which break down more rapidly in the environment, were found at concentrations exceeding MCLs. Compounds that exceed drinking water standards were found in only 1 percent of the wells sampled-and those compounds have not been sold as pesticides since the mid-1980s. However, agricultural impacts on water quality go beyond the concerns for drinking water-the aquatic ecosystem of the plateau also has been significantly affected. 'Very little surface water is used for drinking water

  20. [Monitoring and analysis on evolution process of rainfall runoff water quality in urban area].

    Science.gov (United States)

    Dong, Wen; Li, Huai-En; Li, Jia-Ke

    2013-02-01

    In order to find the water quality evolution law and pollution characteristics of the rainfall runoff from undisturbed to the neighborhood exit, 6 times evolution process of rainfall runoff water quality were monitored and analyzed from July to October in 2011, and contrasted the clarification efficiency of the grassland to the roof runoff rudimentarily at the same time. The research showed: 1. the results of the comparison from "undisturbed, rainfall-roof, rainfall runoff-road, rainfall-runoff the neighborhood exit runoff " showed that the water quality of the undisturbed rain was better than that from the roof and the neighborhood exist, but the road rainfall runoff water quality was the worst; 2. the average concentrations of the parameters such as COD, ammonia nitrogen and total nitrogen all exceeded the Fifth Class of the Surface Water Quality Standard except for the soluble total phosphorus from undisturbed rainfall to the neighborhood exit; 3. the runoff water quality of the short early fine days was better than that of long early fine days, and the last runoff water quality was better than that of the initial runoff in the same rainfall process; 4. the concentration reduction of the grassland was notable, and the reduction rate of the grassland which is 1.0 meter wide of the roof runoff pollutants such as COD and nitrogen reached 30%.

  1. Water quality evaluation of Al-Gharraf river by two water quality indices

    Science.gov (United States)

    Ewaid, Salam Hussein

    2017-11-01

    Water quality of Al-Gharraf river, the largest branch of Tigris River south of Iraq, was evaluated by the National Sanitation Foundation Water Quality Index (NFS WQI) and the Heavy Metal Pollution Index (HPI) depending on 13 physical, chemical, and biological parameters of water quality measured monthly at ten stations on the river during 2015. The NSF-WQI range obtained for the sampling sites was 61-70 indicating a medium water quality. The HPI value was 98.6 slightly below the critical value for drinking water of 100, and the water quality in the upstream stations is better than downstream due to decrease in water and the accumulation of contaminants along the river. This study explains the significance of applying the water quality indices that show the aggregate impact of ecological factors in charge of water pollution of surface water and which permits translation of the monitoring data to assist the decision makers.

  2. Water quality and quantity and simulated surface-water and groundwater flow in the Laurel Hill Creek Basin, southwestern Pennsylvania, 1991–2007

    Science.gov (United States)

    Galeone, Daniel G.; Risser, Dennis W.; Eicholtz, Lee W.; Hoffman, Scott A.

    2017-07-10

    Laurel Hill Creek is considered one of the most pristine waterways in southwestern Pennsylvania and has high recreational value as a high-quality cold-water fishery; however, the upper parts of the basin have documented water-quality impairments. Groundwater and surface water are withdrawn for public water supply and the basin has been identified as a Critical Water Planning Area (CWPA) under the State Water Plan. The U.S. Geological Survey, in cooperation with the Somerset County Conservation District, collected data and developed modeling tools to support the assessment of water-quality and water-quantity issues for a basin designated as a CWPA. Streams, springs, and groundwater wells were sampled for water quality in 2007. Streamflows were measured concurrent with water-quality sampling at main-stem sites on Laurel Hill Creek and tributaries in 2007. Stream temperatures were monitored continuously at five main-stem sites from 2007 to 2010. Water usage in the basin was summarized for 2003 and 2009 and a Water-Analysis Screening Tool (WAST) developed for the Pennsylvania State Water Plan was implemented to determine whether the water use in the basin exceeded the “safe yield” or “the amount of water that can be withdrawn from a water resource over a period of time without impairing the long-term utility of a water resource.” A groundwater and surface-water flow (GSFLOW) model was developed for Laurel Hill Creek and calibrated to the measured daily streamflow from 1991 to 2007 for the streamflow-gaging station near the outlet of the basin at Ursina, Pa. The CWPA designation requires an assessment of current and future water use. The calibrated GSFLOW model can be used to assess the hydrologic effects of future changes in water use and land use in the basin.Analyses of samples collected for surface-water quality during base-flow conditions indicate that the highest nutrient concentrations in the main stem of Laurel Hill Creek were at sites in the

  3. Quality of surface water and ground water in the proposed artificial-recharge project area, Rillito Creek basin, Tucson, Arizona, 1994

    Science.gov (United States)

    Tadayon, Saeid

    1995-01-01

    Controlled artificial recharge of surface runoff is being considered as a water-management technique to address the problem of ground-water overdraft. The planned use of recharge facilities in urban areas has caused concern about the quality of urban runoff to be recharged and the potential for ground-water contamination. The proposed recharge facility in Rillito Creek will utilize runoff entering a 1-mile reach of the Rillito Creek between Craycroft Road and Swan Road for infiltration and recharge purposes within the channel and excavated overbank areas. Physical and chemical data were collected from two surface-water and two ground-water sites in the study area in 1994. Analyses of surface-water samples were done to determine the occurrence and concentration of potential contaminants and to determine changes in quality since samples were collected during 1987-93. Analyses of ground-water samples were done to determine the variability of ground-water quality at the monitoring wells throughout the year and to determine changes in quality since samples were collected in 1989 and 1993. Surface-water samples were collected from Tanque Verde Creek at Sabino Canyon Road (streamflow-gaging station Tanque Verde Creek at Tucson, 09484500) and from Alamo Wash at Fort Lowell Road in September and May 1994, respectively. Ground-water samples were collected from monitoring wells (D- 13-14)26cbb2 and (D-13-14)26dcb2 in January, May, July, and October 1994. In surface water, calcium was the dominant cation, and bicarbonate was the dominant anion. In ground water, calcium and sodium were the dominant cations and bicarbonate was the dominant anion. Surface water in the area is soft, and ground water is moderately hard to hard. In surface water and ground water, nitrogen was found predominantly as nitrate. Concentrations of manganese in ground-water samples ranged from 60 to 230 micrograms per liter and exceeded the U.S. Environmental Protection Agency secondary maximum contaminant

  4. Modeling of the quality of water of River Tula, state of Hidalgo, Mexico

    International Nuclear Information System (INIS)

    Montelongo Casanova, Rosalba; Gordillo Martinez, Alberto Jose; Otazo Sanchez, Elena Maria; Villagomez Ibarra, Jose Roberto; Acevedo Sandoval, Otilio Arturo; Prieto Garcia, Francisco

    2008-01-01

    The central objective of this work is to model the quality of the water of Tula River, from the central emitter to their confluence with the Endho Dam. It was evaluated during two years, considering a length of 50 km in 4 zones and 35 sites of sampling. The central emitter contributes to the greater amount of organic matter, water without treatment of the city of Mexico and co urbane zone. The values of DBO varied from 1.16 up to 486.81 mg O 2 /L; the oxygen dissolved between 1.52 and 5.82 mg/L. This implies affectation for the development of the aquatic life. The alkalinity exceeded the ecological criteria of quality as a source of potable water with value of 458.01 mg. the fats displayed variations from 0.9 mg/l up to 18.1 mg/l and ammoniacal nitrogen outside the limits established for protection of the aquatic life with values from 0.09 a 64 mg/L; nitrates (6.24 mg/L) and nitrites (0.5-1.304 mg/L) exceed the ecological criteria. The metals cadmium, lead, iron, manganese and zinc are in concentrations over the permissible rank and in some sections mercury presence was reported. The fecal coliforms were detected in values from 2.1x10 4 up to 2.40x10 1 1 NMP/100 milliliters. In general, the toxicity in the residual water unloading demonstrated that all appears of moderate to high. Only there were three monitored stations (19%) with excellent quality, 3 smaller or equal DBOs to mg/L, which is considered like water no contaminated by biodegradable organic matter

  5. Effects of water quality parameters on boron toxicity to Ceriodaphnia dubia.

    Science.gov (United States)

    Dethloff, Gail M; Stubblefield, William A; Schlekat, Christian E

    2009-07-01

    The potential modifying effects of certain water quality parameters (e.g., hardness, alkalinity, pH) on the acute toxicity of boron were tested using a freshwater cladoceran, Ceriodaphnia dubia. By comparison, boron acute toxicity was less affected by water quality characteristics than some metals (e.g., copper and silver). Increases in alkalinity over the range tested did not alter toxicity. Increases in water hardness appeared to have an effect with very hard waters (>500 mg/L as CaCO(3)). Decreased pH had a limited influence on boron acute toxicity in laboratory waters. Increasing chloride concentration did not provide a protective effect. Boron acute toxicity was unaffected by sodium concentrations. Median acute lethal concentrations (LC(50)) in natural water samples collected from three field sites were all greater than in reconstituted laboratory waters that matched natural waters in all respects except for dissolved organic carbon. Water effect ratios in these waters ranged from 1.4 to 1.8. In subsequent studies using a commercially available source of natural organic matter, acute toxicity decreased with increased dissolved organic carbon, suggesting, along with the natural water studies, that dissolved organic carbon should be considered further as a modifier of boron toxicity in natural waters where it exceeds 2 mg/L.

  6. Effect of the Apulia air quality plan on PM10 and benzo(apyrene exceedances

    Directory of Open Access Journals (Sweden)

    L. Trizio

    2016-03-01

    Full Text Available During the last years, several exceedances of PM10 and benzo(apyrene limit values exceedances were recorded in Taranto, a city in southern Italy included in so-called areas at high risk of environmental crisis because of the presence of a heavy industrial district including the largest steel factory in Europe. A study of these critical pollution events showed a close correlation with the wind coming from the industrial site to the adjacent urban area. During 2011, at monitoring sites closes to the industrial area, at least the 65% of PM10 exceedances were related to wind day conditions (characterized by at least 3 consecutive hours of wind coming from 270-360±2deg with an associated speed higher than 7 m/s. For this reason, in 2012 an integrated environmental permit and a regional air quality plan were enacted to reduce pollutant emissions from industrial plants. A study of PM10 levels registered during windy days was performed during critical episodes of pollution highlighting that the difference between windy days and no windy days’ concentrations reduces from 2012 to 2014 in industrial site. False negative events (verified ex-post by observed meteorological data not identified by the forecast model - did not show a significant influence on PM concentration: PM10 values were comparable and sometimes lower than windy days levels. It is reasonable that the new scenario with a relevant reduction emissions form Ilva plant reduced the pollutants contribution from industrial area, contributing to PM10 levels decrease, also in false negative events.

  7. Impact of temperature and storage duration on the chemical and odor quality of military packaged water in polyethylene terephthalate bottles

    International Nuclear Information System (INIS)

    Greifenstein, Michael; White, Duvel W.; Stubner, Alex; Hout, Joseph; Whelton, Andrew J.

    2013-01-01

    The impact of temperature and storage time on military packaged water (MPW) quality was examined at four temperatures (23.0 °C to 60.0 °C) for 120 days. Polyethylene terephthalate (PET) bottles were filled in California and Afghanistan with unbuffered water treated by reverse osmosis. The US military's water pH long-term potability standard was exceeded, and US Food and Drug Administration (USFDA) and US Environmental Protection Agency (USEPA) drinking water pH and odor intensity limits were also exceeded. During a 70 day exposure period, Port Hueneme MPW total organic carbon and total trihalomethane levels increased from 37.7 °C, consume bottled water within 14 days of packaging

  8. Water-quality and biological conditions in selected tributaries of the Lower Boise River, southwestern Idaho, water years 2009-12

    Science.gov (United States)

    Etheridge, Alexandra B.; MacCoy, Dorene E.; Weakland, Rhonda J.

    2014-01-01

    Water-quality conditions were studied in selected tributaries of the lower Boise River during water years 2009–12, including Fivemile and Tenmile Creeks in 2009, Indian Creek in 2010, and Mason Creek in 2011 and 2012. Biological samples, including periphyton biomass and chlorophyll-a, benthic macroinvertebrates, and fish were collected in Mason Creek in October 2011. Synoptic water-quality sampling events were timed to coincide with the beginning and middle of the irrigation season as well as the non-irrigation season, and showed that land uses and irrigation practices affect water quality in the selected tributaries. Large increases in nutrient and sediment concentrations and loads occurred over relatively short stream reaches and affected nutrient and sediment concentrations downstream of those reaches. Escherichia coli (E. coli) values increased in study reaches adjacent to pastured lands or wastewater treatment plants, but increased E. coli values at upstream locations did not necessarily affect E. coli values at downstream locations. A spatial loading analysis identified source areas for nutrients, sediment, and E. coli, and might be useful in selecting locations for water-quality improvement projects. Effluent from wastewater treatment plants increased nutrient loads in specific reaches in Fivemile and Indian Creeks. Increased suspended-sediment loads were associated with increased discharge from irrigation returns in each of the studied tributaries. Samples collected during or shortly after storms showed that surface runoff, particularly during the winter, may be an important source of nutrients in tributary watersheds with substantial agricultural land use. Concentrations of total phosphorus, suspended sediment, and E. coli exceeded regulatory water-quality targets or trigger levels at one or more monitoring sites in each tributary studied, and exceedences occurred during irrigation season more often than during non-irrigation season. As with water-quality

  9. Relationships between sand and water quality at recreational beaches.

    Science.gov (United States)

    Phillips, Matthew C; Solo-Gabriele, Helena M; Piggot, Alan M; Klaus, James S; Zhang, Yifan

    2011-12-15

    Enterococci are used to assess the risk of negative human health impacts from recreational waters. Studies have shown sustained populations of enterococci within sediments of beaches but comprehensive surveys of multiple tidal zones on beaches in a regional area and their relationship to beach management decisions are limited. We sampled three tidal zones on eight South Florida beaches in Miami-Dade and Broward counties and found that enterococci were ubiquitous within South Florida beach sands although their levels varied greatly both among the beaches and between the supratidal, intertidal and subtidal zones. The supratidal sands consistently had significantly higher (p sand) than the other two zones. Levels of enterococci within the subtidal sand correlated with the average level of enterococci in the water (CFU/100mL) for the season during which samples were collected (r(s) = 0.73). The average sand enterococci content over all the zones on each beach correlated with the average water enterococci levels of the year prior to sand samplings (r(s) = 0.64) as well as the average water enterococci levels for the month after sand samplings (r(s) = 0.54). Results indicate a connection between levels of enterococci in beach water and sands throughout South Florida's beaches and suggest that the sands are one of the predominant reservoirs of enterococci impacting beach water quality. As a result, beaches with lower levels of enterococci in the sand had fewer exceedences relative to beaches with higher levels of sand enterococci. More research should focus on evaluating beach sand quality as a means to predict and regulate marine recreational water quality. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Evaluation of ground-water quality in the Santa Maria Valley, California

    Science.gov (United States)

    Hughes, Jerry L.

    1977-01-01

    The quality and quantity of recharge to the Santa Maria Valley, Calif., ground-water basin from natural sources, point sources, and agriculture are expressed in terms of a hydrologic budget, a solute balance, and maps showing the distribution of select chemical constituents. Point sources includes a sugar-beet refinery, oil refineries, stockyards, golf courses, poultry farms, solid-waste landfills, and municipal and industrial wastewater-treatment facilities. Pumpage has exceeded recharge by about 10,000 acre-feet per year. The result is a declining potentiometric surface with an accumulation of solutes and an increase in nitrogen in ground water. Nitrogen concentrations have reached as much as 50 milligrams per liter. In comparison to the solutes from irrigation return, natural recharge, and rain, discharge of wastewater from municipal and industrial wastewater-treatment facilities contributes less than 10 percent. The quality of treated wastewater is often lower in select chemical constituents than the receiving water. (Woodard-USGS)

  11. Water-quality and bottom-material characteristics of Cross Lake, Caddo Parish, Louisiana, 1997-99

    Science.gov (United States)

    McGee, Benton D.

    2004-01-01

    Cross Lake is a shallow, monomictic lake that was formed in 1926 by the impoundment of Cross Bayou. The lake is the primary drinking-water supply for the City of Shreveport, Louisiana. In recent years, the lakeshore has become increasinginly urbanized. In addition, the land use of the watershed contributing runoff to Cross Lake has changed. Changes in land use and urbanization could affect the water chemistry and biology of the Lake. Water-quality data were collected at 10 sites on Cross Lake from February 1997 to February 1999. Water-column and bottom-material samples were collected. The water-column samples were collected at least four times per year. These samples included physical and chemical-related properties such as water temperature, dissolved oxygen, pH, and specific conductance; selected major inorganic ions; nutrients; minor elements; organic chemical constituents; and bacteria. Suspended-sediment samples were collected seven times during the sampling period. The bottom-material samples, which were collected once during the sampling period, were analyzed for selected minor elements and inorganic carbon. Aside from the nutrient-enriched condition of Cross Lake, the overall water-quality of Cross Lake is good. No primary Federal or State water-quality criteria were exceeded by any of the water-quality constituents analyzed for this report. Concentrations of major inorganic constituents, except iron and manganese, were low. Water from the lake is a sodium-bicarbonate type and is soft. Minor elements and organic compounds were present in low concentrations, many below detection limits. Nitrogen and phosphorus were the nutrients occurring in the highest concentrations. Nutrients were evenly distributed across the lake with no particular water-quality site indicating consistently higher or lower nutrient concentrations. No water samples analyzed for nitrate exceeded the U.S. Environmental Protection Agency's Maximum Contaminant Level of 10 milligrams per

  12. Water Quality Conditions Associated with Cattle Grazing and Recreation on National Forest Lands.

    Directory of Open Access Journals (Sweden)

    Leslie M Roche

    Full Text Available There is substantial concern that microbial and nutrient pollution by cattle on public lands degrades water quality, threatening human and ecological health. Given the importance of clean water on multiple-use landscapes, additional research is required to document and examine potential water quality issues across common resource use activities. During the 2011 grazing-recreation season, we conducted a cross sectional survey of water quality conditions associated with cattle grazing and/or recreation on 12 public lands grazing allotments in California. Our specific study objectives were to 1 quantify fecal indicator bacteria (FIB; fecal coliform and E. coli, total nitrogen, nitrate, ammonium, total phosphorus, and soluble-reactive phosphorus concentrations in surface waters; 2 compare results to a water quality regulatory benchmarks, b recommended maximum nutrient concentrations, and c estimates of nutrient background concentrations; and 3 examine relationships between water quality, environmental conditions, cattle grazing, and recreation. Nutrient concentrations observed throughout the grazing-recreation season were at least one order of magnitude below levels of ecological concern, and were similar to U.S. Environmental Protection Agency (USEPA estimates for background water quality conditions in the region. The relative percentage of FIB regulatory benchmark exceedances widely varied under individual regional and national water quality standards. Relative to USEPA's national E. coli FIB benchmarks-the most contemporary and relevant standards for this study-over 90% of the 743 samples collected were below recommended criteria values. FIB concentrations were significantly greater when stream flow was low or stagnant, water was turbid, and when cattle were actively observed at sampling. Recreation sites had the lowest mean FIB, total nitrogen, and soluble-reactive phosphorus concentrations, and there were no significant differences in FIB and

  13. An evaluation of water quality in private drinking water wells near natural gas extraction sites in the Barnett Shale formation.

    Science.gov (United States)

    Fontenot, Brian E; Hunt, Laura R; Hildenbrand, Zacariah L; Carlton, Doug D; Oka, Hyppolite; Walton, Jayme L; Hopkins, Dan; Osorio, Alexandra; Bjorndal, Bryan; Hu, Qinhong H; Schug, Kevin A

    2013-09-03

    Natural gas has become a leading source of alternative energy with the advent of techniques to economically extract gas reserves from deep shale formations. Here, we present an assessment of private well water quality in aquifers overlying the Barnett Shale formation of North Texas. We evaluated samples from 100 private drinking water wells using analytical chemistry techniques. Analyses revealed that arsenic, selenium, strontium and total dissolved solids (TDS) exceeded the Environmental Protection Agency's Drinking Water Maximum Contaminant Limit (MCL) in some samples from private water wells located within 3 km of active natural gas wells. Lower levels of arsenic, selenium, strontium, and barium were detected at reference sites outside the Barnett Shale region as well as sites within the Barnett Shale region located more than 3 km from active natural gas wells. Methanol and ethanol were also detected in 29% of samples. Samples exceeding MCL levels were randomly distributed within areas of active natural gas extraction, and the spatial patterns in our data suggest that elevated constituent levels could be due to a variety of factors including mobilization of natural constituents, hydrogeochemical changes from lowering of the water table, or industrial accidents such as faulty gas well casings.

  14. Water availability, water quality water governance: the future ahead

    Science.gov (United States)

    Tundisi, J. G.; Matsumura-Tundisi, T.; Ciminelli, V. S.; Barbosa, F. A.

    2015-04-01

    The major challenge for achieving a sustainable future for water resources and water security is the integration of water availability, water quality and water governance. Water is unevenly distributed on Planet Earth and these disparities are cause of several economic, ecological and social differences in the societies of many countries and regions. As a consequence of human misuse, growth of urbanization and soil degradation, water quality is deteriorating continuously. Key components for the maintenance of water quantity and water quality are the vegetation cover of watersheds, reduction of the demand and new water governance that includes integrated management, predictive evaluation of impacts, and ecosystem services. Future research needs are discussed.

  15. Ground-Water Quality and its Relation to Land Use on Oahu, Hawaii, 2000-01

    Science.gov (United States)

    Hunt, Charles D.

    2003-01-01

    Water quality in the main drinking-water source aquifers of Oahu was assessed by a one-time sampling of untreated ground water from 30 public-supply wells and 15 monitoring wells. The 384 square-mile study area, which includes urban Honolulu and large tracts of forested, agricultural, and suburban residential lands in central Oahu, accounts for 93 percent of the island's ground-water withdrawals. Organic compounds were detected in 73 percent of public-supply wells, but mostly at low concentrations below minimum reporting levels. Concentrations exceeded drinking-water standards in just a few cases: the solvent trichloroethene and the radionuclide radon-222 exceeded Federal standards in one public-supply well each, and the fumigants 1,2-dibromo-3-chloropropane (DBCP) and 1,2,3-trichloropropane (TCP) exceeded State standards in three public-supply wells each. Solvents, fumigants, trihalomethanes, and herbicides were prevalent (detected in more than 30 percent of samples) but gasoline components and insecticides were detected in few wells. Most water samples contained complex mixtures of organic compounds: multiple solvents, fumigants, or herbicides, and in some cases compounds from two or all three of these classes. Characteristic suites of chemicals were associated with particular land uses and geographic locales. Solvents were associated with central Oahu urban-military lands whereas fumigants, herbicides, and fertilizer nutrients were associated with central Oahu agricultural lands. Somewhat unexpectedly, little contamination was detected in Honolulu where urban density is highest, most likely as a consequence of sound land-use planning, favorable aquifer structure, and less intensive application of chemicals (or of less mobile chemicals) over recharge zones in comparison to agricultural areas. For the most part, organic and nutrient contamination appear to reflect decades-old releases and former land use. Most ground-water ages were decades old, with recharge

  16. Evaluation of the Hydrolab HL4 water-quality sonde and sensors

    Science.gov (United States)

    Snazelle, Teri T.

    2017-12-18

    The U.S. Geological Survey (USGS) Hydrologic Instrumentation Facility evaluated three Hydrolab HL4 multiparameter water-quality sondes by OTT Hydromet. The sondes were equipped with temperature, conductivity, pH, dissolved oxygen (DO), and turbidity sensors. The sensors were evaluated for compliance with the USGS National Field Manual for the Collection of Water-Quality Data (NFM) criteria for continuous water-quality monitors and to verify the validity of the manufacturer’s technical specifications. The conductivity sensors were evaluated for the accuracy of the specific conductance (SC) values (conductance at 25 degrees Celsius [oC]), that were calculated by using the vendor default method, Hydrolab Fresh. The HL4’s communication protocols and operating temperature range along with accuracy of the water-quality sensors were tested in a controlled laboratory setting May 1–19, 2016. To evaluate the sonde’s performance in a surface-water field application, an HL4 equipped with temperature, conductivity, pH, DO, and turbidity sensors was deployed June 20–July 22, 2016, at USGS water-monitoring site 02492620, Pearl River at National Space Technology Laboratories (NSTL) Station, Mississippi, located near Bay Saint Louis, Mississippi, and compared to the adjacent well-maintained EXO2 site sonde.The three HL4 sondes met the USGS temperature testing criteria and the manufacturer’s technical specifications for temperature based upon the median room temperature difference between the measured and standard temperatures, but two of the three sondes exceeded the allowable difference criteria at the temperature extremes of approximately 5 and 40 ºC. Two sondes met the USGS criteria for SC. One of the sondes failed the criteria for SC when evaluated in a 100,000-microsiemens-per-centimeter (μS/cm) standard at room temperature, and also failed in a 10,000-μS/cm standard at 5, 15, and 40 ºC. All three sondes met the USGS criteria for pH and DO at room temperature

  17. Impact assessment wastewater discharge on water quality DTD canal Bečej-Bogojevo

    Directory of Open Access Journals (Sweden)

    Pešić Vesna Ž.

    2015-01-01

    Full Text Available Pressure and impact analysis requires information on the main drivers and changes in conditions. In order to analyze such pressures and impacts, each river basin requires: an analysis of its characteristics, a review of the impact of human activity on the status of the surface water and an economic analysis of water use. Pressure and impact analysis plays a central role in the planning of river basin management. The quality of the stream at any point depends on several major factors: lithology of the basin, weather conditions, climate, and human impacts. Most of the polluters are located in the big cities next to canal DTD Bečej-Bogojevo canal (Odzaci,Vrbas, Srbobran, Becej. Per year, 2900000 m3 of wastewater was discharged into the Bečej-Bogojevo section of the DTD canal: 1,4 tCOD, 0,8 0tBOD, 260 kg of nitrogen, 19 kg of phosphorus and 282 kg of suspended solids. Of the total volume of wastewater, 20% comes from industry and 80% from municipal wastewater. Most of the wastewaters from the studied polluters is discharged untreated or insufficiently treated (only primary treatment. This poor quality wastewater threatens the receipients into which its is discharged. Comparison of the wastewater quality results to the Decree on emission limits and deadlines for their achievement, shows that many polluters exceed the limits for all parameters (COD, BOD, nitrogen, phosphorus, suspended solids. On the basis of the physico-chemical analysis of the water from the DTD Bečej-Bogojevo canal it can be concluded that the water quality is unsatisfactory. According to the national legislation, the water quality exceeds the values for good potential streams for most parameters at all sampling locatio dissolved oxygen, organic matter and nutrients. Thus, we can conclude that the water in the studied section of the DTD Bečej-Bogojevo canal does not meet the criteria for "good ecological potential". The most vulnerable locations are downstream of the Vrbas and

  18. Towards environmental management of water turbidity within open coastal waters of the Great Barrier Reef.

    Science.gov (United States)

    Macdonald, Rachael K; Ridd, Peter V; Whinney, James C; Larcombe, Piers; Neil, David T

    2013-09-15

    Water turbidity and suspended sediment concentration (SSC) are commonly used as part of marine monitoring and water quality plans. Current management plans utilise threshold SSC values derived from mean-annual turbidity concentrations. Little published work documents typical ranges of turbidity for reefs within open coastal waters. Here, time-series turbidity measurements from 61 sites in the Great Barrier Reef (GBR) and Moreton Bay, Australia, are presented as turbidity exceedance curves and derivatives. This contributes to the understanding of turbidity and SSC in the context of environmental management in open-coastal reef environments. Exceedance results indicate strong spatial and temporal variability in water turbidity across inter/intraregional scales. The highest turbidity across 61 sites, at 50% exceedance (T50) is 15.3 NTU and at 90% exceedance (T90) 4.1 NTU. Mean/median turbidity comparisons show strong differences between the two, consistent with a strongly skewed turbidity regime. Results may contribute towards promoting refinement of water quality management protocols. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Water Quality Criteria

    Science.gov (United States)

    EPA develops water quality criteria based on the latest scientific knowledge to protect human health and aquatic life. This information serves as guidance to states and tribes in adopting water quality standards.

  20. AN ASSESSMENT OF WATER QUALITY (NH4+, NO2-, NO3-, TP, SO4, COLIFORM BACTERIA AND HEAVY METALS OF THE MAIN WATER SUPPLIES IN THE STATE OF CAMPECHE

    Directory of Open Access Journals (Sweden)

    Jorge Arturo Benitez

    2011-04-01

    Full Text Available Water quality testing (in situ and in laboratory was conducted on 50 wells across the state of Campeche. Further to this (to aid in water quality management and policy, a GIS was implemented to i approximate Zones of Contribution (ZOC for well recharge which in turn supplies water for main cities in the state and ii perform predictive land change modeling on these ZOC’s to predict the future effect of non-point source pollution. Due to natural geohydrological conditions, values of TDS, pH, and SO4 exceeded Mexican regulations in roughly one third of the wells. Although most wells do not exceed the permissible limits of nutrients and heavy metals, some wells show worryingly high levels of NO2-, TP, and Pb, indicators of pollution from anthropogenic sources. All wells were contaminated by coliform bacteria. Poor water quality in some of the main water sources in the state is mainly due to the proliferation of open dumps and the lack of sewage infrastructure, as well as the ongoing conversion of vegetated land to agriculture into the ZOC’s. It is shown that unless remedial measures are implemented, human activities will continue to extend into these areas, placing the state’s water supply at even higher risk of contamination.Â

  1. An analysis of the chemical and microbiological quality of ground water from boreholes and shallow wells in Zimbabwe

    Science.gov (United States)

    Moyo, N. A. G.

    Groundwater from boreholes and shallow wells is a major source of drinking water in most rural areas of Zimbabwe. The quality of groundwater has been taken for granted and the status and the potential threats to groundwater quality have not been investigated on a large scale in Zimbabwe. A borehole and shallow well water quality survey was undertaken between January, 2009 and February, 2010 to determine the chemical and microbial aspects of drinking water in three catchment areas. Groundwater quality physico-chemical indicators used in this study were nitrates, chloride, water hardness, conductivity, alkalinity, total dissolved solids, iron, magnesium, manganese, potassium, calcium, fluoride, sulphates, sodium and pH. The microbiological indicators were total coliforms, faecal coliforms and heterotrophs. Principal component analysis (PCA) showed that most of the variation in ground water quality in all catchment areas is accounted for by Total Dissolved Solids (TDS), electrical conductivity (EC), sodium, bicarbonate and magnesium. The principal dissolved constituents in ground water are in the form of electrically charged ions. Nitrate is a significant problem as the World Health Organization recommended levels were exceeded in 36%, 37% and 22% of the boreholes in the Manyame, Mazowe and Gwayi catchment areas respectively. The nitrate levels were particularly high in commercial farming areas. Iron and manganese also exceeded the recommended levels. The probable source of high iron levels is the underlying geology of the area which is dominated by dolerites. Dolerites weather to give soils rich in iron and other mafic minerals. The high level of manganese is probably due to the lithology of the rock as well as mining activity in some areas. Water hardness is a problem in all catchment areas, particularly in the Gwayi catchment area where a value of 2550 mg/l was recorded in one borehole. The problems with hard water use are discussed. Chloride levels exceeded the

  2. 78 FR 20252 - Water Quality Standards; Withdrawal of Certain Federal Water Quality Criteria Applicable to...

    Science.gov (United States)

    2013-04-04

    ... Water Quality Standards; Withdrawal of Certain Federal Water Quality Criteria Applicable to California... aquatic life water quality criteria applicable to waters of New Jersey, Puerto Rico, and California's San Francisco Bay. In 1992, EPA promulgated the National Toxics Rule or NTR to establish numeric water quality...

  3. Water quality diagnosis system

    International Nuclear Information System (INIS)

    Nagase, Makoto; Asakura, Yamato; Sakagami, Masaharu

    1989-01-01

    By using a model representing a relationship between the water quality parameter and the dose rate in primary coolant circuits of a water cooled reactor, forecasting for the feature dose rate and abnormality diagnosis for the water quality are conducted. The analysis model for forecasting the reactor water activity or the dose rate receives, as the input, estimated curves for the forecast Fe, Ni, Co concentration in feedwater or reactor water pH, etc. from the water quality data in the post and forecasts the future radioactivity or dose rate in the reactor water. By comparing the result of the forecast and the setting value such as an aimed value, it can be seen whether the water quality at present or estimated to be changed is satisfactory or not. If the quality is not satisfactory, it is possible to take an early countermeasure. Accordingly, the reactor water activity and the dose rate can be kept low. Further, the basic system constitution, diagnosis algorithm, indication, etc. are identical between BWR and PWR reactors, except for only the difference in the mass balance. (K.M.)

  4. Quality control in public participation assessments of water quality: the OPAL Water Survey.

    Science.gov (United States)

    Rose, N L; Turner, S D; Goldsmith, B; Gosling, L; Davidson, T A

    2016-07-22

    Public participation in scientific data collection is a rapidly expanding field. In water quality surveys, the involvement of the public, usually as trained volunteers, generally includes the identification of aquatic invertebrates to a broad taxonomic level. However, quality assurance is often not addressed and remains a key concern for the acceptance of publicly-generated water quality data. The Open Air Laboratories (OPAL) Water Survey, launched in May 2010, aimed to encourage interest and participation in water science by developing a 'low-barrier-to-entry' water quality survey. During 2010, over 3000 participant-selected lakes and ponds were surveyed making this the largest public participation lake and pond survey undertaken to date in the UK. But the OPAL approach of using untrained volunteers and largely anonymous data submission exacerbates quality control concerns. A number of approaches were used in order to address data quality issues including: sensitivity analysis to determine differences due to operator, sampling effort and duration; direct comparisons of identification between participants and experienced scientists; the use of a self-assessment identification quiz; the use of multiple participant surveys to assess data variability at single sites over short periods of time; comparison of survey techniques with other measurement variables and with other metrics generally considered more accurate. These quality control approaches were then used to screen the OPAL Water Survey data to generate a more robust dataset. The OPAL Water Survey results provide a regional and national assessment of water quality as well as a first national picture of water clarity (as suspended solids concentrations). Less than 10 % of lakes and ponds surveyed were 'poor' quality while 26.8 % were in the highest water quality band. It is likely that there will always be a question mark over untrained volunteer generated data simply because quality assurance is uncertain

  5. Applications of continuous water quality monitoring techniques for more efficient water quality research and water resources management

    NARCIS (Netherlands)

    Rozemeijer, J.C.; Velde, Y. van der; Broers, H.P.; Geer, F. van

    2013-01-01

    Understanding and taking account of dynamics in water quality is essential for adequate water quality policy and management. In conventional regional surface water and upper groundwater quality monitoring, measurement frequencies are too low to capture the short-term dynamic behavior of solute

  6. Water Quality Assessment for Deep-water Channel area of Guangzhou Port based on the Comprehensive Water Quality Identification Index Method

    Science.gov (United States)

    Chen, Yi

    2018-03-01

    The comprehensive water quality identification index method is able to assess the general water quality situation comprehensively and represent the water quality classification; water environment functional zone achieves pollution level and standard objectively and systematically. This paper selects 3 representative zones along deep-water channel of Guangzhou port and applies comprehensive water quality identification index method to calculate sea water quality monitoring data for different selected zones from year 2006 to 2014, in order to investigate the temporal variation of water quality along deep-water channel of Guangzhou port. The comprehensive water quality level from north to south presents an increased trend, and the water quality of the three zones in 2014 is much better than in 2006. This paper puts forward environmental protection measurements and suggestions for Pearl River Estuary, provides data support and theoretical basis for studied sea area pollution prevention and control.

  7. Ground-water quality assessment of the central Oklahoma Aquifer, Oklahoma; project description

    Science.gov (United States)

    Christenson, S.C.; Parkhurst, D.L.

    1987-01-01

    , selenium, and gross-alpha activity that exceed drinking-water standards. Suspected problems include possible contamination of the aquifer by oil-field brines and drilling fluids, pesticides, industrial chemicals, septic-tank effluent, fertilizers, and leakage from sewage systems and underground tanks used for storage of hydrocarbons. There are four major components of the Central Oklahoma aquifer project. The first component is the collection and analysis of existing information, including chemical, hydrologic, and land-use data. The second component is the geohydrologic and geochemical investigations of the aquifer flow system. The third component is the sampling for a wide variety of inorganic, organic, and radioactive constituents as part a regional survey that will produce a consistent set of data among all ground-water pilot projects. These data can be used to: (1) Define regional ground-water quality within the Central Oklahoma aquifer, and (2) compare water quality in the Central Oklahoma aquifer to the water quality in the other ground-water study units of the NAWQA program. The fourth component is topical studies that will address, in more detail, some of the major water-quality issues pertaining to the aquifer.

  8. Assessment of Near-Bottom Water Quality of Southwestern Coast of Sarawak, Borneo, Malaysia: A Multivariate Statistical Approach

    Directory of Open Access Journals (Sweden)

    Chen-Lin Soo

    2017-01-01

    Full Text Available The study on Sarawak coastal water quality is scarce, not to mention the application of the multivariate statistical approach to investigate the spatial variation of water quality and to identify the pollution source in Sarawak coastal water. Hence, the present study aimed to evaluate the spatial variation of water quality along the coastline of the southwestern region of Sarawak using multivariate statistical techniques. Seventeen physicochemical parameters were measured at 11 stations along the coastline with approximately 225 km length. The coastal water quality showed spatial heterogeneity where the cluster analysis grouped the 11 stations into four different clusters. Deterioration in coastal water quality has been observed in different regions of Sarawak corresponding to land use patterns in the region. Nevertheless, nitrate-nitrogen exceeded the guideline value at all sampling stations along the coastline. The principal component analysis (PCA has determined a reduced number of five principal components that explained 89.0% of the data set variance. The first PC indicated that the nutrients were the dominant polluting factors, which is attributed to the domestic, agricultural, and aquaculture activities, followed by the suspended solids in the second PC which are related to the logging activities.

  9. Water-quality study of Tulpehocken Creek, Berks County, Pennsylvania, prior to impoundment of Blue Marsh Lake

    Science.gov (United States)

    Barker, James L.

    1977-01-01

    Blue Marsh Lake is planned as a multipurpose impoundment to be constructed on Tulpehocken Creek near Bernville, Berks County, Pennsylvania. Prior to construction, samples of water, bed material, and soil were collected throughout the impoundment site to determine concentrations of nutrients, insecticides, trace metals, suspended sediment, and bacteria. Analyses of water suggest the Tulpehocken Creek basin to be a highly fertile environment. Nitrogen and phosphorus concentrations near the proposed dam site had median values of 4.5 and 0.13 mg/L, respectively. Suspended sediment discharges average between 100 and 200 tons (90.7 to 181.4 metric tons) per day during normal flows but may exceed 10,000 tons (9,070 metric tons) per day during storm runoff. Highest yields were measured during winter and early spring. Concentrations range from 3 mg/L to more than 500 mg/L. Bed material samples contain trace quantities of aldrin, DDT, DDD, DDE, dieldrin, and chlordane. Polychlorinated biphyenyls (PCB's) ranged from 10 to 100 μg/kg. Soils at the impoundment site are of average fertility. However, the silt loam texture is ideal for attachment and growth of aquatic plants. Bacteria populations indicative of recent fecal contamination are prevalent in the major inflows to the proposed lake. Fecal Coliform exceeded the standards recommended by the Federal Water Pollution Administration Committee on Water Quality Criteria for public water supply in 29 percent of the monthly samples, and exceeded the recommended public bathing waters standard in 83 percent of the samples collected from June to September. Arsenic from an industrial waste was found in the water, suspended sediment, and bed material of Tulpehocken Creek in concentrations of 0 to 30 μg/l, 2 to 879 μg/l, and 1 to 79 μg/g, respectively. It represents a potential environmental hazard; however, the measured concentrations are less than that known to be harmful to man, fish, or wildlife, according to published water

  10. Physical, chemical and microbiological analysis of the water quality of Rawal Lake, Pakistan

    Directory of Open Access Journals (Sweden)

    Mehreen Hassan

    2014-06-01

    Full Text Available What better gift of nature would be than good quality water? In order to assess the quality of water of Rawal Lake, following research was carried out. Rawal lake is a source of drinking water supplied to many areas of Rawalpindi and Islamabad’ the capital city of Pakistan. Water of this lake is being highly polluted by the local communities alongside the lake through solid waste dumping. Samples of surface water were collected, tested and analyzed in the laboratory on the basis of physical, chemical and microbiological parameters. The results showed uncertainties in many of the selected parameters. Microbiological analysis revealed high contamination of E. coli, fecal coliform and total coliform in the samples proving it unfit for drinking. It was found that the concentration of all physical parameters such as nitrates, chloride, pH and conductivity were within the normal limits. The level of heavy metals like lead, iron, chromium etc. was also found low. Turbidity at some points exceeded the maximum acceptable limit as per WHO statement.

  11. UMTRA project technical assistance contractor quality assurance implementation plan for surface and ground water

    International Nuclear Information System (INIS)

    1994-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Technical Assistance Contractor (TAC) Quality Assurance Implementation Plan (QAIP) outlines the primary requirements for integrating quality functions for TAC technical activities applied to the surface and ground water phases of the UMTRA Project. The QAIP is subordinate to the latest issue of the UMTRA Project TAC Quality Assurance Program Plan (QAPP). The QAIP addresses technical aspects of the TAC UMTRA Project surface and ground water programs. The QAIP is authorized and approved by the TAC Project Manager and QA manager. The QA program is designed to use monitoring, audit, and surveillance functions as management tools to ensure that all Project organization activities are carried out in a manner that will protect public health and safety, promote the success of the UMTRA Project and meet or exceed contract requirements

  12. Availability and quality of water related to western energy

    International Nuclear Information System (INIS)

    Hudson, H.H.

    1981-01-01

    Much of the nation's energy resources is contained in seven states of the western United States. Arizona, New Mexico, Colorado, Utah, Wyoming, Montana, and North Dakota contain 40% of the nation's coal and 90% of its uranium and shale oil. Although rich in energy resources, these states are chronically deficient in water. Coal mining and subsequent land reclamation require relatively small amounts of water. Plans that require large quantities of water to transport and convert the coal to energy include the operation of coal-slurry pipelines, thermal-electric power generation, and coal gasification. Production of oil from shale by conventional mining techniques may require about three or four unit volumes of water for each unit volume of shale oil produced. Nearly half of this water would be needed to reestablish vegetation on waste material. In-situ extraction of oil would require substantially less water. Extracting and processing uranium require relatively small amounts of water. There may be problems of the quality of local groundwater where solution mining is practiced and where uranium ore is removed from water-saturated rocks that are then exposed to oxidation. Estimates of amounts of water required to support the development of western energy resources are highly variable and depend on the conversion technology, the level of anticipated development, and the quality of the water required by any given use or process. Conservative estimates exceed 2000 cu hm/year by the year 2000. Although water supplies in the amounts anticipated as being needed for energy development are available within the seven states, their availability locally may depend on satisfying environmental objections, modifying legal and institutional arrangements that presently control water distribution and use, and constructing additional reservoirs and distribution systems

  13. Water quality assessment of the Eastern Iowa Basins: Basic water chemistry of rivers and streams, 1996-98

    Science.gov (United States)

    Barnes, Kimberlee K.

    2001-01-01

    The U.S. Geological Survey began data-collection activities in the Eastern Iowa Basins study unit of the National Water-Quality Assessment Program in September 1995 with the purpose of determining the status and trends in water quality of water from the Wapsipinicon, Cedar, Iowa, and Skunk River basins. From March 1996 through September 1998, monthly surface-water samples were collected from 11 sites on the study's rivers and streams representing three distinct physiographic regions, the Des Moines Lobe, the Iowan Surface, the Southern Iowa Drift Plain, and one subregion, the Iowan Karst. These water samples were analyzed for basic water chemistry, including, but not limited to the following cations: sodium, potassium, magnesium, calcium, and silica; anions: chloride, fluoride, sulfate, and bicarbonate; and two metals - iron and maganese. Although none of the concentrations of the constituents exceeded health advisories or drinking-water regulations, extremely high or low concentrations could potentially affect aquatic life. Calcium, magnesium, and potassium are essential elements for both plant and animal life; manganese is an essential element in plant metabolism; and silica is important in the growth of diatom algae. Calcium had the largest median concentration of 61 milligrams per liter (mg/L) of the cations, and the largest maximum concentration of 100 mg/L. Bicarbonate had the largest median concentration of 210 mg/L of the anions, and the largest maximum concentration of 400 mg/L.

  14. What's in Your Water? An Educator's Guide to Water Quality.

    Science.gov (United States)

    Constabile, Kerry, Comp.; Craig, Heidi, Comp.; O'Laughlin, Laura, Comp.; Reiss, Anne Bei, Comp.; Spencer, Liz, Comp.

    This guide provides basic information on the Clean Water Act, watersheds, and testing for water quality, and presents four science lesson plans on water quality. Activities include: (1) "Introduction to Water Quality"; (2) "Chemical Water Quality Testing"; (3) "Biological Water Quality Testing"; and (4) "What Can We Do?" (YDS)

  15. Influences of land use on water quality of a diverse New England watershed.

    Science.gov (United States)

    Rhodes, A L; Newton, R M; Pufall, A

    2001-09-15

    Analysis of variations in major ion chemistry in the Mill River watershed reveals the importance of anthropogenic activities in controlling streamwater chemistry. Average concentrations of NO3- and SO4(2-) show a positive correlation with percent catchment area altered by human land uses, and concentrations of Cl- increase with road density. Water removal from municipal reservoirs increases the downstream concentration of NO3- and SO4(2-) over that predicted by land use changes, showing that removal of high quality upstream water concentrates pollutants downstream. In salt-impacted streams, Cl- exceeds Na- by 10-15% due to cation exchange reactions that bind Na+ to soil. The net effect of nonpoint source pollution is to elevate ANC in the most developed areas, which impacts the natural acidity of a large swamp. The sum of base cations (C(B)) exceeds ANC for all samples. Plotting C(B) against ANC and subtracting Cl- quantifies the impact of road salt from the impact of the addition of strong acids.

  16. Assessment of water quality

    International Nuclear Information System (INIS)

    Qureshi, I.H.

    2002-01-01

    Water is the most essential component of all living things and it supports the life process. Without water, it would not have been possible to sustain life on this planet. The total quantity of water on earth is estimated to be 1.4 trillion cubic meter. Of this, less than 1 % water, present in rivers and ground resources is available to meet our requirement. These resources are being contaminated with toxic substances due to ever increasing environmental pollution. To reduce this contamination, many countries have established standards for the discharge of municipal and industrial waste into water streams. We use water for various purposes and for each purpose we require water of appropriate quality. The quality of water is assessed by evaluating the physical chemical, biological and radiological characteristics of water. Water for drinking and food preparation must be free from turbidity, colour, odour and objectionable tastes, as well as from disease causing organisms and inorganic and organic substances, which may produce adverse physiological effects, Such water is referred to as potable water and is produced by treatment of raw water, involving various unit operations. The effectiveness of the treatment processes is checked by assessing the various parameters of water quality, which involves sampling and analysis of water and comparison with the National Quality Standards or WHO standards. Water which conforms to these standards is considered safe and palatable for human consumption. Periodic assessment of water is necessary, to ensure the quality of water supplied to the public. This requires proper sampling at specified locations and analysis of water, employing reliable analytical techniques. (author)

  17. Water Quality, Essential Condition Sustaining the Health, Production, Reproduction in Cattle. A Review

    Directory of Open Access Journals (Sweden)

    Cristina Iuliana El Mahdy

    2016-11-01

    Full Text Available The main component of the body: the water, alongside with many function which it has,represents a constituent in the diet of animal. There are many and various factors that influence the daily water requirements of animals: some dependent on animal: and others dependent on the environment. Water quality administered to livestock must meet the requirements for potability prerequisite to maintaining the health, externalization full productive potential and sustaining breeding. Knowing the importance of water quality consists in the negative action which can exert on the body to exceeding certain thresholds translated through: reducing water consumption simultaneously with the decrease milk production, decreased feed conversion rate and average daily gain, degradation of health status by reducing the local resistance, decrease overall body resistance, metabolic, digestive, skeletal disorders and impaired reproduction sphere translated through:decreasing fertility, abortions; elements interfering with the absorption of other essential water body, producing chronic or acute poisoning. The water composition plays essential role depending on which is supplemented or not as the case the quantity of the macro and trace minerals from feedingstuff  according to the synergism or antagonism action between  the minerals present.

  18. Characterization of groundwater quality using water evaluation indices, multivariate statistics and geostatistics in central Bangladesh

    Directory of Open Access Journals (Sweden)

    Md. Bodrud-Doza

    2016-04-01

    Full Text Available This study investigates the groundwater quality in the Faridpur district of central Bangladesh based on preselected 60 sample points. Water evaluation indices and a number of statistical approaches such as multivariate statistics and geostatistics are applied to characterize water quality, which is a major factor for controlling the groundwater quality in term of drinking purposes. The study reveal that EC, TDS, Ca2+, total As and Fe values of groundwater samples exceeded Bangladesh and international standards. Ground water quality index (GWQI exhibited that about 47% of the samples were belonging to good quality water for drinking purposes. The heavy metal pollution index (HPI, degree of contamination (Cd, heavy metal evaluation index (HEI reveal that most of the samples belong to low level of pollution. However, Cd provide better alternative than other indices. Principle component analysis (PCA suggests that groundwater quality is mainly related to geogenic (rock–water interaction and anthropogenic source (agrogenic and domestic sewage in the study area. Subsequently, the findings of cluster analysis (CA and correlation matrix (CM are also consistent with the PCA results. The spatial distributions of groundwater quality parameters are determined by geostatistical modeling. The exponential semivariagram model is validated as the best fitted models for most of the indices values. It is expected that outcomes of the study will provide insights for decision makers taking proper measures for groundwater quality management in central Bangladesh.

  19. National water summary 1986; Hydrologic events and ground-water quality

    Science.gov (United States)

    Moody, David W.; Carr, Jerry E.; Chase, Edith B.; Paulson, Richard W.

    1988-01-01

    Ground water is one of the most important natural resources of the United States and degradation of its quality could have a major effect on the welfare of the Nation. Currently (1985), ground water is the source of drinking water for 53 percent of the Nation's population and for more than 97 percent of its rural population. It is the source of about 40 percent of the Nation's public water supply, 33 percent of water for irrigation, and 17 percent of freshwater for selfsupplied industries.Ground water also is the source of about 40 percent of the average annual streamflow in the United States, although during long periods of little or no precipitation, ground-water discharges provide nearly all of the base streamflow. This hydraulic connection between aquifers and streams implies that if a persistent pollutant gets into an aquifer, it eventually could discharge into a stream.Information presented in the 1986 National Water Summary clearly shows that the United States has very large amounts of potable ground water available for use. Although naturally occurring constituents, such as nitrate, and human-induced substances, such as synthetic organic chemicals, frequently are detected in ground water, their concentrations usually do not exceed existing Federal or State standards or guidelines for maximum concentrations in drinking water.Troublesome contamination of ground water falls into two basic categories related to the source or sources of the contamination. Locally, high concentrations of a variety of toxic metals, organic chemicals, and petroleum products have been detected in ground water associated with point sources such as wastedisposal sites, storage-tank leaks, and hazardous chemical spills. These types of local problems commonly occur in densely populated urban areas and industrialized areas. Larger, multicounty areas also have been identified where contamination frequently is found in shallow wells. These areas generally are associated with broad

  20. Water Quality Assessment and Determining the Carrying Capacity of Pollution Load Batang Kuranji River

    Science.gov (United States)

    Dewata, I.; Adri, Z.

    2018-04-01

    This study aims to determine the water quality and carrying capacity of pollution load Batang Kuranji River in the headwaters, middle, and downstream. This research is descriptive quantitative parameters of pH, BOD, COD, TSS, and DOES Depictions of river water quality refer to RegulationNo.82/2001, while determination of carrying capacity of pollution load river refers to the Kep Men LHNo.10/2003.The result is Kuranji Batang River water quality upstream region included in either category who meet the quality standard first class ofPP82/2001. TSS concentrations at head waters of 21 mg/L, BOD1,6 mg/L, COD7,99mg/L and DO 7,845 mg/L. While the carrying capacity of pollution load river in upstream region included in both categories namely BOD of 4,4 kg/sec, COD 273,60 kg/sec, TSS906,00kg/sec, and DO parameters of 49.20 kg/sec. Middle region (point 2, 3, and 4) water quality Batang Kuranji River has exceeded the quality standard of 82/2001 for class II and class III. Meanwhile, carrying capacity of pollution load river in area included in ugly category. The calculation is done with application Qual2Kw show that carrying capacity of pollution load river of BOD -857.3 kg/sec, COD -777.40 kg/sec, TSS +9511.5 kg/sec, and DO +69.30 kg/sec.

  1. Impact of Leachate Discharge from Cipayung Landfill on Water Quality of Pesanggrahan River, Indonesia

    Science.gov (United States)

    Noerfitriyani, Eki; Hartono, Djoko M.; Moersidik, Setyo S.; Gusniani, Irma

    2018-03-01

    The landfill operation can cause environmental problems due to solid waste decomposition in the form of leachate. The evaluation of environmental impacts related with solid waste landfilling is needed to ensure that leachate discharge to water bodies does not exceed the standard limit to prevent contamination of the environment. This study aims to analyze the impact of leachate discharge from Cipayung Landfill on water quality of Pesanggrahan River. The data were analyzed based on leachate samples taken from influent and effluent treatment unit, and river water samples taken from upstream, stream at leachate discharge, and downstream. All samples were taken three times under rainy season condition from April to May 2017. The results show the average leachate quality temperature is 34,81 °C, TSS 72.33 mg/L, pH 7.83, BOD 3,959.63 mg/L, COD 6,860 mg/L, TN 373.33 mg/L, Hg 0.0016 mg/L. The BOD5/COD ratio 0.58 indicated that leachate characteristics was biodegradable and resemble intermediate landfill due to the mixing of young leachate and old leachate. The effluent of leachate treatment plant exceeds the leachate standard limit for BOD, COD, and TN parameters. Statistical results from independent T-test showed significant differences (p<0,05) between upstream and downstream influenced with leachate discharge for DO parameter.

  2. Microbiological and physicochemical quality of drinking water

    International Nuclear Information System (INIS)

    Chan, Chee Ling; Zalifah, M.K.; Norrakiah, A.S.

    2007-01-01

    This study was conducted on the water samples collected before and after filtration treatment was given. Five types of filtered drinking water (A1, B1, C1, D1 and E2) were chosen randomly from houses in Klang Valley for analyses. The purpose of this study was to determine the quality of filtered drinking water by looking into microbiological aspect and several physicochemical analyses such as turbidity, pH and total suspended solid (TSS). The microbiological analyses were performed to trace the presence of indicator organisms and pathogens such as Escherichia coli, Streptococcus faecalis and Pseudomonas aeruginosa. All of the water did not comply with the regulations of Food Act as consisted of more than 10 3 -10 4 cfu/ mL for total plate count. However, the total coliforms and E. coli were detected lower than 4 cfu/ mL and not exceeding the maximum limit of Food Act. While the presence of S. faecalis and P. aeruginosa were negative in all samples. The pH value was slightly acidic (pH -4 - 2.2 x 10 -3 mg/ L) and the turbidity for all the samples were recorded below 1 Nephelometric Turbidity units (NTU) thus, complying with the regulations. All the water samples that undergo the filtration system were fit to be consumed. (author)

  3. Accelerate Water Quality Improvement

    Science.gov (United States)

    EPA is committed to accelerating water quality improvement and minimizing negative impacts to aquatic life from contaminants and other stressors in the Bay Delta Estuary by working with California Water Boards to strengthen water quality improvement plans.

  4. Triangle Area Water Supply Monitoring Project, North Carolina—Summary of monitoring activities, quality assurance, and data, October 2013–September 2015

    Science.gov (United States)

    Pfeifle, C.A.; Cain, J.L.; Rasmussen, R.B.

    2017-09-27

    Surface-water supplies are important sources of drinking water for residents in the Triangle area of North Carolina, which is located within the upper Cape Fear and Neuse River Basins. Since 1988, the U.S. Geological Survey and a consortium of local governments have tracked water-quality conditions and trends in several of the area’s water-supply lakes and streams. This report summarizes data collected through this cooperative effort, known as the Triangle Area Water Supply Monitoring Project, during October 2013 through September 2014 (water year 2014) and October 2014 through September 2015 (water year 2015). Major findings for this period include:More than 5,500 individual measurements of water quality were made at a total of 15 sites—4 in the Neuse River Basin and 11 in the Cape Fear River Basin. Thirty water-quality properties or constituents were measured; State water-quality thresholds exist for 11 of these.All observations met State water-quality thresholds for temperature, hardness, chloride, fluoride, sulfate, and nitrate plus nitrite.North Carolina water-quality thresholds were exceeded one or more times for dissolved oxygen, dissolved-oxygen percent saturation, pH, turbidity, and chlorophyll a.

  5. Hydrologic, Water-Quality, and Meteorological Data for the Cambridge, Massachusetts, Drinking-Water Source Area, Water Year 2005

    Science.gov (United States)

    Smith, Kirk P.

    2007-01-01

    Records of water quantity, water quality, and meteorological parameters were continuously collected from three reservoirs, two primary streams, and four subbasin tributaries in the Cambridge, Massachusetts, drinking-water source area during water year 2005 (October 2004 through September 2005). Water samples were collected during base-flow conditions and storms in the subbasins of the Cambridge Reservoir and Stony Brook Reservoir drainage areas and analyzed for selected elements, organic constituents, suspended sediment, and Escherichia coli bacteria. These data were collected to assist watershed administrators in managing the drinking-water source area and to identify potential sources of contaminants and trends in contaminant loading to the water supply. Monthly reservoir capacities for the Cambridge Reservoir varied from about 59 to 98 percent during water year 2005, while monthly reservoir capacities for the Stony Brook Reservoir and the Fresh Pond Reservoir were maintained at capacities greater than 84 and 96 percent, respectively. Assuming a water demand of 15 million gallons per day by the city of Cambridge, the volume of water released from the Stony Brook Reservoir to the Charles River during the 2005 water year is equivalent to an annual water surplus of about 119 percent. Recorded precipitation in the source area for the 2005 water year was within 2 inches of the total annual precipitation for the previous 2 water years. The monthly mean specific conductances for the outflow of the Cambridge Reservoir were similar to historical monthly mean values. However, monthly mean specific conductances for Stony Brook near Route 20, in Waltham (U.S. Geological Survey station 01104460), which is the principal tributary feeding the Stony Brook Reservoir, were generally higher than the medians of the monthly mean specific conductances for the period of record. Similarly, monthly mean specific conductances for a small tributary to Stony Brook (U.S. Geological Survey

  6. Temporal variation of microbiological and chemical quality of noncarbonated bottled drinking water sold in Sri Lanka.

    Science.gov (United States)

    Herath, A T; Abayasekara, C L; Chandrajith, Rohana; Adikaram, N K B

    2012-03-01

    Use of bottled water in Sri Lanka has increased over the last decade, while new brands of bottled water are often introduced to the market. However, the manufacturers' adherence to bottled water regulations is questionable, raising concerns regarding the quality of bottled water. The objective of the current study was to investigate the microbiological and chemical quality of bottled water in Sri Lanka. Thirty bottled water brands were sampled and their chemical and microbiological parameters were analyzed. Microbiological analysis was carried out within 1 to 3, 3 to 6, 6 to 9, and 9 to 12 mo after the date of manufacture. The results indicated that 63% of brands tested exceeded the levels permitted by the Sri Lanka Standards Institution (SLSI) for presumptive total coliforms (TC) (ammonia. The results of this study show the need for the bottling industry to be monitored closely by relevant authorities, in order to provide safe bottled drinking water to consumers in Sri Lanka. © 2012 Institute of Food Technologists®

  7. Recycling of fresh concrete exceeding and wash water in concrete mixing plants

    Directory of Open Access Journals (Sweden)

    Férriz Papí, J. A.

    2014-03-01

    Full Text Available The exceeding concrete and washing equipment water are a matter to solve in concrete production. This paper explains several possibilities for recycling and analyses the products obtained with one recycling equipment. The objective of this work is to study the possibility to increase the percentage of recycling in new mixes. The developed study relates wash water density and fine particles content. Besides, mortar and concrete samples were tested introducing different quantities of these fine particles, substituting cement, sand or only as an addition. Consistency, compressive strength, setting time, absorption, and capillarity were tested. The results indicated an improvement of the studied properties in some percentages when substituting sand. It confirms the possibility to introduce larger quantities of wash water in new concrete mixes, with corrections in sand quantity depending on water density.Los hormigones frescos sobrantes y aguas procedentes de la limpieza de equipos son un inconveniente a resolver en las plantas de hormigón. Este artículo explica varias posibilidades de reciclado y analiza los productos obtenidos en un equipo reciclador concreto, con el objetivo de estudiar el incremento del porcentaje de reciclaje en nuevas amasadas. El estudio realizado relaciona la densidad del agua de lavado y el contenido de partículas finas. Además, ensaya muestras de mortero y hormigón realizando sustituciones de estas partículas finas por cemento, arena o simplemente como adición. Determina consistencia, resistencia a compresión, principio y fin de fraguado, absorción y capilaridad. Los resultados indicaron un incremento general de las propiedades estudiadas en algunos porcentajes de sustitución por arena. Ello confirma la posibilidad de introducir mayores cantidades de agua de lavado en nuevas amasadas de hormigón, mediante correcciones en la dosificación de arena en función de la densidad del agua.

  8. Identification of significant pressures and assessment of wastewater discharge on Krivaja River water quality

    Directory of Open Access Journals (Sweden)

    Pešić Vesna Z.

    2017-01-01

    % originates from municipal wastewater, 81% of the total amount of organic matter comes from the industry, while nutrients mostly originate from municipal wastewater. Loading of Krivaja with wastewater is major, uneven and unbalanced. Water quality of Krivaja is unsatisfactory. According to national legislation there is the exceedance of maximum permissible values for Class II for watercourse (good status for most parameters, in all sampling locations and in both sampling periods. Parameters that exceeded the value for the Class II are dissolved oxygen, organic matter content, suspended solids, nutrients. Water flow in the river is not sufficient to receive the total amount of the pollutant load from point sources. Risk assessment, based on the monitoring results, indicates that the river Krivaja is possibly at risk of failing to meet the required water quality because the most of the values exceeded the limit values. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR37004

  9. STUDY OF POND WATER QUALITY BY THE ASSESSMENT OF PHYSICOCHEMICAL PARAMETERS AND WATER QUALITY INDEX

    OpenAIRE

    Vinod Jena; Satish Dixit; Ravi ShrivastavaSapana Gupta; Sapana Gupta

    2013-01-01

    Water quality index (WQI) is a dimensionless number that combines multiple water quality factors into a single number by normalizing values to subjective rating curves. Conventionally it has been used for evaluating the quality of water for water resources suchas rivers, streams and lakes, etc. The present work is aimed at assessing the Water Quality Index (W.Q.I) ofpond water and the impact of human activities on it. Physicochemical parameters were monitored for the calculation of W.Q.I for ...

  10. Assessment of quality of water provided for wildlife in the Central Kalahari Game Reserve, Botswana

    Science.gov (United States)

    Selebatso, Moses; Maude, Glyn; Fynn, Richard W. S.

    2018-06-01

    Arid and semi-arid environments have low and unpredictable rainfall patterns resulting in limited availability of surface water for wildlife. In the Central Kalahari Game Reserve (CKGR) wildlife populations have lost access to natural surface water through cordon fences, livestock and human encroachment along the access routes. Artificial waterholes have been developed in the reserve to compensate for this loss. However, there have not been any assessments of the quality of water provided for wildlife and how that may be contributing to populations declines in the CKGR. We assessed water quality from 12 artificial waterholes against both Botswana and international livestock standards for drinking. Overall the quality of water provided is poor and poses a health risk to both animals and humans. Eight out of twelve boreholes tested exceeded the maximum acceptable Total Dissolved Solids (TDS) limits while three and four boreholes have toxic levels of lead and arsenic, respectively. Thus, pumping ground water could have more negative than positive impacts on wildlife thus defeating the intended management purpose. Failure to provide water of acceptable quality is a major concern for wildlife management in the CKGR and it may underlie some wildlife declines in the reserve. These findings confirm that restriction of populations from natural water sources create complex management challenges, especially where safe and sustainable alternative sources are scarce. Restriction of access of the population to natural water sources by fences and provision of poor quality water could compromise the overall fitness of wildlife populations and contribute to their decline.

  11. Water Quality Monitoring

    Science.gov (United States)

    2002-01-01

    With the backing of NASA, researchers at Michigan State University, the University of Minnesota, and the University of Wisconsin have begun using satellite data to measure lake water quality and clarity of the lakes in the Upper Midwest. This false color IKONOS image displays the water clarity of the lakes in Eagan, Minnesota. Scientists measure the lake quality in satellite data by observing the ratio of blue to red light in the satellite data. When the amount of blue light reflecting off of the lake is high and the red light is low, a lake generally had high water quality. Lakes loaded with algae and sediments, on the other hand, reflect less blue light and more red light. In this image, scientists used false coloring to depict the level of clarity of the water. Clear lakes are blue, moderately clear lakes are green and yellow, and murky lakes are orange and red. Using images such as these along with data from the Landsat satellites and NASA's Terra satellite, the scientists plan to create a comprehensive water quality map for the entire Great Lakes region in the next few years. For more information, read: Testing the Waters (Image courtesy Upper Great Lakes Regional Earth Science Applications Center, based on data copyright Space Imaging)

  12. Evaluating the U.S. Food Safety Modernization Act Produce Safety Rule Standard for Microbial Quality of Agricultural Water for Growing Produce.

    Science.gov (United States)

    Havelaar, Arie H; Vazquez, Kathleen M; Topalcengiz, Zeynal; Muñoz-Carpena, Rafael; Danyluk, Michelle D

    2017-10-09

    The U.S. Food and Drug Administration (FDA) has defined standards for the microbial quality of agricultural surface water used for irrigation. According to the FDA produce safety rule (PSR), a microbial water quality profile requires analysis of a minimum of 20 samples for Escherichia coli over 2 to 4 years. The geometric mean (GM) level of E. coli should not exceed 126 CFU/100 mL, and the statistical threshold value (STV) should not exceed 410 CFU/100 mL. The water quality profile should be updated by analysis of a minimum of five samples per year. We used an extensive set of data on levels of E. coli and other fecal indicator organisms, the presence or absence of Salmonella, and physicochemical parameters in six agricultural irrigation ponds in West Central Florida to evaluate the empirical and theoretical basis of this PSR. We found highly variable log-transformed E. coli levels, with standard deviations exceeding those assumed in the PSR by up to threefold. Lognormal distributions provided an acceptable fit to the data in most cases but may underestimate extreme levels. Replacing censored data with the detection limit of the microbial tests underestimated the true variability, leading to biased estimates of GM and STV. Maximum likelihood estimation using truncated lognormal distributions is recommended. Twenty samples are not sufficient to characterize the bacteriological quality of irrigation ponds, and a rolling data set of five samples per year used to update GM and STV values results in highly uncertain results and delays in detecting a shift in water quality. In these ponds, E. coli was an adequate predictor of the presence of Salmonella in 150-mL samples, and turbidity was a second significant variable. The variability in levels of E. coli in agricultural water was higher than that anticipated when the PSR was finalized, and more detailed information based on mechanistic modeling is necessary to develop targeted risk management strategies.

  13. Water Quality of Hills Water, Supply Water and RO Water Machine at Ulu Yam Selangor

    Science.gov (United States)

    Ngadiman, N.; ‘I Bahari, N.; Kaamin, M.; Hamid, N. B.; Mokhtar, M.; Sahat, S.

    2016-07-01

    The rapid development resulted in the deterioration of the quality of drinking water in Malaysia. Recognizing the importance of water quality, new alternatives for drinking water such as mineral water processing from reverse osmosis (RO) machine become more popular. Hence, the demand for mineral water, natural spring water or water from the hills or mountains rose lately. More consumers believed the quality of these spring water better than other source of drinking water. However, the quality of all the drinking water sources is to meet the required quality standard. Therefore, this paper aims to measure the quality of the waters from hills, from RO machine and the water supply in Ulu Yam, Selangor Batang Kali, Malaysia. The water quality was determined based on following parameters: ammoniacal nitrogen (NH3), iron (Fe), turbidity (NTU) and pH. The results show that the water from hills has better quality compared to water supply and water from RO machine. The value of NH3 ranged from 0.03 mg/L- 0.67 mg/L; Fe was from 0.03mg/L - 0.12 mg/L, turbidity at 0.42 NTU - 0.88 NTU and pH is at 6.60 - 0.71. Based on the studied parameters, all three types of water are fit for drinking and have met the required national drinking water quality standard.

  14. Hydrogeology and water quality of the Chakari Basin, Afghanistan

    Science.gov (United States)

    Mack, Thomas J.; Chornack, Michael P.; Flanagan, Sarah M.; Chalmers, Ann T.

    2014-01-01

    The hydrogeology and water quality of the Chakari Basin, a 391-square-kilometer (km2) watershed near Kabul, Afghanistan, was assessed by the U.S. Geological Survey and the Afghanistan Geological Survey to provide an understanding of the water resources in an area of Afghanistan with considerable copper and other mineral resources. Water quality, chemical, and isotopic samples were collected at eight wells, four springs, one kareze, and the Chakari River in a basin-fill aquifer in the Chakari Basin by the Afghanistan Geological Survey. Results of water-quality analyses indicate that some water samples in the basin had concentrations of chemical constituents that exceeded World Health Organization guidelines for nitrate, sodium, and dissolved solids and some of the samples also had elevated concentrations of trace elements, such as copper, selenium, strontium, uranium, and zinc. Chemical and isotopic analyses, including for tritium, chlorofluorocarbons, and carbon-14, indicate that most wells contain water with a mixture of ages from young (years to decades) to old (several thousand years). Three wells contained groundwater that had modeled ages ranging from 7,200 to 7,900 years old. Recharge from precipitation directly on the basin-fill aquifer, which covers an area of about 150 km2, is likely to be very low (7 × 10-5 meters per day) or near zero. Most recharge to this aquifer is likely from rain and snowmelt on upland areas and seepage losses and infiltration of water from streams crossing the basin-fill aquifer. It is likely that the older water in the basin-fill aquifer is groundwater that has travelled along long and (or) slow flow paths through the fractured bedrock mountains surrounding the basin. The saturated basin-fill sediments in most areas of the basin are probably about 20 meters thick and may be about 30 to 60 meters thick in most areas near the center of the Chakari Basin. The combination of low recharge and little storage indicates that groundwater

  15. 43 CFR 414.5 - Water quality.

    Science.gov (United States)

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Water quality. 414.5 Section 414.5 Public... APPORTIONMENT IN THE LOWER DIVISION STATES Water Quality and Environmental Compliance § 414.5 Water quality. (a) Water Quality is not guaranteed. The Secretary does not warrant the quality of water released or...

  16. Quality-control design for surface-water sampling in the National Water-Quality Network

    Science.gov (United States)

    Riskin, Melissa L.; Reutter, David C.; Martin, Jeffrey D.; Mueller, David K.

    2018-04-10

    The data-quality objectives for samples collected at surface-water sites in the National Water-Quality Network include estimating the extent to which contamination, matrix effects, and measurement variability affect interpretation of environmental conditions. Quality-control samples provide insight into how well the samples collected at surface-water sites represent the true environmental conditions. Quality-control samples used in this program include field blanks, replicates, and field matrix spikes. This report describes the design for collection of these quality-control samples and the data management needed to properly identify these samples in the U.S. Geological Survey’s national database.

  17. Water Quality Assessment of Streams and Wetlands in a Fast Growing East African City

    Directory of Open Access Journals (Sweden)

    Niels De Troyer

    2016-03-01

    Full Text Available The combination of rapid urbanization, industrialization, population growth, and low environmental awareness poses a major threat to worldwide valuable freshwater resources, which provide important ecosystem services to humans. There is an urgent need to monitor and assess these resources, as this information is indispensable for sustainable decision-making and management. In this context, we analyzed the chemical and ecological water quality of the riverine environment of a fast growing city in Southwest Ethiopia for which we proposed possible remediation options that were evaluated with an empirical model. The chemical and ecological water quality was assessed at 53 sampling locations using the oxygen Prati index and the ETHbios, which is a biotic index based on macroinvertebrates. In addition, a microbiological analysis was performed to estimate the degree of fecal contamination. Finally, we analyzed the relationship between the oxygen content and the organic pollution to simulate the effect of organics removal from waste streams on the chemical water quality. Our results showed that the average values for dissolved oxygen (4.2 mg DO·L−1 and nutrients (0.9 mg oPO43−·L−1 and 12.8 mg TAN·L−1 exceeded international standards. Moreover, high turbidity levels revealed that land erosion is a severe problem in the region. Along the rivers, a significant increase in oxygen consumption and in nutrient concentrations was observed, indicating organic pollution originating from different diffuse and point sources of pollution. The lack of proper sanitation also led to exceedingly high abundances of fecal coliforms in the surface water (>320 MPN·mL−1. However, fecal contamination was strongly reduced (>92% after the polluted river water passed Boye wetland, indicating the purification potential of natural wetlands and the importance of conserving and protecting those ecosystems. The simulation results of the model showed that water quality

  18. Temporal changes in water quality at a childhood leukemia cluster

    Science.gov (United States)

    Seiler, R.L.

    2004-01-01

    Since 1997, 15 cases of acute lymphocytic leukemia and one case of acute myelocytic leukemia have been diagnosed in children and teenagers who live, or have lived, in an area centered on the town of Fallon, Nevada. The expected rate for the population is about one case every five years. In 2001, 99 domestic and municipal wells and one industrial well were sampled in the Fallon area. Twenty-nine of these wells had been sampled previously in 1989. Statistical comparison of concentrations of major ions and trace elements in those 29 wells between 1989 and 2001 using the nonparametric Wilcoxon signed-rank test indicate water quality did not substantially change over that period; however, short-term changes may have occurred that were not detected. Volatile organic compounds were seldom detected in ground water samples and those that are regulated were consistently found at concentrations less than the maximum contaminant level (MCL). The MCL for gross-alpha radioactivity and arsenic, radon, and uranium concentrations were commonly exceeded, and sometimes were greatly exceeded. Statistical comparisons using the nonparametric Wilcoxon rank-sum test indicate gross-alpha and -beta radioactivity, arsenic, uranium, and radon concentrations in wells used by families having a child with leukemia did not statistically differ from the remainder of the domestic wells sampled during this investigation. Isotopic measurements indicate the uranium was natural and not the result of a 1963 underground nuclear bomb test near Fallon. In arid and semiarid areas where trace-element concentrations can greatly exceed the MCL, household reverse-osmosis units may not reduce their concentrations to safe levels. In parts of the world where radon concentrations are high, water consumed first thing in the morning may be appreciably more radioactive than water consumed a few minutes later after the pressure tank has been emptied because secular equilibrium between radon and its immediate daughter

  19. Ground-water quality and its relation to hydrogeology, land use, and surface-water quality in the Red Clay Creek basin, Piedmont Physiographic Province, Pennsylvania and Delaware

    Science.gov (United States)

    Senior, Lisa A.

    1996-01-01

    The Red Clay Creek Basin in the Piedmont Physiographic Province of Pennsylvania and Delaware is a 54-square-mile area underlain by a structurally complex assemblage of fractured metamorphosed sedimentary and igneous rocks that form a water-table aquifer. Ground-water-flow systems generally are local, and ground water discharges to streams. Both ground water and surface water in the basin are used for drinking-water supply.Ground-water quality and the relation between ground-water quality and hydrogeologic and land-use factors were assessed in 1993 in bedrock aquifers of the basin. A total of 82 wells were sampled from July to November 1993 using a stratified random sampling scheme that included 8 hydrogeologic and 4 land-use categories to distribute the samples evenly over the area of the basin. The eight hydrogeologic units were determined by formation or lithology. The land-use categories were (1) forested, open, and undeveloped; (2) agricultural; (3) residential; and (4) industrial and commercial. Well-water samples were analyzed for major and minor ions, nutrients, volatile organic compounds (VOC's), pesticides, polychlorinated biphenyl compounds (PCB's), and radon-222.Concentrations of some constituents exceeded maximum contaminant levels (MCL) or secondary maximum contaminant levels (SMCL) established by the U.S. Environmental Protection Agency for drinking water. Concentrations of nitrate were greater than the MCL of 10 mg/L (milligrams per liter) as nitrogen (N) in water from 11 (13 percent) of 82 wells sampled; the maximum concentration was 38 mg/L as N. Water from only 1 of 82 wells sampled contained VOC's or pesticides that exceeded a MCL; water from that well contained 3 mg/L chlordane and 1 mg/L of PCB's. Constituents or properties of well-water samples that exceeded SMCL's included iron, manganese, dissolved solids, pH, and corrosivity. Water from 70 (85 percent) of the 82 wells sampled contained radon-222 activities greater than the proposed MCL of

  20. Setting water quality criteria for agricultural water reuse purposes

    Directory of Open Access Journals (Sweden)

    K. Müller

    2017-06-01

    Full Text Available The use of reclaimed water for agricultural irrigation is practiced worldwide and will increase in the future. The definition of water quality limits is a useful instrument for the assessment of water quality regarding its suitability for irrigation purposes and the performance of wastewater treatment steps. This study elaborates water quality objectives for a water reuse project in a setting where national guidelines do not exist. Internationally established guidelines are therefore applied to the local context. Additional limits for turbidity, total suspended solids, biochemical and chemical oxygen demand, total phosphorus and potassium are suggested to meet the requirements of water reuse projects. Emphasis is put on water quality requirements prior to UV disinfection and nutrient requirements of cultivated crops. The presented values can be of assistance when monitoring reclaimed water quality. To facilitate the realization of water reuse projects, comprehensive and more detailed information, in particular on water quality requirements prior to disinfection steps, should be provided as well as regarding the protection of the irrigation infrastructure.

  1. Quality-assurance plan for water-quality activities in the U.S. Geological Survey Washington Water Science Center

    Science.gov (United States)

    Conn, Kathleen E.; Huffman, Raegan L.; Barton, Cynthia

    2017-05-08

    In accordance with guidelines set forth by the Office of Water Quality in the Water Mission Area of the U.S. Geological Survey, a quality-assurance plan has been created for use by the Washington Water Science Center (WAWSC) in conducting water-quality activities. This qualityassurance plan documents the standards, policies, and procedures used by the WAWSC for activities related to the collection, processing, storage, analysis, and publication of water-quality data. The policies and procedures documented in this quality-assurance plan for water-quality activities complement the quality-assurance plans for surface-water and groundwater activities at the WAWSC.

  2. Hydrologic parameters and land use reflection on water quality at Mun river, Thailand

    International Nuclear Information System (INIS)

    Akter, A.; Babel, M.S.

    2005-01-01

    The 'River Basin' is the land area surrounding one river from its headwaters to its mouth whereas the area drained by a river and its tributaries. So that the land use changes and excessive application of nutrients (Nitrogen and Phosphorus) in predominant agricultural river basins may have a great influence on water quality. Here the study area Mun River Basin is approximately of 69,701 km/sup 2/ and in 1994, out of the total basin area 'about 80 percent was covered by agricultural purposes. Also one of the driest parts of Thailand as well as one of the industrialized provinces in Thailand, Nakhon Ratchasima is situated at the upstream of the river. Accordingly the downstream part Ubon Ratchathani seems totally agricultural based area. To get the water quality changing trends due to land use, there are around forty water quality parameters has considered for the last ten years along with the basins hydrological parameters. For this study based on the fifteen years rainfall data, the whole year divided into two seasons namely wet season (May to October) and dry season (November to April). The result shows: (1) most of the physicochemical parameters are high in wet season; (2) heavy metals moreover appear higher at wet season and (3) although the presences of pesticides are very nominal, the higher values are detected at wet season. The conclusion draws for the water quality by having wet season water sampling and then the testing of water samples for selected seven parameters whereas the water samples are collected at a duration of one-week to three-week from April to October 2004. And this short duration analysis shows that the mean value of the nutrient shows not only higher at wet season (May to October) than April's data also exceed the existing Thailand's surface water quality standard. (author)

  3. Reconnaissance of surface-water quality in the North Platte Natural Resources District, western Nebraska, 1993

    Science.gov (United States)

    Steele, G.V.; Cannia, J.C.

    1997-01-01

    In 1993, the U.S. Geological Survey and the North Platte Natural Resources District began a 3-year study to determine the geohydrology and water quality of the North Platte River alluvial aquifer near Oshkosh, Garden County, Nebraska. The objectives of the study were to determine the geohydrologic properties of the North Platte River alluvial aquifer, to establish a well network for long- term monitoring of concentrations of agricultural chemicals including nitrate and herbicides, and to establish baseline concentrations of major ions in the ground water. To meet these objectives, monitor wells were installed at 11 sites near Oshkosh. The geohydrologic properties of the aquifer were estimated from water-level measurements at selected irrigation wells located in the study area and short- term constant-discharge aquifer tests at two monitor wells. Water samples were collected bimonthly and analyzed for specific conductance, pH, water temperature, dissolved oxygen, and nutrients including dissolved nitrate. Samples were collected semiannually for analysis of major ions, and annually for triazine and acetamide herbicides. Evaluation of the aquifer-test data indicates the hydraulic conductivities of the North Platte River alluvial aquifer range between 169 and 184 feet per day and transmissivities ranged from 12,700 to 26,700 feet-squared per day. The average specific yield for the alluvial aquifer, based on the two aquifer tests, was 0.2. Additional hydrologic data for the alluvial aquifer include a horizontal gradient of about 0.002 foot per foot and estimated ground- water flow velocities of about 0.1 to 1.8 feet per day. Evaluation of the water-quality data indicates that nitrate concentrations exceed the U.S. Environmental Protection Agency's (USEPA) Maximum Contamination Level of 10 milligrams per liter for drinking water in areas to the east and west of Oshkosh. In these areas, nitrate concentrations generally are continuing to rise. West of Oshkosh the highest

  4. Water Quality Analysis Simulation

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Water Quality analysis simulation Program, an enhancement of the original WASP. This model helps users interpret and predict water quality responses to natural...

  5. Surface-Water, Water-Quality, and Ground-Water Assessment of the Municipio of Mayaguez, Puerto Rico, 1999-2002

    Science.gov (United States)

    Rodríguez-Martínez, Jesús; Santiago-Rivera, Luis; Guzman-Rios, Senen; Gómez-Gómez, Fernando; Oliveras-Feliciano, Mario L.

    2004-01-01

    The surface-water assessment portion of this study focused on analysis of low-flow characteristics in local streams and rivers, because the supply of safe drinking water was a critical issue during recent dry periods. Low-flow characteristics were evaluated at one continuous-record gaging station based on graphical curve-fitting techniques and log-Pearson Type III frequency curves. Estimates of low-flow characteristics for 20 partial-record stations were generated using graphical-correlation techniques. Flow-duration characteristics for the continuous- and partial-record stations were estimated using the relation curves developed for the low-flow study. Stream low-flow statistics document the general hydrology under current land use, water-use, and climatic conditions. A survey of streams and rivers utilized 37 sampling stations to evaluate the sanitary quality of about 165 miles of stream channels. River and stream samples for fecal coliform and fecal streptococcus analyses were collected on two occasions at base-flow conditions. Bacteriological analyses indicate that a significant portion of the stream reaches within the municipio of Mayaguez may have fecal coliform bacteria concentrations above the water-quality goal (standard) established by the Puerto Rico Environmental Quality Board (Junta de Calidad Ambiental de Puerto Rico) for inland surface waters. Sources of fecal contamination may include: illegal discharge of sewage to storm-water drains, malfunctioning sanitary sewer ejectors, clogged and leaking sewage pipes, septic tank leakage, unfenced livestock, and runoff from livestock pens. Long-term fecal coliform data from five sampling stations located within or in the vicinity of the municipio of Mayaguez have been in compliance with the water-quality goal for fecal coliform concentration established in July 1990. Geologic, topographic, soil, hydrogeologic, and streamflow data were compiled into a database and used to divide the municipio of Mayaguez into

  6. Bromine and water quality – Selected aspects and future perspectives

    International Nuclear Information System (INIS)

    Winid, Bogumiła

    2015-01-01

    Bromine is a microelement present in waters, both in inorganic and in a wide range of organic compounds, though at lower concentrations. Typically, concentrations of organobromine compounds in waters are several orders of magnitude lower than of bromides. Two issues are addressed in the paper: the influence of bromides on the quality of treated waters and organobromines as contaminants of natural waters. Bromide presence in treated water gives rise to formation of potentially mutagenic disinfection by-products (DBPs). Registered amounts of DBPs in potable waters, exceeding the admissible levels, and the published data on DBPs in waters used for leisure and recreation activities, clearly indicate the health risk. Major sources are identified and registered concentrations of EDB, DBCB, methyl bromide, bromacil and PBDEs in the aquatic environment are summarized. The effects of bromide on DBPs formation and numerous examples of organobromine contamination of the aquatic environment indicate that the presence of bromides and organobromine compounds in the aquatic environment will have to be given more consideration, for several reasons. Firstly, larger amounts of bromide are present in saline and contaminated waters and the proportion of such waters being handled is increasing. Similarly, the processes of water purification, treatment and disinfection are now playing a major role. Secondly, emissions from manufacturing of bromine-containing materials growing, due to, inter alia, intensive development of the electronic industry and the plastic manufacturing sector. Thirdly, bromine compounds are also used as medicine ingredients. There is now a growing awareness of the presence of pharmaceuticals in the aquatic environment. Fourth, low bromide concentrations in hypergene zones may be modified in the future, partly because of the climate changes, which may give rise to difficulties with water treatment systems. Water quality standards having relevance to water used for

  7. Effect of traditional gold mining to surface water quality in Murung Raya District, Central Kalimantan Province

    Directory of Open Access Journals (Sweden)

    W.Wilopo

    2013-10-01

    Full Text Available There are many locations for traditional gold mining in Indonesia. One of these is in Murung Raya District, Central Kalimantan Province. Mining activities involving the application of traditional gold processing technology have a high potential to pollute the environment, especially surface water. Therefore, this study aims to determine the impact of gold mining and processing on surface water quality around the mine site. Based on the results of field surveys and laboratory analysis, our data shows that the concentration of mercury (Hg and Cyanide (CN has reached 0.3 mg/L and 1.9 mg/L, respectively, in surface water. These values exceed the drinking water quality standards of Indonesia and WHO. Many people who live in the mining area use surface water for daily purposes including drinking, cooking, bathing and washing. This scenario is very dangerous because the effect of surface water contamination on human health cannot be immediately recognized or diagnosed. In our opinion the dissemination of knowledge regarding the treatment of gold mining wastewater is urgently required so that the quality of wastewater can be improved before it is discharged into the environment

  8. Impact on surface water quality due to coke oven effluents

    International Nuclear Information System (INIS)

    Ghose, M.K.; Roy, S.

    1994-01-01

    Large quantities of water are used for the quenching of hot coke and also for washing the gas produced from the coke ovens. Liquid effluents thus generated are highly polluted and are being discharged into the river Damodar without proper treatment. Four coke plants of Bharat Coking Coal Ltd.(BCCL) have been surveyed for characterization and to assess the impact on surface water quality. About 175-200 kilolitres of waste water is being generated per day by each of the coke plants. The concentration of CO, BOD, COD, TSS, phenol and cyanide in each of the coke plants were found to exceed the limits specified by pollution control board. Ammonia, oil and grease and TDS were found to be 19.33 mg/l, 7.81 mg/l, 1027.75 mg/l respectively. Types of samples collected, sampling frequencies, sample preservation and the results obtained have been discussed. (author). 6 refs., 1 tab., 1 fig

  9. Water quality data for national-scale aquatic research: The Water Quality Portal

    Science.gov (United States)

    Read, Emily K.; Carr, Lindsay; DeCicco, Laura; Dugan, Hilary; Hanson, Paul C.; Hart, Julia A.; Kreft, James; Read, Jordan S.; Winslow, Luke

    2017-01-01

    Aquatic systems are critical to food, security, and society. But, water data are collected by hundreds of research groups and organizations, many of which use nonstandard or inconsistent data descriptions and dissemination, and disparities across different types of water observation systems represent a major challenge for freshwater research. To address this issue, the Water Quality Portal (WQP) was developed by the U.S. Environmental Protection Agency, the U.S. Geological Survey, and the National Water Quality Monitoring Council to be a single point of access for water quality data dating back more than a century. The WQP is the largest standardized water quality data set available at the time of this writing, with more than 290 million records from more than 2.7 million sites in groundwater, inland, and coastal waters. The number of data contributors, data consumers, and third-party application developers making use of the WQP is growing rapidly. Here we introduce the WQP, including an overview of data, the standardized data model, and data access and services; and we describe challenges and opportunities associated with using WQP data. We also demonstrate through an example the value of the WQP data by characterizing seasonal variation in lake water clarity for regions of the continental U.S. The code used to access, download, analyze, and display these WQP data as shown in the figures is included as supporting information.

  10. Water quality assessment of selected domestic water sources in ...

    African Journals Online (AJOL)

    However, lead ion appears higher than the approved WHO and SON standard for water quality in all the sources except that of water vendors which is 0.04mg/l. It is therefore recommended that periodic monitoring of water quality, effective waste management system to improve the general water quality in the town, and ...

  11. Water Quality Assessment and Management

    Science.gov (United States)

    Overview of Clean Water Act (CWA) restoration framework including; water quality standards, monitoring/assessment, reporting water quality status, TMDL development, TMDL implementation (point & nonpoint source control)

  12. Water Quality Analysis Simulation

    Science.gov (United States)

    The Water Quality analysis simulation Program, an enhancement of the original WASP. This model helps users interpret and predict water quality responses to natural phenomena and man-made pollution for variious pollution management decisions.

  13. Surface-Water Quality Conditions and Long-Term Trends at Selected Sites within the Ambient Water-Quality Monitoring Network in Missouri, Water Years 1993-2008

    Science.gov (United States)

    Barr, Miya N.; Davis, Jerri V.

    2010-01-01

    and Grand Rivers). The increase in total suspended solids concentrations could be because of soil erosion from land cultivated for row crops. Most trace element data examined in the study were highly censored and could not be used for flow-adjusted trend analyses. Water-quality conditions were assessed to explore relations between data from sites and to the State water-quality standards where applicable for selected constituents. Streamflow varied at each site because of drainage area, land use, and groundwater inputs. Dissolved oxygen and water temperature were similar at all sites except the urban site located on Wilson Creek. Specific conductance was similar between the most northern (South Fabius and Grand River sites) and the most southern sites (Current and Elk River sites). Total suspended solids concentrations were near the method reporting level at all sites, except the northern sites. Streams in northern Missouri are more turbid than streams in southern Missouri and are affected by large volumes of sediment deposition because of soil erosion from land cultivated for row crops. Geometric means of Escherichia coli were calculated from the recreational seasons within the study period. Only the Grand River site exceeded the whole-body-contact standard for frequently used waters. The South Fabius and Grand River sites and the Wilson Creek site had statistically larger densities of both fecal indicator bacteria types than the remaining sites.

  14. Investigation of Ground-Water Availability and Quality in Orange County, North Carolina

    Science.gov (United States)

    Cunningham, William L.; Daniel, Charles C.

    2001-01-01

    study. Nitrate was detected in 82 percent of the samples at concentrations ranging up to 7.2 milligrams per liter, although the median concentration was 0.49 milligram per liter; all other samples had a concentration of 2.9 milligrams per liter or less. In general, trace elements were detected infrequently or at concentrations less than State drinking-water standards. However, exceedances of North Carolina drinking-water standards were observed for iron (3 exceedances of 51 analyses, detection up to 1,100 micrograms per liter), manganese (12 exceedances of 51 analyses, detection up to 890 micrograms per liter), and zinc (4 exceedances of 31 analyses, detection up to 4,900 micrograms per liter). Lead was detected in 8 of 31 samples with a concentration up to 3.5 micrograms per liter. Zinc, manganese, iron, and copper were the most frequently detected trace metals at 100, 94, 80, and 61 percent, respectively. Lead, arsenic, bromide, alum inum, and selenium were detected in 13 to 26 percent of the analyses. No benzene, toluene, ethylbenzene, and xylene (BTEX) or atrazine compounds were detected in any of the samples.Radon activities in ground water can be high because of the rock units present in Orange County. Radon activity ranged from 38 to 4,462 picocuries per liter countywide, with a median activity of 405 picocuries per liter. Median radon activities in Orange County were highest in felsic rocks (487 picocuries per liter) and lowest in mafic rocks (357 picocuries per liter). When evaluated by individual hydrogeologic units, the median radon activity was highest in the phyllite unit (1,080 picocuries per liter in 2 samples) and the felsic metaigneous unit (571 picocuries per liter in 13 samples).Overall, water-quality data in Orange County indicate few drinking-water concerns. No organic contaminants analyzed (total BTEX and atrazine) or excessive nutrient concentrations were detected, and few exceedances of North Carolina drinking- water standards were detected.

  15. IRRIGATION STATION EQUIPMENT FOR PREVENTING THE USE OF LOW WATER QUALITY

    Directory of Open Access Journals (Sweden)

    Constantin Nicolescu

    2010-01-01

    Full Text Available In Romania the economically efficient irrigated area is estimated at 3.5 million hectares. On national scale there is nointegrated approach for monitoring the quantity and quality of the irrigation water, using adequate equipment at thepumping station. On international scale, in many countries the pumping stations are provided with equipment formonitoring, on real time, the quality or the pumped water and for warning about critical situations (emergencies.This paper describes a technical solution consisting of equipment which monitors the following parameters of waterpumped in irrigation systems: turbidity, pH, CE at 25 o C, Na+, Cl-. The lapse of time for monitoring is of 10 to 60 min.The main components are the following: the sampling pump (submersible the monitoring board, the repression pipe ofthe analyzed water. Warnings are made about values exceeding the programmed level for each monitored parameter,about the fact that the pump and agitator do not work or about any other source of damage.The technical solution and equipment were tested at a pumping station which uses water from Danube, in most casesmixed with water originating from drainage. Results showed a reduction of the total content of soluble salts from soiland of their negative impact upon the crops, a reduction of the degree of river alluvial deposits within the irrigationsystem and reduction of the energetic consumption required for pumping.

  16. UMTRA Project water sampling and analysis plan: Canonsburg and Burrell, Pennsylvania

    International Nuclear Information System (INIS)

    1994-03-01

    Surface remedial action was completed at the Canonsburg and Burrell UMTRA Project sites in southwestern Pennsylvania in 1985 and 1987, respectively. Results of 1993 water sampling indicate ground water flow conditions and ground water quality at both sites have remained relatively consistent with time. Uranium concentrations in ground water continue to exceed the maximum concentration limit (MCL) at the Canonsburg site; no MCLs are exceeded in ground water at the Burrell site. Surface water quality shows no evidence of impact from the sites

  17. Urban Water Services in Fragile States: An Analysis of Drinking Water Sources and Quality in Port Harcourt, Nigeria, and Monrovia, Liberia

    Science.gov (United States)

    Kumpel, Emily; Albert, Jeff; Peletz, Rachel; de Waal, Dominick; Hirn, Maximilian; Danilenko, Alexander; Uhl, Vincent; Daw, Ashish; Khush, Ranjiv

    2016-01-01

    Establishing and maintaining public water services in fragile states is a significant development challenge. In anticipation of water infrastructure investments, this study compares drinking water sources and quality between Port Harcourt, Nigeria, and Monrovia, Liberia, two cities recovering from political and economic instability. In both cities, access to piped water is low, and residents rely on a range of other private and public water sources. In Port Harcourt, geographic points for sampling were randomly selected and stratified by population density, whereas in Monrovia, locations for sampling were selected from a current inventory of public water sources. In Port Harcourt, the sampling frame demonstrated extensive reliance on private boreholes and a preference, in both planned and unplanned settlements, for drinking bottled and sachet water. In Monrovia, sample collection focused on public sources (predominantly shallow dug wells). In Port Harcourt, fecal indicator bacteria (FIB) were detected in 25% of sources (N = 566), though concentrations were low. In Monrovia, 57% of sources contained FIB and 22% of sources had nitrate levels that exceeded standards (N = 204). In Monrovia, the convenience of piped water may promote acceptance of the associated water tariffs. However, in Port Harcourt, the high prevalence of self-supply and bottled and sachet drinking water suggests that the consumer's willingness to pay for ongoing municipal water supply improvements may be determined by service reliability and perceptions of water quality. PMID:27114291

  18. Quality-assurance and data-management plan for water-quality activities in the Kansas Water Science Center, 2014

    Science.gov (United States)

    Rasmussen, Teresa J.; Bennett, Trudy J.; Foster, Guy M.; Graham, Jennifer L.; Putnam, James E.

    2014-01-01

    As the Nation’s largest water, earth, and biological science and civilian mapping information agency, the U.S. Geological Survey is relied on to collect high-quality data, and produce factual and impartial interpretive reports. This quality-assurance and data-management plan provides guidance for water-quality activities conducted by the Kansas Water Science Center. Policies and procedures are documented for activities related to planning, collecting, storing, documenting, tracking, verifying, approving, archiving, and disseminating water-quality data. The policies and procedures described in this plan complement quality-assurance plans for continuous water-quality monitoring, surface-water, and groundwater activities in Kansas.

  19. Application of Nemerow Index Method and Integrated Water Quality Index Method in Water Quality Assessment of Zhangze Reservoir

    Science.gov (United States)

    Zhang, Qian; Feng, Minquan; Hao, Xiaoyan

    2018-03-01

    [Objective] Based on the water quality historical data from the Zhangze Reservoir from the last five years, the water quality was assessed by the integrated water quality identification index method and the Nemerow pollution index method. The results of different evaluation methods were analyzed and compared and the characteristics of each method were identified.[Methods] The suitability of the water quality assessment methods were compared and analyzed, based on these results.[Results] the water quality tended to decrease over time with 2016 being the year with the worst water quality. The sections with the worst water quality were the southern and northern sections.[Conclusion] The results produced by the traditional Nemerow index method fluctuated greatly in each section of water quality monitoring and therefore could not effectively reveal the trend of water quality at each section. The combination of qualitative and quantitative measures of the comprehensive pollution index identification method meant it could evaluate the degree of water pollution as well as determine that the river water was black and odorous. However, the evaluation results showed that the water pollution was relatively low.The results from the improved Nemerow index evaluation were better as the single indicators and evaluation results are in strong agreement; therefore the method is able to objectively reflect the water quality of each water quality monitoring section and is more suitable for the water quality evaluation of the reservoir.

  20. Water Quality in Big Cypress National Preserve and Everglades National Park - Trends and Spatial Characteristics of Selected Constituents

    Science.gov (United States)

    Miller, Ronald L.; McPherson, Benjamin F.; Sobczak, Robert; Clark, Christine

    2004-01-01

    Seasonal changes in water levels and flows in Big Cypress National Preserve (BICY) and Everglades National Park (EVER) affect water quality. As water levels and flows decline during the dry season, physical, geochemical and biological processes increase the breakdown of organic materials and the build-up of organic waste, nutrients, and other constituents in the remaining surface water. For example, concentrations of total phosphorus in the marsh are less than 0.01 milligram per liter (mg/L) during much of the year. Concentrations can rise briefly above this value during the dry season and occasionally exceed 0.1 mg/L under drought conditions. Long-term changes in water levels, flows, water management, and upstream land use also affect water quality in BICY and EVER, based on analysis of available data (1959-2000). During the 1980's and early 1990's, specific conductance and concentrations of chloride increased in the Taylor Slough and Shark River Slough. Chloride concentrations more than doubled from 1960 to 1990, primarily due to greater canal transport of high dissolved solids into the sloughs. Some apparent long-term trends in sulfate and total phosphorus were likely attributable, at least in part, to high percentages of less-than and zero values and to changes in reporting levels over the period of record. High values in nutrient concentrations were evident during dry periods of the 1980's and were attributable either to increased canal inflows of nutrient-rich water, increased nutrient releases from breakdown of organic bottom sediment, or increased build-up of nutrient waste from concentrations of aquatic biota and wildlife in remaining ponds. Long-term changes in water quality over the period of record are less pronounced in the western Everglades and the Big Cypress Swamp; however, short-term seasonal and drought-related changes are evident. Water quality varies spatially across the region because of natural variations in geology, hydrology, and vegetation

  1. Quality of water and sediment in streams affected by historical mining, and quality of Mine Tailings, in the Rio Grande/Rio Bravo Basin, Big Bend Area of the United States and Mexico, August 2002

    Science.gov (United States)

    Lambert, Rebecca B.; Kolbe, Christine M.; Belzer, Wayne

    2008-01-01

    The U.S. Geological Survey, in cooperation with the International Boundary and Water Commission - U.S. and Mexican Sections, the National Park Service, the Texas Commission on Environmental Quality, the Secretaria de Medio Ambiente y Recursos Naturales in Mexico, the Area de Proteccion de Flora y Fauna Canon de Santa Elena in Mexico, and the Area de Proteccion de Flora y Fauna Maderas del Carmen in Mexico, collected samples of stream water, streambed sediment, and mine tailings during August 2002 for a study to determine whether trace elements from abandoned mines in the area in and around Big Bend National Park have affected the water and sediment quality in the Rio Grande/Rio Bravo Basin of the United States and Mexico. Samples were collected from eight sites on the main stem of the Rio Grande/Rio Bravo, four Rio Grande/Rio Bravo tributary sites downstream from abandoned mines or mine-tailing sites, and 11 mine-tailing sites. Mines in the area were operated to produce fluorite, germanium, iron, lead, mercury, silver, and zinc during the late 1800s through at least the late 1970s. Moderate (relatively neutral) pHs in stream-water samples collected at the 12 Rio Grande/Rio Bravo main-stem and tributary sites indicate that water is well mixed, diluted, and buffered with respect to the solubility of trace elements. The highest sulfate concentrations were in water samples from tributaries draining the Terlingua mining district. Only the sample from the Rough Run Draw site exceeded the Texas Surface Water Quality Standards general-use protection criterion for sulfate. All chloride and dissolved solids concentrations in water samples were less than the general-use protection criteria. Aluminum, copper, mercury, nickel, selenium, and zinc were detected in all water samples for which each element was analyzed. Cadmium, chromium, and lead were detected in samples less frequently, and silver was not detected in any of the samples. None of the sample concentrations of

  2. Bank filtered water quality characteristics in Okgog-Ri area of Youngsan-River, Korea

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hee-Youl; Kim, Hyoung-Soo [Korea Water Resources Corp., Taejeon(Korea)

    2001-02-28

    Preliminary artificial recharge groundwater intake method using bank filtering had been conducted in Okgog-Ri of Youngsan-River to evaluate the possibility of substitution of surface water intake method in the area. In order to investigate the characteristics of bank filtered groundwater, we examined the hydrogeological properties of alluvium and water quality of stream and groundwater. It is observed that nitrate in stream water from synthetic fertilizer and poultry manure is almost consumed during bank filtering in this area. This implies that denitrification of organic carbon and the oxidation of pyrite present in the alluvium aquifer. Groundwater samples from bank filtering show high Mn concentration. This high Mn concentration may be resulted from decreasing redox potential due to denitrification and increasing mobility due to redox reaction of Mn-oxide. In the study area, there is a typical tendency that Al concentrations of water samples decrease according to increasing pH. This tendency is interpreted as forming of amorphous Al(OH){sub 3} precipitates by reducing the Al{sup 3+} solubilities. It is revealed that the bank filtered groundwater in the area is not edible because color, turbidity, heterotrophic bacteria, coliform and Mn of the groundwater exceed the guideline of drinking water. Even though the bank filtered groundwater without treatment does not satisfy the guideline of drinking water, the groundwater shows a good water quality compared with stream water. So, the water treatment method using bank filtered groundwater can be more economical and efficient than the treatment using direct intake of stream water in the aspect of water quality. (author). 15 refs., 2 tabs., 7 figs.

  3. Water quality data for national-scale aquatic research: The Water Quality Portal

    Science.gov (United States)

    Read, Emily K.; Carr, Lindsay; De Cicco, Laura; Dugan, Hilary A.; Hanson, Paul C.; Hart, Julia A.; Kreft, James; Read, Jordan S.; Winslow, Luke A.

    2017-02-01

    xml:id="wrcr22485-sec-1001" numbered="no">Aquatic systems are critical to food, security, and society. But, water data are collected by hundreds of research groups and organizations, many of which use nonstandard or inconsistent data descriptions and dissemination, and disparities across different types of water observation systems represent a major challenge for freshwater research. To address this issue, the Water Quality Portal (WQP) was developed by the U.S. Environmental Protection Agency, the U.S. Geological Survey, and the National Water Quality Monitoring Council to be a single point of access for water quality data dating back more than a century. The WQP is the largest standardized water quality data set available at the time of this writing, with more than 290 million records from more than 2.7 million sites in groundwater, inland, and coastal waters. The number of data contributors, data consumers, and third-party application developers making use of the WQP is growing rapidly. Here we introduce the WQP, including an overview of data, the standardized data model, and data access and services; and we describe challenges and opportunities associated with using WQP data. We also demonstrate through an example the value of the WQP data by characterizing seasonal variation in lake water clarity for regions of the continental U.S. The code used to access, download, analyze, and display these WQP data as shown in the figures is included as supporting information.

  4. [Drinking water quality and safety].

    Science.gov (United States)

    Gómez-Gutiérrez, Anna; Miralles, Maria Josepa; Corbella, Irene; García, Soledad; Navarro, Sonia; Llebaria, Xavier

    2016-11-01

    The purpose of drinking water legislation is to guarantee the quality and safety of water intended for human consumption. In the European Union, Directive 98/83/EC updated the essential and binding quality criteria and standards, incorporated into Spanish national legislation by Royal Decree 140/2003. This article reviews the main characteristics of the aforementioned drinking water legislation and its impact on the improvement of water quality against empirical data from Catalonia. Analytical data reported in the Spanish national information system (SINAC) indicate that water quality in Catalonia has improved in recent years (from 88% of analytical reports in 2004 finding drinking water to be suitable for human consumption, compared to 95% in 2014). The improvement is fundamentally attributed to parameters concerning the organoleptic characteristics of water and parameters related to the monitoring of the drinking water treatment process. Two management experiences concerning compliance with quality standards for trihalomethanes and lead in Barcelona's water supply are also discussed. Finally, this paper presents some challenges that, in the opinion of the authors, still need to be incorporated into drinking water legislation. It is necessary to update Annex I of Directive 98/83/EC to integrate current scientific knowledge, as well as to improve consumer access to water quality data. Furthermore, a need to define common criteria for some non-resolved topics, such as products and materials in contact with drinking water and domestic conditioning equipment, has also been identified. Copyright © 2016 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. Lake water quality: Chapter 4 in A synthesis of aquatic science for management of Lakes Mead and Mohave

    Science.gov (United States)

    Tietjen, Todd; Holdren, G. Chris; Rosen, Michael R.; Veley, Ronald J.; Moran, Michael J.; Vanderford, Brett; Wong, Wai Hing; Drury, Douglas D.

    2012-01-01

    Given the importance of the availability and quality of water in Lake Mead, it has become one of the most intensely sampled and studied bodies of water in the United States. As a result, data are available from sampling stations across the lake (fig. 4-1 and see U.S. Geological Survey Automated Water-Quality Platforms) to provide information on past and current (2012) water-quality conditions and on invasive species that influence—and are affected by—water quality. Water quality in Lakes Mead and Mohave generally exceeds standards set by the State of Nevada to protect water supplies for public uses: drinking water, aquatic ecosystem health, recreation, or agricultural irrigation. In comparison to other reservoirs studied by the U.S. Environmental Protection Agency (USEPA) for a national lake assessment (U.S. Environmental Protection Agency, 2010), Lake Mead is well within the highest or ‘good’ category for recreation and aquatic health (see U.S. Environmental Protection Agency National Lakes Assessment and Lake Mead for more details). While a small part of the lake, particularly Las Vegas Bay, is locally influenced by runoff from urbanized tributaries such as Las Vegas Wash, contaminant loading in the lake as a whole is low compared to other reservoirs in the nation, which are influenced by runoff from more heavily urbanized watersheds (Rosen and Van Metre, 2010).

  6. UMTRA project technical assistance contractor quality assurance implementation plan for surface and ground water, Revision 2

    International Nuclear Information System (INIS)

    1995-11-01

    This document contains the Technical Assistance Contractor (TAC) Quality Assurance Implementation Plan (QAIP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project. The QAIP outlines the primary requirements for integrating quality functions for TAC technical activities applied to the surface and ground water phases of the UMTRA Project. The QA program is designed to use monitoring, audit, and surveillance activities as management tools to ensure that UMTRA Project activities are carried out in amanner to protect public health and safety, promote the success of the UMTRA Project, and meet or exceed contract requirements

  7. Microbiological and Chemical Quality of Packaged Sachet Water and Household Stored Drinking Water in Freetown, Sierra Leone.

    Science.gov (United States)

    Fisher, Michael B; Williams, Ashley R; Jalloh, Mohamed F; Saquee, George; Bain, Robert E S; Bartram, Jamie K

    2015-01-01

    Packaged drinking water (PW) sold in bottles and plastic bags/sachets is widely consumed in low- and middle-income countries (LMICs), and many urban users in sub-Saharan Africa (SSA) rely on packaged sachet water (PSW) as their primary source of water for consumption. However, few rigorous studies have investigated PSW quality in SSA, and none have compared PSW to stored household water for consumption (HWC). A clearer understanding of PSW quality in the context of alternative sources is needed to inform policy and regulation. As elsewhere in SSA, PSW is widely consumed in Sierra Leone, but government oversight is nearly nonexistent. This study examined the microbiological and chemical quality of a representative sample of PSW products in Freetown, Sierra Leone at packaged water manufacturing facilities (PWMFs) and at points of sale (POSs). Samples of HWC were also analyzed for comparison. The study did not find evidence of serious chemical contamination among the parameters studied. However, 19% of 45 PSW products sampled at the PWMF contained detectable Escherichia coli (EC), although only two samples exceeded 10 CFU/100 mL. Concentrations of total coliforms (TC) in PSW (but not EC) increased along the supply chain. Samples of HWC from 60 households in Freetown were significantly more likely to contain EC and TC than PSW at the point of production (p<0.01), and had significantly higher concentrations of both bacterial indicators (p<0.01). These results highlight the need for additional PSW regulation and surveillance, while demonstrating the need to prioritize the safety of HWC. At present, PSW may be the least unsafe option for many households.

  8. Hydrogeochemical characteristics and assessment of water quality in the Al-Saad Lake, Abha Saudi Arabia

    Science.gov (United States)

    Mallick, Javed

    2017-10-01

    Hydrogeochemical characteristics and assessment of water quality investigations have been carried out at Abha, located in Saudi Arabia, where Al-Saad Lake represents a rare example of natural endorheic lake. The ecosystem within and around the Al-Saad Lake including catchment area is of great social, cultural, aesthetic, environmental and economic values to Abha. Sampling and experiments of lake water has been carried out with the aim of characterizing the main physico-chemical parameters, such as DO, EC, TDS, Mg2+, Ca2+, Na+, K+, SO4 2-, Cl-, HCO3, NO3 - and F- concentration. The ordinary kriging (OK) method was used to produce the spatial patterns of water quality. The Result of DO (mean 5.38 mg/L) trend in Al-Saad Lake is not very encouraging as majority of the lake area is under DO stress or marginally above it. So, proper management strategies are needed to be formulated to protect flora and fauna of the lake. Furthermore, the chemical analysis results show the abundance of the major cations in the order Mg2+ > Ca2+ > Na+ > K+ whereas the abundance of anions are in the order SO4 2- > Cl- > HCO3 > NO3 - > F-. The result obtained in this investigation inferred that the cations in water i.e. sodium and iron are within the permissible limits but magnesium and potassium have exceeded the permissible limit. Whereas anions such as nitrate and fluoride are within the permissible range but chloride and sulphate have exceeded the permissible limits. The concentration of cation, magnesium (Mg) and potassium (K) in the lake water has exceeded the desirable range (30, 10 mg/L, respectively). This may be due to weathering and transported from rocks and particularly from sulphate deposits such as gypsum and anhydride and subsequently ends up in water. The concentration of anion, Sulphate (SO4) and chloride are above the desirable limit. The major source of bicarbonate are the carbonate rocks containing calcite (CaCO3) and dolomite (CaMg (CO3)2), Calcium (Ca) and Magnesium

  9. 18 CFR 801.7 - Water quality.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Water quality. 801.7... POLICIES § 801.7 Water quality. (a) The signatory States have the primary responsibility in the basin for water quality management and control. However, protection of the water resources of the basin from...

  10. Effects of highway-deicer application on ground-water quality in a part of the Calumet Aquifer, northwestern Indiana

    Science.gov (United States)

    Watson, Lee R.; Bayless, E. Randall; Buszka, Paul M.; Wilson, John T.

    2002-01-01

    in ground water were determined in samples collected during the spring and summer from wells open to the water table within about 9 feet of the highway. Chloride concentrations in ground water that were attributable to highway deicers also were found in tested wells about 400 feet downgradient from US?12 during the fall and winter and at greater depths than in wells closer to US?12. Chloride concentrations exceeded the U.S. Environmental Protection Agency?s (USEPA) secondary maximum contaminant level of 250 milligrams per liter for drinking water at seven wells downgradient from the highway during late winter, spring, and summer samplings. The chloride standard was exceeded only in water from wells with total depths that are less than about 10 feet below land surface. Sodium concentrations in water periodically exceeded the USEPA drinking-water equivalency level of 20 milligrams per liter in both the uppermost (deicer affected) and lower one-thirds of the aquifer. Sodium concentrations in ground water downgradient from US?12 and in the upper 5 feet of the aquifer also occasionally exceeded drinking-water standards for sodium (160 milligrams per liter) as set by the State of Florida and a standard for taste (200 milligrams per liter) as set by the World Health Organization. Dispersion was identified by analysis of aquifer-test data, isotopic dating of ground water, and water-quality data to be the process most responsible for reducing concentrations of highway deicers in the aquifer. Chemical analyses of the sand composing the aquifer indicated that cation exchange decreased the mass of deicer-related sodium in ground water, although the sand has a limited capacity to sustain the process. Automated daily measurements of specific conductance, correlated to chloride concentrations, indicated that some deicer is retained in the aquifer near the highway throughout the entire year and acts as a continuous chloride source for ground water. Peak concentrations of

  11. Assessment of drinking water quality using ICP-MS and microbiological methods in the Bholakpur area, Hyderabad, India.

    Science.gov (United States)

    Abdul, Rasheed M; Mutnuri, Lakshmi; Dattatreya, Patil J; Mohan, Dayal A

    2012-03-01

    A total of 16 people died and over 500 people were hospitalized due to diarrhoeal illness in the Bholakpur area of Hyderabad, India on 6th May 2009. A study was conducted with immediate effect to evaluate the quality of municipal tap water of the Bholakpur locality. The study consists of the determination of physico-chemical properties, trace metals, heavy metals, rare earth elements and microbiological quality of drinking water. The data showed the variation of the investigated parameters in samples as follows: pH 7.14 to 8.72, EC 455 to 769 μS/cm, TDS 303.51 to 515.23 ppm and DO 1.01 to 6.83 mg/L which are within WHO guidelines for drinking water quality. The water samples were analyzed for 27 elements (Li, Be, B, Na, Mg, Al, Si, K, Ca, V, Cr, Mn, Fe, Ni, Co, Cu, Zn, As, Se, Rb, Sr, Mo, Ag, Cd, Sb, Ba and Pb) using inductively coupled plasma-mass spectrometry (ICP-MS). The concentrations of Fe (0.12 to 1.13 mg/L), Pb (0.01 to 0.07 mg/L), Cu (0.01 to 0.19 mg/L), Ni (0.01 to 0.15 mg/L), Al (0.16 to 0.49 mg/L), and Na (38.36 to 68.69 mg/L) were obtained, which exceed the permissible limits of the World Health Organization (WHO) for drinking water quality guidelines. The remaining elements were within the permissible limits. The microbiological quality of water was tested using standard plate count, membrane filtration technique, thermotolerant coliform (TTC), and most probable number (MPN) methods. The total heterotrophic bacteria ranged from 1.0 × 10(5) to 18 × 10(7 )cfu/ml. Total viable bacteria in all the water samples were found to be too numerable to count and total number of coliform bacteria in all water samples were found to be of order of 1,100 to >2,400 MPN index/100 ml. TTC tested positive for coliform bacteria at 44.2°C. All the water samples of the study area exceeded the permissible counts of WHO and that (zero and minimal counts) of the control site (National Geophysical Research Institute) water samples. Excessively high colony numbers indicate

  12. Ground-water quality and geochemistry in Dayton, Stagecoach, and Churchill Valleys, western Nevada

    Science.gov (United States)

    Thomas, James M.; Lawrence, Stephen J.

    1994-01-01

    (5) results of optical, X-ray diffraction, and scanning-electron microscopy examination of mineral grains in the aquifer sediments. Sulfur-isotopic composition of ground- water samples also supports the models. In general, the quality of ground water in the study area meets Nevada State drinking-water standards and is acceptable for most uses. In addition to analysis for major ions, samples were analyzed for 22 inorganic trace elements, 3 nutrients, and 4 radionuclides. Selenium in 1 sample is the only constituent that exceeded Nevada State primary drinking-water standards. Nevada State secondary- drinking water standards were exceeded for fluoride in 1 sample, for iron in 7 samples, and for manganese in 19 samples. Minor constituent con- centrations are generally the result of local redox conditions, and are primarily from minerals in volcanic and marine metasedimentary rocks, metal- oxide coatings on mineral grains, and organic matter.

  13. Ground-water quality and geochemistry, Carson Desert, western Nevada

    Science.gov (United States)

    Lico, Michael S.; Seiler, R.L.

    1994-01-01

    Aquifers in the Carson Desert are the primary source of drinking water, which is highly variable in chemical composition. In the shallow basin-fill aquifers, water chemistyr varies from a dilute calcium bicarbonate-dominated water beneath the irrigated areas to a saline sodium chloride- dominated water beneath unirrigated areas. Water samples from the shallow aquifers commonly have dissolved solids, chloride, magnesium, sulfate, arsenic, and manganese concentrations that exceed State of Nevada drinking-water standards. Water in the intermediante basin-fill aquifers is a dilute sodium bicarbonate type in the Fallon area and a distinctly more saline sodium chloride type in the Soda Lake-Upsal Hogback area. Dissolved solids, chloride, arsenic, fluoride, and manganese concen- trations commonly exceed drinking-water standards. The basalt aquifer contains a dilute sodium bicarbonate chloride water. Arsenic concentrations exceed standards in all sampled wells. The concen- trations of major constituents in ground water beneath the southern Carson Desert are the result of evapotranspiration and natural geochemical reactions with minerals derived mostly from igneous rocks. Water with higher concentrations of iron and manganese is near thermodynamic equilibrium with siderite and rhodochrosite and indicates that these elements may be limited by the solubility of their respective carbonate minerals. Naturally occurring radionuclides (uranium and radon-222) are present in ground water from the Carson Desert in concen- tratons higher than proposed drinking-water standards. High uranium concentrations in the shallow aquifers may be caused by evaporative concentration and the release of uranium during dissolution of iron and manganese oxides or the oxidation of sedimentary organic matter that typically has elevated uranium concentrations. Ground water in the Carson Desert does not appear to have be contaminated by synthetic organic chemicals.

  14. Spatial Patterns in Water Quality Changes during Dredging in Tropical Environments

    Science.gov (United States)

    Fisher, Rebecca; Stark, Clair; Ridd, Peter; Jones, Ross

    2015-01-01

    Dredging poses a potential risk to tropical ecosystems, especially in turbidity-sensitive environments such as coral reefs, filter feeding communities and seagrasses. There is little detailed observational time-series data on the spatial effects of dredging on turbidity and light and defining likely footprints is a fundamental task for impact prediction, the EIA process, and for designing monitoring projects when dredging is underway. It is also important for public perception of risks associated with dredging. Using an extensive collection of in situ water quality data (73 sites) from three recent large scale capital dredging programs in Australia, and which included extensive pre-dredging baseline data, we describe relationships with distance from dredging for a range of water quality metrics. Using a criterion to define a zone of potential impact of where the water quality value exceeds the 80th percentile of the baseline value for turbidity-based metrics or the 20th percentile for the light based metrics, effects were observed predominantly up to three km from dredging, but in one instance up to nearly 20 km. This upper (~20 km) limit was unusual and caused by a local oceanographic feature of consistent unidirectional flow during the project. Water quality loggers were located along the principal axis of this flow (from 200 m to 30 km) and provided the opportunity to develop a matrix of exposure based on running means calculated across multiple time periods (from hours to one month) and distance from the dredging, and summarized across a broad range of percentile values. This information can be used to more formally develop water quality thresholds for benthic organisms, such as corals, filter-feeders (e.g. sponges) and seagrasses in future laboratory- and field-based studies using environmentally realistic and relevant exposure scenarios, that may be used to further refine distance based analyses of impact, potentially further reducing the size of the dredging

  15. Spatial Patterns in Water Quality Changes during Dredging in Tropical Environments.

    Science.gov (United States)

    Fisher, Rebecca; Stark, Clair; Ridd, Peter; Jones, Ross

    2015-01-01

    Dredging poses a potential risk to tropical ecosystems, especially in turbidity-sensitive environments such as coral reefs, filter feeding communities and seagrasses. There is little detailed observational time-series data on the spatial effects of dredging on turbidity and light and defining likely footprints is a fundamental task for impact prediction, the EIA process, and for designing monitoring projects when dredging is underway. It is also important for public perception of risks associated with dredging. Using an extensive collection of in situ water quality data (73 sites) from three recent large scale capital dredging programs in Australia, and which included extensive pre-dredging baseline data, we describe relationships with distance from dredging for a range of water quality metrics. Using a criterion to define a zone of potential impact of where the water quality value exceeds the 80th percentile of the baseline value for turbidity-based metrics or the 20th percentile for the light based metrics, effects were observed predominantly up to three km from dredging, but in one instance up to nearly 20 km. This upper (~20 km) limit was unusual and caused by a local oceanographic feature of consistent unidirectional flow during the project. Water quality loggers were located along the principal axis of this flow (from 200 m to 30 km) and provided the opportunity to develop a matrix of exposure based on running means calculated across multiple time periods (from hours to one month) and distance from the dredging, and summarized across a broad range of percentile values. This information can be used to more formally develop water quality thresholds for benthic organisms, such as corals, filter-feeders (e.g. sponges) and seagrasses in future laboratory- and field-based studies using environmentally realistic and relevant exposure scenarios, that may be used to further refine distance based analyses of impact, potentially further reducing the size of the dredging

  16. Impact of temperature and storage duration on the chemical and odor quality of military packaged water in polyethylene terephthalate bottles

    Energy Technology Data Exchange (ETDEWEB)

    Greifenstein, Michael, E-mail: Michael.Greifenstein@us.army.mil [Department of Preventive Medicine and Biometrics, 4301 Jones Bridge Road, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 (United States); White, Duvel W., E-mail: duvel.white@us.army.mil [Department of Preventive Medicine and Biometrics, 4301 Jones Bridge Road, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 (United States); Stubner, Alex, E-mail: alex.stubner@usuhs.edu [Department of Preventive Medicine and Biometrics, 4301 Jones Bridge Road, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 (United States); Hout, Joseph, E-mail: joseph.hout@usuhs.edu [Department of Preventive Medicine and Biometrics, 4301 Jones Bridge Road, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 (United States); Whelton, Andrew J., E-mail: ajwhelton@southalabama.edu [Department of Civil Engineering, 3021 Shelby Hall, University of South Alabama, Mobile, AL 36688 (United States)

    2013-07-01

    The impact of temperature and storage time on military packaged water (MPW) quality was examined at four temperatures (23.0 °C to 60.0 °C) for 120 days. Polyethylene terephthalate (PET) bottles were filled in California and Afghanistan with unbuffered water treated by reverse osmosis. The US military's water pH long-term potability standard was exceeded, and US Food and Drug Administration (USFDA) and US Environmental Protection Agency (USEPA) drinking water pH and odor intensity limits were also exceeded. During a 70 day exposure period, Port Hueneme MPW total organic carbon and total trihalomethane levels increased from < 0.25 mg/L to 2.0 ± 0.0 mg/L and < 0.05 μg/L to 51.5 ± 2.1 μg/L, respectively. PET released organic contaminants into MPW and residual disinfectant generated trihalomethane contaminants. After 14 days at 37.7 °C and 60.0 °C, Afghanistan MPW threshold odor number values were 8.0 and 8.6, respectively. Total organic carbon concentration only increased with exposure duration at 60.0 °C. Acetaldehyde and formaldehyde contaminants were not detected likely due to the high method detection limits applied in this study. Phthalate contaminants detected and their maximum levels were butylbenzylphthalate (BBP) 0.43 μg/L, di-n-butylphthalate (DnBP) 0.38 μg/L, di(2-ethylhexyl)phthalate (DEHP) 0.6 μg/L, and diethylphthalate (DEP) 0.32 μg/L. Antimony was only detected in 60.0 °C Afghanistan MPW on Day 28 and beyond, and its maximum concentration was 3.6 ± 0.3 μg/L. No antimony was found in bottles exposed to lesser temperatures. Environmental health, PET synthesis and bottle manufacturers, and bottle users can integrate results of this work to improve health protective decisions and doctrine. - Highlights: • Temperature and storage time impacted military bottled water quality up to 60 °C. • The chemical quality of water bottled in California and Afghanistan was affected. • Drinking water pH and odor intensity limits were also

  17. Ground-water quality in the carbonate-rock aquifer of the Great Basin, Nevada and Utah, 2003

    Science.gov (United States)

    Schaefer, Donald H.; Thiros, Susan A.; Rosen, Michael R.

    2005-01-01

    The carbonate-rock aquifer of the Great Basin is named for the thick sequence of Paleozoic limestone and dolomite with lesser amounts of shale, sandstone, and quartzite. It lies primarily in the eastern half of the Great Basin and includes areas of eastern Nevada and western Utah as well as the Death Valley area of California and small parts of Arizona and Idaho. The carbonate-rock aquifer is contained within the Basin and Range Principal Aquifer, one of 16 principal aquifers selected for study by the U.S. Geological Survey’s National Water- Quality Assessment Program.Water samples from 30 ground-water sites (20 in Nevada and 10 in Utah) were collected in the summer of 2003 and analyzed for major anions and cations, nutrients, trace elements, dissolved organic carbon, volatile organic compounds (VOCs), pesticides, radon, and microbiology. Water samples from selected sites also were analyzed for the isotopes oxygen-18, deuterium, and tritium to determine recharge sources and the occurrence of water recharged since the early 1950s.Primary drinking-water standards were exceeded for several inorganic constituents in 30 water samples from the carbonate-rock aquifer. The maximum contaminant level was exceeded for concentrations of dissolved antimony (6 μg/L) in one sample, arsenic (10 μg/L) in eleven samples, and thallium (2 μg/L) in one sample. Secondary drinking-water regulations were exceeded for several inorganic constituents in water samples: chloride (250 mg/L) in five samples, fluoride (2 mg/L) in two samples, iron (0.3 mg/L) in four samples, manganese (0.05 mg/L) in one sample, sulfate (250 mg/L) in three samples, and total dissolved solids (500 mg/L) in seven samples.Six different pesticides or metabolites were detected at very low concentrations in the 30 water samples. The lack of VOC detections in water sampled from most of the sites is evidence thatVOCs are not common in the carbonate-rock aquifer. Arsenic values for water range from 0.7 to 45.7

  18. Seasonal variations of ground water quality and its agglomerates by water quality index

    Directory of Open Access Journals (Sweden)

    S. Sharma

    2016-01-01

    Full Text Available Water is a unique natural resource among all sources available on earth. It plays an important role in economic development and the general well-being of the country. This study aimed at using the application of water quality index in evaluating the ground water quality innorth-east area of Jaipur in pre and post monsoon for public usage. Total eleven physico–chemical characteristics; total dissolved solids, total hardness,chloride, nitrate, electrical conductance, sodium, fluorideand potassium, pH, turbidity, temperature were analyzed and observed values were compared with standard values recommended by Indian standard and World Health Organization. Most of parameter show higher value than permissible limit in pre and post monsoon. Water quality index study showed that drinking water in Amer (221.58,277.70, Lalawas (362.74,396.67, Jaisinghpura area (286.00,273.78 were found to be highly contaminated due to high value of total dissolved solids, electrical conductance, total hardness, chloride, nitrate and sodium.Saipura (122.52, 131.00, Naila (120.25, 239.86, Galta (160.9, 204.1 were found to be moderately contaminated for both monsoons. People dependent on this water may prone to health hazard. Therefore some effective measures are urgently required to enhance the quality of water in these areas.

  19. Seasonal variations of ground water quality and its agglomerates by water quality index

    International Nuclear Information System (INIS)

    Sharma, S.; Chhipa, R.C.

    2016-01-01

    Water is a unique natural resource among all sources available on earth. It plays an important role in economic development and the general well-being of the country. This study aimed at using the application of water quality index in evaluating the ground water quality in north-east area of Jaipur in pre and post monsoon for public usage. Total eleven physico–chemical characteristics; total dissolved solids, total hardness,chloride, nitrate, electrical conductance, sodium, fluoride and potassium, p H, turbidity, temperature) were analyzed and observed values were compared with standard values recommended by Indian standard and World Health Organization. Most of parameter show higher value than permissible limit in pre and post monsoon. Water quality index study showed that drinking water in Amer (221.58,277.70), Lalawas (362.74,396.67), Jaisinghpura area (286.00, 273.78) were found to be highly contaminated due to high value of total dissolved solids, electrical conductance, total hardness, chloride, nitrate and sodium. Saipura (122.52, 131.00), Naila (120.25, 239.86), Galta (160.9, 204.1) were found to be moderately contaminated for both monsoons. People dependent on this water may prone to health hazard. Therefore some effective measures are urgently required to enhance the quality of water in these areas.

  20. Geostatistical prediction of microbial water quality throughout a stream network using meteorology, land cover, and spatiotemporal autocorrelation.

    Science.gov (United States)

    Holcomb, David Andrew; Messier, Kyle P; Serre, Marc L; Rowny, Jakob G; Stewart, Jill R

    2018-06-11

    Predictive modeling is promising as an inexpensive tool to assess water quality. We developed geostatistical predictive models of microbial water quality that empirically modelled spatiotemporal autocorrelation in measured fecal coliform (FC) bacteria concentrations to improve prediction. We compared five geostatistical models featuring different autocorrelation structures, fit to 676 observations from 19 locations in North Carolina's Jordan Lake watershed using meteorological and land cover predictor variables. Though stream distance metrics (with and without flow-weighting) failed to improve prediction over the Euclidean distance metric, incorporating temporal autocorrelation substantially improved prediction over the space-only models. We predicted FC throughout the stream network daily for one year, designating locations "impaired", "unimpaired", or "unassessed" if the probability of exceeding the state standard was >90%, 10% but <90%, respectively. We could assign impairment status to more of the stream network on days any FC were measured, suggesting frequent sample-based monitoring remains necessary, though implementing spatiotemporal predictive models may reduce the number of concurrent sampling locations required to adequately assess water quality. Together, these results suggest that prioritizing sampling at different times and conditions using geographically sparse monitoring networks is adequate to build robust and informative geostatistical models of water quality impairment.

  1. Water quality of the reservoirs used for irrigation in São José dos Pinhais, Paraná State, Brazil

    Directory of Open Access Journals (Sweden)

    Tiago Miguel Jarek

    2016-04-01

    Full Text Available ABSTRACT: Land use outside its agricultural potential and low vegetation cover in the watershed impair the quality of water used for irrigation and may contribute to the spread of pathogenic coliform bacteria. The objective of this study was to relate the quality of irrigation water with the intensity and type of land use and the rainfall in a vegetable-producing region of São José dos Pinhais, Paraná. Water samples were collected monthly in 2013 from two reservoirs and one preserved source. After collection, the samples were chilled in Styrofoam boxes and transported to the laboratory for analyses of the total and thermotolerant coliforms. Effect of land use was analyzed by probability estimation trees. High land use and weekly above average rainfall increased the probability of thermo tolerant coliforms exceeding the limit allowed under legislation. In regards to thermo tolerant coliforms in the analyzed period, the water from only one reservoir was in accordance with the legislation for the quality of water to irrigate vegetables that are consumed raw. Results of this study are an alert to the local government for the necessity of environmental preservation to maintain the water quality of the county.

  2. 40 CFR 130.3 - Water quality standards.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Water quality standards. 130.3 Section... QUALITY PLANNING AND MANAGEMENT § 130.3 Water quality standards. A water quality standard (WQS) defines the water quality goals of a water body, or portion thereof, by designating the use or uses to be made...

  3. Effect of charcoal on water purification

    OpenAIRE

    Suzuki, Hirotaka; Kawahigashi, Tatsuo

    2014-01-01

    [Abstract] A natural basin system purifies water through self-purification, but the water pollution load of a river might exceed its self-purification capacity. Charcoal, which is used for other uses aside from heating, such as air purification, was evaluated experimentally for water quality purification. The experiment described herein is based on simple water quality measurements. Some experimentally obtained results are discussed.

  4. Ground-water quality in the Appalachian Plateaus, Kanawha River basin, West Virginia

    Science.gov (United States)

    Sheets, Charlynn J.; Kozar, Mark D.

    2000-01-01

    Water samples collected from 30 privately-owned and small public-supply wells in the Appalachian Plateaus of the Kanawha River Basin were analyzed for a wide range of constituents, including bacteria, major ions, nutrients, trace elements, radon, pesticides, and volatile organic compounds. Concentrations of most constituents from samples analyzed did not exceed U.S. Environmental Protection Agency (USEPA) standards. Constituents that exceeded drinking-water standards in at least one sample were total coliform bacteria, Escherichia coli (E. coli), iron, manganese, and sulfate. Total coliform bacteria were present in samples from five sites, and E. coli were present at only one site. USEPA secondary maximum contaminant levels (SMCLs) were exceeded for three constituents -- sulfate exceeded the SMCL of 250 mg/L (milligrams per liter) in samples from 2 of 30 wells; iron exceeded the SMCL of 300 ?g/L (micrograms per liter) in samples from 12 of the wells, and manganese exceeded the SMCL of 50 ?g/L in samples from 17 of the wells sampled. None of the samples contained concentrations of nutrients that exceeded the USEPA maximum contaminant levels (MCLs) for these constituents. The maximum concentration of nitrate detected was only 4.1 mg/L, which is below the MCL of 10 mg/L. Concentrations of nitrate in precipitation and shallow ground water are similar, potentially indicating that precipitation may be a source of nitrate in shallow ground water in the study area. Radon concentrations exceeded the recently proposed maximum contaminant level of 300 pCi/L at 50 percent of the sites sampled. The median concentration of radon was only 290 pCi/L. Radon-222 is a naturally occurring, carcinogenic, radioactive decay product of uranium. Concentrations, however, did not exceed the alternate maximum contaminant level (AMCL) for radon of 4,000 pCi/L in any of the 30 samples. Arsenic concentrations exceeded the proposed MCL of 5?g/L at 4 of the 30 sites. No samples exceeded the

  5. 9 CFR 3.106 - Water quality.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Water quality. 3.106 Section 3.106... Mammals Animal Health and Husbandry Standards § 3.106 Water quality. (a) General. The primary enclosure... additives (e.g. chlorine and copper) that are added to the water to maintain water quality standards...

  6. Impacts of groundwater metal loads from bedrock fractures on water quality of a mountain stream.

    Science.gov (United States)

    Caruso, Brian S; Dawson, Helen E

    2009-06-01

    Acid mine drainage and metal loads from hardrock mines to surface waters is a significant problem in the western USA and many parts of the world. Mines often occur in mountain environments with fractured bedrock aquifers that serve as pathways for metals transport to streams. This study evaluates impacts from current and potential future groundwater metal (Cd, Cu, and Zn) loads from fractures underlying the Gilt Edge Mine, South Dakota, on concentrations in Strawberry Creek using existing flow and water quality data and simple mixing/dilution mass balance models. Results showed that metal loads from bedrock fractures to the creek currently contribute water quality is achieved upstream in Strawberry Creek, fracture metal loads would be water quality standards exceedances once groundwater with elevated metals concentrations in the aquifer matrix migrates to the fractures and discharges to the stream. Potential future metal loads from an upstream fracture would contribute a small proportion of the total load relative to current loads in the stream. Cd has the highest stream concentrations relative to standards. Even if all stream water was treated to remove 90% of the Cd, the standard would still not be achieved. At a fracture farther downstream, the Cd standard can only be met if the upstream water is treated achieving a 90% reduction in Cd concentrations and the median stream flow is maintained.

  7. Comparison Between Water Quality Index (WQI) and Biological Water Quality Index (BWQI) for Water Quality Assessment: Case Study of Melana River, Johor

    International Nuclear Information System (INIS)

    Nor Zaiha Arman; Mohd Ismid Mohd Said; Shamila Azman; Muhammad Hazim Mat Hussin

    2013-01-01

    A study of water quality in Melana River, Johor was carried out in three consecutive months (March - May 2012). This study aims to determine the comparative results through biological monitoring as well as conventional method (physical and chemical analysis). Assessment is carried out through collection and identification of the biological indicator which comprises of macro benthos based on Biological Water Quality Index (BWQI). Comparison was done based on two methods namely invertebrate analysis and also laboratory analysis. For invertebrate analysis, Melana River consist of three types of Family groups namely Nymphs, Larvae and Molluscs. The result for Water Quality Index (WQI) and also Biological Water Quality Index (BWQI) analysis showed that the level of Melana River is polluted and classified in Class III. This study shows that even though different methods were used, the similar results were obtained for both rivers and can be applied to any river to identify their level of cleanliness. (author)

  8. Influence of mining activities in the North of Potosi, Bolivia on the water quality of the Chayanta River, and its consequences.

    Science.gov (United States)

    Rojas, Jenny C; Vandecasteele, Carlo

    2007-09-01

    Mining activity in the North of Potosi (Siglo XX mine, Ingenio Catavi-Siglo XX, Pucro mine and Colquechaca mine) produces minewater containing high concentrations of heavy metals such as As (0.02-34 mg/l), Cd (45-11,600 microg/l), Cu (0.35-32 mg/l), Fe (42-1,010 mg/l), Pb(33-3,130 microg/l), Ni(20-4,320 microg/l), and Zn (1.1-485 mg/l), that exceed considerably the limit values. The rivers in the North of Potosi (Katiri and Pongoma) that do not receive minewater contain clear water with rather low heavy metal concentrations. These rivers and also other rivers contaminated with minewater, are tributaries of the Chayanta River that transports water with a high concentration of heavy metals such as As (6-24 microg/l), Cd (260-2,620 microg/l), Cu (205-812 microg/l), Pb(10-21 microg/l) and Ni(110-332 microg/l). These elements result from mining activity, as indicated by a comparison with rivers not contaminated by minewater discharges. Water of the Chayanta River, used all year long by the population of Quila Quila, (a village situated at about 75 km from the mining centers), for the irrigation of crops such as potato, maize and broad bean, contains heavy metal concentrations exceeding for several elements the guidelines for irrigation. As drinking water the population of Quila Quila consumes spring water with a generally acceptable heavy metal concentration, as well as infiltrated water of Chayanta River (which is also used in animal drinking troughs) with a high concentration of Cd (23-63 microg/l), exceeding the limit value for drinking water. The metal concentration is significantly lower in the infiltrated water than in the water of Chayanta River. Some technological solutions are suggested to improve the quality of the water used. Surveys carried out on inhabitants of the region, showed that many people present health problems, probably to be attributed to the bad quality of the water they consume and use for irrigation.

  9. Water-quality characteristics of quaternary unconsolidated-deposit aquifers and lower tertiary aquifers of the Bighorn Basin, Wyoming and Montana, 1999-2001

    Science.gov (United States)

    Bartos, Timothy T.; Eddy-Miller, Cheryl A.; Norris, Jody R.; Gamper, Merry E.; Hallberg, Laura L.

    2004-01-01

    As part of the Yellowstone River Basin National Water Quality Assessment study, ground-water samples were collected from Quaternary unconsolidated-deposit and lower Tertiary aquifers in the Bighorn Basin of Wyoming and Montana from 1999 to 2001. Samples from 54 wells were analyzed for physical characteristics, major ions, trace elements, nutrients, dissolved organic carbon, radionuclides, pesticide compounds, and volatile organic compounds (VOCs) to evaluate current water-quality conditions in both aquifers. Water-quality samples indicated that waters generally were suitable for most uses, and that natural conditions, rather than the effects of human activities, were more likely to limit uses of the waters. Waters in both types of aquifers generally were highly mineralized, and total dissolved-solids concentrations frequently exceeded the U.S. Environmental Protection Agency (USEPA) Secondary Maximum Contaminant Level (SMCL) of 500 milligrams per liter (mg/L). Because of generally high mineralization, waters from nearly one-half of the samples from Quaternary aquifers and more than one-half of the samples from lower Tertiary aquifers were not classified as fresh (dissolved-solids concentration were not less than 1,000 mg/L). The anions sulfate, fluoride, and chloride were measured in some ground-water samples at concentrations greater than SMCLs. Most waters from the Quaternary aquifers were classified as very hard (hardness greater than 180 mg/L), but hardness varied much more in waters from the lower Tertiary aquifers and ranged from soft (less than 60 mg/L) to very hard (greater than 180 mg/L). Major-ion chemistry varied with dissolved-solids concentrations. In both types of aquifers, the predominant anion changes from bicarbonate to sulfate with increasing dissolved-solids concentrations. Samples from Quaternary aquifers with fresh waters generally were calcium-bicarbonate, calcium-sodium-bicarbonate, and calcium-sodium-sulfate-bicarbonate type waters, whereas

  10. Water quality indexing for predicting variation of water quality over time

    African Journals Online (AJOL)

    PPoonoosamy

    water, and expressing them to non-technical people may not always be easy. ... parameters for a case study; dissolved oxygen, pH, total coliforms, ... Several national agencies responsible for water supply and water pollution, have strongly .... good quality and required proper treatment if it were to be consumed as potable.

  11. Summary of surface-water-quality data collected for the Northern Rockies Intermontane Basins National Water-Quality Assessment Program in the Clark Fork-Pend Oreille and Spokane River basins, Montana, Idaho, and Washington, water years 1999-2001

    Science.gov (United States)

    Beckwith, Michael A.

    2003-01-01

    Water-quality samples were collected at 10 sites in the Clark Fork-Pend Oreille and Spokane River Basins in water years 1999 – 2001 as part of the Northern Rockies Intermontane Basins (NROK) National Water-Quality Assessment (NAWQA) Program. Sampling sites were located in varied environments ranging from small streams and rivers in forested, mountainous headwater areas to large rivers draining diverse landscapes. Two sampling sites were located immediately downstream from the large lakes; five sites were located downstream from large-scale historical mining and oreprocessing areas, which are now the two largest “Superfund” (environmental remediation) sites in the Nation. Samples were collected during a wide range of streamflow conditions, more frequently during increasing and high streamflow and less frequently during receding and base-flow conditions. Sample analyses emphasized major ions, nutrients, and selected trace elements. Streamflow during the study ranged from more than 130 percent of the long-term average in 1999 at some sites to 40 percent of the long-term average in 2001. River and stream water in the study area exhibited small values for specific conductance, hardness, alkalinity, and dissolved solids. Dissolved oxygen concentrations in almost all samples were near saturation. Median total nitrogen and total phosphorus concentrations in samples from most sites were smaller than median concentrations reported for many national programs and other NAWQA Program study areas. The only exceptions were two sites downstream from large wastewater-treatment facilities, where median concentrations of total nitrogen exceeded the national median. Maximum concentrations of total phosphorus in samples from six sites exceeded the 0.1 milligram per liter threshold recommended for limiting nuisance aquatic growth. Concentrations of arsenic, cadmium, copper, lead, mercury, and zinc were largest in samples from sites downstream from historical mining and ore

  12. National Recommended Water Quality Criteria

    Data.gov (United States)

    U.S. Environmental Protection Agency — The National Recommended Water Quality Criteria is a compilation of national recommended water quality criteria for the protection of aquatic life and human health...

  13. Risk-based water resources planning: Coupling water allocation and water quality management under extreme droughts

    Science.gov (United States)

    Mortazavi-Naeini, M.; Bussi, G.; Hall, J. W.; Whitehead, P. G.

    2016-12-01

    The main aim of water companies is to have a reliable and safe water supply system. To fulfil their duty the water companies have to consider both water quality and quantity issues and challenges. Climate change and population growth will have an impact on water resources both in terms of available water and river water quality. Traditionally, a distinct separation between water quality and abstraction has existed. However, water quality can be a bottleneck in a system since water treatment works can only treat water if it meets certain standards. For instance, high turbidity and large phytoplankton content can increase sharply the cost of treatment or even make river water unfit for human consumption purposes. It is vital for water companies to be able to characterise the quantity and quality of water under extreme weather events and to consider the occurrence of eventual periods when water abstraction has to cease due to water quality constraints. This will give them opportunity to decide on water resource planning and potential changes to reduce the system failure risk. We present a risk-based approach for incorporating extreme events, based on future climate change scenarios from a large ensemble of climate model realisations, into integrated water resources model through combined use of water allocation (WATHNET) and water quality (INCA) models. The annual frequency of imposed restrictions on demand is considered as measure of reliability. We tested our approach on Thames region, in the UK, with 100 extreme events. The results show increase in frequency of imposed restrictions when water quality constraints were considered. This indicates importance of considering water quality issues in drought management plans.

  14. British Columbia water quality guidelines (criteria): 1998 edition

    Energy Technology Data Exchange (ETDEWEB)

    Nagpal, N.K.; Pommen, L.W.; Swain, L.G.

    1998-08-01

    British Columbia has developed water quality guidelines in order that water quality data can be assessed and site-specific water quality objectives can be prepared. The guidelines provide benchmarks for the assessment of water quality and setting water quality objectives. Guidelines are provided to protect the following six major water uses: drinking water, aquatic life, wildlife, recreation/aesthetics, agriculture, and industrial. Water quality encompasses the physical, chemical and biological quality of the water, sediment and biota. Among other quality criteria the guide provides maximum approved concentrations for nitrogen, aluminum, copper, cyanide, lead, mercury, and molybdenum. 30 tabs.

  15. Influence of the water quality improvement on fish population in the Seine River (Paris, France) over the 1990-2013 period.

    Science.gov (United States)

    Azimi, Sam; Rocher, Vincent

    2016-01-15

    Over the past 20 years, rules concerning wastewater treatment and quality of water discharged into the environment have changed considerably. Huge investments have been made in Paris conurbation to improve waste water treatment processes in accordance with the European Water Framework Directive. The interdepartmental association for sewage disposal in Paris conurbation (SIAAP) carried out a monitoring of both fish assemblages and water quality in the Seine River around the Paris conurbation (France) since the early 90's. The main goal of this study was to estimate the influence of the water quality improvement on fish. On one hand, the study confirmed the improvement of the water quality (dissolved oxygen, ammonia nitrogen, organic matter) in the Seine River, mostly focused downstream of Paris conurbation. On the other hand, an increase of the number of species occurred from 1990 (14) to 2013 (21). Moreover, changes in the river Seine assemblages happened over that 23-year period with emergence of sensitive species (ruffe, scalpin and pike-perch). The improvement of the water quality was also reported with respect to the Index of Biotic Integrity (IBI). However, no variation of pollutant concentrations in roach, eel and chub muscles has been observed. An exceedance of the environmental quality standards have even been reported all over this period as regards mercury and organochlorine.

  16. Hydrodynamic modelling of the influence of stormwater and combined sewer overflows on receiving water quality: Benzo(a)pyrene and copper risks to recreational water.

    Science.gov (United States)

    Björklund, Karin; Bondelind, Mia; Karlsson, Anna; Karlsson, Dick; Sokolova, Ekaterina

    2018-02-01

    The risk from chemical substances in surface waters is often increased during wet weather, due to surface runoff, combined sewer overflows (CSOs) and erosion of contaminated land. There are strong incentives to improve the quality of surface waters affected by human activities, not only from ecotoxicity and ecosystem health perspectives, but also for drinking water and recreational purposes. The aim of this study is to investigate the influence of urban stormwater discharges and CSOs on receiving water in the context of chemical health risks and recreational water quality. Transport of copper (Cu) and benzo[a]pyrene (BaP) in the Göta River (Sweden) was simulated using a hydrodynamic model. Within the 16 km modelled section, 35 CSO and 16 urban stormwater point discharges, as well as the effluent from a major wastewater treatment plant, were included. Pollutant concentrations in the river were simulated for two rain events and investigated at 13 suggested bathing sites. The simulations indicate that water quality guideline values for Cu are exceeded at several sites, and that stormwater discharges generally give rise to higher Cu and BaP concentrations than CSOs. Due to the location of point discharges and the river current inhibiting lateral mixing, the north shore of the river is better suited for bathing. Peak concentrations have a short duration; increased concentrations of the pollutants may however be present for several days after a rain event. Monitoring of river water quality indicates that simulated Cu and BaP concentrations are in the same order of magnitude as measured concentrations. It is concluded that hydrodynamic modelling is a useful tool for identifying suitable bathing sites in urban surface waters and areas of concern where mitigation measures should be implemented to improve water quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. water quality determination of rainwater harvesting birkas in harshin

    African Journals Online (AJOL)

    Osondu

    2012-03-14

    Mar 14, 2012 ... samples, 78.7 % exceed the standard COD value for surface water. Birkas with coliform ... Keywords: Harvesting, Birka, Physical, Chemical, Microbiology. Around 1.1 .... disinfection of water with lower pH value of less than 8 ...

  18. An assessment of quality of water from boreholes in Bindura District, Zimbabwe

    Science.gov (United States)

    Hoko, Zvikomborero

    This study assessed the water quality of 144 boreholes in Bindura District in Mashonaland Province of Zimbabwe as part of a borehole rehabilitation project implemented by a local NGO. In previous studies it has been observed that some boreholes are not used for domestic purposes because of consumer perceived poor water quality. Consequently, communities have resorted to unsafe alternative water sources thus creating health risks. The study was carried out in June 2005. The objectives of the study were to assess the levels of parameters associated with the aesthetics of the water and to compare them with guideline values for drinking water. The study also investigated the relationship between some of the measured water quality and the consumer perceived water quality. Measured water quality parameters included pH, temperature, electrical conductivity (EC), turbidity, calcium (Ca), magnesium (Mg) and iron (Fe). All parameters were measured in the field except Ca, Mg and Fe, which were measured in a laboratory using a spectrophotometer. Consumer perceptions on water quality were investigated through interviews with the consumer community. Turbidity was found to be 0.75-428(20.8 ± 59.2; n = 144) NTU, pH 5.7-9.3 (6.88 ± 0.46; n = 144), temperature 18-26.8 (22.6 ± 2.1; n = 144) °C. EC 26-546 (199 ± 116; n = 144) μS/cm, Ca 6-71.6 (26.9 ± 14.1; n = 81) mg/l, Mg 1.2-49.6 (12.3 ± 10.0; n = 81) mg/l and Fe 0.08-9.60 (0.56 ± 1.15; n = 81) mg/l. Some 23% of the samples had pH outside the recommended range of 6.5-8.5, whilst 59% of the samples had turbidity values exceeding the 5NTU WHO limit. For EC, all samples had values less than the WHO derived limit of 1380 μS/cm. All Ca and magnesium values were within the common and recommended levels of 100 mg/l and 70 mg/l respectively. Iron had values greater than the WHO and SAZ limit of 0.3 mg/l in 36% of the samples. Water quality was deemed satisfactory for taste and soap consumption by 95% and 72% of the respondents

  19. The effects of season and sand mining activities on thermal regime and water quality in a large shallow tropical lake.

    Science.gov (United States)

    Sharip, Zati; Zaki, Ahmad Taqiyuddin Ahmad

    2014-08-01

    Thermal structure and water quality in a large and shallow lake in Malaysia were studied between January 2012 and June 2013 in order to understand variations in relation to water level fluctuations and in-stream mining activities. Environmental variables, namely temperature, turbidity, dissolved oxygen, pH, electrical conductivity, chlorophyll-A and transparency, were measured using a multi-parameter probe and a Secchi disk. Measurements of environmental variables were performed at 0.1 m intervals from the surface to the bottom of the lake during the dry and wet seasons. High water level and strong solar radiation increased temperature stratification. River discharges during the wet season, and unsustainable sand mining activities led to an increased turbidity exceeding 100 NTU, and reduced transparency, which changed the temperature variation and subsequently altered the water quality pattern.

  20. Putting people into water quality modelling.

    Science.gov (United States)

    Strickert, G. E.; Hassanzadeh, E.; Noble, B.; Baulch, H. M.; Morales-Marin, L. A.; Lindenschmidt, K. E.

    2017-12-01

    Water quality in the Qu'Appelle River Basin, Saskatchewan is under pressure due to nutrient pollution entering the river system from major cities, industrial zones and agricultural areas. Among these stressors, agricultural activities are basin-wide; therefore, they are the largest non-point source of water pollution in this region. The dynamics of agricultural impacts on water quality are complex and stem from decisions and activities of two distinct stakeholder groups, namely grain farmers and cattle producers, which have different business plans, values, and attitudes towards water quality. As a result, improving water quality in this basin requires engaging with stakeholders to: (1) understand their perspectives regarding a range of agricultural Beneficial Management Practices (BMPs) that can improve water quality in the region, (2) show them the potential consequences of their selected BMPs, and (3) work with stakeholders to better understand the barriers and incentives to implement the effective BMPs. In this line, we held a series of workshops in the Qu'Appelle River Basin with both groups of stakeholders to understand stakeholders' viewpoints about alternative agricultural BMPs and their impact on water quality. Workshop participants were involved in the statement sorting activity (Q-sorts), group discussions, as well as mapping activity. The workshop outcomes show that stakeholder had four distinct viewpoints about the BMPs that can improve water quality, i.e., flow and erosion control, fertilizer management, cattle site management, as well as mixed cattle and wetland management. Accordingly, to simulate the consequences of stakeholder selected BMPs, a conceptual water quality model was developed using System Dynamics (SD). The model estimates potential changes in water quality at the farm, tributary and regional scale in the Qu'Appelle River Basin under each and/or combination of stakeholder selected BMPs. The SD model was then used for real

  1. Hydrogeology and water quality of the Pepacton Reservoir Watershed in southeastern New York. Part 4. Quantity and quality of ground-water and tributary contributions to stream base flow in selected main-valley reaches

    Science.gov (United States)

    Heisig, Paul M.

    2004-01-01

    constituents such as nutrients.The total gain in streamflow from the upper end to the lower end of each valley reach was positively correlated with the annual-runoff volume calculated for the drainage area of the reach. This correlation was not greatly affected by the proportions of ground-water and tributary contributions, except at two reaches that lost much of their tributary flow after the July survey. In these reaches, the gain in total streamflow showed a negative departure from this correlation.Calculated ground-water discharge exceeded the total tributary inflow in each valley reach in both surveys. Groundwater discharge, as a percentage of streamflow gain, was greatest among reaches in wide valleys (about 1,000-ft wide valley floors) that contain permeable valley fill because tributary flows were seasonally diminished or absent as a result of streambed infiltration. Tributary inflows, as a percentage of streamflow gain, were highest in reaches of narrow valleys (200-500-ft wide valley floors) with little valley fill and high annual runoff.Stream-water and ground-water quality were characterized by major-ion type as either (1) naturally occurring water types, relatively unaffected by road salt, or (2) road-salt-affected water types having elevated concentrations of chloride and sodium. The naturally occurring waters were typically the calcium-bicarbonate type, but some contained magnesium and (or) sulfate as secondary ions. Magnesium concentration in base flow is probably related to the amount of till and its carbonate content, or to the amount of lime used on cultivated fields within a drainage area. Sulfate was a defining ion only in dilute waters (with short or unreactive flow paths) with low concentrations of bicarbonate. Nearly all tributary waters were classified as naturally occurring water types.Ground-water discharge from nearly all valley reaches that contain State or county highways had elevated concentrations of chloride and sodsodium. The mean chloride

  2. Heavy Water Quality Management in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ho Chul; Lee, Mun; Kim, Hi Gon; Park, Chan Young; Choi, Ho Young; Hur, Soon Ock; Ahn, Guk Hoon

    2008-12-15

    Heavy water quality management in the reflector tank is a very important element to maintain the good thermal neutron flux and to ensure the performance of reflector cooling system. This report is written to provide a guidance for the future by describing the history of the heavy water quality management during HANARO operation. The heavy water quality in the reflector tank has been managed by measuring the electrical conductivity at the inlet and outlet of the ion exchanger and by measuring pH of the heavy water. In this report, the heavy water quality management activities performed in HANARO from 1996 to 2007 ere described including a basic theory of the heavy water quality management, exchanging history of used resin in the reflector cooling system, measurement data of the pH and the electrical conductivity, and operation history of the reflector cooling system.

  3. Development of specific water quality index for water supply in Thailand

    Directory of Open Access Journals (Sweden)

    Chaiwat Prakirake

    2009-01-01

    Full Text Available In this study, the specific water quality index for assessing water quality in terms of water supply (WSI usage has been developed by using Delphi technique and its application in Thai rivers is proposed. The thirteen parameters including turbidity, DO, pH, NO3-N, TDS, FCB, Fe, color, BOD, Mn, NH3-N, hardness, and total PO4-P are employed for the estimation of water quality. The sub-index transformation curves are established for each variable to assess the variation in water quality level. An appropriate function to aggregate overall sub-indices was weighted Solway function that provided reasonableresults for reducing ambiguous and eclipsing effects for high and slightly polluted samples. The developed WSI couldbe applied to measure water quality into 5 levels - very good (85-100; good (80-<85; average (65-<80; poor (40-<65and very poor (<40. The proposed WSI could be used for evaluating water quality in terms of water supply. In addition, it could be used for analyzing long-term trait analysis and comparing water quality among different reaches of rivers or between different watersheds.

  4. Water Quality Degradation and Management Strategies for Swine and Rice Farming Wastewater in the Tha Chin River Basin

    Directory of Open Access Journals (Sweden)

    Abigail Henderson

    2017-11-01

    Full Text Available Water quality in the Tha Chin River regularly exceeds biological oxygen demand (BOD standards of Thailand’s Enhancement and Conservation of National Environmental Quality Act. This study quantified the BOD loading from rice cultivation and swine farming to the Tha Chin River using effluent data and procedures from the Pollution Control Department (PCD, geospatial land-use maps from the Land Development Department, and water quality data from the Ministry of Natural Resources and the Environment. It was determined that the BOD loading was 12 tons/day from swine farming in 2015 and 52 tons/day, on average, from rice farming between 2002 and 2011. Technology-specific, community-scale wastewater management strategies were recommended for both industries: feasibility studies revealed 66 potential sites for constructed wetland implementation and 7 subdistricts suitable for biogas network pipelines. It was determined that if these projects are implemented in conjunction, the BOD would be reduced by 6% (0.3 mg/L in the entire river or 11% (0.5 mg/L at the three water quality monitoring stations proximate to swine farms. These reductions would have a substantial effect on the water quality of the Tha Chin River, and governmental agencies such as the PCD should strongly consider subsidization and implementation of these projects.

  5. 40 CFR 141.208 - Special notice for exceedance of the SMCL for fluoride.

    Science.gov (United States)

    2010-07-01

    ... exceed 2 mg/l because of this cosmetic dental problem. For more information, please call [name of water system contact] of [name of community water system] at [phone number]. Some home water treatment units... drinking water provided by your community water system [name] has a fluoride concentration of [insert value...

  6. Water quality and landscape processes of four watersheds in eastern Puerto Rico

    Science.gov (United States)

    Murphy, Sheila F.; Stallard, Robert F.; Contributions by Buss, Heather L.; Gould, William A.; Larsen, Matthew C.; Liu, Zhigang; Martinuzzi, Sebastian; Pares-Ramos, Isabel K.; White, Arthur F.; Zou, Xiaoming

    2012-01-01

    storms. Nearly 5,000 routine and event samples were analyzed for parameters that allow determination of denudation rates based on suspended and dissolved loads; 860 of these samples were analyzed for a comprehensive suite of chemical constituents. The rivers studied are generally similar in water-quality characteristics, and windward or leeward aspect appears to exert a stronger influence on water quality than geology or land cover. Of samples analyzed for comprehensive chemistry and for sediment, 543 were collected at runoff rates greater than 1 millimeter per hour, 256 at rates exceeding 10 millimeters per hour, and 3 at rates exceeding 90 millimeters per hour. Streams have rarely been sampled during events with such high runoff rates. Rates of physical and chemical weathering are especially high, and physical denudation rates, forested watersheds included, are considerably greater than is expected for a steady-state system. The elevated physical erosion drives an increased particulate organic carbon flux, one that is large, important to the carbon cycle, and sustainable, because soil-carbon regeneration is rapid. The 15-year Water, Energy, and Biogeochemical Budget dataset, which includes discharge, field parameters, suspended sediment, major cations and anions, and nutrients, is available from the U.S. Geological Survey's National Water Information System (http://waterdata.usgs.gov/nwis). The dataset provides a baseline for characterizing future environmental change and will improve our understanding of the interdependencies of land, water, and biological resources and their responses to changes in climate and land use. Because eastern Puerto Rico resembles many tropical regions in terms of geology and patterns of development, implications from this study are transferable to other tropical regions facing deforestation, rapid land-use change, and climate change.

  7. The assessment of khorramabad River water quality with National Sanitation Foundation Water Quality Index and Zoning by GIS

    Directory of Open Access Journals (Sweden)

    abdolrahim Yusefzadeh

    2014-03-01

    Full Text Available Background : Rivers are a fraction of flowing waters in the worlds and one of the important sources of water for different consumptions such as agricultural, drinking and industrial uses. The aim of this study was to assess water quality of the Khorramrood River in Khorramabad by NSFWQI index. Materials and Methods: In this cross-sectional study, quality parameters needed for NASWQI index calculation such as BOD5, dissolved oxygen (DO, total nitrate, fecal coliform, pH, total phosphate, temperature, turbidity and total suspended solids content were measured for six months (from July to December 2012using standard methods at six selected stations. The river zoning conducted by GIS software. Results: According to the results obtained through this study, the highest and the lowest water quality value was observed in stations 1 and 6 with NSFWQI indexes 82 water with good quality, 42 water with bad quality, respectively. With moving toward last station (from 1 to 6 station water pollution increased. Conclusion: Results of the study indicated that water quality index NSFWQI is a good index to identify the effect of polluter sources on the river water. Based on the average of the index NSFWQI, water quality in station one was good, in the second, third and fourth stations were mediocre and the fifth and sixth stations had bad quality. These results allow to make decisions about monitoring and controlling water pollution sources, as well as provide different efficient uses of it by relevant authorities.

  8. Investigation of water quality and aquatic-community structure in Village and Valley Creeks, City of Birmingham, Jefferson County, Alabama, 2000-01

    Science.gov (United States)

    McPherson, Ann K.; Abrahamsen, Thomas A.; Journey, Celeste A.

    2002-01-01

    The U.S. Geological Survey conducted a 16-month investigation of water quality, aquatic-community structure, bed sediment, and fish tissue in Village and Valley Creeks, two urban streams that drain areas of highly intensive residential, commercial, and industrial land use in Birmingham, Alabama. Water-quality data were collected between February 2000 and March 2001 at four sites on Village Creek, three sites on Valley Creek, and at two reference sites near Birmingham?Fivemile Creek and Little Cahaba River, both of which drain less-urbanized areas. Stream samples were analyzed for major ions, nutrients, fecal bacteria, trace and major elements, pesticides, and selected organic constituents. Bed-sediment and fish-tissue samples were analyzed for trace and major elements, pesticides, polychlorinated biphenyls, and additional organic compounds. Aquatic-community structure was evaluated by conducting one survey of the fish community and in-stream habitat and two surveys of the benthic-invertebrate community. Bed-sediment and fish-tissue samples, benthic-invertebrates, and habitat data were collected between June 2000 and October 2000 at six of the nine water-quality sites; fish communities were evaluated in April and May 2001 at the six sites where habitat and benthic-invertebrate data were collected. The occurrence and distribution of chemical constituents in the water column and bed sediment provided an initial assessment of water quality in the streams. The structure of the aquatic communities, the physical condition of the fish, and the chemical analyses of fish tissue provided an indication of the cumulative effects of water quality on the aquatic biota. Water chemistry was similar at all sites, characterized by strong calcium-bicarbonate component and magnesium components. Median concentrations of total nitrogen and total phosphorus were highest at the headwaters of Valley Creek and lowest at the reference site on Fivemile Creek. In Village Creek, median

  9. Estimates the Effects of Benthic Fluxes on the Water Quality of the Reservoir

    Science.gov (United States)

    Lee, H.; Huh, I. A.; Park, S.; Choi, J. H.

    2014-12-01

    nutrient concentration was compared with field collected data. The model results showed a good agreement with field measurements. From the model results, the followings are determined and discussed: (1) the role of benthic fluxes on the water quality of the reservoir (2) the extent of benthic fluxes to which the water quality exceeds the criteria.

  10. Hydrology and water-quality monitoring considerations, Jackpile uranium mine, northwestern New Mexico

    International Nuclear Information System (INIS)

    Zehner, H.H.

    1985-01-01

    The Jackpile Uranium Mine, which is on the Pueblo of Laguna in northwestern New Mexico was operated from 1953 to 1980. The small storage coefficients determined from three aquifer tests indicate that the Jackpile sandstone is a confined hydrologic system throughout much of the mine area. Sediment from the Rio Paguate has nearly filled the Paguate Reservoir near Laguna since its construction in 1940. The mean concentrations of uranium, Ra-226, and other trace elements generally were less than permissible limits established in national drinking water regulations or New Mexico State groundwater regulations. No individual surface water samples collected upstream from the mine contained concentrations of Ra-226 in excess of the permissible limits. Ra-226 concentrations in many individual samples collected from the Rio Paguate from near the mouth of the Rio Moquino to the sampling sites along the down-stream reach of the Rio Paguate, however, exceeded the recommended permissible concentration of Ra-226 for public drinking water supplies. After reclamation, most of the shallow groundwater probably will discharge to the natural stream channels draining the mine area. Groundwater quality may be monitored as: (1) Limited monitoring, in which only the change in water quality is determined as the groundwater flows from the mine; or (2) thorough monitoring, in which specific sources of possible contaminants are described

  11. The application of national and international guidelines in the assessment of the radiological quality of drinking water

    International Nuclear Information System (INIS)

    Cooper, M.B.

    1998-01-01

    Full text: The World Health Organisation has developed international guidelines for drinking water quality which define acceptable levels of contaminants including radionuclides. These guidelines were the basis for the recent Australian water quality guidelines developed by the National Health and Medical Research Council in conjunction with the Agriculture and Resource Management Council of Australia and New Zealand. This paper highlights some of the practical problems in applying the guidelines in the assessment of groundwater supplies in Australia where the radium content of the water may be significant and the presence of other dissolved minerals can create difficulties in the analytical procedures. Generally, screening methods are based on the determination of gross alpha and beta radioactivity and the limitations of these techniques are discussed. The issue is also addressed as to the appropriate actions in the event of guideline values for specific radionuclides being exceeded

  12. Integrating Product Water Quality Effects In Holistic Assessments Of Water Systems

    OpenAIRE

    Rygaard, Martin

    2011-01-01

    While integrated assessments of sustainability of water systems are largely focused on quantity issues, chemical use, and energy consumption, effects of the supplied water quality are often overlooked. Drinking water quality affects corrosion rates, human health, applicability of water and aesthetics. Even small changes in the chemical composition of water may accumulate large impacts on city scale. Here, a method for integrated assessment of water quality is presented. Based on dose-response...

  13. Achieving the sustainable development goals: a case study of the complexity of water quality health risks in Malawi.

    Science.gov (United States)

    Holm, Rochelle; Wandschneider, Philip; Felsot, Allan; Msilimba, Golden

    2016-07-15

    Suppose 35 % of the households with children under 5 years of age in a low-income suburban neighborhood in a developing country have diarrhea where improved water sources are available. Clearly, something is amiss-but what? In addition to focusing on the need to examine water quality among water sources that meet the 'improved' category when assessing health risk, the relative importance of the range of transmission routes for diarrhea is unknown. In Malawi, relevant baseline data affecting human health are simply not available, and acquiring data is hampered by a lack of local analytical capacity for characterizing drinking water quality. The objective of this work is to develop a risk communication program with partnership among established regional development professionals for effectively meeting the sustainable development goals. A field study was conducted in the city of Mzuzu, Malawi, to study water quality (total coliform and Escherichia coli) and human dimensions leading to development of a public health risk communication strategy in a peri-urban area. A structured household questionnaire was administered to adult residents of 51 households, encompassing 284 individuals, who were using the 30 monitored shallow wells. The water quality data and human dimension questionnaire results were used to develop a household risk presentation. Sixty-seven percent and 50 % of well water and household drinking water samples, respectively, exceeded the WHO health guideline of zero detections of E. coli. Technology transfer was advanced by providing knowledge through household risk debriefing/education, establishing a water quality laboratory at the local university, and providing training to local technicians. Communicating the science of water quality and health risks in developing countries requires sample collection and analysis by knowledgeable personnel trained in the sciences, compiling baseline data, and, ultimately, an effective risk presentation back to

  14. Management of drinking water quality in Pakistan

    International Nuclear Information System (INIS)

    Javed, A.A.

    2003-01-01

    Drinking water quality in both urban and rural areas of Pakistan is not being managed properly. Results of various investigations provide evidence that most of the drinking water supplies are faecally contaminated. At places groundwater quality is deteriorating due to the naturally occurring subsoil contaminants, or by anthropogenic activities. The poor bacteriological quality of drinking water has frequently resulted in high incidence of water borne diseases while subsoil contaminants have caused other ailments to consumers. This paper presents a detailed review of drinking water quality in the country and the consequent health impacts. It identifies various factors contributing to poor water quality and proposes key actions required to ensure safe drinking water supplies to consumers. (author)

  15. Evaluation of water quality by chlorophyll and dissolved oxygen

    International Nuclear Information System (INIS)

    Latif, Z.; Tasneem, M.A.; Javed, T.; Butt, S.; Fazil, M.; Ali, M.; Sajjad, M.I.

    2002-01-01

    This paper focuses on the impact of Chlorophyll and dissolved Oxygen on water quality. Kalar Kahar and Rawal lakes were selected for this research. A Spectrophotometer was used for determination of Chlorophyll a, Chlorophyll b, Chlorophyll c and Pheophytin pigment. Dissolved Oxygen was measured in situ, using dissolved oxygen meter. The gamma O/sup 18/ of dissolved Oxygen, like concentration, is affected primarily by three processes: air water gas exchange, respiration and photosynthesis; gamma O/sup 18/ is analyzed on isotopic ratio mass spectrometer, after extraction of dissolved Oxygen from water samples, followed by purification and conversion into CO/sub 2/. Rawal lake receives most of the water from precipitation during monsoon period and supplemented by light rains in December and January. This water is used throughout the year for drinking purposes in Rawalpindi city. The water samples were collected from 5, 7.5, and 10 meters of depth for seasonal studies of physiochemical and isotopic parameters of water and dissolved Oxygen. Optimum experimental conditions for delta O/sup 18/ analysis of dissolved Oxygen from aqueous samples were determined. Stratification of dissolved Oxygen was observed in Rawal Lake before rainy season in summer. The water quality deteriorates with depth, because the respiration exceeds the photosynthesis and gas exchange. The concentration and delta O/sup 18/ of dissolved Oxygen show no variation with depth in 1998 winter sampling. Kalar Kahar lake gets water from springs, which are recharged by local rains on the nearby mountains. It is a big lake, with shallow and uniform depth of nearly 1.5 meters. A lot of vegetation can be seen on the periphery of the lake. Algae have grown on the floor of the lake Water samples were collected from the corner with large amount of vegetation and from the center of the lake for dissolved Oxygen and Chlorophyll measurements. Chlorophyll result shows that Kalar Kahar Lake falls in Eutrophic category

  16. Hydrochemistry and water quality of Rewalsar Lake of Lesser Himalaya, Himachal Pradesh, India.

    Science.gov (United States)

    Gaury, Pawan Kumar; Meena, Narendra Kumar; Mahajan, A K

    2018-01-17

    The present research is to study hydrochemistry and water quality of Rewalsar Lake during pre-monsoon, monsoon, and post-monsoon seasons. The Ca 2+ and Na + are observed as the dominant cations from pre- to post-monsoon season. On the other hand, HCO 3 - and Cl - are observed dominant anions during pre-monsoon and monsoon seasons, whereas HCO 3 - and SO 4 2- during post-monsoon season. The comparison of alkaline earth metals with alkali metals and total cations (Tz + ) has specified that the carbonate weathering is the dominant source of major ions in the water of lake.  The HCO 3 - is noticed to be mainly originated from carbonate/calcareous minerals during monsoon and post-monsoon, but through silicate minerals during pre-monsoon.  The SO 4 2- in Rewalsar Lake is produced by the dissolution of calcite and dolomite etc. The alkali metals and Cl - in the lake can be attributed to the silicate weathering as well as halite dissolution and anthropogenic activities. Certain other parameters like NO 3 - , NH 4 + , F - , and Br - are mainly a result of anthropogenic activities. The alkaline earth metals are found to surpass over alkali metals, whereas weak acid (HCO 3 - ) exceed to strong acid (SO 4 2- ). The Piper diagram has shown Ca 2+ -HCO 3 - type of water during all the seasons. The water quality index has indicated that the water quality of the lake is unsuitable for drinking from pre- to post-monsoon. Several parameters like salinity index, sodium adsorption ratio, sodium percent, residual sodium carbonate, magnesium hazard etc. have revealed the water of Rewalsar Lake as suitable for irrigation.

  17. Drinking water quality assessment.

    Science.gov (United States)

    Aryal, J; Gautam, B; Sapkota, N

    2012-09-01

    Drinking water quality is the great public health concern because it is a major risk factor for high incidence of diarrheal diseases in Nepal. In the recent years, the prevalence rate of diarrhoea has been found the highest in Myagdi district. This study was carried out to assess the quality of drinking water from different natural sources, reservoirs and collection taps at Arthunge VDC of Myagdi district. A cross-sectional study was carried out using random sampling method in Arthunge VDC of Myagdi district from January to June,2010. 84 water samples representing natural sources, reservoirs and collection taps from the study area were collected. The physico-chemical and microbiological analysis was performed following standards technique set by APHA 1998 and statistical analysis was carried out using SPSS 11.5. The result was also compared with national and WHO guidelines. Out of 84 water samples (from natural source, reservoirs and tap water) analyzed, drinking water quality parameters (except arsenic and total coliform) of all water samples was found to be within the WHO standards and national standards.15.48% of water samples showed pH (13) higher than the WHO permissible guideline values. Similarly, 85.71% of water samples showed higher Arsenic value (72) than WHO value. Further, the statistical analysis showed no significant difference (Pwater for collection taps water samples of winter (January, 2010) and summer (June, 2010). The microbiological examination of water samples revealed the presence of total coliform in 86.90% of water samples. The results obtained from physico-chemical analysis of water samples were within national standard and WHO standards except arsenic. The study also found the coliform contamination to be the key problem with drinking water.

  18. IMPACT OF MUNICIPAL LANDFILL SITE ON WATER QUALITY IN THE WŁOSANKA STREAM

    Directory of Open Access Journals (Sweden)

    Włodzimierz Kanownik

    2016-09-01

    Full Text Available Hydrochemical research conducted in the years 2007–2010 comprised monitoring of the Włosanka stream waters and leachate waters from the municipal landfill in Kulerzów in the Malopolskie province. 16 leachate samples were collected from the container taking into consideration the vertical stratification of the quality and samples of water from the Włosanka stream in measurement points situated before and after the landfill. Concentrations of metals: calcium, magnesium, sodium, potassium, iron, manganese and heavy metals: chromium, zinc, copper, cadmium, nickel and lead were determined in the leachates and the stream water. Analysis of the studied metals in the leachates revealed that only potassium concentration exceeded the highest admissible value which is the condition of introducing sewage to water bodies or to soil. Water along the investigated reach of the Włosanka stream, both above and below the municipal landfill was of quality class 1. The landfill had no significant effect on the studied metal concentrations in the stream water – no statistically significant differences were registered between the concentrations of the studied metals (including heavy metals either in the point above or below the landfill. However, statistical tests comparing values of metal concentrations in the landfill leachates with the stream water revealed that the concentrations of 7 out of 12 tested metals were significantly higher in the leachates. Therefore, the landfill site monitoring should be continued, leachate waters should be collected in the container and supplied to the sewage treatment plant to prevent any threat to human life and health, or to the environment.

  19. Water quality and antibiotic resistance at beaches of the Galápagos Islands

    Directory of Open Access Journals (Sweden)

    Katie eOverbey

    2015-10-01

    Full Text Available Tourism and residential population growth are increasing on the Galápagos Islands, yet the effects of this growth on environmental quality are not well understood. The goal of this study was to characterize recreational water quality on one of the inhabited islands of the Galápagos (Isla San Cristóbal. Five beaches were sampled to allow a comparison between beaches with and without discharge of human sewage, and to help elucidate the effects of human activities in this unique environment. Enterococcus concentrations were quantified using IDEXX Enterolert® and antibiotic resistance testing was performed on Escherichia coli isolated by membrane filtration. All study beaches sometimes exceeded international guidelines for recreational water quality, and significantly higher Enterococcus concentrations were found near sites subjected to sewage discharge (p < 0.01. These sewage-impacted sites also had higher levels of antibiotic resistant E. coli, suggesting that human activities are increasing the levels of resistance that would occur naturally. Future studies should characterize the extent of this impact both spatially and temporally. The results of this study demonstrate that sewage can contribute antibiotic resistant bacteria to marine waters and suggest that human impacts in the Galápagos Islands extend to the environmental resistome. This impact is likely common in areas across the globe wherever tourists frequently carry and use antibiotics.

  20. R2 Water Quality Portal Monitoring Stations

    Science.gov (United States)

    The Water Quality Data Portal (WQP) provides an easy way to access data stored in various large water quality databases. The WQP provides various input parameters on the form including location, site, sampling, and date parameters to filter and customize the returned results. The The Water Quality Portal (WQP) is a cooperative service sponsored by the United States Geological Survey (USGS), the Environmental Protection Agency (EPA) and the National Water Quality Monitoring Council (NWQMC) that integrates publicly available water quality data from the USGS National Water Information System (NWIS) the EPA STOrage and RETrieval (STORET) Data Warehouse, and the USDA ARS Sustaining The Earth??s Watersheds - Agricultural Research Database System (STEWARDS).

  1. Association between perceptions of public drinking water quality and actual drinking water quality: A community-based exploratory study in Newfoundland (Canada).

    Science.gov (United States)

    Ochoo, Benjamin; Valcour, James; Sarkar, Atanu

    2017-11-01

    Studying public perception on drinking water quality is crucial for managing of water resources, generation of water quality standards, and surveillance of the drinking-water quality. However, in policy discourse, the reliability of public perception concerning drinking water quality and associated health risks is questionable. Does the public perception of water quality equate with the actual water quality? We investigated public perceptions of water quality and the perceived health risks and associated with the actual quality of public water supplies in the same communities. The study was conducted in 45 communities of Newfoundland (Canada) in 2012. First, a telephone survey of 100 households was conducted to examine public perceptions of drinking water quality of their respective public sources. Then we extracted public water quality reports of the same communities (1988-2011) from the provincial government's water resources portal. These reports contained the analysis of 2091 water samples, including levels of Disinfection By-Products (DBPs), nutrients, metals, ions and physical parameters. The reports showed that colour, manganese, total dissolved solids, iron, turbidity, and DBPs were the major detected parameters in the public water. However, the majority of the respondents (>56%) were either completely satisfied or very satisfied with the quality of drinking water. Older, higher educated and high-income group respondents were more satisfied with water quality than the younger, less educated and low-income group respondents. The study showed that there was no association with public satisfaction level and actual water quality of the respective communities. Even, in the communities, supplied by the same water system, the respondents had differences in opinion. Despite the effort by the provincial government to make the water-test results available on its website for years, the study showed existing disconnectedness between public perception of drinking water

  2. Investigation of Seasonal Variation of groundwater Quality in Jimeta ...

    African Journals Online (AJOL)

    Sadiq

    chloride exceeded the recommended standards of drinking water quality in the rainy season ... supply, hygiene and exacerbating public health (Okoro ... source for human consumption and changes in quality ... Nigeria, has affected the availability of groundwater due .... carried out to define the impacts of waste water on.

  3. Impact of RO-desalted water on distribution water qualities.

    Science.gov (United States)

    Taylor, J; Dietz, J; Randall, A; Hong, S

    2005-01-01

    A large-scale pilot distribution study was conducted to investigate the impacts of blending different source waters on distribution water qualities, with an emphasis on metal release (i.e. corrosion). The principal source waters investigated were conventionally treated ground water (G1), surface water processed by enhanced treatment (S1), and desalted seawater by reverse osmosis membranes (RO). Due to the nature of raw water quality and associated treatment processes, G1 water had high alkalinity, while S1 and RO sources were characterized as high sulfate and high chloride waters, respectively. The blending ratio of different treated waters determined the quality of finished waters. Iron release from aged cast iron pipes increased significantly when exposed to RO and S1 waters: that is, the greater iron release was experienced with alkalinity reduced below the background of G1 water. Copper release to drinking water, however, increased with increasing alkalinity and decreasing pH. Lead release, on the other hand, increased with increasing chloride and decreasing sulfate. The effect of pH and alkalinity on lead release was not clearly observed from pilot blending study. The flat and compact corrosion scales observed for lead surface exposed to S1 water may be attributable to lead concentration less than that of RO water blends.

  4. The Influence of Land-Use on the Quality of River Water

    Directory of Open Access Journals (Sweden)

    Andrius Litvinaitis

    2011-04-01

    Full Text Available Water protection is one of the most all-round regulated areas of the EU environmental control. In order to forecast the state of water ecosystem, it is necessary to evaluate changes in water quality. In order to evaluate the influence of changes in the land-use structure on Lithuanian fluvial water, the article looks into the most characteristic Lithuanian watersheds. To reflect the links between the water of all rivers in Lithuania and the land-use structure of their riverside watersheds, there were chosen eight watersheds of Lithuanian rivers as the object of research with the focus on the characteristics of biogenic substance migration in their water-sheds. Cartographic material CORINE (scale 1: 100,000 and CORINE land cover (1995 were used for evaluating changes in the land-use structure. Research contains land-use structure analysis on two spatial levels: 1 200 m zone from the river bed; 2 the entire watershed. A multiple dispersive analysis between nitrate concentrations and the structural elements of land-use has showed that reliability is absent although correlation coefficients exceed 0.63. This may be explained by a rather complex nitrogen circulation and its components including fixation (biologic and industrial, assimilation, nitrification, denitrification, inflow with rainfall, elution etc.Article in Lithuanian

  5. Water Quality Evaluation of Spring Waters in Nsukka, Nigeria ...

    African Journals Online (AJOL)

    Water qualities of springs in their natural state are supposed to be clean and potable. Although, water quality is not a static condition it depends on the local geology and ecosystem, as well as human activities such as sewage dispersion, industrial pollution, use of water bodies as a heat sink, and overuse. The activities on ...

  6. Chemical quality of surface waters and sedimentation in the Saline River basin, Kansas

    Science.gov (United States)

    Jordan, Paul Robert; Jones, B.F.; Petri, Lester R.

    1964-01-01

    This report gives the results of an investigation of the sediment and dissolved minerals that are transported by the Saline River and its tributaries. The Saline River basin is in western and central Kansas; it is long and narrow and covers 3,420 square miles of rolling plains, which is broken in some places by escarpments and small areas of badlands. In the western part the uppermost bedrock consists predominantly of calcareous elastic sedimentary rocks of continental origin of Pliocene age and in most places is covered by eolian deposits of Pleistocene and Recent age. In the central part the ex posed bedrock consists predominantly of calcareous marine sedimentary rocks of Late Cretaceous age. In the eastern part the exposed bedrock consists mainly of noncalcareous continental and littoral elastic sedimentary rocks of Early Cretaceous and Permian age. Fluvial deposits are in the valleys, and eolian materials are present over much of the uplands. Average precipitation increases rather uniformly from about 18 inches per year in the west to almost 28 inches per year in the east. Runoff is not affected by irrigation nor regulated by large structures, but it is closely related to precipitation. Average runoff increases from less than 0.2 inch per year in the west to more than 1.5 inches per year in the east. Aquifers of the flood-plain and terrace deposits and of the Cretaceous Dakota Sandstone are the major sources of ground-water accretion to the streams. In the upper reaches of the Saline River, the water is only slightly mineralized; during the period of record the specific conductance near Wakeeney never exceeded 750 micromhos per centimeter. In the lower reaches, however, the water is slightly mineralized during periods of high flow and is highly mineralized during periods of low flow; the specific conductance near Russell exceeded 1,500 micromhos per centimeter more than 80 percent of the time. Near Russell, near Wilson, and at Tescott the water is of the

  7. Improvements in Hudson River Water Quality Create the Need for a new Approach to Monitoring and Management

    Science.gov (United States)

    O'Mullan, G. D.; Juhl, A.; Sambrotto, R.; Lipscomb, J.; Brown, T.

    2008-12-01

    The lower Hudson River is a well-flushed temperate estuary that continues to support diverse wildlife populations although its shores are home to the nation's most populated metropolitan area. Data sets from the last hundred years clearly demonstrate extreme nutrient concentrations, pathogen loading, and periods of persistent hypoxia. These data also show a clear trend of steadily improving water quality in the last thirty years. Recent increases in recreational activity, expanded shoreline parks, and waterfront redevelopment, indicate the return of the people of New York to the River, concomitant with improved water quality. While mean seasonal water quality indicators are now often acceptable for large portions of the River, there remains a lack of information about the finer scale spatial and temporal variability of water quality. A new water quality sampling program was initiated in the Fall of 2006 to address this challenge. Monthly sampling cruises collected continuous underway surface measurements of hydrographic variables in parallel with discrete sampling for nutrients and microbiology. In general, these data indicate that mid-channel locations are often within acceptable water quality standards during dry weather, but that wet weather events deliver large quantities of sewage to the River, leading to short-term deterioration in water quality. In 2006-2007, only 6 of 27 sample sites had geometric mean values for Enterococcus , a sewage-indicating microorganism, that suggest consistently poor water quality. In contrast, single-day exceedances of EPA recommended guidelines for Enterococcus were found at 21 of the 27 sites. Although the mid-channel of the River was relatively homogenous with respect to sewage indicators, large changes were observed at tributary mixing interfaces and along the shallow edges of the River where human contact is most likely. The changing use of the River, together with new information about the importance of episodic and

  8. Methods for computing water-quality loads at sites in the U.S. Geological Survey National Water Quality Network

    Science.gov (United States)

    Lee, Casey J.; Murphy, Jennifer C.; Crawford, Charles G.; Deacon, Jeffrey R.

    2017-10-24

    The U.S. Geological Survey publishes information on concentrations and loads of water-quality constituents at 111 sites across the United States as part of the U.S. Geological Survey National Water Quality Network (NWQN). This report details historical and updated methods for computing water-quality loads at NWQN sites. The primary updates to historical load estimation methods include (1) an adaptation to methods for computing loads to the Gulf of Mexico; (2) the inclusion of loads computed using the Weighted Regressions on Time, Discharge, and Season (WRTDS) method; and (3) the inclusion of loads computed using continuous water-quality data. Loads computed using WRTDS and continuous water-quality data are provided along with those computed using historical methods. Various aspects of method updates are evaluated in this report to help users of water-quality loading data determine which estimation methods best suit their particular application.

  9. 9 CFR 108.11 - Water quality requirements.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Water quality requirements. 108.11... LICENSED ESTABLISHMENTS § 108.11 Water quality requirements. A certification from the appropriate water pollution control agency, that the establishment is in compliance with applicable water quality control...

  10. Mass imbalances in EPANET water-quality simulations

    Science.gov (United States)

    Davis, Michael J.; Janke, Robert; Taxon, Thomas N.

    2018-04-01

    EPANET is widely employed to simulate water quality in water distribution systems. However, in general, the time-driven simulation approach used to determine concentrations of water-quality constituents provides accurate results only for short water-quality time steps. Overly long time steps can yield errors in concentration estimates and can result in situations in which constituent mass is not conserved. The use of a time step that is sufficiently short to avoid these problems may not always be feasible. The absence of EPANET errors or warnings does not ensure conservation of mass. This paper provides examples illustrating mass imbalances and explains how such imbalances can occur because of fundamental limitations in the water-quality routing algorithm used in EPANET. In general, these limitations cannot be overcome by the use of improved water-quality modeling practices. This paper also presents a preliminary event-driven approach that conserves mass with a water-quality time step that is as long as the hydraulic time step. Results obtained using the current approach converge, or tend to converge, toward those obtained using the preliminary event-driven approach as the water-quality time step decreases. Improving the water-quality routing algorithm used in EPANET could eliminate mass imbalances and related errors in estimated concentrations. The results presented in this paper should be of value to those who perform water-quality simulations using EPANET or use the results of such simulations, including utility managers and engineers.

  11. 40 CFR 130.4 - Water quality monitoring.

    Science.gov (United States)

    2010-07-01

    ... QUALITY PLANNING AND MANAGEMENT § 130.4 Water quality monitoring. (a) In accordance with section 106(e)(1...; developing and reviewing water quality standards, total maximum daily loads, wasteload allocations and load... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Water quality monitoring. 130.4...

  12. Dam water quality study. Report to Congress

    International Nuclear Information System (INIS)

    1989-05-01

    The objective of the report is to identify water quality effects attributable to the impoundment of water by dams as required by Section 524 of the Water Quality Act of 1987. The document presents a study of water quality effects associated with impoundments in the U.S.A

  13. Collection of Condensate Water: Global Potential and Water Quality Impacts

    KAUST Repository

    Loveless, Kolin Joseph

    2012-12-28

    Water is a valuable resource throughout the world, especially in hot, dry climates and regions experiencing significant population growth. Supplies of fresh water are complicated by the economic and political conditions in many of these regions. Technologies that can supply fresh water at a reduced cost are therefore becoming increasingly important and the impact of such technologies can be substantial. This paper considers the collection of condensate water from large air conditioning units as a possible method to alleviate water scarcity issues. Using the results of a climate model that tested data collected from 2000 to 2010, we have identified areas in the world with the greatest collection potential. We gave special consideration to areas with known water scarcities, including the coastal regions of the Arabian Peninsula, Sub-Saharan Africa and South Asia. We found that the quality of the collected water is an important criterion in determining the potential uses for this water. Condensate water samples were collected from a few locations in Saudi Arabia and detailed characterizations were conducted to determine the quality of this water. We found that the quality of condensate water collected from various locations and types of air conditioners was very high with conductivities reaching as low as 18 μS/cm and turbidities of 0. 041 NTU. The quality of the collected condensate was close to that of distilled water and, with low-cost polishing treatments, such as ion exchange resins and electrochemical processes, the condensate quality could easily reach that of potable water. © 2012 Springer Science+Business Media Dordrecht.

  14. Microbiological quality of natural waters.

    Science.gov (United States)

    Borrego, J J; Figueras, M J

    1997-12-01

    Several aspects of the microbiological quality of natural waters, especially recreational waters, have been reviewed. The importance of the water as a vehicle and/or a reservoir of human pathogenic microorganisms is also discussed. In addition, the concepts, types and techniques of microbial indicator and index microorganisms are established. The most important differences between faecal streptococci and enterococci have been discussed, defining the concept and species included. In addition, we have revised the main alternative indicators used to measure the water quality.

  15. Identification of water quality degradation hotspots in developing countries by applying large scale water quality modelling

    Science.gov (United States)

    Malsy, Marcus; Reder, Klara; Flörke, Martina

    2014-05-01

    Decreasing water quality is one of the main global issues which poses risks to food security, economy, and public health and is consequently crucial for ensuring environmental sustainability. During the last decades access to clean drinking water increased, but 2.5 billion people still do not have access to basic sanitation, especially in Africa and parts of Asia. In this context not only connection to sewage system is of high importance, but also treatment, as an increasing connection rate will lead to higher loadings and therefore higher pressure on water resources. Furthermore, poor people in developing countries use local surface waters for daily activities, e.g. bathing and washing. It is thus clear that water utilization and water sewerage are indispensable connected. In this study, large scale water quality modelling is used to point out hotspots of water pollution to get an insight on potential environmental impacts, in particular, in regions with a low observation density and data gaps in measured water quality parameters. We applied the global water quality model WorldQual to calculate biological oxygen demand (BOD) loadings from point and diffuse sources, as well as in-stream concentrations. Regional focus in this study is on developing countries i.e. Africa, Asia, and South America, as they are most affected by water pollution. Hereby, model runs were conducted for the year 2010 to draw a picture of recent status of surface waters quality and to figure out hotspots and main causes of pollution. First results show that hotspots mainly occur in highly agglomerated regions where population density is high. Large urban areas are initially loading hotspots and pollution prevention and control become increasingly important as point sources are subject to connection rates and treatment levels. Furthermore, river discharge plays a crucial role due to dilution potential, especially in terms of seasonal variability. Highly varying shares of BOD sources across

  16. Irrigation-induced contamination of water, sediment, and biota in the western United States-synthesis of data from the National Irrigation Water Quality Program

    Science.gov (United States)

    Seiler, Ralph L.; Skorupa, Joseph P.; Naftz, David L.; Nolan, B. Thomas

    2003-01-01

    In October 1985 the U.S. Department of the Interior (DOI), through the National Irrigation Water Quality Program (NIWQP), began a series of field investigations at 26 areas in the Western United States to determine whether irrigation drainage has had harmful effects on fish, wildlife, and humans or has reduced beneficial uses of water. In 1992 NIWQP initiated the Data Synthesis Project to evaluate data collected during the field investigations. Geologic, climatologic, and hydrologic data were evaluated and water, sediment, and biota from the 26 areas were analyzed to identify commonalities and dominant factors that result in irrigation-induced contamination of water and biota. Data collected for the 26 area investigations have been compiled and merged into a common data base. The structure of the data base is designed to enable assessment of relations between contaminant concentrations in water, sediment, and biota. The data base is available to the scientific community through the World Wide Web at URL http://www.usbr.gov/niwqp. Analysis of the data base for the Data Synthesis included use of summary statistics, factor analysis, and logistic regression. A Geographic Information System was used to store and analyze spatially oriented digital data such as land use, geology and evaporation rates. In the U.S. Department of the Interior (DOI) study areas, samples of water, bottom sediment, and biota were collected for trace-element and pesticide analysis. Contaminants most commonly associated with irrigation drainage were identified by comparing concentrations in water with established criteria. For surface water, the criteria used were typically chronic criteria for the protection of freshwater aquatic life. Because ground water can discharge to the surface where wildlife can be exposed to it, the criteria used for ground water were both the maximum contaminant levels (MCL's) for drinking water and the chronic criteria for the protection of freshwater aquatic life

  17. Ground-water conditions and quality in the western part of Kenai Peninsula, southcentral Alaska

    Science.gov (United States)

    Glass, R.L.

    1996-01-01

    The western part of Kenai Peninsula in southcentral Alaska is bounded by Cook Inlet and the Kenai Mountains. Ground water is the predominant source of water for commercial, industrial, and domestic uses on the peninsula. Mean daily water use in an oil, gas, and chemical processing area north of Kenai is more than 3.5 million gallons. Unconsolidated sediments of glacial and fluvial origin are the most productive aquifers. In the upper (northwestern) peninsula, almost all water used is withdrawn from unconsolidated sediments, which may be as thick as 750 feet. In the lower peninsula, unconsolidated sediments are thinner and are absent on many hills. Water supplies in the lower peninsula are obtained from unconsolidated sediments and bedrock, and a public-water supply in parts of Homer is obtained from Bridge Creek. Throughout the peninsula, ground-water flow occurs primarily as localized flow controlled by permeability of aquifer materials and surface topography. The concentration of constituents analyzed in water from 312 wells indicated that the chemical quality of ground water for human consumption varies from marginal to excellent. Even though the median concentration of dissolved solids is low (152 milligrams per liter), much of the ground water on the peninsula does not meet water-quality regulations for public drinking water established by the U.S. Environmental Protection Agency (USEPA). About 8 percent of wells sampled yielded water having concentrations of dissolved arsenic that exceeded the USEPA primary maximum contaminant level of 50 micrograms per liter. Concentrations of dissolved arsenic were as great as 94 micrograms per liter. Forty-six percent of wells sampled yielded water having concentrations of dissolved iron greater than the USEPA secondary maximum contaminant level of 300 micrograms per liter. Unconsolidated sediments generally yield water having calcium, magnesium, and bicarbonate as its predominant ions. In some areas, ground water at

  18. Hydrogeology and water quality of the North Canadian River alluvium, Concho Reserve, Canadian County, Oklahoma

    Science.gov (United States)

    Becker, C.J.

    1998-01-01

    A growing user population within the Concho Reserve in Canadian County, Oklahoma, has increased the need for drinking water. The North Canadian River alluvium is a reliable source of ground water for agriculture, industry, and cities in Canadian County and is the only ground-water source capable of meeting large demands. This study was undertaken to collect and analyze data to describe the hydrogeology and ground-water quality of the North Canadian River alluvium within the Concho Reserve. The alluvium forms a band about 2 miles long and 0.5 mile wide along the southern edge of the Concho Reserve. Thickness of the alluvium ranges from 19 to 75 feet thick and averages about 45 feet in the study area. Well cuttings and natural gamma-ray logs indicate the alluvium consists of interfingering lenses of clay, silt, and sand. The increase of coarse-grained sand and the decrease of clay and silt with depth suggests that the water-bearing properties of the aquifer within the study area improve with depth. A clay layer in the upper part of the aquifer may be partially responsible for surface water ponding in low areas after above normal precipitation and may delay the infiltration of potentially contaminated water from land surface. Specific conductance measurements indicate the ground-water quality improves in a northern direction towards the terrace. Water-quality properties, bacteria counts, major ion and nutrient concentrations, trace-element and radionuclide concentrations, and organic compound concentrations were measured in one ground-water sample at the southern edge of the Concho Reserve and comply with the primary drinking-water standards. Measured concentrations of iron, manganese, sulfate, and total dissolved solids exceed the secondary maximum contaminant levels set for drinking water. The ground water is a calcium sulfate bicarbonate type and is considered very hard, with a hardness of 570 milligrams per liter as calcium carbonate.

  19. 7 CFR 634.23 - Water quality plan.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Water quality plan. 634.23 Section 634.23 Agriculture... AGRICULTURE LONG TERM CONTRACTING RURAL CLEAN WATER PROGRAM Participant RCWP Contracts § 634.23 Water quality plan. (a) The participant's water quality plan, developed with technical assistance by the NRCS or its...

  20. Water quality and hydrology in the Fort Belvoir area, Virginia, 1954-55

    Science.gov (United States)

    Durfor, Charles N.

    1961-01-01

    This report summarizes the results of an investigation of water quality and hydrology in the Fort Belvoir, Va., area for the period August 1954 to September 1955. It summarizes and evaluates information about the water resources of this area that are pertinent to the choice of location and operation of an Army nuclear power reactor. The quantity, quality, nature, and use of the local water that might be affected by the location and operation of a reactor in the area were subjects of investigation. Variations in the quality of the water caused by variation in streamflow, tidal effects, and pollution were important facets of the investigation. During extended periods of low streamflow in the Potomac River (usually in the late summer months), salty water moves upstream from Chesapeake Bay and increases the dissolved solids content of the surface waters adjacent to Fort Belvoir. When the streamflow is low the concentration of dissolved solids in the water near the river bottom exceeds that near the surface. The waters in Gunston Cove usually contain more dissolved oxygen than those in the Potomac River. During the summer, the content of dissolved oxygen in the cove waters frequently exceeds 100 percent of saturation. Surface floats that were released on a flood tide in Gunston Cove moved toward the inner portion of the cove in the same direction as the wind and the tide. The maximum average velocity of these floats was 0.65 feet per second. On an ebb tide, many surface floats that were released in Gunston Cove moved toward the inner portion of the cove in the direction of the wind, in opposition to the direction of the tidal movement. Floats released near the mouth of the cove on the same tide, moved with the tide out of the cove through a narrow pass at the end of a submerged sandbar extending from the Fort Belvoir shoreline. The maximum average velocity of the floats in the pass on this ebb tide was 0.85 feet per second. Measurements of subsurface flow direction

  1. Assessing water quality of rural water supply schemes as a measure ...

    African Journals Online (AJOL)

    Assessing water quality of rural water supply schemes as a measure of service ... drinking water quality parameters were within the World Health Organization ... Besides, disinfection of water at the household level can be an added advantage.

  2. 40 CFR 130.6 - Water quality management plans.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Water quality management plans. 130.6... QUALITY PLANNING AND MANAGEMENT § 130.6 Water quality management plans. (a) Water quality management (WQM... and certified and approved updates to those plans. Continuing water quality planning shall be based...

  3. Risk-based decision making to manage water quality failures caused by combined sewer overflows

    Science.gov (United States)

    Sriwastava, A. K.; Torres-Matallana, J. A.; Tait, S.; Schellart, A.

    2017-12-01

    Regulatory authorities set certain environmental permit for water utilities such that the combined sewer overflows (CSO) managed by these companies conform to the regulations. These utility companies face the risk of paying penalty or negative publicity in case they breach the environmental permit. These risks can be addressed by designing appropriate solutions such as investing in additional infrastructure which improve the system capacity and reduce the impact of CSO spills. The performance of these solutions is often estimated using urban drainage models. Hence, any uncertainty in these models can have a significant effect on the decision making process. This study outlines a risk-based decision making approach to address water quality failure caused by CSO spills. A calibrated lumped urban drainage model is used to simulate CSO spill quality in Haute-Sûre catchment in Luxembourg. Uncertainty in rainfall and model parameters is propagated through Monte Carlo simulations to quantify uncertainty in the concentration of ammonia in the CSO spill. A combination of decision alternatives such as the construction of a storage tank at the CSO and the reduction in the flow contribution of catchment surfaces are selected as planning measures to avoid the water quality failure. Failure is defined as exceedance of a concentration-duration based threshold based on Austrian emission standards for ammonia (De Toffol, 2006) with a certain frequency. For each decision alternative, uncertainty quantification results into a probability distribution of the number of annual CSO spill events which exceed the threshold. For each alternative, a buffered failure probability as defined in Rockafellar & Royset (2010), is estimated. Buffered failure probability (pbf) is a conservative estimate of failure probability (pf), however, unlike failure probability, it includes information about the upper tail of the distribution. A pareto-optimal set of solutions is obtained by performing mean

  4. 40 CFR 130.8 - Water quality report.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Water quality report. 130.8 Section... QUALITY PLANNING AND MANAGEMENT § 130.8 Water quality report. (a) Each State shall prepare and submit biennially to the Regional Administrator a water quality report in accordance with section 305(b) of the Act...

  5. Water quality management for Lake Mariout

    Directory of Open Access Journals (Sweden)

    N. Donia

    2016-06-01

    Full Text Available A hydrodynamic and water quality model was used to study the current status of the Lake Mariout subject to the pollution loadings from the agricultural drains and the point sources discharging directly to the Lake. The basic water quality modelling component simulates the main water quality parameters including the oxygen compounds (BOD, COD, DO, nutrients compounds (NH4, TN, TP, and finally the temperature, salinity and inorganic matter. Many scenarios have been conducted to improve the circulation and the water quality in the lake and to assess the spreading and mixing of the discharge effluents and its impact on the water quality of the main basin. Several pilot interventions were applied through the model in the Lake Mariout together with the upgrades of the East and West Waste Water Treatment Plants in order to achieve at least 5% reduction in the pollution loads entering the Mediterranean Sea through Lake Mariout in order to improve the institutional mechanisms for sustainable coastal zone management in Alexandria in particular to reduce land-based pollution to the Mediterranean Sea.

  6. Yield and quality of ground water from stratified-drift aquifers, Taunton River basin, Massachusetts : executive summary

    Science.gov (United States)

    Lapham, Wayne W.; Olimpio, Julio C.

    1989-01-01

    Water shortages are a chronic problem in parts of the Taunton River basin and are caused by a combination of factors. Water use in this part of the Boston metropolitan area is likely to increase during the next decade. The Massachusetts Division of Water Resources projects that about 50% of the cities and towns within and on the perimeter of the basin may have water supply deficits by 1990 if water management projects are not pursued throughout the 1980s. Estimates of the long-term yield of the 26 regional aquifers indicate that the yields of the two most productive aquifers equal or exceed 11.9 and 11.3 cu ft/sec, 90% of the time, respectively, if minimum stream discharge is maintained at 99.5% flow duration. Eighteen of the 26 aquifers were pumped for public water supply during 1983. Further analysis of the yield characteristics of these 18 aquifers indicates that the 1983 pumping rate of each of these 18 aquifers can be sustained at least 70% of the time. Selected physical properties and concentrations of major chemical constituents in groundwater from the stratified-drift aquifers at 80 sampling sites were used to characterize general water quality in aquifers throughout the basin. The pH of the groundwater ranged from 5.4 to 7.0. Natural elevated concentrations of Fe and Mn in water in the stratified-drift aquifers are present locally in the basin. Natural concentrations of these two metals commonly exceed the limits of 0.3 mg/L for Fe and 0.05 mg/L for Mn recommended for drinking water. Fifty-one analyses of selected trace metals in groundwater samples from stratified-drift aquifers throughout the basin were used to characterize trace metal concentrations in the groundwater. Of the 10 constituents sampled that have US EPA limits recommended for drinking water, only the Pb concentration in water at one site (60 micrograms/L) exceeded the recommended limit of 50 micrograms/L. Analyses of selected organic compounds in water in the stratified-drift aquifers at 74

  7. Co-evolution of land use changes, water quality deterioration and social conflicts in arid Northern Chile

    Science.gov (United States)

    Zang, Carina; Dame, Juliane

    2017-04-01

    problem of scarce water is complicated by the privatization of water rights in Chile. Within the watershed, the amount of sold water rights already exceeds the real water availability by far. An interdisciplinary set of methods was used, including measurements of the chemical and physical parameters of water quality, as well as semi-structured interviews. Water samples across spatial scales were analysed, with the results compared with local people's perceptions of water quality and how this affects their use decisions. The study showed that perceptions of water quality and fear of contamination were influenced by the social conflicts surrounding the controversial construction of the Pascua Lama Mine. The social conflicts were further aggravated by local mistrust towards the multilayered and so-perceived neoliberal and top-down governance structures of water resources in Chile.

  8. Water quality assessment of bioenergy production

    Science.gov (United States)

    Rocio Diaz-Chavez; Goran Berndes; Dan Neary; Andre Elia Neto; Mamadou Fall

    2011-01-01

    Water quality is a measurement of the biological, chemical, and physical characteristics of water against certain standards set to ensure ecological and/or human health. Biomass production and conversion to fuels and electricity can impact water quality in lakes, rivers, and aquifers with consequences for aquatic ecosystem health and also human water uses. Depending on...

  9. Mass imbalances in EPANET water-quality simulations

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Michael J.; Janke, Robert; Taxon, Thomas N.

    2018-04-06

    EPANET is widely employed to simulate water quality in water distribution systems. However, the time-driven simulation approach used to determine concentrations of water-quality constituents provides accurate results, in general, only for small water-quality time steps; use of an adequately short time step may not be feasible. Overly long time steps can yield errors in concentrations and result in situations in which constituent mass is not conserved. Mass may not be conserved even when EPANET gives no errors or warnings. This paper explains how such imbalances can occur and provides examples of such cases; it also presents a preliminary event-driven approach that conserves mass with a water-quality time step that is as long as the hydraulic time step. Results obtained using the current approach converge, or tend to converge, to those obtained using the new approach as the water-quality time step decreases. Improving the water-quality routing algorithm used in EPANET could eliminate mass imbalances and related errors in estimated concentrations.

  10. National water summary 1990-91: Hydrologic events and stream water quality

    Science.gov (United States)

    Paulson, Richard W.; Chase, Edith B.; Williams, John S.; Moody, David W.

    1993-01-01

    National Water Summary 1990-91 Hydrologic Events and Stream Water Quality was planned to complement existing Federal-State water-quality reporting to the U.S. Congress that is required by the Clean Water Act of 1972. This act, formally known as the Federal Water Pollution Control Act Amendments of 1972 (Public Law 92-500), and its amendments in 1977,1979,1980,1981,1983, and 1987, is the principal basis for Federal-State cooperation on maintaining and reporting on water quality in the United States. Under section 305(b) of the Clean Water Act, the States must designate uses for waterbodies, biennially assess whether the waterbodies meet designated uses, and report to the U.S. Environmental Protection Agency (EPA), which in turn summarizes the findings of the State assessments in a biennial National Water Quality Inventory report to the Congress.

  11. Chester County ground-water atlas, Chester County, Pennsylvania

    Science.gov (United States)

    Ludlow, Russell A.; Loper, Connie A.

    2004-01-01

    Chester County encompasses 760 square miles in southeastern Pennsylvania. Groundwater-quality studies have been conducted in the county over several decades to address specific hydrologic issues. This report compiles and describes water-quality data collected during studies conducted mostly after 1990 and summarizes the data in a county-wide perspective.In this report, water-quality constituents are described in regard to what they are, why the constituents are important, and where constituent concentrations vary relative to geology or land use. Water-quality constituents are grouped into logical units to aid presentation: water-quality constituents measured in the field (pH, alkalinity, specific conductance, and dissolved oxygen), common ions, metals, radionuclides, bacteria, nutrients, pesticides, and volatile organic compounds. Water-quality constituents measured in the field, common ions (except chloride), metals, and radionuclides are discussed relative to geology. Bacteria, nutrients, pesticides, and volatile organic compounds are discussed relative to land use. If the U.S. Environmental Protection Agency (USEPA) or Chester County Health Department has drinking water standards for a constituent, the standards are included. Tables and maps are included to assist Chester County residents in understanding the water-quality constituents and their distribution in the county.Ground water in Chester County generally is of good quality and is mostly acidic except in the carbonate rocks and serpentinite, where it is neutral to strongly basic. Calcium carbonate and magnesium carbonate are major constituents of these rocks. Both compounds have high solubility, and, as such, both are major contributors to elevated pH, alkalinity, specific conductance, and the common ions. Elevated pH and alkalinity in carbonate rocks and serpentinite can indicate a potential for scaling in water heaters and household plumbing. Low pH and low alkalinity in the schist, quartzite, and

  12. Hydrology, water quality, and water-supply potential of ponds at Hunter Army Airfield, Chatham County, Georgia, November 2008-July 2009

    Science.gov (United States)

    Clarke, John S.; Painter, Jaime A.

    2010-01-01

    The hydrology, water quality, and water-supply potential of four ponds constructed to capture stormwater runoff at Hunter Army Airfield, Chatham County, Georgia, were evaluated as potential sources of supplemental irrigation supply. The ponds are, Oglethorpe Lake, Halstrum Pond, Wilson Gate Pond, and golf course pond. During the dry season, when irrigation demand is highest, ponds maintain water levels primarily from groundwater seepage. The availability of water from ponds during dry periods is controlled by the permeability of surficial deposits, precipitation and evaporation, and the volume of water stored in the pond. Net groundwater seepage (Gnet) was estimated using a water-budget approach that used onsite and nearby climatic and hydrologic data collected during November-December 2008 including precipitation, evaporation, pond stage, and discharge. Gnet was estimated at three of the four sites?Oglethorpe Lake, Halstrum Pond, and Wilson Gate Pond?during November-December 2008. Pond storage volume in the three ponds ranged from 5.34 to 12.8 million gallons. During November-December 2008, cumulative Gnet ranged from -5.74 gallons per minute (gal/min), indicating a net loss in pond volume, to 19 gal/min, indicating a net gain in pond volume. During several periods of stage recovery, daily Gnet rates were higher than the 2-month cumulative amount, with the highest rates of 178 to 424 gal/min following major rainfall events during limited periods. These high rates may include some contribution from stormwater runoff; more typical recovery rates were from 23 to 223 gal/min. A conservative estimate of the volume of water available for irrigation supply from three of the ponds was provided by computing the rate of depletion of pond volume for a variety of withdrawal rates based on long-term average July precipitation and evaporation and the lowest estimated Gnet rate at each pond. Withdrawal rates of 1,000, 500, and 250 gal/min were applied during an 8-hour daily

  13. The maladies of water and war: addressing poor water quality in Iraq.

    Science.gov (United States)

    Zolnikov, Tara Rava

    2013-06-01

    Water is essential in providing nutrients, but contaminated water contributes to poor population health. Water quality and availability can change in unstructured situations, such as war. To develop a practical strategy to address poor water quality resulting from intermittent wars in Iraq, I reviewed information from academic sources regarding waterborne diseases, conflict and war, water quality treatment, and malnutrition. The prevalence of disease was high in impoverished, malnourished populations exposed to contaminated water sources. The data aided in developing a strategy to improve water quality in Iraq, which encompasses remineralized water from desalination plants, health care reform, monitoring and evaluation systems, and educational public health interventions.

  14. Indices of quality surface water bodies in the planning of water resources

    Directory of Open Access Journals (Sweden)

    Rodríguez-Miranda, Juan Pablo

    2016-12-01

    Full Text Available This paper considers a review of the literature major and significant methods of quality indices of water applied in surface water bodies, used and proposed for assessing the significance of parameters of water quality in the assessment of surface water currents and they are usually used in making decisions for intervention and strategic prevention measures for those responsible for the conservation and preservation of watersheds where these water bodies belong. An exploratory methodology was applied to realize the conceptualization of each water quality index. As a result, it is observed that there are several important methods for determining the water quality index applied in surface water bodies.

  15. Integrating Product Water Quality Effects In Holistic Assessments Of Water Systems

    DEFF Research Database (Denmark)

    Rygaard, Martin

    2011-01-01

    economic assessment of water quality effects, production costs and environmental costs (water abstraction and CO2-emissions). Considered water quality issues include: health (dental caries, cardiovascular diseases, eczema), corrosion (lifetime of appliances, pipes), consumption of soap, and bottled water...

  16. Surface water quality assessment using factor analysis

    African Journals Online (AJOL)

    2006-01-16

    Jan 16, 2006 ... Surface water, groundwater quality assessment and environ- .... Urbanisation influences the water cycle through changes in flow and water ..... tion of aquatic life, CCME water quality Index 1, 0. User`s ... Water, Air Soil Pollut.

  17. Water Quality Protection Charges

    Data.gov (United States)

    Montgomery County of Maryland — The Water Quality Protection Charge (WQPC) is a line item on your property tax bill. WQPC funds many of the County's clean water initiatives including: • Restoration...

  18. Water Quality Analysis Simulation Program (WASP)

    Science.gov (United States)

    The Water Quality Analysis Simulation Program (WASP) model helps users interpret and predict water quality responses to natural phenomena and manmade pollution for various pollution management decisions.

  19. Quality Assurance for Iraqi Bottled Water Specifications

    Directory of Open Access Journals (Sweden)

    May George Kassir

    2015-10-01

    Full Text Available In this research the specifications of Iraqi drinking bottled water brands are investigated throughout the comparison between local brands, Saudi Arabia and the World Health Organization (WHO for bottled water standard specifications. These specifications were also compared to that of Iraqi Tap Water standards. To reveal variations in the specifications for Iraqi bottled water, and above mentioned standards some quality control tools are conducted for more than 33% of different bottled water brands (of different origins such as spring, purified,..etc in Iraq by investigating the selected quality parameters registered on their marketing labels. Results employing Minitab software (ver. 16 to generate X bar, and Pareto chart. It was found from X bar charts that the quality parameters of some drinking bottled water brands are not within Iraqi standards set by the “Central Agency for Standardization and Quality Control” such as pH values, Fe, Na, and Mg concentrations. While the comparison of previously mentioned standard specifications through radar chart many important issues are detected such as the absence of lower limits the whole bottled water quality parameters such as for Na and Mg also the radar chart shows that Iraqi bottled and tap water specifications are almost equal in their quality values. Also the same chart pictured the limited range of Iraqi specifications compared to that of Saudi Arabia, and WHO and the need to introduce other water specifications such as K, Na, etc. This confirms the need to improve Iraqi bottled water specifications since it was introduced on 2000. These results also highlighted the weakness of quality assurance activities since only 33 % of the investigated companies registered the whole water quality specifications as shown in Pareto chart. Other companies do not register any quality characteristics. Also certain companies should be stopped due to non-conforming specifications, yet these companies are

  20. Effects of land use and land cover changes on water quality in the uMngeni river catchment, South Africa

    Science.gov (United States)

    Namugize, Jean Nepomuscene; Jewitt, Graham; Graham, Mark

    2018-06-01

    Land use and land cover change are major drivers of water quality deterioration in watercourses and impoundments. However, understanding of the spatial and temporal variability of land use change characteristics and their link to water quality parameters in catchments is limited. As a contribution to address this limitation, the objective of this study is to assess the linkages between biophysico-chemical water quality parameters and land use and land cover (LULC) classes in the upper reaches of the uMngeni Catchment, a rapidly developing catchment in South Africa. These were assessed using Geographic Information Systems tools and statistical analyses for the years 1994, 2000, 2008 and 2011 based on changes over time of eight LULC classes and available water quality information. Natural vegetation, forest plantations and cultivated areas occupy 85% of the catchment. Cultivated, urban/built-up and degraded areas increased by 6%, 4.5% and 3%, respectively coinciding with a decrease in natural vegetation by 17%. Variability in the concentration of water quality parameters from 1994 to 2011 and an overall decline in water quality were observed. Escherichia coli (E. coli) levels exceeding the recommended guidelines for recreation and public health protection was noted as a major issue at seven of the nine sampling points. Overall, water supply reservoirs in the catchment retained over 20% of nutrients and over 85% of E. coli entering them. A relationship between land use types and water quality variables was found. However, the degree and magnitude of the associations varies between sub-catchments and is difficult to quantify. This highlights the complexity and the site-specific nature of relationships between land use types and water quality parameters in the catchment. Thus, this study provides useful findings on the general relationship between land use and land cover and water quality degradation, but highlights the risks of applying simple relationships or adding

  1. Temporal variability in groundwater and surface water quality in humid agricultural catchments; Driving processes and consequences for regional water quality monitoring

    NARCIS (Netherlands)

    Rozemeijer, Joachim; Van Der Velde, Ype

    2014-01-01

    Considering the large temporal variability in surface water quality is essential for adequate water quality policy and management. Neglecting these dynamics may easily lead to decreased effectiveness of measures to improve water quality and to inefficient water quality monitoring. The objective of

  2. Temporal variability in groundwater and surface water quality in humid agricultural catchments; driving processes and consequences for regional water quality monitoring

    NARCIS (Netherlands)

    Rozemeijer, J.; Velde, van der Y.

    2014-01-01

    Considering the large temporal variability in surface water quality is essential for adequate water quality policy and management. Neglecting these dynamics may easily lead to decreased effectiveness of measures to improve water quality and to inefficient water quality monitoring. The objective of

  3. Effect of alteration zones on water quality: a case study from Biga Peninsula, Turkey.

    Science.gov (United States)

    Baba, Alper; Gunduz, Orhan

    2010-04-01

    Widespread and intense zones of silicified, propylitic, and argillic alteration can be found in the Can volcanics of Biga Peninsula, northwest Turkey. Most of the springs in the study area surface out from the boundary between fractured aquifer (silicified zone) and impervious boundary (argillic zone). This study focuses on two such springs in Kirazli area (Kirazli and Balaban springs) with a distinct quality pattern. Accordingly, field parameters (temperature, pH, and electrical conductivity), major anion and cation (sodium, potassium, calcium, magnesium, chloride, bicarbonate, and sulfate), heavy metals (aluminum, arsenic, barium, chromium, cobalt, cupper, iron, lithium, manganese, nickel, lead, and zinc), and isotopes (oxygen-18, deuterium, and tritium) were determined in water samples taken from these springs during 2005 through 2007. The chemical analyses showed that aluminum concentrations were found to be two orders of magnitude greater in Kirazli waters (mean value 13813.25 microg/L). The levels of this element exceeded the maximum allowable limits given in national and international standards for drinking-water quality. In addition, Balaban and Kirazli springs are >55 years old according to their tritium levels; Kirazli spring is older than Balaban spring. Kirazli spring is also more enriched than Balaban spring based in oxygen-18 and deuterium values. Furthermore, Kirazli spring water has been in contact with altered rocks longer than Balaban spring water, according to its relatively high chloride and electrical conductivity values.

  4. Assessing the water quality response to an alternative sewage disposal strategy at bathing sites on the east coast of Ireland.

    Science.gov (United States)

    Bedri, Zeinab; O'Sullivan, John J; Deering, Louise A; Demeter, Katalin; Masterson, Bartholomew; Meijer, Wim G; O'Hare, Gregory

    2015-02-15

    A three-dimensional model is used to assess the bathing water quality of Bray and Killiney bathing sites in Ireland following changes to the sewage management system. The model, firstly calibrated to hydrodynamic and water quality data from the period prior to the upgrade of the Wastewater Treatment Works (WwTW), was then used to simulate Escherichia coli (E. coli) distributions for discharge scenarios of the periods prior to and following the upgrade of the WwTW under dry and wet weather conditions. E. coli distributions under dry weather conditions demonstrate that the upgrade in the WwTW has remarkably improved the bathing water quality to a Blue Flag status. The new discharge strategy is expected to drastically reduce the rainfall-related incidents in which environmental limits of the Bathing Water Directive are breached. However, exceedances to these limits may still occur under wet weather conditions at Bray bathing site due to storm overflows that may still be discharged through two sea outfalls offshore of Bray bathing site. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Assessment of Water Quality Index and Heavy Metal Contamination in Active and Abandoned Iron Ore Mining Sites in Pahang, Malaysia

    Directory of Open Access Journals (Sweden)

    Madzin Zafira

    2017-01-01

    Full Text Available The composition of heavy metals in water and surface soils of iron ore mining sites were investigated to evaluate on the potential occurrence of heavy metal contamination. Physico-chemical characteristics of the waters were also investigated to determine the current status of water quality index (WQI of the sites. Samples of water and surface soils of active mine (Kuala Lipis and abandoned mine (Bukit Ibam in Pahang were collected at four locations, respectively. The physico-chemical parameters measured for WQI were pH, dissolved oxygen, biological oxygen demand (BOD, chemical oxygen demand (COD, suspended solids (SS, and ammoniacal nitrogen (AN. The water quality parameters were classified according to the Department of Environment (DOE water quality classification. The study revealed that most of the sites in Bukit Ibam and Kuala Lipis were categorized as clean to slightly polluted. On the other hand, heavy metal analysis in water showed that aluminium and manganese level in both sites have exceeded the allowable limits for raw and treated water standards by the Ministry of Health. For heavy metal compositions in soils showed most of the heavy metal concentrations were below the recommended guideline values except for lead, arsenic, zinc and copper.

  6. Industry disagrees with water quality recommendations

    International Nuclear Information System (INIS)

    Begley, R.

    1992-01-01

    Industry groups are distancing themselves from recommendations on cleaning up the nation's waters issued by Water Quality 2000, a coalition of more than 80 organizations representing industry, environmental groups, government, academia, and professional and scientific societies. The report, open-quotes A National Water Agenda for the 21st Centuryclose quotes, is a result of work begun in 1989. It recommends an approach to water quality that emphasizes pollution prevention, increased individual and collective responsibility for protecting water resources, and reorienting water resource programs and institutions along natural, rather than political, watershed boundaries. It includes 85 specific recommendations, many of which are to be implemented locally. The Natural Resources Defense Council (NRDC; Washington) open-quotes wholeheartedly endorses not only the specific solutions offered today but the process by which these proposals were reached,close quotes says Robert W. Adler, NRDC senior attorney and vice chairman of Water Quality 2000. John B. Coleman, corporate environmental affairs manager for Du Pont and a member of the groups's steering committee, says open-quotes Du Pont and the other industry members of Water Quality 2000 are committedclose quotes to working to make continuous improvements

  7. National Water Quality Standards Database (NWQSD)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The National Water Quality Standards Database (WQSDB) provides access to EPA and state water quality standards (WQS) information in text, tables, and maps. This data...

  8. Quality of Drinking Water

    Science.gov (United States)

    Roman, Harry T.

    2009-01-01

    The quality of drinking water has been gaining a great deal of attention lately, especially as water delivery infrastructure continues to age. Particles of various metals such as lead and copper, and other substances like radon and arsenic could be entering drinking water supplies. Spilled-on-the-ground hydrocarbon-based substances are also…

  9. Evaluation of polar organic micropollutants as indicators for wastewater-related coastal water quality impairment

    International Nuclear Information System (INIS)

    Nödler, Karsten; Tsakiri, Maria; Aloupi, Maria; Gatidou, Georgia; Stasinakis, Athanasios S.; Licha, Tobias

    2016-01-01

    Results from coastal water pollution monitoring (Lesvos Island, Greece) are presented. In total, 53 samples were analyzed for 58 polar organic micropollutants such as selected herbicides, biocides, corrosion inhibitors, stimulants, artificial sweeteners, and pharmaceuticals. Main focus is the application of a proposed wastewater indicator quartet (acesulfame, caffeine, valsartan, and valsartan acid) to detect point sources and contamination hot-spots with untreated and treated wastewater. The derived conclusions are compared with the state of knowledge regarding local land use and infrastructure. The artificial sweetener acesulfame and the stimulant caffeine were used as indicators for treated and untreated wastewater, respectively. In case of a contamination with untreated wastewater the concentration ratio of the antihypertensive valsartan and its transformation product valsartan acid was used to further refine the estimation of the residence time of the contamination. The median/maximum concentrations of acesulfame and caffeine were 5.3/178 ng L"−"1 and 6.1/522 ng L"−"1, respectively. Their detection frequency was 100%. Highest concentrations were detected within the urban area of the capital of the island (Mytilene). The indicator quartet in the gulfs of Gera and Kalloni (two semi-enclosed embayments on the island) demonstrated different concentration patterns. A comparatively higher proportion of untreated wastewater was detected in the gulf of Gera, which is in agreement with data on the wastewater infrastructure. The indicator quality of the micropollutants to detect wastewater was compared with electrical conductivity (EC) data. Due to their anthropogenic nature and low detection limits, the micropollutants are superior to EC regarding both sensitivity and selectivity. The concentrations of atrazine, diuron, and isoproturon did not exceed the annual average of their environmental quality standards (EQS) defined by the European Commission. At two

  10. Assessment of interim flow water-quality data of the San Joaquin River restoration program and implications for fishes, California, 2009-11

    Science.gov (United States)

    Wulff, Marissa L.; Brown, Larry R.

    2015-01-01

    After more than 50 years of extensive water diversion for urban and agriculture use, a major settlement was reached among the U.S. Departments of the Interior and Commerce, the Natural Resources Defense Council, and the Friant Water Users Authority in an effort to restore the San Joaquin River. The settlement received Federal court approval in October 2006 and established the San Joaquin River Restoration Program, a multi-agency collaboration between State and Federal agencies to restore and maintain fish populations, including Chinook salmon, in the main stem of the river between Friant Dam and the confluence with the Merced River. This is to be done while avoiding or minimizing adverse water supply effects to all of the Friant Division contractors that could result from restoration flows required by the settlement. The settlement stipulates that water- and sediment-quality data be collected to help assess the restoration goals. This report summarizes and evaluates water-quality data collected in the main stem of the San Joaquin River between Friant Dam and the Merced River by the U.S. Bureau of Reclamation for the San Joaquin River Restoration Program during 2009-11. This summary and assessment consider sampling frequency for adequate characterization of variability, sampling locations for sufficient characterization of the San Joaquin River Restoration Program restoration reach, sampling methods for appropriate media (water and sediment), and constituent reporting limits. After reviewing the water- and sediment-quality results for the San Joaquin River Restoration Program, several suggestions were made to the Fisheries Management Work Group, a division of the San Joaquin River Restoration Program that focuses solely on the reintroduction strategies and health of salmon and other native fishes in the river. Water-quality results for lead and total organic carbon exceeded the Surface Water Ambient Monitoring Program Basin Plan Objectives for the San Joaquin Basin

  11. Assessment of water quality from water harvesting using small farm reservoir for irrigation

    Science.gov (United States)

    Dewi, W. S.; Komariah; Samsuri, I. Y.; Senge, M.

    2018-03-01

    This study aims to assess the quality of rainfall-runoff water harvesting using small farm reservoir (SFR) for irrigation. Water quality assessment criteria based on RI Government Regulation number 82 the year 2001 on Water Quality Management and Pollution Control, and FAO Irrigation Water Quality Guidelines 1985. The experiment was conducted in the dry land of Wonosari Village, Gondangrejo District, Karanganyar Regency. SFR size was 10 m x 3 m x 2 m. Water quality measurements are done every week, ten times. Water samples were taken at 6 points, namely: distance of 2.5 m, 5 m, and 7.5 m from the inlet, at depth 25 cm and 175 cm from surface water. In each sampling point replicated three times. Water quality parameters include dissolved oxygen (DO), Turbidity (TSS), water pH, Nitrate (NO3), and Phosphate. The results show that water harvesting that collected in SFR meets both standards quality used, so the water is feasible for agricultural irrigation. The average value of harvested water was DO 2.6 mg/l, TSS 62.7 mg/l, pH 6.6, P 5.3 mg/l and NO3 0.16 mg/l. Rainfall-runoff water harvesting using SFR prospectus for increasing save water availability for irrigation.

  12. Environmental quality of Italian marine water by means of marine strategy framework directive (MSFD descriptor 9.

    Directory of Open Access Journals (Sweden)

    Chiara Maggi

    Full Text Available ISPRA, on behalf of the Italian Ministry of Environment, carried out the initial assessment of environmental quality status of the 3 Italian subregions (Mediterranean Sea Region on Descriptor 9. The approach adopted to define the GES started to verify that contaminants in fish and other seafood for human consumption did not exceed levels established by Community legislation (Reg. 1881/2006 and further updates. As the Marine Strategy Framework Directive (MSFD requires to use health tools to assess the environment, Italy decided to adopt a statistical range of acceptance of thresholds identified by national (D.Lgs. 152/2006 concerning water quality required for mussel farms and international legislation (Reg. 1881/2006 and further updates, which allowed to use the health results and to employ them for the assessment of environmental quality. Italy proposed that Good Environmental Status (GES is achieved when concentrations are lower than statistical range of acceptance, estimated on samples of fish and fishery products coming from only national waters. GIS-based approach a to perform different integration levels for station, cell's grid and years, was used; the elaborations allowed to judge the environmental quality good.

  13. Successful integration efforts in water quality from the integrated Ocean Observing System Regional Associations and the National Water Quality Monitoring Network

    Science.gov (United States)

    Ragsdale, R.; Vowinkel, E.; Porter, D.; Hamilton, P.; Morrison, R.; Kohut, J.; Connell, B.; Kelsey, H.; Trowbridge, P.

    2011-01-01

    The Integrated Ocean Observing System (IOOS??) Regional Associations and Interagency Partners hosted a water quality workshop in January 2010 to discuss issues of nutrient enrichment and dissolved oxygen depletion (hypoxia), harmful algal blooms (HABs), and beach water quality. In 2007, the National Water Quality Monitoring Council piloted demonstration projects as part of the National Water Quality Monitoring Network (Network) for U.S. Coastal Waters and their Tributaries in three IOOS Regional Associations, and these projects are ongoing. Examples of integrated science-based solutions to water quality issues of major concern from the IOOS regions and Network demonstration projects are explored in this article. These examples illustrate instances where management decisions have benefited from decision-support tools that make use of interoperable data. Gaps, challenges, and outcomes are identified, and a proposal is made for future work toward a multiregional water quality project for beach water quality.

  14. water quality assessment of underground and surface water ...

    African Journals Online (AJOL)

    Dr Osondu

    Water quality assessment in the Ethiopian highlands is crucial owing to increasing ... and provide information for formulating appropriate framework for an integrated ... with four seasons (rainy, dry period, small rains ..... treatment. Annual conference proceedings, American Water Works ... Towns' water supply and sanitation.

  15. Lake Chini Water Quality Assessment Using Multivariate Approach

    International Nuclear Information System (INIS)

    Ahmad, A.K.; Shuhaimi, Othman M.; Lim, E.C.; Aziz, Z.A.

    2013-01-01

    An analysis was undertaken using the multivariate approach to determine the important water quality for shallow lake water quality assessment. Fourteen water quality parameters which includes biological, physical and chemical components were collected monthly over twelve month period. The data were analysed using factor analysis which involves identification of factor correlation, factor extraction and factor permutations. The first process involved the clustering of high correlation parameters into its respective factor and the removal of parameters that have more than one factor. Agglomerative hierarchy (HACA) and discriminant analysis (DA) were also used to exhibit the important factors that has significant influence on lake water quality. The analysis showed that Lake Chini water quality was determined by more than one factor. The results indicated that the biological and chemical (nutrients) components have significant influence in determining the lake water quality. The biological parameters namely BOD5, COD, chlorophyll a and chemical (nitrate and orthophosphate) are important parameters in Lake Chini. All analysis demonstrated the importance of biological and chemical water quality components in the determination of Lake Chini water quality. (author)

  16. 76 FR 16285 - Amendments to the Water Quality Regulations, Water Code and Comprehensive Plan To Update Water...

    Science.gov (United States)

    2011-03-23

    ... DELAWARE RIVER BASIN COMMISSION 18 CFR Part 410 Amendments to the Water Quality Regulations, Water Code and Comprehensive Plan To Update Water Quality Criteria for Toxic Pollutants in the Delaware... or ``Commission'') approved amendments to its Water Quality Regulations, Water Code and Comprehensive...

  17. Identification and assessment of potential water quality impact factors for drinking-water reservoirs.

    Science.gov (United States)

    Gu, Qing; Deng, Jinsong; Wang, Ke; Lin, Yi; Li, Jun; Gan, Muye; Ma, Ligang; Hong, Yang

    2014-06-10

    Various reservoirs have been serving as the most important drinking water sources in Zhejiang Province, China, due to the uneven distribution of precipitation and severe river pollution. Unfortunately, rapid urbanization and industrialization have been continuously challenging the water quality of the drinking-water reservoirs. The identification and assessment of potential impacts is indispensable in water resource management and protection. This study investigates the drinking water reservoirs in Zhejiang Province to better understand the potential impact on water quality. Altogether seventy-three typical drinking reservoirs in Zhejiang Province encompassing various water storage levels were selected and evaluated. Using fifty-two reservoirs as training samples, the classification and regression tree (CART) method and sixteen comprehensive variables, including six sub-sets (land use, population, socio-economy, geographical features, inherent characteristics, and climate), were adopted to establish a decision-making model for identifying and assessing their potential impacts on drinking-water quality. The water quality class of the remaining twenty-one reservoirs was then predicted and tested based on the decision-making model, resulting in a water quality class attribution accuracy of 81.0%. Based on the decision rules and quantitative importance of the independent variables, industrial emissions was identified as the most important factor influencing the water quality of reservoirs; land use and human habitation also had a substantial impact on water quality. The results of this study provide insights into the factors impacting the water quality of reservoirs as well as basic information for protecting reservoir water resources.

  18. Effects of Changes in Lugu Lake Water Quality on Schizothorax Yunnansis Ecological Habitat Based on HABITAT Model

    Science.gov (United States)

    Huang, Wei; Mynnet, Arthur

    Schizothorax Yunnansis is an unique fish species only existing in Lugu Lake, which is located in the southwestern China. The simulation and research on Schizothorax Yunnansis habitat environment have a vital significance to protect this rare fish. With the development of the tourism industry, there bring more pressure on the environmental protection. The living environment of Schizothorax Yunnansis is destroyed seriously because the water quality is suffering the sustaining pollution of domestic sewage from the peripheral villages. This paper analyzes the relationship between water quality change and Schizothorax Yunnansis ecological habitat and evalutes Schizothorax Yunnansis's ecological habitat impact based on HABITAT model. The results show that when the TP concentration in Lugu Lake does not exceed Schizothorax Yunnansis's survival threshold, Schizothorax Yunnansis can get more nutrients and the suitable habitat area for itself is increased. Conversely, it can lead to TP toxicity in the Schizothorax Yunnansis and even death. Therefore, unsuitable habitat area for Schizothorax Yunnansis is increased. It can be seen from the results that HABITAT model can assist in ecological impact assessment studies by translating results of hydrological, water quality models into effects on the natural environment and human society.

  19. Evaluation of water quality conditions near proposed fish production sites associated with the Yakima Fisheries Project. Final report

    International Nuclear Information System (INIS)

    Dauble, D.d.; Mueller, R.P.; Martinson, G.A.

    1994-05-01

    In 1991, the Pacific Northwest Laboratory (PNL) began studying water quality at several sites in the Yakima River Basin for the Bonneville Power Administration. These sites were being proposed as locations for fish culture facilities as part of the Yakima Fisheries Project (YFP). Surface water quality parameters near the proposed fish culture facilities are currently suitable for fish production. Water quality conditions in the mainstream Yakima River and its tributaries are generally excellent in the upper part of the watershed (i.e., near Cle Elum), but they are only fair to poor for the river downstream of Union Gap (river mile 107). Water quality of the Naches River near Oak Flats is also suitable for fish production. Groundwater supplies near the proposed fish production facilities typically have elevated concentrations of metals and dissolved gases. These conditions can be mitigated using best engineering practices such as precipitation and degasification. Additionally, mixing with surface water may improve these conditions. Depending on the location and depth of the well, groundwater temperatures may be warmer than optimum for acclimating and holding juvenile and adult fish. Water quality parameters measured in the Yakima River and tributaries sometimes exceed the range of values described as acceptable for culture of salmonids and for the protection of other aquatic life. However, constituent concentrations are within ranges that exist in many northwest fish hatcheries. Additionally, site-specific tests conducted by PNL (i.e., live box exposures and egg incubation studies) indicate that fish can be successfully reared in surface and well water near the proposed facility sites. Thus, there appear to be no constraints to artificial production for the YFP

  20. Water Quality Assessment of Ayeyarwady River in Myanmar

    Science.gov (United States)

    Thatoe Nwe Win, Thanda; Bogaard, Thom; van de Giesen, Nick

    2015-04-01

    Myanmar's socio-economic activities, urbanisation, industrial operations and agricultural production have increased rapidly in recent years. With the increase of socio-economic development and climate change impacts, there is an increasing threat on quantity and quality of water resources. In Myanmar, some of the drinking water coverage still comes from unimproved sources including rivers. The Ayeyarwady River is the main river in Myanmar draining most of the country's area. The use of chemical fertilizer in the agriculture, the mining activities in the catchment area, wastewater effluents from the industries and communities and other development activities generate pollutants of different nature. Therefore water quality monitoring is of utmost importance. In Myanmar, there are many government organizations linked to water quality management. Each water organization monitors water quality for their own purposes. The monitoring is haphazard, short term and based on individual interest and the available equipment. The monitoring is not properly coordinated and a quality assurance programme is not incorporated in most of the work. As a result, comprehensive data on the water quality of rivers in Myanmar is not available. To provide basic information, action is needed at all management levels. The need for comprehensive and accurate assessments of trends in water quality has been recognized. For such an assessment, reliable monitoring data are essential. The objective of our work is to set-up a multi-objective surface water quality monitoring programme. The need for a scientifically designed network to monitor the Ayeyarwady river water quality is obvious as only limited and scattered data on water quality is available. However, the set-up should also take into account the current socio-economic situation and should be flexible to adjust after first years of monitoring. Additionally, a state-of-the-art baseline river water quality sampling program is required which

  1. Urban Surface Water Quality, Flood Water Quality and Human Health Impacts in Chinese Cities. What Do We Know?

    Directory of Open Access Journals (Sweden)

    Yuhan Rui

    2018-02-01

    Full Text Available Climate change and urbanization have led to an increase in the frequency of extreme water related events such as flooding, which has negative impacts on the environment, economy and human health. With respect to the latter, our understanding of the interrelationship between flooding, urban surface water and human health is still very limited. More in-depth research in this area is needed to further strengthen the process of planning and implementation of responses to mitigate the negative health impacts of flooding in urban areas. The objective of this paper is to assess the state of the research on the interrelationship between surface water quality, flood water quality and human health in urban areas based on the published literature. These insights will be instrumental in identifying and prioritizing future research needs in this area. In this study, research publications in the domain of urban flooding, surface water quality and human health were collated using keyword searches. A detailed assessment of these publications substantiated the limited number of publications focusing on the link between flooding and human health. There was also an uneven geographical distribution of the study areas, as most of the studies focused on developed countries. A few studies have focused on developing countries, although the severity of water quality issues is higher in these countries. The study also revealed a disparity of research in this field across regions in China as most of the studies focused on the populous south-eastern region of China. The lack of studies in some regions has been attributed to the absence of flood water quality monitoring systems which allow the collection of real-time water quality monitoring data during flooding in urban areas. The widespread implementation of cost effective real-time water quality monitoring systems which are based on the latest remote or mobile phone based data acquisition techniques is recommended

  2. Columbia River water quality monitoring

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Waste water from Hanford activities is discharged at eight points along the Hanford reach of the Columbia River. These discharges consist of backwash water from water intake screens, cooling water, river bank springs, water storage tank overflow, and fish laboratory waste water. Each discharge point is identified in an existing National Pollutant Discharge Elimination System (NPDES) permit issued by the EPA. Effluents from each of these outfalls are routinely monitored and reported by the operating contractors as required by their NPDES permits. Measurements of several Columbia River water quality parameters were conducted routinely during 1982 both upstream and downstream of the Hanford Site to monitor any effects on the river that may be attributable to Hanford discharges and to determine compliance with the Class A designation requirements. The measurements indicated that Hanford operations had a minimal, if any, impact on the quality of the Columbia River water

  3. Small drains, big problems: the impact of dry weather runoff on shoreline water quality at enclosed beaches.

    Science.gov (United States)

    Rippy, Megan A; Stein, Robert; Sanders, Brett F; Davis, Kristen; McLaughlin, Karen; Skinner, John F; Kappeler, John; Grant, Stanley B

    2014-12-16

    Enclosed beaches along urban coastlines are frequent hot spots of fecal indicator bacteria (FIB) pollution. In this paper we present field measurements and modeling studies aimed at evaluating the impact of small storm drains on FIB pollution at enclosed beaches in Newport Bay, the second largest tidal embayment in Southern California. Our results suggest that small drains have a disproportionate impact on enclosed beach water quality for five reasons: (1) dry weather surface flows (primarily from overirrigation of lawns and ornamental plants) harbor FIB at concentrations exceeding recreational water quality criteria; (2) small drains can trap dry weather runoff during high tide, and then release it in a bolus during the falling tide when drainpipe outlets are exposed; (3) nearshore turbulence is low (turbulent diffusivities approximately 10(-3) m(2) s(-1)), limiting dilution of FIB and other runoff-associated pollutants once they enter the bay; (4) once in the bay, runoff can form buoyant plumes that further limit vertical mixing and dilution; and (5) local winds can force buoyant runoff plumes back against the shoreline, where water depth is minimal and human contact likely. Outdoor water conservation and urban retrofits that minimize the volume of dry and wet weather runoff entering the local storm drain system may be the best option for improving beach water quality in Newport Bay and other urban-impacted enclosed beaches.

  4. Bottled Water: United States Consumers and Their Perceptions of Water Quality

    OpenAIRE

    Hu, Zhihua; Morton, Lois Wright; Mahler, Robert L.

    2011-01-01

    Consumption of bottled water is increasing worldwide. Prior research shows many consumers believe bottled water is convenient and has better taste than tap water, despite reports of a number of water quality incidents with bottled water. The authors explore the demographic and social factors associated with bottled water users in the U.S. and the relationship between bottled water use and perceptions of the quality of local water supply. They find that U.S. consumers are more likely to report...

  5. WATER QUALITY AND ITS EFFECT ON GROWTH AND SURVIVAL RATE OF LOBSTER REARED IN FLOATING NET CAGE IN EKAS BAY, WEST NUSA TENGGARA PROVINCE

    Directory of Open Access Journals (Sweden)

    Muhammad Junaidi

    2015-02-01

    Full Text Available ABSTRACT The development of lobster farming in floating net cage in Ekas Bay caused an environmental degradation such as decrease water quality due to some aquaculture wastes. The purposes of this study were to determine the status of water quality and their effect on growth and survival rate of lobster reared in floating net cages (FNC in the Ekas Bay, West Nusa Tenggara Province. Water sample collection and handling referred to the APHA (1992. Analyses of water quality data were conducted using Principal Component Analysis. Determination of the water quality status of Ekas Bay was performed with STORET system. Multivariate analyses were used to determine the relationship between water quality, growth, and survival rate of lobster reared in FNC. Results showed that Ekas Bay water quality status was categorized in class C (medium contaminated, which exceeded some quality standard parameters such as ammonia (0.3 mg/l, nitrate (0.008 mg/l, and phosphate (0.015 mg/l. During lobster farming activities feeding with trash fish for 270 days, we obtained daily growth rate of  0.74% (lower than normal growth rate of 0.86%, survival rate of 66% (lower than normal survival rate of 86.7%, and feed conversion ratio of 11.15. Ammonia was found as a dominant factor reducing growth  and survival rate of lobster reared in FNC. Keywords: water quality, lobsters, growth, survival, Ekas Bay

  6. Potential impacts of changing supply-water quality on drinking water distribution: A review.

    Science.gov (United States)

    Liu, Gang; Zhang, Ya; Knibbe, Willem-Jan; Feng, Cuijie; Liu, Wentso; Medema, Gertjan; van der Meer, Walter

    2017-06-01

    Driven by the development of water purification technologies and water quality regulations, the use of better source water and/or upgraded water treatment processes to improve drinking water quality have become common practices worldwide. However, even though these elements lead to improved water quality, the water quality may be impacted during its distribution through piped networks due to the processes such as pipe material release, biofilm formation and detachment, accumulation and resuspension of loose deposits. Irregular changes in supply-water quality may cause physiochemical and microbiological de-stabilization of pipe material, biofilms and loose deposits in the distribution system that have been established over decades and may harbor components that cause health or esthetical issues (brown water). Even though it is clearly relevant to customers' health (e.g., recent Flint water crisis), until now, switching of supply-water quality is done without any systematic evaluation. This article reviews the contaminants that develop in the water distribution system and their characteristics, as well as the possible transition effects during the switching of treated water quality by destabilization and the release of pipe material and contaminants into the water and the subsequent risks. At the end of this article, a framework is proposed for the evaluation of potential transition effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Analysis of water-quality trends at two discharge stations; one within Big Cypress National Preserve and one near Biscayne Bay; southern Florida, 1966-94

    Science.gov (United States)

    Lietz, A.C.

    2000-01-01

    An analysis of water-quality trends was made at two U.S. Geological Survey daily discharge stations in southern Florida. The ESTREND computer program was the principal tool used for the determination of water-quality trends at the Miami Canal station west of Biscayne Bay in Miami and the Tamiami Canal station along U.S. Highway 41 in the Big Cypress National Preserve in Collier County. Variability in water quality caused by both seasonality and streamflow was compensated for by applying the nonparametric Seasonal Kendall trend test to unadjusted concentrations or flow-adjusted concentrations (residuals) determined from linear regression analysis. Concentrations of selected major inorganic constituents and physical characteristics; pH and dissolved oxygen; suspended sediment; nitrogen, phosphorus, and carbon species; trace metals; and bacteriological and biological characteristics were determined at the Miami and Tamiami Canal stations. Median and maximum concentrations of selected constituents were compared to the Florida Class III freshwater standards for recreation, propagation, and maintenance of a healthy, well-balanced population of fish and wildlife. The median concentrations of the water-quality constituents and characteristics generally were higher at the Miami Canal station than at the Tamiami Canal station. The maximum value for specific conductance at the Miami Canal station exceeded the State standard. The median and maximum concentrations for ammonia at the Miami and Tamiami Canal stations exceeded the State standard, whereas median dissolved-oxygen concentrations at both stations were below the State standard. Trend results were indicative of either improvement or deterioration in water quality with time. Improvement in water quality at the Miami Canal station was reflected by downward trends in suspended sediment (1987-94), turbidity, (1970-78), total ammonia (1971-94), total phosphorus (1987-94), barium (1978-94), iron (1969-94), and fecal coliform

  8. 30 CFR 71.601 - Drinking water; quality.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 71.600 shall meet the applicable minimum health requirements for drinking water established by the...

  9. Optical sensors for water quality

    Science.gov (United States)

    Pellerin, Brian A.; Bergamaschi, Brian A.

    2014-01-01

    Shifts in land use, population, and climate have altered hydrologic systems in the United States in ways that affect water quality and ecosystem function. Water diversions, detention in reservoirs, increased channelization, and changes in rainfall and snowmelt are major causes, but there are also more subtle causes such as changes in soil temperature, atmospheric deposition, and shifting vegetation patterns. The effects on water quality are complex and interconnected, and occur at timeframes of minutes (e.g., flash floods) to decades (e.g., evolving management practices).

  10. Evaluation of water quality in the Rimac River Basin of Peru: Huaycoloro urban subbasin

    Science.gov (United States)

    Baldeón Quispe, W.; Vela Cardich, R.; Huamán Paredes, F.

    2013-05-01

    chromium present in concentrations which in some cases exceeds the regulated value (0.043, 0.25, 0.067 and 0.080 mg/l for ES-1, ES-2, ES-3 and ES-4, respectively). This behavior is explained especially by effluent discharges tannery activities carried out in the study area. The relationship BOD5/COD in all cases where it has been determined is less than 0.2 or exceeds narrowly except values 0.51 and 0.74 corresponding to the second sampling 2007 to IS -1 and the sampling of 2008 for ES-3. The relationship between the COD and BOD5 gives an idea of the nature of the organic pollutants contained in the water (Orozco et al, 2003). Thus, these results are located generally below or slightly above 0.2, indicates that the compounds organics in the different sampling stations are predominantly non-biodegradable organic in nature. This study indicates that the Huaycoloro urban subbasin is being highly impacted by domestic and industrial discharges so it is necessary to strengthen environmental management mechanisms to improve its environmental quality with the participation of all actors involved in this water resources.

  11. Application of Water Quality and Ecology Indices of Benthic Macroinvertebrate to Evaluate Water Quality of Tertiary Irrigation in Malang District

    Directory of Open Access Journals (Sweden)

    Desi Kartikasari

    2013-12-01

    Full Text Available This research aims to determine the water quality of tertiary irrigation in several subdistricts in Malang, namely Kepanjen, Karangploso, and Tumpang. The water quality depends on the water quality indices (National Sanitation Foundation’s-NSF Indices and O’Connor’s Indices based on variables TSS, TDS, pH, DO, and Nitrate concentrate and ecological indices of benthic macroinvertebrate (Diversity Indices Shannon-Wiener, Hilsenhof Biotic Indices-HBI, Average Score per Taxon-ASPT which is calculated by Biological Monitoring Working Party-BMWP, Ephemeroptera Indices, Plecoptera, Trichoptera-EPT. Observation of the physico-chemical water quality and benthic macroinvertebrate on May 2012 to April 2013. The sampling in each subdistrict was done at two selected stations in tertiary irrigation channel with three plot at each station. The data of physico-chemical quality of water were used to calculate the water quality indices, while the benthic macroinvertebrate data were used to calculate the ecological indices. The research findings showed that 27 taxa of benthic macroinvertebrates belong 10 classes were found in the three subdistrict. The pH, DO, Nitrate, TSS and TDS in six tertiary irrigation channels in Malang still met the water quality standards based on Government Regulation No. 82 of 2001 on Management of Water Quality and Water Pollution Control Class III. Based on NSF-WQI indices and O'Connor's Indices, water qualities in these irrigation channels were categorized into medium or moderate (yellow to good (green category. However, based on benthic macroinvertebrate communities which was used to determine the HBI, the water quality in the irrigation channels were categorized into the fair category (fairly significant organic pollution to fairly poor (significant organic pollution, while based on the value of ASPT, the water were categorized into probable moderate pollution to probable severe pollution. The irrigation water which was

  12. Water Quality Management of Beijing in China

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    At present, Beijing's water resources are insufficient and will become the limiting factor for sustainable development for the city in the near future. Although efforts have been made to control pollution, water quality degradation has occurred in some of the important surface water supplies, aggravating the water resource shortage. At present, approximately three quarters of the city's wastewater is discharged untreated into the urban river system, resulting in serious pollution and negatively influencing the urban landscape and quality of daily life. To counteract these measures, the city has implemented a comprehensive "Water Quality Management Plan" for the region, encompassing water pollution control, prevention of water body degradation, and improved water quality.The construction of municipal wastewater treatment plants is recognised as fundamental to controlling water pollution, and full secondary treatment is planned to be in place by the year 2015. Significant work is also required to expand the service area of the municipal sewage system and to upgrade and renovate the older sewer systems. The limitation on available water resources has also seen the emphasis shift to low water using industries and improved water conservation. Whilst industrial output has increased steadily over the past 10-15 years at around 10% per annum, industrial water usage has remained relatively constant. Part of the city's water quality management plan has been to introduce a strict discharge permit system, encouraging many industries to install on-site treatment facilities.

  13. 77 FR 71191 - 2012 Recreational Water Quality Criteria

    Science.gov (United States)

    2012-11-29

    ... ENVIRONMENTAL PROTECTION AGENCY [EPA-OW-2011-0466; FRL 9756-2] 2012 Recreational Water Quality... Recreational Water Quality Criteria. SUMMARY: Pursuant to section 304(a) of the Clean Water Act (CWA), the Environmental Protection Agency (EPA) is announcing the availability of the 2012 Recreational Water Quality...

  14. ATLAS: Exceeding all expectations

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    “One year ago it would have been impossible for us to guess that the machine and the experiments could achieve so much so quickly”, says Fabiola Gianotti, ATLAS spokesperson. The whole chain – from collision to data analysis – has worked remarkably well in ATLAS.   The first LHC proton run undoubtedly exceeded expectations for the ATLAS experiment. “ATLAS has worked very well since the beginning. Its overall data-taking efficiency is greater than 90%”, says Fabiola Gianotti. “The quality and maturity of the reconstruction and simulation software turned out to be better than we expected for this initial stage of the experiment. The Grid is a great success, and right from the beginning it has allowed members of the collaboration all over the world to participate in the data analysis in an effective and timely manner, and to deliver physics results very quickly”. In just a few months of data taking, ATLAS has observed t...

  15. Portable water quality monitoring system

    Science.gov (United States)

    Nizar, N. B.; Ong, N. R.; Aziz, M. H. A.; Alcain, J. B.; Haimi, W. M. W. N.; Sauli, Z.

    2017-09-01

    Portable water quality monitoring system was a developed system that tested varied samples of water by using different sensors and provided the specific readings to the user via short message service (SMS) based on the conditions of the water itself. In this water quality monitoring system, the processing part was based on a microcontroller instead of Lead and Copper Rule (LCR) machines to receive the results. By using four main sensors, this system obtained the readings based on the detection of the sensors, respectively. Therefore, users can receive the readings through SMS because there was a connection between Arduino Uno and GSM Module. This system was designed to be portable so that it would be convenient for users to carry it anywhere and everywhere they wanted to since the processor used is smaller in size compared to the LCR machines. It was also developed to ease the user to monitor and control the water quality. However, the ranges of the sensors' detection still a limitation in this study.

  16. Water quality for liquid wastes

    International Nuclear Information System (INIS)

    Mizuniwa, Fumio; Maekoya, Chiaki; Iwasaki, Hitoshi; Yano, Hiroaki; Watahiki, Kazuo.

    1985-01-01

    Purpose: To facilitate the automation of the operation for a liquid wastes processing system by enabling continuous analysis for the main ingredients in the liquid wastes accurately and rapidly. Constitution: The water quality monitor comprises a sampling pipeway system for taking out sample water for the analysis of liquid wastes from a pipeway introducing liquid wastes to the liquid wastes concentrator, a filter for removing suspended matters in the sample water and absorption photometer as a water quality analyzer. A portion of the liquid wastes is passed through the suspended matter filter by a feedpump. In this case, sulfate ions and chloride ions in the sample are retained in the upper portion of a separation color and, subsequently, the respective ingredients are separated and leached out by eluting solution. Since the leached out ingredients form ferric ions and yellow complexes respectively, their concentrations can be detected by the spectrum photometer. Accordingly, concentration for the sodium sulfate and sodium chloride in the liquid wastes can be analyzed rapidly, accurately and repeatedly by which the water quality can be determined rapidly and accurately. (Yoshino, Y.)

  17. Hydrogeology and water quality of the Dublin and Midville aquifer systems at Waynesboro, Burke County, Georgia, 2011

    Science.gov (United States)

    Gonthier, Gerard

    2013-01-01

    system averages about 2×10-6 per foot. Water quality of the Dublin and Midville aquifer systems was characterized during the aquifer test on the basis of water samples collected from composite well flow originating from five depths in the completed production well during the aquifer test. Samples were analyzed for total dissolved solids, specific conductance, pH, alkalinity, and major ions. Water-quality results from composite samples, known flow contribution from individual screens, and a mixing equation were used to calculate water-quality values for sample intervals between sample depths or below the bottom sample depth. With the exception of iron and manganese, constituent concentrations of water from each of the sampled intervals and total flow from the well were within U.S. Environmental Protection Agency primary and secondary drinking-water standards. Water from the bottommost sample interval in the lower part of the lower Midville aquifer (900 to 930 feet) contained manganese and iron concentrations of 59.1 and 1,160 micrograms per liter, respectively, which exceeded secondary drinking-water standards. Because this interval contributed only 0.1 percent of the total flow to the well, water quality of this interval had little effect on the composite well water quality. Two other sample intervals from the Midville aquifer system and the total flow from both aquifer systems contained iron concentrations that slightly exceeded the secondary drinking-water standard of 300 micrograms per liter.

  18. Spatio-Temporal Trends and Identification of Correlated Variables with Water Quality for Drinking-Water Reservoirs.

    Science.gov (United States)

    Gu, Qing; Wang, Ke; Li, Jiadan; Ma, Ligang; Deng, Jinsong; Zheng, Kefeng; Zhang, Xiaobin; Sheng, Li

    2015-10-20

    It is widely accepted that characterizing the spatio-temporal trends of water quality parameters and identifying correlated variables with water quality are indispensable for the management and protection of water resources. In this study, cluster analysis was used to classify 56 typical drinking water reservoirs in Zhejiang Province into three groups representing different water quality levels, using data of four water quality parameters for the period 2006-2010. Then, the spatio-temporal trends in water quality were analyzed, assisted by geographic information systems (GIS) technology and statistical analysis. The results indicated that the water quality showed a trend of degradation from southwest to northeast, and the overall water quality level was exacerbated during the study period. Correlation analysis was used to evaluate the relationships between water quality parameters and ten independent variables grouped into four categories (land use, socio-economic factors, geographical features, and reservoir attributes). According to the correlation coefficients, land use and socio-economic indicators were identified as the most significant factors related to reservoir water quality. The results offer insights into the spatio-temporal variations of water quality parameters and factors impacting the water quality of drinking water reservoirs in Zhejiang Province, and they could assist managers in making effective strategies to better protect water resources.

  19. Spatio-Temporal Trends and Identification of Correlated Variables with Water Quality for Drinking-Water Reservoirs

    Directory of Open Access Journals (Sweden)

    Qing Gu

    2015-10-01

    Full Text Available It is widely accepted that characterizing the spatio-temporal trends of water quality parameters and identifying correlated variables with water quality are indispensable for the management and protection of water resources. In this study, cluster analysis was used to classify 56 typical drinking water reservoirs in Zhejiang Province into three groups representing different water quality levels, using data of four water quality parameters for the period 2006–2010. Then, the spatio-temporal trends in water quality were analyzed, assisted by geographic information systems (GIS technology and statistical analysis. The results indicated that the water quality showed a trend of degradation from southwest to northeast, and the overall water quality level was exacerbated during the study period. Correlation analysis was used to evaluate the relationships between water quality parameters and ten independent variables grouped into four categories (land use, socio-economic factors, geographical features, and reservoir attributes. According to the correlation coefficients, land use and socio-economic indicators were identified as the most significant factors related to reservoir water quality. The results offer insights into the spatio-temporal variations of water quality parameters and factors impacting the water quality of drinking water reservoirs in Zhejiang Province, and they could assist managers in making effective strategies to better protect water resources.

  20. A summary of water chemistry changes following hydroelectric development in northern Manitoba, Canada

    International Nuclear Information System (INIS)

    Williamson, D.A.; Ralley, W.E.

    1993-01-01

    A detailed summary is provided from five major water quality studies undertaken in northern Manitoba to assess the effects of hydroelectric projects on water quality. Physical changes occurring with the area affected by both the Churchill River diversion and Lake Winnipeg regulation have led to water quality changes in many cases. Phosphorus appeared to increase at some sites while decreasing at others, reflecting a new balance between erosion of new P sources and later uptake or deposition. Color declined at all sites except at Red Head Rapids. Turbidity increased in Southern Indian Lake and in the Burntwood River at Thompson in response to the Churchill diversion, but turbidity has historically exceeded drinking water quality objectives. It is unclear whether the observed changes in water chemistry may have the potential to directly impact aquatic life and wildlife. A major limitation of the water quality data set is the lack of pre-development data for many of the trace elements analyzed. Relative to an upstream reference site, concentrations of Cu, Pb, and Zn were slightly higher at some sites affected by hydroelectric development, but it is not known whether this condition existed prior to development. Exceedances of water quality objectives for some trace elements occurred intermittently at some sites but it is not possible to determine whether these exceedances occurred infrequently historically as a result of natural variability. 34 refs., 1 fig., 13 tabs

  1. Summary of Surface-Water Quality Data from the Illinois River Basin in Northeast Oklahoma, 1970-2007

    Science.gov (United States)

    Andrews, William J.; Becker, Mark F.; Smith, S. Jerrod; Tortorelli, Robert L.

    2009-01-01

    periods. Concentrations of nitrogen, phosphorus, and sediment, and counts of bacteria generally increased with streamflow at the five sites, probably due to runoff from the land surface and re-suspension of streambed sediments. Phosphorus concentrations typically exceeded the Oklahoma standard of 0.037 milligrams per liter for Scenic Rivers. Concentrations of chlorophyll-a in phytoplankton in water samples collected at the five sites were not well correlated with streamflow, nor to concentrations of the nutrients nitrogen and phosphorus, probably because much of the algae growing in these streams are periphyton attached to streambed cobbles and other debris, rather than phytoplankton in the water column. Sediment concentrations correlated with phosphorus concentrations in water samples collected at the sites, probably due to sorption of phosphorus to soil particles and streambed sediments and runoff of soils and animal wastes at the land surface and resuspension of streambed sediments and phosphorus during wet, high-flow periods. Fecal coliform bacteria counts at the five sites sometimes exceeded the Oklahoma Primary Body Contact Standard of 400 colonies per 100 milliliters when streamflows were greater than 1000 cubic feet per second. Ultimately, Lake Tenkiller, an important ecological and economic resource for the region, receives the compounds that runoff the land surface or seep to local streams from groundwater in the basin. Because of eutrophication from increased nutrient loading, Lake Tenkiller is listed for impairment by diminished dissolved oxygen concentrations, phosphorus, and chlorophyll-a by the State of Oklahoma in evaluation of surface-water quality required by section 303d of the Clean Water Act. Stored phosphorus in soils and streambed and lakebed sediments may continue to provide phosphorus to local streams and lakes for decades to come. Steps are being made to reduce local sources of phosphorus, including upgrades in capacity and effective

  2. Physicochemical quality evaluation of groundwater and development of drinking water quality index for Araniar River Basin, Tamil Nadu, India.

    Science.gov (United States)

    Jasmin, I; Mallikarjuna, P

    2014-02-01

    Groundwater is the most important natural resource which cannot be optimally used and sustained unless its quality is properly assessed. In the present study, the spatial and temporal variations in physicochemical quality parameters of groundwater of Araniar River Basin, India were analyzed to determine its suitability for drinking purpose through development of drinking water quality index (DWQI) maps of the post- and pre-monsoon periods. The suitability for drinking purpose was evaluated by comparing the physicochemical parameters of groundwater in the study area with drinking water standards prescribed by the World Health Organization (WHO) and Bureau of Indian Standards (BIS). Interpretation of physicochemical data revealed that groundwater in the basin was slightly alkaline. The cations such as sodium (Na(+)) and potassium (K(+)) and anions such as bicarbonate (HCO3 (-)) and chloride (Cl(-)) exceeded the permissible limits of drinking water standards (WHO and BIS) in certain pockets in the northeastern part of the basin during the pre-monsoon period. The higher total dissolved solids (TDS) concentration was observed in the northeastern part of the basin, and the parameters such as calcium (Ca(2+)), magnesium (Mg(2+)), sulfate (SO4 (2-)), nitrate (NO3 (-)), and fluoride (F(-)) were within the limits in both the seasons. The hydrogeochemical evaluation of groundwater of the basin demonstrated with the Piper trilinear diagram indicated that the groundwater samples of the area were of Ca(2+)-Mg(2+)-Cl(-)-SO4 (2-), Ca(2+)-Mg(2+)-HCO3 (-) and Na(+)-K(+)-Cl(-)-SO4 (2-) types during the post-monsoon period and Ca(2+)-Mg(2+)-Cl(-)-SO4 (2-), Na(+)-K(+)-Cl(-)-SO4 (2-) and Ca(2+)-Mg(2+)-HCO3 (-) types during the pre-monsoon period. The DWQI maps for the basin revealed that 90.24 and 73.46% of the basin area possess good quality drinking water during the post- and pre-monsoon seasons, respectively.

  3. Refining models for quantifying the water quality benefits of improved animal management for use in water quality trading

    Science.gov (United States)

    Water quality trading (WQT) is a market-based approach that allows point sources of water pollution to meet their water quality obligations by purchasing credits from the reduced discharges from other point or nonpoint sources. Non-permitted animal operations and fields of permitted animal operatio...

  4. Physicochemical and microbial assessment of spring water quality for drinking supply in Piedmont of Béni-Mellal Atlas (Morocco)

    Science.gov (United States)

    Barakat, Ahmed; Meddah, Redouane; Afdali, Mustapha; Touhami, Fatima

    2018-04-01

    The present study was conducted to examine the water quality of karst springs located along the Piedmont of Béni-Mellal Atlas (Morocco) for drinking purposes. Twenty-five water samples were collected from seven springs in June, July, August and September 2013, and May 2016 have been analyzed for their physicochemical and microbial characteristics. The analytical data of temperature, pH, DO, TAC, TH, oxidizability and NH4+ showed that all sampled springs are suitable as drinking water according to Moroccan and the World Health Organization (WHO) standards. Nevertheless, EC, turbidity, and NO3- were sometimes noted higher than the allowable limits, what would be ascribed to erosion and leaching of soil and karstic rocks. The microbial analysis revealed the presence of fecal contamination (total coliforms, E. coli, and intestinal enterococci) in all springs at various times. The water quality index (WQI) calculated based on physicochemical and microbial data reveled that water quality categorization for all sampling springs was found to be 'medium' to 'good' for drinking uses in the National Sanitation Foundation WQI (NSF-WQI), and ''necessary treatment becoming more extensive'' to ''purification not necessary'' in the Dinius' Second Index (D-WQI). The Aine Asserdoune and Foum el Anceur springs showed the good quality of drinking water. According to Moroccan standards for water used for drinking purposes, the waters belong to category A1 that requires becoming drinkable a simple physical treatment and disinfection. From the type of parameters present in quantities exceeding drinking water limits, it is very obvious that these water resources are under the influence of anthropogenic activities such as sewage, waste disposal, deforestation and agricultural activities, caused land degradation and nonpoint pollution sources. Environmental attention, such as systematic quality control and adequate treatment before being used for drinking use and access to sewage

  5. Assessing water quality in Lake Naivasha

    NARCIS (Netherlands)

    Ndungu, J.N.

    2014-01-01

    Water quality in aquatic systems is important because it maintains the ecological processes that support biodiversity. However, declining water quality due to environmental perturbations threatens the stability of the biotic integrity and therefore hinders the ecosystem services and functions of

  6. Evaluation of Water Quality for Two St. Johns River Tributaries Receiving Septic Tank Effluent, Duval County, Florida

    Science.gov (United States)

    Wicklein, Shaun M.

    2004-01-01

    Tributary streamflow to the St. Johns River in Duval County is thought to be affected by septic tank leachate from residential areas adjacent to these tributaries. Water managers and the city of Jacksonville have committed to infrastructure improvements as part of a management plan to address the impairment of tributary water quality. In order to provide data to evaluate the effects of future remedial activities in selected tributaries, major ion and nutrient concentrations, fecal coliform concentrations, detection of wastewater compounds, and tracking of bacterial sources were used to document septic tank influences on the water quality of selected tributaries. The tributaries Fishing Creek and South Big Fishweir Creek were selected because they drain subdivisions identified as high priority locations for septic tank phase-out projects: the Pernecia and Murray Hill B subdivisions, respectively. Population, housing (number of residences), and septic tank densities for the Murray Hill B subdivision are greater than those for the Pernecia subdivision. Water-quality samples collected in the study basins indicate influences from ground water and septic tanks. Estimated concentrations of total nitrogen ranged from 0.33 to 2.86 milligrams per liter (mg/L), and ranged from less than laboratory reporting limit (0.02 mg/L) to 0.64 mg/L for total phosphorus. Major ion concentrations met the State of Florida Class III surface-water standards; total nitrogen and total phosphorus concentrations exceeded the U.S. Environmental Protection Agency Ecoregion XII nutrient criteria for rivers and streams 49 and 96 percent of the time, respectively. Organic wastewater compounds detected at study sites were categorized as detergents, antioxidants and flame retardants, manufactured polycarbonate resins, industrial solvents, and mosquito repellent. The most commonly detected compound was para-nonylphenol, a breakdown product of detergent. Results of wastewater sampling give evidence that

  7. Heavy metal contaminations in the groundwater of Brahmaputra flood plain: an assessment of water quality in Barpeta District, Assam (India).

    Science.gov (United States)

    Haloi, Nabanita; Sarma, H P

    2012-10-01

    A study was conducted to evaluate the heavy metal contamination status of groundwater in Brahmaputra flood plain Barpeta District, Assam, India. The Brahmaputra River flows from the southern part of the district and its many tributaries flow from north to south. Cd, Fe, Mn, Pb, and Zn are estimated by using atomic absorption spectrometer, Perkin Elmer AA 200. The quantity of heavy metals in drinking water should be checked time to time; as heavy metal accumulation will cause numerous problems to living being. Forty groundwater samples were collected mainly from tube wells from the flood plain area. As there is very little information available about the heavy metal contamination status in the heavily populated study area, the present work will help to be acquainted with the suitability of groundwater for drinking applications as well as it will enhance the database. The concentration of iron exceeds the WHO recommended levels of 0.3 mg/L in about 80% of the samples, manganese values exceed 0.4 mg/L in about 22.5% of the samples, and lead values also exceed limit in 22.5% of the samples. Cd is reported in only four sampling locations and three of them exceed the WHO permissible limit (0.003 mg/L). Zinc concentrations were found to be within the prescribed WHO limits. Therefore, pressing awareness is needed for the betterment of water quality; for the sake of safe drinking water. Statistical analysis of the data was carried out using Special Package for Social Sciences (SPSS 16).

  8. Water quality for the year 2000

    International Nuclear Information System (INIS)

    Newman, A.

    1991-01-01

    Under an umbrella labeled Water Quality 2000, 86 organizations - ranging from the Natural Resources Defense Council to the Chemical Manufacturers Association - have reached a consensus on the major water quality problems currently facing the US. Their broad-based conclusions have been released in a report entitled Challenges for the Future, which represents one step in an ongoing discussion among representatives of these diverse groups on improving water quality. Although the report presents a long-term view, William Matuszeski from EPA described the document as a superb background for the upcoming debate over reauthorization of the Clean Water Act. In general terms, the report cites the major sources of current water problems as agricultural and urban runoff, especially following storms; airborne pollutants; continued dumping of toxic wastes; accidental spills; overharvesting of fish and shellfish; habitat competition from exotic species; and land and water use practices. This article summarizes some of the findings

  9. Quality status of bottled water brands in Pakistan

    International Nuclear Information System (INIS)

    Kahlown, M. A.; Tahir, M.A.

    2005-01-01

    The (PCRWR) has carried out a study to evaluate the quality of mineral water brands available in the market owing to demand of general public and consumer associations. Twenty one brands of bottled water were collected from Islamabad and Rawalpindi. Each water sample was analyzed for 24 aesthetic, physico-chemical and bacteriological water quality parameters by adopting standard analytical methods. It was observed that only 10 out of 21 brands (47.62%) were fit for drinking purpose. The remaining eleven brands (52.38%), including one imported brand, were found unsafe for human consumption. It was also concluded that present situation of water quality of bottled water is due to lack of legislation for water quality control. Hence there is a dire need for a legal organization to monitor and regulate the quality issues of bottled water industry. (author)

  10. Groundwater quality in western New York, 2011

    Science.gov (United States)

    Reddy, James E.

    2013-01-01

    Water samples collected from 16 production wells and 15 private residential wells in western New York from July through November 2011 were analyzed to characterize the groundwater quality. Fifteen of the wells were finished in sand and gravel aquifers, and 16 were finished in bedrock aquifers. Six of the 31 wells were sampled in a previous western New York study, which was conducted in 2006. Water samples from the 2011 study were analyzed for 147 physiochemical properties and constituents that included major ions, nutrients, trace elements, radionuclides, pesticides, volatile organic compounds (VOCs), and indicator bacteria. Results of the water-quality analyses are presented in tabular form for individual wells, and summary statistics for specific constituents are presented by aquifer type. The results are compared with Federal and New York State drinking-water standards, which typically are identical. The results indicate that groundwater generally is of acceptable quality, although at 30 of the 31 wells sampled, at least one of the following constituents was detected at a concentration that exceeded current or proposed Federal or New York State drinking-water standards: pH (two samples), sodium (eight samples), sulfate (three samples), total dissolved solids (nine samples), aluminum (two samples), arsenic (one sample), iron (ten samples), manganese (twelve samples), radon-222 (sixteen samples), benzene (one sample), and total coliform bacteria (nine samples). Existing drinking-water standards for color, chloride, fluoride, nitrate, nitrite, antimony, barium, beryllium, cadmium, chromium, copper, lead, mercury, selenium, silver, thallium, zinc, gross alpha radioactivity, uranium, fecal coliform, Escherichia coli, and heterotrophic bacteria were not exceeded in any of the samples collected. None of the pesticides analyzed exceeded existing drinking-water standards.

  11. 75 FR 41106 - Amendments to the Water Quality Regulations, Water Code and Comprehensive Plan to Update Water...

    Science.gov (United States)

    2010-07-15

    ... DELAWARE RIVER BASIN COMMISSION 18 CFR Part 410 Amendments to the Water Quality Regulations, Water Code and Comprehensive Plan to Update Water Quality Criteria for Toxic Pollutants in the Delaware... hold a public hearing to receive comments on proposed amendments to the Commission's Water Quality...

  12. GKI water quality studies. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, D L

    1980-01-01

    GKI water quality data collected in 1978 and early 1979 was evaluated with the objective of developing preliminary characterizations of native groundwater and retort water at Kamp Kerogen, Uintah County, Utah. Restrictive analytical definitions were developed to describe native groundwater and GKI retort water in an effort to eliminate from the sample population both groundwater samples affected by retorting and retort water samples diluted by groundwater. Native groundwater and retort water sample analyses were subjected to statistical manipulation and testing to summarize the data to determine the statistical validity of characterizations based on the data available, and to identify probable differences between groundwater and retort water based on available data. An evaluation of GKI water quality data related to developing characterizations of native groundwater and retort water at Kamp Kerogen was conducted. GKI retort water and the local native groundwater both appeared to be of very poor quality. Statistical testing indicated that the data available is generally insufficient for conclusive characterizations of native groundwater and retort water. Statistical testing indicated some probable significant differences between native groundwater and retort water that could be determined with available data. Certain parameters should be added to and others deleted from future laboratory analyses suites of water samples.

  13. Water and water quality management in the cholistan desert

    International Nuclear Information System (INIS)

    Kahlown, M.A.; Chaudhry, M.A.

    2005-01-01

    Water scarcity is the main problem in Cholistan desert. Rainfall is scanty and sporadic and groundwater is saline in most of the area. Rainwater is collected in man made small storages, locally called tobas during rainy season for human and livestock consumption. These tobas usually retain rainwater for three to four months at the maximum, due to small storage capacity and unfavorable location. After the tobas become dry, people use saline groundwater for human and livestock consumption where marginal quality groundwater is available. In complete absence of water they migrate towards canal irrigated areas till the next rains. During migration humans and livestock suffer from hunger, thirst and diseases. In order to overcome this problem Pakistan Council of Research in Water Resources (PCRWR) has introduced improved designs of tobas. The PCRWR is collecting more than 13.0 million cubic meter rainwater annually from only ninety hectare catchment area. As a result, water is available for drinking of human and livestock population as well as to wild life through out the year for the village of Dingarh in Cholistan desert. However, water collected in these tobas is usually muddy and full of impurities. To provide good quality drinking water to the residents of Cholistan, PCRWR has launched a Project under which required quantity of drinkable water will be provided at more than seventy locations by rainwater harvesting, pumping of good and marginal quality groundwater and desalination of moderately saline water through Reverse Osmosis Plants. After the completion of project, more then 380 million gallons of fresh rainwater and more than 1300 million gallons of good and marginal quality groundwater will be available annually. Intervention to collect the silt before reaching to the tobas are also introduced, low cost filter plants are designed and constructed on the tobas for purification of water. (author)

  14. Bacterial pathogen gene abundance and relation to recreational water quality at seven Great Lakes beaches.

    Science.gov (United States)

    Oster, Ryan J; Wijesinghe, Rasanthi U; Haack, Sheridan K; Fogarty, Lisa R; Tucker, Taaja R; Riley, Stephen C

    2014-12-16

    Quantitative assessment of bacterial pathogens, their geographic variability, and distribution in various matrices at Great Lakes beaches are limited. Quantitative PCR (qPCR) was used to test for genes from E. coli O157:H7 (eaeO157), shiga-toxin producing E. coli (stx2), Campylobacter jejuni (mapA), Shigella spp. (ipaH), and a Salmonella enterica-specific (SE) DNA sequence at seven Great Lakes beaches, in algae, water, and sediment. Overall, detection frequencies were mapA>stx2>ipaH>SE>eaeO157. Results were highly variable among beaches and matrices; some correlations with environmental conditions were observed for mapA, stx2, and ipaH detections. Beach seasonal mean mapA abundance in water was correlated with beach seasonal mean log10 E. coli concentration. At one beach, stx2 gene abundance was positively correlated with concurrent daily E. coli concentrations. Concentration distributions for stx2, ipaH, and mapA within algae, sediment, and water were statistically different (Non-Detect and Data Analysis in R). Assuming 10, 50, or 100% of gene copies represented viable and presumably infective cells, a quantitative microbial risk assessment tool developed by Michigan State University indicated a moderate probability of illness for Campylobacter jejuni at the study beaches, especially where recreational water quality criteria were exceeded. Pathogen gene quantification may be useful for beach water quality management.

  15. Water quality effects of intermittent water supply in Arraiján, Panama.

    Science.gov (United States)

    Erickson, John J; Smith, Charlotte D; Goodridge, Amador; Nelson, Kara L

    2017-05-01

    Intermittent drinking water supply is common in low- and middle-income countries throughout the world and can cause water quality to degrade in the distribution system. In this study, we characterized water quality in one study zone with continuous supply and three zones with intermittent supply in the drinking water distribution network in Arraiján, Panama. Low or zero pressures occurred in all zones, and negative pressures occurred in the continuous zone and two of the intermittent zones. Despite hydraulic conditions that created risks for backflow and contaminant intrusion, only four of 423 (0.9%) grab samples collected at random times were positive for total coliform bacteria and only one was positive for E. coli. Only nine of 496 (1.8%) samples had turbidity >1.0 NTU and all samples had ≥0.2 mg/L free chlorine residual. In contrast, water quality was often degraded during the first-flush period (when supply first returned after an outage). Still, routine and first-flush water quality under intermittent supply was much better in Arraiján than that reported in a previous study conducted in India. Better water quality in Arraiján could be due to better water quality leaving the treatment plant, shorter supply outages, higher supply pressures, a more consistent and higher chlorine residual, and fewer contaminant sources near pipes. The results illustrate that intermittent supply and its effects on water quality can vary greatly between and within distribution networks. The study also demonstrated that monitoring techniques designed specifically for intermittent supply, such as continuous pressure monitoring and sampling the first flush, can detect water quality threats and degradation that would not likely be detected with conventional monitoring. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Hydrological and Water Quality Characteristics of Rivers Feeding ...

    African Journals Online (AJOL)

    FDC analysis showed that over 80% of the time, all rivers in the study area would not meet the target community's water demand, without the dams in place. Water quality assessments show biological contamination as the major water quality problem. Significant seasonal variation in water quality is evident, with the dry ...

  17. The Economic Value of Changes in Water Quality

    DEFF Research Database (Denmark)

    Jensen, Anne Kejser

    Water quality is from both a European and Danish perspective challenged by private use of the resource. The public good characteristics of the resource require that regulation should internalize the non-market values of water quality, in order to reach an optimal level from a welfare economic...... perspective. Valuation using stated preference techniques to value changes in ecosystem services has been widely used to estimate values of water quality. However, heterogeneity in values exists across different groups in the population. The objective of this PhD-thesis is to explore two different kinds...... of preference heterogeneity, when valuing changes in water quality. The PhD thesis consists of four papers all related to heterogeneity in the public preferences for water quality improvements. Papers referred to as 1, 2 and 3 are based on a discrete choice experiment (DCE) on water quality improvements...

  18. The economics of water reuse and implications for joint water quality-quantity management

    Science.gov (United States)

    Kuwayama, Y.

    2015-12-01

    Traditionally, economists have treated the management of water quality and water quantity as separate problems. However, there are some water management issues for which economic analysis requires the simultaneous consideration of water quality and quantity policies and outcomes. Water reuse, which has expanded significantly over the last several decades, is one of these issues. Analyzing the cost effectiveness and social welfare outcomes of adopting water reuse requires a joint water quality-quantity optimization framework because, at its most basic level, water reuse requires decision makers to consider (a) its potential for alleviating water scarcity, (b) the quality to which the water should be treated prior to reuse, and (c) the benefits of discharging less wastewater into the environment. In this project, we develop a theoretical model of water reuse management to illustrate how the availability of water reuse technologies and practices can lead to a departure from established rules in the water resource economics literature for the optimal allocation of freshwater and water pollution abatement. We also conduct an econometric analysis of a unique dataset of county-level water reuse from the state of Florida over the seventeen-year period between 1996 and 2012 in order to determine whether water quality or scarcity concerns drive greater adoption of water reuse practices.

  19. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials. Supplement 34, 1988.

    Science.gov (United States)

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    The Environmental Quality Instructional Resources Center in Columbus, Ohio, acquires, reviews, indexes, and announces both print (books, modules, units, etc.) and non-print (films, slides, video tapes, etc.) materials related to water quality and water resources education and instruction. In addition some materials related to pesticides, hazardous…

  20. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials. Supplement 32, 1987.

    Science.gov (United States)

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    The Environmental Quality Instructional Resources Center in Columbus, Ohio, acquires, reviews, indexes, and announces both print (books, modules, units, etc.) and non-print (films, slides, video tapes, etc.) materials related to water quality and water resources education and instruction. In addition some materials related to pesticides, hazardous…

  1. Mechanisms affecting water quality in an intermittent piped water supply.

    Science.gov (United States)

    Kumpel, Emily; Nelson, Kara L

    2014-01-01

    Drinking water distribution systems throughout the world supply water intermittently, leaving pipes without pressure between supply cycles. Understanding the multiple mechanisms that affect contamination in these intermittent water supplies (IWS) can be used to develop strategies to improve water quality. To study these effects, we tested water quality in an IWS system with infrequent and short water delivery periods in Hubli-Dharwad, India. We continuously measured pressure and physicochemical parameters and periodically collected grab samples to test for total coliform and E. coli throughout supply cycles at 11 sites. When the supply was first turned on, water with elevated turbidity and high concentrations of indicator bacteria was flushed out of pipes. At low pressures (water was delivered with a chlorine residual and at pressures >17 psi.

  2. Water quality of the Mississippian carbonate aquifer in parts of middle Tennessee and northern Alabama, 1999

    Science.gov (United States)

    Kingsbury, James A.; Shelton, John M.

    2002-01-01

    Water-quality data for nitrate, fecal-indicator bacteria, pesticides, and volatile organic compounds collected in parts of Middle Tennessee and northern Alabama indicate that the Mississippian carbonate aquifer in these areas is susceptible to contamination from point and nonpoint sources. Thirty randomly located wells (predominantly domestic), two springs, and two additional public-supply wells were sampled in the summer of 1999 as part of the U.S. Geological Survey?s National Water-Quality Assessment (NAWQA) Program. These wells and springs were sampled to characterize the occurrence and distribution of the above constituents in this karst aquifer of Mississippian age and to determine the principal environmental factors related to their occurrence.Nitrate and fecal indicator bacteria were frequently detected at the sampled sites. Nitrate exceeded the drinking-water maximum contaminant level of 10 milligrams per liter in two samples; the median concentration for all samples was about 1.5 milligrams per liter. Correlation of nitrate concentrations to the amount of cropland near a site and to pesticide detections indicates that fertilizer application is the predominant source of nitrogen to the aquifer. Fecal-indicator bacteria were present in samples from about 40 percent of the sites. The presence of fecal-indicator bacteria is weakly correlated to the depth to ground water but is not correlated to a specific land use near the sites.Pesticides and pesticide breakdown products (metabolites) were detected at 74 percent of the sites sampled. Concentrations generally were less than 1 microgram per liter and no pesticide detections exceeded drinking-water maximum contaminant levels. The maximum total pesticide concentration measured was about 4 micrograms per liter. Intensity of pesticide use, proximity of sites to areas of pesticide application, and soil hydrologic group were the primary factors affecting the occurrence of pesticides.Volatile organic compounds were

  3. Impact of city effluents on water quality of Indus River: assessment of temporal and spatial variations in the southern region of Khyber Pakhtunkhwa, Pakistan.

    Science.gov (United States)

    Khan, Ilham; Khan, Azim; Khan, Muhammad Sohail; Zafar, Shabnam; Hameed, Asma; Badshah, Shakeel; Rehman, Shafiq Ur; Ullah, Hidayat; Yasmeen, Ghazala

    2018-04-04

    The impact of city effluents on water quality of Indus River was assessed in the southern region of Khyber Pakhtunkhwa, Pakistan. Water samples were collected in dry (DS) and wet (WS) seasons from seven sampling zones along Indus River and the physical, bacteriological, and chemical parameters determining water quality were quantified. There were marked temporal and spatial variations in the water quality of Indus River. The magnitude of pollution was high in WS compared with DS. The quality of water varied across the sampling zones, and it greatly depended upon the nature of effluents entering the river. Water samples exceeded the WHO permissible limits for pH, EC, TDS, TS, TSS, TH, DO, BOD, COD, total coliforms, Escherichia coli, Ca 2+ , Mg 2+ , NO 3 - , and PO 4 2- . Piper analysis indicated that water across the seven sampling zones along Indus River was alkaline in nature. Correlation analyses indicated that EC, TDS, TS, TH, DO, BOD, and COD may be considered as key physical parameters, while Na + , K + , Ca 2+ , Mg 2+ , Cl - , F - , NO 3 - , PO 4 2- , and SO 4 2- as key chemical parameters determining water quality, because they were strongly correlated (r > 0.70) with most of the parameters studied. Cluster analysis indicated that discharge point at Shami Road is the major source of pollution impairing water quality of Indus River. Wastewater treatment plants must be installed at all discharge points along Indus River for protecting the quality of water of this rich freshwater resource in Pakistan.

  4. Potential impacts of changing supply-water quality on drinking water distribution : A review

    NARCIS (Netherlands)

    Liu, Gang; Zhang, Ya; Knibbe, Willem Jan; Feng, Cuijie; Liu, Wentso; Medema, Gertjan; van der Meer, Walter

    Driven by the development of water purification technologies and water quality regulations, the use of better source water and/or upgraded water treatment processes to improve drinking water quality have become common practices worldwide. However, even though these elements lead to improved water

  5. 40 CFR 240.204 - Water quality.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Water quality. 240.204 Section 240.204 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.204 Water quality. ...

  6. STREAMFLOW AND WATER QUALITY REGRESSION MODELING ...

    African Journals Online (AJOL)

    ... downstream Obigbo station show: consistent time-trends in degree of contamination; linear and non-linear relationships for water quality models against total dissolved solids (TDS), total suspended sediment (TSS), chloride, pH and sulphate; and non-linear relationship for streamflow and water quality transport models.

  7. Impact of Gold mining activities on the water quality of the lower pra river

    International Nuclear Information System (INIS)

    Dwamena, Offei Samuel K.

    2013-07-01

    This study was conducted to assess the extent of Mercury (THg) contamination at four locations within the Shama-Mporhor Wassa catchment area of the Lower Pra River. Water, fish and sediment samples were taken twice with the longitudinal transect method at Daboase, Beposo, Bokorkope and Shama during the minor rainy season in October and at the apex of the dry season in March. Careful investigation of the Shama-Mporhor Wassa catchment area revealed that two of the locations Daboase and Beposo had been continuously impacted by the activities of Artisanal Gold miners (AGM). From the study, Total Mercury (THg) levels were found to have persisted in River water several kilometers downstream the second Artisanal Gold mining (AGM) location at Shama estuary for both seasons. Ten trace elements Mercury (Hg), Selenium (Se), Copper (Cu), Chromium (Cr), Lead (Pb), Iron (Fe), Manganese (Mn), Nickel (Ni), Zinc (Zn) and Cadmium (Cd) were determined in water, fish and sediment samples using the Atomic Absorption Spectroscopy (AAS) equipped with both Hydride Generation (HGAAS) for Selenium (Se) and Cold Vapour (CVAAS) for Total Mercury (THg). The levels of Total Mercury (THg) were largely above the WHO and USEPA guidelines for drinking water (1μg/L) and sediments (200 μg/Kg) respectively for the four locations investigated. Total Mercury (THg) exceeded the WHO, 2011 guideline value of 0.5 mg/Kg for fish species Clarias submarginatus but was below the guideline value for Xenomystus nigri. Mean concentration of Cd and Fe exceeded the WHO, 2011 guideline values for drinking water for the wet season. The other trace elements Zn, Ni, Cu, Cr, Se, Mn, and Pb had their mean concentration below the WHO, 2011 guideline values for drinking water. Apart from the mean concentration of Cd that exceeded the Canadian Interim Sediment Quality (ISQG) guideline value of 0.6 mg/Kg for the wet season, Cr, Cu, Zn, Ni and Pb were below their respective guideline values for both seasons. Statistical

  8. Water quality control system and water quality control method

    International Nuclear Information System (INIS)

    Itsumi, Sachio; Ichikawa, Nagayoshi; Uruma, Hiroshi; Yamada, Kazuya; Seki, Shuji

    1998-01-01

    In the water quality control system of the present invention, portions in contact with water comprise a metal material having a controlled content of iron or chromium, and the chromium content on the surface is increased than that of mother material in a state where compression stresses remain on the surface by mechanical polishing to form an uniform corrosion resistant coating film. In addition, equipments and/or pipelines to which a material controlling corrosion potential stably is applied on the surface are used. There are disposed a cleaning device made of a material less forming impurities, and detecting intrusion of impurities and removing them selectively depending on chemical species and/or a cleaning device for recovering drain from various kinds of equipment to feedwater, connecting a feedwater pipeline and a condensate pipeline and removing impurities and corrosion products. Then, water can be kept to neutral purified water, and the concentrations of oxygen and hydrogen in water are controlled within an optimum range to suppress occurrence of corrosion products. (N.H.)

  9. Hourly Water Quality Dynamics in Rivers Downstream of Urban Areas: Quantifying Seasonal Variation and Modelling Impacts of Urban Growth

    Science.gov (United States)

    Hutchins, M.; McGrane, S. J.; Miller, J. D.; Hitt, O.; Bowes, M.

    2016-12-01

    Continuous monitoring of water flows and quality is invaluable in improving understanding of the influence of urban areas on river health. When used to inform predictive modelling, insights can be gained as to how urban growth may affect the chemical and biological quality of rivers as they flow downstream into larger waterbodies. Water flow and quality monitoring in two urbanising sub-catchments (long term flow records are available, but particular focus is given to monitoring of an extended set of sites during prolonged winter rainfall. In the Ray sub-catchment streams were monitored in which urban cover varied across a range of 7-78%. A rural-urban gradient in DO was apparent in the low flow period prior to the storms. Transient low DO (works (STW). In this respect temperature- and respiration-driven DO sags in summer were at least if not more severe than those driven by the winter storms. Likewise, although winter storm NH4 concentrations violated EU legislation downstream of the STW, they were lower than summer concentrations in pollutant flushes following dry spells. In contrast the predominant phenomenon affecting water quality in the Cut during the storms was dilution. Here, a river water quality model was calibrated and applied over the course of a year to capture the importance of periphyton photosynthesis and respiration cycles in determining water quality and to predict the influence of hypothetical urban growth on downstream river health. The periods monitored intensively, dry spells followed by prolonged rainfall, represent: (i) marked changes in conditions likely to become more prevalent in future, (ii) situations under which water quality in urban areas is likely to be particularly vulnerable, being influenced for example by first flush effects followed by capacity exceedance at STW. Despite this, whilst being somewhat long lasting in places, impacts on DO were not severe.

  10. Modelling of snow exceedances

    Science.gov (United States)

    Jordanova, Pavlina K.; Sadovský, Zoltán; Stehlík, Milan

    2017-07-01

    Modelling of snow exceedances is of great importance and interest for ecology, civil engineering and general public. We suggest the favorable fit for exceedances related to the exceptional snow loads from Slovakia, assuming that the data is driven by Generalised Pareto Distribution or Generalized Extreme Value Distribution. Further, the statistical dependence between the maximal snow loads and the corresponding altitudes is studied.

  11. Optimizing basin-scale coupled water quantity and water quality management with stochastic dynamic programming

    DEFF Research Database (Denmark)

    Davidsen, Claus; Liu, Suxia; Mo, Xingguo

    2015-01-01

    Few studies address water quality in hydro-economic models, which often focus primarily on optimal allocation of water quantities. Water quality and water quantity are closely coupled, and optimal management with focus solely on either quantity or quality may cause large costs in terms of the oth......-er component. In this study, we couple water quality and water quantity in a joint hydro-economic catchment-scale optimization problem. Stochastic dynamic programming (SDP) is used to minimize the basin-wide total costs arising from water allocation, water curtailment and water treatment. The simple water...... quality module can handle conservative pollutants, first order depletion and non-linear reactions. For demonstration purposes, we model pollutant releases as biochemical oxygen demand (BOD) and use the Streeter-Phelps equation for oxygen deficit to compute the resulting min-imum dissolved oxygen...

  12. Marine water-quality management in South- Africa

    CSIR Research Space (South Africa)

    Taljaard, Susan

    1995-01-01

    Full Text Available In South Africa the ultimate goal in water quality management is to keep the water resources suitable for all ''beneficial uses''. Beneficial uses provide a basis for the derivation of water quality guidelines, which, for South Africa, are defined...

  13. Overview of the National Water-Quality Assessment Program

    Science.gov (United States)

    Leahy, P.P.; Thompson, T.H.

    1994-01-01

    The Nation's water resources are the basis for life and our economic vitality. These resources support a complex web of human activities and fishery and wildlife needs that depend upon clean water. Demands for good-quality water for drinking, recreation, farming, and industry are rising, and as a result, the American public is concerned about the condition and sustainability of our water resources. The American public is asking: Is it safe to swim in and drink water from our rivers or lakes? Can we eat the fish that come from them? Is our ground water polluted? Is water quality degrading with time, and if so, why? Has all the money we've spent to clean up our waters, done any good? The U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program was designed to provide information that will help answer these questions. NAWQA is designed to assess historical, current, and future water-quality conditions in representative river basins and aquifers nationwide. One of the primary objectives of the program is to describe relations between natural factors, human activities, and water-quality conditions and to define those factors that most affect water quality in different parts of the Nation. The linkage of water quality to environmental processes is of fundamental importance to water-resource managers, planners, and policy makers. It provides a strong and unbiased basis for better decisionmaking by those responsible for making decisions that affect our water resources, including the United States Congress, Federal, State, and local agencies, environmental groups, and industry. Information from the NAWQA Program also will be useful for guiding research, monitoring, and regulatory activities in cost effective ways.

  14. Monitoring And Modeling Environmental Water Quality To Support Environmental Water Purchase Decision-making

    Science.gov (United States)

    Null, S. E.; Elmore, L.; Mouzon, N. R.; Wood, J. R.

    2016-12-01

    More than 25 million cubic meters (20,000 acre feet) of water has been purchased from willing agricultural sellers for environmental flows in Nevada's Walker River to improve riverine habitat and connectivity with downstream Walker Lake. Reduced instream flows limit native fish populations, like Lahontan cutthroat trout, through warm daily stream temperatures and low dissolved oxygen concentrations. Environmental water purchases maintain instream flows, although effects on water quality are more varied. We use multi-year water quality monitoring and physically-based hydrodynamic and water quality modeling to estimate streamflow, water temperature, and dissolved oxygen concentrations with alternative environmental water purchases. We simulate water temperature and dissolved oxygen changes from increased streamflow to prioritize the time periods and locations that environmental water purchases most enhance trout habitat as a function of water quality. Monitoring results indicate stream temperature and dissolved oxygen limitations generally exist in the 115 kilometers upstream of Walker Lake (about 37% of the study area) from approximately May through September, and this reach acts as a water quality barrier for fish passage. Model results indicate that low streamflows generally coincide with critically warm stream temperatures, water quality refugia exist on a tributary of the Walker River, and environmental water purchases may improve stream temperature and dissolved oxygen conditions for some reaches and seasons, especially in dry years and prolonged droughts. This research supports environmental water purchase decision-making and allows water purchase decisions to be prioritized with other river restoration alternatives.

  15. Water quality and ecological condition of urban streams in Independence, Missouri, June 2005 through December 2008

    Science.gov (United States)

    Christensen, D.; Harris, Thomas E.; Niesen, Shelley L.

    2010-01-01

    identify point-source discharges and other sources of potential contamination. Regression models were used to estimate continuous and annual flow-weighted concentrations, loadings, and yields for chloride, total nitrogen, total phosphorus, suspended sediment, and Escherichia coli bacteria densities. Base-flow and stormflow water-quality samples were collected at five sites within Independence. Base-flow samples for Rock Creek and two tributary streams to the Little Blue River exceeded recommended U.S. Environmental Protection Agency standards for the protection of aquatic life for total nitrogen and total phosphorus in about 90 percent of samples, whereas samples collected at two Little Blue River sites exceeded both the total nitrogen and total phosphorus standards less often, about 30 percent of the time. Dry-weather screening identified a relatively small number (14.0 percent of all analyses) of potential point-source discharges for total chlorine, phenols, and anionic surfactants. Stormflow had larger median measured concentrations of total common organic micro-constituents than base flow. The four categories of common organic micro-constituents with the most total detections in stormflow were pesticides (100 percent), polyaromatic hydrocarbons and combustion by-products (99 percent), plastics (93 percent), and stimulants (91 percent). Most detections of common organic micro-constituents were less than 2 micrograms per liter. Median instantaneous Escherichia coli densities for stormflow samples showed a 21 percent increase measured at the downstream site on the Little Blue River from the sampled upstream site. Using microbial source-tracking methods, less than 30 percent of Escherichia coli bacteria in samples were identified as having human sources. Base-flow and stormflow data were used to develop regression equations with streamflow and continuous water-quality data to estimate daily concentrations, loads, and yields of various water-quality contaminants.

  16. COMPARISON OF WATER RATES IAP RISK INDICES AND THE QUALITY OF DRINKING WATER IRCA USED FOR DETERMINING THE QUALITY OF DRINKING WATER

    Directory of Open Access Journals (Sweden)

    Javier Mauricio González Díaz

    2010-05-01

    Full Text Available This work discusses the results of a technical and operative diagnosis of the urban system of aqueduct of the municipality of Villapinzón. Water quality and public service characteristics were determined assessed against the legal principles of continuity, quality and coverage of the domiciliary public service law. Drinking water quality was evaluated according to the methodology established by Resolution 2115 de 2007 of the Ministerial de la Protection Social de Colombia. In addition, a new methodology is suggested and the calculated indexes are compared to those determined by resolution 2115 de 2007. An analysis of the results indicates the proposed methodology is more reliable than the current methodology for determining water quality criteria.

  17. Characterization of Surface Water and Groundwater Quality in the Lower Tano River Basin Using Statistical and Isotopic Approach.

    Science.gov (United States)

    Edjah, Adwoba; Stenni, Barbara; Cozzi, Giulio; Turetta, Clara; Dreossi, Giuliano; Tetteh Akiti, Thomas; Yidana, Sandow

    2017-04-01

    Adwoba Kua- Manza Edjaha, Barbara Stennib,c,Giuliano Dreossib, Giulio Cozzic, Clara Turetta c,T.T Akitid ,Sandow Yidanae a,eDepartment of Earth Science, University of Ghana Legon, Ghana West Africa bDepartment of Enviromental Sciences, Informatics and Statistics, Ca Foscari University of Venice, Italy cInstitute for the Dynamics of Environmental Processes, CNR, Venice, Italy dDepartment of Nuclear Application and Techniques, Graduate School of Nuclear and Allied Sciences University of Ghana Legon This research is part of a PhD research work "Hydrogeological Assessment of the Lower Tano river basin for sustainable economic usage, Ghana, West - Africa". In this study, the researcher investigated surface water and groundwater quality in the Lower Tano river basin. This assessment was based on some selected sampling sites associated with mining activities, and the development of oil and gas. Statistical approach was applied to characterize the quality of surface water and groundwater. Also, water stable isotopes, which is a natural tracer of the hydrological cycle was used to investigate the origin of groundwater recharge in the basin. The study revealed that Pb and Ni values of the surface water and groundwater samples exceeded the WHO standards for drinking water. In addition, water quality index (WQI), based on physicochemical parameters(EC, TDS, pH) and major ions(Ca2+, Na+, Mg2+, HCO3-,NO3-, CL-, SO42-, K+) exhibited good quality water for 60% of the sampled surface water and groundwater. Other statistical techniques, such as Heavy metal pollution index (HPI), degree of contamination (Cd), and heavy metal evaluation index (HEI), based on trace element parameters in the water samples, reveal that 90% of the surface water and groundwater samples belong to high level of pollution. Principal component analysis (PCA) also suggests that the water quality in the basin is likely affected by rock - water interaction and anthropogenic activities (sea water intrusion). This

  18. Promoting household water treatment through women's self help groups in Rural India: assessing impact on drinking water quality and equity.

    Directory of Open Access Journals (Sweden)

    Matthew C Freeman

    Full Text Available Household water treatment, including boiling, chlorination and filtration, has been shown effective in improving drinking water quality and preventing diarrheal disease among vulnerable populations. We used a case-control study design to evaluate the extent to which the commercial promotion of household water filters through microfinance institutions to women's self-help group (SHG members improved access to safe drinking water. This pilot program achieved a 9.8% adoption rate among women targeted for adoption. Data from surveys and assays of fecal contamination (thermotolerant coliforms, TTC of drinking water samples (source and household were analyzed from 281 filter adopters and 247 non-adopters exposed to the program; 251 non-SHG members were also surveyed. While adopters were more likely than non-adopters to have children under 5 years, they were also more educated, less poor, more likely to have access to improved water supplies, and more likely to have previously used a water filter. Adopters had lower levels of fecal contamination of household drinking water than non-adopters, even among those non-adopters who treated their water by boiling or using traditional ceramic filters. Nevertheless, one-third of water samples from adopter households exceeded 100 TTC/100ml (high risk, and more than a quarter of the filters had no stored treated water available when visited by an investigator, raising concerns about correct, consistent use. In addition, the poorest adopters were less likely to see improvements in their water quality. Comparisons of SHG and non-SHG members suggest similar demographic characteristics, indicating SHG members are an appropriate target group for this promotion campaign. However, in order to increase the potential for health gains, future programs will need to increase uptake, particularly among the poorest households who are most susceptible to disease morbidity and mortality, and focus on strategies to improve the

  19. Promoting Household Water Treatment through Women's Self Help Groups in Rural India: Assessing Impact on Drinking Water Quality and Equity

    Science.gov (United States)

    Freeman, Matthew C.; Trinies, Victoria; Boisson, Sophie; Mak, Gregory; Clasen, Thomas

    2012-01-01

    Household water treatment, including boiling, chlorination and filtration, has been shown effective in improving drinking water quality and preventing diarrheal disease among vulnerable populations. We used a case-control study design to evaluate the extent to which the commercial promotion of household water filters through microfinance institutions to women's self-help group (SHG) members improved access to safe drinking water. This pilot program achieved a 9.8% adoption rate among women targeted for adoption. Data from surveys and assays of fecal contamination (thermotolerant coliforms, TTC) of drinking water samples (source and household) were analyzed from 281 filter adopters and 247 non-adopters exposed to the program; 251 non-SHG members were also surveyed. While adopters were more likely than non-adopters to have children under 5 years, they were also more educated, less poor, more likely to have access to improved water supplies, and more likely to have previously used a water filter. Adopters had lower levels of fecal contamination of household drinking water than non-adopters, even among those non-adopters who treated their water by boiling or using traditional ceramic filters. Nevertheless, one-third of water samples from adopter households exceeded 100 TTC/100ml (high risk), and more than a quarter of the filters had no stored treated water available when visited by an investigator, raising concerns about correct, consistent use. In addition, the poorest adopters were less likely to see improvements in their water quality. Comparisons of SHG and non-SHG members suggest similar demographic characteristics, indicating SHG members are an appropriate target group for this promotion campaign. However, in order to increase the potential for health gains, future programs will need to increase uptake, particularly among the poorest households who are most susceptible to disease morbidity and mortality, and focus on strategies to improve the correct, consistent

  20. Evaluation on the Quality of Bangkok Tap Water with Other Drinking Purpose Water

    Science.gov (United States)

    Kordach, A.; Chardwattananon, C.; Wongin, K.; Chayaput, B.; Wongpat, N.

    2018-02-01

    The concern of drinking purposed water quality in Bangkok, Nonthaburi, and Samutprakarn provinces has been a problem for over fifteen years. Metropolitan Water Works Authority (MWA) of Thailand is fully responsible for providing water supply to the mentioned areas. The objective of Drinkable Tap Water Project is to make people realize in quality of tap water. Communities, school, government agencies, hotels, hospitals, department stores, and other organizations are participating in this project. MWA have collected at least 3 samples of water from the corresponding places and the samples have to meet the World Health Organization (WHO) guidelines level. This study is to evaluate water quality of tap water, storage water, filtered water, and filtered water dispenser. The water samples from 2,354 attending places are collected and analyzed. From October 2011 to September 2016, MWA analyzed 32,711 samples. The analyzed water parameters are free residual chlorine, appearance color, turbidity, pH, conductivity, total dissolved solids (TDS), and pathogenic bacteria; E.coli. The results indicated that a number of tap water samples had the highest number compliance with WHO guidelines levels at 98.40%. The filtered water, filtered water dispenser, and storage water were received 96.71%, 95.63%, and 90.88%, respectively. However, the several samples fail to pass WHO guideline level because they were contaminated by E.coli. The result is that tap water has the highest score among other sources probably because tap water has chlorine for disinfection and always is monitored by professional team round-the-clock services compared to the other water sources with less maintenance or cleaning. Also, water quality reports are continuously sent to customers by mail addresses. Tap water quality data are shown on MWA websites and Facebook. All these steps of work should enhance the confidence of tap water quality.

  1. Evaluation on the Quality of Bangkok Tap Water with Other Drinking Purpose Water

    Directory of Open Access Journals (Sweden)

    Kordach A.

    2018-01-01

    Full Text Available The concern of drinking purposed water quality in Bangkok, Nonthaburi, and Samutprakarn provinces has been a problem for over fifteen years. Metropolitan Water Works Authority (MWA of Thailand is fully responsible for providing water supply to the mentioned areas. The objective of Drinkable Tap Water Project is to make people realize in quality of tap water. Communities, school, government agencies, hotels, hospitals, department stores, and other organizations are participating in this project. MWA have collected at least 3 samples of water from the corresponding places and the samples have to meet the World Health Organization (WHO guidelines level. This study is to evaluate water quality of tap water, storage water, filtered water, and filtered water dispenser. The water samples from 2,354 attending places are collected and analyzed. From October 2011 to September 2016, MWA analyzed 32,711 samples. The analyzed water parameters are free residual chlorine, appearance color, turbidity, pH, conductivity, total dissolved solids (TDS, and pathogenic bacteria; E.coli. The results indicated that a number of tap water samples had the highest number compliance with WHO guidelines levels at 98.40%. The filtered water, filtered water dispenser, and storage water were received 96.71%, 95.63%, and 90.88%, respectively. However, the several samples fail to pass WHO guideline level because they were contaminated by E.coli. The result is that tap water has the highest score among other sources probably because tap water has chlorine for disinfection and always is monitored by professional team round-the-clock services compared to the other water sources with less maintenance or cleaning. Also, water quality reports are continuously sent to customers by mail addresses. Tap water quality data are shown on MWA websites and Facebook. All these steps of work should enhance the confidence of tap water quality.

  2. Land Exploration Study and Water Quality Changes in Tanah Tinggi Lojing, Kelantan, Malaysia

    International Nuclear Information System (INIS)

    Wan Adi Yusoff; Mokhtar Jaafar; Mohd Khairul Amri Kamarudin; Mohd Khairul Amri Kamarudin; Mohd Ekhwan Toriman; Mohd Ekhwan Toriman

    2015-01-01

    Land exploration activities in the highlands areas without mitigation can give more impact on the environment health in the river basin. Tanah Tinggi Lojing Gua Musang is one of the commercial areas developed for agricultural activities. Sungai Belatop is one of the affected river at Tanah Tinggi Lojing. This article was conducted to investigate the relationship of land development and water quality changes in the Belatop river basin.The study was conducted by analyzing data from the Department of Environment starts from February to October 2012. The results indicated the development of land exploration activities in the Tanah Tinggi Lojing area has affected on water quality parameters in the area. Where, the suspended sediment (SS) is high with 1161 mg/L, turbidity value is 991 (NTU) and this parameters is increasing on the rainy season impacted from surface erosion and surface runoff at land is not covered. Magnisium content also has increased from 0.66 mg/L to 1.38 mg/L. The high content magnesium result is from fertilizers used in agricultural activities in the study area. Chemical fertilizers content excessive causes the contents of calcium (Ca) high (3.18 mg/L). Ferum content in the water has also exceeded (0.3 mg/L), in Class IIA/B and Class III by WQI. Therefore, some recommendations is proposed to reduce and solving this problem. (author)

  3. Risk assessment of aquifer storage transfer and recovery with urban stormwater for producing water of a potable quality.

    Science.gov (United States)

    Page, Declan; Dillon, Peter; Vanderzalm, Joanne; Toze, Simon; Sidhu, Jatinder; Barry, Karen; Levett, Kerry; Kremer, Sarah; Regel, Rudi

    2010-01-01

    The objective of the Parafield Aquifer Storage Transfer and Recovery research project in South Australia is to determine whether stormwater from an urban catchment that is treated in a constructed wetland and stored in an initially brackish aquifer before recovery can meet potable water standards. The water produced by the stormwater harvesting system, which included a constructed wetland, was found to be near potable quality. Parameters exceeding the drinking water guidelines before recharge included small numbers of fecal indicator bacteria and elevated iron concentrations and associated color. This is the first reported study of a managed aquifer recharge (MAR) scheme to be assessed following the Australian guidelines for MAR. A comprehensive staged approach to assess the risks to human health and the environment of this project has been undertaken, with 12 hazards being assessed. A quantitative microbial risk assessment undertaken on the water recovered from the aquifer indicated that the residual risks posed by the pathogenic hazards were acceptable if further supplementary treatment was included. Residual risks from organic chemicals were also assessed to be low based on an intensive monitoring program. Elevated iron concentrations in the recovered water exceeded the potable water guidelines. Iron concentrations increased after underground storage but would be acceptable after postrecovery aeration treatment. Arsenic concentrations in the recovered water continuously met the guideline concentrations acceptable for potable water supplies. However, the elevated concentration of arsenic in native groundwater and its presence in aquifer minerals suggest that the continuing acceptable residual risk from arsenic requires further evaluation.

  4. Radiological assessment of surface water quality around proposed uranium mining site in India.

    Science.gov (United States)

    Jha, S K; Lenka, P; Gothankar, S; Tripathi, R M; Puranik, V D; Khating, D T

    2009-06-01

    The gross alpha and gross beta activities were estimated for radiological assessment of surface water quality around the proposed uranium mining site Kylleng Pyndengsohiong Mawthabah (Domiasiat), West Khasi Hills District, Meghalaya situated in a high rainfall area (12,000mm) in India. 189 Surface water samples were collected over different seasons of the year from nine different locations covering around 100km(2). Gross beta activities were found to vary from 144 to 361mBq/L which is much below the prescribed WHO limit of 1000mBq/L for drinking water. Gross alpha activities varied from 61 to 127mBq/L. These values are much below the reported gross alpha values by other countries. In about 7% of the samples the alpha activities remain exceeded the WHO guideline limit of 100mBq/L. Surface water samples collected during the summer season of the year show higher activity whereas low activity was found from samples collected during monsoon season. Results show that all water sources are acceptable as drinking water for human consumption from the radiological point of view, the higher gross alpha concentrations in a few locations remains so only for short duration during the summer season.

  5. Radiological assessment of surface water quality around proposed uranium mining site in India

    International Nuclear Information System (INIS)

    Jha, S.K.; Lenka, P.; Gothankar, S.; Tripathi, R.M.; Puranik, V.D.; Khating, D.T.

    2009-01-01

    The gross alpha and gross beta activities were estimated for radiological assessment of surface water quality around the proposed uranium mining site Kylleng Pyndengsohiong Mawthabah (Domiasiat), West Khasi Hills District, Meghalaya situated in a high rainfall area (12,000 mm) in India. 189 Surface water samples were collected over different seasons of the year from nine different locations covering around 100 km 2 . Gross beta activities were found to vary from 144 to 361 mBq/L which is much below the prescribed WHO limit of 1000 mBq/L for drinking water. Gross alpha activities varied from 61 to 127 mBq/L. These values are much below the reported gross alpha values by other countries. In about 7% of the samples the alpha activities remain exceeded the WHO guideline limit of 100 mBq/L. Surface water samples collected during the summer season of the year show higher activity whereas low activity was found from samples collected during monsoon season. Results show that all water sources are acceptable as drinking water for human consumption from the radiological point of view, the higher gross alpha concentrations in a few locations remains so only for short duration during the summer season.

  6. 40 CFR 227.31 - Applicable marine water quality criteria.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Applicable marine water quality... § 227.31 Applicable marine water quality criteria. Applicable marine water quality criteria means the criteria given for marine waters in the EPA publication “Quality Criteria for Water” as published in 1976...

  7. An assessment study of septic tank based sewage disposal system on quality of underground water

    International Nuclear Information System (INIS)

    Khawaja, A.A.; Lisa, M.; Boustani, M.; Jaffar, M.; Masud, K.

    1999-01-01

    An assessment of septic tank based sewage disposal system made on the basis of quality of underground water is presented. Machrala village is selected as the case study area where an ever-increasing number of septic tanks are posing great health threat to the inhabitants. Both hand pump and tube well water samples are analyzed for toxic trace metals (Mn, Fe, Cd and Co), physico-chemical parameters (pH, turbidity, conductance, total dissolved salts, Ca, Mg, Cl/sup-/ and SO/sub 4//sup -2/) and micro-organism population in terms of total viable count, coliform count, MPN coliform. The metals were analyzed by the flame atomic absorption method using standard procedure. The study shows that the local underground water of the village is being adversely affected by toxic metals and coliform bacteria. In most cases, the latter parameter exceeds 240 counts/ml. Besides, tube well water were found to have higher Pb concentration (0.200 mg/ml) and the overall assessment renders more than 50% of the water samples as unsatisfactory for human consumption. (author)

  8. Ambient water quality in aquifers used for drinking-water supplies, Gem County, southwestern Idaho, 2015

    Science.gov (United States)

    Bartolino, James R.; Hopkins, Candice B.

    2016-12-20

    In recent years, the rapid population growth in Gem County, Idaho, has been similar to other counties in southwestern Idaho, increasing about 54 percent from 1990 to 2015. Because the entire population of the study area depends on groundwater for drinking water supply (either from self-supplied domestic, community, or municipal-supply wells), this population growth, along with changes in land use (including potential petroleum exploration and development), indicated to the public and local officials the need to assess the quality of groundwater used for human consumption. To this end, the U.S. Geological Survey, in cooperation with Gem County and the Idaho Department of Environmental Quality, assessed the quality of groundwater from freshwater aquifers used for domestic supply in Gem County. A total of 47 domestic or municipal wells, 1 spring, and 2 surface-water sites on the Payette River were sampled during September 8–November 19, 2015. The sampled water was analyzed for a variety of constituents, including major ions, trace elements, nutrients, bacteria, radionuclides, dissolved gasses, stable isotopes of water and methane, and either volatile organic compounds (VOCs) or pesticides.To better understand analytical results, a conceptual hydrogeologic framework was developed in which three hydrogeologic units were described: Quaternary-Tertiary deposits (QTd), Tertiary Idaho Group rocks (Tig), and Tertiary-Cretaceous igneous rocks (TKi). Water levels were measured in 30 wells during sampling, and a groundwater-level altitude map was constructed for the QTd and Tig units showing groundwater flow toward the Emmett Valley and Payette River.Analytical results indicate that groundwater in Gem County is generally of good quality. Samples collected from two wells contained water with fluoride concentrations greater than the U.S. Environmental Protection Agency (EPA) Maximum Contaminant Level (MCL) of 4 milligrams per liter (mg/L), six wells contained arsenic at

  9. Social representations of drinking water: subsidies for water quality surveillance programmes.

    Science.gov (United States)

    Carmo, Rose Ferraz; Bevilacqua, Paula Dias; Barletto, Marisa

    2015-09-01

    A qualitative study was developed aimed at understanding the social representations of water consumption by a segment of the population of a small town in Brazil. A total of 19 semi-structured interviews were carried out and subjected to a content analysis addressing opinion on drinking water, characteristics of drinking water and its correlation to health and diseases, criteria for water usage and knowledge on the source and accountability for drinking-water quality. Social representations of drinking water predominantly incorporate the municipal water supply and sanitation provider and its quality. The identification of the municipal water supply provider as alone responsible for maintaining water quality indicated the lack of awareness of any health surveillance programme. For respondents, chlorine was accountable for conferring colour, odour and taste to the water. These physical parameters were reported as the cause for rejecting the water supplied and suggest the need to review the focus of health-educational strategies based on notions of hygiene and water-borne diseases. The study allowed the identification of elements that could contribute to positioning the consumers vs. services relationship on a level playing field, enabling dialogue and exchange of knowledge for the benefit of public health.

  10. Contribution of Nutrient Pollution to Water Scarcity in the Water-Rich Northeastern United States

    Science.gov (United States)

    Hale, R. L.; Lopez, C.; Vorosmarty, C. J.

    2015-12-01

    Most studies of water stress focus on water-scarce regions such as drylands. Yet, even water-rich regions can be water stressed due to local water withdrawals that exceed supply or due to water pollution that makes water unusable. The northeastern United States (NE) is a water-rich region relative to the rest of the country, as it concentrates about 50% of total renewable water of the country. Yes the NE features relatively high water withdrawals, ~50 km3/yr, for thermo-power generation, agriculture, and industry, as well as to support a human population of about 70 million. At the same time, rivers and streams in the NE suffer from nutrient pollution, largely from agricultural and urban land uses. We asked: to what extent is the NE water stressed, and how do water withdrawals and water quality each contribute to water scarcity across the NE? We used information on county-level water withdrawals and runoff to calculate a water scarcity index (WSI) for 200 hydrologic units across the NE from 1987 to 2002. We used data on surface water concentrations of nitrogen to calculate the additional water necessary to dilute surface water pollution to weak, moderate, and strong water quality standards derived from the literature. Only considering withdrawals, we found that approximately 10% of the NE was water stressed. Incorporating a moderate water quality standard, 25% of the NE was water stressed. We calculated a dilution burden by sectors of water users and found that public utilities faced 41% of the total dilution burden for the region, followed by irrigation users at 21%. Our results illustrate that even water rich regions can experience water stress and even scarcity, where withdrawals exceed surface water supplies. Water quality contributes to water stress and can change the spatial patterns of water stress across a region. The common approach to address scarcity has required the use of inter-basin water transfers, or in the case of water quality-caused scarcity

  11. Quality characterization and pollution source identification of surface water using multivariate statistical techniques, Nalagarh Valley, Himachal Pradesh, India

    Science.gov (United States)

    Herojeet, Rajkumar; Rishi, Madhuri S.; Lata, Renu; Dolma, Konchok

    2017-09-01

    Sirsa River flows through the central part of the Nalagarh valley, belongs to the rapid industrial belt of Baddi, Barotiwala and Nalagarh (BBN). The appraisal of surface water quality to ascertain its utility in such ecologically sensitive areas is need of the hour. The present study envisages the application of multivariate analysis, water utility class and conventional graphical representation to reveal the hidden factor responsible for deterioration of water quality and determine the hydrochemical facies and its evolution processes of water types in Nalagarh valley, India. The quality assessment is made by estimating pH, electrical conductivity (EC), total dissolved solids (TDS), total hardness, major ions (Na+, K+, Ca2+, Mg2+, HCO3 -, Cl-, SO4 2-, NO3 - and PO4 3-), dissolved oxygen (DO), biological oxygen demand (BOD) and total coliform (TC) to determine its suitability for drinking and domestic purposes. The parameters like pH, TDS, TH, Ca2+, HCO3 -, Cl-, SO4 2-, NO3 - are within the desirable limit as per Bureau of Indian Standards (Indian Standard Drinking Water Specification (Second Edition) IS:10500. Indian Standard Institute, New Delhi, pp 1-18, 2012). Mg2+, Na+ and K+ ions for pre monsoon and EC during pre and post monsoon at few sites and approx 40% samples of BOD and TC for both seasons exceeds the permissible limits indicate organic contamination from human activities. Water quality classification for designated use indicates that maximum surface water samples are not suitable for drinking water source without conventional treatment. The result of piper trillinear and Chadha's diagram classified majority of surface water samples for both seasons fall in the fields of Ca2+-Mg2+-HCO3 - water type indicating temporary hardness. PCA and CA reveal that the surface water chemistry is influenced by natural factors such as weathering of minerals, ion exchange processes and anthropogenic factors. Thus, the present paper illustrates the importance of

  12. Spatial assessment of water quality in the vicinity of Lake Alice National Wildlife Refuge, Upper Devils Lake Basin, North Dakota.

    Science.gov (United States)

    Vandeberg, Gregory S; Dixon, Cami S; Vose, Brian; Fisher, Mark R

    2015-02-01

    Runoff from concentrated animal feeding operations and croplands in the Upper Devils Lake Basin (Towner and Ramsey Counties), North Dakota, has the potential to impact the water quality and wildlife of the Lake Alice National Wildlife Refuge. Water samples were collected at eight locations upstream and downstream of the refuge, beginning in June 2007 through March 2011, to identify the spatial distribution of water quality parameters and assess the potential impacts from the upstream land use practices. Geographic Information Systems, statistical analysis, and regulatory standards were used to differentiate between sample locations, and identify potential impacts to water quality for the refuge based on 20 chemical constituents. Kruskal-Wallis analysis of variance (ANOVA) showed significant differences between sample locations based on boron, calcium, Escherichia coli, phosphorus, aluminum, manganese, and nickel. Hierarchical agglomerative cluster analysis of these constituents identified four distinct water quality groupings in the study area. Furthermore, this study found a significant positive correlation between the nutrient measures of nitrate-nitrite and total Kjeldahl nitrogen, and the percentage of concentrated animal feeding operation nutrient management areas using the non-parametric Spearman rho method. Significant correlations were also noted between total organic carbon and nearness to concentrated animal feeding operations. Finally, dissolved oxygen, pH, sulfate, E. coli, total phosphorus, nitrate-nitrite, and aluminum exceeded state of North Dakota and/or US Environmental Protection Agency water quality standards and/or guidelines. Elevated concentrations of phosphorus, nitrate-nitrite, and E. coli from upstream sources likely have the greatest potential impact on the Lake Alice Refuge.

  13. Okanogan Subbasin Water Quality and Quantity Report for Anadromous Fish in 2006.

    Energy Technology Data Exchange (ETDEWEB)

    Colville Tribes, Department of Fish & Wildlife

    2007-12-01

    Fish need water of sufficient quality and quantity in order to survive and reproduce. The list of primary water quality indicators appropriate for monitoring of anadromous fish, as identified by the Upper Columbia Monitoring Strategy, includes: discharge, temperature, dissolved oxygen, pH, turbidity, conductivity, nitrogen, phosphorus and ammonia. The Colville Tribes Fish and Wildlife Department began evaluating these water quality indicators in 2005 and this report represents data collected from October 1, 2005 through September 30, 2006. We collected empirical status and trend data from various sources to evaluate each water quality indicator along the main stem Okanogan and Similkameen Rivers along with several tributary streams. Each water quality indicator was evaluated based upon potential impacts to salmonid survival or productivity. Specific conductance levels and all nutrient indicators remained at levels acceptable for growth, survival, and reproduction of salmon and steelhead. These indicators were also considered of marginal value for monitoring environmental conditions related to salmonids within the Okanogan subbasin. However, discharge, temperature, turbidity, dissolved oxygen and pH in that order represent the water quality indicators that are most useful for monitoring watershed health and habitat changes and will help to evaluate threats or changes related to salmon and steelhead restoration and recovery. On the Okanogan River minimum flows have decreased over the last 12 years at a rate of -28.3CFS/year as measured near the town of Malott, WA. This trend is not beneficial for salmonid production and efforts to reverse this trend should be strongly encouraged. Turbidity levels in Bonaparte and Omak Creek were a concern because they had the highest monthly average readings. Major upland disturbance in the Bonaparte Creek watershed has occurred for decades and agricultural practices within the riparian areas along this creek have lead to major

  14. Guide to federal water quality programs and information: A guide with computer software developed by the interagency work group on water quality

    International Nuclear Information System (INIS)

    1993-02-01

    The publication makes key Federal information on water quality available to environmental analysts. The Guide includes information on (1) underlying demographic pressures; (2) the use of land, water, and resources; (3) pollutant loadings; (4) ambient water quality; (5) other effects of water pollution; and (6) a listing of programs established to preserve, protect and restore water quality

  15. ATRF Earns Three Green Globes, Exceeds NIH Building Standards | Poster

    Science.gov (United States)

    By Ashley DeVine, Staff Writer From project management and energy and water efficiency to emissions and the indoor environment, the Advanced Technology Research Facility (ATRF) was built with sustainability in mind, exceeding the National Institutes of Health’s (NIH’s) building standards and earning three Green Globes from the Green Building Initiative (GBI).

  16. Water quality issues and status in Pakistan

    International Nuclear Information System (INIS)

    Kahlown, M.A.; Tahir, M. A.; Ashraf, M.

    2005-01-01

    Per capita water availability in Pakistan has dropped drastically during the last fifty years. Recent extended droughts have further aggravated the situation. In order to meet the shortage and crop water requirements, groundwater is being used extensively in the Indus Basin. Groundwater is also the main source of water for drinking and industrial uses. This increased pressure on groundwater has lowered the water table in many cities. It is reported that water table has dropped by more than 3 m in many cities. This excessive use of groundwater has seriously affected the quality of groundwater and has increased the incidences of water-borne diseases many folds. A recent water quality study has shown that out of 560,000 tube wells of Indus Basin, about 70 percent are pumping sodic water. The use of sodic water has in turn affected the soil health and crop yields. This situation is being further aggravated due to changes in climate and rainfall patterns. To monitor changes in surface and groundwater quality and groundwater levels, Pakistan Council of Research in Water Resources has undertaken a countrywide programme of water quality monitoring. This programme covers twenty-one cities from the four provinces, five rivers, 10 storage reservoirs and lakes and two main drains of Pakistan. Under this programme a permanent monitoring network is established from where water samples are collected and analyzed once every year. The collected water samples are analyzed for aesthetic, chemical and bacteriological parameters to determine their suitability for agricultural, domestic and industrial uses. The results of the present study indicate serious contamination in many cities. Excessive levels of arsenic, fluoride and sodium have been detected in many cities. This paper highlights the major water quality issues and briefly presents the preliminary results of the groundwater analysis for major cities of Pakistan. (author)

  17. 78 FR 54517 - Water Quality Standards Regulatory Clarifications

    Science.gov (United States)

    2013-09-04

    ... 131 Water Quality Standards Regulatory Clarifications; Proposed Rule #0;#0;Federal Register / Vol. 78... AGENCY 40 CFR Part 131 [EPA-HQ-OW-2010-0606; FRL-9839-7] RIN 2040-AF 16 Water Quality Standards... Environmental Protection Agency (EPA) is proposing changes to the federal water quality standards (WQS...

  18. 40 CFR 35.2023 - Water quality management planning.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Water quality management planning. 35... to the States to carry out water quality management planning including but not limited to: (1... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2023 Water quality...

  19. Klang River water quality modelling using music

    Science.gov (United States)

    Zahari, Nazirul Mubin; Zawawi, Mohd Hafiz; Muda, Zakaria Che; Sidek, Lariyah Mohd; Fauzi, Nurfazila Mohd; Othman, Mohd Edzham Fareez; Ahmad, Zulkepply

    2017-09-01

    Water is an essential resource that sustains life on earth; changes in the natural quality and distribution of water have ecological impacts that can sometimes be devastating. Recently, Malaysia is facing many environmental issues regarding water pollution. The main causes of river pollution are rapid urbanization, arising from the development of residential, commercial, industrial sites, infrastructural facilities and others. The purpose of the study was to predict the water quality of the Connaught Bridge Power Station (CBPS), Klang River. Besides that, affects to the low tide and high tide and. to forecast the pollutant concentrations of the Biochemical Oxygen Demand (BOD) and Total Suspended Solid (TSS) for existing land use of the catchment area through water quality modeling (by using the MUSIC software). Besides that, to identifying an integrated urban stormwater treatment system (Best Management Practice or BMPs) to achieve optimal performance in improving the water quality of the catchment using the MUSIC software in catchment areas having tropical climates. Result from MUSIC Model such as BOD5 at station 1 can be reduce the concentration from Class IV to become Class III. Whereas, for TSS concentration from Class III to become Class II at the station 1. The model predicted a mean TSS reduction of 0.17%, TP reduction of 0.14%, TN reduction of 0.48% and BOD5 reduction of 0.31% for Station 1 Thus, from the result after purposed BMPs the water quality is safe to use because basically water quality monitoring is important due to threat such as activities are harmful to aquatic organisms and public health.

  20. Shallow Water Optical Water Quality Buoy

    Science.gov (United States)

    Bostater, Charles

    1998-01-01

    This NASA grant was funded as a result of an unsolicited proposal submission to Kennedy Space Center. The proposal proposed the development and testing of a shallow water optical water quality buoy. The buoy is meant to work in shallow aquatic systems (ponds, rivers, lagoons, and semi-enclosed water areas where strong wind wave action is not a major environmental During the project period of three years, a demonstration of the buoy was conducted. The last demonstration during the project period was held in November, 1996 when the buoy was demonstrated as being totally operational with no tethered communications line. During the last year of the project the buoy was made to be solar operated by large gel cell batteries. Fund limitations did not permit the batteries in metal enclosures as hoped for higher wind conditions, however the system used to date has worked continuously for in- situ operation of over 18 months continuous deployment. The system needs to have maintenance and somewhat continuous operational attention since various components have limited lifetime ages. For example, within the last six months the onboard computer has had to be repaired as it did approximately 6 months after deployment. The spectrograph had to be repaired and costs for repairs was covered by KB Science since no ftmds were available for this purpose after the grant expired. Most recently the computer web page server failed and it is currently being repaired by KB Science. In addition, the cell phone operation is currently being ftmded by Dr. Bostater in order to maintain the system's operation. The above points need to be made to allow NASA to understand that like any sophisticated measuring system in a lab or in the field, necessary funding and maintenance is needed to insure the system's operational state and to obtain quality factor. The proposal stated that the project was based upon the integration of a proprietary and confidential sensor and probe design that was developed by

  1. Water quality of hydrologic bench marks; an indicator of water quality in the natural environment

    Science.gov (United States)

    Biesecker, James E.; Leifeste, Donald K.

    1974-01-01

    Water-quality data, collected at 57 hydrologic bench-mark stations in 37 States, allow the definition of water quality in the 'natural' environment and the comparison of 'natural' water quality with water quality of major streams draining similar water-resources regions. Results indicate that water quality in the 'natural' environment is generally very good. Streams draining hydrologic bench-mark basins generally contain low concentrations of dissolved constituents. Water collected at the hydrologic bench-mark stations was analyzed for the following minor metals: arsenic, barium, cadmium, hexavalent chromium, cobalt, copper, lead, mercury, selenium, silver, and zinc. Of 642 analyses, about 65 percent of the observed concentrations were zero. Only three samples contained metals in excess of U.S. Public Health Service recommended drinking-water standards--two selenium concentrations and one cadmium concentration. A total of 213 samples were analyzed for 11 pesticidal compounds. Widespread but very low-level occurrence of pesticide residues in the 'natural' environment was found--about 30 percent of all samples contained low-level concentrations of pesticidal compounds. The DDT family of pesticides occurred most commonly, accounting for 75 percent of the detected occurrences. The highest observed concentration of DDT was 0.06 microgram per litre, well below the recommended maximum permissible in drinking water. Nitrate concentrations in the 'natural' environment generally varied from 0.2 to 0.5 milligram per litre. The average concentration of nitrate in many major streams is as much as 10 times greater. The relationship between dissolved-solids concentration and discharge per unit area in the 'natural' environment for the various physical divisions in the United States has been shown to be an applicable tool for approximating 'natural' water quality. The relationship between dissolved-solids concentration and discharge per unit area is applicable in all the physical

  2. Strategic Evaluation Tool for Surface Water Quality Management Remedies in Drinking Water Catchments

    Directory of Open Access Journals (Sweden)

    Huda Almaaofi

    2017-09-01

    Full Text Available Drinking water catchments (DWC are under pressure from point and nonpoint source pollution due to the growing human activities. This worldwide challenge is causing number of adverse effects, such as degradation in water quality, ecosystem health, and other economic and social pressures. Different evaluation tools have been developed to achieve sustainable and healthy drinking water catchments. However, a holistic and strategic framework is still required to adequately consider the uncertainty associated with feasible management remedies of surface water quality in drinking water catchments. A strategic framework was developed to adequately consider the uncertainty associated with management remedies for surface water quality in drinking water catchments. A Fuzzy Multiple Criteria Decision Analysis (FMCDA approach was embedded into a strategic decision support framework to evaluate and rank water quality remediation options within a typical fixed budget constraint faced by bulk water providers. The evaluation framework consists of four core aspects; namely, water quality, environmental, economic and social, and number of associated quantitative and qualitative criteria and sub-criteria. Final remediation strategy ranking was achieved through the application of the Euclidean Distance by the In-center of Centroids (EDIC.

  3. Assessment of water quality of the Tisa River (Vojvodina, North Serbia for ten year period using Serbian water quality index (SWQI

    Directory of Open Access Journals (Sweden)

    Leščešen Igor

    2014-01-01

    Full Text Available The WQI method is most frequently used in expert and scientific research and basically it provides a mechanism for cumulative representation, numeric expression and defining a certain level of water quality. This paper aims to assess water quality of the Tisa River in Vojvodina (North Serbia for the 2003 - 2012 period. Serbian Water Quality Index (SWQI was used for assessment of the river water quality. WQI is expressed as a single value ranging from 0 to 100 (best quality derived from numerous physical, chemical, biological and microbiological parameters. The results of SWQI for the Tisa River were mainly rated as good. Also, in this study it is noticed a clear decrease in water quality during warmer period of the year. Also, this study shows that water quality along the Tisa River decreases slightly but steadily down- stream, from Martonoš to Titel station and all along the length of the river provides values that according to SWQI descriptive quality indicator has been defined as good (72-83. The main problem of SWQI used in this paper is that it does not involve parameters of heavy metals concentration.

  4. 40 CFR 35.2111 - Revised water quality standards.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Revised water quality standards. 35... stream segments which have not, at least once since December 29, 1981, had their water quality standards...) The State has in good faith submitted such water quality standards and the Regional Administrator has...

  5. Water quality of Cisadane River based on watershed segmentation

    Science.gov (United States)

    Effendi, Hefni; Ayu Permatasari, Prita; Muslimah, Sri; Mursalin

    2018-05-01

    The growth of population and industrialization combined with land development along river cause water pollution and environmental deterioration. Cisadane River is one of the river in Indonesia where urbanization, industrialization, and agricultural are extremely main sources of pollution. Cisadane River is an interesting case for investigating the effect of land use to water quality and comparing water quality in every river segment. The main objectives with this study were to examine if there is a correlation between land use and water quality in Cisadane River and there is a difference in water quality between the upstream section of Cisadane River compared with its downstream section. This study compared water quality with land use condition in each segment of river. Land use classification showed that river segment that has more undeveloped area has better water quality compared to river segment with developed area. in general, BOD and COD values have increased from upstream to downstream. However, BOD and COD values do not show a steady increase in each segment Water quality is closely related to the surrounding land use.Therefore, it can not be concluded that the water quality downstream is worse than in the upstream area.

  6. Variations in statewide water quality of New Jersey streams, water years 1998-2009

    Science.gov (United States)

    Heckathorn, Heather A.; Deetz, Anna C.

    2012-01-01

    Statistical analyses were conducted for six water-quality constituents measured at 371 surface-water-quality stations during water years 1998-2009 to determine changes in concentrations over time. This study examined year-round concentrations of total dissolved solids, dissolved nitrite plus nitrate, dissolved phosphorus, total phosphorus, and total nitrogen; concentrations of dissolved chloride were measured only from January to March. All the water-quality data analyzed were collected by the New Jersey Department of Environmental Protection and the U.S. Geological Survey as part of the cooperative Ambient Surface-Water-Quality Monitoring Network. Stations were divided into groups according to the 1-year or 2-year period that the stations were part of the Ambient Surface-Water-Quality Monitoring Network. Data were obtained from the eight groups of Statewide Status stations for water years 1998, 1999, 2000, 2001-02, 2003-04, 2005-06, 2007-08, and 2009. The data from each group were compared to the data from each of the other groups and to baseline data obtained from Background stations unaffected by human activity that were sampled during the same time periods. The Kruskal-Wallis test was used to determine whether median concentrations of a selected water-quality constituent measured in a particular 1-year or 2-year group were different from those measured in other 1-year or 2-year groups. If the median concentrations were found to differ among years or groups of years, then Tukey's multiple comparison test on ranks was used to identify those years with different or equal concentrations of water-quality constituents. A significance level of 0.05 was selected to indicate significant changes in median concentrations of water-quality constituents. More variations in the median concentrations of water-quality constituents were observed at Statewide Status stations (randomly chosen stations scattered throughout the State of New Jersey) than at Background stations

  7. Mobile sailing robot for automatic estimation of fish density and monitoring water quality.

    Science.gov (United States)

    Koprowski, Robert; Wróbel, Zygmunt; Kleszcz, Agnieszka; Wilczyński, Sławomir; Woźnica, Andrzej; Łozowski, Bartosz; Pilarczyk, Maciej; Karczewski, Jerzy; Migula, Paweł

    2013-07-01

    The paper presents the methodology and the algorithm developed to analyze sonar images focused on fish detection in small water bodies and measurement of their parameters: volume, depth and the GPS location. The final results are stored in a table and can be exported to any numerical environment for further analysis. The measurement method for estimating the number of fish using the automatic robot is based on a sequential calculation of the number of occurrences of fish on the set trajectory. The data analysis from the sonar concerned automatic recognition of fish using the methods of image analysis and processing. Image analysis algorithm, a mobile robot together with its control in the 2.4 GHz band and full cryptographic communication with the data archiving station was developed as part of this study. For the three model fish ponds where verification of fish catches was carried out (548, 171 and 226 individuals), the measurement error for the described method was not exceeded 8%. Created robot together with the developed software has features for remote work also in the variety of harsh weather and environmental conditions, is fully automated and can be remotely controlled using Internet. Designed system enables fish spatial location (GPS coordinates and the depth). The purpose of the robot is a non-invasive measurement of the number of fish in water reservoirs and a measurement of the quality of drinking water consumed by humans, especially in situations where local sources of pollution could have a significant impact on the quality of water collected for water treatment for people and when getting to these places is difficult. The systematically used robot equipped with the appropriate sensors, can be part of early warning system against the pollution of water used by humans (drinking water, natural swimming pools) which can be dangerous for their health.

  8. Microbial water quality of treated water and raw water sources in the ...

    African Journals Online (AJOL)

    Microbial water quality is an essential aspect in the provision of potable water for domestic use. The provision of adequate amounts of safe water for domestic purposes has become difficult for most municipalities mandated to do so in Zimbabwe. Morton-Jaffray Treatment Plant supplies potable water to Harare City and ...

  9. Use of phytoplankton assemblages to assess the quality of coastal waters of a transitional ecosystem: Río de la Plata estuary

    Science.gov (United States)

    Sathicq, María Belén; Gómez, Nora; Bauer, Delia Elena; Donadelli, Jorge

    2017-11-01

    Among the estuarine ecosystems under anthropogenic stress, the Río de la Plata can represent a case study to help identify phytoplanktonic species diagnosing and warning about water quality changes. The freshwater tidal zone on the coast of Argentina is used for several purposes, including recreational and navigational activities and the provision of drinking water. We analyzed the relationship between the abundance of the phytoplanktonic species, changes in water quality (linked to enrichment with nutrients and organic matter) and the land use on the coast of Argentina. A canonical correlation analysis (CCA) allowed us to identify two environmental gradients, one related to anthropogenic activities, where the most influential factors were BOD5, DIN, PO43- and DO, and a second gradient related to turbidity and conductivity. The relative abundances of 24 species were significantly correlated with the deterioration of the water quality. This set of tolerant species is mostly composed of taxa considered C-strategists, and the most represented group was the Chlorococcalean algae. The percentage of this group can provide an early warning indicator of the impairment of the water quality; its abundance exceeded 30% at those sites with a bad water quality (reaching 19000 cell mL-1), and were less than 15% (300 cell mL-1) in sites with a good water quality. The use of a reduced group of species constitutes a potential tool for monitoring, complementing another common indicators such as chlorophyll a or the total density of phytoplankton. Considering that most of these tolerant species are widely distributed it is possible to employ them as a biomonitor in other freshwater zones of temperate estuaries.

  10. Water quality estimation method for primary coolant circuit

    International Nuclear Information System (INIS)

    Wada, Yoichi; Ibe, Hidefumi.

    1994-01-01

    The present invention is suitable to water quality diagnosis at each of the portions in a reactor upon hydrogen injection for preventing stress corrosion crackings (SCC) of a BWR type reactor. That is, a plurality of simulations are conducted how the water quality at each of the portions in the reactor is changed when hydrogen injection amount is changed depending on the design and operation conditions of the plant. The result of the calculation is stored in a memory device. A water quality distribution in a pressure vessel having a solution which agrees with a value actually measured by a water quality measuring device disposed at the outside of a reactor core is retrieved from the results of the calculation. If no agreeing solution can be found, water quality distribution containing the actually measured value is determined based on the result of the calculation by using interpolation. In the present invention, the result of the calculation obtained by the simulation and the actually measured value at the outside of the reactor core can be utilized, to map the distribution of reactor water ingredients on a screen, which can accurately estimate the water quality at the periphery of the reactor core on real time. As a result, an operational efficiency of a reactor which can control water quality upon hydrogen injection at an optimum condition. (I.S.)

  11. Water Quality Monitoring by Satellite

    Science.gov (United States)

    Journal of Chemical Education, 2004

    2004-01-01

    The availability of abundant water resources in the Upper Midwest of the United States is nullified by their contamination through heavy commercial and industrial activities. Scientists have taken the responsibility of detecting the water quality of these resources through remote-sensing satellites to develop a wide-ranging water purification plan…

  12. Real-Time Water Quality Management in the Grassland Water District

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, Nigel W.T.; Hanna, W. Mark; Hanlon, Jeremy S.; Burns, Josphine R.; Taylor, Christophe M.; Marciochi, Don; Lower, Scott; Woodruff, Veronica; Wright, Diane; Poole, Tim

    2004-12-10

    The purpose of the research project was to advance the concept of real-time water quality management in the San Joaquin Basin by developing an application to drainage of seasonal wetlands in the Grassland Water District. Real-time water quality management is defined as the coordination of reservoir releases, return flows and river diversions to improve water quality conditions in the San Joaquin River and ensure compliance with State water quality objectives. Real-time water quality management is achieved through information exchange and cooperation between shakeholders who contribute or withdraw flow and salt load to or from the San Joaquin River. This project complements a larger scale project that was undertaken by members of the Water Quality Subcommittee of the San Joaquin River Management Program (SJRMP) and which produced forecasts of flow, salt load and San Joaquin River assimilative capacity between 1999 and 2003. These forecasts can help those entities exporting salt load to the River to develop salt load targets as a mechanism for improving compliance with salinity objectives. The mass balance model developed by this project is the decision support tool that helps to establish these salt load targets. A second important outcome of this project was the development and application of a methodology for assessing potential impacts of real-time wetland salinity management. Drawdown schedules are typically tied to weather conditions and are optimized in traditional practices to maximize food sources for over-wintering wildfowl as well as providing a biological control (through germination temperature) of undesirable weeds that compete with the more proteinaceous moist soil plants such as swamp timothy, watergrass and smartweed. This methodology combines high resolution remote sensing, ground-truthing vegetation surveys using established survey protocols and soil salinity mapping using rapid, automated electromagnetic sensor technology. This survey methodology

  13. R2 Water Quality Portal Monitoring Stations

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Water Quality Data Portal (WQP) provides an easy way to access data stored in various large water quality databases. The WQP provides various input parameters on...

  14. Reuse of waste water: impact on water supply planning

    Energy Technology Data Exchange (ETDEWEB)

    Mangan, G.F. Jr.

    1978-06-01

    As the urban population of the world increases and demands on easily developable water supplies are exceeded, cities have recourse to a range of management alternatives to balance municipal water supply and demand. These alternatives range from doing nothing to modifying either the supply or the demand variable in the supply-demand relationship. The reuse or recycling of urban waste water in many circumstances may be an economically attractive and effective management strategy for extending existing supplies of developed water, for providing additional water where no developable supplies exist and for meeting water quality effluent discharge standards. The relationship among municipal, industrial and agricultural water use and the treatment links which may be required to modify the quality of a municipal waste effluent for either recycling or reuse purposes is described. A procedure is described for analyzing water reuse alternatives within a framework of regional water supply and waste water disposal planning and management.

  15. Evaluation of Water Quality Conditions Near Proposed Fish Production Sites Associated with the Yakima Fisheries Project, 1991-1993 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Dauble, Dennis D.

    1994-05-01

    In 1991, the Pacific Northwest Laboratory (PNL) began studying water quality at several sites in the Yakima River Basin for the Bonneville Power Administration. These sites were being proposed as locations for fish culture facilities as part of the Yakima Fisheries Project (YFP). Surface water quality parameters near the proposed fish culture facilities are currently suitable for fish production. Water quality conditions in the mainstream Yakima River and its tributaries are generally excellent in the upper part of the watershed (i.e., near Cle Elum), but they are only fair to poor for the river downstream of Union Gap (river mile 107). Water quality of the Naches River near Oak Flats is also suitable for fish production. Groundwater supplies near the proposed fish production facilities typically have elevated concentrations of metals and dissolved gases. These conditions can be mitigated using best engineering practices such as precipitation and degasification. Additionally, mixing with surface water may improve these conditions. Depending on the location and depth of the well, groundwater temperatures may be warmer than optimum for acclimating and holding juvenile and adult fish. Water quality parameters measured in the Yakima River and tributaries sometimes exceed the range of values described as acceptable for culture of salmonids and for the protection of other aquatic life. However, constituent concentrations are within ranges that exist in many northwest fish hatcheries. Additionally, site-specific tests conducted by PNL (i.e., live box exposures and egg incubation studies) indicate that fish can be successfully reared in surface and well water near the proposed facility sites. Thus, there appear to be no constraints to artificial production for the YFP.

  16. Quality assessment of Egyptian drinking water supplies and disinfecting using ultraviolet radiation

    International Nuclear Information System (INIS)

    Karem, H.A.; Hassan, A.A.

    2000-01-01

    Drinking water, surface and underground water were microbiological and chemical analyzed during storage in covered and uncovered tanks for four months. Microbiological analyses were carried out to determine the microbial indicators namely, Total bacterial counts, total coliform, E. coli, Enterococcus faecalis, Pseudomonas aeruginosa and Clostridium perfringens. Drinking water of Amiria municipal water station was microbiologically safe after storage in covered tanks however, in uncovered tanks the total bacterial counts increased gradually to reach 8 x 10 2 cfu/ml at the fourth month. With respect to underground water, all tested groups of microorganisms were attained high values except E. coli and E. faecalis counts were not detected. During storage the densities of total bacterial counts, total coliform and P. aeruginosa increased in both covered and uncovered tanks to reach at the fourth month 10 6 -10 7 , 58-68, 51-65 cfu/ml respectively. As to bottled water, samples of four companies producing it in Egypt were taken for analysis during the steps of production. Companies A, B and C were used underground water and company D used surface water. Results revealed that all companies were microbiologically unsatisfactory where final product still contained total bacterial counts, P. aeruginosa and C. perfringens exceeding the drinking water quality guideline values. An experiment was conducted to study the efficiency of uv radiation in reducing the densities of certain bacterial isolates inoculated in sterilized tap water. P. aeruginosa was the most sensitive bacteria followed by E. coli whereas E. faecalis and B. cereus were more resistant toward uv radiation. (author)

  17. Assessment of water-quality data from Long Lake National Wildlife Refuge, North Dakota--2008 through 2012

    Science.gov (United States)

    Tangen, Brian A.; Finocchiaro, Raymond G.; Gleason, Robert A.; Rabenberg, Michael J.; Dahl, Charles F.; Ell, Mike J.

    2013-01-01

    averaged approximately 1,750 milligrams per liter, and ranged from 117 to 39,700 milligrams per liter. Twelve of the 14 trace metals detected in the water samples had established North Dakota water-quality standards for aquatic life, and only aluminum and copper consistently exceeded these criteria. Aluminum is considered harmful to aquatic biota in acidic (pH less than 5.5) systems and most of the copper standard exceedances were collected from highly concentrated waters because of evaporation and seasonally low water levels. Concentrations for various forms of nitrogen and phosphorus generally were similar to reported regional values. Specific conductance of Long Lake varied seasonally and annually both within and among management units, with values ranging from less than 500 to nearly 40,000 microsiemens per centimeter at 25 degrees Celsius. Long Lake was characterized by consistent seasonal patterns of increasing specific conductance from spring (March and April) to fall (September and October), with levels stabilizing through the end of the sampling season (November). These seasonal patterns in specific conductance were associated with decreasing water levels throughout the summer due primarily to evaporation and continuous water releases through the Unit 1 outlet structure, which resulted in the concentration of salts. Specific conductance of each unit, along with water levels, also varied among years. Overall, specific conductance levels were greatest during the drier year of 2008 when water levels were low. Specific conductance levels were lowest during the spring of 2009 following above-average volumes of fresh water from snowmelt runoff. Comparisons of specific conductance among sample sites that were spatially distributed within each management unit suggested that spatial variability within units was low except for areas associated with local inflows. Data collected during this study revealed consistent seasonal patterns and low within-unit spatial variability

  18. Precipitation, streamflow, suspended-sediment, and water-quality data for the U.S. Army Garrison Fort Carson and Piñon Canyon Maneuver Site, Colorado, 1966–2015

    Science.gov (United States)

    Arnold, L.R.

    2017-08-03

    The U.S. Army Garrison Fort Carson (AGFC) and the Piñon Canyon Maneuver Site (PCMS) are facilities operated by the U.S. Department of the Army in southern Colorado. The U.S. Geological Survey, in cooperation with the U.S. Department of the Army, established a hydrologic and water-quality data-collection network at the AGFC in June 1978 and at the PCMS in October 1982. The data-collection networks are designed to assess the quantity and quality of water resources and monitor the effects of military training activities on streamflow and water quality. Two preexisting U.S. Geological Survey streamgages at the PCMS were incorporated into the data-collection network at the time it was established, providing periods of record that begin as early as 1966. This report presents and summarizes precipitation, streamflow, suspended-sediment, and water-quality data from 34 U.S. Geological Survey sites on or near the AGFC and the PCMS for the period of record at each site. (Streamflow data are presented as discharge in cubic feet per second.)At AGFC, daily sum precipitation ranged from 0 to 11.85 inches, daily mean discharge ranged from 0 to 836 cubic feet per second, and daily mean suspended-sediment discharge ranged from 0 to 39,900 tons per day. With the exception of total (unfiltered) mercury and filtered sulfate at two sites and filtered manganese at three sites, 95th percentile trace element concentrations and median total (unfiltered) metal concentrations were less than regulatory numeric standards for all samples. However, individual water-quality results occasionally exceeded respective regulatory numeric standards.At the PCMS, daily sum precipitation ranged from 0 to 4.59 inches, daily mean discharge ranged from 0 to 4,190 cubic feet per second, and daily mean suspended-sediment discharge ranged from 0 to 21,100 tons per day. Water-quality results, 95th percentile trace element concentrations, and median total (unfiltered) metal concentrations were less than

  19. Purified water quality study

    International Nuclear Information System (INIS)

    Spinka, H.; Jackowski, P.

    2000-01-01

    Argonne National Laboratory (HEP) is examining the use of purified water for the detection medium in cosmic ray sensors. These sensors are to be deployed in a remote location in Argentina. The purpose of this study is to provide information and preliminary analysis of available water treatment options and associated costs. This information, along with the technical requirements of the sensors, will allow the project team to determine the required water quality to meet the overall project goals

  20. 40 CFR 35.2102 - Water quality management planning.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Water quality management planning. 35... Administrator shall first determine that the project is: (a) Included in any water quality management plan being implemented for the area under section 208 of the Act or will be included in any water quality management plan...

  1. Comparison of 2002 Water Year and Historical Water-Quality Data, Upper Gunnison River Basin, Colorado

    Science.gov (United States)

    Spahr, N.E.

    2003-01-01

    Introduction: Population growth and changes in land-use practices have the potential to affect water quality and quantity in the upper Gunnison River basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with local sponsors, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, and Upper Gunnison River Water Conservancy District, established a water-quality monitoring program in the upper Gunnison River basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations, stations that are considered as long term and stations that are rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions have changed over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short term concerns. Another group of stations (rotational group 2) will be chosen and sampled beginning in water year 2004. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality sampling in the upper Gunnison River basin. This summary includes data collected during water year 2002. The introduction provides a map of the sampling locations, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water year 2002 are compared to historical data (data collected for this network since 1995), state water-quality standards, and federal water-quality guidelines

  2. Water Pollution and Water Quality Assessment of Major Transboundary Rivers from Banat (Romania

    Directory of Open Access Journals (Sweden)

    Andreea-Mihaela Dunca

    2018-01-01

    Full Text Available This study focuses on water resources management and shows the need to enforce the existing international bilateral agreements and to implement the Water Framework Directive of the European Union in order to improve the water quantity and quality received by a downstream country of a common watershed, like Timiş-Bega hydrographical basin, shared by two countries (Romania and Serbia. The spatial trend of water quality index (WQI and its subindexes are important for determining the locations of major pollutant sources that contribute to water quality depletion in this basin. We compared the values of WQI obtained for 10 sections of the two most important rivers from Banat, which have a great importance for socioeconomic life in southwestern part of Romania and in northeastern part of Serbia. In order to assess the water quality, we calculated the WQI for a long period of time (2004–2014, taking into account the maximum, minimum, and the mean annual values of physical, chemical, and biological parameters (DO, pH, BOD5, temperature, total P, N-NO2−, and turbidity. This article highlights the importance of using the water quality index which has not been sufficiently explored in Romania and for transboundary rivers and which is very useful in improving rivers water quality.

  3. Environmental Setting and Effects on Water Quality in the Great and Little Miami River Basins, Ohio and Indiana

    Science.gov (United States)

    Debrewer, Linda M.; Rowe, Gary L.; Reutter, David C.; Moore, Rhett C.; Hambrook, Julie A.; Baker, Nancy T.

    2000-01-01

    The Great and Little Miami River Basins drain approximately 7,354 square miles in southwestern Ohio and southeastern Indiana and are included in the more than 50 major river basins and aquifer systems selected for water-quality assessment as part of the U.S. Geological Survey's National Water-Quality Assessment Program. Principal streams include the Great and Little Miami Rivers in Ohio and the Whitewater River in Indiana. The Great and Little Miami River Basins are almost entirely within the Till Plains section of the Central Lowland physiographic province and have a humid continental climate, characterized by well-defined summer and winter seasons. With the exception of a few areas near the Ohio River, Pleistocene glacial deposits, which are predominantly till, overlie lower Paleozoic limestone, dolomite, and shale bedrock. The principal aquifer is a complex buried-valley system of sand and gravel aquifers capable of supporting sustained well yields exceeding 1,000 gallons per min-ute. Designated by the U.S. Environmental Protection Agency as a sole-source aquifer, the Buried-Valley Aquifer System is the principal source of drinking water for 1.6 million people in the basins and is the dominant source of water for southwestern Ohio. Water use in the Great and Little Miami River Basins averaged 745 million gallons per day in 1995. Of this amount, 48 percent was supplied by surface water (including the Ohio River) and 52 percent was supplied by ground water. Land-use and waste-management practices influence the quality of water found in streams and aquifers in the Great and Little Miami River Basins. Land use is approximately 79 percent agriculture, 13 percent urban (residential, industrial, and commercial), and 7 percent forest. An estimated 2.8 million people live in the Great and Little Miami River Basins; major urban areas include Cincinnati and Dayton, Ohio. Fertilizers and pesticides associated with agricultural activity, discharges from municipal and

  4. MANAGING MANURE TO IMPROVE AIR AND WATER QUALITY

    OpenAIRE

    Aillery, Marcel P.; Gollehon, Noel R.; Johansson, Robert C.; Kaplan, Jonathan D.; Key, Nigel D.; Ribaudo, Marc

    2005-01-01

    Animal waste from confined animal feeding operations is a potential source of air and water quality degradation from evaporation of gases, runoff to surface water, and leaching to ground water. This report assesses the potential economic and environmental tradeoffs between water quality policies and air quality policies that require the animal agriculture sector to take potentially costly measures to abate pollution. A farm-level analysis of hog farms estimates the economic and environmental ...

  5. Biological Water Quality Criteria

    Science.gov (United States)

    Page contains links to Technical Documents pertaining to Biological Water Quality Criteria, including, technical assistance documents for states, tribes and territories, program overviews, and case studies.

  6. Cooling water conditioning and quality control for tokamaks

    International Nuclear Information System (INIS)

    Gootgeld, A.M.

    1995-10-01

    Designers and operators of Tokamaks and all associated water cooled, peripheral equipment, are faced with the task of providing and maintaining closed-loop, low conductivity, low impurity, cooling water systems. Most of these systems must provide large volumes of high quality cooling water at reasonable cost and comply with local and state government orders and EPA mandated national pretreatment standards and regulations. This paper discusses the DIII-D water quality requirements, the means used to obtain the necessary quality and the instrumentation used for control and monitoring. Costs to mechanically and chemically condition and maintain water quality are discussed as well as the various aspects of complying with government standards and regulations

  7. Comparing microbial water quality in an intermittent and continuous piped water supply.

    Science.gov (United States)

    Kumpel, Emily; Nelson, Kara L

    2013-09-15

    Supplying piped water intermittently is a common practice throughout the world that increases the risk of microbial contamination through multiple mechanisms. Converting an intermittent supply to a continuous supply has the potential to improve the quality of water delivered to consumers. To understand the effects of this upgrade on water quality, we tested samples from reservoirs, consumer taps, and drinking water provided by households (e.g. from storage containers) from an intermittent and continuous supply in Hubli-Dharwad, India, over one year. Water samples were tested for total coliform, Escherichia coli, turbidity, free chlorine, and combined chlorine. While water quality was similar at service reservoirs supplying the continuous and intermittent sections of the network, indicator bacteria were detected more frequently and at higher concentrations in samples from taps supplied intermittently compared to those supplied continuously (p supply, with 0.7% of tap samples positive compared to 31.7% of intermittent water supply tap samples positive for E. coli. In samples from both continuously and intermittently supplied taps, higher concentrations of total coliform were measured after rainfall events. While source water quality declined slightly during the rainy season, only tap water from intermittent supply had significantly more indicator bacteria throughout the rainy season compared to the dry season. Drinking water samples provided by households in both continuous and intermittent supplies had higher concentrations of indicator bacteria than samples collected directly from taps. Most households with continuous supply continued to store water for drinking, resulting in re-contamination, which may reduce the benefits to water quality of converting to continuous supply. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Combined sewer overflows impact on water quality and environmental ecosystem in the Harlem River

    Science.gov (United States)

    Wang, J.

    2017-12-01

    Combined sewer overflows (CSOs) discharge untreated sewage into the Harlem River during wet weather conditions, and it elevated nutrients and pathogen levels. It is not safe for swimming, fishing or boating especially in rainstorms. The Harlem River, a 9.3 mile long natural straight, connects the Hudson and East Rivers in New York City. It had been historically used for swimming, fishing, boating. Anthropogenic impacts have degraded water quality, limiting current aquatic activity in the river. CSOs water samples were collected during rainstorms, and analyzed in the laboratories of the Chemistry and Biology Department, Bronx Community College, City University of New York. Results showed elevated bacteria/pathogen and nutrient levels. Most recent data showed an ammonia concentration of 2.6 mg/L on July 30, 2015 during a heavy afternoon thunderstorm, and an ammonia level 2.7mg/L during tropical storm Arthur on July 2, 2014. Both significantly exceeded the EPA regulation level for NYC waters of 0.23mg/L. Phosphate levels peaked at 0.197 mg/L during a heavy thunderstorm on Apr 28, 2011, which was much higher than regulated level of 0.033 mg/L. Turbidity was 319 FAU during the July 30 2015 heavy thunderstorm, and was 882 FAU during tropical storm Arthur; which was significantly higher than regulation level of 5.25 FAU. CSOs collected during a recent heavy rainstorm on Oct 28, 2015, showed fecal coliform of 1 million MPN/100ml, E.Coli. of 60,000 MPN/100ml, and enterococcus of 65,000 MPN/100ml; which exceeded regulated levels of fecal coliform-200 MPN/100ml, E.Coli.-126 MPN/100ml, enterococcus-104 MPN/100ml. It is critical to reduce CSOs, restore ecosystem and improve water quality of the Harlem River. Green wall, green roof, and wetland had been used to reduce stormwater runoff & CSOs in the Bronx River; these green infrastructures are going to be used along the Harlem River waterfront as well. The goal of this research is to make the Harlem River swimmable and fishable

  9. Drinking Water Quality of Water Vending Machines in Parit Raja, Batu Pahat, Johor

    Science.gov (United States)

    Hashim, N. H.; Yusop, H. M.

    2016-07-01

    An increased in demand from the consumer due to their perceptions on tap water quality is identified as one of the major factor on why they are mentally prepared to pay for the price of the better quality drinking water. The thought that filtered water quality including that are commercially available in the market such as mineral and bottled drinking water and from the drinking water vending machine makes they highly confident on the level of hygiene, safety and the mineral content of this type of drinking water. This study was investigated the vended water quality from the drinking water vending machine in eight locations in Parit Raja are in terms of pH, total dissolve solids (TDS), turbidity, mineral content (chromium, arsenic, cadmium, lead and nickel), total organic carbon (TOC), pH, total colony-forming units (CFU) and total coliform. All experiments were conducted in one month duration in triplicate samples for each sampling event. The results indicated the TDS and all heavy metals in eight vended water machines in Parit Raja area were found to be below the Food Act 1983, Regulation 360C (Standard for Packaged Drinking Water and Vended water, 2012) and Malaysian Drinking Water Quality, Ministry of Health 1983. No coliform was presence in any of the vended water samples. pH was found to be slightly excess the limit provided while turbidity was found to be 45 to 95 times more higher than 0.1 NTU as required by the Malaysian Food Act Regulation. The data obtained in this study would suggest the important of routine maintenance and inspection of vended water provider in order to maintain a good quality, hygienic and safety level of vended water.

  10. Development of total maximum daily loads for bacteria impaired watershed using the comprehensive hydrology and water quality simulation model.

    Science.gov (United States)

    Kim, Sang M; Brannan, Kevin M; Zeckoski, Rebecca W; Benham, Brian L

    2014-01-01

    The objective of this study was to develop bacteria total maximum daily loads (TMDLs) for the Hardware River watershed in the Commonwealth of Virginia, USA. The TMDL program is an integrated watershed management approach required by the Clean Water Act. The TMDLs were developed to meet Virginia's water quality standard for bacteria at the time, which stated that the calendar-month geometric mean concentration of Escherichia coli should not exceed 126 cfu/100 mL, and that no single sample should exceed a concentration of 235 cfu/100 mL. The bacteria impairment TMDLs were developed using the Hydrological Simulation Program-FORTRAN (HSPF). The hydrology and water quality components of HSPF were calibrated and validated using data from the Hardware River watershed to ensure that the model adequately simulated runoff and bacteria concentrations. The calibrated and validated HSPF model was used to estimate the contributions from the various bacteria sources in the Hardware River watershed to the in-stream concentration. Bacteria loads were estimated through an extensive source characterization process. Simulation results for existing conditions indicated that the majority of the bacteria came from livestock and wildlife direct deposits and pervious lands. Different source reduction scenarios were evaluated to identify scenarios that meet both the geometric mean and single sample maximum E. coli criteria with zero violations. The resulting scenarios required extreme and impractical reductions from livestock and wildlife sources. Results from studies similar to this across Virginia partially contributed to a reconsideration of the standard's applicability to TMDL development.

  11. Evaluating Water Supply and Water Quality Management Options for Las Vegas Valley

    Science.gov (United States)

    Ahmad, S.

    2007-05-01

    The ever increasing population in Las Vegas is generating huge demand for water supply on one hand and need for infrastructure to collect and treat the wastewater on the other hand. Current plans to address water demand include importing water from Muddy and Virgin Rivers and northern counties, desalination of seawater with trade- payoff in California, water banking in Arizona and California, and more intense water conservation efforts in the Las Vegas Valley (LVV). Water and wastewater in the LVV are intrinsically related because treated wastewater effluent is returned back to Lake Mead, the drinking water source for the Valley, to get a return credit thereby augmenting Nevada's water allocation from the Colorado River. The return of treated wastewater however, is a major contributor of nutrients and other yet unregulated pollutants to Lake Mead. Parameters that influence the quantity of water include growth of permanent and transient population (i.e., tourists), indoor and outdoor water use, wastewater generation, wastewater reuse, water conservation, and return flow credits. The water quality of Lake Mead and the Colorado River is affected by the level of treatment of wastewater, urban runoff, groundwater seepage, and a few industrial inputs. We developed an integrated simulation model, using system dynamics modeling approach, to account for both water quantity and quality in the LVV. The model captures the interrelationships among many variables that influence both, water quantity and water quality. The model provides a valuable tool for understanding past, present and future pathways of water and its constituents in the LVV. The model is calibrated and validated using the available data on water quantity (flows at water and wastewater treatment facilities and return water credit flow rates) and water quality parameters (TDS and phosphorus concentrations). We used the model to explore important questions: a)What would be the effect of the water transported from

  12. Integrated Urban Water Quality Management

    DEFF Research Database (Denmark)

    Rauch, W.; Harremoës, Poul

    1995-01-01

    The basic features of integrated urban water quality management by means of deterministic modeling are outlined. Procedures for the assessment of the detrimental effects in the recipient are presented as well as the basic concepts of an integrated model. The analysis of a synthetic urban drainage...... system provides useful information for water quality management. It is possible to identify the system parameters that contain engineering significance. Continuous simulation of the system performance indicates that the combined nitrogen loading is dominated by the wastewater treatment plant during dry...

  13. Part 2: Surface water quality

    International Nuclear Information System (INIS)

    1997-01-01

    In 1996 the surface water quality measurements were performed, according to the Agreement, at 8 profiles on the Hungarian territory and at 15 profiles on the Slovak territory. Basic physical and chemical parameters (as water temperature, pH values, conductivity, suspended solids, cations and anions (nitrates, ammonium ion, nitrites, total nitrogen, phosphates, total phosphorus, oxygen and organic carbon regime parameters), metals (iron, manganese and heavy metals), biological and microbiological parameters (coliform bacteria, chlorophyll-a, saprobity index and other biological parameters) and quality of sediment were measured

  14. Management of source and drinking-water quality in Pakistan.

    Science.gov (United States)

    Aziz, J A

    2005-01-01

    Drinking-water quality in both urban and rural areas of Pakistan is not being managed properly. Results of various investigations provide evidence that most of the drinking-water supplies are faecally contaminated. At places groundwater quality is deteriorating due to the naturally occurring subsoil contaminants or to anthropogenic activities. The poor bacteriological quality of drinking-water has frequently resulted in high incidence of waterborne diseases while subsoil contaminants have caused other ailments to consumers. This paper presents a detailed review of drinking-water quality in the country and the consequent health impacts. It identifies various factors contributing to poor water quality and proposes key actions required to ensure safe drinking-water supplies to consumers.

  15. San Francisco Bay Water Quality Improvement Fund

    Science.gov (United States)

    EPAs grant program to protect and restore San Francisco Bay. The San Francisco Bay Water Quality Improvement Fund (SFBWQIF) has invested in 58 projects along with 70 partners contributing to restore wetlands, water quality, and reduce polluted runoff.,

  16. EPA Office of Water (OW): STORET Water Quality Monitoring Stations Source Dataset

    Data.gov (United States)

    U.S. Environmental Protection Agency — Storage and Retrieval for Water Quality Data (STORET and the Water Quality Exchange, WQX) defines the methods and the data systems by which EPA compiles monitoring...

  17. A review of hydrological/water-quality models

    Directory of Open Access Journals (Sweden)

    Liangliang GAO,Daoliang LI

    2014-12-01

    Full Text Available Water quality models are important in predicting the changes in surface water quality for environmental management. A range of water quality models are wildly used, but every model has its advantages and limitations for specific situations. The aim of this review is to provide a guide to researcher for selecting a suitable water quality model. Eight well known water quality models were selected for this review: SWAT, WASP, QUALs, MIKE 11, HSPF, CE-QUAL-W2, ELCOM-CAEDYM and EFDC. Each model is described according to its intended use, development, simulation elements, basic principles and applicability (e.g., for rivers, lakes, and reservoirs and estuaries. Currently, the most important trends for future model development are: (1 combination models─individual models cannot completely solve the complex situations so combined models are needed to obtain the most appropriate results, (2 application of artificial intelligence and mechanistic models combined with non-mechanistic models will provide more accurate results because of the realistic parameters derived from non-mechanistic models, and (3 integration with remote sensing, geographical information and global position systems (3S ─3S can solve problems requiring large amounts of data.

  18. Water quality in okara and its suburbs

    International Nuclear Information System (INIS)

    Butt, M.T.; Imtiaz, N.; Athar, M.

    2007-01-01

    Ground water samples (70), collected from Okara and its sburbs were studied. Thirty samples were collected from municipal supply of urban areas while forty from deep water pumps of non-urban areas. The samples were investigated for various physiochemical parameters. Outcome of the study is that ground water of municipal supply area is suitable for human consumption while the water quality of non supply area is slightly brackish to saline and nitrate content is high above the acceptable levels of drinking water quality. (author)

  19. Predicted and observed therapeutic dose exceedances of ionizable pharmaceuticals in fish plasma from urban coastal systems.

    Science.gov (United States)

    Scott, W Casan; Du, Bowen; Haddad, Samuel P; Breed, Christopher S; Saari, Gavin N; Kelly, Martin; Broach, Linda; Chambliss, C Kevin; Brooks, Bryan W

    2016-04-01

    Instream flows of the rapidly urbanizing watersheds and estuaries of the Gulf of Mexico in Texas (USA) are increasingly dominated by reclaimed waters. Though ionizable pharmaceuticals have received increasing attention in freshwaters, many research questions remain unanswered, particularly in tidally influenced urban coastal systems, which experience significant spatiotemporal variability in pH that influences bioavailability and bioaccumulation. The authors coupled fish plasma modeling of therapeutic hazard values with field monitoring of water chemistry variability and pharmaceutical occurrence to examine whether therapeutic hazards to fish existed within these urban coastal ecosystems and whether therapeutic hazards differed within and among coastal locations and seasons. Spatial and temporal fluctuations in pH within study sites altered the probability of encountering pharmaceutical hazards to fish. Significant water quality differences were consistently observed among traditional parameters and pharmaceuticals collected from surface and bottom waters, which are rarely sampled during routine surface water quality assessments. The authors then compared modeling predictions of fish plasma concentrations of pharmaceuticals to measured plasma levels from various field-collected fish species. Diphenhydramine and diltiazem were observed in plasma of multiple species, and diltiazem exceeded human therapeutic doses in largemouth bass, catfish, and mullet inhabiting these urban estuaries. Though the present study only examined a small number of target analytes, which represent a microcosm of the exposome of these fish, coastal systems are anticipated to be more strongly influenced by continued urbanization, altered instream flows, and population growth in the future. Unfortunately, aquatic toxicology information for diltiazem and many other pharmaceuticals is not available for marine and estuarine organisms, but such field observations suggest that potential adverse

  20. Statistical Framework for Recreational Water Quality Criteria and Monitoring

    DEFF Research Database (Denmark)

    Halekoh, Ulrich

    2008-01-01

    recreational governmental authorities controlling water quality. The book opens with a historical account of water quality criteria in the USA between 1922 and 2003. Five chapters are related to sampling strategies and decision rules. Chapter 2 discusses the dependence of decision-making rules on short...... modeling exploiting additional information like meteorological data can support the decision process as shown in Chapter 10. The question of which information to extract from water sample analyses is closely related to the task of risk assessment for human health. Beach-water quality is often measured......Administrators of recreational waters face the basic tasks of surveillance of water quality and decisions on beach closure in case of unacceptable quality. Monitoring and subsequent decisions are based on sampled water probes and fundamental questions are which type of data to extract from...

  1. Assessment of water quality, benthic invertebrates, and periphyton in the Threemile Creek basin, Mobile, Alabama, 1999-2003

    Science.gov (United States)

    McPherson, Ann K.; Gill, Amy C.; Moreland, Richard S.

    2005-01-01

    The U.S. Geological Survey conducted a 4-year investigation of water quality and aquatic-community structure in Threemile Creek, an urban stream that drains residential areas in Mobile, Alabama. Water-quality samples were collected between March 2000 and September 2003 at four sites on Threemile Creek, and between March 2000 and October 2001 at two tributary sites that drain heavily urbanized areas in the watershed. Stream samples were analyzed for major ions, nutrients, fecal-indicator bacteria, and selected organic wastewater compounds. Continuous measurements of dissolved-oxygen concentrations, water temperature, specific conductance, and turbidity were recorded at three sites on Threemile Creek during 1999?2003. Aquatic-community structure was evaluated by conducting one survey of the benthic invertebrate community and multiple surveys of the algal community (periphyton). Benthic invertebrate samples were collected in July 2000 at four sites on Threemile Creek; periphyton samples were collected at four sites on Threemile Creek and the two tributary sites during 2000 ?2003. The occurrence and distribution of chemical constituents in the water column provided an initial assessment of water quality in the streams; the structure of the benthic invertebrate and algal communities provided an indication of the cumulative effects of water quality on the aquatic biota. Information contained in this report can be used by planners and resource managers in the evaluation of proposed total maximum daily loads and other restoration efforts that may be implemented on Threemile Creek. The three most upstream sites on Threemile Creek had similar water chemistry, characterized by a strong calcium-bicarbonate component; the most downstream site on Threemile Creek was affected by tidal fluctuations and mixing from Mobile Bay and had a strong sodium-chloride component. The water chemistry at the tributary site on Center Street was characterized by a strong sodium-chloride component

  2. Water quality assessment with hierarchical cluster analysis based on Mahalanobis distance.

    Science.gov (United States)

    Du, Xiangjun; Shao, Fengjing; Wu, Shunyao; Zhang, Hanlin; Xu, Si

    2017-07-01

    Water quality assessment is crucial for assessment of marine eutrophication, prediction of harmful algal blooms, and environment protection. Previous studies have developed many numeric modeling methods and data driven approaches for water quality assessment. The cluster analysis, an approach widely used for grouping data, has also been employed. However, there are complex correlations between water quality variables, which play important roles in water quality assessment but have always been overlooked. In this paper, we analyze correlations between water quality variables and propose an alternative method for water quality assessment with hierarchical cluster analysis based on Mahalanobis distance. Further, we cluster water quality data collected form coastal water of Bohai Sea and North Yellow Sea of China, and apply clustering results to evaluate its water quality. To evaluate the validity, we also cluster the water quality data with cluster analysis based on Euclidean distance, which are widely adopted by previous studies. The results show that our method is more suitable for water quality assessment with many correlated water quality variables. To our knowledge, it is the first attempt to apply Mahalanobis distance for coastal water quality assessment.

  3. Drinking water quality concerns and water vending machines

    International Nuclear Information System (INIS)

    McSwane, D.Z.; Oleckno, W.A.; Eils, L.M.

    1994-01-01

    Drinking water quality is a vital public health concern to consumers and regulators alike. This article describes some of the current microbiological, chemical, and radiological concerns about drinking water and the evolution of water vending machines. Also addressed are the typical treatment processes used in water vending machines and their effectiveness, as well as a brief examination of a certification program sponsored by the National Automatic Merchandising Association (NAMA), which provides a uniform standard for the design and construction of food and beverage vending machines. For some consumers, the water dispensed from vending machines is an attractive alternative to residential tap water which may be objectionable for aesthetic or other reasons

  4. Data on Streamflow and Quality of Water and Bottom Sediment in and near Humboldt Wildlife Management Area, Churchill and Pershing Counties, Nevada, 1998-2000

    Science.gov (United States)

    Paul, Angela P.; Thodal, Carl E.

    2003-01-01

    This study was initiated to expand upon previous findings that indicated concentrations of dissolved solids, arsenic, boron, mercury, molybdenum, selenium, and uranium were either above geochemical background concentrations or were approaching or exceeding ecological criteria in the lower Humboldt River system. Data were collected from May 1998 to September 2000 to further characterize streamflow and surface-water and bottom-sediment quality in the lower Humboldt River, selected agricultural drains, Upper Humboldt Lake, and Lower Humboldt Drain (ephemeral outflow from Humboldt Sink). During this study, flow in the lower Humboldt River was either at or above average. Flows in Army and Toulon Drains generally were higher than reported in previous investigations. An unnamed agricultural drain contributed a small amount to the flow measured in Army Drain. In general, measured concentrations of sodium, chloride, dissolved solids, arsenic, boron, molybdenum, and uranium were higher in water from agricultural drains than in Humboldt River water during this study. Mercury concentrations in water samples collected during the study period typically were below the laboratory reporting level. However, low-level mercury analyses showed that samples collected in August 1999 from Army Drain had higher mercury concentrations than those collected from the river or Toulon Drain or the Lower Humboldt Drain. Ecological criteria and effect concentrations for sodium, chloride, dissolved solids, arsenic, boron, mercury, and molybdenum were exceeded in some water samples collected as part of this study. Although water samples from the agricultural drains typically contained higher concentrations of sodium, chloride, dissolved solids, arsenic, boron, and uranium, greater instantaneous loads of these constituents were carried in the river near Lovelock than in agricultural drains during periods of high flow or non-irrigation. During this study, the high flows in the lower Humboldt River

  5. Impacts of extreme flooding on riverbank filtration water quality.

    Science.gov (United States)

    Ascott, M J; Lapworth, D J; Gooddy, D C; Sage, R C; Karapanos, I

    2016-06-01

    Riverbank filtration schemes form a significant component of public water treatment processes on a global level. Understanding the resilience and water quality recovery of these systems following severe flooding is critical for effective water resources management under potential future climate change. This paper assesses the impact of floodplain inundation on the water quality of a shallow aquifer riverbank filtration system and how water quality recovers following an extreme (1 in 17 year, duration >70 days, 7 day inundation) flood event. During the inundation event, riverbank filtrate water quality is dominated by rapid direct recharge and floodwater infiltration (high fraction of surface water, dissolved organic carbon (DOC) >140% baseline values, >1 log increase in micro-organic contaminants, microbial detects and turbidity, low specific electrical conductivity (SEC) 400% baseline). A rapid recovery is observed in water quality with most floodwater impacts only observed for 2-3 weeks after the flooding event and a return to normal groundwater conditions within 6 weeks (lower fraction of surface water, higher SEC, lower DOC, organic and microbial detects, DO). Recovery rates are constrained by the hydrogeological site setting, the abstraction regime and the water quality trends at site boundary conditions. In this case, increased abstraction rates and a high transmissivity aquifer facilitate rapid water quality recoveries, with longer term trends controlled by background river and groundwater qualities. Temporary reductions in abstraction rates appear to slow water quality recoveries. Flexible operating regimes such as the one implemented at this study site are likely to be required if shallow aquifer riverbank filtration systems are to be resilient to future inundation events. Development of a conceptual understanding of hydrochemical boundaries and site hydrogeology through monitoring is required to assess the suitability of a prospective riverbank filtration

  6. Comparison of Water Years 2004-05 and Historical Water-Quality Data, Upper Gunnison River Basin, Colorado

    Science.gov (United States)

    Spahr, Norman E.; Hartle, David M.; Diaz, Paul

    2008-01-01

    Population growth and changes in land use have the potential to affect water quality and quantity in the upper Gunnison River Basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Hinsdale County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, Upper Gunnison River Water Conservancy District, and Western State College, established a water-quality monitoring program in the upper Gunnison River Basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations - stations that are considered long term and stations that are considered rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions may change over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short-term concerns. Some stations in the rotational group were changed beginning in water year 2007. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality monitoring in the upper Gunnison River Basin. This summary includes data collected during water years 2004 and 2005. The introduction provides a map of the sampling sites, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water years 2004 and 2005 are compared to historical data, State water-quality standards, and Federal water-quality guidelines. Data were

  7. Automated monitoring of recovered water quality

    Science.gov (United States)

    Misselhorn, J. E.; Hartung, W. H.; Witz, S. W.

    1974-01-01

    Laboratory prototype water quality monitoring system provides automatic system for online monitoring of chemical, physical, and bacteriological properties of recovered water and for signaling malfunction in water recovery system. Monitor incorporates whenever possible commercially available sensors suitably modified.

  8. Occurrence and distribution of organic chemicals and nutrients and comparison of water-quality data from public drinking-water supplies in the Columbia aquifer in Delaware, 2000-08

    Science.gov (United States)

    Reyes, Betzaida

    2010-01-01

    The U.S. Geological Survey, in cooperation with the Delaware Department of Natural Resources and Environmental Control and the Delaware Geological Survey, conducted a groundwater-quality investigation to (a) describe the occurrence and distribution of selected contaminants, and (b) document any changes in groundwater quality in the Columbia aquifer public water-supply wells in the Coastal Plain in Delaware between 2000 and 2008. Thirty public water-supply wells located throughout the Columbia aquifer of the Delaware Coastal Plain were sampled from August through November of 2008. Twenty-two of the wells in the sampling network for this project were previously sampled in 2000. Eight new wells were selected to replace wells no longer in use. Groundwater collected from the wells was analyzed for the occurrence and distribution of selected pesticides, pesticide degradates, volatile organic compounds, nutrients, and major inorganic ions. Nine of the wells were analyzed for radioactive elements (radium-226, radium-228, and radon). Groundwater-quality data were compared for sites sampled in both 2000 and 2008 to document any changes in water quality. One or more pesticides were detected in samples from 29 of the 30 wells. There were no significant differences in pesticide and pesticide degradate concentrations and similar compounds were detected when comparing sampling results from 2000 and 2008. Pesticide and pesticide degradate concentrations were generally less than 1 microgram per liter. Twenty-four compounds, 14 pesticides, and 10 pesticide degradates were detected in at least one sample; the pesticide degradates, metolachlor ethanesulfonic acid, deethylatrazine, and alachlor ethanesulfonic acid were the most frequently detected compounds, each found in more than 50 percent of samples. Almost 80 percent of the detected pesticides were agricultural herbicides, which reflects the prevalence and wide distribution of agriculture in sampled areas, as well the dominance of

  9. Hydrogeology and water quality of the shallow ground-water system in eastern York County, Virginia. Water resources investigation

    International Nuclear Information System (INIS)

    1993-01-01

    The report describes the hydrogeology and water quality of the shallow ground-water system in the eastern part of York County, Va. The report includes a discussion of (1) the aquifers and confining units, (2) the flow of ground water, and (3) the quality of ground water. The report is an evaluation of the shallow ground-water system and focuses on the first 200 ft of sediments below land surface. Historical water-level and water-quality data were not available for the study area; therefore, a network of observation wells was constructed for the study. Water levels were measured to provide an understanding of the flow of ground water through the multiaquifer system. Water samples were collected and analyzed for major inorganic constituents, nutrients, and metals. The report presents maps that show the regional distribution of chloride and iron concentrations. Summary statistics and graphical summaries of selected chemical constituents provide a general assessment of the ground-water quality

  10. Water quality in vicinity of Fenton Hill Site, 1974

    International Nuclear Information System (INIS)

    Purtymun, W.D.; Adams, W.H.; Owens, J.W.

    1975-09-01

    The water quality at nine surface water stations, eight ground water stations, and the drilling operations at the Fenton Hill Site have been studied as a measure of the environmental impact of the Los Alamos Scientific Laboratory geothermal experimental studies in the Jemez Mountains. Surface water quality in the Jemez River drainage area is affected by the quality of the inflow from thermal and mineral springs. Ground water discharges from the Cenozoic Volcanics are similar in chemical quality. Water in the main zone of saturation penetrated by test hole GT-2 is highly mineralized, whereas water in the lower section of the hole, which is in granite, contains a higher concentration of uranium

  11. Water quality and management of private drinking water wells in Pennsylvania.

    Science.gov (United States)

    Swistock, Bryan R; Clemens, Stephanie; Sharpe, William E; Rummel, Shawn

    2013-01-01

    Pennsylvania has over three million rural residents using private water wells for drinking water supplies but is one of the few states that lack statewide water well construction or management standards. The study described in this article aimed to determine the prevalence and causes of common health-based pollutants in water wells and evaluate the need for regulatory management along with voluntary educational programs. Water samples were collected throughout Pennsylvania by Master Well Owner Network volunteers trained by Penn State Extension. Approximately 40% of the 701 water wells sampled failed at least one health-based drinking water standard. The prevalence of most water quality problems was similar to past studies although both lead and nitrate-N were reduced over the last 20 years. The authors' study suggests that statewide water well construction standards along with routine water testing and educational programs to assist water well owners would result in improved drinking water quality for private well owners in Pennsylvania.

  12. Trophic state categorisation and assessment of water quality in ...

    African Journals Online (AJOL)

    Thus, water quality information is crucial in setting up guidelines for freshwater ... water quality in the Manjirenji Dam was generally fair, with a CCME value averaging 78.1, ... The current water quality data set for the Manjirenji Dam is vital for ...

  13. Shale Gas Development and Drinking Water Quality.

    Science.gov (United States)

    Hill, Elaine; Ma, Lala

    2017-05-01

    The extent of environmental externalities associated with shale gas development (SGD) is important for welfare considerations and, to date, remains uncertain (Mason, Muehlenbachs, and Olmstead 2015; Hausman and Kellogg 2015). This paper takes a first step to address this gap in the literature. Our study examines whether shale gas development systematically impacts public drinking water quality in Pennsylvania, an area that has been an important part of the recent shale gas boom. We create a novel dataset from several unique sources of data that allows us to relate SGD to public drinking water quality through a gas well's proximity to community water system (CWS) groundwater source intake areas.1 We employ a difference-in-differences strategy that compares, for a given CWS, water quality after an increase in the number of drilled well pads to background levels of water quality in the geographic area as measured by the impact of more distant well pads. Our main estimate finds that drilling an additional well pad within 1 km of groundwater intake locations increases shale gas-related contaminants by 1.5–2.7 percent, on average. These results are striking considering that our data are based on water sampling measurements taken after municipal treatment, and suggest that the health impacts of SGD 1 A CWS is defined as the subset of public water systems that supplies water to the same population year-round. through water contamination remains an open question.

  14. Drinking Water Quality in Hospitals and Other Buildings ...

    Science.gov (United States)

    Drinking water quality entering large buildings is generally adequately controlled by the water utility, but localized problems may occur within building or “premise” plumbing. Particular concerns are loss of disinfectant residual and temperature variability, which may enhance pathogen activity and metallic corrosion. Disinfection systems are available to building managers and are being installed in a variety of commercial buildings (hospitals, hotels, office buildings.) Yet our understanding of such additional treatment and of how to monitor end water quality at these buildings is limited. This class lecture will discuss challenges in maintaining acceptable water quality in hospitals, schools and other buildings. To give a lecture to a class of graduate students (ENVE 6054: Physical/Chemical Processes for Water Quality Control) at the University of Cincinnati, by presenting past research projects.

  15. Post-fire Water Quality Response and Associated Physical Drivers

    Science.gov (United States)

    Rust, A.; Saxe, S.; Hogue, T. S.; McCray, J. E.; Rhoades, C.

    2017-12-01

    The frequency and severity of forest fires is increasing across the western US. Wildfires are known to impact water quality in receiving waters; many of which are important sources of water supply. Studies on individual forest fires have shown an increase in total suspended solids, nutrient and metal concentrations and loading in receiving streams. The current research looks at a large number of fires across a broad region (Western United States) to identify typical water quality changes after fire and the physical characteristics that drive those responses. This presentation will overview recent development of an extensive database on post-fire water quality. Across 172 fires, we found that water quality changed significantly in one out of three fires up to five years after the event compared to pre-burn conditions. For basins with higher frequency data, it was evident that water quality changes were significant in the first three years following fire. In both the initial years following fire and five years after fire, concentrations and loading rates of dissolved nutrients such as nitrite, nitrate and orthophosphate and particulate forms of nutrients, total organic nitrogen, total nitrogen, total phosphate, and total phosphorus increase thirty percent of the time. Concentrations of some major dissolved ions and metals decrease, with increased post-fire flows, while total particulate concentrations increased; the flux of both dissolved and particulate forms increase in thirty percent of the fires over five years. Water quality change is not uniform across the studied watersheds. A second goal of this study is to identify physical characteristics of a watershed that drive water quality response. Specifically, we investigate the physical, geochemical, and climatological characteristics of watersheds that control the type, direction, and magnitude of water quality change. Initial results reveal vegetation recovery is a key driver in post-fire water quality response

  16. Comparative Assessment of Physical and Social Determinants of Water Quantity and Water Quality Concerns

    Science.gov (United States)

    Gunda, T.; Hornberger, G. M.

    2017-12-01

    Concerns over water resources have evolved over time, from physical availability to economic access and recently, to a more comprehensive study of "water security," which is inherently interdisciplinary because a secure water system is influenced by and affects both physical and social components. The concept of water security carries connotations of both an adequate supply of water as well as water that meets certain quality standards. Although the term "water security" has many interpretations in the literature, the research field has not yet developed a synthetic analysis of water security as both a quantity (availability) and quality (contamination) issue. Using qualitative comparative and multi-regression analyses, we evaluate the primary physical and social factors influencing U.S. states' water security from a quantity perspective and from a quality perspective. Water system characteristics are collated from academic and government sources and include access/use, governance, and sociodemographic, and ecosystem metrics. Our analysis indicates differences in variables driving availability and contamination concerns; for example, climate is a more significant determinant in water quantity-based security analyses than in water quality-based security analyses. We will also discuss coevolution of system traits and the merits of constructing a robust water security index based on the relative importance of metrics from our analyses. These insights will improve understanding of the complex interactions between quantity and quality aspects and thus, overall security of water systems.

  17. Aquatic macroinvertebrates and water quality in Sandia Canyon

    International Nuclear Information System (INIS)

    Bennett, K.

    1994-05-01

    In 1990, field studies of water quality and stream macroinvertebrate communities were initiated in Sandia Canyon at Los Alamos National Laboratory. The studies were designed to establish baseline data and to determine the effects of routine discharges of industrial and sanitary waste. Water quality measurements were taken and aquatic macroinvertebrates sampled at three permanent stations within the canyon. Two of the three sample stations are located where the stream regularly receives industrial and sanitary waste effluents. These stations exhibited a low diversity of macroinvertebrates and slightly degraded water quality. The last sample station, located approximately 0.4 km (0.25 mi) downstream from the nearest wastewater outfall, appears to be in a zone of recovery where water quality parameters more closely resemble those found in natural streams in the Los Alamos area. A large increase in macroinvertebrate diversity was also observed at the third station. These results indicate that effluents discharged into Sandia Canyon have a marked effect on water quality and aquatic macroinvertebrate communities

  18. Field methods and quality-assurance plan for water-quality activities and water-level measurements, U.S. Geological Survey, Idaho National Laboratory, Idaho

    Science.gov (United States)

    Bartholomay, Roy C.; Maimer, Neil V.; Wehnke, Amy J.

    2014-01-01

    Water-quality activities and water-level measurements by the personnel of the U.S. Geological Survey (USGS) Idaho National Laboratory (INL) Project Office coincide with the USGS mission of appraising the quantity and quality of the Nation’s water resources. The activities are carried out in cooperation with the U.S. Department of Energy (DOE) Idaho Operations Office. Results of the water-quality and hydraulic head investigations are presented in various USGS publications or in refereed scientific journals and the data are stored in the National Water Information System (NWIS) database. The results of the studies are used by researchers, regulatory and managerial agencies, and interested civic groups. In the broadest sense, quality assurance refers to doing the job right the first time. It includes the functions of planning for products, review and acceptance of the products, and an audit designed to evaluate the system that produces the products. Quality control and quality assurance differ in that quality control ensures that things are done correctly given the “state-of-the-art” technology, and quality assurance ensures that quality control is maintained within specified limits.

  19. Infectious Disinfection: "Exploring Global Water Quality"

    Science.gov (United States)

    Mahaya, Evans; Tippins, Deborah J.; Mueller, Michael P.; Thomson, Norman

    2009-01-01

    Learning about the water situation in other regions of the world and the devastating effects of floods on drinking water helps students study science while learning about global water quality. This article provides science activities focused on developing cultural awareness and understanding how local water resources are integrally linked to the…

  20. Cooling water conditioning and quality control for tokamaks

    International Nuclear Information System (INIS)

    Gootgeld, A.M.

    1995-01-01

    Designers and operators of Tokamaks and all associated water cooled, peripheral equipment, are faced with the task of providing and maintaining closed-loop, low conductivity, low impurity, cooling water systems. The primary reason for supplying low conductivity water to the DIII-D vacuum vessel coils, power supplies and auxiliary heating components is to assure, along with the use of a non-conducting break in the supply piping, sufficient electrical resistance and thus an acceptable current-leakage path to ground at operating voltage potentials. As important, good quality cooling water significantly reduces the likelihood of scaling and fouling of flow passages and heat transfer surfaces. Dissolved oxygen gas removal is also required in one major DIII-D cooling water system to minimize corrosion in the ion sources of the neutral beam injectors. Currently, the combined pumping capacity of the high quality cooling water systems at DIII-D is ∼5,000 gpm. Another area that receives close attention at DIII-D is the chemical treatment of the water used in the cooling towers. This paper discusses the DIII-D water quality requirements, the means used to obtain the necessary quality and the instrumentation used for control and monitoring. Costs to mechanically and chemically condition and maintain water quality are discussed as well as the various aspects of complying with government standards and regulations

  1. Water Quality Vocabulary Development and Deployment

    Science.gov (United States)

    Simons, B. A.; Yu, J.; Cox, S. J.

    2013-12-01

    Semantic descriptions of observed properties and associated units of measure are fundamental to understanding of environmental observations, including groundwater, surface water and marine water quality. Semantic descriptions can be captured in machine-readable ontologies and vocabularies, thus providing support for the annotation of observation values from the disparate data sources with appropriate and accurate metadata, which is critical for achieving semantic interoperability. However, current stand-alone water quality vocabularies provide limited support for cross-system comparisons or data fusion. To enhance semantic interoperability, the alignment of water-quality properties with definitions of chemical entities and units of measure in existing widely-used vocabularies is required. Modern ontologies and vocabularies are expressed, organized and deployed using Semantic Web technologies. We developed an ontology for observed properties (i.e. a model for expressing appropriate controlled vocabularies) which extends the NASA/TopQuadrant QUDT ontology for Unit and QuantityKind with two additional classes and two properties (see accompanying paper by Cox, Simons and Yu). We use our ontology to populate the Water Quality vocabulary with a set of individuals of each of the four key classes (and their subclasses), and add appropriate relationships between these individuals. This ontology is aligned with other relevant stand-alone Water Quality vocabularies and domain ontologies. Developing the Water Quality vocabulary involved two main steps. First, the Water Quality vocabulary was populated with individuals of the ObservedProperty class, which was determined from a census of existing datasets and services. Each ObservedProperty individual relates to other individuals of Unit and QuantityKind (taken from QUDT where possible), and to IdentifiedObject individuals. As a large fraction of observed water quality data are classified by the chemical substance involved, the

  2. Monitoring drinking water quality in South Africa: Designing ...

    African Journals Online (AJOL)

    In South Africa, the management and monitoring of drinking water quality is governed by policies and regulations based on international standards. Water Service Authorities, which are either municipalities or district municipalities, are required to submit information regarding water quality and the management thereof ...

  3. Progress and lessons learned from water-quality monitoring networks

    Science.gov (United States)

    Myers, Donna N.; Ludtke, Amy S.

    2017-01-01

    Stream-quality monitoring networks in the United States were initiated and expanded after passage of successive federal water-pollution control laws from 1948 to 1972. The first networks addressed information gaps on the extent and severity of stream pollution and served as early warning systems for spills. From 1965 to 1972, monitoring networks expanded to evaluate compliance with stream standards, track emerging issues, and assess water-quality status and trends. After 1972, concerns arose regarding the ability of monitoring networks to determine if water quality was getting better or worse and why. As a result, monitoring networks adopted a hydrologic systems approach targeted to key water-quality issues, accounted for human and natural factors affecting water quality, innovated new statistical methods, and introduced geographic information systems and models that predict water quality at unmeasured locations. Despite improvements, national-scale monitoring networks have declined over time. Only about 1%, or 217, of more than 36,000 US Geological Survey monitoring sites sampled from 1975 to 2014 have been operated throughout the four decades since passage of the 1972 Clean Water Act. Efforts to sustain monitoring networks are important because these networks have collected information crucial to the description of water-quality trends over time and are providing information against which to evaluate future trends.

  4. Water quality in New Zealand's planted forests: A review

    Science.gov (United States)

    Brenda R. Baillie; Daniel G. Neary

    2015-01-01

    This paper reviewed the key physical, chemical and biological water quality attributes of surface waters in New Zealand’s planted forests. The purpose was to: a) assess the changes in water quality throughout the planted forestry cycle from afforestation through to harvesting; b) compare water quality from planted forests with other land uses in New Zealand; and c)...

  5. Water resources data for Virginia, water year 1991. Volume 2. Ground-water-level and ground-water-quality records. Water-data report (Annual), 1 October 1991-30 September 1992

    International Nuclear Information System (INIS)

    Prugh, B.J.; Powell, E.D.

    1993-01-01

    Water-resources data for the 1992 water year for Virginia consist of records of water levels and water quality of ground-water wells. The report (Volume 2. Ground-Water-Level and Ground-Water-Quality Records) contains water levels at 356 observation wells and water quality at 2 wells. Locations of these wells are given in the report

  6. Drinking Water Program 1992 annual report

    International Nuclear Information System (INIS)

    Andersen, B.D.; Peterson-Wright, L.J.

    1993-08-01

    EG ampersand G Idaho, Inc., initiated a monitoring program for drinking water in 1988 for the US Department of Energy at the Idaho National Engineering Laboratory. EG ampersand G Idaho structured this monitoring program to ensure that they exceeded the minimum regulatory requirements for monitoring drinking water. This program involves tracking the bacteriological, chemical, and radiological parameters that are required for a open-quotes community water systemclose quotes (maximum requirements). This annual report describes the drinking water monitoring activities conducted at the 17 EG ampersand G Idaho operated production wells and 11 distribution systems. It also contains all of the drinking water parameters that were detected and the regulatory limits that were exceeded during 1992. In addition, ground water quality is discussed as it relates to contaminants identified at the wellhead for EG ampersand G Idaho production wells

  7. Water quality and bathymetry of Sand Lake, Anchorage, Alaska

    Science.gov (United States)

    Donaldson, Donald E.

    1976-01-01

    Sand Lake, a dimictic lowland lake in Anchorage, Alaska, has recently become as urban lake. Analyses indicate that the lake is oligotrophic, having low dissolved solids and nutrient concentrations. Snowmelt runoff from an adjacent residential area, however, has a dissolved-solids concentration 10 times that of the main body of Sand Lake. Lead concentrations in the runoff exceed known values from other water in the ANchorage area, including water samples taken beneath landfills. The volume of the snowmelt runoff has not been measured. The data presented can be used as a baseline for water-resource management. (Woodard-USGS)

  8. Landsat Thematic Mapper monitoring of turbid inland water quality

    Science.gov (United States)

    Lathrop, Richard G., Jr.

    1992-01-01

    This study reports on an investigation of water quality calibration algorithms under turbid inland water conditions using Landsat Thematic Mapper (TM) multispectral digital data. TM data and water quality observations (total suspended solids and Secchi disk depth) were obtained near-simultaneously and related using linear regression techniques. The relationships between reflectance and water quality for Green Bay and Lake Michigan were compared with results for Yellowstone and Jackson Lakes, Wyoming. Results show similarities in the water quality-reflectance relationships, however, the algorithms derived for Green Bay - Lake Michigan cannot be extrapolated to Yellowstone and Jackson Lake conditions.

  9. 40 CFR 131.22 - EPA promulgation of water quality standards.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false EPA promulgation of water quality... PROGRAMS WATER QUALITY STANDARDS Procedures for Review and Revision of Water Quality Standards § 131.22 EPA promulgation of water quality standards. (a) If the State does not adopt the changes specified by the Regional...

  10. A Two-Year Water Quality Monitoring Curriculum.

    Science.gov (United States)

    Glazer, Richard B.; And Others

    The Environmental Protection Agency developed this curriculum to train technicians to monitor water quality. Graduates of the program should be able to monitor municipal, industrial, and commercial discharges; test drinking water for purity; and determine quality of aquatic environments. The program includes algebra, communication skills, biology,…

  11. Age and quality of ground water and sources of nitrogen in the aquifers in Pumpkin Creek Valley, western Nebraska, 2000

    Science.gov (United States)

    Steele, G.V.; Cannia, J.C.; Sibray, S.S.; McGuire, V.L.

    2005-01-01

    Ground water is the source of drinking water for the residents of Pumpkin Creek Valley, western Nebraska. In this largely agricultural area, shallow aquifers potentially are susceptible to nitrate contamination. During the last 10 years, ground-water levels in the North Platte Natural Resources District have declined and contamination has become a major problem for the district. In 2000, the U.S. Geological Survey and the North Platte Natural Resources District began a cooperative study to determine the age and quality of the ground water and the sources of nitrogen in the aquifers in Pumpkin Creek Valley. Water samples were collected from 8 surface-water sites, 2 springs, and 88 ground-water sites during May, July, and August 2000. These samples were analyzed for physical properties, nutrients or nitrate, and hydrogen and oxygen isotopes. In addition, a subset of samples was analyzed for any combination of chlorofluorocarbons, tritium, tritium/helium, sulfur-hexafluoride, carbon-14, and nitrogen-15. The apparent age of ground water in the alluvial aquifer typically varied from about 1980 to modern, whereas ground water in the fractured Brule Formation had a median value in the 1970s. The Brule Formation typically contained ground water that ranged from the 1940s to the 1990s, but low-yield wells had apparent ages of 5,000 to 10,000 years before present. Data for oxygen-18 and deuterium indicated that lake-water samples showed the greatest effects from evaporation. Ground-water data showed no substantial evaporative effects and some ground water became isotopically heavier as the water moved downgradient. In addition, the physical and chemical ground-water data indicate that Pumpkin Creek is a gaining stream because little, if any, of its water is lost to the ground-water system. The water-quality type changed from a sodium calcium bicarbonate type near Pumpkin Creek's headwaters to a calcium sodium bicarbonate type near its mouth. Nitrate concentrations were

  12. Global modelling of river water quality under climate change

    Science.gov (United States)

    van Vliet, Michelle T. H.; Franssen, Wietse H. P.; Yearsley, John R.

    2017-04-01

    Climate change will pose challenges on the quality of freshwater resources for human use and ecosystems for instance by changing the dilution capacity and by affecting the rate of chemical processes in rivers. Here we assess the impacts of climate change and induced streamflow changes on a selection of water quality parameters for river basins globally. We used the Variable Infiltration Capacity (VIC) model and a newly developed global water quality module for salinity, temperature, dissolved oxygen and biochemical oxygen demand. The modelling framework was validated using observed records of streamflow, water temperature, chloride, electrical conductivity, dissolved oxygen and biochemical oxygen demand for 1981-2010. VIC and the water quality module were then forced with an ensemble of bias-corrected General Circulation Model (GCM) output for the representative concentration pathways RCP2.6 and RCP8.5 to study water quality trends and identify critical regions (hotspots) of water quality deterioration for the 21st century.

  13. Waste Water Treatment And Data Book Of Method Of Water Quality Analysis

    International Nuclear Information System (INIS)

    1999-03-01

    This book indicates the method of water quality analysis and waste water treatment with collecting water quality data of advanced country and WHO, which introduces poisonous substance in industrial waste water such as heavy metal, ammonia, chlorine ion, PCB, chloroform, residual chlorine and manganese, reports about influence of those materials on human health, lists on method of analysis the poisonous substance, research way like working order and precautions on treatment and method of chemical process and use.

  14. Linking Spatial Variations in Water Quality with Water and Land Management using Multivariate Techniques.

    Science.gov (United States)

    Wan, Yongshan; Qian, Yun; Migliaccio, Kati White; Li, Yuncong; Conrad, Cecilia

    2014-03-01

    Most studies using multivariate techniques for pollution source evaluation are conducted in free-flowing rivers with distinct point and nonpoint sources. This study expanded on previous research to a managed "canal" system discharging into the Indian River Lagoon, Florida, where water and land management is the single most important anthropogenic factor influencing water quality. Hydrometric and land use data of four drainage basins were uniquely integrated into the analysis of 25 yr of monthly water quality data collected at seven stations to determine the impact of water and land management on the spatial variability of water quality. Cluster analysis (CA) classified seven monitoring stations into four groups (CA groups). All water quality parameters identified by discriminant analysis showed distinct spatial patterns among the four CA groups. Two-step principal component analysis/factor analysis (PCA/FA) was conducted with (i) water quality data alone and (ii) water quality data in conjunction with rainfall, flow, and land use data. The results indicated that PCA/FA of water quality data alone was unable to identify factors associated with management activities. The addition of hydrometric and land use data into PCA/FA revealed close associations of nutrients and color with land management and storm-water retention in pasture and citrus lands; total suspended solids, turbidity, and NO + NO with flow and Lake Okeechobee releases; specific conductivity with supplemental irrigation supply; and dissolved O with wetland preservation. The practical implication emphasizes the importance of basin-specific land and water management for ongoing pollutant loading reduction and ecosystem restoration programs. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. Groundwater quality data from the National Water-Quality Assessment Project, May 2012 through December 2013

    Science.gov (United States)

    Arnold, Terri L.; Desimone, Leslie A.; Bexfield, Laura M.; Lindsey, Bruce D.; Barlow, Jeannie R.; Kulongoski, Justin T.; Musgrove, MaryLynn; Kingsbury, James A.; Belitz, Kenneth

    2016-06-20

    Groundwater-quality data were collected from 748 wells as part of the National Water-Quality Assessment Project of the U.S. Geological Survey National Water-Quality Program from May 2012 through December 2013. The data were collected from four types of well networks: principal aquifer study networks, which assess the quality of groundwater used for public water supply; land-use study networks, which assess land-use effects on shallow groundwater quality; major aquifer study networks, which assess the quality of groundwater used for domestic supply; and enhanced trends networks, which evaluate the time scales during which groundwater quality changes. Groundwater samples were analyzed for a large number of water-quality indicators and constituents, including major ions, nutrients, trace elements, volatile organic compounds, pesticides, and radionuclides. These groundwater quality data are tabulated in this report. Quality-control samples also were collected; data from blank and replicate quality-control samples are included in this report.

  16. Modelling a water purification process for quality monitoring

    NARCIS (Netherlands)

    Meulen, van der F.H.; Luca, S.; Overal, G.; Dubbeldam, J.L.A.; Di Bucchianico, A.; Jongbloed, G.; Dubbeldam, J.; Groenevelt, W.; Heemink, A.W.; Lahaye, D.; Meerman, C.; Meulen, van der F.

    2014-01-01

    This paper deals with a quality engineering problem introduced by ‘Waterlaboratorium Noord’ (WLN) situated at the Netherlands. In-terest lies in determining an optimal sampling frequency that provides suÿcient information on the water quality in a drinking water purifica-tion plant. The water

  17. Applying a water quality index model to assess the water quality of the major rivers in the Kathmandu Valley, Nepal.

    Science.gov (United States)

    Regmi, Ram Krishna; Mishra, Binaya Kumar; Masago, Yoshifumi; Luo, Pingping; Toyozumi-Kojima, Asako; Jalilov, Shokhrukh-Mirzo

    2017-08-01

    Human activities during recent decades have led to increased degradation of the river water environment in South Asia. This degradation has led to concerns for the populations of the major cities of Nepal, including those of the Kathmandu Valley. The deterioration of the rivers in the valley is directly linked to the prevalence of poor sanitary conditions, as well as the presence of industries that discharge their effluents into the river. This study aims to investigate the water quality aspect for the aquatic ecosystems and recreation of the major rivers in the Kathmandu Valley using the Canadian Council of Ministers of the Environment water quality index (CCME WQI). Ten physicochemical parameters were used to determine the CCME WQI at 20 different sampling locations. Analysis of the data indicated that the water quality in rural areas ranges from excellent to good, whereas in denser settlements and core urban areas, the water quality is poor. The study results are expected to provide policy-makers with valuable information related to the use of river water by local people in the study area.

  18. Comparison of 2006-2007 Water Years and Historical Water-Quality Data, Upper Gunnison River Basin, Colorado

    Science.gov (United States)

    Solberg, P.A.; Moore, Bryan; Smits, Dennis

    2009-01-01

    Population growth and changes in land use have the potential to affect water quality and quantity in the upper Gunnison River basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Hinsdale County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, Upper Gunnison River Water Conservancy District, and Western State College established a water-quality monitoring program in the upper Gunnison River basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations - stations that are considered long term and stations that are considered rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions may change over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short-term concerns. Some stations in the rotational group were changed beginning in water year 2007. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality monitoring in the upper Gunnison River basin. This summary includes data collected during water years 2006 and 2007. The introduction provides a map of the sampling sites, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water years 2006 and 2007 are compared to historical data, State water-quality standards, and Federal water-quality guidelines. Data were

  19. Phase I of the Kissimmee River restoration project, Florida, USA: impacts of construction on water quality.

    Science.gov (United States)

    Colangelo, David J; Jones, Bradley L

    2005-03-01

    Phase I of the Kissimmee River restoration project included backfilling of 12 km of canal and restoring flow through 24 km of continuous river channel. We quantified the effects of construction activities on four water quality parameters (turbidity, total phosphorus flow-weighted concentration, total phosphorus load and dissolved oxygen concentration). Data were collected at stations upstream and downstream of the construction and at four stations within the construction zone to determine if canal backfilling and construction of 2.4 km of new river channel would negatively impact local and downstream water quality. Turbidity levels at the downstream station were elevated for approximately 2 weeks during the one and a half year construction period, but never exceeded the Florida Department of Environmental Protection construction permit criteria. Turbidity levels at stations within the construction zone were high at certain times. Flow-weighted concentration of total phosphorus at the downstream station was slightly higher than the upstream station during construction, but low discharge limited downstream transport of phosphorus. Total phosphorus loads at the upstream and downstream stations were similar and loading to Lake Okeechobee was not significantly affected by construction. Mean water column dissolved oxygen concentrations at all sampling stations were similar during construction.

  20. Physico-chemical and Bacteriological Quality of Water from Shallow Wells in Two Rural Communities in Benue State, Nigeria

    Directory of Open Access Journals (Sweden)

    Akaahan, Terngu J.

    2010-06-01

    Full Text Available Ground water abstraction from shallow wells is widely practiced in the Obi and in Oju rural areas of Benue State, Central Nigeria, as a means of fighting guinea worm infestation associated with the surface water sources (streams in these areas. To ascertain the physico-chemical and bacteriological quality of the water used by the population, water samples from 27 shallow wells in Obi and 19 Oju were taken and examined for key health-related quality parameters using routine methods. In Obi, the ground water colour ranged from 4.0-80.0 TCU, conductivity 55.2-1600.0 µS/cm, pH 6.1-8.6, TDS 38.6-1286 mg/L, turbidity 1.0-55.0 NTU, arsenic 0.001-0.210mg/L, copper 0.01-2.53mg/L, fluoride 0.08-1.82mg/L and nitrate 10.8-63.0mg/L, while in Oju, colour varied from 2.0-87.0 TCU, conductivity 107.4-1375 µS/cm, pH 6.4-8.53, TDS 75.2-1150 mg/L, turbidity 3.0-48.0 NTU, arsenic 0.001-0.023 mg/L, copper 0.01-2.10 mg/L, fluoride 0.01-1.54 mg/L and nitrate 10.2-59.7 mg/L. Some of these values in some instances exceed the WHO standard for drinking water. Alongside with the presence significant total coliform count in most of the wells (0-47/100 mL in Oju and 0-53/100 mL in Obi, the available water is considered largely unsafe for human consumption as obtained. It is concluded that, while ground water abstraction may be a safety measure against guinea worm infestation it, nevertheless presents other health challenges to the rural population in the area, as the quality of the ground water is generally low.

  1. Groundwater quality in the Genesee River Basin, New York, 2010

    Science.gov (United States)

    Reddy, James E.

    2012-01-01

    Water samples collected from eight production wells and eight private residential wells in the Genesee River Basin from September through December 2010 were analyzed to characterize the groundwater quality in the basin. Eight of the wells were completed in sand and gravel aquifers, and eight were finished in bedrock aquifers. Three of the 16 wells were sampled in the first Genesee River Basin study during 2005-2006. Water samples from the 2010 study were analyzed for 147 physiochemical properties and constituents that included major ions, nutrients, trace elements, radionuclides, pesticides, volatile organic compounds (VOCs), and indicator bacteria. Results of the water-quality analyses are presented in tabular form for individual wells, and summary statistics for specific constituents are presented by aquifer type. The results are compared with Federal and New York State drinking-water standards, which typically are identical. The results indicate that groundwater generally is of acceptable quality, although concentrations of the following constituents exceeded current or proposed Federal or New York State drinking-water standards at each of the 16 wells sampled: color (one sample), sodium (three samples), sulfate (three samples), total dissolved solids (four samples), aluminum (one sample), arsenic (two samples), copper (one sample), iron (nine samples), manganese (eight samples), radon-222 (nine samples), and total coliform bacteria (six samples). Existing drinking-water standards for pH, chloride, fluoride, nitrate, nitrite, antimony, barium, beryllium, cadmium, chromium, lead, mercury, selenium, silver, thallium, zinc, gross alpha radioactivity, uranium, fecal coliform, Escherichia coli, and heterotrophic bacteria were not exceeded in any of the samples collected. None of the pesticides and VOCs analyzed exceeded existing drinking-water standards.

  2. The quality of drinking water in Poland

    Directory of Open Access Journals (Sweden)

    L. Kłos

    2015-05-01

    Full Text Available Introduction. An analysis of the drinking water quality and the degree of access to water supply and sewerage s