Sample records for examining chemical fate

  1. Molecular Properties and Fate of Organic Chemicals (United States)


    Chemosphere 1988, 17, 2207-2218. (26) Fendler, J.H.; Gasowski, G.L. J. Ora. Chem. 1968, 33, 1965-??? (27) Fessenden , R.J.; Fessenden , J.S. Organic Chemistry ...CAHs. MOLECULAR PROPERTIES AND FATE OF ORGANIC CHEMICALS ANDERS W. ANDREN DAVID E. ARMSTRONG DAVID L. SEDLAK WATER CHEMISTRY PROGRAM UNIVERSITY OF...C. L.; Helman. W. P.: Ross, A. 96,5274-5275. B. J. Ph vs. Chem. Ref. Data 1988. 17, 513-886. (22) Fessenden . R. J.; Fessenden . J. S. Organic Chemist

  2. Fate modelling of chemical compounds with incomplete data sets

    DEFF Research Database (Denmark)

    Birkved, Morten; Heijungs, Reinout


    Impact assessment of chemical compounds in Life Cycle Impact Assessment (LCIA) and Environmental Risk Assessment (ERA) requires a vast amount of data on the properties of the chemical compounds being assessed. These data are used in multi-media fate and exposure models, to calculate risk levels...... in an approximate way. The idea is that not all data needed in a multi-media fate and exposure model are completely independent and equally important, but that there are physical-chemical and biological relationships between sets of chemical properties. A statistical model is constructed to underpin this assumption...... and other indicators. ERA typically addresses one specific chemical, but in an LCIA, the number of chemicals encountered may be quite high, up to hundreds or thousands. This study explores the development of meta-models, which are supposed to reflect the “true”multi-media fate and exposure model...

  3. TSCA Work Plan Chemical Technical Supplement – Physicochemical Properties and Environmental Fate of the Brominated Phthalates Cluster (BPC) Chemicals (United States)

    TSCA Work Plan Chemical Technical Supplement – Physicochemical Properties and Environmental Fate of the Brominated Phthalates Cluster (BPC) Chemicals -- Brominated Phthalates Cluster Flame Retardants.

  4. Fate of chemical warfare agents and toxic indutrial chemicals in landfills

    DEFF Research Database (Denmark)

    Bartelt-Hunt, D.L.; Barlaz, M.A.; Knappe, D.R.U.


    One component of preparedness for a chemical attack is planning for the disposal of contaminated debris. To assess the feasibility of contaminated debris disposal in municipal solid waste (MSW) landfills, the fate of selected chemical warfare agents (CWAs) and toxic industrial chemicals (TICs......], and two TICs [furan and carbon disulfide] were studied. The effects of both infiltration (climate) and contaminant biodegradability on fate predictions were assessed. Model results showed that hydrolysis and gas-phase advection were the principal fate pathways for CWAs and TICs, respectively. Apart from...... CX and the TICs, none of the investigated compounds was predicted to persist in a landfill for more than 5 years. Climate had little impact on CWA/TIC fate, and biodegradability was only important for compounds with long hydrolysis halflives. Monte Carlo simulations were performed to assess...

  5. Fates of Chemical Elements in Biomass during Its Pyrolysis. (United States)

    Liu, Wu-Jun; Li, Wen-Wei; Jiang, Hong; Yu, Han-Qing


    Biomass is increasingly perceived as a renewable resource rather than as an organic solid waste today, as it can be converted to various chemicals, biofuels, and solid biochar using modern processes. In the past few years, pyrolysis has attracted growing interest as a promising versatile platform to convert biomass into valuable resources. However, an efficient and selective conversion process is still difficult to be realized due to the complex nature of biomass, which usually makes the products complicated. Furthermore, various contaminants and inorganic elements (e.g., heavy metals, nitrogen, phosphorus, sulfur, and chlorine) embodied in biomass may be transferred into pyrolysis products or released into the environment, arousing environmental pollution concerns. Understanding their behaviors in biomass pyrolysis is essential to optimizing the pyrolysis process for efficient resource recovery and less environmental pollution. However, there is no comprehensive review so far about the fates of chemical elements in biomass during its pyrolysis. Here, we provide a critical review about the fates of main chemical elements (C, H, O, N, P, Cl, S, and metals) in biomass during its pyrolysis. We overview the research advances about the emission, transformation, and distribution of elements in biomass pyrolysis, discuss the present challenges for resource-oriented conversion and pollution abatement, highlight the importance and significance of understanding the fate of elements during pyrolysis, and outlook the future development directions for process control. The review provides useful information for developing sustainable biomass pyrolysis processes with an improved efficiency and selectivity as well as minimized environmental impacts, and encourages more research efforts from the scientific communities of chemistry, the environment, and energy.

  6. Hazardous substances data bank (HSDB) as a source of environmental fate information on chemicals. (United States)

    Fonger, G C


    The Hazardous Substances Data Bank (HSDB), a factual data bank on the National Library of Medicine's (NLM) TOXNET (Toxicology Data Network) online system, provides information in areas such as chemical substance identification, chemical and physical properties, safety and handling, toxicology, pharmacology, environmental fate and transformation, regulations, and analytical methodology. This article discusses how environmental fate data is handled in HSDB.

  7. Automated workflows for modelling chemical fate, kinetics and toxicity. (United States)

    Sala Benito, J V; Paini, Alicia; Richarz, Andrea-Nicole; Meinl, Thorsten; Berthold, Michael R; Cronin, Mark T D; Worth, Andrew P


    Automation is universal in today's society, from operating equipment such as machinery, in factory processes, to self-parking automobile systems. While these examples show the efficiency and effectiveness of automated mechanical processes, automated procedures that support the chemical risk assessment process are still in their infancy. Future human safety assessments will rely increasingly on the use of automated models, such as physiologically based kinetic (PBK) and dynamic models and the virtual cell based assay (VCBA). These biologically-based models will be coupled with chemistry-based prediction models that also automate the generation of key input parameters such as physicochemical properties. The development of automated software tools is an important step in harmonising and expediting the chemical safety assessment process. In this study, we illustrate how the KNIME Analytics Platform can be used to provide a user-friendly graphical interface for these biokinetic models, such as PBK models and VCBA, which simulates the fate of chemicals in vivo within the body and in vitro test systems respectively. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Two-Dimensional Subsurface Flow, Fate and Transport of Microbes and Chemicals (2DFATMIC) Model (United States)

    This model simulates subsurface flow, fate, and transport of contaminants that are undergoing chemical or biological transformations. This model is applicable to transient conditions in both saturated and unsaturated zones.

  9. Fate and Transport of Chemical Warfare Agents VX and HD ... (United States)

    Report The intent of this investigation was to study the fate and transport of CWA applied to painted/sealed materials including the potential partitioning of CWA into permeable paints/sealants and subsequently into underlying porous materials. Based on the results obtained from this investigation, VX and sulfur mustard (HD) have the ability to permeate into paints and sealants, including in some cases the underlying porous materials. It is likely that other permeable materials besides paints and sealants may also show similar behavior.

  10. Polychlorinated Biphenyls in a Temperate Alpine Glacier: 2. Model Results of Chemical Fate Processes. (United States)

    Steinlin, Christine; Bogdal, Christian; Pavlova, Pavlina A; Schwikowski, Margit; Lüthi, Martin P; Scheringer, Martin; Schmid, Peter; Hungerbühler, Konrad


    We present results from a chemical fate model quantifying incorporation of polychlorinated biphenyls (PCBs) into the Silvretta glacier, a temperate Alpine glacier located in Switzerland. Temperate glaciers, in contrast to cold glaciers, are glaciers where melt processes are prevalent. Incorporation of PCBs into cold glaciers has been quantified in previous studies. However, the fate of PCBs in temperate glaciers has never been investigated. In the model, we include melt processes, inducing elution of water-soluble substances and, conversely, enrichment of particles and particle-bound chemicals. The model is validated by comparing modeled and measured PCB concentrations in an ice core collected in the Silvretta accumulation area. We quantify PCB incorporation between 1900 and 2010, and discuss the fate of six PCB congeners. PCB concentrations in the ice core peak in the period of high PCB emissions, as well as in years with strong melt. While for lower-chlorinated PCB congeners revolatilization is important, for higher-chlorinated congeners, the main processes are storage in glacier ice and removal by particle runoff. This study gives insight into PCB fate and dynamics and reveals the effect of snow accumulation and melt processes on the fate of semivolatile organic chemicals in a temperate Alpine glacier.

  11. Modelling the Fate of Ionizable Trace Organic Chemicals from Consumption to Food Crops

    DEFF Research Database (Denmark)

    Polesel, Fabio; Plósz, Benedek G.; Trapp, Stefan

    In this study, we developed and applied a simulation tool to comprehensively predict the fate of three ionizable trace chemicals (triclosan—TCS, furosemide—FUR, ciprofloxacin—CIP) from human consumption/excretion up to the accumulation in wheat, following application of sewage sludge or irrigatio...

  12. Distribution and chemical fate of chlorine dioxide gas during sanitation of tomatoes and cantaloupe (United States)

    A series of studies was conducted to establish the 1) distribution and chemical fate of 36-ClO2 on tomatoes and cantaloupe; and 2) the magnitude of residues in kilogram quantities of tomatoes and cantaloupe sanitized with a slow-release chlorine dioxide formulation. Tomatoes and cantaloupe were resp...

  13. Transport and Fate of Volatile Organic Chemical in Soils

    DEFF Research Database (Denmark)

    Petersen, Lis Wollesen

    Recently much attention has been paid to the behavior of volatile organic chemicals (VOCs) in the environment. This is due to the fact that the environmental pollution with these hazardous chemicals has drastically increased during the last decades. The present study is limited to consider...

  14. Competence for Chemical Reprogramming of Sexual Fate Correlates with an Intersexual Molecular Signature in Caenorhabditis elegans (United States)

    Sorokin, Elena P.; Gasch, Audrey P.; Kimble, Judith


    In multicellular organisms, genetic programs guide cells to adopt cell fates as tissues are formed during development, maintained in adults, and repaired after injury. Here we explore how a small molecule in the environment can switch a genetic program from one fate to another. Wild-type Caenorhabditis elegans XX adult hermaphrodites make oocytes continuously, but certain mutant XX adults make sperm instead in an otherwise hermaphrodite soma. Thus, puf-8; lip-1 XX adults make only sperm, but they can be switched from sperm to oocyte production by treatment with a small-molecule MEK inhibitor. To ask whether this chemical reprogramming is common, we tested six XX sperm-only mutants, but found only one other capable of cell fate switching, fbf-1; lip-1. Therefore, reprogramming competence relies on genotype, with only certain mutants capable of responding to the MEK inhibitor with a cell fate change. To gain insight into the molecular basis of competence for chemical reprogramming, we compared polyadenylated transcriptomes of competent and noncompetent XX sperm-only mutants in the absence of the MEK inhibitor and hence in the absence of cell fate reprogramming. Despite their cellular production of sperm, competent mutants were enriched for oogenic messenger RNAs relative to mutants lacking competence for chemical reprogramming. In addition, competent mutants expressed the oocyte-specific protein RME-2, whereas those lacking competence did not. Therefore, mutants competent for reprogramming possess an intersexual molecular profile at both RNA and protein levels. We suggest that this intersexual molecular signature is diagnostic of an intermediate network state that poises the germline tissue for changing its cellular fate in response to environmental cues. PMID:25146970

  15. Fate Model for Organic Chemicals in Sewage Treatment Plants

    DEFF Research Database (Denmark)

    Mikkelsen, J.

    Miljøprojekt, 308; I tilknytning til hovedrapporten Environmental Exposure Assessment of Chemicals (Miljøprojekt, 306) er udgivet i alt 5 tekniske bilagsrapporter, alle i serien Miljøprojekt.......Miljøprojekt, 308; I tilknytning til hovedrapporten Environmental Exposure Assessment of Chemicals (Miljøprojekt, 306) er udgivet i alt 5 tekniske bilagsrapporter, alle i serien Miljøprojekt....

  16. The Chemical Aquatic Fate and Effects database (CAFE), a tool that supports assessments of chemical spills in aquatic environments. (United States)

    Bejarano, Adriana C; Farr, James K; Jenne, Polly; Chu, Valerie; Hielscher, Al


    The Chemical Aquatic Fate and Effects (CAFE) database is a centralized repository that allows for rapid and unrestricted access to data. Information in CAFE is integrated into a user-friendly tool with modules containing fate and effects data for 32 377 and 4498 chemicals, respectively. Toxicity data are summarized in the form of species sensitivity distributions (SSDs) with associated 1st and 5th percentile hazard concentrations (HCs). An assessment of data availability relative to reported chemical incidents showed that CAFE had fate and toxicity data for 32 and 20 chemicals, respectively, of 55 chemicals reported in the US National Response Center database (2000-2014), and fate and toxicity data for 86 and 103, respectively, of 205 chemicals reported by the National Oceanic and Atmospheric Administration (2003-2014). Modeled environmental concentrations of 2 hypothetical spills (acrylonitrile, 625 barrels; and denatured ethanol, 857 barrels) were used to demonstrate CAFE's practical application. Most species in the 24-h SSD could be potentially impacted by acrylonitrile and denatured ethanol during the first 35 min and 15 h post spill, respectively, with concentrations falling below their HC5s (17 mg/L and 2676 mg/L) at 45 min and 60 h post spill, respectively. Comparisons of CAFE-based versus published HC5 values for 100 chemicals showed that nearly half of values were within a 2-fold difference, with a relatively small number of comparisons exceeding a 10-fold difference. The development of CAFE facilitates access to relevant environmental information, with potential uses likely expanding beyond those related to assessment of spills in aquatic environments. Environ Toxicol Chem 2016;35:1576-1586. © 2015 SETAC. © 2015 SETAC.

  17. The effect of the indoor environment on the fate of organic chemicals in the urban landscape. (United States)

    Cousins, Anna Palm


    To assess the effect of the indoor environment on the urban fate of organic chemicals, an 8-compartment indoor-inclusive steady state multimedia chemical fate model was developed. The model includes typical urban compartments (air, soil, water, sediment, and urban film) and a novel module representing a generic indoor environment. The model was parameterized to the municipality of Stockholm, Sweden and applied to four organic chemicals with different physical-chemical characteristics and use patterns: formaldehyde, 2,4,6-tribromophenol, di-ethylhexylphthalate and decabromodiphenyl ether. The results show that emissions to indoor air may increase the steady state mass and residence time in the urban environment by a factor of 1.1 to 22 for the four chemicals, compared to if emissions are assigned to outdoor air. This is due to the nested nature of the indoor environment, which creates a physical barrier that prevents chemicals from leaving the urban system with outflowing air. For DEHP and BDE 209, the additional partitioning to indoor surfaces results in a greater importance of the indoor removal pathways from surfaces. The outdoor environmental concentrations of these chemicals are predicted to be lower if emitted to indoor air than if emitted to outdoor air because of the additional indoor removal pathways of dust and indoor film, leading to loss of chemical from the system. For formaldehyde and 2,4,6-TBP outdoor environmental concentrations are not affected by whether the release occurs indoors or outdoors because of the limited partitioning to indoor surfaces. A sensitivity analysis revealed that there appears to be a relationship between logK(OA) and the impact of the ventilation rate on the urban fate of organic chemicals. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Environmental fate and transport of chemical signatures from buried landmines -- Screening model formulation and initial simulations

    Energy Technology Data Exchange (ETDEWEB)

    Phelan, J.M.; Webb, S.W.


    The fate and transport of chemical signature molecules that emanate from buried landmines is strongly influenced by physical chemical properties and by environmental conditions of the specific chemical compounds. Published data have been evaluated as the input parameters that are used in the simulation of the fate and transport processes. A one-dimensional model developed for screening agricultural pesticides was modified and used to simulate the appearance of a surface flux above a buried landmine, estimate the subsurface total concentration, and show the phase specific concentrations at the ground surface. The physical chemical properties of TNT cause a majority of the mass released to the soil system to be bound to the solid phase soil particles. The majority of the transport occurs in the liquid phase with diffusion and evaporation driven advection of soil water as the primary mechanisms for the flux to the ground surface. The simulations provided herein should only be used for initial conceptual designs of chemical pre-concentration subsystems or complete detection systems. The physical processes modeled required necessary simplifying assumptions to allow for analytical solutions. Emerging numerical simulation tools will soon be available that should provide more realistic estimates that can be used to predict the success of landmine chemical detection surveys based on knowledge of the chemical and soil properties, and environmental conditions where the mines are buried. Additional measurements of the chemical properties in soils are also needed before a fully predictive approach can be confidently applied.

  19. The effect of the indoor environment on the fate of organic chemicals in the urban landscape

    Energy Technology Data Exchange (ETDEWEB)

    Cousins, Anna Palm, E-mail:


    To assess the effect of the indoor environment on the urban fate of organic chemicals, an 8-compartment indoor-inclusive steady state multimedia chemical fate model was developed. The model includes typical urban compartments (air, soil, water, sediment, and urban film) and a novel module representing a generic indoor environment. The model was parameterized to the municipality of Stockholm, Sweden and applied to four organic chemicals with different physical-chemical characteristics and use patterns: formaldehyde, 2,4,6-tribromophenol, di-ethylhexylphthalate and decabromodiphenyl ether. The results show that emissions to indoor air may increase the steady state mass and residence time in the urban environment by a factor of 1.1 to 22 for the four chemicals, compared to if emissions are assigned to outdoor air. This is due to the nested nature of the indoor environment, which creates a physical barrier that prevents chemicals from leaving the urban system with outflowing air. For DEHP and BDE 209, the additional partitioning to indoor surfaces results in a greater importance of the indoor removal pathways from surfaces. The outdoor environmental concentrations of these chemicals are predicted to be lower if emitted to indoor air than if emitted to outdoor air because of the additional indoor removal pathways of dust and indoor film, leading to loss of chemical from the system. For formaldehyde and 2,4,6-TBP outdoor environmental concentrations are not affected by whether the release occurs indoors or outdoors because of the limited partitioning to indoor surfaces. A sensitivity analysis revealed that there appears to be a relationship between logK{sub OA} and the impact of the ventilation rate on the urban fate of organic chemicals. -- Highlights: Black-Right-Pointing-Pointer A novel indoor-inclusive multimedia urban fate model is developed and applied. Black-Right-Pointing-Pointer Emissions indoors may increase the urban chemical residence time. Black

  20. A simple model for the distribution and fate of organic chemicals in a landfill: MOCLA

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Christensen, Thomas Højlund


    A simple mathematical model (MOCLA: Model for Organic Chemicals in Landfills) is presented, describing the distribution of organic chemicals between leachate, gas and solid waste. The model also predicts the fate of the chemicals in terms of emissions with leachate and landfill gas and in terms...... of degradation and transformation in the landfill. Local equilibrium is assumed for the distribution of the chemicals in the landfill as expressed by Henry’s Law for the leachate-gas interface, and by the linear partition coefficient based on the waste solid organic carbon content for the waste......-leachate interface. Degradation of the chemicals is expressed as a first order reaction. Annual specific leachate and gas generation data in combination with data on landfill area and volume allow for prediction of main emission routes. Model simulations involving two landfill scenarios for a number of chemicals...

  1. Environmental Fate of Organophosphorus Compounds Related to Chemical Weapons

    Energy Technology Data Exchange (ETDEWEB)

    Davisson, M L; Love, A H; Vance, A; Reynolds, J G


    chloride and hydroxyl (strong nucleophile) dominated experimental solutions. Because of its overwhelming abundance in solution relative to hydroxyl ion, bicarbonate likely effectively competes in nucleophilic attack on phosphorus. The addition of natural dissolved organic matter at 100 mg/L in pH 7 bicarbonate buffered solution slowed VX hydrolysis rates {approx}2 times relative to controls, suggesting hydrophobic interaction. Adsorption experiments derived isotherms from batch aqueous experiments on montmorillonite clay, iron-oxyhydroxide goethite, and on amorphous silica. VX had moderate affinity for montmorillonite and amorphous silica, and very low affinity toward goethite. The addition of dissolved organic matter into solution enhanced VX adsorption to goethite, consistent with its high affinity for hydrophobic organic matter (log K{sub oc} = 2.52). Diisopropylaminoethylthiol (DESH), a hydrolysis product of VX showed equivalent adsorption to montmorillonite, and poor affinity to goethite and silica. However, hydrolysis products O-Ethylmethylphosphonic acid (EMPA) and methylphosphonic acid (MPA) strongly adsorbed on goethite, but not on montmorillonite or silica, suggesting a ligand-exchange mechanism. VX degraded rapidly when completely dried onto goethite followed by rehydration, consistent with an irreversible chemical adsorption mechanism.

  2. Pharmaceuticals in soils of lower income countries: Physico-chemical fate and risks from wastewater irrigation. (United States)

    Lees, Katherine; Fitzsimons, Mark; Snape, Jason; Tappin, Alan; Comber, Sean


    Population growth, increasing affluence, and greater access to medicines have led to an increase in active pharmaceutical ingredients (APIs) entering sewerage networks. In areas with high wastewater reuse, residual quantities of APIs may enter soils via irrigation with treated, partially treated, or untreated wastewater and sludge. Wastewater used for irrigation is currently not included in chemical environmental risk assessments and requires further consideration in areas with high water reuse. This study critically assesses the contemporary understanding of the occurrence and fate of APIs in soils of low and lower-middle income countries (LLMIC) in order to contribute to the development of risk assessments for APIs in LLMIC. The physico-chemical properties of APIs and soils vary greatly globally, impacting on API fate, bioaccumulation and toxicity. The impact of pH, clay and organic matter on the fate of organic ionisable compounds is discussed in detail. This study highlights the occurrence and the partitioning and degradation coefficients for APIs in soil:porewater systems, API usage data in LLMICS and removal rates (where used) within sewage treatment plants as key areas where data are required in order to inform robust environmental risk assessment methodologies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Influence of global climate change on chemical fate and bioaccumulation: the role of multimedia models. (United States)

    Gouin, Todd; Armitage, James M; Cousins, Ian T; Muir, Derek C G; Ng, Carla A; Reid, Liisa; Tao, Shu


    Multimedia environmental fate models are valuable tools for investigating potential changes associated with global climate change, particularly because thermodynamic forcing on partitioning behavior as well as diffusive and nondiffusive exchange processes are implicitly considered. Similarly, food-web bioaccumulation models are capable of integrating the net effect of changes associated with factors such as temperature, growth rates, feeding preferences, and partitioning behavior on bioaccumulation potential. For the climate change scenarios considered in the present study, such tools indicate that alterations to exposure concentrations are typically within a factor of 2 of the baseline output. Based on an appreciation for the uncertainty in model parameters and baseline output, the authors recommend caution when interpreting or speculating on the relative importance of global climate change with respect to how changes caused by it will influence chemical fate and bioavailability. Copyright © 2012 SETAC.

  4. Fate and effects of anthropogenic chemicals in mangrove ecosystems: A review

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Michael, E-mail: [U.S. Environmental Protection Agency, Office of Research and Development, 1 Sabine Island Drive, Gulf Breeze, FL 32561 (United States); Pryor, Rachel; Wilking, Lynn [U.S. Environmental Protection Agency, Office of Research and Development, 1 Sabine Island Drive, Gulf Breeze, FL 32561 (United States)


    The scientific literature for fate and effects of non-nutrient contaminant concentrations is skewed for reports describing sediment contamination and bioaccumulation for trace metals. Concentrations for at least 22 trace metals have been reported in mangrove sediments. Some concentrations exceed sediment quality guidelines suggesting adverse effects. Bioaccumulation results are available for at least 11 trace metals, 12 mangrove tissues, 33 mangrove species and 53 species of mangrove-habitat biota. Results are specific to species, tissues, life stage, and season and accumulated concentrations and bioconcentration factors are usually low. Toxicity tests have been conducted with 12 mangrove species and 8 species of mangrove-related fauna. As many as 39 effect parameters, most sublethal, have been monitored during the usual 3 to 6 month test durations. Generalizations and extrapolations for toxicity between species and chemicals are restricted by data scarcity and lack of experimental consistency. This hinders chemical risk assessments and validation of effects-based criteria. - Chemical risk assessments and resource management are restricted by the limited chemical fate and effects database for mangroves.

  5. From consumption to harvest: Environmental fate prediction of excreted ionizable trace organic chemicals

    DEFF Research Database (Denmark)

    Polesel, Fabio; Plósz, Benedek G.; Trapp, Stefan


    Excreted trace organic chemicals, e.g., pharmaceuticals and biocides, typically undergo incomplete elimination in municipal wastewater treatment plants (WWTPs) and are released to surface water via treated effluents and to agricultural soils through sludge amendment and/or irrigation...... consumption/excretion up to the accumulation in soil and plant, following field amendment with sewage sludge or irrigation with river water (assuming dilution of WWTP effluent). The simulation tool combines the SimpleTreat model modified for fate prediction of ionizable chemicals in a generic WWTP...... and a recently developed dynamic soil-plant uptake model. The simulation tool was tested using country-specific (e.g., consumption/emission rates, precipitation and temperature) input data. A Monte Carlo-based approach was adopted to account for the uncertainty associated to physico-chemical and biokinetic model...

  6. Climate-based archetypes for the environmental fate assessment of chemicals. (United States)

    Ciuffo, Biagio; Sala, Serenella


    Emissions of chemicals have been on the rise for years, and their impacts are greatly influenced by spatial differentiation. Chemicals are usually emitted locally but their impact can be felt both locally and globally, due to their chemical properties and persistence. The variability of environmental parameters in the emission compartment may affect the chemicals' fate and the exposure at different orders of magnitude. The assessment of the environmental fate of chemicals and the inherent spatial differentiation requires the use of multimedia models at various levels of complexity (from a simple box model to complex computational and high-spatial-resolution models). The objective of these models is to support ecological and human health risk assessment, by reducing the uncertainty of chemical impact assessments. The parameterisation of spatially resolved multimedia models is usually based on scenarios of evaluative environments, or on geographical resolutions related to administrative boundaries (e.g. countries/continents) or landscape areas (e.g. watersheds, eco-regions). The choice of the most appropriate scale and scenario is important from a management perspective, as a balance should be reached between a simplified approach and computationally intensive multimedia models. In this paper, which aims to go beyond the more traditional approach based on scale/resolution (cell, country, and basin), we propose and assess climate-based archetypes for the impact assessment of chemicals released in air. We define the archetypes based on the main drivers of spatial variability, which we systematically identify by adopting global sensitivity analysis techniques. A case study that uses the high resolution multimedia model MAPPE (Multimedia Assessment of Pollutant Pathways in the Environment) is presented. Results of the analysis showed that suitable archetypes should be both climate- and chemical-specific, as different chemicals (or groups of them) have different traits

  7. Chemical properties, environmental fate, and degradation of seven classes of pollutants. (United States)

    Manzetti, Sergio; van der Spoel, E Roos; van der Spoel, David


    Industrialism has brought a long series of benefits for modern civilization. Concomitantly, reversible and irreversible changes have been inflicted upon the environment, affecting humans, animals, and whole ecosystems and leading to effects such as declining reproduction in modern human beings, developmental challenges on various species, and destroyed habitats and ecosystems across the globe. In this context, a vast repertoire of modern and older literature is reviewed for a series of pollutants and their status as of 2014. The compound classes covered in this review are polychlorinated biphenyls, halogenated hydrocarbons, estrogen analogues, phthalates, dioxins, perfluorinated compounds, and brominated flame retardants. These groups represent ubiquitous pollutants, of which some have circulated in the environment for more than 60 years. In this context, this review describes the chemical properties, the environmental fate, and the toxicological effects of these classes of pollutants on humans and animals, including an introductory section on the detoxification systems that are triggered in most species upon intoxication. This combined review of in vivo transformation, chemistry, toxicological properties, and structure-activity relationships of pollutants aids in the understanding of the fate, biomagnification, bioaccumulation, and transformation of these compounds, which is essential for toxicologists, environmental scientists, and environmental legislators. The review is concluded with an outlook.

  8. Distribution and chemical fate of 36Cl-chlorine dioxide gas during the fumigation of tomatoes and cantaloupe (United States)

    The distribution and chemical fate of 36Cl-ClO2 gas subsequent to fumigation of tomatoes or cantaloupe was investigated as was major factors that affect the formation of chloroxyanion byproducts. Approximately 22% of the generated 36Cl-ClO2 was present on fumigated tomatoes after a 2-hour exposure t...

  9. Applications of contaminant fate and bioaccumulation models in assessing ecological risks of chemicals: A case study for gasoline hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    MacLeod, Matthew; McKone, Thomas E.; Foster, Karen L.; Maddalena, Randy L.; Parkerton, Thomas F.; Mackay, Don


    Mass balance models of chemical fate and transport can be applied in ecological risk assessments for quantitative estimation of concentrations in air, water, soil and sediment. These concentrations can, in turn, be used to estimate organism exposures and ultimately internal tissue concentrations that can be compared to mode-of-action-based critical body residues that correspond to toxic effects. From this comparison, risks to the exposed organism can be evaluated. To illustrate the practical utility of fate models in ecological risk assessments of commercial products, the EQC model and a simple screening level biouptake model including three organisms, (a bird, a mammal and a fish) is applied to gasoline. In this analysis, gasoline is divided into 24 components or ''blocks'' with similar environmental fate properties that are assumed to elicit ecotoxicity via a narcotic mode of action. Results demonstrate that differences in chemical properties and mode of entry into the environment lead to profound differences in the efficiency of transport from emission to target biota. We discuss the implications of these results and insights gained into the regional fate and ecological risks associated with gasoline. This approach is particularly suitable for assessing mixtures of components that have similar modes of action. We conclude that the model-based methodologies presented are widely applicable for screening level ecological risk assessments that support effective chemicals management.

  10. Oil Slick Fate in 3D : Predicting the influence of (natural and chemical) dispension on oil slick fate

    NARCIS (Netherlands)

    Marieke Zeinstra-Helfrich


    In certain conditions, (part of) an oil spill can disappear from the water surface through a process called natural dispersion. One available oil spill response option is to enhance this process by addition of dispersants (chemical dispersion). An informed decision for such response requires insight

  11. Chemical fate of the nicotinic acetylcholinergic radiotracer [{sup 123}I]5-IA-85380 in baboon brain and plasma

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, Ronald M. [Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510 (United States) and Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT 06510 (United States) and VA Connecticut HCS, West Haven, CT 06516 (United States)]. E-mail:; Zoghbi, Sami S. [Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510 (United States); Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT 06510 (United States); Staley, Julie K. [Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510 (United States); VA Connecticut HCS, West Haven, CT 06516 (United States); Brenner, Eric [Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510 (United States); VA Connecticut HCS, West Haven, CT 06516 (United States); Al-Tikriti, Mohammed S. [Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510 (United States); VA Connecticut HCS, West Haven, CT 06516 (United States); Amici, Louis [Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510 (United States); VA Connecticut HCS, West Haven, CT 06516 (United States); Fujita, Masahiro [Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510 (United States); VA Connecticut HCS, West Haven, CT 06516 (United States); Innis, Robert B. [Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510 (United States); VA Connecticut HCS, West Haven, CT 06516 (United States); Tamagnan, Gilles [Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510 (United States); VA Connecticut HCS, West Haven, CT 06516 (United States)


    The fate of the nicotinic acetylcholinergic receptor radiotracer [{sup 123}I]5-IA-85380 ([{sup 123}I]5-IA) was studied in baboon by analyzing the chemical composition of brain tissue and plasma after intravenous administration of the tracer. Acetonitrile denaturation and high-performance liquid chromatography (HPLC) analysis showed predominantly unchanged (91-98%) parent tracer in all brain tissues examined, compared to significant metabolism (23% parent) in the plasma at 90 min postinjection, and control tissue recovery of 95-98%. [{sup 123}I]5-IA was distributed to the thalamus with a standardized uptake value of 9.2 (0.04% dose/g) or a concentration 5.8 times higher than that of the cerebellum. The HPLC behavior of a synthesized sample of one hypothesized metabolite, 5-iodo-3-pyridinol (5-IP), was consistent with plasma radiometabolite fraction. Since only parent radiotracer compound was found in brain tissue, these results add confidence that information derived from single photon emission computed tomography images of {sup 123}I activity in the brain after [{sup 123}I]5-IA administration can be interpreted as distribution of an intact radiotracer.

  12. Understanding and Predicting the Fate of Semivolatile Organic Pesticides in a Glacier-Fed Lake Using a Multimedia Chemical Fate Model. (United States)

    Wu, Xiaolin; Davie-Martin, Cleo L; Steinlin, Christine; Hageman, Kimberly J; Cullen, Nicolas J; Bogdal, Christian


    Melting glaciers release previously ice-entrapped chemicals to the surrounding environment. As glacier melting accelerates under future climate warming, chemical release may also increase. This study investigated the behavior of semivolatile pesticides over the course of one year and predicted their behavior under two future climate change scenarios. Pesticides were quantified in air, lake water, glacial meltwater, and streamwater in the catchment of Lake Brewster, an alpine glacier-fed lake located in the Southern Alps of New Zealand. Two historic-use pesticides (endosulfan I and hexachlorobenzene) and three current-use pesticides (dacthal, triallate, and chlorpyrifos) were frequently found in both air and water samples from the catchment. Regression analysis indicated that the pesticide concentrations in glacial meltwater and lake water were strongly correlated. A multimedia environmental fate model was developed for these five chemicals in Brewster Lake. Modeling results indicated that seasonal lake ice cover melt, and varying contributions of input from glacial melt and streamwater, created pulses in pesticide concentrations in lake water. Under future climate scenarios, the concentration pulse was altered and glacial melt made a greater contribution (as mass flux) to pesticide input in the lake water.

  13. Lignin fate and characterization during ionic liquid biomass pretreatment for renewable chemicals and fuels production (United States)

    Noppadon Sathitsuksanoh; Kevin M. Holtman; Daniel J. Yelle; Trevor Morgan; Vitalie Stavila; Jeffrey Pelton; Harvey Blanch; Blake A. Simmons; Anthe George


    The fate of lignin from wheat straw, Miscanthus, and Loblolly pine after pretreatment by a non-toxic and recyclable ionic liquid (IL), [C2mim][OAc], followed by enzymatic hydrolysis was investigated. The lignin partitioned into six process streams, each of which was quantified and analyzed by a combination of a novel solution-state two-dimensional (2D) nuclear magnetic...

  14. Lignin fate and characterization during ionic liquid biomass pretreatment for renewable chemicals and fuels production (United States)

    The fate of lignin from wheat straw, Miscanthus, and Loblolly pine after pretreatment by a non-toxic and recyclable ionic liquid (IL), [C2mim][OAc], followed by enzymatic hydrolysis was investigated. The lignin partitioned into six process streams, each of which was quantified and analyzed by a comb...

  15. Chemical Alias: An Engaging Way to Examine Nomenclature (United States)

    Kurushkin, Mikhail; Mikhaylenko, Maria


    An educational card game, "Chemical Alias," has been developed as an alternative method of reviewing students' knowledge of nomenclature. In contrast to conventional tests, this highly competitive activity is a fun and effective way to examine and reinforce nomenclature. The students play in pairs, using Clark's famous spiral arrangement…

  16. Page 1 Chemical Examination of Artemisia scoparia Waldst, and Kit ...

    Indian Academy of Sciences (India)

    Chemical Examination of Artemisia scoparia Waldst, and Kit, 155. Scoparin is insoluble in concentrated hydrochloric acid either in the cold or in the hot. When treated with aqueous or alcoholic caustic potash, it dissolves with an intense yellow coloration, which is characteristic of many unsaturated lactones. It does not give ...

  17. Survey and discussion of models applicable to the transport and fate thrust area of the Department of Energy Chemical and Biological Nonproliferation Program

    Energy Technology Data Exchange (ETDEWEB)



    The availability and easy production of toxic chemical and biological agents by domestic and international terrorists pose a serious threat to US national security, especially to civilian populations in and around urban areas. To address this threat, the Department of Energy (DOE) has established the Chemical and Biological Nonproliferation Program (CBNP) with the goal of focusing the DOE`s technical resources and expertise on capabilities to deny, deter, mitigate and respond to clandestine releases of chemical and biological agents. With the intent to build on DOE core competencies, the DOE has established six technology thrust areas within the CBNP Program: Biological Information Resources; Point Sensor Systems; Stand-off Detection; Transport and Fate; Decontamination; and Systems Analysis and Integration. The purpose of the Transport and Fate Thrust is to accurately predict the dispersion, concentration and ultimate fate of chemical and biological agents released into the urban and suburban environments and has two major goals: (1) to develop an integrated and validated state-of-the-art atmospheric transport and fate modeling capability for chemical and biological agent releases within the complex urban environment from the regional scale down to building and subway interiors, and (2) to apply this modeling capability in a broad range of simulation case studies of chemical and biological agent release scenarios in suburban, urban and confined (buildings and subways) environments and provide analysis for the incident response user community. Sections of this report discuss subway transport and fate models; buildings interior transport and fate modeling; models for flow and transport around buildings; and local-regional meteorology and dispersion models.

  18. Fate of Organohalogens in U.S. Wastewater Treatment Plants and Estimated Chemical Releases to Soils Nationwide from Biosolids Recycling (United States)

    Heidler, Jochen; Halden, Rolf U.


    This study examined the occurrence in wastewater of 11 aromatic biocides, pesticides and degradates, and their fate during passage through U.S. treatment plants, as well as the chemical mass contained in sewage sludge (biosolids) destined for land application. Analyte concentrations in wastewater influent, effluent and sludge from 25 facilities in 18 U.S. states were determined by liquid chromatography electrospray (tandem) mass spectrometry. Dichlorocarbanilide, fipronil, triclocarban, and triclosan were found consistently in all sample types. Dichlorophene, hexachlorophene, and tetrachlorocarbanilide were detected infrequently only, and concentrations of the phenyl urea pesticides diflubenzuron, hexaflumuron, and linuron were below the limit of detection in all matrixes. Median concentrations (± 95% confidence interval) of quantifiable compounds in influent ranged from 4.2 ± 0.8 µg L−1 for triclocarban to 0.03 ± 0.01 µg L−1 for fipronil. Median concentrations in effluent were highest for triclocarban and triclosan (0.23 ± 0.08 and 0.07 ± 0.04 µg L−1, respectively). Median aqueous-phase removal efficiencies (± 95% CI) of activated sludge treatment plants decreased in the order of: triclosan (96 ± 2%) > triclocarban (87 ± 7%) > dichlorocarbanilide (55 ± 20%) > fipronil (18 ± 22%). Median concentrations of organohalogens were typically higher in anaerobically than in aerobically digested sludges, and peaked at 27,600 ± 9,600 and 15,800 ± 8,200 µg kg−1 for triclocarban and triclosan, respectively. Mass balances obtained for three primary pesticides in six activated sludge treatment plants employing anaerobic digestion suggested a decreasing overall persistence from fipronil (97 ± 70%) to triclocarban (87 ± 29%) to triclosan (28 ± 30%). Nationwide release of the investigated organohalogens to agricultural land via municipal sludge recycling and into surface waters is estimated to total 258,000 ± 110,00 kg yr−1 (mean ± 95% confidence

  19. Chiral Chemicals as Tracers of Atmospheric Sources and Fate Processes in a World of Changing Climate (United States)

    F. Bidleman, Terry; M. Jantunen, Liisa; Binnur Kurt-Karakus, Perihan; Wong, Fiona; Hung, Hayley; Ma, Jianmin; Stern, Gary; Rosenberg, Bruno


    Elimination of persistent organic pollutants (POPs) under national and international regulations reduces “primary” emissions, but “secondary” emissions continue from residues deposited in soil, water, ice and vegetation during former years of usage. In a future, secondary source controlled world, POPs will follow the carbon cycle and biogeochemical processes will determine their transport, accumulation and fate. Climate change is likely to affect mobilisation of POPs through e.g., increased temperature, altered precipitation and wind patterns, flooding, loss of ice cover in polar regions, melting glaciers, and changes in soil and water microbiology which affect degradation and transformation. Chiral compounds offer advantages for following transport and fate pathways because of their ability to distinguish racemic (newly released or protected from microbial attack) and nonracemic (microbially degraded) sources. This paper discusses the rationale for this approach and suggests applications where chiral POPs could aid investigation of climate-mediated exchange and degradation processes. Multiyear measurements of two chiral POPs, trans-chlordane and α-HCH, at a Canadian Arctic air monitoring station show enantiomer compositions which cycle seasonally, suggesting varying source contributions which may be under climatic control. Large-scale shifts in the enantioselective metabolism of chiral POPs in soil and water might influence the enantiomer composition of atmospheric residues, and it would be advantageous to include enantiospecific analysis in POPs monitoring programs. PMID:24349938

  20. Geographically distributed classification of surface water chemical parameters influencing fate and behavior of nanoparticles and colloid facilitated contaminant transport. (United States)

    Hammes, Julia; Gallego-Urrea, Julián A; Hassellöv, Martin


    The current production and use of nanomaterials in consumer products have increased the concern about the possibility that these enter the rivers during their entire life cycle. Further, many aquatic contaminants undergo partitioning to the ubiquitous aquatic colloids. Here is presented the development of a set of European water types for environmental risk assessment of chemicals transported as nanovectors as is the case of environmental fate of manufactured nanoparticles and colloid-bound contaminants. A compilation of river quality geochemical data with information about multi-element composition for near 800 rivers in Europe was used to perform a principal component analysis (PCA) and define 6 contrasting water classes. With the aid of geographical information system algorithms, it was possible to analyse how the different sampling locations were predominantly represented within each European water framework directive drainage basin. These water classes and their associated Debye-Hückel parameter are determining factors to evaluate the large scale fate and behaviour of nanomaterials and other colloid-transported pollutants in the European aquatic environment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Experimental terrestrial soil-core microcosm test protocol. A method for measuring the potential ecological effects, fate, and transport of chemicals in terrestrial ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Van Voris, P.; Tolle, D.A.; Arthur, M.F.


    In order to protect the environment properly and have a realistic appraisal of how a chemical will act in the environment, tests of ecological effects and chemical fate must be performed on complex assemblages of biotic and abiotic components (i.e., microcosms) as well as single species. This protocol is one which could be added to a series of tests recently developed as guidelines for Section 4 of the Toxic Substances Control Act (P.L. 94-469; U.S.C., Section 2601-2629). The terrestrial soil-core microcosm is designed to supply site-specific and possibly regional information on the probable chemical fate and ecological effects resulting from release of a chemical substance to a terrestrial ecosystem. The EPA will use the data resulting from this test system to compare the potential hazards of a chemical with others that have been previously evaluated.

  2. Fate of antibiotic resistance genes in mesophilic and thermophilic anaerobic digestion of chemically enhanced primary treatment (CEPT) sludge. (United States)

    Jang, Hyun Min; Shin, Jingyeong; Choi, Sangki; Shin, Seung Gu; Park, Ki Young; Cho, Jinwoo; Kim, Young Mo


    Anaerobic digestion (AD) of chemically enhanced primary treatment (CEPT) sludge and non-CEPT (conventional sedimentation) sludge were comparatively operated under mesophilic and thermophilic conditions. The highest methane yield (692.46±0.46mL CH 4 /g VS removed in CEPT sludge) was observed in mesophilic AD of CEPT sludge. Meanwhile, thermophilic conditions were more favorable for the removal of total antibiotic resistance genes (ARGs). In this study, no measurable difference in the fates and removal of ARGs and class 1 integrin-integrase gene (intI1) was observed between treated non-CEPT and CEPT sludge. However, redundancy analysis indicated that shifts in bacterial community were primarily accountable for the variations in ARGs and intI1. Network analysis further revealed potential host bacteria for ARGs and intI1. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Fate of arsenic before and after chemical-enhanced washing of an arsenic-containing soil in Hong Kong. (United States)

    Beiyuan, Jingzi; Li, Jiang-Shan; Tsang, Daniel C W; Wang, Lei; Poon, Chi Sun; Li, Xiang-Dong; Fendorf, Scott


    This study evaluated the feasibility of 2-h chemical-enhanced washing of As-containing soil resulting from geogenic sources in Hong Kong and the fate of As before and after remediation. The soil morphology and As speciation in soil was elucidated by scanning electron microscopy with energy dispersive X-ray spectroscopy, X-ray diffractometer, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy. Integrated analysis of the results suggests that the As (>90%) resides predominantly as arsenate bound to ferric iron oxides, with a minor contribution (containing soil by containment or physical encapsulation may be considered before land development. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. The fate of minor alkali elements in the chemical evolution of salt lakes (United States)


    Alkaline earth elements and alkali metals (Mg, Ca, Na and K) play an important role in the geochemical evolution of saline lakes as the final brine type is defined by the abundance of these elements. The role of major ions in brine evolution has been studied in great detail, but little has been done to investigate the behaviour of minor alkali elements in these systems despite their similar chemical affinities to the major cations. We have examined three major anionic brine types, chloride, sulphate, and bicarbonate-carbonate, in fifteen lakes in North America and Antarctica to determine the geochemical behaviour of lithium, rubidium, strontium, and barium. Lithium and rubidium are largely conservative in all water types, and their concentrations are the result of long-term solute input and concentration through evaporation and/or sublimation. Strontium and barium behaviours vary with anionic brine type. Strontium can be removed in sulphate and carbonate-rich lakes by the precipitation of carbonate minerals. Barium may be removed in chloride and sulphate brines by either the precipitation of barite and perhaps biological uptake. PMID:21992434

  5. Fate of polycyclic aromatic hydrocarbons in plant-soil systems: Plant responses to a chemical stress in the root zone

    Energy Technology Data Exchange (ETDEWEB)

    Hoylman, Anne M. [Univ. of Tennessee, Knoxville, TN (United States)


    Under laboratory conditions selected to maximize root uptake, plant tissue distribution of PAH-derived 14C was largely limited to root tissue of Malilotus alba. These results suggest that plant uptake of PAHs from contaminated soil via roots, and translocation to aboveground plant tissues (stems and leaves), is a limited mechanism for transport into terrestrial food chains. However, these data also indicate that root surface sorption of PAHs may be important for plants grown in soils containing elevated concentration PAHs. Root surface sorption of PAHs may be an important route of exposure for plants in soils containing elevated concentrations of PAHS. Consequently, the root-soil interface may be the site of plant-microbial interactions in response to a chemical stress. In this study, evidence of a shift in carbon allocation to the root zone of plants exposed to phenanthrene and corresponding increases in soil respiration and heterotrophic plate counts provide evidence of a plant-microbial response to a chemical stress. The results of this study establish the importance of the root-soil interface for plants growing in PAH contaminated soil and indicate the existence of plant-microbial interactions in response to a chemical stress. These results may provide new avenues of inquiry for studies of plant toxicology, plant-microbial interactions in the rhizosphere, and environmental fates of soil contaminants. In addition, the utilization of plants to enhance the biodegradation of soil contaminants may require evaluation of plant physiological changes and plant shifts in resource allocation.

  6. Simplified fate modelling in respect to ecotoxicological and human toxicological characterisation of emissions of chemical compounds

    DEFF Research Database (Denmark)

    Birkved, Morten; Heijungs, Reinout


    The impact assessment of chemical compounds in Life Cycle Impact Assessment (LCIA) and Environmental Risk Assessment (ERA) requires a vast amount of data on the properties of the chemical compounds being assessed. The purpose of the present study is to explore statistical options for reduction of...

  7. Simplified fate modelling in respect to ecotoxicological and human toxicological characterisation of emissions of chemical compounds

    NARCIS (Netherlands)

    Birkved, Morten; Heijungs, Reinout

    Purpose: The impact assessment of chemical compounds in Life Cycle Impact Assessment (LCIA) and Environmental Risk Assessment (ERA) requires a vast amount of data on the properties of the chemical compounds being assessed. The purpose of the present study is to explore statistical options for

  8. Fate of Chemical Activators in The Aqueous Environment: What Should We Do About It?

    Directory of Open Access Journals (Sweden)

    Muhammad A. A. Zaini


    Full Text Available The commonly used activators in chemical activation of activated carbon are very toxic and poisonous to the aquatic environment. Finding trade-off solutions without compromising the quality of activated carbon and jeopardizing the environment have become the subject of considerable interest. This paper is aimed to shed some light on the inevitable release of chemical activators to the aqueous environment, and offers some possible solutions to overcome the emergence of secondary pollution.

  9. Effects of carbon-based nanoparticles (CNPs) on the fate of endocrine disrupting chemicals (EDCs) in different agricultural soils. (United States)

    Stumpe, Britta; Wolski, Sabrina; Marschner, Bernd


    Nanotechnology is a major innovative scientific and economic growth area. To date there is a lack about possible adverse effects that may be associated with manufactured nanomaterial in terrestrial environments. Since it is known that on the one hand carbon-based nanoparticles (CNPs) and endocrine disrupting chemicals (EDCs) strongly interact in wastewater and that on the other hand CNPs and EDCs are released together via wastewater irrigation to agricultural soils, knowledge of CNP effects on the EDC fate in the soil environment is needed for further risk assessments. The overall goal of this project is to gain a better understanding of interaction of CNPs with EDCs within the soil system. Three different soil samples were applied with different CNPs, EDCs and CNP-EDC complexes and incubated over a period of 6 weeks. The EDC mineralization as well as their uptake by soil microorganisms was monitored to describe impacts of the nanomaterial on the EDC fate. As quality control for the biological soil activity soil respiration, enzyme activities and the soil microbial biomass were monitored in all incubated soil samples. Clearly, EDCs bound in CNP complexes showed a decrease in mineralization. While the free EDCs showed a total mineralization of 34 to 45 %, the nano complexed EDCs were only mineralized to 12 to 15 %. Since no effects of the nanomaterial on the biological soil activity were observed, we conclude that the reduced EDC mineralization is directly linked to their interaction with the CNPs. Since additionally the EDC adsorption to CNPs reduced the EDC uptake by soil microorganism, we assume that CNPs generally form more or less recalcitrant aggregates which likely protect the associated EDCs from degradation.

  10. What environmental fate processes have the strongest influence on a completely persistent organic chemical's accumulation in the Arctic? (United States)

    Meyer, Torsten; Wania, Frank

    Fate and transport models can be used to identify and classify chemicals that have the potential to undergo long-range transport and to accumulate in remote environments. For example, the Arctic contamination potential (ACP), calculated with the help of the zonally averaged global transport model Globo-POP, is a numerical indicator of an organic chemical's potential to be transported to polar latitudes and to accumulate in the Arctic ecosystem. It is important to evaluate how robust such model predictions are and in particular to appreciate to what extent they may depend on a specific choice of environmental model input parameters. Here, we employ a recently developed graphical method based on partitioning maps to comprehensively explore the sensitivity of ACP estimates to variations in environmental parameters. Specifically, the changes in the ACP of persistent organic contaminants to changes in each environmental input parameter are plotted as a function of the two-dimensional hypothetical "chemical space" defined by two of the three equilibrium partition coefficients between air, water and octanol. Based on the patterns obtained, this chemical space is then segmented into areas of similar parameter sensitivities and superimposed with areas of high default ACP and elevated environmental bioaccumulation potential within the Arctic. Sea ice cover, latitudinal temperature gradient, and macro-diffusive atmospheric transport coefficients, and to a lesser extent precipitation rate, display the largest influence on ACP-values for persistent organic contaminants, including those that may bioaccumulate within the polar marine ecosystems. These environmental characteristics are expected to be significantly impacted by global climate change processes, highlighting the need to explore more explicitly how climate change may affect the long-range transport and accumulation behavior of persistent organic pollutants.

  11. An updated state of the science EQC model for evaluating chemical fate in the environment: application to D5 (decamethylcyclopentasiloxane). (United States)

    Hughes, Lauren; Mackay, Don; Powell, David E; Kim, Jaeshin


    The EQuilibrium Criterion (EQC) model developed and published in 1996 has been widely used for screening level evaluations of the multimedia, fugacity-based environmental fate of organic chemicals for educational, industrial, and regulatory purposes. Advances in the science of chemical partitioning and reactivity and the need for more rigorous regulatory evaluations have resulted in a need to update the model. The New EQC model is described which includes an improved treatment of input partitioning and reactivity data, temperature dependence and an easier sensitivity and uncertainty analysis but uses the same multi-level approach, equations and environmental parameters as in the original version. A narrative output is also produced. The New EQC model, which uses a Microsoft Excel platform, is described and applied in detail to decamethylcyclopentasiloxane (D5; CAS No. 541-02-6). The implications of these results for the more detailed exposure and risk assessment of D5 are discussed. The need for rigorous evaluation and documentation of the input parameters is outlined. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Modelling the Fate of Xenobiotic Trace Chemicals via Wastewater Treatment and Agricultural Resource Reuse

    DEFF Research Database (Denmark)

    Polesel, Fabio

    design limitations. These chemicals are thus eventually released to the environment, e.g. in freshwater bodies receiving WWTP effluents, representing a threat to living organisms. WWTPs have been generally identified as a major point source of XTC emissions to the environment. Nevertheless, due......As a result of widespread human activities, pharmaceuticals and biocides are ubiquitously present at trace levels in the environment. Large amounts of these substances, also identified as xenobiotic trace chemicals (XTCs), are released daily from: (i) households and healthcare facilities, following......-stage and three-stage configurations. The latter configuration produced a prolonged biofilm exposure to organic electron donor (COD) loading and complexity tiered by segregated and integrated biofilm reactors, which significantly influenced kinetics of heterotrophic denitrification and XTC biotransformation...

  13. Effect of pH and dissociation on the fate and exposure of ionizable chemicals

    DEFF Research Database (Denmark)

    Franco, Antonio; Trapp, Stefan


    Ionizable organic chemicals comprise an important fraction of pharmaceuticals, pesticides as well as industrial chemicals. It has been estimated that 33% of the preregistered REACH substances is mostly ionized at pH 7. To extend the appliccability of existing exposure models, a Multimedia Activity...... parameters. The sensitivity analysis showed that the parameters describing ionization, pH and the dissociation constant (pKa), are among the most sensitive model parameters. The uncertainty analysis, however, indicated that these parameters are not the major source of uncertainty, which statistically...... justifies the use of species-specific models for ionics. The water content in air is a sensitive parameter for the PEC in air of molecules with negligible air-water partition coefficient, such as ions. The uncertainty of the QSARs for solid-water sorption significantly affects the PECs in soils...

  14. Distribution and chemical fate of ³⁶Cl-chlorine dioxide gas during the fumigation of tomatoes and cantaloupe. (United States)

    Smith, D J; Ernst, W; Giddings, J M


    The distribution and chemical fate of (36)Cl-ClO2 gas subsequent to fumigation of tomatoes or cantaloupe was investigated as were major factors that affect the formation of chloroxyanion byproducts. Approximately 22% of the generated (36)Cl-ClO2 was present on fumigated tomatoes after a 2 h exposure to approximately 5 mg of (36)Cl-ClO2. A water rinse removed 14% of the radiochlorine while tomato homogenate contained ∼63% of the tomato radioactivity; 24% of the radiochlorine was present in the tomato stem scar area. Radioactivity in tomato homogenate consisted of (36)Cl-chloride (≥80%), (36)Cl-chlorate (5 to 19%), and perchlorate (0.5 to 1.4%). In cantaloupe, 55% of the generated (36)Cl-ClO2 was present on melons fumigated with 100 mg of (36)Cl-ClO2 for a 2 h period. Edible cantaloupe flesh contained no detectable radioactive residue (LOQ = 0.3 to 0.4 μg/g); >99.9% of radioactivity associated with cantaloupe was on the inedible rind, with <0.1% associated with the seed bed. Rind radioactivity was present as (36)Cl-chloride (∼86%), chlorate (∼13%), and perchlorate (∼0.6%). Absent from tomatoes and cantaloupe were (36)Cl-chlorite residues. Follow-up studies have shown that chlorate and perchlorate formation can be completely eliminated by protecting fumigation chambers from light sources.

  15. Preferential flow effects on transport and fate of chemicals and microorganisms in soils irrigated with wastewater (United States)

    Puddu, Rita; Corrias, Roberto; Dessena, Maria Antonietta; Ferralis, Marcella; Marras, Gabriele; Pin, Paola; Spanu, Paola


    This work is part of a multidisciplinary research properly planned by the ENAS (Cagliari-Sardinia-Italy) to verify the consequences of urban wastewater reuse in irrigation practices on chemical, biological and hydrological behavior of agricultural soils of the Had as Soualem area (Morocco). The area consists of Fluventic Haploxerept soils, according to USDA Soil Taxonomy. Undisturbed large soil columns, 70 cm height and 20 cm diameter, were collected from plots, the locations of which were preliminarily individuated through a prior pedological study. The soils are characterized by an apparent structure, suggesting that preferential flow processes may occur in the study area, which may impact usable groundwater at depth. Wastewater reuse for irrigation simultaneously solves water shortage and wastewater disposal problems. Unfortunately, wastewaters generally contain high concentrations of suspended and dissolved solids, both organic and inorganic, and microbial contaminants (virus and bacteria) added to wastewater during domestic and industrial usage. Most of these contaminants are only partially removed during conventional sewage treatment so they remain in the irrigation water. Although adsorbing ions and microbes are relatively immobile within porous media, preferential flow and adsorption to mobile colloids can enhance their transport. There is limited knowledge regarding the role of preferential flow and colloidal transport on adsorbing contaminants. The main aim of this research is to determine the influence of preferential flow and colloids on wastewater contaminant transport. Leaching rates and arrival time of wastewater contaminants will be determined using field and laboratory measurements at the study sites in combination with preferential flow numerical modeling. To achieve these objectives the soil columns were analyzed for physical, chemical, and microbial characterization. At the laboratory, an experimental facility was set up and sensors for

  16. A taxonomy of chemicals of emerging concern based on observed fate at water resource recovery facilities. (United States)

    Jones, Steven M; Chowdhury, Zaid K; Watts, Michael J


    As reuse of municipal water resource recovery facility (WRRF) effluent becomes vital to augment diminishing fresh drinking water resources, concern exists that conventional barriers may prove deficient, and the upcycling of chemicals of emerging concern (CECs) could prove harmful to human health and aquatic species if more effective and robust treatment barriers are not in place. A multiple month survey, of both primary and secondary effluents, from three (3) WRRFs, for 95 CECs was conducted in 2014 to classify CECs by their persistence through conventional water reclamation processes. By sampling the participating WRRF process trains at their peak performance (as determined by measured bulk organics and particulates removal), a short-list of recalcitrant CECs that warrant monitoring to assess treatment performance at advanced water reclamation and production facilities. The list of identified CECs for potable water reclamation (indirect or direct potable reuse) include a herbicide and its degradants, prescription pharmaceuticals and antibiotics, a female hormone, an artificial sweetener, and chlorinated flame retardants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. The Chemical Fate of Brass Dust in Waters of Varying Hardness Levels (United States)


    many species of freshwater algae. Results from studies on the acute exposure of microalgae to brass dust indicate that concentrations of 0.06 to 0.32 mg...W.T., and Landis, W.G., "The Toxicity of Brass Dust to the Microalgae An istrodesmus falcatus and Selenn m canricornutu," J. A . Tx Vol. 6(4), pp...Hemisphere Publishing Corporation, Washington, DC, p 653, 1985. 7. "Method 314B," Standard Methods for the Examination of Water and Wastewater , 15th Edition

  18. Chemical contaminants in the Wadden Sea: Sources, transport, fate and effects (United States)

    Laane, R. W. P. M.; Vethaak, A. D.; Gandrass, J.; Vorkamp, K.; Köhler, A.; Larsen, M. M.; Strand, J.


    The Wadden Sea receives contaminants from various sources and via various transport routes. The contaminants described in this overview are various metals (Cd, Cu, Hg, Pb and Zn) and various organic contaminants (polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs) and lindane (hexachlorocyclohexane, γ-HCH)). In addition, information is presented about other and emerging contaminants such as antifouling biocides (e.g. TBT and Irgarol), brominated flame retardants (BFRs), poly- and perfluorinated compounds (PFCs) and pharmaceutical and personal care products (PPCPs). Special attention is given to biogeochemical processes that contribute to the mobilization of contaminants in the surface sediments of the Wadden Sea. Finally, the effects on organisms of contaminants are reviewed and discussed. The main source of contaminants in the Wadden Sea are the rivers Rhine (via de Dutch coastal zone), Elbe and Weser. The Wadden Sea is not a sink for contaminants and adsorbed contaminants are transported from east to west. The surface sediments of the Wadden Sea are an important source for contaminants to the water above. The input and concentration of most contaminants have significantly decreased in water, sediments, organisms (e.g., mussel, flounder and bird eggs) in various parts of the Wadden Sea in the last three decades. Remarkably, the Cd concentration in mussels is increasing the last decades. In recent decades, the effects of contaminants on organisms (e.g., flounder, seal) have fallen markedly. Most of the affected populations have recovered, except for TBT induced effects in snails. Little is known about the concentration and effects of most emerging contaminants and the complex environmental mixtures of contaminants. It is recommended to install an international coordinated monitoring programme for contaminants and their effects in the whole Wadden Sea and to identify the chemical contaminants that really cause the effect.

  19. Physical–chemical properties and evaluative fate modelling of ‘emerging’ and ‘novel’ brominated and organophosphorus flame retardants in the indoor and outdoor environment

    Energy Technology Data Exchange (ETDEWEB)

    Liagkouridis, Ioannis, E-mail: [Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, SE 106 91 Stockholm (Sweden); IVL Swedish Environmental Research Institute, P.O. Box 21060, SE 100 31 Stockholm (Sweden); Cousins, Anna Palm [IVL Swedish Environmental Research Institute, P.O. Box 21060, SE 100 31 Stockholm (Sweden); Cousins, Ian T. [Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, SE 106 91 Stockholm (Sweden)


    Several groups of flame retardants (FRs) have entered the market in recent years as replacements for polybrominated diphenyl ethers (PBDEs), but little is known about their physical–chemical properties or their environmental transport and fate. Here we make best estimates of the physical–chemical properties and undertake evaluative modelling assessments (indoors and outdoors) for 35 so-called ‘novel’ and ‘emerging’ brominated flame retardants (BFRs) and 22 organophosphorus flame retardants (OPFRs). A QSPR (Quantitative Structure-Property Relationship) based technique is used to reduce uncertainty in physical–chemical properties and to aid property selection for modelling, but it is evident that more, high quality property data are required for improving future assessments. Evaluative modelling results show that many of the alternative FRs, mainly alternative BFRs and some of the halogenated OPFRs, behave similarly to the PBDEs both indoors and outdoors. These alternative FRs exhibit high overall persistence (P{sub ov}), long-range transport potential (LRTP) and POP-like behaviour and on that basis cannot be regarded as suitable replacements to PBDEs. A group of low molecular weight alternative BFRs and non-halogenated OPFRs show a potentially better environmental performance based on P{sub ov} and LRTP metrics. Results must be interpreted with caution though since there are significant uncertainties and limited data to allow for thorough model evaluation. Additional environmental parameters such as toxicity and bioaccumulative potential as well as functionality issues should be considered in an industrial substitution strategy. - Highlights: • ‘Best-estimates’ of physical–chemical properties of alternative FRs are proposed. • The ‘SMURF’ model and the OECD ‘The Tool’ are used to estimate the environmental fate. • Many alternative BFRs and HOPFRs have similar environmental fate to PBDEs. • Among alternative FRs, certain low MW

  20. Evaluating the fate of organic compounds in the Cameroon ...

    African Journals Online (AJOL)


    environment, quantify intermedia transfer processes and the major loss mechanisms from the ... Key words: Fate model, fugacity, exposure assessment, chemical fate in Cameroon, persistence. INTRODUCTION. The use of chemicals and chemical derivatives in agriculture, industry and infrastructure development has.

  1. chemical examination of the rhizomes of zingiber zerumbet, smith

    Indian Academy of Sciences (India)

    the essential oil, which is an article of commerce it contains a ketone,. Zingerone1 and an alcohol, Gingerol.2 ~. The rhizomes of another member of the same family, Zingiber Americansi. (Lampoejang pait) was re-examined by A. G. Van Veen.3 He studied in greater detail the sesquiterpene ketones, isolated previously by ...


    Indian Academy of Sciences (India)

    green stem is cut or when a twig or leaf is broken off. During the war there was great interest in the study of plant latices and we had occasion to examine a small quantity of the Jack tree latex. It was coagulated by adding just enough of alcohol (equal volume) and the resulting coagulum. (A) and aqueous alcoholic mother ...

  3. Stream dynamics and chemical transformations control the environmental fate of silver and zinc oxide nanoparticles in a watershed-scale model. (United States)

    Dale, Amy L; Lowry, Gregory V; Casman, Elizabeth A


    Mathematical models are needed to estimate environmental concentrations of engineered nanoparticles (NPs), which enter the environment upon the use and disposal of consumer goods and other products. We present a spatially resolved environmental fate model for the James River Basin, Virginia, that explores the influence of daily variation in streamflow, sediment transport, and stream loads from point and nonpoint sources on water column and sediment concentrations of zinc oxide (ZnO) and silver (Ag) NPs and their reaction byproducts over 20 simulation years. Spatial and temporal variability in sediment transport rates led to high NP transport such that less than 6% of NP-derived metals were retained in the river and sediments. Chemical transformations entirely eliminated ZnO NPs and doubled Zn mobility in the stream relative to Ag. Agricultural runoff accounted for 23% of total metal stream loads from NPs. Average NP-derived metal concentrations in the sediment varied spatially up to 9 orders of magnitude, highlighting the need for high-resolution models. Overall, our results suggest that "first generation" NP risk models have probably misrepresented NP fate in freshwater rivers due to low model resolutions and the simplification of NP chemistry and sediment transport.

  4. Characterizing use-phase chemical releases, fate, and disposal for modeling longitudinal human exposures to consumer products (United States)

    The US EPA’s Human Exposure Model (HEM) is an integrated modeling system to estimate human exposure to chemicals in household consumer products. HEM consists of multiple modules, which may be run either together, or independently. The Source-to-Dose (S2D) module in HEM use...

  5. Fate(s) of injected CO2 in a coal-bearing formation, Louisiana, Gulf Coast Basin: Chemical and isotopic tracers of microbial-brine-rock-CO2 interactions (United States)

    Shelton, Jenna L.


    Coal beds are one of the most promising reservoirs for geologic carbon dioxide (CO₂) sequestration, as CO₂ can strongly adsorb onto organic matter and displace methane; however, little is known about the long-term fate of CO₂ sequestered in coal beds. The "2800' sand" of the Olla oil field is a coal-bearing, oil and gas-producing reservoir of the Paleocene–Eocene Wilcox Group in north-central Louisiana. In the 1980s, this field, specifically the 2800' sand, was flooded with CO₂ in an enhanced oil recovery (EOR) project, with 9.0×10⁷m³ of CO₂ remaining in the 2800' sand after injection ceased. This study utilized isotopic and geochemical tracers from co-produced natural gas, oil and brine from reservoirs located stratigraphically above, below and within the 2800' sand to determine the fate of the remaining EOR-CO₂, examining the possibilities of CO₂ migration, dissolution, mineral trapping, gas-phase trapping, and sorption to coal beds, while also testing a previous hypothesis that EOR-CO₂ may have been converted by microbes (CO₂-reducing methanogens) into methane, creating a microbial "hotspot". Reservoirs stratigraphically-comparable to the 2800' sand, but located in adjacent oil fields across a 90-km transect were sampled to investigate regional trends in gas composition, brine chemistry and microbial activity. The source field for the EOR-CO₂, the Black Lake Field, was also sampled to establish the δ¹³C-CO₂ value of the injected gas (0.9‰ +/- 0.9‰). Four samples collected from the Olla 2800' sand produced CO₂-rich gas with δ¹³C-CO₂ values (average 9.9‰) much lower than average (pre-injection) conditions (+15.9‰, average of sands located stratigraphically below the 2800' sand in the Olla Field) and at much higher CO₂ concentrations (24.9 mole %) than average (7.6 mole %, average of sands located stratigraphically below the 2800' sand in the Olla Field), suggesting the presence of EOR-CO₂ and gas-phase trapping as

  6. PCB and organochlorine pesticides in northern fulmars (Fulmarus glacialis) from a High Arctic colony: chemical exposure, fate, and transfer to predators. (United States)

    Foster, Karen L; Mallory, Mark L; Hill, Laura; Blais, Jules M


    Organochlorine contaminant concentrations, associated fugacities, and stable isotopes of nitrogen (δ(15) N) are reported for liver, whole body homogenate, and opportunistically collected samples of prey (amphipods), stomach oils, digestive tract contents, and guano for northern fulmars (Fulmarus glacialis) collected at Cape Vera, Devon Island in the Canadian High Arctic. Liver concentrations of polychlorinated biphenyls (ΣPCB) and ΣDDT were on average 49.9 ± 35.4 ng g(-1) and 29.9 ± 25.2 ng g(-1) wet weight, respectively. Whole body homogenate concentrations of ΣPCB and ΣDDT were 637 ± 293 ng g(-1) and 365 ± 212 ng g(-1) wet weight, respectively. A mass and energy balance showed that whole body contaminant concentrations, which are seldom reported for Arctic seabirds, are critical in determining contaminant exposure and associated risk to predators such as the Arctic fox (Alopex lagopus). Biomagnification in the fulmars is evident, because concentrations and fugacities of contaminants were generally one to three orders of magnitude higher than those of likely prey items. The fate of diet-derived contaminants along the digestive tract is discussed, in particular with respect to stomach oils, which are used to feed chicks and for defensive purposes. The benefits of considering both concentrations and fugacities are demonstrated and provide information on the absorption and distribution of chemicals within the fulmars and contaminant transfer to offspring and predators. Copyright © 2011 SETAC.

  7. Wastewater treatment plant effluent as a source of microplastics: review of the fate, chemical interactions and potential risks to aquatic organisms. (United States)

    Ziajahromi, Shima; Neale, Peta A; Leusch, Frederic D L


    Wastewater treatment plant (WWTP) effluent has been identified as a potential source of microplastics in the aquatic environment. Microplastics have recently been detected in wastewater effluent in Western Europe, Russia and the USA. As there are only a handful of studies on microplastics in wastewater, it is difficult to accurately determine the contribution of wastewater effluent as a source of microplastics. However, even the small amounts of microplastics detected in wastewater effluent may be a remarkable source given the large volumes of wastewater treatment effluent discharged to the aquatic environment annually. Further, there is strong evidence that microplastics can interact with wastewater-associated contaminants, which has the potential to transport chemicals to aquatic organisms after exposure to contaminated microplastics. In this review we apply lessons learned from the literature on microplastics in the aquatic environment and knowledge on current wastewater treatment technologies, with the aim of identifying the research gaps in terms of (i) the fate of microplastics in WWTPs, (ii) the potential interaction of wastewater-based microplastics with trace organic contaminants and metals, and (iii) the risk for aquatic organisms.

  8. Atmospheric fate of nuclei-mode particles estimated from the number concentrations and chemical composition of particles measured at roadside and background sites (United States)

    Fushimi, Akihiro; Hasegawa, Shuichi; Takahashi, Katsuyuki; Fujitani, Yuji; Tanabe, Kiyoshi; Kobayashi, Shinji

    Number concentrations and size-resolved chemical compositions of atmospheric particles at a roadside site in Kawasaki City, Japan, and a background site 200 m away were measured in winter to estimate the atmospheric fate of nuclei-mode particles emitted from vehicles. Measurements with a scanning mobility particle sizer showed a sharp peak in nuclei-mode particles with a modal diameter of around 0.020 μm at the roadside site; in contrast, no peak for nuclei-mode particles was observed at the background site. For chemical analysis, size-resolved particles were sampled by low-pressure impactors. Carbon analysis suggested that diesel exhaust particles contributed to both the roadside and background Stage 1 (S1; 0.030-0.060 μm) particles. The ratios of organic carbon (OC) to total carbon (TC) increased for smaller particles, and were 28% and 51% for the roadside and the background S1 particles, respectively. It is likely that the OC/TC ratio for nuclei-mode particles was larger than for the S1 particles, and that OC was one of the major constituents of the nuclei-mode particles at the roadside site. From this result and the greater Kelvin effect for smaller particles, it is likely that nuclei-mode particles in the roadside atmosphere are more volatile than the S1 particles. Organic analysis of the size-resolved particles suggested that lubricating oil from vehicles affected the organic composition of both the roadside and background S1 particles, and that C 33n-alkane and more volatile organic compounds in the S1 particles partially evaporated in the atmosphere following the emission of the particles from diesel vehicles. It is likely that evaporation of the constituents (or possibly coagulation with pre-existing particles after shrinking by partial evaporation) of the nuclei-mode particles in the atmosphere was responsible for the absence of nuclei-mode particles in the background atmosphere.

  9. Hydrometric, Chemical, and Multi-Isotope Approaches to Assess the Water Balance and the Sources and Fate of Nitrate and Sulfate in the South Saskatchewan River Basin, Canada (United States)

    Mayer, B.; Wassenaar, L. I.; Ferguson, P. R.; Rock, L.; McCallum, J. E.; Veizer, J.


    River water, seasonally sampled at 25 stations along the South Saskatchewan River and its tributaries between the headwaters in Alberta and mouth near Prince Albert (Saskatchewan), was analyzed for its chemical and isotopic composition (δ2H, δ18O, δ13CDIC, δ15Nnitrate, δ18Onitrate, δ34Ssulfate, δ18Osulfate). Using a water-isotope mass balance approach we estimated that circa 7% (35 mm) of the annual precipitation (490 mm) in the watershed is subject to evaporation, while circa 51% (247 mm) is returned to the atmosphere via transpiration. In order to identify the sources and the fate of sulfate and nitrate along the river, riverine sulfate and nitrate fluxes were calculated by combining hydrometric data with concentration measurements. Sulfur, nitrogen, and oxygen isotope measurements were used to determine the causes of marked changes in sulfate and nitrate fluxes with increasing flow distance. Geologic (evaporite) sulfate was the predominant sulfate source in the headwaters, while sulfate from anthropogenic sources in urban areas and from pyrite oxidation in the tills of agricultural regions caused markedly elevated sulfate fluxes with increasing distance. Nitrate fluxes in the headwater section were low and N and O stable isotope data indicated that the nitrate was mainly derived from nitrification in forest soils. With increasing flow distance, there was clear evidence of nitrate loading from municipal waste water sources. Downstream of major urban centers, nitrate flux data indicated active nitrogen assimilation particularly during the summer months. There was also evidence for influx of manure-derived nitrate with agricultural return flows in some areas of the South Saskatchewan River basin. Additional tracer techniques (e.g. B isotopes) would have been desirable to better differentiate nitrate loading from urban and agricultural sources. Nevertheless, this study demonstrates that stable isotope techniques are an effective tool for constraining water

  10. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. (United States)

    Hahladakis, John N; Velis, Costas A; Weber, Roland; Iacovidou, Eleni; Purnell, Phil


    Over the last 60 years plastics production has increased manifold, owing to their inexpensive, multipurpose, durable and lightweight nature. These characteristics have raised the demand for plastic materials that will continue to grow over the coming years. However, with increased plastic materials production, comes increased plastic material wastage creating a number of challenges, as well as opportunities to the waste management industry. The present overview highlights the waste management and pollution challenges, emphasising on the various chemical substances (known as "additives") contained in all plastic products for enhancing polymer properties and prolonging their life. Despite how useful these additives are in the functionality of polymer products, their potential to contaminate soil, air, water and food is widely documented in literature and described herein. These additives can potentially migrate and undesirably lead to human exposure via e.g. food contact materials, such as packaging. They can, also, be released from plastics during the various recycling and recovery processes and from the products produced from recyclates. Thus, sound recycling has to be performed in such a way as to ensure that emission of substances of high concern and contamination of recycled products is avoided, ensuring environmental and human health protection, at all times. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  11. Coupling passive air sampling with emission estimates and chemical fate modeling for persistent organic pollutants (POPs): a feasibility study for Northern Europe. (United States)

    Gioia, Rosalinda; Sweetman, Andy J; Jones, Kevin C


    Passive air samplers (polyurethane foam disks) were deployed at 23 background locations along a broadly west-east transect in 8 northern European countries and analyzed for PCBs, PBDEs, PAHs, and a range of organochlorine pesticides (HCB, DDTs, and DDEs). PCBs and PAHs were highest at the center of the transect (Denmark) and lowest in northern Norway. HCB was relatively uniformly distributed, reflecting its persistence and high degree of mixing in air. Higher DDE and DDT levels occurred in Eastern Europe and at several sites in Central Europe. PBDE levels were generally similar at all sites, but lower for some locations in Eastern Europe and Ireland. Emissions information for PCBs, HCB, and PBDEs was used as input for a multi-media chemical fate model, to generate predicted air concentrations and compare with these measured values. Different scenarios were highlighted by this exercise: (i) country and compound combinations where the national inventory gave predicted air concentrations in close agreement with those measured (e.g., PCBs in the UK); (ii) country and compound combinations where predicted concentrations were well below those measured, but where advection of emissions from elsewhere is likely to be important (e.g., PCBs in Norway); (iii) consistent underestimation of compound concentrations by the emissions modeling (i.e., HCB); and (iv) general overestimation of ambient concentrations (i.e., PBDEs). Air mass trajectory analysis showed the likely role of long-range atmospheric transport (LRAT) on national levels. In general, advection from the south and west of Europe appeared to contribute to ambient POPs levels for countries in the center and northeast of the transect. Guidelines are presented as to how countries that want to assess their POPs source inventories can do so with this relatively cheap initial screening approach.

  12. Fate of acetone in water (United States)

    Rathbun, R.E.; Stephens, D.W.; Shultz, D.J.


    The physical, chemical, and biological processes that might affect the concentration of acetone in water were investigated in laboratory studies. Processes considered included volatilization, adsorption by sediments, photodecomposition, bacterial degradation, and absorption by algae and molds. It was concluded that volatilization and bacterial degradation were the dominant processes determining the fate of acetone in streams and rivers. ?? 1982.

  13. Examining predictors of chemical toxicity in freshwater fish using the random forest technique. (United States)

    Tuulaikhuu, Baigal-Amar; Guasch, Helena; García-Berthou, Emili


    Chemical pollution is one of the main issues globally threatening the enormous biodiversity of freshwater ecosystems. The toxicity of substances depends on many factors such as the chemical itself, the species affected, environmental conditions, exposure duration, and concentration. We used the random forest technique to examine the factors that mediate toxicity in a set of widespread fishes and analyses of covariance to further assess the importance of differential sensitivity among fish species. Among 13 variables, the 5 most important predictors of toxicity with random forests were, by order of importance, the chemical substance itself (i.e., Chemical Abstracts Service number considered as a categorical factor), octanol-water partition coefficient (log P), pollutant prioritization, ecological structure-activity relationship (ECOSAR) classification, and fish species for 50% lethal concentrations (LC 50 ) and the chemical substance, fish species, log P, ECOSAR classification, and water temperature for no observed effect concentrations (NOECs). Fish species was a very important predictor for both endpoints and with the two contrasting statistical techniques used. Different fish species displayed very different relationships with log P, often with different slopes and with as much importance as the partition coefficient. Therefore, caution should be exercised when extrapolating toxicological results or relationships among species. In addition, further research is needed to determine species-specific sensitivities and unravel the mechanisms behind them.

  14. "I overcame fate, fate harkens to me"

    Directory of Open Access Journals (Sweden)

    Jan Bergman


    Full Text Available ”I overcome Fate (to heimarmenon; Fate harkens to me". In order to understand the tension in this proclamation of Isis, which forms the conclusion of the Isis aretalogy from Cyme, we must make a closer acquaintance with the two dramatis personae. With what right could Isis make a claim like this? How was to heimarmenon understood and experienced in the Hellenistic environment to which the Cyme hymn belongs? This paper considers the Egyptian goddess and her relation to Fate, by pointing out a few `fatalistic traits' in Isis' character. But first we have to ask another question: How did the Egyptians understand Fate in general? What concepts did they use in order to define Fate and its effects? What was the relation between the god(s and Fate?

  15. Origin and fate of copper in a small Mediterranean vineyard catchment: New insights from combined chemical extraction and δ{sup 65}Cu isotopic composition

    Energy Technology Data Exchange (ETDEWEB)

    El Azzi, D. [Université de Toulouse (France); INPT, UPS (France); Laboratoire Ecologie Fonctionnelle et Environnement (ECOLAB), ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan Cedex (France); CNRS (France); ECOLAB, ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan Cedex (France); Viers, J. [Université de Toulouse (France); UPS, Géosciences Environnement Toulouse (GET), 14, avenue Édouard Belin, Toulouse31400 (France); CNRS, IRD, CNES (France); GET, 14, avenue Édouard Belin, Toulouse 31400 (France); Guiresse, M.; Probst, A. [Université de Toulouse (France); INPT, UPS (France); Laboratoire Ecologie Fonctionnelle et Environnement (ECOLAB), ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan Cedex (France); CNRS (France); ECOLAB, ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan Cedex (France); Aubert, D. [Université de Perpignan Via Domitia, CEntre de Formation et de Recherche sur les Environnements Méditérranéens (CEFREM), UMR 5110, F-66860, Perpignan (France); CNRS, CEFREM, UMR 5110, F-66860, Perpignan (France); Caparros, J.; Charles, F.; Guizien, K. [CNRS, FRE 3350, LECOB, Observatoire Océanologique, F-66651 Banyuls/mer (France); UPMC Université Paris 6, FRE 3350, LECOB, Observatoire Océanologique, F-66651 Banyuls/mer (France); Probst, J.L., E-mail: [Université de Toulouse (France); INPT, UPS (France); Laboratoire Ecologie Fonctionnelle et Environnement (ECOLAB), ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan Cedex (France); CNRS (France); ECOLAB, ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan Cedex (France)


    For centuries, many Mediterranean catchments were covered with vineyards in which copper was widely applied to protect grapevines against fungus. In the Mediterranean-type flow regime, brief and intense flood events increase the stream water discharge by up to 10 times and cause soil leaching and storm runoff. Because vineyards are primarily cultivated on steep slopes, high Cu fluxes are discharged by surface water runoff into the rivers. The purpose of this work was to investigate the riverine behavior and transport of anthropogenic Cu by coupling a sequential chemical extraction (SCE) procedure, used to determine Cu partitioning between residual and non-residual fractions, with δ{sup 65}Cu isotopic measurements in each fraction. In the Baillaury catchment, France, we sampled soils (cultivated and abandoned), river bed sediments (BS), suspended particulate matter (SPM), and river water during the flash flood event of February 2009. Copper partitioning using SCE show that most of Cu in abandoned vineyard soil was in the residual phase (> 60%) whereas in cultivated soil, BS and SPM, Cu was mostly (> 25%) in non-residual fractions, mainly adsorbed onto iron oxide fractions. A small fraction of Cu was associated with organic matter (5 to 10%). Calculated enrichment factors (EF) are higher than 2 and the anthropogenic contribution was estimated between 50 to 85%. Values for δ{sup 65}Cu in bulk samples were similar to bedrock therefore; δ{sup 65}Cu on SCE fractions of superficial soils and SPM allowed for discrimination between Cu origin and distribution. Copper in residual fractions was of natural mineral origin (δ{sup 65}Cu close to local bedrock, + 0.07‰). Copper in water soluble fraction of SPM (δ{sup 65}Cu = + 0.26‰) was similar to dissolved river Cu (δ{sup 65}Cu = + 0.31‰). Copper from fungicide treatment (δ{sup 65}Cu = − 0.35‰) was bound to organic matter (δ{sup 65}Cu = − 0.20‰) without or with slight isotopic fractioning. A preferential

  16. The Atmospheric Fate of Organic Nitrogen Compounds (United States)

    Borduas, Nadine

    Organic nitrogen compounds are present in our atmosphere from biogenic and anthropogenic sources and have impacts on air quality and climate. Due to recent advances in instrumentation, these compounds are being detected in the gas and particle phases, raising questions as to their source, processing and sinks in the environment. With their recently identified role as contributors to aerosol formation and growth, their novel large scale use as solvents in carbon capture and storage (CCS) technology and their emissions from cigarette smoke, it is now important to address the gaps in our understanding of the fate of organic nitrogen. Experimentally and theoretically, I studied the chemical atmospheric fate of specific organic nitrogen compounds in the amine, amide and isocyanate families, yielding information that can be used in chemical transport models to assess the fate of this emerging class of atmospheric molecules. I performed kinetic laboratory studies in a smog chamber to measure the room temperature rate coefficient for reaction with the hydroxyl radical of monoethanolamine, nicotine, and five different amides. I employed online-mass spectrometry techniques to quantify the oxidation products. I found that amines react quickly with OH radicals with lifetimes of a few hours under sunlit conditions, producing amides as oxidation products. My studies on amides revealed that they have much longer lifetimes in the atmosphere, ranging from a few hours to a week. Photo-oxidation of amides produces isocyanates and I investigated these mechanisms in detail using ab initio calculations. Furthermore, I experimentally measured isocyanic acid's Henry's Law constant as well as its hydrolysis rate constants to better understand its sinks in the atmosphere. Finally, I re-examined the structure-activity relationship (SAR) of organic nitrogen molecules for improved model parameterizations.

  17. The influence of climate change on the global distribution and fate processes of anthropogenic persistent organic pollutants. (United States)

    Kallenborn, Roland; Halsall, Crispin; Dellong, Maud; Carlsson, Pernilla


    The effect of climate change on the global distribution and fate of persistent organic pollutants (POPs) is of growing interest to both scientists and policy makers alike. The impact of warmer temperatures and the resulting changes to earth system processes on chemical fate are, however, unclear, although there are a growing number of studies that are beginning to examine these impacts and changes in a quantitative way. In this review, we examine broad areas where changes are occurring or are likely to occur with regard to the environmental cycling and fate of chemical contaminants. For this purpose we are examining scientific information from long-term monitoring data with particular emphasis on the Arctic, to show apparent changes in chemical patterns and behaviour. In addition, we examine evidence of changing chemical processes for a number of environmental compartments and indirect effects of climate change on contaminant emissions and behaviour. We also recommend areas of research to address knowledge gaps. In general, our findings indicate that the indirect consequences of climate change (i.e. shifts in agriculture, resource exploitation opportunities, etc.) will have a more marked impact on contaminants distribution and fate than direct climate change.

  18. Experimental methodology for assessing the environmental fate of organic chemicals in polymer matrices using column leaching studies and OECD 308 water/sediment systems: Application to tire and road wear particles

    Energy Technology Data Exchange (ETDEWEB)

    Unice, Kenneth M., E-mail:; Bare, Jennifer L.; Kreider, Marisa L.; Panko, Julie M.


    Automobile tires require functional rubber additives including curing agents and antioxidants, which are potentially environmentally available from tire and road wear particles (TRWP) deposited in soil and sediment. A novel methodology was employed to evaluate the environmental fate of three commonly-used tire chemicals (N-cyclohexylbenzothiazole-2-sulfenamide (CBS), N-(1,3-dimethylbutyl)-N′-phenyl-1,4-phenylenediamine (6-PPD) and 1,3-diphenylguanidine (DPG)), using a road simulator, an artificial weathering chamber, column leaching tests, and OECD 308 sediment/water incubator studies. Environmental release factors were quantified for curing (f{sub C}), tire wear (f{sub W}), terrestrial weathering (f{sub S}), leaching from TRWP (f{sub L}), and environmental availability from TRWP (f{sub A}) by liquid chromatography–tandem mass spectroscopy (LC/MS/MS) analyses. Cumulative fractions representing total environmental availability (F{sub T}) and release to water (F{sub R}) were calculated for the tire chemicals and 13 transformation products. F{sub T} for CBS, DPG and 6-PPD inclusive of transformation products for an accelerated terrestrial aging time in soil of 0.1 years was 0.08, 0.1, and 0.06, respectively (equivalent to 6 to 10% of formulated mass). In contrast, a wider range of 5.5 × 10{sup −4} (6-PPD) to 0.06 (CBS) was observed for F{sub R} at an accelerated age of 0.1 years, reflecting the importance of hydrophobicity and solubility for determining the release to the water phase. Significant differences (p < 0.05) in the weathering factor, f{sub S}, were observed when chemicals were categorized by boiling point or hydrolysis rate constant. A significant difference in the leaching factor, f{sub L}, and environmental availability factor, f{sub A,} was also observed when chemicals were categorized by log K{sub ow}. Our methodology should be useful for lifecycle analysis of other functional polymer chemicals. - Highlights: • Studied two vulcanization

  19. Monitoring, chemical fate modelling and uncertainty assessment in combination: a tool for evaluating emission control scenarios for micropollutants in stormwater systems

    DEFF Research Database (Denmark)

    Mikkelsen, Peter Steen; Vezzaro, Luca; Birch, Heidi


    management in urban areas, but it is strongly hampered by the general lack of field data on these substances. A framework for combining field monitoring campaigns with dynamic MP modelling tools and statistical methods for uncertainty analysis was hence developed to estimate MP fluxes and fate in stormwater......Stormwater discharges can represent significant sources of micropollutants (MP), including heavy metals and xenobiotic organic compounds that may pose a toxicity risk to aquatic ecosystems. Control of stormwater quality and reduction of MP loads is therefore necessary for a sustainable stormwater...... runoff and treatment systems under sparse data conditions. The framework was applied to an industrial/residential area in the outskirts of Copenhagen (Denmark), where stormwater is discharged in a separate channel system discharging to a wet detention pond. Analysis of economic activities and GIS data...

  20. E4CHEM. A simulation program for the fate of chemicals in the environment. Handbook. User`s guide and description. Version 3.6. December 1995

    Energy Technology Data Exchange (ETDEWEB)

    Brueggemann, R. [GSF - Forschungszentrum fuer Umwelt und Gesundheit Neuherberg GmbH, Oberschleissheim (Germany). Projektgruppe Umweltgefaehrdungspotentiale von Chemikalien; Drescher-Kaden, U. [GSF - Forschungszentrum fuer Umwelt und Gesundheit Neuherberg GmbH, Oberschleissheim (Germany). Projektgruppe Umweltgefaehrdungspotentiale von Chemikalien; Muenzer, B. [GSF - Forschungszentrum fuer Umwelt und Gesundheit Neuherberg GmbH, Oberschleissheim (Germany). Projektgruppe Umweltgefaehrdungspotentiale von Chemikalien


    The predominant aims of E4CHEM are: Deterministic description of the chemical`s behavior in the environment with varying ecoparameters including the special aspects; Behavior of the same chemical in different compartments; Behavior of different chemicals in the same compartment with the same ecoparameters; Tracing back of chemicals detected in the environment to the possible source by means of check procedures like in EXWAT, one of the E4CHEM models; Discharge of the user from extensive calculation operations; Interpretation of experimental results. In combination with statistics and algebraic tools (lattice theory) but not included in E4CHEM yet: Selection of descriptors as tool for priority setting; Identification and ranking of chemicals according to their risk to the environment by comparing descriptors within descriptor matrices about the behavior of chemicals deived from the different models. Furthermore: Identification of chemical applicable as reference substances with respect to environmental behavior. The program E4CHEM is described in this manual. (orig./SR)

  1. Fate of injected CO2 in the Wilcox Group, Louisiana, Gulf Coast Basin: Chemical and isotopic tracers of microbial–brine–rock–CO2 interactions (United States)

    Shelton, Jenna L.; McIntosh, Jennifer C.; Warwick, Peter D.; Lee Zhi Yi, Amelia


    The “2800’ sandstone” of the Olla oil field is an oil and gas-producing reservoir in a coal-bearing interval of the Paleocene–Eocene Wilcox Group in north-central Louisiana, USA. In the 1980s, this producing unit was flooded with CO2 in an enhanced oil recovery (EOR) project, leaving ∼30% of the injected CO2 in the 2800’ sandstone post-injection. This study utilizes isotopic and geochemical tracers from co-produced natural gas, oil and brine to determine the fate of the injected CO2, including the possibility of enhanced microbial conversion of CO2 to CH4 via methanogenesis. Stable carbon isotopes of CO2, CH4 and DIC, together with mol% CO2 show that 4 out of 17 wells sampled in the 2800’ sandstone are still producing injected CO2. The dominant fate of the injected CO2appears to be dissolution in formation fluids and gas-phase trapping. There is some isotopic and geochemical evidence for enhanced microbial methanogenesis in 2 samples; however, the CO2 spread unevenly throughout the reservoir, and thus cannot explain the elevated indicators for methanogenesis observed across the entire field. Vertical migration out of the target 2800’ sandstone reservoir is also apparent in 3 samples located stratigraphically above the target sand. Reservoirs comparable to the 2800’ sandstone, located along a 90-km transect, were also sampled to investigate regional trends in gas composition, brine chemistry and microbial activity. Microbial methane, likely sourced from biodegradation of organic substrates within the formation, was found in all oil fields sampled, while indicators of methanogenesis (e.g. high alkalinity, δ13C-CO2 and δ13C-DIC values) and oxidation of propane were greatest in the Olla Field, likely due to its more ideal environmental conditions (i.e. suitable range of pH, temperature, salinity, sulfate and iron concentrations).

  2. CAirTOX: A compartment model for assessing the fate of and human exposure to toxic-chemical emissions to air

    Energy Technology Data Exchange (ETDEWEB)

    McKone, T.E.


    CAirTOX has been developed as a spreadsheet model to assist in making a risk assessment of toxic air emissions. With CAirTOX, one can address how contaminants released to an air basin can lead to contamination of soil, food, surface water, and sediments. The modeling effort includes a multimedia transport and transformation model, exposure scenario models, and efforts to quantify uncertainty in multimedia, multiple-pathway exposure assessments. The multimedia transport and transformation model is a steady-state, but non-equilibrium model that can be used to assess concentrations of contaminants released continuously to air. In Part 1, the authors describe the multimedia transport and transformation model used to determine the fate of air emissions. In Part 2, they describe inputs and data needs for CAirTOX and the development of a set of landscape factors, which can be used to represent regional air basin/water-shed systems in California. In Part 3, they describe the multiple-pathway exposure scenarios and exposure algorithms. In Part 4, they compare the HRA approach and results and the CAirTOX exposure equations. In Part 5, they consider model sensitivity and uncertainty to determine how variability and uncertainty in model inputs affects the precision, accuracy, and credibility of the model output.

  3. 9 CFR 318.9 - Samples of products, water, dyes, chemicals, etc., to be taken for examination. (United States)


    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Samples of products, water, dyes, chemicals, etc., to be taken for examination. 318.9 Section 318.9 Animals and Animal Products FOOD SAFETY... ESTABLISHMENTS; REINSPECTION AND PREPARATION OF PRODUCTS General § 318.9 Samples of products, water, dyes...

  4. Modeling Engineered Nanomaterials (ENMs) Fate and Transport in Aquatic Ecosystems (United States)

    Under the Toxic Substances Control Act (TSCA), the Environmental Protection Agency (EPA) is required to perform new chemical reviews of engineered nanomaterials (ENMs) identified in pre-manufacture notices. However, environmental fate models developed for traditional contaminants...

  5. Examination of the chemical changes in cured phenol-formaldehyde resins during storage. (United States)

    Strzemiecka, B; Zięba-Palus, J; Voelkel, A; Lachowicz, T; Socha, E


    Chemical changes occurring within cured phenol-formaldehyde resins (resite and novolak type) during their storage were investigated by FT-NIR, py-GCMS and inverse gas chromatography. It was shown that a mixture of resite with novolak was less stable than resite or novolak itself as regards bulk properties. This aging phenomenon is mainly due to reaction of ammonia (product of hexa decomposition) with CH2OH groups present in resite. FT-NIR technique seems to be the least sensitive method for assessment chemical changes occurring during cured resins storage. Applications of py-GCMS and IGC method made able to indicate that more significant changes were for bulk samples (py-GCMS results) than on their surface (IGC results). Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Technological, chemical, sensory, and microbiological examination of frozen chicken as affected by microwave thawing


    Kenawi M.A.


    The effect of microwave heating as a thawing method on physical, chemical sensory, and microbiological properties of frozen chicken was investigated in comparison with other thawing methods (at ambient temperature, in refrigerator, and in running tap water). Microwave thawed chicken had the highest taste panel scores and the lowest drip percentage loss compared with the other thawing methods. Thiobarbituric acid value (TBA) remarkably increased the samples thawed at ambient temperature or und...

  7. Fate of the chemical warfare agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX) on soil following accelerant-based fire and liquid decontamination. (United States)

    Gravett, M R; Hopkins, F B; Self, A J; Webb, A J; Timperley, C M; Riches, J R


    In the event of alleged use of organophosphorus nerve agents, all kinds of environmental samples can be received for analysis. These might include decontaminated and charred matter collected from the site of a suspected chemical attack. In other scenarios, such matter might be sampled to confirm the site of a chemical weapon test or clandestine laboratory decontaminated and burned to prevent discovery. To provide an analytical capability for these contingencies, we present a preliminary investigation of the effect of accelerant-based fire and liquid decontamination on soil contaminated with the nerve agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX). The objectives were (a) to determine if VX or its degradation products were detectable in soil after an accelerant-based fire promoted by aviation fuel, including following decontamination with Decontamination Solution 2 (DS2) or aqueous sodium hypochlorite, (b) to develop analytical methods to support forensic analysis of accelerant-soaked, decontaminated and charred soil and (c) to inform the design of future experiments of this type to improve analytical fidelity. Our results show for the first time that modern analytical techniques can be used to identify residual VX and its degradation products in contaminated soil after an accelerant-based fire and after chemical decontamination and then fire. Comparison of the gas chromatography-mass spectrometry (GC-MS) profiles of VX and its impurities/degradation products from contaminated burnt soil, and burnt soil spiked with VX, indicated that the fire resulted in the production of diethyl methylphosphonate and O,S-diethyl methylphosphonothiolate (by an unknown mechanism). Other products identified were indicative of chemical decontamination, and some of these provided evidence of the decontaminant used, for example, ethyl 2-methoxyethyl methylphosphonate and bis(2-methoxyethyl) methylphosphonate following decontamination with DS2. Sample preparation

  8. Examining the electrical and chemical properties of reduced graphene oxide with varying annealing temperatures in argon atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, Benjamin A. [Centre for NanoScale Science and Technology, School of Chemical and Physical Sciences Flinders University, GPO Box 2100, Adelaide 5001, SA (Australia); Notarianni, Marco [Institute for Future Environments and School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology, Brisbane 4001, QLD (Australia); Plasma-Therm LLC, 10050 16th St North, St. Petersburg, FL 33716 (United States); Liu, Jinzhang [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Motta, Nunzio, E-mail: [Institute for Future Environments and School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology, Brisbane 4001, QLD (Australia); Andersson, Gunther G., E-mail: [Centre for NanoScale Science and Technology, School of Chemical and Physical Sciences Flinders University, GPO Box 2100, Adelaide 5001, SA (Australia)


    Graphical abstract: - Highlights: • Graphene oxide was reduced by annealing up to 1000 °C. • Sheet resistance of the graphene oxide layer decreases in the annealing process. • Sheet resistance decreases with increase in sp{sup 2} hybridised carbon. • Density of states at low binding energy increase with decreasing sheet resistance. - Abstract: Graphene oxide flakes were successfully fabricated and deposited as a film onto a silicon substrate. A series of these samples were annealed at various temperatures under a low pressure argon environment. The valence structure of the surface is examined using ultraviolet photoelectron spectroscopy whilst the chemical nature of the surface is examined using X-ray photoelectron spectroscopy. The sheet resistance was measured to document the performance changes with variation in electronic and chemical nature of the surface. It was found that increasing the annealing temperature increased the 2p π content leading to a better conductivity and reduction in sheet resistance.

  9. Lineage, Fate, and Fate Potential of NG2-glia (United States)

    Nishiyama, Akiko; Boshans, Linda; Goncalves, Christopher M.; Wegrzyn, Jill; Patel, Kiran D.


    NG2 cells represent a fourth major glial cell population in the mammalian central nervous system (CNS). They arise from discrete germinal zones in mid-gestation embryos and expand to occupy the entire CNS parenchyma. Genetic fate mapping studies have shown that oligodendrocytes and a subpopulation of ventral protoplasmic astrocytes arise from NG2 cells. This review describes recent findings on the fate and fate potential of NG2 cells under physiological and pathological conditions. We discuss age-dependent changes in the fate and fate potential of NG2 cells and possible mechanisms that could be involved in restricting their oligodendrocyte differentiation or fate plasticity. PMID:26301825

  10. A Review of Hazardous Chemical Species Associated with CO2 Capturefrom Coal-Fired Power Plants and Their Potential Fate in CO2 GeologicStorage

    Energy Technology Data Exchange (ETDEWEB)

    Apps, J.A.


    environmental pollutants in the gaseous state and co-inject them with the CO2, in order to mitigate problems associated with solid waste disposal in surface impoundments. Under such conditions, the injected pollutant concentrations could be roughly equivalent to their concentrations in the coal feed. The fate of the injected contaminants can only be determined through further testing and geochemical modeling. However, the concentrations of inadvertent contaminants in the injected CO2 would probably be comparable to their ambient concentrations in confining shales of the injection zone. In general, the aqueous concentrations of hazardous constituents in distal parts of the injection zone, regardless of source, are likely to be limited by equilibrium with respect to coexisting solid phases under the acid conditions induced by the dissolved high pressure CO2, rather than by the initial concentrations of injected contaminants. Therefore, even if a deliberate policy of contaminant recovery and injection were to be pursued, water quality in USDWs would more likely depend on thermodynamic controls governing aqueous contaminant concentrations in the presence of high pressure CO2 rather than in the injected CO2. The conclusions reached in this report are preliminary, and should be confirmed through more comprehensive data evaluation and supporting geochemical modeling.

  11. Storm water runoff measurements of copper from a naturally patinated roof and from a parking space. Aspects on environmental fate and chemical speciation. (United States)

    Odnevall Wallinder, I; Hedberg, Y; Dromberg, P


    Release of copper from a naturally aged copper roof on a shopping centre building in a suburban site of Stockholm has been measured during different rain events after its interaction with the internal drainage system and storm drains made of cast iron and concrete. Concentrations of copper removed by means of urban storm water from a nearby parking space have been determined for comparison. Predictions and measurements of the chemical speciation of released copper are discussed compared to the total concentration, and to threshold values for freshwater and drinking water. The results clearly illustrate that the major part of the released copper from the roof is readily retained already during transport through the internal drainage system of the building, a pathway that also changes the chemical speciation of released copper and its bioavailable fraction. Most copper, not retained by cast iron and concrete surfaces, was strongly complexed to organic matter. The median concentration of free cupric ions and weak copper complexes was less than, or within the range of reported no effect concentrations, NOECs, of copper in surface waters. The parking space contributed with significantly higher and time-dependent concentrations of total copper compared to measured concentrations of copper from the roof after the interaction with the drainage system. Most copper in the surface runoff water was strongly complexed with organic matter, hence reducing the bioavailable fraction significantly to concentrations within the NOEC range. Dilution with other sources of urban storm water will reduce the released concentration of copper even further. The results illustrate that already the internal drainage system and the storm drains made of cast iron and concrete act as efficient sinks for released copper which means that any installation of additional infiltration devices is redundant.

  12. Quantitative examination of carbide and sulphide precipitates in chemically complex steels processed by direct strip casting

    Energy Technology Data Exchange (ETDEWEB)

    Dorin, Thomas, E-mail: [Deakin University, Pigdons Road, Geelong, Victoria, 3216 (Australia); Wood, Kathleen [Australian Nuclear Science and Technology Organisation, Bragg Institute, New South Wales, 2234, Menai (Australia); Taylor, Adam; Hodgson, Peter; Stanford, Nicole [Deakin University, Pigdons Road, Geelong, Victoria, 3216 (Australia)


    A high strength low alloy steel composition has been melted and processed by two different routes: simulated direct strip casting and slow cooled ingot casting. The microstructures were examined with scanning and transmission electron microscopy, atom probe tomography and small angle neutron scattering (SANS). The formation of cementite (Fe{sub 3}C), manganese sulphides (MnS) and niobium carbo-nitrides (Nb(C,N)) was investigated in both casting conditions. The sulphides were found to be significantly refined by the higher cooling rate, and developed an average diameter of only 100 nm for the fast cooled sample, and a diameter too large to be measured with SANS in the slow cooled condition (> 1.1 μm). Slow cooling resulted in the development of classical Nb(C,N) precipitation, with an average diameter of 7.2 nm. However, after rapid cooling both the SANS and atom probe tomography data indicated that the Nb was retained in the matrix as a random solid solution. There was also some evidence that O, N and S are also retained in solid solution in levels not found during conventional processing. - Highlights: • The influence of cooling rate on microstructure is investigated in a HSLA steel. • SANS, TEM and APT are used to characterise the sulphides and Nb(C,N) precipitates. • The slow cooling rate result in the formation of Nb(C,N) precipitates. • The fast cooling rate results in a microstructure supersaturated in Nb, C and N. • The sulphides are 100 nm in the fast cooled sample and > 1 μm in the slow cooled one.

  13. Fate of the microbial population and the physico-chemical parameters of "Sanganel" a typical blood sausages of the Friuli, a north-east region of Italy. (United States)

    Iacumin, Lucilla; Manzano, Marisa; Stella, Simone; Comi, Giuseppe


    In Friuli, a Northeastern region of Italy, a blood sausage called Sanganel is produced by farmers, butchers, shops, and factories. This sausage is made with pork meat, boiled blood, lard, spices, and salt. It is stored at 4 ± 2 °C and usually eaten fresh or boiled within 14 days of its manufacture. Little is known about its microbial populations and safety for consumption. The aim of this study is to characterise the microbial populations and the physico-chemical parameters of Sanganel to establish its quality and the safety of consuming it. The microbial population of Sanganel is typical of meat products, and psychrotrophic enterobacteria and lactic acid bacteria (LAB) grow while it is stored. Enterobacteria produce total basic volatile nitrogen (TVB-N) and biogenic amines that, despite the presence of LAB, increase the pH of the sausage to approximately 6.9. Considering the concentrations of Enterobacteriaceae and TVB-N in the sausage, a shelf-life of 14 days is suggested. However, at 30 days the sausage is safe to eat and presents normal odours and flavours. In addition, boiling the sausage for 30 min before consumption eliminates the asporogenous microbial population. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Equilibrium, photophysical, photochemical, and quantum chemical examination of anionic mercury(II) mono- and bisporphyrins. (United States)

    Valicsek, Zsolt; Lendvay, György; Horváth, Ottó


    increased efficiency of the indirect photoinduced LMCT, not the redox potential, but the position of the metal center is responsible. The two orders of magnitude higher photoredux quantum yield for the 3:2 complex, compared to that of the 2:2 species, can be explained by the repulsive effect of the inner mercury(II) ion pushing the other two farther out of the ligand cavity. In bisporphyrins the second excited states are photochemically more reactive than the first ones, while most of the photochemical processes of HgP(4-) originate from the first excited state. According to our quantum chemical calculations, the mercury(II) ion causes the expansion of the porphyrin-cavity; therefore its out-of-plane position is smaller than the value expected based on its ionic radius. In the hitherto unknown 2:2 dimer two 1:1 saucer-shaped monomers are kept together by secondary forces, mostly by pi-pi interaction, but their relative arrangement was not unequivocally determined by the two DFT functionals used. The arrangements with a symmetry axis or plane perpendicular to both rings are not favored; instead, the two monomers are shifted along the porphyrin planes, either in a Hg-P-Hg-P or a Hg-P-P-Hg order. Our time-dependent density functional theory (TD-DFT) calculations indicate that the electronic spectra are not very sensitive to the structure of the dimer, even though the environment of the porphyrin rings is quite different if one of the metal ions is between or outside of both macrocycles. The calculated spectral shifts agree only partially with the experimental data. The TD-DFT calculations suggest that the chromophores are not fully independent in the bisporphyrins and that the observed spectral shift cannot be uniquely assigned to the geometrical distortion of the porphyrin macrocyle.

  15. Year-long evaluation on the occurrence and fate of pharmaceuticals, personal care products, and endocrine disrupting chemicals in an urban drinking water treatment plant. (United States)

    Padhye, Lokesh P; Yao, Hong; Kung'u, Francis T; Huang, Ching-Hua


    The occurrence and removal of thirty representative pharmaceutical and personal care products (PPCPs) and endocrine disrupting chemicals (EDCs) in an urban drinking water treatment plant (DWTP) were investigated for a period of one year to evaluate current system's treatment efficacy and assess occurrence of PPCPs and EDCs in finished drinking water. Results showed that the average total PPCPs and EDCs concentration in the surface water source was around 360 ng/L (median concentration = 340 ng/L) with 57% coefficient of variation (CV). The median concentrations of most of the individual PPCPs and EDCs in the surface water were below 15 ng/L except for N,N-diethyltoluamide (DEET) and nonylphenol, which were at 122 and 83 ng/L, respectively. The compounds DEET, nonylphenol, ibuprofen, triclosan, atrazine, tris(2-chloroethyl)-phosphate (TCEP), bisphenol-A, and caffeine (in the order of decreasing median concentration) were among twenty compounds detected at least once in the surface water, while all of the above detected compounds, except two, were also detected in the finished drinking water. The average total PPCPs and EDCs concentration in the finished drinking water was around 98 ng/L (median concentration = 96 ng/L) with 66% CV. The median concentrations of most detected PPCPs and EDCs in drinking water were below 5 ng/L except for DEET and nonylphenol, which were at 12 and 20 ng/L, respectively. There was a strong correlation (r = 0.97) between PPCPs and EDCs' concentrations in the source water and in the drinking water over the one-year study period when data points from two sampling events with unusual removals were excluded. Individual water treatment unit processes showed greater temporal variations of PPCPs and EDCs removal efficiencies than the overall treatment processes. The removal efficiencies also varied greatly among different PPCPs and EDCs. The average removal for total PPCPs and EDCs was 76 ± 18% at the DWTP, with ozonation

  16. Investigating undergraduate students' ideas about the fate of the Universe (United States)

    Conlon, Mallory; Coble, Kim; Bailey, Janelle M.; Cominsky, Lynn R.


    As astronomers further develop an understanding of the fate of the Universe, it is essential to study students' ideas on the fate of the Universe so that instructors can communicate the field's current status more effectively. In this study, we examine undergraduate students' preinstruction ideas of the fate of the Universe in ten semester-long introductory astronomy course sections (ASTRO 101) at three institutions. We also examine students' postinstruction ideas about the fate of the Universe in ASTRO 101 over five semester-long course sections at one institution. The data include precourse surveys given during the first week of instruction (N =264 ), postinstruction exam questions (N =59 ), and interviews. We find that, preinstruction, more than a quarter of ASTRO 101 students either do not respond or respond with "I don't know" when asked what the long-term fate of the Universe is. We also find that, though the term was not necessarily used, students tend to describe a "big chill" scenario in the preinstruction surveys, among a wide variety of other scenarios. A fraction of students describe the fate of smaller-scale systems, possibly due to confusion of the hierarchical nature of structure in the Universe. Preinstruction, students mention the Universe's expansion when describing how astronomers know the fate of the Universe but do not discuss how we know the Universe is expanding or the relationship between expansion and the fate of the Universe. Postinstruction, students' responses shift toward greater degrees of completeness and correctness.

  17. Modelling the fate of persistent organic pollutants in Europe: parameterisation of a gridded distribution model. (United States)

    Prevedouros, Konstantinos; MacLeod, Matthew; Jones, Kevin C; Sweetman, Andrew J


    A regionally segmented multimedia fate model for the European continent is described together with an illustrative steady-state case study examining the fate of gamma-HCH (lindane) based on 1998 emission data. The study builds on the regionally segmented BETR North America model structure and describes the regional segmentation and parameterisation for Europe. The European continent is described by a 5 degrees x5 degrees grid, leading to 50 regions together with four perimetric boxes representing regions buffering the European environment. Each zone comprises seven compartments including; upper and lower atmosphere, soil, vegetation, fresh water and sediment and coastal water. Inter-regions flows of air and water are described, exploiting information originating from GIS databases and other georeferenced data. The model is primarily designed to describe the fate of Persistent Organic Pollutants (POPs) within the European environment by examining chemical partitioning and degradation in each region, and inter-region transport either under steady-state conditions or fully dynamically. A test case scenario is presented which examines the fate of estimated spatially resolved atmospheric emissions of lindane throughout Europe within the lower atmosphere and surface soil compartments. In accordance with the predominant wind direction in Europe, the model predicts high concentrations close to the major sources as well as towards Central and Northeast regions. Elevated soil concentrations in Scandinavian soils provide further evidence of the potential of increased scavenging by forests and subsequent accumulation by organic-rich terrestrial surfaces. Initial model predictions have revealed a factor of 5-10 underestimation of lindane concentrations in the atmosphere. This is explained by an underestimation of source strength and/or an underestimation of European background levels. The model presented can further be used to predict deposition fluxes and chemical inventories

  18. SHAMS: Combining chemical modification of RNA with mass spectrometry to examine polypurine tract-containing RNA/DNA hybrids (United States)

    Turner, Kevin B.; Yi-Brunozzi, Hye Young; Brinson, Robert G.; Marino, John P.; Fabris, Daniele; Le Grice, Stuart F.J.


    Selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE) has gained popularity as a facile method of examining RNA structure both in vitro and in vivo, exploiting accessibility of the ribose 2′-OH to acylation by N-methylisatoic anhydride (NMIA) in unpaired or flexible configurations. Subsequent primer extension terminates at the site of chemical modification, and these products are fractionated by high-resolution gel electrophoresis. When applying SHAPE to investigate structural features associated with the wild-type and analog-substituted polypurine tract (PPT)–containing RNA/DNA hybrids, their size (20–25 base pairs) rendered primer extension impractical. As an alternative method of detection, we reasoned that chemical modification could be combined with tandem mass spectrometry, relying on the mass increment of RNA fragments containing the NMIA adduct (Mr = 133 Da). Using this approach, we demonstrate both specific modification of the HIV-1 PPT RNA primer and variations in its acylation pattern induced by replacing template nucleotides with a non-hydrogen-bonding thymine isostere. Our selective 2′-hydroxyl acylation analyzed by mass spectrometry strategy (SHAMS) should find utility when examining the structure of small RNA fragments or RNA/DNA hybrids where primer extension cannot be performed. PMID:19535461

  19. Mobility and chemical fate of arsenic and antimony in water and sediments of Sarouq River catchment, Takab geothermal field, northwest Iran. (United States)

    Sharifi, Reza; Moore, Farid; Keshavarzi, Behnam


    Arsenic (As) and antimony (Sb) concentrations in water and sediments were determined along flow paths in the Sarouq River, Zarshuran and Agh Darreh streams. The results indicate high As and Sb concentrations in water and sediment samples. Raman spectroscopy shows hematite (α-Fe2O3), goethite [α-FeO(OH)] and lepidocrocite [γ-FeO(OH)] in sediment samples. Calculated saturation indices (SI) indicate oversaturation with respect to amorphous Fe(OH)3 for all samples, but undersaturation with respect to Al and Mn mineral and amorphous phases. Therefore, ferric oxides and hydroxides are assumed to be principal mineral phases for arsenic and antimony attenuation by adsorption/co-precipitation processes. The considerable difference between As and Sb concentration in sediment is due to strong adsorption of As(V) into the solid phase. Also, lower affinity of Sb(V) for mineral surfaces suggests a greater potential for aqueous transport. The adsorption of arsenic and antimony was examined using the Freundlich adsorption isotherm to determine their distribution model in water-sediment system and its compatibility with the existing theoretical model. The results showed that the adsorption behavior of both elements complies with the Freundlich adsorption isotherm. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Microbial degradative activity in ground water at a chemical waste disposal site

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, H.M. (Jackson State Univ., MS (United States)); Hodson, R.E. (Univ. of Georgia, Athens (United States)); Lewis, D.L. (Environmental Protection Agency, Athens, GA (United States)); Scholze, R. (Army Construction Engineering Research Lab., Champaign, IL (United States))


    This study was designed to examine the microbiological fate and effects of toxic organic chemicals at the ambient concentration in leachates derived from a waste disposal landfill site. Analyses revealed that ground water downslope from the burial site contained high levels of certain dissolved hazardous chemicals such as toluene, xylene, benzene, and methylene chloride. To study the fate of these compounds in such systems, the use of simplified laboratory studies of the biodegradation of individual compounds is often inappropriate in that complex interactions between and among the various chemicals can result in either enhancement or inhition of the biodegradation of particular compounds. 13 refs., 2 figs., 1 tab.

  1. Evaluating the fate of organic compounds in the Cameroon ...

    African Journals Online (AJOL)

    Furthermore, a sensitivity analysis was performed to identify the key input parameters. Model simulations indicated significant differences in the fate of the chemicals that could be explained by the variation in physical-chemical properties. The log KOW, emission rate to water (EW), volume of the water compartment (VW) and ...

  2. Modelling the fate of organic micropollutants in stormwater ponds

    DEFF Research Database (Denmark)

    Vezzaro, Luca; Eriksson, Eva; Ledin, Anna


    Urban water managers need to estimate the potential removal of organic micropollutants (MP) in stormwater treatment systems to support MP pollution control strategies. This study documents how the potential removal of organic MP in stormwater treatment systems can be quantified by using multimedia......). The four simulated organic stormwater MP (iodopropynyl butylcarbamate — IPBC, benzene, glyphosate and pyrene) were selected according to their different urban sources and environmental fate. This ensures that the results can be extended to other relevant stormwater pollutants. All three models use...... models. The fate of four different MP in a stormwater retention pond was simulated by applying two steady-state multimedia fate models (EPI Suite and SimpleBox) commonly applied in chemical risk assessment and a dynamic multimedia fate model (Stormwater Treatment Unit Model for Micro Pollutants — STUMP...


    CERN Multimedia

    Medical Service


    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or Chemistry Service : TIS-GS-GC : 78546

  4. Interfacial microscopic examination and chemical analysis of resin-dentin interface of self-adhering flowable resin composite. (United States)

    Hamdy, Tamer M


    Background: The newly introduced self-adhering flowable resin-composites decrease the required time for application by incorporation of an acidic adhesive monomer, thus reducing the number of steps, but its bonding is still uncertain. The aim of this study was to evaluate the interfacial microscopic examination and chemical analysis at the resin-dentin interface of a self-adhering flowable resin composite (Vertise™Flow Self-Adhering Flowable Composite, Kerr Dental, USA) versus a total-etch (Te-Econom Plus) resin composite, using an etching agent (Eco-Etch gel) and bonding agent (Single Bond Universal). Methods: Sixteen freshly extracted sound human posterior teeth were used. The teeth were randomly divided into two groups: 8 specimens per type of composite. Standard-shaped class V cavities were prepared on the buccal surface. One group was restored by Te-Econom Plus resin composite by total-etch technique using Eco-Etch gel, which was applied to dentine for 15 seconds, followed by rinsing, drying and bonding agent application (Single Bond Universal). The other group restored directly with self-adhering resin composite (Vertise-Flow) without application of etch or bond. Curing was done for 20 seconds using a light emitting diode light curing unit. Evaluation of the resin-dentin interface was done microscopically by examination of marginal gap distance in μm using scanning electron microscope (SEM), and chemical analysis of silver particles was observed using SEM with energy-dispersive X-ray spectrometry after 24 hours of specimen storage in ammoniacal silver nitrate. Results: Regarding marginal gap distance (µm) and silver atomic % mean values, teeth restored with self-adhering resin composite (Vertise-Flow) showed significantly higher mean values than the multi-step etch and rinse resin composite group (5.2 vs 0; 12.2 vs 8.2, respectively). Conclusions: Resin-dentin bonding using total-etch resin composite technique was more effective than self

  5. Fate in intermittent claudication

    DEFF Research Database (Denmark)

    Jelnes, Rolf; Gaardsting, O; Hougaard Jensen, K


    The fate of 257 consecutive patients (100 women) aged 36-85 years (mean 65) first seen with intermittent claudication in 1977 was analysed after a mean of 6.5 (SD 0.5) years. When first seen none of the patients complained of rest pain or had ulcers or gangrenous lesions on the feet. At follow up......, or an ankle/arm pressure index below 50% were individually significantly associated with progression of the arteriosclerotic disease. These findings show the importance of peripheral blood pressure measurements in the management of patients with intermittent claudication due to arteriosclerotic disease....

  6. Assessing the transport and fate of bioengineered microorganisms in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Barnthouse, L.W.; Palumbo, A.V.


    We review the methods currently available for quantifying the transport and fate of microbes in atmospheric and aqueous media and assess their adequacy for purposes of risk assessment. We review the literature on transport and fate of microorganisms, including studies of: (1) pathways of migration, (2) the survival of microorganisms during transport and fate. In addition, we review the transport and fate models that have been used in environmental risk assessments for radionuclides and toxic chemicals and evaluate their applicability to the problem of assessing environmental risks of bioengineered microorganisms.

  7. Environmental fate of pesticides applied on coffee crops in ...

    African Journals Online (AJOL)

    The aim of this paper was evaluate the environmental fate of pesticides applied in coffee crops in southeast of Brazil, using the level I fugacity model. Chemical and physical characteristics of the pesticides were considered in different environmental compartments and applied fugacity equations. The preliminary evaluation ...

  8. Models of Fate and Transport of Pollutants in Surface Waters (United States)

    Okome, Gloria Eloho


    There is the need to answer very crucial questions of "what happens to pollutants in surface waters?" This question must be answered to determine the factors controlling fate and transport of chemicals and their evolutionary state in surface waters. Monitoring and experimental methods are used in establishing the environmental states.…

  9. Investigating undergraduate students’ ideas about the fate of the Universe

    Directory of Open Access Journals (Sweden)

    Mallory Conlon


    Full Text Available As astronomers further develop an understanding of the fate of the Universe, it is essential to study students’ ideas on the fate of the Universe so that instructors can communicate the field’s current status more effectively. In this study, we examine undergraduate students’ preinstruction ideas of the fate of the Universe in ten semester-long introductory astronomy course sections (ASTRO 101 at three institutions. We also examine students’ postinstruction ideas about the fate of the Universe in ASTRO 101 over five semester-long course sections at one institution. The data include precourse surveys given during the first week of instruction (N=264, postinstruction exam questions (N=59, and interviews. We find that, preinstruction, more than a quarter of ASTRO 101 students either do not respond or respond with “I don’t know” when asked what the long-term fate of the Universe is. We also find that, though the term was not necessarily used, students tend to describe a “big chill” scenario in the preinstruction surveys, among a wide variety of other scenarios. A fraction of students describe the fate of smaller-scale systems, possibly due to confusion of the hierarchical nature of structure in the Universe. Preinstruction, students mention the Universe’s expansion when describing how astronomers know the fate of the Universe but do not discuss how we know the Universe is expanding or the relationship between expansion and the fate of the Universe. Postinstruction, students’ responses shift toward greater degrees of completeness and correctness.

  10. E-FAST-Exposure and Fate Assessment Screening Tool Version 2014 (United States)

    E-FAST estimates potential exposures to the general population and surface water concentrations based on releases from industrial operations and basic physical-chemical properties and fate parameters of the substance

  11. Modeling Engineered Nanomaterials (ENMs) Fate and ... (United States)

    Under the Toxic Substances Control Act (TSCA), the Environmental Protection Agency (EPA) is required to perform new chemical reviews of engineered nanomaterials (ENMs) identified in pre-manufacture notices. However, environmental fate models developed for traditional contaminants are limited in their ability to simulate the environmental behavior of nanomaterials due to incomplete understanding and representation of the processes governing nanomaterial distribution in the environment and by scarce empirical data quantifying the interaction of nanomaterials with environmental surfaces. We have updated the Water Quality Analysis Simulation Program (WASP), version S, to incorporate nanomaterials as an explicitly simulated state variable. WASPS now has the capability to simulate nanomaterial fate and transport in surface waters and sediments using heteroaggregation, the kinetic process governing the attachment of nanomaterials to particles and subsequently ENM distribution in the aqueous and sediment phases. Unlike dissolved chemicals which use equilibrium partition coefficients, heteroaggregation consists of a particle collision rate and an attachment efficiency ( lXhet) that generally acts as a one direction process. To demonstrate, we used a derived a het value from sediment attachment studies to parameterize WASP for simulation of multi walled carbon nanotube (MWCNT) transport in Brier Creek, a coastal plain river located in central eastern Georgia, USA and a tr

  12. Essentials of Recombinase-Based Genetic Fate Mapping in Mice (United States)

    Jensen, Patricia; Dymecki, Susan M.


    Fate maps, by defining the relationship between embryonic tissue organization and postnatal tissue structure, are one of the most important tools on hand to developmental biologists. In the past, generating such maps in mice was hindered by their in utero development limiting the physical access required for traditional methods involving tracer injection or cell transplantation. No longer is physical access a requirement. Innovations over the past decade have led to genetic techniques that offer means to “deliver” cell lineage tracers noninvasively. Such “genetic fate mapping” approaches employ transgenic strategies to express genetically encoded site-specific recombinases in a cell type-specific manner to switch on expression of a cell-heritable reporter transgene as lineage tracer. The behaviors and fate of marked cells and their progeny can then be explored and their contributions to different tissues examined. Here, we review the basic concepts of genetic fate mapping and consider the strengths and limitations for their application. We also explore two refinements of this approach that lend improved spatial and temporal resolution: (1) Intersectional and subtractive genetic fate mapping and (2) Genetic inducible fate mapping. PMID:24318835

  13. Data for developing metamodels to assess the fate, transport, and bioaccumulation of organic chemicals in rivers. Chemicals have log Kow ranging from 3 to 14, and rivers have mean annual discharges ranging from 1.09 to 3240 m3/s. (United States)

    U.S. Environmental Protection Agency — This dataset was developed to demonstrate how metamodels of high resolution, process-based models that simulate the fate, transport, and bioaccumulation of organic...

  14. The potential of diffuse reflectance FTIR spectroscopy in the examination of small chemical changes in polyethylene and dry foods (United States)

    Hrebičik, M.; Suchánek, M.; Volka, K.; Novák, P.; Scotter, C. N. G.


    Irradiation of some materials by low doses of gamma radiation, as a mean of disinfection or sterilization, has been increasingly used in the last few years. Food is usually irradiated with an absorbed dose up to 10 kGy; higher absorbed doses (25 kGy) are required for sterilization (the quantity of the absorbed dose is defined as the mean energy imparted by ionizing radiation to the matter in a volume element divided by the mass of the matter in that volume element. The unit gray (Gy) is defined as: 1 Gy = 1 J/kg = 100 rd = 6.24 × 10 18eV/kg). This paper addresses what chemical changes are caused by these doses and which method is most suitable for their monitoring. These questions are not only of interest to chemists but also to state organizations allowing or prohibiting this means of disinfection. The major chemical changes that are caused in polymers by ionizing radiation are [1]: simultaneous scission and cross-linking of the polymeric chains, formation of gases and low molecular weight radiolysis products and formation of unsaturated bonds. In the presence of oxygen, there is additional oxidative chain scission, and oxidation of the polymer, leading to the formation of peroxide, alcohol, and carbonyl functions, and of CO, CO 2, and various oxygen-containing low molecular weight compounds. Free radicals created by irradiation may remain trapped in the polymer and cause post-irradiation "aging".

  15. Complex fate of paralogs

    NARCIS (Netherlands)

    Szklarczyk, R.; Huynen, M.A.; Snel, B.


    BACKGROUND: Thanks to recent high coverage mass-spectrometry studies and reconstructed protein complexes, we are now in an unprecedented position to study the evolution of biological systems. Gene duplications, known to be a major source of innovation in evolution, can now be readily examined in the

  16. Chemical, mineralogical, and mass-change examinations across a gold bearing vein zone in the Akoluk area, Ordu, NE Turkey (United States)

    Yaylalı-Abanuz, Gülten; Tüysüz, Necati


    Chemical changes associated with gold mineralization in the Akoluk field in the western part of the eastern Pontides are investigated. The eastern Black Sea region hosts several Kuroko-type, massive sulfide deposits and, therefore, has drawn the attention of numerous workers. Acidic intrusions play an important role and structurally controlled zones of alteration are widespread thus leading to a great potential for epithermal gold deposits in this region. Rocks in the study area are part a volcano-sedimentary sequence. Vein-type mineralization occurs along fault systems in dacitic tuffs of upper Cretaceous age. These rocks are cut by a N45-50oE trending fault system, which is partly truncated by another N55-60oW extending fault system. Mineralization is observed in areas where these fault systems intersect. Native gold, zinckenite, stibnite, orpiment, realgar, cinnabar, pyrite, marcasite, sphalerite, and galena are the main ore minerals. Gangue minerals are quartz, barite and dolomite. Mineralization occurs as a replacement type in the wall rock, and filling type in fracture zones where voids are filled mostly by realgar, orpiment, zincenite, stibnite, quartz, barite, and sericite. The presence of framboidal and colloidal ore minerals and textures indicate that mineralization occur at low temperatures in an epithermal system. Zonal alteration is observed along the fault systems. Outward from the fault alteration types change from silicification through illitization, smectization to carbonatization. As a result of alteration, wall rock has undergone a total mass loss of 2.19%. Almost all the major oxide contents decreased to certain levels. Due to alteration of feldspar and hornblende, the concentrations of Na, Ca and Fe significantly decreased while silica and ore-forming elements were added to the host rocks. Development of carbonate minerals at the fringe of the fracture zone in the host rock indicates relatively alkaline conditions for the hydrothermal fluids in

  17. An evaluation of the environmental fate and behavior of munitions material (TNT, RDX) in soil and plant systems: Environmental fate and behavior of RDX

    Energy Technology Data Exchange (ETDEWEB)

    Cataldo, D.A.; Harvey, S.D.; Fellows, R.J.


    The objective of the present investigation was to elucidate the environmental behavior and fate of hexahydro-1,3,5-trinitro-1,3,5- triazine (RDX), particularly as related to its transport and chemical form in the food chain. To meet this goal, we needed to adapt and develop suitable analytical methodology to fractionate and characterize both RDX and RDX-derived residues in soil and plant matrices. Using the methodology that we developed, we assessed the chemical and physical fate of RDX in soils and plants. In general, the plant availability and plant mobility of RDX is substantially greater than that previously reported for TNT. 30 refs., 27 figs., 26 tabs.

  18. Fate and transport of titania nanoparticles in freshwater mesocosms

    Energy Technology Data Exchange (ETDEWEB)

    Miracle, Ann L.; Bunn, Amoret L.; Brandenberger, Jill M.; Gaspar, Daniel J.; Ward, Jeffrey A.


    Titania nanoparticles are currently associated with air, soil, and water and with numerous products directed at human use and consumption (e.g., sunscreen, cosmetics, and food coatings). The environmental fate and transport of TiO2, or any nanomaterials entering dynamic aquatic environments are largely unknown. Because the physical and chemical properties of TiO2 are variable (size, surface chemistry, and composition), the movement, bioaccumulation, and toxicity of these materials are difficult to study in a complex ecosystem. Many metal oxide materials are durable and recalcitrant, and the accumulation of TiO2 in the environment could be significant over time and cause unforeseen impacts on ecosystems. Fate and transport of TiO2 nanomaterials in a bench-scale mesocosm system was assessed through nanomaterial partitioning and complexation in water, sediment, and tissue media characterized using inductively coupled plasma mass spectrometry and scanning electron microscopy with energy dispersive X-ray spectroscopy, respectively. Research data sets like these will build the foundation for future use in fate and transport of other nanomaterials in different water systems (fresh, estuarine, and marine) and in building empirical and process models that investigate environmental fate and transport and relevant freshwater ecological impacts of nanomaterials.

  19. A basic introduction to pollutant fate and transport: an integrated approach with chemistry, modeling, risk assessment, and environmental legislation

    National Research Council Canada - National Science Library

    Dunnivant, Frank M; Anders, Elliot


    ... IN POLLUTANT FATE AND TRANSPORT MODELING 31 2.1 2.2 2.3 2.4 The Liquid Medium: Water and the Water Cycle Unique Properties of Water 33 Concentration Units 39 Chemical Aspects of Environmental Sy...

  20. Fate and transport of viruses and colloids in saturated and unsaturated porous media

    NARCIS (Netherlands)

    Torkzaban, S.


    The fundamental mechanisms involved in fate and transport of colloidal particles (viruses and latex microspheres) in saturated and unsaturated porous media were systematically examined. Two different bacteriophages were used as surrogate for pathogenic viruses to investigate the effects of various

  1. Fate and effects of the triazinone herbicide metribuzin in experimental pond mesocosms (United States)

    Fairchild, J.F.; Sappington, L.C.


    Metribuzin is a triazinone herbicide that is widely used for the control of grasses and broad-leaved weeds in soybeans, sugarcane, and numerous other crops. Metribuzin is highly toxic to freshwater macrophytes and algae under laboratory conditions (median plant EC50 = 31 ??g/L; n = 11 species) but has not been studied under controlled outdoor conditions. We conducted a 6-week study to examine the aquatic fate and effects of metribuzin in 0.1-ha outdoor aquatic mesocosms. Mesocosms (n = 2 per treatment) were treated with metribuzin at one of five concentrations: 0, 9, 19, 38, or 75 ??g/L. Concentrations were selected to bracket known laboratory effect concentrations and to reflect calculated edge-of-field concentrations. The dissipation half-life of metribuzin in water was 5 days. Metribuzin had no statistically significant effects on water quality, periphyton biomass, macrophyte biomass, macrophyte species composition, fish survival, or fish growth at treatment levels ranging up to and including 75 ??g/L. Although metribuzin is highly toxic to freshwater macrophytes and algae under laboratory conditions, it poses little risk to nontarget aquatic plants due to the short aqueous dissipation half-life. The findings also demonstrate that current herbicide risk assessment procedures used in the registration process could benefit from empirical assessments of the fate of chemicals under realistic environmental conditions.

  2. Fate and effects of the triazinone herbicide metribuzin in experimental pond mesocosms. (United States)

    Fairchild, J F; Sappington, L C


    Metribuzin is a triazinone herbicide that is widely used for the control of grasses and broad-leaved weeds in soybeans, sugarcane, and numerous other crops. Metribuzin is highly toxic to freshwater macrophytes and algae under laboratory conditions (median plant EC(50) = 31 microg/L; n = 11 species) but has not been studied under controlled outdoor conditions. We conducted a 6-week study to examine the aquatic fate and effects of metribuzin in 0.1-ha outdoor aquatic mesocosms. Mesocosms (n = 2 per treatment) were treated with metribuzin at one of five concentrations: 0, 9, 19, 38, or 75 microg/L. Concentrations were selected to bracket known laboratory effect concentrations and to reflect calculated edge-of-field concentrations. The dissipation half-life of metribuzin in water was 5 days. Metribuzin had no statistically significant effects on water quality, periphyton biomass, macrophyte biomass, macrophyte species composition, fish survival, or fish growth at treatment levels ranging up to and including 75 microg/L. Although metribuzin is highly toxic to freshwater macrophytes and algae under laboratory conditions, it poses little risk to nontarget aquatic plants due to the short aqueous dissipation half-life. The findings also demonstrate that current herbicide risk assessment procedures used in the registration process could benefit from empirical assessments of the fate of chemicals under realistic environmental conditions.

  3. Complex fate of paralogs

    Directory of Open Access Journals (Sweden)

    Snel Berend


    Full Text Available Abstract Background Thanks to recent high coverage mass-spectrometry studies and reconstructed protein complexes, we are now in an unprecedented position to study the evolution of biological systems. Gene duplications, known to be a major source of innovation in evolution, can now be readily examined in the context of protein complexes. Results We observe that paralogs operating in the same complex fulfill different roles: mRNA dosage increase for more than a hundred cytosolic ribosomal proteins, mutually exclusive participation of at least 54 paralogs resulting in alternative forms of complexes, and 24 proteins contributing to bona fide structural growth. Inspection of paralogous proteins participating in two independent complexes shows that an ancient, pre-duplication protein functioned in both multi-protein assemblies and a gene duplication event allowed the respective copies to specialize and split their roles. Conclusion Variants with conditionally assembled, paralogous subunits likely have played a role in yeast's adaptation to anaerobic conditions. In a number of cases the gene duplication has given rise to one duplicate that is no longer part of a protein complex and shows an accelerated rate of evolution. Such genes could provide the raw material for the evolution of new functions.

  4. Complex fate of paralogs. (United States)

    Szklarczyk, Radek; Huynen, Martijn A; Snel, Berend


    Thanks to recent high coverage mass-spectrometry studies and reconstructed protein complexes, we are now in an unprecedented position to study the evolution of biological systems. Gene duplications, known to be a major source of innovation in evolution, can now be readily examined in the context of protein complexes. We observe that paralogs operating in the same complex fulfill different roles: mRNA dosage increase for more than a hundred cytosolic ribosomal proteins, mutually exclusive participation of at least 54 paralogs resulting in alternative forms of complexes, and 24 proteins contributing to bona fide structural growth. Inspection of paralogous proteins participating in two independent complexes shows that an ancient, pre-duplication protein functioned in both multi-protein assemblies and a gene duplication event allowed the respective copies to specialize and split their roles. Variants with conditionally assembled, paralogous subunits likely have played a role in yeast's adaptation to anaerobic conditions. In a number of cases the gene duplication has given rise to one duplicate that is no longer part of a protein complex and shows an accelerated rate of evolution. Such genes could provide the raw material for the evolution of new functions.

  5. Modeling Nitrogen Fate and Transport at the Sediment-Water ... (United States)

    Diffusive mass transfer at media interfaces exerts control on the fate and transport of pollutants originating from agricultural and urban landscapes and affects the con-ditions of water bodies. Diffusion is essentially a physical process affecting the distribution and fate of various environmental pollutants such as nutrients, pesticides, metals, PCBs, PAHs, etc. Environmental problems caused by excessive use of agricultural chemicals (e.g., pesticides and fertilizers) and improper discharge of industrial waste and fuel leaks are all influenced by the diffusive nature of pollutants in the environment. Eutrophication is one such environmental problem where the sediment-water interface exerts a significant physical and geochemical control on the eutrophic condition of the stressed water body. Exposure of streams and lakes to contaminated sediment is another common environmental problem whereby transport of the contaminant (PCBs, PAHs, and other organic contaminants) across the sediment water can increase the risk for exposure to the chemicals and pose a significant health hazard to aquatic life and human beings. This chapter presents analytical and numerical models describing fate and transport phenomena at the sediment-water interface in freshwater ecosystems, with the primary focus on nitrogen cycling and the applicability of the models to real-world environmental problems and challenges faced in their applications. The first model deals with nitrogen cycling

  6. A methodological approach to assessing the health impact of environmental chemical mixtures: PCBs and hypertension in the National Health and Nutrition Examination Survey. (United States)

    Yorita Christensen, Krista L; White, Paul


    We describe an approach to examine the association between exposure to chemical mixtures and a health outcome, using as our case study polychlorinated biphenyls (PCBs) and hypertension. The association between serum PCB and hypertension among participants in the 1999-2004 National Health and Nutrition Examination Survey was examined. First, unconditional multivariate logistic regression was used to estimate odds ratios and associated 95% confidence intervals. Next, correlation and multicollinearity among PCB congeners was evaluated, and clustering analyses performed to determine groups of related congeners. Finally, a weighted sum was constructed to represent the relative importance of each congener in relation to hypertension risk. PCB serum concentrations varied by demographic characteristics, and were on average higher among those with hypertension. Logistic regression results showed mixed findings by congener and class. Further analyses identified groupings of correlated PCBs. Using a weighted sum approach to equalize different ranges and potencies, PCBs 66, 101, 118, 128 and 187 were significantly associated with increased risk of hypertension. Epidemiologic data were used to demonstrate an approach to evaluating the association between a complex environmental exposure and health outcome. The complexity of analyzing a large number of related exposures, where each may have different potency and range, are addressed in the context of the association between hypertension risk and exposure to PCBs.

  7. A Methodological Approach to Assessing the Health Impact of Environmental Chemical Mixtures: PCBs and Hypertension in the National Health and Nutrition Examination Survey

    Directory of Open Access Journals (Sweden)

    Paul White


    Full Text Available We describe an approach to examine the association between exposure to chemical mixtures and a health outcome, using as our case study polychlorinated biphenyls (PCBs and hypertension. The association between serum PCB and hypertension among participants in the 1999–2004 National Health and Nutrition Examination Survey was examined. First, unconditional multivariate logistic regression was used to estimate odds ratios and associated 95% confidence intervals. Next, correlation and multicollinearity among PCB congeners was evaluated, and clustering analyses performed to determine groups of related congeners. Finally, a weighted sum was constructed to represent the relative importance of each congener in relation to hypertension risk. PCB serum concentrations varied by demographic characteristics, and were on average higher among those with hypertension. Logistic regression results showed mixed findings by congener and class. Further analyses identified groupings of correlated PCBs. Using a weighted sum approach to equalize different ranges and potencies, PCBs 66, 101, 118, 128 and 187 were significantly associated with increased risk of hypertension. Epidemiologic data were used to demonstrate an approach to evaluating the association between a complex environmental exposure and health outcome. The complexity of analyzing a large number of related exposures, where each may have different potency and range, are addressed in the context of the association between hypertension risk and exposure to PCBs.

  8. Using seed-tagging methods for assessing post-dispersal seed fate in rodent-dispersed trees.

    NARCIS (Netherlands)

    Xiao, Z.; Jansen, P.A.; Zhang, Z.


    Seed tagging is widely used for tracking seeds during dispersal by seed-caching animals. No studies, however, have fully examined the effects of seed tagging on post-dispersal seed fate. We studied how two seed tagging techniques – thread-marking and wire tin-tagging – affected seed fate by placing

  9. Using seed-tagging methods for assessing post-dispersal seed fate in rodent-dispersed trees

    NARCIS (Netherlands)

    Xiao, ZS; Jansen, PA; Zhang, ZB


    Seed tagging is widely used for tracking seeds during dispersal by seed-caching animals. No studies, however, have fully examined the effects of seed tagging on post-dispersal seed fate. We studied how two seed tagging techniques - thread-marking and wire tin-tagging - affected seed fate by placing

  10. Magnitude and trophic fate of black needlerush (Juncus roemerianus) productivity : does nutrient addition matter ?


    Hunter, A; Cebrian, J.; Stutes, J. P.; Patterson, D; Christiaen, B.; Lafabrie, Céline; Goff, J.


    The black needlerush (Juncus roemerianus) is a common plant species in saltmarshes of the Gulf of Mexico. Our knowledge of the trophic fate of the plant's productivity, which is important for an understanding of marsh functionality, is incomplete. Here we examine the productivity and trophic fate (herbivory, decomposition and biomass storage) of two black needlerush-dominated marshes in the northern Gulf of Mexico. We also investigate the effects of low intensity, short duration (1.5 years) n...

  11. Environmental fate and behaviour of nanomaterials

    DEFF Research Database (Denmark)

    Hartmann, Nanna Isabella Bloch; Skjolding, Lars Michael; Hansen, Steffen Foss

    In the current report, the existing knowledge on the fate of nanomaterials in the environment is reviewed and the major knowledge gaps are identified.......In the current report, the existing knowledge on the fate of nanomaterials in the environment is reviewed and the major knowledge gaps are identified....

  12. Matrix control of stem cell fate. (United States)

    Even-Ram, Sharona; Artym, Vira; Yamada, Kenneth M


    A key challenge in stem cell research is to learn how to direct the differentiation of stem cells toward specific fates. In this issue of Cell, Engler et al. (2006) identify a new factor regulating stem cell fate: the elasticity of the matrix microenvironment. By changing the stiffness of the substrate, human mesenchymal stem cells could be directed along neuronal, muscle, or bone lineages.

  13. Illustrating sensitivity in environmental fate models using partitioning maps - application to selected contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, T.; Wania, F. [Univ. of Toronto at Scarborough - DPES, Toronto (Canada)


    Generic environmental multimedia fate models are important tools in the assessment of the impact of organic pollutants. Because of limited possibilities to evaluate generic models by comparison with measured data and the increasing regulatory use of such models, uncertainties of model input and output are of considerable concern. This led to a demand for sensitivity and uncertainty analyses for the outputs of environmental fate models. Usually, variations of model predictions of the environmental fate of organic contaminants are analyzed for only one or at most a few selected chemicals, even though parameter sensitivity and contribution to uncertainty are widely different for different chemicals. We recently presented a graphical method that allows for the comprehensive investigation of model sensitivity and uncertainty for all neutral organic chemicals simultaneously. This is achieved by defining a two-dimensional hypothetical ''chemical space'' as a function of the equilibrium partition coefficients between air, water, and octanol (K{sub OW}, K{sub AW}, K{sub OA}), and plotting sensitivity and/or uncertainty of a specific model result to each input parameter as function of this chemical space. Here we show how such sensitivity maps can be used to quickly identify the variables with the highest influence on the environmental fate of selected, chlorobenzenes, polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), hexachlorocyclohexanes (HCHs) and brominated flame retardents (BFRs).

  14. The metabolic fate of nectar nicotine in worker honey bees. (United States)

    du Rand, Esther E; Pirk, Christian W W; Nicolson, Susan W; Apostolides, Zeno


    Honey bees (Apis mellifera) are generalist pollinators that forage for nectar and pollen of a very large variety of plant species, exposing them to a diverse range of secondary metabolites produced as chemical defences against herbivory. Honey bees can tolerate high levels of many of these toxic compounds, including the alkaloid nicotine, in their diet without incurring apparent fitness costs. Very little is known about the underlying detoxification processes mediating this tolerance. We examined the metabolic fate of nicotine in newly emerged worker bees using radiolabeled nicotine and LC-MS/MS analysis to determine the kinetic distribution profile of nicotine as well as the absence or presence and identity of any nicotine-derived metabolites. Nicotine metabolism was extensive; virtually no unmetabolised nicotine were recovered from the rectum. The major metabolite found was 4-hydroxy-4-(3-pyridyl) butanoic acid, the end product of 2'C-oxidation of nicotine. It is the first time that 4-hydroxy-4-(3-pyridyl) butanoic acid has been identified in an insect as a catabolite of nicotine. Lower levels of cotinine, cotinine N-oxide, 3'hydroxy-cotinine, nicotine N-oxide and norcotinine were also detected. Our results demonstrated that formation of 4-hydroxy-4-(3-pyridyl) butanoic acid is quantitatively the most significant pathway of nicotine metabolism in honey bees and that the rapid excretion of unmetabolised nicotine does not contribute significantly to nicotine tolerance in honey bees. In nicotine-tolerant insects that do not rely on the rapid excretion of nicotine like the Lepidoptera, it is possible that the 2'C-oxidation of nicotine is the conserved metabolic pathway instead of the generally assumed 5'C-oxidation pathway. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Sources, fate and transport of perfluorocarboxylates. (United States)

    Prevedouros, Konstantinos; Cousins, Ian T; Buck, Robert C; Korzeniowski, Stephen H


    This review describes the sources, fate, and transport of perfluorocarboxylates (PFCAs) in the environment, with a specific focus on perfluorooctanoate (PFO). The global historical industry-wide emissions of total PFCAs from direct (manufacture, use, consumer products) and indirect (PFCA impurities and/or precursors) sources were estimated to be 3200-7300 tonnes. It was estimated that the majority (approximately 80%) of PFCAs have been released to the environment from fluoropolymer manufacture and use. Although indirect sources were estimated to be much less importantthan direct sources, there were larger uncertainties associated with the calculations for indirect sources. The physical-chemical properties of PFO (negligible vapor pressure, high solubility in water, and moderate sorption to solids) suggested that PFO would accumulate in surface waters. Estimated mass inventories of PFO in various environmental compartments confirmed that surface waters, especially oceans, contain the majority of PFO. The only environmental sinks for PFO were identified to be sediment burial and transport to the deep oceans, implying a long environmental residence time. Transport pathways for PFCAs in the environment were reviewed, and it was concluded that, in addition to atmospheric transport/degradation of precursors, atmospheric and ocean water transport of the PFCAs themselves could significantly contribute to their long-range transport. It was estimated that 2-12 tonnes/ year of PFO are transported to the Artic by oceanic transport, which is greater than the amount estimated to result from atmospheric transport/degradation of precursors.


    Energy Technology Data Exchange (ETDEWEB)

    James A. Sorensen; John R. Gallagher; Lori G. Kays


    Burial of amine reclaimer unit sludges and system filters has resulted in contamination of soil at the CanOxy Okotoks decommissioned sour gas-processing plant with amines, amine byproducts, and salts. A three-phase research program was devised to investigate the natural attenuation process that controls the subsurface transport and fate of these contaminants and to apply the results toward the development of a strategy for the remediation of this type of contamination in soils. Phase I experimental activities examined interactions between monoethanolamine (MEA) and sediment, the biodegradability of MEA in soils at various concentrations and temperatures, and the biodegradability of MEA sludge contamination in a soil slurry bioreactor. The transport and fate of MEA in the subsurface was found to be highly dependant on the nature of the release, particularly MEA concentration and conditions of the subsurface environment, i.e., pH, temperature, and oxygen availability. Pure compound biodegradation experiments in soil demonstrated rapid biodegradation of MEA under aerobic conditions and moderate temperatures (>6 C). Phase II landfarming activities confirmed that these contaminants are readily biodegradable in soil under ideal laboratory conditions, yet considerable toxicity was observed in the remaining material. Examination of water extracts from the treated soil suggested that the toxicity is water-soluble. Phase II activities led to the conclusion that landfarming is not the most desirable bioremediation technique; however, an engineered biopile with a leachate collection system could remove the remaining toxic fraction from the soil. Phase III was initiated to conduct field-based experimental activities to examine the optimized remediation technology. A pilot-scale engineered biopile was constructed at a decommissioned gas-sweetening facility in Okotoks, Alberta, Canada. On the basis of a review of the analytical and performance data generated from soil and

  17. Interfacial microscopic examination and chemical analysis of resin-dentin interface of self-adhering flowable resin composite [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Tamer M. Hamdy


    Full Text Available Background: The newly introduced self-adhering flowable resin-composites decrease the required time for application by incorporation of an acidic adhesive monomer, thus reducing the number of the steps, but its bonding is still uncertain. The aim of this study was to evaluate the interfacial microscopic examination and chemical analysis at the resin-dentin interface of a self-adhering flowable resin composite (Vertise-Flow versus a total-etch (Te-Econom Plus resin composite, using an etching agent (Eco-Etch gel and  bonding agent (Single Bond Universal. Methods: Sixteen freshly extracted sound human posterior teeth were used. The teeth were randomly divided into two groups: 8 specimens per type of composite. Standard-shaped class V cavities were prepared on the buccal surface. One group was restored by Te-Econom Plus resin composite by total-etch technique using Eco-Etch gel, which was applied to dentine for 15 seconds, followed by rinsing, drying and bonding agent application (Single Bond Universal. The other group restored directly with self-adhering resin composite (Vertise-Flow without application of etch or bond. Curing was done for 20 seconds using a light emitting diode light curing unit. Evaluation of the resin-dentin interface was done microscopically by examination of marginal gap distance in μm using scanning electron microscope (SEM, and chemical analysis of silver particles was observed using SEM with energy-dispersive X-ray spectrometry after 24 hours of specimen storage in ammoniacal silver nitrate. Results: Regarding marginal gap distance (µm and silver atomic % mean values, teeth restored with self-adhering resin composite (Vertise-Flow showed significantly higher mean values than the multi-step etch and rinse resin composite group (5.2 vs 0; 12.2 vs 8.2, respectively. Conclusions: Resin-dentin bonding using total-etch resin composite technique was more effective than self-adhering flowable resin composite (Vertise

  18. Trichloromethyl compounds - natural background concentrations and fates within and

    DEFF Research Database (Denmark)

    Albers, Christian Nyrop; Hansen, Poul Erik; Jacobsen, Ole Stig


    Pollution with organochlorines has received major attention due to various environmental effects, but it is now increasingly recognized, that they also take part in biogeochemical cycles and that natural background concentrations exist for several chlorinated compounds. We here report the natural....... Other positive relations occur, which in combination with chlorination experiments performed in the laboratory, point to the fact that all the trichloromethyl compounds may be formed concurrently in the soil, and their subsequent fates then differ due to different physical, chemical and biological...

  19. Fate and effects of esfenvalerate in agricultural ponds

    DEFF Research Database (Denmark)

    Samsøe-Petersen, L.; Gutavson, K.; Madsen, T.


    The fate of esfenvalerate was investigated by sampling and chemical analysis after spraying of an artificial pond (25 g a.i./ha) and in the laboratory with [C-14]esfenvalerate by trapping of (CO2)-C-14 and fractionation of the sediment. The effects were investigated on pelagic communities...... in enclosures in a natural lake and in the laboratory on surface (Cymatia coleoptrata) and sediment (Chironomus riparius) insects. The latter were used in sediment-plus-water and in water-only tests, measuring effects on emergence and mortality. The measurements in the artificial pond indicated exposure...

  20. Chemical oceanography

    National Research Council Canada - National Science Library

    Millero, F.J


    Chemical Oceanography presents a comprehensive examination of the chemistry of oceans through discussions of such topics as descriptive physical oceanography, the composition of seawater and the major...

  1. Making fate and exposure models for freshwater ecotoxicity in life cycle assessment suitable for organic acids and bases. (United States)

    van Zelm, Rosalie; Stam, Gea; Huijbregts, Mark A J; van de Meent, Dik


    Freshwater fate and exposure factors were determined for organic acids and bases, making use of the knowledge on electrical interaction of ionizing chemicals and their sorption to particles. The fate factor represents the residence time in the environment whereas exposure factors equal the dissolved fraction of a chemical. Multimedia fate, exposure, and effect model USES-LCA was updated to take into account the influence of ionization, based upon the acid dissociation constant (pK(a)) of a chemical, and the environmental pH. Freshwater fate (FF) and exposure (XF) factors were determined for 415 acids and 496 bases emitted to freshwater, air, and soil. The relevance of taking account of the degree of ionization of chemicals was tested by determining the ratio (R) of the new vs. fate and exposure factors determined with USES-LCA suitable for neutral chemicals only. Our results show that the majority of freshwater fate and exposure factors of chemicals that are largely ionized in the environment are larger with the ionics model compared to the factors determined with the neutrals model version. R(FF) ranged from 2.4×10(-1) to 1.6×10(1) for freshwater emissions, from 1.2×10(-2) to 2.0×10(4) for soil emissions and from 5.8×10(-2) to 6.0×10(3) for air emissions, and R(XF) from 5.3×10(-1) to 2.2×10(1). Prediction of changed solid-water partitioning, implying a change in runoff and in removal via sedimentation, and prediction of negligible air-water partition coefficient, leading to negligible volatilization were the main contributors to the changes in freshwater fate factors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Pancam Multispectral and APXS Chemical Examination of Rocks and Soils in Marathon Valley and Points South Along the Rim of Endeavour Crater (United States)

    Farrand, W. H.; Johnson, J. R.; Bell, J. F., III; Mittlefehldt, D. W.; Gellert, R.; VanBommel, S.; Arvidson, R. E.; Schroder, C.


    The Mars Exploration Rover Opportunity has concluded its exploration of Marathon Valley, a 100-meter-wide valley in the western rim of the 22-kilometer-diameter Endeavour crater. Orbital observations from CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) indicated the presence of Fe smectites in Marathon Valley. Since leaving the valley, Opportunity has been traversing along the inner rim of the crater, and currently towards the outer rim. This presentation describes the Pancam 430 to 1009 nanometer (VNIR - Visible and Near Infared) multispectral reflectance and APXS (Alpha Particle X-ray Spectrometer) chemical compositions of rock and soil units observed during the latter portions of the Marathon Valley campaign on the Knudson Ridge area and observations of those materi-als along the traverse to the south. Full Pancam spectral coverage of rock targets consists of 13 filter (13f) data collections with 11 spectrally unique channels with data processing. Data were examined using spectral parameters, decorrelation stretch composites, and spectral mixture analysis. Note that color terms used here refer to colors in various false-color renditions, not true colors. The APXS determines major and select trace element compositions of targets.

  3. A detailed examination of the chemical, hydrological, and geological properties influencing the mobility of {sup 222}radon and parent radionuclides in groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Sexsmith, K.S.


    This study examines hydrological, geological and geochemical controls on {sup 222}Rn variability in groundwater in the Front Range of Colorado. Specific objectives of the study are: (1) to determine if there are any correlations or spatial relationships between {sup 222}Rn and the geological, geochemical and hydrogeological data; and (2) to determine whether it is geochemically reasonable for observed {sup 222}Rn levels to be the result of U and {sup 226}Ra accumulation by fracture filling minerals. Domestic-water wells were sampled and tested to determine the local aquifer characteristics and aqueous geochemistry. A multivariate and staged approach was used in the data analyses. Analysis of variance tests were used to test for relationships between {sup 222}Rn and the lithology of the study wells. The effects of rock-type were then removed from the chemical and hydrological variables by subtracting the mean value for each rock-type from each of the measured values within that rock-type (a residual transformation). Linear and linear multiple regression techniques were used to test for expected relationships between residual {sup 222}Rn levels and these variables, and stepwise linear regressions were used to test for any unforeseen multivariate relationships in the data. Correlograms, distance-weighted average and inverse-distance-weighted average predictions were used to look for spatial relationships in the data.

  4. Coupling of supercritical fluid chromatography to mass spectrometry for the analysis of Dechlorane Plus: Examination of relevant negative ion atmospheric pressure chemical ionization mechanisms. (United States)

    Riddell, Nicole; van Bavel, Bert; Ericson Jogsten, Ingrid; McCrindle, Robert; McAlees, Alan; Chittim, Brock


    During an investigation of the potential associated with coupling packed column supercritical fluid chromatography (pSFC) to mass spectrometry for the analysis of Dechlorane Plus and related compounds, it was found that negative ion atmospheric pressure chemical ionization (APCI) was a promising ionization technique. In the course of maximizing the responses associated with the target analytes, it proved useful to examine some aspects of the complex nature and reactivity of the corona discharge plasma generated to explain the observed ionization products. Various dopants/reagents were screened for both APCI and atmospheric pressure photoionization (APPI) in negative ion mode and mechanisms of ionization involving superoxide were elucidated based on the results obtained. Superoxide formation was found to be temperature dependent and directly related to the intensity of the ion cluster [M-Cl+O]- obtained for the target DP analytes. Furthermore, triethylamine was identified as a reagent capable of suppressing unwanted side reactions during the ionization process and maximizing response associated with the analytes of interest. The applicability of pSFC-APCI/MS for the separation and detection of Dechlorane Plus and related compounds was demonstrated by analyzing Lake Ontario sediment and comparing the results with values reported in the scientific literature. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Fate of Hexazinone and Picloram After Herbicide Site Preparation in a Cutover Northern Hardwood Forest (United States)

    D.G. Neary; J.L. Michael; M.J.M. Wells


    Herbicides show promise to improve the efficiency and economics of forest stand conversion and regeneration. However, the impacts of herbicides on forest ecosystems and the ultimate fate of these chemicals are not completely understood. A major problem in pine regeneration in northern mixed hardwood forests is competition from fast-growing and easily sprouting species...

  6. Use of Physicochemical Parameters to Assess the Environmental Fate of Organic Pollutants: The Fugacity Model (United States)

    Domenech, Xavier; Ayllon, Jose Antonio; Peral, Jose


    The environmental fate and behavior of different organic pollutants based on the qualitative analysis of thermodynamic and kinetic data is presented. The Fugacity model allows the use of different partition constants in an easy way, to determine the distribution of chemical between different phases in equilibrium of an environmental system.

  7. Determining the fate of fluorescent quantum dots on surface of engineered budding S. cerevisiae cell molecular landscape. (United States)

    Chouhan, Raghuraj S; Qureshi, Anjum; Niazi, Javed H


    In this study, we surface engineered living S. cerevisiae cells by decorating quantum dots (QDs) and traced the fate of QDs on molecular landscape of single mother cell through several generation times (progeny cells). The fate of QDs on cell-surface was tracked through the cellular division events using confocal microscopy and fluorescence emission profiles. The extent of cell-surface QDs distribution among the offspring was determined as the mother cell divides into daughter cells. Fluorescence emission from QDs on progeny cells was persistent through the second-generation time (~240min) until all of the progeny cells lost their cell-bound QDs during the third generation time (~360min). The surface engineered yeast cells were unaffected by the QDs present on their molecular landscapes and retained their normal cellular growth, architecture and metabolic activities as confirmed by their viability, scanning electron microscopy (SEM) examinations and cytotoxicity tests, respectively. Our results demonstrated that QDs on mother cell landscape tend to distribute among its progeny cells that accompanied with concomitant reduction in QDs' fluorescence, which can be quantified. We suggest that surface engineered cells with QDs will enable investigating the cellular behavior and monitoring cell growth patterns as nanobiosensors for screening of drugs/chemicals at single cell level with fewer side effects. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Environmental fate of tungsten from military use

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, Jay L. [Research and Development Center, Cold Regions Research and Engineering Laboratory, 72 Lyme Road, Hanover, New Hampshire, 03755 (United States)], E-mail:; Korte, Nic [1946 Clover Ct., Grand Junction, Colorado, 81506 (United States)


    This manuscript describes the distribution, fate and transport of tungsten used in training rounds at three small arms ranges at Camp Edwards on the Massachusetts Military Reservation (MMR), USA. Practice with tungsten/nylon rounds began in 2000 subsequent to a 1997 US Environmental Protection Agency ban on training with lead. Training with the tungsten rounds was halted in 2005 because of concerns regarding tungsten's environmental mobility and potential toxicity. This study, therefore, examines how tungsten partitions in the environment when fired on a small arms training range. Soil sampling revealed surface soil concentrations, highest at the berm face, up to 2080 mg/kg. Concentrations decreased rapidly with depth-at least by an order of magnitude by 25 cm. Nonetheless, tungsten concentrations remained above background to at least 150 cm. Pore-water samples from lysimeters installed in berm areas revealed a range of concentrations (< 1-400 mg/L) elevated with respect to background although there was no discernable trend with depth. Groundwater monitoring well samples collected approximately 30 m below ground surface showed tungsten (0.001-0.56 mg/L) attributable to range use.

  9. Fate of manufactured nanoparticles in environmental systems (United States)

    Gelabert, A.; Sivry, Y.; Siron, V.; Akrout, A.; Ferrari, R.; Juillot, F.; Menguy, N.; Benedetti, M. F.


    Because of their specific physico-chemical properties, engineered nanoparticles (NPs) have become largely widespread in numerous industrial fields such as biomedicine, cosmetics, and material sciences. However, their growing use could possibly result in the release of various NPs amounts in environmental settings. Thus, an accurate understanding of their behaviour in natural systems is required, and of first importance is an estimation of their persistence and/or physico-chemical modifications since they can greatly alter their fate and bioavailability in the biogeosphere. The present study focuses on dissolution rate estimations for commercial NPs ZnO and TiO2 in natural waters (i.e. filtered Seine river water and seawater). Both NPs were used uncoated and coated with an organic polymer. Native NPs size and shape were investigated using TEM, and appeared as 20-50 nm spheroids, with an associated specific surface area of 37.5 and 57.6 m2/g for ZnO and TiO2, respectivelly. NPs dissolution rates were determined using both ultrafiltration (UF) and Donnan Membrane Techniques (DMT, [1]). The latter method allows a direct in-situ measurement of the free metal ion concentration only (here Zn2+), while the UF membrane small nominal pore size (approx. 2 nm) results in the separation of small inorganic complexes in addition to free metal ions. After a fast dissolution step reaching 1% of total zinc within the first hour for uncoated ZnO NPs in Seine water, precipitation of new mineral phases occurred with the formation of smithonite and hydrozincite as observed by XRD and TEM and confirmed by thermodynamic calculations (Visual Minteq). Interestingly, the behaviour of the coated ZnO NPs is slightly different since the initial dissolution step takes place during the first 72 hours, to reach up to 10% of the total zinc in our system. However, despite this difference in dissolution kinetics, both systems evolve similarly after 3 days, and they reach a steady state after

  10. Challenging Boundaries, Changing Fate? Metropolitan Inequality and the Legacy of "Milliken" (United States)

    Holme, Jennifer Jellison; Finnigan, Kara S.; Diem, Sarah


    Background: This article examines the contemporary implications of the "Milliken v. Bradley" (1974) decision for educational inequality between school districts in U.S. metropolitan areas. We focus upon four metropolitan areas that were highly segregated in the 1970s but which met different fates in court: We first examine Detroit and…

  11. ENM fate in freshwater through adaption of USEtox

    DEFF Research Database (Denmark)

    Miseljic, Mirko; Birkved, Morten; Olsen, Stig Irving

    Engineered nanomaterials (ENMs) have in recent time received substantial attention, both in scientific and consumer circles, as these materials are introduced to a steadily increasing number of consumer products. This has led to environmental concerns on how this new material class behaves...... scientifically mapped. One approach that has not been given much attention in relation to environmental assessment of ENM, more precisely the fate, exposure and effect modelling of metal-oxide ENMs is the application of adapted characterization modelling (ACM) and hence application of characterisation models...... the principles of ACM. The primarily principle of adapted characterisation modelling relies on the recognition of the fact that nano-materials do not behave like single chemical compounds in the environment. The second principle of ACM relies on the fact that existing chemical characterisation can be applied...

  12. Fate of Chemical Agents on Structural Surfaces (Task 2) (United States)


    HD, GB, and VX. 1I 5. Thermal desorption of fresh and aged concrete samples that had been spiked with FID , GB, and VX. Jt1 .. " = = I 3 2.0 PROCEDURES...12;float STZ;I float ts-285.78;float NX,ta,re,pr,nu~hfc, ka,gra,ha, kd,ad; float he=12;float wi=12;float d;int ypix=350; float rho-2.3;float rhod, cpg ...28) ;outtext("Working3 re=( q*904000/(d*týg))*pow(298/tg, .75); cpg -(6.449+.001413*tg-(8.07e-08)*pow(tg ,2) /29; pr= cpg /(.0855+ cpg ) ;nu=.023*pow(re

  13. [The criterion prognostic significance of examinations of chemiluminescence of oral fluid under impact of chemical pollutants of manufacture of rubber and rubber technical production]. (United States)

    Galiullina, E F; Valiev, A v; Kamilov, R F; Shakirov, D F; Buliakov, P T


    The article presents the results of studies concerning the effect of unfavorable factors of chemical nature on fluid of oral cavity among workers of the Ufa plant of elastomer materials, articles and structures. It is established that in persons contacting with chemical pollutants of manufacture of rubber and rubber technical production the indicators of chemiluminescence of saliva fluid are significantly expressed and depend on professional standing.

  14. Perspectives on chemical oceanography in the 21st century: Participants of the COME ABOARD Meeting examine aspects of the field in the context of 40 years of DISCO (United States)

    Fassbender, Andrea J.; Palevsky, Hilary I.; Martz, Todd R.; Ingalls, Anitra E.; Gledhill, Martha; Fawcett, Sarah E.; Brandes, Jay; Aluwihare, Lihini; Anderson, Robert M.; Bender, Sara; Boyle, Ed; Bronk, Debbie; Buesseler, Ken; Burdige, David J.; Casciotti, Karen; Close, Hilary; Conte, Maureen; Cutter, Greg; Estapa, Meg; Fennel, Katja; Ferron, Sara; Glazer, Brian; Goni, Miguel; Grand, Max; Guay, Chris; Hatta, Mariko; Hayes, Chris; Horner, Tristan; Ingall, Ellery; Johnson, Kenneth G.; Juranek, Laurie; Knapp, Angela; Lam, Phoebe; Luther, George; Matrai, Paty; Nicholson, David; Paytan, Adina; Pellenbarg, Robert; Popendorf, Kim; Reddy, Christopher M.; Ruttenberg, Kathleen; Sabine, Chris; Sansone, Frank; Shaltout, Nayrah; Sikes, Liz; Sundquist, Eric T.; Valentine, David; Wang, Zhao (Aleck); Wilson, Sam; Barrett, Pamela; Behrens, Melanie; Belcher, Anna; Biermann, Lauren; Boiteau, Rene; Clarke, Jennifer; Collins, Jamie; Coppola, Alysha; Ebling, Alina M.; Garcia-Tigreros, Fenix; Goldman, Johanna; Guallart, Elisa F.; Haskell, William; Hurley, Sarah; Janssen, David; Johnson, Winn; Lennhartz, Sinikka; Liu, Shuting; Rahman, Shaily; Ray, Daisy; Sarkar, Amit; Steiner, Zvika; Widner, Brittany; Yang, Bo


    The questions that chemical oceanographers prioritize over the coming decades, and the methods we use to address these questions, will define our field's contribution to 21st century science. In recognition of this, the U.S. National Science Foundation and National Oceanic and Atmospheric Administration galvanized a community effort (the Chemical Oceanography MEeting: A BOttom-up Approach to Research Directions, or COME ABOARD) to synthesize bottom-up perspectives on selected areas of research in Chemical Oceanography. Representing only a small subset of the community, COME ABOARD participants did not attempt to identify targeted research directions for the field. Instead, we focused on how best to foster diverse research in Chemical Oceanography, placing emphasis on the following themes: strengthening our core chemical skillset; expanding our tools through collaboration with chemists, engineers, and computer scientists; considering new roles for large programs; enhancing interface research through interdisciplinary collaboration; and expanding ocean literacy by engaging with the public. For each theme, COME ABOARD participants reflected on the present state of Chemical Oceanography, where the community hopes to go and why, and actionable pathways to get there. A unifying concept among the discussions was that dissimilar funding structures and metrics of success may be required to accommodate the various levels of readiness and stages of knowledge development found throughout our community. In addition to the science, participants of the concurrent Dissertations Symposium in Chemical Oceanography (DISCO) XXV, a meeting of recent and forthcoming Ph.D. graduates in Chemical Oceanography, provided perspectives on how our field could show leadership in addressing long-standing diversity and early-career challenges that are pervasive throughout science. Here we summarize the COME ABOARD Meeting discussions, providing a synthesis of reflections and perspectives on the

  15. Human population intake fractions and environmental fate factors of toxic pollutants in life cycle impact assessment. (United States)

    Huijbregts, Mark A J; Struijs, Jaap; Goedkoop, Mark; Heijungs, Reinout; Jan Hendriks, A; van de Meent, Dik


    The present paper outlines an update of the fate and exposure part of the fate, exposure and effects model USES-LCA. The new fate and exposure module of USES-LCA was applied to calculate human population intake fractions and fate factors of the freshwater, marine and terrestrial environment for 3393 substances, including neutral organics, dissociating organics and inorganics, emitted to 7 different emission compartments. The human population intake fraction is on average 10(-5)-10(-8) for organics and 10(-3)-10(-4) for inorganics, depending on the emission compartment considered. Chemical-specific human population intake fractions can be 1-2.7 orders of magnitude higher or lower compared to the typical estimates. For inorganics, the human population intake fractions highly depend on the assumption that exposure via food products can be modelled with constant bioconcentration factors. The environmental fate factor is on average 10(-11)-10(-18) days m(-3) for organics and 10(-10)-10(-12) days m(-3) for inorganics, depending on the receiving environment and the emission compartment considered. Chemical-specific environmental fate factors can be 1-8 orders of magnitude higher or lower compared to the typical estimates. The largest differences between the new and old version of USES-LCA are found for emissions to air and soil. This is caused by a significant change in the structure of the air and soil compartments in the new version of USES-LCA, i.e. the distinction between rural and urban air, including rain-no rain conditions and including soil depth dependent intermedia transport.

  16. Free Will, Predestination, and the Fate of the Ottoman Empire. (United States)

    Menchinger, Ethan L


    Although European travelers to the Ottoman Empire often noted the inhabitants' "fatalism," historians have never seriously examined this intellectual phenomenon. Whether or not we can credit such sources, the testimony of seventeenth-and eighteenth-century Turkish and Arabic sources points to a robust debate over fate, free will, and predestination. What were the reasons behind these discussions? What issues were at stake? This article outlines the context and content of the debate. It then offers some observations about the wider significance of free will and predestination in the Ottoman intellectual universe - particularly their relation to early modern bureaucratic and military reform.

  17. Transport and fate of microbial pathogens in agricultural settings (United States)

    Bradford, Scott A.; Morales, Veronica L.; Zhang, Wei; Harvey, Ronald W.; Packman, Aaron I.; Mohanram, Arvind; Welty, Claire


    An understanding of the transport and survival of microbial pathogens (pathogens hereafter) in agricultural settings is needed to assess the risk of pathogen contamination to water and food resources, and to develop control strategies and treatment options. However, many knowledge gaps still remain in predicting the fate and transport of pathogens in runoff water, and then through the shallow vadose zone and groundwater. A number of transport pathways, processes, factors, and mathematical models often are needed to describe pathogen fate in agricultural settings. The level of complexity is dramatically enhanced by soil heterogeneity, as well as by temporal variability in temperature, water inputs, and pathogen sources. There is substantial variability in pathogen migration pathways, leading to changes in the dominant processes that control pathogen transport over different spatial and temporal scales. For example, intense rainfall events can generate runoff and preferential flow that can rapidly transport pathogens. Pathogens that survive for extended periods of time have a greatly enhanced probability of remaining viable when subjected to such rapid-transport events. Conversely, in dry seasons, pathogen transport depends more strongly on retention at diverse environmental surfaces controlled by a multitude of coupled physical, chemical, and microbiological factors. These interactions are incompletely characterized, leading to a lack of consensus on the proper mathematical framework to model pathogen transport even at the column scale. In addition, little is known about how to quantify transport and survival parameters at the scale of agricultural fields or watersheds. This review summarizes current conceptual and quantitative models for pathogen transport and fate in agricultural settings over a wide range of spatial and temporal scales. The authors also discuss the benefits that can be realized by improved modeling, and potential treatments to mitigate the risk

  18. Emissions, fate and transport of persistent organic pollutants to the Arctic in a changing global climate. (United States)

    Wöhrnschimmel, Henry; MacLeod, Matthew; Hungerbuhler, Konrad


    Climate change is expected to alter patterns of human economic activity and the associated emissions of chemicals, and also to affect the transport and fate of persistent organic pollutants (POPs). Here, we use a global-scale multimedia chemical fate model to analyze and quantify the impact of climate change on emissions and fate of POPs, and their transport to the Arctic. First, climate change effects under the SRES-A2 scenario are illustrated using case-studies for two well-characterized POPs, PCB153, and α-HCH. Then, we model the combined impact of altered emission patterns and climatic conditions on environmental concentrations of potential future-use substances with a broad range of chemical properties. Starting from base-case generic emission scenarios, we postulate changes in emission patterns that may occur in response to climate change: enhanced usage of industrial chemicals in an ice-free Arctic, and intensified application of agrochemicals due to higher crop production and poleward expansion of potential arable land. We find both increases and decreases in concentrations of POP-like chemicals in the Arctic in the climate change scenario compared to the base-case climate. During the phase of ongoing primary emissions, modeled increases in Arctic contamination are up to a factor of 2 in air and water, and are driven mostly by changes in emission patterns. After phase-out, increases are up to a factor of 2 in air and 4 in water, and are mostly attributable to changes in transport and fate of chemicals under the climate change scenario.

  19. A stable isotope tracer study of the influences of adjacent land use and riparian condition on fates of nitrate in streams (United States)

    Daniel J. Sobota; Sherri L. Johnson; Stan V. Gregory; Linda R. Ashkenas


    The influence of land use on potential fates of nitrate in stream ecosystems, ranging from denitrification to storage in organic matter, has not been documented extensively. Here, we describe the Pacific Northwest component of Lotic Intersite Nitrogen eXperiment, phase II (LINX II) to examine how land-use setting influences fates of nitrate in streams.

  20. Fate and effects of diazinon. (United States)

    Larkin, D J; Tjeerdema, R S


    Diazinon use has significantly increased since its introduction more than four decades ago. Thus, today we are faced with environmental and health consequences that are largely inseparable from the insecticide's benefits. Fortunately, the research to date is of immeasurable value in making sound scientific and policy decisions regarding diazinon use. Overall, research shows that diazinon is globally widespread, having distributed to all environmental media. Residential uses, and its ubiquity under many farming practices, contribute to extensive non-point-source pollution. In general, diazinon is degraded fairly rapidly in natural settings, although results have been variable and some degradation products are at least as toxic as the parent compound. Diazinon exhibits high acute toxicity to a wide variety of animals, leading to a wide range of sublethal biochemical effects, damage to specific target organs and tissues, cytotoxic and genotoxic effects, reproductive damage, and adverse ecological impacts. Its biological fate is complex, mediated largely by diverse metabolic mechanisms. Further research and monitoring are needed in a number of areas. For instance, it is important to develop a better understanding of the mechanism of diazinon's highly lethal effects on birds. Use restrictions at golf courses and sod farms are a welcome step, but there are still widespread avian exposures from orchards and lawns. Continued diazinon use at current rates also poses a clear threat to aquatic ecosystems and to important species such as salmon and bluegill sunfish. Although the research presented here does not indicate threats to humans from the pesticide, Wright (1990) suggests that people may be at substantial risk in unregulated settings. Further research is also needed to resolve the matter of the potential carcinogenicity of diazinon. As with all pesticides, diazinon use can result in the so-called pesticide treadmill wherein pesticide use necessitates further use as

  1. Silver engineered nanoparticles in freshwater systems - Likely fate and behaviour through natural attenuation processes. (United States)

    Shevlin, David; O'Brien, Niall; Cummins, Enda


    Growth in the nanotechnology sector is likely introducing unnatural formations of materials on the nanoscale (10-9m) to the environment. Disposal and degradation of products incorporating engineered nanomaterials (ENMs) are likely being released into natural aquatic systems un-intentionally primarily via waste water effluents. The fate and behaviour of metallic based nanoparticles (NPs) such as silver (Ag) in aquatic waters is complex with high levels of variability and uncertainty. In-situ physical, biological and chemical (natural attenuation) processes are likely to influence ENM fate and behaviour in freshwater systems. Surfaced functionalized particles may inhibit or limit environmental transformations which influence particle aggregation, mobility, dissolution and eco-toxic potential. This paper focuses on ENM characteristics and the influence of physical, chemical and biological processes occurring in aquatic systems that are likely to impact metallic ENMs fate. A focus on silver NPs (while for comparison, reporting about other metallic ENMs as appropriate) released to aquatic systems is discussed relating to their likely fate and behaviour in this dynamic and complex environment. This paper further highlights the need for specific risk assessment approaches for metallic ENMs and puts this into context with regard to informing environmental policy and potential NP influence on environmental/human health. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Building the chemical disarmament regime

    Energy Technology Data Exchange (ETDEWEB)

    Herby, P.


    While the good news is that the commission responsible for settling the technical aspects of the Chemical Weapons Convention`s (CWC) complex verification regime has made significant progress, the fate of the CWC now lies increasingly with people with little previous familiarity with the convention.

  3. Occurrence, fate and transformation of emerging contaminants in water: An overarching review of the field. (United States)

    Wilkinson, John; Hooda, Peter S; Barker, James; Barton, Stephen; Swinden, Julian


    Many of the products and drugs used commonly contain chemical components which may persist through sewage treatment works (STW) and eventually enter the aquatic environment as parent compounds, metabolites, or transformation products. Pharmaceuticals and personal care products (PPCPs) and other emerging contaminants (ECs) have been detected in waters (typically ng/L) as well as more recently bound to sediment and plastic particles (typically ng/g). Despite significant advancement of knowledge since the late 1990s, the fate of these contaminants/transformation products once introduced into the aquatic environment remains relatively unresolved. This review provides a unique focus on the fate of seven major groups of PPCPs/ECs in the aquatic environment, which is frequently not found in similar works which are often compound or topic-specific and limited in background knowledge. Key findings include: a) some replacements for regulation precluded/banned chemicals may be similarly persistent in the environment as those they replace, b) the adsorption of potentially bioactive chemicals to micro- and nanoplastics is a significant topic with risks to aquatic organisms potentially greater than previously thought, and c) micro-/nanoplastics are likely to remain of significant concern for centuries after regulatory limitations on their use become active due to the slow degradation of macro-plastics into smaller components. An interdisciplinary perspective on recent advances in the field is presented here in a unique way which highlights both the principle science and direction of research needed to elucidate the fate and transport patterns of aquatic PPCPs/ECs. Unlike similar reviews, which are often topic-specific, here we aim to present an overarching review of the field with focus on the occurrence, transformation and fate of emerging contaminants. Environmental presence of seven major classes of contaminants (analygesics, antibiotics, antineoplastics, beta

  4. The Advancement of Biomaterials in Regulating Stem Cell Fate. (United States)

    Hiew, Vun Vun; Simat, Siti Fatimah Binti; Teoh, Peik Lin


    Stem cells are well-known to have prominent roles in tissue engineering applications. Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) can differentiate into every cell type in the body while adult stem cells such as mesenchymal stem cells (MSCs) can be isolated from various sources. Nevertheless, an utmost limitation in harnessing stem cells for tissue engineering is the supply of cells. The advances in biomaterial technology allows the establishment of ex vivo expansion systems to overcome this bottleneck. The progress of various scaffold fabrication could direct stem cell fate decisions including cell proliferation and differentiation into specific lineages in vitro. Stem cell biology and biomaterial technology promote synergistic effect on stem cell-based regenerative therapies. Therefore, understanding the interaction of stem cell and biomaterials would allow the designation of new biomaterials for future clinical therapeutic applications for tissue regeneration. This review focuses mainly on the advances of natural and synthetic biomaterials in regulating stem cell fate decisions. We have also briefly discussed how biological and biophysical properties of biomaterials including wettability, chemical functionality, biodegradability and stiffness play their roles.

  5. Fate of micronuclei and micronucleated cells. (United States)

    Hintzsche, Henning; Hemmann, Ulrike; Poth, Albrecht; Utesch, Dietmar; Lott, Jasmin; Stopper, Helga

    The present review describes available evidence about the fate of micronuclei and micronucleated cells. Micronuclei are small, extranuclear chromatin bodies surrounded by a nuclear envelope. The mechanisms underlying the formation of micronuclei are well understood but not much is known about the potential fate of micronuclei and micronucleated cells. Many studies with different experimental approaches addressed the various aspects of the post-mitotic fate of micronuclei and micronucleated cells. These studies are reviewed here considering four basic possibilities for potential fates of micronuclei: degradation of the micronucleus or the micronucleated cell, reincorporation into the main nucleus, extrusion from the cell, and persistence in the cytoplasm. Two additional fates need to be considered: premature chromosome condensation/chromothripsis and the elimination of micronucleated cells by apoptosis, yielding six potential fates for micronuclei and/or micronucleated cells. The available data is still limited, but it can be concluded that degradation and extrusion of micronuclei might occur in rare cases under specific conditions, reincorporation during the next mitosis occurs more frequently, and the majority of the micronuclei persist without alteration at least until the next mitosis, possibly much longer. Overall, the consequences of micronucleus formation on the cellular level are still far from clear, but they should be investigated further because micronucleus formation may contribute to the initial and later steps of malignant cell transformation, by causing gain or loss of genetic material in the daughter cells and by the possibility of massive chromosome rearrangement in chromosomes entrapped within a micronucleus by the mechanisms of chromothripsis and chromoanagenesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Modeling Mercury Fate and Transport in Aquatic Systems (United States)

    Massoudieh, Arash; Žagar, Dušan; Green, Peter G.; Cabrera-Toledo, Carlos; Horvat, Milena; Ginn, Timothy R.; Barkouki, Tammer; Weathers, Tess; Bombardelli, Fabian A.

    Mercury in the aquatic environment is a neurotoxin with several known adverse effects on the natural ecosystem and the human health. Mathematical modeling is a cost-effective way for assessing the risk associated with mercury to aquatic organisms and for developing management plans for the reduction of mercury exposure in such systems. However, the analysis of mercury fate and transport in the aquatic environment requires multiple disciplines of science ranging from sediment transport and hydraulics, to geochemistry and microbiology. Also, it involves the knowledge of some less understood processes such as the microbial and diagenetic processes affecting the chemical speciation of mercury and various mechanisms involved in the mass-exchange of mercury species between the benthic sediments and the overlying water. Due to these complexities, there are many challenges involved in developing an integrated mercury fate and transport model in aquatic systems. This paper identifies the various processes that are potentially important in mercury fate and transport as well as the knowns and unknowns about these processes. Also, an integrated multi-component reactive transport modeling approach is suggested to capture several of those processes. This integrated modeling framework includes the coupled advective-dispersive transport of mercury species in the water body, both in dissolved phase and as associated to mobile suspended sediments. The flux of mercury in the benthic sediments as a result of diffusive mass exchange, bio-dispersion, and hyporheic flow, and the flow generated due to consolidation of newly deposited sediments is also addressed. The model considers in addition the deposition and resuspension of sediments and their effect on the mass exchange of mercury species between the top water and the benthic sediments. As for the biogeochemical processes, the effect of redox stratification and activities of sulfate and iron-reducing bacteria on the methylation of

  7. Fate of Pyrethroids in Farmland Ponds

    DEFF Research Database (Denmark)

    Mogensen, B. B.; Sørensen, P. B.; Stuer-Lauridsen, F.

    Pyrethroids constitute a group of widely used insecticides, which are toxic to aquatic organisms. This report presents the results from a 2-year study of the fate of pyrethroids in ponds, i.e. their distribution in the water column, the sediment and the surface microlayer respectively. The measur......Pyrethroids constitute a group of widely used insecticides, which are toxic to aquatic organisms. This report presents the results from a 2-year study of the fate of pyrethroids in ponds, i.e. their distribution in the water column, the sediment and the surface microlayer respectively...

  8. Biomaterial stiffness determines stem cell fate. (United States)

    Lv, Hongwei; Wang, Heping; Zhang, Zhijun; Yang, Wang; Liu, Wenbin; Li, Yulin; Li, Lisha


    Stem cells have potential to develop into numerous cell types, thus they are good cell source for tissue engineering. As an external physical signal, material stiffness is capable of regulating stem cell fate. Biomaterial stiffness is an important parameter in tissue engineering. We summarize main measurements of material stiffness under different condition, then list and compare three main methods of controlling stiffness (material amount, crosslinking density and photopolymeriztion time) which interplay with one another and correlate with stiffness positively, and current advances in effects of biomaterial stiffness on stem cell fate. We discuss the unsolved problems and future directions of biomaterial stiffness in tissue engineering. Copyright © 2017. Published by Elsevier Inc.

  9. USEtox fate and ecotoxicity factors for comparative assessment of toxic emissions in Life Cycle Analysis

    DEFF Research Database (Denmark)

    Andrew D, Henderson; Hauschild, Michael Zwicky; Van de Meent, Dik


    with characteristic properties, this work provides understanding of the basis for calculations of CFs in USEtox. In addition, it offers insight into the chemical properties and critical mechanisms covering the continuum from chemical emission to freshwater ecosystem toxicity. For an emission directly to water...... orders of magnitude. However, for an emission to air or soil, differences in chemical properties may decrease the CF by up to 10 orders of magnitude, as a result of intermedia transfer and degradation. This result brings new clarity to the relative contributions of fate and freshwater ecotoxicity...

  10. Current understanding of microplastics in the environment: Occurrence, fate, risks, and what we should do. (United States)

    Peng, Jinping; Wang, Jundong; Cai, Liqi


    Microplastics pollution has been documented in the global environment, including at sea, in freshwater and in atmospheric fallout. Ingestion of microplastics by multiple kinds of organisms has been reported and has received increasing attention, because microplastics not only act as a source of toxic chemicals but also a sink for toxic chemicals. To better understand the great concerns about microplastics and associated toxic chemicals potential exposed to the organisms ingesting the debris, we should know more about the occurrence, fate, and risks of microplastics in the environment. What we should do depends on this better understanding. Integr Environ Assess Manag 2017;13:476-482. © 2017 SETAC. © 2017 SETAC.

  11. Modelling Illicit Drug Fate in Sewers for Wastewater-Based Epidemiology

    DEFF Research Database (Denmark)

    Ramin, Pedram

    . Sewer systems can be considered as biological reactors, in which the concentration of organic chemicals present in wastewater can be impacted by in-sewer processes during hydraulic residence time. Illicit drug biomarkers, as trace organic chemicals in the range of nanograms to micrograms per liter......, are subject to physical, chemical or biological processes in sewers (fate processes). The occurrence of these processes may lead to significant change of drug loads at WWTP influent compared to source release points. Therefore, not accounting for these variations may negatively affect drug use estimates...


    The soil/sediment adsorption partition coefficient normalized to organic carbon (Koc) is extensively used to assess the fate of organic chemicals in hazardous waste sites. Several attempts have been made to estimate the value of Koc from chemical structure ...

  13. Examination of chemical elements partitioning between the γ and γ′ phases in CMSX-4 superalloy using EDS microanalysis and electron tomography

    Directory of Open Access Journals (Sweden)

    Kruk Adam


    Full Text Available In the present study, the partition of chemical elements between γ and γ′ phases in CMSX-4 was investigated using EDS microanalysis and electron tomography (FIB-SEM and STEM-EDS methods. The investigation has been performed for the superalloy after standard heat treatment and the ex-service CMSX-4 turbine blade after operation for 12 700 hours and 200 starts in industrial gas turbine. The results have shown that Co, Cr and Re partition to the γ matrix, Ni and W are present in both γ and γ′ phases, while Al, Ti and Ta strongly partition to the γ′ phase. The results show the abilities of new analytical electron microscopy and electron tomography methods to characterize the microstructure and chemical composition of single crystal superalloys at the nanoscale.



    D. M. Meloncelli; S. A. M. Windsor; P. Brooks


    The chemical profiles of Tasmanian Leatherwood and Manuka honeys from Tasmania and New Zealand have been compared by a combination of GC-MS analysis of volatiles and semi-volatiles, RP-HPLC-DAD analysis of phenolics and flavonoids and HPLC-DAD analysis of derivatised dihydroxyacetone, hydroxymethylfurfural and methylglyoxal. This study found that Tasmanian and New Zealand Manuka honeys have high concentrations of methylglyoxal. However, syringic acid was only detected in Manuka honeys grown i...

  15. Chemical crosshairs on the central dogma. (United States)

    Ansari, Aseem Z


    As cellular machines and processes that regulate the flow of genomic information have come into sharper focus, a new level of chemical control has become possible. The scope of such chemical intervention extends from the mechanistic dissection of biochemical processes in living cells to the targeted control of gene networks and cell fate.

  16. Social Axioms and Achievement across Cultures: The Influence of Reward for Application and Fate Control (United States)

    Zhou, Fan; Leung, Kwok; Bond, Michael Harris


    The present research examined the relationships between two social axiom dimensions, reward for application and fate control, with various achievement-related indexes across a wide range of cultures. Results showed that there was no relationship between reward for application and academic achievement or economic competitiveness, but reward for…

  17. Organoarsenicals in poultry litter: detection, fate, and toxicity. (United States)

    P Mangalgiri, Kiranmayi; Adak, Asok; Blaney, Lee


    Arsenic contamination in groundwater has endangered the health and safety of millions of people around the world. One less studied mechanism for arsenic introduction into the environment is the use of organoarsenicals in animal feed. Four organoarsenicals are commonly employed as feed additives: arsanilic acid, carbarsone, nitarsone, and roxarsone. Organoarsenicals are composed of a phenylarsonic acid molecule with substituted functional groups. This review documents the use of organoarsenicals in the poultry industry, reports analytical methods available for quantifying organic arsenic, discusses the fate and transport of organoarsenicals in environmental systems, and identifies toxicological concerns associated with these chemicals. In reviewing the literature on organoarsenicals, several research needs were highlighted: advanced analytical instrumentation that allows for identification and quantification of organoarsenical degradation products; a greater research emphasis on arsanilic acid, carbarsone, and nitarsone; identification of degradation pathways, products, and kinetics; and testing/development of agricultural wastewater and solid treatment technologies for organoarsenical-laden waste. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Cell fate determination dynamics in bacteria (United States)

    Kuchina, Anna; Espinar, Lorena; Cagatay, Tolga; Garcia-Ojalvo, Jordi; Suel, Gurol


    The fitness of an organism depends on many processes that serve the purpose to adapt to changing environment in a robust and coordinated fashion. One example of such process is cellular fate determination. In the presence of a variety of alternative responses each cell adopting a particular fate represents a ``choice'' that must be tightly regulated to ensure the best survival strategy for the population taking into account the broad range of possible environmental challenges. We investigated this problem in the model organism B.Subtilis which under stress conditions differentiates terminally into highly resistant spores or initiates an alternative transient state of competence. The dynamics underlying cell fate choice remains largely unknown. We utilize quantitative fluorescent microscopy to track the activities of genes involved in these responses on a single-cell level. We explored the importance of temporal interactions between competing cell fates by re- engineering the differentiation programs. I will discuss how the precise dynamics of cellular ``decision-making'' governed by the corresponding biological circuits may enable cells to adjust to diverse environments and determine survival.

  19. Photochemical fate of beta-blockers in NOM enriched waters. (United States)

    Wang, Ling; Xu, Haomin; Cooper, William J; Song, Weihua


    Beta-blockers, prescribed for the treatment of high blood pressure and for long-term use after a heart attack, have been detected in surface and ground waters. This study examines the photochemical fate of three beta-blockers, atenolol, metoprolol, and nadolol. Hydrolysis accounted for minor losses of these beta-blockers in the pH range 4-10. The rate of direct photolysis at pH 7 in a solar simulator varied from 6.1 to 8.9h(-1) at pH 7. However, the addition of a natural organic matter (NOM) isolate enhanced the photochemical loss of all three compounds. Indirect photochemical fate, generally described by reactions with hydroxyl radical (OH) and singlet oxygen ((1)ΔO(2)), and, the direct reaction with the triplet excited state, (3)NOM(⁎), also varied but collectively appeared to be the major loss factor. Bimolecular reaction rate constants of the three beta-blockers with (1)ΔO(2) and OH were measured and accounted for 0.02-0.04% and 7.2-38.9% of their loss, respectively. These data suggest that the (3)NOM(⁎) contributed 50.6-85.4%. Experiments with various (3)NOM(⁎) quenchers supported the hypothesis that it was singly the most important reaction. Atenolol was chosen for more detailed investigation, with the photoproducts identified by LC-MS analysis. The results suggested that electron-transfer could be an important mechanism in photochemical fate of beta-blockers in the presence of NOM. Copyright © 2012 Elsevier B.V. All rights reserved.


    Directory of Open Access Journals (Sweden)

    D. M. Meloncelli,


    Full Text Available The chemical profiles of Tasmanian Leatherwood and Manuka honeys from Tasmania and New Zealand have been compared by a combination of GC-MS analysis of volatiles and semi-volatiles, RP-HPLC-DAD analysis of phenolics and flavonoids and HPLC-DAD analysis of derivatised dihydroxyacetone, hydroxymethylfurfural and methylglyoxal. This study found that Tasmanian and New Zealand Manuka honeys have high concentrations of methylglyoxal. However, syringic acid was only detected in Manuka honeys grown in New Zealand. The Tasmanian honeys can be distinguished by the higher concentration of 3-phenyllactic acid in Manuka compared to Leatherwood floral sources.

  1. A reactive transport model for mercury fate in contaminated soil--sensitivity analysis. (United States)

    Leterme, Bertrand; Jacques, Diederik


    We present a sensitivity analysis of a reactive transport model of mercury (Hg) fate in contaminated soil systems. The one-dimensional model, presented in Leterme et al. (2014), couples water flow in variably saturated conditions with Hg physico-chemical reactions. The sensitivity of Hg leaching and volatilisation to parameter uncertainty is examined using the elementary effect method. A test case is built using a hypothetical 1-m depth sandy soil and a 50-year time series of daily precipitation and evapotranspiration. Hg anthropogenic contamination is simulated in the topsoil by separately considering three different sources: cinnabar, non-aqueous phase liquid and aqueous mercuric chloride. The model sensitivity to a set of 13 input parameters is assessed, using three different model outputs (volatilized Hg, leached Hg, Hg still present in the contaminated soil horizon). Results show that dissolved organic matter (DOM) concentration in soil solution and the binding constant to DOM thiol groups are critical parameters, as well as parameters related to Hg sorption to humic and fulvic acids in solid organic matter. Initial Hg concentration is also identified as a sensitive parameter. The sensitivity analysis also brings out non-monotonic model behaviour for certain parameters.

  2. Study of the photodegradation of a fragrance ingredient for aquatic environmental fate assessment. (United States)

    Lin, Jianming; Emberger, Matthew


    Photodegradation is an important abiotic degradation process to be taken into account for more accurate assessment of the fate of chemicals in the aquatic environment, especially those that are not readily biodegradable. Although the significant role of indirect photodegradation in the environmental fate of chemicals has been revealed in recent research, because of the many confounding factors affecting its kinetics, no straightforward approaches can be used to investigate this degradation process for environmental fate assessment. The indirect photodegradation of a fragrance ingredient named Pamplewood was studied in this work for its fate assessment. Indirect photodegradation rates under various indoor and outdoor conditions were measured by using an LC-MS method. Although the half-lives varied from 4 to 13 days, they collectively indicated that Pamplewood is intrinsically photolabile and can undergo rapid photodegradation. Results from quencher experiments revealed that ⋅OH was the main reactive intermediate responsible for indirect photodegradation, with a half-life of about 18 days in sunlit surface water, based on the experimentally determined second-order rate constant (8.48 ± 0.19 × 109 M-1 s-1). Photodegradation products of Pamplewood were also studied by GC-MS, LC-MS and total organic carbon content analyses. The results indicated that intermediates of Pamplewood photodegradation continued to photodegrade into smaller and more polar species. Complete mineralization of Pamplewood was observed when it was reacted with hydroxyl radicals in an aqueous solution. This novel approach can be applied for a more realistic environmental fate assessment of other non-readily biodegradable, hydrolysis-resistant, and non-sunlight-absorbing fragrance ingredients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Fate of MTBE and DCPD Compounds Relative to BTEX in Gasoline-Contaminated Aquifers

    Directory of Open Access Journals (Sweden)

    L. Olivella


    Full Text Available The aim of this communication is to provide preliminary results on MTBE monitoring, and at the same time to propose some new tracers of gasoline pollution in groundwater. An overview is presented on benzene-toluene-ethylbenzene-xylene (BTEX, methyl tertiary-butyl ether (MTBE, and dicyclopentadienes (DCPD contents in gasoline formulations. Their specific fate in gasoline-contaminated aquifers are consistent with their physical-chemical properties.

  4. Aqueous chemistry of chlorine: chemistry, analysis, and environmental fate of reactive oxidant species

    Energy Technology Data Exchange (ETDEWEB)

    Jolley, R.L.; Carpenter, J.H.


    This report reviews (1) the chemistry of chlorine relative to its reactions in fresh, estuarine, and marine waters and the formation of reactive oxidant species; (2) the current status of chemical analysis of reactive chlorine species and chlorine-produced oxidant species relative to analysis of low concentrations (microgram-per-liter range) and determination of accuracy and precision of methods; and (3) the environmental fate of chlorine and chlorine-produced oxidant species.

  5. Experimental examination of the Mg-silicate-carbonate system at ambient temperature: Implications for alkaline chemical sedimentation and lacustrine carbonate formation (United States)

    Tutolo, Benjamin M.; Tosca, Nicholas J.


    Despite their clear economic significance, Cretaceous presalt carbonates of the South Atlantic continental margins are not well-described by published facies models. This knowledge gap arises, in part, because the chemical processes that generate distinctive sedimentary products in alkaline, non-marine environments are poorly understood. Here, we use constraints inferred from reported mineralogical and geochemical features of presalt carbonate rocks to design and perform a suite of laboratory experiments to quantify the processes of alkaline chemical sedimentation. Using real-time observations of in-situ fluid chemistry, post-experiment analysis of precipitated solids, and geochemical modeling tools, we illustrate that spherulitic carbonates and Mg-silicate clays observed in presalt carbonates were likely precipitated from elevated pH (∼10-10.5) waters with high concentrations of silica and alkali cations typical of intermediate to felsic rocks, such as Na+ and K+. Charge balance constraints require that these cations were not counterbalanced to any significant degree by anions typical of seawater, such as Cl- and SO4-, which implies minimal seawater involvement in presalt deposition. Experimental data suggest that, at this alkaline pH, only modest concentrations (i.e., ∼0.5-1 mmol/kg) of Ca++ would have been required to precipitate spheroidal CaCO3. Given the rapid rates of CaCO3 nucleation and growth under such conditions, it is unlikely that Ca++ concentrations in lake waters ever exceeded these values, and sustained chemical fluxes are therefore required for extensive sediment accumulation. Moreover, our experiments indicate that the original mineralogy of presalt CaCO3 could have been calcite or aragonite, but the differing time scales of precipitation between CaCO3 and Mg-silicates would have tended to skew the Mg/Ca ratio in solution towards elevated values which favor aragonite. Mg-silicate nucleation and growth rates measured during our experiments

  6. Apical versus Basal Neurogenesis Directs Cortical Interneuron Subclass Fate

    Directory of Open Access Journals (Sweden)

    Timothy J. Petros


    Full Text Available Fate determination in the mammalian telencephalon, with its diversity of neuronal subtypes and relevance to neuropsychiatric disease, remains a critical area of study in neuroscience. Most studies investigating this topic focus on the diversity of neural progenitors within spatial and temporal domains along the lateral ventricles. Often overlooked is whether the location of neurogenesis within a fate-restricted domain is associated with, or instructive for, distinct neuronal fates. Here, we use in vivo fate mapping and the manipulation of neurogenic location to demonstrate that apical versus basal neurogenesis influences the fate determination of major subgroups of cortical interneurons derived from the subcortical telencephalon. Somatostatin-expressing interneurons arise mainly from apical divisions along the ventricular surface, whereas parvalbumin-expressing interneurons originate predominantly from basal divisions in the subventricular zone. As manipulations that shift neurogenic location alter interneuron subclass fate, these results add an additional dimension to the spatial-temporal determinants of neuronal fate determination.

  7. Eat, breathe, ROS: controlling stem cell fate through metabolism. (United States)

    Kubli, Dieter A; Sussman, Mark A


    Research reveals cardiac regeneration exists at levels previously deemed unattainable. Clinical trials using stem cells demonstrate promising cardiomyogenic and regenerative potential but insufficient contractile recovery. Incomplete understanding of the biology of administered cells likely contributes to inconsistent patient outcomes. Metabolism is a core component of many well-characterized stem cell types, and metabolic changes fundamentally alter stem cell fate from self-renewal to lineage commitment, and vice versa. However, the metabolism of stem cells currently studied for cardiac regeneration remains incompletely understood. Areas covered: Key metabolic features of stem cells are reviewed and unique stem cell metabolic characteristics are discussed. Metabolic changes altering stem cell fate are considered from quiescence and self-renewal to lineage commitment. Key metabolic concepts are applied toward examining cardiac regeneration through stem cell-based approaches, and clinical implications of current cell therapies are evaluated to identify potential areas of improvement. Expert commentary: The metabolism and biology of stem cells used for cardiac therapy remain poorly characterized. A growing appreciation for the fundamental relationship between stem cell functionality and metabolic phenotype is developing. Future studies unraveling links between cardiac stem cell metabolism and regenerative potential may considerably improve treatment strategies and therapeutic outcomes.

  8. Environmental fate of polyhexamethylene biguanide. (United States)

    Lucas, Anne D


    Polyhexamethylene biguanide (PHMB) is used as a bacteriocidal agent in a variety of applications from medical devices to pools, but is highly toxic to some aquatic species. The stability of PHMB in various environmental matrices was examined. 80% of PHMB was present in fortified creek samples after 20 days, but bound immediately to soils with the exception of sandy soil. PHMB was absorbed to below detectable levels by weathered concrete within 12 h. In addition, one over the counter wound care product containing PHMB was evaluated to assess environmental leaching; detectable levels (20 μg/mL) were still present after 1 week.

  9. 75 FR 8575 - Testing of Certain High Production Volume Chemicals; Third Group of Chemicals (United States)


    ... test rule under section 4(a)(1)(B) of the Toxic Substances Control Act (TSCA) that would require.../chemical properties and biodegradation), ecotoxicity (in fish, Daphnia, and algae), acute toxicity, genetic..., Daphnia, and algae). Environmental fate (including physical/chemical properties (melting point, boiling...

  10. Spatially explicit multimedia fate models for pollutants in Europe: state of the art and perspectives. (United States)

    Pistocchi, A; Sarigiannis, D A; Vizcaino, P


    A review by Hollander et al. (in preparation), discusses the relative potentials, advantages and shortcomings of spatial and non spatial models of chemical fate, highlighting that spatially explicit models may be needed for specific purposes. The present paper reviews the state of the art in spatially explicit chemical fate and transport modeling in Europe. We summarize the three main approaches currently adopted in spatially explicit modeling, namely (1) multiple box models, (2) numerical solutions of simultaneous advection-dispersion equations (ADE) in air, soil and water, and (3) the development of meta-models. As all three approaches experience limitations, we describe in further detail geographic information system (GIS)-based modeling as an alternative approach allowing a simple, yet spatially explicit description of chemical fate. We review the input data needed, and the options available for their retrieval at the European scale. We also discuss the importance of, and limitations in model evaluation. We observe that the high uncertainty in chemical emissions and physico-chemical behavior in the environment make realistic simulations difficult to obtain. Therefore we envisage a shift in model use from process simulation to hypothesis testing, in which explaining the discrepancies between observed and computed chemical concentrations in the environment takes importance over prediction per se. This shift may take advantage of using simple models in GIS with residual uses of complex models for detailed studies. It also calls for tighter joint interpretation of models and spatially distributed monitoring datasets, and more refined spatial representation of environmental drivers such as landscape and climate variables, and better emission estimates. In summary, we conclude that the problem is not "how to compute" (i.e. emphasis on numerical methods, spatial/temporal discretization, quantitative uncertainty and sensitivity analysis...) but "what to compute" (i

  11. Specifying and protecting germ cell fate (United States)

    Strome, Susan; Updike, Dustin


    Germ cells are the special cells in the body that undergo meiosis to generate gametes and subsequently entire new organisms after fertilization, a process that continues generation after generation. Recent studies have expanded our understanding of the factors and mechanisms that specify germ cell fate, including the partitioning of maternally supplied ‘germ plasm’, inheritance of epigenetic memory and expression of transcription factors crucial for primordial germ cell (PGC) development. Even after PGCs are specified, germline fate is labile and thus requires protective mechanisms, such as global transcriptional repression, chromatin state alteration and translation of only germline-appropriate transcripts. Findings from diverse species continue to provide insights into the shared and divergent needs of these special reproductive cells. PMID:26122616

  12. Photoreceptor cell fate specification in vertebrates (United States)

    Brzezinski, Joseph A.; Reh, Thomas A.


    Photoreceptors – the light-sensitive cells in the vertebrate retina – have been extremely well-characterized with regards to their biochemistry, cell biology and physiology. They therefore provide an excellent model for exploring the factors and mechanisms that drive neural progenitors into a differentiated cell fate in the nervous system. As a result, great progress in understanding the transcriptional network that controls photoreceptor specification and differentiation has been made over the last 20 years. This progress has also enabled the production of photoreceptors from pluripotent stem cells, thereby aiding the development of regenerative medical approaches to eye disease. In this Review, we outline the signaling and transcription factors that drive vertebrate photoreceptor development and discuss how these function together in gene regulatory networks to control photoreceptor cell fate specification. PMID:26443631

  13. Emplacement of serpentinites in the Chohar Gonbad-Gugher-Baft ophiolitic mélange, southeast Iran: examination of the mineral-chemical, petrologic, and structural features (United States)

    Mohammadi, N.; Ahmadipour, H.; Lentz, D. R.; Shafaii Moghadam, H.


    The Chohar Gonbad-Gugher-Baft ophiolite mélange, located along the major Baft and Shahr-e-Babak fault zones, southeast Iran, represents remnants of Neo-Tethyan oceanic lithosphere. This mélange contains blocks of harzburgite, dunite, lherzolite, basalt, and other ophiolite-related lithologies tectonically mixed with and embedded in a serpentinite matrix. Field, petrographic, and geochemical data show that peridotites in this mélange belong to the upper mantle. They seem to have undergone up to ~20 % partial melting in a supra-subduction zone setting, based on their spinel Cr# values (0.21-0.53). Chemical compositions and textures in the serpentinites indicate that they were partially hydrated during emplacement and further mobilized diapirically to the surface. The different deformation stages occurred in an accretionary wedge environment. Petrographic evidence shows that the first serpentinization event produced mesh-textured serpentinites formed under static conditions in an ocean floor environment (Nain-Baft ocean crust), where the initial lizardite, bastite, and chrysotile veins formed. Plastic deformation occurred due to the subduction of Nain-Baft oceanic lithospheric beneath the central Iranian microcontinent, with antigorite-bearing flare-textured serpentinites produced. During progressive exhumation of the Nain-Baft ophiolite mélange, the serpentinites were affected by ductile, ductile-brittle, and brittle deformation, respectively. Accretion and resultant diapirism are the most important processes in the emplacement of serpentinite, which is a consequence of hydration of the ocean crust. In this example, late-stage emplacement via thrusting occurred along the northern extent of the southern Sanandaj-Sirjan zone (S-SZ).

  14. Biological fate of low-calorie sweeteners. (United States)

    Magnuson, Bernadene A; Carakostas, Michael C; Moore, Nadia H; Poulos, Sylvia P; Renwick, Andrew G


    With continued efforts to find solutions to rising rates of obesity and diabetes, there is increased interest in the potential health benefits of the use of low- and no-calorie sweeteners (LNCSs). Concerns about safety often deter the use of LNCSs as a tool in helping control caloric intake, even though the safety of LNCS use has been affirmed by regulatory agencies worldwide. In many cases, an understanding of the biological fate of the different LNSCs can help health professionals to address safety concerns. The objectives of this review are to compare the similarities and differences in the chemistry, regulatory status, and biological fate (including absorption, distribution, metabolism, and excretion) of the commonly used LNCSs: acesulfame potassium, aspartame, saccharin, stevia leaf extract (steviol glycoside), and sucralose. Understanding the biological fate of the different LNCSs is helpful in evaluating whether reports of biological effects in animal studies or in humans are indicative of possible safety concerns. Illustrations of the usefulness of this information to address questions about LNCSs include discussion of systemic exposure to LNCSs, the use of sweetener combinations, and the potential for effects of LNCSs on the gut microflora. © The Author(s) 2016. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail:

  15. Geochemical Fate and Transport of Sildenafil and Vardenafil (United States)

    Richter, L.; Boudinot, G.; Vulava, V. M.; Cory, W. C.


    The geochemical fate of pharmaceuticals and their degradation products is a developing environmental field. The geologic, chemical, and biological fate of these pollutants has become very relevant with the increase in human population and the resulting increase in pollutant concentrations in the environment. In this study, we focus on sildenafil (SDF) and vardenafil (VDF), active compounds in Viagra and Levitra, respectively, two commonly used erectile dysfunction drugs. The main objective is to determine the sorption potential and transport behavior of these two compounds in natural soils. Both SDF and VDF are complex organic molecules with multiple amine functional groups in their structures. Two types of natural acidic soils (pH≈4.5), an organic-rich soil (7.6% OM) and clay-rich soil (5.1% clay) were used in this study to determine which soil components influence sorption behavior of both compounds. Sorption isotherms measured using batch reactors were nearly linear, but sorption was stronger in soil that contained higher clay content. Both compounds have multiple pKas due to the amine functional groups, the relevant pKas of SDF are 5.97 and 7.27, and those of VDF's are 4.72 and 6.21. These values indicate that these compounds likely behave as cations in soil suspensions and hence were strongly sorbed to negatively-charged clay minerals present in both soils. The clay composition in both soils is predominantly kaolinite with smaller amount of montmorillonite, both of which have a predominantly negative surface charge. Transport experiments using glass chromatography columns indicated that both compounds were more strongly retarded in the clay-rich soils. Breakthrough curves from the transport experiments were modeled using convection-dispersion transport equations. The organic matter in the soil seemed to play a less dominant role in the geochemistry in this study, but is likely to transform both compounds into derivative compounds as seen in other studies.

  16. Organic contaminant transport and fate in the subsurface: evolution of knowledge and understanding (United States)

    Essaid, Hedeff I.; Bekins, Barbara A.; Cozzarelli, Isabelle M.


    Toxic organic contaminants may enter the subsurface as slightly soluble and volatile nonaqueous phase liquids (NAPLs) or as dissolved solutes resulting in contaminant plumes emanating from the source zone. A large body of research published in Water Resources Research has been devoted to characterizing and understanding processes controlling the transport and fate of these organic contaminants and the effectiveness of natural attenuation, bioremediation, and other remedial technologies. These contributions include studies of NAPL flow, entrapment, and interphase mass transfer that have advanced from the analysis of simple systems with uniform properties and equilibrium contaminant phase partitioning to complex systems with pore-scale and macroscale heterogeneity and rate-limited interphase mass transfer. Understanding of the fate of dissolved organic plumes has advanced from when biodegradation was thought to require oxygen to recognition of the importance of anaerobic biodegradation, multiple redox zones, microbial enzyme kinetics, and mixing of organic contaminants and electron acceptors at plume fringes. Challenges remain in understanding the impacts of physical, chemical, biological, and hydrogeological heterogeneity, pore-scale interactions, and mixing on the fate of organic contaminants. Further effort is needed to successfully incorporate these processes into field-scale predictions of transport and fate. Regulations have greatly reduced the frequency of new point-source contamination problems; however, remediation at many legacy plumes remains challenging. A number of fields of current relevance are benefiting from research advances from point-source contaminant research. These include geologic carbon sequestration, nonpoint-source contamination, aquifer storage and recovery, the fate of contaminants from oil and gas development, and enhanced bioremediation.

  17. Fate of triclocarban during soil aquifer treatment: Soil column studies

    KAUST Repository

    Essandoh, H. M K


    There are current concerns about the presence of persistent chemicals in recharge water used in soil aquifer treatment systems. Triclocarban (TCC) has been reported as a persistent, high production volume chemical with the potential to bioaccumulate in the environment. It is also known to have adverse effects such as toxicity and suspected endocrine disruption. This study was carried out to study the fate of TCC in soil aquifer treatment (SAT) through laboratory simulations in a soil column. The system performance was evaluated with regards to TCC influent concentration, sand (column) depth, and residence time. Results obtained confirmed the ability of SAT to reduce TCC concentrations in wastewater. Sorption and biodegradation were responsible for TCC removal, the latter mechanism however being unsustainable. The removal efficiency was found to be dependent on concentration and decreased over time and increased with column depth. Within the duration of the experimental run, TCC negatively impacted on treatment performance through a reduction in COD removals observed in the column. © IWA Publishing 2010.

  18. Control of Cell Fate in the Circulatory and Ventilatory Systems

    CERN Document Server

    Thiriet, Marc


    The volumes in this authoritative series present a multidisciplinary approach to modeling and simulation of flows in the cardiovascular and ventilatory systems, especially multiscale modeling and coupled simulations. The cardiovascular and respiratory systems are tightly coupled, as their primary function is to supply oxygen to and remove carbon dioxide from the body's cells. Because physiological conduits have deformable and reactive walls, macroscopic flow behavior and prediction must be coupled to nano- and microscopic events in a corrector scheme of regulated mechanisms. Therefore, investigation of flows of blood and air in physiological conduits requires an understanding of the biology, chemistry, and physics of these systems together with the mathematical tools to describe their functioning. Volumes 1 and 2 are devoted to cell organization and fate, as well as activities that are autoregulated and/or controlled by the cell environment. Volume 1 examined cellular features that allow adaptation to env...

  19. Examination of Perovskite Structure CaMnO3-δ with MgO Addition as Oxygen Carrier for Chemical Looping with Oxygen Uncoupling Using Methane and Syngas

    Directory of Open Access Journals (Sweden)

    Dazheng Jing


    Full Text Available Perovskite structure oxygen carriers with the general formula CaMnxMg1-xO3-δ were spray-dried and examined in a batch fluidized bed reactor. The CLOU behavior, reactivity towards methane, and syngas were investigated at temperature 900°C to 1050°C. All particles showed CLOU behavior at these temperatures. For experiments with methane, a bed mass corresponding to 57 kg/MW was used in the reactor, and the average CH4 to CO2 conversion was above 97% for most materials. Full syngas conversion was achieved for all materials utilizing a bed mass corresponding to 178 kg/MW. SEM/EDX and XRD confirmed the presence of MgO in the fresh and used samples, indicating that the Mg cation is not incorporated into the perovskite structure and the active compound is likely pure CaMnO3-δ. The very high reactivity with fuel gases, comparable to that of baseline oxygen carriers of NiO, makes these perovskite particles highly interesting for commercial CLC application. Contrary to NiO, oxygen carriers based on CaMnO3-δ have no thermodynamic limitations for methane oxidation to CO2 and H2O, not to mention that the materials are environmentally friendly and can utilize much cheaper raw materials for production. The physical properties, crystalline phases, and morphology information were also determined in this work.

  20. Mechanistic controls on diverse fates of terrestrial organic components in the East China Sea (United States)

    Zhu, Chun; Wagner, Thomas; Talbot, Helen M.; Weijers, Johan W. H.; Pan, Jian-Ming; Pancost, Richard D.


    Terrestrial carbon transferred from the land to sea is a critical component of the global carbon cycle. A range of geochemical proxies has been developed to fingerprint the fate of terrestrial organic matter (TOM) in marine sediments. However, discrepancies among different proxies limit our ability to quantify and interpret the terrestrial signals in marine sediments, with consequences for the investigation of both the modern carbon cycle and past environmental change. To mechanistically understand these discrepancies, we examined the distributions of a range of terrestrial proxies and their aquatic counterparts (i.e. marine proxies) in the Yangtze river-East China Sea (YR-ECS) shelf system, where TOM experiences extensive modification during transport and burial. TOM proxies in the YR-ECS system collectively fit a power-law model but with distinct attenuation rates (the a∗ values) for individual molecular proxy groups. Among a range of TOM proxies, the modeled a∗ values decrease in the order: soil-marker BHPs > triterpenols > lignin > HMW n-alkanols > branched GDGTs > HMW n-alkanes for biomarkers; and Rsoil > BIT > %TOMiso for proxies tracing %TOM. Rapid loss of TOM components through dissociation in the narrow estuary, followed by oxidation over the wide open shelf, are best described by power curves. Inherent chemical reactivity (i.e. the number of functional groups), responses to hydraulic sorting, and in situ production regulate the individual attenuation rates. Of them, chemical reactivity plays the most important role on proxy behavior, supported by a strong correlation between a∗ values and standard molal Gibbs energies. Both, physical protection and chemical reactivity fundamentally control the overall behavior of TOM components, with the relative importance being setting-dependant: The former is relatively important in the estuary, whereas the later is the primary control over the open shelf. Moreover, regional variation of different marine

  1. Cell Fate Decision Making through Oriented Cell Division (United States)

    Johnston, Christopher A.


    The ability to dictate cell fate decisions is critical during animal development. Moreover, faithful execution of this process ensures proper tissue homeostasis throughout adulthood, whereas defects in the molecular machinery involved may contribute to disease. Evolutionarily conserved protein complexes control cell fate decisions across diverse tissues. Maintaining proper daughter cell inheritance patterns of these determinants during mitosis is therefore a fundamental step of the cell fate decision-making process. In this review, we will discuss two key aspects of this fate determinant segregation activity, cortical cell polarity and mitotic spindle orientation, and how they operate together to produce oriented cell divisions that ultimately influence daughter cell fate. Our focus will be directed at the principal underlying molecular mechanisms and the specific cell fate decisions they have been shown to control. PMID:26844213

  2. The role of the global cryosphere in the fate of organic contaminants

    Directory of Open Access Journals (Sweden)

    A. M. Grannas


    Full Text Available The cryosphere is an important component of global organic contaminant cycles. Snow is an efficient scavenger of atmospheric organic pollutants while a seasonal snowpack, sea ice, glaciers and ice caps are contaminant reservoirs on time scales ranging from days to millennia. Important physical and chemical processes occurring in the various cryospheric compartments impact contaminant cycling and fate. A variety of interactions and feedbacks also occur within the cryospheric system, most of which are susceptible to perturbations due to climate change. In this article, we review the current state of knowledge regarding the transport and processing of organic contaminants in the global cryosphere with an emphasis on the role of a changing climate. Given the complexity of contaminant interactions with the cryosphere and limitations on resources and research capacity, interdisciplinary research and extended collaborations are essential to close identified knowledge gaps and to improve our understanding of contaminant fate under a changing climate.

  3. Integration of an atmospheric dispersion model with a dynamic multimedia fate model: development and illustration. (United States)

    Morselli, Melissa; Ghirardello, Davide; Semplice, Matteo; Raspa, Giuseppe; Di Guardo, Antonio


    Growing attention is devoted to understand the influence of the short-term variations in air concentrations on the environmental fate of semivolatile organic compounds (SVOCs) such as polycyclic aromatic hydrocarbons (PAHs). These variations are ascribable to factors such as temperature-mediated air-surface exchange and variability of planetary boundary layer (PBL) height and structure. But when investigating the fate of SVOCs at a local scale, further variability can derive from specific point source contributions. In this context, a new modeling approach (AirPlus) which integrates a previously developed model (AirFug) with an air dispersion model (AERMOD) is presented. The integrated model is illustrated for two PAHs in a Northern Italy scenario. Results show how chemical contributions deriving from background advective inflows, local emissions and a point source interact in an hourly-varying meteorological scenario to determine air concentration rapid changes and the consequent response of the soil compartment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Improving substance information in usetox®, part 2: Data for estimating fate and ecosystem exposure factors

    DEFF Research Database (Denmark)

    Saouter, Erwan; Aschberger, Karin; Fantke, Peter


    The scientific consensus model USEtox® is developed since 2003 under the auspices of the UNEP-SETAC Life Cycle Initiative as a harmonized approach for characterizing human and freshwater toxicity in life cycle assessment (LCA) and other comparative assessment frameworks. Using physicochemical...... substance properties, USEtox® quantifies potential human toxicity and freshwater ecotoxicity impacts by combining environmental fate, exposure and toxicity effects information, considering multimedia fate and multi-pathway exposure processes. The main source to obtain substance properties for USEtox® 1....... These regulations require that a chemical risk assessment for humans and the environment is performed before a chemical is placed on the European market. Consequently, additional physicochemical property data and new toxicological end-points are now available for thousands of chemical substances. The aim...

  5. Synthetic RNA Controllers for Programming Mammalian Cell Fate and Function (United States)


    Final report for “Synthetic RNA controllers for programming mammalian cell fate and function” Principal Investigator: Christina D. Smolke...SUBTITLE Synthetic RNA controllers for programming mammalian cell fate and function 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18   2 Synthetic RNA controllers for programming mammalian cell fate and function Task 1

  6. Progressive determination of cell fates along the dorsoventral axis in the sea urchin Heliocidaris erythrogramma. (United States)

    Henry, J J; Raff, R A


    In the direct-developing sea urchin Heliocidaris erythrogramma the first cleavage division bisects the dorsoventral axis of the developing embryo along a frontal plane. In the two-celled embryo one of the blastomeres, the ventral cell (V), gives rise to all pigmented mesenchyme, as well as to the vestibule of the echinus rudiment. Upon isolation, however, the dorsal blastomere (D) displays some regulation, and is able to form a small number of pigmented mesenchyme cells and even a vestibule. We have examined the spatial and temporal determination of cell fates along the dorsoventral axis during subsequent development. We demonstrate that the dorsoventral axis is resident within both cells of the two-celled embryo, but only the ventral pole of this axis has a rigidly fixed identity this early in development. The polarity of this axis remains the same in half-embryos developing from isolated ventral (V) blastomeres, but it can flip 180° in half-embryos developing from isolated dorsal (D) blastomeres. We find that cell fates are progressively determined along the dorsoventral axis up to the time of gastrulation. The ability of dorsal half-embryos to differentiate ventral cell fates diminishes as they are isolated at progressively later stages of development. These results suggest that the determination of cell fates along the dorsoventral axis in H. erythrogramma is regulated via inductive interactions organized by cells within the ventral half of the embryo.

  7. Notch signaling in bulge stem cells is not required for selection of hair follicle fate (United States)

    Demehri, Shadmehr; Kopan, Raphael


    Summary Notch signaling plays an important role in hair follicle maintenance, and it has been suggested that Notch is also required for follicular fate selection by adult hair follicle stem cells in the bulge. Here we demonstrate that, on the contrary, Notch signaling in bi-potential bulge stem cells or their uncommitted descendents acts to suppress the epidermal fate choice, thus ensuring follicular fate selection. To examine the role of Notch signaling in adult hair follicle stem cells, we used a Krt1-15-CrePR1 transgenic mouse line to delete Rbpj or all Notch proteins specifically in the bulge stem cells. We conclusively determined that in the absence of Notch signaling, bulge stem cell descendents retain their capacity to execute the follicular differentiation program but fail to maintain it owing to their genetic deficiency. The defect in terminal differentiation caused the diversion of Notch-deficient hair follicles to epidermal cysts, and the presence of wild-type cells could not prevent this conversion. Importantly, our analysis revealed that a functional Notch signaling pathway was required to block bulge stem cells from migrating into, and assuming the fate of, interfollicular epidermis. Taken together, our findings yield detailed insight into the function of Notch signaling in hair follicle stem cells and reveal the mechanism of the replacement of Notch-deficient adult hair follicles by epidermal cysts. PMID:19211676

  8. Laminar fate specification in the cerebral cortex (United States)

    Gaspard, Nicolas


    The cerebral cortex is composed of hundreds of different types of neurons, which underlie its ability to perform highly complex neural processes. How this astonishing cell diversity is generated during development constitutes a major challenge in developmental neurosciences, with important implications for neurological diseases. Here we review some recent and exciting advances in this field, from the description of the cellular processes at the origin of cortical neuron diversity, to the dissection of the molecular logic underlying fate selection in cortical neurons. PMID:21655334

  9. The environmental fate of organic pollutants through the global microbial metabolism. (United States)

    Gómez, Manuel J; Pazos, Florencio; Guijarro, Francisco J; de Lorenzo, Víctor; Valencia, Alfonso


    The production of new chemicals for industrial or therapeutic applications exceeds our ability to generate experimental data on their biological fate once they are released into the environment. Typically, mixtures of organic pollutants are freed into a variety of sites inhabited by diverse microorganisms, which structure complex multispecies metabolic networks. A machine learning approach has been instrumental to expose a correlation between the frequency of 149 atomic triads (chemotopes) common in organo-chemical compounds and the global capacity of microorganisms to metabolise them. Depending on the type of environmental fate defined, the system can correctly predict the biodegradative outcome for 73-87% of compounds. This system is available to the community as a web server ( The application of this predictive tool to chemical species released into the environment provides an early instrument for tentatively classifying the compounds as biodegradable or recalcitrant. Automated surveys of lists of industrial chemicals currently employed in large quantities revealed that herbicides are the group of functional molecules more difficult to recycle into the biosphere through the inclusive microbial metabolism.

  10. Aquatic pathways model to predict the fate of phenolic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Aaberg, R.L.; Peloquin, R.A.; Strenge, D.L.; Mellinger, P.J.


    Organic materials released from energy-related activities could affect human health and the environment. To better assess possible impacts, we developed a model to predict the fate of spills or discharges of pollutants into flowing or static bodies of fresh water. A computer code, Aquatic Pathways Model (APM), was written to implement the model. The computer programs use compartmental analysis to simulate aquatic ecosystems. The APM estimates the concentrations of chemicals in fish tissue, water and sediment, and is therefore useful for assessing exposure to humans through aquatic pathways. The APM will consider any aquatic pathway for which the user has transport data. Additionally, APM will estimate transport rates from physical and chemical properties of chemicals between several key compartments. The major pathways considered are biodegradation, fish and sediment uptake, photolysis, and evaporation. The model has been implemented with parameters for distribution of phenols, an important class of compounds found in the water-soluble fractions of coal liquids. Current modeling efforts show that, in comparison with many pesticides and polyaromatic hydrocarbons (PAH), the lighter phenolics (the cresols) are not persistent in the environment. The properties of heavier molecular weight phenolics (indanols, naphthols) are not well enough understood at this time to make similar judgements. For the twelve phenolics studied, biodegradation appears to be the major pathway for elimination from aquatic environments. A pond system simulation (using APM) of a spill of solvent refined coal (SRC-II) materials indicates that phenol, cresols, and other single cyclic phenolics are degraded to 16 to 25 percent of their original concentrations within 30 hours. Adsorption of these compounds into sediments and accumulation by fish was minor.

  11. Fate, behavior, and bioavailability of metal and metal oxide nanomaterials in terrestrial ecosystems (United States)

    Bertsch, P. M.; Unrine, J. M.; Judy, J.; Tsyusko, O.


    Despite the benefits that are currently being manifested and those transformative breakthroughs that will undoubtedly result from advances in nanotechnology, concerns surrounding the potential negative impacts to the environment and human health and welfare continue to emerge. Information on the transport and fate of manufactured nanomaterials (MNMs) in the environment and on their potential effects to human and ecological receptors is emerging at an increasing rate. Notwithstanding these developments, the research enterprise focused on the environmental implications of nanotechnology is in its infancy and few unifying principles have yet to emerge. This lack of unanimity is related to many factors including, the vast diversity in chemical composition, size, shape, and surface chemical properties of MNMs, as well as the range of receptor species and cell lines investigated. Additionally, the large variation in exposure methodologies employed by various investigators as well as the discrepancies in the amount and quality of characterization data collected to support specific conclusions, provide major challenges for developing unifying concepts and principles. As the utilization of MNMs for a large variety of applications is currently in an exponential growth phase, there is great urgency to develop information that can be used to identify priority areas for assessing risks to humans and the environment, as well as in developing potential mitigation strategies. We have been investigating the fate, behavior, and potential impacts of MNMs released into terrestrial ecosystems by examining the bioavailability and toxicity as well as the trophic transfer of a range of metal and metal oxide nanoparticles (Ag, Au, Cu, TiO2, ZnO, CeO2) to microorganisms, detritivores, and plants. Interdisciplinary studies include the characterization of the nanoparticles and aged nanoparticles in complex media, the distribution of nanoparticles in biological tissues, nanoparticle toxicity

  12. SPE-44 implements sperm cell fate.

    Directory of Open Access Journals (Sweden)

    Madhura Kulkarni

    Full Text Available The sperm/oocyte decision in the hermaphrodite germline of Caenorhabditis elegans provides a powerful model for the characterization of stem cell fate specification and differentiation. The germline sex determination program that governs gamete fate has been well studied, but direct mediators of cell-type-specific transcription are largely unknown. We report the identification of spe-44 as a critical regulator of sperm gene expression. Deletion of spe-44 causes sperm-specific defects in cytokinesis, cell cycle progression, and organelle assembly resulting in sterility. Expression of spe-44 correlates precisely with spermatogenesis and is regulated by the germline sex determination pathway. spe-44 is required for the appropriate expression of several hundred sperm-enriched genes. The SPE-44 protein is restricted to the sperm-producing germline, where it localizes to the autosomes (which contain sperm genes but is excluded from the transcriptionally silent X chromosome (which does not. The orthologous gene in other Caenorhabditis species is similarly expressed in a sex-biased manner, and the protein likewise exhibits autosome-specific localization in developing sperm, strongly suggestive of an evolutionarily conserved role in sperm gene expression. Our analysis represents the first identification of a transcriptional regulator whose primary function is the control of gamete-type-specific transcription in this system.

  13. Fate in the religion of the Lepchas

    Directory of Open Access Journals (Sweden)

    Halfdan Siiger


    Full Text Available The Lepchas are mountainous agriculturalists who live in the State of Sikkim in the Himalayas and in some adjacent Indian districts. To the Lepchas the supernatural world is divided into two groups, the rum, or the mainly benevolent supernatural beings, and the mung, or the malignant supernatural beings. Any evil occurrence is in the first instance ascribed to the malignant activities of the mung, but it may, under certain conditions, also be due to temporary on the part of some or other rum. If it is obvious that the evil occurrence is caused by a human being, this person is considered to be governed by some mung, or he may, which is much worse, be a mung in human disguise. At all events, any evil occurrence is experienced as the result of the evil will-power of some or other malignant supernatural being. Consequently, we cannot apply our technical term "Fate" to such occurrences, and Fate as an abstract concept cannot be used, when we speak of the Lepchas.

  14. No One's Home: the Fate of Carbon on Lifeless Earths (United States)

    Neveu, Marc

    Although several thousands of exoplanets are now known, including many terrestrial planets, their possible geology and climates remain poorly understood and understudied. Yet, understanding how elements such as carbon are cycled between a planet's interior, surface, and atmosphere is crucial to predict how lifeless planets operate and, by contrast, be able to detect deviations from abiotic backgrounds due to biology, the holy grail of exoplanet science. As a first, feasible step towards the difficult, long-term goal of understanding how key reactive elements (H, C, N, O, S) are cycled in the atmospheres, surfaces, and interiors of terrestrial exoplanets through time, we propose to carry out a self-consistent theoretical study of the fate of carbon in the atmospheres and at the surfaces of Earth-like, lifeless exoplanets. We will: 1. Model the near-surface geochemistry and geophysics of the carbon cycle to determine net carbon gas fluxes as a function of terrestrial planet size and redox conditions; 2. Model the atmospheric fate of carbon species as a function of stellar input; 3. Perform simulations that self-consistently combine geological and atmospheric processes; 4. Convert resulting atmospheric compositions to spectra to be archived as a public database for use by observers. We will track the abiotic fate of carbon and its atmospheric expression on Earth-like planets as a function of three key parameters: planet size, surface and atmospheric redox conditions, and stellar irradiation. To do so, we will further develop and use state-of-theart planetary geological ("Geo") and atmospheric ("Atmos") models. We have previously developed a code that couples geophysical evolution and water-rock geochemistry (Neveu et al. 2015, GRL 42, 10197). Using this code, we will calculate the speciation of carbon species versus depth in subaerial oceans, their possible incorporation into the crust by water-rock interaction at the seafloor or by subduction of sediments, and

  15. Effects of input uncertainty and variability on the modelled environmental fate of organic pollutants under global climate change scenarios. (United States)

    Kong, Deguo; MacLeod, Matthew; Li, Zhe; Cousins, Ian T


    Global climate change (GCC) is expected to influence the fate, exposure and risks of organic pollutants to wildlife and humans. Multimedia chemical fate models have been previously applied to estimate how GCC affects pollutant concentrations in the environment and biota, but previous studies have not addressed how uncertainty and variability of model inputs affect model predictions. Here, we assess the influence of climate variability and chemical property uncertainty on future projections of environmental fate of six polychlorinated biphenyl congeners under different GCC scenarios using a spreadsheet version of the ChemCAN model and the Crystal Ball® software. Regardless of emission mode, results demonstrate: (i) uncertainty in degradation half-lives dominates the variance of modelled absolute levels of PCB congeners under GCC scenarios; (ii) when the ratios of predictions under GCC to predictions under present day climate are modelled, climate variability dominates the variance of modelled ratios; and (iii) the ratios also indicate a maximum of about a factor of 2 change in the long-term average environmental concentrations due to GCC that is forecasted between present conditions and the period between 2080 and 2099. We conclude that chemical property uncertainty does not preclude assessing relative changes in a GCC scenario compared to a present-day scenario if variance in model outputs due to chemical properties and degradation half-lives can be assumed to cancel out in the two scenarios. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Harnessing cell-material interaction to control cell fate: design ...

    Indian Academy of Sciences (India)

    Rajat K Das


    Oct 26, 2017 ... advancement in engineered hydrogel materials as such scaffold to control cell fate. Keywords. Extracellular matrix; hydrogel .... tandem and determine the fate of the stem cells (cytoskeletal actin re-organization, gene ..... (encapsulation and on-demand release of therapeutic cells). These examples indicate ...

  17. Analysis, fate and effects of the antibiotic sulfadiazine in soil.

    NARCIS (Netherlands)

    Schauss, K.; Focks, A.; Heuer, H.; Kotzerke, A.; Schmitt, H.|info:eu-repo/dai/nl/304831042; Thiele-Bruhn, S.; Smalla, K.; Wilke, B.M.; Matthies, M.


    This review summarizes current knowledge about the interplay between fate and effects of the antibiotic sulfadiazine in soil ecosystems. In applying manure from antibiotic-treated animals to arable soils, sulfadiazine can reach the environment, but fate and transformation processes and the

  18. Emerging Pollutants Part I: Occurrence, Fate and Transport. (United States)

    Qiu, Lang; Dong, Zhanfeng; Sun, Huan; Li, Hongxiang; Chang, Chein-Chi


    Part I: Occurrence, Fate, and Transport (this review) is a sequel of Emerging Pollutants. This review compiles research in 2015 for investigating emerging pollutants in wastewater and environmental sources of emerging pollutants. It investigates the occurrence, fate, transport of emerging pollutants in the environment. This review further discusses the monitoring approaches, modeling, and toxicological impacts of these compounds that are relevant to wastewater.

  19. Emerging Pollutants - Part I: Occurrence, Fate and Transport. (United States)

    Qiu, Lang; Dong, Zhanfeng; Sun, Huan; Li, Hongxiang; Chang, Chein-Chi


    Part I: Occurrence, Fate, and Transport (this review) is a sequel of Emerging Pollutants. This review compiles research in 2015 for investigating emerging pollutants in wastewater and environmental sources of emerging pollutants. It investigates the occurrence, fate, transport of emerging pollutants in the environment. This review further discusses the monitoring approaches, modeling, and toxicological impacts of these compounds that are relevant to wastewater.

  20. Cell fate determination in the Caenorhabditis elegans epidermal lineages

    NARCIS (Netherlands)

    Soete, G.A.J.


    The starting point for this work was to use the hypodermal seam of C. elegans as a model system to study cell fate determination. Even though the seam is a relatively simple developmental system, the mechanisms that control cell fate determination in the seam lineages are connected in a highly

  1. Cell fate and cell differentiation status in the Arabidopsis root

    NARCIS (Netherlands)

    Scheres, B.J.G.; Berg, C. van den; Weisbeek, P.


    Post-embryonic development in plants is mainly achieved by its meristems. Within the Arabidopsis root meristem, both the fate and origin of its cells can be predicted with high accuracy. Mutants defective in the determination of root cell fates show that the corresponding genes are first required

  2. Fate and Bioavailability of Engineered Nanoparticles in Soils: A Review

    NARCIS (Netherlands)

    Cornelis, G.; Hund-Rinke, K.; Kuhlbusch, T.; Brink, van den N.W.; Nickel, C.


    Interactions within natural soils have often been neglected when assessing fate and bioavailability of engineered nanomaterials (ENM) in soils. This review combines patchwise ENM research using natural soils with the much wider literature on ENM performed in standard tests or on the fate of colloids

  3. Evaluation of 5-cm Agent Fate Wind Tunnel Velocity Profiles (United States)


    CONTRACT NUMBER Evaluation of 5-cm Agent Fate Wind Tunnel Velocity Profiles DAAD 13-03-D-0017 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER SAIC Agreement...TERMS (Continued) Evaporation Agent fate Wind tunnel Velocity profile 2 PREFACE The work described in this report was authorized under Contract No. DAAD

  4. Fate and transport of selected estrogen compounds in Hawaii soils: effect of soil type and macropores. (United States)

    D'Alessio, Matteo; Vasudevan, Dharni; Lichwa, Joseph; Mohanty, Sanjay K; Ray, Chittaranjan


    The fate and transport of estrogen compounds in the environment is of increasing concern due to their potential impact on freshwater organisms, ecosystems and human health. The behavior of these compounds in batch experiments suggests low mobility, while field studies indicate the persistence of estrogen compounds in the soil with the possibility of migration to surface water as well as groundwater. To better understand the movement of these chemicals through soils, we examined their transport in three different Hawaiian soils and two aqueous matrices. The three different soils used were an Oxisol, a Mollisol and a cinder, characterized by different mineralogical properties and collected at depths of 60-90 cm and 210-240 cm. Two liquid matrices were used; deionized (DI) water containing calcium chloride (CaCl2), and recycled water collected from a wastewater treatment facility. The experiments were conducted in packed and structured columns. Non-equilibrium conditions were observed during the study, especially in the structured soil. This is believed to be primarily related to the presence of macropores in the soil. The presence of macropores resulted in reduced contact time between soil and estrogens, which facilitated their transport. We found that the organic carbon content and mineralogical composition of the soils had a profound effect on the transport of the estrogens. The mobility of estrone (E1) and 17β-estradiol (E2) was greater in cinder than in the other soils. In column experiments with recycled water, earlier breakthrough peaks and longer tails of estrogens were produced compared to those observed using DI water. The use of recycled water for agricultural purposes and the siting of septic tanks and cesspools should be critically reviewed in light of these findings, especially in areas where groundwater is the primary source of potable water, such as Hawaii. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Predicting environmental fate parameters with infrared spectroscopy. (United States)

    One of the principal uncertainties associated with risk assessments of organic chemicals in the environment is the lack of chemical-specific values that quantify the many processes determining the chemical's transport and transformation. Because it is not feasible to measure the ...

  6. Emissions and fate of brominated flame retardants in the indoor environment: A critical review of modelling approaches

    Energy Technology Data Exchange (ETDEWEB)

    Liagkouridis, Ioannis, E-mail: [IVL Swedish Environmental Research Institute, P.O. Box 21060, SE 100 31 Stockholm (Sweden); ITM Department of Applied Environmental Science, Stockholm University, SE 106 91 Stockholm (Sweden); Cousins, Ian T. [ITM Department of Applied Environmental Science, Stockholm University, SE 106 91 Stockholm (Sweden); Cousins, Anna Palm [IVL Swedish Environmental Research Institute, P.O. Box 21060, SE 100 31 Stockholm (Sweden)


    This review explores the existing understanding and the available approaches to estimating the emissions and fate of semi-volatile organic compounds (SVOCs) and in particular focuses on the brominated flame retardants (BFRs). Volatilisation, an important emission mechanism for the more volatile compounds can be well described using current emission models. More research is needed, however, to better characterise alternative release mechanisms such as direct material–particle partitioning and material abrasion. These two particle-mediated emissions are likely to result in an increased chemical release from the source than can be accounted for by volatilisation, especially for low volatile compounds, and emission models need to be updated in order to account for these. Air–surface partitioning is an important fate process for SVOCs such as BFRs however it is still not well characterised indoors. In addition, the assumption of an instantaneous air–particle equilibrium adopted by current indoor fate models might not be valid for high-molecular weight, strongly sorbing compounds. A better description of indoor particle dynamics is required to assess the effect of particle-associated transport as this will control the fate of low volatile BFRs. We suggest further research steps that will improve modelling precision and increase our understanding of the factors that govern the indoor fate of a wide range of SVOCs. It is also considered that the appropriateness of the selected model for a given study relies on the individual characteristics of the study environment and scope of the study. - Highlights: • Current emission models likely underestimate the release of low volatile BFRs from products. • Material abrasion and direct material–dust partitioning are important, yet understudied emission mechanisms. • Indoor surfaces can be significant sinks, but the mechanism is poorly understood. • Indoor fate of low volatile BFRs is strongly associated with particle

  7. An Integrated Modeling Approach for Describing Fate and Transport of Perfluorinated Compounds (PFCs) in Estuarine Reservoir (United States)

    Zhang, J.; Nguyen Viet, T.; Wang, X.; Chen, H.; Gin, K. Y. H.


    The fate and transport processes of emerging contaminants in aquatic ecosystems are complex, which are not only determined by their own properties but also influenced by the environmental setting, physical, chemical and biological processes. A 3D-emerging contaminant model has been developed based on Delft3D water quality model and coupled with a hydrodynamic model and a catchment-scale 1D- hydrological and hydraulic model to study the possible fate and transport mechanisms of perfluorinated compounds (PFCs) in Marina Reservoir in Singapore. The main processes in the contaminant model include partitioning (among detritus, dissolved organic matter and phytoplankton), settling, resuspension and degradation. We used the integrated model to quantify the distribution of the total PFCs and two major components, namely perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) in the water, sediments and organisms in the reservoir. The model yielded good agreement with the field measurements when evaluated based on the datasets in 2009 and 2010 as well as recent observations in 2013 and 2014. Our results elucidate that the model can be a useful tool to characterize the occurrence, sources, sinks and trends of PFCs both in the water column and in the sediments in the reservoir. Thisapproach provides a better understanding of mechanisms that influence the fate and transport of emerging contaminants and lays down a framework for future experiments to further explore how the dominant environmental factors change towards mitigation of emerging contaminants in the reservoirs.

  8. Fate of internal waves on a shallow shelf (United States)

    Davis, Kristen; Arthur, Robert; Reid, Emma; Decarlo, Thomas; Cohen, Anne


    Internal waves strongly influence the physical and chemical environment of coastal ecosystems worldwide. We report novel observations from a distributed temperature sensing (DTS) system that tracked the transformation of internal waves from the shelf break to the surf zone over a shelf-slope region of a coral atoll in the South China Sea. The spatially-continuous view of the near-bottom temperature field provided by the DTS offers a perspective of physical processes previously available only in laboratory settings or numerical models. These processes include internal wave reflection off a natural slope, shoreward transport of dense fluid within trapped cores, internal ``tide pools'' (dense water left behind after the retreat of an internal wave), and internal run-down (near-bottom, offshore-directed jets of water preceding a breaking internal wave). Analysis shows that the fate of internal waves on this shelf - whether they are transmitted into shallow waters or reflected back offshore - is mediated by local water column density and shear structure, with important implications for nearshore distributions of energy, heat, and nutrients. We acknowledge the US Army Research Laboratory DoD Supercomputing Resource Center for computer time on Excalibur, which was used for the numerical simulations in this work. Funding for field work supported by Academia Sinica and for K.D. and E.R. from NSF.

  9. Fenamiphos and related organophosphorus pesticides: environmental fate and toxicology. (United States)

    Cáceres, Tanya; Megharaj, Mallavarapu; Venkateswarlu, Kadiyala; Sethunathan, Nambrattil; Naidu, Ravi


    In this review, we emphasize recent research on the fate, transport, and metabolism of tree selected organophosphorus pesticides (fenamiphos, isofenphos, and coumaphos) in soil an water environments. This review is also concerned with the side effects of these pesticides on nontarget organisms. Despite the fact that fenamiphos is not very mobile, its oxides have been detected in the groundwaters of Western Australia. Most organophosphorus pesticides generally are chemically unstable and underfo microbial degradation in soil and water environments. Enhanced biodegradation of many organophosphorus pesticides upon their repeted applications to soil and water is well established. Myriads of soil microorganisms, bacteria in particular, exhibit an exceptional capacity to transform many organophosphorus pesticides. Fenamiphos can undergo rapid microbially mediated degradation via oxidation to its oxides (sulfoxide and sulfone) and eventually to CO2 and water in soils, or via hydrolysis, in cultures of the soil bacterium, Brevinbacterium sp. There is evidence for enhanced biodegradation of (i) isofenphos in soils with a long history of use and (ii) coumaphos in cattle dip by bacterial cultures to chlorferon and diethylthiophosphoric acid.

  10. Noncanonical Roles of Lipids in Different Cellular Fates. (United States)

    Lizardo, Darleny Y; Parisi, Laura R; Li, Nasi; Atilla-Gokcumen, G Ekin


    Lipids are a diverse class of biomolecules. The biosynthesis and transport of these molecules are controlled by a considerable number of proteins, which facilitate spatiotemporal regulation of lipids during different fundamental cellular processes. Although lipids are traditionally considered as molecules for energy storage and as structural components of membranes, they are being increasingly recognized for their signaling roles. There is a growing appreciation of lipids' chemical diversity, which approaches that of proteins. In this Perspective, we discuss recent studies that suggest novel functions for distinct lipid species during different cellular processes. In particular, we discuss findings from our laboratory that illuminate the involvement of ceramides, polyunsaturated triacylglycerols, and very long chain fatty acids in different cellular fates. We also highlight recent innovative methods that have enabled the recognition of previously unknown lipid classes and/or roles of these molecules in different biological processes. We envision that advances in lipid identification, visualization, and perturbation will pave the way for broader investigations into this fascinating and influential class of biomolecules.

  11. Fate of dispersants associated with the deepwater horizon oil spill. (United States)

    Kujawinski, Elizabeth B; Kido Soule, Melissa C; Valentine, David L; Boysen, Angela K; Longnecker, Krista; Redmond, Molly C


    Response actions to the Deepwater Horizon oil spill included the injection of ∼771,000 gallons (2,900,000 L) of chemical dispersant into the flow of oil near the seafloor. Prior to this incident, no deepwater applications of dispersant had been conducted, and thus no data exist on the environmental fate of dispersants in deepwater. We used ultrahigh resolution mass spectrometry and liquid chromatography with tandem mass spectrometry (LC/MS/MS) to identify and quantify one key ingredient of the dispersant, the anionic surfactant DOSS (dioctyl sodium sulfosuccinate), in the Gulf of Mexico deepwater during active flow and again after flow had ceased. Here we show that DOSS was sequestered in deepwater hydrocarbon plumes at 1000-1200 m water depth and did not intermingle with surface dispersant applications. Further, its concentration distribution was consistent with conservative transport and dilution at depth and it persisted up to 300 km from the well, 64 days after deepwater dispersant applications ceased. We conclude that DOSS was selectively associated with the oil and gas phases in the deepwater plume, yet underwent negligible, or slow, rates of biodegradation in the affected waters. These results provide important constraints on accurate modeling of the deepwater plume and critical geochemical contexts for future toxicological studies.

  12. Modeling micropollutant fate at the catchment scale: from science to practice (United States)

    Seuntjens, P.; Desmet, N.; Holvoet, K.; van Griensven, A.; van Hoey, S.; Tang, X. Y.; Nopens, I.


    Micropollutants, such as pesticides, personal care products, veterinary and human pharmaceuticals, pose a possible threat to human and ecological health. Humans and ecosystems may be exposed to these chemicals via the water system. Catchment models can be used to optimise management in view of risk reduction of the chemicals. Along the trajectory of science to practice a number of catchment models are available that simulate the fate and transport of micropollutants. They range from physically-based fully-coupled soil, groundwater, and surface water models, over empirical management models, to purely statistical database-driven models. For assessing effects on ecosystems, models need to be able to predict the observed highly dynamic behaviour of pesticide concentrations in the surface water, since adverse effects will be determined by the number, intensity and frequency of ecological threshold exceedances. For assessing effects on humans, models need to predict the dilution between areas where the pesticide is released and the location of the drinking water intake, sometimes tens or hundreds of kilometres further downstream. We adapted management models to simulate dynamic pesticide behaviour and fate at the catchment scale. The models were also used to illustrate the effects of specific management options on risk reduction and to derive the dominant sources of pollutants in a catchment area. The results show that the concentrations of pesticides in river systems are attributed to (1) fast flow over and in soils or pavements, and to (2) point sources. Therefore, future models for improved estimation of chemical fate at the catchment scale need a combination of stochastic source characterisation, higher spatial resolution and reduced complexity of the mathematical description of fast flow processes. This will be illustrated by recent developments in model simplification coupled to increased spatial detail.

  13. Estimation of Physical Properties and Chemical Reactivity Parameters of Organic Compounds for Environmental Modeling by SPARC (United States)

    Mathematical models for predicting the transport and fate of pollutants in the environment require reactivity parameter values that is value of the physical and chemical constants that govern reactivity. Although empirical structure activity relationships have been developed th...

  14. Using gridded multimedia model to simulate spatial fate of Benzo[α]pyrene on regional scale. (United States)

    Liu, Shijie; Lu, Yonglong; Wang, Tieyu; Xie, Shuangwei; Jones, Kevin C; Sweetman, Andrew J


    Predicting the environmental multimedia fate is an essential step in the process of assessing the human exposure and health impacts of chemicals released into the environment. Multimedia fate models have been widely applied to calculate the fate and distribution of chemicals in the environment, which can serve as input to a human exposure model. In this study, a grid based multimedia fugacity model at regional scale was developed together with a case study modeling the fate and transfer of Benzo[α]pyrene (BaP) in Bohai coastal region, China. Based on the estimated emission and in-site survey in 2008, the BaP concentrations in air, vegetation, soil, fresh water, fresh water sediment and coastal water as well as the transfer fluxes were derived under the steady-state assumption. The model results were validated through comparison between the measured and modeled concentrations of BaP. The model results indicated that the predicted concentrations of BaP in air, fresh water, soil and sediment generally agreed with field observations. Model predictions suggest that soil was the dominant sink of BaP in terrestrial systems. Flow from air to soil, vegetation and costal water were three major pathways of BaP inter-media transport processes. Most of the BaP entering the sea was transferred by air flow, which was also the crucial driving force in the spatial distribution processes of BaP. The Yellow River, Liaohe River and Daliao River played an important role in the spatial transformation processes of BaP. Compared with advection outflow, degradation was more important in removal processes of BaP. Sensitivities of the model estimates to input parameters were tested. The result showed that emission rates, compartment dimensions, transport velocity and degradation rates of BaP were the most influential parameters for the model output. Monte Carlo simulation was carried out to determine parameter uncertainty, from which the coefficients of variation for the estimated Ba

  15. The Fate of Trace Contaminants in a Crewed Spacecraft Cabin Environment (United States)

    Perry, Jay L.; Kayatin, Matthew J.


    Trace chemical contaminants produced via equipment offgassing, human metabolic sources, and vehicle operations are removed from the cabin atmosphere by active contamination control equipment and incidental removal by other air quality control equipment. The fate of representative trace contaminants commonly observed in spacecraft cabin atmospheres is explored. Removal mechanisms are described and predictive mass balance techniques are reviewed. Results from the predictive techniques are compared to cabin air quality analysis results. Considerations are discussed for an integrated trace contaminant control architecture suitable for long duration crewed space exploration missions.

  16. Gene expression dynamics during cell differentiation: Cell fates as attractors and cell fate decisions as bifurcations (United States)

    Huang, Sui


    During development of multicellular organisms, multipotent stem and progenitor cells undergo a series of hierarchically organized ``somatic speciation'' processes consisting of binary branching events to achieve the diversity of discretely distinct differentiated cell types in the body. Current paradigms of genetic regulation of development do not explain this discreteness, nor the time-irreversibility of differentiation. Each cell contains the same genome with the same N (˜ 25,000) genes and each cell type k is characterized by a distinct stable gene activation pattern, expressed as the cell state vector Sk(t) = xk1(t) ,.. xki(t),.. xkN(t), where xki is the activation state of gene i in cell type k. Because genes are engaged in a network of mutual regulatory interactions, the movement of Sk(t) in the N-dimensional state space is highly constrained and the organism can only realize a tiny fraction of all possible configurations Sk. Then, the trajectories of Sk reflect the diversifying developmental paths and the mature cell types are high-dimensional attractor states. Experimental results based on gene expression profile measurements during blood cell differentiation using DNA microarrays are presented that support the old idea that cell types are attractors. This basic notion is extended to treat binary fate decisions as bifurcations in the dynamics of networks circuits. Specifically, during cell fate decision, the metastable progenitor attractor is destabilized, poising the cell on a `watershed state' so that it can stochastically or in response to deterministic perturbations enter either one of two alternative fates. Overall, the model and supporting experimental data provide an overarching conceptual framework that helps explain how the specifics of gene network architecture produces discreteness and robustness of cell types, allows for both stochastic and deterministic cell fate decision and ensures directionality of organismal development.

  17. Binary cell fate decisions and fate transformation in the Drosophila larval eye.

    Directory of Open Access Journals (Sweden)

    Abhishek Kumar Mishra

    Full Text Available The functionality of sensory neurons is defined by the expression of specific sensory receptor genes. During the development of the Drosophila larval eye, photoreceptor neurons (PRs make a binary choice to express either the blue-sensitive Rhodopsin 5 (Rh5 or the green-sensitive Rhodopsin 6 (Rh6. Later during metamorphosis, ecdysone signaling induces a cell fate and sensory receptor switch: Rh5-PRs are re-programmed to express Rh6 and become the eyelet, a small group of extraretinal PRs involved in circadian entrainment. However, the genetic and molecular mechanisms of how the binary cell fate decisions are made and switched remain poorly understood. We show that interplay of two transcription factors Senseless (Sens and Hazy control cell fate decisions, terminal differentiation of the larval eye and its transformation into eyelet. During initial differentiation, a pulse of Sens expression in primary precursors regulates their differentiation into Rh5-PRs and repression of an alternative Rh6-cell fate. Later, during the transformation of the larval eye into the adult eyelet, Sens serves as an anti-apoptotic factor in Rh5-PRs, which helps in promoting survival of Rh5-PRs during metamorphosis and is subsequently required for Rh6 expression. Comparably, during PR differentiation Hazy functions in initiation and maintenance of rhodopsin expression. Hazy represses Sens specifically in the Rh6-PRs, allowing them to die during metamorphosis. Our findings show that the same transcription factors regulate diverse aspects of larval and adult PR development at different stages and in a context-dependent manner.

  18. Post-approval fate of pharmaceutical companies. (United States)

    Kinch, Michael S


    For a fortunate subset of pharmaceutical companies, a regulatory approval is the culmination of massive investment in time, work and money. What happens next? Some companies proceed to build a pipeline and obtain additional approvals. Others do not. In this present report, post-approval fate is evaluated and it was found that most companies are ultimately acquired. A subset achieved a second approval six-to-eight years after the first approval, whereas a shrinking subset, designated as 'singlets', remains active in drug discovery with only a single approval. The likelihood that a company will remain a singlet or be acquired relates to therapeutic indication, with oncology associated with increased acquisition potential and infectious-disease-based companies being less commonly acquired. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. C. Linnaeus' ideas concerning retribution and fate

    Directory of Open Access Journals (Sweden)

    K. Rob. V. Wikman


    Full Text Available Linnæus' Nemesis divina has been interpreted in different ways. Crucial is its central problem: the ideas of fate and retribution, but these are, in turn, dependent on Linnæus' conception of God and nature and not least on his opinions concerning the unity and coherence of the natural and ethical order of the world. From whatever sources Linnæus may have derived his religious ideas and whatever changes they may have undergone, his religious attitude in face of the works of nature remained unshaken. But Linnæus' religion, as we find it fragmentarily in these literary sources, was entirely undogmatic, untheological and, from a Christian point of view, even heterodox. Partly, this was in accord with his belief in the necessary immanent coherence in the processes of nature and the concomitant idea of the righteous divine order of the world.

  20. Developmental Competence for Primordial Germ Cell Fate. (United States)

    Günesdogan, Ufuk; Surani, M Azim


    During mammalian embryonic development, the trophectoderm and primitive endoderm give rise to extraembryonic tissues, while the epiblast differentiates into all somatic lineages and the germline. Remarkably, only a few classes of signaling pathways induce the differentiation of these progenitor cells into diverse lineages. Accordingly, the functional outcome of a particular signal depends on the developmental competence of the target cells. Thus, developmental competence can be defined as the ability of a cell to integrate intrinsic and extrinsic cues to execute a specific developmental program toward a specific cell fate. Downstream of signaling, there is the combinatorial activity of transcription factors and their cofactors, which is modulated by the chromatin state of the target cells. Here, we discuss the concept of developmental competence, and the factors that regulate this state with reference to the specification of mammalian primordial germ cells. © 2016 Elsevier Inc. All rights reserved.

  1. Fate and transport of monoterpenes through soils. Part I. Prediction of temperature dependent soil fate model input-parameters. (United States)

    van Roon, André; Parsons, John R; te Kloeze, Anne-Marie; Govers, Harrie A J


    Monoterpenes are C10H(n)O(n') compounds of natural origin and are potentially environmentally safe substitutes for traditional pesticides. Still, an assessment of their environmental behaviour is required. As a first step in a theoretical study focussing on monoterpenes applied as pesticides to terrestrial environments, soil fate model input-parameters were determined for 20 monoterpenes with widely different structural characteristics. Input-parameters are the water solubility (S(W)), vapour pressure (P), n-octanol-water partition coefficient (K(OW)), atmospheric air and bulk water diffusion coefficients (D(A)air and D(W)water), first order biodegradation rate constants (k), and their temperature dependence. Values for these parameters were estimated or taken from previous experimental work. The quality of the estimations was discussed by focussing on their statistics and by comparison with available experimental data. From these properties, the air-water partition coefficient (K(AW), Henry's Law constant), the interface-water partition coefficient (K(IW)) and the organic matter-water partition coefficient (K(OM)) could be estimated with varying levels of accuracy. In general, little experimental data turned out to be available on biodegradation rate constants and on the temperature dependence of physico-chemical parameters.

  2. The Fate of Neutron Star Binary Mergers

    Energy Technology Data Exchange (ETDEWEB)

    Piro, Anthony L. [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Giacomazzo, Bruno [Physics Department, University of Trento, via Sommarive 14, I-38123 Trento (Italy); Perna, Rosalba, E-mail: [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States)


    Following merger, a neutron star (NS) binary can produce roughly one of three different outcomes: (1) a stable NS, (2) a black hole (BH), or (3) a supramassive, rotationally supported NS, which then collapses to a BH following angular momentum losses. Which of these fates occur and in what proportion has important implications for the electromagnetic transient associated with the mergers and the expected gravitational wave (GW) signatures, which in turn depend on the high density equation of state (EOS). Here we combine relativistic calculations of NS masses using realistic EOSs with Monte Carlo population synthesis based on the mass distribution of NS binaries in our Galaxy to predict the distribution of fates expected. For many EOSs, a significant fraction of the remnants are NSs or supramassive NSs. This lends support to scenarios in which a quickly spinning, highly magnetized NS may be powering an electromagnetic transient. This also indicates that it will be important for future GW observatories to focus on high frequencies to study the post-merger GW emission. Even in cases where individual GW events are too low in signal to noise to study the post merger signature in detail, the statistics of how many mergers produce NSs versus BHs can be compared with our work to constrain the EOS. To match short gamma-ray-burst (SGRB) X-ray afterglow statistics, we find that the stiffest EOSs are ruled out. Furthermore, many popular EOSs require a significant fraction of ∼60%–70% of SGRBs to be from NS–BH mergers rather than just binary NSs.

  3. m6A RNA Modification Determines Cell Fate by Regulating mRNA Degradation. (United States)

    Guo, Minjun; Liu, Xinhui; Zheng, Xiaotong; Huang, Yinghui; Chen, Xuechai


    Emerging evidence suggests that epitranscriptional modifications influence multiple cellular processes. N6-methyladenosine (m6A), as the most abundant reversible methylation of mRNA, has also been reported to play critical roles in modulating embryonic stem cell differentiation and somatic cell reprogramming by regulating gene expression. This review examined the characteristics of m6A, including the distribution profile and currently discovered "writer," "eraser," and "reader" proteins. Moreover, the hypothesis is proposed that m6A could influence cell fate determination, and the underlying mechanisms are due to the related mRNA degradation, causing weakening of previous cell characteristics and eventually leading them to develop into the reverse direction (pluripotency or differentiation state). Accordingly, m6A modifications presented its potential role in cell fate determination, which provides new insights into understanding the mechanisms of various diseases.

  4. Sympathetic Innervation Promotes Arterial Fate by Enhancing Endothelial ERK Activity. (United States)

    Pardanaud, Luc; Pibouin-Fragner, Laurence; Dubrac, Alexandre; Mathivet, Thomas; English, Isabel; Brunet, Isabelle; Simons, Michael; Eichmann, Anne


    Arterial endothelial cells are morphologically, functionally, and molecularly distinct from those found in veins and lymphatic vessels. How arterial fate is acquired during development and maintained in adult vessels is incompletely understood. We set out to identify factors that promote arterial endothelial cell fate in vivo. We developed a functional assay, allowing us to monitor and manipulate arterial fate in vivo, using arteries isolated from quails that are grafted into the coelom of chick embryos. Endothelial cells migrate out from the grafted artery, and their colonization of host arteries and veins is quantified. Here we show that sympathetic innervation promotes arterial endothelial cell fate in vivo. Removal of sympathetic nerves decreases arterial fate and leads to colonization of veins, whereas exposure to sympathetic nerves or norepinephrine imposes arterial fate. Mechanistically, sympathetic nerves increase endothelial ERK (extracellular signal-regulated kinase) activity via adrenergic α1 and α2 receptors. These findings show that sympathetic innervation promotes arterial endothelial fate and may lead to novel approaches to improve arterialization in human disease. © 2016 American Heart Association, Inc.

  5. H51E-1535: Biogeochemical factors influencing the transport and fate of colloids and colloid-associated contaminants in the vadose zone (United States)

    The vadose zone exhibits large spatial and temporal variability in many physical, chemical, and biological factors that strongly influence the transport and fate of colloids (e.g., microbes, nanoparticles, clays, and dissolved organic matter) and colloid-associated contaminants (e.g., heavy metals, ...

  6. Dissolved organic carbon in Alaskan boreal forest: Sources, chemical characteristics, and biodegradability (United States)

    Wickland, K.P.; Neff, J.C.; Aiken, G.R.


    The fate of terrestrially-derived dissolved organic carbon (DOC) is important to carbon (C) cycling in both terrestrial and aquatic environments, and recent evidence suggests that climate warming is influencing DOC dynamics in northern ecosystems. To understand what determines the fate of terrestrial DOC, it is essential to quantify the chemical nature and potential biodegradability of this DOC. We examined DOC chemical characteristics and biodegradability collected from soil pore waters and dominant vegetation species in four boreal black spruce forest sites in Alaska spanning a range of hydrologic regimes and permafrost extents (Well Drained, Moderately Well Drained, Poorly Drained, and Thermokarst Wetlands). DOC chemistry was characterized using fractionation, UV-Vis absorbance, and fluorescence measurements. Potential biodegradability was assessed by incubating the samples and measuring CO2 production over 1 month. Soil pore water DOC from all sites was dominated by hydrophobic acids and was highly aromatic, whereas the chemical composition of vegetation leachate DOC varied significantly with species. There was no seasonal variability in soil pore water DOC chemical characteristics or biodegradability; however, DOC collected from the Poorly Drained site was significantly less biodegradable than DOC from the other three sites (6% loss vs. 13-15% loss). The biodegradability of vegetation-derived DOC ranged from 10 to 90% loss, and was strongly correlated with hydrophilic DOC content. Vegetation such as Sphagnum moss and feathermosses yielded DOC that was quickly metabolized and respired. In contrast, the DOC leached from vegetation such as black spruce was moderately recalcitrant. Changes in DOC chemical characteristics that occurred during microbial metabolism of DOC were quantified using fractionation and fluorescence. The chemical characteristics and biodegradability of DOC in soil pore waters were most similar to the moderately recalcitrant vegetation

  7. [Fates at the psychiatric hospital of Klagenfurt during National Socialism]. (United States)

    Oberlerchner, Herwig; Stromberger, Helge


    In this article the fate of Mr. B. is described as an example for the fate of hundreds of mentally ill patients of the "Landes-Irrenanstalt of Klagenfurt", murdered during the era of National Socialism. This extraordinary fate marks two outstanding aspects of history of medicine, the treatment of syphilis with malaria and the organised mass murder of mentally ill people during the cynic era of National Socialism. Beyond this historical perspective reconstructive biographical work together with relatives is presented as a proactive duty of psychiatric institutions.

  8. Human population intake fractions and environmental fate factors of toxic pollutants in life cycle impact assessment

    NARCIS (Netherlands)

    Huijbregts, M.A.J.; Struijs, Jaap; Goedkoop, Mark; Heijungs, Reinout; Jan Hendriks, A.; Van De Meent, Dik


    The present paper outlines an update of the fate and exposure part of the fate, exposure and effects model USES-LCA. The new fate and exposure module of USES-LCA was applied to calculate human population intake fractions and fate factors of the freshwater, marine and terrestrial environment for 3393

  9. Ear examination (United States)

    ... to the side, or the child's head may rest against an adult's chest. Older children and adults may sit with the head tilted toward the shoulder opposite the ear being examined. The provider will ...

  10. Fate of pesticides in field ditches: the TOXSWA simulation model

    NARCIS (Netherlands)

    Adriaanse, P.I.


    The TOXSWA model describes the fate of pesticides entering field ditches by spray drift, atmospheric deposition, surface run-off, drainage or leaching. It considers four processes: transport, transformation, sorption and volatilization. Analytical andnumerical solutions corresponded well. A sample

  11. Notch signaling in the pancreas: patterning and cell fate specification. (United States)

    Afelik, Solomon; Jensen, Jan


    Notch signaling is an evolutionarily conserved mechanism adapted to control binary fate decisions. The first evidence of Notch in pancreatic development focused on its critical role in controlling endocrine fate decisions. Since then, we have come to understand that this signaling system operates iteratively in the pancreas, and is not limited to the control of endocrine fate decision. Notch appears to play a role in early organ development, then during organ domain patterning, and only during a final refinement process, in the control of terminal cell fates. In so doing, Notch receptors and their ligands are under the influence of a wealth of genetic components that together help orchestrate the building of a complex, glandular organ. Copyright © 2012 Wiley Periodicals, Inc.

  12. Commentary: Cell fate choice and social evolution in Dictyostelium ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 26; Issue 2. Commentary: Cell fate choice and social evolution in Dictyostelium discoideum: Interplay of morphogens and heterogeneities. Trupti S Kawli Sonia Kaushik. Volume 26 Issue 2 June 2001 pp 130-133 ...

  13. Chlorinated paraffins in the environment: A review on their production, fate, levels and trends between 2010 and 2015. (United States)

    van Mourik, Louise M; Gaus, Caroline; Leonards, Pim E G; de Boer, Jacob


    This review provides an update on information regarding the production volumes, regulations, as well as the environmental levels, trends, fate and human exposure to chlorinated paraffin mixtures (CPs). CPs encompas thousands congeners with varying properties and environmental fate. Based on their carbon chain lengths, CPs are divided into short- (SCCPs; C10-13), medium- (MCCPs; C14-17) and long- (LCCPs; C ≥ 18) chained groups. They are high production volume and persistent chemicals, and their cumulative global production already surpasses that of other persistent anthropogenic chemicals (e.g. PCBs). However, international regulations are still curbed by insufficient information on their levels and fate, including bioaccumulation and toxicity potential. An increasing number of studies since 2010 demonstrate that CPs are detected in almost every compartment in the environment, including remote areas. Consensus on the long range transport and high bioaccumulation potential (BCF > 5000 & TMF > 1) has recently been reached for SCCPs, fulfilling criteria under the Stockholm Convention for designation as a persistent organic pollutant; information on their levels is, however, still sparse for many countries. M/LCCPs have received comparatively little attention in the past, but as replacement chemicals for SCCPs, MCCPs are now considered in an increasing number of studies. The limited data to date suggests MCCPs are widely used. Although data on their bioaccumulation and toxicity are still inconclusive, MCCPs and LCCPs with C<20 may also have a bioaccumulation potential. Considering this and their high production volumes, use, and ubiquitous occurrence in the environment, a better understanding on the levels and fate of all CPs is needed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Fate of antibiotic resistance genes in sewage treatment plant revealed by metagenomic approach. (United States)

    Yang, Ying; Li, Bing; Zou, Shichun; Fang, Herbert H P; Zhang, Tong


    Antibiotic resistance has become a serious threat to human health. Sewage treatment plant (STP) is one of the major sources of antibiotic resistance genes (ARGs) in natural environment. High-throughput sequencing-based metagenomic approach was applied to investigate the broad-spectrum profiles and fate of ARGs in a full scale STP. Totally, 271 ARGs subtypes belonging to 18 ARGs types were identified by the broad scanning of metagenomic analysis. Influent had the highest ARGs abundance, followed by effluent, anaerobic digestion sludge and activated sludge. 78 ARGs subtypes persisted through the biological wastewater and sludge treatment process. The high removal efficiency of 99.82% for total ARGs in wastewater suggested that sewage treatment process is effective in reducing ARGs. But the removal efficiency of ARGs in sludge treatment was not as good as that in sewage treatment. Furthermore, the composition of microbial communities was examined and the correlation between microbial community and ARGs was investigated using redundancy analysis. Significant correlation between 6 genera and the distribution of ARGs were found and 5 of the 6 genera included potential pathogens. This is the first study on the fate of ARGs in STP using metagenomic analysis with high-throughput sequencing and hopefully would enhance our knowledge on fate of ARGs in STP. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Holistic assessment of occurrence and fate of metolachlor within environmental compartments of agricultural watersheds (United States)

    Rose, Claire E.; Coupe, Richard H.; Capel, Paul D.; Webb, Richard M.


    Background: Metolachlor [(RS)-2-Chloro-N-(2-ethyl-6-methyl-phenyl)-N-(1-methoxypropan-2-yl)acetamide] and two degradates (metolachlor ethane-sulfonic acid and metolachlor oxanilic acid) are commonly observed in surface and groundwater. The behavior and fate of these compounds were examined over a 12-year period in seven agricultural watersheds in the United States. They were quantified in air, rain, streams, overland flow, groundwater, soil water, subsurface drain water, and water at the stream/groundwater interface. The compounds were frequently detected in surface and groundwater associated with agricultural areas. A mass budget approach, based on all available data from the study and literature, was used to determine a percentage-wise generalized distribution and fate of applied parent metolachlor in typical agricultural environments.Results: In these watersheds, about 90% of applied metolachlor was taken up by plants or degraded, 10% volatilized, and 0.3% returned as rainfall. One percent was transported to surface water, while an equal amount infiltrated into the unsaturated zone soil water. time to proceed.Conclusions: An understanding of the residence times of water in the different environmental compartments, and the important processes affecting metolachlor as it is transported along flowpaths among the environmental compartments allows for a degree of predictability of metolachlor's fate. Degradates with long half-lives can be used (in a limited capacity) as tracers of metolachlor, because of their persistence and widespread occurrence in the environment.

  16. The fate of phosphorus fertilizer in Amazon soya bean fields (United States)

    Riskin, Shelby H.; Porder, Stephen; Neill, Christopher; Figueira, Adelaine Michela e Silva; Tubbesing, Carmen; Mahowald, Natalie


    Fertilizer-intensive soya bean agriculture has recently expanded in southeastern Amazonia, and whereas intensive fertilizer use in the temperate zone has led to widespread eutrophication of freshwater ecosystems, the effects in tropical systems are less well understood. We examined the fate of fertilizer phosphorus (P) by comparing P forms and budgets across a chronosequence of soya bean fields (converted to soya beans between 2003 and 2008) and forests on an 800 km2 soya bean farm in Mato Grosso, Brazil. Soya bean fields were fertilized with 50 kg P ha−1 yr−1 (30 kg P ha−1 yr−1 above what is removed in crops). We used modified Hedley fractionation to quantify soil P pools and found increases in less-plant-available inorganic pools and decreases in organic pools in agricultural soils compared with forest. Fertilizer P did not move below 20 cm. Measurements of P sorption capacity suggest that while fertilizer inputs quench close to half of the sorption capacity of fast-reacting pools, most added P is bound in more slowly reacting pools. Our data suggest that this agricultural system currently has a low risk of P losses to waterways and that long time-scales are required to reach critical soil thresholds that would allow continued high yields with reduced fertilizer inputs. PMID:23610165

  17. The fate of phosphorus fertilizer in Amazon soya bean fields. (United States)

    Riskin, Shelby H; Porder, Stephen; Neill, Christopher; Figueira, Adelaine Michela e Silva; Tubbesing, Carmen; Mahowald, Natalie


    Fertilizer-intensive soya bean agriculture has recently expanded in southeastern Amazonia, and whereas intensive fertilizer use in the temperate zone has led to widespread eutrophication of freshwater ecosystems, the effects in tropical systems are less well understood. We examined the fate of fertilizer phosphorus (P) by comparing P forms and budgets across a chronosequence of soya bean fields (converted to soya beans between 2003 and 2008) and forests on an 800 km(2) soya bean farm in Mato Grosso, Brazil. Soya bean fields were fertilized with 50 kg P ha(-1) yr(-1) (30 kg P ha(-1) yr(-1) above what is removed in crops). We used modified Hedley fractionation to quantify soil P pools and found increases in less-plant-available inorganic pools and decreases in organic pools in agricultural soils compared with forest. Fertilizer P did not move below 20 cm. Measurements of P sorption capacity suggest that while fertilizer inputs quench close to half of the sorption capacity of fast-reacting pools, most added P is bound in more slowly reacting pools. Our data suggest that this agricultural system currently has a low risk of P losses to waterways and that long time-scales are required to reach critical soil thresholds that would allow continued high yields with reduced fertilizer inputs.

  18. Motion Capture Depends Upon the Common Fate Factor Among Elements. (United States)

    Ichikawa, Makoto; Masakura, Yuko


    When observers move the head backwards and forwards while fixating on the center of the concentric circles that consist of oblique lines, they see illusory rotation of those circles. If several dots are superimposed on the proximity to the inner concentric circles, observers see the illusory rotation not only for the circles but also for the superimposed dots. This illusory rotation of the dots is based on motion capture. In this study, in order to understand the basis of the motion capture, we examined how motion signal with different directions (rotation, expansion/contraction, and horizontal translation) in terms of motion on a display, as well as illusory motion signal from the oblique components, affects the motion capture. If the stimulus presented rotation with expansion/contraction, or rotation with horizontal translation for the entire stimulus, then observers tended to perceive motion capture for the superimposed dots. However, if the stimulus presented only rotation of the circles, then observers tended to perceive induced motion for the superimposed dots. These results suggest that the existences of the common fate factor for the entire stimulus determine the means of allocating and integrating the motion signal in each element in the stimulus to generate motion capture.

  19. Environmental fate processes and biochemical transformations of chiral emerging organic pollutants. (United States)

    Wong, Charles S


    This review highlights the analytical chemistry, environmental occurrence, and environmental fate of individual stereoisomers of chiral emerging pollutants, which are modern current-use chemicals of growing environmental concern due to their presence in the environment and potential for deleterious effects. Comparatively little is known about individual stereoisomers of pollutants, which can have differential toxicological effects and can be tracers of biochemical weathering in the environment. Stereoisomers are resolved by gas chromatography (GC), high-performance liquid chromatography (HPLC), and capillary electrophoresis (CE). Separation techniques in environmental analysis are typically coupled to mass spectrometry (MS) and tandem mass spectrometry (MS/MS), as these provide the sensitivity and selectivity needed. The enantiomer composition of phenoxyalkanoic and acetamide herbicides, organophosphorus and pyrethroid pesticides, chiral polychlorinated biphenyl metabolites, synthetic musks, hexabromocyclododecane, and pharmaceuticals in the environment show species-dependent enantioselectivity from biotransformation and other biologically mediated processes affecting enantiomers differentially. These enantiomer compositions are useful in detecting biologically mediated environmental reactions, apportioning sources of pollutants, and gaining insight into the biochemical fate of chiral pollutants in the environment, which are needed for accurate risk assessment of such chemicals.

  20. Assessment of contaminant fate in catchments using a novel integrated hydrobiogeochemical-multimedia fate model. (United States)

    Nizzetto, Luca; Butterfield, Dan; Futter, Martyn; Lin, Yan; Allan, Ian; Larssen, Thorjørn


    Models for pollution exposure assessment typically adopt an overly simplistic representation of geography, climate and biogeochemical processes. This strategy is unsatisfactory when high temporal resolution simulations for sub-regional spatial domains are performed, in which parameters defining scenarios can vary interdependently in space and time. This is, for example, the case when assessing the influence of biogeochemical processing on contaminant fate. Here we present INCA-Contaminants, the Integrated Catchments model for Contaminants; a new model that simultaneously and realistically solves mass balances of water, carbon, sediments and contaminants in the soil-stream-sediment system of catchments and their river networks as a function of climate, land use/management and contaminant properties. When forced with realistic climate and contaminant input data, the model was able to predict polychlorinated biphenyls (PCBs) concentrations in multiple segments of a river network in a complex landscape. We analyzed model output sensitivity to a number of hydro-biogeochemical parameters. The rate of soil organic matter mineralization was the most sensitive parameter controlling PCBs levels in river water, supporting the hypothesis that organic matter turnover rates will influence re-mobilization of previously deposited PCBs which had accumulated in soil organic matrix. The model was also used to project the long term fate of PCB 101 under two climate scenarios. Catchment diffuse run-off and riverine transport were the major pathways of contaminant re-mobilization. Simulations show that during the next decade the investigated boreal catchment will shift from being a net atmospheric PCB sink to a net source for air and water, with future climate perturbation having little influence on this trend. Our results highlight the importance of using credible hydro-biogeochemical simulations when modeling the fate of hydrophobic contaminants. Copyright © 2015 Elsevier B.V. All

  1. An evaluation of the environmental fate and behavior of munitions materiel (TNT, RDX) in soil and plant systems

    Energy Technology Data Exchange (ETDEWEB)

    Cataldo, D.A.; Harvey, S.D.; Fellows, R.J.; Bean, R.M.; McVeety, B.D.


    The objective of these investigations was to elucidate the environmental behavior and fate of trinitrotoluene (TNT). Emphasis was placed on those chemical transformations occurring in soils and in plant tissues following uptake and on the probable impact of these chemical transformations on the food chain. Analytical methodology was developed to fractionate and characterize both TNT and TNT-derived residues in soil and plant matrices. The procedures developed in this program extend prior art, through the use of matrix-specific extraction and fractionation schemes followed by classical HPLC separations. Methods showed good recovery and reproducibility. 30 refs., 35 figs., 27 tabs.

  2. Redox regulation of plant stem cell fate. (United States)

    Zeng, Jian; Dong, Zhicheng; Wu, Haijun; Tian, Zhaoxia; Zhao, Zhong


    Despite the importance of stem cells in plant and animal development, the common mechanisms of stem cell maintenance in both systems have remained elusive. Recently, the importance of hydrogen peroxide (H2O2) signaling in priming stem cell differentiation has been extensively studied in animals. Here, we show that different forms of reactive oxygen species (ROS) have antagonistic roles in plant stem cell regulation, which were established by distinct spatiotemporal patterns of ROS-metabolizing enzymes. The superoxide anion (O2·-) is markedly enriched in stem cells to activate WUSCHEL and maintain stemness, whereas H2O2 is more abundant in the differentiating peripheral zone to promote stem cell differentiation. Moreover, H2O2 negatively regulates O2·- biosynthesis in stem cells, and increasing H2O2 levels or scavenging O2·- leads to the termination of stem cells. Our results provide a mechanistic framework for ROS-mediated control of plant stem cell fate and demonstrate that the balance between O2·- and H2O2 is key to stem cell maintenance and differentiation. © 2017 The Authors.

  3. The fate of Earth’s ocean

    Directory of Open Access Journals (Sweden)

    C. Bounama


    Full Text Available Questions of how water arrived on the Earth’s surface, how much water is contained in the Earth system as a whole, and how much water will be available in the future in the surface reservoirs are of central importance to our understanding of the Earth. To answer the question about the fate of the Earth’s ocean, one has to study the global water cycle under conditions of internal and external forcing processes. Modern estimates suggest that the transport of water to the surface is five times smaller than water movement to the mantle, so that the Earth will lose all its sea-water in one billion years from now. This straightforward extrapolation of subduction-zone fluxes into the future seems doubtful. Using a geophysical modelling approach it was found that only 27% of the modern ocean will be subducted in one billion years. Internal feedbacks will not be the cause of the ocean drying out. Instead, the drying up of surface reservoirs in the future will be due to the increase in temperature caused by a maturing Sun connected to hydrogen escape to outer space. Keywords: Surface water reservoir, water fluxes, regassing, degassing, global water cycle

  4. Observations on the Chinese idea of fate

    Directory of Open Access Journals (Sweden)

    Gunnar Sjöholm


    Full Text Available Throughout the history of Chinese religion, ideas of fate are present. The earliest forms of Chinese writing occur on thousands of tortoise shells found 65 years ago in the province of Honan. At that time inscriptions on bronze vessels from the first millennium B.C. were already known. But the new material was more difficult to interpret. The amount of material has grown since then: there are now about 100 000 inscribed shells and bones, some hundreds of whole tortoise shields with inscriptions as well as other archaeological material. One third of the signs has been deciphered. The inscriptions are mostly quite brief and contain oracle formulas. The people of the Shang-Yin dynasty (1500-1028 B.C. knew the useful and the beautiful. What did the oracle stand for? Did it represent something necessary? An oracular technique had been developed, "which consisted in touching shells or bones on one side with a little red-hot rod and interpreting according to certain patterns the cracks that arose on the other side as the answers of the ancestral spirits to the questions of the kings. After the consultation of the oracle the questions and often the answers were inscribed beside the cracks. Often also pure memoranda concerning weather, war expeditions etc. were inscribed.

  5. Repositioning-dependent fate of duplicate genes. (United States)

    Rodin, Sergei N; Parkhomchuk, Dmitri V; Rodin, Andrei S; Holmquist, Gerald P; Riggs, Arthur D


    Gene duplication is the main source of evolutionary novelties. However, the problem with duplicates is that the purifying selection overlooks deleterious mutations in the redundant sequence, which therefore, instead of gaining a new function, often degrades into a functionless pseudogene. This risk of functional loss instead of gain is much higher for small populations of higher organisms with a slow and complex development. We propose that it is the epigenetic tissue/stage-complementary silencing of duplicates that makes them exposable to the purifying selection, thus saving them from pseudogenization and opening the way towards new function(s). Our genome-wide analyses of gene duplicates in several eukaryotic species combined with the phylogenetic comparison of vertebrate alpha- and beta-globin gene clusters strongly support this epigenetic complementation (EC) model. The distinctive condition for a new duplicate to survive by the EC mechanism seems to be its repositioning to an ectopic site, which is accompanied by changes in the rate and direction of mutagenesis. The most distinguished in this respect is the human genome. In this review, we extend and discuss the data on the EC- and repositioning-dependent fate of gene duplicates with the special emphasis on the problem of detecting brief postduplication period of adaptive evolution driven by positive selection. Accordingly, we propose a new CpG-focused measure of selection that is insensitive to translocation-caused biases in mutagenesis.

  6. Special Examination

    International Development Research Centre (IDRC) Digital Library (Canada)


    leaders developed or supported, and the value of donor partnerships. The targets are intended to help the Centre measure the impact it is having in implementing its strategic plan. Recommendations. 18. Our recommendations in this area of examination appear at paragraphs 24 and 33. Analysis to support this finding. 19.

  7. Examination of surface phenomena of V₂O₅ loaded on new nanostructured TiO₂ prepared by chemical vapor condensation for enhanced NH₃-based selective catalytic reduction (SCR) at low temperatures. (United States)

    Cha, Woojoon; Yun, Seong-Taek; Jurng, Jongsoo


    In this article, we describe the investigation and surface characterization of a chemical vapor condensation (CVC)-TiO2 support material used in a V2O5/TiO2 catalyst for enhanced selective catalytic reduction (SCR) activity and confirm the mechanism of surface reactions. On the basis of previous studies and comparison with a commercial TiO2 catalyst, we examine four fundamental questions: first, the reason for increased surface V(4+) ion concentrations; second, the origin of the increase in surface acid sites; third, a basis for synergistic influences on improvements in SCR activity; and fourth, a reason for improved catalytic activity at low reaction temperatures. In this study, we have cited the result of SCR with NH3 activity for removing NOx and analyzed data using the reported result and data from previous studies on V2O5/CVC-TiO2 for the SCR catalyst. In order to determine the properties of suitable CVC-TiO2 surfaces for efficient SCR catalysis at low temperatures, CVC-TiO2 specimens were prepared and characterized using techniques such as XRD, BET, HR-TEM, XPS, FT-IR, NH3-TPD, photoluminescence (PL) spectroscopy, H2-TPR, and cyclic voltammetry. The results obtained for the CVC-TiO2 materials were also compared with those of commercial TiO2.

  8. Environmental transport and fate of endocrine disruptors from non-potable reuse of municipal wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, B; Beller, H; Bartel, C M; Kane, S; Campbell, C; Grayson, A; Liu, N; Burastero, S


    This project was designed to investigate the important but virtually unstudied topic of the subsurface transport and fate of Endocrine Disrupting Compounds (EDCs) when treated wastewater is used for landscape irrigation (non-potable water reuse). Although potable water reuse was outside the scope of this project, the investigation clearly has relevance to such water recycling practices. The target compounds, which are discussed in the following section and include EDCs such as 4-nonylphenol (NP) and 17{beta}-estradiol, were studied not only because of their potential estrogenic effects on receptors but also because they can be useful as tracers of wastewater residue in groundwater. Since the compounds were expected to occur at very low (part per trillion) concentrations in groundwater, highly selective and sensitive analytical techniques had to be developed for their analysis. This project assessed the distributions of these compounds in wastewater effluents and groundwater, and examined their fate in laboratory soil columns simulating the infiltration of treated wastewater into an aquifer (e.g., as could occur during irrigation of a golf course or park with nonpotable treated water). Bioassays were used to determine the estrogenic activity present in effluents and groundwater, and the results were correlated with those from chemical analysis. In vitro assays for estrogenic activity were employed to provide an integrated measure of estrogenic potency of environmental samples without requiring knowledge or measurement of all bioactive compounds in the samples. For this project, the Las Positas Golf Course (LPGC) in the City of Livermore provided an ideal setting. Since 1978, irrigation of this area with treated wastewater has dominated the overall water budget. For a variety of reasons, a group of 10 monitoring wells were installed to evaluate wastewater impacts on the local groundwater. Additionally, these wells were regularly monitored for tritium ({sup 3}H

  9. [Blood examination]. (United States)

    Kato, Masahiko


    Allergic blood examination such as radioallergosorbent test (RAST) is an important and sensitive method for detecting the allergen against allergic diseases including bronchial asthma, allergic rhinitis, atopic dermatitis, and food allergy. In this review, blood examination such as RAST and histamine release test (HRT) will be discussed. In 1967, Wide et al developed allergen detecting system such as RAST that measures the allergen specific IgE antibody. Now, several systems including capsulated hydrophilic carrier polymer (CAP)-RAST or multiple antigen simultaneous test (MAST) by using the fluoroenzyme immunoassay (FEIA) or other methods by using the ELISA are available. Another method for blood test is HRT that measures histamine release from the peripheral blood basophils after antigen addition in vitro. In general, HRT is thought to be more sensitive than RAST but available for only ten allergens. Also, 10-20% of patients are non-responder for this test.

  10. The Fate of Merging Neutron Stars (United States)

    Kohler, Susanna


    state. They then combined this information with Monte Carlo simulations based on the mass distribution of neutron-star binaries in our galaxy. From these simulations, Piro and collaborators could predict the distribution of fates expected for merging neutron-star binaries, given different equations of state.The authors found that the fate of the merger could vary greatly depending on the equation of state you assume. Intriguingly, all equations of state resulted in a surprisingly high fraction of systems that merged to form a neutron star or a supramassive neutron star in fact, four out of the five equations of state predicted that 80100% of systems would result in a neutron star or a supermassive neutron star.Lessons from ObservationsThe frequency bands covered by various current and planned gravitational wave observatories. Advanced LIGO has the right frequency coverage to be able to explore a neutron-star remnant if the signal is loud enough. [Christopher Moore, Robert Cole and Christopher Berry]These results have important implications for our future observations. The high predicted fraction of neutron stars resulting from these mergers tells us that its especially important for gravitational-wave observatories to probe 14 kHz emission. This frequency range will enable us to study the post-merger neutron-star or supramassive-neutron-star remnants.Even if we cant observe the remnants behavior after it forms, we can still compare the distribution of remnants that we observe in the future to the predictions made by Piro and collaborators. This will potentially allow us to constrain the neutron-star equation of state, revealing the physics of neutron-star interiors even without direct observations.CitationAnthony L. Piro et al 2017 ApJL 844 L19. doi:10.3847/2041-8213/aa7f2f

  11. Evaluate and characterize mechanisms controlling transport, fate, and effects of army smokes in the aerosol wind tunnel: Transport, transformations, fate, and terrestrial ecological effects of hexachloroethane obscurant smokes

    Energy Technology Data Exchange (ETDEWEB)

    Cataldo, D.A.; Ligotke, M.W.; Bolton, H. Jr.; Fellows, R.J.; Van Voris, P.; McVeety, B.D.; Li, Shu-mei W.; McFadden, K.M.


    The terrestrial transport, chemical fate, and ecological effects of hexachloroethane (HC) smoke were evaluated under controlled wind tunnel conditions. The primary objectives of this research program are to characterize and assess the impacts of smoke and obscurants on: (1) natural vegetation characteristic of US Army training sites in the United States; (2) physical and chemical properties of soils representative of these training sites; and (3) soil microbiological and invertebrate communities. Impacts and dose/responses were evaluated based on exposure scenarios, including exposure duration, exposure rate, and sequential cumulative dosing. Key to understanding the environmental impacts of HC smoke/obscurants is establishing the importance of environmental parameters such as relative humidity and wind speed on airborne aerosol characteristics and deposition to receptor surfaces. Direct and indirect biotic effects were evaluated using five plant species and two soil types. HC aerosols were generated in a controlled atmosphere wind tunnel by combustion of hexachloroethane mixtures prepared to simulate normal pot burn rates and conditions. The aerosol was characterized and used to expose plant, soil, and other test systems. Particle sizes of airborne HC ranged from 1.3 to 2.1 {mu}m mass median aerodynamic diameter (MMAD), and particle size was affected by relative humidity over a range of 20% to 85%. Air concentrations employed ranged from 130 to 680 mg/m{sup 3}, depending on exposure scenario. Chlorocarbon concentrations within smokes, deposition rates for plant and soil surfaces, and persistence were determined. The fate of principal inorganic species (Zn, Al, and Cl) in a range of soils was assessed.

  12. Geochemical fate of arsenic in swine litter (United States)

    Quazi, S.; Makris, K.; Sarkar, D.; Datta, R.; Punamiya, P.


    Swine diet is often supplemented by organoarsenicals, such as roxarsone to treat diseases and to promote growth. Recent data reported roxarsone degradation under anaerobic conditions in poultry litter, but no such data exist for swine wastes typically stored in unprotected lagoons in concentrated animal feeding operations (CAFOs). However, serious environmental health risk may arise upon significant arsenic (As) release into solution. The problem may be exacerbated under certain environmental conditions where organoarsenicals, such as roxarsone transform into the more toxic inorganic As, posing serious health risk to the surrounding ecosystem. The objective of this study were to analyze swine wastes collected from 19 randomly selected CAFOs in the USA for As concentrations, and to determine the geochemical fate of As in the swine waste suspensions. Swine wastes were analyzed for total-recoverable, total soluble, and water-extractable As, which were measured by ICP-MS. Speciation of As was performed following a well-established hyphenated technique using HPLC- ICPMS. Swine waste suspensions differed in solids contents; thus, the particulate matters with varying As concentrations were spiked with roxarsone and incubated under dark/light and aerobic/anaerobic conditions. Findings show the prevalence of inorganic As [As(V)] in swine waste suspension solutions. Roxarsone underwent degradation to both organoarsenicals, such as p-ASA, as well as inorganic arsenate and to a number of unidentified metabolites. Roxarsone degradation kinetics was influenced by the solids content and the air conditions (anaerobic/aerobic) of the swine waste suspensions. Maximum degradation rates were observed under anaerobic conditions, in suspensions which were low in solids content. Roxarsone degradation was primarily microbially-mediated, but in certain cases abiotic degradation was also observed, which were significantly slower.

  13. Calculation of site specific characterisation factors for metal ecotoxicity using decoupled multi species fate and exposure modelling

    DEFF Research Database (Denmark)

    Birkved, Morten; Strandesen, Maria; Larsen, HF


    of metals taking into account the speciation pattern under e.g. specific pH, DOM and salinity conditions. The study presented here indicates that CF’s calculated using the traditional assessment method known as single species assessment of metals, under realistic conditions differs significantly, due......Calculation of characterisation factors (CF’s) for metal ecotoxicity typically involves fate and exposure modelling of metals in multi-media models developed for assessment of organic compounds. Metals do not follow the fate patterns of organic chemicals, and the results will therefore most likely...... to the part of the metal species present as complexes which is very hard to account for in single species assessment. Preliminary results on the CF’s based on single species assessment and decoupled multi species assessment will be presented for 4 common metals....

  14. Chemical Emergencies (United States)

    When a hazardous chemical has been released, it may harm people's health. Chemical releases can be unintentional, as in the case of an ... the case of a terrorist attack with a chemical weapon. Some hazardous chemicals have been developed by ...

  15. Morphogen and community effects determine cell fates in response to BMP4 signaling in human embryonic stem cells. (United States)

    Nemashkalo, Anastasiia; Ruzo, Albert; Heemskerk, Idse; Warmflash, Aryeh


    Paracrine signals maintain developmental states and create cell fate patterns in vivo and influence differentiation outcomes in human embryonic stem cells (hESCs) in vitro Systematic investigation of morphogen signaling is hampered by the difficulty of disentangling endogenous signaling from experimentally applied ligands. Here, we grow hESCs in micropatterned colonies of 1-8 cells ('µColonies') to quantitatively investigate paracrine signaling and the response to external stimuli. We examine BMP4-mediated differentiation in µColonies and standard culture conditions and find that in µColonies, above a threshold concentration, BMP4 gives rise to only a single cell fate, contrary to its role as a morphogen in other developmental systems. Under standard culture conditions BMP4 acts as a morphogen but this requires secondary signals and particular cell densities. We find that a 'community effect' enforces a common fate within µColonies, both in the state of pluripotency and when cells are differentiated, and that this effect allows a more precise response to external signals. Using live cell imaging to correlate signaling histories with cell fates, we demonstrate that interactions between neighbors result in sustained, homogenous signaling necessary for differentiation. © 2017. Published by The Company of Biologists Ltd.

  16. Focus assessed transthoracic echocardiography (FATE) in patients acutely admitted with respiratory symptoms

    DEFF Research Database (Denmark)

    Laursen, Christian Borbjerg; Jakobsen, Carl-Johan; Lassen, Annmarie Touborg


    echocardiography for cardiopulmonary monitoring in intensive care. Eur J Anaesthesiol 2004; 21 (9): 700-7 2. Breitkreutz R, Walcher F, Seeger FH. Focus echocardiographic evaluation in resuscitation management: concept of an advanced life support- conformed algorithm. Crit Care Med 2007; 35 (5 Suppl): 150-61 3. Ray......%, oxygen therapy initiated, dyspnoea, cough or chest pain. Within one hour after the primary evaluation sonographic examination including FATE was done by a physician blinded to patient history and primary appraisal. Results: We identified and screened 342 patients of whom 139 patients fulfilled inclusion...

  17. Review: Selenium contamination, fate, and reactive transport in groundwater in relation to human health (United States)

    Bailey, Ryan T.


    Selenium (Se) is an essential micro-nutrient for humans, but can be toxic at high levels of intake. Se deficiency and Se toxicity are linked with serious diseases, with some regions worldwide experiencing Se deficiency due to Se-poor rocks and soils and other areas dealing with Se toxicity due to the presence of Se-enriched geologic materials. In addition, Se is consumed primarily through plants that take up Se from soil and through animal products that consume these plants. Hence, the soil and groundwater system play important roles in determining the effect of Se on human health. This paper reviews current understanding of Se fate and transport in soil and groundwater systems and its relation to human health, with a focus on alluvial systems, soil systems, and the interface between alluvial systems and Cretaceous shale that release Se via oxidation processes. The review focuses first on the relation between Se and human health, followed by a summary of Se distribution in soil-aquifer systems, with an emphasis on the quantitative relationship between Se content in soil and Se concentration in underlying groundwater. The physical, chemical, and microbial processes that govern Se fate and transport in subsurface systems then are presented, followed by numerical modeling techniques used to simulate these processes in study regions and available remediation strategies for either Se-deficient or Se-toxic regions. This paper can serve as a guide to any field, laboratory or modeling study aimed at assessing Se fate and transport in groundwater systems and its relation to human health.

  18. Fate of 4-nonylphenol and 17β-estradiol in the Redwood River of Minnesota (United States)

    Writer, Jeffrey H.; Ryan, Joseph N.; Keefe, Steffanie H.; Barber, Larry B.


    The majority of previous research investigating the fate of endocrine-disrupting compounds has focused on single processes generally in controlled laboratory experiments, and limited studies have directly evaluated their fate and transport in rivers. This study evaluated the fate and transport of 4-nonylphenol, 17β-estradiol, and estrone in a 10-km reach of the Redwood River in southwestern Minnesota. The same parcel of water was sampled as it moved downstream, integrating chemical transformation and hydrologic processes. The conservative tracer bromide was used to track the parcel of water being sampled, and the change in mass of the target compounds relative to bromide was determined at two locations downstream from a wastewater treatment plant effluent outfall. In-stream attenuation coefficients (kstream) were calculated by assuming first-order kinetics (negative values correspond to attenuation, whereas positive values indicate production). Attenuation of 17β-estradiol (kstream = −3.2 ± 1.0 day–1) was attributed primarily due to sorption and biodegradation by the stream biofilm and bed sediments. Estrone (kstream = 0.6 ± 0.8 day–1) and 4-nonylphenol (kstream = 1.4 ± 1.9 day–1) were produced in the evaluated 10-km reach, likely due to biochemical transformation from parent compounds (17β-estradiol, 4-nonylphenolpolyethoxylates, and 4-nonyphenolpolyethoxycarboxylates). Despite attenuation, these compounds were transported kilometers downstream, and thus additive concentrations from multiple sources and transformation of parent compounds into degradates having estrogenic activity can explain their environmental persistence and widespread observations of biological disruption in surface waters.

  19. Islamic State and Chemical Weapons

    Directory of Open Access Journals (Sweden)

    Lukáš Rafay


    Full Text Available The article deals with topic of Islamic State and chemical weapons. The issue is analysed in three dimensions: origin of used chemical weapons and possibility of independent production; known chemical attacks and tactical regularities in their execution; and traits of future chemical terrorist attacks. By providing a thorough examination of the problem, the article aims at predicting the future development of the group’s chemical program as well as describing any prospective chemical terrorist attacks in Europe

  20. The fate of methanol in anaerobic bioreactors

    NARCIS (Netherlands)

    Florencio, L.


    Methanol is an important component of certain industrial wastewaters. In anaerobic environments, methanol can be utilized by methanogens and acetogens. In wastewater treatment plants, the conversion of methanol into methane is preferred because this conversion is responsible for chemical

  1. The final fate of planetary systems (United States)

    Gaensicke, Boris


    The discovery of the first extra-solar planet around a main-sequence star in 1995 has changed the way we think about the Universe: our solar system is not unique. Twenty years later, we know that planetary systems are ubiquitous, orbit stars spanning a wide range in mass, and form in an astonishing variety of architectures. Yet, one fascinating aspect of planetary systems has received relatively little attention so far: their ultimate fate.Most planet hosts will eventually evolve into white dwarfs, Earth-sized stellar embers, and the outer parts of their planetary systems (in the solar system, Mars and beyond) can survive largely intact for billions of years. While scattered and tidally disrupted planetesimals are directly detected at a small number of white dwarfs in the form infrared excess, the most powerful probe for detecting evolved planetary systems is metal pollution of the otherwise pristine H/He atmospheres.I will present the results of a multi-cycle HST survey that has obtained COS observations of 136 white dwarfs. These ultraviolet spectra are exquisitely sensitive to the presence of metals contaminating the white atmosphere. Our sophisticated model atmosphere analysis demonstrates that at least 27% of all targets are currently accreting planetary debris, and an additional 29% have very likely done so in the past. These numbers suggest that planet formation around A-stars (the dominant progenitors of today's white dwarf population) is similarly efficient as around FGK stars.In addition to post-main sequence planetary system demographics, spectroscopy of the debris-polluted white dwarf atmospheres provides a direct window into the bulk composition of exo-planetesimals, analogous to the way we use of meteorites to determine solar-system abundances. Our ultraviolet spectroscopy is particularly sensitive to the detection of Si, a dominant rock-forming species, and we identify up to ten additional volatile and refractory elements in the most strongly

  2. Chaotic examination (United States)

    Bildirici, Melike; Sonustun, Fulya Ozaksoy; Sonustun, Bahri


    In the regards of chaos theory, new concepts such as complexity, determinism, quantum mechanics, relativity, multiple equilibrium, complexity, (continuously) instability, nonlinearity, heterogeneous agents, irregularity were widely questioned in economics. It is noticed that linear models are insufficient for analyzing unpredictable, irregular and noncyclical oscillations of economies, and for predicting bubbles, financial crisis, business cycles in financial markets. Therefore, economists gave great consequence to use appropriate tools for modelling non-linear dynamical structures and chaotic behaviors of the economies especially in macro and the financial economy. In this paper, we aim to model the chaotic structure of exchange rates (USD-TL and EUR-TL). To determine non-linear patterns of the selected time series, daily returns of the exchange rates were tested by BDS during the period from January 01, 2002 to May 11, 2017 which covers after the era of the 2001 financial crisis. After specifying the non-linear structure of the selected time series, it was aimed to examine the chaotic characteristic for the selected time period by Lyapunov Exponents. The findings verify the existence of the chaotic structure of the exchange rate returns in the analyzed time period.

  3. Fate of triclocarban in agricultural soils after biosolid applications. (United States)

    Lozano, Nuria; Rice, Clifford P; Ramirez, Mark; Torrents, Alba


    Triclocarban [N-(4-chlorophenyl)-N-(3,4-dichlorophenyl) urea] (TCC) is an antimicrobial agent utilized in a variety of consumer products. It is commonly released into domestic wastewaters and upon treatment, it is known to accumulate in biosolids. This study examines the occurrence of TCC in biosolids and its long-term fate in biosolid-treated soils. TCC levels in the biosolids from a large waste water treatment plant (WWTP) over 2 years showed little variability at 18,800 ± 700 ng g -1 dry wt. (mean ± SEM). Surface soil samples (top 10 cm) were collected from 26 commercial farms located in northern VA, US that had received biosolid applications from the WWTP. Samples were grouped as farms receiving no biosolids, farms with a single biosolid application, and those receiving multiple biosolid applications from 1992 to 2006. Our results illustrate that TCC soil residues remained years after biosolid application. The two most important parameters controlling TCC topsoil concentrations were the biosolid application rate and the period since the last application. No TCC removal was observed in farms where the time since biosolid application was between 7 and 9 months. TCC concentration analyzed 7 and 8 years after biosolid applications were 45.8 ± 6.1 and 72.4 ± 15.3 ng g -1 dry wt., respectively, showing its persistence in soils and build-up upon multiple biosolid applications. A soil TCC half-life of 287.5 ± 45.5 days was estimated.

  4. Unambiguous observation of shape effects on cellular fate of nanoparticles (United States)

    Chu, Zhiqin; Zhang, Silu; Zhang, Bokai; Zhang, Chunyuan; Fang, Chia-Yi; Rehor, Ivan; Cigler, Petr; Chang, Huan-Cheng; Lin, Ge; Liu, Renbao; Li, Quan


    Cellular fate of nanoparticles is vital to application of nanoparticles to cell imaging, bio-sensing, drug delivery, suppression of drug resistance, gene delivery, and cytotoxicity analysis. However, the current studies on cellular fate of nanoparticles have been controversial due to complications of interplay between many possible factors. By well-controlled experiments, we demonstrated unambiguously that the morphology of nanoparticles independently determined their cellular fate. We found that nanoparticles with sharp shapes, regardless of their surface chemistry, size, or composition, could pierce the membranes of endosomes that carried them into the cells and escape to the cytoplasm, which in turn significantly reduced the cellular excretion rate of the nanoparticles. Such features of sharp-shaped nanoparticles are essential for drug delivery, gene delivery, subcellular targeting, and long-term tracking. This work opens up a controllable, purely geometrical and hence safe, degree of freedom for manipulating nanoparticle-cell interaction, with numerous applications in medicine, bio-imaging, and bio-sensing.

  5. Nox, Reactive Oxygen Species and Regulation of Vascular Cell Fate

    Directory of Open Access Journals (Sweden)

    Denise Burtenshaw


    Full Text Available The generation of reactive oxygen species (ROS and an imbalance of antioxidant defence mechanisms can result in oxidative stress. Several pro-atherogenic stimuli that promote intimal-medial thickening (IMT and early arteriosclerotic disease progression share oxidative stress as a common regulatory pathway dictating vascular cell fate. The major source of ROS generated within the vascular system is the nicotinamide adenine dinucleotide phosphate (NADPH oxidase family of enzymes (Nox, of which seven members have been characterized. The Nox family are critical determinants of the redox state within the vessel wall that dictate, in part the pathophysiology of several vascular phenotypes. This review highlights the putative role of ROS in controlling vascular fate by promoting endothelial dysfunction, altering vascular smooth muscle phenotype and dictating resident vascular stem cell fate, all of which contribute to intimal medial thickening and vascular disease progression.

  6. Temporal competition between differentiation programs determines cell fate choice (United States)

    Kuchina, Anna; Espinar, Lorena; Cagatay, Tolga; Balbin, Alejandro; Alvarado, Alma; Garcia-Ojalvo, Jordi; Suel, Gurol


    During pluripotent differentiation, cells adopt one of several distinct fates. The dynamics of this decision-making process are poorly understood, since cell fate choice may be governed by interactions between differentiation programs that are active at the same time. We studied the dynamics of decision-making in the model organism Bacillus subtilis by simultaneously measuring the activities of competing differentiation programs (sporulation and competence) in single cells. We discovered a precise switch-like point of cell fate choice previously hidden by cell-cell variability. Engineered artificial crosslinks between competence and sporulation circuits revealed that the precision of this choice is generated by temporal competition between the key players of two differentiation programs. Modeling suggests that variable progression towards a switch-like decision might represent a general strategy to maximize adaptability and robustness of cellular decision-making.

  7. Epigenetic memory and cell fate reprogramming in plants. (United States)

    Birnbaum, Kenneth D; Roudier, François


    Plants have a high intrinsic capacity to regenerate from adult tissues, with the ability to reprogram adult cell fates. In contrast, epigenetic mechanisms have the potential to stabilize cell identity and maintain tissue organization. The question is whether epigenetic memory creates a barrier to reprogramming that needs to be erased or circumvented in plant regeneration. Early evidence suggests that, while chromatin dynamics impact gene expression in the meristem, a lasting constraint on cell fate is not established until late stages of plant cell differentiation. It is not yet clear whether the plasticity of plant cells arises from the ability of cells to erase identity memory or to deploy cells that may exhibit cellular specialization but still lack an epigenetic restriction on cell fate alteration.

  8. Chemical Spill Prevention, Control, and Countermeasures Plan: 100 Areas

    Energy Technology Data Exchange (ETDEWEB)

    Chien, Y.M.


    The purpose of this Chemical Spill Prevention, Control, and Countermeasures (SPCC) Plan is to identify the chemical spill control practices, procedures, and containment devices Westinghouse Hanford Company (Westinghouse Hanford) employs to prevent a reportable quantity (RQ) of a hazardous substance (as defined in 40 CFR Part 302) from being released to the environment. The chemical systems and chemical storage facilities in the 100 Areas are described. This document traces the ultimate fate of accidental chemical spills at the 100 Areas. Also included in the document destinations, spill containment devices, and systems surveillance frequencies. 2 tabs.

  9. Behaviour and fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water treatment: a review. (United States)

    Rahman, Mohammad Feisal; Peldszus, Sigrid; Anderson, William B


    This article reviews perfluoroalkyl and polyfluoroalkyl substance (PFAS) characteristics, their occurrence in surface water, and their fate in drinking water treatment processes. PFASs have been detected globally in the aquatic environment including drinking water at trace concentrations and due, in part, to their persistence in human tissue some are being investigated for regulation. They are aliphatic compounds containing saturated carbon-fluorine bonds and are resistant to chemical, physical, and biological degradation. Functional groups, carbon chain length, and hydrophilicity/hydrophobicity are some of the important structural properties of PFASs that affect their fate during drinking water treatment. Full-scale drinking water treatment plant occurrence data indicate that PFASs, if present in raw water, are not substantially removed by most drinking water treatment processes including coagulation, flocculation, sedimentation, filtration, biofiltration, oxidation (chlorination, ozonation, AOPs), UV irradiation, and low pressure membranes. Early observations suggest that activated carbon adsorption, ion exchange, and high pressure membrane filtration may be effective in controlling these contaminants. However, branched isomers and the increasingly used shorter chain PFAS replacement products may be problematic as it pertains to the accurate assessment of PFAS behaviour through drinking water treatment processes since only limited information is available for these PFASs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Application of System Dynamics technique to simulate the fate of persistent organic pollutants in soils. (United States)

    Chaves, R; López, D; Macías, F; Casares, J; Monterroso, C


    Persistent organic pollutants (POPs) are within the most dangerous pollutants released into the environment by human activities. Due to their resistance to degradation (chemical, biological or photolytic), it is critical to assess the fate and environmental hazards of the exchange of POPs between different environmental media. System Dynamics enables to represent complex systems and analyze their dynamic behavior. It provides a highly visual representation of the structure of the system and the existing relationships between the several parameters and variables, facilitating the understanding of the behavior of the system. In the present study the fate of γ-hexachlorocyclohexane (lindane) in a contaminated soil was modeled using the Vensim® simulation software. Results show a gradual decrease in the lindane content in the soil during a simulation period of 10 years. The most important route affecting the concentrations of the contaminant was the biochemical degradation, followed by infiltration and hydrodynamic dispersion. The model appeared to be highly sensitive to the half-life of the pollutant, which value depends on environmental conditions and directly affects the biochemical degradation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Ecological fate and effects of solvent-refined-coal (SRC) materials: a status report

    Energy Technology Data Exchange (ETDEWEB)

    Strand, J.A. III; Vaughan, B.E. (eds.)


    Non-occupational health effects associated with SRC operation will be determined by environmental factors governing the form, transport, and persistence of SRC materials and wastes - factors which also mediate exposure to man. Accordingly, the research described is an attempt to determine the fate of disposed solid wastes and spilled SRC materials, and it necessarily focuses on water soluble, persistent materials with greatest potential for mobility and incorporation into water and food supplies. Initially, aqueous equilibrations of SRC-II liquid material and SRC-I nongasified mineral residue were subjected to chemical characterization. Subsequently, laboratory studies were performed on the interaction of aqueous equilibrates of SRC-II liquid and SRC-I non-gasified mineral residue with soil materials isolated suspended sediments, and bottom sediments. These studies were designed to identify effects of specific sorption reactions ion or induced-ion exchange reactions, and toxicity of water soluble, biologically active materials derived from liquid and solid wastes. Results of these experiments have applicability to the environmental fate and effects of biologically active compounds released under different scenarios from product spills and solid waste disposal.

  12. [Environmental behavior of graphene and its effect on the transport and fate of pollutants in environment]. (United States)

    Ren, Wen-Jie; Teng, Ying


    Graphene is one of the most popular research topics in carbon nanomaterials. Because of its special physical and chemical properties, graphene will have wide applications. As the production and application amount is increasing, graphene will be inevitably released to the environment, resulting in risks of ecological environment and human health. It is of very vital significance for evaluating environmental risks of graphene scientifically and objectively to understand its environmental behavior and fate and explore its effect on the environmental behaviors of pollutants. This paper reviewed the environmental behavior of graphene, such as colloid properties and its stability in the aqueous environment and its transport through porous media. Additionally, the paper reviewed the effect of graphene on the transport and fate of pollutants. The interactions between graphene and heavy metals or organic compounds were especially discussed. Important topics should be explored including sorption mechanisms, interactions between graphene and soil components, influence of graphene on the transport and bioavailability of pollutants in environment, as well as approaches to quantifying graphene. The review might identify potential new ideas for further research in applications of graphene.

  13. Fate of steroid hormones and endocrine activities in swine manure disposal and treatment facilities. (United States)

    Combalbert, Sarah; Bellet, Virginie; Dabert, Patrick; Bernet, Nicolas; Balaguer, Patrick; Hernandez-Raquet, Guillermina


    Manure may contain high concern endocrine-disrupting compounds (EDCs) such as steroid hormones, naturally produced by pigs, which are present at μgL(-1) levels. Manure may also contain other EDCs such as nonylphenols (NP), polycyclic aromatic hydrocarbons (PAHs) and dioxins. Thus, once manure is applied to the land as soil fertilizer these compounds may reach aquifers and consequently living organisms, inducing abnormal endocrine responses. In France, manure is generally stored in anaerobic tanks prior spreading on land; when nitrogen removal is requested, manure is treated by aerobic processes before spreading. However, little is known about the fate of hormones and multiple endocrine-disrupting activities in such manure disposal and treatment systems. Here, we determined the fate of hormones and diverse endocrine activities during manure storage and treatment by combining chemical analysis and in vitro quantification of estrogen (ER), aryl hydrocarbon (AhR), androgen (AR), pregnane-X (PXR) and peroxysome proliferator-activated γ (PPARγ) receptor-mediated activities. Our results show that manure contains large quantities of hormones and activates ER and AhR, two of the nuclear receptors studied. Most of these endocrine activities were found in the solid fraction of manure and appeared to be induced mainly by hormones and other unidentified pollutants. Hormones, ER and AhR activities found in manure were poorly removed during manure storage but were efficiently removed by aerobic treatment of manure. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. BTG interacts with retinoblastoma to control cell fate in Dictyostelium.

    Directory of Open Access Journals (Sweden)

    Daniele Conte

    Full Text Available BACKGROUND: In the genesis of many tissues, a phase of cell proliferation is followed by cell cycle exit and terminal differentiation. The latter two processes overlap: genes involved in the cessation of growth may also be important in triggering differentiation. Though conceptually distinct, they are often causally related and functional interactions between the cell cycle machinery and cell fate control networks are fundamental to coordinate growth and differentiation. A switch from proliferation to differentiation may also be important in the life cycle of single-celled organisms, and genes which arose as regulators of microbial differentiation may be conserved in higher organisms. Studies in microorganisms may thus contribute to understanding the molecular links between cell cycle machinery and the determination of cell fate choice networks. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that in the amoebozoan D. discoideum, an ortholog of the metazoan antiproliferative gene btg controls cell fate, and that this function is dependent on the presence of a second tumor suppressor ortholog, the retinoblastoma-like gene product. Specifically, we find that btg-overexpressing cells preferentially adopt a stalk cell (and, more particularly, an Anterior-Like Cell fate. No btg-dependent preference for ALC fate is observed in cells in which the retinoblastoma-like gene has been genetically inactivated. Dictyostelium btg is the only example of non-metazoan member of the BTG family characterized so far, suggesting that a genetic interaction between btg and Rb predated the divergence between dictyostelids and metazoa. CONCLUSIONS/SIGNIFICANCE: While the requirement for retinoblastoma function for BTG antiproliferative activity in metazoans is known, an interaction of these genes in the control of cell fate has not been previously documented. Involvement of a single pathway in the control of mutually exclusive processes may have relevant implication in the

  15. Identifying gene expression modules that define human cell fates. (United States)

    Germanguz, I; Listgarten, J; Cinkornpumin, J; Solomon, A; Gaeta, X; Lowry, W E


    Using a compendium of cell-state-specific gene expression data, we identified genes that uniquely define cell states, including those thought to represent various developmental stages. Our analysis sheds light on human cell fate through the identification of core genes that are altered over several developmental milestones, and across regional specification. Here we present cell-type specific gene expression data for 17 distinct cell states and demonstrate that these modules of genes can in fact define cell fate. Lastly, we introduce a web-based database to disseminate the results. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Contribution to research on the metabolism of fission product. Studies on the physico-chemical state and the metabolic fate of radio-cerium solution; Contribution a l'etude du metabolisme des produits de fission. Recherches sur l'etat physico-chimique et le devenir metabolique des solutions de radiocerium

    Energy Technology Data Exchange (ETDEWEB)

    Aeberhardt, A. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires


    This paper describes a study of the physico-chemical state of radio-cerium in dilute solutions on the tracer scale, as a function of the pH of the solution. The way in which this radioelement is transported in the blood is studied in vitro and in vivo, with reference to the ionic or colloidal state of the radio-cerium used. The distribution of cerium amongst the various components of the blood is studied by a new method of blood fractionation and by paper electrophoresis. Evidence of a cerium globulin connection is shown in the case of ionic cerium. A study of the initial distribution of radio-cerium in rats, after intravenous administration of ionic or colloidal solutions, shows considerable differences according to the physico-chemical state of the cerium injected. (author) [French] Ce travail presente une etude de l'etat physico-chimique du radiocerium en solutions diluees a l'echelle des indicateurs, en fonction du pH de la solution. En fonction de l'etat ionique ou colloidal du radiocerium utilise, le mode de transport de ce radioelement dans le sang est etudie in vitro et in vivo. La distribution du cerium entre les differents constituants du sang est etudiee par une methode nouvelle de fractionnement du sang et par electrophorese sur papier. L'existence d'une liaison cerium-globuline est mise en evidence dans le cas du cerium ionique. L'etude de la distribution initiale du radiocerium, chez le rat apres administration par voie veineuse de solutions ionique ou colloidale, montre des differences importantes en fonction de l'etat physico-chimique du cerium injecte. (auteur)

  17. [Interaction Between Sulfonamide Antibiotics Fates and Chicken Manure Composting]. (United States)

    Lin, Hui; Wang, Jian-mei; Sun, Wan-chun; Fu, Jian-rong; Chen, Hong-jin; Ma, Jun-wei


    Based on aerobic manure composting with or without the addition of a mixture of sulfadimethoxine SM2 and sulfamonomethoxine SMM (1:1, m/m), changes in the physic-chemical properties of manure compost, the microbial community physiological profiles, the antibiotics concentration and the abundances of five antibiotic resistance genes (ARGs) during the composting were tracked. The results indicated that the introduction of sulfonamide antibiotics led to inhibition on the basal respiration of manure compost during the early composting period, delayed the formation of thermophilic temperature and reduced the conversion of nutrients such as organic matter, ammonia nitrogen and nitrate nitrogen. Meanwhile, the introduction of sulfonamide antibiotics dramatically affected the physiological profile of microbial community in manure in the middle stage of composting. HPLC-MS/MS results showed that both SMM and SM2 in manure were completely degraded within 14 days, while the degradation rate of SMM was faster than that of SM2. For both composting treatments with or without addition of exogenous antibiotics, the relative abundance of sull and sul2 showed an initial decline in the first 14 or 21 days and a slight increase thereafter. The addition of exogenous antibiotics showed insignificant enhancement on increasing the relative abundance of sul1 and IntI1 in manure, but resulted in an apparent increase in sul2 relative abundance. Although the fates of tetQ and tetW during composting were different from that of sulfonamide ARGs, the introduction of sulfonamide antibiotics into manure increased the relative abundance of tetracycline ARGs. Redundancy analysis indicated that composting temperature correlated negatively with sul1, sul2 and IntI1 relative abundance in manure but had no obvious relationship with tetQ and tetW relative abundance. All the ARGs detected in this work correlated negatively with C/N ratio and the nitrate nitrogen concentration of manure compost but

  18. Environmental fate and effects of the lampricide bayluscide: a review (United States)

    Dawson, Verdel K.


    Bayluscide is an additive to TFM that increases the effectiveness of TFM as a lampricide. A review of the literature was undertaken to determine the environmental fate and effects of Bayluscide. Niclosamide (2', 5-dichloro-4'-nitrosalicylanilide), the active ingredient of Bayluscide, degrades rapidly in natural water and sediment systems, however, the rate of degradation is very slow in autoclaved samples. This difference suggests that degradation under laboratory conditions is dependent on microbial activity and hydrolysis plays a minor role in degradation of niclosamide. The major degradation product of niclosamide has been reported to be aminoniclosamide (2',5-dichloro-4'-aminosalicylanilide), which represented more than 50% of the residues extractable from sediments. Significantly more of the chemical is adsorbed to sediments with higher organic content and at lower pH's. The mobility of niclosamide in soil can be characterized as slight to medium; the estimated leaching distance would range from 0 to > 25 cm depending on the soil type and pH. The active ingredient of Bayluscide (niclosamide) is decomposed by ultra-violet light depending on the intensity and duration of the exposure. The uptake of residues by most invertebrates exposed to super(14)C-niclosamide is fairly rapid and equilibrium is reached within 24 h. About 90% of the accumulated residues were lost within 48 h after the organisms were transferred to clean flowing water. As with invertebrates, fish rapidly accumulate and eliminate residues of niclosamide. Three distinct residues were isolated from the extracts of edible fillet tissue; parent niclosamide, the glucuronide conjugate of niclosamide, and the sulfate ester of niclosamide. Aquatic plants and agricultural crops do not appear to be adversely affected at concentrations of Bayluscide used for lamprey or snail control. Mayflies (Hexagenia sp.). tend to be susceptible to TFM, but are relatively resistant to the effects of exposure to

  19. Effects of bioturbation on the fate of oil in coastal sandy sediments--an in situ experiment. (United States)

    Timmermann, Karen; Banta, Gary T; Klinge, Lars; Andersen, Ole


    Effects of bioturbation by the common lugworm Arenicola marina on the fate of oil hydrocarbons (alkanes and PAHs) were studied in situ during a simulated oil spill in a shallow coastal area of Roskilde fjord, Denmark. The fate of selected oil compounds was monitored during 120 d using GC-MS and bioturbation activity (feces production and irrigation) was measured regularly during the experiment and used as input parameters in a mechanistic model describing the effects of A. marina on the transport and degradation of oil compounds in the sediment. The chemical analytical data and model results indicated that A. marina had profound and predictable effects on the distribution, degradation and preservation of oil and that the net effect depended on the initial distribution of oil. In sediment with an oil contaminated subsurface-layer A. marina buried the layer deeper in the sediment which clearly enhanced oil persistence. Conversely, A. marina stimulated both the physical removal and microbial degradation of oil compounds in uniformly oil contaminated sediments especially in deeper sediment layers (10-20 cm below the surface), whereas the fate of oil compounds deposited in surface layers (0-5 cm) mainly was affected by removal processes induced by wave actions and other bioturbating infauna such as Nereis diversicolor, Corophium volutator and Hydrobia spp. present in the experimental plots. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. A novel modeling tool with multi-stressor functionality for organic contaminant transport and fate in the Baltic Sea

    Energy Technology Data Exchange (ETDEWEB)

    Undeman, E., E-mail: [Baltic Nest Institute, Baltic Sea Centre, Stockholm University, 10691 Stockholm (Sweden); Department of Applied Environmental Science, Stockholm University, 11418 Stockholm (Sweden); Gustafsson, E., E-mail: [Baltic Nest Institute, Baltic Sea Centre, Stockholm University, 10691 Stockholm (Sweden); Gustafsson, B.G., E-mail: [Baltic Nest Institute, Baltic Sea Centre, Stockholm University, 10691 Stockholm (Sweden)


    The coupled physical–biogeochemical model BALTSEM, previously used to assess nutrient/carbon cycles and eutrophication in the Baltic Sea, has been expanded to include algorithms for calculations of organic contaminant environmental transport and fate. This novel model version (BALTSEM-POP) is evaluated for polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) and hexachlorobenzene (HCB) in Baltic Sea surface water and sediment. Modeled dissolved concentrations are usually within a factor of 2–4 of observed concentrations, however with larger deviations for furans. Calculated concentrations in particulate organic matter are less accurate (within factors of 1–700), likely due to errors in estimated pelagic biomass, particulate matter–water partitioning, and large natural variability in field data. Concentrations in sediments are usually predicted within a factor of 6. The good performance of the model illustrates its usefulness for exploration of contaminant fate in response to variations in nutrient input and climatic conditions in the Baltic Sea marine environment. - Highlights: • A new model for organic chemical transport and fate in the Baltic Sea is presented. • Physical and biogeochemical processes are linked to organic contaminant transport. • The model is evaluated for PCBs, HCB and PCDD/Fs. • The model can predict dissolved concentrations within a factor of ca 2–4. • Predictions for concentrations in particulate matter and sediment are less accurate.

  1. Fate of three major rivers in the Bohai Sea: A model study (United States)

    Liu, Hao


    Huanghe (Yellow River), Haihe and Liaohe are three major rivers flowing into the Bohai Sea and account for more than 80% of the freshwater and land-drained material inputs annually. The fate of three rivers in the seawaters correlates with the transport and distribution of the riverine sediments and nutrients, and further exerts a profound influence on the local marine ecosystem dynamics. Therefore, the evolution of the river plumes under the influence of the freshwater buoyancy, the tidal forcing and the wind stress are examined using a three-dimensional primitive equation ocean circulation model, independently and jointly. It is found that both tide and wind stirring can deteriorate the stabilization of the water column caused by the freshwater buoyancy; however, the processes are different. The tide stirring originates from the seafloor due to the bottom friction as the tidal wave propagates into the shallow waters, and then the turbulent kinetic energy dissipates upward. On the other hand, the wind stirring proceeds in the up-down direction. The influences of different winds on the evolution of the river plumes are also examined. Since the situation of each river mouth is different, the wind influence is also distinct. At last, the fate of three major rivers driven by the combined tidal forcing and climatology winds is reproduced, and the simulated salinity distribution shows a reasonable agreement with that observed, meaning that the river plume evolution plays a crucial role in shaping the salinity distribution in BS.

  2. Formation and fate of marine snow : small-scale processes with large-scale implications

    DEFF Research Database (Denmark)

    Kiørboe, Thomas


    -physical interactions govern the formation and fate of marine snow. Aggregates may form by physical coagulation: fluid motion causes collisions between small primary particles (e.g. phytoplankton) that may then stick together to form aggregates with enhanced sinking velocities. Bacteria may subsequently solubilise...... and remineralise aggregated particles. Because the solubilization rate exceeds the remineralization rate, organic solutes leak out of sinking aggregates. The leaking solutes spread by diffusion and advection and form a chemical trail in the wake of the sinking aggregate that may guide small zooplankters...... to the aggregate. Also, suspended bacteria may enjoy the elevated concentration of organic solutes in the plume. I explore these small-scale formation and degradation processes by means of models, experiments and field observations. The larger scale implications for the structure and functioning of pelagic food...

  3. Distribution and Fate of Military Explosives and Propellants in Soil: A Review

    Directory of Open Access Journals (Sweden)

    John Pichtel


    Full Text Available Energetic materials comprise both explosives and propellants. When released to the biosphere, energetics are xenobiotic contaminants which pose toxic hazards to ecosystems, humans, and other biota. Soils worldwide are contaminated by energetic materials from manufacturing operations; military conflict; military training activities at firing and impact ranges; and open burning/open detonation (OB/OD of obsolete munitions. Energetic materials undergo varying degrees of chemical and biochemical transformation depending on the compounds involved and environmental factors. This paper addresses the occurrence of energetic materials in soils including a discussion of their fates after contact with soil. Emphasis is placed on the explosives 2,4,6-trinitrotoluene (TNT, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX, and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX, and the propellant ingredients nitroglycerin (NG, nitroguanidine (NQ, nitrocellulose (NC, 2,4-dinitrotoluene (2,4-DNT, and perchlorate.

  4. Effect of composting on the fate of steroids in beef cattle manure (United States)

    In this study, the fate of steroid hormones in beef cattle manure composting is evaluated. The fate of 16 steroids and metabolites was evaluated in composted manure from beef cattle administered growth promotants and from beef cattle with no steroid hormone implants. The fate of estrogens (primary...

  5. Divergence of zebrafish and mouse lymphatic cell fate specification pathways

    NARCIS (Netherlands)

    van Impel, Andreas; Zhao, Zhonghua; Hermkens, Dorien M A; Roukens, M Guy; Fischer, Johanna C; Peterson-Maduro, Josi; Duckers, Henricus; Ober, Elke A; Ingham, Philip W; Schulte-Merker, Stefan

    In mammals, the homeodomain transcription factor Prox1 acts as the central regulator of lymphatic cell fate. Its restricted expression in a subset of cardinal vein cells leads to a switch towards lymphatic specification and hence represents a prerequisite for the initiation of lymphangiogenesis.

  6. A Feed-Forward Regulation Sets Cell Fates in Roots. (United States)

    Berckmans, Barbara; Simon, Rüdiger


    Formative cell divisions generate new cell types and tissues during development, and are controlled by receptor kinase signalling pathways. The phosphatase PP2A has now been shown to be both a target and positive regulator of the receptor kinase ACR4, thus creating a feed-forward loop that serves to establish new cell fates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Modeling the fate and transport of plastic debris in freshwaters

    NARCIS (Netherlands)

    Kooi, Merel; Besseling, Ellen; Kroeze, Carolien; Wenzel, van Annemarie P.; Koelmans, Albert A.


    Contamination with plastic debris has been recognized as one of today’s major environmental quality problems. Because most of the sources are land based, concerns are increasingly focused on the freshwater and terrestrial environment. Fate and transport models for plastic debris can complement

  8. Cell fate determination in zebrafish embryonic and adult muscle development

    NARCIS (Netherlands)

    Tee, J.M.


    We are interested in how the genetic basis of muscle precursor cells determines the outcome of the muscle cell fate, and thus leading to disruption in muscle formation and maintenance. We utilized the zebrafish carrying mutations in both Axin1 and Apc1, resulting in overactivation of the

  9. Social Categorization and Common Fate: An Approach to Attitude Change. (United States)

    Larsen, Knud S.

    Social categorization theory contains significant inferences for human communication research. The effect of common fate by subject inclusion in convergent or divergent experimental categories was ascertained by manipulation with Australian students who evaluated bogus Aboriginal art. Whereas previous research shows that social categorization…

  10. Fate of ivermectin residues in ewes' milk and derived products

    NARCIS (Netherlands)

    Cerkvenik, V.; Perko, B.; Rogelj, I.; Doganoc, D.Z.; Skubic, V.; Beek, W.M.J.; Keukens, H.J.


    The fate of ivermectin (IVM) residues was studied throughout the processing of daily bulk milk from 30 ewes (taken up to 33 d following subcutaneous administration of 0·2 mg IVM/kg b.w.) in the following milk products: yoghurt made from raw and pasteurized milk; cheese after pressing; 30- and 60-day

  11. Cdc20 control of cell fate during prolonged mitotic arrest

    DEFF Research Database (Denmark)

    Nilsson, Jakob


    The fate of cells arrested in mitosis by antimitotic compounds is complex but is influenced by competition between pathways promoting cell death and pathways promoting mitotic exit. As components of both of these pathways are regulated by Cdc20-dependent degradation, I hypothesize that variations...

  12. Fate of linear alkylbenzene sulfonate (LAS) in activated sludge plants

    NARCIS (Netherlands)

    Temmink, B.G.; Klapwijk, A.


    Monitoring data were collected in a pilot-scale municipal activated sludge plant to assess the fate of the C12-homologue of linear alkyl benzene sulfonate (LAS-C12). The pilot-plant was operated at influent LAS-C12 concentrations between 2 and 12 mg/l and at sludge retention times of 10 and 27

  13. The 'History and Fate of the Universe' chart debuts

    CERN Multimedia

    Yarris, L


    A chart that illustrates and summarizes what is now known about the history and fate of the universe has been developed by scientists at the Lawrence Berkeley National Laboratory in collaboration with the Contemporary Physics Education Project (CPEP). More than 11,000 copies will be distributed to high school science teachers across the nation for field-testing with their students (1 page).

  14. Cell fate choice and social evolution in Dictyostelium discoideum ...

    Indian Academy of Sciences (India)

    Cell fate choice and social evolution in. Dictyostelium discoideum: Interplay of morphogens and heterogeneities. Attempts to understand the development of the social amoeba Dictyostelium discoideum keep throwing up surprises and drive home the point that here too, as in any biological situation, no explanation can.


    NARCIS (Netherlands)

    Nierop, K.G.J.; Verstraten, J.M.


    Tannins are ubiquitous in higher plants and therefore also in litter and soils where they affect many biogeochemical processes. Despite this well recognized role, the fate of tannins in litter and mineral soils is hardly known as often only trace amounts, if any, of tannins are measured. In this

  16. Specification of Epidermal Cell Fate in Plant Shoots

    Directory of Open Access Journals (Sweden)

    Shinobu eTakada


    Full Text Available Land plants have evolved a single layer of epidermal cells, which are characterized by mostly anticlinal cell division patterns, formation of a waterproof coat called cuticle, and unique cell types such as stomatal guard cells and trichomes. The shoot epidermis plays important roles not only to protect plants from dehydration and pathogens but also to ensure their proper organogenesis and growth control. Extensive molecular genetic studies in Arabidopsis and maize have identified a number of genes that are required for epidermal cell differentiation. However, the mechanism that specifies shoot epidermal cell fate during plant organogenesis remains largely unknown. Particularly, little is known regarding positional information that should restrict epidermal cell fate to the outermost cell layer of the developing organs. Recent studies suggested that certain members of the HD-ZIP class IV homeobox genes are possible master regulators of shoot epidermal cell fate. Here, we summarize the roles of the regulatory genes that are involved in epidermal cell fate specification and discuss the possible mechanisms that limit the expression and/or activity of the master transcriptional regulators to the outermost cell layer in plant shoots.

  17. Modeling nanomaterial fate and uptake in the environment

    NARCIS (Netherlands)

    Baalousha, M.; Cornelis, G.; Kuhlbusch, T.A.J.; Lynch, I.; Nickel, C.; Peijnenburg, W.; Brink, Van Den N.W.


    Modeling the environmental fate of nanomaterials (NMs) and their uptake by cells and organisms in the environment is essential to underpin experimental research, develop overarching theories, improve our fundamental understanding of NM exposure and hazard, and thus enable risk assessment of NMs.

  18. Fate and transformation of graphene oxide in marine systems (United States)

    Graphene oxide (GO) may be released into natural waters at different phases of its life cycle. Currently, there is no study on the fate of GO in seawater, which is predicted to be a major sink for many engineered nanomaterials. In this study, the influences of salinity (0-50 &per...

  19. Existing Evidence for the Fate of Neptunium in the Yucca Mountain Repository

    Energy Technology Data Exchange (ETDEWEB)



    Neptunium, because of its long half life, is an element of long-term interest to the Yucca Mountain repository. The fate of neptunium under repository settings is unknown. This report provides a review and new interpretation of past tests on commercial spent nuclear fuel and experimental evidence on the fate of neptunium. Tests on commercial spent nuclear fuel preformed previously at Pacific Northwest National Laboratory (PNNL) used a bathtub setup by immersing spent fuel in either deionized water or a groundwater typical of those at Yucca Mountain. The main goal of the tests was to determine the different concentrations of radionuclides in solution with different types of cladding defects. Neptunium was not the focus of these tests, nor were the tests designed to study neptunium. Drip tests performed at Argonne National Laboratory (ANL) are unsaturated tests that drip water at different rates on spent fuel. Relatively new tests at ANL examine the corrosion of Np-doped U3O8 in humid air at various temperatures. This review concludes that all tests reported here have analytical problems (i.e., relatively high detection limits for Np) and have been configured such that they limit the ability to interpret the available neptunium data. Past tests on spent nuclear fuel do not unambiguously describe neptunium chemistry as there are multiple mechanisms that may explain the observed behavior in each test. One apparently major shortcoming of most tests is that the extent of fuel reaction was limited by the amount of oxygen present in the system. Further detailed studies under repository-relevant conditions, which include the assumption of a constant 20 percent oxygen atmosphere, are needed to provide the data necessary for the development and validation of models used to predict the long-term fate of neptunium and other radionuclides at Yucca Mountain.


    Chemical screening in the United States is often conducted using scoring and ranking methodologies. Linked models accounting for chemical fate, exposure, and toxicological effects are generally preferred in Europe and in product Life Cycle Assessment. For the first time, a compar...

  1. Modelling the chemically aged and mixed aerosols over the eastern central Atlantic Ocean-potential impacts

    NARCIS (Netherlands)

    Astitha, M.; Kallos, G.; Spyrou, C.; O'Hirok, W.; Lelieveld, J.; Denier Gon, H.A.C. van der


    Detailed information on the chemical and physical properties of aerosols is important for assessing their role in air quality and climate. This work explores the origin and fate of continental aerosols transported over the Central Atlantic Ocean, in terms of chemical composition, number and size

  2. Chemically aged and mixed aerosols over the Central Atlantic Ocean - Potential impacts

    NARCIS (Netherlands)

    Astitha, M.; Kallos, G.; Spyrou, C.; O'Hirok, W.; Lelieveld, J.; Denier Gon, H.A.C. van der


    Detailed information on the chemical and physical properties of aerosols is important for assessing their role in air quality and climate. This work explores the origin and fate of continental aerosols transported over the Central Atlantic Ocean, in terms of chemical composition, number and size

  3. The contribution of hyperspectral remote sensing to identify vegetation characteristics necessary to assess the fate of Persistent Organic Pollutants (POPs) in the environment


    Di Guardo, A; Carnesale, D; Brivio, P. A.; Boschetti, M.


    During recent years hyperspectral remote sensing data were successfully used to characterise the state and properties of vegetation. The information on vegetation cover and status is useful for a range of environmental modelling studies. Recent works devoted to the understanding of the fate of Persistent Organic Pollutants (POPs) in the environment showed that forests and vegetation in general act as a «sponge» for chemicals present in air and the intensity of this «capture» effec...

  4. Comparação de bulas de duas marcas de tiras reagentes utilizadas no exame químico de urina Comparison of product labelings of two marks of reagent strips for the chemical examination of urine

    Directory of Open Access Journals (Sweden)

    Adriana Scotti da Silva Colombeli


    Full Text Available INTRODUÇÃO: O exame de urina proporciona informações sobre patologias renais e do trato urinário, bem como algumas moléstias extra-renais. Usualmente o exame químico de urina é feito com tiras reagentes, objetivando tornar a determinação mais rápida, simples e econômica. OBJETIVOS: Comparar bulas de duas marcas de tiras amplamente utilizadas em laboratórios de urinálise (Roche Combur10 Test® UX e Bayer Multistix® 10 SG. MATERIAL E MÉTODO: Compararam-se as bulas quanto aos princípios utilizados nas determinações de pH, proteínas, glicose, cetonas, hemoglobina, bilirrubina, urobilinogênio, nitrito, densidade e leucócitos, além das informações sobre possíveis interferências. RESULTADOS: Foram verificadas diferenças nos reagentes utilizados para detecção dos parâmetros, como é o caso do urobilinogênio (a tira Multistix usa o reagente de Ehrlich, menos específico e mais propenso a interferências analíticas que o sal de diazônio derivado de metoxibenzeno, utilizado na tira Roche; para nitrito, proteína, glicose, bilirrubina e hemoglobina as diferenças foram mais sutis. DISCUSSÃO: Detectou-se diversidade de informações quanto a possíveis interferentes, o que talvez possa ser justificado parcialmente pelas diferenças nos reagentes. Também foram verificadas diferenças nas informações sobre interferências de um idioma para outro, destacando-se a omissão de algumas delas na bula em português. Observou-se grande disparidade na avaliação da intensidade da reação e sua expressão em cruzes, como, por exemplo, no parâmetro glicose, o que pode levar a erros na interpretação do laudo laboratorial. CONCLUSÃO: As observações registradas reforçam a importância de padronizações no exame parcial de urina.BACKGROUND: The urinalysis provides information about renal and urinary diseases, as well as about some extra renal diseases. The chemical examination of urine is done with reagent strips, which allows

  5. The Fate of Hydrocarbon Pollution in Kebnekaise, Arctic Sweden (United States)

    Rosqvist, G. N.; Jarjso, J.; Clason, C.; Jansson, P.; Karlin, T.


    A C-130J-30 Super Hercules plane crashed into the west-facing wall of the Kebnekaise mountain (2103 m), Arctic Sweden, on March 15th 2012. When starting from Evenes, Narvik, Norway, the aircraft had 14100 l fuel, 50 l hydraulic oil and 170 l motor oil onboard. Best estimates are that at least 12 000 l of fuel was sprayed over the mountain most of which was buried together with the wreck in a huge snow avalanche that was triggered by the impact in a NW facing cirque on Rabots glacier between ca 1600 and 2000 m. Fuel decontamination was not possible because of the extreme impact site conditions. The Hercules airplane was fueled with JET A-1 which is a hydrocarbon product in the Kerosene/Jet Fuel category consisting of sweetened kerosene and hydrotreated light distillates. The major components of all 'kerosene's' are branched- and straight-chain paraffins and naphthenes (cycloparaffins or cycloalkanes), which normally account for 70% by volume. Aromatic hydrocarbons, such as alkyl benzenes (single ring) and alkylnaphthalenes (double ring) do not exceed 25 % by volume of kerosene. The fuel also contains polycyclic aromatic hydrocarbons (PAH), but in very small volumes compared to the major components. The physical and chemical properties of each component (or block) of the hydrocarbon mixture influence its migration rate and fate. Some components of the fuel will volatilize, some are soluble in water but the vast majority are non-soluble. Although the solubility of these so called Light Nonaqueous Phase Liquids (LNAPL) in water is small they are highly toxic. We need to consider transport of the soluble components of the LNAPL in the melt-water, and transport of the non-soluble components with the melt-water system. Transport and storage can occur through and in snow (or firn), crevasses, and cavities on, in or under the glacier. Storage in, and contamination of, basal sediments, located below the glacier, or pro-glacial sediments, in front of the glacier are also

  6. Application of the Root Zone Water Quality Model (RZWQM) to pesticide fate and transport: an overview. (United States)

    Malone, Robert W; Ahuja, Lajpat R; Ma, Liwang; Wauchope, R Don; Ma, Qingli; Rojas, Kenneth W


    Pesticide transport models are tools used to develop improved pesticide management strategies, study pesticide processes under different conditions (management, soils, climates, etc) and illuminate aspects of a system in need of more field or laboratory study. This paper briefly overviews RZWQM history and distinguishing features, overviews key RZWQM components and reviews RZWQM validation studies. RZWQM is a physically based agricultural systems model that includes sub-models to simulate: infiltration, runoff, water distribution and chemical movement in the soil; macropore flow and chemical movement through macropores; evapotranspiration (ET); heat transport; plant growth; organic matter/nitrogen cycling; pesticide processes; chemical transfer to runoff; and the effect of agricultural management practices on these processes. Research to date shows that if key input parameters are calibrated, RZWQM can adequately simulate the processes involved with pesticide transport (ET, soil-water content, percolation and runoff, plant growth and pesticide fate). A review of the validation studies revealed that (1) accurate parameterization of restricting soil layers (low permeability horizons) may improve simulated soil-water content; (2) simulating pesticide sorption kinetics may improve simulated soil pesticide concentration with time (persistence) and depth and (3) calibrating the pesticide half-life is generally necessary for accurate pesticide persistence simulations. This overview/review provides insight into the processes involved with the RZWQM pesticide component and helps identify model weaknesses, model strengths and successful modeling strategies.

  7. Fate study of water-borne gram positive vegetative bacterial cells with Raman microscopy (United States)

    Guicheteau, Jason; Tripathi, Ashish; Minter, Jennifer; Wilcox, Phillip; Christesen, Steven


    We present an initial bacterial fate study of Gram positive vegetative cells suspended in water and stored at ambient room temperature via Raman spectroscopy monitoring. Two types of cells were considered for this study: vegetative cells of Bacillus cereus, Bacillus thuringiensis which contain the polyhydroxybutyric acid (PHBA) as an energy storage compound and Bacillus subtlilis cells which do not. The cells were cultured specifically for this project. Immediately following the culturing phase, the bacteria were extracted, cleaned and at the onset of the study were suspended in de-ionized water and stored at room temperature. Aliquots of suspensions were deposited onto aluminum slides at different times and allowed to dry for Raman analysis. Spectra from multiple regions of each dried spot and each deposit time were acquired along with the bright-field and fluorescence images. Results were examined to investigate the effect of suspension time on the spectral signatures as well as the fate behavior of the three types of cells investigated. The cells were monitored daily for over a 14 period during which time the onset of starvation induced sporulation was observed.

  8. Activin/nodal signaling switches the terminal fate of human embryonic stem cell-derived trophoblasts. (United States)

    Sarkar, Prasenjit; Randall, Shan M; Collier, Timothy S; Nero, Anthony; Russell, Teal A; Muddiman, David C; Rao, Balaji M


    Human embryonic stem cells (hESCs) have been routinely treated with bone morphogenetic protein and/or inhibitors of activin/nodal signaling to obtain cells that express trophoblast markers. Trophoblasts can terminally differentiate to either extravillous trophoblasts or syncytiotrophoblasts. The signaling pathways that govern the terminal fate of these trophoblasts are not understood. We show that activin/nodal signaling switches the terminal fate of these hESC-derived trophoblasts. Inhibition of activin/nodal signaling leads to formation of extravillous trophoblast, whereas loss of activin/nodal inhibition leads to the formation of syncytiotrophoblasts. Also, the ability of hESCs to form bona fide trophoblasts has been intensely debated. We have examined hESC-derived trophoblasts in the light of stringent criteria that were proposed recently, such as hypomethylation of the ELF5-2b promoter region and down-regulation of HLA class I antigens. We report that trophoblasts that possess these properties can indeed be obtained from hESCs. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Activin/Nodal Signaling Switches the Terminal Fate of Human Embryonic Stem Cell-derived Trophoblasts* (United States)

    Sarkar, Prasenjit; Randall, Shan M.; Collier, Timothy S.; Nero, Anthony; Russell, Teal A.; Muddiman, David C.; Rao, Balaji M.


    Human embryonic stem cells (hESCs) have been routinely treated with bone morphogenetic protein and/or inhibitors of activin/nodal signaling to obtain cells that express trophoblast markers. Trophoblasts can terminally differentiate to either extravillous trophoblasts or syncytiotrophoblasts. The signaling pathways that govern the terminal fate of these trophoblasts are not understood. We show that activin/nodal signaling switches the terminal fate of these hESC-derived trophoblasts. Inhibition of activin/nodal signaling leads to formation of extravillous trophoblast, whereas loss of activin/nodal inhibition leads to the formation of syncytiotrophoblasts. Also, the ability of hESCs to form bona fide trophoblasts has been intensely debated. We have examined hESC-derived trophoblasts in the light of stringent criteria that were proposed recently, such as hypomethylation of the ELF5-2b promoter region and down-regulation of HLA class I antigens. We report that trophoblasts that possess these properties can indeed be obtained from hESCs. PMID:25670856

  10. The fate of the Antennae galaxies (United States)

    Lahén, Natalia; Johansson, Peter H.; Rantala, Antti; Naab, Thorsten; Frigo, Matteo


    We present a high-resolution smoothed particle hydrodynamics simulation of the Antennae galaxies (NGC 4038/4039) and follow the evolution 3 Gyrs beyond the final coalescence. The simulation includes metallicity dependent cooling, star formation, and both stellar feedback and chemical enrichment. The simulated best-match Antennae reproduces well both the observed morphology and the off-nuclear starburst. We also produce for the first time a simulated two-dimensional metallicity map of the Antennae and find good agreement with the observed metallicity of off-nuclear stellar clusters, however the nuclear metallicities are overproduced by ˜0.5 dex. Using the radiative transfer code SKIRT we produce multi-wavelength observations of both the Antennae and the merger remnant. The 1 Gyr old remnant is well fitted with a Sérsic profile of n = 7.07, and with an r-band effective radius of re = 1.6 kpc and velocity dispersion of σe = 180 km/s the remnant is located on the fundamental plane of early-type galaxies (ETGs). The initially blue Antennae remnant evolves onto the red sequence after ˜2.5 Gyr of secular evolution. The remnant would be classified as a fast rotator, as the specific angular momentum evolves from λRe ≈ 0.11 to λRe ≈ 0.14 during its evolution. The remnant shows ordered rotation and a double peaked maximum in the mean 2D line-of-sight velocity. These kinematical features are relatively common among local ETGs and we specifically identify three local ETGs (NGC 3226, NGC 3379 and NGC 4494) in the atlas3d sample, whose photometric and kinematic properties most resemble the Antennae remnant.

  11. The biological fate of decabromodiphenyl ethane following ... (United States)

    1. The disposition of decabromodiphenyl ethane (DBDPE) was investigated based on concerns over its structural similarities to decaBDE, high potential for environmental persistence & bioaccumulation, and high production volume. 2. In the present study, female Sprague Dawley rats were administered a single dose of [14C]-DBDPE by oral, topical, or IV routes. Another set of rats were administered 10 daily oral doses of 14C]-DBDPE. Male B6C3F1/Tac mice were administered a single oral dose.3. DBDPE was poorly absorbed following oral dosing, with 95% of administered [14C]-radioactivity recovered in the feces, 1% recovered in the urine and less than 3% in the tissues at 72 h. DBDPE excretion was similar in male mice and female rats. Accumulation of [14C]-DBDPE was observed in liver and the adrenal gland after 10 daily oral doses.4. The dermis acted as a depot for dermally applied DBDPE; conservative estimates predict approx. 14 ± 8% of DBDPE may be absorbed into human skin in vivo; approx. 7 ± 4% of the parent chemical is expected to reach systemic circulation following continuous exposure (24 h). 5. Following intravenous administration, 6% of the dose was recovered in urine and 28% in the feces, while ~70% of the dose remained in tissues after 72 hours, with the highest concentrations found in the liver (42%) and lung (17%). Decabromodiphenyl ethane (DBDPE) is an additive brominated flame retardant used in a variety commercial products. It has been detected in indo

  12. Using ANN to predict E. coli accumulation in coves based on interaction amongst various physical, chemical and biological factors (United States)

    Dwivedi, D.; Mohanty, B. P.; Lesikar, B. J.


    The accumulation of Escherichia Coli (E. coli) in canals, coves and streams is the result of a number of interacting processes operating at multiple spatial and temporal scales. Fate and transport of E. coli in surface water systems is governed by different physical, chemical, and biological processes. Various models developed to quantify each of these processes occurring at different scales are not so far pooled into a single predictive model. At present, very little is known about the fate and transport of E. coli in the environment. We hypothesize that E. coli population heterogeneity in canals and coves is affected by physical factors (average stream width and/ depth, secchi depth, flow and flow severity, day since precipitation, aquatic vegetation, solar radiation, dissolved and total suspended solids etc.); chemical factors (basic water quality, nutrients, organic compounds, pH, and toxicity etc.); and biological factors (type of bacterial strain, predation, and antagonism etc.). The specific objectives of this study are to: (1) examine the interactions between E. coli and various coupled physical, chemical and biological factors; (2) examine the interactions between E. coli and toxic organic pollutants and other pathogens (viruses); and (3) evaluate qualitatively the removal efficiency of E. coli. We suggest that artificial neural networks (ANN) may be used to provide a possible solution to this problem. To demonstrate the application of the approach, we develop an ANN representing E. coli accumulation in two polluted sites at Lake Granbury in the upper part of the Brazos River in North Central Texas. The graphical structure of ANN explicitly represents cause- and-effect relationship between system variables. Each of these relationships can then be quantified independently using an approach suitable for the type and scale of information available. Preliminary results revealed that E. coli concentrations in canals show seasonal variations regardless of change

  13. Cell fate determination during tooth development and regeneration. (United States)

    Mitsiadis, Thimios A; Graf, Daniel


    Teeth arise from sequential and reciprocal interactions between the oral epithelium and the underlying cranial neural crest-derived mesenchyme. Their formation involves a precisely orchestrated series of molecular and morphogenetic events, and gives us the opportunity to discover and understand the nature of the signals that direct cell fates and patterning. For that reason, it is important to elucidate how signaling factors work together in a defined number of cells to generate the diverse and precise patterned structures of the mature functional teeth. Over the last decade, substantial research efforts have been directed toward elucidating the molecular mechanisms that control cell fate decisions during tooth development. These efforts have contributed toward the increased knowledge on dental stem cells, and observation of the molecular similarities that exist between tooth development and regeneration.

  14. Fate of Deposited Nitrogen in Tropical Forests in Southern China

    DEFF Research Database (Denmark)

    Gurmesa, Geshere Abdisa

    and denitrification from the ecosystem. Loss of N, in turn, has many negative consequences, including soil and surface water acidification, plant nutrient imbalances and related adverse effects on biological diversities. Increased atmospheric N deposition that is anticipated for tropical regions may further aggravate...... these negative consequences. Thus, an improved understanding of how increased atmospheric N deposition impacts N retention efficiency of tropical forests is needed. However, the fate of deposited N in tropical forest ecosystems and its retention mechanisms remains elusive. This PhD thesis used the stable...... nitrogen (N) isotope 15N to uncover two aspects of N cycling in tropical forests: i) the patterns of ecosystem natural 15N abundance (δ15N) in relation to the 15N signature of deposition N, and its response to increased N deposition; ii) the fate of ambient and increased N deposition in the same forests...

  15. Notch and presenilin regulate cellular expansion and cytokine secretion but cannot instruct Th1/Th2 fate acquisition.

    Directory of Open Access Journals (Sweden)

    Chin-Tong Ong


    Full Text Available Recent reports suggested that Delta1, 4 and Jagged1, 2 possessed the ability to instruct CD4(+ T cell into selection of Th1 or Th2 fates, respectively, although the underlying mechanism endowing the cleaved Notch receptor with memory of ligand involved in its activation remains elusive. To examine this, we prepared artificial antigen-presenting cells expressing either DLL1 or Jag1. Although both ligands were efficient in inducing Notch2 cleavage and activation in CD4(+ T or reporter cells, the presence of Lunatic Fringe in CD4(+ T cells inhibited Jag1 activation of Notch1 receptor. Neither ligand could induce Th1 or Th2 fate choice independently of cytokines or redirect cytokine-driven Th1 or Th2 development. Instead, we find that Notch ligands only augment cytokine production during T cell differentiation in the presence of polarizing IL-12 and IL-4. Moreover, the differentiation choices of naïve CD4(+ T cells lacking gamma-secretase, RBP-J, or both in response to polarizing cytokines revealed that neither presenilin proteins nor RBP-J were required for cytokine-induced Th1/Th2 fate selection. However, presenilins facilitate cellular proliferation and cytokine secretion in an RBP-J (and thus, Notch independent manner. The controversies surrounding the role of Notch and presenilins in Th1/Th2 polarization may reflect their role as genetic modifiers of T-helper cells differentiation.

  16. In situ fate and partitioning of waterborne perfluoroalkyl acids (PFAAs) in the Youngsan and Nakdong River Estuaries of South Korea

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seongjin [School of Earth and Environmental Sciences, Seoul National University, Seoul (Korea, Republic of); Khim, Jong Seong, E-mail: [School of Earth and Environmental Sciences, Seoul National University, Seoul (Korea, Republic of); Park, Jinsoon [School of Earth and Environmental Sciences, Seoul National University, Seoul (Korea, Republic of); Kim, Minhee; Kim, Woong-Ki; Jung, Jinho; Hyun, Seunghun; Kim, Jeong-Gyu [Division of Environmental Science and Ecological Engineering, Korea University, Seoul (Korea, Republic of); Lee, Hyojin; Choi, Heeseon J. [Department of Environmental Chemistry and Ecology, GeoSystem Research Corporation, Gunpo (Korea, Republic of); Codling, Garry [Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, SK (Canada); Giesy, John P. [Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, SK (Canada); Department of Zoology, Center for Integrative Toxicology, Michigan State University, East Lansing, MI (United States); Department of Biology and Chemistry and State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, SAR (China)


    Concentrations, distributions, fate, and partitioning of perfluoroalkyl acids (PFAAs) were investigated in surface water (n = 34) collected from the Youngsan and Nakdong River Estuaries of South Korea. Thirteen individual PFAAs in water and suspended solids (SS) were quantified by use of HPLC–MS/MS. PFAAs were detected in all samples, which indicated that they were widely distributed in the study area. Greater concentrations of PFAAs were found at some inland sites which seemed to be affected by direct input from point sources, such as wastewater treatment plants, and/or indirect diffusive sources, such as surface runoff. Spatial distributions of PFAAs in estuaries along transects toward the open sea demonstrated that these chemicals were transported to the outer region primarily by water discharged during the rainy season. Field-based partition coefficients (K{sub d}) for long-chain PFAAs (C ≥ 8) were significantly correlated with salinity (r{sup 2} = 0.48 to 0.73, p < 0.01); K{sub d} values increased exponentially as a function of salinity. Due to the ‘salting-out’ effect, PFAAs were largely scavenged by adsorption onto SS and/or sediments in estuarine environments. In addition, values for K{sub d} of those PFAAs were directly proportional to the number of carbon atoms in the PFAAs. Salting constants of selected PFAAs were notably greater than those of other environmental organic contaminants, which indicated that adsorption of PFAAs is largely associated with salinity. Overall, the results of the present study will provide better understanding of the fate and transport of PFAAs in the zone of salinity boundary that can be used for developing fate models of PFAAs in the coastal marine environment. - Highlights: ► In situ fate and partitioning of PFAAs were described along salinity gradients in estuaries. ► Salinity was found to be the key factor controlling adsorption of waterborne PFAAs. ► The K{sub d} for longer-chain PFAAs (C ≥ 8) increased as

  17. Chemical use (United States)

    US Fish and Wildlife Service, Department of the Interior — This is a summary of research and activities related to chemical use on Neal Smith National Wildlife Refuge between 1992 and 2009. The chemicals used on the Refuge...

  18. Polylox barcoding reveals haematopoietic stem cell fates realized in vivo. (United States)

    Pei, Weike; Feyerabend, Thorsten B; Rössler, Jens; Wang, Xi; Postrach, Daniel; Busch, Katrin; Rode, Immanuel; Klapproth, Kay; Dietlein, Nikolaus; Quedenau, Claudia; Chen, Wei; Sauer, Sascha; Wolf, Stephan; Höfer, Thomas; Rodewald, Hans-Reimer


    Developmental deconvolution of complex organs and tissues at the level of individual cells remains challenging. Non-invasive genetic fate mapping has been widely used, but the low number of distinct fluorescent marker proteins limits its resolution. Much higher numbers of cell markers have been generated using viral integration sites, viral barcodes, and strategies based on transposons and CRISPR-Cas9 genome editing; however, temporal and tissue-specific induction of barcodes in situ has not been achieved. Here we report the development of an artificial DNA recombination locus (termed Polylox) that enables broadly applicable endogenous barcoding based on the Cre-loxP recombination system. Polylox recombination in situ reaches a practical diversity of several hundred thousand barcodes, allowing tagging of single cells. We have used this experimental system, combined with fate mapping, to assess haematopoietic stem cell (HSC) fates in vivo. Classical models of haematopoietic lineage specification assume a tree with few major branches. More recently, driven in part by the development of more efficient single-cell assays and improved transplantation efficiencies, different models have been proposed, in which unilineage priming may occur in mice and humans at the level of HSCs. We have introduced barcodes into HSC progenitors in embryonic mice, and found that the adult HSC compartment is a mosaic of embryo-derived HSC clones, some of which are unexpectedly large. Most HSC clones gave rise to multilineage or oligolineage fates, arguing against unilineage priming, and suggesting coherent usage of the potential of cells in a clone. The spreading of barcodes, both after induction in embryos and in adult mice, revealed a basic split between common myeloid-erythroid development and common lymphocyte development, supporting the long-held but contested view of a tree-like haematopoietic structure.

  19. Magnetic resonance imaging of transplanted stem cell fate in stroke


    Hamid Reza Aghayan; Masoud Soleimani; Parisa Goodarzi; Abbas Norouzi-Javidan; Seyed Hasan Emami-Razavi; Bagher Larijani; Babak Arjmand


    Nowadays, scientific findings in the field of regeneration of nervous system have revealed the possibility of stem cell based therapies for damaged brain tissue related disorders like stroke. Furthermore, to achieve desirable outcomes from cellular therapies, one needs to monitor the migration, engraftment, viability, and also functional fate of transplanted stem cells. Magnetic resonance imaging is an extremely versatile technique for this purpose, which has been broadly used to study stroke...

  20. Fate of pharmaceuticals in the environment - A review-


    Kalyva, Maria


    The occurrence of pharmaceuticals in environment originating from human consumption has received increased scientific attention during the last decades due to concerns regarding their combined environmental effects in aquatic and terrestrial environments, in flora and biota and by extent in human health. In this review, I summarized the existing knowledge on the entire life cycle of pharmaceutical substances, from their exposure (sources) and fate to their effects on the natural environment. ...

  1. Identifying gene expression modules that define human cell fates


    Germanguz, I; Listgarten, J; Cinkornpumin, J.; Solomon, A; Gaeta, X.; Lowry, W. E.


    Using a compendium of cell-state-specific gene expression data, we identified genes that uniquely define cell states, including those thought to represent various developmental stages. Our analysis sheds light on human cell fate through the identification of core genes that are altered over several developmental milestones, and across regional specification. Here we present cell-type specific gene expression data for 17 distinct cell states and demonstrate that these modules of genes can in f...

  2. Distinct interactions select and maintain a specific cell fate. (United States)

    Doncic, Andreas; Falleur-Fettig, Melody; Skotheim, Jan M


    The ability to specify and maintain discrete cell fates is essential for development. However, the dynamics underlying selection and stability of distinct cell types remain poorly understood. Here, we provide a quantitative single-cell analysis of commitment dynamics during the mating-mitosis switch in budding yeast. Commitment to division corresponds precisely to activating the G1 cyclin positive feedback loop in competition with the cyclin inhibitor Far1. Cyclin-dependent phosphorylation and inhibition of the mating pathway scaffold Ste5 are required to ensure exclusive expression of the mitotic transcriptional program after cell cycle commitment. Failure to commit exclusively results in coexpression of both cell cycle and pheromone-induced genes, and a morphologically mixed inviable cell fate. Thus, specification and maintenance of a cellular state are performed by distinct interactions, which are likely a consequence of disparate reaction rates and may be a general feature of the interlinked regulatory networks responsible for selecting cell fates. Copyright © 2011 Elsevier Inc. All rights reserved.


    Energy Technology Data Exchange (ETDEWEB)

    Fryer, Chris L. [Department of Physics, The University of Arizona, Tucson, AZ 85721 (United States); Belczynski, Krzysztoff [Astronomical Observatory, University of Warsaw, Al Ujazdowskie 4, 00-478 Warsaw (Poland); Ramirez-Ruiz, Enrico [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Rosswog, Stephan [The Oskar klein Center, Department of Astronomy, AlbaNova, Stockholm University, SE-106 91 Stockholm (Sweden); Shen, Gang [Institute for Nuclear Theory, University of Washington, Seattle, WA 98195 (United States); Steiner, Andrew W. [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States)


    Neutron star (binary neutron star and neutron star–black hole) mergers are believed to produce short-duration gamma-ray bursts (GRBs). They are also believed to be the dominant source of gravitational waves to be detected by the advanced LIGO and advanced VIRGO and the dominant source of the heavy r-process elements in the universe. Whether or not these mergers produce short-duration GRBs depends sensitively on the fate of the core of the remnant (whether, and how quickly, it forms a black hole). In this paper, we combine the results of Newtonian merger calculations and equation of state studies to determine the fate of the cores of neutron star mergers. Using population studies, we can determine the distribution of these fates to compare to observations. We find that black hole cores form quickly only for equations of state that predict maximum non-rotating neutron star masses below 2.3–2.4 solar masses. If quick black hole formation is essential in producing GRBs, LIGO/Virgo observed rates compared to GRB rates could be used to constrain the equation of state for dense nuclear matter.

  4. FY08 LDRD Final Report Stem Cell Fate Decisions

    Energy Technology Data Exchange (ETDEWEB)

    Hiddessen, A


    A detailed understanding of the biological control of fate decisions of stem and progenitor cells is needed to harness their full power for tissue repair and/or regeneration. Currently, internal and external factors that regulate stem cell fate are not fully understood. We aim to engineer biocompatible tools to facilitate the measurement and comparison of the roles and significance of immobilized factors such as extracellular matrix and signaling peptides, synergistic and opposing soluble factors and signals, and cell-to-cell communication, in stem cell fate decisions. Our approach is based on the development of cell microarrays to capture viable stem/progenitor cells individually or in small clusters onto substrate-bound signals (e.g. proteins), combined with conventional antibody and customized subcellular markers made in-house, to facilitate tracking of cell behavior during exposure to relevant signals. Below we describe our efforts, including methods to manipulate a model epithelial stem cell system using a custom subcellular reporter to track and measure cell signaling, arrays with surface chemistry that support viable cells and enable controlled presentation of immobilized signals to cells on the array and fluorescence-based measurement of cell response, and successful on-array tests via conventional immunofluorescence assays that indicate correct cell polarity, localization of junctional proteins, and phenotype, properties which are essential to measuring true cell responses.

  5. Subsurface flow and transport of organic chemicals: an assessment of current modeling capability and priority directions for future research (1987-1995)

    Energy Technology Data Exchange (ETDEWEB)

    Streile, G.P.; Simmons, C.S.


    Theoretical and computer modeling capability for assessing the subsurface movement and fate of organic contaminants in groundwater was examined. Hence, this study is particularly concerned with energy-related, organic compounds that could enter a subsurface environment and move as components of a liquid phase separate from groundwater. The migration of organic chemicals that exist in an aqueous dissolved state is certainly a part of this more general scenario. However, modeling of the transport of chemicals in aqueous solution has already been the subject of several reviews. Hence, this study emphasizes the multiphase scenario. This study was initiated to focus on the important physicochemical processes that control the behavior of organic substances in groundwater systems, to evaluate the theory describing these processes, and to search for and evaluate computer codes that implement models that correctly conceptualize the problem situation. This study is not a code inventory, and no effort was made to identify every available code capable of representing a particular process.

  6. The fate of lipids during development and cold-storage of eggs in the laboratory-reared calanoid copepod, Acartia tonsa Dana, and in response to different algal diets

    DEFF Research Database (Denmark)

    Støttrup, Josianne; Bell, J.G.; Sargent, J.R.


    The calanoid copepod Acartia tonsa was sampled throughout one generation to examine the fate of lipids during development in culture. Effects of dietary input were examined by feeding A. tonsa for at least one generation with specific monoalgal cultures. Four different algae were tested: the cryp...

  7. Report on the Medicinal Use of Eleven Lamiaceae Species in Lebanon and Rationalization of Their Antimicrobial Potential by Examination of the Chemical Composition and Antimicrobial Activity of Their Essential Oils

    Directory of Open Access Journals (Sweden)

    Madona Khoury


    Full Text Available Many Lamiaceae species are consumed in the Lebanese cuisine as food or condiment and are largely used in the traditional medicine of Lebanon to treat various diseases, including microbial infections. In this article we report the traditional medicinal uses of eleven Lamiaceae species: Coridothymus capitatus L., Lavandula stoechas L., Lavandula angustifolia Mill., Mentha spicata L. subsp. condensata, Origanum syriacum L., Rosmarinus officinalis, Salvia fruticosa Miller., Satureja cuneifolia Ten., Satureja thymbra L., Thymbra spicata L., and Vitex agnus-castus L. and study the chemical composition and antimicrobial activity of their essential oils (EOs. Our survey showed that Lamiaceae species are mainly used against gastrointestinal disorders and microbial infections. Chemical analysis of the EOs obtained from these plants allowed us to identify seventy-five compounds describing more than 90% of the relative composition of each EO. Essential oils with high amounts of thymol and carvacrol possessed the strongest antimicrobial activity. As expected, these two compounds demonstrated an interesting antifungal efficacy against the filamentous fungus T. rubrum. Our results confirmed that some of the Lamiaceae species used in Lebanon ethnopharmacological practices as antimicrobial agents do possess antibacterial and antifungal potential consistent with their use in alternative or complementary medicine.

  8. Report on the Medicinal Use of Eleven Lamiaceae Species in Lebanon and Rationalization of Their Antimicrobial Potential by Examination of the Chemical Composition and Antimicrobial Activity of Their Essential Oils (United States)

    Khoury, Madona; Eparvier, Véronique; Ouaini, Naïm


    Many Lamiaceae species are consumed in the Lebanese cuisine as food or condiment and are largely used in the traditional medicine of Lebanon to treat various diseases, including microbial infections. In this article we report the traditional medicinal uses of eleven Lamiaceae species: Coridothymus capitatus L., Lavandula stoechas L., Lavandula angustifolia Mill., Mentha spicata L. subsp. condensata, Origanum syriacum L., Rosmarinus officinalis, Salvia fruticosa Miller., Satureja cuneifolia Ten., Satureja thymbra L., Thymbra spicata L., and Vitex agnus-castus L. and study the chemical composition and antimicrobial activity of their essential oils (EOs). Our survey showed that Lamiaceae species are mainly used against gastrointestinal disorders and microbial infections. Chemical analysis of the EOs obtained from these plants allowed us to identify seventy-five compounds describing more than 90% of the relative composition of each EO. Essential oils with high amounts of thymol and carvacrol possessed the strongest antimicrobial activity. As expected, these two compounds demonstrated an interesting antifungal efficacy against the filamentous fungus T. rubrum. Our results confirmed that some of the Lamiaceae species used in Lebanon ethnopharmacological practices as antimicrobial agents do possess antibacterial and antifungal potential consistent with their use in alternative or complementary medicine. PMID:28053641

  9. Maintaining faith in agency under immutable constraints: cognitive consequences of believing in negotiable fate. (United States)

    Au, Evelyn W M; Chiu, Chi-yue; Chaturvedi, Avinish; Mallorie, LeeAnn; Viswanathan, Madhu; Zhang, Zhi-Xue; Savani, Krishna


    Negotiable fate refers to the idea that one can negotiate with fate for control, and that people can exercise personal agency within the limits that fate has determined. Research on negotiable fate has found greater prevalence of related beliefs in Southeast Asia, East Asia, and Eastern Europe than in Western Europe and English-speaking countries. The present research extends previous findings by exploring the cognitive consequences of the belief in negotiable fate. It was hypothesized that this belief enables individuals to maintain faith in the potency of their personal actions and to remain optimistic in their goal pursuits despite the immutable constraints. The belief in negotiable fate was predicted to (a) facilitate sense-making of surprising outcomes; (b) increase persistence in goal pursuits despite early unfavorable outcomes; and (c) increase risky choices when individuals have confidence in their luck. Using multiple methods (e.g., crosscultural comparisons, culture priming, experimental induction of fate beliefs), we found supporting evidence for our hypotheses in three studies. Furthermore, as expected, the cognitive effects of negotiable fate are observed only in cultural contexts where the fate belief is relatively prevalent. Implications of these findings are discussed in relation to the intersubjective approach to understanding the influence of culture on cognitive processes (e.g., Chiu, Gelfand, Yamagishi, Shteynberg, & Wan, 2010), the sociocultural foundations that foster the development of a belief in negotiable fate, and an alternative perspective for understanding the nature of agency in contexts where constraints are severe. Future research avenues are also discussed.

  10. Evaluation and characterization of mechanisms controlling fate and effects of Army smokes

    Energy Technology Data Exchange (ETDEWEB)

    Cataldo, D.A.; Ligotke, M.W.; Bolton, H. Jr.; Fellows, R.J.; Van Voris, P.; McKinley, J.P.; Mi, Shu-mei W.; McFadden, K.M.


    The primary objective of this study was to characterize the fate and response of soil and biotic components of the terrestrial environment to aerosols, deposited brass, and brass in combination with fog oil. Important physical, chemical, and biotic aspects were investigated using an environmental wind tunnel. Air/surface deposition rates were determined for foliar and soil surfaces, both in the absence and presence of fog oil. Deposition velocities for foliage ranged from 0.1 to 1.0 cm/s at wind speeds of 2 to 10 mph, respectively. Foliar contact toxicity was assessed using five different types of terrestrial vegetation representative of Army training sites and surrounding environments. No significant foliar contact toxicity was observed for brass. The weathering and chemistry of brass aerosols deposited and amended to soils was assessed, along with the impacts of acid precipitation and moisture regimes on weathering rates. Rates of brass weathering and the fate of solubilized Cu and Zn are discussed. The influence of soil weathering processes and brass solubilization on seed germination indicated no detectable effects of brass. However, moderate toxicity effects were noted after seed germination indicated no detectable effects of brass. However, moderate toxicity effects were noted after 160 days of soil incubation. The effects were proportional to soil-loading levels. Influence of soil weathering processes and contaminant solubilization on soil microbiological activities indicated that soil dehydrogenase activity was more susceptible to impacts than was phosphatase activity or microbial biomass. Nitrifying bacteria and heterotrophic bacteria were not significantly affected by brass. Invertebrates (earthworms) associated with soil contaminated with brass were only slightly impacted, and only at loading rates >445 {mu}g/cm{sup 2}.

  11. Fate and removal of various antibiotic resistance genes in typical pharmaceutical wastewater treatment systems. (United States)

    Zhai, Wenchao; Yang, Fengxia; Mao, Daqing; Luo, Yi


    The high levels of antibiotic residues in pharmaceutical wastewater treatment plants (PWWTPs) make these plants the hotspots for the proliferation of antibiotic resistance genes (ARGs). This study investigated the fate and removal of 11 ARG subtypes for sulfonamide, tetracycline, β-lactam, and macrolide resistance in each processing stage of two full-scale PWWTPs in northern China. The levels of typical ARG subtypes in the final effluents ranged from (2.56 ± 0.13) × 10(1) to (2.36 ± 0.11) × 10(7) copies/ml. The absolute abundance of ARGs in effluents accounted for only 0.03-78.1 % of influents of the two PWWTPs, while the majority of the ARGs were transported to the dewatered sludge with concentrations from (2.65 ± 0.43) × 10(5) to (4.27 ± 0.03) × 10(10) copies/g dry weight (dw). The total loads of ARGs discharged through dewatered sludge plus effluent was 1.01-14.09-fold higher than that in the raw influents, suggesting the proliferation of ARGs occurred in the wastewater treatment. The proliferation of ARGs mainly occurs in biological treatment process, such as aeration tank, anoxic tank, sequencing batch reactor (SBR), and bio-contact oxidation, facilitates the proliferation of various ARGs, implying significant replication of certain ARG subtypes may be attributable to microbial growth. Chemical oxidation seems promising to remove ARGs, with removal efficiency ranged from 29.3 to 85.7 %, while the partial correlation analysis showed significant correlations between antibiotic concentration and ARG removal. Thus, the high antibiotic residues within the PWWTPs may have an influence on the proliferation, fate, and removal of the associated ARG subtypes.

  12. Fate of trace organic compounds during vadose zone soil treatment in an onsite wastewater system. (United States)

    Conn, Kathleen E; Siegrist, Robert L; Barber, Larry B; Meyer, Michael T


    During onsite wastewater treatment, trace organic compounds are often present in the effluents applied to subsurface soils for advanced treatment during vadose zone percolation and groundwater recharge. The fate of the endocrine-disrupting surfactant metabolites 4-nonylphenol (NP), 4-nonylphenolmonoethoxylate (NP1EO), and 4-nonylphenolmonoethoxycarboxylate (NP1EC), metal-chelating agents ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA), antimicrobial agent triclosan, stimulant caffeine, and antibiotic sulfamethoxazole during transport through an unsaturated sandy loam soil was studied at a field-scale test site. To assess the effects of effluent quality and hydraulic loading rate (HLR) on compound fate in the soil profile, two effluents (septic tank or textile biofilter) were applied at two design HLRs (2 or 8 cm/d). Chemical concentrations were determined in the two effluents and soil pore water at 60, 120, and 240 cm below the soil infiltrative surface. Concentrations of trace organic compounds in septic tank effluent were reduced by more than 90% during transport through 240 cm (often within 60 cm) of soil, likely due to sorption and biotransformation. However, the concentration of NP increased with depth in the shallow soil profile. Additional treatment of anaerobic septic tank effluent with an aerobic textile biofilter reduced effluent concentrations of many compounds, but generally did not affect any changes in pore water concentrations. The soil profile receiving septic tank effluent (vs. textile biofilter effluent) generally had greater percent removal efficiencies. EDTA, NP, NP1EC, and sulfamethoxazole were measured in soil pore water, indicating the ability of some trace organic compounds to reach shallow groundwater. Risk is highly dependent on the degree of further treatment in the saturated zone and the types and proximity of uses for the receiving groundwater environment. Copyright 2009 SETAC.

  13. Describing the environmental fate of diuron in a tropical river catchment. (United States)

    Camenzuli, Louise; Scheringer, Martin; Gaus, Caroline; Ng, Carla A; Hungerbühler, Konrad


    The use of the herbicide diuron on sugarcane fields along the river catchments of the Great Barrier Reef (GBR) in Australia is an issue of concern due to high levels of diuron reported in the GBR lagoon, and has recently led to a restriction on the use of diuron during the 2011/12 wet season. An important question in this context is how much diuron is mobilised from the agricultural area by strong rainfall and floods in the wet season and transferred to the GBR lagoon. We have set up a multimedia chemical fate model for a tropical catchment to describe the fate of diuron within the Tully River catchment, Queensland, Australia. The model includes highly variable rainfall based on meteorological data from the Tully River catchment and a flood water compartment on top of the agricultural soil that is present during times for which floods were reported. The model is driven by diuron application data estimated for the Tully River catchment and is solved for time-dependent diuron concentrations in agricultural soil and seawater. Model results show that on average 25% of the diuron applied every year is transferred to the GBR lagoon with rainwater and flood water runoff. Diuron concentrations estimated for the seawater range from 0.1 ng/L to 12 ng/L and are in good agreement with concentrations measured in the GBR lagoon. The uncertainty of the diuron concentrations estimated for seawater is approximately a factor of two and mainly derives from uncertainty in the diuron degradation half-life in soil, properties of the soil compartment such as organic matter content, and the speed of the seawater current removing diuron dissolved in seawater from the seawater compartment of the model. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. The Fate of Colloidal Swarms in Fractures (United States)

    Pyrak-Nolte, L. J.; Olander, M. K.


    In the next 10-20 years, nano- and micro-sensor engineering will advance to the stage where sensor swarms could be deployed in the subsurface to probe rock formations and the fluids contained in them. Sensor swarms are groups of nano- or micro- sensors that are maintained as a coherent group to enable either sensor-to-sensor communication and/or coherent transmission of information as a group. The ability to maintain a swarm of sensors depends on the complexity of the flow paths in the rock, on the size and shape of the sensors and on the chemical interaction among the sensors, fluids, and rock surfaces. In this study, we investigate the effect of fracture aperture and fluid currents on the formation, evolution and break-up of colloidal swarms under gravity. Transparent cubic samples (100 mm x 100 mm x 100 mm) containing synthetic fractures with uniform and non-uniform aperture distributions were used to quantify the effect of aperture on swarm formation, swarm velocity, and swarm geometry using optical imaging. A fracture with a uniform aperture distribution was fabricated from two polished rectangular prisms of acrylic. A fracture with a non-uniform aperture distribution was created with a polished rectangular acrylic prism and an acrylic replica of an induced fracture surface from a carbonate rock. A series of experiments were performed to determine how swarm movement and geometry are affected as the walls of the fracture are brought closer together from 50 mm to 1 mm. During the experiments, the fracture was fully saturated with water. We created the swarms using two different particle sizes in dilute suspension (~ 1.0% by mass) . The particles were 3 micron diameter fluorescent polymer beads and 25 micron diameter soda-lime glass beads. The swarm behavior was imaged using an optical fluorescent imaging system composed of a CCD camera illuminated by a 100 mW diode-pumped doubled YAG laser. A swam was created when approximately 0.01 g drop of the suspension was

  15. An evaluation of the environmental fate and behavior of munitions materiel (Tetryl and polar metabolites of TNT) in soil and plant systems. Environmental fate and behavior of tetryl

    Energy Technology Data Exchange (ETDEWEB)

    Fellows, R.J.; Harvey, S.D.; Cataldo, D.A.


    The objective of the present studies was to elucidate the environmental behavior and fate of 2,4,6trintrophenylmethylnitramine (tetryl) in the soil/plant system in three different types of soils incubated for 60 days. No tetryl was detectable after 11 days; most of the radiolabel was associated with non-extractable soil components and four transformation products appeared rapidly, of which two were identified as N-methyl-2,4,6-trintroaniline and N-methyl-aminodinitroaniline isomer. Short-term hydroponic studies indicated no significant difference in uptake rates for the three plant species employed. Kinetic studies indicated that plants have a high affinity and capacity for absorbing tetryl. Partitioning patterns indicated that the root is the major accumulation site for tetryl. Chemical fractionation and analyses of tissues showed rapid metabolism of tetryl in tissues of all species, which proceeded toward more polar metabolic products. Plant maturity studies indicated significant differences in the total relative uptake of tetryl by all three plant species based on soil type.

  16. The fate of unstable gauge flux compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, C.P. [McMaster Univ., Hamilton, ON (Canada). Dept. of Physics and Astronomy]|[Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada); Parameswaran, S.L. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Zavala, I. [Bonn Univ. (Germany). Bethe Center for Theoretical Physics and Physikalisches Inst.


    Fluxes are widely used to stabilise extra dimensions, but the supporting monopolelike configurations are often unstable, particularly if they arise as gauge flux within a non-abelian gauge sector. We here seek the endpoint geometries to which this instability leads, focussing on the simplest concrete examples: sphere-monopole compactifications in six dimensions. Without gravity most monopoles in non-abelian gauge groups are unstable, decaying into the unique stable monopole in the same topological class. We show that the same is true in Einstein-YM systems, with the new twist that the decay leads to a shrinkage in the size of the extra dimensions and curves the non-compact directions: in D dimensions a Mink{sub D-2} x S{sub 2} geometry supported by an unstable monopole relaxes to AdS{sub D-2} x S{sub 2}, with the endpoint sphere smaller than the initial one. For supergravity the situation is more complicated because the dilaton obstructs such a simple evolution. The endpoint instead acquires a dilaton gradient, thereby breaking some of the spacetime symmetries. For 6D supergravity we argue that it is the 4D symmetries that break, and examine several candidates for the endpoint geometry. By using the trick of dimensional oxidation it is possible to recast the supergravity system as a higher-dimensional Einstein-YM monopole, allowing understanding of this system to guide us to the corresponding endpoint. The result is a Kasner-like geometry conformal to Mink{sub 4} times S{sub 2}, with nontrivial conformal factor and dilaton breaking the maximal 4D symmetry and generating a singularity. Yet the resulting configuration has a lower potential energy than did the initial one, and is perturbatively stable, making it a sensible candidate endpoint for the evolution. (orig.)

  17. Fate of viruses in artificial wetlands. (United States)

    Gersberg, R M; Lyon, S R; Brenner, R; Elkins, B V


    Little is known about the ability of wetlands to remove disease-causing viruses from municipal wastewater. In this study we examined the survival of several indicators of viral pollution (indigenous F-specific bacteriophages, seeded MS2 bacteriophage, and seeded human poliovirus type 1) applied in primary municipal wastewater to artificial wetland ecosystems. Only about 1% of the indigenous F-specific RNA bacteriophages survived flow through the vegetated wetland beds at a 5-cm-day-1 hydraulic application rate during the period from June through December 1985. The total number of indigenous F-specific bacteriophages (F-specific RNA and F-specific DNA phages) was also reduced by about 99% by wetland treatment, with the mean inflow concentration over the period of an entire year reduced from 3,129 to 33 PFU ml-1 in the outflow of a vegetated bed and to 174 PFU ml-1 in the outflow of an unvegetated bed. Such superior treatment by the vegetated bed demonstrates the significant role of higher aquatic plants in the removal process. Seeded MS2 bacteriophage and seeded poliovirus were removed more efficiently than were the indigenous bacteriophages, with less than 0.2% of MS2 and 0.1% of the poliovirus surviving flow at the same hydraulic application rate. The decay rate (k) of MS2 in a stagnant wetlands (k = 0.012 to 0.028 h-1) was lower than that for flowing systems (k = 0.44 to 0.052 h-1), reflecting the enhanced capacity for filtration or adsorption of viruses by the root-substrate complex (and associated biofilm).(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Chemical substructure analysis in toxicology

    Energy Technology Data Exchange (ETDEWEB)

    Beauchamp, R.O. Jr. [Center for Information on Toxicology and Environment, Raleigh, NC (United States)


    A preliminary examination of chemical-substructure analysis (CSA) demonstrates the effective use of the Chemical Abstracts compound connectivity file in conjunction with the bibliographic file for relating chemical structures to biological activity. The importance of considering the role of metabolic intermediates under a variety of conditions is illustrated, suggesting structures that should be examined that may exhibit potential activity. This CSA technique, which utilizes existing large files accessible with online personal computers, is recommended for use as another tool in examining chemicals in drugs. 2 refs., 4 figs.

  19. Occurrence and fate of pharmaceuticals in wastewater treatment plants and rivers in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Won-Jin; Lee, Ji-Woo [Department of Civil and Environmental Engineering, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of); Oh, Jeong-Eun, E-mail: [Department of Civil and Environmental Engineering, Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of)


    We measured 25 pharmaceuticals in ten municipal wastewater treatment plants (WWTPs), one hospital WWTP and five rivers in Korea. In the municipal WWTP influents, acetaminophen, acetylsalicylic acid and caffeine showed relatively high concentrations. The occurrence of pharmaceuticals in the wastewater seems to be influenced by production and consumption of pharmaceuticals. The hospital WWTP influent showed higher total concentrations of pharmaceuticals than the municipal WWTPs, and caffeine, ciprofloxacin and acetaminophen were dominant. In the rivers, caffeine was dominant, and the distribution of pharmaceuticals was related to the inflow of the wastewater. In the municipal WWTPs, the concentrations of acetaminophen, caffeine, acetylsalicylic acid, ibuprofen and gemfibrozil decreased by over 99%. The decrease of these pharmaceuticals occurred mainly during the biological processes. In the physico-chemical processes, the decrease of pharmaceuticals was insignificant except for some cases. In the hospital WWTP, ciprofloxacin, acetylsalicylic acid, acetaminophen and carbamazepine showed the decrease rates of over 80%. - We investigated distribution and fate of pharmaceuticals in rivers and WWTPs including various biological and physico-chemical processes.

  20. Fate of viable but non-culturable Listeria monocytogenes in pig manure microcosms

    Directory of Open Access Journals (Sweden)

    Jeremy eDesneux


    Full Text Available The fate of two strains of L. monocytogenes and their ability to become viable but non-culturable (VBNC was investigated in microcosms containing piggery effluents (two raw manures and two biologically treated manures stored for two months at 8°C and 20°C. Levels of L. monocytogenes were estimated using the culture method, qPCR, and propidium monoazide treatment combined with qPCR (qPCRPMA. The chemical composition and the microbial community structure of the manures were also analysed. The strains showed similar decline rates and persisted up to 63 days. At day zero, the percentage of VBNC cells among viable cells was higher in raw manures (81.5-94.8% than in treated manures (67.8-79.2%. The changes in their proportion over time depended on the temperature and on the type of effluent: the biggest increase was observed in treated manures at 20°C and the smallest increase in raw manures at 8°C. The chemical parameters had no influence on the behaviour of the strains, but decrease of the persistence of viable cells was associated with an increase in the microbial richness of the manures. This study demonstrated that storing manure altered the culturability of L. monocytogenes, which rapidly entered the VBNC state, and underlines the importance of including VBNC cells when estimating the persistence of the pathogens in farm effluents.

  1. When nanoparticles meet biofilms - Interactions guiding the environmental fate and accumulation of nanoparticles

    Directory of Open Access Journals (Sweden)

    Kaoru eIkuma


    Full Text Available Bacteria are essential components of all natural and many engineered systems. The most active fractions of bacteria are now recognized to occur as ‘biofilms’, where cells are attached and surrounded by a secreted matrix of sticky extracellular polymeric substances (EPS. Recent investigations have established that significant accumulation of nanoparticles (NPs occurs in aquatic biofilms. These studies point to the emerging roles of biofilms for influencing partitioning and possibly transformations of NPs in both natural and engineered systems. While attached biofilms are efficient sponges for NPs, efforts to elucidate the fundamental mechanisms guiding interactions between NPs and biofilms have just begun. In this mini review, special attention is focused on NP-biofilm interactions within the aquatic environment. We highlight key physical, chemical and biological processes that affect interactions and accumulation of NPs by bacterial biofilms. We posit that these biofilm processes present the likely possibility for unique biological and chemical transformations of NPs. Ultimately, the environmental fate of NPs is influenced by biofilms, and therefore requires a more-in depth understanding of their fundamental properties.

  2. Volatilisation of pesticides under field conditions: inverse modelling and pesticide fate models. (United States)

    Houbraken, Michael; van den Berg, Frederik; Butler Ellis, Clare M; Dekeyser, Donald; Nuyttens, David; De Schampheleire, Mieke; Spanoghe, Pieter


    A substantial fraction of the applied crop protection products on crops is lost to the atmosphere. Models describing the prediction of volatility and potential fate of these substances in the environment have become an important tool in the pesticide authorisation procedure at the EU level. The main topic of this research is to assess the rate and extent of volatilisation of ten pesticides after application on field crops. For eight of the ten pesticides, the volatilisation rates modelled with PEARL (Pesticide Emission Assessment at Regional and Local scales) corresponded well to the calculated rates modelled with ADMS (Atmospheric Dispersion Modelling System). For the other pesticides, large differences were found between the models. Formulation might affect the volatilisation potential of pesticides. Increased leaf wetness increased the volatilisation of propyzamide and trifloxystrobin at the end of the field trial. The reliability of pesticide input parameters, in particular the vapour pressure, is discussed. Volatilisation of propyzamide, pyrimethanil, chlorothalonil, diflufenican, tolylfluanid, cyprodinil and E- and Z-dimethomorph from crops under realistic environmental conditions can be modelled with the PEARL model, as corroborated against field observations. Suggested improvements to the volatilisation component in PEARL should include formulation attributes and leaf wetness at the time of pesticide application. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  3. The fate of the carboxyl oxygens during D-proline reduction by clostridial proline reductase. (United States)

    Arkowitz, R A; Dhe-Paganon, S; Abeles, R H


    D-Proline is converted to 5-amino valeric acid by D-proline reductase. This conversion involves the reductive cleavage of the alpha-carbon-nitrogen bond. We have examined the fate of the carboxyl oxygen atoms during conversion of D-proline to delta-NH2-valeric acid. 18O atoms from the carboxyl group of D-proline are not lost during conversion to product. In contrast, in the conversion of glycine to acetyl phosphate by glycine reductase a carboxyl oxygen atom is lost to solvent. An intermediate acyl-enzyme is found during the reduction of glycine. We conclude that the reduction of proline proceeds without the formation of an acyl enzyme intermediate.

  4. Fate of antibiotic resistance genes and metal resistance genes during thermophilic aerobic digestion of sewage sludge. (United States)

    Jang, Hyun Min; Lee, Jangwoo; Kim, Young Beom; Jeon, Jong Hun; Shin, Jingyeong; Park, Mee-Rye; Kim, Young Mo


    This study examines the fate of twenty-three representative antibiotic resistance genes (ARGs) encoding tetracyclines, sulfonamides, quinolones, β-lactam antibiotics, macrolides, florfenicol and multidrug resistance during thermophilic aerobic digestion (TAD) of sewage sludge. The bacterial community, class 1 integrons (intI1) and four metal resistance genes (MRGs) were also quantified to determine the key drivers of changes in ARGs during TAD. At the end of digestion, significant decreases in the quantities of ARGs, MRGs and intI1 as well as 16S rRNA genes were observed. Partial redundancy analysis (RDA) showed that shifts in temperature were the key factors affecting a decrease in ARGs. Shifts in temperature led to decreased amounts of ARGs by reducing resistome and bacterial diversity, rather than by lowering horizontal transfer potential via intI1 or co-resistance via MRGs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. The M/V Cosco Busan spill: source identification and short-term fate. (United States)

    Lemkau, Karin L; Peacock, Emily E; Nelson, Robert K; Ventura, G Todd; Kovecses, Jennifer L; Reddy, Christopher M


    Understanding the fate of heavy fuel oils (HFOs) in the environment is critical for sound decisions regarding its usage and spill cleanup. To study weathering of HFOs, we examined the M/V Cosco Busan spill (November 2007; San Francisco Bay, CA, USA). In this baseline report, we identified which ruptured tank (port tank 3 or 4) was the source of the spilled oil and characterized changes in the oil composition across location and time. Samples from three impacted shorelines, collected within 80 days of the spill, were analyzed using one- and two-dimensional gas chromatography (GC and GC × GC, respectively). Weathering varied across sites, but compounds with GC retention times less than n-C(16) were generally lost by evaporation and dissolution. Changes in n-C(18)/phytane and benz[a]anthracene/chrysene ratios indicated some biodegradation and photodegradation, respectively. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Selective dissolution followed by EDDS washing of an e-waste contaminated soil: Extraction efficiency, fate of residual metals, and impact on soil environment. (United States)

    Beiyuan, Jingzi; Tsang, Daniel C W; Valix, Marjorie; Zhang, Weihua; Yang, Xin; Ok, Yong Sik; Li, Xiang-Dong


    To enhance extraction of strongly bound metals from oxide minerals and organic matter, this study examined the sequential use of reductants, oxidants, alkaline solvents and organic acids followed by a biodegradable chelating agent (EDDS, [S,S]-ethylene-diamine-disuccinic-acid) in a two-stage soil washing. The soil was contaminated by Cu, Zn, and Pb at an e-waste recycling site in Qingyuan city, China. In addition to extraction efficiency, this study also examined the fate of residual metals (e.g., leachability, bioaccessibility, and distribution) and the soil quality parameters (i.e., cytotoxicity, enzyme activities, and available nutrients). The reductants (dithionite-citrate-bicarbonate and hydroxylamine hydrochloride) effectively extracted metals by mineral dissolution, but elevated the leachability and bioaccessibility of metals due to the transformation from Fe/Mn oxides to labile fractions. Subsequent EDDS washing was found necessary to mitigate the residual risks. In comparison, prior washing by oxidants (persulphate, hypochlorite, and hydrogen peroxide) was marginally useful because of limited amount of soil organic matter. Prior washing by alkaline solvents (sodium hydroxide and sodium bicarbonate) was also ineffective due to metal precipitation. In contrast, prior washing by low-molecular-weight organic acids (citrate and oxalate) improved the extraction efficiency. Compared to hydroxylamine hydrochloride, citrate and oxalate induced lower cytotoxicity (Microtox) and allowed higher enzyme activities (dehydrogenase, acid phosphatase, and urease) and soil nutrients (available nitrogen and phosphorus), which would facilitate reuse of the treated soil. Therefore, while sequential washing proved to enhance extraction efficacy, the selection of chemical agents besides EDDS should also include the consideration of effects on metal leachability/bioaccessibility and soil quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. A workshop model simulating fate and effect of drilling muds and cuttings on benthic communities (United States)

    Auble, Gregor T.; Andrews, Austin K.; Hamilton, David B.; Roelle, James E.; Shoemaker, Thomas G.


    Oil and gas exploration and production at marine sites has generated concern over potential environmental impacts resulting from the discharge of spent drilling muds and cuttings. This concern has led to a broad array of publicly and privately sponsored research. This report described a cooperative modeling effort designed to focus information resulting from this research through construction of explicit equations that simulate the potential impacts of discharge drilling fluids (muds) and cuttings on marine communities. The model is the result of collaboration among more than 30 scientists. The principal cooperating organizations were the E.S. Environmental Protection Agency, the U.S. Minerals Management Service, the Offshore Operators Committee, and the Alaska Oil and Gas Association. The overall simulation model can be conceptualized as three connected submodels: Discharge and Plume Fate, Sediment Redistribution, and Benthic Community Effects. On each day of simulation, these submodels are executed in sequence, with flows of information between submodels. The Benthic Community Effects submodel can be further divided into sections that calculate mortality due to burial, mortality due to toxicity, mortality due to resuspension disturbance, and growth of the community. The model represents a series of seven discrete 1-m2 plots at specified distances along a transect in one direction away from a discharge point. It consists of coupled difference equations for which parameter values can easily be set to evaluate different conditions or to examine the sensitivity of output to various assumptions. Sets of parameter values were developed to represent four general cases or scenarios: (1) a shallow (5 m), cold environment with ice cover during a substantial fraction of the year, such as might be encountered in the Beaufort Sea, Alaska; (2) a shallow (20 m), temperate environment, such as might be encountered in the Gulf of Mexico; (3) a deeper (80 m), temperate environment


    The interaction of chemical dispersants and suspended sediments with crude oil influences the fate and transport of oil spills in coastal waters. A wave tank study was conducted to investigate the effects of chemical dispersants and mineral fines on the dispersion of oil and the ...

  9. Vaporization or Chemical Reaction: Which controls the fate of contaminants treated by in situ thermal remediation? (United States)

    Thermal remediation technologies, which includes steam enhanced extraction, electrical resistance heating, and thermal conductive heating, have been developed based on technologies employed by the enhanced oil recovery industry. Although mobilization and/or volatilization of con...

  10. Chemical fate and genotoxic risk associated with hypochlorite treatment of nicotine

    Energy Technology Data Exchange (ETDEWEB)

    Zarrelli, Armando, E-mail: [UdR Napoli 4 Consorzio INCA, IC-REACH, Department of Organic Chemistry and Biochemistry, University Federico II, Naples (Italy); DellaGreca, Marina; Parolisi, Alice; Iesce, Maria Rosaria; Cermola, Flavio; Temussi, Fabio [UdR Napoli 4 Consorzio INCA, IC-REACH, Department of Organic Chemistry and Biochemistry, University Federico II, Naples (Italy); Isidori, Marina; Lavorgna, Margherita [Department of Life Sciences, II University of Naples, Caserta (Italy); Passananti, Monica; Previtera, Lucio [UdR Napoli 4 Consorzio INCA, IC-REACH, Department of Organic Chemistry and Biochemistry, University Federico II, Naples (Italy)


    Nicotine, the main alkaloid of tobacco, is a non- prescription drug to which all members of a tobacco-smoking society are exposed either through direct smoke inhalation or through second-hand passive 'smoking'. Nicotine is also commercially available in some pharmaceutical products and is used worldwide as a botanical insecticide in agriculture. Nicotine dynamics in indoor and outdoor environments as well as the human excretions and the manufacturing process are responsible for its entry in the environment through municipal and industrial wastewater discharges. The presence of nicotine in surface and ground waters points out that it survives a conventional treatment process and persists in potable-water supplies. Complete removal of nicotine is instead reported when additional chlorination steps are used. In this paper a simulation of STP chlorination of nicotine and a genotoxic evaluation of its main degradation products are reported. Under laboratory conditions removal of nicotine seems not to be due to mineralization but to transformation in oxidized and chlorinated products. The by-products have been isolated after fractionation by diverse chromatographic procedures and their structures determined using mass spectrometry and {sup 1}H and {sup 13}C NMR spectroscopy. Preliminary genotoxic SOS Chromotests with Escherichia coli PQ37 evidence no toxicity of the products. - Highlights: Black-Right-Pointing-Pointer Processes of chlorination in the treatment of raw water. Black-Right-Pointing-Pointer STP chlorination of nicotine. Black-Right-Pointing-Pointer Genotoxic evaluation of main degradation products of nicotine.

  11. Occurrence and fate of emerging trace organic chemicals in wastewater plants in Chennai, India. (United States)

    Anumol, Tarun; Vijayanandan, Arya; Park, Minkyu; Philip, Ligy; Snyder, Shane A


    The presence of pharmaceuticals, hormones, pesticides and industrial contaminants collectively termed as trace organic compounds (TOrCs) in wastewater has been well-documented in USA, Europe, China and other regions. However, data from India, the second most populous country in the world is severely lacking. This study investigated the occurrence and concentrations of twenty-two indicator TOrCs at three wastewater treatment plants (WWTPs) in South India serving diverse communities across three sampling campaigns. Samples were collected after each WWTP treatment unit and removal efficiencies for TOrCs were determined. Eleven TOrCs were detected in every sample from every location at all sites, while only five TOrCs were detected consistently in effluent samples. Caffeine was present at greatest concentration in the influent of all three plants with average concentrations ranging between 56 and 65μg/L. In contrast, the x-ray contrast media pharmaceutical, iohexol, was the highest detected compound on average in the effluent at all three WWTPs (2.1-8.7μg/L). TOrCs were not completely removed in the WWTPs with removal efficiencies being compound specific and most of the attenuation being attributed to the biological treatment processes. Caffeine and triclocarban were well removed (>80%), while other compounds were poorly removed (acesulfame, sucralose, iohexol) or maybe even formed (carbamazepine) within the WWTPs. The effluent composition of the 22 TOrCs were similar within the three WWTPs but quite different to those seen in the US, indicating the importance of region-specific monitoring. Diurnal trends indicated that variability is compound specific but trended within certain classes of compounds (artificial sweeteners, and pharmaceuticals). The data collected on TOrCs from this study can be used as a baseline to identify potential remediation and regulatory strategies in this understudied region of India. Copyright © 2016 Elsevier Ltd. All rights reserved.


    A conventional structure-activity relationship (SAP) has been established between the alkaline hydrolysis rate constant (kOH) of 12 alkyl and aryl formates and acetates and the linear combination GE the frequencies of the and infrared (SR) absorbance peaks. he inability of this r...

  13. The Environmental Fate of 2,4,6-Trichloroaniline Chemical and Physical Pathways. (United States)


    methylene chloride (CHC12) containing an internal standard. The CH2C12 extract is analyzed by gas cromatography using a flame ionization detector. 3...lost rapidly by evaporation from water. Analysis of sediments by gas chromatography/mass spectrometry showed two major substances;. AD, 7 3 E9lN PIO 15O...of N,N’-bis(2,4,6-trjidilorophenyl) urea. This occurs when the urea is injected Into the hot (250 C) Injection port of the gas chromatograph. The

  14. Polar bears: the fate of an icon. (United States)

    Fitzgerald, Kevin T


    Polar bears are one of the most iconic animals on our planet. Worldwide, even people who would never see one are drawn to these charismatic arctic ice hunters. They are the world's largest terrestrial carnivore, and despite being born on land, they spend most of their lives out on the sea ice and are considered a marine mammal. Current global studies estimate there are around 20,000 animals in some 19 discrete circumpolar populations. Aside from pregnant females denning in the winter months to give birth, the white bears do not hibernate. They spend their winters on the sea ice hunting seals, an activity they are spectacularly adapted for. Research on these animals is incredibly difficult because of the inhospitable surroundings they inhabit and how inaccessible they make the bears. For many years, the sum of our understanding of the natural history of polar bears came from tracks, scats, the remains of their kills, abandoned dens, and anecdotal observations of native hunters, explorers, and early biologists. Nonetheless, the last 40 years have seen a much better picture of their biology emerge thanks to, first, dedicated Canadian researchers and, later, truly international efforts of workers from many countries. Veterinarians have contributed to our knowledge of the bears by delivering and monitoring anesthesia, obtaining blood samples, performing necropsies, investigating their reproduction, conducting radiotelemetry studies, and examining their behavior. Recently, new technologies have been developed that revolutionize the study of the lives and natural history of undisturbed polar bears. These advances include better satellite radiotelemetry equipment and the development of remote-controlled miniature devices equipped with high-definition cameras. Such new modalities provide dramatic new insights into the life of polar bears. The remarkable degree of specialized adaptation to life on the sea ice that allowed the bears to be successful is the very reason that

  15. [Chemical weapons and chemical terrorism]. (United States)

    Nakamura, Katsumi


    Chemical Weapons are kind of Weapons of Mass Destruction (WMD). They were used large quantities in WWI. Historically, large quantities usage like WWI was not recorded, but small usage has appeared now and then. Chemical weapons are so called "Nuclear weapon for poor countrys" because it's very easy to produce/possession being possible. They are categorized (1) Nerve Agents, (2) Blister Agents, (3) Cyanide (blood) Agents, (4) Pulmonary Agents, (5) Incapacitating Agents (6) Tear Agents from the viewpoint of human body interaction. In 1997 the Chemical Weapons Convention has taken effect. It prohibits chemical weapons development/production, and Organization for the Prohibition of Chemical Weapons (OPCW) verification regime contributes to the chemical weapons disposal. But possibility of possession/use of weapons of mass destruction by terrorist group represented in one by Matsumoto and Tokyo Subway Sarin Attack, So new chemical terrorism countermeasures are necessary.

  16. Evaluation of Uncertainty in Constituent Input Parameters for Modeling the Fate of RDX (United States)


    for Modeling the Fate of RDX by Mark S. Dortch ABSTRACT: The Training Range Environmental Evaluation and Characterization System (TREECS...having improved estimates from the Environmental Fate Simulator (EFS). RDX migration to groundwater was the focus of the modeling. There were two...the fate of munitions constituents (MC), such as high explosives (HE), metals, and other contaminants found within and transported from firing

  17. Chemical Composition (United States)

    May, Willie; Cavanagh, Richard; Turk, Gregory; Winchester, Michael; Travis, John; Smith, Melody; Derose, Paul; Choquette, Steven; Kramer, Gary; Sieber, John; Greenberg, Robert; Lindstrom, Richard; Lamaze, George; Zeisler, Rolf; Schantz, Michele; Sander, Lane; Phinney, Karen; Welch, Michael; Vetter, Thomas; Pratt, Kenneth; Scott, John; Small, John; Wight, Scott; Stranick, Stephan

    Measurements of the chemical compositions of materials and the levels of certain substances in them are vital when assessing and improving public health, safety and the environment, are necessary to ensure trade equity, and are required when monitoring and improving industrial products and services. Chemical measurements play a crucial role in most areas of the economy, including healthcare, food and nutrition, agriculture, environmental technologies, chemicals and materials, instrumentation, electronics, forensics, energy, and transportation.

  18. Modeling Exposure to Persistent Chemicals in Hazard and Risk Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Cowan-Ellsberry, Christina E.; McLachlan, Michael S.; Arnot, Jon A.; MacLeod, Matthew; McKone, Thomas E.; Wania, Frank


    Fate and exposure modeling has not thus far been explicitly used in the risk profile documents prepared to evaluate significant adverse effect of candidate chemicals for either the Stockholm Convention or the Convention on Long-Range Transboundary Air Pollution. However, we believe models have considerable potential to improve the risk profiles. Fate and exposure models are already used routinely in other similar regulatory applications to inform decisions, and they have been instrumental in building our current understanding of the fate of POP and PBT chemicals in the environment. The goal of this paper is to motivate the use of fate and exposure models in preparing risk profiles in the POP assessment procedure by providing strategies for incorporating and using models. The ways that fate and exposure models can be used to improve and inform the development of risk profiles include: (1) Benchmarking the ratio of exposure and emissions of candidate chemicals to the same ratio for known POPs, thereby opening the possibility of combining this ratio with the relative emissions and relative toxicity to arrive at a measure of relative risk. (2) Directly estimating the exposure of the environment, biota and humans to provide information to complement measurements, or where measurements are not available or are limited. (3) To identify the key processes and chemical and/or environmental parameters that determine the exposure; thereby allowing the effective prioritization of research or measurements to improve the risk profile. (4) Predicting future time trends including how quickly exposure levels in remote areas would respond to reductions in emissions. Currently there is no standardized consensus model for use in the risk profile context. Therefore, to choose the appropriate model the risk profile developer must evaluate how appropriate an existing model is for a specific setting and whether the assumptions and input data are relevant in the context of the application

  19. Cleavage pattern and fate map of the mesentoblast, 4d, in the gastropod Crepidula: a hallmark of spiralian development

    Directory of Open Access Journals (Sweden)

    Lyons Deirdre C


    Full Text Available Abstract Background Animals with a spiral cleavage program, such as mollusks and annelids, make up the majority of the superphylum Lophotrochozoa. The great diversity of larval and adult body plans in this group emerges from this highly conserved developmental program. The 4d micromere is one of the most conserved aspects of spiralian development. Unlike the preceding pattern of spiral divisions, cleavages within the 4d teloblastic sublineages are bilateral, representing a critical transition towards constructing the bilaterian body plan. These cells give rise to the visceral mesoderm in virtually all spiralians examined and in many species they also contribute to the endodermal intestine. Hence, the 4d lineage is an ideal one for studying the evolution and diversification of the bipotential endomesodermal germ layer in protostomes at the level of individual cells. Little is known of how division patterns are controlled or how mesodermal and endodermal sublineages diverge in spiralians. Detailed modern fate maps for 4d exist in only a few species of clitellate annelids, specifically in glossiphoniid leeches and the sludge worm Tubifex. We investigated the 4d lineage in the gastropod Crepidula fornicata, an established model system for spiralian biology, and in a closely related direct-developing species, C. convexa. Results High-resolution cell lineage tracing techniques were used to study the 4d lineage of C. fornicata and C. convexa. We present a new nomenclature to name the progeny of 4d, and report the fate map for the sublineages up through the birth of the first five pairs of teloblast daughter cells (when 28 cells are present in the 4d sublineage, and describe each clone’s behavior during gastrulation and later stages as these undergo differentiation. We identify the precise origin of the intestine, two cells of the larval kidney complex, the larval retractor muscles and the presumptive germ cells, among others. Other tissues that arise

  20. A scenario analysis for reducing organic priority pollutants in receiving water using integrated dynamic urban fate models. (United States)

    Gevaert, Veerle; Verdonck, Frederik; De Baets, Bernard


    The Water Framework Directive (WFD) has the objective of a catchment-oriented water quality protection for all European waters with the purpose of achieving a good ecological and chemical quality status by the year 2015. To that end, necessary measures should be identified and implemented, with the aim of progressively reducing pollution from priority substances. The objective of this paper is to demonstrate how a dynamic model of the integrated urban wastewater system (IUWS) can be used to test different emission reduction strategies for organic priority pollutants (PPs) in a semi-hypothetical case study on di(2-ethylhexyl)phthalate (DEHP). The IUWS is composed of coupled entities: sources, urban catchment surface (run-off/infiltration), sewer system, stormwater treatment unit, wastewater treatment plant (WWTP) including sludge handling, and receiving surface water (river). State-of-the-art dynamic fate models were selected from literature and extended with an organic pollutant fate sub-model. Dynamic DEHP release profiles were estimated using a dynamic model input generator and fed to the model to predict the fate and concentration of DEHP in each IUWS sub-system. The model was then used to test eight scenarios on environmental performance, namely (1) reduction of impervious urban area, (2) reduction of infiltration in the sewer system, (3) input reduction (excluding the main pollutant sources), (4) separating the combined sewer system, (5) treatment of stormwater by stormwater infiltration ponds (separate sewer systems), (6) placement of retention basins at main sewer junctions, (7) sand filtration of secondary effluent, and (8) pre-precipitation of phosphorous. The simulation results revealed that the most effective measure in terms of river water quality improvement for DEHP (annual average and spikiness reduction) and PP concentration in the disposed WWTP sludge, is reducing release of this substance into the environment, not surprisingly. In general, this

  1. A chemical basis for the partitioning of radionuclides in incinerator operation

    Energy Technology Data Exchange (ETDEWEB)

    Burger, L.L.


    For waste containing small amounts of radioactivity, rad waste (RW), or mixed waste (MW) containing both radioactive and chemically hazardous components, incineration is a logical management candidate because of inherent safety, waste volume reduction, and low costs. Successful operation requires that the facility is properly designed and operated to protect workers and to limit releases of hazardous materials. The large decrease in waste volume achieved by incineration also results in a higher concentration of most of the radionuclides and non radioactive heavy metals in the ash products. These concentrations impact subsequent treatment and disposal. The various constituents (chemical elements) are not equal in concentration in the various incinerator feed materials, nor are they equal in their contribution to health risks on subsequent handling, or accidental release. Thus, for management of the wastes it is important to be able to predict how the nuclides partition between the primary combustion residue which may be an ash or a fused slag, the fine particulates or fly ash that is trapped in the burner off-gas by several different techniques, and the airborne fraction that escapes to the atmosphere. The objective of this report is to provide an estimate of how different elements of concern may behave in the chemical environment of the incinerator. The study briefly examines published incinerator operation data, then considers the properties of the elements of concern, and employs thermodynamic calculations, to help predict the fate of these RW and MW constituents. Many types and configurations of incinerators have been designed and tested.

  2. Building 235-F Goldsim Fate And Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, G. A.; Phifer, M. A.


    Savannah River National Laboratory (SRNL) personnel, at the request of Area Completion Projects (ACP), evaluated In-Situ Disposal (ISD) alternatives that are under consideration for deactivation and decommissioning (D&D) of Building 235-F and the Building 294-2F Sand Filter. SRNL personnel developed and used a GoldSim fate and transport model, which is consistent with Musall 2012, to evaluate relative to groundwater protection, ISD alternatives that involve either source removal and/or the grouting of portions or all of 235-F. This evaluation was conducted through the development and use of a Building 235-F GoldSim fate and transport model. The model simulates contaminant release from four 235-F process areas and the 294-2F Sand Filter. In addition, it simulates the fate and transport through the vadose zone, the Upper Three Runs (UTR) aquifer, and the Upper Three Runs (UTR) creek. The model is designed as a stochastic model, and as such it can provide both deterministic and stochastic (probabilistic) results. The results show that the median radium activity concentrations exceed the 5 ?Ci/L radium MCL at the edge of the building for all ISD alternatives after 10,000 years, except those with a sufficient amount of inventory removed. A very interesting result was that grouting was shown to basically have minimal effect on the radium activity concentration. During the first 1,000 years grouting may have some small positive benefit relative to radium, however after that it may have a slightly deleterious effect. The Pb-210 results, relative to its 0.06 ?Ci/L PRG, are essentially identical to the radium results, but the Pb-210 results exhibit a lesser degree of exceedance. In summary, some level of inventory removal will be required to ensure that groundwater standards are met.

  3. Fate of triazoles in softwood upon environmental exposure. (United States)

    Kukowski, Klara; Martinská, Veronika; Sedgeman, Carl A; Kuplic, Paige; Kozliak, Evguenii I; Fisher, Stephen; Kubátová, Alena


    Determining the fate of preservatives in commercial wood products is essential to minimize their losses and improve protective impregnation techniques. The fate of triazole fungicides in ponderosa pine wood was investigated in both outdoor and controlled-environment experiments using a representative triazole, tebuconazole (TAZ), which was accompanied by propiconazole (PAZ) in selected experiments. The study was designed to mimic industrial settings used in window frame manufacturing. To investigate the TAZ fate in detail, loosely and strongly bound fractions were differentiated using a multi-step extraction. The loosely bound TAZ fraction extracted through two sonications accounted for 85± 5% of the total TAZ, while the strongly bound TAZ was extracted only with an exhaustive Soxhlet extraction and corresponded to the remaining 15± 5%. A significant fraction (∼80%) of the original TAZ remained in the wood despite a six-month exposure to harsh environmental conditions, maintaining wood preservation and assuring minimal environmental impact. Depletion of loosely bound TAZ was observed from cross-sectional surfaces when exposed to rain, high humidity and sunlight. Water leaching was deemed to be the major route leading to triazole losses from wood. Leaching rate was found to be slightly higher for TAZ than for PAZ. The contribution of bio-, photo- and thermal degradation of triazoles was negligible as both PAZ and TAZ sorbed in wood remained intact. Triazole evaporation was also found to be minor at the moderate temperature (20-25 °C) recorded throughout the outdoor study. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Role of LRF/Pokemon in lineage fate decisions. (United States)

    Lunardi, Andrea; Guarnerio, Jlenia; Wang, Guocan; Maeda, Takahiro; Pandolfi, Pier Paolo


    In the human genome, 43 different genes are found that encode proteins belonging to the family of the POK (poxvirus and zinc finger and Krüppel)/ZBTB (zinc finger and broad complex, tramtrack, and bric à brac) factors. Generally considered transcriptional repressors, several of these genes play fundamental roles in cell lineage fate decision in various tissues, programming specific tasks throughout the life of the organism. Here, we focus on functions of leukemia/lymphoma-related factor/POK erythroid myeloid ontogenic factor, which is probably one of the most exciting and yet enigmatic members of the POK/ZBTB family.

  5. The ultimate fate of life in an accelerating universe

    Energy Technology Data Exchange (ETDEWEB)

    Freese, Katherine; Kinney, William H


    The ultimate fate of life in a universe with accelerated expansion is considered. Previous work [J.D. Barrow, F. Tipler, The Anthropic Cosmological Principle, Oxford Univ. Press, Oxford, 1986; L.M. Krauss, G.D. Starkman, Astrophys. J. 531 (2000) 22] showed that life cannot go on indefinitely in a universe dominated by a cosmological constant. In this Letter we consider instead other models of acceleration (including quintessence and Cardassian expansion). We find that it is possible in these cosmologies for life to persist indefinitely. As an example we study potentials of the form V{proportional_to}phi{sup n} and find the requirement n<-2.

  6. The fate of exomoons in white dwarf planetary systems (United States)

    Payne, Matthew J.; Veras, Dimitri; Gänsicke, Boris T.; Holman, Matthew J.


    Roughly 1000 white dwarfs are known to be polluted with planetary material, and the progenitors of this material are typically assumed to be asteroids. The dynamical architectures which perturb asteroids into white dwarfs are still unknown, but may be crucially dependent on moons liberated from parent planets during post-main-sequence gravitational scattering. Here, we trace the fate of these exomoons, and show that they more easily achieve deep radial incursions towards the white dwarf than do scattered planets. Consequently, moons are likely to play a significant role in white dwarf pollution, and in some cases may be the progenitors of the pollution itself.

  7. Environmental Fate and Analysis of Ptaquiloside from the Bracken Fern

    DEFF Research Database (Denmark)

    Clauson-Kaas, Frederik

    The naturally occurring phytotoxin ptaquiloside (PTA) has long been known to be both acute toxic and carcinogenic. Contents of more than 1% ptaquiloside on dry weight has been detected in bracken (Pteridium spp.), a fern distributed across the globe in often dense populations. This work focused...... on the fate of PTA in the soil-water system, from where it may leach to drinking water sources. PTA was detected in concentrations up to 2.2 µg/L in natural waters receiving drainage from bracken populations, and was found in both surface and groundwater. It was shown that ptaquiloside leached off bracken...

  8. The OECD expert meeting on ecotoxicology and environmental fate — Towards the development of improved OECD guidelines for the testing of nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Kühnel, Dana, E-mail: [Helmholtz-Centre for Environmental Research — UFZ, Permoser Str. 15, 04318 Leipzig (Germany); Nickel, Carmen, E-mail: [IUTA e.V., Air Quality and Sustainable Nanotechnology, Bliersheimer Str. 60, 47229 Duisburg (Germany)


    On behalf of the OECD Working Party on Manufactured Nanomaterials (WPMN) an expert meeting on ecotoxicology and environmental fate of nanomaterials (NMs) took place in January 2013 in Berlin. At this meeting experts from science, industry and regulatory bodies discussed the applicability of OECD test guidelines (TGs) for chemicals to nanomaterials. The objective was to discuss the current state of the relevant science and provide recommendations to the OECD WPMN on (1) the need for updating current OECD TGs and the need for developing new ones specific to nanomaterials; and (2) guidance needed for the appropriate and valid testing of environmental fate and ecotoxicity endpoints for NMs. Experts at the workshop agreed that the majority of the OECD TG for chemicals were generally applicable for the testing of NM, with the exception of TG 105 (water solubility) and 106 (adsorption-desorption). Additionally, the workshop also highlighted considerations when conducting OECD chemical TG on nanomaterials (e.g., sample preparation, dispersion, analysis, dosimetry and characterisation). These considerations will lead to the future development of proposals for new TG and guidance documents (GDs) to ensure that OECD TG give meaningful, repeatable, and accurate results when used for nanomaterials. This report provides a short overview of topics discussed during the meeting and the main outcomes. A more detailed report of the workshop will become available through the OECD, however, due to the urgency of having OECD TG relevant for nanomaterials, this brief report is being shared with the scientific community through this communication. - Highlights: • OECD test guidelines (TGs) were developed for the testing of conventional chemicals. • Need for discussion on applicability of current TGs to nanomaterials • An expert meeting addressing this issue was held. • The focus was on TGs covering ecotoxicology and environmental fate. • Recommendations for updating current OECD

  9. Chemical intolerance

    DEFF Research Database (Denmark)

    Dantoft, Thomas Meinertz; Andersson, Linus; Nordin, Steven


    Chemical intolerance (CI) is a term used to describe a condition in which the sufferer experiences a complex array of recurrent unspecific symptoms attributed to low-level chemical exposure that most people regard as unproblematic. Severe CI constitutes the distinguishing feature of multiple...

  10. Chemical modification (United States)

    R. M. Rowell


    Wood is a hygroscopic resource that was designed to perform, in nature, in a wet environment. Nature is programmed to recycle wood in a timely way through biological, thermal, aqueous, photochemical, chemical, and mechanical degradations. In simple terms, nature builds wood from carbon dioxide and water and has all the tools to recycle it back to the starting chemicals...

  11. Distribution of Polycyclic Aromatic Hydrocarbons (PAHs) in sludge organic matter pools as a driving force of their fate during anaerobic digestion. (United States)

    Aemig, Quentin; Chéron, Claire; Delgenès, Nadine; Jimenez, Julie; Houot, Sabine; Steyer, Jean-Philippe; Patureau, Dominique


    The fate of organic matter during anaerobic digestion of sewage sludge was studied in batch systems thanks to a sequential chemical fractionation of the particulate phase coupled to fluorescence spectroscopy. Polycyclic Aromatic Hydrocarbons (PAHs) distribution within the organic pools was characterized from their analysis in the residual fraction after each extraction. Both methods were combined to understand the link between PAHs presence in organic pools and their spectral characterization after extraction. Two batch systems (sludge and inoculum mixture) were set up to study the impact of PAHs spiking on their fate and distribution. The sequential fractionation allowed us to extract and characterize about 50% of total Chemical Oxygen Demand. Moreover, fluorescence spectroscopy helped us to understand the organic pools evolution: the most easily extracted pools composed of protein-like molecules were highly degraded meaning that chemical accessibility mimics the bioaccessibility to degrading microorganisms. PAHs were present in all pools of organic matter but native PAHs were mainly present in low accessible (hardly extractable) fractions and during anaerobic digestion, they accumulated in the non-accessible (non extractable) fraction. Spiked PAHs were more dissipated during anaerobic digestion since spiking made them present in more accessible fractions. During the anaerobic digestion, contrary to native PAHs, spiked ones relocated toward less accessible organic fractions confirming the ageing phenomenon. PCA analysis showed that, in spiked mixture, PAHs presence in organic pools is linked to both PAHs physical-chemical properties and quality/quantity of the associated organic pools. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Sediment Dynamics and Fate of Heavy Metals, Carbon, and Inorganic Matter in the Hudson Estuary, New York (United States)

    Sritrairat, S.; Kenna, T. C.; Peteet, D. M.; Nguyen, K.; Perez, M.; Huang, Z.; Miller, A.


    The Hudson River Estuary is typical of a large, intensively used and modified estuary. Its watershed is an important resource for small communities along the river as well as large population centers such as the Metropolitan area of New York City. In addition to past industrial activities within the region that have resulted in many instances of environmental contamination, the estuary is at high risk for climatic and other anthropogenic changes. This study focuses on sediment dynamics and the fate of heavy metals, inorganic matter, and carbon in 27 sediment cores and 15 surface samples taken from wetlands and tributaries of the Hudson Estuary along a north-south transect from Troy, NY to New York harbor. Each site experiences different salinity, vegetation, landscape, and flow pattern. 1) We quantified and mapped the distribution of toxic heavy metals, including Pb, Cu, and Zn, in the estuary to examine the fate of these contaminants. Jamaica Bay and the East River sediments from New York City are the most contaminated with heavy metals among the sites analyzed. 2) We examined the sedimentation rate and sedimentation pattern, using pollution chronology along with radiometric methods. Sedimentation rates at 17 sites range from 0.26 - 2.63 cm/yr during the last century. Cores taken from high-energy or non-vegetated area are more likely to have a disturbed sedimentation pattern, and thus there is a higher risk of contaminant resuspension at those locations. 3) We quantified Ti and K concentration as a measure of the fluctuation of inorganic matter input and the fate of inorganic matter in the estuary. We quantified organic matter content with the Loss-on-Ignition (LOI) method at selected sites to identify carbon sequestration rate in the estuary. Inorganic matter content during the last century at most sites is significantly higher than that found prior to the European Settlements at the same location, suggesting increasing erosion and disturbances. However, more

  13. Fates of retroviral core components during unrestricted and TRIM5-restricted infection.

    Directory of Open Access Journals (Sweden)

    Sebla B Kutluay


    Full Text Available TRIM5 proteins can restrict retroviral infection soon after delivery of the viral core into the cytoplasm. However, the molecular mechanisms by which TRIM5α inhibits infection have been elusive, in part due to the difficulty of developing and executing biochemical assays that examine this stage of the retroviral life cycle. Prevailing models suggest that TRIM5α causes premature disassembly of retroviral capsids and/or degradation of capsids by proteasomes, but whether one of these events leads to the other is unclear. Furthermore, how TRIM5α affects the essential components of the viral core, other than capsid, is unknown. To address these questions, we devised a biochemical assay in which the fate of multiple components of retroviral cores during infection can be determined. We utilized cells that can be efficiently infected by VSV-G-pseudotyped retroviruses, and fractionated the cytosolic proteins on linear gradients following synchronized infection. The fates of capsid and integrase proteins, as well as viral genomic RNA and reverse transcription products were then monitored. We found that components of MLV and HIV-1 cores formed a large complex under non-restrictive conditions. In contrast, when MLV infection was restricted by human TRIM5α, the integrase protein and reverse transcription products were lost from infected cells, while capsid and viral RNA were both solubilized. Similarly, when HIV-1 infection was restricted by rhesus TRIM5α or owl monkey TRIMCyp, the integrase protein and reverse transcription products were lost. However, viral RNA was also lost, and high levels of preexisting soluble CA prevented the determination of whether CA was solubilized. Notably, proteasome inhibition blocked all of the aforementioned biochemical consequences of TRIM5α-mediated restriction but had no effect on its antiviral potency. Together, our results show how TRIM5α affects various retroviral core components and indicate that proteasomes are

  14. Limited intervention improves technical skill in focus assessed transthoracic echocardiography among novice examiners

    Directory of Open Access Journals (Sweden)

    Frederiksen Christian


    Full Text Available Abstract Background Previous studies addressing teaching and learning in point-of-care ultrasound have primarily focussed on image interpretation and not on the technical quality of the images. We hypothesized that a limited intervention of 10 supervised examinations would improve the technical skills in Focus Assessed Transthoracic Echocardiography (FATE and that physicians with no experience in FATE would quickly adopt technical skills allowing for image quality suitable for interpretation. Methods Twenty-one physicians with no previous training in FATE or echocardiography (Novices participated in the study and a reference group of three examiners with more than 10 years of experience in echocardiography (Experts was included. Novices received an initial theoretical and practical introduction (2 hours, after which baseline examinations were performed on two healthy volunteers. Subsequently all physicians were scheduled to a separate intervention day comprising ten supervised FATE examinations. For effect measurement a second examination (evaluation of the same two healthy volunteers from the baseline examination was performed. Results At baseline 86% of images obtained by novices were suitable for interpretation, on evaluation this was 93% (p = 0.005. 100% of images obtained by experts were suitable for interpretation. Mean global image rating on baseline examinations was 70.2 (CI 68.0-72.4 and mean global image rating after intervention was 75.0 (CI 72.9-77.0, p = 0.0002. In comparison, mean global image rating in the expert group was 89.8 (CI 88.8-90.9. Conclusions Improvement of technical skills in FATE can be achieved with a limited intervention and upon completion of intervention 93% of images achieved are suitable for clinical interpretation.

  15. Limited intervention improves technical skill in focus assessed transthoracic echocardiography among novice examiners. (United States)

    Frederiksen, Christian Alcaraz; Juhl-Olsen, Peter; Nielsen, Dorte Guldbrand; Eika, Berit; Sloth, Erik


    Previous studies addressing teaching and learning in point-of-care ultrasound have primarily focussed on image interpretation and not on the technical quality of the images. We hypothesized that a limited intervention of 10 supervised examinations would improve the technical skills in Focus Assessed Transthoracic Echocardiography (FATE) and that physicians with no experience in FATE would quickly adopt technical skills allowing for image quality suitable for interpretation. Twenty-one physicians with no previous training in FATE or echocardiography (Novices) participated in the study and a reference group of three examiners with more than 10 years of experience in echocardiography (Experts) was included. Novices received an initial theoretical and practical introduction (2 hours), after which baseline examinations were performed on two healthy volunteers. Subsequently all physicians were scheduled to a separate intervention day comprising ten supervised FATE examinations. For effect measurement a second examination (evaluation) of the same two healthy volunteers from the baseline examination was performed. At baseline 86% of images obtained by novices were suitable for interpretation, on evaluation this was 93% (p = 0.005). 100% of images obtained by experts were suitable for interpretation. Mean global image rating on baseline examinations was 70.2 (CI 68.0-72.4) and mean global image rating after intervention was 75.0 (CI 72.9-77.0), p = 0.0002. In comparison, mean global image rating in the expert group was 89.8 (CI 88.8-90.9). Improvement of technical skills in FATE can be achieved with a limited intervention and upon completion of intervention 93% of images achieved are suitable for clinical interpretation.

  16. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment (United States)

    Sarmah, Ajit K.; Meyer, Michael T.; Boxall, Alistair B.A.


    Veterinary antibiotics (VAs) are widely used in many countries worldwide to treat disease and protect the health of animals. They are also incorporated into animal feed to improve growth rate and feed efficiency. As antibiotics are poorly adsorbed in the gut of the animals, the majority is excreted unchanged in faeces and urine. Given that land application of animal waste as a supplement to fertilizer is often a common practice in many countries, there is a growing international concern about the potential impact of antibiotic residues on the environment. Frequent use of antibiotics has also raised concerns about increased antibiotic resistance of microorganisms. We have attempted in this paper to summarize the latest information available in the literature on the use, sales, exposure pathways, environmental occurrence, fate and effects of veterinary antibiotics in animal agriculture. The review has focused on four important groups of antibiotics (tylosin, tetracycline, sulfonamides and, to a lesser extent, bacitracin) giving a background on their chemical nature, fate processes, occurrence, and effects on plants, soil organisms and bacterial community. Recognising the importance and the growing debate, the issue of antibiotic resistance due to the frequent use of antibiotics in food-producing animals is also briefly covered. The final section highlights some unresolved questions and presents a way forward on issues requiring urgent attention.

  17. Hippo pathway effectors control cardiac progenitor cell fate by acting as dynamic sensors of substrate mechanics and nanostructure

    KAUST Repository

    Mosqueira, Diogo


    Stem cell responsiveness to extracellular matrix (ECM) composition and mechanical cues has been the subject of a number of investigations so far, yet the molecular mechanisms underlying stem cell mechano-biology still need full clarification. Here we demonstrate that the paralog proteins YAP and TAZ exert a crucial role in adult cardiac progenitor cell mechano-sensing and fate decision. Cardiac progenitors respond to dynamic modifications in substrate rigidity and nanopattern by promptly changing YAP/TAZ intracellular localization. We identify a novel activity of YAP and TAZ in the regulation of tubulogenesis in 3D environments and highlight a role for YAP/TAZ in cardiac progenitor proliferation and differentiation. Furthermore, we show that YAP/TAZ expression is triggered in the heart cells located at the infarct border zone. Our results suggest a fundamental role for the YAP/TAZ axis in the response of resident progenitor cells to the modifications in microenvironment nanostructure and mechanics, thereby contributing to the maintenance of myocardial homeostasis in the adult heart. These proteins are indicated as potential targets to control cardiac progenitor cell fate by materials design. © 2014 American Chemical Society.

  18. Information needs for siting new, and evaluating current, nuclear facilities: ecology, fate and transport, and human health. (United States)

    Burger, Joanna; Clarke, James; Gochfeld, Michael


    The USA is entering an era of energy diversity, and increasing nuclear capacity and concerns focus on accidents, security, waste, and pollution. Physical buffers that separate outsiders from nuclear facilities often support important natural ecosystems but may contain contaminants. The US Nuclear Regulatory Commission (NRC) licenses nuclear reactors; the applicant provides environmental assessments that serve as the basis for Environmental Impact Statements developed by NRC. We provide a template for the types of information needed for safe siting of nuclear facilities with buffers in three categories: ecological, fate and transport, and human health information that can be used for risk evaluations. Each item on the lists is an indicator for evaluation, and individual indicators can be selected for specific region. Ecological information needs include biodiversity (species, populations, communities) and structure and functioning of ecosystems, habitats, and landscapes, in addition to common, abundant, and unique species and endangered and rare ones. The key variables of fate and transport are sources of release for radionuclides and other chemicals, nature of releases (atmospheric vapors, subsurface liquids), features, and properties of environmental media (wind speed, direction and atmospheric stability, hydraulic gradient, hydraulic conductivity, groundwater chemistry). Human health aspects include receptor populations (demography, density, dispersion, and distance), potential pathways (drinking water sources, gardening, fishing), and exposure opportunities (lifestyle activities). For each of the three types of information needs, we expect that only a few of the indicators will be applicable to a particular site and that stakeholders should agree on a site-specific suite.

  19. Response Analysis of Multiple Tracers for Assessment of Fate and Transport Heterogeneities in a Karstified Limestone Model (United States)

    Toro, J.; Padilla, I. Y.


    Karst terrains have high capacity to transport and store large amounts of water. These features makekarst vulnerable to potential contamination of hazardous chemical substances. The interest to delineateand predict flow and transport processes in karst groundwater systems has increased due to thetremendous challenge on detecting and removing contaminants in these systems. Characterization andquantification of flow and transport processes at field-scale is limited by low resolution ofspatiotemporal data. Studies at the laboratory scale can provide fundamental knowledge oncharacterization and quantification tools that can be applied at the field scale to enhance resolution.This work developed an intermediate karstified lab-scale physical model (IKLPM) to study fate andtransport (F&T) processes and assess viable tools to characterize heterogeneities in karst systems. Two-dimensional temporal concentration distributions (TCDs) obtained from calcium chloride, uranine, andrhodamine wt tracer experiments in the IKLPM were analyzed using method of moments and CXTFIT tocharacterize and quantify fate and transport parameters in the system at various flow rates. TCDsshowed variability associated with differences in the dominant physicochemical processes affecting theF&T of the tracers. The estimated F&T parameters for the tracers revealed high spatial variability relatedto preferential flow heterogeneities and scale dependence. Future work will integrate the experimentalresults to develop technologies for enhanced spatial characterization of transport regions in karstgroundwater systems. The development of these technologies will improve our ability to predict fateand transport of contaminants in these systems and reduce impacts to the environment and humanhealth.

  20. Microbial degradation on glacier surface is the missing piece of environmental fate of pesticides in cold areas (United States)

    Ambrosini, Roberto; Ferrario, Claudia; Pittino, Francesca; Tagliaferri, Ilario; Gandolfi, Isabella; Bestetti, Giuseppina; Azzoni, Roberto S.; Diolaiuti, Guglielmina A.; Smiraglia, Claudio; Franzetti, Andrea; Villa, Sara


    Organic contaminants deposited on glacier surfaces undergo different partition and degradation processes which determine their environmental fate and accumulation into the trophic chains. Among these processes, biodegradation by supraglacial bacteria has been neglected so far. To assess the relevance of biodegradative processes, in situ microcosm experiments were conducted simulating cryoconite hole systems on an Alpine glacier exposed to the organophosphorus insecticide chlorpyrifos (CPF) as model of xenobiotic molecule which accumulate on glaciers after medium range transports. Results showed that biodegradation is the most efficient process contributing to the removal of CPF on the glacier surface. The high concentrations of CPF in cryoconite and its half-life in the range of 35 - 69 days indicated that biodegradation process can significantly contrast the release of CPF transported on glaciers. Moreover, the metabolic versatility of cryoconite bacteria suggest that these habitats might contribute to the degradation of a wide class of pollutants with different physical-chemical properties. Metagenomics data indicated that photoheterotrophic bacteria might be involved in the biodegradation of CPF by using light to supplement their metabolic demands, thus contributing to the biological removal of CPF without the constrain of using this pesticide as sole energy source. In conclusion. cryoconite might act as a "biofilter" for organic pollutants on glaciers by accumulating them and promoting their biodegradation. Owing to its relevance, the contribution of cryoconite to the removal of organic pollutants should be included in the models predicting the environmental fate of these compounds in cold areas.

  1. Deaths related to chemical burns. (United States)

    Pavelites, Joseph J; Kemp, Walter L; Barnard, Jeffrey J; Prahlow, Joseph A


    The authors present a series of 6 deaths due to the uncommon cause of chemical burns. Of the 6 deaths due to chemical burns, 4 deaths were due to ingestion of a chemical, 1 death was caused by chemical burns of the skin, and 1 death resulted from rectal insufflation of a chemical. Seven additional cases where chemical burns may have been a contributing factor to the death or an incidental finding are also presented. Four cases are related to an incident involving chemical exposure during an industrial explosion. Three cases involve motor fuel burns of the skin. Two cases concern a plane crash incident, and 1 case involved a vehicular collision. Cases are derived from the records of the Dallas County Medical Examiner's Office and those of the authors' consultation practices. Each of the cases is presented, followed by a discussion of the various mechanisms of chemical injury.

  2. Fate of antibiotics during municipal water recycling treatment processes. (United States)

    Le-Minh, N; Khan, S J; Drewes, J E; Stuetz, R M


    Municipal water recycling processes are potential human and environmental exposure routes for low concentrations of persistent antibiotics. While the implications of such exposure scenarios are unknown, concerns have been raised regarding the possibility that continuous discharge of antibiotics to the environment may facilitate the development or proliferation of resistant strains of bacteria. As potable and non-potable water recycling schemes are continuously developed, it is imperative to improve our understanding of the fate of antibiotics during conventional and advanced wastewater treatment processes leading to high-quality water reclamation. This review collates existing knowledge with the aim of providing new insight to the influence of a wide range of treatment processes to the ultimate fate of antibiotics during conventional and advanced wastewater treatment. Although conventional biological wastewater treatment processes are effective for the removal of some antibiotics, many have been reported to occur at 10-1000 ng L(-1) concentrations in secondary treated effluents. These include beta-lactams, sulfonamides, trimethoprim, macrolides, fluoroquinolones, and tetracyclines. Tertiary and advanced treatment processes may be required to fully manage environmental and human exposure to these contaminants in water recycling schemes. The effectiveness of a range of processes including tertiary media filtration, ozonation, chlorination, UV irradiation, activated carbon adsorption, and NF/RO filtration has been reviewed and, where possible, semi-quantitative estimations of antibiotics removals have been provided. (c) 2010 Elsevier Ltd. All rights reserved.

  3. Molecular trajectories leading to the alternative fates of duplicate genes.

    Directory of Open Access Journals (Sweden)

    Michael Marotta

    Full Text Available Gene duplication generates extra gene copies in which mutations can accumulate without risking the function of pre-existing genes. Such mutations modify duplicates and contribute to evolutionary novelties. However, the vast majority of duplicates appear to be short-lived and experience duplicate silencing within a few million years. Little is known about the molecular mechanisms leading to these alternative fates. Here we delineate differing molecular trajectories of a relatively recent duplication event between humans and chimpanzees by investigating molecular properties of a single duplicate: DNA sequences, gene expression and promoter activities. The inverted duplication of the Glutathione S-transferase Theta 2 (GSTT2 gene had occurred at least 7 million years ago in the common ancestor of African great apes and is preserved in chimpanzees (Pan troglodytes, whereas a deletion polymorphism is prevalent in humans. The alternative fates are associated with expression divergence between these species, and reduced expression in humans is regulated by silencing mutations that have been propagated between duplicates by gene conversion. In contrast, selective constraint preserved duplicate divergence in chimpanzees. The difference in evolutionary processes left a unique DNA footprint in which dying duplicates are significantly more similar to each other (99.4% than preserved ones. Such molecular trajectories could provide insights for the mechanisms underlying duplicate life and death in extant genomes.

  4. Characteristics and Fate of Systemic Artery Aneurysm after Kawasaki Disease. (United States)

    Hoshino, Shinsuke; Tsuda, Etsuko; Yamada, Osamu


    To determine the long-term outcome of systemic artery aneurysms (SAAs) after Kawasaki disease (KD). We investigated the characteristics and the fate of SAAs in 20 patients using medical records and angiograms. The age of onset of KD ranged from 1 month to 20 months. The interval from the onset of KD to the latest angiogram ranged from 16 months to 24 years. The regression rate of peripheral artery aneurysm and the frequency of stenotic lesions were analyzed by the Kaplan-Meier method in 11 patients who had undergone initial angiography within 4 months. The mean duration of fever was 24 ± 12 days. All 20 patients had at least 1 symmetric pair of aneurysms in bilateral peripheral arteries, and 16 patients had multiple SAAs. The distributions of SAAs was as follows: brachial artery, 30; common iliac artery, 20; internal iliac artery, 21; abdominal aortic aneurysm, 7; and others, 29. The frequencies of regression of SAA and of the occurrence of stenotic lesions at 20 years after the onset of KD were 51% and 25%, respectively (n = 42). The diameter of all SAAs in the acute phase leading to stenotic lesions in the late period was >10 mm. SAAs occurred symmetrically and were multiple in younger infants and those with severe acute vasculitis. The fate of SAAs resembles that of coronary artery aneurysms, and depends on the diameter during the acute phase. Larger SAAs can lead to stenotic lesions in the late period. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Atypical chemokine receptor 4 shapes activated B cell fate. (United States)

    Kara, Ervin E; Bastow, Cameron R; McKenzie, Duncan R; Gregor, Carly E; Fenix, Kevin A; Babb, Rachelle; Norton, Todd S; Zotos, Dimitra; Rodda, Lauren B; Hermes, Jana R; Bourne, Katherine; Gilchrist, Derek S; Nibbs, Robert J; Alsharifi, Mohammed; Vinuesa, Carola G; Tarlinton, David M; Brink, Robert; Hill, Geoffrey R; Cyster, Jason G; Comerford, Iain; McColl, Shaun R


    Activated B cells can initially differentiate into three functionally distinct fates-early plasmablasts (PBs), germinal center (GC) B cells, or early memory B cells-by mechanisms that remain poorly understood. Here, we identify atypical chemokine receptor 4 (ACKR4), a decoy receptor that binds and degrades CCR7 ligands CCL19/CCL21, as a regulator of early activated B cell differentiation. By restricting initial access to splenic interfollicular zones (IFZs), ACKR4 limits the early proliferation of activated B cells, reducing the numbers available for subsequent differentiation. Consequently, ACKR4 deficiency enhanced early PB and GC B cell responses in a CCL19/CCL21-dependent and B cell-intrinsic manner. Conversely, aberrant localization of ACKR4-deficient activated B cells to the IFZ was associated with their preferential commitment to the early PB linage. Our results reveal a regulatory mechanism of B cell trafficking via an atypical chemokine receptor that shapes activated B cell fate. © 2018 Kara et al.

  6. Sphingosine 1-Phosphate in Blood: Function, Metabolism, and Fate

    Directory of Open Access Journals (Sweden)

    Andreas V. Thuy


    Full Text Available Sphingosine 1-phosphate (S1P is a lipid metabolite and a ligand of five G protein-coupled cell surface receptors S1PR1 to S1PR5. These receptors are expressed on various cells and cell types of the immune, cardiovascular, respiratory, hepatic, reproductive, and neurologic systems, and S1P has an impact on many different pathophysiological conditions including autoimmune, cardiovascular, and neurodegenerative diseases, cancer, deafness, osteogenesis, and reproduction. While these diverse signalling properties of S1P have been extensively reviewed, the particular role of S1P in blood is still a matter of debate. Blood contains the highest S1P concentration of all body compartments, and several questions are still not sufficiently answered: Where does it come from and how is it metabolized? Why is the concentration of S1P in blood so high? Are minor changes of the high blood S1P concentrations physiologically relevant? Do blood cells and vascular endothelial cells that are constantly exposed to high blood S1P levels still respond to S1P via S1P receptors? Recent data reveal new insights into the functional role and the metabolic fate of blood-borne S1P. This review aims to summarize our current knowledge regarding the source, secretion, transportation, function, metabolism, and fate of S1P in blood.

  7. Hazardous Chemicals

    Centers for Disease Control (CDC) Podcasts


    Chemicals are a part of our daily lives, providing many products and modern conveniences. With more than three decades of experience, The Centers for Disease Control and Prevention (CDC) has been in the forefront of efforts to protect and assess people's exposure to environmental and hazardous chemicals. This report provides information about hazardous chemicals and useful tips on how to protect you and your family from harmful exposure.  Created: 4/10/2007 by CDC National Center for Environmental Health.   Date Released: 4/13/2007.

  8. Fate of Mercury in Synthetic Gypsum Used for Wallboard Production

    Energy Technology Data Exchange (ETDEWEB)

    Jessica Sanderson


    This report presents and discusses results from the project 'Fate of Mercury in Synthetic Gypsum Used for Wallboard Production', performed at five different full-scale commercial wallboard plants. Synthetic gypsum produced by wet flue gas desulfurization (FGD) systems on coal-fired power plants is commonly used in the manufacture of wallboard. This practice has long benefited the environment by recycling the FGD gypsum byproduct, which is becoming available in increasing quantities, decreasing the need to landfill this material, and increasing the sustainable design of the wallboard product. However, new concerns have arisen as recent mercury control strategies involve the capture of mercury in FGD systems. The objective of this study has been to determine whether any mercury is released into the atmosphere at wallboard manufacturing plants when the synthetic gypsum material is used as a feedstock for wallboard production. The project has been co-funded by the U.S. DOE National Energy Technology Laboratory (Cooperative Agreement DE-FC26-04NT42080), USG Corporation, and EPRI. USG Corporation is the prime contractor, and URS Group is a subcontractor. The project scope included seven discrete tasks, each including a test conducted at various USG wallboard plants using synthetic gypsum from different wet FGD systems. The project was originally composed of five tasks, which were to include (1) a base-case test, then variations representing differing power plant: (2) emissions control configurations, (3) treatment of fine gypsum particles, (4) coal types, and (5) FGD reagent types. However, Task 5,could not be conducted as planned and instead was conducted at conditions similar to Task 3. Subsequently an opportunity arose to test gypsum produced from the Task 5 FGD system, but with an additive expected to impact the stability of mercury, so Task 6 was added to the project. Finally, Task 7 was added to evaluate synthetic gypsum produced at a power plant from an

  9. Fate of nano- and microplastic in freshwater systems: A modeling study

    NARCIS (Netherlands)

    Besseling, Ellen; Quik, Joris T.K.; Sun, Muzhi; Koelmans, Bart


    Riverine transport to the marine environment is an important pathway for microplastic. However, information on fate and transport of nano- and microplastic in freshwater systems is lacking. Here we present scenario studies on the fate and transport of nano-to millimetre sized spherical particles

  10. Impaired removal of H3K4 methylation affects cell fate determination and gene transcription

    DEFF Research Database (Denmark)

    Lussi, Yvonne C; Mariani, Luca; Rundsten, Carsten Friis


    genetic locus, a direct RBR-2 target gene required for vulva precursor cell fate acquisition, shows that RBR-2 controls the epigenetic signature of the lin-11 vulva-specific enhancer and lin-11 expression, providing in vivo evidences that RBR-2 can positively regulate transcription and cell fate...

  11. Formation and Fate of Fermentation Products in Hot Spring Cyanobacterial Mats


    Anderson, Karen L.; Tayne, Timothy A.; Ward, David M.


    The fate of representative fermentation products (acetate, propionate, butyrate, lactate, and ethanol) in hot spring cyanobacterial mats was investigated. The major fate during incubations in the light was photoassimilation by filamentous bacteria resembling Chloroflexus aurantiacus. Some metabolism of all compounds occurred under dark aerobic conditions. Under dark anaerobic conditions, only lactate was oxidized extensively to carbon dioxide. Extended preincubation under dark anaerobic condi...

  12. Fate, accumulation and ecotoxicity of copper nanoparticles under environmentally relevant conditions

    NARCIS (Netherlands)

    Xiao, Y.


    Fate and toxicity of copper nanoparticles was related to the water chemistry of the environment and pristine size. Connection between fate and toxicity of copper nanoparticles could be drawn. The particle-specific toxicity of copper nanoparticles was dependent on water chemistry.

  13. 40 CFR 158.1300 - Environmental fate data requirements table. (United States)


    ... limited to, the Henry's Law Constant of the chemical. In view of methodological difficulties with the..., taking into account other factors such as the toxicity of the chemicals(s), available monitoring data...

  14. The linear interplay of intrinsic and extrinsic noises ensures a high accuracy of cell fate selection in budding yeast (United States)

    Li, Yongkai; Yi, Ming; Zou, Xiufen


    To gain insights into the mechanisms of cell fate decision in a noisy environment, the effects of intrinsic and extrinsic noises on cell fate are explored at the single cell level. Specifically, we theoretically define the impulse of Cln1/2 as an indication of cell fates. The strong dependence between the impulse of Cln1/2 and cell fates is exhibited. Based on the simulation results, we illustrate that increasing intrinsic fluctuations causes the parallel shift of the separation ratio of Whi5P but that increasing extrinsic fluctuations leads to the mixture of different cell fates. Our quantitative study also suggests that the strengths of intrinsic and extrinsic noises around an approximate linear model can ensure a high accuracy of cell fate selection. Furthermore, this study demonstrates that the selection of cell fates is an entropy-decreasing process. In addition, we reveal that cell fates are significantly correlated with the range of entropy decreases. PMID:25042292

  15. Chemical Peel (United States)

    ... complications in chemical peeling. Journal of Cutaneous and Aesthetic Surgery. 2010;3:186. Langsdon PR, et al. ... Discovery's Edge Magazine Search Publications Training Grant Positions Education Mayo Clinic College of Medicine and Science Mayo ...

  16. Chemical carcinogens

    National Research Council Canada - National Science Library

    Searle, Charles E


    Cancer causing agents are now known to exist throughout the environment-in polluted air and tobacco smoke, in various plants and foods, and in many chemicals that are used in industry and laboratories...

  17. Understanding the fate and biological effects of Ag- and TiO{sub 2}-nanoparticles in the environment: The quest for advanced analytics and interdisciplinary concepts

    Energy Technology Data Exchange (ETDEWEB)

    Schaumann, Gabriele E., E-mail: [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstr. 7, D-76829 Landau (Germany); Philippe, Allan, E-mail: [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstr. 7, D-76829 Landau (Germany); Bundschuh, Mirco, E-mail: [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Ecotoxicology and Environment, Fortstr. 7, D-76829 Landau (Germany); Swedish University of Agricultural Sciences, Department of Aquatic Sciences and Assessment, Lennart Hjelms väg 9, SE-75007 Uppsala (Sweden); Metreveli, George, E-mail: [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstr. 7, D-76829 Landau (Germany); Klitzke, Sondra, E-mail: [Albert-Ludwigs-Universität Freiburg, Institute of Forest Sciences, Chair of Soil Ecology, 79085 Freiburg i.Br. (Germany); Berlin University of Technology, Institute of Ecology, Department of Soil Science, Ernst-Reuter-Platz 1, D-10587 Berlin (Germany); Rakcheev, Denis, E-mail: [Universität Koblenz-Landau, Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, Fortstr. 7, D-76829 Landau (Germany); Grün, Alexandra, E-mail: [Universität Koblenz-Landau, Institute for Integrated Natural Sciences, Dept. of Biology, Universitätsstr. 1, D-56070 Koblenz (Germany); and others


    Engineered inorganic nanoparticles (EINP) from consumers' products and industrial applications, especially silver and titanium dioxide nanoparticles (NP), are emitted into the aquatic and terrestrial environments in increasing amounts. However, the current knowledge on their environmental fate and biological effects is diverse and renders reliable predictions complicated. This review critically evaluates existing knowledge on colloidal aging mechanisms, biological functioning and transport of Ag NP and TiO{sub 2} NP in water and soil and it discusses challenges for concepts, experimental approaches and analytical methods in order to obtain a comprehensive understanding of the processes linking NP fate and effects. Ag NP undergo dissolution and oxidation with Ag{sub 2}S as a thermodynamically determined endpoint. Nonetheless, Ag NP also undergo colloidal transformations in the nanoparticulate state and may act as carriers for other substances. Ag NP and TiO{sub 2} NP can have adverse biological effects on organisms. Whereas Ag NP reveal higher colloidal stability and mobility, the efficiency of NOM as a stabilizing agent is greater towards TiO{sub 2} NP than towards Ag NP, and multivalent cations can dominate the colloidal behavior over NOM. Many of the past analytical obstacles have been overcome just recently. Single particle ICP-MS based methods in combination with field flow fractionation techniques and hydrodynamic chromatography have the potential to fill the gaps currently hampering a comprehensive understanding of fate and effects also at a low field relevant concentrations. These analytical developments will allow for mechanistically orientated research and transfer to a larger set of EINP. This includes separating processes driven by NP specific properties and bulk chemical properties, categorization of effect-triggering pathways directing the EINP effects towards specific recipients, and identification of dominant environmental parameters triggering

  18. Multi-pathway exposure modelling of chemicals in cosmetics with application to shampoo (United States)

    We present a novel multi-pathway, mass balance based, fate and exposure model compatible with life cycle and high-throughput screening assessments of chemicals in cosmetic products. The exposures through product use as well as post-use emissions and environmental media were quant...

  19. 77 FR 48924 - Perfluoroalkyl Sulfonates and Long-Chain Perfluoroalkyl Carboxylate Chemical Substances; Proposed... (United States)


    ... wide distribution of the chemical substances in high trophic levels is strongly suggestive of the...., chemistry, environmental fate, exposure pathways, and health and environmental effects), as well as... substances. The precursors may be simple derivatives of PFOA and higher homologues or polymers that contain...

  20. Chemical Carcinogenesis


    Oliveira, Paula A.; Aura Colaço; Raquel Chaves; Henrique Guedes-Pinto; Luis F. De-La-Cruz P.; Carlos Lopes


    The use of chemical compounds benefits society in a number of ways. Pesticides, for instance, enable foodstuffs to be produced in sufficient quantities to satisfy the needs of millions of people, a condition that has led to an increase in levels of life expectancy. Yet, at times, these benefits are offset by certain disadvantages, notably the toxic side effects of the chemical compounds used. Exposure to these compounds can have varying effects, ranging from instant death to a gradual process...

  1. LACHESIS restricts gametic cell fate in the female gametophyte of Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Rita Gross-Hardt


    Full Text Available In flowering plants, the egg and sperm cells form within haploid gametophytes. The female gametophyte of Arabidopsis consists of two gametic cells, the egg cell and the central cell, which are flanked by five accessory cells. Both gametic and accessory cells are vital for fertilization; however, the mechanisms that underlie the formation of accessory versus gametic cell fate are unknown. In a screen for regulators of egg cell fate, we isolated the lachesis (lis mutant which forms supernumerary egg cells. In lis mutants, accessory cells differentiate gametic cell fate, indicating that LIS is involved in a mechanism that prevents accessory cells from adopting gametic cell fate. The temporal and spatial pattern of LIS expression suggests that this mechanism is generated in gametic cells. LIS is homologous to the yeast splicing factor PRP4, indicating that components of the splice apparatus participate in cell fate decisions.

  2. Chemical carcinogenesis. (United States)

    Oliveira, Paula A; Colaço, Aura; Chaves, Raquel; Guedes-Pinto, Henrique; De-La-Cruz P, Luis F; Lopes, Carlos


    The use of chemical compounds benefits society in a number of ways. Pesticides, for instance, enable foodstuffs to be produced in sufficient quantities to satisfy the needs of millions of people, a condition that has led to an increase in levels of life expectancy. Yet, at times, these benefits are offset by certain disadvantages, notably the toxic side effects of the chemical compounds used. Exposure to these compounds can have varying effects, ranging from instant death to a gradual process of chemical carcinogenesis. There are three stages involved in chemical carcinogenesis. These are defined as initiation, promotion and progression. Each of these stages is characterised by morphological and biochemical modifications and result from genetic and/or epigenetic alterations. These genetic modifications include: mutations in genes that control cell proliferation, cell death and DNA repair--i.e. mutations in proto-oncogenes and tumour suppressing genes. The epigenetic factors, also considered as being non-genetic in character, can also contribute to carcinogenesis via epigenetic mechanisms which silence gene expression. The control of responses to carcinogenesis through the application of several chemical, biochemical and biological techniques facilitates the identification of those basic mechanisms involved in neoplasic development. Experimental assays with laboratory animals, epidemiological studies and quick tests enable the identification of carcinogenic compounds, the dissection of many aspects of carcinogenesis, and the establishment of effective strategies to prevent the cancer which results from exposure to chemicals.

  3. Multiyear fate of a 15 N tracer in a mixed deciduous forest: retention, redistribution, and differences by mycorrhizal association. (United States)

    Goodale, Christine L


    The impact of atmospheric nitrogen deposition on forest ecosystems depends in large part on its fate. Past tracer studies show that litter and soils dominate the short-term fate of added 15 N, yet few have examined its longer term dynamics or differences among forest types. This study examined the fate of a 15 N-NO3- tracer over 5-6 years in a mixed deciduous stand that was evenly composed of trees with ectomycorrhizal and arbuscular mycorrhizal associations. The tracer was expected to slowly mineralize from its main initial fate in litter and surface soil, with some 15 N moving to trees, some to deeper soil, and some net losses. Recovery of added 15 N in trees and litterfall totaled 11.3% both 1 and 5-6 years after the tracer addition, as 15 N redistributed from fine and especially coarse roots into cumulative litterfall and small accumulations in woody tissues. Estimates of potential carbon sequestration from tree 15 N recovery amounted to 12-14 kg C per kg of N deposition. Tree 15 N acquisition occurred within the first year after the tracer addition, with no subsequent additional net transfer of 15 N from detrital to plant pools. In both years, ectomycorrhizal trees gained 50% more of the tracer than did trees with arbuscular mycorrhizae. Much of the 15 N recovered in wood occurred in tree rings formed prior to the 15 N addition, demonstrating the mobility of N in wood. Tracer recovery rapidly decreased over time in surface litter material and accumulated in both shallow and deep soil, perhaps through mixing by earthworms. Overall, results showed redistribution of tracer 15 N through trees and surface soils without any losses, as whole-ecosystem recovery remained constant between 1 and 5-6 years at 70% of the 15 N addition. These results demonstrate the persistent ecosystem retention of N deposition even as it redistributes, without additional plant uptake over this timescale. © 2016 John Wiley & Sons Ltd.

  4. Multimedia environmental chemical partitioning from molecular information. (United States)

    Martínez, Izacar; Grifoll, Jordi; Giralt, Francesc; Rallo, Robert


    The prospect of assessing the environmental distribution of chemicals directly from their molecular information was analyzed. Multimedia chemical partitioning of 455 chemicals, expressed in dimensionless compartmental mass ratios, was predicted by SimpleBox 3, a Level III Fugacity model, together with the propagation of reported uncertainty for key physicochemical and transport properties, and degradation rates. Chemicals, some registered in priority lists, were selected according to the availability of experimental property data to minimize the influence of predicted information in model development. Chemicals were emitted in air or water in a fixed geographical scenario representing the Netherlands and characterized by five compartments (air, water, sediments, soil and vegetation). Quantitative structure-fate relationship (QSFR) models to predict mass ratios in different compartments were developed with support vector regression algorithms. A set of molecular descriptors, including the molecular weight and 38 counts of molecular constituents were adopted to characterize the chemical space. Out of the 455 chemicals, 375 were used for training and testing the QSFR models, while 80 were excluded from model development and were used as an external validation set. Training and test chemicals were selected and the domain of applicability (DOA) of the QSFRs established by means of self-organizing maps according to structural similarity. Best results were obtained with QSFR models developed for chemicals belonging to either the class [C] and [C; O], or the class with at least one heteroatom different than oxygen in the structure. These two class-specific models, with respectively 146 and 229 chemicals, showed a predictive squared coefficient of q(2) ≥ 0.90 both for air and water, which respectively dropped to q(2)≈ 0.70 and 0.40 for outlying chemicals. Prediction errors were of the same order of magnitude as the deviations associated to the uncertainty of the

  5. Patterns and Interactions Between Hydrodynamics and the Fate of Nitrate in Newly Emergent Coastal Deltaic Floodplains (United States)

    Christensen, A.; Twilley, R.; Willson, C. S.; Meselhe, E. A.; Larsen, L.; Castaneda-Moya, E.; Snedden, G.


    Newly emergent coastal deltaic floodplains provide a unique opportunity to study physical, biological, and chemical drivers of early ecosystem development. Often located at the mouth of large rivers, these systems are important because of their ability to trap sediment and retain excess nitrate introduced to the river through agricultural and urban runoff. River, tide, wind, and wave forcings govern the hydrology of these systems across various spatial and temporal scales. The interactions among these forcings create complex flow paths, both between channels and floodplains and within floodplains themselves. Capturing this complexity is important because of the strong control that hydrodynamics have on biogeochemical processes such as denitrification. A field observatory was created on an individual island at Wax Lake Delta (WLD), a young (temperatures reduce surface water nitrate from 100 to temperature, residence time, and nitrate concentration. Together, the numerical model and field observations improve the understanding of complex biogeochemical patterns and help identify potential biogeochemical hot spots and hot moments. Ultimately, this model will be used to provide a better understanding of the fate of nitrate in coastal deltaic floodplains and to support restoration and sediment diversion projects within the Gulf of Mexico.

  6. Ecotoxicity and fate of a silver nanomaterial in an outdoor lysimeter study. (United States)

    Schlich, Karsten; Hoppe, Martin; Kraas, Marco; Fries, Elke; Hund-Rinke, Kerstin


    Sewage sludge is repeatedly applied as fertilizer on farmland due to its high nutrient content. This may lead to a significant increase of silver nanomaterials (AgNM) in soil over years. Therefore, our aim was to investigate the ecotoxicity and fate of AgNM under environmentally relevant conditions in outdoor lysimeters over 25 months. Two AgNM concentrations (1.7 and 8.0 mg/kg dry matter soil) were applied via sewage sludge into soil. In subsamples of the soil, incubated under laboratory conditions for 180 days, the comparability of outdoor and laboratory results regarding ecotoxicity was determined. The results from our long term lysimeter experiments show no detectable horizontal displacement in combination with very low remobilization to the percolate water. Thus, indicate that the sludge applied AgNM remains nearly immobile in the pathway between soils and leachate. However, Ag uptake to the roots of wheat and canola suggests that the chemical conditions in the rhizosphere induce AgNM remobilization from the incorporated sewage sludge even after two harvesting cycles. At the higher AgNM concentration a steady inhibition of the soil microflora was observed over 25 month in the lysimeter study, while there was no effect at the lower AgNM concentration. The results of the laboratory experiment reflect the findings of the lysimeter study and indicate that a risk assessment for AgNM based on data from laboratory tests is acceptable.

  7. Controls on the Fate and Speciation of Np(V) During Iron (Oxyhydr)oxide Crystallization. (United States)

    Bots, Pieter; Shaw, Samuel; Law, Gareth T W; Marshall, Timothy A; Mosselmans, J Frederick W; Morris, Katherine


    The speciation and fate of neptunium as Np(V)O2(+) during the crystallization of ferrihydrite to hematite and goethite was explored in a range of systems. Adsorption of NpO2(+) to iron(III) (oxyhydr)oxide phases was reversible and, for ferrihydrite, occurred through the formation of mononuclear bidentate surface complexes. By contrast, chemical extractions and X-ray absorption spectroscopy (XAS) analyses showed the incorporation of Np(V) into the structure of hematite during its crystallization from ferrihydrite (pH 10.5). This occurred through direct replacement of octahedrally coordinated Fe(III) by Np(V) in neptunate-like coordination. Subsequent analyses on mixed goethite and hematite crystallization products (pH 9.5 and 11) showed that Np(V) was incorporated during crystallization. Conversely, there was limited evidence for Np(V) incorporation during goethite crystallization at the extreme pH of 13.3. This is likely due to the formation of a Np(V) hydroxide precipitate preventing incorporation into the goethite particles. Overall these data highlight the complex behavior of Np(V) during the crystallization of iron(III) (oxyhydr)oxides, and demonstrate clear evidence for neptunium incorporation into environmentally important mineral phases. This extends our knowledge of the range of geochemical conditions under which there is potential for long-term immobilization of radiotoxic Np in natural and engineered environments.

  8. Formation and fate of marine snow: small-scale processes with large- scale implications

    Directory of Open Access Journals (Sweden)

    Thomas Kiørboe


    Full Text Available Marine snow aggregates are believed to be the main vehicles for vertical material transport in the ocean. However, aggregates are also sites of elevated heterotrophic activity, which may rather cause enhanced retention of aggregated material in the upper ocean. Small-scale biological-physical interactions govern the formation and fate of marine snow. Aggregates may form by physical coagulation: fluid motion causes collisions between small primary particles (e.g. phytoplankton that may then stick together to form aggregates with enhanced sinking velocities. Bacteria may subsequently solubilise and remineralise aggregated particles. Because the solubilization rate exceeds the remineralization rate, organic solutes leak out of sinking aggregates. The leaking solutes spread by diffusion and advection and form a chemical trail in the wake of the sinking aggregate that may guide small zooplankters to the aggregate. Also, suspended bacteria may enjoy the elevated concentration of organic solutes in the plume. I explore these small-scale formation and degradation processes by means of models, experiments and field observations. The larger scale implications for the structure and functioning of pelagic food chains of export vs. retention of material will be discussed.

  9. Description and propagation of uncertainty in input parameters in environmental fate models. (United States)

    Iqbal, Muhammad Sarfraz; Oberg, Tomas


    Today, chemical risk and safety assessments rely heavily on the estimation of environmental fate by models. The key compound-related properties in such models describe partitioning and reactivity. Uncertainty in determining these properties can be separated into random and systematic (incompleteness) components, requiring different types of representation. Here, we evaluate two approaches that are suitable to treat also systematic errors, fuzzy arithmetic, and probability bounds analysis. When a best estimate (mode) and a range can be computed for an input parameter, then it is possible to characterize the uncertainty with a triangular fuzzy number (possibility distribution) or a corresponding probability box bound by two uniform distributions. We use a five-compartment Level I fugacity model and reported empirical data from the literature for three well-known environmental pollutants (benzene, pyrene, and DDT) as illustrative cases for this evaluation. Propagation of uncertainty by discrete probability calculus or interval arithmetic can be done at a low computational cost and gives maximum flexibility in applying different approaches. Our evaluation suggests that the difference between fuzzy arithmetic and probability bounds analysis is small, at least for this specific case. The fuzzy arithmetic approach can, however, be regarded as less conservative than probability bounds analysis if the assumption of independence is removed. Both approaches are sensitive to repeated parameters that may inflate the uncertainty estimate. Uncertainty described by probability boxes was therefore also propagated through the model by Monte Carlo simulation to show how this problem can be avoided. © 2012 Society for Risk Analysis.

  10. Fate of H2S during the cultivation of Chlorella sp. deployed for biogas upgrading. (United States)

    González-Sánchez, Armando; Posten, Clemens


    The H 2 S may play a key role in the sulfur cycle among the biogas production by the anaerobic digestion of wastes and the biogas upgrading by a microalgae based technology. The biogas is upgraded by contacting with slightly alkaline aqueous microalgae culture, then CO 2 and H 2 S are absorbed. The dissolved H 2 S could limit or inhibit the microalgae growth. This paper evaluated the role of dissolved H 2 S and other sulfured byproducts under prevailing biogas upgrading conditions using a microalgal technology. At initial stages of batch cultivation the growth of Chlorella sp. was presumably inhibited by dissolved H 2 S. After 2 days, the sulfides were oxidized mainly by oxic chemical reactions to sulfate, which was later rapidly assimilated by Chlorella sp., allowing high growing rates. The fate of H 2 S during the microalgae cultivation at pH > 8.5 was assessed by a mathematical model where the pentasulfide, thiosulfate and sulfite were firstly produced and converted finally to sulfate for posterior assimilation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Concentrations and fate of sugars, proteins and lipids during domestic and agro-industrial aerobic treatment. (United States)

    Gorini, Dominique; Choubert, Jean-Marc; le Pimpec, Paul; Heduit, Alain


    This work investigates the composition and the fate of sugars, lipids, proteins, amino acids under aerobic conditions for 13 domestic and 4 agro-industrial wastewaters, sampled before and after treatment. The rates of aerobic degradation were moreover studied with a 21-day continuous aeration batch test. It is shown that the sum of the biochemical forms represented 50 to 85% of the total chemical oxygen demand (COD). Lipids represented the half of the identified COD; sugars and proteins correspond to a quarter of the identified COD. Aerobic processes provided an increase of the relative fractions for proteins, whereas the ones of lipids decreased and sugars fraction remains stable. For the wastewaters released from cheese dairy (lipid-rich) and slaughterhouses (protein/lipid-rich), the dissolved phase after biological treatment is composed of proteins whereas the particulate one is composed of lipids. After the 21-day test, the concentration in proteins was nearby 10 mg/L. The results should be used for operations of WWTP to detect when a dysfunction is about to occur. They can be used to predict the concentrations in the treated water when upgrading an existing municipal plant that will admit agro-industrial discharge.

  12. Fate of Radium in Marcellus Shale Flowback Water Impoundments and Assessment of Associated Health Risks. (United States)

    Zhang, Tieyuan; Hammack, Richard W; Vidic, Radisav D


    Natural gas extraction from Marcellus Shale generates large quantities of flowback water that contain high levels of salinity, heavy metals, and naturally occurring radioactive material (NORM). This water is typically stored in centralized storage impoundments or tanks prior to reuse, treatment or disposal. The fate of Ra-226, which is the dominant NORM component in flowback water, in three centralized storage impoundments in southwestern Pennsylvania was investigated during a 2.5-year period. Field sampling revealed that Ra-226 concentration in these storage facilities depends on the management strategy but is generally increasing during the reuse of flowback water for hydraulic fracturing. In addition, Ra-226 is enriched in the bottom solids (e.g., impoundment sludge), where it increased from less than 10 pCi/g for fresh sludge to several hundred pCi/g for aged sludge. A combination of sequential extraction procedure (SEP) and chemical composition analysis of impoundment sludge revealed that Barite is the main carrier of Ra-226 in the sludge. Toxicity characteristic leaching procedure (TCLP) (EPA Method 1311) was used to assess the leaching behavior of Ra-226 in the impoundment sludge and its implications for waste management strategies for this low-level radioactive solid waste. Radiation exposure for on-site workers calculated using the RESRAD model showed that the radiation dose equivalent for the baseline conditions was well below the NRC limit for the general public.

  13. Fate of antibiotics in soil and their uptake by edible crops. (United States)

    Pan, Min; Chu, L M


    Antibiotics are bioactive substances, and their use as human and animal medicines for illness prevention, disease treatment and growth promotion has increased in recent decades. They are excreted, either unchanged or metabolized, and are discharged to the environment through animal manure, municipal wastewater or biosolids. Consequently, these chemicals reach cropland, which is advocated as a means of recycling. As these drugs are used in escalating quantities, there is growing concern over their presence, toxicity and fate in the soil, which may pose adverse effects on plant growth and productivity, as well as result in their uptake and accumulation in crops. These will contaminate the food chain and eventually affect human health. In this review, we summarize recent research and provide a detailed overview of antibiotics in soil-plant systems, including 1) the occurrence and determination of antibiotics around the world and their routes of entry to the environment, 2) the impact of wastewater irrigation and animal manure or biosolids amendment on agricultural soils, 3) the transport and persistence of antibiotics in the terrestrial environment, and 4) the bioaccumulation and translocation of antibiotics in different tissues of edible crops under laboratory and field conditions. Their impacts on the environment and potential human exposure are elucidated. Knowledge gaps and future research perspectives are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Occurrence, fate and behavior of parabens in aquatic environments: a review. (United States)

    Haman, Camille; Dauchy, Xavier; Rosin, Christophe; Munoz, Jean-François


    Parabens are esters of para-hydroxybenzoic acid, with an alkyl (methyl, ethyl, propyl, butyl or heptyl) or benzyl group. They are mainly used as preservatives in foodstuffs, cosmetics and pharmaceutical drugs. Parabens may act as weak endocrine disrupter chemicals, but controversy still surrounds the health effects of these compounds. Despite being used since the mid-1920s, it was only in 1996 that the first analytical results of their occurrence in water were published. Considered as emerging contaminants, it is useful to review the knowledge acquired over the last decade regarding their occurrence, fate and behavior in aquatic environments. Despite treatments that eliminate them relatively well from wastewater, parabens are always present at low concentration levels in effluents of wastewater treatment plants. Although they are biodegradable, they are ubiquitous in surface water and sediments, due to consumption of paraben-based products and continuous introduction into the environment. Methylparaben and propylparaben predominate, reflecting the composition of paraben mixtures in common consumer products. Being compounds containing phenolic hydroxyl groups, parabens can react readily with free chlorine, yielding halogenated by-products. Chlorinated parabens have been detected in wastewater, swimming pools and rivers, but not yet in drinking water. These chlorinated by-products are more stable and persistent than the parent species and further studies are needed to improve knowledge regarding their toxicity.

  15. Thermal Characteristics of Hyperaccumulator and Fate of Heavy Metals during Thermal Treatment of Sedum plumbizincicola. (United States)

    Zhong, Daoxu; Zhong, Zhaoping; Wu, Longhua; Xue, Hui; Song, Zuwei; Luo, Yongming


    Thermal treatment is one of the most promising disposal techniques for heavy metal- (HM)-enriched hyperaccumulators. However, the thermal characteristics and fate of HMs during thermal treatment of hyperaccumulator biomass need to be known in detail. A horizontal tube furnace was used to analyze the disposal process of hyperaccumulator biomass derived from a phyto-extracted field in which the soil was moderately contaminated with heavy metals. Different operational conditions regarding temperature and gas composition were tested. A thermo-dynamic analysis by advanced system for process engineering was performed to predict HM speciation during thermal disposal and SEM-EDS, XRD and sequential chemical extraction were used to characterize the heavy metals. The recovery of Zn, Pb and Cd in bottom ash decreased with increasing temperature but recovery increased in the fly ash. Recovery of Zn, Pb and Cd fluctuated with increasing air flow rate and the metal recovery rates were higher in the fly ash than the bottom ash. Most Cl, S, Fe, Al and SiO2 were found as alkali oxides, SO2, Fe2(SO4)3, iron oxide, Ca3Al2O6, K2SiO3 and SiO2 instead of reacting with HMs. Thus, the HMs were found to occur as the pure metals and their oxides during the combustion process and as the sulfides during the reducing process.

  16. Fate of sulfur mustard on soil: Evaporation, degradation, and vapor emission. (United States)

    Jung, Hyunsook; Kah, Dongha; Chan Lim, Kyoung; Lee, Jin Young


    After application of sulfur mustard to the soil surface, its possible fate via evaporation, degradation following absorption, and vapor emission after decontamination was studied. We used a laboratory-sized wind tunnel, thermal desorber, gas chromatograph-mass spectrometry (GC-MS), and 13 C nuclear magnetic resonance ( 13 C NMR) for systematic analysis. When a drop of neat HD was deposited on the soil surface, it evaporated slowly while being absorbed immediately into the matrix. The initial evaporation or drying rates of the HD drop were found to be power-dependent on temperature and initial drop volume. Moreover, drops of neat HD, ranging in size from 1 to 6 μL, applied to soil, evaporated at different rates, with the smaller drops evaporating relatively quicker. HD absorbed into soil remained for a month, degrading eventually to nontoxic thiodiglycol via hydrolysis through the formation of sulfonium ions. Finally, a vapor emission test was performed for HD contaminant after a decontamination process, the results of which suggest potential risk from the release of trace chemical quantities of HD into the environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Physical, chemical, and biological characteristics of compounds used in hydraulic fracturing. (United States)

    Stringfellow, William T; Domen, Jeremy K; Camarillo, Mary Kay; Sandelin, Whitney L; Borglin, Sharon


    Hydraulic fracturing (HF), a method to enhance oil and gas production, has become increasingly common throughout the U.S. As such, it is important to characterize the chemicals found in HF fluids to evaluate potential environmental fate, including fate in treatment systems, and human health impacts. Eighty-one common HF chemical additives were identified and categorized according to their functions. Physical and chemical characteristics of these additives were determined using publicly available chemical information databases. Fifty-five of the compounds are organic and twenty-seven of these are considered readily or inherently biodegradable. Seventeen chemicals have high theoretical chemical oxygen demand and are used in concentrations that present potential treatment challenges. Most of the HF chemicals evaluated are non-toxic or of low toxicity and only three are classified as Category 2 oral toxins according to standards in the Globally Harmonized System of Classification and Labeling of Chemicals; however, toxicity information was not located for thirty of the HF chemicals evaluated. Volatilization is not expected to be a significant exposure pathway for most HF chemicals. Gaps in toxicity and other chemical properties suggest deficiencies in the current state of knowledge, highlighting the need for further assessment to understand potential issues associated with HF chemicals in the environment. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Competition in notch signaling with cis enriches cell fate decisions.

    Directory of Open Access Journals (Sweden)

    Pau Formosa-Jordan

    Full Text Available Notch signaling is involved in cell fate choices during the embryonic development of Metazoa. Commonly, Notch signaling arises from the binding of the Notch receptor to its ligands in adjacent cells driving cell-to-cell communication. Yet, cell-autonomous control of Notch signaling through both ligand-dependent and ligand-independent mechanisms is known to occur as well. Examples include Notch signaling arising in the absence of ligand binding, and cis-inhibition of Notch signaling by titration of the Notch receptor upon binding to its ligands within a single cell. Increasing experimental evidences support that the binding of the Notch receptor with its ligands within a cell (cis-interactions can also trigger a cell-autonomous Notch signal (cis-signaling, whose potential effects on cell fate decisions and patterning remain poorly understood. To address this question, herein we mathematically and computationally investigate the cell states arising from the combination of cis-signaling with additional Notch signaling sources, which are either cell-autonomous or involve cell-to-cell communication. Our study shows that cis-signaling can switch from driving cis-activation to effectively perform cis-inhibition and identifies under which conditions this switch occurs. This switch relies on the competition between Notch signaling sources, which share the same receptor but differ in their signaling efficiency. We propose that the role of cis-interactions and their signaling on fine-grained patterning and cell fate decisions is dependent on whether they drive cis-inhibition or cis-activation, which could be controlled during development. Specifically, cis-inhibition and not cis-activation facilitates patterning and enriches it by modulating the ratio of cells in the high-ligand expression state, by enabling additional periodic patterns like stripes and by allowing localized patterning highly sensitive to the precursor state and cell-autonomous bistability

  19. Novel insight into the role of heterotrophic dinoflagellates in the fate of crude oil in the sea

    DEFF Research Database (Denmark)

    Almeda, Rodrigo; Connelly, Tara L.; Buskey, Edward J.


    Although planktonic protozoans are likely to interact with dispersed crude oil after a spill, protozoan-mediated processes affecting crude oil pollution in the sea are still not well known. Here, we present the first evidence of ingestion and defecation of physically or chemically dispersed crude...... to 0.37 mu g-oil mg-C-dino (-1) d(-1), which could represent similar to 17% to 100% of dispersed oil in surface waters when heterotrophic dinoflagellates are abundant or bloom. Egestion of faecal pellets containing crude oil by heterotrophic dinoflagellates could contribute to the sinking and flux...... of toxic petroleum hydrocarbons in coastal waters. Our study indicates that crude oil ingestion by heterotrophic dinoflagellates is a noteworthy route by which petroleum enters marine food webs and a previously overlooked biological process influencing the fate of crude oil in the sea after spills....

  20. Citizenship Education and Human Rights in Sites of Ethnic Conflict: Toward Critical Pedagogies of Compassion and Shared Fate (United States)

    Zembylas, Michalinos


    The present essay discusses the value of citizenship as shared fate in sites of ethnic conflict and analyzes its implications for citizenship education in light of three issues: first, the requirements of affective relationality in the notion of citizenship-as-shared fate; second, the tensions between the values of human rights and shared fate in…

  1. Getting the chemicals right: Gaps and opportunities in addressing inorganics in life cycle assessment

    DEFF Research Database (Denmark)

    Fantke, Peter; Kirchhübel, Nienke


    chemicals in LCIA toxicity characterization. The analysis of existing LCIA approaches of specific organic and inorganic chemical groups including PFASs, nanoparticles, salts causing salinization, and common ionic liquids show that the fate, exposure and effect modeling have to be adapted at various levels...... substances without further modification towards including specific reaction- and process-kinetics. Possibly relevant chemical reaction pathways will be outlined as a necessary step toward improving the environmental fate and (human and ecosystem) exposure assessment of various inorganic substances. Also, we...... technology containing any of these substances can be drawn. We provide an overview of different substance groups already incorporated in LCIA toxicity characterization modeling, the economic and environmental relevance of inorganic chemicals, and an outline of possible ways towards incorporating inorganic...

  2. Impact of surface coating and environmental conditions on the fate and transport of silver nanoparticles in the aquatic environment. (United States)

    Ellis, Laura-Jayne A; Valsami-Jones, Eugenia; Lead, Jamie R; Baalousha, Mohammed


    The role of surface coating (polyvinylpyrrolidone (PVP) and citrate) and water chemistry on the fate and behavior of AgNPs in aquatic microcosms is reported in this study. The migration and transformation of the AgNPs was examined in low (ultrapure water-UPW) and high ionic strength (moderately hard water - MHW) preparations, and in the presence of modeled natural organic matter (NOM) of Suwannee River Fulvic Acid (SRFA). The migration and fate of the AgNPs in the microcosms was validated using a sedimentation-diffusion model and the aggregation behavior was monitored by UV-visible spectrometry (UV-vis). Dissolved and particulate Ag concentrations (% Ag) were analyzed by ultrafiltration methods. Imaging of the AgNPs was captured using transmission electron microscopy (TEM). Results indicate that PVP-coated AgNPs (PVP-AgNPs) remained stable for 28days with similarly distributed concentrations of the PVP-AgNPs throughout the columns in each of the water conditions after approximately 96h (4days). The sedimentation-diffusion model confirmed PVP-AgNP stability in each condition, by showing diffusion dominated transport by using the original unaltered AgNP sizes to fit the parameters. In comparison, citrate AgNPs were largely unstable in the more complex water preparations (MHW). In MHW, aggregation dominated behavior followed by sedimentation/dissolution controlled transport was observed. The addition of SRFA to MHW resulted in small stabilizing effects, to the citrate coated AgNPs, producing smaller sized AgNPs (TEM) and mixed sedimentation and diffusion migration compared the studies absent of SRFA. The results suggest that surface coating and solution chemistry has a major impact on AgNP stability, furthermore the corresponding modeling will support the experimental understanding of the overall fate of AgNPs in the environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Critically Evaluated Database of Environmental Properties: The Importance of Thermodynamic Relationships, Chemical Family Trends, and Prediction Methods (United States)

    Brockbank, Sarah A.; Russon, Jenna L.; Giles, Neil F.; Rowley, Richard L.; Wilding, W. Vincent


    A database containing Henry's law constants, infinite dilution activity coefficients, and solubility data of industrially important chemicals has been compiled for aqueous systems. These properties are important in predicting the fate and transport of chemicals in the environment. The structure of this database is compatible with the existing 801 database and DIADEM interface, and data are included for a subset of compounds found in the 801 database. Thermodynamic relationships, chemical family trends, and predicted values were carefully considered when designating recommended values.

  4. Fate of phenanthrene and mineralization of its non-extractable residues in an oxic soil. (United States)

    Wang, Yongfeng; Xu, Jun; Shan, Jun; Ma, Yini; Ji, Rong


    The fate of organic pollutants in the environment, especially the formation and stability of non-extractable (i.e., bound) residues (NERs) determines their environmental risk. Using 14C-tracers, we studied the fate of the carcinogen phenanthrene in active or sterilized oxic loamy soil in the absence and presence of the geophagous earthworm Metaphire guillelmi and characterized the NERs derived from phenanthrene. After incubation of 14C-phenanthrene in active soil for 28 days, 40 ± 3.1% of the initial amount was mineralized and 70.1 ± 1.9% was converted to NERs. Most of the NERs (>92%) were bound to soil humin. Silylation of the humin-bound residues released 45.3 ± 5.3% of these residues, which indicated that they were physically entrapped, whereas the remainder of the residues were chemically bound or biogenic. By contrast, in sterilized soil, only 43.4 ± 12.6% of the phenanthrene was converted to NERs and all of these residues were completely released upon silylation, which underlines the essential role of microbial activity in NER formation. The presence of M. guillelmi in active soil significantly inhibited phenanthrene mineralization (24.4 ± 2.6% mineralized), but NER formation was not significantly affected. Only a small amount of phenanthrene-derived residues (1.9-5.3% of the initial amount) accumulated in the earthworm body. When humin-bound residues were mixed with fresh soil, 33.9% (humin recovered from active soils) and 12.4% (humin recovered from sterilized soils) of the residues were mineralized after 75 days of incubation, respectively, which indicated a high bioavailability of NERs, albeit lower than the initial addition of phenanthrene. Our results indicated that many phenanthrene-derived NERs, especially those physically entrapped, are still bioavailable and may pose a toxic threat to soil organisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Fate of pharmaceuticals and pesticides in fly larvae composting. (United States)

    Lalander, C; Senecal, J; Gros Calvo, M; Ahrens, L; Josefsson, S; Wiberg, K; Vinnerås, B


    A novel and efficient organic waste management strategy currently gaining great attention is fly larvae composting. High resource recovery efficiency can be achieved in this closed-looped system, but pharmaceuticals and pesticides in waste could potentially accumulate in every loop of the treatment system and spread to the environment. This study evaluated the fate of three pharmaceuticals (carbamazepine, roxithromycin, trimethoprim) and two pesticides (azoxystrobin, propiconazole) in a fly larvae composting system and in a control treatment with no larvae. It was found that the half-life of all five substances was shorter in the fly larvae compost (<10% of control) and no bioaccumulation was detected in the larvae. Fly larvae composting could thus impede the spread of pharmaceuticals and pesticides into the environment. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  6. The fate of transposed immature muscle and its clinical application. (United States)

    Ger, R; Pinard, B; Ravo, B; Addei, K A; Savella, B J; Spiro, A


    Transposition of muscles with their intact neurovascular bundles is a well-accepted procedure in the adult with a predictable outcome. The fate of transposed immature muscle, however, has not been studied. For this reason, muscles were transposed in three 6-week-old puppies and harvested when the puppies were 6 months old. The developing normal and transposed muscles were studied using serial biopsies, electromyography, and histochemical methods, and the growth in bulk was assessed by serial radiography and measurements of length, breadth, height, and weight of the muscles at death. As judged by these criteria, the transposed muscle developed normally. A patient with prune-belly syndrome, treated by muscle transpositions from thigh to abdomen with satisfactory results, is also described.

  7. Fate and toxic effects of environmental stressors: environmental control. (United States)

    Zhuang, Jie; Yu, Han-Qing; Henry, Theodore B; Sayler, Gary S


    The potential for toxicants to harm organisms in the environment is influenced by the physicochemistry of the substances and their environmental behaviors and transformation within ecosystems. This special issue is composed of 20 papers that report on studies which have investigated the fate and toxicity of various toxicants including engineered nanoparticles, pharmaceuticals and personal care products, antibiotics, pathogens, heavy metals, and agricultural nutrients. The environmental transformations of these substances and how these processes affect their toxicity are emphasized. This paper highlights the important findings and perspectives of the selected papers in this special edition, with an aim of providing insights into full-scale evaluation on the toxicity of various contaminants that exist in ecosystems. General suggestions are provided for the future directions of toxicological research.

  8. The transformations of the concept of fate in literature

    Directory of Open Access Journals (Sweden)

    Mogens Bröndsted


    Full Text Available In the course of time the literary idea of fate has been subject to a series of transformations which may also be of some interest from the point of view of comparative religion. The primary point of departure is man's dualistic experience of coming up against an exterior power stronger than himself, which thwarts his actions and intentions. This is supposedly the basic element in all primitive religion: the observation of an external power which decisively controls human life. The first phase, then, is religious, whether this power is conceived to be a plurality of spirits or deities or—most primitive of all, according to a recent trend in comparative religion—as a single 'high god'.

  9. Production, use, and fate of all plastics ever made (United States)

    Geyer, Roland; Jambeck, Jenna R.; Law, Kara Lavender


    Plastics have outgrown most man-made materials and have long been under environmental scrutiny. However, robust global information, particularly about their end-of-life fate, is lacking. By identifying and synthesizing dispersed data on production, use, and end-of-life management of polymer resins, synthetic fibers, and additives, we present the first global analysis of all mass-produced plastics ever manufactured. We estimate that 8300 million metric tons (Mt) as of virgin plastics have been produced to date. As of 2015, approximately 6300 Mt of plastic waste had been generated, around 9% of which had been recycled, 12% was incinerated, and 79% was accumulated in landfills or the natural environment. If current production and waste management trends continue, roughly 12,000 Mt of plastic waste will be in landfills or in the natural environment by 2050. PMID:28776036

  10. Microplastics in Inland African Waters: Presence, Sources, and Fate

    DEFF Research Database (Denmark)

    Khan, Farhan; Mayoma, Bahati Sosthenes; Biginagwa, Fares John


    is known about the presence, sources, and fate of plastics (and microplastics (MPs)) within African waters. Research in marine regions, most notably around the coast of South Africa, describes the occurrence of MPs in seabirds and fish species. More recently environmental sampling studies in the same area...... have quantified plastics in both the water column and sediments. However, despite Africa containing some of the largest and deepest of the world’s freshwater lakes, including Lakes Victoria and Tanganyika as part of the African Great Lakes system, and notable freshwater rivers, such as the River Congo...... and the Nile, the extent of MPs within the inland waters remains largely unreported. In the only study to date to describe MP pollution in the African Great Lakes, a variety of polymers, including polyethylene, polypropylene, and silicone rubber, were recovered from the gastrointestinal tracts of Nile perch...

  11. Fate of mycotoxins during beer brewing and fermentation. (United States)

    Inoue, Tomonori; Nagatomi, Yasushi; Uyama, Atsuo; Mochizuki, Naoki


    Mycotoxins are frequent contaminants of grains, and breweries need, therefore, to pay close attention to the risk of contamination in beer made from such grains as barley and corn. The fate of 14 types of mycotoxin (aflatoxins, fumonisins, ochratoxin A, patulin, trichothecenes, and zearalenone) during beer brewing was investigated in this study. Malt artificially spiked with each mycotoxin was put through the mashing, filtration, boiling and fermentation processes involved in brewing. After brewing, the levels of aflatoxins, ochratoxin A, patulin, and zearalenone were found to have decreased to less than 20% of their initial concentration. They had been adsorbed mainly to the spent grain and removed from the unhopped wort. Additionally, as zearalenone was known, patulin was metabolized to the less toxic compound during the fermentation process. The risk of carry-over to beer was therefore reduced for half of the mycotoxins studied. However, attention still needs to be paid to the risk of trichothecene contamination.

  12. The fate of volatiles in mid-ocean ridge magmatism

    CERN Document Server

    Keller, Tobias; Hirschmann, Marc M


    Deep-Earth volatile cycles couple the mantle with near-surface reservoirs. Volatiles are emitted by volcanism and, in particular, from mid-ocean ridges, which are the most prolific source of basaltic volcanism. Estimates of volatile extraction from the asthenosphere beneath ridges typically rely on measurements of undegassed lavas combined with simple petrogenetic models of the mean degree of melting. Estimated volatile fluxes have large uncertainties; this is partly due to a poor understanding of how volatiles are transported by magma in the asthenosphere. Here, we assess the fate of mantle volatiles through numerical simulations of melting and melt transport at mid-ocean ridges. Our simulations are based on two-phase, magma/mantle dynamics theory coupled to an idealised thermodynamic model of mantle melting in the presence of water and carbon dioxide. We combine simulation results with catalogued observations of all ridge segments to estimate a range of likely volatile output from the global mid-ocean ridge...

  13. Fate and Transport of Viruses In Porous Media (United States)

    Flury, M.; Jin, Y.

    Microbiological contaminants (bacteria, protozoa, and viruses) pose one of the great- est risks in water resources. About 70% of the waterborne microbial illness outbreaks in the United States have been associated with groundwater. Although viruses are not the only pathogens known to contaminate groundwater, they are much smaller in size than bacteria or protozoan cysts and are not filter out to the same extent in the porous soil matrix. Nevertheless, viruses can considered to be colloidal particles. In this pre- sentation, we review the current state of knowledge on fate and transport of viruses in porous media, which include (1) mechanisms and modeling of virus sorption; (2) virus survival and factors affecting virus inactivation in the natural environment; and (3) mechanisms of virus transport in porous media and available modeling approaches. Because viruses are surrounded by a protein capsid and are expected to behave simi- larly to proteins, we will draw on results from protein sorption research.

  14. DNA Damage Signaling Instructs Polyploid Macrophage Fate in Granulomas

    DEFF Research Database (Denmark)

    Herrtwich, Laura; Nanda, Indrajit; Evangelou, Konstantinos


    to a chronic stimulus, though critical for disease outcome, have not been defined. Here, we delineate a macrophage differentiation pathway by which a persistent Toll-like receptor (TLR) 2 signal instructs polyploid macrophage fate by inducing replication stress and activating the DNA damage response. Polyploid...... granuloma-resident macrophages formed via modified cell divisions and mitotic defects and not, as previously thought, by cell-to-cell fusion. TLR2 signaling promoted macrophage polyploidy and suppressed genomic instability by regulating Myc and ATR. We propose that, in the presence of persistent...... inflammatory stimuli, pathways previously linked to oncogene-initiated carcinogenesis instruct a long-lived granuloma-resident macrophage differentiation program that regulates granulomatous tissue remodeling....

  15. Role of defects in the physiological fate of carbon nanomaterials (United States)

    Kakinen, Aleksandr; Podila, Ramakrishna; Zhu, Jingyi; Puneet, Pooja; Kahru, Anne; Rao, Apparao; National Institute of Chemical Physics and Biophysics, Talinn Team; Clemson Nanomaterials Center, Clemson Team


    Charged defects play an important role in not only materials properties (P. Puneet et al., Scientific Reports, 3, 3212 (2013)) but also in the determination of how materials interact at the nano-bio interface. Recently, it was shown that any physiological response, and hence the fate of carbon nanotubes (CNTs) in biological media, is dictated by the formation of protein-corona. Accordingly, we explored how defects in CNTs influence the biological interactions and protein corona formation using micro-Raman spectroscopy, electrochemistry, photoluminescence, and infrared absorption spectroscopy. Our results show that the interaction of CNTs and proteins (albumin, fibrinogen, and fetal serum) is strongly influenced by charge-transfer between defects and proteins ensuing in protein-unfolding which leads to a gain in conformational entropy.

  16. Fate of Volatile Organic Compounds in Constructed Wastewater Treatment Wetlands (United States)

    Keefe, S.H.; Barber, L.B.; Runkel, R.L.; Ryan, J.N.


    The fate of volatile organic compounds was evaluated in a wastewater-dependent constructed wetland near Phoenix, AZ, using field measurements and solute transport modeling. Numerically based volatilization rates were determined using inverse modeling techniques and hydraulic parameters established by sodium bromide tracer experiments. Theoretical volatilization rates were calculated from the two-film method incorporating physicochemical properties and environmental conditions. Additional analyses were conducted using graphically determined volatilization rates based on field measurements. Transport (with first-order removal) simulations were performed using a range of volatilization rates and were evaluated with respect to field concentrations. The inverse and two-film reactive transport simulations demonstrated excellent agreement with measured concentrations for 1,4-dichlorobenzene, tetrachloroethene, dichloromethane, and trichloromethane and fair agreement for dibromochloromethane, bromo-dichloromethane, and toluene. Wetland removal efficiencies from inlet to outlet ranged from 63% to 87% for target compounds.

  17. Nuclear envelope and genome interactions in cell fate (United States)

    Talamas, Jessica A.; Capelson, Maya


    The eukaryotic cell nucleus houses an organism’s genome and is the location within the cell where all signaling induced and development-driven gene expression programs are ultimately specified. The genome is enclosed and separated from the cytoplasm by the nuclear envelope (NE), a double-lipid membrane bilayer, which contains a large variety of trans-membrane and associated protein complexes. In recent years, research regarding multiple aspects of the cell nucleus points to a highly dynamic and coordinated concert of efforts between chromatin and the NE in regulation of gene expression. Details of how this concert is orchestrated and how it directs cell differentiation and disease are coming to light at a rapid pace. Here we review existing and emerging concepts of how interactions between the genome and the NE may contribute to tissue specific gene expression programs to determine cell fate. PMID:25852741

  18. The Unfolded Protein Response and Cell Fate Control. (United States)

    Hetz, Claudio; Papa, Feroz R


    The secretory capacity of a cell is constantly challenged by physiological demands and pathological perturbations. To adjust and match the protein-folding capacity of the endoplasmic reticulum (ER) to changing secretory needs, cells employ a dynamic intracellular signaling pathway known as the unfolded protein response (UPR). Homeostatic activation of the UPR enforces adaptive programs that modulate and augment key aspects of the entire secretory pathway, whereas maladaptive UPR outputs trigger apoptosis. Here, we discuss recent advances into how the UPR integrates information about the intensity and duration of ER stress stimuli in order to control cell fate. These findings are timely and significant because they inform an evolving mechanistic understanding of a wide variety of human diseases, including diabetes mellitus, neurodegeneration, and cancer, thus opening up the potential for new therapeutic modalities to treat these diverse diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Speciation and Fate of Trace Metals in Estuarine Sediments Under Reduced and Oxidized Conditions, Seaplane Lagoon, Alameda Naval Air Station

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, S A; Day, P A; Esser, B; Randall, S


    We have identified important chemical reactions that control the fate of metal-contaminated estuarine sediments if they are left undisturbed (in situ) or if they are dredged. We combined information on the molecular bonding of metals in solids from X-ray absorption spectroscopy (XAS) with thermodynamic and kinetic driving forces obtained from dissolved metal concentrations to deduce the dominant reactions under reduced and oxidized conditions. We evaluated the in situ geochemistry of metals (cadmium, chromium, iron, lead, manganese and zinc) as a function of sediment depth (to 100 cm) from a 60-year record of contamination at the Alameda Naval Air Station, California. Results from XAS and thermodynamic modeling of porewaters show that cadmium and most of the zinc form stable sulfide phases, and that lead and chromium are associated with stable carbonate, phosphate, phyllosilicate, or oxide minerals. Therefore, there is minimal risk associated with the release of these trace metals from the deeper sediments contaminated prior to the Clean Water Act (1975) as long as reducing conditions are maintained. Increased concentrations of dissolved metals with depth were indicative of the formation of metal HS- complexes. The sediments also contain zinc, chromium, and manganese associated with detrital iron-rich phyllosilicates and/or oxides. These phases are recalcitrant at near-neutral pH and do not undergo reductive dissolution within the 60-year depositional history of sediments at this site. The fate of these metals during dredging was evaluated by comparing in situ geochemistry with that of sediments oxidized by seawater in laboratory experiments. Cadmium and zinc pose the greatest hazard from dredging because their sulfides were highly reactive in seawater. However, their dissolved concentrations under oxic conditions were limited eventually by sorption to or co-precipitation with an iron (oxy)hydroxide. About 50% of the reacted CdS and 80% of the reacted ZnS were

  20. The fate of nitrogen fixed by diazotrophs in the ocean

    Directory of Open Access Journals (Sweden)

    M. R. Mulholland


    Full Text Available While we now know that N2 fixation is a significant source of new nitrogen (N in the marine environment, little is known about the fate of this N (and associated C, despite the importance of diazotrophs to global carbon and nutrient cycles. Specifically, does N fixed during N2 fixation fuel autotrophic or heterotrophic growth and thus facilitate carbon (C export from the euphotic zone, or does it contribute primarily to bacterial productivity and respiration in the euphotic zone? For Trichodesmium, the diazotroph we know the most about, the transfer of recently fixed N2 (and C appears to be primarily through dissolved pools. The release of N varies among and within populations and as a result of the changing physiological state of cells and populations. The net result of trophic transfers appears to depend on the co-occurring organisms and the complexity of the colonizing community. In order to understand the impact of diazotrophy on carbon flow and export in marine systems, we need a better understanding of the trophic flow of elements in Trichodesmium-dominated communities and other diazotrophic communities under various defined physiological states. Nitrogen and carbon fixation rates themselves vary by orders of magnitude within and among studies of Trichodesmium, highlighting the difficulty in extrapolating global rates of N2 fixation from direct measurements. Because the stoichiometry of N2 and C fixation does not appear to be in balance with that of particles, and the relationship between C and N2 fixation rates is also variable, it is equally difficult to derive global rates of one from the other. This paper seeks to synthesize what is known about the fate of diazotrophic production in the environment. A better understanding of the physiology and physiological ecology of Trichodesmium and other marine diazotrophs is necessary to quantify and predict the effects of increased or decreased diazotrophy in the context of the carbon cycle and

  1. Fate of Uranium during Sodium Aluminosilicate Formation under Waste Tank Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wilmarth, B


    Experiments have been conducted to examine the fate of uranium during the formation of sodium aluminosilicate (NAS) when wastes containing high aluminate concentrations are mixed with wastes of high silicate concentration. Testing was conducted at varying degrees of uranium saturation. Testing examined typical tank conditions, e.g., stagnant, slightly elevated temperature (50 C). The results showed that under sub-saturated conditions uranium is not removed from solution to any large extent in both simulant testing and actual tank waste testing. There are data supporting a small removal due to sorption of uranium on sites in the NAS. Above the solubility limit the data are clear that a reduction in uranium concentration occurs with the formation of aluminosilicate. This uranium precipitation is fairly rapid and ceases when uranium reaches its solubility limit. At the solubility limit, it appears that uranium is not affected, but further testing might be warranted. Lastly, analysis of the uranium speciation in a Tank 49H set of samples showed the uranium to be soluble. Analysis of the solution composition and subsequent use of the Hobb's uranium solubility model indicated a uranium solubility limit of 32 mg/L. The measured value of uranium in the Tank 49H matched the model prediction.

  2. Natural and active chemical remediation of toxic metals, organics, and radionuclides in the aquatic environment

    Energy Technology Data Exchange (ETDEWEB)

    McPherson, G.; Pintauro, P.; O`Connor, S. [and others


    This project focuses on the chemical aspects of remediation, with the underlying theme that chemical remediation does occur naturally. Included are studies on the fate of heavy metal and organic contaminants discharged into aquatic environments; accurate assay metal contaminants partitioned into soils, water and tissue; development of novel polymeric membranes and microporous solids for the entrapment of heavy metals; and the development of hybrid chemo-enzymatic oxidative schemes for aromatics decontamination. 49 refs.

  3. A Preliminary Study for Chemical Ranking System in Terms of Soil and Groundwater Contamination by Chemical Accidents (United States)

    Park, J.; Jeong, Y. C.; Kim, K. E.; Lee, D.; Yoo, K.; Kim, J.; Hwang, S.


    A variety of chemicals could affect human health and ecosystems by chemical accidents such as fire, explosion, and/or spill. Chemical accidents make chemicals spread to the environment via various routes such as dispersion into ambient air, soil, and surface/ground water media. Especially, soil and groundwater contamination by chemical accidents become a secondary source to have a long term effect on human health and environment. Strength of long term effect by soil and groundwater contamination depends largely on inherent characteristics of a chemical and its fate in soil and groundwater. Therefore, in this study, we developed a framework on how to determine what kind of chemicals is more important in management scheme in terms of soil and groundwater contamination during chemical accidents. We ranked approximately fifty chemicals using this framework which takes into account an exposure into soil and groundwater, toxicity, persistence, and bioaccumulation of a chemical. This framework helps to prepare systematically the management plan for chemical related facilities. Furthermore, results from our study can make a policy maker have interests in highly ranked chemicals and facilities.

  4. Multipotent versus differentiated cell fate selection in the developing Drosophila airways (United States)

    Matsuda, Ryo; Hosono, Chie; Samakovlis, Christos; Saigo, Kaoru


    Developmental potentials of cells are tightly controlled at multiple levels. The embryonic Drosophila airway tree is roughly subdivided into two types of cells with distinct developmental potentials: a proximally located group of multipotent adult precursor cells (P-fate) and a distally located population of more differentiated cells (D-fate). We show that the GATA-family transcription factor (TF) Grain promotes the P-fate and the POU-homeobox TF Ventral veinless (Vvl/Drifter/U-turned) stimulates the D-fate. Hedgehog and receptor tyrosine kinase (RTK) signaling cooperate with Vvl to drive the D-fate at the expense of the P-fate while negative regulators of either of these signaling pathways ensure P-fate specification. Local concentrations of Decapentaplegic/BMP, Wingless/Wnt, and Hedgehog signals differentially regulate the expression of D-factors and P-factors to transform an equipotent primordial field into a concentric pattern of radially different morphogenetic potentials, which gradually gives rise to the distal-proximal organization of distinct cell types in the mature airway. DOI: PMID:26633813

  5. Tracking Seed Fates of Tropical Tree Species: Evidence for Seed Caching in a Tropical Forest in North-East India (United States)

    Sidhu, Swati; Datta, Aparajita


    Rodents affect the post-dispersal fate of seeds by acting either as on-site seed predators or as secondary dispersers when they scatter-hoard seeds. The tropical forests of north-east India harbour a high diversity of little-studied terrestrial murid and hystricid rodents. We examined the role played by these rodents in determining the seed fates of tropical evergreen tree species in a forest site in north-east India. We selected ten tree species (3 mammal-dispersed and 7 bird-dispersed) that varied in seed size and followed the fates of 10,777 tagged seeds. We used camera traps to determine the identity of rodent visitors, visitation rates and their seed-handling behavior. Seeds of all tree species were handled by at least one rodent taxon. Overall rates of seed removal (44.5%) were much higher than direct on-site seed predation (9.9%), but seed-handling behavior differed between the terrestrial rodent groups: two species of murid rodents removed and cached seeds, and two species of porcupines were on-site seed predators. In addition, a true cricket, Brachytrupes sp., cached seeds of three species underground. We found 309 caches formed by the rodents and the cricket; most were single-seeded (79%) and seeds were moved up to 19 m. Over 40% of seeds were re-cached from primary cache locations, while about 12% germinated in the primary caches. Seed removal rates varied widely amongst tree species, from 3% in Beilschmiedia assamica to 97% in Actinodaphne obovata. Seed predation was observed in nine species. Chisocheton cumingianus (57%) and Prunus ceylanica (25%) had moderate levels of seed predation while the remaining species had less than 10% seed predation. We hypothesized that seed traits that provide information on resource quantity would influence rodent choice of a seed, while traits that determine resource accessibility would influence whether seeds are removed or eaten. Removal rates significantly decreased (p seed size. Removal rates were significantly

  6. Dynamic Pax6 expression during the neurogenic cell cycle influences proliferation and cell fate choices of retinal progenitors

    Directory of Open Access Journals (Sweden)

    Yang Xian-Jie


    Full Text Available Abstract Background The paired homeobox protein Pax6 is essential for proliferation and pluripotency of retinal progenitors. However, temporal changes in Pax6 protein expression associated with the generation of various retinal neurons have not been characterized with regard to the cell cycle. Here, we examine the dynamic changes of Pax6 expression among chicken retinal progenitors as they progress through the neurogenic cell cycle, and determine the effects of altered Pax6 levels on retinogenesis. Results We provide evidence that during the preneurogenic to neurogenic transition, Pax6 protein levels in proliferating progenitor cells are down-regulated. Neurogenic retinal progenitors retain a relatively low level of Pax6 protein, whereas postmitotic neurons either elevate or extinguish Pax6 expression in a cell type-specific manner. Cell imaging and cell cycle analyses show that neurogenic progenitors in the S phase of the cell cycle contain low levels of Pax6 protein, whereas a subset of progenitors exhibits divergent levels of Pax6 protein upon entering the G2 phase of the cell cycle. We also show that M phase cells contain varied levels of Pax6, and some correlate with the onset of early neuronal marker expression, forecasting cell cycle exit and cell fate commitment. Furthermore, either elevating or knocking down Pax6 attenuates cell proliferation and results in increased cell death. Reducing Pax6 decreases retinal ganglion cell genesis and enhances cone photoreceptor and amacrine interneuron production, whereas elevating Pax6 suppresses cone photoreceptor and amacrine cell fates. Conclusion These studies demonstrate for the first time quantitative changes in Pax6 protein expression during the preneurogenic to neurogenic transition and during the neurogenic cell cycle. The results indicate that Pax6 protein levels are stringently controlled in proliferating progenitors. Maintaining a relatively low Pax6 protein level is necessary for S phase

  7. Use of colony-based bacterial strain typing for tracking the fate of Lactobacillus strains during human consumption

    Directory of Open Access Journals (Sweden)

    Drevinek Pavel


    Full Text Available Abstract Background The Lactic Acid Bacteria (LAB are important components of the healthy gut flora and have been used extensively as probiotics. Understanding the cultivable diversity of LAB before and after probiotic administration, and being able to track the fate of administered probiotic isolates during feeding are important parameters to consider in the design of clinical trials to assess probiotic efficacy. Several methods may be used to identify bacteria at the strain level, however, PCR-based methods such as Random Amplified Polymorphic DNA (RAPD are particularly suited to rapid analysis. We examined the cultivable diversity of LAB in the human gut before and after feeding with two Lactobacillus strains, and also tracked the fate of these two administered strains using a RAPD technique. Results A RAPD typing scheme was developed to genetically type LAB isolates from a wide range of species, and optimised for direct application to bacterial colony growth. A high-throughput strategy for fingerprinting the cultivable diversity of human faeces was developed and used to determine: (i the initial cultivable LAB strain diversity in the human gut, and (ii the fate of two Lactobacillus strains (Lactobacillus salivarius NCIMB 30211 and Lactobacillus acidophilus NCIMB 30156 contained within a capsule that was administered in a small-scale human feeding study. The L. salivarius strain was not cultivated from the faeces of any of the 12 volunteers prior to capsule administration, but appeared post-feeding in four. Strains matching the L. acidophilus NCIMB 30156 feeding strain were found in the faeces of three volunteers prior to consumption; after taking the Lactobacillus capsule, 10 of the 12 volunteers were culture positive for this strain. The appearance of both Lactobacillus strains during capsule consumption was statistically significant (p Conclusion We have shown that genetic strain typing of the cultivable human gut microbiota can be

  8. One decade of research into the fate and transport of carbon-based nanomaterials - Lessons learnt and future perspectives (United States)

    Hüffer, Thorsten; Hofmann, Thilo


    Carbon-based nanomaterials (CNM) exhibit unique physico-chemical properties (e.g., large surface area to volume ratios, electron delocalization), which make them promising for a great number of applications. The production, use, and disposal of CNM and CNM-containing products will inevitably result in the release of these materials into the environment. The fate and transport of CNM greatly depends on their physico-chemical properties and surrounding environmental conditions. This field of research has constantly increased over recent years. Yet little is known on how transformation processes such as changes in surface properties or aggregation influence their interaction with other environmental species (i.e., solid surfaces or contaminants). For example, changes in redox chemistry in combination with irradiation have shown to significantly alter the surface chemistry of C60 fullerenes and consequently decreased their sorption affinity towards non-polar organic contaminants [1]. The presence of natural organic matter (NOM) seems to play a major role on the aggregation of CNM; however, the results are not consistent whether this leads to an increase or decrease in interactions with solid surfaces or contaminants. Either increased interactions resulting from a higher dispersion of CNM or decreased interactions of CNM, which was assigned to an offset of "creating" new sorption sites due to increased dispersion by a reduced accessibility of polar moieties. For the latter effect, NOM was proposed to either directly compete for sorption sites on CNM surface or a blocking of CNM pores by large NOM molecules [2]. The potential consequences of these changes in surface properties of CNM on their toxic effects on microorganisms have only been partially examined. For an environmental risk assessment, data on the occurrence of CNM is obligatory but to date the environmental concentrations of CNM are still difficult to assess due to still unsolved analytical issues in matrix

  9. Chemical examination of the brown alga Stoechospermum marginatum (C. Agardh)

    Digital Repository Service at National Institute of Oceanography (India)

    Wahidullah, S.; DeSouza, L.; Kamat, S.Y.

    The crude methalonic extract of marine algae Stoechospermum marginatum from west coast of India was found to have spasmolytic activity. Search for the pharmacologically active compounds led to the isolation of steroids, fatty acids and an ester...

  10. Inquiry-Based Examination of Chemical Disruption of Bacterial Biofilms (United States)

    Redelman, Carly V.; Hawkins, Misty A. W.; Drumwright, Franklin R.; Ransdell, Beverly; Marrs, Kathleen; Anderson, Gregory G.


    Inquiry-based instruction in the sciences has been demonstrated as a successful educational strategy to use for both high school and college science classrooms. As participants in the NSF Graduate STEM Fellows in K-12 Education (GK-12) Program, we were tasked with creating novel inquiry-based activities for high school classrooms. As a way to…


    Indian Academy of Sciences (India)

    The berries (fruits) are green when unripe and of different shades of yellow when ripe. The various parts of the plant are reputed in indigenous Hindu Medicine to have high medicinal value in various diseases like cough, asthma, fever, heart disease, etc. The plant under investigation belongs to the natural order Solanacea.

  12. Page 1 Chemical Examination of Celastrus paniculata 507 ...

    Indian Academy of Sciences (India)

    alcoholic caustic soda and the unsaponifiable matter extracted with ether. This ethereal solution was washed with water, dehydrated with anhydrous sodium sulphate, filtered and distilled to recover the solvent. The residue on repeated crystallisation from methyl alcohol with the addition of animal- charcoal gave white flakes ...

  13. Chemical examination of the Red alga Acanthophora spicifera

    Digital Repository Service at National Institute of Oceanography (India)

    Wahidullah, S.; Kamat, S.Y.

    Analyses of petroleum ether and chloroform extracts of the marine alga Acanthophora spicifera exhibiting antifertility activity led to the isolation of sterols and fatty acids as well as the rare dipeptides aurantiamides. All the compounds were...

  14. Page 1 Chemical Examination of the Leaves of Rhododendron ...

    Indian Academy of Sciences (India)

    J.C.S., 1954, 473. Acta Chem. Scand., 1954, 8, 71; taken from Chem. Abs.,. 1955, 49, 2738. Ibid., 1954, 8, 1948; Ibid., 1955, 49, 7580. Sci. and Cult., 1950, 15, 329. Wiadomosci farm., 1937, 64, 527; taken from Chem. Abs.,. 1939, 33, 7299. Pharmac, Acta Helv., 1946, 21, 341. Dissertation, Munchen, 1939 (original not seen).

  15. Delicious Chemicals. (United States)

    Barry, Dana M.

    This paper presents an approach to chemistry and nutrition that focuses on food items that people consider delicious. Information is organized according to three categories of food chemicals that provide energy to the human body: (1) fats and oils; (2) carbohydrates; and (3) proteins. Minerals, vitamins, and additives are also discussed along with…

  16. Chemical dispersants

    NARCIS (Netherlands)

    Rahsepar, Shokouhalsadat; Smit, Martijn P.J.; Murk, Albertinka J.; Rijnaarts, Huub H.M.; Langenhoff, Alette A.M.


    Chemical dispersants were used in response to the Deepwater Horizon oil spill in the Gulf of Mexico, both at the sea surface and the wellhead. Their effect on oil biodegradation is unclear, as studies showed both inhibition and enhancement. This study addresses the effect of Corexit on oil

  17. Chemical Oscillations

    Indian Academy of Sciences (India)

    processes at the cellular level like the glycolytic pathway, peroxi- dase-catalysed reaction or the biosynthesis of certain proteins. A systematic study of oscillating chemical reactions is of consider- able interest, since these oscillating reactions can be used as prototype examples of the behaviours possible in reactions gov-.

  18. Cyanobacterial toxins: modes of actions, fate in aquatic and soil ecosystems, phytotoxicity and bioaccumulation in agricultural crops. (United States)

    Corbel, Sylvain; Mougin, Christian; Bouaïcha, Noureddine


    The occurrence of harmful cyanobacterial blooms in surface waters is often accompanied by the production of a variety of cyanotoxins. These toxins are designed to target in humans and animals specific organs on which they act: hepatotoxins (liver), neurotoxins (nervous system), cytotoxic alkaloids, and dermatotoxins (skin), but they often have important side effects too. When introduced into the soil ecosystem by spray irrigation of crops they may affect the same molecular pathways in plants having identical or similar target organs, tissues, cells or biomolecules. There are also several indications that terrestrial plants, including food crop plants, can bioaccumulate cyanotoxins and present, therefore, potential health hazards for human and animals. The number of publications concerned with phytotoxic effects of cyanotoxins on agricultural plants has increased recently. In this review, we first examine different cyanotoxins and their modes of actions in humans and mammals and occurrence of target biomolecules in vegetable organisms. Then we present environmental concentrations of cyanotoxins in freshwaters and their fate in aquatic and soil ecosystems. Finally, we highlight bioaccumulation of cyanotoxins in plants used for feed and food and its consequences on animals and human health. Overall, our review shows that the information on the effects of cyanotoxins on non-target organisms in the terrestrial environment is particularly scarce, and that there are still serious gaps in the knowledge about the fate in the soil ecosystems and phytotoxicity of these toxins. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Geochemical Fate and Transport of Sildenafil in Natural Soils (United States)

    Turner, A. E.; Vulava, V. M.


    In recent years, pharmaceutical drugs have become of increasing concern to the health of our environment. As a result of wastewater treatment plant discharge and various sources of surface runoff, pharmaceuticals can be found in trace amounts in our most common water resources. Sildenafil, a drug marketed to treat erectile dysfunction, is amongst the top 20 most prescribed pharmaceutical products in the U.S. Sildenafil is a complex polar organic molecule with multiple amine functional groups, which gives it acid-base functionality. The most common pKa of this molecule is approximately 6.0 and water solubility ranges from 3.5 to 4.6 mg/L. The goal of this project is to examine the sorption and transport behavior of sildenafil in natural organic matter- (OM) and clay-rich soils. Soils used for this study were collected from undisturbed forested areas in Francis Marion National Forest, Charleston, SC. A series of batch sorption isotherm and column transport experiments were conducted with these soils. Sildenafil was analyzed using high performance liquid chromatography (HPLC) and liquid chromatography mass spectrometry (LC-MS) techniques. Batch sorption isotherm experiments produced nonlinear data for both OM- and clay-rich soil types. The data shows that sildenafil sorbs more strongly to the clay-rich soils than to the OM-rich soils. This suggests that sildenafil behaved as a cation and preferentially sorbed with the negatively-charged clay minerals. The transport behavior of sildenafil as determined by experiments with soil-packed glass chromatography columns confirmed this behavior. The resulting breakthrough curves show that sildenafil is strongly retarded in clay-rich soils. Our studies do not show degradation or transformation of sildenafil in soils. The results from this study have strong implications for environmental management of pharmaceutical chemical effluents and disposal.

  20. In Situ and Laboratory Studies on the Fate of Specific Organic Compounds in an Anerobic Landfill Leachate Plume, 1. Experimental Conditions and Fate of Phenolic Compounds

    DEFF Research Database (Denmark)

    Nielsen, Per Henning; Albrechtsen, Hans-Jørgen; Heron, Gorm


    microcosm experiments performed and the results on the fate of 7 phenolic compounds. Part 2 of this series of papers, also published in this issue, presents the results on the fate of 8 aromatic compounds and 4 chlorinated aliphatic compounds. The redox conditions in the plume were characterized...... by in situ and laboratory experiments, both concerning redox conditions and the fate of the phenolic compounds. However, for phenol and 2,4-dichlorophenol, transformation was observed in some in situ experiments but not in the corresponding laboratory experiments. In some experiments, this could be explained......The transformation of specific organic compounds was investigated by in situ and laboratory experiments in an anaerobic landfill leachate pollution plume at four different distances from the landfill. This paper presents the experimental conditions in the in situ microcosm and laboratory batch...

  1. Chemical Structure and Dynamics annual report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Colson, S.D.; McDowell, R.S.


    The Chemical Structure and Dynamics (CS and D) program is a major component of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of-the-art collaborative facility for studies of chemical structure and dynamics. The authors respond to the need for a fundamental, molecular level understanding of chemistry at a wide variety of environmentally important interfaces by: (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for characterizing complex materials of the types found in stored wastes and contaminated soils, and for detecting and monitoring trace atmospheric species. The focus of the research is defined primarily by DOE`s environmental problems: fate and transport of contaminants in the subsurface environment, processing and storage of waste materials, cellular effects of chemical and radiological insult, and atmospheric chemistry as it relates to air quality and global change. Twenty-seven projects are described under the following topical sections: Reaction mechanisms at interfaces; High-energy processes at environmental interfaces; Cluster models of the condensed phase; and Miscellaneous.

  2. Les hydrocarbures aromatiques polycycliques dans l'environnement. Première partie. Propriété, origines, devenir Polycyclic Aromatic Hydrocarbons in the Environment. Part One. Properties, Origins, Fates

    Directory of Open Access Journals (Sweden)

    Bouchez M.


    Full Text Available Les hydrocarbures aromatiques polycycliques (HAP sont des contaminants produits notamment dans les processus de combustion. Leur caractère ubiquiste et leur génotoxicité sont à l'origine d'une activité de recherche importante. Après avoir présenté les structures chimiques et les propriétés physico-chimiques et biologiques principales de ces composés, on résume les connaissances actuelles concernant leur présence dans l'environnement. Les critères géochimiques de leurs différentes origines pyrolytique, diagénétique ou pétrolière, sont exposés. On examine la contribution des différentes sources d'émission, le transport et la diffusion dans l'environnement de ces composés, ainsi que les modifications qu'ils subissent et leur sort ultime. La distribution qualitative et quantitative des HAP de combustion dans les sols d'environnements variés est présentée. Polycyclic aromatic hydrocarbons (PAH are environmental contaminants produced in particular in combustion processes. As a consequence of their genotoxicity and ubiquity, they are the subject of an important research activity. After a presentation of the chemical structures and of the main physico-chemical and biological properties of these compounds, the current knowledge regarding their presence in the environment is summarized. The geochernical criteria of the different,origins, pyrolytic, diagenetic and petroleum of PAH are presented. The respective contributions of their various emission sources are discussed , as well as the transfer and diffusion in the environment, the modifications undergone and the ultimate fate of these compounds. The qualitative and quantitative distribution of combustion PAH in soils in different environmental situations is presented.

  3. Fate tracing of mature hepatocytes in mouse liver homeostasis and regeneration

    National Research Council Canada - National Science Library

    Malato, Yann; Naqvi, Syed; Schürmann, Nina; Ng, Raymond; Wang, Bruce; Zape, Joan; Kay, Mark A; Grimm, Dirk; Willenbring, Holger


    .... To test these concepts, we generated a hepatocyte fate-tracing model based on timed and specific Cre recombinase expression and marker gene activation in all hepatocytes of adult Rosa26 reporter mice...

  4. Deubiquitylating enzyme UBP64 controls cell fate through stabilization of the transcriptional repressor tramtrack

    NARCIS (Netherlands)

    P.K. Bajpe (Prashanth Kumar); J.A. van der Knaap (Jan); J.A.A. Demmers (Jeroen); K. Bezstarosti (Karel); A. Bassett (Andrew); H.M.M. van Beusekom (Heleen); A.A. Travers (Andrew); C.P. Verrijzer (Peter)


    textabstractProtein ubiquitylation plays a central role in multiple signal transduction pathways. However, the substrate specificity and potential developmental roles of deubiquitylating enzymes remain poorly understood. Here, we show that the Drosophila ubiquitin protease UBP64 controls cell fate

  5. Persistence and fate of some organophosphorus pesticides in sea sediments along east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Sarkar, A.; SenGupta, R.

    Stability and fate of pesticides, monocrotophos, phosphamidon and DDVP, were studied in sediment samples collected along the east coast of India pH, salinity and exchangeable cations present in sediments exhibited profound influence on stability...


    Developing procedures for assessing the potential environmental fate and transport of nanomaterials is an active endeavor of the environmental technical research community. Insufficient information exists for estimating the likelihood of nanomaterial deposition on natural surface...

  7. Military Smokes and Obscurants Fate and Effects: A Literature Review Relative to Threatened and Endangered Species

    National Research Council Canada - National Science Library

    Von Stackleberg, Katherine; Amos, Craig; Smith, Thomas; Cropek, Don; MacAllister, Bruce


    ... agents, obscurants, and other smokes. The purpose of this report is to provide a review and summary of literature and other reports on the fate and environmental effects of military smokes, obscurants, and other comparably used compounds...

  8. 40 CFR 158.2084 - Experimental use permit biochemical pesticides nontarget organisms and environmental fate data... (United States)


    ... pesticides nontarget organisms and environmental fate data requirements table. 158.2084 Section 158.2084 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides § 158.2084 Experimental use permit biochemical pesticides...

  9. The Vertebrate Protein Dead End Maintains Primordial Germ Cell Fate by Inhibiting Somatic Differentiation. (United States)

    Gross-Thebing, Theresa; Yigit, Sargon; Pfeiffer, Jana; Reichman-Fried, Michal; Bandemer, Jan; Ruckert, Christian; Rathmer, Christin; Goudarzi, Mehdi; Stehling, Martin; Tarbashevich, Katsiaryna; Seggewiss, Jochen; Raz, Erez


    Maintaining cell fate relies on robust mechanisms that prevent the differentiation of specified cells into other cell types. This is especially critical during embryogenesis, when extensive cell proliferation, patterning, and migration events take place. Here we show that vertebrate primordial germ cells (PGCs) are protected from reprogramming into other cell types by the RNA-binding protein Dead end (Dnd). PGCs knocked down for Dnd lose their characteristic morphology and adopt various somatic cell fates. Concomitantly, they gain a gene expression profile reflecting differentiation into cells of different germ layers, in a process that we could direct by expression of specific cell-fate determinants. Importantly, we visualized these events within live zebrafish embryos, which provide temporal information regarding cell reprogramming. Our results shed light on the mechanisms controlling germ cell fate maintenance and are relevant for the formation of teratoma, a tumor class composed of cells from more than one germ layer. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Fate of IIT B52 Antiform Agent Across the Small Tank Tetraphenylborate Process

    Energy Technology Data Exchange (ETDEWEB)

    Calloway, T.B.


    The primary objective of these experiments was to determine the fate (partitioning) of the antifoam agent across the precipitation, concentration and washing cycles. A secondary objective of this experiment was to determine if insoluble aluminum formed during the STTP process.

  11. Lung epithelial tip progenitors integrate glucocorticoid- and STAT3-mediated signals to control progeny fate (United States)

    Laresgoiti, Usua; Rao, Chandrika; Brady, Jane L.; Richardson, Rachel V.; Batchen, Emma J.; Chapman, Karen E.


    Insufficient alveolar gas exchange capacity is a major contributor to lung disease. During lung development, a population of distal epithelial progenitors first produce bronchiolar-fated and subsequently alveolar-fated progeny. The mechanisms controlling this bronchiolar-to-alveolar developmental transition remain largely unknown. We developed a novel grafting assay to test if lung epithelial progenitors are intrinsically programmed or if alveolar cell identity is determined by environmental factors. These experiments revealed that embryonic lung epithelial identity is extrinsically determined. We show that both glucocorticoid and STAT3 signalling can control the timing of alveolar initiation, but that neither pathway is absolutely required for alveolar fate specification; rather, glucocorticoid receptor and STAT3 work in parallel to promote alveolar differentiation. Thus, developmental acquisition of lung alveolar fate is a robust process controlled by at least two independent extrinsic signalling inputs. Further elucidation of these pathways might provide therapeutic opportunities for restoring alveolar capacity. PMID:27578791

  12. Transformation and fate of 2,4,6-trinitrotoluene (TNT) in anaerobic bioslurry reactors under various aeration schemes: implications for the decontamination of soils. (United States)

    Newcombe, David A; Crawford, Ronald L


    Energetic compounds have been used in a variety of industrial and military applications worldwide leading to widespread environmental contamination. Many of these compounds are toxic and resist degradation by oxidative enzymes resulting in a need for alternative remediation methods. It has been shown that trinitrotoluene (TNT)-contaminated soil subjected to treatment in strictly anaerobic bioreactors results in tight binding of TNT transformation products to soil organic matter. The research presented here examined the fate of TNT and its metabolites in bioreactors under three different aeration regimes. In all treatment regimes, the typical metabolites of aminodinitrotoluenes and diaminonitrotoluenes were observed prior to irreversible binding into the soil fraction of the slurry. Significant transformation of TNT into organic acids or simple diols, as others report in prior work, was not observed in any of the treatments and is an unlikely fate of TNT in anaerobic soil slurries. These results indicate that aeration does not dramatically affect transformation or fate of TNT in reactor systems that receive a rich carbon source but does affect the rate at which metabolites become tightly bound to the soil. The most rapid transformations and lowest redox potentials were observed in reactors in which an aerobic headspace was maintained suggesting that aerobes play a role in establishing conditions that are most conducive to TNT reduction.

  13. Assessing the fate of Ascaris suum ova during mesophilic anaerobic digestion. (United States)

    Manser, Nathan D; Wald, Ileana; Ergas, Sarina J; Izurieta, Ricardo; Mihelcic, James R


    There is limited knowledge about the survival of geohelminths, which are soil-transmitted human pathogens, in mesophilic anaerobic digestion processes. This study examined the fate of embryonated and unembryonated Ascaris suum ova in six laboratory-scale mesophilic (35 °C) anaerobic digesters processing swine manure to identify their survival strategies and investigate potential mechanisms to enhance their destruction. There was no significant difference in inactivation of Ascaris suum ova in digesters operated at different solids residence times (SRT) or feeding frequencies. Ova exposed to an anaerobic environment became dormant, or remained unembryonated throughout their residence in the reactors. Approximately 65% of ova were able to retain their viability for up to 16 days, after which the rate of inactivation increased until nearly all ova were nonviable by day 24. In contrast, ova exposed to aerobic conditions did not become dormant and progressed through several developmental stages until day 16, after which nearly all ova were observed to be nonviable. In addition, only 35% of fully developed ova exposed to the anaerobic environment retained their viability by day 16 compared to 65% for dormant ova. Results suggest that some ova are physically destroyed during digestion and ova can be inactivated faster if their development cycle is aerobically triggered before entering the anaerobic digestion process. Results also suggest that transfer of resource recovery technologies such as mesophilic anaerobic digestion to developing world settings must account for local climatic and health conditions so mutually beneficial outcomes can be attained.

  14. Fate of challenge schistosomula in the murine anti-schistosome vaccine model

    Energy Technology Data Exchange (ETDEWEB)

    Von Lichtenberg, F.; Correa-Oliveira, R.; Sher, A.


    Mice exposed to irradiated cercariae of Schistosoma mansoni develop a partial resistance to subsequent parasite challenge. In this study the authors utilized histopathologic methods to investigate the fate of both the immunizing and challenge cercariae in C57BL/6J mice. After immunization by percutaneous infection, a large number of the 50 Kr irradiated organisms could be detected in tissue sections of lung. However, as early as 2 weeks after immunization, the majority of these schistosomula apparently had died, leaving residual inflammatory foci. The numbers of these foci then gradually declined during the next 4 weeks of examination. Cercarial challenge of mice vaccinated 4 weeks previously provoked an intense eosinophil-enriched inflammatory response in percutaneously exposed ear pinnae. Despite these pronounced tissue reactions, no evidence of significant parasite damage or attrition was detected in this migration site. In contrast, schistosomula arriving in the lungs of vaccinated mice produced a greater number of residual inflammatory foci than did larvae appearing in the lungs of normal mice. In addition, challenge schistosomula were cleared from the lungs of vaccinated mice at a slower rate than they were from the lungs of control mice. These observations suggest that the lung is a major site of parasite attrition for both immunizing and challenge infections in the mouse irradiated vaccine model.

  15. Fetal Lymphoid Progenitors Become Restricted to B-1 Fates Coincident with IL-7Rα Expression. (United States)

    Iida, Ryuji; Shinoda, Kaori; Hayano, Yuki; Nagai, Yoshinori; Takatsu, Kiyoshi; Kouro, Taku


    B-1 cells represent a sub-fraction of B lymphocytes that participate in T cell-independent antibody production and contribute to innate immunity. While the production of B-1 cells is favored during the fetal waves of lymphopoiesis, it has been unclear when and how that differentiation option is specified. To clarify this, lymphoid and hematopoietic progenitors of fetal liver (FL) and adult bone marrow (ABM) were examined for the B cell differentiation potential. Mouse common lymphoid progenitors (CLPs) and more primitive KSL fraction of FL and ABM were transferred to SCID mice and donor-derived B cell subsets were analyzed 4 weeks later. CLPs were also cultured on ST2 stromal cells for 6 days prior to transplantation. While Lin- IL-7Rα+ CLPs from ABM differentiated to B-1, B-2 and marginal zone B (MZB) cells, equivalent cells from d15 FL differentiated mostly to B-1a cells. We found that fetal CLPs had less ability to colonize the bone marrow than adult CLPs. However, the fetal/adult difference was already present when progenitors were cultured in an identical condition before transplantation. More primitive KSL fraction of FL could generate the same broad spectrum of B cells typical of adults, including splenic MZB cells. In conclusion, we argue that FL and ABM-CLPs are intrinsically different regarding B-1/B-2 fates and the difference is acquired just before or coincident with the acquisition of IL-7Rα expression.

  16. Dentin Sialophosphoprotein: A Regulatory Protein for Dental Pulp Stem Cell Identity and Fate (United States)

    Guo, Shiliang; Lim, Dandrich; Dong, Zhihong; Saunders, Thomas L.; Ma, Peter X.; Marcelo, Cynthia L.


    The dentin sialophosphoprotein (dspp) transcript is expressed during tooth development as a DSPP precursor protein, which then undergoes cleavage to form mature dentin sialoprotein (DSP) and phosphophoryn (PP) proteins. Previous studies using DSPP-knockout (KO) mice have reported that these animals have hypomineralized teeth, thin dentin, and a large dental pulp chamber, similar to those from patients with dentinogenesis imperfecta III. However, there is no information about factors that regulate dental pulp stem cell lineage fate, a critical early event in the odontoblast-dentin mineralization scheme. To reveal the role of DSPP in odontoblast lineage differentiation during tooth development, we systematically examined teeth from wild-type (wt) and DSPP-KO C57BL/6 mice between the ages of postnatal day 1 and 3 months. We found developmental abnormalities not previously reported, such as circular dentin formation within dental pulp cells and altered odontoblast differentiation in DSPP-KO mice, even as early as 1 day after birth. Surprisingly, we also identified chondrocyte-like cells in the dental pulp from KO-mice teeth. Thus, these studies that compare wt and DSPP-KO mice suggest that the expression of DSPP precursor protein is required for normal odontoblast lineage differentiation and that the absence of DSPP allows dental pulp cells to differentiate into chondrocyte-like cells, which could negatively impact pulpal wound healing and tissue regeneration. PMID:25027178

  17. A Common-Fate Analysis of Pornography Acceptance, Use, and Sexual Satisfaction Among Heterosexual Married Couples. (United States)

    Brown, Cameron C; Carroll, Jason S; Yorgason, Jeremy B; Busby, Dean M; Willoughby, Brian J; Larson, Jeffry H


    Using matched, heterosexual couple data from the Relationship Evaluation Questionnaire (RELATE; n = 326 couples), an adapted common-fate approach was used to examine both common and unique attributes of husbands' and wives' acceptance of pornography and sexual satisfaction as well as husbands' and wives' pornography use. It was expected that spouses' unique as well as shared variance of pornography acceptance would be significantly associated with husbands' and wives' levels of personal pornography use and that these use patterns would be significantly associated with husbands' and wives' unique as well as shared variance of sexual satisfaction. It was also expected that pornography use would significantly mediate the relationship between pornography acceptance and sexual satisfaction. Results indicated that the shared variance of pornography acceptance was positively associated with both spouses' pornography use and that spouses' pornography use was negatively associated with their own sexual satisfaction. Wives' pornography use was found to be positively associated with the couple's shared variance of sexual satisfaction, but pornography use did not significantly mediate the relationship between pornography acceptance and sexual satisfaction. These findings emphasize the complexity of pornography use in couple relationships and the importance of studying pornography acceptance and use as a coupling dynamic within marriages rather than just an individual behavior.

  18. At the Stage of Their Fate: Salvaging the Urban Obsolete in Sydney

    Directory of Open Access Journals (Sweden)

    Emma Fraser


    Full Text Available Chronicling the interiors and exteriors of selected abandoned buildings in Sydney, this article examines the problem of memory in spaces that are not only isolated and devalued, but often have played no role in the life of the casual visitor or observer. How can the ruins of someone else’s past be made to speak, and how might contemporary ruinscapes reveal a different way of engaging with the past in urban space, particularly in one of the “youngest” cities in the world: a city not defined by decline; constantly undergoing redevelopment; and known more for contemporary architecture than contemporary ruin? Through describing personal encounters with each site, this paper adopts the attitude of Benjamin’s collector who encounters old books in a way that does not consider their use-value but instead sees them as fated objects, encountered as ephemeral remnants of the past. Like the salvaged but outmoded book, the modern ruin is just as much a site in which history is played out as any house of parliament or mainstream newsroom. Further, history need not be the dominion of those things and people that speak loudly and clearly—it is equally constituted by boundless, amorphous, liminal, discarded, rejected, silent things—in this case, ruined buildings of a recent, remembered and accessible past.

  19. Fetal Lymphoid Progenitors Become Restricted to B-1 Fates Coincident with IL-7Rα Expression.

    Directory of Open Access Journals (Sweden)

    Ryuji Iida

    Full Text Available B-1 cells represent a sub-fraction of B lymphocytes that participate in T cell-independent antibody production and contribute to innate immunity. While the production of B-1 cells is favored during the fetal waves of lymphopoiesis, it has been unclear when and how that differentiation option is specified. To clarify this, lymphoid and hematopoietic progenitors of fetal liver (FL and adult bone marrow (ABM were examined for the B cell differentiation potential. Mouse common lymphoid progenitors (CLPs and more primitive KSL fraction of FL and ABM were transferred to SCID mice and donor-derived B cell subsets were analyzed 4 weeks later. CLPs were also cultured on ST2 stromal cells for 6 days prior to transplantation. While Lin- IL-7Rα+ CLPs from ABM differentiated to B-1, B-2 and marginal zone B (MZB cells, equivalent cells from d15 FL differentiated mostly to B-1a cells. We found that fetal CLPs had less ability to colonize the bone marrow than adult CLPs. However, the fetal/adult difference was already present when progenitors were cultured in an identical condition before transplantation. More primitive KSL fraction of FL could generate the same broad spectrum of B cells typical of adults, including splenic MZB cells. In conclusion, we argue that FL and ABM-CLPs are intrinsically different regarding B-1/B-2 fates and the difference is acquired just before or coincident with the acquisition of IL-7Rα expression.

  20. It's all in your mind: determining germ cell fate by neuronal IRE-1 in C. elegans.

    Directory of Open Access Journals (Sweden)

    Mor Levi-Ferber


    Full Text Available The C. elegans germline is pluripotent and mitotic, similar to self-renewing mammalian tissues. Apoptosis is triggered as part of the normal oogenesis program, and is increased in response to various stresses. Here, we examined the effect of endoplasmic reticulum (ER stress on apoptosis in the C. elegans germline. We demonstrate that pharmacological or genetic induction of ER stress enhances germline apoptosis. This process is mediated by the ER stress response sensor IRE-1, but is independent of its canonical downstream target XBP-1. We further demonstrate that ire-1-dependent apoptosis in the germline requires both CEP-1/p53 and the same canonical apoptotic genes as DNA damage-induced germline apoptosis. Strikingly, we find that activation of ire-1, specifically in the ASI neurons, but not in germ cells, is sufficient to induce apoptosis in the germline. This implies that ER stress related germline apoptosis can be determined at the organism level, and is a result of active IRE-1 signaling in neurons. Altogether, our findings uncover ire-1 as a novel cell non-autonomous regulator of germ cell apoptosis, linking ER homeostasis in sensory neurons and germ cell fate.